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Abstract

This thesis considers weighted simultaneous Diophantine approximation in a variety of settings, including

approximation over real manifolds, p-adic manifolds and p-adic coordinate hyperplanes. In each of these

lower bounds on the Hausdorff dimension are obtained via appropriate Mass Transference Principle

theorems. Weighted simultaneous approximation sets are often described by lim sup sets of rectangles, so

Mass Transference Principles on rectangles are favoured. Examples of these include the Mass Transference

Principle from balls to rectangles [112], and the Mass Transference Principle from rectangles to rectangles

[111].

Chapters 1 and 2 provide an introduction to real and p-adic Diophantine approximation. Chapter 3

introduces the Mass Transference Principle, given by Beresnevich and Velani [28], and recent variations.

These Theorems are vital in the proofs of results in later chapters. In Chapter 4, Diophantine approxima-

tion over manifolds is introduced and a survey of recent results is given. It the latter part of the chapter

a Dirichlet style Theorem for τ -approximable points over manifolds is proven, which generalises a similar

result in [22]. Such result allows us to apply a Mass Transference Principle result and obtain a lower

bound on the Hausdorff dimension of weighted τ -approximable points over manifolds. In Chapter 5, a

variety of results in p-adic weighted Diophantine approximation are proven. Furthermore, a similar result

to that established in Chapter 4 is proven for p-adic approximable points over manifolds. In Chapter 6

the Hausdorff dimension of p-adic approximable points over coordinate hyperplanes is proven. The result

relies on a count for the number rational approximations to a p-adic integer, which is proven using p-adic

approximation lattices. The thesis is concluded by providing a brief survey on S-arithmetic Diophantine

approximation. This is followed by a discussion on how results found throughout the thesis could be

replicated in the S-arithmetic setting.
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Chapter 1

Introduction

1.1 Classical Diophantine Approximation

Diophantine approximation is essentially the study of how well real numbers can be approximated by

rational points. Dirichlet [55] proved that for any real number x ∈ R and natural number Q ∈ N there

exists integers p, q ∈ Z such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

qQ
,

where 1 ≤ q ≤ Q. This result leads to the corollary that for any x ∈ R there are infinitely many pairs

(p, q) ∈ Z× N such that ∣∣∣∣x− p

q

∣∣∣∣ < q−2. (1.1)

The question then arises as to whether the approximation on the right of (1.1) is best possible. For

example, would the theorem hold when approximated by Cq−2 for some arbitrary constant C > 0? The

answer is no. As proven by Hurwitz, for C < 1/
√

5, there exist real numbers such that there are only

finitely many integer pairs (p, q) solving (1.1) with the right hand side replaced with Cq−2 [71].

At this point we can classify numbers x ∈ R into two different groups, the set of badly approximable

numbers, Bad, and the set of well approximable numbers. If x ∈ Bad then there exists a real number

c > 0 such that for all p
q ∈ Q ∣∣∣∣x− p

q

∣∣∣∣ ≥ cq−2.
If x 6∈ Bad then x is well approximable. Rather than improving the constant c one can consider improving

the exponent of approximation on q. This set is called the set of very well approximable numbers, VWA.

Concisely, if x has infinitely many rational points p
q solving∣∣∣∣x− p

q

∣∣∣∣ < q−2−ε,
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for some ε > 0, then x is said to be very well approximable. By the result of Hurwitz we know that

Bad is non-empty, for example it contains 1+
√
5

2 . Further, a result from the theory of continued fractions

states that for any irrational x with bounded partial coefficients then x ∈ Bad, thus Bad is at least

countably infinite. Similar results appear for the set VWA, as an easy example Q ⊆ VWA. In the

following section we will find that both Bad and VWA are in fact of Lebesgue measure zero.

Motivated by (1.1) we introduce the set of ψ-approximable points, whereby we replace a q−1 on the

right hand side of inequality (1.1) by a general approximating function ψ : N → R+ to give us the

inequality ∣∣∣∣x− p

q

∣∣∣∣ < ψ(q)

q
. (1.2)

Define the set of ψ-approximable numbers W(ψ) as follows. Denote by Aq(ψ) the set

Aq(ψ) :=

q⋃
p=1

B

(
p

q
,
ψ(q)

q

)
∩ I,

where I = [0, 1] and for x ∈ R and y ∈ R+ B(x, y) denotes the open ball on R with centre x and radius

y. Then define the set of ψ-approximable points as

W(ψ) := lim sup
q→∞

Aq(ψ),

that is, the set of real numbers in I that lie in infinitely many balls with rational centres p
q ∈ I and radius

ψ(q)
q . Remark here that we only consider the real numbers contained within the unit interval, however,

the setup naturally extends to the real line. The subset I is chosen here because W(Ψ) is translation

invariant by integers, for example if x ∈ I is ψ-approximable then naturally x+n is also ψ-approximable

for any integer n ∈ Z.

In some cases we wish to simplify the set of approximation functions by only considering those of the

form ψ(q) = q−τ for τ ∈ R+. In this case we will use the notation W(τ) = W(ψ) and refer to W(τ) as

the set τ -approximable points.

1.1.1 Theorems of Khintchine and Duffin-Schaeffer

To understand how well general points in R can be approximated by some approximation function ψ we

appeal to results of metric Diophantine approximation. By Dirichlet’s theorem when ψ(q) = q−1 we have

that W(ψ) = I. In the previous section we considered whether the approximation on the right hand side

of (1.1) could be improved by a constant. A second natural question to ask is whether the exponent of

−2 from (1.1) can be improved. For almost all x ∈ I the answer is no, as proven by Khintchine [77]. Let

λ denote Lebesgue measure, then Khintchine’s Theorem reads as follows.
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Theorem 1.1.1. Let ψ : N→ R+ be a monotonic decreasing approximation function. Then

λ(W(ψ)) =

0 if
∑∞

q=1 ψ(q) <∞,

1 if
∑∞

q=1 ψ(q) =∞.

Probabilistically, this gives us a surprising result. A real number x ∈ I is contained in the setW(ψ) with

either probability 1 or probability 0, depending on the approximation function. This result is encompassed

by Cassels zero-one law [48], which states that λ(W(ψ)) ∈ {0, 1} for all approximation functions ψ. The

zero-one law has many equivalent results in a variety of different setting, see [31] for examples of various

zero-one laws and their proofs. What Theorem 1.1.1 shows in particular is that Bad and VWA are both

of Lebesgue measure zero. The fact that λ(VWA) = 0 follows immediately by the convergence case, and

the fact that λ(Bad) = 0 follows from the observation that Bad is contained in the compliment of W(ψ)

for ψ(q) = (q log q)−1 which has full measure by the divergence case of Theorem 1.1.1.

Observe that Theorem 1.1.1 is only applicable to monotonic decreasing approximation functions. In

order to generalise to all approximation functions we need to slightly alter the set W(ψ). In particular

we wish to only consider points that can be approximated by infinitely many reduced fractions. The

following setup construct such a lim sup set. Let

A′q(ψ) =
⋃

0≤p≤q
gcd(p,q)=1

B

(
p

q
,
ψ(q)

q

)
∩ I,

then we define W ′(ψ) as

W ′(ψ) = lim sup
q→∞

A′q(ψ).

Clearly W ′(ψ) ⊂ W(ψ). In 1941 Duffin-Schaeffer [56] conjectured a Khintchine style theorem for W ′(ψ)

for ψ a non-monotonic approximation function, and further gave an explicit counterexample as to why the

setup W(ψ) was insufficient to deal with non-monotonic functions. Gallagher [63] proved a zero-one law

for this set, that is λ(W ′(ψ)) ∈ {0, 1}, however the complete conjecture remained unsolved for decades.

Recently the conjecture was proven by Maynard and Koukoulopoulos [81].

Theorem 1.1.2. For ψ : N→ R+, if
∞∑
q=1

ϕ(q)

q
ψ(q) =∞,

where ϕ is the Euler phi function, then λ(W ′(ψ)) = 1, and if the above sum converges then λ(W ′(ψ)) = 0.

In a similar manner to Khintchine’s theorem the convergence case follows by the Borel-Cantelli Lemma.

The divergent case is considerably harder, so much so that the proof involved a combination of many

areas of mathematics including Graph theory, analysis, and arithmetic combinatorics. Theorem 1.1.2 is

a fundamental result in metric number theory. Due to the recent proof of this conjecture many other
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theorems that hinged on the result of the Duffin-Schaeffer conjecture now also follow. In most of the

following sections we will find a Duffin-Schaeffer style result that follows from Theorem 1.1.2.

1.1.2 The Borel-Cantelli Lemmas

For many of the Lebesgue measure statements above a key ingredient in the proofs are the Borel-Cantelli

Lemmas from probability theory. Let (Ω,A, µ) be a measure space, with measure µ(Ω) <∞.

Lemma 1.1.3 (Borel-Cantelli Convergence [42] [47]). Let {Ei} be a family of measurable subsets in Ω

and suppose that
∞∑
i=1

µ(Ei) <∞.

Then,

µ

(
lim sup
i→∞

Ei

)
= 0.

A straightforward application of Lemma 1.1.3 provides the convergence case of Theorems 1.1.1-1.1.2

above. The convergent case is the easy part of most Khintchine-style theorems due to the above lemma.

The following result, proven by Kochen and Stone [80], compliments Lemma 1.1.3.

Lemma 1.1.4 (Borel-Cantelli Divergence [61]). Let {Ei} be a family of measurable subsets in Ω. Suppose

that
∞∑
i=1

µ(Ei) =∞.

and

lim sup
n→∞

(
∑n

i=1 µ(Ei))
2∑n

i,j=1 µ(Ei ∩ Ej)
≥ C (1.3)

for some C > 0. Then µ (lim supi→∞Ei) ≥ C.

We remark that previous iterations of Lemma 1.1.4 had been proven prior to the result of Kochen and

Stone, including versions by Erdos & Renyi [58] and Lamperti [83] to name a few. For a brief history on

the developments of Lemma 1.1.4 see [27].

Condition (1.3) is referred to as quasi-independence on average. While showing a set satisfies (1.3) is

not always straightforward, there are several results which make it more applicable. Firstly, if the family

of measurable subsets {Mi} are pairwise independent in the probabilistic sense, that is

µ(Ei ∩ Ej) = µ(Ei)µ(Ej) ∀i 6= j,

then if
∑∞

i=1 µ(Ei) =∞, we have that

µ

(
lim sup
i→∞

Ei

)
= 1.
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Secondly, if there exists some zero-one law on the measure space, then we would only need to show that

lim sup
n→∞

(
∑n

i=1 µ(Ei))
2∑n

i,j=1 µ(Ei ∩ Ej)
> 0

in order to prove the divergence case of a Khintchine type theorem.

1.1.3 Hausdorff measure and dimension

Both Theorem 1.1.1 and Theorem 1.1.2 give a complete result in terms of the Lebesgue measure of the

set of ψ-approximable points. However, in both cases they fall short when differentiating between two

approximating functions where the sum
∞∑
q=1

ψ(q)

converges. For example, by Theorem 1.1.1 we know that λ(W(3)) = λ(W(100)) = 0. Intuitively we would

expect the set W(100) to be far smaller than W(3). Using Hausdorff measure and Hausdorff dimension

in place of Lebesgue measure can provide a more accurate representation of the size of W(ψ).

We adopt the following conventions when defining Hausdorff measure and Hausdorff dimension. For a

locally compact metric space (U, d), a subset X ⊂ U , and ρ > 0, define a ρ-cover of X as a sequence of

balls {Bi} such that X ⊂
⋃
iBi, with all balls r(Bi) ≤ ρ, where r(B) denotes the radius of the ball B.

We define a dimension function f : R+ → R+ as an increasing function with f(r)→ 0 as r → 0. Define

Hfρ(X) = inf

{∑
i

f(r(Bi)) : {Bi} is a ρ− cover of X

}
,

where the infimum is take over all ρ-covers of X. Clearly, as ρ decreases there are less possible ρ-covers

of X, hence the f -Hausdorff measure can be well defined by

Hf (X) = lim
ρ→0+

Hfρ(X).

The dimension function is usually taken to be f(x) = xs for some s ∈ R+, and denoted by Hs. With this

notation we define the Hausdorff dimension as

dimX = inf {s ≥ 0 : Hs(X) = 0} .

We note several properties of Hausdorff measure and Hausdorff dimension that follow from their defini-

tions. Most of these results and their proofs can be found in Chapter 3 of [59]. Firstly, observe that Hs

is monotonic. That is, for any E ⊂ F we have that Hs(E) ≤ Hs(F ). Secondly, by the definition of Hs,

for any single point x ∈ Rn, we have that H0(x) = 1 and Hs(x) = 0 for all s > 0 (we make a slight abuse

of notation here, since Hs is defined for sets when x a point we write Hs({x}) = Hs(x) ). This further

implies that for any countable set X we have that Hs(X) = 0 for all s > 0. We also have the following

useful Lemma which is very helpful in the application of the Mass Transference Principle (see Chapter

3).
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Lemma 1.1.5. For any subset X ⊂ Rn the n-dimensional Hausdorff measure Hn(X) is equal to the

n-dimensional Lebesgue measure λn(X), up to a constant multiple.

We can see this result follows clearly on the definitions of both Lebesgue and Hausdorff measure.

The following (Proposition 3.1 of [59]) essentially states that the Hausdorff measure behaves well under

Lipschitz mappings.

Proposition 1.1.6. Let F ⊂ Rn and f : F → Rn, such that for all x, y ∈ F ,

|f(x)− f(y)| ≤ c|x− y|α,

for some constants c, α > 0. Then, for each s

Hs/α(f(F )) ≤ cs/αHs(F ).

Using the above proposition we can obtain many results, one of particular importance to us is that the

Hausdorff measure is translation invariant. That is, for any x ∈ Rn if we define F + x = {a+ x : a ∈ F},

then Hs(F + x) = Hs(F ).

Clearly, by the connection between Hausdorff measure and Hausdorff dimension several of the above re-

sults have Hausdorff dimension counterparts. By the monotonicity of Hs, we have that dim is monotonic,

that is for any E ⊂ F , dimE ≤ dimF . As mentioned, if X is a countable set of points the H0(X) is the

cardinality of X, but for s > 0 Hs(X) = 0, and so dimX = 0 for countable set X. At the opposite end

of the scale, for any X ⊂ U = Rn we have that dimX ≤ dimRn = n, with equality reached whenever X

is an open subset of Rn. The following proposition is the counterpart to Proposition 1.1.6 for Hausdorff

dimension [59].

Proposition 1.1.7. Let F ⊂ Rn and suppose that f : F → Rm, which satisfies

|f(x)− f(y)| ≤ c|x− y|α,

for all x, y ∈ F , where c, α > 0 are constants. Then

dim f(F ) ≤ 1

α
dimF.

In particular, if f is a bi-Lipschitz transformation, that is

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y|,

for constants c1, c2 > 0, then

dim f(F ) = dimF.

This Proposition is particularly useful when considering Diophantine approximation on manifolds, as

we shall see in Chapters 3-5.
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1.1.4 Theorems of Jarnik and Besicovitch

We now return to Diophantine approximation and provide results for both the Hausdorff measure and

Hausdorff dimension of W(ψ). For the Hausdorff dimension of W(ψ) we have the result by Jarnik [75]

and Besicovitch [38] who independently proved the following.

Theorem 1.1.8. Let τ ≥ 1, then

dimW(τ) =
2

1 + τ
.

The condition τ ≥ 1 is due to Dirichlet’s Theorem, since for τ < 1 we clearly have W(τ) = I and

so dimW(τ) = 1. At this point we note the usefulness of the Hausdorff dimension. Going back to our

example at the beginning of the section we see that dimW(100) = 2
101 <

2
4 = dimW(3) as expected.

For the Hausdorff measure Jarnik proved the following theorem [75].

Theorem 1.1.9. Let f be a dimension function such that r−1f(r) → ∞ as r → 0 and r−1f(r) is

decreasing. Suppose ψ : N→ R+ is a monotonic decreasing approximation function with

r−1ψ(r) and r2f

(
ψ(r)

r

)
decreasing , rψ(r)→ 0 as r →∞. (1.4)

Then

Hf (W(ψ)) =

0 if
∑∞

r=1 rf
(
ψ(r)
r

)
<∞,

∞ if
∑∞

r=1 rf
(
ψ(r)
r

)
=∞.

We remark that the conditions (1.4) on ψ were originally imposed by Jarnik, however it was proven in

[18] that ψ being monotonic is a sufficient condition.

By setting f(r) = rs and ψ(q) = q−τ it can be seen that Theorem 1.1.8 easily follows from Theorem

1.1.9. In fact Theorem 1.1.9 goes one step further and proves that for s = 2
1+τ (with τ > 1) that

Hs(W(τ)) = ∞. As we shall see in Chapter 3 both of these theorems are implied by Theorem 1.1.1 via

the Mass Transference Principle. Further, as proven in [28], the Mass Transference Principle can also be

used to prove the Hausdorff measure analogue of Theorem 1.1.2.

1.2 n-dimensional Diophantine approximation

The results of the previous section illustrate that classical Diophantine approximation is largely complete

with respect to the Lebesgue and Hausdorff measure. The following section gives a brief layout and

overview of results for Diophantine approximation in n-dimensional space. There are several alternative

setups to consider in higher dimensions. We begin by defining each setup and the relationships between

them, and then discuss the corresponding Lebesgue and Hausdorff measure results.
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1.2.1 Weighted simultaneous approximation

The first form of approximation we will be focusing on is simultaneous approximation. We will give a

little more detail when defining this setup as it will be the main form of approximation in later Chapters.

Let Ψ = (ψ1, . . . , ψn) be an n-tuple of approximation functions ψi : N→ R+, for 1 ≤ i ≤ n, q ∈ N and let

A(n)
q (Ψ) :=

⋃
0≤pi≤q
i=1,...,n

{
x = (x1, . . . , xn) ∈ In :

∣∣∣∣xi − pi
q

∣∣∣∣ < ψi(q)

q
, 1 ≤ i ≤ n

}
.

Define the set of weighted simultaneously approximable points as

Wn(Ψ) := lim sup
q→∞

A(n)
q (Ψ).

The original use of weighted comes from a slightly different setup where the base approximation function

ψ is the same, but a weight vector would be applied (a vector (t1, . . . , tn) ∈ Rn with
∑n

i=1 ti = 1) so

that along each ith coordinate axis there would be a weighted approximation function of the form ψ(q)ti ,

see for example [3, §5.1]. In this case we use it to simply mean that the approximation function in each

coordinate axis could be different.

In the special case where the approximation functions are the same in each component (i.e. ψ = ψ1 =

· · · = ψn), then this is called simultaneous approximation, we denote this special case by Wn(ψ). When

each approximation function is the same we may use balls to define A(n)
q (ψ). Let |x| = max |xi| denote

the sup norm, then for x ∈ Rn and r ∈ R+ define the n-dimensional open ball as

B(x, r) = {y = (y1, . . . , yn) ∈ Rn : |y − x| < r} .

So for simultaneous approximation we may equivalently define Wn(ψ) as

Wn(ψ) = lim sup
q→∞

A(n)
q (ψ) = lim sup

q→∞

⋃
0≤pi≤q
i=1,...,n

B

(
p

q
,
ψ(q)

q

)
,

where p
q =

(
p1
q , . . . ,

pn
q

)
. Since Wn(ψ) can be described by a lim sup set of balls many results are much

easier to prove in comparison to Wn(Ψ). The reasoning being that many definitions of measures and

measure theoretic results are heavily based on covers of balls. The set Wn(Ψ) is more easily described

by a lim sup set of hyperrectangles. This means simple results for Wn(ψ), such as the convergence case

of Khintchine style theorems, become less obvious for Wn(Ψ). To overcome this issue the following

geometrical idea is used. For simplicity assume each approximation function is of the form ψτi(q) = q−τi .

Given a vector τ = (τ1, . . . , τn) ∈ Rn+ with τ1 ≥ · · · ≥ τn ≥ 0 and let ψτ = (ψτ1 , . . . , ψτn) be the n-tuple

of approximation functions. For a rational point p
q ∈ Qn define the hyperrectangle

R

(
p

q
,
ψτ (q)

q

)
:=

{
(y1, . . . , yn) ∈ Rn :

∣∣∣∣yi − pi
q

∣∣∣∣ < qτi−1, 1 ≤ i ≤ n
}
.
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Then we have that

Wn(ψτ ) = lim sup
q→∞

⋃
0≤pi≤q
i=1,...,n

R

(
p

q
,
ψτ (q)

q

)
.

Note that R
(
p
q ,

ψτ (q)
q

)
can be covered by a collection B of balls of radius q−τj−1 for each 1 ≤ j ≤ n,

where the cardinality of B is bounded above by qk, with

k =
n∑
i=j

(τj − τi).

and so A(n)
q (ψτ ) can be covered by qn+k balls of radius q−τj−1. This sort of cover is particularly useful

when obtaining upper bounds on the Hausdorff measure of Wn(ψτ ). Similar geometric ideas to this will

be used throughout this thesis, in particular in the upper bound proof of Theorem 5.1.4.

Generally, the set Wn(Ψ) can be thought of as the set of points x ∈ In that can be approximated by

infinitely many rational points. For comparability to later setups we note thatWn(ψ) can be equivalently

written as

Wn(ψ) :=

{
x ∈ In : max

1≤i≤n
|qxi − pi| < ψ(q) for i.m (p, q) ∈ Zn+1

}
.

As with classical Diophantine approximation, our first target is to obtain optimal bounds on the ap-

proximation functions such that all x ∈ Rn can be approximated. For our Dirichlet-style Theorem for

simultaneous and weighted simultaneous approximation we appeal to a theorem from the geometry of

numbers.

Theorem 1.2.1 (Minkowski’s theorem for systems of linear forms [89]). Given a system of linear in-

equalities of the form 

|c1,1x1 + · · ·+ c1,nxn| < Q1,

...
...

|cn−1,1x1 + · · ·+ cn−1,nxn| < Qn−1,

|cn,1x1 + · · ·+ cn,nxn| ≤ Qn,

(1.5)

where ci,j ∈ R for i, j ∈ {1, . . . , n}, and Qi ∈ R+. If

| det(ci,j)1≤i,j≤n| ≤
n∏
i=1

Qi,

then there exists a non-zero integer solution (x1, . . . xn) ∈ Zn to (1.5).
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By considering the system of inequalities

|q0x+ q1| < Q−τ1 ,

...
...

|q0x+ qn| < Q−τn ,

|q0| ≤ Q,

with
∑n

i=1 τi = 1 and each τi ≥ 0 we can deduce an analogous statement to the corollary of Dirich-

let’s Theorem. Namely, for any (x1, . . . , xn) = x ∈ Rn, there exists infinitely many integer vectors

(p1, . . . , pn, q) = (p, q) ∈ Zn × N such that∣∣∣∣xi − pi
q

∣∣∣∣ < q−1−τi , 1 ≤ i ≤ n,

provided
∑n

i=1 τi = 1. An easy corollary to this is that in the simultaneous case we have Wn(1/n) = In.

These results lead to the notion of n-dimensional badly approximable points. Let τ = (τ1, . . . , τn) ∈ Rn+
be a weight vector such that

n∑
i=1

τi = 1. (1.6)

Then we may define

Badn(τ ) :=

{
x ∈ In : ∃ c > 0

∣∣∣∣xi − pi
q

∣∣∣∣ ≥ cq−1−τi , 1 ≤ i ≤ n, ∀ p
q
∈ Qn

}
.

In the case where we have the weight vector τ = ( 1
n , . . . ,

1
n) we have the set of simultaneously badly

approximable points, denoted by Badn = Badn(τ ).

As with the classical case we may deduce that λn(Badn(τ )) = 0 via Theorem 1.2.6. Furthermore,

it was proven by Jarnik [75] that dim Badn( 1
n) = n. This result can be generalised to also show that

Badn(τ ) is of full dimension for any τ satisfying (1.6) [82]. The set Badn(τ ) is of interest for several

reasons, perhaps the most notably due to Schmidt’s conjecture [101] which stated that⋂
t=1,2

Bad2((τ1t , τ2t)) 6= ∅

for any pairs (τ11 , τ21), (τ12 , τ22) satisfying (1.6). In 2011 Badziahin, Pollington and Velani [12] proved

Schmidt’s conjecture to be true, in fact the following much stronger statement was proven [8].

Theorem 1.2.2. Let {(it, jt)}nt=1 be a set with each it, jt > 0 and it + jt = 1 for all 1 ≤ t ≤ n. Then

dim

(
n⋂
t=1

Bad2(it, jt)

)
= 2.

This landmark theorem has since been developed in a variety of directions. We will not pursue these

ideas further so direct the reader to [8, 9, 92, 15] and references therein for more details.
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1.2.2 Multiplicative and Dual approximation

The two other forms of n-dimensional approximation that are most widely used are multiplicative and

dual approximation. We stress here that this sections is present purely to give a complete picture of n-

dimensional approximation. The settings and concepts given in this chapter will not be pursued further.

Saying that, it should be remarked that there are still connections between the concepts of the previous

section and those that appear here. For example, as seen in the previous section, the set of weighted badly

approximable points have connections with Littlewood’s conjecture, a statement firmly in Multiplicative

approximation. Furthermore Khintchine’s transference principle, discussed at the end of this section, gives

a clear link between the set of dually approximable points and the set of simultaneously approximable

points.

In multiplicative Diophantine approximation, for ψ : N→ R+, we consider the set

W×n (ψ) := {x ∈ Rn : ||qx1|| . . . ||qxn|| < ψ(q) for i.m q ∈ N} ,

where ||.|| denotes the minimum distance to an integer i.e. ||a|| = min {|a− n| : n ∈ Z}. This setup

provides many interesting problems. In particular, where n = 2 we have the well-known Littlewood’s

conjecture (see for example §2 of [88]).

Conjecture 1.2.3. For any pair (α, β) ∈ [0, 1]2,

lim inf
q→∞

q||qα||.||qβ|| = 0.

While the conjecture remains unsolved there has been significant steps towards proving the result. Most

notably is the result of Einsiedler, Katok and Lindenstrauss [57] who proved that the set of exceptions

to Conjecture 1.2.3 has Hausdorff dimension zero. Conjecture 1.2.3 can also be shown to be related to

the behaviour of Badn(τ ). In particular, it is well known that if⋂
0<τ1,τ2<1
τ1+τ2=1

Bad2((τ1, τ2)) = ∅ then Conjecture 1.2.3 is true, see for example [25].

The second form of Diophantine approximation in n dimensions which we will discuss is dual approx-

imation. Rather that approximating real number by rational points this setup is the approximation of

real numbers by rational hyperplanes. Concisely, a point x ∈ Rn is said to be dually ψ-approximable if

there exists infinitely many (q, p) ∈ Zn × Z satisfying

|q.x− p| < ψ(|q|),

where q.x = q1x1 + · · ·+ qnxn, and |q| = maxi |qi| for 1 ≤ i ≤ n. The set of dually approximable points

is defined as

W∗n(ψ) := {x ∈ Rn : |q.x− p| < ψ(|q|) for i.m (q, p) ∈ Zn × Z} .
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For a Dirichlet style theorem for dual approximation we can appeal to Theorem 1.2.1 to obtain the

immediate corollary.

Corollary 1.2.4. For any (x1, . . . xn) ∈ Rn, there exists infinitely many (q1, . . . , qn, p) ∈ (Zn\{0}) × Z

such that

|q1x1 + q2x2 + · · ·+ qnxn − p| <
(

max
1≤i≤n

|qi|
)−n

.

Given this result we have that W∗n(n) = [0, 1]n.

Both simultaneous and dual approximation can be generalized by the following setup first introduced

by Groshev [106]. For a matrix X = (xi,j) ∈ Rnm we say X is ψ-approximable if for infinitely many

(p, q) ∈ Zm × Zn\{0},

max
1≤j≤m

|q1x1,j + · · ·+ qnxn,j + pj | < ψ(|q|).

For ease of notation we also write

||q.x+ p|| = max
1≤j≤m

|q1x1,j + · · ·+ qnxn,j + pj |.

The set of ψ-approximable matrices, also called the Groshev approximation set, is defined as

Gn,m(ψ) := {x ∈ Rnm : ||qx+ p|| < ψ(|q|) for i.m (p, q) ∈ Zm × Zn\{0}} .

We link this setup to both simultaneous and dual approximation by noting that

G1,m(ψ) =Wm(ψ) and Gn,1(ψ) =W∗n(ψ).

Before we begin discussing the metrical results of the above setups we note the following theorem which

highlights a relationship between Wn(ψ) and W∗n(ψ). In order to state the result we define the following

notation. For any x ∈ Rn let

s(x) = sup

{
α ∈ R : x ∈ Wn

(
1 + α

n

)}
,

and

d(x) = sup {α ∈ R : x ∈ W∗n(n+ α)} .

Khintchine’s transference principle (see for example [106, 49]) links these two functions.

Theorem 1.2.5. For any x ∈ Rn, we have that

d(x)

n2 + (n− 1)d(x)
≤ s(x) ≤ d(x).

When d(x) is infinite we have
d(x)

n2 + (n− 1)d(x)
=

1

n− 1
.
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1.2.3 n-dimensional measure results

As with the classical setting, our next step is to give an overview of measure results for the ψ-approximable

sets in n dimensions. In particular we provide results for each of the following:

1. A Lebesgue measure statement analogous to Theorem 1.1.1.

2. Hausdorff theory statements equivalent to Theorem 1.1.8 and Theorem 1.1.9.

Corresponding to each form of n-dimensional approximation we have several varieties of Khintchine’s

Theorem. As we are considering subsets of Rn we use the n-dimensional Lebesgue measure, denoted λn.

We begin with Wn(Ψ), proven by Gallagher in 1962 [62].

Theorem 1.2.6. Let ψi : N→ Rn be monotonic decreasing functions for 1 ≤ i ≤ n and Ψ = (ψ1, . . . , ψn).

Then

λn (Wn(Ψ)) =

0 if
∑∞

q=1 ψ1(q) . . . ψn(q) <∞,

1 if
∑∞

q=1 ψ1(q) . . . ψn(q) =∞.

Clearly this also contains the simultaneous setting, where the result depends on the convergence or

divergence of the sum
∞∑
q=1

ψ(q)n. (1.7)

As in the one-dimensional setting, the convergence case of this result follows easily from the Borel-Cantelli

convergence Lemma (Lemma 1.1.3). In particular, like with classical approximation, we can deduce that

λn(Badn(τ )) = 0 for all weight vectors τ ∈ Rn+ with components summing to 1.

In the n-dimensional case the class of non-monotonic approximation functions was solved prior to the

proof of Theorem 1.1.2. Using a slightly different setup Gallagher [63] proved that for any ψ, λn(W ′n(ψ))

is equal to zero or one depending on whether (1.7) converges or diverges respectively. W ′n(ψ) is defined

in the same way as Wn(ψ) with the additional requirement that the rational points we approximate over

are pairwise reduced fractions. That is,

W ′n(ψ) = lim sup
q→∞

⋃
0≤pi≤q

gcd(pi,q)=1

i=1,...,n

B

(
p

q
,
ψ(q)

q

)
.

In the multiplicative setup we have the following theorem due to Gallagher [62].

Theorem 1.2.7. Let ψ : N→ R+ be a monotonic function. Then

λn(W×n (ψ)) =

0 if
∑∞

q=1 ψ(q) logn−1 q <∞,

1 if
∑∞

q=1 ψ(q) logn−1 q =∞.
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Lastly we have the following result for our final setup, Gn,m(ψ), which is referred to as the Khintchine-

Groshev Theorem. The following version of the theorem which removes monotonicity of the approximation

function in all cases except n = m = 1 was proven by Beresnevich and Velani in [33]. In the case where

n = m = 1 Theorem 1.1.2 can be applied.

Theorem 1.2.8. Let ψ : N→ R+ and mn > 1. Then

λnm(Gn,m(ψ)) =

0 if
∑∞

q=1 q
n−1ψ(q)m <∞,

1 if
∑∞

q=1 q
n−1ψ(q)m =∞.

Note that this result contains the dual setting, W∗n(ψ), stating that if
∑∞

q=1 q
n−1ψ(q) <∞ thenW∗n(ψ)

has measure zero and when the sum is divergent the set has full measure.

We now consider the second of the questions posed at the start of the section. We will begin with the

Hausdorff theory results for Wn(Ψ), and then give the Hausdorff measure theorem for the Khinthcine-

Groshev setup as this encompasses all other Hausdorff theory results. The following result, proven in

[18], is the n-dimensional simultaneous generalisation of Theorem 1.1.9.

Theorem 1.2.9. Let ψ : N→ R+ be a monotonic approximation function. Then

Hs(Wn(ψ)) =

0 if
∑∞

r=1 r
n−sψ(r)s <∞,

Hs(In) if
∑∞

r=1 r
n−sψ(r)s =∞.

We remark that like the classical case this result was originally proven by Jarnik [75] but with additional

constraints on the approximation function ψ. Evaluating the sum on the right hand side where it switches

from converging to diverging with respect to s we have the following n-dimensional Jarnik-Besicovitch

result [75, 38].

Theorem 1.2.10. Let τ ≥ 1
n . Then

dimWn(τ) =
n+ 1

τ + 1
.

We will prove this theorem in the next section as it provides a clear example of the application of the

Mass Transference Principle. We also have the following dimension result, as proven by Rynne [97], for

the more general case of weighted simultaneous approximation.

Theorem 1.2.11. Suppose that
∑n

i=1 τi ≥ 1 and assume that τ1 ≥ · · · ≥ τn > 0. Then

dimWn(τ ) = min
1≤k≤n

{
n+ 1 +

∑n
i=k(τk − τi)

1 + τk

}
= s.

This result will be proven in Chapter 3 §3.2 as the method illustrates the use of a Mass Transference

Principle which will be used in a more complex proof later in the thesis. We note the following unexpected
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result. If τ1 > τ2 > 2, then we have that

dimW2((τ1, τ2)) =
3

1 + τ2
.

This means that as τ1 increases the dimension ofW2((τ1, τ2)) remains the same. This is unexpected, as it

implies that the ”size” of W2((τ1, τ2)) remains unchanged when τ1 increases. As shown in [97], Theorem

1.2.11 may be extended to give a dimension result for general approximating functions. Define

τi = lim
q→∞

− logψi(q)

log q
, (1.8)

for i = 1, . . . , n. Suppose for an approximation function Ψ = (ψ1, . . . , ψn) each limit τi exists and is

positive finite. Let Ψ∗ = (τ1, . . . , τn).

Corollary 1.2.12. Suppose the n-tuple of approximation functions Ψ have positive finite limits stated

above, with
∑n

i=1 τi ≥ 1. Then

dimWn(Ψ) = s,

where s is the same as in Theorem 1.2.11.

This Corollary follows from Theorem 1.2.11 and noting that the limits (1.8) imply that for any ε > 0,

q−τi−ε ≤ ψi(q) ≤ q−τi+ε

for sufficiently large q. Hence

Wn(Ψ∗ + ε) ⊆ Wn(Ψ) ⊆ Wn(Ψ∗ − ε).

Returning to the Hausdorff measure we have the following result from [16] which provides us with the

complete theory of n-dimensional Hausdorff measure for ψ-approximable sets.

Theorem 1.2.13. Let ψ : N→ R+ be a monotonic approximation function and nm > 1. Let f and g be

dimension functions with g(r) = r−m(n−1)f(r) and r−nmf(r) monotonic. Then,

Hf (Gn,m(ψ)) =

0 if
∑∞

r=1 r
n+m−1g

(
ψ(r)
r

)
<∞,

Hf (Inm) if
∑∞

r=1 r
n+m−1g

(
ψ(r)
r

)
=∞.

We have the following corollary on the Hausdorff dimension of Gn,m(τ).

Corollary 1.2.14. Let τ > m
n , then

dimGn,m(τ) = n(m− 1) +
n+m

1 + τ
.

In particular, where n = 1 this gives us the Hausdorff dimension of W∗m(τ), namely for τ > m,

dimW∗m(τ) = m− 1 +
m+ 1

τ + 1
.
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1.3 What comes next: an overview of the thesis

The aim of this thesis is to emulate a variety of results displayed in this chapter in other settings, including

p-adic approximation and approximation over manifolds. As mentioned earlier in this chapter we will

chiefly be focussing on weighted simultaneous approximations in the respective settings.

Prior to proving any new results two more survey chapters are provided. The first gives an introduction

to p-adic numbers and p-adic Diophantine approximations. The chapter contains three new results

(Theorems 2.2.6 , 2.2.7 and 2.2.12), however, in order to keep the survey succinct these proofs are

reserved for Chapter 5. The third and final survey chapter introduces the Mass Transference Principle, a

beautiful theorem that enables Hausdorff dimension results to be obtained in a manner more easily than

traditional methods.

In the later chapters (Chapters 4-6) the main focus is on the study of weighted simultaneous approxi-

mation over manifolds. In Chapter 4 a brief survey on real simultaneous approximation over manifolds is

given before a new result (Theorem 4.1.8) on the Hausdorff dimension of simultaneously τ -approximable

points over C(2) manifolds is proven. In Chapter 5 the new results stated in Chapter 2 are proven.

One result of particular importance is a new Zero-One Law on the set of weighted simultaneously Ψ-

approximable p-adic points (Lemma 5.3.5). Similar results to the new Theorem in Chapter 4 are also

proven in the p-adic setting (Theorem 5.2.3-5.2.5). In Chapter 6 τ -approximable points over p-adic

coordinate hyperplanes are investigated. In particular a new counting result on the set of rational ap-

proximations to a p-adic integer is proven (Theorem 6.1.3), which enables a complete Hausdorff dimension

result to be proven (Theorem 6.2.1).
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Chapter 2

p-adic Diophantine Approximation

In the previous chapter we studied the approximations by rational numbers to the set of real numbers.

In this chapter we discuss the approximations by rational numbers to p-adic numbers. In particular we

provide a survey of results analogous to those of the previous chapter, highlighting the key similarities

and differences.

2.1 p-adic Numbers

We begin with the definition of the p-adic norm and subsequent construction of the p-adic numbers. Most

results in this section can be found in a variety of textbooks, for example see [98, 87, 64]. Throughout

this chapter we fix some prime number p ∈ N. For any rational point a
b ∈ Q we may rewrite a

b as the

reduced fraction
a

b
=
a′

b′
pk,

where gcd(a′, p) = gcd(b′, p) = 1 and k ∈ Z. For any x ∈ Q define ordp(x) to be the unique n ∈ Z such

that

x = pn
a

b
with p - a, p - b.

Conventionally, we take ordp(0) =∞. Then for any x ∈ Q define the p-adic norm

|x|p = p−ordp(x).

Given the p-adic norm we define the set of p-adic numbers, Qp, to be the completion of Q by |.|p.

The p-adic norm has several properties that make Qp an intriguing space to study. One such property

that sets the p-adic norm apart from the Euclidean norm is that |.|p is isolated for non-zero points. In

particular, for any x ∈ Qp

|x|p ∈ {pk : k ∈ Z} ∪ {0}.
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Secondly, and perhaps most importantly, we have the property that |.|p satisfies the strong triangle

inequality. For any x, y ∈ Qp we have the inequality

|x− y|p ≤ max{|x|p, |y|p}.

In particular, where |x|p 6= |y|p we have equality in the above equation. These properties that make Qp

different from R lead to several interesting results in p-adic geometry. For any x ∈ Qp and r ∈ R+ define

the p-adic open ball

B(x, r) = {y ∈ Qp : |x− y|p < r} .

Due to the strong triangle inequality we have the following lemma on the centres of p-adic balls.

Lemma 2.1.1. Let y ∈ B(x, r), then B(y, r) = B(x, r).

This result follows easily from the strong triangle inequality by noting that for any point z ∈ B(x, r)

we have that

|y − z|p = |y − x+ x− z|p ≤ max{|y − x|p, |x− z|p} < r,

hence B(x, r) ⊂ B(y, r). The reverse can be shown in the same way. The following lemma generally

states that any two p-adic balls are either disjoint, or one is contained within the other.

Lemma 2.1.2. Let B1 = B(x1, r1) and B2 = B(x2, r2) be balls in Qp with centres x1, x2 ∈ Qp and radii

r1, r2 ∈ R+ respectively. Assume B1 ∩B2 6= ∅, then either B1 ⊆ B2 or B2 ⊆ B1.

Proof. Choose x0 ∈ B1 ∩B2 (we may do this since we assume B1 ∩B2 6= ∅). Assume that r1 ≥ r2. Then

|x1 − x2|p ≤ max {|x1 − x0|p, |x0 − x2|p} ≤ r1.

Hence x2 ∈ B1. Thus for any x ∈ B2 we have that

|x1 − x|p ≤ max{|x1 − x2|p, |x2 − x|p} ≤ r1,

so x ∈ B1 and hence B2 ⊆ B1. A similar argument can be given to show that B1 ⊆ B2 if r2 ≥ r1.

There are many other interesting properties that Qn
p has, for example it can be shown that in the p-adic

setting at most two points are collinear in the usual sense, or that all p-adic triangles are either isosceles

or equilateral. These types of results are trivial to prove, with the key part of the proof being that the

p-adic norm satisfies the strong triangle inequality.

As such space is difficult to visualise geometrically in some ways it is easier to determine characteristics

of the space algebraically. For some x ∈ Qp we may write the p-adic expansion of x uniquely as

x =
∞∑
i=k

aip
i, (2.1)
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where ai ∈ {0, . . . , p − 1}, k ∈ Z and ak 6= 0. Note the condition that ak 6= 0 is added to ensure each

expansion is unique. To shorten the notation a p-adic number may also be written as

x = . . . a2a1a0.a−1 . . . ak,

see for example §1.4 of [98]. As an example, in 5-adic space we may write the expansion

15

7
= . . . 12040. = 0 · 50 + 4 · 51 + 0 · 52 + 2 · 53 + 1 · 54 + . . . .

For a method to construct such expansions and more numerical examples see §1.3-1.6 of [87]. By cal-

culating the p-adic expansion of several points we note a few properties. Firstly, for all x ∈ Z with

corresponding expansion (2.1) we have that k ≥ 0. Further, if x ∈ Z, then there exists large N > 0 such

that an = 0 for all n > N , i.e. the p-adic expansion is finite. Secondly, if x ∈ Q then the p-adic expansion

of x is eventually periodic (see §1.4 of [87] for a proof of such result). That is, there exists some j, k, l ∈ Z

such that

x = . . . aj+l . . . ajaj−1 . . . ak−1ak,

where aj+l . . . aj is repeated infinitely. As an example we can continue the p-adic expansion of 15
7 to find

that
15

7
= . . . 32412040.

A subset of Qp of particular interest is the set of p-adic integers. Define the ring of p-adic integers as

Zp := {x ∈ Qp : |x|p ≤ 1}.

We have that Zp is an integral domain with 0 and 1 as the additive and multiplicative identities. As

noted by the above properties of p-adic expansions we have that

Z ⊂ Zp.

In fact, we have the much stronger property that Z is dense in Zp. As a general proof of such statement

observe that for any ball B(x, r) ⊂ Zp we can take p-adic expansion of x =
∑∞

i=0 xip
i and t ∈ N0 such

that

B(x, r) = B

( ∞∑
i=0

xip
i, p−t

)
.

Then observe that all integers of the form

t∑
i=0

xip
i + pt+1Z ⊂ B(x, r),

since ∣∣∣∣∣x−
(

t∑
i=0

xip
i + pt+1z

)∣∣∣∣∣
p

=

∣∣∣∣∣
∞∑

i=t+1

xip
i − pt+1z

∣∣∣∣∣
p

< p−t.

Further Q is dense in Qp, since it is its completion (see Theorems 5.3 and 5.4 of [98] respectively for a

thorough proof on the matter). Topologically we also have the properties that Zp is compact and Qp is

locally compact.
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2.1.1 Analysis in Qp

In the following section we note several properties in p-adic analysis that differ from usual analysis in

R. In particular, important theorems in real analysis such as Rolle’s Theorem, the Mean value Theorem

and Taylor’s approximation Theorem do not have an immediate p-adic analogue. We begin with a few

statements on p-adic series, most of which can be found in [64] with corresponding proofs. Then we give

a class of functions that allow us to construct p-adic versions of some results in real analysis. The first

lemma shows us that in some instances p-adic series are much easier to work with.

Lemma 2.1.3. An infinite series
∞∑
n=0

an , ai ∈ Qp

is convergent if and only if lim
n→∞

|an|p = 0.

Proof. Let An =
∑n

i=0 ai. Then note that

lim
n→∞

|An −An−1|p = lim
n→∞

|an|p,

so An is a Cauchy sequence and hence convergent. The converse direction follows trivially.

The last line of the proof follows from the fact that, in p-adic space, a sequence {ai} is a Cauchy

sequence and hence convergent, if and only if

lim
n→∞

|an+1 − an|p = 0.

For a proof of this see Lemma 3.2.2 of [64]. Given this result we have that any power series

f(x) =
∞∑
n=0

anx
n,

converges if and only if limn→∞ |anxn|p = 0. The following lemma (Prop. 5.4.1 of [64]) gives us a p-adic

version of the radius of convergence.

Lemma 2.1.4. Let f(x) =
∑∞

n=0 anx
n, and define

ρ =
1

lim sup n
√
|an|p

.

Then,

i) If ρ =∞, then f(x) converges for all x ∈ Qp.

ii) If 0 < ρ <∞ and |an|pρn → 0 as n→∞, then f(x) converges if and only if |x|p ≤ ρ.

iii) If 0 < ρ <∞ and |an|pρn 6→ 0 as n→∞, then f(x) converges if and only if |x|p < ρ.
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Note at this point another difference to real analysis that makes p-adic analysis easier. By ii) and iii)

of Lemma 2.1.4 either all points |x|p = ρ converge or none. In the real case this is not always true.

The above results imply that p-adic analysis is considerably easier than real analysis. However, the

following argument indicates that in many respects this is not the case. In real analysis a key theorem

fundamental in many results is the Mean Value Theorem. The following example (found in §5.2.3 of [64])

provides reasoning why we cannot do this for all p-adic functions.

Example 2.1.5

Suppose f(x) is a continuous differentiable function on some U ⊂ Qp, and that |f ′(x)|p ≤ M for

all x ∈ U . Then we would expect a Mean Value Theorem to state that for all a, b ∈ U , with a 6= b,

we have that ∣∣∣∣f(a)− f(b)

a− b

∣∣∣∣
p

≤M.

Considering the following function we see this is false. Take U = Zp, f(x) = xp, a = 1 and b = 0.

Then

|f ′(x)|p = |pxp−1|p ≤ p−1,

for all x ∈ Zp. However, we have that∣∣∣∣f(1)− f(0)

1− 0

∣∣∣∣
p

= 1 > p−1,

hence the statement is false for this function.

This is not the only function where this statement is false, there are many. Furthermore, things are worse

than first appear. The following example, found in [98], shows that even the notion of differentiability in

p-adic space can have peculiar implications.

Example 2.1.6

For any x ∈ Zp we can write out its p-adic expansion, say

x =

∞∑
i=0

aip
i.

Then define the function f : Zp → Zp as

f(x) =
∞∑
i=0

aip
2i.

Such function f is clearly not constant, however calculating the derivative we have that

|f ′(x)|p =

∣∣∣∣ lim
(a,b)→(x,x)

f(a)− f(b)

a− b

∣∣∣∣
p

,

= lim
N→∞

|p2N |p
|pN |p

,

=0,
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for all x ∈ Zp.

As well as showing that zero derivative does not imply the function is constant the example also provides

reasoning for why there does not exist a general p-adic version of Taylor’s Expansion Theorem. One

such attempt to find p-adic versions of these results is to only consider small regions locally, that is, to

ensure any points under consideration are p-adically close, see for example [96, Section 3.2], [103]. Given

the above problem we are motivated to find a set of p-adic functions that satisfy some p-adic versions of

results in real analysis. A special class of p-adic functions introduced by Mahler [85] are the set of normal

functions.

Definition 2.1.7. A function f : Zp → Zp is called a normal function if it can be written as

f(x) =
∞∑
n=0

αn(x− α)n,

where α, αn ∈ Zp for each n, and lim
n→∞

|αn|p = 0.

By Lemma 2.1.4 such functions will converge for all x ∈ Zp. Further, the class of functions is quite

non-restrictive. For example, given any analytic function g(z) we can find integers r, s such that prg(psz)

is a normal function [2]. Suppose y ∈ Zp, then we have that

f(x) =
∞∑
n=0

f (n)(y)

n!
(x− y)n,

is normal, so we have a Taylor series expansion for normal functions. We also note the useful property

that if f(x) is normal then f (n)(x) is also normal for any n ∈ N. To conclude this section we show that

normal functions provide a possible p-adic version of the Mean Value Theorem akin to Example 2.1.1.

Lemma 2.1.8. Let f be a normal function and suppose |f ′(x)|p ≤M for all x ∈ U ⊂ Zp. Then for any

x ∈ U and any y ∈ B(x,M) ∩ U with y 6= x we have that∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣
p

≤M.

Proof. Since f is normal we can consider the Taylor series expansion of f about any point y ∈ B(x,M)∩U

to find that

f(x)− f(y) = (x− y)

∞∑
n=1

f (n)(y)

n!
(x− y)n−1.

Since x− y 6= 0 we may divide through by x− y to obtain∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣
p

=

∣∣∣∣∣f ′(y) + (x− y)
∞∑
n=2

f (n)(y)

n!
(x− y)n−2

∣∣∣∣∣
p

,

≤max

|f ′(y)|p,

∣∣∣∣∣(x− y)

∞∑
n=2

f (n)(y)

n!
(x− y)n−2

∣∣∣∣∣
p

 ,

≤M,
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where the final inequality holds since |f ′(y)|p ≤M , y ∈ B(x,M)∩U and
∣∣∣f (n)(y)n!

∣∣∣
p
≤ 1 for all n ∈ N.

In Chapter 5 we will introduce further definitions and notations for multivariate p-adic manifolds, but

for now we return to the main focus of this chapter.

2.2 Diophantine approximation in Qp

This section is devoted to giving a p-adic analogue of the classical Euclidean results of Diophantine

approximation. We start with the following result by Mahler [86], which provides the p-adic version of

Dirichlet’s theorem.

Theorem 2.2.1. Let x ∈ Zp, then for all h ∈ N there exists integer pairs a0, a1 ∈ Z with max{|a0|, |a1|} ≤

h such that

|a0x− a1|p ≤ h−2. (2.2)

In comparison to the Euclidean case, where we had that |a0x − a| < Q−1 for a0 ≤ Q, note that we

have an extra exponent of approximation. This is due to the fact that unlike Euclidean approximation

the rate of approximation can be increased dramatically by either of the components a0, a1. To see this

consider the p-adic expansion of a0x. Let

a0x =
∞∑
i=0

cip
i, ci ∈ {0, . . . , p− 1}.

Then choose a1 =
∑k

i=0 cip
i, so we have that

|a0x− a1|p < p−k.

If a1 is unbounded we can let k → ∞ and achieve increasingly close approximations. This observation

can be neatly summarised by the previously mentioned statement that Z is dense in Zp. Hence, in order

to provide any meaningful results we must bound both integer coefficients. To do this we usually make

the approximation function dependent on max{|a0|, |a1|}, or bound |a1| ≤ |a0|.

The exponent on h in (2.2) is best possible that we can have which allows all x ∈ Zp to have infinitely

many rational approximations. As proven by de Weger [54] the Hurwitz-style constant in p-adic space is

1, and so Theorem 2.2.1 is best possible satisfying all x ∈ Zp.

Similarly to Chapter 1 we may be inclined to ask whether this approximation function on the right of

(2.2) can be improved for almost all points in Zp. As with the real case we can define the sets of badly

approximable points and well approximable points. Let

Bad(p) :=
{
x ∈ Zp : ∃c(x) > 0 |q0x− q1|p ≥ c(x)q−20 ∀(q0, q1) ∈ N× Z with |q1| ≤ |q0|

}
,
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and the set of well approximable points being those that are not in Bad(p). Define the set of very well

approximable points VWA(p) to be

{
x ∈ Zp : ∃ε > 0 |q0x− q1|p < q−2−ε0 for i.m. (q0, q1) ∈ N× Z with |q1| ≤ q0

}
.

Theorem 2.2.2 below immediately gives us that Bad(p) and VWA(p) are both of Haar measure zero. As

with the real case both sets are still relatively large. For example the p-adic integer

∞∑
n=0

pn!

is clearly in VWA(p) (in fact even more so, it is p-adic Liouville).

We now consider the metric theory of p-adic approximation. In p-adic space we take the associated

Haar measure µp, normalised by µp(Zp) = 1. A construction of the Haar measure for Qp can be found

in [105](Part II, Chapter 1), we highlight below the key properties of µp that we will use. Firstly, for

any p-adic ball B(x, p−k) with centre x ∈ Qp and k ∈ Z we have µp
(
B(x, p−k)

)
= p−k. Secondly,

the measure is translation invariant. So for any x, y ∈ Qp, µp
(
B(x, p−k)

)
= µp

(
B(y, p−k)

)
= p−k.

Lastly, the measure µp is doubling, that is, there exists c > 0 such that for any ball B(x, p−k) we have

µp(B(x, 2p−k)) ≤ cµp(B(x, p−k)). More precisely, we have the inequality

µp

(
B(x, ap−k)

)
≤ pdlogp aep−k,

for any a ≥ 1.

There are various ways to describe the set of p-adic ψ-approximable points. Initially we provide the

construction used by Jarnik in [76] to give a p-adic analogue of Theorem 1.1.1 of Chapter 1. Let

A∗h(ψ) =

h⋃
a=−h

({
x ∈ Zp :

∣∣∣x− a

h

∣∣∣
p
≤ ψ(h)

}
∪
{
x ∈ Zp :

∣∣∣∣x− h

a

∣∣∣∣
p

≤ ψ(h)
})

,

then define

W∗(ψ) := lim sup
h→∞

A∗h(ψ).

Using this setup Jarnik proved the following theorem [76].

Theorem 2.2.2. Let ψ : N→ R+ be monotonically decreasing. Then

µp(W
∗(ψ)) =

0 if
∑∞

h=1 hψ(h) <∞,

1 if
∑∞

h=1 hψ(h) =∞.

Note the additional power of h in the above summations in comparison to Theorem 1.1.1. This is due

to fact that both a0 and a1 influence the rate of approximation, as mentioned previously. As with the
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real case the convergence statement follows almost immediately from the Haar measure of A∗h(ψ) and

Lemma 1.1.3.

As shown by the following example in [65] this setup is insufficient when trying to construct a p-adic

version of Theorem 1.1.2. As with the real case we know that in order to construct a Duffin-Schaeffer type

theorem we need to only consider points approximated by reduced fractions. Let W∗∗(ψ) be the subset

of W∗(ψ) with the added condition that the rational approximations are reduced i.e. gcd(a, h) = 1.

Example 2.2.3

Consider the function

ψ(h) =

p
−1 if p|h,

0 otherwise.

Then for any x ∈ A∗∗h (ψ) ( A∗h(ψ) with the added condition that gcd(a, h) = 1), we must have that

p|h. This would imply that p - a, so
∣∣ a
h

∣∣
p
> 1. Hence we would need x to satisfy∣∣∣∣x− h

a

∣∣∣∣
p

≤ p−1,

for some −h ≤ a ≤ h. As p - a we have that |a|p = 1 so we may multiply the above equation

through by |a|p, and then using the strong triangle inequality we would have that

|ax|p ≤ max{|ax− h|p, |h|p} ≤ p−1.

Hence, if x ∈ A∗∗(ψ) then |x|p < p−1. Conversely, for any x ∈ pZp = {x ∈ Zp : |x|p ≤ p−1}, and

any h ∈ N such that p|h, i.e. h ∈ pN, then

|ax− h|p ≤ max{|ax|p, |h|p} ≤ p−1.

Thus if x ∈ pZp then x ∈ A∗∗h (ψ) for any h ∈ pN. Combining these we have that

A∗∗h (ψ) = pZp

for all h ∈ pN. When p - h then by our choice of ψ, A∗∗h (ψ) is countable so can be ignored. Thus

µp(W
∗∗(ψ)) = p−1 6∈ {0, 1}.

As the above example shows the setup given by Jarnik has the possibility that µp(W
∗∗(ψ)) 6∈ {0, 1}.

Hence we need a new setup in order to construct a p-adic equivalent of Theorem 1.1.2. To do this we

adopt the construction used by Haynes in [65]. For an approximation function ψ : N→ R+ and h ∈ N let

Ah(ψ) =
⋃

|a0|,|a|≤h
gcd(a0,a)=1

{x ∈ Zp : |a0x− a|p < ψ(h)} .
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Then define the set of p-adic ψ-approximable points as

W(ψ) := lim sup
h→∞

Ah(ψ).

In comparison to the setup by Jarnik, Haynes prove that for any approximation function ψ

µp(W(ψ)) ∈ {0, 1},

thus satisfying a zero-one law (Lemma 1 of [65]). With this setup Haynes proved, modulo the proof of

Theorem 1.1.2, the following.

Theorem 2.2.4. For any prime p and any ψ : N→ R+ we have that

µp(W(ψ)) =

0 if
∑∞

h=1 µp(Ah(ψ)) <∞,

1 if
∑∞

h=1 µp(Ah(ψ)) =∞.

In a similar manner to [28] Theorem 2.2.4 provides us with a Hausdorff measure result for W(ψ) via

the general MTP (see Theorem 7 of [65]). Given these theorems we have a complete set of results for

classical p-adic Diophantine approximation.

2.2.1 n-dimensional approximation

As in Chapter 1 there are a variety of ways we can approximate n-dimensional points. Through this

section we will focus on p-adic weighted simultaneous and Groshev-type approximation. Note that p-adic

simultaneous and p-adic dual approximation results can both be deduced from the Groshev-type setup

provided. We begin with p-adic weighted simultaneous approximation. Let a = (a0, . . . , an) ∈ Zn+1, and

let Ψ = (ψ1, . . . , ψn) be an n-tuple of approximation functions ψi : N→ R+. Define

Aa0(Ψ) =
⋃

(a1,...,an)∈Zn
|ai|≤a0 (1≤i≤n)

{
x = (x1, . . . , xn) ∈ Znp :

∣∣∣∣xi − ai
a0

∣∣∣∣
p

< ψi(a0) for all 1 ≤ i ≤ n

}
.

Then define the set of p-adic weighted simultaneously approximable points as

Wn(Ψ) = lim sup
a0→∞

A(n)
a0 (Ψ).

As with the real case we adopt the following simplified notation for Wn(Ψ) when Ψ is of a special form:

Wn(ψ) if ψ1 = · · · = ψn = ψ; Wn(τ ) if ψi(q) = q−τi for some τ = (τ1, . . . , τn) ∈ Rn+; and Wn(τ) if

furthermore τ = (τ, . . . , τ) for some τ > 0.

In the real case we could divide the whole equation through by the denominator to give us a ball/hy-

perrectangle with rational centre and radius/side lengths determined by Ψ. In the p-adic case this is a

little more complicated. Note that
∣∣∣ 1a0 ∣∣∣p ≥ 1 for all a0 ∈ Z, so we would be increasing the approximation
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function in many cases. To overcome this issue we will usually apply the constraint that a0 and p are

coprime, hence leaving both sides of the inequality unaffected when multiplying through by
∣∣∣ 1a0 ∣∣∣p = 1.

In the Groshev setup we use the following construction. For any point y = (y1, . . . yn) ∈ Zn let

|y|p = max1≤i≤n |yi|p, which should not cause confusion. Let ψ : N → R+, q0 ∈ Zm, q ∈ Zn and h ∈ N.

Let

gh(ψ) :=
⋃

|q0|=h, |q|≤h

{
X ∈ Zmnp : |q0X + q|p < ψ(h)

}
,

then define the set of ψ-approximable p-adic integer matrices to be

Gn,m(ψ) := lim sup
h→∞

gh(ψ).

When m = 1 then Gn,1(ψ) = Wn(ψ), and when n = 1 we have the p-adic equivalent of dual approximation

which we will denote as Dm(ψ) = G1,m(ψ).

The following Lemma gives us the p-adic Dirichlet-style theorem for Wn(τ ).

Lemma 2.2.5. Let Li(x), with i = 1, . . . , n, be linear forms with p-adic integer coefficients. Let
∑n

i=1 τi =

n+ 1 for τi ∈ R+. Then there exists a non-zero rational integer vector x = (x0, x1, . . . , xn) with

max
0≤i≤n

|xi| ≤ H,

satisfying the system of inequalities

|Li(x)|p < pH−τi for i = 1, . . . , n.

For completeness we prove this lemma in Chapter 4. The proof is relatively simple, the key being the

choice of sets used to apply the Pigeon-hole principle. Given this lemma we may deduce a simultaneous

and weighted simultaneous Dirichlet-style theorem. Namely that Wn(1+ 1
n) = Znp , or that for any weight

vector τ = (τ1, . . . , τn) ∈ Rn+ such that
∑n

i=1 τi = n + 1, then Wn(τ ) = Znp . In [105] a dual version of

Lemma 2.2.5 had previously been proven. The result (see Lemma 2 of Chapter 2 in [105]) states that for

all x = (x1, . . . , xm) ∈ Zmp
|amxm + · · ·+ a1x1 + a0|p < ph−m−1,

where h = max0≤i≤m |ai|. Similarly to the Euclidean setting, as h→∞ we note there are infinitely many

integer vector solutions, hence we can deduce that Dm(m+ 1) = Zmp .

While not included here we note that a transference principle of a similar flavour to Theorem 1.2.5

exists. Using p-adic approximation lattices (see §5.5.1 for more details) Inoue, Kamada and Naito proved

a correspondence between W(τ) and D(τ) [73]. Given such results we move on to the Khintchine-style

Theorems for these setups. The following theorem provides a p-adic equivalent of Theorem 1.2.6 of

Chapter 1. To ensure that the set satisfies a zero-one law we impose the additional condition that the
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rational points we consider are reduced fractions. We denote the set of weighted simultaneously Ψ-

approximable points by reduced fractions by W
′
n(Ψ). Denote by µp,n the n-dimensional Haar measure,

normalised by µp,n(Znp ) = 1.

Theorem 2.2.6. Let ψi : N→ R+ be approximation functions with each ψi(q) < q−1 for 1 ≤ i ≤ n and

let Ψ = (ψ1, . . . , ψn). Suppose that
∏n
i=1 ψi(q) is a monotonic decreasing function as q →∞. Then

µp,n(W
′
n(Ψ)) =

0 if
∑∞

q=1 q
n
∏n
i=1 ψi(q) <∞,

1 if
∑∞

q=1 q
n
∏n
i=1 ψi(q) =∞.

This is a new theorem within the p-adic setting, a proof is provided in Chapter 5. In tandem with this

result we also prove a new zero-one law on Wn(Ψ). The proof of the convergence case is immediate upon

applying Lemma 1.1.3. The divergence case is proven by showing the limsup set of rectangles satisfies

quasi-independence on average, and thus proven by Lemma 1.1.4. Note that Theorem 2.2.6 contains the

special simultaneous case Wn(ψ) which had previously been proven by Jarnik [76].

In Chapter 5 we also prove a Duffin-Schaeffer style theorem with the monotonicity condition on Ψ

removed. As with Theorem 2.2.6 we state the result here and reserve the proof for Chapter 5.

Theorem 2.2.7. Let ψi : N → [0, 1) be approximation functions with ψi(q) � 1
q for 1 ≤ i ≤ n and let

Ψ = (ψ1, . . . , ψn). For ϕ the Euler phi function suppose that

lim sup
N→∞

∑N
q=1 ϕ(q)n

∏n
i=1 ψi(q)∑N

q=1 q
n
∏n
i=1 ψi(q)

> 0. (2.3)

Then

µp,n(W′n(Ψ)) =

0 if
∑∞

q=1 ϕ(q)n
∏n
i=1 ψi(q) <∞,

1 if
∑∞

q=1 ϕ(q)n
∏n
i=1 ψi(q) =∞.

In the Groshev approximation case Lutz [84] proved the following theorem.

Theorem 2.2.8. Let ψ : N→ R+ be a monotonic decreasing function. Then

µp,nm(Gn,m(ψ)) =

0 if
∑∞

h=1 ψ(h)nhm+n−1 <∞,

1 if
∑∞

h=1 ψ(h)nhm+n−1 =∞.

Note that this theorem was proven using a setup in a style similar to the one used by Jarnik as noted

at the start of this section. More recently this theorem has been proven via ubiquity (see §12.6 of [18]).

The above theorems provide a complete set of Haar measure results over the various forms of n-

dimensional p-adic approximation. However there are still many other areas of interest, for example
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in [17] a Khintchine-style result is given for the approximation of p-adic numbers with respect to p-

adic algebraic numbers. More recently Oliveira proved a variety of Khintchine-style theorems for p-adic

simultaneous approximation over various rational subsets, including rational points contained within

p-adic balls [93].

2.2.2 Hausdorff theory in Qp

In this section we will consider the Hausdorff theory of p-adic approximation. We observe that (Qn
p , d),

where d(x,y) = max1≤i≤n |xi − yi|p for x,y ∈ Qn
p , is a locally compact metric space. If we choose

the dimension function g(x) = xn then g is doubling and Ahlfors regular, whereby we mean that the

corresponding measure Hg is an Ahlfors regular measure i.e. for any ball B ⊆ Qn
p of radius r > 0 there

exists constants a, b > 0 such that

arn ≤ Hg(B) ≤ brn.

Further, by Lemma 6 of [65] we have

Lemma 2.2.9.

µp,n � Hg.

Hence (Qp, d) with dimension function g satisfies the conditions for the general MTP (Theorem 3.1.1).

With the aid of the general MTP many of the Hausdorff measure results follow from results of the previous

section. We begin with the p-adic analogue of Jarnik’s Theorem which was proven by Beresnevich, Velani

and Dickinson [18].

Theorem 2.2.10. Let f be a dimension function such that r−nf(r) → ∞ as r → ∞ and r−nf(r) is

decreasing. Furthermore suppose f(r) is increasing and let ψ : N→ R+. Then

Hf (Wn(ψ)) =

0 if
∑∞

h=1 f(ψ(h))hn <∞,

∞ if
∑∞

h=1 f(ψ(h))hn =∞.

Note that Theorem 2.2.10 was proven prior to the general MTP, and used the setup of ubiquitous

systems provided in [18]. A clear corollary of the above result is the equivalent Jarnik-Besicovitch Theorem

for the dimension of Wn(ψ).

Corollary 2.2.11. For τ > 1
n + 1,

dimWn(τ) =
n+ 1

τ
.

We also prove in Chapter 5 the following result for the set of weighted simultaneously approximable

points.
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Theorem 2.2.12. Let τ = (τ1, . . . , τn) ∈ Rn+ be a weight vector satisfying
∑n

i=1 τi > n + 1 and τi > 1

for each i = 1, . . . , n. Then

dimWn(τ ) = min
1≤i≤n

{
n+ 1 +

∑n
j=i(τi − τj)
τi

}
.

This theorem requires more work to prove than Corollary 2.2.11 primarily because the set is a lim sup

set of hyperrectangles rather than hypercubes. The full proof of this theorem is provided in §4.4.2.

The Hausdorff measure result for Gn,m(ψ) proven by Beresnevich, Dickinson and Velani in [18] is as

follows.

Theorem 2.2.13. Let f be a dimension function such that h−mnf(h) → ∞ as h → 0 and h−mnf(h)

decreasing. Further suppose that h−(m−1)nf(h) is increasing. Let ψ : N→ R+ be a monotonic decreasing

function. Then

Hf (Gn,m(ψ)) =

0 if
∑∞

h=1 f(ψ(h))ψ(h)−(m−1)nhm+n−1 <∞,

∞ if
∑∞

h=1 f(ψ(h))ψ(h)−(m−1)nhm+n−1 =∞.

Clearly, the above theorem implies the n-dimensional p-adic Jarnik-Besicovitch theorem, which was

previous proven in [1].

Corollary 2.2.14. For τ > m+n
n

dimGn,m(τ) = (m− 1)n+
m+ n

τ
.

In particular, for dual p-adic approximation we have that

dimDm(τ) = (m− 1) +
m+ 1

τ
.

This concludes the Hausdorff measure and dimension results for the sets of p-adic approximable points.

As a concluding remark to this Chapter note that while there are many differences between real and

p-adic approximation they both still follow a general methodology. Namely we require a Dirichlet-

style theorem e.g. Lemma 1.2.1, Lemma 2.2.5, which via ubiquity can be used to find Khinthcine-style

theorems e.g. Theorem 1.2.6, Theorem 2.2.6, or via MTP-style theorems to construct Hausdorff dimension

statements e.g. Theorem 1.2.11, Theorem 2.2.12.
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Chapter 3

The Mass Transference Principle

The Mass Transference principle (MTP), first developed by Beresnevich and Velani [28], is an invaluable

tool in Diophantine approximation and is now part of the standard machinery for studying many problems

in metric Diophantine approximation, see [6] for a survey. The theorem, and following variations, will be

used in a variety of settings throughout this thesis. Generally the MTP allows us to turn a full measure

statement into a Hausdorff measure statement. We begin by introducing the general MTP and then

provide a proof of Theorem 1.2.10 to illustrate how the MTP can be applied. From there we discuss

the various forms of MTP from ”balls to balls” before moving on to MTP results that provide Hausdorff

measure results for lim sup sets of rectangles. Such results, including the MTP from balls to rectangles

[112] and the MTP from rectangles to rectangles [111], are crucial in the proofs of the main theorems of

Chapters 4-6. Since these results will be used in both the real and p-adic setting we provide these results

in full generality.

3.1 From Balls to Balls

Throughout this section let (X, d) be a locally compact metric space. Define g : R+ → R+ to be a

doubling function if there exists a constant λ > 1 such that for all x > 0 we have

g(2x) ≤ λg(x).

Suppose there exists constants 0 < c1 < 1 < c2 <∞ and r0 > 0 such that

c1g(r(B)) ≤ Hg(B) ≤ c2g(r(B)), (3.1)

for any ball B = B(x, r) with centre x ∈ X and r(B) = r ≤ r0. Given a dimension function f and a ball

B = B(x, r) define

Bf = B
(
x, g−1(f(r))

)
.
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Note that Bg = B. We may now state the general MTP as given in [28].

Theorem 3.1.1 (General Mass Transference Principle). Let (X, d) be a locally compact metric space and

g a doubling dimension function satisfying (3.1). Let {Bi}i∈N be a sequence of balls in X with r(Bi)→ 0

as i→∞. Let f be a dimension function such that f(x)/g(x) is monotonic and suppose that for any ball

B ⊂ X

Hg
(
B ∩ lim sup

i→∞
Bf
i

)
= Hg(B). (3.2)

Then, for any ball B ⊂ X

Hf
(
B ∩ lim sup

i→∞
Bi

)
= Hf (B). (3.3)

We note several properties of this theorem. Firstly, as seen in [28], this theorem is applicable to to the

metric space (In, d) where d is the usual Euclidean distance or sup norm. Take the doubling dimension

function g to be g(x) = xn, then we have that Hn is our usual n-dimensional Lebesgue measure up to

a constant, by Lemma 1.1.5. Hence (3.2) becomes a Lebesgue measure statement. In turn, for (3.3) we

may take any ball B ⊂ X, so by taking a ball B containing our lim sup set, then we have a Hausdorff

measure statement on our lim sup set. Similarly Theorem 3.1.1 could be phrased in the p-adic setting by

considering a similar argument to that above with Lemma 1.1.5 replaced with Lemma 2 from [65].

To illustrate an application of Theorem 3.1.1 clearly we prove the Jarnik-Besicovitch Theorem for

n-dimensional simultaneous approximation (Theorem 1.2.10).

Proof of Theorem 1.2.10. We omit the proof for the upper bound as this follows by taking a standard

covering of balls over the set provided in the definition of Wn(τ). For the lower bound let

Bs = B

(
p

q
, q

s
n
(−1−τ)

)
,

and define

A(n)
q (τ)s =

⋃
0≤pi≤q
1≤i≤n

Bs.

For s = n+1
τ+1 we have that Wn

(
1
n

)
= lim supq→∞A

(n)
q (τ)s. By Theorem 1.2.1, λn

(
Wn

(
1
n

))
= 1, hence

by Lemma 1.1.5 for any ball B ⊂ In

Hn
(
B ∩ lim sup

q→∞
A(n)
q (τ)s

)
= Hn(B).

Applying Theorem 3.1.1 we have that

Hs
(
B ∩ lim sup

q→∞
A(n)
q (τ)

)
= Hs(B).

As a requisite for Theorem 1.2.10 is that τ > 1
n , then s < n for all τ so taking B = In we have that

Hs (Wn(τ)) = Hs(In) =∞,

thus dimWn(τ) ≥ s = n+1
τ+1 .
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The general MTP also works very well in a variety of other settings, see for example the proof of

Theorem 5.2.3 in Chapter 5.

The first generalisation of the MTP was for systems of linear forms established in [29]. In this paper it

was conjectured that some of the conditions imposed were unnecessary, in [5] this was shown to be the case.

With this MTP for systems of linear forms it’s possible to prove the divergence case of Theorem 1.2.13.

This proof is beyond the scope of our use of MTP theorems, we focus exclusively on balls/rectangles. For

an in depth proof of the claim made above see [4]. Subsequently, Allen and Baker [4] proved a general

MTP for sets satisfying certain conditions, these sets included points, linear forms, self similar sets, and

smooth compact manifolds amongst many others.

In all the MTP theorems mentioned thus far the sets used in the condition statement and the output

result are evenly shrunk over the whole object (e.g. ball/linear form). None of the theorems allow for a

varied rate of compression in each coordinate axis. Where this sort of desired theorem would be useful is

in providing Hausdorff dimension results for lim sup sets of hyperrectangles, in particular Wn(Ψ). There

are various methods to obtain Hausdorff dimension results for lim sup sets of rectangles via Theorem

3.1.1 (see Chapter 5.3 of [3] for more details) but these methods require an excessive amount of work in

comparison to the theorems in the following section.

3.2 From Balls to Rectangles

Here we consider MTP style theorems that provide Hausdorff measure results for lim sup sets of rectangles.

These sort of theorems will be of particular use when considering weighted simultaneous Diophantine

approximation. We will provide these theorems in the chronological order that they were proven and

discuss the advantages, and disadvantages, of each. Such pros and cons will be illustrated by proving the

Theorem of Rynne (Theorem 1.2.11) with the two different forms of MTP.

We begin with the following theorem given by Wang, Wu, and Xu [112]. Let a = (a1, . . . , an) ∈ Rn+ be

a vector with a1 ≥ a2 ≥ · · · ≥ an. Then for any ball B(x, r) ⊂ Rn define

Ba = B(x, (ra1 , . . . , ran)),

i.e. a hyperrectangle with sidelenghts 2rai and centre x. The MTP from balls to rectangles is stated as

follows.

Theorem 3.2.1. Let (xj)j∈N be a sequence of points in [0, 1]n and (rj)j∈N be a sequence of positive real

numbers such that rj → 0 as j →∞. Let Bj = B(xj , rj) and let a = (a1, . . . , an) be a weight vector, with

ai ∈ R+ and a1 ≥ a2 ≥ · · · ≥ an ≥ 1. Suppose that

λn

(
lim sup
j→∞

Bj

)
= 1.
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Then

dim

(
lim sup
j→∞

Baj

)
≥ min

1≤k≤n

{
n+

∑n
i=k(ak − ai)
ak

}
= s.

Furthermore, provided a1 > 1, then

Hs
(

lim sup
j→∞

Baj

)
=∞.

We should note immediately that unlike Theorem 3.1.1 this theorem was proven explicitly for X = Rn,

however, it seems possible that the statement could be generalised to ”well-behaved” metric spaces1. Like

the theorems of the previous section Theorem 3.2.1 allows us to obtain a Hausdorff dimension statement

from a full measure statement. Also we are still required to start with a full measure statement for a

lim sup set of balls, it is only the Hausdorff dimension result which is for lim sup sets of hyperrectangles.

We remark that while this result is incredibly useful in providing Hausdorff dimension results for lim sup

sets of rectangles, due to the prerequisites of Theorem 3.2.1 (going from balls to rectangles) we have the

condition that the sidelenghts of the rectangles in the output statement are bounded from above by the

radius of the balls used in the Lebesgue statement. To show the usefulness, and issues, with Theorem

3.2.1 we provide a proof for a somewhat restricted version of Theorem 1.2.11.

3.2.1 A restricted proof of Theorem 1.2.11 via Theorem 3.2.1

We will prove both the upper and lower bound of this dimension result. While it is only the lower bound

that requires the use of Theorem 3.2.1, we still prove the upper bound as it is less straightforward that

that of Theorem 1.2.10. As the title of this subsection suggests the following does not prove Theorem

1.2.11 fully. In particular the condition that

n∑
i=1

τi > 1

in Theorem 1.2.11 is replaced by the condition that each τi >
1
n . Note that this condition is only needed

for the lower bound proof.

Upper Bound : Let τ = (τ1, . . . , τn) ∈ Rn+. As given in the previous section defineWn(τ ) = lim supq→∞A
(n)
q (τ )

with

A(n)
q (τ ) =

⋃
0≤pi≤q
i=1,...,n

R

(
p

q
, q−τ−1

)
.

Here R
(
p
q , q
−τ−1

)
is a rectangle with centre p

q and sidelenghts 2q−τi−1 along each i-th coordinate axis.

By the above setup we clearly have that
{
A(n)
q (τ )

}
q∈N

is a cover forWn(τ ). Choose a fixed 1 ≤ j ≤ n. As

1If X is a product metric space with each direction equipped with an Ahlfors regular Hausdorff measure. This was

discussed in correspondence with the authors of [112]
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mentioned previously, we may cover each hyperrectangle R
(
p
q , q
−τ−1

)
by a collection of balls Bp

q
(q−1−τj )

of radius q−1−τj , such that

#Bp
q
(q−1−τj ) ≤ q

∑n
i=j(τj−τi).

Let Q ∈ Z satisfy ρ > Q−τi for each i. Then, for q ≥ Q⋃
0≤pi≤q
i=1,...,n

Bp
q
(q−1−τj )

is a ρ-cover of Wn(τ ). Hence

Hs (Wn(τ )) ≤
∞∑
q=Q

qnq
∑n
i=j(τj−τi)(q−1−τj )s

which tends to zero as Q→∞, provided that

∞∑
q=0

qn+
∑n
i=j(τj−τi)−s(τj+1) <∞.

This sum converges only when

s ≥
n+ 1 +

∑n
i=j(τj − τi) + ε

τj + 1
,

for ε > 0. As this holds for all j = 1, . . . , n, and letting ε tend to zero, we have that

dimWn(τ ) ≤ min
1≤j≤n

{
n+ 1 +

∑n
i=j(τj − τi)

τj + 1

}
.

This provides us with our upper bound.

Lower bound :[condition τi ≥ 1/n for each 1 ≤ i ≤ n, rather than
∑n

i=1 τi ≥ 1] By Theorem 1.2.6 we have

that

λn

(
lim sup
q→∞

A(n)
q

(
1

n

))
= 1.

If we take a = (a1, . . . , an) to be the weight vector with coefficients

ai =
n(1 + τi)

1 + n
for 1 ≤ i ≤ n (3.4)

then for the ball B(p/q) = B(pq , q
−1− 1

n ),

Ba(p/q) = B

(
p

q
, (q−1−τ1 , . . . , q−1−τn)

)
.

Using Theorem 3.2.1 we have

dimWn(τ ) ≥ min
1≤j≤n

n+
∑n

i=j

(
n(1+τj)
1+n − n(1+τi)

1+n

)
n(1+τj)
1+n

 ,

≥ min
1≤j≤n

{
n+ 1 +

∑n
i=j (τj − τi)

1 + τj

}
.
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Note that in order to apply Theorem 3.2.1 we require a1 ≥ · · · ≥ an ≥ 1. This condition forces the

requirement that each τi ≥ 1/n (to see this combine the condition that each ai ≥ 1 and (3.4)). Thus the

lower bound dimension result given above is only valid for τ satisfying τi ≥ 1/n rather than the weaker

condition
∑n

i=1 τi ≥ 1.

3.3 From Rectangles to Rectangles

We now introduce the most recent form of MTP due to Wang and Wu [111] who established a stronger

and in a sense more versatile version of the MTP obtained in [112]. This result can truly be seen as

a MTP from rectangles to rectangles. In [111] two forms of MTP from rectangles to rectangles were

established. As we shall see, the first form has the advantage that we only need a full measure statement

to apply the theorem. For the second form a ubiquity hypothesis is required, similar to that of [18], a

condition unnecessary in all of the previously stated results.

Prior to the statement of the Theorems we state the notion of local ubiquity for rectangles introduced

in [111], which is a generalisation of the notion of local ubiquity for balls introduced in [18]. Fix an

integer n ≥ 1, and for each 1 ≤ i ≤ n let (Xi, | · |i,mi) be a bounded locally compact measure-metric

space, where | · |i denotes the metric and mi denotes a measure over Xi, which will be assume to be a

δi-Ahlfors regular probability measure. Consider the product space (X, | · |,m), where

X =

n∏
i=1

Xi, m =

n∏
i=1

mi, | · | = max
1≤i≤n

| · |i

are defined in the usual way. For example, in the setting of Chapter 2 we could take Xi = Zp, mi = µp

and | · |i = | · |p for each 1 ≤ i ≤ n so X = Znp , m = µp,n, and | · | is the usual sup norm. For any x ∈ X

and r ∈ R+ define the open ball

B(x, r) =

{
y ∈ X : max

1≤i≤n
|xi − yi|i < r

}
=

n∏
i=1

Bi(xi, r),

where Bi are the usual open r-balls associated with the ith metric space Xi. Let J be a countably infinite

index set, and β : J → R+, α 7→ βα a positive function satisfying the condition that for any N ∈ N

# {α ∈ J : βα < N} <∞.

Let ln, un be two sequences in R+ such that un ≥ ln with ln →∞ as n→∞. Define

Jn = {α ∈ J : ln ≤ βα ≤ un}.
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Let ρ : R+ → R+ be a non-increasing function such that ρ(x) → 0 as x → ∞. For each 1 ≤ i ≤ n, let

(Rα,i)α∈J be a sequence of subsets in Xi. The family of sets (Rα)α∈J where

Rα =
n∏
i=1

Rα,i,

for each α ∈ J , are called resonant sets. For a = (a1, . . . , an) ∈ Rn+ define

∆(Rα, ρ(r)a) =
n∏
i=1

∆′(Rα,i, ρ(r)ai),

where for some set A ⊂ Xi and b ∈ R+

∆′(A, b) =
⋃
a∈A

B(a, b)

is the union of balls in Xi of radius b centred at all possible points in A.

Definition 3.3.1 (Local ubiquitous system of quasi-rectangles). Call the pair
(
(Rα)α∈J , β

)
a local ubiq-

uitous system of rectangles with respect to (ρ,a) if there exists a constant c > 0 such that for any ball

B ⊂ X

lim sup
n→∞

m

(
B ∩

⋃
α∈Jn

∆(Rα, ρ(un)a)

)
≥ cm(B).

We remark here that the definition is stated as local ubiquitous systems of quasi-rectangles due to

fact that the objects ∆(Rα, ρ(un)a) may look nothing like rectangles in the usual sense, for example if

the resonant sets are lines. In the special case of the resonant sets being points then we could consider

Definition 3.2.2 as a ubiquitous system of rectangles. The second property needed to state the Wang-

Wu theorem is a local scaling property, which was first introduced in [4], and which is a version of the

intersection properties of [18]. In our setting the condition will be satisfied for k = 0 and holds trivially.

Nevertheless, we include the condition for the sake of completeness.

Definition 3.3.2 (k-scaling property). Let 0 ≤ k < 1 and 1 ≤ i ≤ n. The sequence {Rα,i}α∈J has

k-scaling property if for any α ∈ J , any ball B(xi, r) ⊂ Xi with centre xi ∈ Rα,i, and 0 < ε < r then

c2r
δikεδi(1−k) ≤ mi (B(xi, r) ∩∆(Rα,i, ε)) ≤ c3rδikεδi(1−k),

for some constants c2, c3 > 0.

Finally, for t = (t1, . . . , tn) ∈ Rn+, define

W (t) = lim sup
α∈J

∆(Rα, ρ(βα)a+t).

We now state the following theorems due to Wang and Wu [111].
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Theorem 3.3.3 (Mass Transference Principle from Rectangles to Rectangles with Ubiquity). Let (X, | ·

|,m) be a product space of n bounded locally compact metric spaces (Xi, | · |i,mi) with mi a δi-Ahlfors

probability measure, for 1 ≤ i ≤ n. Let (Rα)α∈J be a sequence of subsets contained in X and assume that

((Rα)α∈J , β) is a local ubiquitous system of rectangles with respect to (ρ,a) for some a = (a1, . . . , an) ∈

Rn+, and that (Rα)α∈J satisfies the k-scaling property. Then, for any t = (t1, . . . , tn) ∈ Rn+

dimW (t) ≥ min
Ai∈A

∑
j∈K1

δj +
∑
j∈K2

δj + k
∑
j∈K3

δj + (1− k)

∑
j∈K3

ajδj −
∑

j∈K3
tjδj

Ai

 = s,

where A = {ai, ai + ti, 1 ≤ i ≤ n} and K1,K2,K3, dependent on the choice of Ai, are a partition of

{1, . . . , n} defined as

K1 = {j : aj ≥ Ai}, K2 = {j : aj + tj ≤ Ai}\K1, K3 = {1, . . . n}\(K1 ∪K2).

Furthermore, for any ball B ⊂ X

Hs(B ∩W (t)) = Hs(B). (3.5)

Theorem 3.3.4 (Mass Transference Principle from Rectangles to Rectangles without Ubiquity). Suppose

that each measure mi is δi-Ahlfors regular and Rα,i has k-scaling property for each α ∈ J (1 ≤ i ≤ n).

Suppose

m

(
lim sup
α∈J

∆(Rα, ρ(βα)a)

)
= m(X).

Then

dimW (t) ≥ s,

where s is defined in Theorem 3.3.3.

Note that the full measure statement of Theorem 3.3.4 is far easier to establish than the local ubiquity

statement required in Theorem 3.3.3. However this short cut comes at the cost of s-Hausdorff measure

statement, which we cannot attain via Theorem 3.3.4. In cases where the ubiquity statement is relatively

easy to establish (see for example Theorem 5.1.4) this is not a problem.

3.3.1 A proof of Theorem 1.2.11 via Theorem 3.3.4

We now provide a complete lower bound proof of Theorem 1.2.11. Since Theorem 1.2.11 is a statement

purely on the Hausdorff dimension we use Theorem 3.3.4.

Lower bound of Theorem 1.2.11:[condition
∑n

i=1 τi ≥ 1] By Theorem 1.2.6 we have that

λn

(
lim sup
q→∞

A(n)
q (a)

)
= 1
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for any n-tuple a = (a1, . . . , an) such that ai > 0 and
∑n

i=1 ai = 1. Without loss of generality we may

suppose that τ1 ≥ τ2 ≥ · · · ≥ τn > 0. For 0 ≤ i ≤ n− 1 define an−i recursively by

an−i = min

{
τn−i,

1−
∑n

j=n−i+1 aj

n− i

}
.

In the case where i = 0 we take the second term to be 1
n . We claim there exists 0 ≤ K ≤ n− 1 such that

au =
1−

∑n
j=n−K+1 aj

n−K
,

for all 1 ≤ u ≤ n−K, and

au = τu

for all n −K + 1 ≤ u ≤ n. To show this claim is true note that τn−(K+1) ≥ τn−K , since τ1 ≥ · · · ≥ τn,

and so if

τn−K =
1−

∑n
j=n−K+1 aj

n−K
then clearly

τn−(K+1) ≥
1−

∑n
j=n−K+1 aj

n−K
. (3.6)

Furthermore note that

1−
∑n

j=n−(K+1)+1 aj

n− (K + 1)
=

1−
∑n

j=n−K+1 aj − an−K
n− (K + 1)

,

=
1−

∑n
j=n−K+1 aj −

(
1−
∑n
j=n−K+1 aj
n−K

)
n− (K + 1)

,

=
(n−K)

(
1−

∑n
j=n−K+1 aj

)
−
(

1−
∑n

j=n−K+1 aj

)
(n−K)(n− (K + 1))

,

=
1−

∑n
j=n−K+1 aj

n−K
,

and so, by the above and (3.6), we have that

an−(K+1) = min

{
τn−(K+1),

1−
∑n

j=n−(K+1)+1 aj

n− (K + 1)

}
=

1−
∑n

j=n−K+1 aj

n−K
.

We should observe at this point that if K = 0 then each ai = 1
n , and so we would begin with a full

measure statement on a lim sup set of balls. Note that the vector (a1, . . . , an) constructed above satisfies

the condition that
∑n

i=1 ai = 1, since

n∑
i=1

ai =

n−K∑
i=1

(
1−

∑n
j=n−K+1 aj

n−K

)
+

n∑
j=n−K+1

aj = 1.

By construction we have that ai ≤ τi for each 1 ≤ i ≤ n, so the n-tuple t = (t1, . . . , tn) is well defined as

ti = τi − ai.

Note that for each metric space Xi = I the measure λ is a 1-Ahlfors probability measure. Consider the

following three cases:
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i) Ai ∈ {a1 + 1, . . . , an−K + 1}: For these values of Ai we have that

K1 = {1, . . . , n−K}, K2 = {n−K + 1, . . . , n}, K3 = ∅.

In the case where K = 0 take K2 = ∅. Applying Theorem 3.3.4 we have that

dimWn(τ ) ≥ min
Ai

{
(n−K)(ai + 1) + (n− (n−K + 1) + 1)(ai + 1)−

∑n
j=n−K tj

ai + 1

}
,

= min
Ai

{
n−

∑n
j=n−K+1 tj

ai + 1

}
.

Since tj = 0 for n−K + 1 ≤ j ≤ n we have that dimWn(τ ) ≥ n.

ii) Ai ∈ {an−K+1 + 1, . . . , an + 1}: For such values of Ai observe that

K1 = {1, . . . , i}, K2 = {i+ 1, . . . , n}, K3 = ∅.

Applying Theorem 3.3.3 we have, in this case,

dimWn(τ ) ≥ min
Ai

{
i(ai + 1) + (n− i)(ai + 1)−

∑n
j=i+1 tj

ai + 1

}
.

Similarly to the previous case, since tj = 0 for n−K + 1 ≤ j ≤ n the r.h.s of the above equation is

n, the maximal dimension of Wn(τ ).

iii) Ai ∈ {τ1 + 1, . . . , τn + 1}: For τi = ai with n−K + 1 ≤ i ≤ n ii) covers such result. So we only need

to consider the set of Ai ∈ {τ1 + 1, . . . τn−K + 1}. If Ai is contained in such set, then

K1 = ∅, K2 = {i, . . . , n}, K3 = {1, . . . , i− 1}.

Thus, by Theorem 3.3.3, we have that

dimWn(τ ) ≥ min
Ai

{
(n− i+ 1)(τi + 1) +

∑i−1
j=1(aj + 1)−

∑n
j=i tj

τi + 1

}
,

= min
Ai

(n− i+ 1)(τi + 1) + (i− 1)
(

1 +
1−
∑n
j=n−K+1 aj
n−K

)
−
∑n−K

j=i (τj − aj)−
∑n

j=n−K+1 tj

τi + 1

 ,

= min
Ai

(n− i+ 1)(τi + 1) + (n−K)
(
1−
∑n
j=n−K+1(aj−1)

n−K

)
+ (i− 1)−

∑n−K
j=i τj −

∑n
j=n−K+1 tj

τi + 1

 ,

= min
Ai

{
n+ 1 +

∑n
j=i(τi − τj)

τi + 1

}
,

since aj + tj = τj .

These are all possible choices of Ai and thus completes the lower bound of Theorem 1.2.11.
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There are several remarks to make on this proof. Firstly, note that the general framework of proof remains

unchanged between this proof and the one above via Theorem 3.2.1. The first real difference appears

when discussing the value of K in the above proof. In the proof via Theorem 3.2.1 this value of K is

rigidly fixed at K = 0, whereas in the application of Theorem 3.3.4 this need not be the case.

Variations of the recursive formula used above will be applied regularly when using Theorems 3.3.3-

3.3.4. The technical details of the formula can be ignored, the key idea being that the formula ensures

our original rectangles used in the full measure statement have sufficiently large sidelenghts so that the

rectangles in our lim sup set of study (e.g. Wn(τ ) in this case) can fit inside.

As the above results show, when calculating the Hausdorff dimension of lim sup sets the MTP theorems

make the lower bound calculation much easier, provided a full measure statement can be proven. In

Chapters 4-6 where the lower bound result is difficult to calculate using traditional methods these MTP

style theorems are incredibly useful.
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Chapter 4

Real Weighted Simultaneous

Approximation over manifolds

We start this Chapter with an overview of the latest results in the field of simultaneous approximation over

manifolds. In particular we will focus on the more precise measure of Hausdorff measure and Hausdorff

dimension. This provides a background for our result proven at the end of the chapter, which is to obtain

a general lower bound on the dimension of weighted simultaneously approximable points on manifolds.

The contents of this chapter is essentially [23] jointly published with Beresnevich and Levesley. Since the

publication of [23] there has been an improvement in Mass Transference Principle results, namely the

developments given in [111]. This has subsequently led to an improvement in the range of approximation

functions that can be used in the main result of this chapter. See [7] for more details.

4.1 Diophantine approximation on manifolds

When considering manifolds we look at them locally on some open subset U ⊂ Rd and use the following

Monge parametrisation without loss of generality

M := {(x, f(x)) : x ∈ U} ⊆ Rn,

where d is the dimension of the manifold, and f is a map such that f : U → Rm with m = n− d being the

codimension of the manifold. As the manifold is of this form we can consider the approximation of the

coordinates x and f(x) separately. We will refer to x as the independent variables, and the codomain

of f as the dependent variables. In the special case of simultaneous approximation on manifolds the

approximation functions on both the independent and dependent variables are the same.

Much progress has been made in establishing measure theoretic results for the set Wn(ψ) ∩ M, we

highlight some of these results below. Sprindzhuk established many of the foundational results in this
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area which he referred to as Diophantine approximation on dependent variables [105]. A differentiable

manifold is called extremal if almost all points, with respect to the induced Lebesgue measure of the

manifold, are extremal, whereby we mean that the Dirichlet approximation exponent of Rn cannot be

improved for almost all points on the manifold. It was first conjectured [107] and later proven by Kleinbock

and Margulis [78] that any non-degenerate submanifold of Rn is extremal, where non-degeneracy is defined

as below.

Definition 4.1.1. A map f : U → Rn is non-degenerate at u ∈ U ⊂ Rm if there exists some k ∈ N such

that f is k times continuously differentiable on some sufficiently small ball centred at u, and the partial

derivatives of f at u of orders up to k span Rn. The map f is non-degenerate if it is non-degenerate at

almost all points u ∈ U , in terms of λm. A manifoldM, with dimM = m > n, embedded in Rn is said to

be non-degenerate if it arises from a non-degenerate map f : U → Rn where U ⊂ Rm, that is M = f(U).

Generally a manifold is non-degenerate if it is sufficiently curved almost everywhere with respect to the

induced Lebesgue measure of the manifold. As an example note that any connected analytic manifold

not contained within a hyperplane is non-degenerate. For an example of a degenerate space note that

any line or hyperplane is degenerate everywhere.

For the Hausdorff dimension of Wn(τ ) ∩M note trivially that

dimWn(τ ) ∩M ≤ dimM,

with equality if
∑n

i=1 τi ≤ 1 by Theorem 1.2.6. One of the first non-trivial advances with respect to the

Hausdorff dimension of the setW2(ψ)∩M was by Beresnevich, Dickinson, and Velani in [19], where they

determined the dimension of the set of simultaneously approximable points on sufficiently curved planar

curves in R2. There is also a related paper [30] which uses a similar technique to find the Hausdorff

dimension of W2(τ )∩M for τ = (τ1, τ2) bounded below and above by 0 and 1 respectively. Both papers

give an equality for the dimension rather than just a lower bound as presented in this paper. The following

is Theorem 4 from [30]. We denote the set of n times continuously differentiable functions by C(n).

Theorem 4.1.2 (Beresnevich et al. [30]). Let f be a C(3) function over an interval I0 ⊂ R, and let Cf :=

{(x, f(x)) : x ∈ I0}. Let τ = (τ1, τ2), where τ1 and τ2 are positive numbers such that 0 < min{τ1, τ2} < 1

and τ1 + τ2 ≥ 1. Assume that

dim
{
x ∈ I0 : f ′′(x) = 0

}
≤ 2−min{τ1, τ2}

1 + max{τ1, τ2}
. (4.1)

Then

dimW2(τ ) ∩ Cf =
2−min{τ1, τ2}
1 + max{τ1, τ2}

.

Theorem 4 from [19] is the simultaneous case where τ1 = τ2. The common approach in both papers

is ubiquity, as established in [18], to determine the lower bound. The upper bound is found through a
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combination of Huxley’s estimate [72], which gives an upper estimate on the number of rational points

within a specified neighbourhood of the curve, and the property given by (4.1). This result has been

further improved by Beresnevich and Zorin [35] who showed that the lower bound dimension result holds

for weakly non-degenerate curves (see Theorem 4 of [35]). Upper bound dimension results have been

found for various forms of weakly non-degenerate curves [68], but the complete result remains elusive. In

the n-dimensional setting Beresnevich et al. [22] proved the following result.

Theorem 4.1.3 (Beresnevich et al. [22]). Let M be any twice continuously differentiable submanifold of

Rn of codimension m and let
1

n
≤ τ < 1

m
.

Then

dimWn(τ) ∩M ≥ s :=
n+ 1

τ + 1
−m.

Furthermore,

Hs(Wn(τ) ∩M) = Hs(M).

Remark 4.1.4. In the special case where the submanifold M is a curve this result has been proven for

a wider range of τ . In particular, for any analytic non-degenerate curve C ⊂ Rn, if

1

n
< τ <

3

2n− 1
,

then the dimension result of Theorem 4.1.3 still holds, that is

dimWn(τ) ∩ C ≥ s :=
n+ 1

τ + 1
− (n− 1).

See Theorem 7.2 of [14] for more details. More recently this has been extended to non-degenerate curves

[13].

A key result required in the proof of Theorem 4.1.3 is the Mass Transference Principle (Theorem 3.1.1).

Recently, Beresnevich et.al. [26] worked on finding an upper bound on the distribution of rational points

within a ψ-neighbourhood of manifolds. Using this result they proved the following theorem, giving a

corresponding upper bound to Theorem 4.1.3.

Theorem 4.1.5. Let Mf ⊂ Rn be a manifold defined on an open subset U ⊂ Rd, and suppose that

Hs
({

α ∈ U :

∣∣∣∣∣det

(
∂2fj
∂α1∂αi

(α)

)
1≤i,j≤m

∣∣∣∣∣ = 0

})
= 0, (4.2)

for

s =
n+ 1

τ + 1
−m.

If

d >
n+ 1

2
, and

1

n
≤ τ ≤ 1

2m+ 1
,
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Then

dimWn(τ) ∩Mf ≤ s.

This is a simplified version of the main result established in [26]. In particular the convergent Hausdorff

measure result was proven for general functions ψ(q) ≥ q−1/(2m+1)(log q)2/(2m+1). Further still, the result

was proven for the general case of inhomogeneous simultaneous approximation.

Since the establishment of Theorem 4.1.5 there has been several results that allow for a broader range

of manifolds. Recently Simmons relaxed condition (4.2) as follows (see Theorem 2.1 of [104]). Suppose

there exists some k ∈ N such that

s

(
1 +

k

2m+ k

)
> n+ 1,

and

rank

(
y.

∂2f

∂αi∂αj
(α)

)
1≤i,j≤d

≥ k, ∀y ∈ Rm\{0},

for almost all α ∈ U (w.r.t the Hausdorff (s−m)-measure). Then

dimWn(τ) ∩Mf ≤ s−m.

Results of this type have also been proven for hypersurfaces. In [69] Huang proved an upper bound

on the number of rational points within a small neighbourhood of a general C(l) hypersurface H ⊆ Rn

with Gaussian curvature bounded above zero. This theorem provided a variety of results, including the

following (Theorem 5 of [69]).

Theorem 4.1.6 (Huang [69]). Let n ≥ 3 be an integer and let

l = max

{⌊
n− 1

2

⌋
+ 5, n+ 1

}
.

For any approximation function ψ, any s > n−1
2 , and any C(l) hypersurface H ⊆ Rn with non-vanishing

Gaussian curvature everywhere except possibly on a set of zero Hausdorff s-measure, we have that

Hs(Wn(ψ) ∩H) = 0 if

∞∑
q=1

ψ(q)s+1qn−1−s <∞.

In the special case of τ -approximable functions the above theorem implies that

dimWn(τ) ∩H ≤ n+ 1

τ + 1
− 1.

Thus we note that when considered against the applicable range of approximation functions from Theorem

4.1.3 this is the best possible upper bound.
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Similar results have also been found for simultaneous approximation on affine subspaces. For a matrix

M ∈ Rd×(n−d), and row vector α ∈ Rn−d let

A :=


x, (1,x).

 α

M

 : x ∈ Rd
 .

Huang and Liu [70] proved that such affine subspace A ⊆ Rn with bounded Diophantine properties on

the matrix

 α

M

 ∈ R(d+1)×(n−d), and any approximation function q−τ with τ ≥ 1/n, then

dimSn(τ) ∩ A ≤ n+ 1

τ + 1
− (n− d).

For general manifolds Theorem 4.1.3 and Theorem 4.1.5 collectively give the following corollary.

Corollary 4.1.7. Let Mf be a manifold satisfying (4.2) and d > n+1
2 . Suppose that

1

n
≤ τ ≤ 1

2m+ 1
,

then

dimWn(τ) ∩Mf =
n+ 1

τ + 1
−m.

In this chapter we adapt the arguments given in [22] to establish the following result, a weighted

simultaneous version of Theorem 4.1.3.

Theorem 4.1.8. Let M :=
{

(x, f(x)) : x ∈ U ⊂ Rd
}

where f : U → Rm with f ∈ C(2). Let τ =

(τ1, . . . , τn) ∈ Rn>0 with

τ1 ≥ · · · ≥ τd ≥ max
d+1≤i≤n

{
τi,

1−
∑m

j=1 τj+d

d

}
, and

m∑
i=1

τd+i < 1.

Then

dim (Wn(τ ) ∩M) ≥ min
1≤j≤d

{
n+ 1 +

∑n
i=j(τj − τi)

τj + 1
−m

}
.

Remark 4.1.9. Note that the minimum is taken over only the τi for 1 ≤ i ≤ d, that is the approximation

functions over the independent variables x ∈ Rd. This condition may only be due to the setup of our

proof and the fact that all approximation functions over the independent variables are larger than all

the dependent variable approximation functions. While we suspect this to be unnecessary, the mass

transference style result used in the proof of Theorem 4.1.8 forces such conditions to be applied.

Remark 4.1.10. We only have a lower bound here rather than equality. This lower bound agrees with

both Theorem 4.1.2 and Theorem 4.1.6 so in these cases this is the best lower bound. In order to

prove the upper bound result to Theorem 4.1.8 we need an upper bound result on the number of rational
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points within a Ψ-neighbourhood of a manifold. While there are many various results for counting rational

points in the simultaneous case (e.g. [72, 26, 69, 34]), a weighted simultaneous version is yet to be proven.

Without such results an upper bound result is currently out of reach.

We would like to generalise Theorem 4.1.8 to more general approximation functions. To achieve this we

must apply some constraints on our approximation function. Given a decreasing approximation function

Ψ = (ψ1, . . . , ψn) define the upper order v(Ψ) = (v1, . . . , vn) of Ψ at infinity by

vi := lim sup
q→∞

− logψi(q)

log q
, 1 ≤ i ≤ n. (4.3)

Given such a function, we can state the following Corollary.

Corollary 4.1.11. Let M :=
{

(x, f(x)) : x ∈ U ⊂ Rd
}

where f : U → Rm with f ∈ C(2). For any

approximation function Ψ = (ψ1, . . . , ψn) such that (4.3) are positive finite, and

v1 ≥ v2 ≥ · · · ≥ vd ≥ max
d+1≤i≤n

{
vi,

1−
∑n

i=d+1 vi

d

}
, and

n∑
i=d+1

vi < 1.

we have that

dim (Wn(Ψ) ∩M) ≥ min
1≤j≤d

{
n+ 1 +

∑n
i=j (vj − vi)

vj + 1

}
.

Proof. By properties of the approximation function given by (4.3) we have that, for any ε > 0 there exists

a q0 ∈ N such that for all q > q0

ψi(q) ≥ q−vi−ε , for each 1 ≤ i ≤ n.

Using this property, for ε = (ε, . . . , ε) ∈ Rn+ we obtain that

Wn(v(Ψ) + ε) ⊂ Wn(Ψ)

so by Theorem 4.1.8, and letting ε→ 0, we have that

dim (Wn(Ψ) ∩M) ≥ lim
ε→0+

dim (Wn(v(Ψ) + ε) ∩M) ,

≥ min
1≤i≤d

{
n+ 1 +

∑n
i=j (vj − vi)

vj + 1

}
,

as required.

Remark 4.1.12. Note that this proof is similar to the proof of Corollary 1 from [97]. However we can

use the weaker condition of the lim sup rather than lim as we only need the lower bound rather than

equality.
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The remainder of this Chapter is laid out as follows. In the following section we recall some key theorems

required in the proof of Theorem 4.1.8. One of these key results, the Mass transference principle from

balls to rectangles, has already been stated in Chapter 3. In §3.2.1 we prove a Dirichlet style result on

weighted simultaneous approximation over manifolds. This result is vital in order to apply the mass

transference style theorem. In the final section we combine the results to prove Theorem 4.1.8.

4.2 Preliminary results

As stated above a key result in the proof of Theorem 4.1.8 is the Mass Transference Principle (MTP)

from balls to rectangles (Theorem 3.2.1). We refer the reader to Chapter 3 §3.2 for the statement and

an application of the Theorem. As observed in Chapter 3 we need two key ingredients in order to apply

Theorem 3.2.1. Firstly we need a lim sup set of balls with full Lebesgue measure. Secondly, we need to

construct a weight vector a that we can use to transform our set of full Lebesgue measure to our desired

lim sup set of hyperrectangles. We will ascertain these results in the following section.

The last measure theoretic result we will be using to prove Theorem 4.1.8 is a lemma from [31], which

essentially states that the Lebesgue measure of a lim sup set remains the same when the balls are altered

by some fixed constant.

Lemma 4.2.1. Let {Bi} be a sequence of balls in Rk with λk(Bi) → 0 as i → ∞, where λk is k-

dimensional Lebesgue measure. Let {Ui} be a sequence of Lebesgue measurable sets such that Ui ⊂ Bi for

all i. Assume that for some c > 0, λk(Ui) ≥ cµk(Bi) for all i. Then the sets

lim sup
i→∞

Ui and lim sup
i→∞

Bi

have the same Lebesgue measure.

We can use Lemma 4.2.1 to change the radius of the balls used in our construction of the lim sup set

by a constant and still ensure we have full Lebesgue measure.

4.2.1 Dirichlet Style Theorem on Manifolds

In order to apply Theorem 3.2.1 we construct a lim sup set of balls with full Lebesgue measure. We

achieve this by varying the approximation functions only over the dependent variables, so we can form

a lim sup set from the balls centred at certain rational points in the independent variable space. The

theorem below constructs such a set.

Theorem 4.2.2. Let M :=
{

(x, f(x)) : x ∈ U ⊂ Rd
}

where f : U → Rm with f ∈ C(2). Let τ =

(τ1, . . . , τm) ∈ Rm>0, and let τ̃ = 1
m

∑m
i=1 τi. If

τ̃m < 1,
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then for any x ∈ U there is an integer Q0 such that for any Q ≥ Q0 there exists (p1, . . . , pn, q) ∈ Zn × N

with 1 ≤ q ≤ Q and (p1q , . . . ,
pd
q ) ∈ U such that

∣∣∣∣xi − pi
q

∣∣∣∣ < 4m/d

q(Q1−τ̃m)1/d
, 1 ≤ i ≤ d, (4.4)

and ∣∣∣∣fj (p1q , . . . , pdq
)
−
pd+j
q

∣∣∣∣ < q−τj−1

2
. 1 ≤ j ≤ m. (4.5)

Further, for any x ∈ U\Qd there exists infinitely many (p1, . . . , pn, q) ∈ Zn × N with (p1q , . . . ,
pd
q ) ∈ U

satisfying (4.5) and ∣∣∣∣xi − pi
q

∣∣∣∣ < 4m/dq−1−(1−τ̃m)/d, 1 ≤ i ≤ d. (4.6)

Before proving Theorem 4.2.2 we will state several properties of our manifoldM that we will be using.

Given that M is constructed by a twice continuously differentiable function f we can choose a suitable

U such that, without loss of generality, the following two constants exist:

C = max
1≤i,k≤d
1≤j≤m

sup
x∈U

∣∣∣∣ ∂2fj
∂xi∂xk

(x)

∣∣∣∣ <∞, (4.7)

and

D = max
1≤i≤d
1≤j≤m

sup
x∈U

∣∣∣∣∂fj∂xi
(x)

∣∣∣∣ <∞. (4.8)

A brief outline of the proof is as follows; firstly we alter the system of inequalities to a suitable form so

Minkowski’s Theorem for systems of linear forms can be applied. We then use Taylor’s approximation

Theorem to return the system of inequalities to the initial form and show that the dependent variable

inequalities can be displayed in terms of the independent variable approximation. We finish by concluding

that there are infinitely many different integer solutions via a proof by contradiction. The proof given

below is a generalisation of the proof of Theorem 4 in [22] to the case of approximations with weights.

Proof. Define

gj := fj −
d∑
i=1

xi
∂fj
∂xi

, 1 ≤ j ≤ m,

and consider the system of inequalities∣∣∣∣∣qgj(x) +

d∑
i=1

pi
∂fj
∂xi

(x)− pd+j

∣∣∣∣∣ < Q−τj

4
, 1 ≤ j ≤ m, (4.9)

|qxi − pi| <
4m/d

Q(1−τ̃m)/d
, 1 ≤ i ≤ d, (4.10)

|q| ≤ Q. (4.11)
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Taking the product of the right hand side of the above inequalities, and taking the determinant of the

matrix

A =



g1
∂f1
∂x1

. . . ∂f1
∂xd

−1 . . . 0
...

...
...

...
. . .

...

g2
∂fm
∂x1

. . . ∂fm
∂xd

0 . . . −1

x1 −1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

xd 0 . . . −1 0 . . . 0

1 0 . . . . . . . . . . . . 0


,

then by Minkowski’s Theorem for systems of linear forms, there exists a non-zero integer solution (p, q) ∈

Zn+1 to the inequalities (4.9)-(4.11). We now show that this system of inequalities implies inequalities

(4.4)-(4.5). Firstly, fix some x ∈ U and as U is open there exists a ball B(x, r) for some r > 0 which is

contained in U . Define

Q :=

{
Q ∈ N :

(
4−mQ1−τ̃m)−1/d < min

{
1, r,

(
1

2Cd2

)1/2
}}

,

where C is defined by (4.7). As τ̃m < 1 we have that
(
4−mQ1−τ̃m)−1/d → 0 as Q→∞, so there exists an

integer Q0 such that for all Q ≥ Q0 we have that Q ∈ Q. We will show that for any Q ∈ Q the solution

(p1, . . . , pn, q) to the system of inequalities (4.9)-(4.11) is a solution to (4.4)-(4.5).

Suppose q = 0. By the definition of the set Q we have that(
4−mQ1−τ̃m)−1/d < 1.

By the set of inequalities (4.10) we have that |pi| < 1, hence pi = 0 for all 1 ≤ i ≤ d. Further, from (4.9)

we can see that

|pd+j | <
Q−τj

4
< 1,

for 1 ≤ j ≤ m. This would conclude that our solution (p1, . . . , pn, q) = 0 which contradicts Minkowski’s

Theorem for systems of linear forms, thus |q| ≥ 1. Without loss of generality we will assume that q ≥ 1.

Dividing (4.10) by q gives us that
(
p1
q , . . . ,

pd
q

)
∈ B(x, r) ⊂ U , and note that (4.4) is satisfied upon

dividing (4.10) by q.

Lastly we need to prove that (4.9)-(4.11) implies (4.5). By Taylor’s approximation Theorem

fj

(
p1
q
, . . . ,

pd
q

)
= fj(x) +

d∑
i=1

∂fj
∂xi

(x)

(
pi
q
− xi

)
+Rj(x, x̂),

for some x̂ on the line connecting x and
(
p1
q , . . . ,

pd
q

)
, and

Rj(x, x̂) =
1

2

d∑
i=1

d∑
k=1

∂2fj
∂xi∂xk

(x̂)

(
pi
q
− xi

)(
pk
q
− xk

)
.
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We may rewrite (4.9) using Taylor’s theorem and our definition of gj as∣∣∣∣∣qgj(x) +

d∑
i=1

pi
∂fj
∂xi

(x)− pd+j

∣∣∣∣∣ =

∣∣∣∣qfj (p1q , . . . , pdq
)
− pd+j − qRj(x, x̂)

∣∣∣∣ .
Using the triangle inequality and the assumption that

|qRj(x, x̂)| < q−τj

4
, (4.12)

we obtain that ∣∣∣∣qfj (p1q , . . . , pdq
)
− pd+j

∣∣∣∣ < Q−τj

4
+
q−τj

4
.

Noting the monotonicity of the approximation function and dividing by q we obtain∣∣∣∣fj (p1q , . . . , pdq
)
−
pd+j
q

∣∣∣∣ < q−τj−1

2
,

thus (4.5) is satisfied. To complete the first part of the theorem it remains to show that (4.12) is satisfied

for all Q ∈ Q. Using the definition of Rj(x, x̂) we have that

|qRj(x, x̂)| =

∣∣∣∣∣q2
d∑
i=1

d∑
k=1

∂2fj
∂xi∂xk

(x̂)

(
pi
q
− xi

)(
pk
q
− xk

)∣∣∣∣∣ ,
≤Cqd

2

2

(
4m/d

qQ(1−τ̃m)/d

)2

,

for 1 ≤ j ≤ m. Hence we must show that

Cqd2

2

(
4m/d

qQ(1−τ̃m)/d

)2

<
q−τj

4
,

for 1 ≤ j ≤ m. Rearranging the equation we obtain the inequality(
4m

Q(1−τ̃m)

)1/d

<

(
q1−τj

2Cd2

)1/2

.

Considering that τ̃m < 1 we have that each τj < 1, and so inf
q∈N

q1−τj = 1 for each 1 ≤ j ≤ m. Thus by the

definition of the set Q the above inequality is satisfied by all Q ∈ Q, so (4.12) is true for all 1 ≤ j ≤ m.

We now prove the second part of the theorem, that is that there is infinitely many integer vector

solutions. Suppose that there are only finitely many such q and let A be the corresponding set. As

x ∈ U\Qd there exists some 1 ≤ j ≤ d where xj /∈ Q. Fix such j, then there exists some δ > 0 such that

δ ≤ min
q∈A, pj∈Z

|qxj − pj |.

By (4.4) we now have that

δ ≤ |qxj − pj | ≤
4m/d

Q(1−τ̃m)/d
.

However, as Q is an infinite set and Q(1−τ̃m)/d → ∞ as Q → ∞, we have a contradiction so there are

infinitely many different q. Lastly, as q ≤ Q, we can replace Q by q in (4.4) to obtain (4.6) as desired.
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4.3 Proof of Theorem 4.1.8

We are now in a position to prove Theorem 4.1.8. To do so we construct a lim sup set of balls satisfying

the conditions of Theorem 4.2.2. The lim sup set will thus have full Lebesgue measure. Next we

choose a suitable weight vector a that we use to transform our lim sup set of balls to a lim sup set

of hyperrectangles with a known lower bound for its Hausdorff dimension. The proof is completed by

showing that the constructed lim sup set is at least contained within our set Wn(τ ) ∩M, thus our lower

bound is a lower bound for Wn(τ ) ∩M.

Proof. Take the set

N(f, τ) :=

{
(p, q) ∈ Zn × N :

(
p1
q
, . . . ,

pd
q

)
∈ U ,

and

∣∣∣∣fj (p1q , . . . , pdq
)
−
pd+j
q

∣∣∣∣ < q−τd+j−1

2
, 1 ≤ j ≤ m

}
.

In view of Theorem 4.2.2 we have that for almost all x ∈ U there are infinitely many different vectors

(p, q) ∈ N(f, τ) satisfying ∣∣∣∣xi − pi
q

∣∣∣∣ < 4m/dq−1−(1−τ̃m)/d, 1 ≤ i ≤ d,

where τ̃ = 1
m

∑m
i=1 τd+i. By Lemma 4.2.1, we can choose a constant k > 0 such that for almost every

x ∈ U there are infinitely many different vectors (p, q) ∈ N(f, τ) satisfying∣∣∣∣xi − pi
q

∣∣∣∣ < kq−1−(1−τ̃m)/d, 1 ≤ i ≤ d.

Take the ball

B(p,q) :=

{
x ∈ U :

∣∣∣∣xi − pi
q

∣∣∣∣ < kq−1−(1−τ̃m)/d for 1 ≤ i ≤ d
}
.

By Theorem 4.2.2 and Lemma 4.2.1 we have that

µd

(
lim sup

(p,q)∈N(f,τ)
B(p,q)

)
= 1,

where µd is the d dimensional Lebesgue measure. Let a = (a1, . . . , ad) ∈ Rd+ be a weight vector with each

ai =
d(1 + τi)

d+ 1− τ̃m
, 1 ≤ i ≤ d. (4.13)

Note that by the condition that τi ≥ 1−τ̃m
d for all 1 ≤ i ≤ d, we have that each ai ≥ 1. Ba(p,q) is the

hyperrectangle with the following properties:

Ba(p,q) =

{
x ∈ U :

∣∣∣∣xi − pi
q

∣∣∣∣ < kaiq−1−τi , 1 ≤ i ≤ d
}
.

By Theorem 3.2.1 we have that

dim

(
lim sup

(p,q)∈N(f,τ)
Ba(p,q)

)
≥ min

1≤j≤d

{
d+

∑d
i=j(aj − ai)
aj

}
.
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Replacing each ai with (4.13) we have that

dim

(
lim sup

(p,q)∈N(f,τ)
Ba(p,q)

)
≥ min

1≤j≤d

d+
∑d

i=j

(
d(1+τj)
d+1−τ̃m −

d(1+τi)
d+1−τ̃m

)
d(1+τj)
d+1−τ̃m

 ,

= min
1≤j≤d

{
d(d+ 1− τ̃m) +

∑d
i=j(d(1 + τj)− d(1 + τi))

d(1 + τj)

}
,

= min
1≤j≤d

{
d+ 1− τ̃m+

∑d
i=j(τj − τi)

(1 + τj)

}
.

Using the definition of τ̃ and that d = n−m we may rewrite this as

dim

(
lim sup

(p,q)∈N(f,τ)
Ba(p,q)

)
≥ min

1≤j≤d

{
n−m+ 1−

∑n
i=d+1 τi +

∑d
i=j(τj − τi)

1 + τj

}
,

= min
1≤j≤d

{
n−m+ 1 +

∑n
i=d+1(τj − τi)−mτj +

∑d
i=j(τj − τi)

1 + τj

}
,

= min
1≤j≤d

{
n+ 1−m(1 + τj) +

∑n
i=j(τj − τi)

1 + τj

}
,

= min
1≤j≤d

{
n+ 1 +

∑n
i=j(τj − τi)

1 + τj
−m

}
,

as required. We now finish by showing that

dim(Wn(τ ) ∩M) ≥ dim

(
lim sup

(p,q)∈N(f,τ)
Ba(p,q)

)
.

Note that any y ∈ Wn(τ ) ∩ M must have infinitely many solutions (p, q) ∈ Zn × N to the following

system of inequalities

|qxi − pi| < q−τi , 1 ≤ i ≤ d, (4.14)

|qf(x)− pd+j | < q−τd+j , 1 ≤ j ≤ m, (4.15)

where y = (x, f(x)) for some x = (x1, . . . , xd) ∈ U . Let the set of x satisfying (4.14)-(4.15) be denoted

by πd(Wn(τ ) ∩M). This set is the orthogonal projection of Wn(τ ) ∩M onto Rd. A result of fractal

geometry states that a bi-Lipschitz mapping of a set has the same Hausdorff dimension of the original

set (see Proposition 3.3 of [59]). As the projection πd is bi-Lipschitz it is sufficient to prove that

dimπd(Wn(τ ) ∩M) ≥ min
1≤j≤d

{
n+ 1 +

∑n
i=j(τj − τi)

1 + τj
−m

}
.

Let x ∈ Ba(p,q) for some (p, q) ∈ N(f, τ). On using the triangle inequality, the mean-value theorem, and
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(4.8) we have that for any 1 ≤ j ≤ m,∣∣∣∣fj(x)−
pd+j
q

∣∣∣∣ ≤ ∣∣∣∣fj(x)− fj
(
p1
q
, . . . ,

pd
q

)∣∣∣∣+

∣∣∣∣fj (p1q , . . . , pdq
)
−
pd+j
q

∣∣∣∣ ,
<

∣∣∣∣(∂f1∂x1
, . . . ,

∂fd
∂xd

)
.

(
x−

(
p1
q
, . . . ,

pd
q

))∣∣∣∣+
q−1−τd+j

2
,

<D

d∑
i=1

∣∣∣∣xi − pi
q

∣∣∣∣+
q−1−τd+j

2
,

<Ddmax
1≤i≤d

∣∣∣∣xi − pi
q

∣∣∣∣+
q−1−τd+j

2
,

<Ddkadq−1−τd +
q−1−τd+j

2
.

We can choose k sufficiently small, and note that τd ≥ max1≤j≤m τd+j , so that we have∣∣∣∣fj(x)−
pd+j
q

∣∣∣∣ < q−1−τj , 1 ≤ j ≤ m.

We have that

Ba(p,q) ⊆

x ∈ U :

∣∣∣xi − pi
q

∣∣∣ < q−1−τi , 1 ≤ i ≤ d,

for i.m (p, q) ∈ N(f, τ) ⊂ Zn × N

 .

Hence for any x ∈ lim sup
(p,q)∈N(f,τ)

Ba(p,q), (4.14)-(4.15) are satisfied for infinitely many (p, q) ∈ Zn × N, thus

dimπd(Wn(τ ) ∩M) ≥ dim

(
lim sup

(p,q)∈N(f,τ)
Ba(p,q)

)
,

as required.

4.4 Concluding remarks on Theorem 4.1.8

Using the arguments above and, principally applying the MTP of [30], we have established a lower bound

for Wn(τ ) ∩M which coincides with that of Wn(ψ) ∩M from Theorem 4.1.3. The natural question

is can equality be determined. That is, can an upper bound be found which agrees with our calculated

lower bound? Thus achieving a complete analogue of Theorem 4.1.8. In trying to attain an upper bound,

it is likely necessary to find an estimate for the number of rational points within a τ -neighbourhood of

the manifold. There are a variety of results on the cardinality of rational points within a simultaneous

ψ-neighbourhood of curves, manifolds, hypersurfaces, and affine subspaces (see [72], [26], [69], [70], [34]

respectively). Unfortunately, no such results have been found for the number of rational points within a

weighted Ψ-neighbourhood of such subsets. It may be possible to adapt the proofs of the simultaneous

results to give us weighted version of such results, but this is yet to be proven. We suspect such result

would lead to a suitable upper bound corresponding to Theorem 4.1.8.

We remark that since the our proof of Theorem 4.1.8 there has been developments in Mass Transference

style theorems. In particular, Wang and Wu [111] have developed a Mass Transference Principle from
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rectangles to rectangles(MTPRR), see §4.2.1 for more details. The MTPRR requires a ubiquity hypothesis

which is more restrictive than that required by the MTP. Unfortunately Theorem 4.2.2 is not sufficient

to prove the ubiquity hypothesis. While using the MTPRR would likely improve the bound on τ , it

will require additional conditions on the manifolds. In this chapter we only require the manifold be

twice continuously differentiable, whereas with the ubiquity hypothesis we would expect to need some

non-degeneracy condition. We intend to pursue this in a further paper.

Lastly, note that Corollary 4.1.11 whilst being relatively general does not cover all approximation

functions. We provide no results for functions with infinite upper order (see (4.3)), and also provide

imprecise lower dimension results for approximation functions with different upper and lower orders.

For example, an approximation function defined by a step function bounded between two functions q−τ1

and q−τ2 would have different upper and lower bounds. It would be of interest to extend the class of

approximating functions somehow.

66



Chapter 5

Simultaneous p-adic Approximation over

manifolds

In this chapter we prove the new results stated in Chapter 2. A key result used here is a new zero-

one law which is also proven here. We also provided a brief survey on the state of the art of p-adic

approximation over manifolds. Within this section we give our new results on the Hausdorff dimension

of various manifolds. These results are proven in the latter part of this chapter. The contents of this

chapter is essential that of [24] in joint work with Beresnevich and Levesley.

5.1 Weighted simultaneous p-adic approximation

We begin by restating the Theorems of Chapter 2 that we will prove here. Let Ψ = (ψ1, . . . , ψn) be an

n-tuple of approximation functions as in previous chapters, and for each a0 ∈ N let

Aa0(Ψ) =
⋃

(a1,...,an)∈Zn
|ai|≤a0 (1≤i≤n)

{
x = (x1, . . . , xn) ∈ Znp :

∣∣∣∣xi − ai
a0

∣∣∣∣
p

< ψi(a0) for all 1 ≤ i ≤ n

}
. (5.1)

Define the set of p-adic simultaneously Ψ-approximable points in Zp as

Wn(Ψ) = lim sup
a0→∞

Aa0(Ψ).

Similarly let

A′a0(Ψ) =
⋃

(a1,...,an)∈Zn
|ai|≤a0 & (ai,a0)=1 (1≤i≤n)

{
x ∈ Znp :

∣∣∣∣xi − ai
a0

∣∣∣∣
p

< ψi(a0) for all 1 ≤ i ≤ n

}
(5.2)

and define the corresponding limsup set as

W′n(Ψ) = lim sup
a0→∞

A′a0(Ψ).
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For convenience we restate the theorems of chapter 2 that we will prove in this chapter:

Theorem 5.1.1. Let ψi : N→ [0, 1) be approximation functions with ψi(q)� 1
q for each 1 ≤ i ≤ n and

let Ψ = (ψ1, . . . , ψn). Suppose that
∏n
i=1 ψi is monotonically decreasing. Then

µp,n(W′n(Ψ)) =

0 if
∑∞

q=1 q
n
∏n
i=1 ψi(q) <∞,

1 if
∑∞

q=1 q
n
∏n
i=1 ψi(q) =∞.

Theorem 5.1.2. Let ψi : N → [0, 1) be approximation functions with ψi(q) � 1
q for 1 ≤ i ≤ n and let

Ψ = (ψ1, . . . , ψn). For ϕ the Euler phi function suppose that

lim sup
N→∞

∑N
q=1 ϕ(q)n

∏n
i=1 ψi(q)∑N

q=1 q
n
∏n
i=1 ψi(q)

> 0. (5.3)

Then

µp,n(W′n(Ψ)) =

0 if
∑∞

q=1 ϕ(q)n
∏n
i=1 ψi(q) <∞,

1 if
∑∞

q=1 ϕ(q)n
∏n
i=1 ψi(q) =∞.

Remark 5.1.3. Note that the condition that each ψi(q) � 1
q is a necessary condition, since the p-adic

distance between any two rational integers can be made arbitrarily small. This is in stark contrast to the

real case where ψ(q) < 1
2 is sufficient to ensure rectangles in the same ’layer’ are non-intersecting. We

remark that the monotonicity condition of Theorem 5.1.1 is only required in the divergence case. This

condition is replaced in the Duffin-Schaeffer type theorem [56] of Theorem 5.1.2.

These results, alongside a zero-one law on W′n(Ψ), will be proven in §5.3.1-5.4. In the case of Hausdorff

dimension we prove the following Theorem

Theorem 5.1.4. Let τ = (τ1, . . . , τn) ∈ Rn+ be such that
∑n

i=1 τi > n+ 1 and τi > 1 for each 1 ≤ i ≤ n.

Then

dimWn(τ ) = min
1≤i≤n

{
n+ 1 +

∑
τj<τi

(τi − τj)
τi

}
.

Remark 5.1.5. We note that the condition on the summation of the exponent vector τ is present due

to the fact that if
∑n

i=1 τi ≤ n + 1, then, by the p-adic version of Dirichlet’s Theorem, we have that

Wn(τ ) = Znp .

Remark 5.1.6. The condition that each τi > 1 may seem unnecessarily restrictive, however, the following

reasoning shows why this must be the case. The key reasoning behind the condition is that Z is dense

in Zp so in any coordinate axis where τi < 1 all points along the axis can be approximated, regardless

of the choice of a0 in our approximation sets. If, for example, we considered the approximation set

W2((1−ε, τ2)) for ε > 0 and τ2 > 2 then the above argument gives us that W2((1−ε, τ2)) = Zp×W1(τ2).
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Using well known bounds on the Hausdorff dimension of product spaces (see e.g [109]) we have that

dimW1(τ2) + dimZp ≤ dimW2((1− ε, τ2)) ≤ dimW1(τ2) + dimB Zp,

where dimB is the box-counting dimension (see [59] for the definition of box-counting dimension and it’s

relation to the Hausdorff dimension), we have that

dimW2((1− ε, τ2)) =
2

τ2
+ 1.

However, if Theorem 5.1.4 was applicable we would have that

dimW2((1− ε, τ2)) = min

{
3 + (τ2 − (1− ε))

τ2
,

3

1− ε

}
=

2

τ2
+
τ2 + ε

τ2
.

We will prove Theorem 5.1.4 in §5.5. An overview of the proof is as follows: Using a standard method

in ubiquitous systems we show that the lim sup set of rectangles used to construct Wn(τ ) is a ubiquitous

system of rectangles. Applying the MTP for rectangles to rectangles developed in [111](see Chapter 3 for

more details) we obtain the lower bound dimension result. The corresponding upper bound result uses

the standard cover of Wn(τ ) and a similar geometrical argument to that in the real case.

We can further extend this result to general approximation functions. Suppose that the limits

vi = lim
q→∞

− logψi(q)

log q
, (5.4)

exist and are positive for each 1 ≤ i ≤ n. Define the exponents vector v = (v1, . . . , vn) ∈ Rn+.

Corollary 5.1.7. Let Ψ be such that the limits (5.4) exist and are positive. Suppose that
∑n

i=1 vi > n+1

and each vi > 1. Then

dimWn(Ψ) = min
1≤i≤n

{
n+ 1 +

∑
vj<vi

(vi − vj)
vi

}
.

Proof. By the condition that each function ψi has corresponding positive limit (5.4), for any ε > 0 we

have that

q−(vi+ε) ≤ ψi(q) ≤ q−(vi−ε) (1 ≤ i ≤ n)

for all sufficiently large q ∈ N. Let ε = (ε, . . . , ε) ∈ Rn+. Then, we have that

Wn(v + ε) ⊆Wn(Ψ) ⊆Wn(v − ε).

By letting ε→ 0, and applying Theorem 5.1.4 we get the required result.
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5.2 p-adic approximation on manifolds

When it comes to p-adic approximation on curves and manifolds, less is known. In [79], Kleinbock and

Tomanov, generalized the key results from [78] to the S-arithmetic setting (see chapter 7 for more details

on S-arithmetic space), which includes the p-adic setting. In particular, Kleinbock and Tomanov proved

that under the natural assumption
∑n

i=1 τi > n+1 the set Wn(τ )∩C has zero measure on C for a large and

natural class of manifolds in Qn
p . Whilst there are no results relating to the Haar measure of Wn(Ψ)∩C

for C a p-adic curve or manifold in the case Ψ is a general n-tuple of approximation functions, there are

several results for dual approximation including inhomogeneous setting, see [17, 21, 43, 44, 45, 52, 53, 91].

Regarding the Hausdorff dimension of Wn(τ ) ∩ C, Bugeaud, Budarina, Dickinson, and O’Donnell [46]

and more lately Badziahin, Bugeaud and Schleischitz [11] calculated dim(Wn(τ) ∩ C) in the case C =

(x, . . . , xn) for large exponents τ . Apart from these pair of findings nothing else seems to be known. In

this paper we obtain a sharp lower bound on the dimension of Wn(τ )∩C for a natural class of manifolds

defined over Zdp and relatively small exponent vector τ . Specifically we will consider manifolds immersed

by maps with the following property, which is a multivariable analogue of C1 functions given in for

example [102].

Definition 5.2.1. A function f : U → Qp defined on an open set U ⊂ Qd
p will be referred to as differen-

tiable with quadratic error (DQE) at x ∈ U if there exists constants C > 0 and ε > 0 and p-adic numbers

∂f(x)/∂x` ∈ Qp (1 ≤ ` ≤ d), which will be referred to as partial derivatives of f at x, such that for any

y ∈ B(x, ε) ⊂ U ∣∣∣∣∣f(y)− f(x)−
d∑
i=1

∂f(x)

∂xi
(yi − xi)

∣∣∣∣∣
p

< C max
1≤i≤d

|yi − xi|2p . (5.5)

We will say that a map f = (f1, . . . , fm) : U → Zmp is DQE at x with if so is each coordinate function fj.

We will say that f (resp. f) is DQE on U if it is DQE at each point x ∈ U .

Remark 5.2.2. Note that if the right hand side of (5.5) was simply o (max1≤j≤d |yj − xj |p) then f would

be simply differentiable at x. The above definition imposes a stronger condition than differentiability in

the sense that the error term in (5.5) is quadratic. It is readily verified that any C2 function, as defined

in [98] (see also [79] for a brief survey of p-adic Ck functions), is DQE at every point. The converse may

not be true. Mahler’s normal functions are C∞ and so they are DQE.

We are now in position to state our results for τ -approximable points on Cf , extending Theorem 4.1.8

to the p-adic setting. This can be done in two ways: by stating our results for exactly the set Wn(τ )∩Cf ,

or by stating them for the set of x ∈ U such that (x, f(x)) ∈Wn(τ ), we opt for the latter since it requires

fewer assumptions, albeit the two ways are equivalent if we assume that f is a Lipschitz map, which

follows from Proposition 1.1.7. Thus, our statements will be about the Hausdorff measure and dimension
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of

F−1 (Wn(τ )) := {x ∈ U : (x, f(x)) ∈Wn(τ )} .

It is easily seen that this set is subset of the projection of Wn(τ ) onto the first d coordinates.

Theorem 5.2.3. Let Cf := {(x, f(x)) : x ∈ U} ⊂ Znp , where f : U → Zmp is DQE at almost all point of

an open set U ⊆ Zdp. Suppose

1 +
1

n
< τ < 1 +

1

m
,

Then

dim(F−1 (Wn(τ)) ≥ s :=
n+ 1

τ
−m. (5.6)

Furthermore, if f is Lipschitz on U then

Hs
(
F−1 (Wn(τ))

)
=∞. (5.7)

Theorem 5.2.4. Let Cf := {(x, f1(x), . . . , fn−1(x)) : x ∈ U} be a curve, where for i = 1, . . . , n − 1

the function fi : U → Zp is DQE at almost every point of an open subset U ⊂ Zp. Suppose that

τ = (τ1, τ2, . . . , τn) ∈ Rn+ satisfies the conditions

τ̃ :=
n∑
j=2

τj < n, τ1 ≥ max
2≤i≤n

{τi, n+ 1− τ̃} and τi > 1 for 2 ≤ i ≤ n.

Then

dim F−1 (Wn(τ )) ≥ s :=
n+ 1 +

∑n
j=2(τ1 − τj)
τ1

− (n− 1) =
n+ 1− τ̃

τ1
. (5.8)

Furthermore, if f is Lipschitz on U or τ1 > max2≤i≤n τi then

Hs
(
F−1 (Wn(τ ))

)
=∞. (5.9)

Theorem 5.2.5. Let Cf be satisfy the conditions of Theorem 5.2.3 and suppose that τ = (τ1, τ2, . . . , τn) ∈

Rn+ satisfies the conditions

τi > 1, (1 ≤ i ≤ n),

m∑
i=1

τd+i < m+ 1,

n∑
i=1

τi > n+ 1, and min
1≤i≤d

τi ≥ max
1≤j≤m

τd+j .

Then

dim
(
F−1 (Wn(τ ))

)
≥ min

1≤i≤d

{
n+ 1 +

∑
τj<τi

(τi − τj)
τi

−m

}
. (5.10)

Remark 5.2.6. Note that the dimension results of Theorem 5.2.3–5.2.4 are contained within Theorem

5.2.5. However, due to the method of proof we are not able to obtain the Hausdorff measure result in

Theorem 5.2.5. Also note that the statements remain true if the assumptions imposed on f are imposed

on a sufficiently small ball B ⊂ U instead of U .
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Remark 5.2.7. The assumption that the approximations over the independent variables (τ1 in Theorem

5.2.4 and τ1, . . . , τd in Theorem 5.2.5) are larger than the approximations over the dependent variables

is merely technical. Observe that this conditions is not needed amongst the approximations over each

respective variable, since we may permute the variables to obtain the desired ordering. However, the

other requirements placed on τ are necessary to allow the result to hold for as general set of manifolds

as possible. In particular, the conditions that
∑m

i=1 τd+i < m + 1 and τi > 1 for 1 ≤ i ≤ n ensure

that even if the manifold is a hyperplane passing through badly approximable points we will still have

an infinite number of rational approximations. If these conditions do not hold a counterexample can be

readily obtained on modifying the example of Remark 3 in [22]. It is also easy to see that the lower bound

τ1 ≥ n+ 1− τ̃ is necessary for otherwise (5.8) would be false. The upper bound τ̃ < n on τ̃ can likely be

improved, however this will require imposing additional conditions on the curves such as non-degeneracy

(meaning 1, x, f1(x), . . . , fn−1(x) are linearly independent over Zp), and will require a different approach

such as that of [14]. We plan to address the problem for non-degenerate curves separately in a subsequent

publication.

Remark 5.2.8. We expect that the lower bound of Theorem 5.2.3-5.2.5 is sharp and each dimension result

should indeed be equality at least for non-degenerate curves. Obtaining the upper bounds represents a

challenging open problem even in dimension 2. We would like to stress that there is currently no equivalent

to Huxley’s estimate [72] in the p-adic setting, let alone the sharper Vaughan-Velani result [110]. The

absence of such estimates is the only obstacle when trying to establish the complementary upper bounds.

The remainder of this Chapter is devoted to proofs of the Theorems stated above. Firstly we provide

proofs of the Haar measure statement results, followed by a proof of the Hausdorff dimension result in

the classical case, and finished by proofs of the statements on approximation over p-adic manifolds. Prior

to these we provide a preliminary section on know results that will be used throughout the rest of the

chapter. Since many of the results require a lower bound Hausdorff dimension result we will be using a

variety of Mass Transference Principles all of which can be found in Chapter 3.

5.3 Auxiliary concepts and results

Before giving the proofs of Theorems 5.1.1, 5.1.4 and 5.2.3-5.2.5, we collect together some auxiliary

results and concepts which we will need. We prove the following lemma, which can be considered as the

p-adic equivalent of Minkowski’s Theorem for systems of linear forms.

Lemma 5.3.1. Let Li(x), with i = 1, . . . , n, be linear forms in x = (x0, x1, . . . , xn) with p-adic integer

coefficients. Let τ = (τ1, . . . , τn) ∈ Rn+ satisfy
∑n

i=1 τi = n + 1 and σ = (σ1, . . . , σn) ∈ Rn satisfy∑n
i=1 σi = n. Then there exists Hσ > 0 such that for all integers H0, . . . ,Hn ≥ 1 such that Tn+1 :=

72



(H0 + 1) · · · (Hn + 1) ≥ Hσ there exists a non-zero rational integer vector x = (x0, x1, . . . , xn) satisfying

|xi| ≤ Hi for all 0 ≤ i ≤ n (5.11)

and

|Li(x)|p ≤ pσiT−τi for all i = 1, . . . , n . (5.12)

As we can see, by Lemma 5.3.1, if all τi are equal and Hi are equal then we have τi = 1 + 1/n, which

agrees with the p-adic n-dimensional Dirichlet theorem.

Proof. This is a standard proof using Dirichlet’s pigeon-hole principle, which is given here for complete-

ness. To begin with, note that there are Tn+1 different rational integer vectors x = (x0, . . . , xn) satisfying

(5.11), subject to the condition that xi ≥ 0 for each i. Let ε ∈ (0, 1) and Tε = T −ε. For each i = 1, . . . , n

let δi be the unique integer such that

pδi−1 ≤ p−σiT τiε < pδi . (5.13)

Assuming Hσ, which can be found explicitly, is sufficiently large we ensure that δi ≥ 0 for each i. Clearly,

for each x ∈ Zn we have that L(x) := (L1(x), . . . , Ln(x)) ∈ Znp . Split Znp into the subsets S(a) given by

S(a) =

n∏
i=1

{xi ∈ Zp : |xi − ai|p ≤ p−δi}

for each a = (a1, . . . , an) ∈ Zn with 0 ≤ ai < pδi . It is readily seen that the sets S(a) are disjoint and

cover the whole of Znp . Furthermore, using the facts that
∑

i τi = n + 1,
∑

i σi = n and (5.13), we find

that the number of sets S(a) is

p
∑
i δi ≤ T

∑
i τi

ε = Tn+1
ε < Tn+1 .

Hence, by the pigeon-hole principle, at least one of the sets S(a) contains L(xi) for at least two distinct

integer points x1 and x2 as specified above. Let x = x1−x2. Clearly, (5.11) is satisfied and x is non-zero.

Furthermore, for each i = 1, . . . , n we have that

|Li(x)| = |Li(x1 − x2)|p = |Li(x1)− Li(x2)|p ≤ p−δi
(5.13)
< pσiT−τiε . (5.14)

Since there are only finitely many integer vectors x = (x0, . . . , xn) satisfying (5.11), there is a non-zero

x subject to (5.11) satisfying (5.14) for every ε ∈ (0, 1). Letting ε→ 0 verifies (5.12) and completes the

proof.

We also require a variety of statements given in Chapters 1-3. Chiefly this includes the Borel-Cantelli

lemmas (Lemma 1.1.3–1.1.4), certain results in Hausdorff Theory (Proposition 1.1.7, Lemma 2.2.9), and

various Mass Transference Principle results (Theorem 3.1.1, Theorem 3.3.3–3.5).
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5.3.1 A zero-one law on W′
n(Ψ)

In what follows we will need a statement showing that, given a sequence of balls, if the radii of the balls are

multiplied by some constant, then the Haar measure of the corresponding lim sup set remains unchanged.

We establish this lemma in greater generality for arbitrary ultrametric spaces where such a statement

may be useful when solving problems of the same ilk, for example, in Diophantine approximation over

locally compact fields of positive characteristic.

Lemma 5.3.2. Let (X, d) be a separable ultrametric space and µ be a Borel regular measure on X. Let

(Bi)i∈N be a sequence of balls in X with radii ri → 0 as i→∞. Let (Ui)i∈N be a sequence of µ-measurable

sets such that Ui ⊂ Bi for all i. Assume that for some c > 0

µ(Ui) ≥ cµ(Bi) for all i . (5.15)

Then the limsup sets

U = lim sup
i→∞

Ui :=
∞⋂
j=1

⋃
i≥j

Ui and B = lim sup
i→∞

Bi :=
∞⋂
j=1

⋃
i≥j

Bi

have the same µ-measure.

The Rn version of this statement is well known and can be found for example in [32, Lemma 1], which

proof is originally due to Cassels and uses Lebesgue’s density theorem. Below we give a full proof of

Lemma 5.3.2 for completeness. Our proof is built on the ideas of [32, Lemma 1] and [105, Lemma 1 in

Part II, Ch. 1].

Proof. Let Uj :=
⋃
i≥j Ui and Dj := B \ Uj . Then, D := B \ U =

⋃
j Dj and we need to prove that D

has µ-measure zero. Assume the contrary. Then, since every set Dj is µ-measurable and Dj ⊆ Dj+1

for all j, by the continuity of µ, there is an ` ∈ N such that µ(D`) > 0. Since µ is Borel regular

µ(D`) = inf{µ(A) : D` ⊂ A, A is open}. Since X is separable and ultrametric, every open set A can be

written as a disjoint countable union of balls. Hence, for any ε > 0 there exists a countable collection of

disjoint balls (Ai) such that

D` ⊂
⋃
i

Ai and
∑
i

µ(Ai)− ε ≤ µ(D`) ≤
∑
i

µ(Ai) . (5.16)

Let

λ := sup

{
µ(Ai ∩ D`)
µ(Ai)

: i ∈ N, µ(Ai) > 0

}
.

Note that, since µ(D`) > 0, the above set is non-empty and therefore λ ∈ [0, 1]. Then, by (5.16), we have

that

µ(D`) =
∑
i

µ(Ai ∩ D`) ≤ λ
∑
i

µ(Ai) ≤ λ(µ(D`) + ε) .

74



Therefore,

λ ≥ µ(D`)
µ(D`) + ε

.

Since µ(D`) > 0, on taking ε > 0 small enough, we can ensure that λ > 1− c. Then, by the definition of

λ, there exists i0 ∈ N such that µ(Ai0) > 0 and

µ(Ai0 ∩ D`)
µ(Ai0)

> 1− c . (5.17)

Take j ≥ ` sufficiently large so that for every i ≥ j the radius of Bi is less than the radius of Ai0 . Then,

since X is ultrametric, for all i ≥ j if Bi ∩Ai0 6= ∅ then Bi ⊂ Ai0 . Since D` ⊂ D ⊂ B ⊂
⋃
i≥j Bi, we have

that

Ai0 ∩ D` ⊂
⋃

i≥j, Bi∩Ai0 6=∅

Bi ∩ D` . (5.18)

Without loss of generality assume the Bi over i ≥ j are disjoint, since if not we can take a disjoint

sub-collection of (Bi)i≥j such that the union of balls in this subcollection is again
⋃
i≥j Bi and so the sub-

collection would satisfy (5.18). Such sub-collection is possible to choose since X is ultrametric. Therefore,

by (5.18), we have that

µ(Ai0 ∩ D`) ≤
∑

i≥j, Bi∩Ai0 6=∅

µ(Bi ∩ D`) . (5.19)

By construction Di ∩ Ui = ∅ for every i. Thus, in view of (5.15) and the fact that Ui ⊂ Bi we have that

µ(Bi) ≥ µ(Ui ∩Bi) + µ(Di ∩Bi) ≥ cµ(Bi) + µ(Di ∩Bi)

and so µ(Di ∩Bi) ≤ (1− c) µ(Bi) for all i. In particular, since Di ⊂ Di+1 for all i and j ≥ ` we get that

µ(D` ∩Bi) ≤ µ(Di ∩Bi) ≤ (1− c) µ(Bi) for all i ≥ j .

Hence, by (5.19) and the assumption that the Bi for i ≥ j are disjoint, we get that

µ(Ai0 ∩ D`) ≤
∑

i≥j, Bi∩Ai0 6=∅

(1− c)µ(Bi) = (1− c)µ

 ⋃
i≥j, Bi∩Ai0 6=∅

Bi

 ≤ (1− c)µ(Ai0) .

This contradicts (5.17). The proof is thus complete.

Note that Lemma 5.3.2 is only applicable to limsup sets contained between two balls with radius varying

by some constant. Since many of our sets of interest are lim sup sets of rectangles we make the following

extension to Lemma 5.3.2.

Lemma 5.3.3. Let n ∈ N. For each 1 ≤ j ≤ n let (Xj , dj) be a separable ultrametric space equipped with

a Borel regular σ-finite measure µj, (B
(j)
i )i∈N be a sequence of balls in Xj with radii r

(j)
i → 0 as i→∞,

(U
(j)
i )i∈N be a sequence of µj-measurable sets such that U

(j)
i ⊂ B

(j)
i for all i and assume that for some

c(j) > 0

µj

(
U

(j)
i

)
≥ c(j)µj

(
B

(j)
i

)
for all i ∈ N. (5.20)
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Let X =
∏n
j=1Xj, d = maxj dj be the metric on X, µ =

∏n
j=1 µj be the product of measure on X and

for each i ∈ N let Bi =
∏n
j=1B

(j)
i and Ui =

∏n
j=1 U

(j)
i . Then the limsup sets

U = lim sup
i→∞

Ui and B = lim sup
i→∞

Bi (5.21)

have the same µ-measure.

The key ingredients in the proof of Lemma 5.3.3 are Lemma 5.3.2 and Fubini’s Theorem, which we

recall below in the special case of integrating the characteristic function of a measurable set, see [40, p.

233] or [60, §2.6.2].

Theorem 5.3.4 (Fubini’s Theorem). Let µ1 be a σ-finite measure over X and µ2 be a σ-finite measure

over Y . Then µ1× µ2 is a regular measure over X × Y . Let S ⊆ X × Y be a µ1× µ2 measurable set and

let

Sx := {y : (x, y) ∈ S},

Sy := {x : (x, y) ∈ S}.

Then

(µ1 × µ2)(S) =

∫
Y
µ1(S

y)dµ2 =

∫
X
µ2(Sx)dµ1.

We now proceed with the proof of Lemma 5.3.3.

Proof. We initially prove that

µ

lim sup
i→∞

B
(1)
i ×

n∏
j=2

B
(j)
i

 = µ

lim sup
i→∞

U
(1)
i ×

n∏
j=2

B
(j)
i

 ,

and note that Lemma 5.3.3 follows inductively. For ease of notation let

µ̂ =
n∏
j=2

µj , B̂i =
n∏
j=2

B
(j)
i , X̂ =

n∏
j=2

Xj .

For any y ∈ X̂ let

Iy = {i : y ∈ B̂i},

and for any F ⊆ X let Fy denote the fiber of F at y, that is

Fy = {x : (x, y) ∈ F} ⊆ X1.

Observe that

A :=

(
lim sup
i→∞

B
(1)
i × B̂i

)
y

= lim sup
i→∞
i∈Iy

B
(1)
i =: D. (5.22)
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Indeed, if x ∈ A then it implies there exists an infinite sequence {ik} such that

(x, y) ∈ B(1)
ik
× B̂ik for all ik.

Hence {ik} ⊆ Iy and so x ∈ D.

Conversely, if x ∈ D then D is non-empty and so Iy must be infinite. By the definition of Iy and the

fact that x ∈ D we have that x ∈ B(1)
i for infinitely many i ∈ Iy, and so x ∈ A.

Similarly, we have that (
lim sup
i→∞

U
(1)
i × B̂i

)
y

= lim sup
i→∞
i∈Iy

U
(1)
i . (5.23)

Applying Fubini’s Theorem we have that

µ

(
lim sup
i→∞

B
(1)
i × B̂i

)
=

∫
X̂
µ1

((
lim sup
i→∞

B
(1)
i × B̂i

)
y

)
dµ̂,

(5.22)
=

∫
X̂
µ1

lim sup
i→∞
i∈Iy

B
(1)
i

 dµ̂,

Lemma 5.3.2
=

∫
X̂
µ1

lim sup
i→∞
i∈Iy

U
(1)
i


y

dµ̂,

(5.23)
=

∫
X̂
µ1

((
lim sup
i→∞

U
(1)
i × B̂i

)
y

)
dµ̂,

= µ

(
lim sup
i→∞

U
(1)
i × B̂i

)
.

Note that in the above argument we have not made use of the fact B̂i are products of balls; we only used

the fact that these are measurable sets. Hence, the above argument can be repleaded n− 1 more times,

for ` = 2, . . . , n− 1 each time replacing B
(`)
i by U

(`)
i so that at step ` we get that

µ

lim sup
i→∞

`−1∏
j=1

U
(j)
i ×

n∏
j=`

B
(j)
i

 = µ

lim sup
i→∞

∏̀
j=1

U
(j)
i ×

`+1∏
j=1

B
(j)
i

 .

Putting all these equations for ` = 1, . . . , n together we get (5.21) as claimed.

Lemma 1.1.4 only proves positive measure for a lim sup set. In the context of Theorem 5.1.1 we need

a zero-full law. In [65] Haynes proved a zero-full result for the simultaneous case. We adapt this method

of proof for the weighted case.

Lemma 5.3.5. Let n ∈ N, p be a prime and Ψ = (ψ1, . . . , ψn) be any n-tuple of approximation functions.

Then

µp,n(W′n(Ψ)) ∈ {0, 1}.
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We note that Haynes proved this result for the more complex set of S-arithmetic approximation. While

we suspect that the same could be proven in this context we only prove the p-adic case since this is the

only result we will need in this paper.

Proof. Firstly, note that the sets A′a0(Ψ) used to construct our lim sup set have the property that if p | a0,

then A′a0(Ψ) = ∅ or Znp , so assume p - a0. Define the map π : Zp → Zp as follows. For a p-adic integer

x ∈ Zp with p-adic expansion

x =
∞∑
i=0

aip
i, ai ∈ {0, . . . , p− 1},

define

π(x) =


∑∞

i=0 ai+1p
i, if a0 = 0,

1 +
∑∞

i=0 ai+1p
i, otherwise.

Let πn : Znp → Znp be the transformation (x1, . . . , xn) 7→ (π(x1), . . . , π(xn)). By using the fact that p - a0,

and that each (ai, a0) = 1, it can be shown that under such mapping

πn(W′n(Ψ)) ⊆W′n(pΨ),

where pΨ means each component of Ψ has to be multiplied by p. This can be repeated inductively to

show that πKn (W′n(Ψ)) ⊆ W′n(pKΨ) for any K ∈ N. Assuming that µp,n(W′n(Ψ)) > 0, then by a p-adic

version of the Lebesgue Density Theorem (see e.g. Lemma 1 in [105, Part II, Ch. 1]) for any ε > 0 there

exists integer vector x0 ∈ Zn and N ∈ N such that

µp,n
(
{x ∈W′n(Ψ) : |x− x0|p ≤ p−N}

)
≥ (1− ε)p−N .

Further, we have that

πNn
(
{x ∈W′n(Ψ) : |x− x0|p ≤ p−N}

)
⊆W′n(pNΨ),

and so

µp,n
(
W′n(pNΨ)

)
≥ µp,n

(
πNn
(
{x ∈W′n(Ψ) : |x− x0|p ≤ p−N}

))
,

≥ pN (1− ε)p−N ,

= (1− ε).

Since ε is arbitrary we have that µp,n(
⋃∞
N=1W

′
n(pNΨ)) = 1. Now observe that

W′n(Ψ) ⊂W′n(pΨ) ⊂W′n(p2Ψ) ⊂ . . .

and so, by Lemma 5.3.3 with X = Znp , d given by the sup norm, and µ = µp,n, we have that µp,n(W′n(Ψ)) =

µp,n(W′n(pNΨ)) for every N ∈ N. Hence,

µp,n(W′n(Ψ)) = lim
N→∞

µp,n
(
W′n(pNΨ)

)
= µp,n

( ∞⋃
N=1

W′n(pNΨ)

)
= 1 ,

thus finishing the proof.
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5.4 Proof of Theorems 5.1.1 & 5.1.2

By Lemma’s 1.1.3–1.1.4 it is clear that we need bounds on the measure of A′a0(Ψ) and A′a0(Ψ)∩A′b0(Ψ) for

a0, b0 ∈ N. As we are considering these measures at fixed values of a0 and b0 the monotonicity condition

of Theorem 5.1.1 does not appear until we consider the summations over the measures of these sets. For

that reason Theorems 5.1.1 & 5.1.2 are proven in tandem up to such point.

Since (a0, ai) = 1 observe that we must have p - a0. If p | a0 then the reduced fractions ai
a0

used in the

composition of A′a0(Ψ) would satisfy
∣∣∣ aia0 ∣∣∣p > 1 for any component 1 ≤ i ≤ n. And so for sufficiently large

a0 we have that {
x ∈ Znp :

∣∣∣∣xi − ai
a0

∣∣∣∣
p

< ψi(a0), 1 ≤ i ≤ n

}
= ∅,

since the components of the approximation vector are less than 1. Hence without loss of generality when

considering the measure of A′a0(Ψ) and A′a0(Ψ) ∩ A′b0(Ψ) we will assume that p - a0, b0.

With regards to the condition that each ψi(q) � 1
q note that Lemma 5.3.3 allows us to reduce this to

the condition that each ψi(q) <
1
q for 1 ≤ i ≤ n and the measure results will remain unchanged. Similarly

such constants would not effect the convergence or divergence of the summation of interest.

Note that for any x ∈ Zp and 0 < r < 1 there exists t ∈ N0 such that B(x, r) = B(x, p−t). For each

1 ≤ i ≤ n define the function ti : N→ N0 with ti(a0) satisfying

p−ti(a0) < ψi(a0) ≤ p−ti(a0)+1.

Then for any 1 ≤ i ≤ n and a0 ∈ N we have that ψi(a0) � p−ti(a0) and

B (x, ψi(a0)) = B
(
x, p−ti(a0)+1

)
.

Hence, without loss of generality we could replace the n-tuple of approximation functions Ψ with the func-

tion T given by T (a0) =
(
p−t1(a0)+1, . . . , p−tn(a0)+1

)
. Thus, we have that µp,n(Wn(Ψ)) = µp,n(Wn(T )).

For a0, b0 ∈ N and ϕ Euler’s totient function we prove the following claims

(a) µp,n
(
A′a0(Ψ)

)
� ϕ(a0)

n
∏n
i=1 ψi(a0),

(b) µp,n
(
A′a0(Ψ)

)
� ϕ(a0)

n
∏n
i=1 ψi(a0),

(c) µp,n (Aa0(Ψ) ∩ Ab0(Ψ))� an0b
n
0

∏n
i=1 ψi(a0)ψi(b0).

Beginning with (a) observe that

µp,n(A′a0(Ψ)) = µp,n

 ⋃
|ai|≤a0

gcd(ai,a0)=1, 1≤i≤n

n∏
i=1

B

(
ai
a0
, ψi(a0)

) . (5.24)
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If each rectangle in the above composition is disjoint then

µp,n(A′a0(Ψ)) =
∑
|ai|≤a0

gcd(ai,a0)=1, 1≤i≤n

µp,n

(
n∏
i=1

B

(
ai
a0
, ψi(a0)

))
� ϕ(a0)

n
n∏
i=1

ψi(a0), (5.25)

since µp,n is the product measure of n copies of µp, and so the measure of the product of the balls in

the above expression equals the product of their measures. This provides us with an upper bound on

µp,n(A′a0(Ψ)), since any non-empty intersections in the union within (5.24) would only make the measure

of the union smaller than their sum given by (5.25).

To prove (b) we simply need to show that the union within (5.24) contains no non-empty intersections.

Suppose this is not the case, say(
n∏
i=1

B

(
bi
a0
, ψi(a0)

))⋂(
n∏
i=1

B

(
ci
a0
, ψi(a0)

))
6= ∅,

for some points b = (b1, . . . , bn), c = (c1, . . . , cn) ∈ Zn with |bi|, |ci| ≤ a0 and b 6= c. Then we have that

|bi − ci|p ≤ ψi(a0), 1 ≤ i ≤ n,

since |a0|p = 1. Such inequalities would hold if and only if ψi(a0) ≥ 1
a0

for all 1 ≤ i ≤ n such that bj 6= cj .

However, we have that ψi(q) <
1
q for all 1 ≤ i ≤ n and q ∈ N and thus, by (5.25), we have the required

lower bound on µp,n(A′a0(Ψ)).

To prove (c) define the set

Q := {(a, b) ∈ Z2 : |a| ≤ a0, |b| ≤ b0, gcd(a, a0) = gcd(b, b0) = 1}.

Observe that

µp,n
(
A′a0(Ψ) ∩ A′b0(Ψ)

)
�

n∏
i=1

#

{
(ai, bi) ∈ Q :

∣∣∣∣ aia0 − bi
b0

∣∣∣∣
p

< ∆i

}
δi. (5.26)

where

∆i = max{ψi(a0), ψi(b0)} and δi = min{ψi(a0), ψi(b0)} .

Fix any i and without loss of generality suppose that ∆i = ψi(a0) ≥ ψi(b0) = δi. Note that since p - a0, b0
then the inequality in the above equation is equivalent to (ai, bi) ∈ Q satisfying

|aib0 − bia0|p < ψi(a0). (5.27)

To count solutions satisfying (5.27) we observe that such solutions also solve the congruence

bia0 − aib0 ≡ 0 mod pti(a0). (5.28)

Let d = gcd(a0, b0), and let a′0 = a0
d and b′0 = b0

d . Suppose that

bia
′
0 − aib′0 = k,
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for some integer k, with |k| ≤ 2a0b0d . The bounds on k follow on the observation that

|bia0 − aib0| ≤ 2a0b0,

for all (ai, bi) ∈ Q. Considering the congruence

aib
′
0 ≡ bia′0 − k mod a′0,

note that per k there is at most one solution ai modulo a′0, and so at most 2a0
a′0

= 2d possible ai with

|ai| ≤ a0. Clearly, each bi is uniquely determined by each ai and k, so per fixed k there are at most 2d

possible pairs (ai, bi) ∈ Q. To solve (5.28) we must have that

k ≡ 0 mod pti(a0), (5.29)

of which there are at most
4a0b0

d pti(a0)
+ 1

possible k satisfying |k| ≤ 2a0b0/d. Note that one such possible value of k satisfying (5.29) is k = 0. But

this is impossible, since it implies that

a′0bi = aib
′
0.

Indeed, assuming a0 > b0, we get that a0 6= 1 and gcd(a′0, ai) = gcd(a′0, b
′
0) = 1, and so we must have

that bia
′
0 − aib′0 6= 0. If b0 > a0 then the argument is similar. Hence there are at most

4a0b0

d pti(a0)

values of k that have corresponding solutions in Q, and so there are at most

2d
4a0b0

d pti(a0)
� a0b0ψi(a0)

pairs (ai, bi) ∈ Q that solve (5.27). Combining this upper bound with (5.26) we have that

µp,n(A′a0(Ψ) ∩ A′b0(Ψ))� an0b
n
0

n∏
i=1

ψi(a0)ψi(b0).

By (c), we have that

N∑
a0,b0=1

µp,n(A′a0(Ψ) ∩ A′b0(Ψ))�
N∑

a0,b0=1

an0b
n
0

n∏
i=1

ψi(a0)ψi(b0)�

(
N∑

a0=1

an0

n∏
i=1

ψi(a0)

)2

. (5.30)

Now assuming the monotonicity of
∏n
i=1 ψi(q), by (a), (b), we have that

N∑
a0=1

µp,n(A′a0(Ψ)) �
N∑

a0=1

ϕ(a0)
n

n∏
i=1

ψi(a0) �
N∑

a0=1

an0

n∏
i=1

ψi(a0) . (5.31)
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Hence (5.31) completes the convergence case of Theorem 5.1.1 via Lemma 1.1.3. In turn, (5.30) and (5.31)

together with Lemma 1.1.4 proves that µp,n(W′n(Ψ)) > 0 and finally applying Lemma 5.3.5 completes

the proof of Theorem 5.1.1.

Regarding Theorem 5.1.2, Claim (a), completes the convergence case via Lemma 1.1.3. In the divergence

case we note that Claim (b), (5.30) and condition (5.3) imply that

lim sup
N→∞

(∑N
a0=1 ϕ(a0)

n
∏n
i=1 ψi(a0)∑N

a0=1 a
n
0

∏n
i=1 ψi(a0)

)2

> 0.

Hence, Lemma 1.1.4 is applicable and we get that µp,n(W′n(Ψ)) > 0. Applying Lemma 5.3.5 completes

the proof of Theorem 5.1.2.

5.5 Proof of Theorem 5.1.4

As with many Hausdorff dimension results we prove the upper bound and lower bound independently. As

we are working with lim sup sets of hyperrectangles defined by (5.1) we will naturally appeal to Theorem

3.3.3 to get the lower bound. We start with the upper bound which takes advantage of a standard cover

of Wn(τ ).

5.5.1 Upper bound result

Recall that Wn(Ψ) = lim supa0→∞Aa0(Ψ) , where Aa0(Ψ) is given by (5.1), that is

Aa0(Ψ) =
⋃

(a1,...,an)∈Zn
|ai|≤a0 (1≤i≤n)

Ra0,a1,...,an(Ψ)

and

Ra0,a1,...,an(Ψ) =

{
x = (x1, . . . , xn) ∈ Znp :

∣∣∣∣xi − ai
a0

∣∣∣∣
p

< ψi(a0) for 1 ≤ i ≤ n

}
.

Throughout this proof Ψ = (q−τ1 , . . . , q−τn). Then for every i ∈ {1, . . . , n} we can trivially cover

Ra0,a1,...,an(τ ) := Ra0,a1,...,an(Ψ) by a finite collection B(a0) of balls of radius a−τi0 such that

#B(a0)�
n∏
j=1

max

{
1,
a
−τj
0

a−τi0

}
= a

∑
τj<τi

(τi−τj)
0 ,
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where the power of a0 on the R.H.S of the above inequality can be obtained by removing the cases where
a
−τj
0

a
−τi
0

< 1. Let s0 =
n+1+

∑
τj<τi

(τi−τj)+δ
τi

for some δ > 0. Then for any N > 0

Hs0(Wn(τ ))�
∑
a0≥N

∑
|ai|≤a0
1≤i≤n

#B(a0)a
−s0τi
0 ,

�
∑
a0≥N

a
n+
∑
τj<τi

(τi−τj)−s0τi
0 ,

=
∑
a0≥N

a−1−δ0 → 0 as N →∞.

This implies that dimWn(τ )) ≤ s0. The above argument follows for any choice of τi, hence we may

choose the minimum over the set of all τi and so the upper bound for the dimension in Theorem 5.1.4

follows on letting δ → 0.

5.5.2 Lower bound result

In order to apply Theorem 3.3.3 we need to construct a set of resonant points that we can show are a

locally ubiquitous system of rectangles. Let

R̂a0,i =

{
ai
a0
∈ Q : |ai| ≤ a0

}
,

for each 1 ≤ i ≤ n, and let R̂a0 =
∏n
i=1Ra0,i. In line with the notation prior to Theorem 3.3.3 let J = N,

and β : J → R+ be β(a0) = a0. Choose ρ : R+ → R+ to be ρ(a0) = a−10 , and choose the two sequences

lk = Mk, and uk = Mk+1, for some fixed integer M ≥ 2 to be chosen later, so that

Jk = {a0 ∈ N : Mk ≤ a0 ≤Mk+1}.

In order to show such set of resonant points is a local ubiquitous system of rectangles we prove the

following proposition.

Proposition 5.5.1. Let R̂a0, J , β, and ρ be defined as above. Let α = (α1, . . . , αn) ∈ Rn+ with each

αi > 1 be a vector satisfying
n∑
i=1

αi = n+ 1. (5.32)

Let M ≥ pn+1. Then there is a c2 > 0 such that for any ball B ⊂ Znp

µp,n

B ∩ ⋃
Mk≤a0≤Mk+1

∆
(
Ra0 ,

( c1
Mk+1

)α) ≥ c2 µp,n(B)

for all sufficiently large k ∈ N.
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Proof. Fix some ball B = B(y, r) for some y ∈ Znp and r ∈ {pi : i ∈ N ∪ {0}}. We will assume that k is

sufficiently large so that Mkr ≥ 1. In view of (5.32) and the fact that αi > 1 for all i, by Lemma 5.3.1,

we have that for any x = (x1, . . . , xn) ∈ B there exists (a0, . . . , an) ∈ Zn+1, satisfying

|ai| ≤ Mk (1 ≤ i ≤ n), 0 < a0 < Mk+1

such that

|a0xi − ai|p < p
(
Mk+ 1

n+1

)−αi
, 1 ≤ i ≤ n. (5.33)

Since αi > 1 for each 1 ≤ i ≤ n, (5.33) combined with 0 < a0 ≤ Mk+1 implies that |ai|p ≤ |a0|p for

each 1 ≤ i ≤ n, provided that k is sufficiently large. Let λ be the integer such that |a0|p = p−λ. Write

a′0 = a0p
−λ and a′i = aip

−λ. Observe that a′0, a
′
i ∈ Z,

0 < a0 ≤ p−λMk+1, |ai| ≤ p−λMk, (5.34)

for each 1 ≤ i ≤ n and that ∣∣∣∣xi − a′i
a′0

∣∣∣∣
p

= pλ|a0xi − ai|p

< pλ+1
(
Mk+ 1

n+1

)−αi
, (5.35)

for 1 ≤ i ≤ n. We want to remove the a′0 values that are ’too’ prime, that is |a′0|p < p−λ0 for some fixed

λ0 ∈ N to be chosen later. We consider the integer vectors (a′0, . . . , a
′
n) satisfying (5.34) such that(

a′1
a′0
, . . . ,

a′n
a′0

)
∈ B(y, r).

Considering the congruence equations for a′0 fixed we have that there are(
2
Mk

pλ
r + 1

)n
<

(
3
Mk

pλ
r

)n
such points. Hence

µp,n


B ∩

⋃
λ≥λ0

⋃
|ai|≤M

k

pλ

0<a′0≤
Mk+1

pλ

⋃
(
a′1
a′0
,...,

a′n
a′0

)
∈B

n∏
i=1

B

(
a′i
a′0
, pλ+1

(
Mk+ 1

n+1

)−αi)


≤
∑
λ≥λ0

Mk+1

pλ

(
3
Mk

pλ
r

)n
pnλ+nM−k(n+1)−1,

=
∑
λ≥λ0

µp,n(B)3npn−λ,

≤ 3n
pn+1−λ0

p− 1
µp,n(B).
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Taking λ0 sufficiently large, e.g. pλ0 > 23npn+1

p−1 , then we have that

µp,n


B ∩

⋃
λ≥λ0

⋃
|ai|≤M

k

pλ

0<a′0≤
Mk+1

pλ

⋃
(
a′1
a′0
,...,

a′n
a′0

)
∈B

n∏
i=1

B

(
a′i
a′0
, pλ0+1

(
Mk+ 1

n+1

)−αi)

≤ 1

2
µp,n(B).

Then we have that

µp,n

B ∩ ⋃
λ<λ0

⋃
|ai|≤Mk

0<a0<Mk+1:|a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+1

(
Mk+ 1

n+1

)−αi)


≥ µp,n

B ∩ ⋃
|ai|≤Mk

0<a0<Mk+1

n∏
i=1

B

(
ai
a0
, pλ+1

(
Mk+ 1

n+1

)−αi)


− µp,n

B ∩ ⋃
|ai|≤Mk

0<a0<Mk+1:|a0|p<p−λ0

n∏
i=1

B

(
ai
a0
, pλ+1

(
Mk+ 1

n+1

)−αi)


≥ 1

2
µp,n(B).

Similarly to the above we can deduce that

µp,n

B ∩ ⋃
|ai|≤Mk

Mk<a0≤Mk+1:|a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+1

(
Mk+ 1

n+1

)−αi)


≥ µp,n

B ∩ ⋃
|ai|≤Mk

0<a0<Mk+1:|a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+1

(
Mk+ 1

n+1

)−αi)


− µp,n

B ∩ ⋃
|ai|≤Mk

0<a0≤Mk:|a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+1

(
Mk+ 1

n+1

)−αi)
 .

Using similar calculations to those of above we have that

µp,n

B ∩ ⋃
|ai|≤Mk

0<a0≤Mk:|a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+1

(
Mk+ 1

n+1

)−αi)
 ≤ 3npnλ0+n

M
µp,n(B).
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Thus, provided M > 2 3npnλ0+n, then there exists some constant c2 > 0 such that

µp,n

B ∩ ⋃
|ai|≤Mk

Mk<a0≤Mk+1:|a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+1

(
Mk+ 1

n+1

)−αi)
 ≥ c2 µp,n(B).

Taking the constant

c1 = max
1≤i≤n

p
λ0+1
αi M1− 1

n+1

completes the proof.

Given Proposition 5.5.1, we have that (Ra0 , β) is a local ubiquitous system with respect to (ρ,α),

provided
∑n

i=1 αi = n + 1. Using the setup provided for Theorem 3.3.3 let τ = (τ1, . . . , τn) = (α1 +

t1, . . . , αn + tn) ∈ Rn+, then Wn(τ ) = W (τ ). Without loss of generality let τ1 ≥ · · · ≥ τn. Define αi

recursively as

αi = min

{
τi,
n+ 1−

∑n
j=n−i+1 αj

n− i

}
.

Since
∑n

i=1 τi > n + 1 and
∑n

i=1 αi = n + 1 such recursive formula is possible and we have that αi ≤ τi

for each 1 ≤ i ≤ n, so τ is well defined. Since τ1 ≥ · · · ≥ τn we have that α1 ≥ · · · ≥ αn, and furthermore

there exists k ∈ {1, . . . , n} such that for all 1 ≤ i ≤ n− k

αi =
n+ 1−

∑n
j=n−k+1 αj

n− k
.

Such observation follows by noting that at least

α1 = n+ 1−
n∑

j=n−1
αj

by the fact that
∑n

i=1 αi = n + 1. Note that for each metric space Xi = Zp the Haar measure µp is a

1-Ahlfors probability measure. With reference to Theorem 3.3.3, consider the following three cases:

i) Ai ∈ {α1, . . . αn−k}: For these values of Ai we have that

K1 = {1, . . . , n− k}, K2 = {n− k + 1, . . . , n}, K3 = ∅.

Applying Theorem 3.3.3 we get that

dimWn(τ ) ≥ min
Ai

{
(n− k)αi + (n− (n− k + 1) + 1)αi −

∑n
j=n−k tj

αi

}
,

= min
Ai

{
n−

∑n
j=n−k+1 tj

αi

}
.

Since ti = 0 for n− k < i ≤ n we have that dimWn(τ ) ≥ n.
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ii) Ai ∈ {αn−k+1, . . . , αn}: For such values of Ai observe that

K1 = {1, . . . , i}, K2 = {i+ 1, . . . , n}, K3 = ∅.

Applying Theorem 3.3.3 we have, in this case,

dimWn(τ ) ≥ min
Ai

{
iαi + (n− i)αi −

∑n
j=i+1 tj

αi

}
.

Similarly to the previous case, since tj = 0 for n − k + 1 ≤ i ≤ n the r.h.s of the above equation is

n, the maximal dimension of Wn(τ ).

iii) Ai ∈ {τ1, . . . , τn}: Since τi = αi for n − k + 1 ≤ i ≤ n, ii) covers such result. So we only need to

consider the set of Ai ∈ {τ1, . . . τn−k}. If Ai is contained in such set, then

K1 = ∅, K2 = {i, . . . , n}, K3 = {1, . . . , i− 1}.

Thus, by Theorem 3.3.3, we have that

dimWn(τ ) ≥ min
Ai

{
(n− i+ 1)τi +

∑i−1
j=1 aj −

∑n
j=i tj

τi

}
,

= min
Ai

(n− i+ 1)τi + (i− 1)
(
n+1−

∑n
j=n−k+1 aj
n−k

)
−
∑n−k

j=i (τj − aj)−
∑n

j=n−k+1 tj

τi

 ,

= min
Ai

(n− i+ 1)τi + (n− k)
(
n+1−

∑n
j=n−k+1 aj
n−k

)
−
∑n−k

j=i τj −
∑n

j=n−k+1 tj

τi

 ,

= min
Ai

{
n+ 1 +

∑n
j=i(τi − τj)
τi

}
,

since aj + tj = τj .

These are all possible choices of Ai. The proof of Theorem 5.1.4 is thus complete.

5.6 Dirichlet-style Theorem on p-adic manifolds

This section provides a full measure statement needed to deploy a Mass Transference Principle for the

proofs of Theorems 5.2.3–5.2.5.

Theorem 5.6.1. Let f = (f1, . . . , fm) : U → Zmp be a map defined on an open subset U ⊆ Zdp, x ∈ U and

suppose that f is DQE at x and let λ be given by

max

1, max
1≤i≤d
1≤j≤m

∣∣∣∣∂fj∂xi
(x)

∣∣∣∣
p

 = pλ . (5.36)
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Let τ = (τ1, . . . , τm) ∈ Rm+ , v = (v1, . . . , vd) ∈ Rd+ and∑m
i=1 τi < m+ 1, τi > 1, (1 ≤ i ≤ m),∑d

i=1 vi = n+ 1−
∑m

i=1 τi, vi > 1, (1 ≤ i ≤ d) .

Then there exist H0 ∈ N such that for all H > H0 and some k ∈ Z the following system

∣∣∣xi − ai
a0

∣∣∣
p
< p(n+mλ)/dpkH−vi (1 ≤ i ≤ d),∣∣∣fj (a1a0 , . . . , ada0)− ad+j

a0

∣∣∣
p
< (p−kH)−τj (1 ≤ j ≤ m),

max
0≤i≤n

|ai| ≤ p−kH

(5.37)

has a solution (a0, . . . , an) ∈ Zn+1 satisfying

(a0, p) = 1, gcd(a0, . . . , an) = 1 and
(
a1
a0
, . . . , ada0

)
∈ U . (5.38)

Proof. By Lemma 5.3.1 with σ = ((n + mλ)/d, . . . , (n + mλ)/d,−λ, . . . ,−λ), H0 = · · · = Hn = H and

T = H + 1, for any integer H ≥ H1/(n+1)
σ the following system

|b0xi − bi|p < p(n+mλ)/dH−vi (1 ≤ i ≤ d),∣∣∣∣∣b0pλfj(x)−
d∑
i=1

pλ
∂fj
∂xi

(x) (b0xi − bi)− pλbd+j

∣∣∣∣∣
p

< p−λH−τj (1 ≤ j ≤ m),

max
0≤i≤n

|bi| ≤ H

(5.39)

has a non-zero integer solution (b0, b1, . . . , bn) ∈ Zn+1. Without loss of generality we can assume that

d = gcd(b0, b1, . . . , bn) is a power of p as otherwise we can divide (5.39) through by any other prime

powers in the factorisation of d without affecting (5.39). Let C > 0 and 0 < ε < 1 be the constants

that satisfy Definition 5.2.1 for all fj simultaneously. In particular, we have that B(x, ε) ⊆ U . Let

vmin := min1≤i≤d vi and τmax := max1≤j≤m τj . Let H0 be defined as follows

H0 := max



C
2

2vmin−τmax , (α1)

C
1

vmin−1 , (α2)

(ε−1p(n+mλ)/d)
1

vmin
−1
, (β)

p
n+nλ

d(vmin−1) , (γ)

H
1/(n+1)
σ (δ)


.

Note that H0 is a well defined positive real number since vmin − 1 > 0 and 2vmin − τmax > 0. The latter

follows from the facts that each τj > 1 and
∑m

j=1 τj < m+ 1 and so τj < 2, and the condition that each

vi > 1. Note that (γ) implies that p(n+mλ)/dH−vi < H−1 whenever H > H0. We will use this observation

a few times in this proof.
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We will now prove two statements concerning the integer solution (b0, b1, . . . , bn) to (5.39). First we

verify that b0 6= 0. Suppose the contrary, that is b0 = 0. Then by the first inequality of (5.39) we have

that |bi|p < p(n+mλ)/dH−vi < H−1. As |bi| ≤ H and H > H0, we have that bi = 0 for 1 ≤ i ≤ d.

Considering the second set of inequalities of (5.39), for each 1 ≤ j ≤ m we have that |bd+j |p < H−τj

which also forces us to conclude that bd+j = 0, since τj > 1 for each 1 ≤ j ≤ m. Thus (b0, b1, . . . , bn) = 0,

a contradiction. So we must have that b0 6= 0.

Now we show that bi
b0

is a p-adic integer for all 1 ≤ i ≤ d. Since b0 6= 0, we may rewrite the first

inequality of (5.39) to get

|b0|p
∣∣∣∣xi − bi

b0

∣∣∣∣
p

< p(n+mλ)/dH−vi , 1 ≤ i ≤ d.

Suppose that
∣∣∣ bib0 ∣∣∣p > 1 for some 1 ≤ i ≤ d, then

∣∣∣ bib0 ∣∣∣p > |xi|p since x ∈ U ⊆ Zdp so, by the strong triangle

inequality, we have that

|bi|p = |b0|p max

{
|xi|p,

∣∣∣∣ bib0
∣∣∣∣
p

}
= |b0|p

∣∣∣∣xi − bi
b0

∣∣∣∣
p

< p(n+mλ)/dH−vi < H−1

for H > H0. Such inequality fails unless bi = 0, since |bi| ≤ H. Thus, bi
b0
∈ Zp for all 1 ≤ i ≤ d.

Now we are ready to construct (a0, . . . , an) with (a0, p) = 1. Let k ≥ 0 be the unique integer such that

pk|b0 but pk+1 - b0. Then, since bi
b0
∈ Zp so we have that pk|bi for all 1 ≤ i ≤ d. By (5.39), we get that

|bd+j |p ≤ max


∣∣∣∣∣b0fj(x)−

d∑
i=1

∂fj
∂xi

(x) (b0xi − bi)− bd+j

∣∣∣∣∣
p

, |b0fj(x)|p,

∣∣∣∣∣
d∑
i=1

∂fj
∂xi

(x) (b0xi − bi)

∣∣∣∣∣
p


≤ max

{
H−τj , p−k, pλp(n+mλ)/dH−vmin

}
= p−k,

since τj > 1 and H > H0. Therefore, pk|bd+j and we have that
bd+j
b0
∈ Zp for each 1 ≤ j ≤ m. In

particular we have that d = gcd(b0, b1, . . . , bn) = pk. For 0 ≤ i ≤ n define the numbers ai = p−kbi, which,

by what we have proven above, are all integers satisfying gcd(a0, a1, . . . , an) = 1 and, by the choice of

k, (a0, p) = 1. By the third inequality of (5.39), we have that max0≤i≤n |ai| ≤ p−kH, which verifies the

third inequality in (5.37). Further, using the first set of inequalities of (5.39), we get that

|a0x− ai|p = |p−kb0x− p−kbi|p = pk|b0x− bi|p < p(n+mλ)/dpkH−vi (5.40)

for each 1 ≤ i ≤ d, since vi > 1. This verifies the first set of inequalities in (5.37).

By (5.40) and the fact that pk ≤ H, we get that(
a1
a0
, . . . ,

ad
a0

)
∈ B

(
x, p(n+mλ)/dH−vmin+1

)
⊆ B(x, ε) ⊆ U ,
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where the last inclusion follows from condition (β) on H0. Thus, y =
(
a1
a0
, . . . , ada0

)
∈ U and, in particular,

fj

(
a1
a0
, . . . , ada0

)
is well defined and (5.5) is applicable to f = fj for each 1 ≤ j ≤ m.

Using the fact that each fj is DQE at x we get that∣∣∣∣∣∣fj
(
a1
a0
, . . . ,

ad
a0

)
− fj(x)−

∑
1≤i≤d

∂fj
∂xi

(x)

(
ai
a0
− xi

)∣∣∣∣∣∣
p

< C max
1≤i≤d

∣∣∣∣ aia0 − xi
∣∣∣∣2
p

(5.41)

< (p−kH)−τj

for each 1 ≤ j ≤ m, where the last inequality follows since

C max
1≤i≤d

∣∣∣∣ aia0 − xi
∣∣∣∣2
p

(5.40)
< Cp(2n+2mλ)/dp2kH−2vmin

= Cp(2n+2mλ)/dp−2k(vmin−1)(p−kH)−2vmin

(∗)
≤ (p−kH)−τmax ≤ (p−kH)−τj .

Here (∗) follows from condition (α1) on H0 if pk ≤ H
1/2
0 and it follows from condition (α2) on H0 if

pk > H
1/2
0 , and we also use the facts that vmin > 1 and 2vmin > τmax.

For each 1 ≤ j ≤ m in the second row of inequalities of (5.39) we may divide through by pk = |b0|−1p
and pλ, and combine with (5.41) to obtain∣∣∣∣fj (a1a0 , . . . , ada0

)
−
ad+j
a0

∣∣∣∣
p

< (p−kH)−τj

for each 1 ≤ j ≤ m. This verifies the second set of inequalities in (5.37), while the first set of inequalities

in (5.37) follows from (5.40). The proof is thus complete.

In order to use a Mass Transference Principle, namely Theorem 3.3.4, we now establish the following

Corollary.

Corollary 5.6.2. Let f, τ and v be as in Theorem 5.6.1. Let x ∈ U\Qd and λ be given by (5.36). Then

the following system 
∣∣∣xi − ai

a0

∣∣∣
p
< p(n+mλ)/dh−vi (1 ≤ i ≤ d),∣∣∣fj (a1a0 , . . . , ada0)− ad+j

a0

∣∣∣
p
< h−τj (1 ≤ j ≤ m) ,

(5.42)

where h = max
0≤i≤n

|ai|, has infinitely many integer solutions (a0, . . . , an) ∈ Zn+1 satisfying (5.38).

Proof. First, observe that (5.42) is a consequence of (5.37) since h = max0≤i≤n |ai| ≤ p−kH and vi > 1

for all i. So we only need to verify that there are infinitely many different solutions (a0, . . . , an) to (5.37)
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as H varies. Suppose the contrary. Then, since x ∈ Zdp\Qd, there is 1 ≤ i ≤ d such that xi − ai
a0
6= 0 and

so

δ := min

∣∣∣∣xi − ai
a0

∣∣∣∣
p

> 0 (5.43)

where the minimum is taken amongst the solutions (a0, a1, . . . , an) to (5.37) over all H ≥ H0. On the

other hand, by (5.37), we have that δ < p(n+mλ)/dpkH−vi ≤ p(n+mλ)/dH−vi+1 → 0 as H → ∞ since

vi > 1, giving a contradiction for large H.

Corollary 5.6.3. Let f, τ and v be as in Theorem 5.6.1 and suppose that f is DQE for almost every

x ∈ U . Let δ > 0 be any constant. Then for almost every x ∈ U the following system
∣∣∣xi − ai

a0

∣∣∣
p
< δh−vi (1 ≤ i ≤ d),∣∣∣fj (a1a0 , . . . , ada0)− ad+j

a0

∣∣∣
p
< h−τj (1 ≤ j ≤ m) ,

(5.44)

where h = max
0≤i≤n

|ai|, has infinitely many integer solutions (a0, . . . , an) ∈ Zn+1 satisfying (5.38).

Proof. Define the set of integer points

Sτ =


(a0, . . . , an) ∈ Zn+1 :

(5.38) holds and for all 1 ≤ j ≤ m∣∣∣fj (a1a0 , . . . , ada0)− ad+j
a0

∣∣∣
p
< h−τd+j ,

where max
0≤i≤n

|ai| = h


, (5.45)

and for each a ∈ Sτ and δ > 0 consider the hyperrectangles

Ba(τ ; δ) =

{
x ∈ Zdp :

∣∣∣∣xi − ai
a0

∣∣∣∣
p

< δh−τi (1 ≤ i ≤ d)

}
. (5.46)

By Corollary 5.6.2, the set ⋃
δ>0

lim sup
a∈Sτ

Ba(τ ; δ) (5.47)

has full measure in U , since the sequence of sets in (5.47) is increasing as δ increases. These are Borel

sets and therefore measurable. Hence, by the continuity of measure, we have that

lim
δ→+∞

µp,n

(
lim sup
a∈Sτ

Ba(τ ; δ)

)
= µp,n

(⋃
δ>0

lim sup
a∈Sτ

Ba(τ ; δ)

)
= µp,n(U) . (5.48)

By Lemma 5.3.3, every limsup set in (5.48) is of the same measure. Hence,

µp,n

(
lim sup
a∈Sτ

Ba(τ ; δ)

)
= µp,n(U)

for every δ > 0. This is exactly what we have to prove.
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5.6.1 Proof of Theorems 5.2.3–5.2.5

We begin with the following proposition that lays the basis for applying the Mass Transference Principles.

Proposition 5.6.4. Let f : U → Zmp , where U ⊆ Zdp is an open subset, and for x ∈ U let F(x) = (x, f(x)).

Let U∗ be the subset of x ∈ U such that f is DQE at x. Let τ = (τ1, . . . , τn) ∈ Rn+. Let Sτ and Ba(τ ; δ)

be defined by (5.45) and (5.46) respectively. Then for any 0 < δ ≤ 1

U∗ ∩ lim sup
a∈Sτ

Ba(τ ; δ) ⊂ F−1(Wn(τ )) (5.49)

provided that

min
1≤i≤d

τi > max
1≤j≤m

τd+j . (5.50)

If

min
1≤i≤d

τi = max
1≤j≤m

τd+j . (5.51)

and f is a Lipschitz map with the Lipschitz constant L, then (5.49) holds for any 0 < δ ≤ min{1, L−1}.

Proof. Suppose x ∈ U∗ ∩Ba(τ ; δ). Then∣∣∣∣fj(x)− fj
(
a1
a0
, . . . ,

ad
a0

)∣∣∣∣
p

< max

{
max
1≤i≤d

∣∣∣∣∂fj(x)

∂xi

∣∣∣∣
p

max
1≤i≤d

∣∣∣∣xi − ai
a0

∣∣∣∣
p

, C max
1≤i≤d

∣∣∣∣xi − ai
a0

∣∣∣∣2
p

}

< max

{
max
1≤i≤d

∣∣∣∣∂fj(x)

∂xi

∣∣∣∣
p

δh−τmin , Cδ2h−2τmin

}
< h−τd+j

for any 1 ≤ j ≤ m and all sufficiently large h if (5.50) holds. In turn, if (5.51) holds, we use the fact that

f is Lipschitz:

∣∣∣∣fj(x)− fj
(
a1
a0
, . . . ,

ad
a0

)∣∣∣∣
p

< L max
1≤i≤d

∣∣∣∣xi − ai
a0

∣∣∣∣
p

< Lδh−τmin ≤ h−τd+j

for any 1 ≤ j ≤ m and all sufficiently large h since 0 < δ ≤ L−1. In either case, if a ∈ Sτ , then∣∣∣∣fj(x)−
ad+j
a0

∣∣∣∣
p

≤ max

{∣∣∣∣fj(x)− fj
(
a1
a0
, . . . ,

ad
a0

)∣∣∣∣
p

,

∣∣∣∣ad+ja0
− fj

(
a1
a0
, . . . ,

ad
a0

)∣∣∣∣
p

}
< h−τd+j

provided that h is sufficiently large. Hence, assuming that x ∈ U∗∩ lim sup
a∈Sτ

Ba(τ ; δ) we conclude that the

system of inequalities 
|a0xi − ai|p < δh−τi ≤ h−τi , (1 ≤ i ≤ d),

|a0fj(x)− ad+j |p < h−τd+j (1 ≤ j ≤ m),

max{|a0|, . . . , |an|} = h

(5.52)

holds for infinitely many a ∈ Zn+1. Therefore, x ∈ F−1(Wn(τ )) and the proof is complete.
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Proof of Theorems 5.2.3–5.2.4. First of all, note that (5.6) and (5.8) follow from Theorem 5.2.5. Thus

we only need to verify the measure part of these theorems, that is (5.7) and (5.9). Consequently, we

will assume that f is Lipschitz on U . Let 0 < δ ≤ min{1, L−1}, where L is the Lipschitz constant

of f. With reference to the Mass Transference Principle from balls to balls (Theorem 3.1.1), take the

function g(x) = xd as our dimension function. Note that g is doubling and that Hg � µp,d. For any ball

B = B(x, r) and dimension function f(x) = xs, define Bs = B(x, g−1(xs)). Note that in Theorems 5.2.3

and 5.2.4 we have that τ1 = τ2 = · · · = τd. Therefore the sets Ba(τ ; δ) defined by (5.46) are balls. Let

the vector v = (v1, . . . , vd) be of the form v = (v, . . . , v) where

v =
n+ 1−

∑m
i=1 τd+i

d
.

Note that this v satisfies the requirements of Theorem 5.6.1 and its corollaries. Let

s =
n+ 1−

∑m
i=1 τd+i

τd
,

Then

Bs
a(τd; δ) =

{
x ∈ Zdp : max

1≤i≤d

∣∣∣∣xi − ai
a0

∣∣∣∣
p

< δs/dh−v

}
,

and, by Corollary 5.6.3,

µp,d

(
lim sup
a∈Sτ

Bs
a(τd; δ)

)
= µp,d(U).

Hence, for any ball B ⊂ U ,

Hg
(
B ∩ lim sup

a∈Sτ

Bs
a(τd; δ)

)
= Hg (B) .

By the Mass Transference Principle (Theorem 3.1.1), we have that for any ball B ⊆ U ,

Hs
(
B ∩ lim sup

a∈Sτ

Bg
a(τd; δ)

)
= Hs (B) . (5.53)

By Proposition 5.6.4 and the choice of δ, we have that (5.49) holds, where U∗ = U . Combining (5.53)

and (5.49) gives the required Hausdorff measure results and completes the proof.

Proof of Theorem 5.2.5. First of all, without loss of generality we can assume throughout this proof that

(5.50) holds. Otherwise we could consider τ ′ = (τ1 + ε, . . . , τd + ε, τd+1, . . . , τn) for a suitably small ε > 0

and note that F−1 (Wn(τ ′)) ⊂ F−1 (Wn(τ )). Hence, the validity of (5.10) for τ ′ would give us the bound

dim
(
F−1 (Wn(τ ))

)
≥ dim

(
F−1

(
Wn(τ ′)

))
≥ min

1≤i≤d

{
n+ 1 +

∑
τj<τi

(τi − τj)
τi + ε

−m

}
and on letting ε→ 0 we would get the required result for τ .

Now, since (5.50) holds, by Proposition 5.6.4 with δ = 1, get that

lim sup
a∈Sτ

Ba(τ ; 1) ⊂ F−1(Wn(τ )) (5.54)
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Corollary 5.6.3 provides us with a full measure statement, which will be the basis for applying the Mass

Transference Principle from rectangles to rectangles without Ubiquity (Theorem 3.3.4). With reference

to the notation used in Theorem 3.3.4 take

J = Sτ , ρ(q) = q−1,

Rα =
{(

a1
a0
, . . . , ana0

)}
, βα = a0 for α = (a0, . . . , an) ∈ Sτ

and so

lim sup
a∈Sτ

Ba(v; 1) = lim sup
α∈J

∆(Rα, ρ(βα)−v). (5.55)

By Corollary 5.6.3 and (5.55), we have that

µp,d

(
lim sup
α∈J

∆(Rα, ρ(βα)−v)

)
= µp,d(U) (5.56)

for any v = (v1, . . . , vd) ∈ Rd+ satisfying

vi > 1,
d∑
i=1

vi = n+ 1−
m∑
j=1

τj . (5.57)

Without loss of generality we will assume that τ1 > τ2 > · · · > τd. Similarly to what proceeds the proof

of Proposition 5.5.1 define each vi recursively, starting with r = 0, by

vd−r = min

{
τd−r,

n+ 1−
∑m

j=1 τd+j −
∑d

i=d−r+1 vi

d− i

}
.

Observe that this choice of v satisfies (5.57). Furthermore, there exists a 1 ≤ b ≤ d such that

vc =
n+ 1−

∑m
j=1 τd+j −

∑d
i=d−b vi

d− b

for all 1 ≤ c ≤ d− b. Define t1, . . . , td from the equations

τj = vj + tj

then note that τ = (t1, . . . , td) ∈ Rd≥0 and thus satisfies the conditions of Theorem 3.3.4. Thus, the set

W (τ ), defined in Theorem 3.3.4, is exactly the right hand side of (5.54). Hence, by (5.54), we get that

dim F−1(Wn(τ )) ≥ dimW (τ ) .

Also, in view of (5.56), Theorem 3.3.4 is applicable and so dim F−1(Wn(τ )) ≥ s, where s is the same as

in Theorem 3.3.4. The proof is now split into the following three cases.

i) Ai ∈ {v1, . . . vd−b}: For these values of Ai, which are defined in Theorem 3.3.4, we have that

K1 = {1, . . . , d− b}, K2 = {d− b+ 1, . . . , d}, K3 = ∅.
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Applying Theorem 3.3.4 gives

dim F−1(Wn(τ )) ≥ dimW (τ ) ≥ min
1≤i≤d−b

{
(d− b)vi + (d− (d− b+ 1) + 1)vi −

∑n
j=d−b tj

vi

}
,

= min
1≤i≤d−b

{
d−

∑d
j=d−b+1 tj

vi

}
.

Since ti = 0 for d− b+ 1 ≤ i ≤ d we have that dim F−1(Wn(τ )) ≥ d, which is the maximal possible

dimension for F−1(Wn(τ )).

ii) Ai ∈ {vd−b+1, . . . , vd}: For such values of Ai observe that

K1 = {1, . . . , i}, K2 = {i+ 1, . . . , d}, K3 = ∅.

Then in this case we have that

dim F−1(Wn(τ )) ≥ dimW (τ ) ≥ min
d−b+1≤i≤d

{
ivi + (d− i)vi −

∑d
j=i+1 tj

vi

}
.

Similarly to the previous case, since tj = 0 for d− b+ 1 ≤ j ≤ d the r.h.s of the above equation is d.

iii) Ai ∈ {τ1, . . . , τd}: Since τi = vi for d − b + 1 ≤ i ≤ d, ii) covers such result. So we only need to

consider the set of Ai ∈ {τ1, . . . τd−b}. If Ai is contained in such set, then

K1 = ∅, K2 = {i, . . . , d}, K3 = {1, . . . , i− 1}.

Thus, by Theorem 3.3.4, we have that

dim F−1(Wn(τ )) ≥ min
1≤i≤d

{
(d− i+ 1)τi +

∑i−1
j=1 vj −

∑d
j=i tj

τi

}
,

= min
1≤i≤d


(d− i+ 1)τi + (i− 1)

(
n+1−

∑m
j=1 τd+j−

∑d
j=d−b+1 vj

d−b

)
−
∑d−b

j=i (τj − vj)−
∑d

j=d−b+1 tj

τi

 ,

= min
1≤i≤d


(d− i+ 1)τi + (d− b)

(
n+1−

∑m
j=1 τd+j−

∑d
j=d−b+1 vj

d−b

)
−
∑d−b

j=i τj −
∑d

j=d−b+1 tj

τi

 ,

= min
1≤i≤d

{
n+ 1 +

∑d
j=i(τi − τj)−

∑m
j=1 τd+j

τi

}
,

= min
1≤i≤d

{
n+ 1 +

∑n
j=i(τi − τj)
τi

−m

}
.

Considering all cases we have that

dim F−1(W(τ )) ≥ dimW (τ ) ≥ min
1≤i≤d

{
n+ 1 +

∑n
j=i(τi − τj)
τi

−m

}
as required.
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5.7 Final remarks on Theorem 5.2.3–5.2.5

We make several concluding remarks to the results of this paper. As outlined in §5.2 a current obstruction

to further results in the p-adic setting over dependent variables is the lack of counting results for rational

points near manifolds. Precisely, given a manifold M with dimension d and codimension m such that

m+ d = n, and functions fi : Zdp → Zp, for 1 ≤ i ≤ m, with parametrisation

M := {(x, f1(x), . . . , fm(x)) : x ∈ Zdp} ⊆ Znp ,

then for an exponent vector τ ∈ Rn+ and fixed M ∈ N, what bounds can we put on the cardinality of(a0, . . . , an) ∈ Zn+1 :

ai
a0
∈ Zp for each 1 ≤ i ≤ d, max0≤i≤n |ai| ≤M,∣∣∣a0fi (a1a0 , . . . , ada0)− ad+i∣∣∣p < M−τi , 1 ≤ i ≤ m

 . (5.58)

In the real simultaneous case such bounds have been found, see [26]. Given an upper bound on (5.58) we

would expect the corresponding upper bound of Theorem 5.2.3 to follow.

Secondly, while in this paper we make use of the general MTP and the MTPRR to obtain lower bounds

for dimW(τ )∩Cf the stronger ubiquity statement is absent hence we cannot obtain a s-Hausdorff measure

result in the full generalised case (Theorem 5.2.5). The main reason being that we do not have a precise

enough understanding on the distribution of rational points close to p-adic manifolds. Furthermore, as

shown in [14] working from a purely ubiquitous setup can extend the range of applicable τ -approximations

to Theorem 5.2.3–5.2.5. While we suspect this would add additional constraints to our set of applicable

manifolds we intent to pursue this idea in a further paper.

96



Chapter 6

Simultaneous p-adic Approximation over

coordinate hyperplanes

Recall from the previous chapters, by degenerate we generally mean a curve or surface that is ’flat’ for

relatively large parts, with respect to the associated measure. In particular any manifold contained within

some hyperplane is degenerate. In this chapter we will focus on the special class of degenerate manifold,

coordinate hyperplanes. Note from the comments of the previous two chapters, a key notion needed in

order to find results in such settings is a bound on the number of rational points close to the manifold.

In the p-adic setting such results are few and far between. In this chapter we find bounds on the number

of rational points close to n-dimensional p-adic integers by using p-adic approximation lattices. This

respectively allows us to obtain a Hausdorff dimension result for almost all coordinate hyperplanes with

respect to the Haar measure on Zp.

6.1 Counting rational points close to p-adic integers

The study of rational points on algebraic varieties, usually called Diophantine geometry, has a wide

variety of applications in many areas of mathematics. A variation of this is the study of rational points

that lie close to such algebraic varieties. In the setting of Rn there has been many results of this type,

including counts on the number of rational points close to curves [19, 110, 99, 100, 72] and manifolds

[14, 26, 69, 70]. In the p-adic setting less is known. In [10, 11] a bound on the number of rational points

that lie on the curve Cf = {(x, x2, . . . , xn) : x ∈ Zp} was found, but as yet no other results are available.

In this paper we provide an upper and lower bound on the number of rational points within a small

neighbourhood of a p-adic integer. Such result allows us to find bounds on the number of rational points

close to p-adic coordinate hyperplanes.
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Fix a prime number p ∈ N and let |.|p denote the p-adic norm. Define the set of p-adic numbers Qp

as the completion of Q with respect to the p-adic norm. Denote by Zp := {x ∈ Qp : |x|p ≤ 1} the ring

of p-adic integers. Let x ∈ Znp , N ∈ N, and Ψ = (ψ1, . . . , ψn) be an n-tuple of approximation functions

of the form ψi : N → R+, with ψi(q) → 0 as q → ∞ for each 1 ≤ i ≤ n. We provide bounds on the

cardinality of the set

Q(x,Ψ, N) :=

(q0, q1, . . . , qn) ∈ Zn+1 :
0 < q0 ≤ N,

max1≤i≤n |qi| ≤ N,
|q0xi − qi|p < ψi(N), 1 ≤ i ≤ n

 .

If the approximation functions ψi are of the form ψi(q) = q−τi for some vector τ = (τ1, . . . , τn) ∈ Rn>0

we will use the notation Q(x, τ , N). Note that to get a result for general x ∈ Znp we must apply some

conditions. For example, if x ∈ Qn then for sufficiently large N ∈ N we have that #Q(x,Ψ, N) � N2

for any Ψ. Here a � b means there exists constants c1, c2 ∈ R>0 such that c1b ≤ a ≤ c2b. Conversely,

if x is badly approximable each approximation function satisfies ψi(q) < q−1−
1
n
−ε for some ε > 0,

then #Q(x,Ψ, N) � 1. In order to obtain good bounds on the cardinality of Q(x,Ψ, N) we use the

Diophantine exponent τ(x) defined as

τ(x) := sup

{
n∑
i=1

τi : |q0xi − qi|p < Q−τi , for i.m. Q ∈ N with |qi| ≤ Q

}
.

By a Theorem of Mahler [105] we have that for all x ∈ Zp, τ(x) ≥ 2. Further, by a result of Jarnik [76]

we have that τ(x) = n + 1 for almost all x ∈ Znp , with respect to the n-dimensional Haar measure µp,n

on Qn
p , normalised by µp,n(Znp ) = 1.

We have the following result on the cardinality of Q(x, ψ,N) for general x ∈ Zp.

Lemma 6.1.1. Let x ∈ Zp with Diophantine exponent τ(x) and let ψ(q) = q−τ for some τ ∈ R+ with

max{1, τ(x)− 1} < τ < τ(x). Then for any ε > 0 there exists sufficiently large N0 ∈ N such that for all

N ≥ N0

#Q(x, τ,N) ≤ N τ(x)−τ+ε.

Remark 6.1.2. This result provides us with an analogous result of Huxley’s estimate (see §7.2) in the

setting of p-adic coordinate hyperplanes. Note by our previous remark on the Diophantine exponent that

for almost all x ∈ Zp we have τ(x) = 2, so the above lemma reads that for ψ(q) = q−τ with 1 < τ < 2,

then for almost all x ∈ Zp
#Q(x, ψ,N) ≤ N2−τ+ε.

While Lemma 6.1.1 gives us an upper bound for all x ∈ Zp provided the approximation function ψ is

’close’ to the function related to the Diophantine exponent the bound given has an extra N ε term. The

notion of τ(x) is inherently connected to some ε term, and so for the majority of functions the N ε term
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of Lemma 6.1.1 cannot be removed. However, by bounding the approximation functions away from the

τ(x) exponent we can remove such term. The following theorem offers an improvement in this respect.

Theorem 6.1.3. Let x ∈ Znp and suppose that τ(x) = n + 1. Let Ψ be an n-tuple of approximation

functions with each

q−1−
1
n
+ε < ψi(q) < q−1, 1 ≤ i ≤ n,

for some ε > 0. Then there exists N0 ∈ N such that for all N ≥ N0,

#Q(x,Ψ, N) ≤ C1N
n+1

n∏
i=1

ψi(N),

where

C1 = max

{
3(6
√
n)n,

(n+ 2)!πn/2
√
n
n+1

Γ
(
n
2 + 1

) }
.

Remark 6.1.4. Akin to the comparison between Lemma 6.1.1 and Huxley’s estimate, Theorem 6.1.3

provides the p-adic coordinate hyperplane analogue of the counting result proven by Vaughan and Velani

[110](see §7.2 for more details). As with Lemma 6.1.1, we can deduce that the above upper bound is true

for almost all x ∈ Znp . This type of result has already been proven in the real case (see Lemma 6.1 of

[20]).

Remark 6.1.5. In the case where the approximation functions are of the form ψi(q) = q−τi then the

theorem reads: if
n∑
i=1

τi < n+ 1, and τi > 1,

then for any x ∈ Znp with τ(x) = n+ 1,

#Q(x, τ , N) ≤ C1N
n+1−

∑n
i=1 τi .

Lastly, we have the following lemma which provides a complimentary lower bound to the previous two

results.

Lemma 6.1.6. Let x ∈ Znp and
n∑
i=1

τi < n+ 1, and τi > 1

for each 1 ≤ i ≤ n. Then there exists N0 ∈ N such that for all N ≥ N0 we have that

#Q(x, τ , N) ≥ 1

p
Nn+1−

∑n
i=1 τi − 1.

As with Theorem 6.1.3, the equivalent version of this result in Rn has previously been proven, (see

Lemma 3 of [95]). Further, as
∑n

i=1 τi < n+ 1 we can choose N large enough such that

#Q(x, τ , N) ≥ 1

2p
Nn+1−

∑n
i=1 τi .
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Thus combining this with Theorem 6.1.3 we have the expected result that #Q(x, τ , N) � Nn+1−
∑n
i=1 τi .

The proofs of Lemma 6.1.1 and Lemma 6.1.6 use elementary techniques. The proof of Theorem 6.1.3

is more substantial and uses p-adic approximation lattices and lattice counting techniques. Prior to the

proofs of these results we give an example of their applications in Diophantine approximation.

6.2 p-adic Diophantine approximation on coordinate hyperplanes

As an application of the main results in the previous section we consider the set of p-adic simultaneously

approximable points over coordinate hyperplanes. Recall the set of weighted simultaneously approximable

points, as defined by Haynes [65], as follows. For an n-tuple of approximation functions Ψ = (ψ1, . . . , ψn)

and q0 ∈ N let

A′q0(Ψ) =
⋃

|qi|≤q0, gcd(qi,q0)=1

1≤i≤n

{
x ∈ Znp :

∣∣∣∣xi − qi
q0

∣∣∣∣
p

< ψi(q0)

}
,

where x = (x1, . . . , xn). Define the set of weighted Ψ-approximable p-adic points as

W′n(Ψ) := lim sup
q0→∞

A′q0(Ψ).

Note that we adopt Haynes setting of taking approximations by reduced fractions.

In the previous chapter a lower bound for the Hausdorff dimension was found for general n-dimensional

manifolds satisfying the DQE property (see Definition 5.2.1). We remark here that the lower bound

dimension result of the following theorem is already proven by Theorem 5.2.5. However, the Hausdorff

s-measure result and the upper bound dimension result are new. A key reason the upper bound could

not be obtained in the previous chapter was a lack in results on the behaviour of rational points close to

p-adic manifolds. The main results of this chapter provide us with a good understanding of the behaviour

of rational points close to coordinate hyperplanes and so the upper bound result is achievable. The results

of this section are closely related to a variety of results in the real case on Diophantine approximation

over coordinate hyperplanes, see [22, 94, 95].

For a p-adic integer α ∈ Zmp for 1 ≤ m ≤ n− 1 define the coordinate hyperplane

Πα := {(x1, . . . , xd,α) : (x1, . . . , xd) ∈ Zdp} ⊂ Znp ,

where n = d+m. For the set W′n(τ ) ∩Πα we have the trivial result that

dimW′n(τ ) ∩Πα ≤ dim Πα = n−m,

with equality when
∑n

i=1 τi ≤ n + 1. In this paper we prove the following result on the Hausdorff

dimension of W′n(τ ) ∩Πα.
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Theorem 6.2.1. Let Πα be a coordinate hyperplane of Znp , let α ∈ Zmp satisfy τ(α) = m + 1. Let

τ = (τ1, . . . , τn) ∈ Rn+ be a weight vector with the properties that

m+
m

n
≤

m∑
i=1

τd+i < m+ 1,
n∑
i=1

τi > n+ 1, τi > 1,

for all 1 ≤ i ≤ n. Then

dimW′n(τ ) ∩Πα = min
1≤i≤d


n+ 1−

∑m
i=1 τd+i +

∑
τj≤τi

1≤j≤d
(τi − τj)

τi

 = s.

Furthermore

Hs
(
W′n(τ ) ∩Πα

)
=∞.

Remark 6.2.2. The constraints on (τd+1, . . . , τn) ensure that we can apply Theorem 6.1.3. The condition

that
∑n

i=1 τi > n + 1 ensures that we do not include the trivial case when W′n(τ ) = Znp , in which case

dimW′n(τ ) ∩Πα = n−m.

Remark 6.2.3. In the special case where the approximation functions are the same i.e. (τ = (τ, . . . , τ)),

then we have that, for 1 + 1
n < τ < 1 + 1

m ,

dimW′n(τ ) ∩Πα =
n+ 1

τ
−m,

which is the dimension of the set of τ -approximable points less the codimension of the hyperplane.

Remark 6.2.4. We can use the same style of proof used to prove the upper bound of Theorem 6.2.1, in

combination with Lemma 6.1.1 rather than Theorem 6.1.3, to prove that for any α ∈ Zp and approxima-

tion exponent max{1, τ(α)− 1} < τn < τ(α) we have that

dimW′n(τ ) ∩Πα ≤ min
1≤i≤n−1


n+ τ(α)− 1− τn +

∑
τj≤τi
j 6=n

(τi − τj),

τi

 .

Proving the corresponding lower bound of this result is currently beyond our reach. This is because we

do not have a complimentary lower bound to Lemma 6.1.1.

For general approximation functions Ψ = (ψ1, . . . , ψn), let

vi = lim
q→∞

− log(ψ(q))

log q
. (6.1)

Providing the limits exists and are positive and finite for each 1 ≤ i ≤ n then define Ψ∗ = (v1, . . . , vn).

Corollary 6.2.5. Let Ψ = (ψ1, . . . , ψn) be an n-tuple of approximation functions with each ψi having

positive finite limit (6.1). If Ψ∗ satisfy the same conditions as in Theorem 6.2.1, then for all α ∈ Zmp
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with τ(α) = m+ 1,

dimW′n(Ψ) ∩Πα = min
1≤i≤d


n+ 1−

∑m
i=1 ψ

∗
d+i +

∑
vj<vi

1≤j≤d
(vi − vj)

vi

 .

The corollary easily follows from the observation that by the definition of (6.1) there exists sufficiently

large q ∈ N such that

q−vi−εi ≤ ψi(q) ≤ q−vi+εi

for all 1 ≤ i ≤ n and ε = (ε1, . . . , εn) > 0 with εi → 0 as q →∞. And so

W′n(Ψ∗ + ε) ⊆W′n(Ψ) ⊆W′n(Ψ∗ − ε).

Letting ε→ 0 we obtain the desired result. Note that while Corollary 6.2.5 provides a result for general

Ψ with components satisfying (6.1), there are many functions where such limits do not exist.

As a reference of auxiliary results and concepts used in the proof of Theorem 6.2.1 we refer the reader

to §4.2 of the previous chapter for a recap of key results. One of particular importance is the Mass

Transference Principle from rectangles to rectangles, which can be found in Chapter 3.

6.3 Proof of Theorem 6.2.1

We split the proof into the upper and lower bound, and solve each case separately. In both cases we will

use the following simplified set. Let π be the projection π : Znp → Zn−mp , defined by

(x1, . . . , xn) 7→ (x1, . . . , xd).

By a well known theorem of Hausdorff theory (see Proposition 3.3 of [59]) as π is a bi-Lipschitz mapping

over W′n(τ ) ∩Πα, we have that

dimW′n(τ ) ∩Πα = dimπ(W′n(τ ) ∩Πα).

Let τm = (τd+1, . . . , τn) denote the m-tuple of approximation exponents of α and similarly let τ d =

(τ1, . . . , τd) denote the d-tuple of approximation exponents of the independent variables of Πα. Consider

the set of integers

Q(α, τm) :=

q0 ∈ N :

∣∣∣∣αi − qd+i
q0

∣∣∣∣
p

< q
−τd+i
0 , for some

|qi| ≤ q0,

gcd(qi, q0) = 1,
1 ≤ i ≤ m

 ,

and the union of sets

A∗q0(τ d) =
⋃

|qi|≤q0, gcd(qi,q0)=1

1≤i≤d

{
x ∈ Zdp :

∣∣∣∣xi − qi
q0

∣∣∣∣
p

< q−τi0

}
.
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Note that this is essentially the same set as A′q0(τ ), except that we are working with the d-dimensional

space rather than the whole n-dimensional space, hence the ∗ notation. Then,

π(Wn(τ ) ∩Πα) = lim sup
q0∈Q(α,τm)

A∗q0(τ d),

hence we only need to find the upper and lower bounds for dim lim sup
q0∈Q(α,τm)

A∗q0(τ d).

6.3.1 Upper bound

For the upper bound we take the standard cover of hyperrectangles used in the construction of A∗q(τ d).

By a standard geometrical argument note that each hyperrectangle, centred at some
(
q1
q , . . . ,

qn
q0

)
∈ Qd

in the construction of A∗q(τ d), can be covered by a finite collection of balls Bq(τi) of radius q−τi for

1 ≤ i ≤ d. Without loss of generality we can assume that

τ1 ≥ · · · ≥ τd,

since if not then we could take some bi-Lipschitz mapping to reorder the coordinate axes such that this

was the case. Hence for each j ≤ i,
q−τj

q−τi
≤ 1.

Hence in the product below we only consider the j ≥ i. By the above argument we have that the

cardinality of Bq(τi) is

#Bq(τi)�
d∏
j=i

q−τj

q−τi
= q

∑d
j=i(τi−τj).

As each τi-approximation function is decreasing as q increases, for each interval 2k ≤ q < 2k+1 take q = 2k

over such interval. Let

Q′(x, τm, N) := {q0 ∈ N : (q0, . . . , qm) ∈ Q(x, τm, N) and gcd(qi, q0) = 1∀ 1 ≤ i ≤ n} .

Since each τi > 1 for 1 ≤ i ≤ m each q0 has unique associated (q1, . . . , qm) in Q(x, τm, N) so we have that

#Q′(x, τm, N) ≤ #Q(x, τm, N). Further, by the coprimality of each qi with q0 note that the inequalities

|q0xi − qi|p < H−τi , and

∣∣∣∣xi − qi
q0

∣∣∣∣
p

< H−τi

are equivalent since p - q0. To check this observe that each xi ∈ Zp and then use the strong triangle

inequality.
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Given the above we have that Q(α, τm) ⊆
⋃
k∈NQ

′
(α, τm, 2

k). Hence for any k0 ≥ 1

Hs
(

lim sup
q∈Q(α,τm)

A∗q(τ d)

)
≤

∞∑
k=k0

∑
q∈Q(α,τm,2k)

ϕ(q)d#Bq(τi).(q
−τi)s,

Theorem 6.1.3
�

∞∑
k=k0

2k(m+1−
∑m
i=1 τd+i)(2k+1)d(2k+1)

∑d
j=i(τi−τj)(2k)−τis,

�
∞∑

k=k0

2k(n+1−
∑m
i=1 τd+i+

∑d
j=i(τi−τj)−τis),

The above sum converges when

s ≥
n+ 1−

∑m
i=1 τd+i +

∑d
j=i(τi − τj)

τi
+ ε,

for any ε > 0. Thus the tail end of the summation must converge to zero i.e. as k0 → ∞ the above

summation calculation tends to zero. This is true for each 1 ≤ i ≤ d, and as ε is arbitrary, we have that

s ≥ min
1≤i≤d

{
n+ 1−

∑m
i=1 τd+i +

∑d
j=i(τi − τj)

τi

}
,

completing the upper bound result. Note that the result of Remark 2.2 can similarly be obtained by

replacing Theorem 6.1.3 by Lemma 6.1.1.

6.3.2 Lower bound

In order to use Theorem 3.3.3 to prove the lower bound of Theorem 6.2.1 we need to construct a ubiquitous

system of rectangles. In following with the ubiquity setup for Theorem 3.3.3 let

J = Q(α, τm), Rq,i =

 qi
q ∈ Q :

|qi| ≤ q,

gcd(qi, q) = 1

 , Rq =
∏d
i=1Rq,i,

β(q) = q, ρ(q) = q−1, lk = Mk, uk = Mk+1,

where M ∈ N is a fixed integer to be determined later. Then we have that

Jk = {q ∈ Q(α, τm) : Mk ≤ q < Mk+1}.

Note that Jk ⊆ Q
′
(α, τm, 2

k+1). For a vector a = (a1, . . . , an) ∈ Rn+ let

∆(Rq, ρ(r)a) =

n∏
i=1

⋃
qi∈Rq,i

B

(
qi
q
, r−ai

)
.

We prove the following.

Proposition 6.3.1. Let Rq, ρ, and Jk be as above, and let ṽ = (v1, . . . , vd) ∈ Rd>0 with each vi > 1 and

d∑
i=1

vi = n+ 1−
m∑
i=1

τd+i,
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for

m+
m

n
≤

m∑
i=1

τd+i < m+ 1

and each τi > 1. Then for any ball B = B(x, r) ⊂ Zdp, with centre x ∈ Zdp and radius 0 < r < r0 for some

r0 ∈ R+, there exists a constant c > 0 such that

µp,d

B ∩ ⋃
q∈Jk

∆(Rq, ρ(uk)
ṽ)

 ≥ cµp,d(B),

provided M > (3dC1)
1

n+1−
∑m
i=1

τd+i .

The proof of this result follows the same style of many similar results in Rn. For example see Theorem

1.3 of [25] for the one dimensional real case, or Proposition 5.1 of [24] for the n-dimensional p-adic case.

Proof. Fix some ball B = B(y, r) for some y ∈ Znp and r ∈ {pi : i ∈ N ∪ {0}}. We will assume that k is

sufficiently large so that Mkr ≥ 1. For any y = (y1, . . . , yd) ∈ (Zp\Q)d, consider the system of inequalities

|q0αi − qd+i|p < (Mk+ 1
n+1 )−τd+i , 1 ≤ i ≤ m,

|q0yi − qi|p < p
n
d (Mk+ 1

n+1 )−vi , 1 ≤ i ≤ d,

max1≤i≤n |qi| ≤Mk,

|q0| ≤Mk+1.

(6.2)

By the condition on ṽ we have, by Lemma 5.3.1, that there exists a non-zero integer solution (q0, . . . , qn) ∈

Zn+1 to (6.2) for any y ∈ B. Furthermore, note that if (q0, . . . , qn) solves (6.2) then q0 ∈ Q′(α, τ ,Mk+ 1
n+1 ).

We can assume without loss of generality that q0 ≥ 0, and furthermore that q0 6= 0 since each vi, τd+i > 1

for all 1 ≤ i ≤ d and 1 ≤ j ≤ m. As we wish to have a statement for rectangles, rather than linear forms,

we need to divide through by |q0|p. To ensure we do not divide by a value too large we remove the set

of q0 that are ’too prime’, that is all q0 such that |q0|p ≤ p−λ0 for some fixed λ0 ∈ N. Since vi, τd+j > 1

for each 1 ≤ i ≤ d and 1 ≤ j ≤ m, (6.2) combined with 0 < q0 ≤ Mk+1 implies that |qi|p ≤ |q0|p for

each 1 ≤ i ≤ n, provided that k is sufficiently large. Let λ be the integer such that |q0|p = p−λ. Write

q′0 = q0p
−λ and q′i = qip

−λ. Observe that q′0, q
′
i ∈ Z,

(q′0, q
′
d+1, . . . , q

′
n) ∈ Q

(
α, τ ,

Mk+1

pλ

)
, 0 < q′0 ≤ p−λMk+1, |q′i| ≤ p−λMk, (6.3)

for each 1 ≤ i ≤ n and that ∣∣∣∣yi − q′i
q′0

∣∣∣∣
p

= pλ|q0yi − qi|p

< pλ+
n
d

(
Mk+ 1

n+1

)−vi
, (6.4)
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for 1 ≤ i ≤ d. The same is true for the inequalities on α. At this point we only want the q
q0

=(
q1
q0
, . . . , qdq0

)
∈ Rq0 such that

B ∩
d∏
i=1

B

(
qi
q0
, ρ(Mk+1)vi

)
6= ∅.

This is equivalent to the set of solutions to∣∣∣∣yi − qi
q0

∣∣∣∣
p

< r, 1 ≤ i ≤ d. (6.5)

For q0 fixed and each |qi| ≤ q0 by congruence classes we have that there are at most

(2q0r + 1)d < 3dMkdrd

suitable values of q solving (6.5). Hence we have that

µp,d


B ∩

⋃
λ≥λ0

⋃
|a′i|≤

Mk

pλ

0<a′0≤
Mk+1

pλ
: a′0∈Q′

(
α,τ ,M

k+1

pλ

)
⋃

(
a′1
a′0
,...,

a′
d
a′0

)
∈B

d∏
i=1

B

(
a′i
a′0
, pλ+

n
d

(
Mk+ 1

n+1

)−vi)


≤
∑
λ≥λ0

#Q′
(
α, τ ,

Mk+1

pλ

)(
3
Mk

pλ
r

)d
pdλ+nM−k(n+1−τ̃)−1+ τ̃

n+1 ,

Theorem 6.1.3
≤

∑
λ≥λ0

C1

(
Mk+1

pλ

)m+1−τ̃

3d
(
Mk

pλ

)d
pdλ+nM−(k(n+1−τ̃)+1− τ̃

n+1)µp,d(B)

=
∑
λ≥λ0

µp,d(B)C13
dpn−λ(m+1−τ̃)Mm−τ̃+ τ̃

n+1 ,

≤ C13
dMm−τ̃+ τ̃

n+1
pn+(1−λ0)(m+1−τ̃)

pm+1−τ̃ − 1
µp,d(B).

Take λ0 sufficiently large, say

pλ0 >

(
2
C13dpn+m+1−τ̃Mm−τ̃+ τ̃

n+1

pm+1−τ̃ − 1

) 1
m+1−τ̃

.

Observe that since τ̃ ≥ m+ m
n the fact that λ0 is dependent on M is irrelevant since the value decreases

as M increases, hence we could replace Mm−τ̃+ τ̃
n+1 by 1. Then we have that

µp,d


B ∩

⋃
λ≥λ0

⋃
|ai|≤M

k

pλ

0<a′0≤
Mk+1

pλ
: a′0∈Q′

(
α,τ ,M

k+1

pλ

)
⋃

(
a′1
a′0
,...,

a′
d
a′0

)
∈B

d∏
i=1

B

(
a′i
a′0
, pλ+

n
d

(
Mk+ 1

n+1

)−vi)

≤ 1

2
µp,d(B).
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and so

µp,d

B ∩
⋃

|ai|≤Mk

0<a′0≤Mk+1: a′0∈Q′(α,τ ,Mk+1), |a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+

n
d

(
Mk+ 1

n+1

)−αi)


≥ µp,d

B ∩
⋃

|ai|≤Mk

0<a′0≤Mk+1: a′0∈Q′(α,τ ,Mk+1)

n∏
i=1

B

(
ai
a0
, pλ+

n
d

(
Mk+ 1

n+1

)−αi)


− µp,d

B ∩
⋃

|ai|≤Mk

0<a′0≤Mk+1: a′0∈Q′(α,τ ,Mk+1), |a0|p<p−λ0

n∏
i=1

B

(
ai
a0
, pλ+

n
d

(
Mk+ 1

n+1

)−αi)


≥ 1

2
µp,d(B).

Similarly to the above we can deduce that

µp,d

B ∩
⋃

|ai|≤Mk

Mk<a0≤Mk+1: a0∈Q′(α,τ ,Mk+1), |a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+

n
d

(
Mk+ 1

n+1

)−αi)


≥ µp,d

B ∩
⋃

|ai|≤Mk

0<a0<Mk+1: a0∈Q′(α,τ ,Mk+1), |a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+

n
d

(
Mk+ 1

n+1

)−αi)

(6.6)

− µp,d

B ∩
⋃

|ai|≤Mk

0<a0≤Mk: a0∈Q′(α,τ ,Mk), |a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+

n
d

(
Mk+ 1

n+1

)−αi)
 .

Note that we are justified in taking the set Q′(α, τ ,Mk) rather than Q(α, τ ,Mk+1) in the last row of

the (6.6) since

{
0 < a0 ≤Mk : a0 ∈ Q(α, τ ,Mk)

}
⊇
{

0 < a0 ≤Mk : a0 ∈ Q(α, τ ,Mk+1)
}
.
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Calculating the measure of the 3rd row of (6.6) gives us that

µp,d

B ∩
⋃

|ai|≤Mk

0<a0≤Mk: a0∈Q′(α,τ ,Mk), |a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+1

(
Mk+ 1

n+1

)−αi)


≤ #Q′(α, τ ,Mk)
(

3Mkr
)d
pdλ0+nM−(k(n+1−τ̃)+1− τ̃

n+1)

Theorem 6.1.3
≤ C1M

k(m+1−τ̃)3dMkdpdλ0+nM−(k(n+1−τ̃)+1− τ̃
n+1)µp,d(B)

≤ 3dpdλ0+nM−(1−
τ̃
n+1

)µp,d(B).

Taking

M ≥ (c13
dpdλ0+n)

n+1
n+1−τ̃

for some constant c1 <
1
2 and applying this to (6.6) gives us that

µp,d

B ∩
⋃

|ai|≤Mk

Mk<a0≤Mk+1: a0∈Q′(α,τ ,Mk+1), |a0|p≥p−λ0

n∏
i=1

B

(
ai
a0
, pλ0+

n
d

(
Mk+ 1

n+1

)−αi)
 ≥

(
1

2
− c1

)
µp,d(B).

To complete the proof take the constant C associated with the function ρ to be

C = max
1≤i≤n

p
λ0+

n
d

αi M1− 1
n+1 .

Given Proposition 6.3.1 we have that (Rq, β) is a local ubiquitous system of rectangles with respect to

(ρ, ṽ), provided
∑d

i=1 vi = n + 1 −
∑m

i=1 τd+i. Observe that given this ubiquity result we are essentially

at the same stage of proof as §4.3 in the real case, or §5.6.1 of the p-adic case. The following method

is essential the same as that given in Chapter 5 (p.94-95). For completeness we give the method here,

although in a more streamline way. See the sections mentioned above for a more detailed explanation.

Given τ d = (τ1, . . . , τd) ∈ Rd>0 assume without loss of generality that τ1 > τ2 > · · · > τd and define

each vd−i recursively by

vd−i = min

{
τd−i,

n+ 1−
∑m

i=1 τd+i −
∑d

j=d−i+1 vj

d− i

}
.

By the condition on τ d of Theorem 6.2.1, there exists a k ∈ {1, . . . , d} such that

vl =
n+ 1−

∑m
i=1 τd+i −

∑d
j=d−k+1 vj

d− k
,

108



for all 1 ≤ l ≤ d− k. Clearly each vi ≤ τi for 1 ≤ i ≤ d, and so the associated vector t = (t1, . . . tn−1) ∈

Rn−1≥0 is defined by

ti = τi − vi, 1 ≤ i ≤ d.

Consider the set

A = {v1, . . . , vd, τ1, . . . , τd}.

For each Ai ∈ A observe the following:

i) Ai ∈ {v1, . . . , vd}: Then we have the sets

K1 = {1, . . . ,max{i, d− k}}, K2 = {max{i+ 1, d− k + 1}, . . . , d}, K3 = ∅.

By Theorem 3.3.3 we have that

dimW′n(τ ) ∩Πα ≥ min
1≤i≤d

{
max{i, d− k}vi + (d−max{i+ 1, d− k + 1})vi −

∑d
j=max{i+1,d−k+1} tj

vi

}
,

= min
1≤i≤d

{
dvi −

∑d
j=max{i+1,d−k+1} tj

vi

}
.

Since tj = 0 for d − k + 1 ≤ j ≤ d the above equation gives that dimW′n(τ ) = d = n − m, the

maximal dimension of W′n(τ ) ∩Πα.

ii) Ai ∈ {τ1, . . . , τd}: Since τi = vi for d − k + 1 ≤ i ≤ d the above argument covers such case, so we

only need to consider τi for 1 ≤ i ≤ d− k. For such τi we have the sets

K1 = ∅, K2 = {i, . . . , d}, K3 = {1, . . . , i− 1}.

Applying Theorem 3.3.3 we have

dimW′n(τ ) ∩Πα ≥ min
1≤i≤d

{
(d− i)τi +

∑i−1
j=1 vj −

∑d
j=i tj

τi

}
,

= min
1≤i≤d


(d− i)τi + (d− k)

(
n+1−

∑m
i=1 τd+i−

∑d
j=d−k+1 vj

d−k

)
−
∑d−k

j=1 τj

τi

 ,

= min
1≤i≤d

{
n+ 1−

∑m
i=1 τd+i +

∑d
j=i(τi − τj)

τi

}
.

Combining i) and ii) we have that

dimW′n(τ ) ∩Πα ≥ min
1≤i≤d

{
n+ 1−

∑m
i=1 τd+i +

∑d
j=i(τi − τj)

τi

}
,

completing the proof.
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6.4 Proof of the counting results

Recall, we aim to provide bounds on the set

Q(x,Ψ, N) :=

(q0, . . . , qn) ∈ Zn+1 :
0 < q0 ≤ N,

max1≤i≤n |qi| ≤ N,
|q0xi − qi|p < ψi(N), 1 ≤ i ≤ n

 .

We begin with the proof of Lemma 6.1.6. This style of proof is not new and follows a similar method to

the proof in the euclidean case (see Lemma 3 of [95]).

Proof of Lemma 6.1.6: Fix x = (x1, . . . , xn) ∈ Znp and take t = (t1, . . . , tn) ∈ Nn to be the integers such

that

p−ti ≤ N−τi < p−ti+1, 1 ≤ i ≤ n.

Denote by P =
∏n
i=1 p

ti . Consider a set of open disjoint rectangles {Ri}Pi=1, each with some centre point

ki = (ki,1, . . . , ki,n) ∈ Zn and sidelenghts p−ti . Choose the set of points {ki} such that Znp ⊆
⋃P
i=1Ri.

Consider the (N + 1)n+1 set of points of the form

(q0x− q) = (q0x1 − q1, . . . , q0xn − qn) ∈ Znp ,

with qi ∈ [0, N ] for each 0 ≤ i ≤ n. By the Pigeon-hole principle there exists at least one rectangle, say

Rj , containing at least
(N + 1)n+1

P
>

1

pn
Nn+1−

∑n
i=1 τi

points. As
∑n

i=1 τi < n + 1 we can choose N sufficiently large enough such that p−nNn+1−
∑n
i=1 τi > 2.

Order the points (q0, . . . , qn), correspond to the points q0x− q contained in Rj , by the absolute value of

the q0 component. If the q0 components are equal then order by q1 and so on. Suppose that the vector

(m0, . . . ,mn) is the smallest by our ordering. Then for all other vectors (r0, . . . , rn) contained in Rj we

have that

|kj,i − (m0xi −mi)− (kj,i − (r0xi − ri)|p < p−ti ,

|(r0 −m0)xi − (ri −mi)|p < p−ti ≤ N−τi .

Hence the vectors (r0 −m0, . . . , rn −mn) ∈ Zn+1 solve the inequality of Q(x, τ , N). Further (ri −mi) ∈

[−N,N ], and by the ordering stated above r0 − m0 ∈ [0, N ]. To exclude the case where r0 − m0 = 0

observe that each τi > 1 and so we would have that

N−1 ≤ |ri −mi|p < p−ti < N−1

for 1 ≤ i ≤ n, a contradiction. The above argument yields p−nNn+1−
∑n
i=1 τi − 1 such points, completing

the proof.
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Lemma 6.1.1 also has a relatively simple proof. The following method of assuming a contradiction and

then using the Pigeon-hole principle to prove otherwise is a well know technique used in a variety of texts

[105, 37].

Proof of Lemma 6.1.1: We use a proof by contradiction. Suppose that

#Q(x, τ,N) > 2N τ(x)−τ+ε. (6.7)

We use the following notations. Let X ∈ N be an integer such that

|x−X|p < p−M ,

for some suitably large M ∈ N, in particular we may take

X =

M∑
i=0

xip
i,

where (xi)i∈N is the p-adic expansion of x. . Define V +
N and V −N to be the sets

V +
N := {(q, q1) ∈ N× Z : 0 < q ≤ N, 0 ≤ q1 ≤ N, },

V −N := {(q, q1) ∈ N× Z : 0 < q ≤ N, −N ≤ q1 ≤ 0, }.

Let t ∈ N be the integer such that

p−t ≤ N−τ < p−t+1,

and similarly k ∈ N be the integer such that

p−k ≤ N−(τ(x)+ε) < p−k+1.

Note that as τ(x) > τ , we have that k ≥ t, and so pk−t ∈ N. Further, observe that

pk−t < pN τ(x)−τ+ε. (6.8)

Lastly, by the definition of τ(x), we have that there exists only finitely many Q ∈ N such that

|qx− q1|p < Q−(τ(x)+ε),

for 0 < q, |q1| ≤ Q. Hence we may choose a sufficiently large N0 such that for all N > N0 for any pair

0 < q, |q1| ≤ N ,

|qx− q1|p ≥ N−(τ(x)+ε), (6.9)

for all ε > 0. Consider the set of points in Q(x, τ,N). Note that (q, q1) ∈ Q(x, τ,N) if and only if

(q, q1) ∈ V +
N ∪ V

−
N , and

qX − q1 ≡ 0 mod pt. (6.10)
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Thus, for all (q, q1) ∈ Q(x, τ,N) we have that

qX − q1 = λpt,

for some λ ∈ Z. Split the set of points in Q(x, τ,N) into two disjoint sets, the set of pairs in V +
N , and the

set of pairs in V −N . As there are greater than 2N τ(x)−τ+ε pairs, at least one of the sets has greater than

N τ(x)−τ+ε pairs. Without loss of generality assume such set of points belong in V +
N . Considering the

range of values of λpt for t fixed and λ varying we observe there are pk−t possible values of λpt modulo

pk. By (6.7) and (6.8) we have, by the Pigeon-hole principle, that there exists at least two pairs, say

(a, a1) and (b, b1), such that

(a− b)X − (a1 − b1) ≡ 0 mod pk.

This is equivalent to

|(a− b)x− (a1 − b1)|p ≤ p−k ≤ N−(τ(x)+ε),

with (a− b, a1 − b1) ∈ V +
N ∪ V

−
N , as 0 < a− b ≤ N by our choice of ordering of a, b, and |a1 − b1| ≤ N by

the fact that the pairs (a, a1), (b, b1) ∈ V +
N . However, such result contradicts (6.9) which follows from the

definition of τ(x), thus (6.7) must be false.

6.4.1 p-adic approximation lattices

Prior to the proof of Theorem 6.1.3 we recall some basic definitions and results of geometry of numbers

that will be needed. Define a lattice Λ as a discrete additive subgroup of Rn. If Λ ⊆ Zn the Λ is an

integer lattice. A set of linearly independent vectors b1, . . . , bn that generate Λ is called a basis of Λ. Let

B be a n× n matrix with columns bi, then call B a basis matrix. Define the fundamental region as

F(B) :=

{
n∑
i=1

aibi : ai ∈ R, 0 ≤ ai < 1

}
.

A standard result of geometry of numbers states that if B is a basis matrix for Λ then F(B) contains no

lattice points other than the origin (see Chapter 3, Lemma 6 of [50]).

The volume of the fundamental region can be found by taking the determinant of the basis matrix, that

is vol(F(B)) = |detB|. A basis matrix is not unique for each Λ, however for any lattice Λ the volume

of the fundamental region is the same regardless of choice of basis matrix. For this reason we use the

notation det Λ to denote the volume of the fundamental region. If U ∈ Zn×n is a unimodular matrix and

B1 is a basis matrix for Λ then B2 = B1U is also a basis matrix for Λ.

The successive minima of a lattice is an incredibly useful notion that allows us to deduce several

properties of a lattice. Let Bn = B(0, 1) denote the n-dimensional euclidean unit ball. For c ∈ R+ we
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use the notation cBn = B(0, c). Define the successive minima of a lattice Λ ⊂ Rn of rank n as the set of

values

λi(Λ) := min{λ > 0 : dim(Λ ∩ λB) ≥ i},

for i = 1, . . . , n. By Minkowski’s inequalities on the successive minima (see e.g. [67]) we have that

vol(Bn)
n∏
i=1

λi(Λ) ≤ 2n det Λ. (6.11)

For a count on the number of lattice points within a convex body we have the follow theorem due to

Blichfeldt [41].

Theorem 6.4.1. Let Λ ⊂ Rn be a lattice of full dimension and let V ⊂ Rn be a convex body about the

origin such that the span of vectors contained in Λ ∩ V is Rn. Then

#(Λ ∩ V ) ≤ n!
vol(V )

det Λ
+ n.

The constant for such estimate can be excessively large, however in our use of the Theorem the size of

such constant is irrelevant.

In 1993 an alternative lattice counting theorem was proven by Betke, Henk and Wills [39], which utilised

the properties of the successive minima. This result was further generalised by Henk [66], giving us the

following theorem.

Theorem 6.4.2. Let n ≥ 2, B(0,K) a n-dimensional ball of radius K > 0 centred at the origin and Λ

a n-dimensional lattice. Then

#(Λ ∩K) < 2n−1
n∏
i=1

⌊
2K

λi(Λ)
+ 1

⌋
.

We remark that if rank(Λ ∩ B(0,M)) < n then we must have at least that λn(Λ) ≥ M . Thus the nth

value of the product in Theorem 6.4.2 would be bounded above by 3, a point we make use of later on.

For the proof of Theorem 6.1.3 we use p-adic approximation lattices. Such lattices have been used in

p-adic Diophantine approximation regularly, for example De Weger [54] used them to prove a variety of

results in classical p-adic Diophantine approximation, including the p-adic analogue of Hurwitz Theorem.

Recently n-dimensional forms of p-adic approximation lattices have been used to provide lattice based

cryptosystems [73, 74]. In these papers both dual and simultaneous approximation lattices were discussed.

In particular Dirichlet-style exponents were proven for simultaneous and dual approximation.

For a n-tuple of approximation functions Ψ = (ψ1, . . . , ψn), an integer N ∈ N, and a fixed x =

(x1, . . . , xn) ∈ Znp define the Ψ-approximation lattice ΛN,x over Rn+1 by

ΛN,x = {(a0, . . . , an) ∈ Zn+1 : |a0xi − ai|p ≤ ψi(N), 1 ≤ i ≤ n}.
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To briefly justify the above claim note that the collection of points are discrete, and that any integer

linear combination of such points is also contained within the set due to the strong triangle inequality.

Observe that such claim is clearly false if we were to consider the real case analogous to the above setting.

Observe that

Q(x,Ψ, N) ⊆ ΛN,x ∩B(0,
√
nN),

since the euclidean ball B(0,
√
nN) contains all integer points satisfying max0≤i≤n |qi| ≤ N .

For any x ∈ Znp we may write each xj as the p-adic expansion

xj =
∞∑
i=0

xj,ip
i, xj,i ∈ {0, 1, . . . , p− 1}.

Let Xj,N ∈ Z be the integer

Xj,N =

tj∑
i=0

xj,ip
i,

where each tj ∈ N is the unique value associated with N satisfying

p−tj < ψj(N) ≤ p−tj+1. (6.12)

Lastly, for each 1 ≤ j ≤ n let ψ∗j,N = ptj . Then the set of vectors

B =




1

X1,N

...

Xn,N

 ,


0

ψ∗1,N
...

0

 , . . . ,


0

0
...

ψ∗n,N




, (6.13)

form a basis for ΛN,x. To support this claim observe that

|xi −Xi,N |p =

∣∣∣∣∣∣
∞∑

j=ti+1

xi,jp
j

∣∣∣∣∣∣
p

< p−ti < ψi(N),

and

|0 · xi − ψ∗i,N |p = |pti |p = p−ti < ψi(N),

for 1 ≤ i ≤ n. Hence the span of vectors B at least produces a sublattice of ΛN,x. To show B is a basis

of ΛN,x we consider the fundamental region F(B) and show that the only lattice point contained is 0.

Suppose there exists a non-zero lattice point in F(B) of the form

n+1∑
i=1

cibi

where bi are the vectors of B and each 0 ≤ ci < 1. Since ΛN,x ⊆ Zn+1 and the first vector of B is the

only vector with a non-zero entry in the first row we must have c1 = 0. For the remaining vectors observe
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that each non-zero term is a prime power, so each ci must be of the form p−r for some r ∈ N. However,

by the construction of each ψ∗i,N we have that

|ψ∗i,N |p < ψi(N) and |p−1ψ∗i,N |p ≥ ψi(N),

and so the only possible value for each ci is zero.

Now we have a basis for ΛN,x we can calculate

|det ΛN,x| =
n∏
i=1

ψ∗i,N �

(
n∏
i=1

ψi(N)

)−1
,

where the implied constants can be easily found using (6.12) to obtain(
n∏
i=1

ψi(M)

)−1
≤ |det ΛN,x| ≤ pn

(
n∏
i=1

ψi(N)

)−1
. (6.14)

In the simultaneous case, Ψ = (ψ, . . . , ψ), it was proven in [74] that

λ1(ΛN,x)� ψ(N)−
n
n+1 .

In the following proposition we generalise this result to weighted approximation and find a lower bound

result for x ∈ Zp satisfying certain Diophantine exponent properties. It should be remarked that the

upper bound result is trivial and was probably known to the authors of [74].

Proposition 6.4.3. Let ΛN,x be defined above with τ(x) = n+ 1, and suppose that

n∏
i=1

ψi(N) < N−n.

Then for any ε > 0 the exists sufficiently large N0 ∈ N such that for all N ≥ N0,(
1∏n

i=1 ψi(N)

) 1
n+1
−ε
≤ λ1(ΛN,x) ≤ C2

(
1∏n

i=1 ψi(N)

) 1
n+1

,

where

C2 = 2

(
Γ
(
n+1
2 + 1

)
pn

π
n+1
2

) 1
n+1

.

As will become clear in the proof below the condition that τ(x) = n+ 1 is only necessary in the lower

bound result.

Proof. We prove the upper bound case first. Such proof is a standard application of Minkowski’s first

Theorem on successive minima and follows almost immediately by the above calculation of det(ΛM,x).

Concisely, we have that

λ1(ΛN,x)n+1vol(B(0, 1)) ≤ 2n+1 det(ΛN,x).
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Rearranging for λ1(ΛN,x), using (6.14), and recalling the volume of an n+ 1-ball we obtain our result.

For the lower bound observe that for any x ∈ Znp
∏n
i=1 |q0xi − qi|p < N−(n+1),

max0≤j≤n |qj | ≤ N,

for infinitely many N (see for example Lemma 5.3.1). Further, since τ(x) = n + 1 there exists N0 such

that for all N ≥ N0 then any rational integer vectors (q0, . . . , qn) satisfying max0≤i≤n |qi| ≤ N we have

that
n∏
i=1

|q0xi − qi|p ≥ N−(n+1+ε) (6.15)

for some ε > 0. Choose N sufficiently large such that

N0 ≤

(
n∏
i=1

ψi(N)

)−( 1
n+1
−ε)

.

Such N is possible since
∏n
i=1 ψi(N) < N−n and so the value on the RHS of the above inequality tends

to infinity as N →∞ for any small ε (ε < 1
n(n+1)).

Suppose that (q0, . . . , qn) is a minimum length non-zero vector of ΛN,x, then note that λ1(ΛN,x) ≥

max1≤i≤n |qi| due to the euclidean nature of λ1(ΛN,x). Suppose that

max
1≤i≤n

|qi| <

(
n∏
i=1

ψi(N)

)−( 1
n+1
−ε)

. (6.16)

We prove (6.16) to be false. Observe that

n∏
i=1

|q0xi − qi|p <
n∏
i=1

ψi(N),

since (q0, . . . , qn) ∈ ΛN,x. Then

n∏
i=1

|q0xi − qi|p <

( n∏
i=1

ψi(N)

)−( 1
n+1
−ε)
−

n+1
1−ε(n+1)

.

But this contradicts (6.15). So we must have that (6.16) is false, and so

λ1(ΛN,x) ≥

(
n∏
i=1

ψi(N)

)−( 1
n+1
−ε)

,

completing the proof.

Given Proposition 6.4.3 we can proceed with the following.

Proof of Theorem 6.1.3: For N ≥ N0, where N0 is chosen by Proposition 6.4.3, consider the following

two cases:
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i) rank(ΛN,x ∩B(0,
√
nN)) = n+ 1: By Theorem 6.4.1 we have that

#(ΛN,x ∩B(0,
√
nN)) ≤ (n+ 1)!

vol(B(0,
√
nN))

det ΛN,x
+ n+ 1,

≤ (n+ 1)!πn/2
√
n
n+1

Γ
(
n
2 + 1

) Nn+1.(
n∏
i=1

ψ∗i,N )−1 + n+ 1,

≤ (n+ 2)!πn/2
√
n
n+1

Γ
(
n
2 + 1

) Nn+1
n∏
i=1

ψi(N).

Note that the last inequality follows since
∏n
i=1 ψi(N) > N−(n+1−ε). This proves Theorem 6.1.3 for

the rank n+ 1 case.

ii) rank(ΛN,x∩B(0,
√
nN)) < n+1: Since rank(ΛN,x∩B(0,

√
nN)) < n+1 we must have λn+1(ΛN,x) >

√
nN . Hence, by the remark made previously, the final product on the right of Theorem 6.4.2 is less

than or equal to 3. Furthermore, for each λi(ΛN,x), 1 ≤ i ≤ n we have that

λn(ΛN,x) ≥ · · · ≥ λ1(ΛN,x)
Prop. 6.4.3
≥

(
1∏n

i=1 ψi(N)

) 1
n+1
−ε
,

≥
(

1

N
∏n
i=1 ψi(N)

)1/n

,

where the second inequality follows since(
1∏n

i=1 ψi(N)

) 1
n+1
−ε
≥

((
1∏n

i=1 ψi(N)

)n−εn(n+1)
) 1

n(n+1)

,

≥
(

1

Nn+1
∏n
i=1 ψi(N)

(
1∏n

i=1 ψi(N)

)n) 1
n(n+1)

.

combining the two ideas above, and Theorem 6.4.2, we have that

#(ΛN,x ∩B(0,
√
nN)) < 2n3

n∏
i=1

(
2
√
nN

λ1(ΛN,x)
+ 1

)
,

< 2n3

2
√
nN1+1/n

(
n∏
i=1

ψi(N)

)1/n

+ 1

n

,

< 3(6
√
n)nNn+1

n∏
i=1

ψi(N).

Thus, in either case i) or ii) we have that

#(ΛN,x ∩B(0,
√
nN)) ≤ C1N

n+1
n∏
i=1

ψi(N),

with

C1 = max

{
3(6
√
n)n,

(n+ 2)!πn/2
√
n
n+1

Γ
(
n
2 + 1

) }
.
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6.5 Concluding remarks on Theorem 6.1.3

Theorem 6.1.3 provides sharp bounds on the number of rational points close to almost all n-dimensional

p-adic integers. While this result allows us to find simultaneous p-adic Diophantine approximation results

on coordinate hyperplanes, it falls a long way short of providing results for Diophantine approximation

sets on curves and manifolds. However, as will be shown in the next chapter, Theorem 6.1.3 can be used

to obtain bounds on rational points close to certain classes of submanifolds. It is hoped the techniques

used in the proof of Theorem 6.1.3 could be developed further to find counts on the number of rational

points close to general manifolds.

118



Chapter 7

Further Research

This final chapter provides a brief overview and discussion of possible developments to the preceding

chapters. We introduce S-arithmetic Diophantine approximation and discuss how the techniques of

Chapters 4 and 5 could be implemented to obtain similar results in the S-arithmetic setting.

We also discuss the latest results in counting rational points close to real manifolds, and possible

methods to obtain similar results in the p-adic setting. Such results would provide a complimentary

upper bound result to Theorem 5.2.3-5.2.5.

7.1 Introduction to S-arithmetic numbers

The S-arithmetic setting is a combination of both real and p-adic numbers. For that reason many of

the notions and ideas of the previous chapters can be applied in this setting. Let S be a finite set of

valuations on Q of cardinality k. Then define

QS =
∏
ν∈S

Qν ,

where Qν is the completion of Q with respect to the valuation ν. In the case where the Euclidean

valuation is contained in S we will say ∞ ∈ S, and similarly we will denote R by Q∞. The set QS has

the associated norm defined for any x = (x(ν))ν∈S ∈ QS by

|x|S = max
ν∈S
|x(ν)|ν .

Hence, for any point y ∈ QS and real number r > 0 we may define the S-arithmetic open ball

BS(y, r) := {x ∈ QS : |x− y|S < r} .

Where it is clear we are referring to an S-arithmetic ball we will drop the notation and use B(y, r) to

denote a S-arithmetic ball with center y ∈ QS and radius r > 0. As with the p-adic setting, define the
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ring of S-arithmetic integers ZS ⊂ QS as

ZS := {x ∈ QS : |x|S ≤ 1} .

At this stage we note that many general properties of QS depend on whether ∞ ∈ S. For example, if

∞ ∈ S then Zk 6⊂ ZS , since the Euclidean norm of any integer (with the exception of ±1) is greater than

one. Conversely, if ∞ 6∈ S then Zk ⊂ ZS , and further still Zk is dense in ZS (this follows by using similar

ideas to the p-adic case). Further, observe that if ∞ 6∈ S then |.|S satisfies the strong triangle inequality,

a result that is clearly false if ∞ ∈ S.

Denote by µS the S-arithmetic Haar measure, normalised by µS(ZS) = 1. Note that µS is simply the

product measure of measures over each Qν , i.e.

µS =
∏
ν∈S

µν ,

with µ∞ = λ, the Lebesgue measure.

The notion of Diophantine approximation in QS can be considered in a variety of ways. As with the

previous chapters we will focus on simultaneous Diophantine approximation. For a general introduction

and a variety of results on dual and Groshev S-arithmetic Diophantine approximation see [79, 90]. For

integer vector (q0, q) ∈ Zk+1 we will be interested in the quantity

|xq0 − q|S ,

where xq0 can be considered as usual scalar multiplication i.e. xq0 = (q0x
(ν))ν∈S . As discussed in Chapter

2 the size of both q0 and q can greatly influence the rate of approximation for the p-adic norm. The same

is clearly true for |.|S . Let ψ : N→ R+ with ψ(r)→ 0 as r →∞, then we define a point x ∈ QS to be ψ-

simultaneously approximable if there exists infinitely many integer vectors (q0, q1, . . . , qk) = (q0, q) ∈ Zk+1

that solve 
|xq0 − q|S < ψ(H),

max
0≤i≤k

|qi| ≤ H.

For each valuation ν ∈ S denote by q(ν) the integer associated with such valuation. Precisely, let

q = (q(ν))ν∈S ∈ Zk, then

|xq0 − q|S = max
ν∈S
|x(ν)q0 − q(ν)|ν .

When considering weighted simultaneous approximation we will vary the rate of approximation over

each ν ∈ S. Let Ψ = (ψν)ν∈S be a k-tuple of approximation functions. A point x ∈ QS is said to be

Ψ-simultaneously approximable if there exists infinitely many integer vector solutions (q0, q) ∈ Zk+1 to
|x(ν)q0 − q(ν)|ν < ψν(H), ν ∈ S,

max
ν∈S
{|q0|, |q(ν)|} ≤ H.
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In lim sup form we may describe these set of points as

WS(Ψ) := lim sup
h→∞

⋃
|q0|,|q(ν)|≤h

{
x ∈ ZS : |x(ν)q0 − q(ν)|ν < ψν(h), ν ∈ S

}
.

Similarly to the previous chapters we will use the notation WS(ψ) for the set of (ψ, . . . , ψ)-approximable

points and WS(τ ) for the set of (q−τ1 , . . . , q−τk)-approximable points. We will often denote each τi by

the associated valuation i.e. τ = (τν)ν∈S ∈ Rk+ for notational purposes.

As usual the initial aim is to find a Dirichlet-style theorem. In order to provide an optimal Dirichlet-

style result we need to know whether ∞ ∈ S. As justification for this note that if ∞ 6∈ S then for any

integer vector (q0, q) ∈ Zk+1 and x ∈ ZS we have that

|x.q0 − q|S ≤ 1, (7.1)

and so x.q0 − q ∈ ZS . If ∞ ∈ S then (7.1) is satisfied only for certain values of q(∞) dependent on q0.

For each ν ∈ S\{∞} let pν ∈ N be such prime associated to the valuation ν. The following lemma

provides us with a generalised Dirichlet-style theorem for S-arithmetic approximation. Note that, as with

Lemma 5.3.1, similar versions of the lemma below have been proven prior by a number of authors, see

for example [79].

Lemma 7.1.1. For each valuation ν ∈ S let Lν : Qk+1
ν → Qν be a linear form with pν-adic integer

coefficients, or real coefficients in the interval [0, 1] if ν = ∞. Let τ = (τν)ν∈S ∈ Rk+ be a weight vector.

Suppose

i) ∞ 6∈ S and
∑

ν∈S τν = k + 1, or

ii) ∞ ∈ S,
∑

ν∈S τν = k and the coefficients of the linear form

L∞(x) = a0x0 + · · ·+ akxk

satisfy
k∑
i=0

|ai| ≤ 2|aj |, (7.2)

for some j ∈ {0, . . . , k}.

Then for any H ≥ 1 there exists a non-zero rational integer vector x = (x0, x1, . . . , xk) such that

max
0≤i≤k

|xi| ≤ H (7.3)

and

|Lν(x)|ν < pνH
−τν for each ν ∈ S, (7.4)

where p∞ = 1.
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Note that for our purposes the conditions on the coefficients of the linear form over R is generally

unrestrictive, in particular we simply need x(∞) ∈ [0, 1]. Note that the proof of Lemma 7.1.1 follows

closely the proof of Lemma 5.3.1.

Proof. Such result depends on whether ∞ ∈ S, so for that reason we split the proof into two cases. This

is a standard proof using Dirichlet’s pigeon-hole principle, which is given here for completeness.

i) ∞ 6∈ S: To begin with, note that there are (H + 1)k+1 different rational integer vectors x =

(x0, . . . , xk) satisfying (7.3), subject to the condition that xi ≥ 0 for each i. Further for all of these

rational integer vectors we have that

|Lν(x)|ν ≤ 1.

ii) ∞ ∈ S: Let the linear form over R be of the form

L∞(x) = a0x0 + . . . akxk,

for each ai ∈ [0, 1], and suppose aj = max
0≤i≤k

ai. Dividing L∞ through by aj (note that aj 6= 0 since

L∞ is not a constant function) we have another linear form with each coefficient ai
aj
∈ [0, 1] for each

0 ≤ i ≤ k. We may write
1

aj
L∞(x) =

(
1

aj
L∞(x)− xj

)
+ xj , (7.5)

where the quantity in the brackets satisfies

0 ≤ 1

aj
L∞(x)− xj ≤ H

for all x ∈ {0, . . . H}k+1 due to (7.2). Thus, by (7.5) we can choose at least one xj ∈ {0, . . . ,H} such

that for any (x0, . . . , xj−1, xj+1, . . . , xk) ∈ {0, . . . ,H}k∣∣∣∣ 1

aj
L∞(x)

∣∣∣∣
∞
≤ 1.

Since aj ∈ [0, 1] we may multiply through by aj and obtain that |L∞(x)|∞ ≤ 1 for at least (H + 1)k

integer vectors x.

To summarize, by i), if ∞ 6∈ S there are (H + 1)k+1 rational integer vectors such that

|Lν(x)|ν ≤ 1, (7.6)

whereas, if ∞ ∈ S there are only (H + 1)k rational integer vectors that satisfy (7.6). Denote by τν the

τi associated with the approximation on the Qν component. For each ν ∈ S\{∞} let δν be the unique

integer such that

pδνν ≤ Hτi < pδν+1
ν .
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By (7.6) we have that L(x) := (Lν(x))ν∈S ∈ ZS . Split ZS into the subsets S(a) given by

S(a) = {x(∞) ∈ [0, 1] : |x(∞) − a(∞)|∞ ≤ H−τ∞} ×
∏

ν∈S\{∞}

{x(ν) ∈ Zpν : |x(ν) − a(ν)|ν ≤ p−δiν }

for each a = (a(ν))ν∈S ∈ Zk+1 with 0 ≤ a(ν) < pδνν and a(∞) ∈
{
2n−1
Hτ∞

}
1≤n≤ 1

2
Hτ∞ . It is readily seen that the

sets S(a) are disjoint and cover the whole of ZS . Furthermore, there are exactly 1
2H

τ∞×
∏
ν∈S\{∞} p

δν
ν ≤

1
2H

∑
ν∈S τν of them. Hence, by the pigeon-hole principle, in either case i) or ii) at least one of the sets

S(a) contains L(xi) for at least two distinct integer points x1 and x2 as specified in i) or ii) respectively.

Let x = x1 − x2. Clearly, (7.3) is satisfied and x is non-zero. Furthermore, for each ν ∈ S we have that

|Lν(x1 − x2)|ν = |Lν(x1)− Lν(x2)|pν < pνH
−τν ,

with p∞ = 1. This verifies (7.4) and thus completes the proof.

As we can see, by Lemma 7.1.1, if all τi are equal then we have the following corollary.

Corollary 7.1.2. Let x ∈ ZS, then for any H ∈ N there exists an integer solution (q0, q) ∈ Zk+1 to the

system of inequalities 
|x.q0 − q|S < H−ω,

max
0≤i≤k

|qi| ≤ H,

where,

ω =

1 + 1
k if ∞ 6∈ S,

1 otherwise.

For an idea on how one would construct such result for the dual setting see Section 10 of [79].

7.1.1 Metric S-arithmetic approximation

In following with the previous chapters the next step is to provide Haar measure and Hausdorff theory

results on the set of approximable points. Note that, to date, there are no results of this kind on the set

of weighted simultaneously approximable points. However, it is expected that the results of the previous

chapters (in particular chapter 4) could readily be adapted to work in the S-arithmetic setting. For the

time being we will focus exclusively on results for the set of simultaneously approximable points.

For a slightly different setup to ours above Jarnik [76] proved a Khintchine-style Theorem for the set

WS(ψ). More recently Haynes proved the following theorem (Theorem 4 of [65]).

Theorem 7.1.3. Let ψ : R+ → R+ be a monotonic decreasing approximation function. Then

µS(W ′S(ψ)) =

0 if
∑∞

h=1(ϕ(h)ψ(h))k <∞,

1 if
∑∞

h=1(ϕ(h)ψ(h))k =∞.
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Note that, as with the previous chapters W ′S(ψ) denotes the set of S-arithmetic points that can be

approximated by infinitely many reduced fractions (WS(ψ) with the added condition that gcd(q0, q
ν)) = 1

for each ν ∈ S). The result was proven based on the assumption that the Duffin Schaeffer Conjecture

was true, which has since been proven (see Theorem 1.1.2), and so Theorem 7.1.3 followed. Recently

Oliveira [93] proved a Khintchine style theorem of an S-arithmetic nature. Rather than simultaneous

approximation of S-arithmetic points they approximated pν1-adic or real points by rationals contained

within different pν2-adic balls.

For the Hausdorff theory Haynes proved the following result by applying the general MTP to Theorem

7.1.3 [65].

Theorem 7.1.4. Let k+ r > 1. Then for any dimension function f with the property that f(n)/nk+r is

monotonic, we have

Hf (W ′S(ψ)) =

∞ if
∑∞

n=0 f(ψ(n))ϕ(n)k+r =∞,

0 if
∑∞

n=0 f(ψ(n))ϕ(n)k+r <∞.

Oliveira also used the general MTP to provide a corresponding Hausdorff measure statement for ap-

proximable points by rationals from balls in other valuations (see Theorem 1.4 of [93]). The above set of

results provide a complete view of S-arithmetic simultaneous approximation.

The next step is to find results on the set of S-arithmetic approximable points over curves and manifolds.

As with the real and p-adic case there are significantly more results for the set of dual approximable points,

see for example [51, 91] and references therein. In the simultaneous setting it has been shown that non-

degenerate (see [79] for the precise definition in this setting) manifolds are extremal [79] by using similar

methods to the work of Kleinbock and Margulis [78]. Khintchine convergence and divergence results have

also been found. In [44, 36] the Khintchine divergence result for simultaneously approximable points

over polynomial functions of degree ≥ 3 was proven, and later the corresponding convergence result was

proven by the same authors [45].

Currently there are no results on the Hausdorff dimension of simultaneously approximable S-arithmetic

points on curves or manifolds. Using the methods of Chapters 4-6 we suspect lower bounds on the

Hausdorff dimension of such sets could be obtained. The upper bound, as with the main results of

Chapters 4-6 require a knowledge of the distribution of rational points near S-arithmetic manifolds.

7.2 Counting points close to manifolds

As mentioned in Chapters 4, 5, and the end of the previous section, a knowledge of the distribution of

rational points close to manifolds is essential in order to obtain corresponding upper bound Hausdorff

dimension results of the previous chapters. When such results are available the Hausdorff dimension
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result follows readily, Chapter 6 gives an easy example of this. Generally, for a manifold M ⊂ F where

F is either [0, 1]n, Znp or ZS (with #S = n), a ball U ⊆ F , a fixed integer Q ∈ N, and ψ > 0 we wish to

provide bounds on the cardinality of the sets

NM(U , Q, ψ) :=
{a
b
∈ Qn : |a|, |b| ≤ Q, dist

(
M,

a

b

)
< ψ

}
,

where a ∈ Zn, and dist
(
M, ab

)
:= inf{r ∈ R : |x − a

b |F < r x ∈ M} with |.|F the valuation associated

with F . Note that since we are only considering manifolds contained within some ball of radius ≤ 1 we

may bound |a| ≤ Q with no adverse effect when considering real space.

It should be clear that in order to obtain useful bounds for general manifolds we need to apply some

conditions. The most important of which is that the manifold is not flat over large intervals. As an

example suppose that M is contained in some rational hyperplane of F . Then we would have that

NM(U , Q, ψ) � Qn−1. In order to ensure manifolds are sufficiently curved a non-degeneracy condition

is usually applied, see [78, 79]. In the case of planar curves this condition can be simply stated as the

second derivative being non-zero for a significantly large portion of the curve. Another condition required

is that the value ψ is not too small relative to Q. As an example take the hyperplane Πα,n as described in

Chapter 5, with τ(α) = 2. If ψ < Q−2−ε for ε > 0 and Q sufficiently large then there will be no rational

approximations in the α component of Πα, and thus no rational points in the ψ-neighbourhood of Πα.

In this section we will review several results of this type in the real setting and discuss how such results

could be obtained in the p-adic setting.

Rational points close to planar curves

The first of these types of results was due to Huxley [72]. For U = [0, 1]2, and M a planar curve

described by a real twice continuously differentiable function with bounded second derivatives over some

fixed interval Huxley proved that

#NM(U , Q, ψ)� ψQ3+ε

for ε > 0 arbitrary and ψ > Q−2. Such result was proven using the Swinnerton-Dyer determinant

method [108]. It was believed that for ψ bounded the Qε term of Huxley’s estimate could be removed.

In [110] Vaughan and Velani successfully proved such result for C3 curves, using duality, as used in [72],

in combination with harmonic analysis. In [19] the complimentary upper bound was also found, thus for

planar curves we have the complete result that

#NM(U , Q, ψ) � ψQ3,

for ψ ≥ Q−2+ε. Note that this has recently been improved by Huang, who proved the asymptotic formula

[68].
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Rational points close to manifolds

For general manifolds Beresnevich [14] proved the following. For any analytic non-degenerate manifold

M of codimension m and any ψ satisfying

CQ−
m+1
m < ψ < C−1,

for some constant C > 0 dependant on our choice of ball U , then for Q sufficiently large we have that

#NM(U , Q, ψ)� ψmQn+1,

where the implied constants are dependent only on the choice of U (see Corollary 1.5 of [14]). In [14]

Beresnevich proves further than this, actually giving results on the distribution of the rational points close

to the manifold in the form of a ubiquity statement. In the case of n-dimensional curves the condition

on ψ can be relaxed to ψ � Q−3/(2n−1). As stated as a remark to Theorem 5.2.3 it is hoped that by

applying the notion of ubiquity in a similar manner to as done in [14] the upper bound of τ in Theorem

5.2.3 could be improved to 1 + 3
2n−1 .

For the manifold M being a compact Ck hypersurface with Gaussian curvature bounded away from

zero, where k is

k = max

{⌈
n− 1

2

⌉
+ 5, n+ 1

}
,

Huang [69] proved that

N (U , Q, ψ)� ψQn+1. (7.7)

Note that such result had been proven previously by Beresnevich, Vaughan, Velani and Zorin in [26].

The more recent result by Huang improved the bound on the second term of (7.7) (we have omitted such

terms in the above bounds, see [69] for more details).

p-adic points close to manifolds

As shown by the previous section there is a variety of results for the set of rational points close to real

manifolds or curves. In the p-adic setting this is not the case. As far as the author is aware Theorem

6.1.3 is the first result remotely of this type in the p-adic setting.

Let f : Zdp → Zmp with f = (f1, . . . , fm) where fi : Zdp → Zp for 1 ≤ i ≤ m. Let r = d+m and

Cf := {(x, f(x)) : x ∈ U ⊆ Zdp} ⊂ Zrp.

For τ = (τ1, . . . , τm) ∈ Rm>0 and N ∈ N let

Nf(U , N, τ ) :=

(q0, . . . , qr) ∈ Zr+1 :

0 < q0 ≤ N,
q(d)

q0
∈ U , q(d) = (q1, . . . , qd),

max1≤i≤r |qi| ≤ N,

∣∣∣∣∣fi
(
q(d)

q0

)
− qd+i

q0

∣∣∣∣∣
p

< N−τi , 1 ≤ i ≤ m

 .
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As with the real case we would expect certain conditions to be imposed on the manifold Cf . In particular

it would be required that Cf avoids lying in rational hyperplanes for large regions, this would usually be

restricted by imposing conditions on the curvature of the manifold. For example, in the real case with

curves, the second derivative is bounded away from zero. However this becomes more problematic in the

p-adic case where curves can be varying but still have derivative zero, see Example 2.1.1.

A key initial result is this setting would be to obtain the analogous result of Huxley’s estimate for

p-adic curves. Given such result the corresponding upper bound result of Theorem 5.2.5 for the case of

planar curves would follow readily.

127



128



Bibliography

[1] A Abercrombie. The Hausdorff dimension of some exceptional sets of p-adic integer matrices. J.

Number Theory, 53(2):311–341, 1995.

[2] W Adams. Transcendental numbers in the P -adic domain. Amer. J. Math., 88:279–308, 1966.

[3] D Allen. Mass Transference Principles and Applications in Diophantine Approximation. PhD

thesis, University of York, 2017.

[4] D Allen and S Baker. A general mass transference principle. Selecta Math. (N.S.), 25(3):Paper No.

39, 38, 2019.

[5] D Allen and V Beresnevich. A mass transference principle for systems of linear forms and its

applications. Compos. Math., 154(5):1014–1047, 2018.

[6] D Allen and S Troscheit. The mass transference principle: ten years on. In Horizons of fractal

geometry and complex dimensions, volume 731 of Contemp. Math., pages 1–33. Amer. Math. Soc.,

Providence, RI, 2019.

[7] D Allen and B Wang. A note on weighted simultaneous diophantine approximation on manifolds.

https://arxiv.org/abs/2103.06822.

[8] J An. Badziahin-Pollington-Velani’s theorem and Schmidt’s game. Bull. Lond. Math. Soc.,

45(4):721–733, 2013.

[9] J An. 2-dimensional badly approximable vectors and Schmidt’s game. Duke Math. J., 165(2):267–

284, 2016.

[10] D Badziahin and Y Bugeaud. On simultaneous rational approximation to a real number and its

integral powers, II. New York J. Math., 26:362–377, 2020.

[11] D Badziahin, Y Bugeaud, and J Schleischitz. On simultaneous rational approximation to a p-adic

number and its integral powers, ii. https://arxiv.org/abs/1511.06862.

129

https://arxiv.org/abs/2103.06822
https://arxiv.org/abs/1511.06862


[12] D Badziahin, A Pollington, and S Velani. On a problem in simultaneous diophantine approximation:

Schmidt’s conjecture. Annals of mathematics, pages 1837–1883, 2011.

[13] V Beresneivh, R.C. Vaughan, S Velani, and E Zorin. Diophantine approximation on curves and the

distribution of rational points: divergence theory. https://arxiv.org/abs/1809.06159.

[14] V Beresnevich. Rational points near manifolds and metric Diophantine approximation. Ann. of

Math. (2), 175(1):187–235, 2012.

[15] V Beresnevich. Badly approximable points on manifolds. Invent. Math., 202(3):1199–1240, 2015.

[16] V Beresnevich, V Bernik, M Dodson, and S Velani. Classical metric Diophantine approximation

revisited. In Analytic number theory, pages 38–61. Cambridge Univ. Press, Cambridge, 2009.

[17] V Beresnevich, V Bernik, and E Kovalevskaya. On approximation of p-adic numbers by p-adic

algebraic numbers. J. Number Theory, 111(1):33–56, 2005.

[18] V Beresnevich, D Dickinson, and S Velani. Measure theoretic laws for lim sup sets. Mem. Amer.

Math. Soc., 179(846):x+91, 2006.

[19] V Beresnevich, D Dickinson, and S Velani. Diophantine approximation on planar curves and the

distribution of rational points. Ann. of Math. (2), 166(2):367–426, 2007. With an Appendix II by

R. C. Vaughan.

[20] V Beresnevich, A Haynes, and S Velani. Sums of reciprocals of fractional parts and multiplicative

Diophantine approximation. Mem. Amer. Math. Soc., 263(1276):vii + 77, 2020.
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Eötvös. Sect. Math, 2:93–109, 1959.

[59] K Falconer. Fractal geometry. John Wiley & Sons, Ltd., Chichester, third edition, 2014. Mathe-

matical foundations and applications.

[60] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften,

Band 153. Springer-Verlag New York Inc., New York, 1969.

[61] C Feng, L Li, and J Shen. On the Borel-Cantelli lemma and its generalization. C. R. Math. Acad.

Sci. Paris, 347(21-22):1313–1316, 2009.

[62] P Gallagher. Metric simultaneous diophantine approximation. J. London Math. Soc., 37:387–390,

1962.

[63] P Gallagher. Metric simultaneous diophantine approximation. II. Mathematika, 12:123–127, 1965.
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