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Abstract

Globally, there is a substantial increase in the use of large batteries. One key

application of these is grid-connected batteries. To maximise revenue, it is

important that the full capacity of the battery is used. To achieve this, an

operator must be confident of the capability of a battery at any given time.

For grid-connected batteries consisting of upwards of tens of thousands

of cells, this can be challenging. This is because the cells all behave slightly

differently due to manufacturing tolerances, with effects combining to give

the observed output behaviour. Two main model-based approaches for these

large batteries are observed in literature - a cell model for each cell, or mod-

elling the battery with a single cell model. The former results in high compu-

tation demand while the latter is less accurate, ignoring the cell behaviour.

This thesis investigates the means for maximising the useable capacity of

a large battery, through the consideration of cell level behaviour. This be-

haviour is demonstrated experimentally using a 2MW/1MWh system, with

the behaviour examined through rigorous testing at the lab scale. A new

model is proposed which considers nine cell models to represent a large bat-

tery to achieve accurate estimation. This is validated and shown to be com-

putationally efficient while giving cell-level detail. A method is then explored

to identify model parameters for cells within a large battery, which is success-

ful at parameterising a model to match a physical system. It is demonstrated

using 1584 cells in-situ, showing the variance of capacity and impedance in a

large battery. The model and parameter identification method are then com-

bined to produce an online state estimator to estimate key battery metrics

in real-time, considering cell behaviour. The observations and methodologies

presented thus far are then applied to consider maximising the capacity of

a grid-connected battery. It is shown through simulation that choosing an

appropriate SoC at which to perform cell voltage equalisation can increase

the capacity, and that this is dependant on the cell parameter variance. Ad-

ditionally, it is shown that rearranging modules in a large system based on

temperature can further improve the system capacity. This can be as high

as 5% depending on the capacity variance.
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Chapter 1

Introduction

1.1 Motivation

Globally, there is a push to reduce greenhouse gas emissions and limit global

warming to below 1.5°C, with The Paris Agreement [21] being adopted by 196

parties. This agreement is rapidly increasing the penetration of renewable

energy sources on electricity grids. To best use this clean energy, Lithium-

ion batteries are seen as a way for storing energy for many applications,

particularly where fossil fuels are traditionally used.

As such, the production of Lithium-ion batteries is rapidly increasing,

set to triple between 2020 and 2025, from 455GWh in 2020 to 1,447GWh in

2025, shown in figure 1.1.
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Figure 1.1: Global predicted Lithium-ion battery capacity production [1].

Meanwhile, according to Benchmark Mineral Intelligence, the price for

Lithium ion batteries has been dropping, from approximately 300$/kWh to

approaching 100$/kWh at the end of 2020 [22]. There appears to be two

main drivers for this - Electric Vehicles (EVs) and grid-connected Battery

Energy Storage Systems (BESS).

Globally, EV sales are expected to triple between 2020 and 2025 and

a similar story is seen with grid-connected BESS, with the global installed

capacity set to reach 135GW in 2030, from 8.5GW in 2020 [23].

These applications are both for large battery packs, with an EV battery

pack consisting of hundreds to thousands of cells [24,25]. and upwards of tens

of thousands in a large grid-connected BESS [26]. These can be even larger

when using smaller cells in these large packs, such as the cylindrical 2170 cell

which is used in the Hornsdale Power Reserve - a 100MW/129MWh BESS

built by Tesla [27, 28]. With a cell capacity of 17.3Wh, it can be estimated

that the system consists of 7.5 million cells.

It can be challenging to estimate the energy stored in a large pack such as

these at any given moment - it is however important. With EVs, it is obvious

that being depleted of charge unexpectedly is problematic, as it results in the

vehicle occupants becoming stranded, resulting in a costly tow or call-out.

Similarly, it is costly when the same happens with grid-connected BESS.

When trading on the Great Britain (GB) electricity grid, an amount of energy
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is bid in advance, to be delivered in a specified half-hour period. Failure to

deliver the energy results in extra charges, in the form of the shortfall in

energy being charged at the Balancing Mechanism (BM) rate, which is likely

to be high. Naturally, this is undesirable for a BESS owner/operator, and

would be caused by poor estimation of the battery states. For a system

consisting of a single cell, this could be a fairly simple fix, by adjusting the

expected capacity of the battery to correct the SoC estimation. For a large

battery, however, there are many thousands of cells to consider, which all

interact and contribute to the output behaviour.

Being able to understand and estimate this output behaviour to max-

imise capacity is a key aspect to maximising profitability for grid-connected

storage, which this thesis considers.

1.2 Thesis Contributions

This thesis presents five research chapters which consider cell level behaviour

to develop modelling, estimation and optimisation of large packs. The first

three chapters detail a novel model for a large pack, with a focus on electricity

grid applications. The final two chapters then use the findings to propose

state estimation and optimisation of large packs.

Investigation into Cell Voltage Imbalance in Grid-Connected Bat-

teries

The cells that form a grid-connected battery have small variations between

them, resulting in a deviation in cell voltages under cycling. This chap-

ter presents cycles observed from a grid-connected battery, focusing on the

trends of these cell voltage deviations for the first time. Lab scale experi-

ments are performed, recreating the cycles from the larger system, showing

the cell level data and providing detail of how cell voltages interact in a large

pack. The results presented verify assumptions that are used when modelling

large packs and sets the requirements for the model and subsequent online

parameter estimator.
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A fast variance based Grid Scale Battery Model

Two methods are seen in literature to model large packs - represent the pack

with a single cell model, or represent the pack with a cell model for every cell.

The former is computationally efficient and suitable for real-time applications

but lacks cell level detail, whilst the latter possesses the detail, yet due to

the model size, is unsuitable for real-time applications. Thus, a novel model

is presented which represents any sized pack using up to nine cell-models.

This is then verified experimentally with two lab scale tests, and a method

for identifying parameters for a large sample of cells is evaluated.

In-situ Parameter Identification of cells in Grid Connected batter-

ies

To identify parameters for the model introduced in the previous chapter, ide-

ally, every cell in the pack should have its parameters identified. Typically,

this requires dismantling a pack and performing a parameter identification

test on every cell. For a grid-connected pack, with upwards of tens of thou-

sands of cells, this would take an enormous amount of time. Therefore, this

chapter presents a method for identifying the parameters for cells within a

large pack in-situ. The method is demonstrated through rigorous experimen-

tation on two systems, where it is shown to be effective. The results show

that compensating for cell temperature significantly improves the accuracy of

the parameters. For the larger system used for demonstration, it was shown

that there can be as much as 4°C difference in temperature between cells in

a string, highlighting the need for this.

Online parameter estimation for grid connected batteries

The State-of-Charge (SoC) and State-of-Power (SoP) define the energy and

power management for a grid-connected battery, and confident estimates of

these are crucial for maximising use and revenue of such systems. With packs

consisting of upwards of tens of thousands of cells, there are many variables

which are contributing factors to that estimate. This chapter combines the

outcomes of the investigation into cell voltages in a large pack from chapter

4, the computationally efficient and accurate model from chapter 5 and the
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parameter identification procedure from chapter 6 to define a new open-loop

state estimator for SoC, SoP and State-of-Health (SoH). The estimator con-

siders both cell temperature and voltage in real-time to provide an accurate

measure for the three states. This is a significant step forward in estimation

for large BESS, giving confidence to push a battery to it’s operating limits.

Optimising energy storage capability of grid connected batteries

Once a BESS system is commissioned, there are few changes which can be

easily made to improve performance of the system. This chapter uses find-

ings and techniques from the previous three chapters to evaluate two methods

for minimising the cell voltage imbalance to maximise cell utilisation. It is

shown with simulation and experimentation that when using passive balanc-

ing techniques, the SoC at which cell voltage equalisation is performed can

affect the overall system capacity. The point at which it is best to balance

is highly system dependant, but the chapter explains the principles behind

optimising cell voltage equalisation to maximise system capacity. Secondly,

optimally arranging modules by capacity in a pack to maximise system capac-

ity is shown to be effective through simulation, using the previously gathered

experimental parameters. This is in agreement with other work. Further to

this, it is shown for the first time using simulation that arranging the poor-

est performing cells into the warmest areas of the battery can give a further

improvement to the overall capacity of the system.
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Chapter 2

Background

The work proposed in this project considers the use of large battery packs

consisting of lithium-ion cells and how cells of slightly differing performance

behave in a pack. This chapter consists of two main sections - the first pro-

vides an overview of the lithium-ion cell technology as a means to understand

the cause of these performance differences. The second gives a view of large

battery packs as a whole, considering their use and behaviour.

2.1 Lithium-ion Battery Cells

According to a report, annual production capacity of lithium-ion cells is

estimated at 455 GWh/yr, with this being expected to increase to 1447

GWh/year in 2025 [1]. This section aims to give a broad overview of these

cells, including the physical attributes, modelling and diagnostics of these

cells.

2.1.1 Physical Attributes

Considering the physical attributes, the following section aims to give a back-

ground in the chemistry, packaging and manufacture of lithium-ion cells. The

purpose of this is to give an insight into the results that are later presented,

providing sound reasoning for trends observed, particularly for cell voltage

imbalance.
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2.1.1.1 Chemistry

Secondary (rechargeable) lithium-ion cells consist of Li+ ions moving through

an electrolyte between two electrodes. The lithium ions then intercalate into

the cathode or anode depending on whether it is being charged or discharged

as shown in the figure 2.1 below. [2]

Figure 2.1: Movement of Li+ ions in a lithium-ion Cell (adapted from [2])

The anode (negative electrode) typically contains graphite or another

form of carbon. Other anode materials include Lithium Titanate (LTO) and

silicon. [29] The cathode (positive electrode) material generally has more

variation, where typical materials include: Lithium Cobalt Oxide (LCO),

Lithium Nickel Cobalt Manganese Oxide (NMC), Lithium Nickel Cobalt Alu-

minum Oxide (NCA) and Lithium Iron Phosphate (LFP) [29]. The voltage

of a cell occurs due to the difference in potential between the anode and

cathode. Combining different anode and cathode materials gives a range of

characteristics, with some typical combinations shown in table 1, presented
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by Burke et al [20]. Despite the differing characteristics, they generally be-

have in a similar way in terms of charge and discharge behaviour, which can

be seen in figure 2.2.

Chemistry Cell Voltage / V Capacity Density / Ah/g Energy Density Cycle life Thermal
Anode / Cathode Max / nominal / min Anode/Cathode Wh/kg (deep) stability
(Common Name) (typical)

Graphite/
4.2/3.6/2.5 0.36/0.18 100-170 2000-3000 fairly stableNiCoMnO2

(NMC)
Graphite/

4.0/3.6/3.0 0.36/0.11 100-120 1000 fairly stableMn spinel
(LMO)

Graphite/
4.2/3.6/3.0 0.36/0.18 100-150 2000-3000 least stableNiCoAlO2

(NCA)
Graphite/

3.65/3.25/2.0 0.36/0.16 90-115 >3000 stableFePO4
(LFP)

Lithium titanate/
2.8/2.4/1.5 0.18/0.11 60-75 >5000 most stableMn spinel

(LTO)

Table 2.1: Properties of common Li-ion battery chemistries. (adapted from
[20])

Figure 2.2: Typical charge and discharge curve in a lithium-ion battery where
IR drop is the drop in voltage due to internal resistance. (adapted from [3])

The charge and discharge curves both have relatively flat portions in the

middle part of the cycle, and a steep curve towards high and low states of

charge. It can also be seen that the shapes are virtually the same, but the
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charge curve is shifted higher and the discharge curve is shifted lower due to

the voltage drop from the impedance.

The reason for the curve shape in figure 2.2 is due to the chemical pro-

cesses occurring in the battery related to the way in which lithium intercalates

into the electrodes, where one electrode has an abundance of lithium and the

other very little towards the end of charge or discharge.

The figure also shows an IR drop - a drop in voltage due to internal resis-

tance. All lithium-ion batteries demonstrate this property and the amount of

voltage drop corresponds to the current draw of the battery and the internal

resistance. A higher current draw or higher internal resistance will result in

a larger voltage drop [3], demonstrated in figure 2.3

Figure 2.3: Charge/Discharge voltage vs SoC at 1C or 2C (50A or 100A) in
LIM50E cells. Experimental data from Chapter 6.

2.1.1.2 Cell Packaging

Lithium-ion cells are commercially produced in a large variety of packages

[30], all of which can give slightly different properties to other cells of iden-

tical chemistry [31]. These can be separated into categories as follows:

Coin / button
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These are small cells that are used to power small devices such as hearing

aids, watches, etc. Figure 2.4 shows a diagram of a coin cell. They are too

small for use in grid scale storage and so will not be considered further.

Figure 2.4: Coin / button cell construction [4]

Cylindrical

Cylindrical cells are shaped in a cylinder as the name suggests. The

electrodes are wrapped around a central core as per figure 2.5.
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Figure 2.5: Cylindrical Cell Construction [5]

These are named by their width and height - the first two numbers are

the diameter in mm and the last three are the height in mm to one decimal

place. i.e. 18650 = 18mm diameter, 65.0mm height [32].

They typically also have a safety device built in which has two main

purposes. It firstly vents gas if pressure builds up in the cell and disconnects

the positive terminal permanently should the pressure threshold be exceeded.

This helps to prevent dangerous failure of the cells [5]. Battery safety is a

concern [33], so having a safety mechanism is highly desirable in a cell.

Cylindrical cells generally have the highest energy and power densities out

of all the cell packaging types [34]. This is as they are generally wound more

tightly and are more compacted, giving both better chemical performance

and a greater volumetric density.

However, when grouped in a module, their geometric shape limits them as

they cannot perfectly pack together. This can negate their improved density

over other packaging types.
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Prismatic / Pouch Cells

Prismatic and pouch cells are cuboid shaped cells. The difference between

them is that the prismatic cells are in a sealed container, where part of that

container contains conductive parts attached to the electrodes as the battery

terminals. In Pouch cells, tabs are welded to the electrodes and pass through

the container into the battery while maintaining a seal.

The electrodes are generally either wound flat or folded back and forth,

as shown in figure 2.6.

Figure 2.6: Prismatic cell electrode stacking - A: wound flat, B: folded back
and forth. (adapted from [6])

As mentioned before, these are not as energy dense as cylindrical type

cells, as the electrodes cannot physically be packed as tightly together. How-

ever, due to their cuboid shape, they pack much more efficiently when ar-

ranged in a module, potentially giving a greater energy density when con-

nected in a pack.

2.1.1.3 Manufacture

With a basic understanding of cell chemistry, it is also important to un-

derstand how cells are manufactured. This will give key insights into the

factors that impact the capacity, impedance, and other parameters from a

manufacturing perspective.
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It has been noted that differences in electrical parameters between cells is

due to manufacturing tolerances. Lithium-ion battery cells are produced in

a long and complex process with many steps where each step introduces the

possibility of a difference in the electrical behaviour between cells. Figure 2.7

shows a general manufacturing process for lithium ion cells (based on work

presented in [7, 35, 36]) and considers the impact of each step on electrical

parameters (i.e. voltage, capacity, impedance, degradation).
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Manufacturing Step Sources of Variation
Electrical Engineering

Impact

Material Production
Materials for production
obtained / produced

Impurities in materials,
differences between batches

More impurities: reduced
capacity, increased impedance,

increased degradation

Dry and Wet Mixing
Materials combined and mixed

to form electrode slurrys

Dispersion of mixture components,
Ratio of Materials

Poor dispersion: reduced
capacity, increased impedance

Incorrect Ratio: reduced
capacity, increased impedance

Web Coating
Electrode material is spread
across the current collector

Thickness determines amount of electrode
material deposited on the current collector

More electrode material: increased
capacity, increased impedance.

Drying
Solvents and moisture

evaporated from electrode

Moisture can influence side reaction
will cell components, Drying rates can
influence distribution of binder [35]

Side reactions: increased degradation
Poor distribution of binder: in-

creased impedance, reduced capacity

Calendaring
Electrode thickness re-
duced between rollers

Thickness of electrode affects energy
density, Calendar line loading affects
porosity, adhesion and conductivity

Thicker Electrode: Reduced energy
density (capacity), increased impedance

Reduced line loading: reduced
capacity, increased impedance

Slit to width, cut to length
Electrode is cut to de-
sired width and length

Dimensions will determine
the amount of active material

Less active material: reduced
capacity, increased impedance

Packaging
Produce ESA (Electrode Sep-
arator Assembly) – wind,
fold or stack electrodes

Process can introduce
mechanical stress. [36]

More mechanical stress:
increased degradation

Contacting Terminals
ESA is contacted inter-
nally, typically by ultra-
sonic or laser welding

Strength and reliability of weld
can vary electrical contact

Poor electrical contact:
increased impedance

Housing
ESA inserted into hous-
ing (pouch or hard case)

Potential for damage to
case which can impact seal

Poor seal: Increased degradation,
higher chance of premature failure

Electrolyte Filling
Cell is pulled under weak
vacuum in dry conditions
and filled with electrolyte

Any Moisture in atmosphere will
introduce moisture to cell.

Reduced vacuum or electrolyte
may cause insufficient wetting

Increased Moisture: Increased Degradation
Insufficient Wetting: Increased degradation

and impedance, reduced capacity

Final Sealing
Housing sealed and stored

Poor seal may introduce mois-
ture and other contaminants

Poor seal: increased degradation,
higher chance of premature failure

Figure 2.7: Typical manufacturing process for a lithium-ion cell. (adapted
from [7])
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It is clear from figure 2.7 that these steps all affect the physical properties

of the cell, and so any slight changes between each cell can cause different

properties between the different cells produced. Whilst every step intro-

duces an element of variation, Kwade et al. note in [7] that the most crucial

parameters with variation are remaining moisture, mechanical stress, connec-

tion resistance and wetting consistency of the Electrode-Separator Assembly

(ESA). This impacts the properties of the battery pack that is produced. Ac-

cording to experimental work presented in [15], this variation can be as high

as 5% for the capacity and impedance of new cells in an EV. Experimental

work on cells presented in this thesis however give a lower variation nearer

1%. Therefore, there are extensive steps before producing a battery pack as

detailed in figure 2.8.

Figure 2.8: Typical process for producing a lithium-ion battery pack.
(adapted from [7])

The cells are sorted to be grouped with other cells with similar properties

such as similar capacity and internal resistance, before being assembled into

modules. These modules are then sorted in much the same way as the cells

to be assembled into packs.
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2.1.2 Modelling

Models for battery cells aim to produce a mathematical representation of

a cells behaviour, generally for simulation or used alongside model based

estimation and control algorithms. These can be broken into three broad

categories - physical models, electrochemical models and bucket models, with

respectively reducing complexity.

Models can be either empirical - based on observations of the behaviour,

or mechanistic - based on theory. The three model types presented have both

empirical and mechanistic elements, with observations required to identify

the parameters for the models, but the more simplistic models tend to be

increasingly empirical.

2.1.2.1 Physical / Electrochemical Models

A typical physical model is a particle model - these are generally single par-

ticles or Pseudo-2D particle models. A Pseudo-2D (P2D) model describes

the battery electrochemical behaviour based on the porous electrode the-

ory [12] [37].The electrodes are considered separately as a mass of spherical

particles submersed in a liquid electrolyte where they diffuse and intercolate

during charge and discharge. This is then mathematically represented by a

complex set of PDE’s which gives a highly accurate yet highly computation-

ally intensive model [38].

This can be simplified to a single particle model - the same as a P2D yet

merely a single particle is modelled. This is still fairly complex, but according

to authors [39] is noted to be potentially suited to BMS applications.

2.1.2.2 Equivalent Circuit Models

Less complex than an electrochemical model, an Equivalent Circuit Model

(ECM) represents the battery as a voltage source (generally dependant on

SoC) and a network of resistors and capacitors - generally a resistor in series

with a number of parallel pairs, as shown in figure 2.9 [8]. Some ECMs

include an element for inductance, such as that in [40], where the author

notes that inductive impedance is dominant at frequencies >1kHz, or a time
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period of <1ms. For battery pack applications, it is typically ignored as it is

not measurable, with BMSs typically sampling in the order of 10Hz.

Each RC element refers to the voltage response of a battery to an applied

current, with different time constants represented by each element. The

output voltage is determined by equation 2.1 below [41]. As noted by Lin et

al. in [12], they can be used for real-time applications, using an open-loop

or closed loop algorithm to estimate battery states or parameters.

Vi = OCV − I

[
R0 +

n∑
i=1

Ri

(
1− e−t/RiCi

)]
(2.1)

Increasing n (number of RC elements) increases the complexity, whilst

giving a more precise estimate of impedance. It has been shown that de-

spite the increased precision of the model, increasing n does not necessarily

improve model accuracy, due to the challenges in identifying the model pa-

rameters [41].

Figure 2.9: Equivalent Circuit Model (adapted from [8])

2.1.2.3 Bucket Models

Less complex still, a bucket model is a highly simplistic model of a battery,

considering the battery as a“fuel tank” or energy store with a fixed capacity

[42]. Applying power to the model changes the energy stored in the battery

through integration of power, so a model can output SoC. Hence the battery

model is described in [42] as:
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dSoC

dt
=
P (t)

EWh

(2.2)

This type of model would typically be used where voltage is not a concern

and a high level of detail is not required. Being simple, it is computationally

efficient and particularly useful for simulating over long timeframes, or as

part of a simulation of a larger model (i.e. a model of an electricity grid).

2.1.2.4 Overview

Overall, models ranging from complex electrochemical models have been

shown, down to the very simplistic bucket models. Typically ECMs are

used in real-time applications and in BMSs as a fair compromise between

performance and detail.

2.1.3 Battery Metrics

For an operator or user of a battery, it is useful to have various performance

indicators to understand battery behaviour in a simple manner. Direct bat-

tery measurements such as voltage and current alone are not sufficient to

determine the future operating limits of a battery without some mathemati-

cal processing. Therefore, various metrics are estimated to give a more useful

measure of a battery’s state at any given time to an operator.

2.1.3.1 SoC

SoC is commonly defined as the total available energy available from a par-

ticular cell or battery relative to the total energy the cell or battery can store.

In a lithium-ion battery, it is related to the concentration of lithium in each

electrode [43] as:

SoC =
θ − θ0%

θ100% − θ0%

, (2.3)

where θ is the normalised lithium-ion concentration, and θ100% is the

concentration at 100% SoC, and θ0% is the concentration at 0% SoC.
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It is important to know the remaining charge in a cell for virtually all

applications and therefore significant research has been performed around

being able to measure it. The vast majority of research considers single cell

SoC measurement which this section will explore.

It is worth noting that SoC is not a metric that can be specifically mea-

sured like voltage or current. It is always an estimate based on other mea-

surements that can be taken [44]. Typical measurements taken in operational

battery systems are voltage, current and temperature, though other measure-

ments have been proposed such as optical [45], strain and ultrasound [46]

measurements. From typical measurements from operational battery sys-

tems, there are many techniques which are used to estimate the SoC, which

can range from very simple to highly complex, both in terms of computation

and mathematics.

2.1.3.1.1 Discharge test

This is considered the most basic SoC estimation algorithm [9]. A battery

is discharged until it is empty and the energy that has left the battery is

measured. It can be found following a Constant Current, Constant Voltage

(CCCV) charge as:

SoC =
Qreleased

Qrated

(2.4)

where:

Qreleased =

∫ t

0

Idt (2.5)

where:

Qreleased = Charge released from the cell [Ah]

Qrated = Rated battery capacity [Ah]

t = Discharge time (h)

I = Current (A)

This method is impractical for most applications as the battery requires

a time-consuming recharge, and it is only known what the SoC was at that
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particular point in the past. Additionally, the primary function of the bat-

tery is interrupted. It must be performed under controlled conditions to be

accurate, so is only suitable for verifying results.

2.1.3.1.2 Coulomb Counting

Coulomb counting extends the discharge test, continuously measuring the

charge in and out of the battery [47]. It requires initial knowledge of SoC

and can be found as:

SoC(t) = SoC(t0) +

∫ t0+T

t0

I

Qrated

(2.6)

where:

t = Observation time

t0 = Initial time

T = Operating period

This method is an improvement to the discharge test as it can work

during normal operation of the battery. However, with this method, current

measurement error causes the value to ‘drift’ over time as all errors are carried

through [48]. It can be corrected when the battery reaches a known SoC level

- i.e. full charge, however depending on the application, this particular point

may never be reached.

2.1.3.1.3 Open Circuit Voltage (OCV)

The open circuit voltage of a battery relates to it’s SoC. It has been used

for a long time for lead acid batteries where there is a very strong and linear

relationship between OCV and SoC as shown in figure 2.10.
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Figure 2.10: Lead acid OCV vs SoC for 4 lead-acid (VRLA) batteries of the
same type [9]

This gives a simple linear equation to have a measure of SoC from OCV.

Applying this to lithium ion batteries is less straightforward, however. Figure

2.11 shows the OCV plot for a LFP/LTO (cathode/anode) cell, highlighting

the issue.

Figure 2.11: OCV vs SoC of an LTO-LFP cell [10]

As can be seen, there is a very flat region of OCV - between 20% & 95%

SoC, there is 3mV change in OCV. Furthermore, it is not linear, and the
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OCV-SoC relationship cannot be represented by a simple linear equation.

This particular chemistry has an especially flat region, but other lithium

cells exhibit similar properties, with a range of cell OCVs shown in figure

2.12.

Figure 2.12: Typical OCV vs SoC for a range of lithium cell chemistries
(adapted from [11])

Comparing figure 2.11 and figure 2.12 it can be seen that other lithium

chemistries still exhibit the flattened region, but to a lesser extent. Regard-

less, the relationship between SoC and OCV is not linear and therefore a

lookup table is more appropriate. This is where the voltage is compared

with measured values at known states of charge and interpolating between

points [49].

This can be more accurate than coulomb counting, however, to have a

true value for SoC a cell is required to be open circuit - i.e. no load, and

rested to allow the voltage to settle.

2.1.3.1.4 Electrochemical Impedance Spectroscopy

Another technique that can be used is Electrochemical Impedance Spec-

troscopy (EIS). This involves measuring the impedance of a cell at a range
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of frequencies. The impedance of a battery changes with SoC at certain fre-

quencies so can be used to give a metric for SoC. A typical Nyquist plot from

an EIS test at different SoCs is shown in figure 2.13

Figure 2.13: Nyquist plot for the typical result of an EIS test at different
SoCs. Example shown is an LFP-LTO cell from [10].

This has been demonstrated to give a reasonable estimate whilst the cell

is at rest [10], though it is noted that more work is required for the technique

to be used in the full operating range of the battery.

2.1.3.1.5 Model Based Approach

Model based approaches estimate SoC based on a model of a cell or battery.

An open loop approach runs the model alongside the battery to predict target

variables. A disadvantage to this is the susceptibility to uncertainty in the

model, input measurement and initial conditions, as noted by [50] and [51].

A closed-loop approach incorporates the model alongside measurements

to improve the prediction of target variables. The schematic of a typical

closed-loop estimation algorithm is shown in figure 2.14. The state estimator

part of the algorithm can take many forms, including a Kalman Filter [52],
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PDE Observer [53], Neural Networks, Fuzzy Logic and Support Network

Machine [54] amongst others.

Figure 2.14: Closed-loop battery state estimation algorithm. (Adapted from
[12])

2.1.3.2 SoH

State of Health (SoH) is another metric that is closely linked to SoC. It

relates to the condition of a particular cell or battery relative to when it was

new, or it’s rated specification [55] [47]. It is typically reported considering

the reduction in capacity, described by the following equation [47]:

SoH =
Qmax

Qrated

× 100% (2.7)

Additionally, [55] notes that a change in OCV and increase in impedance

can also be used to contribute to the metric of SoH. Mechanisms for these

changes are discussed in section 2.1.4.

With SoH typically being a change in capacity, it is normally estimated

by either modelling degradation, or updating an estimate for capacity. This

is important for determining SoC, particularly where coulomb counting is

involved, as the SoC is estimated relative to capacity.
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2.1.3.3 SoF / SoP

State of Function (SoF) has several definitions across literature [56–60], but

it is generally considered a binary “Yes/No” for a battery to perform a spec-

ified function. This could be for a function such as cranking an engine, or

performing a constant current discharge for a set time.

A similar metric, State of Power (SoP) determines the maximum available

power a battery can charge or discharge in it’s current state. It is noted by

Lin et al. in [12] that the estimation is critical in maximising the utilisation

of a battery as it increases the operating window of a battery. For instance,

as a battery charges, cells within it will approach their upper voltage limits.

The SoP indicates that power is needed to reduce to avoid these limits being

exceeded. Should the estimate for SoP be too conservative, power will reduce

earlier than necessary, reducing the operating window for the battery. Should

the opposite be true, a voltage limit may be exceeded, which could result in

a battery shutdown to avoid unsafe operating conditions.

These two metrics are less commonly reported than SoC or SoH in litera-

ture, but are important from a standpoint of maximising battery utilisation

whilst remaining in a safe operating window and considers both SoC and

SoH in it’s estimation.

2.1.4 Degradation

It is well known that batteries degrade when being used. User experience of a

smartphone (or any other rechargeable device) for a matter of months before

observing a capacity reduction. The battery cost for this type of device

is small, however, for an electric vehicle, or other application with large

batteries, there can be a large cost associated with the degradation. [61] For

an online algorithm, it is important to understand that there is a degradation

associated with each cycle, and it may be beneficial to associate that to a

particular degradation mechanism to better model it.

Degradation is caused by a large number of highly complex mechanisms

which occur in a lithium ion cell [62] [31]. These mechanisms are shown in

figure 2.15 below.
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Figure 2.15: Degradation mechanisms in lithium ion cells. [13]

As can be seen, there are many physical and chemical processes occurring

in the cell. However, Birkl et al. state in [13] that these mechanisms can be

summarised in three modes: Loss of lithium inventory; loss of active cathode

material and loss of active anode material.

Electrically, this results in a loss in capacity or power available [63]. There

are several factors in the operation of the cells that affect the rate of degrada-

tion. C-rate (the rate at which cells are discharged relative to their capacity)

is known to be a factor. It has been shown that higher C-rates cause a higher

rate of degradation [64]. It causes the loss of the active electrode materials.

Cycling nearer 100% and 0% SoC is also a factor, where this degrades a

battery faster [65]. It is theorised as being due to crack propagation in the

structure of the electrodes when operating in these SoC areas, meaning there

is again reduced active electrode material.

At rest, a cell will degrade over time, theorised due to growth of the

SEI [13] and is known as calendar ageing.

Finally, temperature is a factor in degradation. Both high [66] and

low [67] temperatures cause accelerated cyclic and calendar ageing. High

temperature degradation results in loss of capacity and increase in impedance

and it has been observed that this can be due to a low-conductivity SEI form-

ing on the cathode [66]. Low temperature degradation is due to lithium plat-
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ing occurring on the anode as opposed to intercalation of the ions, causing

loss of lithium inventory.

This is summarised in more detail below in figure 2.16.

Figure 2.16: Degradation mechanisms in a lithium ion cell [13].

2.2 Large Battery Packs

Considering large battery packs, this work defines a battery “pack” as consist-

ing of multiple cells with series and/or parallel connections, and additional

circuitry for monitoring and protection, with an example shown in figure

2.17. It is then considered large in this work when consisting of >100 cells.

Other terms that are used include strings and modules. A string refers to

a number of cells connected in series. The term module is used to refer to

a group of cells with series and/or parallel connection that is a “building

block” for a larger system. Modules typically contain some cell monitoring

and balancing but not a full BMS, lacking control.

A BMS can be described as a system control unit, primarily to safeguard

the battery [68]. This is through measurement of cell voltages, current and

temperature [69] and controlling contactors in the system. The scope of a
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BMS varies depending upon the application and in thesis, it is defined as

a system to monitor the battery, provide battery protection, estimate the

battery’s operational state and report the battery states to external equip-

ment. In a grid connected system, the external equipment may be a system

to control power flow to or from the grid.

The configurations of batteries are named by their series and parallel

connections, where ’s’ is the number of series connections and ’p’ is the

number of parallel connections. As an example, for a 2p4s8p battery, there

are 2 cells connected in parallel, of these there are 4 connected in series.

There are then 8 of these 2p4s groups of cells connected in parallel.

Figure 2.17: Example of a battery “pack”, as defined in this work

In this section, studies in differences between cells will be initially consid-

ered, including degradation effects, then how this is mitigated through cell

balancing mechanisms. Next, the applications of large battery packs will be

considered, before discussing the work that this thesis builds upon.
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2.2.1 Cell Variations

Several studies show that there there are variations between cells of the same

age and type from the same manufacturer [15,70–74]. When used in a pack,

these variations cause a difference in cell voltages and a difference in current

between parallel cells / strings during cycling. These voltages and currents

must be measured and considered to prevent any cell from exceeding its rated

upper or lower voltage or current limit. For example, during the charge of

a pack, once any cell reaches the upper voltage limit, the charging current

must be reduced or stopped such that the upper voltage is not exceeded. Not

doing this and allowing the individual cell to exceed the voltage limit could

result in cell damage or catastrophic failure of the cell [75].

2.2.1.1 Capacity Variation

It is shown in the mentioned studies that cells connected in a pack will have

different capacities. This is shown to be as high as 5% in new cells [15],

though the other previously mentioned studies measure capacity variation to

be between 1-2%. If they are connected in series in a fully charged state and

discharged, they will end at different states of charge [76]. This is illustrated

in figure 2.18 below.

Figure 2.18: Voltage difference between two cells with different capacities
discharging.
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This is due to the fact that current is constant between the cells, and as

such, they discharge to different SoCs, and therefore different voltages.

Manufacturers may deliberately have different “windows” of acceptable

variation between cells, depending upon the application. For example, in

applications where cells are generally only connected in parallel (i.e. power

bank), there will be a wider acceptable variation. Additionally, in appli-

cations which rarely reach near full and empty charge, the variation is less

impactful, so a wider acceptable variation may be used. Where maximum

cell-utilization is important (i.e. in electric vehicles to maximise driving

range) a manufacturer might choose a smaller window of variation.

2.2.1.2 Impedance Variation

Additional to capacity variance, cells connected in a pack will also have an

impedance imbalance. In series connected cells, it manifests itself as a voltage

difference under load. Assuming the cells have the same SoC however, the

cells will relax to the same voltage [76].

The variation between cells can however be significant. It is suggested

in [76] that a batch of cells may have as much as 20% difference in impedance

at production, which agrees with results shown in [70]. This demonstrates a

problem with using multiple cells together. Even with identical capacities,

the cells will show a variation in voltage under a load, meaning that cells

will reach their maximum or minimum voltages at different points. Different

manufacturers may have different tolerances as to what is an acceptable

difference in impedance, but it is to be expected that cells will have some

variation of impedance when new.

2.2.1.3 Degradation Variation

It is important to note that while cells might begin at reasonably consistent

capacities and impedances, this can vary throughout their lifetime. Figure

2.19 shows the cell capacity from ageing of 48 cells tested separately by

Baumhöfer et al. in [14]. A similar study from Harris et al. agrees with this

conclusion [77].
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Figure 2.19: Different ageing trends from 48 equal cells under identical ageing
conditions and profiles. [14]

These cells were tested independently of each other and exhibited this

variation effect. In a series connected battery, this effect would likely be

magnified. It is known (section 2.1.4) that discharging and charging cells to

lower and higher SoCs results in greater degradation. With some cells reach-

ing a lower SoC than others due to imbalance, degradation will occur faster

in these cells. These will then have a further reduced capacity, compounding

the issue.

This is further shown in figure 2.20, where Schuster et al. took 3 samples

of cells from EVs - one new, and two which had been used for 25,000km and

3 years each [15]. It can be seen that the internal resistance and capacity of

the cells are tightly grouped for the new cells, with just one outlier. After

ageing, there is a much wider spread of both impedance and capacity.
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Figure 2.20: Impedance and capacity of cells removed from EV packs, one
new and two aged (BEV1/BEV2). (Adapted from [15]).

Additionally to capacity and internal resistance, [13] suggests that the

OCV-SoC relationship also changes as cells degrade, therefore it stands to

reason that the more degraded cells may have a different OCV-SoV curve

compared to less degraded cells.

This unequal degradation is particularly an issue with large batteries, as

with a new battery, the cells all perform reasonably equally, but over time

it is expected that they will perform differently to each other. Algorithms

would be required to track these changes to maintain a good estimation of

SoC throughout a battery’s lifetime, to know how much energy is available

at any given time.

2.2.1.4 Cell Balancing Mechanisms

In order to overcome cell imbalance issues, balancing mechanisms are used

to adjust the state-of-charge of individual cells connected in a pack in a pro-

cess often called cell balancing or charge equalisation. They can be broadly

split into passive and active mechanisms [16, 78]. Many balancing mech-

anisms have been presented in literature [79–94]. The common balancing

mechanisms are helpfully summarised in [16], as shown in figure 2.21.
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Figure 2.21: Passive and Active Cell Balancing mechanisms. (Adapted from
[16].)

Passive balancing mechanisms for lithium ion batteries involves control-

ling a switched resistor in parallel with an individual cell. This is used to

discharge cells with a higher SoC than others. An active balancing mech-

anism involves shuttling charge between cells using capacitors, inductors,

or DC-DC converters. These each have varying costs and complexity, with

passive methods being cheaper, however, they are inefficient due to energy

being wasted as heat, and active methods being more expensive but with

a much greater efficiency. The batteries used experimentally in this thesis

all employ a passive balancing mechanism, which seems to be the industry

standard based on the commercial modules observed by the author, however

the actual balancing mechanisms employed in commercial large batteries are

generally not publicised.

2.2.2 Applications

As previously mentioned, the manufacture of lithium-ion batteries is seeing

an increase which is forecast to accelerate. This increase is largely due to

large battery pack applications, which can be broadly split into static and

motive applications. Static applications include use on Electricity Grids [95],

Micro Grids [96] and home storage [97]. The motive applications include EVs

(cars) [98], Heavy Goods Vehicles (HGVs) [99] and ferries [100] amongst

others. The research in this thesis is largely focused upon grid-connected
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batteries, due to the gap in experimental research of such large systems, so

the application of these will be explored in more detail.

For grid-connected batteries, there are several revenue streams. These can

be divided into two main categories - frequency services and energy trading.

This work focuses on the system in GB, where a rapid growth in the market

is forming a large driver for research into grid-connected batteries.

2.2.2.1 Frequency Services

In GB, National Grid Electricity System Operator (NGESO) is the electricity

system operator, responsible for maintaining a balance between the supply

and demand of electricity on the grid. One means for this is through fre-

quency services, which NGESO pays generators to perform. These aim to

balance short-term supply and demand of electricity on the grid. A good

example of a typical frequency service is Firm Frequency Response (FFR) -

this is traditionally provided by generators by varying their output, with the

response of the generator during dynamic FFR shown in figure 2.22. More

recently, this service is additionally being provided by batteries.

Figure 2.22: Dynamic FFR Output Requirement.
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This is an area that is seeing rapid changes in GB, with the latest fre-

quency service offered by NGESO being Dynamic Containment - similar to

dynamic FFR but with different response requirements and specifically de-

signed for storage assets. Performing a frequency type service on a battery

results in many small cycles, as shown in figure 2.23.

Figure 2.23: Simulated response of a 1MWh battery performing Dynamic
FFR over a 24 hour period. (Produced using model of WESS produced for
chapter 7.)

Considering the operator of a battery asset, the operator bids a cer-

tain power for the service, and the time of delivery. This service is paid

in £/MW/hr.
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2.2.2.2 Energy Trading

In the UK, there are two main types of energy trading for batteries, which

are triad avoidance and energy arbitrage.

Triads are the three half-hour settlement periods with highest demand

during one season on the UK electricity grid [101]. These are set by NGESO

and are designed to reduce the peak load by charging a substantially higher

amount for energy during this time, ranging from £16 to £29 per kWh. Triad

information is only published after the triad season, and therefore customers

forecast these periods. Predicted triad periods occur around 20-30 times per

year and so demand is reduced during these periods [102]. Batteries are well

placed to make the most of this high pricing to generate a high income. A

battery operating in this manner would likely see a full charge and discharge

cycle around 20-30 times per year in line with the number of triad predictions

per year.

Arbitrage involves purchasing off-peak electricity at a low price and selling

it when the electricity is expensive. There can be multiple price peaks and

troughs during a single day, as shown in the EPEX SPOT Power UK Auction

chart below.

Figure 2.24: The Daily EPEX SPOT Power UK Auction price for a week
during April 2017 [17].

It can be seen that there are generally two peak and two off peak periods

per day, with varying levels of change between peak and off-peak prices. It
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can be expected that there might be up to two full charge-discharge cycles per

day or 730 per year, with the two periods per day. Considering the effects this

might have on the life of a battery is important to determine the profitability

of such a grid connected battery energy storage system performing arbitrage

on an electricity grid.

For optimal trading, selling electricity will result in a discharge from 100%

SoC to 0% SoC and buying electricity will result in a charge from 0% SoC

to 100% SoC. Of course, for operational reasons this may not be possible.

With charges for non delivery of any bids made in the balancing market

(non-delivered energy is charged at the imbalance market rate), and non-

delivery of frequency services, it is important to bid an amount of energy

that is confidently achievable by a battery system.

2.2.3 State estimation of Large Batteries

With both frequency services and energy trading based on bids that relate

to the capacity of a battery, good battery state estimation is required to

maximise the bid capacity, and thereby revenue. This thesis aims to improve

on the work in this area relating it to large batteries, which will be discussed.

There are a number of studies in literature which consider state estimation

of large batteries. These are generally under the application of grid-connected

storage or EVs. The latest and majority of these state estimators fall under

the category of a closed-loop estimator, introduced in section 2.1.2.

The closed-loop estimators proposed tend to use a single cell model to

represent the large battery, which is seen specifically in [58,103–107]. Other

studies or state the application to be for large packs, but merely demonstrat-

ing the model experimentally on a single cell [41, 104,108–112].

Some others will take the opposite approach and model every cell indi-

vidually. In [89], a model and state estimator is used on each cell. Other

studies implementing a model in this way include [71, 113–117], simulating

all cells in the model.

Of these, only a small number use experimental data from large packs.

Of the examples, only a recent study from Li et al. compares their model to
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a large pack (>100 cells) - in this case, a 199.4kWh electric bus battery [106].

He et al. test their model against a battery module [103], and small strings

are tested in [105], [113] and [71].

With only Li et al. using data from a large pack, this shows a lack of

research using large packs for validation. Moreover, the cell level data from

the large packs is not shown or considered or shown.

Parameter identification for modelling all cells is generally done from a

single cell, although [113] uses various adaptive algorithms to estimate the

resistance of 4 cells connected in series. For large groups of cells, packs are

dismantled and individually tested to provide capacity and resistance, such

as in [15].

Overall, in the research area of modelling large batteries, there is a limited

amount of practical experimental results presented from real systems. The

primary expected reason for this is due to growth in the area being relatively

recent. This means there are a limited number of research facilities and

therefore few results. Furthermore, it is expected that most systems do not

report or store data for all cells in the system, due to the large storage

requirements. This gap in research leads to the outlined research objectives.

2.3 Research objectives

• Little published work presents practical challenges associated with the

operation of large batteries. Using data from an operational grid-

connected battery, typical cycles should be observed, and behaviour

of the system should be noted, with a focus on the behaviour of the

cells within the system. Can these observations be reproduced in the

lab? This should then be used to inform the design on a grid-scale

battery model.

• With current research demonstrating models for large batteries either

by modelling every cell individually or modelling the battery as a single

cell, a new large battery model should be proposed. This should aim

to provide the level of cell detail when modelling all cells whilst being
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nearer to being computationally efficient as modelling a large pack as

a single cell. This should be demonstrated in lab tests.

• It was noted in section 2.2.3 that Identifying the parameters for cells

within a pack is generally performed by dismantling the pack and test-

ing cells individually. A method should therefore be proposed to iden-

tify the parameters of the model whilst keeping the cells in the pack.

This should be performed and analysed on a large battery, with a com-

parison to cell tests.

• With the model and parameter identification technique proposed, an

online estimator for a large battery should be produced which uses

both of these. It should be run on a large battery over a period of

time, comparing the results to other methods.

• Completing these proposed objectives provides a strong background in

the practical challenges associated with large BESS. Using this work,

BESS optimisation of a commissioned battery system should be con-

sidered.
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Chapter 3

Methodology

Throughout the thesis, experimental data is used to verify models, procedures

and claims. This section details the various batteries and test rigs that have

been used. It highlights key specifications for each piece of equipment and

provides some background.

3.1 Battery Modules

A number of battery modules have been tested in various configurations

which will be detailed.

3.1.1 Yuasa LIM5H

The Yuasa LIM5H module is primarily used to verify the model proposed in

Chapter 4, being dismantled and cycled in various cell configurations. The

specification for the cells is shown in table 3.1 and an image of a cell and the

assembled LIM5H 10s1p module is shown in figure 3.1.
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Chemistry NMC
Max Cell Voltage 4.2V
Min Cell Voltage 2.4V

Nominal Cell Voltage 3.7V
Capacity 5Ah

Internal Resistance 0.78mΩ (at 45°C)
Max Charge Current

50/200
(Continuous/Peak)

Max Discharge Current
50/200

(Continuous/Peak
Temperature Limits -20C - 60C

Package Prismatic Cell
External Dimensions (mm) W130, D24, H80

Table 3.1: Specification for Yuasa LIM5H Cells.

(a)

(b)

Figure 3.1: Yuasa LIM5H cell (a), removed from LIM5H Module (b).

3.1.2 Yuasa LIM50EN

The Yuasa LIM50EN module consists of a 12s1p pack, with cell voltage mon-

itoring (1mV resolution, accuracy not stated), and one temperature sensor

per module (1 °C resolution, accuracy not stated). These voltages and tem-

peratures are communicated to a BMS, which can communicate the data

via RS-232 serial to a PC at a sample rate of 1Hz. It is tested in various
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configurations - as a cell (dismantled / removed from a module), module and

ESS (in a rack). The specification on these is shown in table 3.2. Images of

these systems are shown in figures 3.2 and 3.3.

Cell Module Rack
Chemistry NMC NMC NMC

Max Voltage 4.1V 49.2V 688.8V
Min Voltage 2.75V 33V 462V

Nominal Voltage 3.7V 44.4V 621.6V
Capacity 47.5Ah 47.5Ah 47.5Ah

Max Charge Current 125A 125A 125A
Max Discharge Current 300A 300A 300A

Temperature Limits -10C - 45C -10C - 45C -10C - 45C
Package Prismatic Cell Module 19” Rack

External Dimensions (mm) W180 D45 H110 W215 D180 H125 W600 D800 H1880
Configuration 1s1p 12s1p 168s1p

Table 3.2: Specification of LIM50EN Cell, Module and ESS.

(a)

(b)

Figure 3.2: Yuasa LIM50EN cell (a), removed from LIM50EN Module (b).
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Figure 3.3: Yuasa LIM50E ESS

Additionally, there is a passive cell balancing system, where the BMS

can control individual cells to discharge through an 82 Ohm resistor. At

the maximum cell voltage (4.1V) this gives a maximum balancing current of

0.05A or 0.001C.

3.1.3 Toshiba SCiB

The Toshiba SCiB (Super Charge ion Battery) is used in the Willenhall En-

ergy Storage System (discussed later) and two sample modules and a number

of sample cells have been made available for testing. The specification for

these are presented in table 3.3 and images are shown in figure 3.4.
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Cell Module
Chemistry LTO LTO

Max Voltage 2.7V 32.4V
Min Voltage 1.5V 18V

Nominal Voltage 2.4V 28.8V
Capacity 20Ah 40Ah

Max Charge Current 120A 120A
Max Discharge Current 120A 120A

Temperature Limits -20C - 45C -20C - 45C
Package Prismatic Cell Module

External Dimensions (mm) W115 D20 H135 W190 D360 H125
Configuration 1s1p 2p12s

Table 3.3: Toshiba SCiB Cell and Module Specifications.

(a)

(b)

Figure 3.4: Toshiba SCiB sample cell (a) and Toshiba SCiB Module (b).

The modules have an on-board Cell Monitoring System (CMS), which

monitors temperature and voltage. Temperature is reported to the nearest

1°C and Voltage to the nearest 1mV. As with the Yuasa LIM50EN modules,

the accuracy of the measurements is not detailed. A schemating showing the

positions of the temperature measurements is shown in figure 3.5
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Figure 3.5: Schematic of a Toshiba SCiB module, highlighting the cells which
the temperature sensors monitor.

Additionally, similarly to the Yuasa LIM50EN module, there is a passive

cell balancing system, where the BMS can control individual cells to discharge

through a 22 Ohm resistor. At the maximum cell voltage (2.7V) this gives a

maximum balancing current of 0.12A or 0.003C.
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3.2 Experimental Test Rigs / Research Facil-

ities

To cycle the aforementioned cells and modules in various configurations,

different test rigs and research facilities were used, which this section details.

3.2.1 Cell Level

For cell level testing and small packs, a MACCOR Series 4000, 32 Channel

cell tester was used. The specifications are shown in table 3.4 and is depicted

in figure 3.6.

Voltage Range 0-20V
Voltage Accuracy 0.02% (4mV)

Voltage Resolution 16 bit (0.3mV)
Current Range 0-10A

Current Accuracy 0.05% (5mA)
Current Resolution 16 bit (0.15mA)

Sample Rate 200Hz max

Table 3.4: Specification for MACCOR Series 4000 cell tester.

Cells were cycled in a PHCBi MIR154-PE Environmental chamber. Spec-

ifications for the device are shown in table 3.5 and is depicted in figure 3.6.

Temperature Range -10°C - +60°C

Temperature Accuracy
±0.2°C (Heated)
±1.5°C (Cooled)

Temperature Uniformity ±0.5°C
Temperature Resolution 0.1°C

Table 3.5: Specification for PHCBi MIR154-PE Environmental chamber.
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(a)

(b)

Figure 3.6: (a) MACCOR S4000 cell tester, (b) PHCBi MIR-154-PE envi-
ronmental chamber.

This setup was used to cycle Yuasa LIM5H cells and the LIM50EN cell,

where 8 channels were combined in parallel to give a 0-80A current range.
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3.2.2 Module / Rack Level

3.2.2.1 Hardware

For cycling modules, Elektro-Automatik EA PSB 9xxx-xxx power supplies

were used. Two models were available - the 9080-240 and the 9750-60. The

choice of model depends upon the required voltage and current. A table of

the specifications for these two models is shown in table 3.6 and a picture is

shown in figure 3.7.

EA-PSB-9080-240 EA-PSB-9750-60
Max Voltage 80V 750V

Voltage Resolution 0.01V 0.1V
Voltage Accuracy 0.1% (80mV) 0.1% (0.75V)

Max Current 240A 60A
Current Resolution 0.01A 0.01A
Current Accuracy 0.2% 0.2%

Max Power 10kW 15kW

Table 3.6: Specification for the EA-PSB-9080-240 and EA-PSB-9750-60 bi-
directional power supplies.

Figure 3.7: EA-PSB 9080-240 power supply used for cycling modules below
80V, this is identical in appearance to the EA PSB 9750-60 which is used for
cycling modules up to 750V.

For testing the Yuasa ESS, where high current and voltage is required,

two EA-PSB-9750-60’s were connected in parallel to give a maximum power

of 30kW and maximum current of 120A. At the maximum voltage for the

Yuasa ESS (688.8V), this is a maximum current of 43.55A, or 0.92C due to
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the power limit. As such, tests on this system were performed at a maximum

of 0.9C.

3.2.2.2 Software

Additionally for this test rig, software was written to control the EA-PSB-

9xxx-xxx using a PC, written in Python. This was done so that an upper

system could monitor cell voltages reported by the BMS and control the

power accordingly. Additionally, the data from the power supply and BMS

were stored in a database. A block diagram of the software is shown in figure

3.8.

Figure 3.8: Block diagram representing the software controlling cycling and
storing data for module and ESS testing.

3.2.3 Safety Considerations

Cycling cells and modules in a laboratory can be hazardous, should any

of the safety limits be exceeded (over-voltage, under-voltage, over-current,

over-temperature) which can result in a thermal runaway event. Therefore,

significant work has been undertaken in order to ensure that experimental

work can be performed safely, which is presented in a conference publication

[118].

For testing modules and racks, additional safety components were added,

as shown in figure 3.9. It can be seen that safety critical components include

a contactor, fuse and fireproof enclosure. The contactor is driven by a BMS
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which considers all cell voltages, currents and module temperatures, ensuring

that the contactor opens should any limit be exceeded. A fuse is in place to

protect against accidental short-circuit. Finally, where possible, the modules

are located in a fireproof enclosure to contain any failure should all protection

systems fail.

Figure 3.9: Diagram showing safety setup for testing battery modules and
racks.

3.2.4 Grid-scale (Willenhall Energy Storage System)

One unique aspect presented in this thesis is thanks to access to Willenhall

Energy Storage System (WESS), a 2MW, 1MWh grid connected battery

operated by The University of Sheffield (TUoS). It consists of the afore-

mentioned Toshiba SCiB modules, configured with 40 series strings of 22

modules. This gives an overall configuration of 2p268s40p. Key specifica-

tions are shown in table 3.7, and a picture of the system site is shown in

figure 3.10. More details can be read in [26].
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Max Voltage 723.6V (or any cell 2.7V)
Min Voltage 512V (or any cell 1.5V)
Max Current 3200A
Max Power 2MW
Capacity 1600Ah / 0.986MWh

Max Cell Voltage Imbalance 150mV

Table 3.7: Specification for WESS.

Figure 3.10: Image of the battery container (left) and inverter cabin (right)
at WESS.

It is noteworthy that the lower limit of the system is 512V. This is due

to the limits of the AC/DC converter. Theoretically, if all cells reached

their minimum voltage (1.5V), the system would reach 402V. Considering

the OCV-SoC relationship, limiting the lower limit to 512V (1.91V per cell)

gives a theoretical effective maximum capacity of 0.977MWh.

The stated ”Cell Voltage Imbalance” is defined as the voltage difference

between the highest cell voltage in the system, and the lowest cell voltage in

the system as:

Vimbalance = Vcell,max − Vcell,min (3.1)
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The system is controlled using a CompactRIO in LabVIEW, which com-

municates with the battery BMS and system inverters over Modbus. The

control system samples at 100ms, and the inverters are capable of respond-

ing to a maximum power change (-2MW to +2MW) in 40ms. The system

architecture is summarised in figure 3.11.

Figure 3.11: System Diagram of WESS. Adapted from [18]

3.2.4.1 Cell Level Monitoring

Modules in the system report cell-level temperature and voltage data over a

CAN network to 10 “gateways” in the system. These gateways then report

the minimum and maximum cell voltages and temperatures, and current for

each series string to the BMS. This means that the full cell level data for the

system is not stored, and merely aggregated data is stored.

Towards the mid-point of the PhD, it became clear that full cell-level data

from WESS would be immensely useful in terms of verifying the findings

of the presented work. To overcome this, 40 USBtin devices (CAN-USB
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interface) were installed, which are connected to a Raspberry Pi cluster.

These report and store the data in a database. Images of these two core

components are shown in figure 3.12. The CAN network reports at 120ms

intervals. To minimise storage requirements, the Raspberry Pi’s report the

latest cell data synchronised at 0.5s intervals.

Unfortunately, due to the Covid-19 pandemic, this was not achieved until

July 2021, and as such, only limited data is presented and used in the final

chapters of this thesis.
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(a)

(b)

Figure 3.12: (a) Raspberry Pi 4 cluster and, (b) USBtin Device, used together
to monitor cell voltage at WESS.
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Chapter 4

Investigation into Cell Voltage

Imbalance in Grid-Connected

Batteries

4.1 Introduction

Chapter 2 introduced that differences between cells in a large pack impacts

the utilization of the cells within that pack. It is important to understand

the behaviour of these cells in grid-connected batteries in order to prevent

undesirable operating conditions which could cause an unexpected shutdown

and to provide an insight for better design to maximise battery capacity.

In this chapter the observations from a WESS are presented and recreated

under lab conditions for analysis.

Introduced in chapter 3, WESS is a grid-connected battery operated by

TUoS. It is primarily a research battery, however has various revenue streams

to help cover costs, which include performing: Dynamic Firm Frequency Re-

sponse (DFR) (generation only), balancing market trading and triad avoid-

ance to fund it’s ongoing use. As a result, it has performed a large number

of cycles, with a range of Depth-of-Discharges (DoDs) and C-rates. This

chapter observes the data from these different types of cycles at the system

level, with a particular focus on the effect of cell voltage imbalance. This
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is the level of data a system operator would see. The observations are then

compared to cycles in a lab-based experiment at the module level, where

individual cell voltages are monitored.

4.2 System Level cell voltage imbalance Ob-

servations

This section observes the behaviour of cell voltages in a BESS under different

cycles, attempting to explain the observations. The following section then

investigates whether these are seen at a smaller scale to verify the observa-

tions and give more detail on how the cells interact. From analysis of several

years of data from WESS, there are two main types of cycles which appear to

have an impact on the cell voltage imbalance. These are High DoD cycling

and large power changes.

4.2.1 High DoD cycling

High DoD cycling occurs when the battery performs a large charge or dis-

charge. For WESS, this has been observed for characterisation tests, triad

avoidance, arbitrage, and recharging after performing grid frequency services.

A typical high DoD cycle is shown in figure 4.1. This particular cycle was

performed in 2018 for a simulated BM trade.
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Figure 4.1: A typical discharge-charge cycle from WESS

Considering the cell voltage imbalance, it is immediately clear that there

is a large increase as the cycle approaches the end of the charge portion

(at ∼4 hours). The likely reason for this is due to a difference in capacity

between cells. As the system charges, the cells reach slightly different SoCs

due to the capacity difference. Work presented later in figure 5.30 shows that

at around 90% SoC during charge, the impedance sharply increases, which

would cause a sharp increase in voltage for the cells that have reached that

point. For the higher capacity cells which will be at a lower SoC, they will

not have reached the sharp increase in impedance and hence there will not

be a large voltage change in those cells. This results in the large cell voltage

imbalance seen in figure 4.1 at the end of charge, which then returns to the

normal cell voltage imbalance upon the current switching to 0A.

It would be expected that this same phenomenon would be observed dur-

ing discharge, as during charge, as there is a sharp increase in the impedance

at around 10% SoC during discharge (again shown by later presented work

in figure 6.9). This, however, is not seen. This is due to the operational con-

straints of WESS. Each cell has a voltage range of 1.5V to 2.7V. At WESS,

with 264 cells connected in series, this gives a theoretical voltage range of

396V - 712.8V. However, the AC/DC converters have a minimum DC voltage
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of 512V, meaning the cells cannot reach the region where there is a sharp

increase in impedance. Hence, little change in the cell voltage imbalance is

seen during discharge.

It can also be seen in figure 4.1 that during the rest period there is a

small discharge. Whilst the AC/DC converters are set to 0kW, there is a

parasitic drain of ∼12A from the inverters on the battery. Opening the

battery contactors removes this drain and little self-discharge is observed.

4.2.2 Large Power changes

Close inspection of figure 4.1 shows that during the moderate (∼570kW) step

change in power at the start or end of the charge and discharge, there is a

short “spike” in the cell voltage imbalance.

WESS is capable of 4MW change in power (+2MW to -2MW) in a short

period (<80ms [26]). During these large power swings, it has been observed

that the cell voltage imbalance increases significantly. One such observation,

with a power change of 2MW, (-1C to +1C) is shown in figure 4.2.

Figure 4.2: Power change at WESS of 2MW (-1MW - +1MW)

There are several potential causes for the imbalance occurring. Firstly, it

could be that the BMS brings all cells to an equal voltage during a charge
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phase through the balancing system, and on changing to discharge, the cells

then exhibit a different voltage drop caused by the battery impedance, caus-

ing the voltages between the cells to diverge. This seems unlikely, as the

balancing does not occur fast enough at 0.003C maximum.

A second potential cause is with differences between the series strings that

are combined in parallel to produce the overall battery. As the series strings

are connected in parallel, they equalize voltage as current flows between them

to bring them to the same charge level. When there is a significant change

in current, there is a hysteresis effect, where the voltage of each series string

will change due to the impedance in it. Current will then flow between the

series strings until the voltage of each string is equal – a process which is

not necessarily immediate as there is impedance in the connection between

strings.

The final potential and most likely cause is that there is a delay in sam-

pling the cell voltages. The modules report cell voltage every 120ms, however

this is reported to a subsystem which then reports back to the BMS which

calculates the cell voltage imbalance based on the voltages it receives. The

time for the BMS to receive all cell voltages is unknown. This is the most

likely cause, as the pattern of cell voltage imbalance has an inconsistent

trend - during some of the power changes, there are multiple peaks in bal-

ance changes - likely reflected by the different strings returning cell voltages

at different points.

4.3 Module Level cell voltage imbalance Ob-

servations

A set of experiments were designed and performed to better understand the

observations seen on the large scale BESS. These were performed on two types

of modules – Toshiba SCiB 2p12s modules (identical to modules in WESS)

and Yuasa LIM50EN 12s1p modules. The Yuasa LIM50EN was used in ad-

dition to explore the behaviour of different chemistries. Two modules were

connected in series to give a total of 24 series cells for both the Toshiba SCiB
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and Yuasa LIM50EN, providing easily comparable results. The test proce-

dure involved performing 3 cycles at 1C whilst recording the cell voltages.

The data for the third cycle is then used, allowing time for the battery to

reach a thermal steady state. This test procedure is summarised in table 4.1.

This should demonstrate the operational issues that are seen in WESS, with

the test giving a large power swing when changing from charge to discharge

in a cycle and also allowing the modules to reach cell voltage limits, showing

the spread of cell voltages at these points. The results for the Toshiba and

Yuasa modules for 1C cycles are shown below in figures 4.3 - 4.6.

Step Sequence Limits End Condition

Achieve
Thermal

Equilibrium

1 CC Charge I = 1C Any Cell >= Max V
2 CC Discharge I = 1C Any Cell <= Min V
3 CC Charge I = 1C Any Cell >= Max V
4 Loop Loop to 2 After 1 loop

Test Cycle
5 CC Discharge I = 1C Any Cell <= Min V
6 CC Charge I = 1C Any Cell >= Max V

Table 4.1: Procedure for cycling Toshiba SCiB modules and Yuasa LIM50E
Modules.

Initially, the Toshiba SCiB modules were tested. They are the same

modules used in WESS, and as such give the most helpful comparison to

previous results. It can be seen that similar results are observed at high SoC

as with WESS - around 80mV of cell voltage imbalance is seen at the end of

CC charge. This is less than the 140mV seen in WESS, however there are

fewer cells and it is a newer system, so it is likely the cells are more balanced

in the modules than WESS.
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Figure 4.3: 1C test of two Toshiba SCiB modules connected in series.

At low SoC, a large imbalance of 430mV is observed at the end of dis-

charge. This was expected as explained with WESS, as the module test can

reach the full voltage range of the cells. It can be seen that the system only

reaches 42V, whereas the theoretical minimum module voltage (all cells at

1.5V) is 36V. This is because one cell will have reached 1.5V. This is more

clear by observing the cell voltages at the end of charge and discharge, as

shown in figure 4.4.
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Figure 4.4: Cell voltages of two Toshiba SCiB modules connected in series,
(a) approaching end of discharge, (b) approaching end of charge.

This is the same approaching 100% SoC, however there is less deviation

in the cell voltages. It is noteworthy that a single cell reaches both the

maximum and minimum cell voltages. It is likely that this cell has a lower

capacity than the other cell as opposed to the pack being poorly balanced.

With the 2C change in power between discharge and charge, it can be seen

that there is no significant deviation in cell voltage imbalance. This suggests

that it is not related to the cell balancing mechanism. Instead, it could be the

sampling rate, or the parallel nature of the system. This could be clarified

through collecting cell-level data from WESS.

Considering the Yuasa LIM50E modules, a similar result is seen in figure

4.5, with a large deviation in cell voltage at low SoC and a slight deviation

in cell voltage at high SoC. This is different at high SoC due to the difference

in the impedance-SoC relationship, shown in figure 6.5, where there is only a

small increase in impedance towards 100% SoC. At low SoC, the impedance-

SoC relationship is similar to the SCiB cells, where there is a large increase

in the impedance.
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Figure 4.5: 1C test of two Yuasa LIM50EN modules connected in series.

Considering the cell voltages, shown in figure 4.6, as seen with the SCiB

modules, a single cell reaches the maximum and minimum cell voltages. This

single cell will limit the capacity of the two modules to the capacity of that

cell.
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Figure 4.6: Cell voltages of two Yuasa LIM50EN modules connected in series,
(a) approaching end of discharge, (b) approaching end of charge.

4.4 Implications for grid scale storage

For WESS, the main implications of a high cell voltage imbalance is that

it trips (the main breakers open) when the cell voltage imbalance exceeds

150mV. This is a value set by the manufacturer, and used to prevent high

currents between parallel strings. Additionally, the system will trip should

any cell exceed the voltage limit. Tripping is not a desirable event as it means

a trade or service will not be completed, resulting in monetary charges, and

additionally there will be increased wear on the circuit breakers, which could

cause early failure or require shorter maintenance intervals.

To prevent this, two main methods could be used which are expected to

be used by battery asset owners. Firstly, by limiting the SoC range to be

outside the sharp change in impedance, the cell voltage imbalance can be

kept to a minimum. Considering the cell impedance for the cells used in

WESS (presented in figure 6.9) a reasonable range would be 10% to 90%

SoC.
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The second method is to curtail power based on the cell imbalance to

limit it. This is done simply by applying a power multiplier based on the cell

voltage imbalance, where the power will reduce as the cell voltage imbalance

increases, shown by figure 4.7. By reducing power, the cell voltage imbalance

will reduce as it is caused by the increased impedance increasing the voltage

drop. Reducing the current will reduce the voltage drop and therefore the

imbalance. This is the method currently used in WESS, an example of which

is shown in figure 4.8

Figure 4.7: Power curtailment method used for WESS.
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Figure 4.8: A 1.5MW charge cycle at WESS, showing the reduction in power
to maintain the cell voltage imbalance below 50mV.

These methods are useful to prevent trips, however, resulting in either

a reduced capacity or failure to fully deliver a service, as will be discussed

further.

By limiting the useable SoC, the income potential is reduced. As an

example, table 4.2 and figure 4.9 show a 41MWh / 41MW BESS performing

a 38MWh trade in the EPEX Intraday market with instructions received

from NGESO for a change in power [19].

66



Figure 4.9: Trade by a 41MWh battery in February 2021. (adapted from [19])
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The total income for this trade is £37,230. Including the initial charge,

during this period the system made a profit of £35,470. Reducing the ca-

pacity by 20% (10% to 90% SoC range) would reduce the 38MWh trade to

30.4MWh. This would reduce the income of this trade to £32,024 - a reduc-

tion of £5,206 or ∼14%. If this trade were performed daily, this could result

in a loss of income of ∼£2 million over a year, or ∼£4000/MW/month.

It does not appear that reality is as extreme as the example for this asset,

however, only 38MWh has been bid, where 41MWh is the capacity of the

battery. It is possible that this is due to the same power limiting issue,

or a lesser understanding of the operating performance leading to increased

capacity overhead requirements. Increasing the example trade to 41MWh

would give an increased income of £2055 or ∼5%. Over a year, this would

be an increase of £750,000. This scenario, with such high prices seems to

be a rare occurrence, however, giving a much higher than average revenue.

To give an approximate expected income for a BESS, research presented by

Brogan et al. suggests a theoretical revenue for a 1MW, 2.5MWh BESS to be

∼£25k/MW/month [119] (converted from Euros) whilst BESS assets from

Gresham House achieved ∼£10k/MW/month [120].

Considering instead power curtailment. Trades are made within half hour

periods. Should the power curtail, then the full amount of energy would not

be delivered or received due to the reduced power. For the example in figure

4.8, 688 kWh were received (battery charging), whereas 750kWh was the bid

amount. This is a shortfall of 62kWh. In this case, the energy was paid

for which was not charged into the battery. Were this more predictable, the

initial power could have been higher, then reduced as the power curtails to

charge by the full amount of energy during the half-hourly period.

These examples show that better diagnostics of the system behaviour

could provide more confidence when making trades and providing services.

Sections 4.2 and 4.3 show the behaviour of cells in these circumstances and

will be used to inform the ongoing work in this thesis.
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4.5 Conclusions

In this chapter an observed cell voltage imbalance issue from operation of

a grid scale BESS is presented. Using modules under lab conditions, the

observations are recreated to allow analysis at the cell level. It can be seen

from series connected module testing that cell voltage imbalance is an issue

when the cells approach the upper and lower limits of the SoC with an

increasing spread of voltages across cells. It is possible to mitigate this by

limiting the range of the SoC used or by curtailing power as cell imbalance

increases, however this reduces the usable capacity at constant power and

curtailing power may not be possible depending on the service being provided.

From the results of the tests it is shown that large changes in power do

not cause increased cell voltage imbalance in series connected strings and

therefore is a potential issue limited to parallel connected strings only.

The work presented demonstrates that there is a need to accurately pre-

dict available energy to a trader, to maximise revenue from a battery asset.

This could be achieved through empirical modelling based on the system

power and energy. Alternatively, a more mechanistic model which consid-

ers individual cell behaviour could be used, which is the method used going

forwards.

70



Chapter 5

A fast variance based Grid

Scale Battery Model

5.1 Introduction

Chapter 4 introduced how cells connected in a pack are not identical, and

that this can affect the performance of the overall pack. For a series string, it

was shown that the overall capacity of a pack is limited by a single cell. This

chapter explores creating an accurate yet computationally efficient model

which takes into account this behaviour, combining different approaches

When performing analysis on a multi-cell pack, such as real-time state

estimation or simulation, there are two main approaches (introduced in chap-

ter 2) that are used when modelling the pack. The first is to model every cell

individually, as represented by figure 5.1, and discussed in [115, 121]. This

would give the most complete picture of the state of the battery, with an

estimate for every single cell in the pack to give the best understanding of

the overall pack performance. However, it is challenging to monitor, store,

and process data from every cell in a pack. As an example, in WESS, there

are 21,120 cells. There are typically 2 bytes per data frame for each cell con-

taining voltage readings which are reported by the cell management system

to the battery management system every 120ms. This is 21.1KB of data per

120ms and therefore 176KB/s. Over a single day, stored with no compres-
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sion, this would produce 15.2GB of data. While not impossible to deal with,

processing all data in real time for every cell in the pack could pose a chal-

lenge due to the large processing requirements. Various solutions have been

proposed and implemented in different systems, including pre-processing in

each battery module and reporting back information such as SoC and SoH

for each cell, rather than just voltage data [8]. Even with the processed in-

formation for each cell, this will still not be able to give a complete picture

of the overall output performance of the battery - the state of charge or the

overall available energy capacity at the terminals. This would again mean

further processing to give this information.

Figure 5.1: A model representation of WESS showing every cell being mod-
elled, with each string containing 264 parallel pairs of 2.7V (max), 20Ah
cells. There are 40 strings connected in parallel.

The same issues are faced in the simulation of large-scale packs. As an

example, modelling a single cell with a zero-order Equivalent Circuit model

(Rint Model [41, 103]) in Simulink as detailed in section 5.2.1, takes 1.7s

to perform a single cycle (charge and discharge) at 1C with a 1s sample

rate on a modern computer (CPU - i7 7700, 24GB RAM, SSD). A number

of simulations were performed with different pack configurations for 7200s

simulation time and the results can be seen in figure 5.2 which shows how

the real processing time varies with the number of cells being simulated.
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Figure 5.2: Processing time vs number of cells for a Rint model for various
pack configurations.

Interpolating figure 5.2 for WESSs 21,120 cells, it can be estimated that

simulating WESS for a simulation time of 7200s would take approximately

7500s of processing on a modern computer (specification mentioned previ-

ously). With the processing time being longer than the simulation time, it

makes the approach unsuitable for real-time applications and time consum-

ing for general simulation, though the ever advancement of computing power

may see this approach more feasible in the future.

The second approach is to model the entire pack as a single cell model such

as those seen in [106,122]. It can be effective as it is fast and straightforward

to implement and allows the use of a more computationally intensive cell

model as only a single cell is simulated. However, the main issue with this

is the loss of accuracy in the model due to the cells in the pack not being

identical. In other words, at any given time, the cells will not necessarily

all have the same voltage and current flow due to differences in capacity,

impedance, and other parameters. For a practical system, it is expected
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that modelling the pack with a single cell model would result in the system

reporting a larger amount of energy available than is actually available, due

to some cells reaching their voltage limits before others meaning some cells

have unreachable capacity. This would vary depending on how well balanced

the system is at any given time.

Figure 5.3: A single cell model representation of WESS showing just a single
cell being modelled, totalling the voltage and capacity of the model shown
in figure 5.1.

In reality, the only important readings are the lowest and highest cell

voltage as a full charge / discharge cycle must end or change when one cell

reaches its upper or lower voltage limit. The work in chapter 4 has shown

that in general, this will always take the place of a single cell which can be

considered the “weakest cell”. The weakest cell in a series string will reach

its voltage limit before all others, assuming the string is balanced. In this

work, a string or pack is considered balanced if the SoCs of all cells become

equal at any point during a cycle.

The approach proposed in this chapter aims to improve on these large

battery pack models, by producing a model with a sufficient view of the state

of the cells within the system, without having to model every single cell. The

approach revolves around the concept that its only necessary to know the

maximum and minimum cell voltages to predict the remaining charge that

can be put into the battery and removed from the battery. One method is to

model the single weakest cell (the cell with the lowest capacity and highest

impedance) alongside the model representing the whole pack. This results in

the model consisting of just two cell models.
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This should show an improvement in the accuracy, but the model lacks

the data for currents inside the system (such as between parallel strings),

so assumes that there is equal current between strings in the system. Fur-

thermore, it cannot give a measure of cell voltage imbalance - the difference

between the highest and lowest cell voltages. Many systems operate with

cell voltage imbalance as a limit as mentioned in chapter 4, to prevent large

currents between parallel strings. These two metrics (cell voltage imbalance

and maximum string current) should therefore be output from the model.

To give a value for cell voltage imbalance for a series string, it is proposed

that 3 cell models are required. The strongest cell, the weakest cell, and the

remaining cells as a single cell model, shown later in figure 5.15. This study

defines the weakest cell as the cell which reaches the upper / lower voltage

limits under charge / discharge and the strongest cell is defined as the cell

which remains furthest from the voltage limits, assuming the pack is balanced

at a given SoC (i.e. the cell voltages converge at a the given SoC). This will

give the highest, lowest, and average cell voltage, as well as the SoC of each

cell model and therefore the overall SoC. Current is constant between cells

in the string.

To give a value for the maximum current between any number of cells

connected in parallel, it is proposed that 3 cell models are required. Again,

the strongest, weakest, and remaining cells, shown later in figure 5.17 As the

voltage is constant in the parallel connections, the current between the cells

can be calculated. It is expected that this will give the maximum current, as

there will be the highest current through either the strongest or weakest cell.

From this, to model a pack of any size with any combination of parallel and

series connections, at most nine cell models are required as a combination

of the series and parallel models, which is the final model proposed in this

chapter, represented in figure 5.4. The model can then be used to predict

useful metrics including:

1. Available energy capacity in the pack at difference C-rates

2. Capacity of pack in different configurations at different C-rates

3. Efficiency of pack in different configurations
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4. Power curtailment curves to manage cell imbalance

Figure 5.4: Configuration of the 9 cells model proposed in this chapter.

The above list mentions the available energy capacity in a pack. This is

different from SoC, where SoC is the total capacity remaining in the cells

in the pack, relative to the capacity of the pack. Typically, a large pack

cannot reach its true 100% SoC or 0% SoC due to the difference in cell

voltage, meaning that one cell may reach a voltage limit, while others have

capacity remaining, as discussed in [12]. This is generally caused by varying

impedance and capacity between cells. Available energy at different C-rates

may be a more suitable metric to a user of a large pack than SoC.

The author hypothesises that this depends on the variation between the

cells. That is the difference between cells in the key parameters capacity

and impedance. A sample of cells with a greater variance will have a lower

capacity as there is a greater chance that there will be a weak cell according

to the distribution. And therefore, the larger the sample for a given variance,

the weaker the weakest cell will be in comparison to the strongest and the

mean.

5.2 Modelling

The proposed model containing 9 cells to make up the overall pack model is

produced using Simulink named 9 Cells Model (9CM). This section will dis-

cuss the architecture of the model, beginning with the individual cell model,
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discussing the input parameters, and justifying the details of the model. It

will then be shown how the 9CM is scaled from single cell models.

5.2.1 Cell Model

The cell model was built in Simulink, functioning as a Rint model, as shown

in figure 5.5 where the internal resistance varies with the current direction

(charge or discharge) (seen in [105, 121]) and the temperature. Addition-

ally, the capacity degrades on cycling [41] [103]. One negative aspect of the

Rint model is that it will not correctly show the dynamic behaviour of the

pack, meaning that during a large change in current, the voltage shown by

the model may not exactly match experimental values due to the transient

behaviour of the battery. The Rint model was however chosen for several

reasons. Firstly, in a grid-scale system, the largest concern is about reaching

the voltage limits. The Rint model will show the ‘worst case scenario’ where

the steady-state behaviour will be reached immediately. Next, the study is

looking more closely at the variations between large numbers of cells. It

is relatively straightforward to identify the parameters for the Rint model,

meaning a large dataset can be used to give the variance of a group of cells

without the need for impedance measurements at a range of frequencies on

individual cells. Finally, this study is more concerned with the process of

modelling a large number of cells, rather than producing a unnecessarily

complex cell model. The parameters that are considered are those that are

most relevant to a grid scale system, however, it would be possible to increase

the order of the model if the results show that a Rint model is insufficient.

Figure 5.6 shows the design of the cell model in Simulink.
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Figure 5.5: The proposed Rint cell model.
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5.2.1.1 Model Parameters

The physical parameters which are used in the model include:

1. Capacity

2. OCV

3. Impedance

4. Temperature

5. Coulombic efficiency

6. Degradation rate.

Each of these parameters has been considered individually and experi-

mentally verified to determine how they are implemented in the cell model.

This section describes the chosen implementations for each parameter.

For experimental validation, a sample of ten Yuasa LIM5H cells were

used (the specification can be found in chapter 3). Ten cells were used to

give nine cells to identify the parameters for the 9CM and a spare. They

were chosen as they are of a lithium-NMC type chemistry - a widely used

cell chemistry [123].

5.2.1.1.1 Capacity

Introduced in chapter 2, the capacity of a cell describes the Coulombic

charge which can be extracted from or input to it, before voltage limits are

reached. The capacity of a cell is measured using a CCCV charge / discharge

test to determine the maximum capacity of a cell, using the procedure shown

in table 5.1. Using a CCCV discharge to measure capacity is atypical, but

is used in this case as the capacity must represent the full Coulombic charge

stored in the battery.
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Step Sequence Limits
End

Conditions

Capacity
Test

1
CCCV
Charge

V >= Max V,
I = 1C

I <C/20 A

2
CCCV

Discharge
V <= Min V,

I = 1C
I <C/20 A

3
CCCV
Charge

V >= Max V,
I = 1C

I <C/20 A

Table 5.1: Test procedure for measuring capacity of cells.

The CV cutoff current used is C/20, a value commonly used in literature

[124,125]. This is an important choice as a model would consider the battery

to have reached 100% or 0% SoC once a CV charge or discharge has reached

C/20, even though more energy could be charged or discharged at lower

C-rates. In the literature, C/20 appears to be a suitable balance between

having a good measurement for capacity and not having an unnecessarily

lengthy test time.

5.2.1.1.2 OCV

Introduced in chapter 2 Open-Circuit Voltage (OCV) refers to how the

voltage of a battery at rest (i.e., no current flow and the voltage is un-

changing) changes depending on the charge in the battery. It is highlighted

in [41,54] the importance of good OCV measurement for having a good SoC

estimate.

It is important to understand how the OCV changes depending upon the

state of charge. When using a Randles model, OCV is the key in determin-

ing the voltage at any point, with the voltage deviating from OCV on the

application of current and subsequent voltage drop [126].

The datasheet for any particular cell generally states OCV, however it

is useful to perform a test to verify this. This involves discharging in 10%

increments of SoC, followed by charging in the same increments as shown in

figure 5.7.
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Figure 5.7: Experimental test profile to find the OCV-SoC relationship of
LIM5H cells

The test begins with a full 1C cycle to ensure consistent behaviour (not

shown in figure 5.7) before performing the OCV test. The capacity test is

performed immediately before the OCV test, as the capacity is needed to

perform the OCV test. Once the capacity of the pack is known, the pack is

discharged and then charged in 10% capacity increments at 1C, with a CV

discharge at the end of the last discharge pulse to ensure the cell is at 0%

before beginning the first charge pulse - a method seen used in literature [86].

There is a 2 hour rest between each pulse and the average voltage between

the charge and discharge for SoC is taken to eliminate any hysteresis or to

compensate for where the cell has not completely reached a constant resting

voltage - the latter typically occurs at a low SoC as seen in figure 5.7.

Considering SoC accuracy for each pulse point for the OCV test shown in

figure 5.7, the discharge capacity measured during the capacity test was 5.256
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Ah and the total capacity discharged during the pulse discharges totalled

5.274 Ah. This is a 0.3% difference meaning each OCV measurement is

within at least that margin of error in terms of SoC.

5.2.1.1.3 Impedance

Impedance in a cell causes a voltage drop due to the current through it.

Various methods have been used to measure the impedance of the LIM5H

cells in this study, with varying test times and varying results. These will

each be analysed to determine which is the ideal test to use for parameter

identification of impedance.

EIS

EIS is a commonly used technique to measure the impedance of a cell

across a range of frequencies. It can be used to assist with identifying the

parameters of multi-order equivalent circuit models of cells [127] [128]. It is

time consuming to perform EIS measurements and the test is unnecessary to

identify parameters for a Rint model, as the frequency response of the bat-

tery is not represented by the model. Therefore, this will not be considered

further.

Single-frequency impedance

Using a 1kHz impedance tester such as a Hioki BT3554 can be a very

fast way to measure the impedance at a fixed frequency. While not the

most useful measure for the battery model, it could be a good way to track

impedance changes over time. One benefit is that the cell is not subject to

high currents for any extended period, so it is a useful method to track the

change in impedance relative to temperature, as the act of measurement will

not affect the cell temperature and therefore the impedance. It is a value

often quoted in a cell’s datasheet. [129]

DC Internal Resistance

In the Rint model, the voltage is dropped across the series resistance,

seen previously in figure 5.5.
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The voltage drop can be found as Vdrop = IR and the impedance (R) can

therefore be found through a known change in current and measuring the

subsequent change in voltage as:

RDCIR =
∆V

∆I
(5.1)

While straightforward, this presents issues in measurement. Immediately

measuring the voltage after a current change will result in a low value for

RDCIR due to the transient behaviour. Measuring the voltage after a longer

period of time after a current change to a nonzero current would result in

a change in SoC and therefore give a larger RDCIR reading. Therefore, a

suitable way to calculate R is to measure the voltage once it has reached

steady-state and change the current from a specified value to zero to eliminate

a change in SoC [125]. The decision then lies on how long a rest period

is required to reach the end of the transient behaviour, where the voltage

returns to the OCV.
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Figure 5.8: The relaxation of the cell voltage for a LIM5H cell, after a 1C
charge.

Figure 5.8 shows that measuring for different lengths of time results in

a different measurement for impedance. A very short test (¡1s) provides the

value known as R0 - or the purely ohmic component of a multi-order Ran-

dles model [125]. A much longer test, in the shown case upwards of 1 hour,

shows the the charge transfer resistance [130] (RCT ) (the resistance due to

charge transfer at the interface between the electrode and electrolyte) and

the polarisation resistance [105] (RP ) (the resistance due to ionic diffusion).

Inductive impedance is dominant at time periods shorter than 1ms, though

ramp current ramp rates (dI
dt

) and inductance small enough such that it is

insignificant to the measurable time domain response. As an example, in-

ductance for a cell is in the order of 10−8H, and the MACCOR S4000 cell

tester ramps to it’s maximum current (10A) in 500µs. This would give a ∆V

of 0.2mV, which is less than the 0.3mV resolution for a time period shorter
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than the 10ms fastest sample rate. Hence, the inductive impedance is ignored

going forwards. Therefore R for the Rint model is:

RDCIR = R0 +RCT +RP (5.2)

A MACCOR S4000 cell tester, which is used to perform the cell testing,

has a built-in impedance measurement function - this performs a series of

350ms pulses and uses Ohms law to provide a value for impedance. Consid-

ering the above figure 5.8, it can be seen that this provides a value for R0.

While not especially helpful for measuring the overall Rint model resistance,

it could be used as a fast method to find the variance between the cells,

assuming R0∝RDCIR.

The transient behaviour of these cells ends after 2 hours at most SoCs,

so 2 hours will therefore be used as the rest time for subsequent impedance

experiments using these cells. However, this is only necessary to calculate

the open-circuit voltage. If coulomb-counting can be used to estimate the

state-of-charge, then the open circuit voltage can be used instead of waiting

for 2 hours. This can vastly accelerate the testing procedure. Therefore,

instead of ∆V = Vload − Vrest to find the voltage drop, ∆V = Vload − VOCV

can be used.

Naturally, a lengthy OCV test is still required on at least one cell, as

well as high-precision current sensing to provide suitably accurate coulomb-

counting to give a good estimate for SoC. It should also be the most accurate

method, as in the model, the voltage is estimated based upon the OCV

and the voltage drop caused by the impedance under load. For identifying

parameters using this method, the impedance is calculated based upon the

estimated OCV, the measured voltage under load and the measured current.

This is essentially a direct inverse as the OCV-SoC relationship is the same

in the model and the parameter identification.

All measured values assume that all resistance is from the cell, and not

from any physical connections. This is justified as the tests use remote volt-

age sense, and due to the very low current in the sense wires, there is an

immeasurable loss due to the connection.
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However, when connected in a pack, this is not the case for the output,

which will experience a voltage drop due to connections within the pack.

Therefore, this is an input which is added to the multi-cell model and repre-

sents a constant addition to the resistance as:

RTotal = RCell +RConnection (5.3)

Impedance testing Results

Using the four methods (EIS, 1KHz test, RDCIR 350ms Pulse test, RDCIR

comparing OCV to load voltage) the impedance of a cell can be found across

a range of SoCs. It was found that using some methods, there was a different

measured impedance to charge than discharge. The ten Yuasa LIM5H cells

provided a measure for the variance between the cells. Figure 5.9 shows the

results for the cells.
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Figure 5.9: Impedance of 10 LIM5H cells measured using different techniques.
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Both the 1KHz AC impedance test and the 350ms pulse impedance test

show no change in impedance with SoC. This appears to be in agreement

with EIS results presented in [72], though this is a different chemistry (NCA

instead of NMC), so it is not conclusive. Furthermore, they do not provide

the correct R value for the Rint model as they do not take into account the

transient behaviour. However, as they are fast tests to perform and are not

dependant on SoC, they could be a useful measure for variance, assuming

the variance is the same across the different tests.

The impedance test using OCV for Vrest provides the best value for the

Rint model as it is calculated with the inverse method for how it is used in the

model, and is the fastest for finding the impedance across a range of SoCs,

it will therefore be the proposed parameter identification method. The mea-

sured impedance to charging is different from the impedance to discharging,

also observed and modelled in [121]. The impedance changes across the range

of SoC, and during charge, there is a mostly linear relationship as shown in

figure 5.10. It is clear, however, that there is a small drop in impedance

below 20% SoC. Using a linear relationship is ideal due to the simplicity, and

should not affect the model in terms of capacity, as during charge it is most

important to have an accurate impedance value approaching 100% SoC, as

this is the point that the charge phase of a Constant Current (CC) charge

would end. Therefore, 20% and 10% values are neglected when producing the

linear fit, however, it would be expected that the voltage during charge will

not perfectly track an experimental result at low SoCs. It can also be seen

that the variance between cells is consistent - where generally a particular

cell will have a higher or lower impedance from the average across the full

range. For the model, the linear relationship between impedance and SoC

can be used to calculate the impedance based on the SoC.
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Figure 5.10: RDCIR during charge for a sample of 10 LIM5H cells, showing
the proposed relationship in bold.

Discharging relationship

During discharge, the relationship follows the same trend - in other words,

higher impedance at low SoC, however, is much less linear, as can be seen in

figure 5.11 below.

To find the relationship, the MATLAB curve fitting tool was used, and

the best fit was found using a 2-term exponential of the form:

RDCIR = aeb∗SoC + ced∗SoC (5.4)

where a, b, c, d are the terms to be optimised.
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Figure 5.11: RDCIR during discharge for a sample of 10 LIM5H cells, showing
the proposed relationship in bold.

5.2.1.1.4 Temperature

The impedance testing thus far has all been performed in an environmental

chamber at 25°C. Observations from WESS presented in subsequent chap-

ters suggest that there is often significant non-uniformity in temperature be-

tween cells in large-scale battery packs, as they are not in a closely controlled

environment, despite the use of Heating, Ventilation and Air Conditioning

(HVAC) systems. Therefore, it is helpful for a model to have temperature as

an input, to be able to model the effects of changing temperature.

Some have observed that a reduction in temperature results in a reduction

in cell voltage [107]. A test of 10 LIM5H cells at rest between 40°C and -

10°C, with 2 hours at each temperature at 50% SoC showed no change in cell

voltage. However, the impedance was shown to change. Using the 350ms

pulse impedance test, the results are as follows:

91



Figure 5.12: R0 vs temperature for a sample of 10 LIM5H Cells

It can be seen that the impedance is inversely proportional to tempera-

ture, which can be approximated with a linear approach as:

RT = (25− T ) ∗ 0.0075R25 (5.5)

where RT is the resistance at T°C and R25 is the resistance at 25°C.

This is the purely ohmic impedance R0, and assumes that R0 ∝ RDCIR

for implementing it in the model. This method was chosen as the test is

very short, so only a small amount of energy flows in or out of the battery,

meaning the total heat generation from I2R losses is very small. This in turn

means that the cell temperature is as close to the environment temperature

as possible. Later work involves improved modelling of temperature, but this

is sufficient for general validation of the model and should indicate the effect

of temperature on a battery, although it may not provide absolute values.

5.2.1.1.5 Coulombic efficiency

Batteries do not have a perfect Coulombic Efficiency (CE), where CE is
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defined as:

CE =

∫ tch,end

tch,start
I dt∫ tdch,end

tdch,start
I dt

(5.6)

This can be caused through the consumption of lithium or electrolyte and

generally by side reactions in the cell during a cycle [131,132].

This will be calculated and implemented as an efficiency in the model,

with half the efficiency factor applied during both charge and discharge,

providing the correct overall CE. In reality, it is likely that there is differing

CE during the charge and discharge phase [132], however, this would be very

dependant on the chemistry as well as the age of the battery. Due to the

fact that <1 CE is due to side reactions or lithium consumption, CE can

be a factor which indicates degradation [133]. CE will be calculated using

coulomb-counting from the capacity test with equation 5.6.

5.2.1.1.6 Degradation

In order to simulate the change in capacity with cycling, the model in-

cludes a factor for degradation based on the charge throughput for each cell,

similar to the model described in [134–136]. The degradation factor is cal-

culated based on the expected number of full cycles the cell will throughput

before degrading to a specific proportion of its original capacity. Generally,

a cell datasheet will state the number of cycles before reaching a given SoH.

Equation 5.7 shows the relationship implemented in the model.

Ct = Ct−1 −∆Q ∗ k, (5.7)

where k is the degradation factor.

This is useful in the model as it should highlight whether some cells have

a higher capacity throughput and are therefore degrading faster than others.

5.2.1.2 Cell Model Results

To validate the results for the single cell model, the model (shown in Simulink

in figure 5.6) was parameterised using the experimental data from one of the

LIM5H cells.
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Three cycles were then performed on both the model and the physical

cell at 2.5A, 5A and 7.5A (0.5C, 1C, 1.5C), so the results could be directly

compared as shown below.

Figure 5.13: Model vs experimental results for a single LIM5H cell.

Mean
Model
Result

Mean
Experimental
Result

Mean
Model
Error

Error
Standard
Deviation

Discharge
Capacity / Ah

4.818 4.821 0.0035 0.0177

Charge
Capacity / Ah

4.804 4.794 -0.0099 0.0230

Discharge
Energy / Wh

17.111 17.161 0.0499 0.0288

Charge
Energy / Wh

17.474 17.361 -0.1132 0.1571

Table 5.2: Summary of results comparing the model and experimental con-
stant current capacity for a single LIM5H cell across 3 cycles at 0.5C, 1C and
1.5C.
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Figure 5.13 shows that that the voltage profiles closely match, with only a

small discrepancy. As expected, the dynamic behaviour is not exactly correct,

as at the change from charge to discharge, the voltage jumps instantaneously,

whereas the experimental result shows the change as somewhat damped due

to the relaxation of the cell which is not modelled. This is more clear in

figure 5.14.

Figure 5.14: Model vs experimental results for a single LIM5H cell, zoomed
to the start of the 1C charge to highlight the different curve shape.

The capacity of the pack shows a very accurate result, with a very small

error. When considering the energy in the pack, this is slightly less accurate

- likely due to the voltage not matching exactly using the relationship chosen

in figures 5.10 and 5.11. With only a small error, this model was chosen to

be used going forwards.
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5.2.2 Pack Model

This section considers using the cell model to produce the proposed model

of a large battery pack. Initially a model with just series connections is

produced, then a model with both series and parallel connections. These are

then combined to give the full pack model. Breaking the model down in this

way allows better understanding and verification of the overall pack model.

Each of the three models is verified experimentally using data parame-

terised from the LIM5H cells. The packs were cycled using the MACCOR

S4000. To measure the current in parallel connections, an LEM LTS 15NP

current sensor was used, which has an accuracy of 0.2%. These were con-

nected to the MACCOR’s 16-bit analogue inputs, each giving 0.0003V res-

olution and a worst accuracy of 0.02% (0.004V). Using 3 primary turns on

the current sensor, this gives a range of ±16A and therefore an accuracy of

32mA at a resolution of 2mA.

The experimental procedure used to validate the model is shown in table

5.3.

Sequence Limits End Condition
CC Charge I = 1C Any Cell >= Max V

CC Discharge I = 1C Any Cell <= Min V
CC Charge I = 0.5C Any Cell >= Max V

CC Discharge I = 0.5C Any Cell <= Min V
CC Charge I = 1C Any Cell >= Max V

CC Discharge I = 1C Any Cell <= Min V
CC Charge I = 1.5C Any Cell >= Max V

CC Discharge I = 1.5C Any Cell <= Min V

Table 5.3: Test procedure for verification of the model.

This consists of four cycles, a single cycle as to reach thermal equilibrium

and three test cycles, each at different C-rates to verify how accurately the

model estimated the available capacity under conditions (which should result

in differing capacities).
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5.2.2.1 Series model

In the series model, the voltage and impedance of each cell are summed to

produce the overall battery pack voltage. Three cells are modelled as shown

in the diagram below. The cell models are labelled A-C and the cells which

the model represents are labelled 1-n (represented in italics), where n is the

number of cells in the string. The cells are ranked strongest to weakest by

capacity, with cell 1 being the weakest and cell n being the strongest.

Figure 5.15: Configuration of the cells in the cell models for a pack with
series connections.

This results in Cell B being a model of the average capacity of cell 2 to

cell n-1, with the voltage being the number of cells in Cell B multiplied by

the average cell voltage. Then summing the voltage of Cells A, B & C gives

the overall pack voltage, shown by equations 5.8 and 5.9.

VA = V1, VB = V2 + · · ·+ Vn−1, VC = Vn (5.8)

Vpack = VA + VB + VC (5.9)

To compare the model with an experimental result, 3 LIM5H cells were

used and 3 CC cycles were performed as per the procedure in table 5.3. The

aim is to show that the voltages are different between cells during the cycles,

which is reflected both experimentally and using the model in a simulation.

The model parameters were found using the experimental data for the 3 cells

used. The results are shown in figure 5.16
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Figure 5.16: Model vs experimental results for a 3 LIM5H cells connected in
series

It is clear from the figure that the voltage tracks as accurately as with

the single cell model, and the error is in the same order of magnitude as with

the single cell test.

5.2.2.2 Parallel Model

The parallel model is modelled similarly to the series model as shown in the

diagram in figure 5.17
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Figure 5.17: Configuration of the cells in the cell models for a pack with
parallel connections.

For figure 5.17, again the cells are ranked strongest to weakest by capacity,

with cell 1 being the weakest and cell n being the strongest. To identify

parameters for cell model B, the capacity ’C’ for all cells is summed as per

equation 5.10, and impedance is calculated using the shown in 5.11:

CA = C1, CB = C2 + · · ·+ Cn−1, CC = Cn (5.10)

RA = R1,
1

RB

=
1

R2

+ · · ·+ 1

Rn−1

, RC = Rn (5.11)

These are both straightforward, however, the voltage is constant between

the cells. Given the same current, the cells would reach different voltages. In
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reality, different current flows through each cell due to different impedances

and SoCs. For the model, a SimScape model was produced to calculate the

current in each cell. Each cell consists of a voltage source and a resistor,

which have values that are the cell voltage and cell impedance. These are

connected in parallel as shown in the figure below.

Figure 5.18: Calculation of the current in each cell to ensure constant voltage
using Simscape in Simulink.

Again, to compare the model with an experimental result, 3 LIM5H cells

were used and 3 CC cycles were performed as per the procedure in table 5.3.

The model parameters were identified using the experimental data for the

3 cells used. It is expected that the voltage will be the same between cells

and the current will vary between them, as this experiment will demonstrate.

The current profile for each cell is shown in figure 5.19.
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Figure 5.19: Model vs experimental results for a 3 LIM5H cells connected in
parallel showing the cell currents.

It can be seen in figure 5.19 that during a change in current, there is ini-

tially a large discrepancy in the current between the cells before it settles. In

the model, this should show the cell which is working the ‘hardest’, or the cell

that has the most current throughput and therefore will most likely see the

most degradation. There is a larger current change seen in the experimental

results than in the simulation. It is expected that this is due to a slightly

higher connection impedance not accounted for in one cell compared to the

others.

5.2.2.3 Series and Parallel Combined Model

Combining the series and parallel models gives a model of the following

architecture:
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Figure 5.20: Configuration of the cells in the cell models for a pack with
series and parallel connections.

The cells are labelled similarly to the series and parallel model, with cells

A-I being the 9 cell models which are computed. The cells which the model

represents are labelled as cell x/y where y is the string number and x is the

position in that string. p represents the number of parallel connected strings

and s represents the number of cells in a series string.

To verify this model, a 3s3p pack was assembled and tested. Each cell

had individual voltage and temperature measurements and each series string

had a current measurement. This provides data points for all the cells being

calculated by the model. By having accurate parameters for the 9 cells, these
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can be directly compared to the model results to observe where there are

discrepancies between the model and reality, giving a physical demonstration

of the limitations. An image of the experimental setup is shown in figure 5.21.

Figure 5.21: An image of the experimental setup for LIM5H cells connected
in a 3s3p configuration

It is expected that the model shows the same constant current capacity

as the experimental pack, thereby verifying the assumptions made. A result

within 1% would be considered sufficient as it allows for the imbalance in

SoC due to the accuracy of the MACCOR S4000. The results comparing the

model with the experimental results are shown in figure 5.22.
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Figure 5.22: Test profile showing the cell voltages in the model and the cell
voltages from the experimental data.
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Model
Capacity
/ Ah

Experimental
Capacity / Ah

Model
Error
/ %

0.5C Discharge 14.28 14.24 0.26
0.5C Charge 14.21 14.24 -0.24
1C Discharge 14.08 14.09 -0.02
1C Charge 14.00 13.92 0.57
1.5C Discharge 13.88 13.87 0.08
1.5C Charge 13.79 13.78 0.11

Table 5.4: Summary of results comparing the model and experimental results
for a 3s3p pack made from LIM5H cells.

This shows that for CC cycles of a 3s3p pack, the model is to within 1%

across a range of C-rates. It is expected that this accuracy would remain for

a larger pack, assuming similarly good parameter identification. This notion

will be verified in section 5.4.

It can be seen that the current profiles are much better here than with

the 3 parallel cells. This is likely due to a better connection which minimises

the impedance differences between cells, and the same connection impedance

would have less of an impact as there is greater impedance in each string with

3 cells in series.

5.3 Parameter identification

Section 5.2.1.1 discusses methods for identifying the parameters of the indi-

vidual cells. This section considers how to ‘scale up’ the model, using a small

sample of cells to estimate how a larger pack would behave by producing a

sample with the same distribution. This new distribution can be used to

populate the model in figure 5.20.

5.3.1 Variance

There is a difference between the capacity and impedance of each cell, consid-

ered as the variance. The following plot shows the capacity and impedance

of each of the 10 cells.
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Figure 5.23: R vs Capacity for a sample of 10 LIM5H Cells

As can be seen, there is little correlation between capacity and impedance,

which agrees with other studies [15] - particularly with new cells.

Considering just the capacity and applying a normal distribution for the

sample produces the distribution shown in figure 5.24.
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Figure 5.24: Histogram with normal distribution showing distribution of
capacities for sample of 10 LIM5H cells

This distribution can be used to produce a new dataset of any number

of cells which matches the distribution. It is expected that the larger the

dataset, the greater the chance the sample set includes outlier results.

For the impedance, it is not quite so straightforward as the impedance

used in the model changes with SoC. Looking back at figures 5.10 and 5.11, as

impedance increases, so does the difference in the impedance, suggesting that

a multiplication factor would be ideal to define the variance between cells.

This is done by taking the mean impedance and multiplying to increase or

decrease the impedance by the factor based on the variance, as:

Rx = Rmean ∗ kx (5.12)

where kx is the variance factor for cell x and Rxis the impedance for cell

x.
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Figure 5.25: Impedance variance from the mean impedance for a sample of
10 LIM5H cells, comparing R0 with RDCIR during charge and discharge.

Furthermore, comparing the distribution with the trends found for charge

and discharge shows that the variance model is sufficient as highlighted in
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figure 5.26.

Figure 5.26: R during charge (top) and discharge (bottom) for a sample of 10
LIM5H cells, showing the proposed relationship in Figure 5.10 & Figure 5.11
with the maximum and minimum variance in Figure 5.25 applied, shown by
the bold lines.

It can be seen that the fit of the variance matches the variance behaviour

of the cells across a range of SoCs, where there is more absolute difference

at a higher impedance.
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Using the discussed distribution of capacity and impedance, a sample of

any number of cells can be produced which match the distribution.

5.3.2 Model Population

To populate the model in figure 5.20 where there are more than 9 cells, it

must be decided which cells are represented by which cell models.

In terms of individual cells, it has been shown in figure 5.23 that there is

no correlation between capacity and impedance of a cell, so these values are

distributed randomly among the sample of cells, except for the strongest and

weakest cells. To consider the worst case scenario, the highest impedance cell

can be given the lowest capacity for the weakest cell and the lowest impedance

cell is given the highest capacity for the strongest cell. The cells are then dis-

tributed randomly into the pack, other than the strongest and weakest cells,

which should be in different strings. If the worst case scenario is not being

considered, then the cells are ranked by capacity to determine the weakest

and strongest. The string containing the weakest cell is represented by cells

A-C. Cell A represents the weakest cell in the string, cell C represents the

strongest cell in the string and cell B represents a model of the remaining cells

in the string. Similarly, the string containing the strongest cell is represented

by cells G-I. Cell G represents the weakest cell in the string, cell I represents

the strongest cell in the string and cell H represents a model of the remaining

cells in the string. Finally, for the remaining strings, all weakest cells in each

string are represented by a model in Cell D, all strongest cells in each string

are represented by a model in Cell F and all remaining cells are represented

by a model in cell E. This should give the metric for cell voltage imbalance

and an indication of the currents flowing between the strings. This process

is outlined in the flowchart and diagram in figures 5.27 and 5.28.
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Figure 5.27: Flowchart describing the method for producing a battery pack
based on a distribution of Impedance (R) and Capacity (C).
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Figure 5.28: Diagram showing where cells in a pack produced from the pro-
cess in figure are located in the model.

The previous section discussed and validated the model, where the num-

ber of cell models and number of cells is the same. For scale-up, a num-

ber of assumptions have been made. There is an element of randomness in

identifying the parameters of a large model when creating a sample of cells

from a distribution. This is because the MATLAB function used to produce

the sample (RANDRAW), produces random values based on a distribution.

Therefore, each time a set of samples is produced, it will be slightly differ-

ent. Additionally, decisions have been made regarding which cells should be

replaced by a single cell model and which ones should be grouped together

into a single cell model. Therefore, to verify these assumptions, experimen-

tal work has been completed on a 12s4p pack, which will be discussed in the

following section.
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5.4 Model Evaluation

This study aims to produce a large battery pack model with a shorter simula-

tion time than modelling every cell individually, but provides a more accurate

model than modelling all cells as a single cell. This section will compare the

modelling approach outlined in this chapter to these two types of models.

The same cell model will be used for each. For an experimental compari-

son, a 12s4p pack is used which is comprised of 4 Yuasa LIM50E modules

connected in parallel. This configuration was chosen to verify the model

population procedure outlined in section 5.3.2 as there are greater than 3

cells with series connections and greater than 3 strings with parallel connec-

tions. This means that the model will be combining both parallel and series

connections.

The cell model parameters were identified using an in-situ test method

(explored in chapter 6), and the impedance and OCV relationships are shown

in figures 5.29 & 5.30. A variance model was produced using the sample of

48 cells in the 12s4p pack giving the distribution of impedance and capacity

shown in figure 5.31. This data was then used to populate the model using

different methods, as will be discussed.
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Figure 5.29: OCV vs SOC relationship for LIM50E cells used to identify the
parameters for the model.

Figure 5.30: Mean impedance relationship for LIM50E cells used to identify
the parameters for the model.
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Figure 5.31: Impedance and Capacity distributions for a sample of 48
LIM50E cells used to identify the parameters for the model.

The tests performed experimentally and on the models were CC cycle

tests at 0.25C, 0.5C, 0.75C and 1C. These C-rates were chosen as the max-

imum charge rate given by the manufacturer is 1C, and a range of C-rates

were used to observe the model under different operating conditions. The

test profile was as shown in table 5.5.

Sequence Limits End Condition
CC Charge I = 1C Any Cell >= Max V

CC Discharge I = 1C Any Cell <= Min V
CC Charge I = Test C-rate Any Cell >= Max V

CC Discharge I = Test C-rate Any Cell <= Min V
CC Charge I = Test C-rate Any Cell >= Max V

Table 5.5: Test sequence for testing a 12s4p pack of LIM50E cells. The
portion of the test sequence used for the results is shown in bold.

The test was performed experimentally at the different C-rates and sim-

ulated under different scenarios. Two main experiments were performed:

• Comparison between models of varying numbers of cell models
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• Comparison between using experimentally derived parameters and us-

ing parameters generated from a distribution.

5.4.1 Varying numbers of Cell Models

For a baseline, an All Cells Model (ACM) was simulated - a model consist-

ing of a cell model representing each cell. The parameters used in the model

were those which were experimentally measured. Additionally, a model con-

sisting of a single cell model Single Cell Model (SCM) which represents the

entire pack was also simulated, again using the parameters experimentally

measured. These were then compared to the 9CM. Parameters were chosen

using the weakest cell ranked as the cell with the lowest capacity and equally

the strongest cell ranked as the cell with the highest capacity. The model

was populated respecting the configuration of the parameters in the exper-

imental pack. The results for the CC cycle tests at different C-rates found

experimentally, and using these models are shown in table 5.6. The average

percentage error of each model compared to the experimental result is shown

in table 5.7, along with the standard deviation across C-rates.

Capacity / Ah 0.25C 0.5C 0.75C 1C
Experimental 180.1 169.6 159.6 150.0

ACM 184.6 170.6 159.1 150.8
SCM 186.3 172.5 161.0 152.7
9CM 184.6 170.6 159.1 150.8

Table 5.6: Comparison for the capacity across a range of C-rates for the 3
different model types

Error Std. Deviation
ACM 0.82% 1.00%
SCM 1.90% 0.90%
9CM 0.82% 1.00%

Table 5.7: Comparison of the error for simulations of the 3 different model
types compared to the experimental results.
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It can be seen that the ACM performs identically to the proposed 9CM.

These are not perfect, however, are within a 1% tolerance, with different

errors at different C-rates. The model correlates best at 1C, which is un-

surprising, as the parameters were identified using tests at 1C. The errors

are likely due to inconsistent temperatures between the different tests (later

chapters attempt to compensate for this temperature inconsistency). The

SCM is notably worse, with approximately 2% error on average.

Considering the simulation time, it can be seen in table 5.8 that simulation

of the ACM took 80s, whereas the proposed 9CM only took 4s. For virtually

the same result, this is a significant improvement.

Test Time for 10hrs simulation / s
Experimental 36000.0

ACM 79.6
SCM 1.2
9CM 3.7

Table 5.8: Comparison of test times for the 3 different model types for a 10
hour experiment

5.4.2 Generating Parameters from a Distribution

The 9CM simulation result using experimental parameters can then be com-

pared to using the variance relationship to identify the parameters for the

model. The distribution shown in figure 5.31 was used to produce a sample

of 48 cells. The sample was then used to populate the model for a “worst

case” scenario according to the method outlined in 5.3.2, where the “weakest

cell” has the lowest capacity and highest impedance. Additionally, the model

was populated with impedance and capacity distributed randomly, with the

weakest cell ranked by capacity as with the simulation of the 9CM in table

5.6. The capacity for these is shown in tables 5.9 and 5.10.
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Capacity / Ah 0.25C 0.5C 0.75C 1C

Experimental 180.1 169.6 159.6 150.0

Generated Parameters
182.8 168.5 156.9 148.4

Impedance / Capacity
distributed randomly

Generated Parameters
182.1 167.7 156 147.3

Pack configured as weakest cell
has highest impedance

Table 5.9: Comparison for the capacity across a range of C-rates for the 9CM
for different model population methods, where parameters are generated from
the variance relationship.

Capacity Mean Error Std. Dev.

Generated Parameters
-0.47% 1.20%

Impedance / Capacity
distributed randomly

Generated Parameters
-1.03% 1.29%

Pack configured as weakest cell
has highest impedance

Table 5.10: Comparison of the error compared to the experimental result
across a range of C-rates (shown in table 5.9 for the 9CM for different model
population methods, where parameters are generated from the variance re-
lationship.

Using variance to produce a dataset produced a similar result, however,

with a lower constant current capacity ( 2%) than using the parameters found

experimentally.
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5.4.3 Discussion

The results show that modelling all cells in the 12s4p pack will give virtually

the same capacity as the proposed model which considers nine cells in a 3s3p

configuration when simulating cycles at a constant current different C-rates.

With just a single cell model, the result is around 1% worse across the range

of C-rates.

Generating parameters from a distribution gives a similar error to using

experimental parameters, however gives lower capacity estimations than were

experimentally found. This is likely due to the distribution producing more

outliers than are in the experimental pack. A reason for this could be due

to manufacturer selection, where new cells are tested, and poorer performing

cells removed.

One error is that at lower C-rates, the experimental capacity was found to

be lower than the expected capacity from the simulations. It is expected that

this is due to temperature, which was not compensated for as there is poor

temperature sensing on the LIM50E modules, with only one measurement for

all of the 12 cells in each module. At a lower C-rate, the cell will generate less

heat over a given time period, meaning the cell temperature is lower, thereby

reducing the impedance according to the relationship found in section 5.2.1.1.

Work in later chapters involves sensing temperature for each cell individually

to be able to compensate for the temperature-related errors and producing

a model to simulate changes in temperature.

5.5 Conclusions

In conclusion, the proposed model consisting of 9 cell models, has been shown

to model a large battery with the same accuracy as modelling all cells, yet

with a reduced simulation time comparable to that of simulating a single

cell. It has been shown that it is a viable option to model a sample of cells

from a distribution to simulate the behaviour of a different sample of cells

which follow the same distribution. These will enable fast modelling of large

batteries to predict how they will behave under different conditions.
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Subsequent chapters involve using the model to investigate how different

scenarios can affect a battery, for example, the optimal SoC to perform cell

balancing at and determining a level of cell voltage imbalance that is safely

acceptable. Furthermore, further experimentation using cell-level data from

WESS is used to evaluate the model at a larger scale, using the model to

inform a real-time estimator.
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Chapter 6

In-situ Parameter Identification

of cells in Grid Connected

batteries

The model proposed in chapter 5 explores the use of 9 cell models to describe

a large battery. It proposed a method to identify parameters for the model

using a test sequence performed on individual cells. This is useful, but from

the author’s experience, individual cells are often unavailable or difficult to

source from a manufacturer. Whilst dismantling a pack or module is often

physically possible, the process can often be unsafe and will void the warranty

or any manufacturer responsibility. Also, cells in packs may be welded in

place [137] and therefore very challenging to remove without damaging the

cell. Dismantling of packs has been observed in literature [15,74] to identify

parameters for cells in a lengthy process.

Therefore, identifying the parameters of cells for a system is ideally per-

formed whilst the cells are in-situ, as part of the system. This is particularly

true if model parameters are being updated as a system degrades. It is also

beneficial when attempting to produce a large dataset of cells - testing a

large sample of cells individually can be very resource intensive as each cell

requires a channel of battery testing hardware. Testing enough cells to pro-

duce a sample that is the same size as the number of cells in a grid-connected
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system would be immensely impractical. Two examples have been observed

in literature, the first where cells had their parameters identified using a

Kalman filter, under carefully controlled conditions [113], albeit only four

cells. The second is in [71], where results for 96 cells are presented, where it

appears these were measured while in the pack, although it is not explicitly

mentioned, and the method is not evaluated or discussed.

Chapter 5 demonstrated some experimental techniques for identifying the

parameters of cells. This chapter explores the methods used for identifying

the parameters of cell models from the mentioned experimental work and

literature, and considers the scale-up of these methods to identify parameters

of multiple cells with both series and parallel connections in-situ.

6.1 Model

The model for which parameters will be identified is the equivalent circuit

model discussed previously in chapter 5. The same Rint Model will be con-

sidered, however, it will also be proposed how multi-order ECMs with one or

two Resistor-Capacitor (RC) components may be identified in-situ. Figure

6.1 shows a block diagram for how the model is configured, with parameters

to be found highlighted. These parameters will each be discussed in section

6.2
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Figure 6.1: Rint model block diagram used in this chapter, with parameters
to be found highlighted by a yellow box.

6.2 Parameters to Identify

This section discusses the experimental methods to identify the model pa-

rameters for a cell. It considers both the methods reported in literature, as

well as those used in chapter 5. For each parameter, it is then considered

which of those is best suited to in-situ parameter identification of a large

pack.

6.2.1 OCV-SoC

6.2.1.1 Analysis of Cell Level Techniques

Throughout literature, there are several techniques which are both used and

proposed in terms of estimating the OCV-SoC relationship, which will be

explored.
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Pulse Discharge

A pulse discharge test is overwhelmingly the most commonly used technique

found reported in literature [8, 54, 86, 94, 138–141]. It involves discharging

by known increments of SoC, resting the cell between each increment until

the voltage is unchanging. This is then typically followed by charging and

resting incrementally in the same way, and averaging the two results. Resting

times were reported between 3 minutes [94] and 3 hours [86], with the most

commonly used rest period of 2 hours. The rest time is cell dependent, and

the rest time should be carefully considered to ensure that the voltage and

temperature have reached a constant state.

Using this method requires the test to be preceded by an accurate capacity

test, used to determine the pulse time or the capacity to be charged or

discharged from the battery during each pulse.

Slow Discharge/Charge

Another commonly reported technique is using low C-rate cycling at a con-

stant current, seen used in [39,58,113,142] and discussed as a method in [139].

In [39], the cell is discharged from 100% SoC to the lower voltage limit at

a rate of C/100 and the voltage measured is used for the OCV-SoC rela-

tionship. In [58, 113, 142], a test is used involving a discharge at constant

current from 100% SoC to the lower voltage limit, followed by a charge at

constant current to the upper voltage limit. The OCV-SoC relationship is

then determined by taking the average of the charge and discharge voltage.

In these cases, a C-rate of C/25 was used. While a reason for the chosen

C-rate was not specified, a sensible value might be the same C-rate used as

the cut-off current used for a CCCV cycle, given that this is where SoC is

defined as 100% or 0%. This c-rate should be sufficiently low to minimise

the effects of hysteresis and minimise any temeperature change.

As long as a constant current is used, or the current is accurately mea-

sured, the capacity of the pack doesn’t need to be known, and SoC can be

interpolated based on the fact that at the upper voltage limit the SoC is

100% and at the lower voltage limit SoC is 0%.
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Other

One other technique demonstrated in literature involved estimating OCV-

SoC relationship based on the impedance-SoC relationship [78] during cy-

cling. This method seems valid, although it relies on calculating the impedance-

SoC relationship first and having a good estimate of SoC using coulomb

counting or another method.

Finally, many papers state the OCV of a particular cell but do not state

how it was measured. It is suspected that some used one of the techniques

presented, but that others used an OCV-SoC relationship provided in the

cell datasheet by the manufacture. This is a simple solution for defining

the relationship without performing an explicit test, however, as the test

methodology is often unknown, the relationship may not be reliable.

6.2.1.2 Scale-up to in-situ measurement

The only test found which considers parameter identification tests on multiple

cells simultaneously is in [94], where the whole pack is tested as one - i.e.,

the results are for the overall pack and not the individual cells.

When attempting to estimate the OCV-SoC relationship, the assumption

made throughout literature is that the relationship is constant between cells.

This is useful, as a relationship for OCV-SoC does not need to be obtained

for every cell, just one. For individual cells connected in a pack, the challenge

is due to the cell voltage imbalance, where it is difficult to ensure that a single

cell reaches both 0% SoC and 100% SoC. In theory, the weakest cell in the

pack should take that position, as discussed in chapter 4. However, this relies

on a battery being well balanced.

For a pulse test, the cell balance may not remain consistent between the

capacity test and the OCV-SoC test, thereby affecting the SoC of the weakest

cell being observed.

A low C-rate discharge / charge test seems more appropriate, as it does

not rely on an additional capacity test. Performing cell balancing (bringing

all the cells to the same voltage) at 50% SoC should give the best chance for

an individual cell to reach the minimum and maximum SoC. Due to the low
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currents used, the voltage imbalance due to differences in impedance is also

minimised, thereby increasing the likelihood that a single cell will reach both

maximum and minimum voltage limits.

Of course, if a separate single cell is available, the chosen method would

be to perform the test using a single cell method, but in the absence of that,

a low C-rate charge / discharge is proposed with the pack balanced at 50%

SoC. The C-rate will be the C-rate used as the CCCV cutoff current, which

for the purposes of this thesis is C/20 as discussed in chapter 5.

6.2.2 Impedance-SoC

6.2.2.1 Analysis of Cell Level Techniques

Impedance in the model describes how the voltage of a battery deviates from

OCV depending upon the applied current. For an equivalent circuit model

this could be as simple as modelling the impedance as a single resistor, or

more complex, including modelling a number of additional RC circuits. The

measurement techniques used in literature involve stimulating the battery

with AC or DC signals and taking measurements which are used to calculate

the impedance used in a battery model, which will be discussed [125,130].

AC measurement

As with techniques to find the OCV-SoC curve, there is a single technique

which the majority of researchers use to find battery impedance. This in-

volves driving the battery with an alternating current. This can be a fixed

frequency - generally 1kHz is used for a fixed frequency [125, 129, 143], or

a varying frequency such as EIS. As mentioned in the previous chapter,

EIS involves measuring the impedance of a battery at many different fre-

quencies. It is widely used to identify parameters for an equivalent circuit

model [10, 15, 59, 125, 127, 128, 139, 144, 145]. Frequency ranges used in the

mentioned papers generally measure impedance in the 10’s of kHz range to

1’s-10s of mHz range. A typical test as seen in [15] performs EIS in a fre-

quency range of 10kHz to 10mHz.
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The higher frequency measurements describe the inductive components

and the lower frequency describes the capacitive components of impedance.

In between on the real axis intercept is the purely ohmic component which

typically is close to the 1kHz measurement [125], hence suggesting why 1kHz

impedance is often quoted in datasheets.

EIS is an effective method for characterising a cell’s impedance and should

be performed at a range of SoC’s as demonstrated in [59,139] as the impedance

is likely to change with SoC.

6.2.2.2 Current Pulses

Other researchers use a current pulse technique. This involves applying a

current for a period of time, and calculating the impedance based on the

voltage response. This may be with a generic test, specifically designed

test [14, 111, 125, 130, 139] or the standardised test sequence such as Hybrid

Pulse Power Characterization (HPPC) [49,110,146,147]. On the whole, these

compare the voltage change from rest to load in order to find the impedance

parameters for models of varying order. The voltage is measured at rest,

a current is applied - generally for 10 seconds, and the voltage response is

recorded. For a Rint model, the voltage difference between rest and the end

of the current pulse is used to calculate RDCIR, and for higher order models,

curve fitting is used to estimate the RC parameters.

One example considers the relaxation profile rather than the load profile

to fit the model [147]. It is expected that this would produce a more accurate

model, given that during the pulse there will be a change in SoC. This may

be small generally, but at low SoCs where the change in voltage relative to

SoC is high, there may be a greater effect, suggesting that there may be a

higher impedance than reality.

6.2.2.3 Scale-up to in-situ measurement

For identifying the impedance characteristics of multiple cells in-situ, EIS is

an unsuitable measurement technique, as the cell voltage response from a

BMS is not fast enough. The BMS for WESS returns cell voltage data every
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120ms. According to the Nyquist criterion, the sample frequency should be

double the signal frequency, meaning that the highest frequency EIS that

could be measured is around 4Hz - too low to estimate battery parameters.

A pulse test instead would be more suited, with cell voltage measurements

being able to show the long period cell voltage transient behaviour. The

method proposed in chapter 5 using OCV instead of waiting for a cell to rest

after a pulse would be suitable for cells within a pack.

This could be further extended to estimating the impedance with a good

estimate of SoC as was demonstrated in chapter 5. As a rest is unnecessary

when using OCV in place of the resting voltage, a continuous constant current

charge or discharge between voltage limits could be used to calculate the

impedance at any point in the charge or discharge. This would only work for

a Rint model, but would provide a high resolution for the impedance-SoC

relationship. This is shown in figure 6.2. A test procedure could involve

charge at 1C to the voltage limit, then resting until OCV is reached to set

the start SoC. Then a 1C discharge to the lower voltage limit followed by a

rest to set the end SoC. This can then be repeated during charge to find the

discharging and charging impedance across the range of SoCs reached at 1C.
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Figure 6.2: Cell voltage at 1C charge and discharge compared to SoC, show-
ing the voltage drop used to calculate Rdcir for a Rint model.

If identifying the parameters of a model containing RC components, then

a pulse test is necessary - using the cell rest profile to curve fit the RC

components.

6.2.3 Capacity

6.2.3.1 Analysis of Cell Level Techniques

Cycle Test

In general, capacity tests are performed with a charge-discharge cycle test,

with the procedure explicitly mentioned in many sources [8, 14, 15, 111, 148–

151]. Typically a CCCV charge is used to reach the maximum SoC, then

a CCCV discharge to measure discharge capacity and a CCCV charge once

more to measure charge capacity. The capacity is measured as:
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∆Q =

∫ t2

t1

I dt (6.1)

C =
∆Qcharge + ∆Qdischarge

2
(6.2)

A variety of C-rates and CCCV cutoff currents are used. A sensible

approach would be to measure capacity based on the application and ac-

cording to manufacturer recommendations. C-rate can affect capacity mea-

surements [152] and lower CCCV cutoff currents will give a higher capacity

measurement.

Change in SoC

Another method has been observed in literature involving partial charge /

discharge cycles and instead estimating the change in SoC and calculating

the capacity based on the change in charge during the cycle [152,153]. This

is described in [153] as:

C = C1,2 =
Q1 −Q2

SoC1 − SoC2

(6.3)

Naturally, this relies on a good estimate of SoC and accurate current

measurement for precise coulomb counting. It is suggested in [152] that a

change in SoC of >60% is recommended for accurate measurements, which

agrees with the experimental results in [153] which states that for well-defined

test procedures, the accuracy can be as high as 99.9%.

6.2.3.2 Scale-up to in-situ measurement

Measuring the capacity of many cells in-situ is challenging for performing

capacity measurement cycles at constant voltage between voltage limits. This

is due to the difference in voltage between cells, so only one cell can reach

the voltage limits, and the same cell may not necessarily take the maximum

and minimum voltages, for reasons discussed previously.

The technique using the change in charge and SoC to calculate capacity

is more feasible, as it does not rely on all cells reaching a voltage limit. It
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does however, rely on accurate voltage measurements to estimate SoC of each

individual cell and accurate current measurement for each string in order to

calculate the charge. Assuming those measurements are accurate, equation

6.3 can be used for each cell to estimate the capacity of each cell.

6.2.4 Temperature

Temperature is shown to have an effect on the impedance of a cell [111,

130, 154, 155], where there is an increased impedance at lower temperatures

and vice versa. There is some discrepancy between results in literature,

but it is agreed that, the CC discharge capacity reduces as temperature

reduces [143,156,157]. In [156], which uses Constant Voltage (CV) charge and

discharge cycles, there is a less pronounced effect, suggesting that impedance

change with temperature has a greater effect.

6.2.4.1 Analysis of Cell Level Techniques

In the aforementioned sources, the relationship between temperature and

impedance were calculated using the various measurement techniques dis-

cussed in section 6.2.2 and 6.2.3 at different temperatures. The temperatures

were controlled in a thermal chamber or other closely temperature controlled

manner. It appears in to be assumed across literature in the mentioned ref-

erences that the relationship is constant between cells (of the same type and

age). One challenge appears to be maintaining a constant temperature in the

cells, as whilst the environment temperature can be well controlled, perform-

ing lengthy tests with higher currents affects the cell temperature, changing

the results. Chapter 7 shows how temperature varies across 6 strings at

WESS - an example with a strong HVAC system, but still a spread of tem-

peratures (∼4°C average during a 1C cycle). Furthermore, [155] points out

that there is a difference between the internal cell temperature and surface

temperature.
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6.2.4.2 Scale-up to in-situ measurement

For in-situ measurement, it is usually difficult to control the temperature

precisely due to the size and location of them. Furthermore, even with tem-

perature control of the environment, cells will not have an even distribution

of temperature due to some having greater airflow - i.e. cells situated at the

edge of a module. Therefore, it can be difficult to measure the temperature

relationship in situ.

Instead, it will be assumed that the temperature relationship is the same

between cells. Therefore, where possible, measurements should be performed

with an individual cell in a thermal chamber and applied to all cells with the

same relationship. In the absence of the necessary resources to do this (i.e.

a spare cell), the relationship should be assumed the same as a different cell,

or ignored all together, and parameter identification of impedance performed

in conditions that are generally experienced by the battery system.

6.2.5 Coulombic Efficiency

Coulombic efficiency defines the efficiency of the electrical transfer of charge

[132] between charge and discharge, defined in [132,133] as:

CE =
∆QDischarge

∆QCharge

(6.4)

It is noted in [135]that the CE for Lithium-ion batteries is very close to

1 (results in [133,158] suggest around 0.999), and so it is often an parameter

which is ignored.

6.2.5.1 Analysis of Cell Level Techniques

For the measurement of CE, typically a charge / discharge cycle is performed,

and the charge measured during charge and discharge is used to calculate CE

according to equation 6.4. There are no other electrical methods reported,

but it is worth noting that the cell should reach the same SoC at the beginning

of the cycle to the end.
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6.2.5.2 Scale-up to in-situ measurement

For in-situ measurement, cell balance again can cause an issue, as the same

SoC may not be reached for each cell in a pack. However, this can be over-

come by comparing the estimated charge capacity and discharge capacity

calculated in the capacity measurement for each cell. It is expected that the

coulombic efficiency will be constant between cells, and any deviation will be

within the measurement noise.

6.2.6 Proposed parameter identification procedure

Using this research and discussion, a test procedure for identifying the pa-

rameters of cells with many connections is proposed. Table 6.1 shows the

procedure for identifying the parameters of multiple cells with series and

parallel connections in a pack. It makes several assumptions about the sys-

tem design in order for parameters to be determined:

• Every cell has individual voltage measurements.

• Every series string has individual current measurements.

• The sample rate for all measurements is >1Hz.

• Where there are parallel connections between individual cells without

individual current monitoring, it is considered that the parallel con-

nected cells are one cell. (i.e., series connections of 1s2p cell pairs

would be considered as series connections of a single cell with double

the capacity).

• The temperature in the pack is constant or there is an accurate cell-level

temperature measurement.

• The pack is well balanced

Different configurations may require a tweaked parameter identification

process, or may not be possible if sufficient data is unavailable.
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Test Phase Sequence Limits End Condition

Balance pack
to 50% (nominal)

CCCV Charge
/ Discharge

V = Average nominal
voltage for pack, I = 1C

I <C/20 A

Hold Voltage
V = Average nominal
voltage for pack, I = 1C

Cell imbalance <3mV

OCV - SoC
CC Charge I = C/20 Any Cell >= Max V
CC Discharge I = C/20 Any Cell <= Min V
CC Charge I = C/20 Any Cell >= Max V

Capacity / CE /
RDCIR

CC Discharge I = 1C Any Cell <= Min V
CC Charge I = 1C Any Cell >= Max V
Rest dV/dT = 0
CC Discharge I = 1C Any Cell <= Min V
Rest dV/dT = 0
CC Charge I = 1C Any Cell >= Max V
Rest dV/dT = 0

Table 6.1: The test procedure for identifying the parameters of multiple cells
in-situ

This procedure begins with balancing the pack at 50% SoC. This is so the

individual cell with the lowest capacity has the greatest chance of reaching

100% SoC and 0% SoC for the OCV-SoC test. As mentioned, 50% is best as

there is the greatest change in SoC for charge and discharge, which means

small imbalances in SoC should not prevent the lowest capacity cell from

reaching both voltage limits. The OCV-SoC test consists of a C/20 charge

for the pack to reach 100% SoC, then a C/20 discharge and charge, where the

voltage of the cell which reaches the upper and lower voltage limits will be

averaged to find the OCV-SoC relationship. Finally, a CC test is performed

to find the capacity, CE, and RDCIR for the Rint model. This consists of a

CC discharge then charge to normalise the voltage of the pack, where each

constant current sequence ends when any cell reaches the upper or lower

voltage limit. This is followed by a rest until the cell voltage is constant,

which is used to find the SoC of each cell using the OCV-SoC relationship.

A CC discharge followed by a rest period until the voltage is constant is used

to find the SoC after discharge. The change in SoC and the cell current is

used to find the discharge capacity for each cell according to equation 6.3.

This is repeated under charge to find the charge capacity for each cell. The

CE is therefore calculated using equation 6.4. Using this 1C cycle data, the
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impedance is found using the process outlined in section 6.2.2, illustrated in

figure 6.2, at a resolution of 1% SoC.

As noted when discussing temperature, it is challenging to estimate the

Temperature-Impedance-SoC relationship in-situ, due to the lack of precise

temperature control in large systems. Therefore, should a single cell be

available to test, it should be used individually in conjunction with an envi-

ronmental chamber to measure the relationship. Should this be unavailable,

the temperature relationship should be ignored. The process for determining

the Temperature-Impedance-SoC relationship is shown in table 6.2.

Test Phase Step Sequence Limits End Condition
Set Temperature 1 Set Temperature T >2 hrs

Capacity /
RDCIR

2 CCCV Charge
V >= Max V
I = 1C

I <C/20 A

3 CCCV Discharge
V <= Min V
I = 1C

I <C/20 A

4 CCCV Charge
V >= Max V
I = 1C

I <C/20 A

Repeat 5
Repeat 1-4 at
different temepratures

All temeperatures
tested

Table 6.2: The additional test procedure for identifying the parameters of a
single cell to find the Temperature-Impedance-SoC relationship

The procedure begins by setting the temperature and waiting for 2 hours

for the cell temperature to reach equilibrium. CCCV cycles are then per-

formed to find the capacity and impedance of the cell, using the techniques

discussed. This is therefore consistent with the method used ex-situ and in-

situ. One potential issue is that there may be a change in temperature due

to the relatively long test, however consistency of the method is preferred,

and the cell temperature is measured through the test. It is proposed that

the temperatures tested should be 5-45 °C, at 10 °C intervals. Furthermore,

the capacity and impedance can be compared with the in-situ measurement,

verifying the parameter identificaiton process.
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6.3 Experimental Setup

In order to validate the proposed test procedure, tests are performed on

various systems. These are the Yuasa LIM50E ESS and WESS

6.3.1 LIM50E ESS

As mentioned in chapter 3 the Yuasa LIM50E ESS consists of 168, 47.5Ah

cells connected in series, arranged in modules of 12 cells. It is a lab-based

battery and as such can be dismantled and reconfigured to provide results

under different conditions. For the work presented in this chapter, the system

is tested as a whole, an individual module is removed and tested, and a single

cell from the removed module is removed to be tested individually. This is

used to observe how the in-situ parameter identification test compares to

commonly used cell tests. The modules and cells chosen to be removed were

those which are most accessible practically.

6.3.2 WESS

WESS consists of 40 series strings connected in parallel, with each series

string consisting of 264 series connected parallel pairs of cells, arranged in

modules of 12 parallel pairs of cells. At the time the work took place, only six

series strings were modified according to section 3.2.4.1 to store individual

cell data from each cell pair, giving the data from 1584 pairs of cells.

Unfortunately, due to the operating constraints of the system, the min-

imum cell voltage cannot be reached so the OCV test cannot be performed

on the system. Furthermore, the system is generally used as part of an asset

used by an aggregator, meaning specific cycles cannot often be performed.

Instead, cycles such as those observed in chapter 4 are used, and the capacity

and impedance can be calculated from cycles with a large change in SoC, that

match the proposed procedure. This should provide a helpful insight into the

practicality and accuracy of performing these types of tests in a “real-world”

scenario.

To find OCV, a test cell provided by the manufacturer is used, performing
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the C/20 test proposed as part of the test procedure. Alongside this, the other

parameter identification tests are performed on the cell to compare with the

in-situ tests.

6.4 Results

6.4.1 Yuasa LIM50E ESS

6.4.1.1 OCV

The OCV portion of the test was performed using the Yuasa LIM50E ESS

and spare module. Following the test of the module, a cell was removed and

was tested for OCV using the same procedure. The OCV found for the cell is

assumed to correct and the result that should be achieved from the module

and ESS if the parameters are identified correctly. The OCV result is shown

in figure 6.3
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Figure 6.3: OCV for Yuasa LIM50E cells, measured in different contexts.

It can be seen that each of the results is virtually identical. For the

ESS and module, it was found that a single cell did not reach both the

upper and lower voltage limits. In both the ESS and module, the cell which

reached the lower voltage limit came within 2mV of the upper voltage limit

during the test, so was used. The OCV relationships shown in figure 6.3

were sampled at 1% SoC intervals and 100% and 0% SoC were set to the

minimum and maximum cell voltages. The OCV points from 1% to 99%

SoC were determined from the experiment, so a cell not reaching 100% SoC

is inconsequential.

6.4.1.2 Capacity

The proposed capacity test was performed using the Yuasa LIM50E ESS

and the removed module. The removed cell was tested for capacity using a

CCCV charge and CCCV discharge cycle procedure. Considering first the
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cell which was removed from the system, the capacity found in-situ in the

rack was 49.73Ah, the capacity found in-situ in the module was 49.96Ah,

and the capacity found by a CCCV cycle test was 50.71Ah. This is a 1.9%

difference, and is likely primarily due to differences in temperature, where

the tests were not performed in a temperature controlled environment. Addi-

tionally, it is expected that some difference is caused by measurement error,

where the devices have different calibrations for current. Additionally, cell

voltage measurements rely on the BMS which has an unknown accuracy,

again providing another source of error.

Figure 6.4: Capacity distribution of LIM50E cells, measured from (a) the
ESS and (b) the removed module.

Comparing the distribution of capacity between the spare module and

the ESS showed a reasonably ’normal’ distribution, as seen in figure 6.4.

The cells in the removed module measured alone showed virtually the same

capacity when cycled alone compared with cycling within the ESS. This is
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as expected, as very similar hardware was used for cycling in the two tests.

6.4.1.3 Coulombic Efficiency

The coulombic efficiency of the cells in the ESS, removed module and the

removed cell was calculated using the capacity measured during charge and

discharge in the above capacity tests. The results are shown in table 6.3

Mean / % Std. Dev. / %
ESS 97.5366 0.0026
Removed Module 100.1979 0.0056
Removed Cell 99.9868 n/a

Table 6.3: Coulombic efficiency of LIM50E cells measured in the ESS, re-
moved module and removed cell.

The value measured directly in the cell is considered the correct value

for the cell, as it is measured using the MACCOR S4000 which is highly

accurate and regularly calibrated. Additionally, there was no BMS or any

other potential loads attached to the cell. In the ESS, the CE was found to

be lower than this value, and the module cycled alone was found to be higher.

This could be due to a number of reasons - most likely due to inaccuracy in

current sensing and losses in the overall system.

6.4.1.4 Impedance

The proposed impedance test was performed using the Yuasa LIM50E ESS,

removed module and removed cell. The impedance tested for both the mod-

ule and the ESS were found to be similar with results shown in figure 6.5.
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Figure 6.5: Impedance of LIM50E cells, measured in ESS for charge (A) and
discharge (B), Module for charge (C) and discharge (D), and single cell for
charge (E) and discharge (F)

For all tests, the impedance measurement at the start of each test is

notably lower, before reaching the expected value. This can be accounted for

by the capacitive components of the impedance, where the voltage takes time

to drop to a steady state. Therefore, RDCIR values at low SoC for charge

and high SoC for discharge should be discounted. It can be seen in figure 6.5

that in the ESS and module tests, there is no data above ∼78% SoC. This is
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due to these tests being performed using a CC cycle for safety reasons, where

the maximum SoC reached is ∼78%. For the single cell test, the test was

performed using a CCCV procedure, hence it reaches the full SoC range.

Charge / mΩ Discharge / mΩ
ESS 1.8534 2.0734
Module 1.9021 2.142
Cell 1.8582 1.9401

Table 6.4: RDCIR at 50% SoC for the removed cell, measured in-situ in the
ESS and module and measured alone.

Considering the cell which was removed, the impedance measured in-situ

and individually is shown to be similar, as can be seen in figure 6.5 and table

6.4, with measurement in the cell being slightly lower in general.

6.4.2 WESS

Performing similar tests on WESS is helpful, as it gives an insight into a larger

system with parallel connections, as well as dealing with the constraints of

an operational energy storage system. This aims to further test the proce-

dures, comparing the results to a test cell in a new condition provided by the

manufacturer.

6.4.2.1 OCV

WESS was unable to perform the OCV test for several reasons. Firstly, it is

not possible to reach the full voltage range of the cells given the limits of the

inverter system. Secondly, as only 6 strings out of 40 were being measured,

the cells in these strings are unlikely to reach the maximum or minimum cell

voltages. Therefore, the OCV test was performed with a test cell provided by

the manufacturer using the C/20 cycle test. The OCV was found as shown

in figure 6.6 and the relationship is used in calculations going forward.

142



Figure 6.6: OCV for a 20Ah SCiB test cell, identical to those found in WESS.

6.4.2.2 Capacity

To find capacity in WESS, a sequence similar to the proposed CC cycle test

followed by a rest is required. With the system performing as part of an

aggregator, it often performs arbitrage type cycles - i.e., charging during

periods of low energy cost and discharging during periods of high energy

cost. This results in large constant power charges and discharges, with a

long rest period (while the price changes) - virtually identical for the pro-

posed sequence for measuring capacity using the in-situ technique. A typical

sequence is shown in figure 6.7.
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Figure 6.7: A typical charge / discharge sequence from a series string at
WESS.

Using this sequence to find capacity gives the distribution of the cells

in the 6 strings shown in figure 6.8. Note the result is the capacity for each

parallel cell pair. Moreover, it can be seen that the current is not constant, as

the system cycles in a constant power mode, as previously mentioned. This

is not a significant change, however, it should be taken into account during

the calculation of capacity and impedance. Additionally, it can be seen in

the string voltage that there is a slight but constant discharge, caused by

the parasitic load of the inverters. To determine the OCV at the end of

charge or discharge, the method outlined in [130] can be used, linearising

and interpolating this slow discharge curve to find OCV at the end of the

charge / discharge half cycle.
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Figure 6.8: Capacity for 1584 parallel cell pairs from WESS compared to a
test cell.

The test cell measured individually using a CCCV cycle test showed a

capacity of 22.10Ah. Doubling this to compare with the cell-pairs in WESS

is 44.21Ah which is shown in figure 6.8.

This is a little higher than the mean value which can be seen in figure

6.8, however the test cell is unused, whereas WESS has been in use for a

number of years, so degradation is expected, explaining the higher capacity

of the test cell. Further, the cell is from a much newer batch, giving another

potential reason for the increased capacity.

The distribution is not as uniform as may have been expected, as was

seen in the Yuasa ESS. This may be due to the difference in temperature

between cells, where there was a difference of the average cell temperature

during the test of 3.9°C.
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6.4.2.3 Coulombic Efficiency

As with the Yuasa systems, the CE was measured using the calculated charge

and discharge capacity in the above test for WESS and a test cell. The results

are shown in table 6.5.

Mean / % Std. Dev. / %
WESS 95.9934 2.351
Cell 99.9131 n/a

Table 6.5: Coulombic efficiency of cells measured in WESS, compared to a
test cell.

Again, the test cell is considered correct, so WESS shows a much lower

CE than the test cell. It is expected that the CE of the physical cells is

consistent with the test cell, however with losses elsewhere in the system.

The CE for cells in each series string is virtually identical and is consistent

across different tests. Therefore, it is likely due to some losses or error in

current sensing in the system, and demonstrates the sensitivity of CE to

measurement and coulomb counting drift.

6.4.2.4 Impedance

To find the impedance in WESS, the same cycle as the capacity test is used,

implementing the proposed method. The impedance for each cell pair in the

6 strings as a function of SoC is shown in figure 6.9.
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Figure 6.9: RDCIR for 1584 parallel cell pairs from WESS.

The impedance found is very similar, however follows a slightly different

trend. This is most likely a result of the ageing, or temperature variations

in the system throughout the cycle.

6.4.2.5 Temperature correction

Using the test cell, the temperature relationships were determined using the

test procedure in table 6.2. For equation 5.5, the capacity-temperature con-

stant was found to be -0.0022 and the impedance-temperature constant was

found to vary with temperature, and is shown in figure 6.10.
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Figure 6.10: The temperature-impedance constant vs temperature for an
SCiB test cell used in WESS

Some of the anomalies observed have been accounted to the effects of

temperature. Using the temperature relationship, the effects of temperature

can be compensated. With a temperature sensor per 2 cell-pairs on the

modules, this gives a reasonably good temperature measurement for each

cell at WESS. The above temperature relationship is used to normalise the

capacity and impedance at 25°C, shown in figures 6.11 and 6.12.
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Figure 6.11: The capacity for 1584 parallel cell pairs from WESS (a) as
measured and (b) normalised at 25°C.
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Figure 6.12: RDCIR at 50% SoC for 1584 parallel cell pairs from WESS
(a)/(b) as measured (charge)/(discharge) and (c)/(d) normalised at 25°C
(charge)/(discharge).

The distributions can be seen to be much more uniform for both impedance

and capacity when normalising the parameters at 25°C. This is the result that

is expected and explains some of the less uniform results.

6.5 Conclusion

The work presented in this chapter proposes a method for in-situ parameter

identification of cells within a large battery system consisting of series and

parallel connections. It relies on cell-level voltage data and string current

data being reported by the BMS. In-situ parameter results for a Rint model

are within the expected range when comparing to tests performed on indi-

vidual cells. There are several key advantages to using this method when
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comparing to cycling a large batch of cells individually. Firstly, it is faster

and less resource intensive, without having to individually connect cells to

channels of a battery tester. Secondly, the measurement error in the sys-

tem being tested becomes “baked in” to the parameters, so when performing

modelling and simulation, the results match.
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Chapter 7

Online parameter estimation

for grid connected batteries

7.1 Introduction

In chapter 4, the behaviour of cells within large batteries was studied, showing

that on the whole, the weakest cell is the limiting factor for overall capacity

of the pack. Based on this, chapter 5 proposed a model which considers 9

cell models to represent a large battery. From that, methodology to identify

the parameters for all cells, then arrange them into the model was proposed

in chapter 6.

This presented work provides the framework to create an online state

estimator which is proposed in this chapter, named a Cell-level Parameter

Estimator (CPE). Based on discussion throughout this thesis, with the key

points highlighted in section 2.1.3, the specifications for the estimator are

chosen to be:

• Output SoC Estimate

• Track SoH Diagnostics - Cell & System Capacity

• Output SoP Estimate

• Update Model Parameters
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The work presented in this chapter describes the integration of the model

and parameter identification methods to produce an online state estimator

for SoC, SoH and SoP. This should improve on current methods by the

considering the system as more than just a single cell. WESS will be used to

evaluate the performance of the estimator.

7.2 Model

7.2.1 Electrical Model

The model for the electrical characteristics of the battery is identical to that

proposed in chapter 5, shown in figures 5.20 and 6.1. The Simulink model

for each cell is shown in figure 5.6.

Electrical parameters for each cell to be used in the model include: C,

RDCIR,Ch & RDCIR,Dch. The remaining parameters are found for a single cell

and are assumed to be constant between cells. Temperature for the cells is

estimated separately.

7.2.2 Temperature Model

In addition to the electrical model, a model for temperature of each cell will

be considered. It is intended that 9 temperature models will be considered

giving a temperature for each of the 9 electrical cell models. This will provide

an estimate of temperature for temperature compensation of capacity and

impedance.

The thermal model is based on the relatively simple models seen in [159]

and [160]. The thermodynamics of the battery is represented by equation

7.1:

CQ
dTbat
dt

= QElec +Q∆S −QB (7.1)

(adapted from [160]).

CQ represents the heat capacity of the battery, QElec represents the elec-

trical heat generation of the battery, Q∆S is the entropic heat and QB is the
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dissipated heat. The entropic heat is due to the chemical reaction occurring

in the battery, which can be endothermic or exothermic, and is a reversible

heat flow [161]. Therefore it will be discounted, as across a cycle it will have

a net 0 change in heat in the battery. Further, the process for identifying

the the entropic heat is lengthy and requires precise sensing and tempera-

ture control [162] which is not present at WESS. Should it be found that a

more precise model is required, it would be straightforward to implement in

the model, albeit with a lengthy parameter identification procedure, which

would have to be performed on an individual test cell.

The electrical heat generation, QElec, is calculated as:

QElec = (VOCV − Vload)I (7.2)

(adapted from [159])

The heat dissipation can be expressed as:

QB = Ah(Tbat − Tamb) = k∆T (7.3)

(adapted from [160])

In equation 7.3, A is the effective surface area of the battery, h is a

constant, Tamb is the ambient temperature and Tbat is the temperature of the

battery. With A being constant for each cell, the equation is simplified to

k∆T , where k is a constant to be found for each cell in the system.

Overall, the system can be summarised in figure 7.1
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Figure 7.1: Architecture of the Thermal Model.

7.3 Parameter Identification

7.3.1 Electrical Parameters

To identify the electrical model parameters, the calculations presented in

chapter 6 are used. The aim is to perform update of the parameters whenever

an appropriate cycle is performed by the system which is similar to one of

the elements of the test procedure in chapter 6. The method for detecting

the cycles, and the type of cycles will be expanded upon in section 7.3.3.

7.3.2 Thermal Parameters

It is intended that the thermal parameters only be identified once, as it should

remain constant across the life of a system, unless any physical changes are

made. To find thermal parameters, equation 7.1 is integrated and simplified

to give:

CQ =

∫ t

0
QElec −

∫ t

0
QB

∆T
(7.4)

Substituting equations 7.2 and 7.3 gives:

CQ =

∫ t

0
(VOCV − Vload)I − k

∫ t

0
Tbat − Tamb

∆T
(7.5)
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This gives two unknowns to be found under a load - CQ (heat capacity

for the cell) and the constant k. Consider a second case where the cells are

at rest:

CQ =
−k
∫ t

0
Tbat − Tamb

∆T
(7.6)

Solving these as a pair of simultaneous equations can give a value for CQ

and k. To give values for equations 7.5 and 7.6, the following test procedure

is proposed.

Sequence Limits End Condition
Rest ∆ T = 0 (Tcell = Tamb), t >20 min
CC Discharge I ≈ 1C ∆ SoC >50%
Rest t >20 min
CC Charge I ≈ 1C ∆ SoC >50%
Rest Delta T = 0 (Tcell = Tamb),

Table 7.1: Procedure for identification of Thermal Parameters

The procedure begins with a rest to set the initial SoC of the cells from

OCV, and estimate ambient temperature for each cell. Then a discharge cy-

cle, followed by a rest of 20 minutes to again determine the cell SoCs. Then

a charge cycle followed by a long rest period until the cells again reach ambi-

ent. The charge and discharge cycles are used in equation 7.5 and equation

7.6 is applied. Solving the two equations gives values for CQ and k for each

cell measured. An example profile is shown in figure 7.2.
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Figure 7.2: Typical test procedure - example taken from a cell in WESS.

7.3.3 Cycle Detection

In order to perform the parameter identification, the cycles must be correctly

selected by the system. This is done by producing an array of each sequence

the battery has performed, then based on the correct series of sequences, will

determine whether the sequence can be used for any parameter identification.

An example array is shown in table 7.2
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Sequence Sequence Parameter Start Time Finish Time
Rest 2433s 2021-07-02T10:00:00Z 2021-07-02T10:40:33Z

Charge 68.22% 2021-07-02T10:40:34Z 2021-07-02T11:23:35Z
Rest 1867s 2021-07-02T11:23:36Z 2021-07-02T11:54:43Z

Table 7.2: Example Array containing the cycle information used to detect
cycles.

Initially, the system categorises the operation of the battery. This can be:

charge (I >10A), discharge (I < -10A) or rest (-10A ≤ I ≤ 10A). A deadband

for rest current is set at 10A for WESS. This is because when the system

is set to 0 power, there is around an 8A parasitic load on the battery - the

deadband treats this as rest.

The sequence is then stored in the array, writing the sequence type, se-

quence parameter, start time and end time. If the sequence for the sample

being read is the same as the last sequence in the array, it updates the se-

quence end time and sequence parameter. The sequence parameter refers to

a parameter that is considered for whether a cycle is appropriate - for charge

and discharge, this is ∆SOC, for rest it is rest time. This can be seen in

table 7.2.

The cycles are then detected from this array and cell-level data is down-

loaded using the saved timestamps, where the parameter identification method

is used. For capacity and impedance measures, the system does not currently

log the string currents to an accessible database, but the system BMS logs

it locally. Therefore, the cell data is written to a file, and the current data

can be manually downloaded from the BMS and added, then the parameter

identification algorithm is run. This is not perfectly synchronised, but it is

thought to be correct to within 10 seconds.

The parameters to determine when to run the in-situ parameter identifi-

cation are as follows:

7.3.3.1 Capacity

Capacity is split into charge capacity and discharge capacity, and the value

for each is a result of an average of the last 5 readings to account for any
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small errors. The average of the charge and discharge capacity is then taken

to give the overall capacity. The last 3 entries in the sequence array should

match and meet the following conditions shown in table 7.3:

Sequence Sequence Parameter Sequence Sequence Parameter
Rest >1200s Rest >1200s
Charge >60% Disharge >60%
Rest >1200s Rest >1200s

Table 7.3: Conditions required to update charge (Left) or discharge (right)
capacity.

A rest time of 1200s was chosen based on a previous cell-level test, where

it was found that it took approximately 20 minutes for the voltage to reach

an open-circuit level. A ∆SoC of 60% was chosen as noted in chapter 6

that for the capacity algorithm being used, >60% gave a good estimate for

capacity.

7.3.3.2 Impedance

For impedance, the case is similar to capacity, but the charge and discharge

impedance are separate. The last 2 entries in the sequence array should meet

the following conditions shown in table 7.4:

Sequence Sequence Parameter Sequence Sequence Parameter
Charge >20% Disharge >20%
Rest >1200s Rest >1200s

Table 7.4: Conditions required to update charge (Left) or discharge (right)
impedance.

A ∆SoC of 20% is used to ensure that the voltage drop has reached a

steady state. The rest time is the same as used in the capacity test, and sets

the appropriate SoC which the impedance has been measured at. This is then

mapped to the cell measured impedance-SoC relationship to give a value for

RDCIR. It is expected that this type of cycle will occur more regularly than

a capacity test, and as such, an average of the last 10 readings are used.
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7.3.3.3 SoC

This cycle detection will additionally be used to update the SoC. The SoC is

estimated through simulation of the model, but this will drift over time due

to small errors. To update the SoC, the last sequence in the array merely

has to be a 1200s rest. Then the system downloads the cell-level data for the

rest period and updates the SoC for each cell in the model. If the system

is at rest for a long period, this will only occur a maximum of once every 5

minutes. Additionally, this will update the temperature of the cells in the

model.

7.4 Online Estimator Architecture

7.4.1 SoC Estimation

The above model and parameter identification methodology combine to give

an online estimator shown in figure 7.3 to estimate SoC.
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Figure 7.3: Architecture of the Online Parameter Estimator for SoC estima-
tion and parameter updating.

This is an open-loop estimator, in that the model parameters are not

updated on every sample, as would be done when using an adaptive state

estimator, discussed in chapter 2 and shown in figure 2.14. To estimate SoC,

the system initially downloads system level data from the WESS database.

This occurs every 10 seconds, and 10 seconds worth of data is downloaded.

This is because the time taken to download the data and run the model is

3s. This gives 7s to detect the sequence type for each sample and store it in

an array. Should a parameter identification sequence be detected, updating

of the parameters occurs. Depending upon the parameter being updated,
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this can take as long as 100s (mostly time to download the cell level data for

all cells).

At this point, running of the model pauses, but once the parameter updat-

ing has completed, the SoC estimation resumes, catching up to the present

time.

7.4.2 SoH and SoP estimation

To estimate SoH and SoP, simulations will be performed in parallel to the

SoC estimator. This will involve simulating CC cycles at different C-rates

(0.1C, 0.25C, 0.5C, 0.75C, 1C, 1.25C, 1.5C, 1.75C, 2C) in order to produce

a power de-rating curve as a metric for SoP. This can then be used by the

experimental system to ensure that cell voltage limits are not exceeded.

The CC capacity of the system at different C-rates provides the estimate

for SoH, comparing this to an initial simulation based on a pack built from

identical, new cells as a “best case” scenario. In this case, the sample cell

presented in chapter 6 is used, with a capacity of 22.10Ah, RDCIR,Ch,50%

(RDCIR during charge at 50% SoC) of 1.54mΩ & RDCIR,Dch,50% of 2.20mΩ.

A diagram of this system is shown in figure 7.4. This estimate is performed

once per hour - this will be at least once per cycle (considering the maximum

C-rate for the system as 2C).

7.4.3 Initialisation

Before the estimator can run, it first requires initialisation. For the model

parameters, RDCIR and C are assumed to be the same as the last time it

was run, or are found using the parameter identification procedure in 6.1 as

the initial parameters. For SoC and Temperature, the system waits until the

parameters are updated by detecting the appropriate cycle. Only once this

has happened does the simulation of the model begin.
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Figure 7.4: Architecture of the SoP and SoH estimation.
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7.5 CPE Evaluation

As an online estimator, the CPE is run continuously, and results are presented

from the CPE running during July 2021 on WESS. 100 hours of the CPE

running is shown in figure 7.5.

Figure 7.5: Output of the CPE compared to measured results from WESS
for 100 hours during July 2021.

From figure 7.5, cycles are chosen which are used to evaluate the CPE

in a range of cycle types - High DoD cycling; frequency service type cycling

and rest / very low current. A detection and updating of parameters is also

shown, and the performance of the SoH and SoP is shown. It can be seen

that generally, the CPE correlates well to the experimental data, except for

the cell voltage imbalance (difference between highest and lowest cell voltages

in the system). The general trends show some correlation, though there is

a notable difference. This will be discussed further in section 7.5.2 when

discussing power derating.
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7.5.1 SoC estimation

The SoC which the SoC estimator output will be presented in comparison to

the system BMS and an EKF estimate (detailed in [163]). Figure 7.6 shows

the output of the CPE during a high DoD cycle.

Figure 7.6: A high DoD cycle on WESS. (a) shows the SoC estimate from
the CPE compared to the BMS and EKF estimates. (b) shows the system
voltage estimate from the CPE compared to the measured value. (c) shows
the error for the estimate of SoC compared to the EKF and(d) shows the
error for the voltage estimate compared to the measured value.

It can be seen that the estimate for the system is a little higher than the

BMS or EKF estimate, particularly at a low SoC. The difference observed in

SoC is due to the way in which SoC is calculated. For the CPE, SoC is mea-

sured as the total charge remaining in all of the cells in the pack, compared

to the total capacity of all of the cells. With the system not being able to

utilise all energy in the cells, this means that it reads higher than the BMS,

which considers the pack as a single cell with a lower capacity. This should be

reflected in the SoP power derating curve, where the system will not be able
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to reach 100% or 0% SoC, where is has been noted that it is possible to reach

100% and 0% SoC accoridng to the system BMS. Considering the voltage of

the system compared to the expected voltage output by the model, it can be

seen that this matches more closely - particularly during discharge. During

charge however, the error in voltage is greater, though once the current re-

turns to rest, the estimated voltage then matches the measured voltage. As

this voltage error is observed under load, it is likely that the error is due to

an incorrect estimate of impedance in the model.

Considering frequency type cycles, it can be seen from figure 7.7 that the

SoC is again a higher estimate than the BMS and EKF as before, with a

larger error at low SoC. It does, however, track the same shape as the BMS

and EKF, and the voltage does not appear to drift, with system voltage

tracking well. A small drift in the voltage estimation is seen towards the end

of the DFR period, though this is less than 3V - an error of under 0.5%.
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Figure 7.7: WESS performing Dynamic FFR (Discharge only). (a) shows the
SoC estimate from the CPE compared to the BMS and EKF estimates. (b)
shows the system voltage estimate from the CPE compared to the measured
value. (c) shows the error for the estimate of SoC compared to the EKF
and(d) shows the error for the voltage estimate compared to the measured
value.

At rest, it can be seen in figure 7.8 that the SoC tracks well with the slow

discharge created by the parasitic load in the inverters. The very low current

is considered as rest, so the SoC is updated from OCV periodically every

20 minutes during this period, hence the “sawtooth” profile. This updating

of SoC from OCV suggests that the model does not perfectly match the

measurements at low currents, where the performance of the CPE is better

at a higher current. It is likely that this is due to current measurement error,

although further investigation would be required to conclusively verify this.
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Figure 7.8: WESS during an extended rest period. (a) shows the SoC esti-
mate from the CPE compared to the BMS and EKF estimates. (b) shows
the system voltage estimate from the CPE compared to the measured value.
(c) shows the error for the estimate of SoC compared to the EKF and(d)
shows the error for the voltage estimate compared to the measured value.

7.5.2 SoP & SoH Estimation

Based on the simulation run, the SoH did not notably change during the

month of July when the CPE was online. It estimated SoH at 99.24%. It is

likely that this would improve should the cells be better equalised.

For SOP, the system initially returned a power derating relationship

shown in figure 7.9.
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Figure 7.9: CPE estimate of SoP where the system has been resting for a
long period (7 hrs).

Testing this is challenging, as it is not feasible to test this on the live

system due to operating constraints. Instead an example of the power cur-

tailment to limit power to compensate for a high cell voltage imbalance (dis-

cussed in chapter 4) is shown in figure 7.10.
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Figure 7.10: Power derating used on WESS, showing the SoC estimate from
the CPE.

It can be seen that the power begins to reduce at 81% SoC. This is

significantly lower than the CPE SoP estimation. One main reason for this

is likely due to the cell balance state. It can be seen in figure 7.10 that the

cell voltage imbalance rapidly increases from around 0.4hrs. The estimate of

cell voltage imbalance from the CPE does not exhibit this same relationship.

It stands to reason that this could be a primary cause of error in the model.

With the cell voltage imbalance increasing much sooner in WESS than the

CPE, it suggests that the SoC imbalance between cells is greater than the

SoC imbalance used in the model. In order to choose parameters for the

model, the process in chapter 6 was used, which selects cells for the model

based on capacity. This does not consider the differences in SoC between

cells, so a cell with a particularly high or low SoC could be the limiting cell,

rather than the cell with the lowest capacity, as it is inherently assumed in

the model that the pack is well balanced.

During battery operation, the derating curve has been shown to change.
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At a higher temperature (after 2 cycles) the derating curve is shown to derate

at a higher SoC as shown in figure 7.11.

Figure 7.11: CPE estimate of SoP where the system has completed 2 cycles.

It can be seen that the SoP has improved, increasing the operating window

for the battery. This is expected, and is due to the reduced impedance of the

system at a higher temperature.

7.5.3 Parameter updating

During the month that the CPE was online, the parameters updated a num-

ber of times. As there was little to no degradation in this time period, the

parameters saw little change. This is a positive result, as it suggests the
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parameter updating procedures are highly repeatable. It also shows that a

suitable sequence for parameter updating can be selected by the CPE. As an

example, a charge sequence that was selected is shown in figure 7.12.

Figure 7.12: Charge sequence selected by the CPE to update parameters.

Table 7.5 shows the previous and new parameters for capacity in the

model following the parameter update (and an additional parameter update

from a separate discharge capacity sequence).

(a) (b)
Cell Model Capacity / Ah Cell Model Capacity / Ah

A 40.96 A 40.91
B 41.37 B 41.42
C 41.86 C 41.72
D 1579.37 D 1578.64
E 1593.56 E 1592.01
F 1606.69 F 1604.73
G 41.96 G 41.85
H 42.38 H 42.51
I 42.87 I 42.94

Table 7.5: Capacity for cell models in the CPE (a) before and (b) after
parameter updating (from sequence in figure 7.12).

172



7.6 Conclusions

The CPE presented in this chapter is a culmination of the work presented

throughout the thesis. It uses the knowledge learned from the investigation

in chapter 4, the model from 5 and the parameter identification procedure

from chapter 6 to produce and SoC, SoP and SoH estimator, which has been

shown to be effective. The SoC estimate was shown to be slightly different

to the BMS or EKF estimates for the battery, though voltage estimates for

the overall system were better. It was discussed how errors in the system

appear to originate from a lack of the model considering variation in SoC,

which should be further considered in future work.

As an open-loop estimator, there is potential to run the system as a closed

loop estimator using an adaptive algorithm. This would take some significant

work, as the time taken to download cell-level data is too slow, so a solution

would have to be devised. The CPE presents a solution to producing an

estimator which can run in real-time whilst considering the effects of cell

level behaviour.
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Chapter 8

Optimising energy storage

capability of grid connected

batteries

8.1 Introduction

In the previous chapters, the behaviour of large Lithium-ion batteries has

been widely explored. It is clear that variations in cell parameters such as

capacity and impedance, as well as temperature can have an impact on the

energy storage capability of a grid connected battery.

Several studies have considered optimising batteries by changing pack

topology - that is changing the number of series and parallel connections.

This is generally to maximise cell utilisation [115, 121], but also for other

parameters such as minimising size and mass [164] - particularly useful for

EVs, or mitigation against failure [165] - useful for many applications.

In this chapter, it will be considered how a grid connected battery can be

optimised using different balancing control methodology and changing cell

location, as means for optimising an existing battery, where the topology is

fixed. Each of the areas to be considered will be discussed, with the expected

optimisation proposed, then tested using the cell-model in chapter 5. Where

possible, these are considered experimentally, using the Yuasa LIM50E ESS
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and WESS. For the two optimisation methods, the aim of the optimisation is

to maximise the useable capacity at a fixed C-rate, which is strongly related

to cell-utilisation. In the model, all cells will be modelled - this is much slower

than the model proposed in chapter 5, as per table 5.8, but gives the greatest

confidence, where fast simulation time is less of an issue for an application

that is not real-time.

8.2 Cell Charge Equalisation

Chapter 4 explores how an imbalance in cell voltage reduces the capacity of

a battery. This imbalance results from a variation in capacity, impedance or

state of charge. Aside from physically changing out cells, the only variable

which could be controlled is SoC through a balancing mechanism. These

balancing mechanisms are discussed in section 2.2.1.4 and are a means to

change the SoC of individual cells in a series string to equalise the SoC.

Considering passive methods which are widely adopted, they all ulti-

mately change the SoC of individual cells which can be performed at different

stages of a battery cycle. These stages could refer to either the load (or lack

thereof) or the state of charge of the overall battery. It is hypothesised that

from a purely OCV perspective, the capacity of a pack will not change based

on which SoC the cell is balanced at. Figure 8.1 considers 2 cells, cell A with

100% of the expected capacity, and cell B with 96% of the expected capacity

and is plotted assuming that both cells have the expected capacity.
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Figure 8.1: The OCV vs SoC relationship for two cells, with a 4% difference
in capacity balanced at (a) 0% SoC and (b) 100% SoC.

Figure 8.1 shows that regardless of the balancing point, the usable capac-

ity is the same, as it is limited by the weakest (lowest capacity in this case)

cell. This is only the case for a cell at rest (as OCV is used), or if a CCCV

charge or discharge is performed as the cells will end at rest.

Under load, or CC cycles, the capacity will however be affected, depending

upon the balancing SoC. Figure 8.2 and 8.3 consider the same cell A and

cell B but under a load current of 1C (both charge and discharge). This

is calculated with the measured impedance to find the voltage drop using

equation 8.1 below.

Vload = VOCV + (Ibat ∗Rbat) (8.1)
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Figure 8.2: The theoretical voltage of 2 cells connected in series with a 4%
difference in capacity under a 1C load. The cells are balanced at 100% SoC.
The theoretical usable 1C capacity is shown to be 75.7% (relative to the
higher capacity cell)

Figure 8.3: The theoretical voltage of 2 cells connected in series with a 4%
difference in capacity under a 1C load. The cells are balanced at 0% SoC.
The theoretical usable 1C capacity is shown to be 74.9% (relative to the
higher capacity cell)

It can be seen from figures 8.2 and 8.3 that with these particular cells, it

would be beneficial to balance the cells at 0% SoC rather than 100% SoC as

this will give around 0.8% more useable SoC.
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The reality is that the difference in SoC between cells is unlikely to be

4%. Therefore, the SoC which is used for balancing is unlikely to make a

measurable difference to the CC capacity of a cell, according to the presented

figures.

8.2.0.1 Simulation and Experimental

In order to further explore the hypothesis that a pack will have an improved

capacity when cell equalisation is performed at different SoCs, a series of

simulations and experiments are performed. This will be based around the

Yuasa LIM50 ESS, but also considers the implications of other BESS’s. With

the Yuasa LIM50 ESS, the voltage range of the power supply reaches the full

100% to 0% range of SoC. However, with WESS, the lower voltage limit

cannot be reached. This is fairly inconsequential as at a lower SoC, there is

a high dV
dSoC

. However, it may have an impact on cell utilisation when cell

equalisation is performed at different SoCs.

Simulations and experiments will follow the same test procedure, where

the system is initially balanced using the BMS under constant voltage con-

ditions at different SoC’s until the difference in voltage between the highest

and lowest cell voltage is <2mV. The system is then charged and discharged

at 0.9C (42.75A), ending each charge and discharge sequence when any cell

reaches an upper or lower voltage limit (4.1V / 2.75V). Three cycles are per-

formed to ensure temperature has reached a steady state and is consistent

between tests. The full test procedure is detailed in table 8.1.
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Test phase # Sequence Limits End Condition
Cell Voltage
Equalisation

1 CV at fixed SoC
V = VSoC ,
Imax = 0.9C

Vmax -Vmin <2mV

CC Cycles
2 CC Charge

V = System max,
I = 0.9C

Vmax >= 4.1V

3 CC Discharge
V = System min,

I = 0.9C
Vmin <= 2.75V

4 Loop Loop to #2 3 Loops

Repeat 5 Loop Loop to #1
All SoC’s tested

(0% - 100%,
20% steps)

Table 8.1: Test procedure for comparing constant current capacity of a pack
when balanced at different SoC’s.

Performing this experiment and simulation using the Yuasa LIM50E ESS

produced the results shown in figure 8.4.

Figure 8.4: (a) Simulated and (b) Experimental 1C constant-current capacity
for a Yuasa LIM50E ESS when cell equalisation is performed at different
SoC’s

The simulation shows that when the system is balanced at a lower SoC,

the constant current capacity is higher. The experimental result generally

agrees with this, however there is a lack of consistency where there is an

increase in constant current capacity when the system is balanced at 100%

compared to 80% SoC.

This could be due to inaccuracies in the model, but is more likely due
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to temperature, where as mentioned in chapter 6, there is no temperature

control on the system and poor temperature measurement. As such, despite

conditions being controlled as best as possible (windows closed throughout

test regime, room HVAC set consistently, test performed at the same time

each day), there were some temperature discrepancies. Regardless, for the

test procedure in table 8.1, the simulation and experimental results agree

that performing cell equalisation at near 0% SoC gives the greatest constant

current capacity, likely due to the original hypothesis. An additional reason

for the observed increased capacity when cell equalisation is performed at a

low SoC is there due to being a greater dV
dSoC

at low SoC. This means that for

the 1mV precision in voltage measurement, the cells will be at a closer SoC

range when balanced to within 2mV at a low SoC compared to a high SoC.

Next, performing a test where the lower cell limits cannot be reached,

as with WESS, should show a different result, as the lower voltage limit

may not be reached. To consider this, the Yuasa ESS will be tested limiting

the system voltage to 537.6V (average 3.2V/cell). This value was chosen as

below this, the dV
dSoC

becomes much higher, so there is only a small loss in

SoC range. The new procedure for this is shown in table 8.2.

Test phase # Sequence Limits End Condition
Cell Voltage
Equalisation

1 CV at fixed SoC
V = VSoC ,
Imax = 0.9C

Vmax -Vmin <2mV

CC Cycles
2 CC Charge

V = System max,
I = 0.9C

Vmax >= 4.1V

3 CC Discharge
V = 537.6,
I = 0.9C

Vmin <= 2.75V
or Vavg <= 3.2V

4 Loop Loop to #2 3 Loops

Repeat 5 Loop Loop to #1
All SoC’s tested

(0% - 100%,
20% steps)

Table 8.2: Test procedure for comparing constant current capacity of a
pack when balanced at different SoC’s, limiting the system voltage to 537.6
(3.2V/cell average)

This procedure was again performed as a simulation and experimentally,

with results shown in figure 8.5
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Figure 8.5: (a)Simulated and (b) Experimental 1C constant-current capacity
for a Yuasa LIM50E ESS when cell equalisation is performed at different
SoC’s, where the ESS is limited to a minimum of 537.6V (3.2V/cell average)

It can be seen from the figure 8.5 (a) that with the new procedure, the

opposite trend is true, with around 1% difference in capacity. This is due to

the fact that the lower voltage limits are never reached by any cell, so the

cell voltage imbalance is irrelevant when ending a discharge cycle. However,

the top cell voltage limits are reached, so it is preferable to perform cell

equalisation at 100% SoC in order to maximise cell utilisation.

Considering the experimental result in figure 8.5 (b), the trend does not

quite agree. it is expected that at a lower SoC, where the dV
dSoC

is higher (see

figure 5.29 for OCV curve), the pack is better balanced due to the voltage

resolution, as in the previous example. For example, in the test procedure,

cell voltage equalisation was performed until there was 2mV difference be-

tween cell voltages. At 2.5% SoC, a difference of 2mV between cells, would

mean an SoC imbalance of 0.02%. At 60%, where the dV
dSoC

is lower - i.e.

the OCV-SoC curve is flatter, a 2mV difference in cell voltage would mean

a difference of 0.5% SoC. With <1% expected difference in capacity, it is

likely that the dV
dSoC

is the driving factor affecting the ESS capacity when

considering cell voltage imbalance.

181



8.2.0.2 Considering Variance

The results shown for the two experiments and simulations are useful, how-

ever results may be better or worse (i.e. more improvement in capacity is

possible) should the cells have a greater variance between them. It will be

considered through simulation how changing the capacity variance affects the

result.

To do this, initially the capacity and impedance distributions are found

(results for which are presented in chapter 6). Then the “randraw” function

in MATLAB is used to produce datasets which match the impedance dis-

tribution, but has a changing capacity variance in each dataset. The mean

capacity remains constant. To give a useful range, the variances used are: 0,

0.25, 0.5, 0.75, 1, 2, 3 - as a percentage of the mean. The simulations were

performed according to the procedure shown in tables 8.1 and 8.2. Results

for these are presented in figures 8.6 and 8.7.

Figure 8.6: Simulated 1C constant-current capacity for a Yuasa LIM50E ESS
when cell equalisation is performed at different SoC’s and with a different
capacity variance (σ)
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Figure 8.7: Simulated 1C constant-current capacity for a Yuasa LIM50E ESS
when cell equalisation is performed at different SoC’s and with a different
capacity variance (σ), where the ESS is limited to a minimum of 537.6V
(3.2V/cell average)

It can be seen that for a system that can reach the full cell voltage range, it

is beneficial to perform cell equalisation at a lower state-of-charge, with larger

improvements expected where there is a greater capacity variance. When a

system cannot reach the lower cell voltage range, there is an improvement

to be gained from performing cell equalisation at a high SoC. Again, this is

more pronounced where there is a greater variance.

In summary, regardless of the system (except for a system with no varia-

tions between cells), there is an improvement to be gained from the correct

selection of SoC to perform cell equalisation at. With the Yuasa LIM50 ESS,

it was found experimentally that when the full voltage range is useable, there

is 3% difference in capacity depending upon the balancing SoC. When the

bottom limit cannot be reached, the difference is smaller at 0.7%.

Many variables will vary the amount of percentage gain (between the

worst SoC to perform cell equalisation and the best) that is able to be

achieved. It is expected that there will be a difference depending upon C-
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rate, likely more potential gain at a higher C-rate. Additionally, alternate

chemistries may exhibit a different behaviour, due to different impedance /

SoC relationships during charge and discharge. The difference occurs under

load, so a different impedance will give a different voltage drop, and therefore

a different set of results.

8.3 Cell position

As well as optimising cells already in place by changing the balancing mech-

anism, a battery can be optimised in how it is arranged. It is noted in [121]

that there are (m x n)! ways of arranging cells in a pack (where m is the

number of series connections and n is the number of parallel connections).

As a factorial relationship, this is a vast number of ways which cells can be

arranged. As an example for WESS with 264 series and 40 parallel connec-

tions, there are approximately 1.4 ∗ 1037906 combinations. Additionally, the

number of series and parallel connections can be adjusted, further increasing

the number of configurations of cells, though this is beyond the scope of this

work. This section will consider whether there is a change in available energy

depending upon the physical location of each cell in the circuit

According to the assumptions made throughout literature and through-

out this thesis in the models used, current is constant between cells in a

series string. This means that for a pack consisting of just one series string,

or parallel groups of cells connected in series, the position of cells or cell

groups in the circuit will not make a difference to the system capacity, as the

cells experience the same charge throughput regardless of position, purely

considering the electrical behaviour.

Conversely, for systems with series strings connected in parallel, arranging

the cells in different strings should give differing capacities. This is because

the voltages of each string will be equal, due to the fact that they are con-

nected in parallel and as such, a string with a lower capacity should have a

lower current throughput, for voltage balance to be maintained.

This is demonstrated in figure 8.8, where two cells are simulated being

connected in parallel. To exaggerate the point, the cells have very different
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capacities (30Ah and 50Ah) and are modelled as Yuasa LIM50 cells with

changed capacities. An 80A (1C average) cycle shows the voltage and current

profiles, where it is clear that there is a lower current throughput for the

lower capacity cell. This agrees with results from a similar experimental test

presented in [72], with a simulation and experiment of a new and aged cell

connected in parallel showing the same trend.

Figure 8.8: Simulation of two cells with differing capacities, demonstrating
the lower current throughput of a lower capacity cell when connected in
parallel.

Given that the terminal voltage of each string balances due to the nature

of being connected in parallel and demonstrated in figure 8.8, an optimisation

involves having cells in each string as well matched as possible. Matching

would involve grouping the most similar cells together. It has been shown in

literature in chapter 2 and experimentally in chapter 5, that the differences

between impedance and capacity are not related. Therefore, the most similar

cells can be most similar in terms of capacity, impedance, or a separate

measure for ranking the cell could be calculated based on both the impedance

and capacity to determine the most similar cells. One example of this would

be the 1C, CC capacity of the cell, which is dependant on both capacity and

impedance.
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In order to determine how a system can be optimised by matching strings,

simulations will be performed using the experimental cell data from WESS

for the six strings discussed in chapter 6, and arranging the cells in the six

strings measured to maximise the overall available energy for these six strings.

As the cells are fixed in modules of 12 cells, the cells can only be arranged

as part of their module. Therefore, each module is ranked. Figure 8.9 shows

the rank of each module, where in this example the rank is calculated as the

average capacity of the cells in the module. They are shown in the physical

position in each string.

Figure 8.9: Diagram depicting the rank of each module in WESS, divided
into strings. The rank shown is the average capacity of the cells in each
module, in the measured positions

Once the cells are ranked, it is proposed that the cells are arranged into

strings according to their rank. With the cell positions chosen, the system is

simulated, with every cell being modelled, as per the cell model in chapter 6,

shown in figure 6.1. Due to current operational and safety constraints, this

cannot be performed experimentally, however, the simulation should provide

a strong indication of the expected experimental results. Several parameters

will be compared for ranking the modules which will be simulated. These

are:

• Capacity

• RDCIR at 50% SoC Charge

• RDCIR at 50% SoC Discharge

• 1C CC Capacity
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The 1C CC capacity will be estimated through a simulation of each cell,

using the experimentally found parameters. As mentioned, this aims to be

a parameter which is dependant on both capacity and impedance. For each

parameter, 3 different ranking methods can be found:

1. Every Cell is ranked

2. Modules are ranked by worst ranked cell in module

3. Modules are ranked by average of cells in module

Using the ranking parameters and methods, two cell arrangement meth-

ods are proposed - matching similarly ranked cells together, and arranging

by temperature. For each of the two arrangements, a number of simulations

are performed, using each ranking parameter with each ranking method. For

arranging modules by temperature, additional arrangements are used con-

sidering different measurements of temperature.

8.3.1 Matching strings

The first proposed method for arranging modules or cells involves arranging

the pack with the most similarly ranked modules or cells in the same string.

Using the ranking in figure 8.9 as an example, modules can be sorted by

rank from lowest to highest and then divided into strings. This is depicted

in figure 8.10.

Figure 8.10: Diagram depicting the rank of each module in WESS, divided
into strings, sorted by rank to best match the cells in each string. The rank
shown is the average capacity of the cells in each module.

Applying the different ranking methods with the different ranking pa-

rameters and running simulations of 1C, constant-current cycles, produces
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the results comparing the achieved 1C capacity using different arrangements.

Additionally, simulations were performed where the cells were randomly ar-

ranged and modules were randomly arranged. These results are shown in

figure 8.11, where results are shown as a comparison to a simulation per-

formed with the modules in their existing positions.

Figure 8.11: Results of simulations comparing different ranking methods and
ranking parameters when sorting cells into strings matched by their rank.

It can be seen from using this arrangement method that applying the

ranking parameter of capacity and 1C CC capacity, and allowing any cell to

take any position, an improvement of around 1% can be achieved, compared

to randomly distributing the cells. Compared to the existing arrangement,

this is only 0.2%.

Unfortunately, locating cells in any position is not practically achievable,

as cells are welded in place in the modules. Instead, only the same 1C CC

capacity can be achieved comparing to the existing arrangement when only

arranging modules. This is achieved through taking the average capacity of

the cells in each module to rank the modules, and sorting as per figure 8.10.

It is noted that during commissioning of the battery system, the modules
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were arranged over a series of tests spanning several weeks, where the com-

missioning team tested modules individually before arranging the modules

into the system. It is expected that the method finally used for arranging

the modules is by sorting modules with similar capacity into the same string,

as performed in the best simulation. This is apparent from figure 8.9.

8.3.2 Considering Temperature

It is clear that there is little to be gained over what manufacturers are al-

ready doing in terms of arranging cells using the string matching method,

yet temperature is not considered. In WESS, strings are arranged vertically

inside a cabin with an HVAC system. Despite the HVAC system, certain

cells and modules tend to be warmer throughout a cycle. This could either

be due to the fact that the warmer air in the cabin rises, so the modules

physically located vertically higher are warmer. Or, there is worse airflow at

the top, increasing the temperature. The distribution of temperature in the

six strings measured is shown in figure 8.12, where the temperature given is

the average temperature in each module across a 1C, CC cycle.

Figure 8.12: Difference in temperature of modules in the six strings measured
during a 1C CC cycle. The warmest module is 28.9°C and the coolest module
is 25.0 °C. Note that the diagram depicts the physical vertical layout of each
string.
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The work performed in chapter 6 showed that the capacity for a cell

increased and impedance for a cell decreased (for the WESS cells) as cell

temperature increased. Therefore, it is proposed that performance can be

improved by locating the worst ranked cells in the warmest physical positions.

It is hoped that this will improve the overall cell utilisation and therefore the

capacity of the pack.

To do this, as well as each cell being ranked, each cell or module position

is ranked. Each module position is either ranked by the maximum or aver-

age temperature of that module, where the temperature used is the average

temperature during a 1C CC Cycle. The lowest ranked cell or module is then

located in the highest rank cell or module position and so on. For each of the

temperature rankings, the same tests are performed as those done previously

in section 8.3.1.

Results for arranging any cell into any position based on the cell temper-

ature are shown in figure 8.13, results for arranging modules into positions

based on average module temperature is shown in figure 8.14 and results for

arranging modules into positions based on maximum module temperature is

shown in figure 8.15.

Figure 8.13: Results of simulations comparing different ranking methods
when sorting weakest ranked cells into the warmest cell positions.
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Figure 8.14: Results of simulations comparing different ranking methods
when sorting modules into different positions based on the average temper-
ature of cells in each module position.

Figure 8.15: Results of simulations comparing different ranking methods
when sorting modules into different positions based on the maximum tem-
perature of a cell in each module position.

These results show an improvement over sorting similar modules into

strings and an improvement over the existing arrangement of the modules

- up to 0.6% when rearranging modules. The best method here appears to

be ranking by the average 1C CC capacity of the cells within a module and

module positions ranked by maximum temperature.

8.3.2.1 Sensitivity Analysis

The cells within WESS are all relatively similar, with a variance in capacity

of 0.6% of the mean, and a variance in impedance of 4.3% of the mean.

This is a value which is unique to this system, and so to consider different

systems, datasets with different variances will be considered. Considering an
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impedance variance of 0-50% and a capacity variance of 0-5%, 81 datasets

were produced. As the best ranking, the 1C CC capacity is used, where each

position is ranked by the maximum temperature in each module.

Two simulations for each dataset were performed - random positions for

each module and the optimised positions based on the temperature. This

was repeated five times and the average was taken. The results in figure

8.16 shows the improvement between the random module location and the

optimised location based on the temperature. Figure 8.17 shows a linear fit

of the data, giving an impression of the general trend.

Figure 8.16: Results of simulations showing the capacity change between
distributing modules randomly and ranking modules by 1C CC capacity and
locating the highest ranked module in the warmest position.
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Figure 8.17: Linear fit of the results of simulations, showing the capacity
change between distributing modules randomly and ranking modules by 1C
CC capacity and locating the highest ranked module in the warmest position.

It can be seen from the figures that most improvements can be gained as

the capacity variance increases. On the other hand, it is clear from the linear

fit that little improvement is possible with an increased impedance variance.

This is likely due to the impedance being very small compared to the capacity

of these cells, and so the 1C CC Capacity is much more dependant on the

overall capacity compared with the impedance.

Overall, this simulation work shows improvements of up to 5% with this

cell type by optimising the cell arrangement when there is a large capacity

variance. While there is currently a small capacity variance, it is likely that

this will increase with degradation as discussed in chapter 2, so may become

more relevant as the system ages. Practically, for WESS, according to the

six strings measured, an improvement of around 0.5% could potentially be

achieved through the best proposed method over the current arrangement.

Naturally, the optimisation method involving temperature relies on there

being a consistent variation in temperature that is dependant on the physical
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position. If this were not the case then this optimisation would not work.

Concerning WESS, the assumption has been made that the temperature

variation is consistent and dependant on the physical position of the module

as opposed to factors intrinsic to the module. Further work is required to

verify this, and ensure that the same trend is observed under different cycle

types.

8.4 Discussion

The two optimisations discussed in this chapter show means for improving

the performance of a battery system. It has been shown in both optimisations

that greater capacity variance lends itself to a potential for greater improve-

ment. Work in [15] suggests that as cells degrade, the variance increases -

likely due to cells degrading at different rates. This will in turn lead to a

greater variance. Therefore the optimisations are more relevant for second

life systems. Additionally, due to uneven degradation, optimisation of cell

arrangement should be performed at various points throughout a system’s

life, as the optimisation may not hold after some degradation.

Additionally, the optimisations proposed do not consider degradation. It

is understood that degradation occurs faster at higher temperatures [166,

167]. Therefore, by positioning ‘weak’ cells in warmer positions, increased

degradation may be seen in those cells, potentially reducing the system life.

This would need to be considered when implementing the optimisation in a

system.

Some of the proposed methods may be unsuitable when considering prac-

tical operation. For example, performing balancing at a low SoC can be

risky. This is because there is little remaining capacity to provide a buffer

for system self-discharge. Further, many applications require a battery to

spend most of the time away from 0% SoC. In these cases, an algorithm for

cell balancing would have to consider these limitations when implementing

balancing control.
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8.5 Conclusion

In conclusion, some improvements can be achieved by using the optimisations

presented in this chapter. It has been shown that the amount of improve-

ment possible is highly system dependant. For the Yuasa ESS, around 3%

improvement can be achieved by choosing the correct SoC to balance at com-

pared to the worst. Limiting the lower voltage of the overall pack, a smaller

improvement is expected of around 1%. The results shown weren’t perfect

however, likely due to the limitation in the voltage resolution, meaning the

cells were better equalised where there was a high dV
dSoC

at lower SoCs.

It was considered how the position of cells and modules can influence the

overall power capabilities of a battery, using WESS as a case study. Rear-

ranging modules by grouping similar modules together by capacity resulted

in a 0.8% improvement over arranging modules randomly, but the same ca-

pacity as with the existing module positions. This is due to the commission-

ing process arranging modules in this way. However, putting the “weakest”

modules in the warmest positions would result in a notable instantaneous

improvement - a 1.4% improvement over randomly arranging modules and

0.6% improvement over the commissioned arrangement.
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Chapter 9

Conclusions & Further Work

9.1 Chapter 4: Investigation into Cell Volt-

age Imbalance in Grid-Connected Batter-

ies

This chapter presents system level data from an operational 2MW, 1MWh

grid-connected battery. This includes a reading for cell voltage imbalance.

Results for two different cycle types of shown - high DoD cycling and large

power changes, where there is a large increase in cell voltage imbalance.

These observations were reported using two modules from WESS in series,

giving cell level data for a 24s pack. A similar trend was observed, and cell

voltage imbalance during high DoD cycling was accounted for. The same

observations were not seen in the lab tests as with the large system during

large power changes. This is as there is an error in sampling the cell voltages

in the system, causing an erroneous increase in the cell voltage imbalance.

This was repeated with modules of a different chemistry, where similar

cell voltage imbalance trends were observed. For both chemistries, it was

noteworthy that the same cell reached both maximum and minimum cell

voltages. This meant that the pack capacity was limited by that cell.

This work shows that relying on the nominal capacity of the battery and

current SoC is not enough, as early termination of a cycle due to cell voltage
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limits being reached also limits the available energy. This could be estimated

through empirical modelling based on the system power and energy. Alter-

natively, a more mechanistic model which considers individual cell behaviour

could be used, which is the method used in subsequent chapters.

Further work into this could involve repeating the experiment with mod-

ules connected in parallel, in order to determine whether a single cell still

limits the pack in this case. Additionally, analysis of cell level data from a

large system such as WESS could give further insight.

9.2 Chapter 5: An fast variance based Grid

Scale Battery Model

This chapter builds on chapter 4 by using the principle of a single cell limiting

the capacity of a pack. It proposes a novel model for a large battery which

models any size battery with 9 cell-models.

The model was verified using a 3s3p pack, where each cell-model repre-

sented one cell. This proved the model to be a good representation of the

pack. From this, it was discussed how the model should be populated from a

sample of cells. It was shown that the capacity and impedance for a sample

of cells both fit a distribution, and this can be used to produce a new sam-

ple. This is particularly useful if only a small number of cells from a pack

are available for test. A process was devised to divide the cells into the nine

cell- models, to represent the pack.

This was then tested and experimentally verified under controlled con-

ditions using a 12s4p pack. It was shown that the 9 cell-model performed

equally to modelling all cells yet performed a simulation approximately 20

times quicker. The results using cell parameters generated from a distribu-

tion produced comparable results returning a slightly lower capacity (0.5-1%)

than the experimental pack

The cell model used here is a simple Rint model and therefore lacks the

accuracy of ECMs with several RC branches. Future work will involve repro-

ducing the model with a better cell model to observe whether this improves
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the performance.

9.3 Chapter 6: In-situ Parameter Identifica-

tion of Cells in Grid Connected batteries.

Chapter 6 shows the methods used to experimentally identify parameters for

cells used in literature. These are used to propose a procedure for identifying

parameters for all cells in a large battery whilst the cells remain in the pack.

This is initially tested with a 168s pack, comparing the results with a 12s

module removed from the pack, and a single cell removed from that module.

The 168s pack and 12s module were tested using the same power supply and

had similar results. The cell showed a better performance likely due to the

different testing hardware being more accurate.

The procedure was then tested using 6 strings from WESS, which showed

expected results when compensating for temperature. The test cell was a

new sample cell provided by the manufacturer and showed a higher capacity

due to WESS being slightly degraded over its lifetime.

These results showed the viability of the method and demonstrated that

the parameters found are ideal for battery modelling. This was shown with

the 168s pack, where inaccuracies of the test system skewed results. This

skew of results is then “baked in” to the model parameters, and as such the

model will better track the observed behaviour.

Building upon this in the future would include identifying parameters

for ECMs with multiple RC elements. Further, an adaptive method (i.e.

Kalman filter) could be explored to give cell parameters without specific test

cycles.
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9.4 Chapter 7: Online parameter estimation

for grid connected batteries

The penultimate chapter ties together chapters 4 through to 6 by taking

the knowledge learned to create a new open-loop estimator. This was used

to demonstrate the feasibility of using cell-level data to inform a model for

real-time state estimation of large batteries.

A simple thermal model was added to the system which improved the

ability of the model to determine whether a particular cycle is feasible. A

more complex model could be used to further improve this, although it would

likely require increased sensing on the system. A method for detecting cycles

to automatically perform the in-situ parameter identification from chapter 6

was demonstrated.

The estimates shown by the CPE were somewhat different to what is

estimated by the BMS, both for SoC and SoP. These are expected, as the

way in which SoC and SoP is calculated is different. Ultimately, so long as

the SoP is correct for the estimated SoC, this is sufficient, as it indicates the

operating window for the battery relative to the CPE SoC.

This has scope for development - future work involves implementing im-

proved models (with multiple RC elements) and using an adaptive estimator

to update parameters in real time. It is unknown if this is practically feasible,

due to the data requirements of cell level data, however a solution to this is

worth exploring.

The work highlights some need for investigation into the power curtail-

ment of WESS, where the cell voltage imbalance is much higher than the

CPE estimate. This suggests that the system is fairly unbalanced, but also

that this imbalance is not reflected by the model. Future work should re-

consider how the cell model is populated, or consider an adaption of the

model to better represent a large battery.
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9.5 Chapter 8: Optimising energy storage ca-

pability of grid connected batteries

This chapter considering optimising large batteries explored two methods

for optimising large batteries without changing the topology of the system

(changing the numbers of series and parallel connections).

Firstly, using the Yuasa ESS as an example, a 3% difference in CC capac-

ity could be expected between the best and worst options, depending upon

the system operating parameters. It was found that practically, a large dif-

ference was observed from performing cell equalisation at a low SoC, due to

the high dV
dSoC

at that point. This essentially gave the best SoC resolution in

terms of bringing all cells to the same SoC.

Secondly, using WESS as an example, it was shown that a good choice

of module position based on grouping modules of a similar capacity could

give and improvement of 0.8% compared to randomly distributed modules.

However, using this method, no improvements were possible over the existing

configuration thanks to the manufacturer commissioning process. Instead,

by arranging lower capacity modules into the warmer areas of the battery,

an improvement of up to 0.6 % could be achieved compared to the exist-

ing configuration according to simulation and is shown for the first time.

This is an improvement of 1.4% compared to randomly positioning mod-

ules. Additionally, using the in-situ parameter identification technique with

this optimisation can mean a faster commissioning process for a new system,

avoiding the need to test cells and modules individually.

Moving forward with this work, next steps will involve performing experi-

ments with WESS through rearranging modules. This will involve determin-

ing safe procedures to safely attempt to swap module positions to verify this

simulated work. Furthermore, more simulation work could be performed to

consider the degradation of the system when performing the proposed opti-

misation.
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proving optimal control of grid-connected lithium-ion batteries through

more accurate battery and degradation modelling,” Journal of Power

Sources, vol. 379, no. September 2017, pp. 91–102, 2018.

[43] D. D. Domenico, A. Stefanopoulou, and G. Fiengo, “Lithium-Ion

Battery State of Charge ( SOC ) and Critical Surface Charge (

CSC ) Estimation using an Electrochemical Model-driven Extended

Kalman Filter,” Journal of Dynamic Systems, Measurement, and

Control, vol. 132, no. 6, p. 061302, 2010. [Online]. Available:

https://doi.org/10.1115/1.4002475

[44] M. Dubarry, V. Svoboda, R. Hwu, and B. Y. Liaw, “Capacity loss in

rechargeable lithium cells during cycle life testing: The importance of

determining state-of-charge,” Journal of Power Sources, vol. 174, no. 2,

pp. 1121–1125, 2007.

[45] G. Han, J. Yan, Z. Guo, D. Greenwood, J. Marco, and Y. Yu, “A review

on various optical fibre sensing methods for batteries,” Renewable and

Sustainable Energy Reviews, vol. 150, no. July, p. 111514, 2021.

[46] J.-j. Chang, X.-f. Zeng, and T.-l. Wan, “Real-time measurement of

lithium-ion batteries ’ state-of-charge based on air-coupled ultrasound,”

AIP Advances, vol. 085116, pp. 1–6, 2019.

206

https://doi.org/10.1115/1.4002475


[47] K. S. Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh, “Enhanced coulomb

counting method for estimating state-of-charge and state-of-health of

lithium-ion batteries,” Applied Energy, vol. 86, no. 9, pp. 1506–1511,

2009.

[48] S. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge

estimation,” in Proceedings of the 2001 American Control Conference.

(Cat. No.01CH37148), vol. 2, 2001, pp. 1644–1649 vol.2.

[49] X. Tang, X. Mao, J. Lin, and B. Koch, “Li-ion battery parameter

estimation for state of charge,” in Proceedings of the 2011 American

Control Conference, 2011, pp. 941–946.

[50] X. Lin, A. Stefanopoulou, P. Laskowsky, J. Freudenberg, Y. Li, and

R. D. Anderson, “State of charge estimation error due to parameter

mismatch in a generalized explicit lithium ion battery model,” ASME

2011 Dynamic Systems and Control Conference and Bath/ASME Sym-

posium on Fluid Power and Motion Control, DSCC 2011, vol. 1, pp.

393–400, 2011.

[51] P. P. Mishra, M. Garg, S. Mendoza, J. Liu, C. D. Rahn, and H. K.

Fathy, “How Does Model Reduction Affect Lithium-Ion Battery State

of Charge Estimation Errors? Theory and Experiments,” Journal of

The Electrochemical Society, vol. 164, no. 2, pp. A237–A251, 2017.

[52] C. Jiang, A. Taylor, C. Duan, and K. Bai, “Extended Kalman Fil-

ter based battery state of charge(SOC) estimation for electric vehi-

cles,” in 2013 IEEE Transportation Electrification Conference and Expo

(ITEC), 2013, pp. 1–5.

[53] S. J. Moura, N. A. Chaturvedi, and M. Krst́ı, “Adaptive PDE Observer

for Battery SOC/SOH Estimation via an Electrochemical Model,”

Journal of Dynamic Systems, Measurement, and Control, vol. 136,

no. 1, pp. 1–14, 2013.

[54] W.-Y. Chang, “The State of Charge Estimating Methods for Battery:

A Review,” ISRN Applied Mathematics, pp. 1–7, 2013.

207



[55] Z. Guo, X. Qiu, G. Hou, B. Y. Liaw, and C. Zhang, “State of health

estimation for lithium ion batteries based on charging curves,” Journal

of Power Sources, vol. 249, pp. 457–462, 2014.

[56] E. Meissner and G. Richter, “Battery Monitoring and Electrical Energy

Management precondition for future vehicle electric power systems,”

Journal of Power Sources, vol. 116, no. 1-2, pp. 79–98, 2003.

[57] P. J. van Bree, A. Veltman, W. H. Hendrix, and P. P. van den Bosch,

“Prediction of battery behavior subject to high-rate partial state of

charge,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2,

pp. 588–595, 2009.

[58] G. L. Plett, “High-performance battery-pack power estimation using

a dynamic cell model,” IEEE Transactions on Vehicular Technology,

vol. 53, no. 5, pp. 1586–1593, 2004.

[59] S. Nejad, D. T. Gladwin, and D. A. Stone, “Sensitivity of lumped pa-

rameter battery models to constituent parallel-RC element parameteri-

sation error,” IECON Proceedings (Industrial Electronics Conference),

pp. 5660–5665, 2014.

[60] L. W. Juang, P. J. Kollmeyer, T. M. Jahns, and R. D. Lorenz, “Imple-

mentation of online battery state-of-power and state-of-function esti-

mation in electric vehicle applications,” 2012 IEEE Energy Conversion

Congress and Exposition, ECCE 2012, pp. 1819–1826, 2012.

[61] B. Lunz, Z. Yan, J. B. Gerschler, and D. U. Sauer, “Influence of plug-

in hybrid electric vehicle charging strategies on charging and battery

degradation costs,” Energy Policy, vol. 46, pp. 511–519, 2012.

[62] Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, and

Z. Chen, “Batteries and fuel cells for emerging electric vehicle markets,”

Nature Energy, vol. 3, no. 4, pp. 279–289, 2018.

[63] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K.-C. Möller, J. O. Be-
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