
 
Low-dose IL-2 administration and 

amyotrophic lateral sclerosis (ALS): 
understanding the transcriptional 

response after treatment 
 

By 
 

Ilaria Giovannelli 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Sheffield Institute for Translational Neuroscience 

Department of Neuroscience 
 

Thesis submitted for the degree of  

Doctor of Philosophy (PhD) 
 

October 2021 



 2 

 

Table of Contents 
 

Table of Contents ........................................................................................................ 2 

List of figures ............................................................................................................... 5 

List of abbreviations .................................................................................................... 9 

Acknowledgments ..................................................................................................... 13 

Abstract ..................................................................................................................... 14 

Chapter 1 – Introduction ............................................................................................ 15 

1.1 ALS genes and pathological mechanisms .................................................. 17 

1.1.1 ALS genes and mutations .................................................................... 17 

1.1.1.1  Superoxide Dismutase 1 ...................................................................................................... 18 
1.1.1.2 C9ORF72 .............................................................................................................................. 19 
1.1.1.3 TARDBP ............................................................................................................................... 20 
1.1.1.4 Fused in Sarcoma ................................................................................................................ 20 

1.1.2  ALS as a multifactorial disease ........................................................... 22 

1.2 Neuroinflammation ...................................................................................... 26 

1.2.1  CNS immune cells .............................................................................. 29 

a. Microglia ....................................................................................................................................... 29 
b. Astrocytes ..................................................................................................................................... 31 

1.2.2   Peripheral immune system ................................................................ 36 

a. Complement system ..................................................................................................................... 36 
b. Neutrophils ................................................................................................................................... 37 
c. Mast Cells ..................................................................................................................................... 38 
d. Natural Killer Cells ......................................................................................................................... 39 
e. Monocytes/Macrophages ............................................................................................................. 41 
f. T Lymphocytes .............................................................................................................................. 42 

1.3 The role of regulatory T cells ...................................................................... 45 

1.3.1   Physiology of regulatory T cells ......................................................... 45 

1.3.2. Regulatory T cells in ALS .................................................................... 49 

1.4 Interleukin 2 ................................................................................................ 53 



 3 

1.5 Interleukin-2 in the CNS ................................................................................... 61 

Hypothesis and aims ................................................................................................. 65 

Chapter 2. Materials and Methods ............................................................................ 67 

2.1. IMODALS study Materials and Methods ......................................................... 67 

2.1.1 Trial design ................................................................................................ 67 

2.1.2 Blood collection, processing and RNA extraction ..................................... 68 

2.1.3 RNA quantity and quality assessments ..................................................... 69 

2.1.4 Microarray preparation, normalization and quality control ........................ 71 

2.1.5 Microarray data analysis ........................................................................... 76 

2.1.5.1 Differential expression analysis .................................................................................................. 76 
2.1.5.2 Gene enrichment and pathway analysis .................................................................................... 77 

2.1.6 cDNA synthesis and quantitative Real Time PCR .................................... 81 

2.1.7 NanoString ................................................................................................ 84 

2.1.8 Predictive biomarker analysis ................................................................... 88 

2.2. Effects of IL-2 in CNS cells - Materials and Methods ..................................... 92 

2.2.1 Astrocyte differentiation from iNPCs and IL-2 treatment ........................... 92 

2.2.2 RNA extraction from astrocytes ................................................................ 93 

2.2.3 LDH cytotoxicity assay .............................................................................. 94 

2.2.4 cDNA library generation and Oxford Nanopore sequencing ..................... 95 

2.2.5 cDNA sequencing data analysis ............................................................... 98 

2.2.6 Co-cultures of iNPC-derived astrocytes and mouse MNs ....................... 100 

Chapter 3 – Results: Microarray analysis of IMODALS samples ............................ 103 

3.1 Summary of RNA Samples and RNA Quality Control ................................... 104 

3.2 Microarray Quality Control ............................................................................. 109 

3.3 Differential expression and dose-dependency at D64 ................................... 117 

3.4 Longitudinal gene expression changes throughout the administration period

 ............................................................................................................................. 134 

3.5 Gene expression changes during the follow-up period .................................. 158 



 4 

3.6 Microarray validation ...................................................................................... 166 

3.7 Discussion ..................................................................................................... 169 

Chapter 4 – Results: IMODALS Patient Variability and Predictive Biomarker 

Identification ............................................................................................................ 177 

4.1 NanoString Analysis ...................................................................................... 177 

4.1.1 NanoString Quality Control ..................................................................... 180 

4.1.2 NanoString Gene Expression Analysis and Validation ........................... 186 

4.1.3 NanoString Pathway Scoring Analysis .................................................... 201 

4.2 Predictive Biomarker Analysis ....................................................................... 209 

4.2.1 Preliminary Screening ............................................................................. 209 

4.2.2 qRT-PCR Validation and Correlation ...................................................... 212 

4.2.3 Multiple Linear Model .............................................................................. 216 

4.3 Discussion ..................................................................................................... 225 

Chapter 5 – Results: The Effects of IL-2 on CNS Cells ........................................... 232 

5.1 Treatment Optimization ................................................................................. 232 

5.2 Cytotoxicity Assays ........................................................................................ 247 

5.3 iNPC-derived Astrocytes Transcriptional Profile ............................................ 250 

5.3.1 RNA Samples and Sequencing Quality Control ...................................... 250 

5.3.2 Differential Expression Analysis .............................................................. 266 

5.3.3 Gene Enrichment Analysis ...................................................................... 271 

5.4 The Effects of IL-2 on MN Viability and Morphology ...................................... 286 

5.5 Discussion ..................................................................................................... 290 

Chapter 6 – Final Discussion and Future Directions ............................................... 297 

PhD outputs ............................................................................................................. 302 

Appendix list ............................................................................................................ 304 

Bibliography ............................................................................................................. 306 

 



 5 

List of figures 
 

Figure 1.1. Genetics of familial and sporadic ALS. ................................................... 18 

Figure 1.2: Neuroinflammation in ALS. ..................................................................... 28 

Figure 1.3: Mechanisms of Treg suppressive actions. .............................................. 48 

Figure 1.4: The role of Tregs in the early versus the later phase of the disease ...... 52 

Figure 1.5: Different IL-2 Receptors .......................................................................... 54 

Figure 2.1: Timeline of the IMODALS clinical trial and Biosampling Time Points. .... 68 

Figure 2.2: Representative Bioanalyser Spectra from High and Low Quality RNA 

samples. .................................................................................................................... 71 

Figure 2.3: Oxford Nanopore library preparation. ...................................................... 98 

Figure 2.4: Schematic representation of the co-culture protocol. ............................ 102 

Figure 3.1: Microarray Positive vs Negative AUC. .................................................. 110 

Figure 3.2: Microarray Eukaryotic Hybridization Controls. ...................................... 112 

Figure 3.3: Microarray Labelling Controls. .............................................................. 114 

Figure 3.4: Microarray Signal Intensity Histograms and Relative Signal Box Plots. 116 

Figure 3.5: Principal Component Analysis of D64 Microarrays. .............................. 118 

Figure 3.6: Differential expression analyses at D64. ............................................... 123 

Figure 3.7A: REVIGO-clustered Enriched GO Biological Processes from the 

Comparison 1MIU_vs_Placebo. .............................................................................. 124 

Figure 3.7B: REVIGO-clustered Enriched GO Biological Brocesses from the 

Comparison 2MIU_vs_Placebo. .............................................................................. 125 

Figure 3.7C: REVIGO-clustered Enriched GO Biological Processes of the DEGs in 

Common Between the 1MIU and the 2MIU treatment groups. ............................... 126 

Figure 3.8: Heatmap of Metascape Enriched Processes at D64 ............................ 128 

Figure 3.9: Pathway Enrichment Network Suggests Differential Effects of Ld-IL-2 

Doses at D64. .......................................................................................................... 131 

Figure 3.10: Dose-Dependency at D64. .................................................................. 132 

Figure 3.11: Dose-Dependent Expression of Treg markers at D64. ....................... 133 

Figure 3.12: Multidimensional Scaling Plots of IMODALS Microarrays from D1, D8, 

D64 and D85. .......................................................................................................... 135 

Figure 3.13: Comparison of Differentially Expressed Genes at ΔD8 and ΔD64. .... 137 

Figure 3.14: Gene Ontology Analyses of ΔD8 and ΔD64 DEGs ............................. 139 



 6 

Figure 3.15: REVIGO-Clustered Enriched Immunological GO Biological Processes

 ................................................................................................................................. 142 

Figure 3.16: IPA Canonical Pathway Analysis at D8. .............................................. 144 

Figure 3.18: Classification of Transcripts Included in the IPA Protein Ubiquitination 

Pathway. .................................................................................................................. 146 

Figure 3.19: Metascape Analysis of the Transcripts Included in the Protein 

Ubiquitination Pathway. ........................................................................................... 147 

Figure 3.20: NRF2-Mediated Oxidative Stress Response IPA Pathway. ................ 149 

Figure 3.21: ΔD8 IPA disease and function analysis. ............................................. 153 

Figure 3.22: ΔD64 IPA disease and function analysis. ........................................... 155 

 ................................................................................................................................. 159 

Figure 3.23: Transcriptional Changes During the Follow-up Period. ....................... 159 

Figure 3.24. Longitudinal Comparison of Treg Marker Expression. ........................ 160 

Figure 3.25: Gene Ontology Analysis During the Follow-up Period. ....................... 162 

Figure 3.26: Metascape analysis in the follow-up period. ....................................... 163 

Figure 3.27: ΔD85 Transcripts included in CNS-related pathways ......................... 165 

Figure 3.28: Microarray validation ........................................................................... 168 

Figure 4.1: Treg Expansion Variations in IMODALS Participants ........................... 178 

Figure 4.2: Age and Disease Decline in 2MIU-IL2-Treated Patients. ...................... 179 

Figure 4.3. Count Differences between Negative Controls and POS_E. ................ 182 

Figure 4.4. NanoString Positive Control Expression. .............................................. 183 

Figure 4.5: NanoString Panel Gene Expression Overview ..................................... 188 

Figure 4.6: Principal Component Analysis of The NanoString Samples ................. 189 

Figure 4.7: Eighty-one Discriminatory Variables ..................................................... 192 

Figure 4.8: Nanostring Data Validation. .................................................................. 197 

Figure 4.9: Correlation Between qRT-PCR and NanoString FOXP3 Expression Data.

 ................................................................................................................................. 198 

Figure 4.10: Expression of the FOXP3 Isoform NM_014009 Measured through 

NanoString. ............................................................................................................. 200 

Figure 4.11: Longitudinal Pathway Scoring Analysis. ............................................. 203 

Figure 4.12: Longitudinal Inflammatory Pathway Scoring. ...................................... 206 

Figure 4.13: Longitudinal Neurodegenerative Disease Pathway Scoring. .............. 207 

Figure 4.14: Biomarker Candidates' Correlation Plots. ........................................... 215 

Figure 4.15: Multiple Linear Regression Model. ...................................................... 217 



 7 

Figure 4.16: Model Predicted vs Observed Treg Values ......................................... 219 

Figure 4.17: Diagnostic Plots. ................................................................................. 223 

Figure 5.1: Basal IL2RA Level of Expression in iAstrocytes ................................... 234 

Figure 5.2: Basal IL2RB and IL2RB Level of Expression in iAstrocytes ................. 235 

Figure 5.3: The Effect of IL-2 (10 or 100nM) for 1 or 4 Hours on iAstrocytes ......... 237 

Figure 5.4: The Effect of  IL-2 (10nM in 1% FBS medium) for 1 or 4 Hours on 

iAstrocytes. .............................................................................................................. 242 

Figure 5.5: Effect of IL-2 (10nM in 1% FBS Medium) for 4 hrs on iAstrocytes. ....... 243 

Figure 5.6: IL-2 Dose-Dependency in iAstrocytes. .................................................. 245 

Figure 5.7: LDH Cytotoxicity Assays. ...................................................................... 249 

Figure 5.8: iAstrocyte cDNA Sequencing QC Plots. ................................................ 256 

Figure 5.9: Principal Component Analysis of iAstrocyte Sequencing Data ............. 257 

Figure 5.10: Principal Component Analysis – Investigation of Potential Batch Effect.

 ................................................................................................................................. 259 

Figure 5.11: Principal Component Analysis– Investigation of Possible Confounders.

 ................................................................................................................................. 261 

Figure 5.12: Multidimensional Scaling Plots ............................................................ 263 

Figure 5.13: Gene Expression Correlation Heatmap to Detect Outliers. ................. 265 

Figure 5.14: Differentially Expressed Genes Following IL-2 Treatment in iAstrocytes.

 ................................................................................................................................. 268 

Figure 5.15: Commonly Differentially Expressed Genes in iAstrocytes Following IL-2 

Treatment. ............................................................................................................... 269 

Figure 5.16: Enriched GO BPs in Healthy Controls iAstrocytes Following IL-2 

Treatment. ............................................................................................................... 273 

Figure 5.17: Enriched GO BPs in sALS iAstrocytes Following IL-2 Treatment. ...... 276 

Figure 5.18: Enriched GO BPs in C9-ALS iAstrocytes Following IL-2 Treatment. .. 278 

Figure 5.19: Enriched IPA Canonical Pathways in iAstrocytes Following  IL-2 

Treatment. ............................................................................................................... 281 

Figure 5.20: IPA Disease and Function Analysis in Healthy Control iAstrocyte ...... 282 

Figure 5.21: IPA Disease and Function Analysis in sALS iAstrocyte ...................... 284 

Figure 5.22: IPA Disease and Function Analysis in C9 iAstrocyte .......................... 285 

Figure 5.23: The Effect of IL-2 on MN Viability in Co-cultures with iAstrocytes. ..... 287 

Figure 5.24: The Effect of IL-2 on MN Neurites in Co-cultures with iAstrocytes. .... 289 



 8 

List of Tables 
 

Table 2.1. qRT-PCR primer/probe summary. ............................................................ 82 

Table 2.2: Patient characteristics and response type. ............................................... 84 

Table 2.3: R Packages Used to Test Reliability of the Multiple Linear Model. .......... 90 

Table 2.4. Fibroblast donors. ..................................................................................... 93 

Table 3.1: IMODALS Patients: Characteristics of the RNA samples ...................... 105 

Table 3.2. Summary of the DEGs Retrieved Using Different P-value Cut-Off Values

 ................................................................................................................................. 120 

Table 3.3: Top 10 most significant upstream regulators. ........................................ 157 

Table 4.1: QC Summary of NanoString Data .......................................................... 184 

Table 4.2: List of The Eighty-one Discriminatory Transcripts .................................. 193 

Table 4.2: Preliminary Biomarker screening. .......................................................... 211 

Table 4.3: Biomarker candidates Correlation Scores .............................................. 215 

Table 4.4: Tests for Linearity Assumption ............................................................... 221 

Table 5.1: Evidence From the Literature: Foetal Bovine Serum, Cytokines and 

Astrocytes. ............................................................................................................... 238 

Table 5.2: RNA Sample Quality. ............................................................................. 251 

Table 5.3: Summary of Sequencing Reads. ............................................................ 253 

Table 5.4: List of Common Differentially Expressed Genes. ................................... 270 
  



 9 

List of abbreviations 
 
AA: Alopecia areata 

AD: Alzheimer’s disease  

AIDs: Autoimmune diseases 

ALS: Amyotrophic lateral sclerosis,  

APC: antigen-presenting cells 

APE1: Apurinic/apyrimidinic endonuclease 1 

AUC: Area under the curve 

BBB: Blood brain barrier 

BDNF: Brain-derived neurotrophic factor 

CCL: Chemokine ligand 

CNS: Central nervous system 

COX2: Cyclooxygenase-2 

CR: Complement receptor 

cRNA: Complementary RNA 

CSF: Cerebrospinal fluid 

CTLA4: Cytotoxic T lymphocytes antigen 4 

CXCL: Chemokine (C-X-C motif) ligand 

D: Day 

DC: Dendritic cell 

DEG: Differentially expressed gene 

DEREG: Treg-depleted 

DMSO: Dimethyl Sulfoxide 

ds cDNA: Double-stranded complementary DNA 

EAAT: Excitatory amino acid transporter  

EMA: European Medicine Agency  

ER: Endoplasmic reticulum  

ETC: Electron transport chain  

fALS: Familial ALS 

FBS: Foetal bovine serum 

FC: Fold change 

FDA: U.S. Food and Drug Administration  



 10 

FOV: Field of views 

FOXP3: Forkhead box Protein 3 

FTD: Frontotemporal degeneration 

FUS: Fused in sarcoma  

GDNF: Glial cell-derived neurotrophic factor 

GFAP: Glial fibrillary acidic protein 

GITR: Glucocorticoid-induced tumour necrosis factor receptor  

GluR2: Glutamate receptor 2  

GO BP: Gene Ontology biological process 

GO: Gene Ontology 

GVHD: Graft-versus-host disease 

HCV: Hepatitis C virus 

HD: Huntington’s disease 

hnRNP: Heterogeneous nuclear ribonucleoproteins  

HSCT: Hematopoietic stem cells transplantation 

iAstrocytes: iNPC-derived astrocytes 

ICER: Inducible cAMP early repressor 

ICOS: Inducible T cell co-stimulator  

IDO: Indoleamine 2,3-dioxygenase 

IFN: Interferon 

IGF: Insulin growth factor 

IL-2Rα or IL2RA: Interleukin-2 receptor alpha chain  

IL-2Rβ or IL2RB: Interleukin-2 receptor beta chain  

IL-2Rγ or IL2RG: Interleukin-2 receptor gamma chain  

IL: Interleukin 

IMODALS: Immuno-Modulation in Amyotrophic Lateral Sclerosis 

iNOS: Inducible nitric oxygen synthase 

iNPC: Induced neuronal progenitor cell 

IPA: Ingenuity Pathway Analysis 

IPEX: Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome 

iPSC: induced pluripotent stem cell 

IVT: In vitro transcription 

Kd: Constant of dissociation 

Ld-IL-2: Low dose IL-2 



 11 

LDH: Lactate dehydrogenase 

LINC: Long intergenic non protein coding 

LMN: Lower motor neuron 

LOOCV: Leave one out cross validation 

LPS: Lipopolysaccharide 

MDS: Multidimensional scaling 

mEB: Mouse embryonic bodies 

mESC: Mouse embryonic stem cells 

MHC: Major histocompatibility complex 

MIU: Millions of international units 

MN: Motor neuron 

MND: Motor neuron disease 

mSOD1: Mutant SOD1  

mTOR: Mechanistic target of rapamycin 

NES: Nuclear export sequence 

NFAT: Nuclear factor of activated T cells 

NFL: Neurofilament light chain 

NGF: Nerve growth factor 

NK: Natural killer cells 

NKGD2: Natural killer group 2D 

NMJ: Neuromuscular junction 

NO: Nitric oxide 

NOX2: NADPH oxidase 2 

Nrf2: Nuclear erythroid 2-related factor 

PAMPs: Pathogen associated molecular pattern molecules 

PBS: Phosphate-buffered saline 

PCA: Principal component analysis 

PD: Parkinson’s disease  

PGE2: Prostaglandin E2 

QC: Quality control 

qRT-PCR: Quantitative real-time polymerase chain reactions 

R: Pearson correlation coefficient 

RCC: Reporter Code Count 

REVIGO: REduce and VIsualize Gene Ontology 



 12 

RIN: RNA integrity number 

RMSE: Root mean squared error 

RNS: Reactive nitrogen species 

ROC: Receiver operator curve 

ROS: Reactive oxygen species 

sALS: Sporadic ALS 

SD: Standard deviation 

SLE: Systemic lupus erythematosus 

SOD1: Superoxide dismutase 1 

ss cDNA: Single-stranded complementary DNA 

SST-RMA: Signal space transformation robust multi-chip analysis 

T1D: Type 1 diabetes 

TAC: Transcriptome Analysis Console 

TARDBP: Transcriptional repressor of the transactive response (TAR) DNA binding 

protein also referred to as TDP-43 (TAR DNA binding protein 43). 

TCR: T cell receptor 

TdT: Terminal deoxynucleotidyl transferase 

TGF: Transforming growth factor 

Th: T helper cells 

TLR: Toll-like receptor 

TNF: Tumour necrosis factor 

TNFSF: Tumour necrosis factor superfamily 

Treg: Regulatory T cell 

TSDR: Treg-specific demethylated region 

UDG: Uracil-DNA glycosylase 

ULD: Ultra-low dose 

UMN: Upper motor neuron 

VEGFR2: Vascular endothelial growth factor receptor 2 

VIF: Variance inflation factor 

WBC: White blood cells 

 

 
 
  



 13 

Acknowledgments  
This work would not have been possible without the help of many, fantastic people 
who supported me throughout these years.  
 
First and foremost, I am extremely grateful to my supervisors Prof Janine Kirby and 
Prof Dame Pamela Shaw for having given me this exceptional opportunity to 
undertake a PhD in their laboratory. Their invaluable guidance, constructive feedback 
and also personal support have been crucial throughout this journey. They always 
believed in me and made me grow as a researcher and a writer. I am also forever 
thankful to Dr Paul Heath for his exceptional academic and personal support.  
 
I am sincerely grateful to all the individuals suffering from ALS who have generously 
donated their biosamples without whom this research work would not have been 
possible. Additionally, this PhD would not have been feasible without my funding body 
the NIHR Sheffield Biomedical Research Centre. I am also very grateful to the Motor 
Neuron Disease Association for having founded the work involving patient-derived 
astrocytes. I would also like to thank Abigail and Nadhim for having helped with the 
IMODALS sample processing, to the Bioinformatic Core for their computational 
support and to Dr Laura Ferraiuolo and her team for their invaluable assistance with 
the cell culture work.  
 
This journey would not have been the same without all my fellow PhD colleagues at 
SITraN and, in particular, to my close friends: Giuseppe, Valentina, Marco, Paolo, 
Hubashia, Lara, Maria, I love you all! A special mention goes to Michela and my 
mentor Matilde, your friendship is one of the best things that happened in these years.  
 
Despite the distance, my dearest and oldest friends from Italy: Ludovica, Michela, 
Eugenia, Francesca, Giulia, Beatrice, Romina, Tamara, Lara, Andrea and Luca have 
always been there for me…with lots of video calls!  
 
Impossible not to mention my wonderful boyfriend Leonardo with whom I shared all 
this amazing journey. He is one of the most supportive, sweet and caring people I 
know.  
 
Last but not least, a huge thanks goes to my family for their love and belief in me. I 
missed you all greatly but I have always found an exceptional support from you. A 
special mention goes to my aunt Anna and my little cousins Martina and Maurizio who 
constantly gave me love, laughter and encouragement. I would not have achieved 
anything without my mum, dad and brother Luca who have always been my pillars and 
life models. I cannot be more grateful to them for providing me with every possible 
opportunity in life, for all their sacrifices to get me where I am and for having filled me 
with love and support. I hope I made you proud.   



 14 

Abstract 
 

Background: Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative 
disease whose pathogenesis involves neuroinflammation. Regulatory T cells (Tregs) 
normally suppress excessive inflammation preventing the onset of autoimmune 
disorders. However, in ALS, Tregs are dramatically and progressively decreased, with 
lower levels associated with shorter survival. Low-doses of interleukin-2 (ld-IL-2) 
promote Treg expansion and restore the physiological immune balance. Additionally, 
IL-2 has been reported to penetrate the blood-brain barrier and exert protective effects 
on neurons and glia.  
 
Aims: 1) To evaluate ALS peripheral blood transcriptional changes associated with 
ld-IL-2 in patients participating in the IMODALS trial. 2) To assess effects of IL-2 on 
patient-derived astrocytes.  
 
Methods: 36 patients in the IMODALS trial were randomly assigned to three treatment 
arms: 1MIU-IL-2, 2MIU-IL-2 or placebo. At four time-points, blood was collected and 
gene expression profiles were generated. Patient-derived-astrocytes were 
differentiated from ALS or healthy volunteer fibroblasts, treated in vitro with IL-2 and 
transcriptionally profiled. IL-2 was also assessed in co-cultures of motor neurons (MN) 
and patient-derived-astrocytes.  
 
Findings: Gene expression analyses revealed longitudinal changes throughout the 
IMODALS trial. Evidence of a broad immune suppression was provided after the first 
treatment cycle whilst activation of immune suppressive pathways reached a peak 
after the third cycle. A time-dependent and dose-dependent activation of Treg markers 
was identified which suggested a cumulative effect of ld-IL-2. However, inter-individual 
differences were found amongst patients, who were classified into high, moderate and 
low-responders. A predictive biomarker analysis identified two genes, whose baseline 
expression was able to predict patient responsiveness to ld-IL-2. 
  
Patient-derived-astrocytes were treated with IL-2 and RNA sequencing revealed 
evidence of potentially protective changes including activation of axonogenesis and a 
reduction in oxidative stress. These findings suggest  a reduction in the ALS astrocyte-
mediated MN toxicity, which is in keeping with preliminary data showing an increase 
in MN viability when co-cultured with IL-2-treated astrocytes.   
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Chapter 1 – Introduction 
 

Amyotrophic lateral sclerosis (ALS), also referred to as motor neuron disease (MND), 

is a devastating adult-onset neurodegenerative disease characterised by the 

progressive loss of both upper (UMN) and lower motor neurons (LMN) (Ingre et al., 

2015). UMNs originate from the motor cortex and project their fibres to the LMNs in 

the brainstem and the spinal cord. UMNs control the activity of the LMNs which, 

themselves, innervate the skeletal muscle fibres allowing voluntary movements 

(Hardiman et al., 2017). The first symptom of this pathology is muscle weakness which 

affects a discrete body region. As the disease progresses, this spreads and the 

continuing degeneration leads to a range of clinical manifestations including muscle 

fasciculation, spasticity, muscular atrophy and, finally, paralysis. Patients lose their 

ability to control nearly all skeletal muscles. The only MNs relatively protected from 

the neurodegenerative process are neurons of the oculomotor (CNIII), trochlear 

(CNIV) and abducens (CNVI) nuclei which enable eye movements, and MNs  of the 

Onuf’s nucleus in the sacral spinal cord which control pelvic floor muscles  (Nijssen et 

al., 2017, Grad et al., 2017). Interestingly, 50% of ALS patients also manifest features 

of neuropsychological dysfunction, while approximately 15% develop overt 

frontotemporal dementia (FTD) (Hardiman et al., 2017, Robberecht and Philips, 2013). 

Eventually the disease results in death, most commonly due to the paralysis of 

respiratory muscles and resultant neuromuscular respiratory failure. This usually 

occurs within 3 to 5 years after the diagnosis although remarkable variations are 

reported in patient life expectancy. Some individuals survive just a few months, while 

in others death occurs after several decades (Al-Chalabi et al., 2016). 

 

The overall incidence of ALS worldwide is between 0.6 and 3.8 per 100,000 per year. 

This is slightly higher in Europe where between 2.1 and 3.8 new cases per 100.000 

are reported annually (Longinetti and Fang, 2019). This pathology affects slightly more 

men than women (ratio men:women is 1.5:1) (Marin et al., 2017). The mean disease 

age of onset is approximately between 50 and 70 years. Juvenile forms of ALS, which 

exhibit before 25 years of age, are quite rare (Logroscino et al., 2010).  
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Despite ALS being first described by the French neurologist Jean-Martin Charcot in 

1865, after almost two centuries of research, there is still no effective cure or disease-

modifying treatment. Riluzole, a benzothiazole, is the only available drug which has 

been approved by both the U.S. Food and Drug Administration (FDA) and the 

European Medicine Agency (EMA) for the treatment of ALS. This is a glutamatergic 

antagonist and, although the precise mechanism of action is still controversial, it is 

believed to reduce excitotoxicity and thus has a modest neuroprotective effect on MNs. 

In particular, riluzole seems to block pre-synaptic sodium channels which reduces the 

excessive amount of glutamate released into the inter-synaptic cleft. This dampens 

the consequent detrimental over-stimulation of MNs. Unfortunately, riluzole extends 

patients survivals by only 3 months on average (Nagoshi et al., 2015, Fang et al., 

2018). In 2017, Edaravone was approved only by the FDA for the treatment of ALS 

and it is now available with the commercial name of Radicava. It acts as a free-radical 

scavenger which reduces the levels of peroxyl radicals and peroxynitrite, free-radicals 

which cause oxidative stress. However, the long-term effect of this compound are still 

to be elucidated (Edaravone Writing Group, 2017). 

 

ALS is generally classified into bulbar or spinal forms depending on the site of onset 

of disease symptoms. Bulbar onset, which accounts for approximately 30% of ALS 

cases, is characterized by an initial degeneration of the motor neurons located in the 

brain stem. Therefore, speech and swallowing muscles are the first affected. The 

majority of the patients (about 70%) have spinal disease onset. In this case, the first 

symptoms reported are weakness, spasticity or atrophy of the upper or lower limbs, 

with usually only one side being initially affected (Al-Chalabi et al., 2016, Shellikeri et 

al., 2017). An uncommon onset comes with respiratory symptoms which occurs in less 

than 3% of ALS cases. In such patients the first symptoms reported are dyspnoea 

(breathing difficulties) or orthopnoea (sensation of breathlessness in a lying position). 

This is generally associated with a poorer prognosis (Gautier et al., 2010).  

 

 

 

 

 



 17 

1.1 ALS genes and pathological mechanisms 
 

1.1.1 ALS genes and mutations 

 

Another classical way of classifying ALS is by heritability and two forms of this disease 

are defined as: 

 

- Familial ALS (fALS): Only 5-10% of all the diagnosed patients have a familial 

or hereditable ALS form. The vast majority of cases show an autosomal 

dominant inheritance, but autosomal recessive or X-linked patterns have also 

been reported in the literature (Andersen and Al-Chalabi, 2011, Byrne et al., 

2011).  

 

- Sporadic ALS (sALS): the majority of the ALS cases are sporadic 

(approximately 90-95%). This means that there is no evidence of family history 

of the disease although this does not imply the absence of genetic mutations. 

Sporadic ALS has been associated with several environmental factors, 

including some pesticides, fertilizers or the exposure to heavy metallic 

compounds (Paez-Colasante et al., 2015). Multiple studies suggest a 

correlation between ALS and intense physical exercise or professional sports, 

in particular football (Julian et al., 2021, Harwood et al., 2016, Chiò et al., 2005, 

Blecher et al., 2019). Although the relationship between sport and/or exercise 

and ALS is still unclear, it is believed to be at least partially due to repeated 

injuries and head traumas, use of drugs or dietary/ nutritional factors (Lacorte 

et al., 2016).  

  

Importantly, familial and sporadic ALS are clinically indistinguishable.  

 

In the last few decades, thanks to constantly improving sequencing technologies, new 

genetic factors associated with ALS have been discovered (Bettencourt and Houlden, 

2015). Nearly fifty genes were identified as potentially causative or impactful in ALS 

disease onset and/or progression, with multiple mutations discovered in each of those 

(Mejzini et al., 2019). However, the genetic background of the vast majority of the ALS 
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cases is still unknown. In the next section, the most common genetic mutations 

associated with this disease are reported and briefly described (Figure 1.1).  

 

 

 

Figure 1.1. Genetics of familial and sporadic ALS. 

Image showing the proportion of familial (5-10%) and sporadic (90-95%) ALS 
cases. For each of the two subgroups, the percentage of the four most common 
genes (C9orf72, SOD1, TARDBP and FUS), which mutations are associated 
with ALS, is reported. A considerable proportion of the sporadic cases currently 
do not have identified risk factors.  

 

 

1.1.1.1  Superoxide Dismutase 1  

 

In 1993, the first genetic mutations responsible for ALS were discovered. These occur 

in the gene coding for superoxide dismutase 1 (SOD1) located on chromosome 21 at 

position q22.11. To date, nearly 200 mutations have been identified in the SOD1 gene 

(http://alsod.ac.uk). These occur in approximately 20% of fALS and in 2% of sALS 

patients (Mejzini et al., 2019, Zou et al., 2017). SOD1 is a ubiquitously expressed 

antioxidant enzyme, which functions as a homodimer made by two monomers of 16 

kDa and catalyses the production of O2 and H2O2 from superoxide (O2-) free radicals. 

Several mechanisms underlying SOD1 toxicity in ALS were proposed. Initially, a loss 

of antioxidant function was suggested with a consequent increased in superoxide 

concentrations, oxidative stress and cell death (Rosen et al., 1993, Deng et al., 1993). 

Nonetheless, knock-out SOD1 mice failed to show an evident ALS phenotype 
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(Reaume et al., 1996, Saccon et al., 2013), whereas the overexpression of the 

mutated human protein caused the expected ALS symptoms and these mice are now 

commonly used as ALS animal models (i.e. SOD1G93A mice) (Saccon et al., 2013). 

Therefore, it is now believed that MN injury in SOD1-ALS more likely occurs via a 

complex toxic gain of function mechanism which includes: (i) augmented enzymatic 

activity and increased H2O2 levels and (ii) the presence of misfolded SOD1 and the 

accumulation of aggregates (Kaur et al., 2016, Pansarasa et al., 2018, Barber and 

Shaw, 2010). Interestingly, a recent publication suggested that wild-type dismutase is 

also misfolded in the CSF of sALS patients in the absence of any gene mutations 

(Tokuda et al., 2019). Moreover, SOD1 aggregates were not exclusively found in MN 

but appeared also in glial cells including microglia and astrocytes (Forsberg et al., 

2011).  

 

1.1.1.2 C9ORF72 

 

In 2011, the hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in the open 

reading frame 72 on chromosome 9, at position 9q21.2, was found to be associated 

with ALS. In particular, whilst in the healthy population the hexanucleotide is repeated 

less than 30 times, in the ALS patients there are usually more than 700 repeats (Kwon 

et al., 2014).  This is the most common genetic cause of ALS, in fact the C9orf72 HRE 

occurs in about 40% of fALS and in 5-7% of sALS cases (Mejzini et al., 2019, 

Ranganathan et al., 2020, Majounie et al., 2012). 

The physiological functions exerted by C9orf72 protein are still unclear. However, 

considering its structural homology with the DENN (Differentially Expressed in Normal 

and Neoplastic cells) domain of Rab-GEF (Guanosine Exchange Factors) proteins, 

similar biological functions were proposed for C9ORF72. Rab-GEF proteins activate 

Rab-GTPases through the exchange of a GDP with a GTP (Levine et al., 2013). 

Recently, C9orf72 has been implicated in the regulation of the intracellular traffic linked 

to endosomal and autophagic protein degradation and to the autophagy initiation 

complex (Farg et al., 2014, Webster et al., 2016).  C9orf72-mediated ALS 

pathogenesis is still controversial and three main mechanisms have been proposed: 

(i) loss of C9orf72 physiological functions, also known as haploinsufficiency; (ii) gain 

of a toxic function due to bidirectional (sense: GGGGCC and antisense: CCCCGG) 
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transcription of the repeat expansion and the formation of secondary structures that 

sequester RNA binding proteins leading to their loss of function; (iii) non-AUG 

translation of the repeat expansion with consequent formation of toxic dipeptide repeat 

proteins (DPRs) (Yang et al., 2020).  

 
1.1.1.3 TARDBP 

 

In 2006, the transcriptional repressor of the transactive response (TAR) DNA Binding 

Protein (TARDBP) was first linked to ALS. This was found as a main component of 

intracellular cytoplasmic inclusions, a typical feature of this disease (Arai et al., 2006). 

The TARDBP gene is located on chromosome 1, at position 1p36.22, and it encodes 

for a protein of 43 kDa called TDP-43 (Pesiridis et al., 2009). Even though mutations 

in TARDBP are only responsible for 4-5% of fALS and 1% of sALS (Ranganathan et 

al., 2020), cytoplasmic TDP-43-positive inclusions are found in over 95% of ALS 

cases, both familial and sporadic (Ling et al., 2013). To date, more than 60 mutations 

in this gene have been associated with ALS (http://alsod.ac.uk). TDP-43 belongs to 

the family of heterogeneous nuclear ribonucloproteins (hnRNPs), which play a crucial 

role in the regulation of gene expression and in RNA metabolism. In particular, it has 

been reported to participate in processes such as: splicing, mRNA stability, transport 

and in microRNA generation (Buratti and Baralle, 2010, Tollervey et al., 2011).  

Although mainly localized in the cell nucleus, physiologically TDP-43 is able to shuttle 

between the nucleus and the cytoplasm to mediated its cellular functions. The main 

feature of TDP-43-ALS pathology is the mislocalization of the protein, with nuclear 

depletion and cytoplasmic aggregation (Lee et al., 2011). However, it is still unclear 

whether the TDP-43 pathogenesis is mediated by a loss of physiological function in 

the nucleus, gain of toxic function or a combination of both (Mejzini et al., 2019).   

 

1.1.1.4 Fused in Sarcoma 

 

The Fused in Sarcoma (FUS) gene was identified in 1993 as a human oncogene 

involved in malignant liposarcoma (Rabbitts et al., 1993). In 2009, the protein was 

firstly linked to ALS because it was found in the characteristic cytoplasmic aggregates 

together with TDP-43 (Kwiatkowski et al., 2009, Vance et al., 2009). The gene is 

located on chromosome 16, at position 16p11.2, and it encodes for a protein made of 
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526 amino acids (Aman et al., 1996). To date, more than 50 mutations in FUS have 

been linked with ALS (https://alsod.ac.uk/output/gene.php/FUS), which are 

responsible for approximately 4% of fALS and less than 1% of sALS (Deng et al., 

2014). FUS is a heterogeneous nuclear ribonucleoproteins (hnRNP) and shares most 

of its biological functions with TDP-43 as it is implicated in transcriptional regulation, 

splicing, mRNA transport, stability and translation. However, FUS is also involved in 

repair mechanisms following DNA damage (Ratti and Buratti, 2016). Similarly to TDP-

43, FUS is mainly localised in the cell nucleus, where it performs most of its functions, 

although it can physiologically shuttle from the nucleus to cytoplasm (Calvio et al., 

1995, Zinszner et al., 1997). ALS-causing mutations drive the nuclear-to-cytoplasm 

mislocalization of the protein and the generation of FUS-positive cytoplasmic 

inclusions (Ranganathan et al., 2020). A recent report suggested that the aberrant 

localization of the protein is a common hallmark of the disease, which can be found in 

the presence of other ALS-causative mutations and in sporadic cases (Tyzack et al., 

2019). As for TDP-43, it is still debated whether FUS-mediated-ALS pathogenesis 

results from the loss of a protective nuclear mechanism, the gain of a toxic function or 

a combination of both (Mejzini et al., 2019).  
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1.1.2  ALS as a multifactorial disease 

 

Amyotrophic lateral sclerosis is considered a multifactorial disease as a series of 

mechanisms and pathways are implicated in the disease onset and progression, 

including: alteration of proteostasis, aberrant RNA metabolism, excitotoxicity, 

mitochondrial damage, oxidative stress, and neuroinflammation (Cozzolino et al., 

2012). A brief summary of these pathological mechanisms in ALS is provided in this 

section.  

 

Protein aggregation is one of the main hallmarks of ALS, which not only affects MN 

but also supporting non-neural cells, such as astrocytes and oligodendrocytes. As 

reviewed by Blokhuis et al., several types of aggregates have been reported in ALS 

patients, these are known as: “Lewy body-like hyaline inclusions or skein-like 

inclusions” which are ubiquitinated; Bunina bodies, which are “small eosinophilic 

ubiquitin-negative inclusions” and neurofilamentous inclusions (Blokhuis et al., 2013). 

One of the main constituents of the ubiquitinated inclusions is TDP-43, which can be 

found in these structures in more than 95% of ALS cases (Ling et al., 2013). The 

underlying causative mechanism of the aggregate formation is still not completely 

understood. However, several cellular pathways known for impacting proteostasis 

have been reported to be altered in ALS, including: chaperone dysfunction (Kalmar 

and Greensmith, 2017), endoplasmic reticulum (ER) stress activation (Matus et al., 

2013), ubiquitin-proteasome system dysfunction (Bendotti et al., 2012) and autophagy 

impairment (Ramesh and Pandey, 2017).  

  

After the discovery of ALS-associated mutations in the RNA binding proteins TDP-43, 

FUS and the effects of HRE C9ORF72, the hypothesis of dysregulated RNA 
metabolism was proposed. The term RNA metabolism refers to a series of processes 

including: RNA transcription, translation, mRNA splicing, transport and stability, and 

miRNA production (Cestra et al., 2017). TDP-43 and FUS act as splicing regulators 

and it has been demonstrated that disease-associated mutations lead to a decrease 

in their splicing activity (Arnold et al., 2013, Qiu et al., 2014, Coady and Manley, 2015). 

Moreover, both FUS and TDP-43 can physiologically be found in stress granules in 

response to different cellular stresses. However, disease-associated mutations 
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prolong the persistence of these granules. Thus, it has been proposed that, in these 

structures, mRNAs and proteins are trapped, preventing them from performing their 

physiological functions (Coyne et al., 2017). Interestingly, ALS-C9ORF72 mutants 

seem to share some of these pathological mechanisms with TDP-43 and FUS leading 

to dysregulated RNA metabolism (Simón-Sánchez et al., 2012, Mori et al., 2013). 

 

Excitotoxicity is a process that occurs because of the excessive persistence of 

glutamate in the synaptic space and the subsequent over-stimulation of neuronal 

glutamate receptors. This is a well-known ALS mechanism and several underlying 

processes have been proposed to cause it, including defects in the glutamate reuptake 

transporter system and glutamate receptor dysfunction (King et al., 2016). In 

physiological conditions, after its release, glutamate is rapidly cleared from the 

synaptic space. This is possible thanks to specific transporters on neuronal and 

astrocytic membranes such as excitatory amino acid transporter (EAAT). There are 

different types of EAATs but the major one implicated in ALS is EAAT2 (King et al., 

2016) and its function is known to be substantially decreased in ALS patients (Fray et 

al., 1998, Sasaki et al., 2000). Several pieces of evidence suggest that AMPA and 

NMDA glutamate receptors are also dysfunctional in ALS. In particular, it appears that 

there is a decrease in the expression of NMDA receptor 1 (NR1) subunit of the NMDA 

receptor in the spinal cord ventral grey matter in ALS patients (Virgo and de 

Belleroche, 1995). Additionally, reduced amount of the NR2 subunit of NMDA can be 

observed in ALS patients’ dorsal and ventral horns of the spinal cord (Samarasinghe 

et al., 1996). Moreover, MN have a low expression of the AMPA receptor GluR2 

subunit, which means that they express calcium-permeable AMPA receptors, a known 

factor causing vulnerability to excitotoxicity (Geevasinga et al., 2016, Heath and Shaw, 

2002). 

 

Neurons are high energy demanding cells; in fact, the brain alone utilises about 20% 

of the total body ATP (Engl and Attwell, 2015). Thus, mitochondria play a pivotal role 

in these cells. Several studies documented mitochondrial dysfunction in ALS. 

Morphological abnormalities have been reported in several ALS cell and animal 

models. Specifically, instead of the classical oval-shaped morphology, mitochondria 

appear spherical, clustered, fragmented and vacuolated (Smith et al., 2019, Gao et 

al., 2017, Deng et al., 2015, Wang et al., 2013, Vande Velde et al., 2011, Higgins et 
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al., 2003). Importantly, similar structural alterations were also reported in patients 

(Rodríguez et al., 2012, Sasaki et al., 2007). A large body of evidence supports a 

dysregulation in the mitochondrial energy metabolism in animal models as well as in 

patients with familial and sporadic ALS (Bowling et al., 1993, Browne et al., 2006, 

Sasaki et al., 2007, Perera and Turner, 2016). Dysfunction in the mitochondrial 

electron transport chain (ETC) (Crugnola et al., 2010, Kawamata and Manfredi, 2010) 

and consequently reduction in the levels of ATP produced (Mattiazzi et al., 2002) were 

documented in ALS with evidence of decreased activities of the complexes I, II, III and 

IV of the ETC in post-mortem spinal cords of sALS patients (Wiedemann et al., 2002, 

Borthwick et al., 1999). Additionally, impairments in complex I and IV were also 

reported in skeletal muscle of sALS patients (Wiedemann et al., 1998, Vielhaber et al., 

2000, Crugnola et al., 2010).  

 

Oxidative stress which can be defined as an imbalance between oxidant and 

antioxidant factors, is a well-demonstrated hallmark of ALS. Excessive quantities of 

reactive oxygen species (ROS) are responsible for the oxidative damage, which 

includes lipid peroxidation, protein oxidation and DNA and RNA damage (Islam, 2017). 

Increased levels of ROS and oxidative stress biomarkers are extensively reported in 

the ALS literature (Barber and Shaw, 2010). In particular, increases in protein 

carbonyls (Shaw et al., 1995, Ferrante et al., 1997, Niebrój-Dobosz et al., 2004) and 

3-nitrotyrosine levels (Abe et al., 1995, Beal et al., 1997), which indicate protein 

oxidation, have been detected in the post-mortem CNS tissues of both fALS and sALS 

patients. Moreover, markers of oxidized DNA, such as 8-hydroxy-2'-deoxyguanosine, 

were reported to be elevated in the plasma, urine, and cerebrospinal fluid (CSF) of 

ALS patients (Ferrante et al., 1997, Bogdanov et al., 2000). Additionally, a biomarker 

of lipid peroxidation, 4-hydroxy-2,3-nonenal, was found to be significantly increased in 

CSF and sera of sALS patients (Simpson et al., 2004). Oxidative stress is thought to 

be linked to mitochondrial dysfunctions. In fact, as the oxidative phosphorylation is the 

major source of ROS, the excessive amount produced could be the result of defective 

mitochondrial function (Cozzolino and Carrì, 2012). Additionally, evidence of an 

impaired antioxidant response has also been reported. In fact, reduced levels of the 

antioxidant glutathione (Weiduschat et al., 2014) were reported together with 

dysregulation in the nuclear erythroid 2-related factor (Nrf2)-antioxidant pathway 

(Sarlette et al., 2008, Suh et al., 2004). Nrf2 is a transcription factor which regulates 
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the expression of many of cytoprotective and antioxidant genes, including some 

involved in the biosynthesis of glutathione (Dinkova-Kostova and Kazantsev, 2017). 

Given this evidence, Nrf2 activation is now considered a promising therapeutic 

strategy for ALS (Mead et al., 2013, Johnson and Johnson, 2015). 

 

Compelling evidence suggests neuroinflammation as another crucial mechanism 

participating in ALS disease onset and progression. Given its importance for this 

research project, a detailed description of the neuroinflammatory processes in ALS is 

provided in the next section.  
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1.2 Neuroinflammation 
 

Neuroinflammation is an essential defensive mechanism that aims to eliminate 

pathogens invading the central nervous system (CNS). However, sustained 

inflammatory responses are detrimental and can cause cytotoxicity (Kempuraj et al., 

2016). In the recent years, increasing evidence indicates an important role for 

neuroinflammation in the pathogenesis of ALS. Interestingly, a significant impact on 

disease progression was suggested as patients who had a peripheral blood phenotype 

comparable to healthy volunteers and had a less altered inflammatory profile seemed 

to survival for longer (Gustafson et al., 2017). The activation of microglia and 

astrocytes, production of excessive quantities of pro-inflammatory cytokines and 

infiltration of T lymphocytes are the main identified mechanisms contributing to the 

inflammatory mechanisms in this disease (Liu and Wang, 2017). Interestingly, it has 

been demonstrated that neuroinflammation occurs not only in ALS, but it is a common 

pathological mechanism in several neurodegenerative diseases including Parkinson’s 

disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD) (Stephenson 

et al., 2018). In fact, in the brain, CSF and serum of ALS, PD, HD and AD patients 

elevated levels of tumour necrosis factor (TNF-α), interleukin (IL)-1β and IL-6 have 

been reported (Labzin et al., 2018, Robertson et al., 2001, Sekizawa et al., 1998). In 

a recent report the levels of the inflammatory IL-1β, IL-6 and IFN-γ were significantly 

increased whereas the anti-inflammatory IL-10 was found to be reduced in ALS 

compared to healthy controls. Additionally, higher IL-1β levels were associated with a 

faster disease progression and correlated with decline in the revised ALS functional 

rating scale (ALSFRS-R - a questionnaire used to rate the stage and progression of 

the disease (Cedarbaum et al., 1999)) (Jin et al., 2020). Interestingly, IL-1β and TNF- 

α were also found to be elevated in the skeletal muscles of rat models of the disease, 

which suggested the involvement of peripheral and muscular tissue inflammation in 

the disease onset and/or progression (Van Dyke et al., 2016). Additionally, significant 

increase in the NLP3 inflammasome, a complex of cytosolic proteins that mediates 

the activation of inflammatory responses, was detected in the spinal cord and skeletal 

muscles of ALS mice models (Moreno-García et al., 2021, Johann et al., 2015, 

Lehmann et al., 2018) as well as in patient blood and in post mortem tissues  (Moreno-

García et al., 2021, Johann et al., 2015). Moreover, the expression of cyclooxygenase-
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2 (COX2), an enzyme involved in prostanoid synthesis, which mediates vasodilatation 

and inflammation, is increased in ALS patients (Almer et al., 2001) and mouse models 

of the disease (Drachman et al., 2002, Pompl et al., 2003). Evidence shows that both 

local (or CNS) and peripheral immune system cells participate in the 

neuroinflammatory process (Figure 1.2). In the next sections, a detailed description 

of the involvement of each cell type in ALS inflammation is provided.  
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Figure 1.2: Neuroinflammation in ALS. 
This figure shows an overview of major cellular components involved in the 
establishment of the neuroinflammatory condition characteristic of ALS.  
In the CNS, microglial cells are activated in an M1 pro-inflammatory phenotype 
and release several pro-inflammatory cytokines such as: IL-1 β, IL-6, IL-23 and 
TNF-α. Astrocytes are also known to contribute to this pathological mechanism 
by producing pro-inflammatory mediators, including IFN-γ, PGE2, leukotriene 
B4 and NO. Given the importance ALS astrocytes in pathogenesis of the 
disease, other mechanisms of astrocyte-mediated MN toxicity are also reported 
in the figure including: decreased production and release of lactate and 
downregulation of EAAT2 transporters which lead to a reduction in glutamate 
reuptake. Additionally, components of the peripheral immune system (T-cells, 
macrophages, complement system proteins, neutrophils, natural killers and 
mast cells) are recruited and infiltrate the CNS participating to 
neuroinflammation. Lastly, immune cells (T cells, macrophages, neutrophils, 
complement system proteins and mast cells) and cytokines (IL-1β and TNF- α) 
reported to be involved in the inflammation at the skeletal muscle level are also 
displayed.   
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1.2.1  CNS immune cells 

 

a. Microglia 

 

Microglia are the brain and spinal cord-resident macrophages and the major 

component of the innate immune system in the CNS. They represent this organ's first 

line of defence in response to a multitude of stimuli and injuries (Baufeld et al., 2017). 

Microglia are generally classified into resting and activated populations. Despite the 

name, resting or M0 microglia are highly dynamic cells that exert a crucial surveillance 

function, patrolling the CNS microenvironment for any injuries or infections 

(Nimmerjahn et al., 2005). If a homeostatic disturbance is detected, microglia switch 

into an active state modifying their morphology and acquiring an amoeboid shape 

(Labzin et al., 2018, Geloso et al., 2017). Two distinctive activated microglial 

phenotypes have been identified: M1 and M2. Also known as the “classically activated” 

microglia, M1 cells have pro-inflammatory functions and their phenotype switching is 

generally due to increased levels of inflammatory agents such as pathogen associated 

molecular pattern molecules (PAMPs), lipopolysaccharide (LPS) or interferon (IFN)-γ 

(Du et al., 2017). Interestingly, microglial activation seems to be also triggered by 

protein aggregates (Labzin et al., 2018). Once in their M1 state, a downstream 

signalling cascade leads to the activation of several transcription factors, including NF-

kβ, and the consequent production and release of multiple pro-inflammatory mediators 

including: IL-1β, IL-6, IL-12, IL-23, TNF-α, chemokines, prostaglandin E2, ROS and 

inducible nitric oxygen synthase (iNOS) (Geloso et al., 2017, Du et al., 2017). In 

contrast, M2 or “alternatively activated” microglia, which are induced by cytokines like 

IL-4, IL-10 or IL-13, have anti-inflammatory and protective properties. In particular, 

they secrete anti-inflammatory mediators including IL-10 and TGF-β (Du et al., 2017), 

mediate tissue repair by producing extracellular matrix components (Michell-Robinson 

et al., 2015) and promote oligodendrocyte differentiation during CNS remyelination 

(Miron et al., 2013).  

  

A condition of microgliosis, meaning an increased accumulation of activated microglial 

cells in the CNS, was extensively documented in ALS both in mouse models of the 

disease (Alexianu et al., 2001) and in patients’ post mortem tissues (Engelhardt and 



 30 

Appel, 1990, Kawamata et al., 1992). In particular, this was observed in the motor 

cortex, brainstem motor nuclei, anterior horn of the spinal cord and in the corticospinal 

tracts of ALS patients (Kawamata et al., 1992). Additionally, PET imaging of individuals 

living with this disease showed a widespread microgliosis in different CNS areas with 

particular involvement of the motor cortex (Turner et al., 2004, Corcia et al., 2012). 

Moreover, one of the most reproducible results found in ALS CSF samples is an 

increased level of chemokine ligand 2 (CCL2), also referred to as monocyte 

chemoattractant protein 1 (MCP-1), which is a well-known marker of microglial 

activation (Wilms et al., 2003, Henkel et al., 2004, Baron et al., 2005, Tanaka et al., 

2006). This protein was proposed not only as a biomarker of ALS, but also as a marker 

of disease progression as it correlated with the revised ALS functional rating scale 

(ALSFRS-R) (Tanaka et al., 2006, Mitchell et al., 2009, Tateishi et al., 2010). 

 

Several pieces of evidence suggest an alteration in the ALS microglia population 

during disease progression. During early stages, upregulation of M2 markers, such as 

CD206 and Ym1, was reported in the spinal cord of mutant SOD1 (mSOD1) transgenic 

mice. As the disease progressed, a gradual and progressive increase in the M1 

population was observed together with elevated levels of NADPH oxidase 2 (NOX2) 

and IL-1β, suggesting the establishment of an inflammatory milieu (Beers et al., 

2011b). Moreover, in a different study, Liao and colleagues obtained consistent results 

using microglia isolated from mSOD1 mice indicating a preponderance of M2 cells in 

the first stage of ALS and a shift toward the M1 phenotype over time (Liao et al., 2012). 

Hence, it has been proposed that at an early stage M2 cells prevail, releasing anti-

inflammatory mediators and trophic factors, including glial cell-derived neurotrophic 

factor (GDNF) and insulin growth factor (IGF-1), which promote a neuroprotective 

response (Appel et al., 2010). However, later during the course of the disease, a shift 

towards the M1 phenotype occurs due to the release of different danger signals, which 

possibly includes misfolded and aggregated proteins. This leads to the release of pro-

inflammatory agents and ROS, to the establishment of inflammatory conditions and 

ultimately to neurotoxicity (Zhao et al., 2013, Hooten et al., 2015). 

 

Nonetheless, the traditional and physiological dual classification of microglia into M1 

and M2 subtypes has been recently perceived as an oversimplification (Ransohoff, 

2016). In the context of ALS, in an in-depth RNA sequencing study of microglia 
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isolated from the spinal cord of ALS mouse models, Chiu and colleagues showed that 

the gene expression profiles were not consistent with either M1 or M2 microglia and 

that genes with both potentially protective and toxic functions were upregulated. Thus, 

a new neurodegenerative or ALS-specific microglial phenotype was proposed (Chiu 

et al., 2013). 

 

b. Astrocytes 

 

Astrocytes represent the largest glial population in the CNS. Although not definable as 

immune-system cells, astrocytes are able to modulate the immune response and they 

are known to contribute to neuroinflammation (Hovden et al., 2013).  

 

Physiologically, astrocytes are crucial for CNS homeostasis exerting a range of 

essential functions and providing neurons with the necessary molecules to supply their 

trophic, metabolic and structural support to neighbouring neurons (Vargas and 

Johnson, 2010). In particular, they influence MN survival by secreting neurotrophic 

factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived 

neurotrophic factor (BDNF) (Yamanaka and Komine, 2018); maintain glutamate 

homeostasis by tightly regulating glutamate release and uptake (Mahmoud et al., 

2019) and are essential for the formation and maintenance of the blood brain barrier 

(Cheslow and Alvarez, 2016). Additionally, astrocytes appear to be crucial for MN 

trophic support and energy metabolism. Specifically, these cells are pivotal for CNS 

energy and glucose storage being the main brain source of glycogen and, according 

to the astrocyte-to-neuron lactate shuttle hypothesis, lactate is primarily produced by 

astrocytes from glucose and subsequently transported to the MNs where it is 

converted to pyruvate and used by mitochondria for aerobic energy production 

(Deitmer et al., 2019). More recently and importantly to this research project, 

astrocytes were found to physiologically influence the function of immune system cells 

including the anti-inflammatory regulatory T cells (Tregs). In a study involving normal 

rat cells, in vitro astrocyte-Treg co-cultures reduced Treg apoptosis suggesting a 

probable pro-survival effect of astrocytes on these cells. In addition, the same authors 

reported increased FOXP3 expression (a crucial transcription factor for Treg function 

and differentiation) in co-cultures compared to Tregs monocultures (Xie et al., 2015). 
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Astrocytes were proposed as a substitute source of IL-2, an essential cytokine for Treg 

differentiation and activation, for CNS Tregs. In fact, this cytokine was found in the 

supernatant from astrocytes and the reported pro-survival effects on Tregs appeared 

to be dependent on the IL-2/STAT5 pathway (Xie et al., 2015, Xie and Yang, 2015). 

Moreover, Treg-depleted (DEREG) mice showed increased levels glial fibrillary acidic 

protein (GFAP) suggesting that astrocytes were in their reactive state (Ito et al., 2019, 

Krämer et al., 2019). In contrast, the passive transfer of Tregs in DEREG mice 

suppressed excessive astrocytic activation (Ito et al., 2019).  

 

Astrocytes are known to respond to CNS damage or injury via a protective mechanism 

called astrogliosis. These reactive astrocytes are characterized by increased levels of 

markers such as GFAP, vimentin and nestin (Pehar et al., 2017). This is a hallmark of 

multiple neurodegenerative diseases as well as ALS, including Alzheimer’s and 

Parkinson’s disease (Verkhratsky et al., 2014). In ALS patients, astrogliosis features 

were reported in several white matter regions (Kushner et al., 1991), including the 

motor cortex, in the cortical grey matter (Nagy et al., 1994) and in the spinal cord 

(Schiffer et al., 1996). 

 

Moreover, ALS-mutant genes appeared to be expressed not exclusively in MNs, but 

also in astrocytes. Mutations in the SOD1 genes were found in ALS patients astrocytes 

(Bruijn et al., 1997, Forsberg et al., 2011) and, interestingly, several studies 

demonstrate that such cells secrete several toxic factors able to induce Bax-

dependent MN death (Nagai et al., 2007). Furthermore, the presence of TDP-43 

inclusions in ALS patient astrocytes was shown in the grey matter of the spinal cord 

and motor cortex, in the neostriatum, and in the white matter of frontal and temporal 

cerebral cortex (Tan et al., 2007, Zhang et al., 2008, Neumann et al., 2007).  

 

Several pieces of evidence suggest that ALS astrocytes are toxic to MN (Haidet-

Phillips et al., 2011, Meyer et al., 2014, Yamanaka and Komine, 2018) and different 

mechanisms were proposed to drive astrocyte-mediated pathology, which are 

summarised below: 
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• Impaired glutamate reuptake. Glutamate is the major excitatory 

neurotransmitter of the CNS that acts through ionotropic and metabotropic 

receptors responsible for excitatory neurotransmission. However, excessive 

stimulations and activation of glutamate receptors cause intracellular Ca2+ 

overload and cell death (Ankarcrona et al., 1995). Multiple studies demonstrate 

a severe impairment in the glutamate uptake process due to the loss of EAAT2 

transporter in mouse models (Howland et al., 2002, Pardo et al., 2006) and in 

both familial and sporadic ALS cases (Rothstein et al., 1995, Rothstein et al., 

1992). Interestingly, glutamate receptors are expressed on immune system 

cells including T cells and this molecule is now considered an 

immunomodulator (Pacheco et al., 2007). One study suggested that glutamate 

favours the inflammatory Th1 differentiation over the anti-inflammatory Tregs 

(Beurel et al., 2014). Although, these results were not from ALS patients, this 

could potentially represent an additional mechanism by which astrocytes 

indirectly regulate the immune system. 

 

• Oxidative stress and mitochondrial dysfunction. Astrocytes are crucial 

components of the antioxidant system in the CNS being the main source of 

glutathione and ascorbic acid, both key ROS scavengers (Verkhratsky and 

Nedergaard, 2018). Nonetheless, one study reported decreased levels of 

glutathione in fibroblasts and astrocytes derived from ALS patients carrying a 

TDP-43 mutation (Moujalled et al., 2017). In addition, ALS astrocytes show 

evidence of defects in mitochondrial respiration with increased production of 

ROS and reactive nitrogen species (RNS) leading to nitroxidative stress and 

MN death (Cassina et al., 2008). In particular, elevated levels of induced nitric 

oxide synthase (iNOS), an enzyme that is responsible for the production of the 

ROS nitric oxide (NO), were reported (Almer et al., 1999, Sasaki et al., 2001). 

Evidence shows that the exposure of astrocytes to NO promotes cellular death 

in MN (Cassina et al., 2002). 

  

• Loss of MN metabolic support. As previously mentioned, astrocytes are 

responsible for MN trophic support providing them with lactate, which is 

fundamental for MN mitochondrial energy production. Whilst both cell types 

express lactate dehydrogenase 1 (LDH1), an enzyme that converts lactate to 
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pyruvate, astrocytes are the only source of lactate dehydrogenase 5 (LDH5), 

which catalyses the opposite reaction leading to lactate production (Bittar et al., 

1996). Thus, the “astrocyte-neuron lactate shuttle” theory has been proposed 

by which lactate consuming cells (neurons) depend on lactate-producing cells 

(astrocytes) for their metabolic needs and therefore this molecule is shuttled 

between the two (Magistretti and Allaman, 2018). ALS mSOD1 mice showed 

decreased levels of the lactate efflux transporter and reduced amount of lactate 

in the spinal cord (Ferraiuolo et al., 2011, Madji Hounoum et al., 2017). In 

addition, lactate supplementation increased MN survival when co-cultured with 

ALS defective astrocytes (Ferraiuolo et al., 2011). More recently, several other 

metabolic alterations were reported in ALS astrocytes. Adenosine deaminase, 

a crucial enzyme for purine metabolism which catalyses the conversion of 

adenosine to inosine, was significantly reduced in astrocytes reprogrammed 

from both sporadic and C9ORF72-mutant ALS fibroblasts (Allen et al., 2019b, 

Allen et al., 2019a). Inosine supplementation was found to be beneficial and 

able to increase healthy MN survival when co-cultured with ALS astrocytes 

(Allen et al., 2019a). In addition, the same group provided evidence of an 

impairment in the fructose and glycogen metabolism in induced neuronal 

progenitor-derived astrocytes carrying a C9ORF72 mutation. In particular, both 

mRNA and protein levels of two glycogen mobilization enzymes (glycogen 

phosphorylase and phosphoglucomutase) appeared to be decreased in 

C9ORF72 ALS (Allen et al., 2019b). These findings were in line with evidence 

showing reduction in glycogen degradation to glucose, increased accumulation 

of glycogen in lumbar spinal cord of mSOD1 mice and elevated mRNA levels 

of glycogen synthase (Li et al., 2019, Dodge et al., 2013).  

 

• Release of pro-inflammatory mediators: Several pieces of evidence 

demonstrate that ALS astrocytes contribute to neuroinflammatory processes by 

secreting several types of pro-inflammatory mediators that contribute to MN 

injury. Astrocytes from mSOD1 rats or mice were shown to secrete IFN-γ, which 

activated a death signaling pathway in MNs via tumour necrosis factor 

superfamily member 14 (TNFSF14, also referred to as LIGHT)-mediated 

lymphotoxin-b receptor LIGHT activation (Aebischer et al., 2011). In line with 

this, IFN-stimulating genes were found to be upregulated in astrocytes 
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surrounding MNs in the spinal cord of mSOD1 mice and the reduction or 

deletion of IFN-γ receptor 1 extended their life span (Wang et al., 2011).  

Other pro-inflammatory agents were reported to be produced and secreted by 

ALS astrocytes including prostaglandin E2 (PGE2), leukotriene B4 and nitric 

oxide (Hensley et al., 2006)  Moreover, a recent study showed that the 

exposure of primary rat astrocytes to ALS CSF significantly enhanced the 

production and secretion of different pro-inflammatory mediators including IL-

6, TNF-α, cyclooxigenase-2 (COX-2) and PGE2 whilst decreasing the anti-

inflammatory IL-10 (Mishra et al., 2016). This is in line with findings showing 

elevated IL-6 in ALS astrocytes exosomes, levels of which correlated with 

disease progression (Chen et al., 2019). COX-2 is a pivotal enzyme for the 

biosynthesis of the pro-inflammatory mediators prostanoids. In a transgenic 

mSOD1 mice model of ALS, COX-2 was found to be significantly increased 

both in MNs and astrocytes. In particular, a time dependent elevation in the 

expression of this enzyme level was reported, with end-stage mice showing a 

widespread COX-2 immunoreactivity (Almer et al., 2001). Consistent with this, 

spinal cord from post-mortem ALS CNS tissues showed a dramatic 

upregulation COX-2 mRNA and protein levels (Yasojima et al., 2001, Maihöfner 

et al., 2003). In addition, PGE2, a major product of COX-2 activity and a pro-

inflammatory mediator, was reported to be increased in post-mortem 

specimens (Almer et al., 2001) and in ALS CSF (Almer et al., 2002, Maihöfner 

et al., 2003). The COX-2 inhibitor celecoxib significantly reduced PGE2 levels 

in mSOD1 mice, reduced spinal MN death by diminishing astrogliosis and 

microglial activation and prolonged survival by 25% (Drachman et al., 2002). 

Nonetheless, a clinical trial evaluating the effect of this drug in ALS patients 

failed to show any significant evidence of clinical improvement (Cudkowicz et 

al., 2006). In a more recent study, a different COX-2 inhibitor, refecoxib was 

tested in mSOD1 mice. The authors reported activation of COX-2 and its 

downstream signalling targets (IL-1β and TNF-α) in untreated mice as a result 

of glial activation, which was reversed by refecoxib treatment. Additionally, MN 

loss was partially rescued and evidence was shown of reduction in the rate of 

disease progression (Zou et al., 2020).  
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1.2.2   Peripheral immune system 

 

a. Complement system 

 

The complement system consists of a series of 30 proteins with antimicrobial 

functions. Their role is to opsonize pathogens and recruit macrophage and neutrophil 

cells to drive an efficient immune response. Depending on the type stressor, 

complement can be activated in three different ways following the classical, lectin or 

alternative pathways (Morgan, 2015). Complement system factors are present in the 

CNS and primarily produced by neurons, astrocytes, oligodendrocytes and microglia 

(Barnum, 1995).  

 

Evidence of elevated levels of complement system proteins has been reported in ALS. 

Analysis of post-mortem spinal cord and motor cortex tissues revealed increased 

mRNA and protein levels of C1q and C4, proteins involved in the classical pathway, 

and also of the downstream C3 and C5b-9 proteins (Sta et al., 2011). Similarly, brain 

and spinal cord autopsies showed reactive microglia with increased levels of the 

complement receptors (CR) 3 and 4 as well as C3d and C4d positive neurites in 

disease affected areas. Consistently with this, increased CSF levels of C3 and C4 

were reported in multiple studies (Annunziata and Volpi, 1985, Ganesalingam et al., 

2011, Tsuboi and Yamada, 1994) whereas C1q, C5a and C5b-9 were elevated in the 

plasma, CSF and spinal cord of ALS patients and mouse models (Heurich et al., 2011, 

Woodruff et al., 2008, Mantovani et al., 2014). Moreover, Ferraiuolo and colleagues 

provided evidence of increased expression of genes involved in the first step of 

complement activation (C1q and C4) in laser-captured murine mSOD1 MNs. These 

findings suggested that MNs can actively contribute to activation of the complement 

cascade in ALS (Ferraiuolo et al., 2007). C5a and its receptor, C5aR1, have also been 

implicated in ALS. Their increased levels in mSOD1 mice were associated with 

macrophage recruitment and infiltration into degenerating skeletal muscles (Wang et 

al., 2017). Similar results were found in a different ALS mice model carrying a TDP-

43 mutation, where C5aR1 levels were elevated whilst those of CD55, a negative 

regulator of the complement system were reduced (Lee et al., 2018). Additionally, 

evidence of complement alterations at the neuromuscular junction were provided in 
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an ALS mice model (SOD1G93A mice), where deposits of C3b and C1q were detected 

as early as at the presymptomatic stage (47 days) and were maintained following 

symptoms onset (Heurich et al., 2011). Consistent with this, one study in ALS post-

mortem tissues showed an increased level of C1q, C3 and also of the membrane 

attack complex (MAC), a structure made of different complement proteins which 

localizes on the cell membrane of pathogens causing cell death (Bahia El Idrissi et al., 

2016).  

 

The involvement of the complement system in ALS pathogenesis, however, is still 

debated. Lobsiger and colleagues proposed that neither the C1q-induced classical 

pathway of complement activation, nor the C3-induced alternative pathway can 

mediate MN toxicity in ALS. In fact, in their mSOD1 transgenic mouse model, the 

genetic ablation of C1q and C3 did not affect disease progression (Lobsiger et al., 

2013). In contrast, two different studies showed that pharmacological inhibition of C5a-

C5aR1 signalling slowed disease progression and extended mSOD1 mice survival 

(Lee et al., 2017, Woodruff et al., 2008).  

 

b. Neutrophils 

 

In the recent years, increasing evidence suggests an impact of neutrophils on ALS 

inflammation. These cells are the most abundant type of leukocyte and constitute the 

first line of defence against infections. Following pathogen recognition, neutrophils 

destroy the microorganism either via phagocytosis, degranulation (release of 

antimicrobial proteins from the neutrophil granules) or through the formation of 

neutrophil extracellular traps (formed by DNA fibres that trap and kill microorganisms) 

(Rosales, 2018). 

 

Several pieces of evidence suggest that neutrophil counts and percentage are 

increased in the peripheral blood of ALS patients compared to healthy controls 

(Murdock et al., 2016, Murdock et al., 2017). Interestingly, this increment significantly 

correlated with a higher ALSFRS-R score and was associated with a shorter survival, 

which was more evident in female patients compared to male (Murdock et al., 2021b). 

More recently, a high neutrophil-to-lymphocyte ratio was found to be significantly 



 38 

associated with shorter disease duration and the authors proposed this this 

measurement as a new prognostic biomarker for ALS (Choi et al., 2020). Additionally, 

CD16 expression in peripheral blood neutrophils was also positively correlated with 

disease severity and rate of ALS progression. As this protein has been linked with 

neutrophil oxidative burst and phagocytic activity, the authors speculated that 

increased neutrophil activation and function may lead to additional ROS production 

and stress, exacerbating the neurodegeneration (McGill et al., 2020). Furthermore, 

post-mortem skeletal tissues from ALS patients showed a significantly increased 

proportion of infiltrating neutrophils. This was associated with neuromuscular junction 

denervation, suggesting the involvement of this immune cell type in axon degeneration 

and neuromuscular compromise (Trias et al., 2018). Similarly, neutrophils, together 

with mast cells, were found to be infiltrating in the motor axon located in the muscles 

of mSOD1 mice (Trias et al., 2018). 

 

c. Mast Cells 

 

Mast cells are bone marrow hematopoietic progenitor-derived immune cells that are 

crucial in mediating host defence against parasites (Mukai et al., 2016) and allergic 

reactions (Amin, 2012). These cells are characterised by cytosolic granules that 

contain a variety of factors including inflammatory mediators (e.g. leukotrienes, 

prostaglandins, cytokines and chemokines), NO and ROS (Harcha et al., 2021). 

Following stimulation, mast cells degranulate and secrete the aforementioned factors 

mediating the recruitment of various immune system cells (eosinophils, monocytes 

and neutrophils) and they can also act as antigen-presenting cells to induce T cell 

activation (Skaper et al., 2018).  

 

Mast cells were first linked to ALS in 2004 when an immunocytochemistry study 

showed both macrophage and mast cell infiltration in the post-mortem spinal cord of 

affected individuals (Graves et al., 2004). In mSOD1 rat models, mast cells were found 

to massively infiltrate skeletal muscles (extensor digitorum longus), in particular they 

were localised in close proximity with motor nerve endings and NMJs, with their 

number progressively augmenting over disease progression. These cells appeared to 

be increased in size, to display features of explosive degranulation and to express the 
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tyrosine kinase receptor c-Kit, a growth factor receptor crucial for survival, 

differentiation and degranulation of mast cells (Trias et al., 2017). Interestingly, the 

same authors reported mast cells to be interacting with CD11b/Iba1+ and CD68+ 

macrophages, suggesting an important interplay between these two immune system 

cell types (Trias et al., 2017). In a more recent report, the same group showed 

concomitant infiltration of both mast cells and neutrophils in extensor digitorum longus 

muscle, sciatic nerve, and ventral roots of symptomatic mSOD1 rats (Trias et al., 

2018). Interestingly, mast cells were also found nearby microvascular elements, which 

showed characteristic pathological abnormalities in mSOD1 rat and mouse models. 

The authors proposed that the aberrant trafficking and infiltration of these cells was at 

least partially due to a defective microvasculature. In fact, intravenous administration 

of bone marrow-derived c-Kit+ mast cell precursors were able to infiltrate the spinal 

cord of ALS mice but not that of control littermates (Kovacs et al., 2021). In line with 

this, ALS patient biopsies showed evidence of mast cell infiltration in skeletal muscles 

(quadriceps) and in spinal cords. These were found to be enlarged, degranulating 

(Kovacs et al., 2021) and interacting with neutrophils forming large extracellular traps 

(Trias et al., 2018). More interestingly, masitinib, a c-Kit receptor inhibitor, reduced the 

number of infiltrating mast cells and neutrophils, improved aberrant microvasculature, 

alleviated NMJ denervation and reduced motor deficit in mSOD1 symptomatic mice 

(Trias et al., 2017, Trias et al., 2018, Kovacs et al., 2021). Given these encouraging 

preclinical results, masitinib has been trialled in a phase II/III clinical study assessing 

its efficacy in 394 ALS patients (NCT02588677). A significant survival benefit of 25 

months was reported in 4.5mg/kg/day treated slow ALS progressors (ALSFRS-R 

decrease/month < 1.1) (Mora et al., 2021). These findings have led to the design of 

an additional phase III clinical trial (NCT03127267), which is currently recruiting, 

evaluating the effects of either 4.5 or 6mg/kg/day masitinib in a larger cohort of 495 

patients (https://www.clinicaltrials.gov/ct2/show/NCT03127267).  

 

d. Natural Killer Cells 

 

Natural killer cells (NK) are granular cytotoxic cells that are components of the innate 

immune system. These share a similar function to cytotoxic T cells, however, the term 

"natural" suggests that NK are capable of killing cells without prior antigen 
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presentation. In fact, they are able to exert their cytotoxic functions naturally when 

cells do not express the self-marker major histocompatibility complex (MHC) class I 

(Vivier et al., 2008).  

 

The role of NK in ALS is still to be fully understood with contradictory results being 

reported in the literature. Several studies reported elevated NK levels in the peripheral 

blood of ALS patients (Rentzos et al., 2012, Murdock et al., 2017, Jin et al., 2020) and 

one report also showed a progressive increase of the mean number of these cells over 

time (Murdock et al., 2017). In particular, Jin and colleagues  provided evidence of the 

CD56bright NK population being increased in ALS whereas CD56dim NK were reduced 

(Jin et al., 2020). This is surprising considering that CD56dim is primarily a marker of 

NK with cytotoxic effects whilst CD56bright is associated with immunomodulatory 

functions. In contrast with this, Rolfes and colleagues provided evidence of intrathecal 

CD56brigh NKs being significantly reduced in  ALS, which was particularly evident in 

rapidly progressive patients (Rolfes et al., 2021). Additionally, Garofalo and colleagues 

did not report an increase in both CD56bright and CD56dim NK cells in patient peripheral 

blood. However, they found NKs in postmortem spinal cord and motor cortex of sALS 

individuals whereas this infiltration was not present in matched controls (Garofalo et 

al., 2020). The same group also reported a CCL2-dependent recruitment of these cells 

in the motor cortex and spinal cord of mSOD1 mice at an early disease stage (with a 

peak at 10-13 weeks) whilst a decline was evident later during the disease course. 

Importantly, the cytotoxic activities of NK seemed to be mediated by MNs themselves, 

which expressed high levels of natural killer group 2D (NKG2D), a crucial protein for 

their activation and cytotoxicity (Garofalo et al., 2020). In addition, they provided 

evidence of pro-inflammatory microglia activation and impairment of regulatory T cells 

(Tregs) induced by NK-secreted IFN-γ. Interestingly, NK depletion in mice carrying 

either SOD1 and TDP-43 mutations delayed disease onset and paralysis although it 

did not produce a significant effect on disease progression (Garofalo et al., 2020). A 

more recent study showed that only female mSOD1 mice with depleted NKs showed 

extended survival whereas these results were not replicated in male mice. Moreover, 

the same group studied longitudinal NK counts in the peripheral blood of ALS patients 

and found significant correlations between NK surface markers and the ALSFRS-R. 

In addition, increased expression of several cytotoxic and migration markers was 

reported in ALS, although age-related variations were reported (Murdock et al., 
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2021a). These findings suggested that NK cells may contribute to ALS progression in 

an age and gender-specific manner and therefore this could also explain the 

contradictory results reported so far in the literature.      

 

e. Monocytes/Macrophages 

 

Macrophages are phagocytic cells differentiated from monocytes that internalize and 

digest pathogens, foreign substances and cellular waste. Similarly to microglia, 

macrophages can be classified into the pro-inflammatory M1 and the anti-

inflammatory M2 subset (Italiani and Boraschi, 2014). 

 

The role of peripheral monocytes/macrophages in ALS pathogenesis is still not 

completely understood. However, elevated levels of MCP-1 in both the blood and CSF 

samples of ALS patients, suggest an involvement of these cell types in disease 

progression (Kuhle et al., 2009). Moreover, different studies showed functional 

activation of monocytes in ALS patient serum and monocyte/macrophage invasion into 

the CNS (Butovsky et al., 2012, Zondler et al., 2016). It has been proposed that 

peripheral monocyte infiltration into the CNS could exert a neuroprotective effect at 

the early stages of ALS. Nonetheless, as the disease progresses, a detrimental and 

inflammatory effect prevails (Zondler et al., 2016). Consistent with this, Zhao and 

colleagues reported that ALS monocytes had an inflammation-prone gene expression 

profile and this correlated with disease progression. In fact, ALS patient monocytes 

showed increased expression of IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1) and 

CXCL2 compared to healthy controls. Moreover, this upregulation was more 

pronounced in rapidly compared to slowly progressing patients, thus reinforcing the 

hypothesis of a role for monocytes in disease progression (Zhao et al., 2017). A study 

involving rats overexpressing mutant SOD1 indicated that macrophages may play an 

active role in skeletal muscle denervation given the increased macrophage activation 

reported in neuromuscular junctions (NMJs) of this animal model of the disease (Van 

Dyke et al., 2016). Additionally, the number of infiltrating macrophages was found to 

progressively increase in the skeletal muscles of mSOD1 mice during disease 

progression and this mechanism appeared to be at least partially mediated by the C5a 

complement system protein, whose receptor is expressed on macrophages (Wang et 
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al., 2017). Consistent with this, muscular biopsies from a subset of ALS patients 

showed evidence of low grade inflammation and chronic monocyte/macrophages 

infiltration (Al-Sarraj et al., 2014). Two recent groups studied the specific functions of 

ALS M1 and M2 macrophages. Interestingly, Du and colleagues reported that M1 

macrophages differentiated from ALS peripheral monocytes showed an increased 

inflammatory phenotype. In particular, evidence of augmented production and 

secretion of different pro-inflammatory cytokines, including IL-6 and TNF-α, was 

provided in ALS compared to healthy control M1 macrophages (Du et al., 2020). 

However, induced pluripotent stem cell (iPSC)-derived M2 microglia from fibroblasts 

of ALS patients showed comparable anti-inflammatory activities similar to heathy 

controls. In particular, iPSC-M2 cells were able to suppress the pro-inflammatory M1 

macrophages and cytotoxic T cells whereas they were capable of sustaining and 

inducing Tregs (Zhao et al., 2020). This evidence suggests that, while ALS M1 

macrophages are more inflammatory prone, M2 cells retain their anti-inflammatory 

functions and may constitute an interesting therapeutic target to induce 

immunosuppression.  

 

f. T Lymphocytes 

 

T lymphocytes play a crucial role in adaptive cell-mediated immunity. They consist of 

a large and heterogeneous population of cells which can be divided into subgroups 

according to the markers expressed on their surface. The major distinction is between 

T cells carrying CD4, termed CD4+ cells (T helpers and regulatory T cells) and those 

expressing CD8, termed CD8+ cells (cytotoxic T cells) (Male M., 2006). Like 

macrophages and microglia, CD4+ cells can be further classified in two major 

subgroups depending on the cellular inflammatory properties. The first one has anti-

inflammatory properties and consists of T helper 2 (Th2) and regulatory T cells (Treg), 

which secrete immune-modulating cytokines, such as IL-4, IL-10 and TGF-β. The 

latter subgroup is made of pro-inflammatory lymphocytes: T helper 1 (Th1) and T 

helper 17 (Th17) which release inflammatory mediators including IL-1, IL-6 and IFN-γ 

(Crisafulli et al., 2018).   
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T lymphocytes are known to contribute to the ALS pathology. Several studies reported 

alterations in the T-cell population in the peripheral blood of ALS patients and 

infiltrating T lymphocytes in the CNS and skeletal muscles (Engelhardt et al., 1993, 

Graves et al., 2004, Zhang et al., 2005, Mantovani et al., 2009, Rolfes et al., 2021, Al-

Sarraj et al., 2014). In particular, regional and temporal differences were found in 

infiltrating T cells. Specifically, analysis of ALS postmortem tissues revealed that CD4+ 

T helpers were found predominantly in the corticospinal tract whereas CD8+ cytotoxic 

T cell were localized mainly in the ventral horns (Engelhardt et al., 1993). Interestingly, 

the major histocompatibility complex I (MHC I), crucial for antigen presentation to 

cytotoxic T cells, was found to simultaneously exert protective and harmful effects in 

ALS mSOD1 mice (Nardo et al., 2018). Whilst the ubiquitarian or sciatic nerve-specific 

lack of MHC I caused denervation, anticipated disease onset and atrophy; the same 

depletion in spinal cord resulted in lesser infiltrating T cells, reduced inflammation and 

preserved MNs. Therefore, the authors proposed a dual role of MHC I and cytotoxic T 

cell in peripheral vs central nervous system and this can potentially explain the failure 

of clinical trials aiming to promote a systemic immune suppression in ALS (Nardo et 

al., 2018). Additionally, in an early disease phase, CD4+ T cells seemed to prevail 

whereas at later stages the number of CD8+ lymphocytes increased (Beers et al., 

2008). Interestingly, CD4+ cells were found to be protective in several rodent models 

of ALS. In fact, mSOD1 mice lacking of these cells showed an accelerated disease 

progression and shorter survival (Beers et al., 2008) whilst the passive transfer of 

activated CD4+ lymphocytes extended their survival (Banerjee et al., 2008). Additional 

reports also suggested an alteration within the CD4+ subset over the disease course 

in mSOD1 mice. Specifically, at an early stage of the disease, Th2 and Treg cells 

predominate, however, as the disease progresses, a shift towards the inflammatory 

Th1 and Th17 cells was reported (Beers et al., 2011b). Neurotoxic effects were 

particularly associated with IL-6 released by Th1 (Beers et al., 2011b) and interestingly 

this cytokine has been shown to inhibit the protective Tregs (Bettelli et al., 2006). In 

line with this, a pro-inflammatory-skewed T cell phenotype was registered in the blood 

(but not in the CSF) of ALS patients where Th1/Th17 prevailed over Th2/Treg. 

Additionally, a significant negative correlation was found between Th1/Th17 and the 

ALSFRS-R or forced vital capacity, a measurement to evaluate lung function (Jin et 

al., 2020). Evidence showed that in the blood, CSF and spinal cord of ALS patients 

there is a significant increase in the expression of IL-17 and IL-23, cytokines produced 
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by Th17 cells, which further reinforces the hypothesis of an extensive activation of this 

cell type in ALS (Rentzos et al., 2010, Saresella et al., 2013).  
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1.3 The role of regulatory T cells  
 

Given the importance of the regulatory T cells in this thesis, in the next section, the 

physiological role of these cells is extensively discussed together with their 

pathopathological alteration in ALS. This section was published as a review article 

(Giovannelli et al., 2020) in the journal Amyotrophic Lateral Sclerosis and 

Frontotemporal Degeneration.  

 

1.3.1   Physiology of regulatory T cells 

 

Regulatory T cells (Tregs) are fundamental modulators of the immune response: they 

maintain self-tolerance and homeostasis, preventing the onset of autoimmune 

disorders. These cells are generally classified into two subgroups: thymus-derived and 

peripheral inducible Tregs (Male M., 2006). The first type is produced in the thymus 

during the negative selection process; these cells then migrate into peripheral tissues 

to perform their functions. They are also known as naturally occurring or CD4+CD25+ 

Tregs because of the surface molecules they express. The presence of CD25+, also 

referred to as interleukin-2 receptor alpha chain (IL-2Rα or IL2RA), indicates the 

importance of IL-2 for Treg functions (Male M., 2006). Another key feature of these 

cells is the expression of Forkhead box Protein 3 (FOXP3) (Mills, 2004). The second 

type of Tregs are peripheral in origin. These cells are derived by antigen-exposed 

CD4+ T cells in peripheral tissues following the exposure to specific molecules. 

Induced CD4+ Tregs can be further classified into FOXP3+ or FOXP3- cells (Yadav et 

al., 2013). Finally, another type of peripheral induced Tregs are CD8+. They are 

generated by the stimulation of CD8+ cells with antigen and IL-10 and, once active, 

they express FOXP3 (Male M., 2006).  

  

Clearly, FOXP3 plays a crucial role in CD8+, CD4+ and CD4+CD25+ Tregs. It is a 

transcriptional regulator which is fundamental for their development and function. It 

can act both as a transcriptional activator or repressor because it interacts with several 

transcription factors and proteins involved in epigenetic regulation (Vent-Schmidt et 

al., 2014). In particular, it prevents the transcription of pro-inflammatory cytokines such 
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as IL-2 and IFN-γ and it concomitantly activates immune suppressors including 

cytotoxic T lymphocyte antigen 4 (CTLA4) (Vent-Schmidt et al., 2014). 

 

Other key markers for Tregs are glucocorticoid-induced tumour necrosis factor 

receptor (GITR) and inducible T cell co-stimulator (ICOS). GITR, also referred to as 

TNFRSF18, plays a role in Treg suppressive activities, in fact, antibodies against GITR 

can abrogate Treg immune modulatory functions, and it is also crucial for the 

differentiation process of thymus Tregs (Shimizu et al., 2002, McHugh et al., 2002, 

Ronchetti et al., 2015). ICOS is a costimulatory molecule which is known to exert 

various roles within the immune system, participating in both inflammatory and 

suppressive processes (Wikenheiser and Stumhofer, 2016). However, ICOS appears 

to play a role in Treg functions. In fact, the blockage of the interaction of ICOS with its 

ligand (ICOSL) causes a decrease in the expression of CTLA4 and ICOS deficiency 

induces a reduction in FOXP3 expression (Zheng et al., 2013, Landuyt et al., 2019).  

 

Interleukin-2 is a crucial mediator of Treg activity. This cytokine is known to be 

essential for the development and survival of these cells (Garg et al., 2012). Although 

IL-2 exerts pleiotropic functions on the immune system, evidence demonstrates that 

this cytokine has crucial immune suppressive functions as IL-2 or IL-2 receptor 

knockout mice do not develop immune deficiency syndromes, but they do show signs 

of autoimmune diseases (Malek, 2008). IL-2 administration promotes activation of 

different pathways in effector T cells (Teffs) and Tregs and, at low doses, it is able to 

induce expansion and activation of Tregs without having similar effects on Teffs (more 

details on IL-2 are provided in the following section) (Matsuoka et al., 2013).  

 

Regulatory T cells exert several immunosuppressive functions: they suppress Teffs, 

B cells, natural killer cells (NKs) and antigen-presenting cells (APC) by inhibiting their 

activation, proliferation and function (Duffy et al., 2018). Moreover, they can alter the 

activation state of microglia/macrophages promoting the M2 (or anti-inflammatory) 

phenotype (Liu et al., 2011). Several mechanisms have been proposed to mediate 

these functions (Figure 1.3): 
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• Inhibitory cytokine release: Tregs can secrete anti-inflammatory cytokines 

including IL-10, IL-35 and TGF-b which suppress the functions of Teffs (Vignali et al., 

2008). 

 

• Cytolysis induction: Tregs are able to produce and release granzyme B and 

perforin which induce cytolysis and apoptosis in Teffs, B cells and NKs (Gondek et al., 

2005, Zhao et al., 2006, Cao et al., 2007). 

 

• Metabolic disruption: This proposed mechanism is based on the consumption 

of local IL-2 by Tregs. This would cause a depletion of this cytokine which is necessary 

for the function of Teffs (de la Rosa et al., 2004), leading to an IL-2-deprivation-

mediated apoptosis of Teffs (Pandiyan et al., 2007).  

 

• CTLA4-mediated mechanism: Tregs can physically interact with dendritic 

cells (DC) due to the binding of CTLA4 on the Treg surface and the co-stimulatory 

molecules CD80/CD86 expressed by DC. This leads to the production of indoleamine 

2,3-dioxygenase (IDO) in DC, which is a potent immune regulator which suppress T 

cells and NKs (Fallarino et al., 2003, Mellor and Munn, 2004). Moreover, Tregs can 

also mediate the downregulation of CD80/CD86 (Cederbom et al., 2000). 

 

• cAMP-mediated mechanism: Tregs express high levels of cAMP and this 

molecule can be transferred to Teffs through gap junctions. This provokes the 

activation of inducible cAMP early repressor (ICER) which inhibits nuclear factor of 

activated T cells (NFAT), a transcription factor which is necessary for IL-2 production. 

Thus, this can lead to IL-2 deprivation-mediated apoptosis (Bopp et al., 2007, Schmidt 

et al., 2012).
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Figure 1.3: Mechanisms of Treg suppressive actions.  
This image shows a summary of the different mechanisms of Treg-mediated immune suppression. A: Inhibitory cytokine 

release, B: Cytolysis induction, C: Metabolic disruption, D: CTLA4-mediated mechanism, E: cAMP-mediated mechanism.
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1.3.2. Regulatory T cells in ALS 

 

Several pieces of evidence demonstrate a key role of regulatory T cells in ALS onset 

and progression. In 2009, Mantovani and colleagues first reported a dramatic 

decrease in the number of CD4+CD25+ Tregs in sALS patients’ peripheral blood 

(Mantovani et al., 2009). Since then, several laboratories have studied these cell types 

and their possible role in ALS.  

 

Changes in the Treg population over the disease course were demonstrated in 

mSOD1 mouse models. In particular, in an early stable phase of the disease the 

number of CD4+CD25+ and CD25+FOXP3+ Tregs is increased while, as the disease 

progresses, they gradually decrease. More precisely, in 18-week old mice, which 

represents a late disease phase, a shift from the neuroprotective Treg/Th2 and M2 

microglia population to a neurotoxic Th1/M1 microglial phenotype was observed, and 

this led to an acceleration in disease progression (Beers et al., 2011a, Zhao et al., 

2012). In particular, increased expression of NOX2, IL-1b and IL-12, which are 

markers of M1 microglia activation, and of IFN-g, secreted by Th1 was detected at 

later time points together with an elevation in the levels of IL-6, a cytokine that can 

completely inhibit Treg functions (Beers et al., 2011a). Interestingly, the passive 

transfer of healthy Tregs to mSOD1 mice seemed to prolong the stable phase of the 

disease and extend survival. After the treatment, increased levels of FOXP3, IL-4 and 

Gata-3, a key transcription factor of Th2 cells, were reported (Beers et al., 2011a). 

Furthermore, a different study using the same mSOD1 mouse model showed that 

Tregs were able to inhibit the activation of microglia through the secretion of IL-4. 

Specifically, this inhibition appeared to be independent from CTLA-4, IL-10 or TGF-b 

and mediated by a mixture of IL-4, IL-10 and TGF-b. Intriguingly, IL-4 was not entirely 

secreted by Tregs but also by Th2, hence this cytokine and Th2 were proposed as 

other crucial mediators of neuroinflammation suppression (Zhao et al., 2012). 

 

Given this background, it was questioned what was the role of Tregs in ALS patients. 

In an early disease phase, Tregs were found to be significantly decreased in the 

peripheral blood, perhaps as an attempt of the CNS to suppress neuroinflammation 

as this correlated with a Treg increase in the CNS (Rentzos et al., 2012). However, as 
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the disease progresses, this compensatory attempt fails and Tregs were inhibited and 

decreased in number (Rentzos et al., 2012) (Figure 1.4). Moreover, the quantity of 

Tregs negatively correlated with the ALSFRS-R score. Hence, reduced Treg numbers 

are associated with a poor ALSFRS-R score and a more aggressive disease course 

(Beers et al., 2011a, Rentzos et al., 2012). The percentage of Tregs in patient blood 

also negatively correlated with ALS progression expressed in terms of AALS (Appel 

ALS score (Appel et al., 1987)) an ALS clinical rating scale (Beers et al., 2017, Henkel 

et al., 2013). This score is independent from ALSFS-R and thus this finding reinforces 

the hypothesis of a Treg dysfunction occurring over time in ALS patients.   

 

Interestingly, Tregs were found not only to be reduced in number but they also 

appeared dysfunctional and less effective in promoting Teffs suppression and this 

impairment was more evident in rapidly progressing patients (Beers et al., 2017). In 

fact, the expression of FOXP3, CD25, GATA3 and some anti-inflammatory cytokines, 

including TGF-b, IL-10 and IL-4, were found to be downregulated in the peripheral 

blood of rapidly progressive ALS patients. In particular, their expression levels were 

found to be inversely correlated with the disease progression rate (Henkel et al., 2013). 

In contrast, increased expression of Tbx21, a transcription factor crucial for Th1 

functions, was reported in the spinal cord of both rapidly and slowly progressive ALS 

patients whilst augmented levels of inflammatory mediators such as IFN-g and NOX2, 

were found only in the rapidly progressive cases (Henkel et al., 2013). FOXP3 was 

proposed as a prognostic factor since its levels can efficiently predict the speed of 

disease progression (Henkel et al., 2013). Furthermore, evidence of epigenetic 

alteration in the Treg-specific demethylated region (TSDR), a CpG-rich regulatory 

region within the first intron of FOXP3 gene, was documented in ALS. This element is 

physiologically demethylated only in Tregs which stably express FOXP3 but it is fully 

methylated in CD4+ T cells. TSDR is partially methylated in ALS patients and this 

modification occurred more significantly in rapidly progressive cases (Beers et al., 

2017).  

 

Recently, evidence showed that Tregs isolated from ALS cases are not permanently 

impaired but their function can be restored by culturing them in vitro in the presence 

of IL-2 and rapamycin (Alsuliman et al., 2016). This latter compound is known to inhibit 
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the activity of Th1 and Th17 because it suppresses the mechanistic target of 

rapamycin (mTOR) signalling, which is crucial for these cells. In contrast, rapamycin 

promotes Treg differentiation and proliferation because their activities are independent 

from mTOR (Delgoffe et al., 2009). After the treatment with IL-2 and rapamycin, Tregs 

from ALS subjects and healthy volunteers had comparable suppressive functions. 

Evidence was provided of the generation of a large-scale GMP-compliant method for 

Treg isolation and expansion in the presence of IL-2 and rapamycin (Alsuliman et al., 

2016). Safety, tolerability and benefits of this therapy were assessed in a phase I 

clinical trial (Thonhoff et al., 2018) (https://clinicaltrials.gov/ct2/show/NCT03241784).  

 

More recently, specific Treg subtypes have been correlated with ALS progression rate 

(ALSFRS-R). Tregs can be classified into CD45RO+, functionally active Tregs, and 

CD45RA+, which are resting Tregs. In rapidly progressive patients, reduction in the 

number of CD45RO+ Tregs was reported, and the amount of this cell type can be 

correlated with disease progression (Sheean et al., 2018). Furthermore, 

intraperitoneal injection of rapamycin and IL-2c (IL-2 combined with its monoclonal 

antibody which increases the magnitude and duration of IL-2 activity) in mSOD1 mice 

promoted CD45RO+ Treg expansion and prolonged their survival. In addition, a 

reduction in astrogliosis and microgliosis by 40 and 50% respectively was 

demonstrated together with an increase in FOXP3 and M2 microglia in the spinal cord 

and the sciatic nerve, and increased levels of GATA3 in sciatic nerve of these treated 

mice. Thus, these latter findings establish that Tregs can not only promote 

neuroprotection in the CNS, but they can also exert an equivalent function in the 

periphery (Sheean et al., 2018).  

 

This body of evidence demonstrates a key role of Tregs and a dual trend during the 

disease course: these cells seem to be increased in an early disease phase, probably 

as an anti-inflammatory attempt made by the CNS, but as disease progresses, Tregs 

progressively and dramatically decrease leading to a worsening degree of 

neuroinflammation. Moreover, Treg levels can be considered as a prognostic factor of 

the disease progression and survival and the expansion of these cells was proposed 

as a promising therapeutic strategy for ALS. Several clinical trials testing different 

molecules but with the same molecular aim are currently active to try and elucidate 

any beneficial effect of Treg expansion in ALS (Giovannelli et al., 2020). 
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Figure 1.4: The role of Tregs in the early versus the later phase of the 
disease 

The early disease phase is characterized by a recruitment of regulatory T cells 

in the CNS from the periphery (a). This is perceived as a neuroprotective 

attempt made by the CNS to reduce neuroinflammation. At this stage, Tregs 

secrete anti-inflammatory molecules which promote the activation of M2 

microglia, known for their anti-inflammatory properties. In the later stage, as the 

disease progresses, the number of Tregs in the CNS  decreases, while 

inflammatory mediators prevail (b). This includes Th1, which secretes cytokines 

that activate M1 microglia and promote inflammation and neurotoxicity. 
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1.4 Interleukin 2 
 

IL-2 is known to be a crucial mediator of Treg differentiation and survival (Garg et al., 

2012). Despite its pleiotropic functions on the immune system, it has been shown that 

IL-2 treatment causes specific FOXP3+Treg development and expansion, both in 

mouse models (Tang et al., 2008, Grinberg-Bleyer et al., 2010) and in humans (Zorn 

et al., 2006). Moreover, evidence shows that following IL-2 administration, different 

pathways are activated in Teffs and Tregs. In fact, the binding of this cytokine with its 

receptor in Teffs results in the activation of STAT5 and subsequently of S6 kinases, 

which triggers PI3K-Akt and mTOR pathways. In contrast, in Tregs, IL-2 binding 

mediates a direct activation of STAT5 and then FOXP3 becomes functional (Malek 

and Castro, 2010). Interestingly, it seems that treatment with low dose IL-2 (ld-IL-2) 

induce a selective increase in the phosphorylation, and thus activation, of STAT5 in 

Tregs, which corresponds to a decrease in the same modification in Teffs (Matsuoka 

et al., 2013). More importantly, the threshold for IL-2 receptor (IL2R) activation in Teffs 

appears to be much higher than in Tregs, which in turns require lower concentration 

of IL-2 for their stimulation. This can be explained by the different IL-2 receptors these 

two cell types show on their surface membranes. In fact, whilst Tregs constitutively 

express high-affinity IL2R (made of three subunits: IL2RA, IL2RB and IL2RG, which 

has a constant of dissociation Kd ~10-11 M), Teffs express it only after T cell receptor 

(TCR) activation. Without this stimulus, Teffs constitutively express only the 

intermediate-affinity receptor (made of IL2RB and IL2RG subunits and has a Kd ~10−9 

M). This means that Teffs require higher IL-2 concentrations to become active 

compared to Tregs (Matsuoka et al., 2013). In particular, a recent study showed that 

the amount of IL-2 needed for the activation of Teffs is about 5000 greater than the 

dose required for Tregs (Dupont et al., 2014). In addition, as reviews by Spolski and 

colleagues, another type of IL2R is reported in humans, which is composed exclusively 

of the subunit IL2RA and is characterized by a low affinity of IL-2 (Kd ~10−8 M) (Figure 
1.5).  
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Figure 1.5: Different IL-2 Receptors 

Schematic representation of the three different IL-2 receptors: low affinity (Kd 

~10−8 M), intermediate affinity (Kd ~10−9 M) and high affinity (Kd ~10−11 M). The 

different receptor subunits characteristic of each receptor type are clearly 

displayed.  

 

Given this background, ld-IL-2 has been proposed as a drug to treat different 

autoimmune disorders characterised by a Treg dysfunction. Several clinical trials have 

been carried out and, in the following paragraphs, these studies are grouped according 

to the disease for which the trial has been designed and their results are summarised. 

 

• Graft-versus-host disease (GVHD) caused by allogeneic haematopoietic 
stem cell transplantation (HSCT). HSCT evokes host immune response which can 

result in GVHD, a chronic autoimmune disorder in which Tregs are known to be 

decreased in number. The safety and efficacy of ld-IL-2 (different dosages from 1x105 

international units (IU)/m2 to 3x106 IU/m2) were evaluated in multiple clinical studies 

involving GVHD patients. No serious adverse events were reported, whilst an increase 

in the Treg count and Treg:Teff ratio were documented in phase I (Koreth et al., 2011, 

Whangbo et al., 2019a, Matsuoka et al., 2013) and phase II trials (Kennedy-Nasser et 

al., 2014, Koreth et al., 2016). In particular, one study showed that the number of Treg 
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cells in the blood peaked after four weeks of daily administration but the levels declined 

following cessation of treatment (Koreth et al., 2011). Additionally, this cytokine 

appeared to be able to increase functional activation of Tregs, mediate their 

expansion, increase thymic export and reduce Treg apoptosis (Matsuoka et al., 2013). 

However, while nearly all the patients showed an increase in their Treg subset, 

significant improvements in their clinical manifestations were reported in 50% of the 

study cohort (Koreth et al., 2011, Koreth et al., 2016). The authors proposed that this 

was probably due to inter-individual differences, concomitant medications and/or 

underlying pathologies (Koreth et al., 2011). A more recent study showed that ld-IL-2 

induced increases in the diversity of the T cell receptor (TCR) repertoire and clinical 

improvements were associated with a rapid turnover of the TCR (Whangbo et al., 

2019b).   

 

• Vasculitis induced by Hepatitis C virus (HCV). Vasculitis is a remarkable 

extrahepatic presentation of HCV. The presence of autoantibody, T cells in the 

vascular infiltrates and the reduced number of circulating Tregs suggest an 

autoimmune process underlying in the disease onset (Boyer et al., 2004). In 2011, ld-

IL-2 was evaluated for the first time as a possible treatment for vasculitis HCV-related 

vasculitis in a phase I/IIa study. The study population was treated with 1.5MIU IL-2 for 

5 days (cycle 1) and, after a period of wash out, the dose was increased to 3MIU per 

day for 5 days (cycle 2-3-4). Results indicated that the treatment led to a significant 

increase in the percentage of Tregs in all patients. Moreover, clinical responses and 

improved symptoms were reported in the majority of patients. Adverse events were 

minor and transient (Saadoun et al., 2011). 

 

• Type 1 diabetes (T1D). Ld-IL-2 treatment has been proposed as a treatment 

for this pathology, which is characterized by an autoimmune-mediated destruction of 

pancreatic β-cells. Several disease-associated mutations have been reported in genes 

involved in the IL-2 pathway (including IL2RA and IL2RB) and a Treg deficiency was 

demonstrated in these patients (Rosenzwajg et al., 2015). In 2013, a phase I/IIa study 

evaluated the safety and efficiency of 0.33, 1 or 3MIU IL-2 per day for 5 days in T1D 

patients. The authors reported the cytokine to be safe with no serious adverse events 

registered, and a dose-dependent increase in the Treg counts in the treated cohort 

was documented (Hartemann et al., 2013). In addition, the duration of the Treg 
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increase seemed to be also dose-dependent and treated patients showed elevated 

levels of CTLA-4, CD25, GITR and pSTAT5, all markers of Tregs activation 

(Rosenzwajg et al., 2015). However, at the 3MIU-IL-2 dose, an activation of NK cells, 

a trend towards chemokine and cytokine increase and more frequent mild to moderate 

adverse reactions were reported, therefore 1MIU-IL-2 was indicated as the prefered 

cytokine dosage for these patients (Rosenzwajg et al., 2015). More recently, in a 

different phase I/IIa trial, ld-IL-2 (0.125, 0.25 and 0.5 MIU/m2) was shown to be well 

tolerated in newly diagnosed children with T1D. Nonetheless, although the cytokine 

efficiently promoted a dose-dependent Treg expansion, significant variations were 

reported amongst patients who were classified into high and low responders. 

Interestingly, the more responsive subjects were associated with a higher expression 

of soluble IL2RA (sIL2RA) and vascular endothelial growth factor receptor 2 

(VEGFR2) (Rosenzwajg et al., 2020). 

 

• Alopecia areata (AA). AA is one of the most frequent autoimmune diseases. 

This is characterize by a localized hair loss due to the autoimmune destruction of the 

hair follicles mediated by infiltrating CD4+ and CD8+ T cells (Castela et al., 2014). In a 

pilot study, five patients with severe AA (<50% of the scalp without hair) received 

1.5MIU of IL-2 for 5 days (cycle 1) and then, 3MIU IL-2 (cycles 2-3-4). None of those 

patients achieved a complete regrowth of hair but a partial response was obtained in 

four out of five patients. Interestingly, these four responding patients showed a 

recruitment of Tregs into the lesioned skin of the scalp, while no Tregs infiltration was 

found in the non-responding patient (Castela et al., 2014).  

 

• Systemic lupus erythematosus (SLE). SLE is a complex autoimmune 

disorder characterized by dysfunction of both the innate and the adaptive immune 

systems and by reduced levels of Tregs (Ohl and Tenbrock, 2015). Ld-IL2 was tested 

in SLE in a phase I/IIa study where participants received a subcutaneous injection of 

this cytokine (1.5 MIU-IL2 in the first cycle with possibility of increment in subsequent 

ones) for 5 consecutive days over 4 treatment cycles. Consistently with other studies, 

ld-IL-2 appeared to be well-tolerated and was able to expand Tregs in a dose-

dependent manner. Clinical improvements were detected only in 8 out of 12 

participants and, interestingly, a significant correlation between the changes in the 

Treg proportion and clinical scores was reported (Humrich and Riemekasten, 2019). 
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Additionally, in a different trial involving a larger cohort of SLE patients, 1MIU-IL2 was 

able to induce a partial remission in almost 77% of patients, whilst a complete 

remission of lupus nephritis was observed in 54% of the cohort (He et al., 2020).  

 

• Other autoimmune diseases (AIDs). In 2018, Rosenzwajg and colleagues 

published their results related to an extensive clinical trial which aimed to assess the 

efficacy of ld-IL-2 on 11 different AIDs (rheumatoid arthritis, ankylosing spondylitis, 

SLE, psoriasis, Behçet’s disease, granulomatosis with polyangiitis, Takayasu’s 

disease, Crohn’s disease, ulcerative colitis, autoimmune hepatitis and sclerosing 

cholangitis). Patients were treated with 1MIU-IL-2 for 5 consecutive days followed by 

fortnightly injections for a total of 6 months. Their results showed a consistent, 

significant and robust expansion of Tregs in all patients regardless of the specific AIDs. 

Moreover, an increase in the CD56bright NK cells or regulatory NK was also reported 

(Rosenzwajg et al., 2018). This particular type of NK produce high amounts of 

cytokines, such as IFN- γ, TNF-α, IL-13 and IL-10 depending on their stimulation (Poli 

et al., 2009).  Finally, the same authors also reported a significant improvement in 

several clinical tests and patients’ symptoms (Rosenzwajg et al., 2018).    
 

• Healthy volunteers. One study evaluated the molecular and proteomic 

changes associated with ultra-low dose (ULD) IL-2 treatment (0.05 to 0.2 MIU/m2/day) 

in healthy volunteers (Ito et al., 2014). As expected, after the administration of the 

drug, a significant expansion in the Treg subset was observed. In particular, both 

Helios-positive and Helios-negative Tregs appeared to be equally expanded. Helios 

(also known as IKZF2) is a transcription factor proposed as a marker of thymic-derived 

Tregs. This suggested that both thymic and peripheral Tregs were increased. 

Additionally, cytokine profiling and gene expression analysis were also performed to 

assess molecular variation following the treatment. A significant increase in CXCL10, 

which is known to be induced by IFN-γ and functions as a chemoattractant for 

monocytes, T cells and NKs, was reported. Given this, authors proposed that ULD-IL2 

induced a type 1-related immune effect in vivo. Consistent with this, STAT1, IRF9, 

GBP1 and IFITM3, all genes associated with IFN-γ pathway and type 1-immune 

response, were significantly increased. Nonetheless, at the same time, microarray 

analysis revealed a significant upregulation of both FOXP3 and IL2RA. Moreover, 

CISH, a cytokine which plays an important role in the negative feedback of cytokine 
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signal transduction, was also found to be upregulated after the treatment. These 

findings suggest that ULD IL-2 promote an apparently paradoxical response: on the 

one hand it promotes IFN-γ immunity, while on the other hand it induces FOXP3+ 

Tregs immunosuppressive functions. This apparent paradox can be explained by the 

fact that this drug is not aimed to generally suppress the immune response but to 

modulate the immune system and restore its normal homeostasis. These treatments 

promote the maintenance of immune system functions in response to pathogens, 

while preventing excessive autoimmunity (Ito et al., 2014).  

 

Taken together, these findings suggest that ld-IL-2 is well-tolerated and capable of 

expanding the Treg population in a dose-dependent manner in both healthy volunteers 

and in patients suffering from different autoimmune disorders. However, remarkable 

differences were reported and clinical improvements may be limited to a subset of 

responding individuals.  

 

Since the role of the immune system in ALS has been documented, different drugs, 

aiming to suppress neuroinflammation, have been investigated as treatments for this 

disease. In particular, prednisone, celecoxib, minocycline and thalidomide have been 

evaluated as immunosuppressive agents for ALS. Unfortunately, all of them failed to 

slow disease progression and some of these agents caused serious adverse reactions 

(Tan et al., 1994, Cudkowicz et al., 2006, Gordon et al., 2007, Stommel et al., 2009). 

These compounds negatively regulate the overall function of the immune system, and 

thus, it is now believed that indiscriminate immunosuppression is not a suitable 

therapeutic strategy for ALS. In contrast, drugs which exert immunomodulatory effects 

aiming to restore the normal neuroimmune homeostasis, are considered promising. In 

this respect, Tregs represent a new therapeutic target in ALS and, given the large 

body of evidence suggesting the expansion and activation of the Treg compartment 

promoted by ld-IL-2, this cytokine has been proposed as a treatment for ALS.  

 

The safety and clinical effects of 1 or 2MIU-IL2 was evaluated for the first time in ALS 

in a randomized, placebo-controlled pilot phase II clinical trial called Immuno-

Modulation in Amyotrophic Lateral Sclerosis (IMODALS). Recently, our collaborators 

published the clinical results of this study and reported a significant and dose-

dependent increase in both the absolute number and the frequency of Tregs in the 
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two treated arms compared to placebo (Camu et al., 2020). However, 2MIU-IL-2 

administration was able to promote a higher Treg peak compared with the lower 

amount of the drug. In addition, the suppressive functions of Tregs were evaluated by 

in vitro co-culture of patient FACS-sorted Tregs and Teffs. These results suggested 

increased immunosuppressive functions of regulatory T cells following ld-IL-2 

treatment, although statistical significance was only reported in the 1MIU-IL-2 group. 

This was due to a considerable variation in the response of individuals treated with the 

2MIU-IL-2 dose. Moreover, a significant and dose-dependent reduction in the plasma 

levels of the inflammatory CCL2 was registered following ld-IL-2 treatment together 

with an increase in CCL17 and CCL18, two chemokines associated with the protective 

M2 macrophage/microglia phenotype. Nonetheless, no differences in the plasma 

concentration of neurofilament light chain (NFL), or in clinical parameters (such as 

ALSFR-R and slow vital capacity) were detected following drug administration. NFL, 

a constituent of the axonal cytoskeleton which is released into the CSF and in the 

blood following neuronal damage or death, has been proposed as a diagnostic and 

prognostic biomarker of ALS (Zucchi et al., 2020). The lack of variations in this protein 

levels or in the clinical readouts may have been due to the trial design, as patients 

were treated for only 3 months and monitored during a follow-up period for 3 additional 

months. Therefore, the study was perhaps underpowered in detecting changes in 

neurofilament biomarkers in such a limited period of time. However, further 

investigations are scheduled as part of different randomized, placebo-controlled, 

double-blind phase II clinical trial called MIROCALS (NCT03039673) that is currently 

active and aims to evaluate the effect of 2MIU-IL-2 in a larger ALS cohort of 220 

participants over a longer period of 18 months.  

 
Notably, it is important to stress that rapamycin was not used as additional treatment 

for the IMODALS clinical. As previously mentioned, Alsuliman and colleagues are 

currently exploring the efficacy of the in vitro expansion of Treg cells isolated from 

ALS patients in the presence of both IL-2 and rapamycin in a phase I clinical trial 

(Alsuliman et al., 2016, Thonhoff et al., 2018). In addition, a phase II trial is currently 

ongoing evaluating the effect of rapamycin as add-on therapy to riluzole in 63 ALS 

individuals (https://clinicaltrials.gov/ct2/show/NCT03359538). Importantly, besides its 

role in promoting Treg differentiation, rapamycin was shown to exert an important 

role in autophagy by being involved in the formation of autophagosomes and by 
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promoting the clearance of pathological protein aggregates, which are a prominent 

feature in ALS (Mandrioli et al., 2018). However, conflicting pre-clinical results have 

been reported. In fact, while some studies showed rapamycin to be neuroprotective 

by promoting the elimination of aggregates in cellular and animal models; another 

report found this drug to be harmful for ALS mSOD1 mice causing increase in motor 

disfunctions, acceleration in MN degeneration and decreased survival (Caccamo et 

al., 2009, Staats et al., 2013, Cheng et al., 2015, Madill et al., 2017, Zhang et al., 

2011). Therefore, further research is needed to clearly elucidate the beneficial or 

detrimental effects of rapamycin in ALS. Lastly, as previously reported (pages 53-

56), accumulating and compelling evidence suggest that low-dose IL-2 alone is able 

to efficiently promote a robust and dose-dependent Treg expansion in several 

autoimmune disorders characterised by decreased count of these protective T cell 

type. For this reason, the aim of the IMODALS study was to assess the potential of 

low-dose IL-2 in monotherapy in mediating Treg expansion and possibly in reducing 

the neuroinflammatory burden in ALS patients.  
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1.5 Interleukin-2 in the CNS 
 

Given the neurological nature of ALS, a literature review focusing on the role of this 

cytokine within the nervous system was also conducted and previous studies 

investigating the role of IL-2 in the CNS are reported in this section. 

  

Evidence shows that blood-derived IL-2 is able to penetrate the blood brain barrier 

(BBB), and it enters the CNS intact and in its bioactive form. Moreover, both blood-to-

brain and brain-to-blood transport of this cytokine have been reported (Hanisch and 

Quirion, 1995, Banks et al., 2004, Waguespack et al., 1994). However, the way in 

which IL-2 penetrates the CNS is still to be elucidated. Given its high aqueous nature 

and its high molecular weight (15.5 kDa) it is very unlikely that it penetrates the barrier 

by diffusion (Banks et al., 1995). At the same time, it has been demonstrated that this 

cytokine does not cross the BBB through a saturable transport system (Waguespack 

et al., 1994). The rate of entry of radioactively labelled mouse IL-2, injected 

intravenously in mice is about 0.142±0.044 µl/g-min and its half-life is of approximately 

22 minutes. Moreover, a saturable CNS-to-blood efflux system has been discovered 

in these mice (Banks et al., 2004), potentially representing a protective mechanism 

through which IL-2 accumulation is avoided given that high dosage of the cytokine is 

known to cause detrimental effects such as the activation of brain endothelial cells and 

destabilization of the BBB (Wylezinski and Hawiger, 2016).  

 

Several pieces of evidence show that IL-2 is also produced in the CNS by resident 

cells and that the IL-2 receptor (IL2R) is expressed in a wide range of brain regions. 

This cytokine appears to be produced primarily by neurons (Meola et al., 2013). 

Nevertheless, astrocytes and microglia involvement in IL-2 production have also been 

reported (Eizenberg et al., 1995, Hanisch and Quirion, 1995). In particular, as 

previously mentioned in section 1.2.1b, recent studies proposed astrocytes as one the 

major sources of brain IL-2, essential for CNS Tregs. Moreover, Meola and colleagues 

evaluated the presence of brain-derived IL-2 and its receptor in different CNS regions. 

They demonstrated a wide expression in different nuclei including: cingulate, dorsal 

endopiriform nucleus, lateral septum, nucleus of the solitary tract, 

magnocellular/gigantocellular reticular formation, red nucleus, entorhinal cortex, 
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mammilary bodies, cerebellar fastigial nucleus, and posterior interposed nucleus. 

These areas are all involved in the regulation of the sensorimotor gating nucleus 

(Meola et al., 2013).  Moreover, IL2R expression was also reported in the motor cortex, 

anterior and lateral aspects of the striatum, interposed nuclei, red nuclei, inferior 

olivary nuclei, and the gigantocellular reticular nucleus, which are involved in motor 

control; as well as in the somatosensory cortex, fastigial nucleus of the cerebellum, 

vestibular nuclei, and the mesencephalic nucleus of the trigeminal nerve, fundamental 

areas for proprioception (Meola et al., 2013). Furthermore, IL2R has also been found 

to be expressed in the hippocampus influencing learning and memory processes 

(Petitto et al., 1998, Petitto et al., 1999). Interestingly, unpublished data generated in 

our Department by Dr Chloe Allen and Dr Laura Ferraiuolo suggested that ALS-patient 

derived astrocytes express all the three IL2R subunits (alpha, beta and gamma) 

although IL2RG appeared to be significantly downregulated in sporadic ALS 

compared to healthy control astrocytes. 

 

IL-2 has already been shown to influence the activity, growth and survival of different 

non-immune system CNS cells in in vitro cultures:   

 

- Oligodendrocytes: IL-2 appears to have a growth controlling function on 

immature oligodendrocytes: it exerts a positive proliferative action on these 

cells and it induces upregulation of myelin basic protein (Benveniste et al., 

1987, Benveniste and Merrill, 1986, Hanisch and Quirion, 1995). However, 

negative control properties have been documented on oligodendrocytes at a 

later stage of development (Hanisch and Quirion, 1995).  

 

- Astrocytes: IL-2 is considered an astrocytic mitogen which is able to promote 

astrocytic DNA synthesis and proliferation (Hunter et al., 1993). However, the 

administration of high-dose IL-2 (2ul of 10U/ul IL-2) to neonatal mice results in 

astrogliosis in the brain (Balasingam et al., 1994).  

 

- Neurons: IL-2 appeared to have a survival-promoting effect on cultured 

neurons from various regions of the rat and murine brain, such as: 

hippocampal, cortical, septal, striatal, cerebellar and sympathetic neurons 

(Moroni and Rossi, 1995, Awatsuji et al., 1993, Sarder et al., 1993, Shimojo et 
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al., 1993). This response is concentration dependent (higher response dose: 

200 U/ml) (Awatsuji et al., 1993). For this reason, IL-2 has been proposed as a 

neurotrophic factor. Moreover, IL-2 is able to induce morphological changes in 

neurons: it induces increased length and branching index of the axons (Sarder 

et al., 1993). Notably, Sarder et al propose that while the morphological 

changes are induced by a direct effect of IL-2 on cultured neurons, the pro-

survival effect is indirectly mediated by soluble factors released from glial cells 

(Sarder et al., 1993).  More recently, an IL-2-mediated effect on dendrites was 

demonstrated. This cytokine increased dendritic arborization and growth in 

cultured rat neurons. Furthermore, IL-2 is able to increase dendritic filopodia, 

and, the treatment in the early stages of development, is able to increase spine 

density (Shen et al., 2010). Moreover, IL-2 modulates the release of 

neurotransmitters such as acetylcholine (Hanisch et al., 1993, Seto et al., 

1997), dopamine (Lapchak, 1992) and noradrenaline (Lapchak and Araujo, 

1993). This effect is dependent on the concentration of IL-2: very low 

concentrations (pM) of this cytokine seem to promote a release of the 

neurotransmitters, while higher (nM) doses inhibit neurotransmitter release.  

 

Interestingly, several pieces of evidence show that the downregulation or knock-down 

of IL-2 in the brain causes a series of detrimental consequences. First of all, the 

deletion of the IL-2 gene seems to promote learning and memory impairment and 

reduction in the sensorimotor gating (Petitto et al., 1999). Moreover, knock-down of 

IL-2 in mice corresponds to a significant decrease in the concentration of brain-derived 

neurotrophic factor (BDNF) and increased quantity of nerve growth factor (NGF) in the 

hippocampus (Petitto et al., 2012). Furthermore, IL-2 deficiency has been associated 

with the development of CNS autoimmune and degenerative diseases such as 

multiple sclerosis and Alzheimer’s disease. In particular, it seems that reduction in the 

expression of this cytokine in the CNS leads to an increased invasion of T cell into the 

brain which can mediate autoimmunity (Huang et al., 2011, Huang et al., 2009). In a 

recent report, Alves and colleagues demonstrated that the administration of an AAV 

containing IL-2 for 5 months in an Alzheimer’s disease mouse model improved amyloid 

pathology. In particular, the treatment increased the number of Tregs and decreased 

the level of several proinflammatory markers. Furthermore, the group also reported an 

increased astrocytic activation which correlated with a reduction in the number of 
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amyloid plaques and in the ratio amyloid b42/b40 which suggests the involvement of 

astrocytes in the clearance of amyloid plaques. Lastly, a recovery in the memory deficit 

was also observed (Alves et al., 2017).  
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Hypothesis and aims 
 

Given the large body of evidence suggesting a significant effect of ld-IL-2 in promoting 

Treg expansion and considering the impairment of these cells in the disease, this 

cytokine at low concentrations was proposed as an immunomodulatory treatment for 

ALS. We hypothesise that the Treg expansion in the peripheral blood is accompanied 

by significant changes in the patient transcriptome with evidence of activation of 

immunosuppressive pathways together with an inhibition of inflammatory processes. 

The expected effect was assessed through a transcriptomic analysis of the white blood 

cells from the IMODALS clinical trial cohort. Moreover, we propose that IL-2 has the 

potential to exert protective effects on CNS cells. In particular, given the contribution 

of astrocytes to neuroinflammation but also considering their physiological influence 

on Tregs as they maintain and sustain their functions, we hypothesise that low doses 

of IL-2 will be beneficial, possibly by reducing the astrocytic non-cell autonomous 

toxicity with a resultant a pro-survival effect on MNs. Additionally, we propose that 

healthy MN also react to the treatment by changing their morphology, increasing their 

branching index and arborization. To this end, induced neuronal progenitor cell 

(iNPC)-derived astrocytes reprogrammed from ALS patients and healthy controls were 

transcriptionally profiled following IL-2 treatment and co-cultured with normal murine 

MNs.  

 

Given these hypotheses, the specific aims of this project are: 

 

1. To evaluate microarray gene expression changes that occur in the leukocyte 

population of the IMODALS trial participants. In particular, differences between 

the two treatment doses will be assessed in order to examine a dose-dependent 

expression of key transcripts including Treg-specific markers. Additionally, 

longitudinal transcriptional changes throughout the trial will be evaluated by 

contrasting gene expression profiles of treated and untreated patients at 

different time points. Lastly, we aim to investigate whether the transcriptional 

effects of the ld-IL-2 are sustained after the end of the IMODALS administration 

period.  
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2. To investigate possible inter-individual differences in response to ld-IL-2 in the 

IMODALS participants. As reported in previous ld-IL-2 trials and from our 

collaborator's clinical data, considerable variations were reported in the ability 

of individuals to react to the cytokine. Therefore, differences in the levels of key 

transcripts will be examined in the trial cohort with the aim of stratifying patients 

and identifying specific genes whose expression at baseline could predict 

patient responsiveness at the end of the administration period.  

 

3. To evaluate whether this cytokine has any beneficial effect on CNS cells. In 

particular, following IL-2 exposure, iNPC-derived astrocytes from ALS patient 

and healthy controls will be transcriptionally profiled through the use of the 

Oxford Nanopore cDNA-sequencing technique. Additionally, pro survival 

effects of IL-2 on MNs mediated by astrocytes will be assessed using a co-

culture in vitro system. Lastly, IL-2-mediated changes in the morphology of MNs 

will also be investigated.  
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Chapter 2. Materials and Methods 
 

2.1. IMODALS study Materials and Methods 
 

2.1.1 Trial design 

 

IMODALS (NCT02059759) was a three-arm, randomized, placebo-controlled pilot 

phase IIa clinical trial. Thirty-six participants between 18 and 75 years of age, with 

probable, laboratory-supported or definite ALS, were recruited at the Centre 

Hospitalier Universitaire de Montpellier, France (Camu et al., 2020). They were 

randomly assigned to one of the three treatment arms: 1 million international units 

(MIU) or 2MIU of IL-2 (Proleukin®, Novartis) or placebo (5% glucose solution). 

Patients received subcutaneous injections once daily for five days every 28 days for a 

total of three administration cycles (3 months). A three month follow-up period was 

also carried out. Notably, participants had been taking riluzole for at least three months 

prior to the inclusion visit and they continued this treatment with no interruptions during 

the trial. After the inclusion and randomization (day 1 or D1), four more visits were 

arranged over the course of the treatment administration period (days 8, 29, 57 and 

64) and two were scheduled throughout the follow up period (days 85 and 169). During 

all these visits, clinical assessments were performed and blood samples were 

collected. For the purpose of transcriptome profiling, four time points during the course 

of the trial were selected: D1 or baseline, D8 (day 8, three days after the first injection 

cycle), D64 (day 64, three days after the last treatment cycle), and D85 (day 85, 24 

days after the last injection and at the beginning of the follow-up period) (Figure 2.1). 
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Figure 2.1: Timeline of the IMODALS clinical trial and Biosampling Time 
Points.  

Schematic representation of the IMODALS clinical trial timeline. Patients were 
treated with riluzole for at least three months prior to their inclusion and 
randomization. Subcutaneous injections of either 1MIU, 2MIU-IL-2 or placebo 
were performed once daily for five days every month for a total of three months. 
Moreover, a three month follow-up period was arranged at the end of the 
administration period. For transcriptomic purposes, four time points were 
selected: D1, D8, D64 and D85 (indicated with green arrows).  
 
 

2.1.2 Blood collection, processing and RNA extraction 

 

Blood samples were collected from each patient at each study visit in the Centre 

Hospitalier Universitaire de Montpellier (France). LeukoLOCKTM filters (AmbionTM, 

Thermofisher Scientific) were used to isolate the total leukocyte population (both 

lymphoid and myeloid cells), also referred to as white blood cells (WBCs). These were 

captured on the filters in RNAlater (Thermofisher Scientific) for stabilization and stored 

at -80°C before shipping to Sheffield for further processing. Total RNA was extracted 

from the filters by Dr Nadhim Bayatti and Abigail Brown using the LeukoLOCKTM Total 

RNA isolation kit (AmbionTM, Thermofisher Scientific) according to manufacturer's 

instructions. Firstly, WBCs were lysed using a pH-adjusted lysis/binding solution. 
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Then, proteinase K in nuclease-free water solution was added to allow protein 

degradation. Subsequently, binding beads were added to the mix. RNA binds to the 

beads and following centrifugation (200xg for 3 min), the RNA-beads complexes were 

collected and resuspended in Wash Solution 1. Following a further centrifugation 

(16,000xg for 30 sec), samples were washed using Wash Solution 2/3 and centrifuged 

(16,000xg for 30 sec) to remove impurities from the beads. Pellets were air-dried for 

2 min to allow any remaining alcohol from the Wash Solution to evaporate. TURBO 

DNase was then added and incubated for 10 min to remove any DNA contaminant. 

The DNase activity was stopped using a mixture of Lysis/Binding Solution and 100% 

isopropanol. To improve RNA purity, two more washes were performed using Wash 

Solution 2/3, followed by centrifugation (16,000xg for 1min) and removal of the 

supernatant. Subsequently, the pellet was air dried and 50μl of Elution solution was 

added wherein the RNA was released from the beads. A last centrifugation (16,000xg 

for 2min) enabled RNA separation from the beads which formed a pellet. The 

supernatant RNA was collected and stored at -80°C.  

 

2.1.3 RNA quantity and quality assessments 

 

Nanodrop ND-1000 (Thermo Scientific) was used to assess RNA quantity and purity. 

This is a UV spectrophotometer which is able to measure the absorbance of 1μl of 

RNA samples loaded between two optic pedestals. The analysis is based on the 

principle that nucleic acids can absorb light in the ultraviolet spectrum. The instrument 

is able to calculate both the concentration of the nucleic acid (ng/μl), using the Beer-

Lamber law, and its purity, thanks to the measurement of two absorbance ratios: 

260/280 and 260/230. The first one is the most important indicator and a value ~2 is 

generally accepted as pure RNA. Lower scores might indicate the presence of protein, 

phenol or other contaminants which absorb at wavelengths near 280nm. A secondary 

measure is 260/230 ratio which should be ~2 and lower values indicate the presence 

of contaminants absorbing at 230nm such as phenol, carbohydrates or salt.  

Before initiating the sample read, the instrument was washed by adding 1μl of RNase-

free water on the lower optic pedestal. Then, a blank measurement was performed to 

set the baseline for subsequent reads. This was carried out by loading and reading 
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1μl of the substance in which RNA is diluted (either elution buffer or RNase-free water). 

At this point, 1μl of RNA was added and the sample read. To avoid sample carryover, 

both upper and lower pedestals were wiped upon completion of each sample before 

loading the following one.  

The quality of RNA samples was also assessed using Agilent 2100 Bioanalyser 

(Agilent Technologies), an automatised electrophoretic analysis tool to inspect 

biomolecule integrity. Microfabricated chips are used to perform an electrophoretic 

separation of RNA samples whose fluorescence signals are detected. 

Electropherograms and spectra are then generated which allow a visual assessment 

of the RNA quality (Figure 2.2). Sample integrity can be monitored by analysing 18S 

and 28S ribosomal RNA and their spectra peaks. In particular, as degradation 

proceeds, a decrease in the ratio of the 18S to 28S signals is detected together with 

an increase in the baseline signal between the two ribosomal peaks. To allow 

standardization and easier interpretation, the instrument uses ribosomal ratios to 

compute the RNA integrity number (RIN) by using a complex and non-publicly 

available algorithm. This metric indicates the quality of the extracted nucleic acids; a 

value equal to 10 means that the RNA is highly intact, while, if it is equal to 1, the RNA 

is very likely to be degraded. Dr Nadhim Bayatti and Abigail Brown assessed the 

integrity of the IMODALS RNA samples whilst the same analysis on RNA extracted 

from cells was performed by myself. The Agilent RNA 6000 Nano kit (Agilent 

Technologies) was used following the manufacturer's instructions. First of all, a gel 

dye was mixed to RNA gel matrix. The mixture was then vortexed and centrifuged at 

13000g for 10 min. Subsequently, an RNA chip was inserted into the chip priming 

station and the gel-dye mix was pipetted into the appropriate well. The priming station 

was then closed to force the gel to spread across the chip. After exactly 30s, the station 

was re-opened and 9μl of gel-dye mix was loaded into two predefined wells. Next, the 

RNA marker was pipetted into all 12 sample wells and in the ladder well. 

Subsequently, 1μl of ladder and 1μl of RNA sample were loaded into each of the 

designated sample wells. The chip was vortexed in the IKA® MS3 basic vortexer (IKA 

Works Inc.) for 1 min and scanned using the Agilent 2100 Bioanalyzer (Agilent 

Technologies) and the Eukaryotic Total RNA Nano assay programme was used to 

calculate the RIN.  
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Figure 2.2: Representative Bioanalyser Spectra from High and Low 
Quality RNA samples.  

Examples of spectra from (A) an intact RNA sample (RIN=10) and (B) a likely 
degraded RNA sample (RIN=N/A) obtained with the Agilent 2100 Bioanalyser. 
While in the first graph peaks form 18S and 28S ribosomal subunits are clearly 
recognizable, evidence of RNA degradation is visible in the second one. X-axis: 
number nucleotide estimated, Y-axis: fluorescence units.   

 
 

2.1.4 Microarray preparation, normalization and quality control 

 

Affymetrix Clariom D human microarrays (Applied BiosystemTM, Thermofisher 

Scientific) are useful tools to conduct transcriptome expression profiling. Single sense-

stranded DNA copies are generated from total RNA samples and hybridized onto a 

microarray GeneChip where probes for coding and non-coding (such as lincRNA, pre-

miRNA, miRNA etc) transcripts as well as for different splicing isoforms, annotated 

and speculative sequences are included. This allows gene-level, exon-level and 

alternative splicing expression analyses. 

 

Gene expression profiles from Clariom D human microarrays were generated using 

total RNA extracted from IMODALS participants' WBCs as per manufacturer's 

instructions. Prior to the start of my PhD, Dr Nadhim Bayatti processed IMODALS 

samples from D1 and D85 whilst D8 and D64 gene expression profiles were produced 

by myself. Reagents used were provided from GeneChipTM WT PLUS Reagent Kit 
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GeneChipTM hybridization and Wash and Stain Kit (Applied Biosystems). The 

microarray protocol can be divided in 16 steps which are summarized below: 

1. Total RNA preparation. 200ng of high quality total RNA was diluted in nuclease-

free water to reach a final volume of 3μl.  

2. Preparation of poly-A RNA controls. To provide exogenous positive controls, 

each array contains a set of B. subtilis genes which are absent in eukaryotic 

samples. These controls were amplified and labelled together with RNA 

samples. Their hybridization allowed monitoring of the labelling process. Poly-

A RNA controls were diluted with the poly-A control buffer and added to RNA 

samples.  

3. First-strand cDNA synthesis. In this procedure, RNA was retrotranscribed to 

cDNA using primers containing a T7 promoter sequence. Thus, a single-

stranded complementary DNA (ss cDNA) with a T7 promoter sequence at its 5’ 

end was produced. Total RNA/poly-A RNA controls were mixed with the first 

strand enzyme and its buffer and the mixture was incubated for 1 hour (h) at 

25°C, 1 h at 42°C and 2 min at 4°C.  

4. Second-strand cDNA synthesis. At this stage, double-stranded cDNA (ds 

cDNA) was obtained generated by the second strand enzyme mix. This 

contained a DNA polymerase, which synthesizes the second strand, and 

RNase H which simultaneously degraded the original RNA. First strand cDNA, 

second strand enzyme and buffer were incubated at 16°C for 1 h, then 65°C 

for 10 min and finally 4°C for 2 min to cool the solution.  

5. In vitro transcription (IVT). Antisense or complementary RNA (cRNA) was 

produced using T7 DNA-dependent RNA polymerase. The solution of ds cDNA, 

T7 polymerase and buffer was incubated at 40°C for 16 h. 

6. cRNA purification. cRNA was then purified from enzymes, salts, inorganic 

phosphates and unincorporated nucleotides using magnetic purification beads. 

These beads bound cRNA and, by utilising a magnetic stand, cRNA-bead 

complexes were isolated and washed with 80% ethanol to remove impurities. 

Finally, pre-heated (65°C) nuclease-free water was added to elute the purified 

cRNA.  

7. Second-cycle single-stranded cDNA. Fifteen nanograms of cRNA was retro-

transcribed to single-stranded (ss) cDNA using second cycle primers in the 
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presence of appropriate buffer and primers (incubation: 10 min at 25°C, then 

90 min at 42°C, 10 min at 70°C and finally 2 min at 4°C). This reaction produced 

ss cDNA containing a fixed ratio of dUTP:dTTP.  

8. RNA hydrolysis using RNaseH. To degrade RNA previously used to generate 

ss cDNA, the enzyme RNaseH was added and the solution was incubated at 

37°C for 45 min, 95°C for 5 min and 4°C for 2 min.  

9. Ss cDNA purification. Similarly to step 6, ss cDNA was purified using magnetic 

purification beads.  

10. Ss cDNA fragmentation. Single-stranded cDNA was fragmented by uracil-DNA 

glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE1) at the 

unnatural dUTP residues added in step 7. Ss cDNA (5.5μg) was combined to 

the fragmentation master mix (containing 10X cDNA fragmentation buffer, 1μl 

of UDG, 1μl of APE1 in nuclease-free water) and incubated for 1 hr at 37°C, 2 

min at 93°C and 2 min at 4°C.  

11. Fragmentation control. To check if the fragmentation process was successful, 

samples were run on an Agilent RNA 6000 Nano chip (Agilent Technologies) 

using the Agilent 2100 Bioanalyzer (Agilent Technologies) (as described in 

section 2.1.3). Spectra showing a peak around 40-70 nt and a RIN ~2 indicated 

that samples were successfully fragmented.  

12. Ss cDNA labelling. At this stage, ss cDNA was labelled using terminal 

deoxynucleotidyl transferase (TdT) with an Affymetrix proprietary DNA labelling 

reagent which was covalently bound to biotin. To this end, fragmented ss cDNA 

was mixed with the 5X TdT buffer, DNA labelling reagent and TdT and 

incubated for 1 h at 37°C, 10 min at 70°C and 2 min at 4°C.  

13. Labelling control. The labelling process efficiency was assessed using the gel-

shift assay which monitored the addition of biotin residues. This step is crucial 

as biotin is needed for the binding of streptavidin phycoerythrin to each of the 

ss cDNA molecule and for the subsequent detection of fluorescent signals 

which are proportional to the level of expression of each mRNA molecule. For 

each sample to be tested, two solutions containing 1μl of sample and either 

NeutrAvidin solution (5μl of 2mg/ml in PBS) or PBS only (5μl) were prepared. 

The solutions were incubated at room temperature for 5 min. Then, 5μl of 

loading dye was added and samples were loaded into an agarose gel which 

was run at 150V for 1h. Following ethidium bromide staining, the gel was placed 
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into UV light G-box (Syngene) and the success of the labelling process was 

visually assessed.  

14. Hybridization. Fragmented and labelled ss cDNA was hybridized on 

Affymetrix® chips. For each sample, a hybridization cocktail was prepared 

(3.7μl of control oligo B2, 11μl of pre-heated 20X hybridization controls, 110μl 

of 2X hybridization mix, 15.4μl of DMSO, 19.9μl of nuclease-free water and 

5.2μg of fragmented and labelled ss cDNA). The mixture was incubated at 99°C 

for 5 min and at 45°C for 5 min in the thermal cycler and then centrifuged at 

13’000rpm for 1.30min, using 1- 15PK centrifuge (Sigma-Aldrich, St Louis, 

MO). Subsequently, the solution was injected into one of the septa of the 

GeneChip® which was then incubated with rotation at 60 rpm at 45°C for 16 h 

in the Affymetrix® oven (Affymetrix GeneChip®) to allow hybridization.  

15. Wash and stain. Following hybridization, unbound components and debris were 

washed away using the Fluidics Station 450 (Affymetrix GeneChip®). 

Subsequently, streptavidin-phycoerythrin staining was performed using Stain 

cocktail 1 and 2 and the array holding buffer. 

16. Scan. Fluorescent signals, proportional to the level of expression of each 

transcript in a sample, were detected by the Affymetrix GeneChip® scanner. 

CEL files containing expression data for each of the probes on the arrays were 

obtained. 

Microarray data were normalized using signal space transformation robust multi-chip 

analysis (SST-RMA) method. Expression ConsoleTM (Affymetrix, Thermofisher 

Scientific) software was used to perform quality control (QC) and specific metrics were 

used to investigate the quality of the arrays including:  

 

- Positive and negative area under the curve (AUC): AUC is defined as the 

area under a receiver operator curve (ROC). Generally, this assesses the 

accuracy of a test considering two possible types of errors: false positive and 

false negative. A ROC curve, in fact, plots the true positive rate (sensitivity) 

against the false positive rate (specificity). The overall performance of a 

classifier can be assessed using the AUC which variates between 0.5 (random 

guessing) to 1 (perfect classifier). Affymetrix arrays contain a set of control 

probes for housekeeping genes. In particular, probes matching in the exon 
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regions of these genes are considered positive controls while, probes in their 

introns are negative controls. The assumption is that negative and positive 

controls are a measure of false positive and true positive respectively. A ROC 

is generated by assessing the ability of the probe set summary in separating 

positive from negative controls (exon vs intron). Samples showing AUC>0.7 

were considerate to have passed this QC metric.   

 

- Spike or hybridization control: Whilst preparing the hybridization cocktail, 

20x Eukaryotic Hybridization Controls (AFFX-r2-Ec-BioB, AFFX-r2-Ec-BioC, 

AFFX-r2-Ec-BioD, AFFX-r2-P1-Cre) were added. As these were mixed only 

prior to the addition of samples onto the microarrays, spiked controls did not 

interfere with RNA sample preparation and thus they can be used to assess the 

efficiency of the hybridization process. Fixed and increasing relative 

concentrations are characteristic of Affymetrix Eukaryotic Hybridization 

Controls and therefore they should exhibit a signal intensity pattern with BioB’s 

signal < BioC < BioD < Cre. 

 

- Labelling control. To assess the quality of the labelling process, fixed 

concentrations of poly-A RNA controls were mixed and processed alongside 

the RNA extracted from patient samples. These are exogenous positive 

controls made of a set of four B. subtilis in-vitro synthesized genes (Lys, Phe, 

Thr, Dap) which are absent in the eukaryotic genome and contain an artificial 

poly-A tail to their 3’-ends in order to enable their labelling. Lys was added at 

the lowest concentration (1:100.000) which is closed to the level of sensitivity 

of the microarray, therefore its detection in at least half of the microarrays 

processed in any experiment, indicated a successful procedure (Jaksik et al., 

2015). Moreover, given the staggered concentrations of the four B. subtilis 

genes (Lys= 1:100.000; Phe= 1:50.000; Thr=1:25.000; Dap=1:6.667), their 

expected signal intensities should be: Lys < Phe < Thr < Dap. 

 

- Signal intensity histogram and relative signal box plot. Although not strictly 

considered as QC metrics, signal intensity histograms and relative signal box 

plots were considered useful tools to identify potential outliers. 
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2.1.5 Microarray data analysis 

2.1.5.1 Differential expression analysis 
 

Microarray data from D64 were analyzed using Transcriptome Analysis Console 

(TAC) 4.0 (Affymetrix, Thermofisher Scientific) to identify differential expression 

between 1MIU IL-2 treated and placebo patients (referred to as 1MIU_vs_Placebo) 

and between 2MIU IL-2 and placebo (2MIU_vs_Placebo). Gene level analyses with p-

value≤0.05 (F-test statistics) and fold change (FC) ≤-1.2 or ≥1.2 cut-offs were 

performed. The formula used to compute FCs by the software is reported below:  

 

!" = 2!"#	(&'()*++,-.	/-0(1),+-.) 
 
Formula 2.1: Fold changes calculation. 
 
Mathematical calculation to retrieve fold changes or differential expression of 
specific transcripts in two patient groups. Importantly, if negative values are 
obtained from the exponential term, the sign of the computed FC is changed to 
negative to clearly indicate downregulation. ABS: absolute value. Expression 
comparison: microarray signal intensity of Gene X in patient group Y subtracted 
to microarray signal intensity of Gene X in patient group Z. 

 

To accomplish complex multifactorial-designed differential expression analyses with 

multiple sample groups to compare, the Limma software package in R was used 

(https://www.bioconductor.org/packages/release/bioc/html/limma.html,  

(Ritchie et al., 2015). Empirical Bayes statistical methods were applied by the software 

in order to identify significantly differentially expressed genes (DEGs) (cut-offs: p-value  

≤0.05 and FC ≤-1.2 or ≥1.2). SST-RMA normalized data were imported into the 

software and RefSeq gene filtering was applied before launching the analyses. 

Three analyses were performed using Limma in which treated patient transcriptomes 

at specific time points (D8, D64 and D85) were compared to their baseline levels (D1) 

and normalised to the same comparison within the placebo group. FC were computed 

as per Formula 2.1 and the three produced expression comparisons were: (T8-T1)-

(P8-P1); (T64-T1)-(P64-P1); (T85-T1)-(P85-P1), (T1, 8, 64, 85= intensity signal of a 

certain gene in the 2MIU-IL2 treated group at D1, 8, 64, 85; P1, 8, 64, 85= intensity 



 77 

signal of a certain gene in the placebo group at D1, 8, 64, 85). These analyses will be 

referred to in the text as: ΔD8; ΔD64; ΔD85 respectively. 

 

Following the import of microarray data into Limma, a PCA analysis was carried out 

and two batches were recognisable (D1 and D85 were spatially separated from D8 

and D64). This was probably due to the fact that samples were shipped and received 

at different times and the samples were processed in 2 batches. Evidence shows that 

methods that remove batch effect prior to Limma statistical analysis may lead to 

exaggerated and unreliable results (Nygaard et al., 2016). For this reason, batch effect 

identifiers were instead included as a variable to our statistical model (Nygaard et al., 

2016, Ritchie et al., 2015). In this way, we took into account the variation resulting 

from the batches obtaining reliable results. Therefore, microarray data were 

categorized into factors, namely treatment type (placebo or 2MIU IL-2), time point (D1, 

D8, D64, D85) and batch (1 and 2). Then, linear models were used to fit to the three 

factors. Given that RNA extracted from patient C01P011 at D8 failed RNA QC checks 

and a microarray was not generated, array data from that participant at D1 and D64 

were also excluded from the ΔD8 and ΔD64 analyses. Notably, for these analyses, 

we assumed patients belonging to the same treatment group to be replicates even 

though variability within participants was reported. This setting was chosen because, 

considering the small sample size, more complex mixture models would probably have 

generated inconclusive results.  

 

2.1.5.2 Gene enrichment and pathway analysis 
 

To investigate which pathways or biological processes were altered as an effect of the 

drug administration over time, an enrichment analysis was carried out. Gene 

enrichment is a computational method used to cluster an input list of genes into 

functional groups in order to better understand the underlying biological processes 

being altered as a consequence of a disease or a treatment. 

 

Importantly, to perform enrichment analyses RefSeq filtering was applied to the 

identified DEGs. This was done because Affymetrix microarrays include probes for a 

considerably large number of novel, uncharacterized and putative transcripts which 
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are not included in any gene set libraries given that their functions in cellular pathways 

are currently unknown. Therefore, because of the large proportion of such non-

annotated genes, the input of gene lists including all transcripts would have affected 

the statistical power of the enrichment analysis and very few significantly enriched 

terms would be retrieved. This means that a large number of type II statistical errors 

(false negatives: when researchers conclude that there is not a significant effect, when 

there actually is) would have been made. In contrast, transcripts included in the 

RefSeq databases are known and annotated, therefore this selection increased the 

power of the statistical tests.  

 

Different gene enrichment software programmes were used to conduct different 

investigations. These are summarised in the list below and a description of the 

analyses and statistical tests they perform is also reported: 

 

- Enrichr: This is an open-source web-based bioinformatic software which 

integrates several databases or gene set libraries (including KEGG, Reactome, 

Wikipathway and GO) (Chen et al., 2013, Kuleshov et al., 2016). Given a gene 

list, Enrichr compares and computes the overlap between the user's input and 

existing annotated lists in each library. Then, a Fisher's exact statistical test is 

performed by the software to identify statistically significant (p-value <0.05) 

enriched terms. Lists of upregulated and downregulated DEGs, previously 

obtained from either TAC or Limma, were separately imported and analysed 

using Enrichr. Outputs from Gene Ontology (GO) databases were investigated 

in detail. However, long lists of GO biological processes resulted as altered 

from this type of analysis with often redundant terms being identified.  

 

- REVIGO: To allow summarisation and easier interpretation of data obtained 

from Enrichr and to gain more biologically relevant results, the software REduce 

and VIsualize Gene Ontology (REVIGO), was used (Supek et al., 2011). Briefly, 

this is an open-source web-server software which groups GO terms into 

clusters depending on their semantic similarity. It searches for Uniprot proteins 

included in each GO process and finds closely related or ancestral terms. Then, 

it chooses a cluster representative which is a GO process that recapitulates a 

group of similar terms. This selection is based on the frequency score, which is 
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the percentage of Uniprot proteins included in a GO process - thus the higher 

the more general is the term - and on the p-value of overlap (in our case this 

was obtained with Enrichr and inputted by the user in REVIGO). The semantic 

similarity level can be customised to obtain shorter or larger summarised GO 

lists depending on the user's needs. For our analysis, given the long lists 

retrieved from Enrichr, a similarity cut-off of 0.5 was chosen.  

 

- Metascape: This is an open-source, user-friendly gene enrichment software. 

Unlike Enrichr which performs different enrichment analyses for each database, 

Metascape considers all gene libraries together and generates a p-value-

ranked list of enriched terms from different databases (KEGG Pathway, GO 

Biological Processes, Reactome Gene Sets, Canonical Pathways, CORUM, 

TRRUST, DisGeNET, PaGenBase, Transcription Factor Targets and COVID) 

(Zhou et al., 2019). It calculates the enrichment factor (ratio between the 

number of genes observed in the user input list and the counts expected by 

chance), p-value (computed using hypergeometric test) and q-value 

(Benjamini-Hochberg) to correct for multiple testing. Following the identification 

of enriched processes, the software clusters related terms depending on their 

similarity. In particular, pairwise similarities between terms are assessed using 

the Kappa-test and processes with scores > 0.3 are considered similar and 

grouped together in a cluster. The most significant term in a group is used as 

cluster representative. Unlike REVIGO, this software provides an extra analysis 

tool: it identifies relationships between terms and generates network plots 

where intra and inter-cluster relationships can be visually inspected. In these 

enrichment networks, each term is represented as a node and two processes 

having Kappa similarity score > 0.3 are connected by edges. To reduce 

complexity, only the top 20 most significant clusters are shown in a network 

map with a maximum of 15 terms per cluster. This function provides a simple 

and effective way to capture relationships between processes. Lastly, 

Metascape allows simultaneous analysis of multiple gene lists to identify 

similarities and differences among them. In particular, heatmaps showing top 

enriched clusters are generated to visualise shared or unique altered pathways 

and, in the case of the enrichment network maps, each node is represented as 

a pie chart where each sector size represents the percentage of genes included 
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in the corresponing gene list. Separate lists of upregulated and downregulated 

DEGs, previously obtained from either TAC or Limma, were imported and 

analysed using Metascape. 

 

- Ingenuity Pathway Analysis® (IPA®) (Qiagen Inc.): This commercially 

available web-based software application uses the Ingenuity Knowledge 

Base®, which includes millions of findings published in the peer-reviewed 

literature, to retrieve significant (p-value ≤0.05, Fisher's exact test) altered 

pathways in a data set 

(https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). 

Unlike the previous reported software, IPA® also allows the user to make 

predictions on processes' activation or inhibition following the calculation of z-

scores (activation: z-score > 0, inhibition: z-score <0) (Krämer et al., 2014). This 

prediction is particularly valuable as it allows the import of a single gene list for 

each comparison that includes both up and downregulated genes. This is not 

possible with the software mentioned above which requires two separate gene 

lists containing transcripts with positive and negative FCs to be imported 

separately and different analyses to be performed. Hence, IPA allows a more 

complete enrichment analysis, predicting the overall activation state of a single 

pathway considering all the DEGs present in the process regardless of their FC 

direction. Complete lists of DEGs (with the associated p-values) from the 

Limma ΔD8 and ΔD64 comparisons were imported in IPA and analysed.  IPA 

provides several analysis features including: 1) canonical pathway, 2) upstream 

regulators and 3) disease and function analyses.   

The first tool allows the identification of canonical pathways included in the 

Ingenuity Knowledge Base® that are enriched in the user's data set. For each 

of the identified pathways, prediction of activation or inhibition is computed. The 

second tool, the IPA upstream regulator analysis, allows the identification of 

key regulatory molecules (i.e. transcription factors, miRNAs or small molecules) 

which are capable of recapitulating the observed gene expression changes in 

a data set. In fact, IPA investigates the number of transcription regulator targets 

that are present in a user's input file and it also evaluates the direction of change 

in their expression to retrieve the activation status of a master expression 

regulator. Lastly, the diseases and function tool was used to identify relevant 
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terms associated with common human disorders or biological functions that are 

over-represented in the ΔD8 and ΔD64 comparisons.  

 

To visualise and summarise results obtained from these analyses, volcano plots, 

heatmaps and bar plots were generated using ggplot2 or gplots R packages. 

Treemaps were also produced with the treemap library in R.  

 

 

2.1.6 cDNA synthesis and quantitative Real Time PCR 

 

To perform quantitative real-time polymerase chain reactions (qRT-PCR), total RNA 

(200-500ng) was retrotranscribed to cDNA using 5x qScriptTM DNA Supermix 

(Quantobio) by incubating samples in Peltier Thermal Cycler PTC-200 (MJ Research) 

at 25°C for 5 min, then at 42°C for 30 min and finally at 85°C for 5min. Subsequently, 

cDNA were mixed with 20X predesigned PrimeTime® qPCR Assay (Integrated DNA 

Technologies Inc., see Table 2.1), which contains primers and a probe for each target 

transcript, and 2X Luna® Universal qPCR Master Mix (New England BioLabs® Inc.) 

in nuclease-free water solution. Samples (prepared in triplicate) were loaded into 

Hard-Shell PCR 384-well plates (Bio-Rad Hercules, CA) (10μl of qRT-PCR master 

mixture per well) and centrifuged at 1760 rpm for 1 min using an ALC PK120 centrifuge 

(DJB Labcare, Newport Pagnell, UK). Samples were incubated at 95°C for 3 min to 

allow denaturation and then 40 cycles of amplification at 95°C for 10 sec and 60°C for 

30 sec were performed using C1000 TouchTM Themal cycler (Bio-Rad). 

Raw Ct values were retrieved using CFX MaestroTM software (Bio-Rad). Afterwards, 

DCt, DDCt and relative concentration (R) values were computed as follows: 

 

DCt = Ctgene of interest – Ctreference gene 

DDCT = DCT – (average DCTplacebo sample) 

R = 2-DDCt . 

 

GraphPad Prism 8.4 was used for statistical analysis and for plot generation.  
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qRT-PCR experiments were conducted with different aims: to validate microarray 

gene expression data, to identify blood transcripts that could act as predictive 

biomarkers to forecast Treg-response in ld-IL-2 treated patients and to optimise IL-2 

treatment in iNPC-derived astrocytes (iAstrocytes). For microarray validation, all 

samples from the 4 time points and from the 12 2MIU IL-2 and 12 placebo patients 

were screened by qRT-PCR. Three technical replicates were produced for each 

condition. To identify possible biomarkers, samples at D1 from all 12 2MIU IL-2 and 3 

placebo patients - C01P006, C01P012 and C01P025 - were screened for 6 transcripts 

and three technical replicates were produced for each sample. To optimise IL-2 

treatment in iAstrocytes, three biological replicates were produced for each 

experimental condition (healthy control, sporadic ALS and C9orf72 mutant ALS 

astrocytes). Importantly, GAPDH was used as a reference gene across all these 

experiments as its expression from microarray data was found to be stable across all 

the time points and no variations were reported amongst patient groups. Moreover, 

astrocytic expression data previously generated in Dr Laura's Ferraiuolo team by Dr 

Chloe Allen suggested no substantial transcriptional differences amongst different 

ALS patient lines. 

 

Table 2.1. qRT-PCR primer/probe summary.  

In this table, a list of all the PrimeTime® qRT-PCR primers/probes (Integrated 
DNA Technologies Inc.) used for different experiments is reported. For each 
transcript target, the product ID is indicated together with the RefSeq accession 
number which specifes the recognised mRNA molecule. A separate column 
illustrates whether the PrimeTime® primer/probe detects all the splicing 
variants of a gene of interest. Finally, the targeted exon location is also reported 
and, in particular, our chosen primer/probes anneal multiple exons and the 
junction regions between them.  
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Experimental 
aim 

Target Product ID RefSeq accession 
number 

Detects all 
variants 

Exon 
location 

Reference gene GAPDH Hs.PT.39a.22214836 NM_002046 Yes 2-3 

Microarray 
validation 

CTLA4 Hs.PT.58.3907580 NM_005214 Yes 3-4 

FOXP3 Hs.PT.58.3671186 NM_001114377 

NM_014009 

Yes 10-11 

IKZF2 Hs.PT.58.2960172 NM_001079526 
NM_016260 

Yes 6-7 

IL2RA Hs.PT.58.2187899 NM_000417 Yes 4-5 

Biomarker 
identification 

analysis 

BLNK Hs.PT.58.1645191 NM_001114094 

NM_001258442 

NM_001258441 

NM_001258440 

NM_013314 

NR_047683 

NR_047682 
NR_047681 

NR_047680 

Yes 10-12 

BTLA Hs.PT.58.20005939 NM_001085357 

NM_181780 

Yes 2-5 

CD27 Hs.PT.56a.27441991 NM_001242 Yes 2-3 

SBNO2 Hs.PT.58.14833003 NM_001100122 

NM_014963 

Yes 27-28 

TLR9 Hs.PT.58.40576968 NM_017442 Yes 1-2 

TRAF2 Hs.PT.58.3116982 NM_021138 Yes 9-10 

IL-2 treatment 
optimization in 

iAstrocytes 

CASP3 Hs.PT.56a.25882379.g NM_004346 

NM_032991 

Yes 4-5 

CCND2 Hs.PT.58.28257 NM_001759 Yes 1-2 

IL2RA Hs.PT.58.2187899 NM_000417 Yes 4-5 

IL2RB Hs.PT.58.19340846 NM_000878 Yes 5-6 

IL2RG Hs.PT.58.4465361 NM_000206 Yes 4-5 

MYB Hs.PT.58.264008 NM_001130172 

NM_005375 

NM_001161660 

NM_001161659 

NM_001161658 

NM_001161657 

NM_001161656 
NM_001130173 

Yes 5-6 
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2.1.7 NanoString 

 

To further validate microarray data and also to investigate on inter-individual 

dissimilarities in patient Treg-response to 2MIU-IL-2 treatment, nanoString analyses 

were conducted. In fact, our expression data, consistently with flow cytometry 

measurement obtained from our collaborators, suggested that the rate of Treg 

expansion is different across different ALS patients treated with 2MIU-IL-2. For this 

reason, we wanted to investigate the immunological gene expression signature of 

those patients showing the highest increase in Treg numbers with those with little or 

no Treg increase following ld-IL-2 treatment. 2MIU-IL-2-treated patients were 

classified depending on their Treg counts measured at D64. In particular, three 

participant sub-groups were defined in relation to their Treg-response to ld-IL-2: 

 

- High responders: patients with Treg level at D64 > 250 cells/μl of blood 

- Mild responders: Treg level at D64 between 150 and 250 cells/μl  

- Low responders: Treg levels at D64 < 150 cells/μl. 

 

A list of the patients and their Treg response is provided in Table 2.1. 

 

Table 2.2: Patient characteristics and response type.  

This table illustrates age, gender, disease decline and treatment regimen of 
each participant. Moreover, Treg count at D64 is displayed and these data have 
been used to classify the patient response to 2MIU-IL-2 (high responders: Treg 
level at D64 > 250 cells/μl; moderate responders: between 150 and 250 cells/μl; 
low responders: < 150 cells/μl). Disease decline per month was computed using 
the formula below:  

"#$%&'#	)#*	+,'-ℎ = 48 − 3456757!"	$%&$'(")%*"(,-)
"8*9-&,'	:*,+	;<+)-,+	,';#-	-,	*#$*8&-+#'-	(+,'-ℎ) 

 
where ALSFRSR indicated the revised ALS functional rating score and 48 is 
the maximum total score which is generally observed at symptom onset.  
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Patient ID Gender Treatment 
type 

Age at 
D1 

(years) 

Disease 
decline/month 

(ALSFRS-
R/month) 

Treg 
count at 

D64 
(cell/μl of 

blood) 

2MIU-treated 
response 

classification 

C01P001 Male 1MIU-IL-2 40.2 0.114 115.14 - 

C01P005 Male 1MIU-IL-2 42.5 0.514 145.97 - 

C01P008 Female 1MIU-IL-2 47.7 0.400 120.59 - 

C01P010 Female 1MIU-IL-2 65.4 0.378 151.50 - 

C01P013 Male 1MIU-IL-2 44.7 0.643 114.18 - 

C01P020 Female 1MIU-IL-2 46.4 0.296 160.49 - 

C01P023 Male 1MIU-IL-2 53.8 0.075 87.79 - 

C01P024 Female 1MIU-IL-2 55.8 0.600 156.26 - 

C01P027 Male 1MIU-IL-2 64.4 0.800 154.40 - 

C01P033 Male 1MIU-IL-2 59.1 0.250 91.62 - 

C01P035 Female 1MIU-IL-2 75.4 0.424 146.48 - 

C01P038 Male 1MIU-IL-2 64.4 0.224 81.65 - 

C01P003 Male 2MIU-IL-2 36.5 1.000 406.72 High 

C01P004 Female 2MIU-IL-2 47.3 0.688 169.13 Moderate 

C01P009 Female 2MIU-IL-2 68.8 0.692 434.47 High 

C01P011 Male 2MIU-IL-2 76.6 1.500 144.34 Low 

C01P016 Male 2MIU-IL-2 63.4 0.375 88.99 Low 

C01P018 Male 2MIU-IL-2 59.8 0.444 117.88 Low 

C01P021 Female 2MIU-IL-2 62.7 0.226 505.70 High 

C01P026 Male 2MIU-IL-2 72.5 0.417 222.66 Moderate 

C01P028 Male 2MIU-IL-2 63.4 0.148 176.08 Moderate 

C01P032 Male 2MIU-IL-2 44.4 0.667 181.13 Moderate 

C01P036 Male 2MIU-IL-2 56.5 0.209 52.22 Low 

C01P037 Male 2MIU-IL-2 40.3 1.375 263.93 High 

C01P002 Male Placebo 47.5 0.375 30.08 - 

C01P006 Male Placebo 44.2 0.277 34.22 - 

C01P007 Male Placebo 49.2 0.351 55.14 - 
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C01P012 Female Placebo 64.6 0.455 35.41 - 

C01P014 Male Placebo 52.6 0.350 90.37 - 

C01P017 Male Placebo 42.2 0.143 60.33 - 

C01P022 Male Placebo 63.6 0.429 32.99 - 

C01P025 Male Placebo 61.7 0.909 84.88 - 

C01P030 Male Placebo 58.5 0.313 25.63 - 

C01P031 Male Placebo 53.9 1.600 46.73 - 

C01P034 Female Placebo 69.7 0.579 57.52 - 

C01P039 Female Placebo 69.7 0.241 32.49 - 

 

 

Following these auto-defined criteria, 4 high Treg-responsive patients (C01P003, 

C01P009, C01P021, C01P036), 4 low Treg-responder patients (C01P018, C01P011, 

C01P016, C01P036) and 4 patients from the placebo group (C01P012, C01P017, 

C01P022, C01P031) were investigated through nanoString at D1, D8 and D64. This 

enzyme-free technique consists in the direct counting of each mRNA molecule in a 

sample based on two types of probes: capture and reporter probes. The first one is 

made of a hybridization region, which binds a target sequence in the mRNA of interest, 

and a biotin tag which allows RNA samples to be immobilised to a streptavidin coated 

slide. The second probe consists of a hybridization region and a unique sequence of 

fluorescent tags specific for each transcript. The assay does not measure the 

fluorescence signal intensities, instead, it simply counts individual barcodes which is 

equivalent to directly counting the different mRNA molecules. This technique, also 

called molecular barcoding technology, allows the generation of highly reproducible 

and robust expression data. 

Briefly, 300ng of total RNA were mixed with the capture and reporter probes (included 

into the Autoimmune Discovery panel) in the presence of the Hybridization buffer and 

incubated at 65°C for 16 hours. Subsequently, samples were loaded into cartridges 

which were then scanned using nCounter® SPRINT profiler (NanoString Technologies 

Inc.). The Autoimmune Discovery panel was used which contains probes for 755 

mRNA targets: 740 immune-related transcripts with both pro and anti-inflammatory 

functions and 15 housekeeping genes used for data normalization. Moreover, both 

positive and negative controls were added according to manufacturer's instructions to 
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allow quality control analysis. Notably, a higher concentration of RNA (300ng) was 

used compared to what is generally recommended (~100ng). This was chosen 

because preliminary NanoString data obtained from collaborators at SITraN, who used 

the suggested amount of RNA, showed low yields, poor QC and housekeeping genes 

were barely or not detectable. This made their downstream analysis very difficult and 

therefore, to avoid this troubleshooting, we were advised to increase the starting 

concentration of the nucleic acids.  

Once the scanning was completed, one Reporter Code Count (RCC) file was 

generated for each of the samples screened. This file contains the barcode counts of 

each gene and controls in the CodeSet which correspond to the number of mRNAs 

counted by the machine for each transcript.  

Data normalisation was done using a two-step process. Firstly, data were normalized 

on positive controls included in the panel. This is to reduce variation due to different 

cartridges, reagents used or different processing days. Secondly, housekeeping gene 

standardization was performed.  

The nSolverTM 4.0 software (NanoString Technologies Inc.) was used to conduct 

quality control (QC) analysis and four metrics were evaluated:  

 

- Imaging QC: this parameter measures the ratio of field of views (FOVs: area 

of the cartridge successful scanned and imaged by the instrument) that the 

nCounter successfully counts over the number of FOVs attempted. A threshold 

of 0.75 is generally accepted which means that 75% of the cartridge was 

successfully detected.  

 

- Binding density: this metric evaluates the concentration of barcodes read by 

the instrument. Ideally, it should not exceed the range of 0.1-2.25 spots per 

square micron.  

 

- Positive control QC: this parameter indicates the correlation between the 

known concentration of positive controls included in the panel and the counts 

measured by the instrument. The computed R2 should be not lower than 0.9.  

 

- Limit of detection (or positive control limit of detection): this metric computes 

the limit of detection of the assay and indicates whether counts of a positive 
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control (POS_E) are significantly above the counts of the negative controls. As 

mentioned before, positive controls were included as per the manual. In 

particular, six positive controls (indicated as POS_A to POS_E, while POS_F 

is below the limit of detection) were mixed in as per manufacturer's instructions 

at decreasing standard concentrations. This QC metric indicates if the raw 

counts of 0.5fM positive control probe (POS_E) is greater than the mean counts 

of the negative controls. If this is at least two standard deviations higher, the 

sample is considered as having passed this QC metric.  

 

To identify which selection of transcripts amongst these 740 were responsible for 

patient group differences, nanoString data was inputted into Qlucore Omics Explorer 

(Qlucore) and multi-group comparison statistical analysis (p-value≤0.05) was 

performed. Variables (transcripts) accounting for groups' separation were selected 

and plotted separately using nSolverTM 4.0. Finally, a pathway scoring analysis was 

performed using nCounter Advanced Analysis 2.0 (NanoString Technologies Inc.). 

This technique allows the summarization of biologically and functionally related gene 

expression changes. Transcripts are grouped into pathways and a score is computed 

for each sample as the first principal component of the pathway genes' normalized 

expression. Despite the complexity of the score calculation, this is a reliable technique 

which is able to detect trends in pathway alterations due to mild gene expression 

changes. Positive scores indicate pathways being generally activated as the majority 

of its genes are upregulated, while the opposite applies for negative values. 

 

2.1.8 Predictive biomarker analysis 

 
A predictive analysis was carried out to try and identify biomarkers of the outcome of 

the treatment which might be able to forecast patient Treg-response given their gene 

expression at time of recruitment. To this end, a preliminary screening was conducted 

by correlating the expression level at D1 of all the 740 targets included into the 

Autoimmune Discovery nanoString panel with i) the Treg counts at D64 (as measured 

by flow cytometry at Kings College London by our collaborators Dr Timothy Tree and 

Dr Marius Mickunas. (Camu et al., 2020)) and ii) with the expression of IL2RA at D64 

(nanoString data). In particular, Pearson's correlation tests were performed with 
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associate t-test statistics. Significant correlations were studied and transcripts were 

ranked according to their computed p-values (rank 1= transcript showing the lowest p-

value). Subsequently, a consensus screening was conducted to identify transcripts 

which were found to be commonly significantly correlated with the two chosen 

variables measured at D64. Lastly, a combined score was computed by adding the 

two ranks computed for the Treg and IL2RA correlations. Low scores reflected 

transcripts behind most significantly correlated with both the variables. Six biomarker 

candidates (SBNO2, BTLA, CD27, TRAF2, BLNK, TLR9) were selected as they were 

amongst the commonly and most significantly correlated transcripts with the best 

ranked combined scores.  

 

Given that nanoString experiments were conducted only on a selection of eight 

patients, qRT-PCRs were performed on all 12 2MIU IL-2 treated patients and on three 

placebos as controls (C01P006, C01P012 and C01P025, randomly chosen). The 

averaged qRT-PCR expression values from three technical replicates for each sample 

were correlated (Pearson's correlation) with their associated Treg counts at D64. This 

analysis was performed using the programming language R (caret package) and plots 

were generated using the ggplot2 package. Two of the six candidates (TLR9 and 

CD27) were selected as they showed good and significant correlation scores when 

qRT-PCR expression data from all the patients were analysed. Subsequently, a 

multiple linear regression model using the two promising transcripts was generated 

and statistically tested using "linear model()" function in R. To visualise the two-

variable-linear regression model, scatterplot3d package in R was used.  

Linear regression models are generally based on four key assumptions: 

 

• Linearity of the data: it is assumed that the relationship between the Y 

predictors and the X outcome is linear.  

• Normality: data, and in particular the residuals (difference between observed 

and predicted values), follow a normal distribution.  

• Homoscedasticity: the variance of the residual is constant. 

• Independence: there is no relationship between the residuals and the Y 

variable. This is particularly important in longitudinal or time series data sets 

and no correlation between consecutive residual is assumed.  
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To test the reliability of the model, diagnostic tests were conducted in order to verify 

that all the aforementioned linear assumptions were met. Moreover, given that a 

multiple linear model was chosen, an extra analysis was performed to exclude the 

existence of collinearity. This phenomenon occurs when two or more predictor 

variables are correlated to each other. It is crucial to rule out this possibility as if two 

predictors are correlated, they cannot independently forecast the dependent variable 

hence an interpretation of the model would be impossible. Several R packages were 

used to perform these tests which are summarised in the Table 2.3.  

 

Table 2.3: R Packages for Multiple Linear Model Tests.  

This table lists the different R packages used to test the reliability of the multiple 
linear model. The R package or library names and the specific R functions used 
to carry out the analyses are reported together with the kind assumption tested 
and the obtained output (plots or values).  

 

R package or library 
name 

R function Assumption 
tested  

Output 

Global Validation of 
Multiple Linear Model 
Assumption 
 

gvmla() All linear model 

assumption 

Scores and p-values 

R base function plot() All linear model 

assumption 

Diagnostic plots 

Caret vif() Collinearity Variance inflation factor 

(VIF) values 

 

Finally, a cross validation was carried out to test the robustness of the model. 

Specifically, this is a resampling method which allows the assessment of the 

performance of a given predictive model on new and unseen data. To this end, the 

original data are split into: i) a training set, which is used to build or train the model, 

and ii) a test set which is needed to validate the model by estimating the prediction 

error. In this case, a k-fold=12 cross-validation or leave one out cross validation 

(LOOCV) was performed. This method consists of the random splitting of the data into 

12 K-equal sized subsets. One of these subsamples is reserved each time and, while 
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the others are used as training data to build the model, the excluded one serves to 

test and validate the model and the prediction error is recorded. These steps are 

repeated K-times and the average of K-errors is computed. The package caret in R 

was used to perform this type of validation and compute the cross-validation metric 

root mean squared error (RMSE). 
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2.2. Effects of IL-2 in CNS cells - Materials and Methods 
 

2.2.1 Astrocyte differentiation from iNPCs and IL-2 treatment 

 

Induced neuronal progenitor cells (iNPCs) are tripotent cells capable of differentiating 

into oligodendrocytes, neurons or astrocytes. These are reprogrammed from human 

adult fibroblasts using a mixture of retroviral agents containing four reprogramming 

factors (Sox4, KLF4, Oct3/4 and c-Myc (Stopford et al., 2019, Meyer et al., 2014)).  

 

For the purpose of this thesis, nine skin fibroblast lines (3 ALS patients carrying a 

C9orf72 mutation, 3 sporadic ALS patients and 3 healthy volunteers) were 

reprogrammed into iNPCs and then differentiated into patient-derived astrocytes (or 

iAstrocytes) by culturing them in the appropriate medium for five days by Dr Laura 

Ferraiuolo and her team according to the published protocols (Stopford et al., 2019, 

Meyer et al., 2014) (Table 2.4).  

Specifically, at D0 of differentiation, iNPCs were seeded into a 10cm petri dish coated 

with fibronectin (Millipore) and cultured into the human iAstrocyte differentiation media 

containing: DMEM (Fisher Scientific), 0.2% of N2 (Gibco), 1% of penicillin-

streptomycin mixture (Lonza) and 10% foetal bovine serum (FBS) (Life Science 

Production). Following receipt of the cells from Dr Ferraiuolo’s team, after 72 hours, 

the cells were fed with fresh human iAstrocyte differentiation media and incubated for 

2 more days at 37°C/5% CO2. At D5 of differentiation, iAstrocytes were harvested 

using accutase (StemPro® Accutase® Cell Dissociation Reagent, Gibco) and plates 

were incubated at 37°C/5% CO2 for 4 min. Accutase was diluted in PBS, cells were 

collected and spun at 200 x g for 4 min. Subsequently, iAstrocytes were seeded into 

6-well plates (400.000 cells per well) and incubated for 24h at 37°C/5% CO2 to allow 

cells to adhere to the plates. At D6 of differentiation, iAstrocytes were treated with IL-

2-supplemented media (containing either 1 or 10% FBS). Lyophilised IL-2 

(PeproTech) was reconstituted in 100nM acetic acid to a concentration of 100μM as 

per manufacturer's instruction. To allow extended storage at -80°C, IL-2 was diluted 

in PBS containing 0.1% bovine serum albumin (Sigma Aldrich) to reach a final stock 

concentration of 50μM.  Different treatment times (1h, 4h and 24h) and IL-2 
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concentrations (1nm to 100nM diluted in 5% glucose-PBS) were tested. Control 

samples were treated with media containing 5% glucose-PBS solution (1:1000). 

Finally, iAstrocytes were washed with PBS to remove medium and harvested by cell 

scraping. Cell pellets were stored at -80°C.  

 

Table 2.4. Fibroblast donors. 

This table summarises details of fibroblast donors which cells have been used 

to generate iAstrocytes. For each cell lines, ALS patient or healthy control age 

at skin biopsy collection is reported together with gender details, disease type 

and duration. 

 
Cell line Diagnosis Age at biopsy 

collection 
(years) 

Gender Disease 
duration 
(months) 

AG86620 Non-ALS 64 Female - 

155v2 Non-ALS 40 Male - 

161 Non-ALS 31 Male - 

78 C9orf72 ALS 66 Male 31.7 

183 C9orf72 ALS 50 Male 27 

201 C9orf72 ALS 66 Female 19.4 

009 Sporadic ALS 61 Female 21 

12 Sporadic ALS 29 Male 90 

17 Sporadic ALS 47 Male 72 

 

2.2.2 RNA extraction from astrocytes 

 

RNA was extracted from iAstrocytes using the RNeasy® Mini Kit (Qiagen). This 

technique employs the use of a spin column containing a silica-based membrane to 

isolate and purify RNA molecules. Briefly, cell pellets were lysed using the appropriate 

RTL buffer (350μl) which contains guanidine-thiocyanate to prevent RNAse-mediated 

RNA degradation. Subsequently, 70% ethanol solution was added (350μl) to promote 

the nucleic acid binding to the column membrane. All sample volume (700μl) was 
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loaded into the RNeasy Mini spin column and centrifuged at 10,000 x g for 15 s. Total 

RNA bound to the membrane and contaminants were washed away through several 

washing steps (700μl of RW1 buffer was added and sample were centrifuged at 

10,000 x g for 15 s; and two washes were performed with 500μl of RPE buffer and 

centrifugation 10,000 x g for 15 s). The spin column membranes were dried to ensure 

ethanol evaporation to avoid the presence of alcohol contaminants in the final 

samples. High-quality RNA was eluted using 50μl of RNAse-free water. RNA quantity 

and quality was assessed through nanodrop and Agilent 2100 Bioanalyser 

respectively (see section 3.1.3). RNA samples were stored at -80°C.  

 

2.2.3 LDH cytotoxicity assay 

 

Lactase dehydrogenase (LDH) is a cytosolic enzyme which catalyses the conversion 

of lactate to pyruvate via NAD+ reduction to NADH. LDH concentration in the medium 

is an indicator of cell death as this protein is released when plasma membranes are 

damaged. The LDH assay is a colorimetric method to assess and quantify cell 

cytotoxicity using a tetrazolium salt (INT). Upon cell damage, LDH is released in the 

medium, NADH is produced and used by the enzyme diaphorase to reduce INT to 

formazan. The concentration of fromazan can be measured spectrophotometrically at 

490nm. This quantity is proportional to the amount of LDH released and therefore to 

the amount of dying cells.  

 

The CyQUANT™ LDH cytotoxicity assay kit (Invitrogen) was used. At D5 of 

differentiation iAstrocytes were seeded into 96-well fibronectin-coated plates (10,000 

cells per well). After 24 hours, cells were treated with either IL-2 supplemented media 

(10nM IL-2 in 1% FBS iAstrocyte media) or 5% glucose-PBS solution (1:1000) media 

for 4 hours. Then, 10μl of 10X lysis buffer was added to a set of triplicates to determine 

the maximum LDH activity controls while 10μl of dH2O was included in the other 

samples to monitor spontaneous LDH released. After 45 min of incubation at 37°C/5% 

CO2, 50μl of sample medium was transferred into a new 96-well plate and reaction 

mixture (50μl) was added. Samples were incubated at room temperature for 30 min 

protected from light. Finally, the stop solution (50μl) was added and absorbances at 
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490nm and 680nm were measured using the PHERAstar FS plate reader (BMG 

Biotech). Plain medium absorbances were also detected and used to normalise 

spontaneous LDH or maximum LDH samples to their medium background signal. To 

calculate LDH activity, absorbance values at 690nm (background) were subtracted 

from the 490nm one and then the percentage of cytotoxicity is calculated using the 

formula below: 

 

% = #$%&'$()*+	(./ − 2	2'+(2+3/*&)2'&5	%(675+%) − #9('+:+	($%&'$()*+	(6+3;<6	$(*=:'&<)3	)
#9('+:+	($%&'$()*+	(>(?	/@A	'+5+(%+) − #9('+:+	($%&'$()*+	(6+3;<6	$(*=:'&<)3) ∗ 100 

 
Formula 2.2. Method for Calculation of Percentage of Cytotoxicity.  
 
This formula was used to retrieve the percentage of sample cytotoxicity. In 
particular, this calculation allowed the quantification of the number of cells 
which died because of the IL-2 administration compared to the ones that have 
died because of the treatment with the lysis buffer. Absorbance: 490-680nm 
value.   

 

Data were analysed using GraphPad Prism 8.4 and to conduct statistical analysis 

(Unpaired T tests, p-value<0.05 were considered significant).  

 

2.2.4 cDNA library generation and Oxford Nanopore sequencing 

 

Total RNA was extracted from iAstrocytes belonging to 3 ALS patients carrying a 

C9orf72 mutation, 3 sporadic ALS patients and 3 healthy volunteers using the 

RNeasy® Mini Kit (Qiagen, see section 2.2.2). Quantity and quality of RNA was 

assessed using Nanodrop and Bioanalyzer, respectively, as described in section 

2.1.3. In particular, for each cell line, two treatment conditions were performed: control 

(1:1000, 5% glucose PBS solution in iAstrocytes differentiation media containing 1% 

FBS) or IL-2 treated (10nM IL-2 in iAstrocytes differentiation media containing 1% 

FBS). Therefore, a total of 18 RNA samples (50ng) were used to generate sequencing 

libraries.  

Given COVID-19 restrictions and the Department policy on limited working hours to 

allow social distancing, library preparation was performed by Matthew Wyles. The 
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Oxford Nanopore PCR-cDNA barcoding kit (SQK-PCB109, Oxford Nanopore 

Technologies) was used and libraries were prepared as per manufacturer instructions 

(Figure 2.3). This method allows the sequencing of long-read RNA molecules, which 

provides several advantages over short-read techniques, usually considered a gold 

standard for RNA sequencing giving their affordable prices and high accuracy. Human 

transcripts have an average length of 200-300 base pairs (bp). Short reads (usually 

50 bp), characteristic of sequencing techniques such as Illumina, can only partially 

cover the mRNA's length making difficult the bioinformatic process of reconstructing 

the entire sequence. Moreover, because the reads are short, multimapping is also 

frequently observed. In contrast, using Oxford Nanopore, the entire transcript of a 

gene can be sequenced end-to-end in a single read making this technique ideal for 

splicing isoform analysis. Additionally, whilst short-read sequencing is characterized 

by the so-called GC bias (sequences with low and high GC content are usually 

underrepresented), Oxford nanopore technology has been shown to provide accurate 

representation of mRNA molecules with different GC contents. The different steps in 

the library preparation are briefly described in this section. Firstly, poly T primer with a 

known extra sequence at the end were annealed on the poly A tail on the eukaryotic 

mRNA. Reverse transcriptase produced first strand cDNA which subsequently 

underwent a process called strand switching. Specifically, when the retro-transcriptase 

reached the 5' end of the mRNA, three cytosine residues (3xC) were added at the end 

of the newly synthesised cDNA. In this reaction, strand switching primers were also 

present. These contained three 2-oxymethyl guanine bases which are known to have 

a higher affinity for DNA than RNA and to be resistant to nucleases. In addition, a 

synthetic known 5' tail sequence was also present in the strand switching primer. This 

primer hybridised to the 3xC present on the cDNA and the retrotranscriptase 

synthesised the reverse complement of the known 5' synthetic sequence. Therefore, 

the strand switching process and the poly- T primers allowed to have known 

sequences on both ends of the newly synthesised cDNA. These were then employed 

by the PCR to amplify the nucleic acids as primers were designed to be 

complementary to those ends. Importantly, PCR primers also contained a barcode, 

which was unique for each RNA and allowed multiple samples to be run on the same 

flow cell, and rapid attachment chemistries, which aid the attachment of sequencing 

adapters in the last step of library preparation. PCR mixes were incubated in the 

thermal cycler for 30sec at 95°C and then 14 cycles of 15 sec at 95°C to allow 
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denaturation, 15sec at 62°C for primers annealing, 50sec at 65°C for primer extension 

were performed followed by 6 min at 65°C to allow a final extension. Finally, 100fM of 

the double stranded cDNA library was carried over and sequencing adapters were 

added, which allow cDNA to reach nanopores and facilitate sequencing. Given that 

the Oxford Nanopore kit provides only 12 unique barcodes, our samples were divided 

and processed in two batches of 9 RNA each. Each library was loaded onto three 

different SpotOn flow cells to maximize the quantity of reads obtained and samples 

were then sequenced using the GridION machine (Oxford Nanopore Technologies). 

The sequencing lasted approximately 2.5 days and half way through the process extra 

libraries were loaded to increase the read depth. The software called MiniKNOW, 

which is installed onto the GridION, automatically performs basecalling, a process that 

allows the conversion of electric signals detected by the nanopores into nucleic acid 

base sequences. Additionally, it automatically recognises and removes sequencing 

adapters and it also performs demultiplexing by which unique barcodes are detected 

and sequencing data of each sample is saved into separate fastq files.  
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Figure 2.3: Oxford Nanopore library preparation.  

Schematic representation of the Oxford Nanopore library preparation using the 

PCR-cDNA barcoding kit (SQK-PCB109). Figure modified from the kit protocol 

available from: https://community.nanoporetech.com/protocols/pcr-cdna-

barcoding_sqk-pcb109/. The different steps of the library preparation are 

reported which are: reverse transcription, strand switching, PCR and 

sequencing adapter attachment.  

 

2.2.5 cDNA sequencing data analysis 

 

Following the generation of fastq files, data were pre-processed in order to obtain 

human readable gene expression profiles. Given the extremely large amount of data 

obtained (approximately 3 Tb of sequencing data were retrieved from all the 18 

samples), the pre-processing was performed using the high performing computing 

clusters available within the University of Sheffield by Dr Matthew Parker, a 

bioinformatician from the Sheffield Bioinformatics Core. Briefly, data belonging the 

same sample but obtained from the three flow cells were merged to obtain a single 

fastq file per sample. Subsequently, the sequence reads were aligned onto the 

reference human genome (Hg.38) using the software minimap2 (version 2.17-r941). 

Lastly, counting was performed in order to calculate the number of reads present in 

each sample for every gene (Ensembl gene IDs). Quality control analysis was also 

conducted using the software MultiQC (version 1.9).  

 

Gene-level expression data were used by myself to carry out differential expression 

analysis using the software package DESeq2 (version 1.30.0) in R (Love et al., 2014). 

In particular, three different analysis were performed: 

 

- HC_IL2vsG: within the healthy control derived astrocytes, IL-2 (10nM) treated 

cells were contrasted to the control condition (1:1000, PBS + 5% glucose 

solution).  



 99 

- C9_IL2vsG: within the astrocytes derived from ALS patient carrying a C9orf72, 

IL-2 (10nM) treated cells were contrasted to the control condition (1:1000, PBS 

+ 5% glucose solution).  

- SALS_IL2vsG: within the astrocytes derived from sporadic ALS patient, IL-2 

(10nM) treated cells were contrasted to the control condition (1:1000, PBS + 

5% glucose solution).  

 

DESeq2 firstly allows to normalise data by sequencing depth (adjusting for 

differences in library sizes) and library composition (adjusting for transcriptional 

variations in different tissues or in treated/untreated samples). It utilises the median 

of ratios method by which original read counts are divided by a computed scaling 

factor for each sample. Briefly, the scaling factor is calculated as follows: 

 

- Step 1: for every gene, calculate the geometric mean across all the samples.  

- Step 2: For each gene in each sample, divide the raw counts by the geometric 

mean (these resulting values are also referred to as ratios).  

- Step 3: calculate the median value of all the ratios (1 for each gene) for a given 

sample. These are the scaling factors for each sample.  

 

Subsequently, differentially expressed genes were identified by DESeq2 using a 

negative binomial generalized linear model and Wald statistical tests were used for 

hypothesis testing. Significant differential expression was defined for genes 

showing p-value <0.05 and log2FC ≤ -0.58 or ≥ 0.58 (which is equal to a FC ≤ -1.5 

or ≥ 1.5). Importantly, the FC cut off was increased for these analyses compared 

to those performed using microarray gene expression data (for which the cut off 

was FC =1.2).  A more stringent setting was chosen because, as reported in the 

results chapter 5, two samples (161 and P201) generated more variable results 

compared to the rest of the sequenced astrocytes. Therefore, to reduce the 

proportion of false positive (differential expressed genes) results, this cut off was 

increased. Subsequently, gene enrichment and pathway analyses were carried out 

using different software programmes (Enrichr, REVIGO, Metascape and IPA®) as 

described previously in section 2.1.5.2.  
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2.2.6 Co-cultures of iNPC-derived astrocytes and mouse MNs 

 

The viability of mouse MNs following culture in the presence of iNPC-derived ALS 

astrocytes and after treatment with IL-2 was assessed through a co-culture assay. 

This has been optimized by Dr Laura Ferraiuolo and her team and a complete 

description of the protocol is available in their published paper (Stopford et al., 2019). 

For information, a schematic representation of the procedure is provided in Figure 
2.4. iNPC-derived astrocytes were produced as described in section 2.2.1. At D5 of 

differentiation, cells were seeded in 96-well plates (10.000 cells per well) in the 

presence of iAstrocyte differentiation media and were incubated for 24h at 37°C/5% 

CO2 to allow cells to adhere to the plates. At D6 of differentiation, iAstrocytes were 

treated with IL-2-supplemented media (10nM IL-2 in iAstrocyte differentiation media 

containing 1% FBS) whilst negative controls were obtained by treating cells with either 

anhydrous DMSO (1:1000) or with PBS + 5% glucose solution (1:1000). 

Simultaneously, Dr Laura Ferraiuolo's team produced mouse MNs expressing green 

fluorescent protein (GFP) under the MN-specific promoter Hb9 (also referred to as 

GFP-Hb9+ MN) from mouse embryonic stem cells (mESC). Briefly, mESC were 

seeded into a 10cm Petri dish and, in order to stimulate their differentiation to mouse 

embryonic bodies (mEBs), on D1 cells were cultured in the ADFNB differentiation 

medium (25 ml of Advanced DMEM/F12 (Gibco), 25 ml of Neurobasal Medium 

(Gibco), 0.5mL of 100x Pen/Strep (Gibco), 0.5mL of 200mM L-Glutamine (Gibco), 1mL 

of 50x NeuroBrew-21* supplement (Miltenyi), 0.5mL of 100x N-2 supplement (Gibco), 

50µL of 1000x (55mM) 2-mercaptoethanol (Gibco), 1mL of 7,5% sterile BSA (Sigma)). 

Subsequently, from D2 to D6, mEB were media changed daily with fresh ADFNB + 

2uM of retinoic acid and + 1uM of SAG. On day 7, mEB were dissociated using 100 μl 

of 200 U/ml papain (Sigma-Aldrich) into GFP-Hb9+ MNs as per the protocol reported 

previously (Stopford et al., 2019). Following receipt of the cells from Dr Ferraiuolo’s 

team, MNs (10,000 cells per well) were seeded on top of iAstrocytes. On D8, fresh 

ADFNB medium + BDNF (1:10,000), CNTF (1:10,000) and GDNF (1:10,000) was 

added to the cells and, in the wells containing IL-2-treated astrocytes, the medium was 

supplemented with other IL-2 (10nM). Additionally, on D9, 20μl of either PBS + 5% 

glucose solution or IL-2 (10nM, diluted in PBS + 5% glucose solution) was added. This 

was done in order to expose both astrocytes alone and astrocyte/ MNs to the cytokine. 
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Lastly, on D8 and D10 (also referred to as D1 and D3 following MN plating), plates 

were scanned using the microscope In Cell Analyzer 2000 and, given that these MNs 

express GFP, live-imaging was performed with the following criteria: objective = Nikon 

10x; number of fields = 9 per well; wavelength = FITC; exposure = 0.5s; focus = laser 

autofocus at 10% power; deconvolution = enhanced ratio method, 5 cycles; plate 

temperature = 37 °C. Lastly, the software Columbus Image Data Storage and Analysis 

System was used to analyse imaging data and to quantify the number of viable MN 

and neurites. Details of the software settings were reported in (Stopford et al., 2019). 

Briefly, MNs showing at least one axon were considered as live whilst cells without 

visible axons were classified as dead and therefore filtered out from the analysis. Data 

were plotted and statistically analysed (One-way ANOVA with Tukey’s correction for 

multiple comparisons) using GraphPad Prism 8.4.  
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Figure 2.4: Schematic representation of the co-culture protocol. 

This image summarises the co-culture protocol. From day 1 to day 6,  astrocyte 

differentiation from iNPCs (iAstrocytes) was carried out and, simultaneously, 

GFP-Hb9+ mESC were differentiated into mEB (this is highlighted in orange as 

mEBs were generated by Dr Laura Ferraiuolo's team). On day 7, mEBs were 

dissociated, MNs were isolated and seeded on top of iAstrocytes (the blue and 

orange colours indicate that the dissociation was performed by Dr Laura 

Ferraiuolo's team whilst cells were seeded by myself). On day 8, cells were 

media changed and, where appropriate, they were supplemented with IL-2 

(10nM). One last IL-2 treatment (10nM) was undertaken on day 9 while at day 

8 and 10 the plates were imaged using the In Cell Analyzer 2000.   
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Chapter 3 – Results: Microarray analysis of 
IMODALS samples 
 
The overall aim of the work described this chapter was to perform microarray analysis 

to evaluate transcriptomic changes in the white blood cells (WBCs) of patients enrolled 

in the IMODALS clinical trial. Several analyses were carried out in order to investigate 

the effect of low-dose IL-2 in the blood of ALS participants, compared to placebo, at 

selected time points and longitudinally throughout the trial. Some of the results 

reported in this chapter were published as an original article in the journal Brain 

Communications (Giovannelli et al., 2021). The full manuscript is provided as 

Appendix 1.  
 

Gene expression profiles using Affymetrix Clariom D chips were produced at four time 

points: day 1 or D1 (also referred to as baseline), D8 (three days after the first injection 

cycle); D64 (three days after the last treatment cycle) and D85 (during the follow-up 

period, 24 days after the last treatment) (see Figure 2.1, page 61). The D1 and D85 

microarrays were run by Dr Nadhim Bayatti prior to the start of my PhD, whilst D8 and 

D64 arrays were generated by myself. Subsequently, I performed quality control on all 

the arrays before any comparative analyses. Overall, gene expression profiles from a 

total of 107 blood samples were produced which can be classified as follows: 

 

- 24 arrays from samples at D1: twelve placebo and twelve 2MIU IL-2. 

- 23 microarrays from samples at D8: twelve placebo and eleven 2MIU IL-2. 

Unfortunately, the RNA sample from a treated patient (C01P011) at this time 

point could not be used to generate a microarray due to its very poor RNA 

quality.  

- 36 arrays from samples at D64: twelve placebo, twelve 1MIU IL-2 and twelve 

2MIU IL-2.  

- 24 microarrays from samples at D85: twelve placebo and twelve 2MIU IL-2. 
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3.1 Summary of RNA Samples and RNA Quality Control 
 

Total RNA was extracted from white blood cells (WBCs) by Abigail Brown and Dr 

Nadhim Bayatti. Prior to processing the samples ready for hybridisation to the 

microarrays, RNA quantity and quality were evaluated using Nanodrop ND-1000 and 

Agilent 2100 Bioanalyser, respectively. A summary of each patient's sample 

characteristics and total RNA quantity and quality parameters is provided in Table 3.1. 

Importantly, in order to process samples in an unbiased way, patient IDs and treatment 

information were blinded to the researches while extracting RNA and producing the 

microarrays. For this reason, a code was assigned to each sample which is also 

reported in Table 3.1. Overall, good quality RNA was obtained with acceptable 

concentrations (average= 122.8 ng/ul), 260:280 ratios (average= 2.14) and RIN values 

(average= 7.85). Importantly, the mean value of the RINs suggested that the extracted 

RNA was of high integrity. Despite some having lower RIN scores, microarrays were 

successfully generated from all the samples except for 68WKU83 from patient 

C01P011, whose RNA failed QC (concentration= 124.55 and RIN= n/a which 

suggested that RNA was degraded and therefore the Bioanalyser could not compute 

the RIN).  
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Table 3.1: IMODALS RNA samples’ characteristic 

In this table, RNA concentration (ng/ul), 260:280 ratio and RIN values are reported for 

each total RNA sample extracted from the WBCs of the IMODALS patients. Moreover, 
patient IDs are assigned together with their sample ID, time point of blood collection 

and treatment regimen.  

 
 

Patient 
code 

Sample ID Time 
point 

Treatment 
type 

RNA 
concentration 

(ng/ul) 

260/280 
ratio 

RIN 
value 

C01P001 23MXS57 64 1MIU IL-2 91.75 2.17 7.4 

C01P002 16NM22 1 Placebo 121.61 2.17 8.9 

C01P002 83QCF22 8 Placebo 114.86 2.15 8.9 

C01P002 34CJU23 64 Placebo 131.4 2.14 9.1 

C01P002 44FGS45 85 Placebo 125.88 2.16 9 

C01P003 17MA49 1 2MIU IL-2 156.19 2.1 8.6 

C01P003 72WPD58 8 2MIU IL-2 219.62 2.09 4.9 

C01P003 38QCW65 64 2MIU IL-2 307.03 2.12 7.8 

C01P003 99WQZ38 85 2MIU IL-2 144.87 2.14 8.1 

C01P004 92XZK83 1 2MIU IL-2 215.14 2.12 8.7 

C01P004 29DXU82 8 2MIU IL-2 132.92 2.11 2.8 

C01P004 56JIT63 64 2MIU IL-2 163.27 2.12 7.4 

C01P004 57KHM43   85  2MIU IL-2 168.86 2.13 8.8 

C01P005 83VXX85 64 1MIU IL-2 176.32 2.12 7.8 

C01P006 92QND85 1 Placebo 71.75 2.1 8 

C01P006 56UWH39 8 Placebo 84.57 2.19 8.7 

C01P006 96OKC39 64 Placebo 98.31 2.14 8.9 

C01P006 96GFO65 85 Placebo 108.3 2.13 9.1 

C01P007 98NFA86 1 Placebo 142.74 2.17 3.4 

C01P007 92NTM59 8 Placebo 94.81 2.13 8.7 

C01P007 57TOS36 64 Placebo 43.15 2.11 2.6 

C01P007 36VVR32 85 Placebo 92.84 2.15 9.4 

C01P008 26UIR45 64 1MIU IL-2 105.79 2.2 7.7 

C01P009 66ADE25 1 2MIU IL-2 131.95 2.16 9.3 

C01P009 44AZD87 8 2MIU IL-2 152.16 2.1 8.4 
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C01P009 55WDE55 64 2MIU IL-2 248.48 2.14 7.4 

C01P009 22DSY33 85 2MIU IL-2 140.65 2.18 8.6 

C01P010 47AVU82 64 1MIU IL-2 152.11 2.14 7.8 

C01P011 72YOV58 1 2MIU IL-2 60.12 2.01 6.6 

C01P011  68WKU83 8 2MIU IL-2 124.55 2.17 n/a 

C01P011 95HNE98 64 2MIU IL-2 161.96 2.08 7.8 

C01P011 47NSH95 85 2MIU IL-2 11.09 2.19 1.9 

C01P012 95TBM69   1  Placebo 92.06 2.13 5.9 

C01P012 24TTF82   8  Placebo 108.06 2.15 8.4 

C01P012 76UCI87 64 Placebo 109.46 2.15 8.2 

C01P012 44PBR28 85 Placebo 90.21 2.04 8 

C01P013 75UQO22 64 1MIU IL-2 103.26 2.14 9.1 

C01P014 75ABF54 1 Placebo 66.08 2.09 6.5 

C01P014 89ERK87   8  Placebo 132.36 2.1 9.1 

C01P014 98DAD98 64 Placebo 131 2.17 7.5 

C01P014 72EBF68 85 Placebo 103.79 2.09 8.3 

C01P016 33DGN54 1 2MIU IL-2 142.04 2.14 9.4 

C01P016 53WYU63   8  2MIU IL-2 116.14 2.15 8.1 

C01P016 23KVR46 64 2MIU IL-2 177.05 2.12 9.2 

C01P016 24WMJ33 85 2MIU IL-2 75.67 2.14 6.8 

C01P017 23BDT37 1 Placebo 110.05 2.13 9.2 

C01P017 94GRV28 8 Placebo 115.48 2.17 8.6 

C01P017 87FSD36 64 Placebo 131.23 2.16 8.3 

C01P017 94RYH63 85 Placebo 26.54 2.14 8.2 

C01P018 44JRQ89 1 2MIU IL-2 198.64 2.08 8.5 

C01P018 48ZSZ47 8 2MIU IL-2 127.72 2.14 9.1 

C01P018 93GXQ33 64 2MIU IL-2 73.45 2.19 n/a 

C01P018 35PXK56 85 2MIU IL-2 144.99 2.02 8.6 

C01P020 83QAN59 64 1MIU IL-2 146.71 2.03 n/a 

C01P021 54HYO55 1 2MIU IL-2 71.05 2.1 7.6 

C01P021 54SIW45 8 2MIU IL-2 248.88 2.1 8.4 

C01P021 36UVF76 64 2MIU IL-2 154.78 2.15 5.5 

C01P021 73XJQ42 85 2MIU IL-2 79.38 2.2 6 

C01P022 66TDV96 1 Placebo 184.33 2.08 5 
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C01P022 48CFV44   8  Placebo 142.85 2.17 8.9 

C01P022 33UVN85 64 Placebo 178.57 2.12 8.5 

C01P022 63VCW65   85  Placebo 94.13 2.17 8.4 

C01P023 67CNF42 64 1MIU IL-2 85.27 2.21 9.5 

C01P024 87VON76 64 1MIU IL-2 167.4 2.14 7.6 

C01P025 34SBH78 1 Placebo 119.98 2.07 8.3 

C01P025 37TMZ28 8 Placebo 109.98 2.15 9.3 

C01P025 48BFT76 64 Placebo 160.29 2.16 9 

C01P025 49KHX86 85 Placebo 133.18 2.08 5.9 

C01P026 78TJC44 1 2MIU IL-2 118 2.11 8.7 

C01P026 88NWQ96   8  2MIU IL-2 140.98 2.19 8.5 

C01P026 29DUQ88 64 2MIU IL-2 147.52 2.08 8.6 

C01P026 97MAY94 85 2MIU IL-2 64.87 2.15 8.6 

C01P027 87RXK32 64 1MIU IL-2 131.11 2.1 8.6 

C01P028 38TPQ86   1  2MIU IL-2 145.97 2.31 7.5 

C01P028 45XVK33 8 2MIU IL-2 195.63 2.16 8.7 

C01P028 82AII97 64 2MIU IL-2 145.74 2.15 8.3 

C01P028 59ZAQ99 85 2MIU IL-2 134.25 2.09 6.1 

C01P030 79OHS63 1 Placebo 101.96 2.11 8.4 

C01P030 28TBF72 8 Placebo 20.7 2.27 6.1 

C01P030 85ORI83 64 Placebo 99.11 2.22 8.9 

C01P030 63ORT67 85 Placebo 41.5 2.23 6.2 

C01P031 47XAT27   1  Placebo 62.36 2.13 5.4 

C01P031 28BMD36 8 Placebo 140.82 2.15 8.7 

C01P031 77WZO64 64 Placebo 106.37 2.22 8.9 

C01P031 45XNH76   85  Placebo 115.98 2.12 8.7 

C01P032 29ZCQ57 1 2MIU IL-2 155.53 2.14 8.3 

C01P032 96HQV85 8 2MIU IL-2 210.36 2.14 8.4 

C01P032 46DHR29 64 2MIU IL-2 167.47 2.18 9.3 

C01P032 35NXS97 85 2MIU IL-2 94.79 2.08 6.9 

C01P033 46XDM67 64 1MIU IL-2 95.83 2.23 8.7 

C01P034 55MKH26   1  Placebo 24.82 2.08 7.6 

C01P034 88TWF48 8 Placebo 100.47 2.11 8.1 

C01P034 76ABW86 64 Placebo 95.82 2.19 8.7 
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C01P034 77PVZ38 85 Placebo 80.29 2.03 7.6 

C01P035 77NSV37 64 1MIU IL-2 167.24 2.17 9 

C01P036 88FRZ35 1 2MIU IL-2 111.43 2.11 9.2 

C01P036 24ZOV85 8 2MIU IL-2 191.58 2.06 5.1 

C01P036 23TKJ93 64 2MIU IL-2 150.46 2.17 9 

C01P036 83VZK65 85 2MIU IL-2 25.68 2.25 5.5 

C01P037 37QNW23 1 2MIU IL-2 107.08 2.23 7.9 

C01P037 25SJK94   8  2MIU IL-2 145.54 2.14 8.4 

C01P037 98HXI86 64 2MIU IL-2 125.85 2.15 8.4 

C01P037 53HHI65 85 2MIU IL-2 64.42 2.14 8.2 

C01P038 87NSF26 64 1MIU IL-2 115.78 2.26 8.4 

C01P039 46XWM36 1 Placebo 121.6 2.15 8.6 

C01P039 44IKD34 8 Placebo 125.52 2.19 8.6 

C01P039 33IEV23 64 Placebo 80.49 2.17 8.2 

C01P039 53UCM47 85 Placebo 46.77 2.09 6.2 
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3.2 Microarray Quality Control 
 

In order to ascertain data quality, once gene expression profiles were generated and 

prior to any comparative analyses, quality control (QC) was performed using the 

Expression Console (Affymetrix) software. Several QC metrics were evaluated: 

 

• Positive vs negative area under the curve (AUC). The AUC or the area under 

a receiver operator curve (ROC), was computed for each array. Typically, an 

AUC threshold is set to 0.7. Given that all our microarrays showed values 

greater than 0.8, they all passed this QC metric (Figure 3.1).  
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Figure 3.1: Microarray Positive vs Negative AUC. 

In this graph, AUC value computed for each of the IMODALS sample microarrays is displayed. This is one of the metrics 
used to assess the quality of the generated gene expression profiles and, generally, a threshold of 0.7 is accepted to 
consider samples as having passed this QC metrics. All the microarrays show an AUC>0.8 and therefore passed this 
metric. X-axis: array ID; Y-axis: AUC value.  
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• Spike or hybridization control. 20x Eukaryotic Hybridization Controls (AFFX-

r2-Ec-BioB, AFFX-r2-Ec-BioC, AFFX-r2-Ec-BioD, AFFX-r2-P1-Cre) were 

included in the hybridization cocktails at staggered relative concentrations 

(BioB < BioC < BioD < Cre). Our results were in line with this signal pattern 

which suggested that all the arrays passed the hybridization quality control 

(Figure 3.2). 
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Figure 3.2: Microarray Eukaryotic Hybridization Controls. 

Signal intensities of four eukaryotic hybridization controls (BioB is displayed in red, BioC in blue, BioD in green and cre in pink) 
are reported in this plot. All the arrays show the expected BioB < BioC < BioD < cre signal pattern. X-axis: array ID; Y-axis: 
signal intensity. 
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• Labelling control. The quality of the labelling process was inspected through 

the addition of the poly-A RNA controls. These were mixed at fixed and 

increasing concentrations (Lys= 1:100.000; Phe= 1:50.000; Thr= 1:25.000; 

Dap= 1:6.667) and processed alongside the RNA extracted from patient 

samples. As expected, the signal Lys < Phe < Thr < Dap was visible for the 

majority of the microarrays suggesting a satisfactory labelling process. 

However, some small variations were visible in a reduced number of arrays 

(e.g. 23TKJ93, 46DHR29 or 46XDM67) (Figure 3.3). Nonetheless, given that 

Lys (the lowest concentrated control from which the levels are close to the 

detection limit of the arrays) was visible in all samples and that the other QC 

metrics were encouraging, the entire set of microarrays were included in the 

subsequent gene expression analyses.  
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Figure 3.3: Microarray Labelling Controls. 

This graph shown signal intensities of exogenous B. subtilis gene probes  included in the microarrays as labelling 
controls. Four controls are visible (Lys displayed in blue, Phe in green, Thr in pink and Dap in red) for each microarray. 
X-axis: array ID, y-axis: signal intensities. Most of the arrays show the expected Lys < Phe < Thr < Dap signal pattern. 
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• Signal intensity histogram and relative signal box plot. Although not strictly 

considered as QC metrics, these are useful tools to inspect for potential outliers. 

Histograms displaying the distribution of microarray signals were generated 

and all the curves showed a homogeneous and similar pattern suggesting that 

no microarray had a substantially different intensity distribution (Figure 3.4A). 

A relative signal box plot was also generated (Figure 3.4B). Each transcript 

probe signal in one array is divided by the median probe signal across all the 

arrays in the study and the distribution of the ratios of all the probes is displayed 

in a box plot. If comparable, each array's distribution should lie on a reference 

red line, while outliers would detectably deviate. In this case, microarrays did 

not appear to have a substantially divergent signal distribution. The array 

57TOS36 was the only one to show a slightly different distribution, however, it 

was still positioned on the reference line. Taken together, these results 

indicated that no clear outlier was identified. 
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Figure 3.4: Microarray Signal Intensity Histograms and Relative Signal Box Plots. 

(A) Histogram showing signal intensity microarray curves. Each microarray is displayed using a different colour. No evident distribution differences 
amongst arrays are reported. (B) Relative signal box blot shows signal distribution of each produced microarray. Each array name is reported on 
X-axis and a red reference line is also displayed. Sample 57TOS36 is marked with a red asterisk. 
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3.3 Differential expression and dose-dependency at D64 
 

The first aim of this section of the study was to establish patient transcriptional 

response to ld-IL-2 following the three administration cycles when the drug effect was 

hypothesised to have reached a peak. Moreover, to assess whether there was a dose-

dependency in this response, the gene expression profiles from patients treated with 

1MIU and 2MIU-IL2 were compared to those on placebo at D64.  

 

Firstly, D64 gene expression profiles were evaluated through a principal component 

analysis (PCA). This technique performs dimensionality reduction allowing easier 

interpretation of large datasets whilst minimizing information loss. PCA uses 

orthogonal linear transformation to transform the data into a new set of variables or 

principal components (PCs). The first PC is generated as a linear combination of the 

original variables so that it explains most of the variance within the dataset. The 

remaining variation is accounted for by the second and subsequent PCs. Principal 

components can be used to create a coordinate system where data points are reported 

and can be visually inspected. Spatial separation indicates data being substantially 

different from each other while closely displayed points suggest similarities. A 

multigroup comparison (p-value<0.05) was performed using the software Qlucore 

Omics Explorer (Qlucore) and a three component PCA was generated (Figure 3.5). 

Three groups were clearly visible. This spatial separation suggested that the gene 

expression of the placebo patients was significantly different from the profile of treated 

participants. Importantly, the reported distance between 1MIU and 2MIU-IL-2 groups 

indicated transcriptomic dissimilarities amongst the two different dosages. The sample 

57TOS36 seemed to be slightly more distanced from the rest of the placebo group 

arrays. Interestingly, this sample showed also a moderately different distribution in the 

relative signal box plot (Figure 3.4B) and it was also amongst the samples showing 

the lowest RNA quality and quantity (Table 3.1). However, as previously discussed, 

57TOS36 was not considered as an outlier, and thus was not excluded from the 

analysis.  
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Figure 3.5: Principal Component Analysis of D64 Microarrays.  

Cartesian plane displaying the first three principal components identified 
through a multigroup comparison performed with the software Qlucore. Spatial 
separation of the three treatment groups (Placebo in blue, 1MIU-IL-2 in yellow 
and 2MIU-IL-2 in red) is visible. X-axis: first PC (accounting for 21% of the 
variance), Y-axis: second PC (9% of the variance), Z-axis: third PC (6% of the 
variance).   

 

 

To identify differentially expressed genes (DEGs) characteristic of each participant 

group at the end of the last treatment cycle (D64), two comparative analyses were 

carried out using the TAC software. Microarrays from 1MIU-treated patients were 

compared to placebo (1MIU_vs_Placebo) and, similarly, 2MIU-treated and placebo 

(2MIU_vs_Placebo) were compared. Using arbitrary cut offs (1.2 ≤ FC ≤ -1.2 and p-

value <0.05), 3873 transcripts were identified as significantly differentially expressed 

(2097 decreased, 1776 increased) in 1MIU_vs_Placebo whilst 6352 (3530 decreased, 

Placebo

1MIU-IL-2

2MIU-IL-2

57TOS36
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2822 increased) were retrieved from 2MIU_vs_Placebo comparison. Of importance, 

1160 transcripts were commonly differentially expressed (Figure 3.6). More stringent 

p-value cut offs reduced the number of DEGs (though, 1.2 ≤ FC ≤ -1.2 cut off was 

always applied) (Table 3.2). Interestingly, regardless of the settings used, the 

comparison 2MIU_vs_Placebo showed a considerably greater number of DEGs 

compared to 1MIU_vs_Placebo. Although there is still no consensus on the ideal cut 

off for gene expression analysis, evidence in the literature suggests that different 

criteria influence data interpretation (Dalman et al., 2012). This needs to be cautiously 

balanced as a more stringent setting (e.g. using tight thresholds for false discovery 

rate, also referred to as FDR) reduces the number of false positive results but this also 

leads to an unacceptably high level of false negative results. This would mean that a 

potentially large proportion of truly differentially expressed genes would not be 

identified. For this reason, it has been previously proposed in the literature to combine 

significance level with fold change cut offs to obtain more reliable data by increasing 

the number of detectable DEGs whilst not exceeding in the number of false positive 

results (Park and Mori, 2010). Therefore, a decision was made to set as thresholds: 

1.2 ≤ FC ≤ -1.2 and p-value< 0.05 for further analyses. Notably, these settings have 

been previously used in our Department and the obtained results were published in 

peer-reviewed journals (including: (Fadul et al., 2020, Ratcliffe et al., 2018, Bury et al., 

2021). 
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Table 3.2. The effect of different p-value cut-offs on the numbers of DEGs  

In this table a summary of the DEGs retrieved using different significance level 
criteria is provided. More stringent settings drastically reduces the number of 
identified DEGs. Nonetheless, regardless of the criterion used, a considerably 
greater number of DEGs was identified in the comparison 2MIU_vs_Placebo 
compared to 1MIU_vs_Placebo. Notably, in all the cases the FC cut offs was 
always applied. Full lists of DEGs from the two comparisons are provided in 
Appendix 2 and 3.  

 

Comparison P value<0.05 P value<0.01 FDR<0.2 FDR<0.05 

1MIU_vs_Placebo 3873 

 

802 

 

1 

 

0 

2MIU_vs_Placebo 6352 

 

1790 

 

125 

 

19 

 

 
 

To investigate the biological functions associated with the reported DEGs, lists of 

genes were imported into Enrichr to perform gene ontology (GO) analyses, focusing 

on Biological Process (BP). Redundant GO BP terms were summarised and clustered 

using the software REVIGO. Importantly, only transcripts which were RefSeq 

annotated (and met the criteria: 1.2 ≤ FC ≤ -1.2 and p-value <0.05) were included in 

such analyses. In fact, as previously discussed in Chapter 2 (section 1.5.2), Affymetrix 

microarrays contain probes for a vast amount of unannotated, putative and 

uncharacterized transcripts. Therefore, given that their functions are unknown, they 

are not included in any of the gene set libraries included in Enrichr and therefore this 

considerably impacts on the statistical power of the GO analysis. 760 RefSeq-

annotated DEGs were found in the 1MIU_vs Placebo, 1764 in 2MIU_vs Placebo 

comparison and 375 were commonly differentially expressed in both.  

GO analysis of the unique list of DEGs characteristic of 1MIU_vs_Placebo highlighted 

sixty-two significantly enriched biological processes (BPs) which were summarised in 

27 functional clusters using the software REVIGO (Figure 3.6 and Figure 3.7A).  

Changes in the expression of genes involved in the metabolism and transport of 

cholesterol and phospholipids were identified in this comparison, together with 

variation in nucleoside catabolism. Only a few transcriptional variations in immune-

related biological processes (such as regulation of T cell differentiation and regulation 
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of leukocyte activation and adhesion) were reported in 1MIU_vs_Placebo (Figure 3.6 

and Figure 3.7A).  

In contrast, transcripts exclusively differentially expressed in 2MIU_vs_Placebo 

comparison were enriched in 129 GO BPs and 35 REVIGO clusters. Importantly, more 

evidence of immune-modulation was provided in the 2MIU_vs_Placebo gene lists 

compared to the 1MIU one (Figure 3.6 and Figure 3.7B). In particular, alterations in 

genes involved in B, T cell and antigen receptor signalling pathways, in the regulation 

of T cell and granulocyte differentiation and in innate immunity were reported. 

Moreover, enrichment of cell cycle regulation processes, intra-cellular transport and 

RNA metabolism was documented.  

The import in Enrichr of the RefSeq list containing commonly DE transcripts in both 

comparisons resulted in 138 GO BPs being significantly enriched which were 

summarised in 26 clusters by REVIGO. Interestingly, the large majority of these 

clusters and processes were involved in immune modulation. In fact, differential 

expression of genes involved in the regulation of activation and differentiation of T cell 

types, including Treg, and B cells was evident. Moreover, an extensive modulation of 

different cytokines (such as IL-4, 10, 12, 15  and 17) production, secretion and 

signalling pathways was also observed (Figure 3.6 and Figure 3.7C). Interestingly, 

amongst the enriched non-immunological processes, alterations (upregulation) in 

ganglioside, ceramide and lipid metabolism and in membrane raft distribution and 

polarization were identified. These mechanisms, especially ganglioside biosynthesis, 

have been implicated in the pathogenesis of ALS (Moll et al., 2020) and thus their IL-

2-mediated modulation may contribute to a neuroprotective drug effects on patients. 
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Figure 3.6: Differential expression analyses at D64. 

Venn diagram showing significant (1.2 ≤ FC ≤ -1.2 and p-value <0.05, F-test) 
differentially expressed genes (DEGs) from either 1MIU_vs_Placebo (in red) or 
2MIU_vs_Placebo (in green) TAC (Transcriptome analysis console) 
comparisons. All altered transcripts are reported in brackets while RefSeq 
annotated transcripts are shown in bold. Overlapping common DEGs are also 
shown in yellow. For each RefSeq transcript list shown in the Venn diagram, 
the top 10 significant enriched Gene Ontology (GO) biological processes are 
shown in a bar plot. X axis: -Log10 (enrichment p-value); y axis: GO term. 
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Figure 3.7A: REVIGO-clustered Enriched GO Biological Processes from 

the Comparison 1MIU_vs_Placebo. 

Treemap showing REVIGO clustered Gene Ontology biological processes (GO 
BPs) obtained from the unique list of differentially expressed genes 
characteristic of 1MIU_vs_Placebo. GO BP terms belonging to the same 
REVIGO cluster are grouped and displayed in the same rectangle and cluster 
representatives are reported with grey tags. GO BP terms are sized and colour-
coded depending on their significance levels (-Log10pvalue). 
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Figure 3.7B: REVIGO-clustered Enriched GO Biological Brocesses from 

the Comparison 2MIU_vs_Placebo. 

Treemap showing REVIGO clustered Gene Ontology biological processes (GO 
BPs) obtained from the unique list of differentially expressed genes 
characteristic of 2MIU_vs_Placebo. GO BP terms belonging to the same 
REVIGO cluster are grouped and displayed in the same rectangle and cluster 
representatives are reported with grey tags. GO BP terms are sized and colour-
coded depending on their significance levels (-Log10pvalue). 
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Figure 3.7C: REVIGO-clustered Enriched GO Biological Processes of the 

DEGs in Common Between the 1MIU and the 2MIU treatment groups. 

Treemap showing REVIGO clustered Gene Ontology biological processes (GO 
BPs) obtained from the list of commonly DEGs in both comparisons. GO BP 
terms belonging to the same REVIGO cluster are grouped and displayed in the 
same rectangle and cluster representatives are reported with grey tags. GO BP 
terms are sized and colour-coded depending on their significance levels (-
Log10pvalue). 
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Subsequently, to further analyse data from 1MIU_vs_Placebo and 2MIU_vs_Placebo, 

significant (1.2 ≤ FC ≤ -1.2 and p-value <0.05) RefSeq-annotated DEGs from both 

comparisons were inputted into Metascape. In particular, the two lists were analysed 

simultaneously to visualise differences and similarities in altered mechanisms. A 

heatmap and an enrichment network were generated. Interestingly, immune 

regulatory processes were significantly altered in both comparison lists (Figure 3.8). 

These included terms such as: "RUNX1 and FOXP3 control the development of 

regulatory T lymphocytes", "Immunoregulatory interaction between lymphoid and non-

lymphoid cell", "negative regulation of immune system process" and "PID IL2 STAT5 

signaling pathway"; which suggested an activation of Treg and regulatory processes 

following ld-IL-2 administration. However, other immunological pathways, including 

"regulation of antigen receptor-mediated signaling pathway", were uniquely altered in 

the 2MIU_vs_Placebo list.  
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Figure 3.8: Heatmap of Metascape Enriched Processes at D64  

Enrichment heatmap generated by Metascape showing the top 20 significant enriched clusters. The names of cluster 
representatives are reported together with their significance level (Log10(P), calculated using hypergeometric test). Clusters 
are colour-coded depending on their Log10(P) while grey colour denotes lack of significance. 

 GO:0050854: regulation of antigen receptor-mediated signaling pathway
 R-HSA-109582: Hemostasis
 GO:0034660: ncRNA metabolic process
 hsa04110: Cell cycle
 GO:1901137: carbohydrate derivative biosynthetic process
 GO:0031936: negative regulation of chromatin silencing
 ko04640: Hematopoietic cell lineage
 GO:0050852: T cell receptor signaling pathway
 GO:0042110: T cell activation
 R-HSA-1280218: Adaptive Immune System
 ko04658: Th1 and Th2 cell differentiation
 M234: PID IL2 STAT5 PATHWAY
 GO:0006968: cellular defense response
 GO:0097190: apoptotic signaling pathway
 GO:0002683: negative regulation of immune system process
 GO:0046631: alpha-beta T cell activation
 R-HSA-198933: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
 GO:0051235: maintenance of location
 GO:0032609: interferon-gamma production
 R-HSA-8877330: RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs)
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Moreover, an enrichment network was also generated using Metascape to visualise 

relationships between the top 20 most significant altered processes/pathways (Figure 
3.9). The main identified cluster clump reflected a considerable alteration in immune 

regulatory processes and it was evident that Treg-specific processes (mentioned 

above) were closely related to the more general T cell activation and differentiation 

processes. This suggested a modulation within the immune system occurring with 

both treatment regimens, although generally more DEGs were observed among the 

2MIU_vs_Placebo comparison. Moreover, from this analysis it seemed that processes 

involved in the regulation of the adaptive immune system were altered almost 

exclusively following the administration of the higher (2MIU) dose of the drug. 

Consistently with our REVIGO data, processes involved in cell cycle, apoptosis, 

chromatin regulation and ncRNA processing were reported amongst the differentially 

expressed clusters solely identified in the 2MIU_vs_Placebo comparison.  
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Figure 3.9: Pathway Enrichment Network Suggests Differential Effects of 

Ld-IL-2 Doses at D64.  

This image shows an enrichment network generated using the software 
Metascape. This type of graph is useful to investigate and identify closely 
related pathways (displayed in the figure as nodes) as terms having a Kappa 
similarity score > 0.3 are connected by edges. In particular, this image shows 
the top 20 most significant enriched clusters of pathways (no more that 15 terms 
into each cluster are displayed to reduce complexity). In addition, this graph 
allows the visual inspection of the proportion of differentially expressed genes 
belonging to a certain gene list included into each pathway. This is possible 
because each pathway or node is reported as a pie chart within which sectors 
indicate the number of transcripts included into different gene lists (red= 1MIU 
IL-2_vs_Placebo and blue= 2MIU IL-2_vs_Placebo). This is tool is useful to 
investigate whether a particular pathway was altered as a result of a specific 
treatment dosage (e.g. genes involved into the “adaptive immune system” 
appeared to be differentially expressed only in 2MIU IL-2_vs_Placebo) or if 
processes were modified by both doses (e.g. “T cell action”).   
 
 

Overall, these results suggested that both treatment doses were able to promote a 

Treg expansion and/or activation. Given that the majority of the Treg-associated genes 

were commonly differentially expressed following treatment with both ld-IL-2 doses 

(as shown in Figures 3.6 and 3.7C), these transcripts were further investigated. In 

particular, to evaluate if there were differences in terms of the magnitude of Treg 

response, the fold changes of the commonly DEGs from the two comparisons 

(1MIU_vs_Placebo and 2MIU_vs_Placebo) were compared. A dose-dependent 

reaction was found for 260 out of 375 (69.3%) commonly differentially expressed 

RefSeq genes. In fact, increased transcripts showed a greater level of upregulation, 

and similarly, decreased DEGs were more downregulated following the higher dose 

of IL-2 administered (Figure 3.10). Consistently with this, looking at microarrays' 

expression data of four key Treg and immune suppression markers (FOXP3, CTLA4, 

IKZF2 and IL2RA) a dose-proportional upregulation was evident (Figure 3.11). 
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Figure 3.10: Dose-Dependency at D64. 

Scatter plot displaying 375 RefSeq DEGs altered in common within the two 
treatment groups and their fold changes resulting from either 1MIU_vs_Placebo 
or 2MIU_vs_Placebo comparisons. 260 out of 375 genes (69.3%) exhibit a 
dose-dependent expression (in blue, while transcripts showing no dose-
dependent trend are represented in red). 
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Figure 3.11: Dose-Dependent Expression of Treg markers at D64. 

The expression levels (log2 of signal intensity from the microarrays) of 4 Treg 
and immune suppression markers – FOXP3, CTLA4, IKZF2 and IL2RA – are 
shown. A significant dose-dependent upregulation of these transcripts is 
detected. Box plots show mean ± SD. A two-way ANOVA with Turkey correction 
for multiple comparisons was conducted. *: Adjusted p-value<0.05, **: Adjusted 
p-value<0.01, ***: Adjusted p-value<0.001,  ****: Adjusted p-value<0.0001. 

 

 

Collectively, these results indicated evidence of immune modulatory gene expression 

changes following ld-IL-2 administration. However, a broader immune-regulation 

seemed to be promoted by the higher dose and, for this reason, further analyses were 

conducted comparing only 2MIU-IL-2-treated participants to placebo.  
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3.4 Longitudinal gene expression changes throughout the 
administration period 

 
The second aim of this subsection of the study was to evaluate the longitudinal 

transcriptional changes occurring throughout the administration period in the 2MIU-IL-

2-treated patient compared to placebo. In particular, three time points were selected 

over the course of the trial: D1, D8 and D64 and gene expression data were compared. 

To this end, complex and multifactorial comparisons were performed using the Limma 

package in R.  

 
Firstly, data were imported into Limma and visually inspected using multidimensional 

scaling (MDS). Similarly to PCA, MDS is a technique that allows dimensionality 

reduction and visual representation of the data, highlighting similarities and differences 

among samples which are displayed in a Cartesian space. Unlike PCA, which uses 

original data, MDS builds a similarity matrix to generate the plot. This matrix is 

produced by calculating Euclidean distance for each pair of samples in a data set. In 

the case of microarray data, distance is computed as leading log fold changes (which 

is the average of the root mean square deviation of expression) of the top genes 

between samples. These are the genes that show the largest variations between 

samples. Gene expression profiles from both placebo and 2MIU-IL-2 treated samples 

from D1, D8, D64 and also D85 (24 days after the last injection and at the beginning 

of the follow-up period) were inspected with an MDS plot to gain a general overview 

of the complete dataset. Transcriptomic profiles from D1 and D85, generated by Dr 

Nadhim Bayatti (NB), clustered together and they were spatially separated from the 

profiles produced by myself (D8 and D64), regardless of their treatment type (Figure 
3.12). Thus, the main source of variation was probably the result of a batch effect 

which was due to the fact that LeukolockTM filters were shipped to SITraN at different 

times and therefore the microarrays were generated by two researchers.  
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Figure 3.12: Multidimensional Scaling Plots of IMODALS Microarrays 

from D1, D8, D64 and D85. 

Multidimensional scaling plot showing all the placebo and 2MIU-IL-2 treated 
samples at D1, D8, D64 and D85. Samples are colour-coded and labelled by 
time point (D1=orange, D8=red, D64=green, D85=light blue) (A) or by the 
operator who generated the microarrays (IG= Ilaria Giovannelli, in black and 
NB= Nadhim Bayatti, in red) (B). A clear batch effect is visible.  
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As mentioned in Chapter 2 (section 1.5.1), the removal of the batch effect may lead to 

exaggerated and unreliable results. For this reason, this was neither removed nor 

ignored, instead, batch identifiers were incorporated in our Limma statistical models 

leading to the production of two reliable gene expression comparisons: namely ΔD8, 

ΔD64. These were conducted with the aim of identifing transcriptional differences 

characteristic of the first and the last treatment cycles. In each of those, 2MIU-IL2 

treated patients' transcriptome was compared to their baseline level and normalised 

to the same comparison within the placebo group. The two comparisons were studied 

and analysed alongside to identify similarities and differences in the gene expression 

alterations at D8 and D64.  

 

The comparison ΔD8 identified 2635 RefSeq genes as significantly (1.2 ≤ FC ≤ -1.2 

and p-value <0.05) differentially expressed (1953 decreased, 682 increased), while 

only 525 RefSeq genes (198 decreased, 327 increased) resulted from ΔD64 (Figure 
3.14A and B). A widespread decrease in gene expression was reported after the first 

treatment cycle, while this effect seemed to be no longer present at the later time point. 

In contrast, at D64 a more pronounced upregulation of gene expression was 

documented. Interestingly, in both comparisons, one of the most significant DEG is 

FOXP3, crucial transcription factor for Treg implicated in the establishment and 

maintenance of their suppressive phenotype. This suggests an activation of Tregs 

starting from the first cycle and continuing throughout the administration period. 

However, other Treg markers (such as IL2RA and CLC) were visible with the 

upregulated genes only in the ΔD64 comparisons.  
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Figure 3.13: Comparison of Differentially Expressed Genes at ΔD8 and 

ΔD64. 

Volcano plots displaying DEGs resulting from the comparisons ΔD8(A) and 
ΔD64 (B). DEGs are plotted and colour-coded depending on their fold change 
(FC) and their significance levels (-Log10 p-value): non-significant or transcripts 
that failed the FC cut-off are reported in grey, significant and with FC ≤-1.2 in 
blue and significant and with FC ≥1.2 in red. Three black lines are also shown: 
the horizontal one indicates the significance threshold (-Log10 p-value=1.3) and 
two vertical dotted lines mark the FC cut-off at -1.2 and 1.2 respectively. A 
widespread downregulation is detectable at D8, while at D64 an increased 
upregulation is reported amongst which some Treg makers are recognisable. 
(Empirical Bayesian statistics were conducted using Limma to determine 
significant DEGs). 
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To understand the biological functions exerted by the identified DEGs, upregulated 

and downregulated lists of transcripts from the two comparisons were imported 

separately into Enrichr and gene ontology analyses were carried out. As expected, a 

large number of downregulated GO BPs (448 processes) were significantly enriched 

in the ΔD8 comparison while, only 35 downregulated biological processes were 

identified in ΔD64. In contrast, analysis of upregulated DEGs identified 35 significantly 

enriched GO BPs in the ΔD64 comparison while, only 10 were observed in ΔD8. 

The most significant ΔD8 GO BPs revealed an extensive alteration (both increase and 

decrease) in different processes involved in the RNA metabolism. These included 

variations in both non coding RNA and mRNA processing, splicing and gene 

expression regulation (Figure 3.15A and 3.15B). Moreover, evidence of inflammatory 

suppression was also documented, with neutrophil activation and degranulation being 

significantly decreased. In contrast, the top 10 significant GO BPs from ΔD64 did not 

show a clear downregulation of inflammatory processes, while inhibition of other 

biological mechanisms including iron transport and lipid processing were reported. 

However, several immune regulatory processes, especially involved in Treg-activation 

and differentiation, were upregulated at D64. Interestingly, enrichment in muscle 

regulatory process was also documented, together with an upregulation in membrane 

raft polarization and distribution (Figure 3.15C and 3.15D). Full lists of enriched GO 

BPs from the two comparisons are reported in Appendix 4 (ΔD8) and 5 (ΔD64), 

respectively. 
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Figure 3.14: Gene Ontology Analyses of ΔD8 and ΔD64 DEGs 

Bar plots displaying the top 10 significant downregulated (A) and upregulated 
(B) GO Biological Processes (GO BPs) from ΔD8 and top 10 significant 
downregulated (C) and upregulated (D) GO BPs from ΔD64. Significance 
threshold lines are reported in black (-Log10 p-value=1.3). A downregulation of 
pro-inflammatory processes involving neutrophils and an alteration in the RNA 
metabolism are observed at D8 while, later during the course of the trial, a 
significant upregulation of Treg processes is documented. (Fisher's exact 
statistical test was performed using Enrichr to cluster transcripts into GO BP 
terms). 
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Given our interest in evaluating the effect on the immune system promoted by ld-IL-2 

in the IMODALS cohort, all the previously described significant GO BPs were 

summarised using REVIGO and immune-related clusters were isolated and studied 

separately. While no upregulated immunological clusters were reported in the analysis 

ΔD8, GO summarisation showed a broad downregulation of inflammatory processes 

at this time point. The larger cluster, which included 10 immunological GO BP terms, 

showed evidence of an extensive reduction in the expression of genes involved in 

granulocyte (in particular neutrophil) activation and functions. Moreover, other 

inflammatory mechanisms were reduced following the first injection cycle, this 

included several cytokine production and downstream signalling pathways and 

different immune cell differentiation and migration (Figure 3.16A). A different 

immunological phenotype was reported at D64 when no clear immune-related clusters 

were found to be downregulated, but a widespread activation of regulatory processes, 

which particularly involved T cells, was documented (Figure 3.16B).  
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Figure 3.15: REVIGO-Clustered Enriched Immunological GO Biological 
Processes 

Box plots showing immunological REVIGO clustered downregulated GO BPs 

in ΔD8 (A) and immunological REVIGO clustered upregulated GO BPs in ΔD64 

(B). Each bar represents a cluster which summarises a number of GO BPs the 

names of which are displayed inside each box. A wide inhibition of inflammatory 

processes is evident after the first treatment cycle while, upregulation of Treg-

related mechanisms is reported at the end of the treatment. X-axis: number of 

GO BPs included in each cluster, Y-axis: GO cluster representatives.  

 

 

Subsequently, Ingenuity Pathway Analysis® (IPA) was also used. Unlike Enrichr, 

REVIGO or Metascape, this software provides advanced analysis capabilities 

including the prediction of the activation/inhibition state of identified altered pathways 

and the discovery of key upstream regulators which allows the researcher to 

hypothesize casual relationships associated with experimental data. Limma ΔD8 and 

ΔD64 gene lists were imported into IPA to identify pathways longitudinally altered 

throughout the trial.  

Seventy-seven pathways were altered at ΔD8 (Figure 3.17). An inhibition of 

inflammatory mechanisms was identified, with functions of both innate (phagocytic 

cells, neutrophils, eosinophils, macrophages/monocytes and natural killers) and 

adaptive immune cells (cytotoxic T lymphocytes and B cells) being decreased. 

Moreover, inhibition of NF-kB and signalling related to several cytokines was 

documented. Interestingly, negative regulation of pathways subserving autoimmune 

diseases, such as multiple sclerosis and systemic lupus erythematosus, were also 

found. Taken together, these results suggest a broader suppression of inflammatory 

processes, which are known to be activated in ALS, and also involved in other 

autoimmune pathologies. Additionally, two processes linked to the CNS homeostasis, 

neuregulin and glioma signalling pathways, were decreased.  

In contrast, only 16 pathways were altered at ΔD64 (Figure 3.18). The majority of 

these were involved in the metabolism of several molecules including amino acids and 

sulphate-containing compounds. However, two mechanisms implicated in T-cell 

subset modulation were altered. In particular, activation of the Th2 pathway was 
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observed. Importantly, Th2 cells share some anti-inflammatory properties with Tregs 

mediated by IL-4 secretion (Beers et al., 2011a, Zhao et al., 2012). 
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Figure 3.16: IPA Canonical Pathway Analysis at D8. 

Bar plot displaying IPA canonical pathway analysis retrieved from the ΔD8 gene 

list. Activated (z-score>0, in orange) or inhibited pathways (z-score<0, in blue) 

are shown. Significant pathways but with z-score equal to 0 (in white) or with 

no activation prediction available in the software (in grey) are also reported. A 

significance threshold is displayed as a dotted orange line (-Log10 p-value=1.3).  

 

 

 
 

Figure 3.17: IPA Canonical Pathway Analysis at D64. 

Bar plot displaying IPA canonical pathway analysis retrieved from the ΔD64 

gene list. Activated (z-score>0, in orange) or inhibited pathways (z-score<0, in 

blue) are shown. Significant pathways but with z-score equal to 0 (in white) or 

with no activation prediction available in the software (in grey) are also reported. 

A significance threshold is displayed as a dotted orange line (-Log10 p-

value=1.3).  
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Interestingly, the top two significant pathways altered at ΔD8 were "protein 

ubiquitination pathway", for which the activation status could not be predicted, and the 

"NRF2-mediated oxidative stress response", which appeared to be inhibited. The first 

mechanism is crucial for protein degradation and turnover. Proteostasis dysregulation 

and formation of aggregates are well characterized ALS pathological mechanisms 

(Malik and Wiedau, 2020). Moreover, excessive ROS generation, oxidative stress and 

consequently oxidative damage are other key processes involved in the 

pathophysiology of ALS (Barber and Shaw, 2010). NRF2 is a transcription factor which 

promotes a cytoprotective response, including induction of anti-oxidant and anti-

inflammatory gene expression and its dysregulation has been reported in ALS 

(Sivandzade et al., 2019, Sarlette et al., 2008). Given the identification of these 

pathways as altered following the first treatment cycle, genes included in those 

processes were analysed in detail to elucidate possible short-term detrimental effects 

of 2MIU-IL-2.  

 

Fifty transcripts were included in the IPA pathway called "protein ubiquitination 

pathway" and the expression of all these genes was significantly downregulated in the 

ΔD8 comparison, while none of them reached statistical significance in ΔD64. Eight 

functional clusters were identifiable in this group of transcripts (Figure 3.19). As 

expected, the majority of the genes coded for proteins involved in the ubiquitination 

process and subunits of the proteasome. However, heat shock and major 

histocompatibility complex (MHC) proteins were also recognisable. Consistently with 

this, the analysis of the same fifty transcripts using Metascape revealed a close 

relationship between ubiquitination processes and MHC antigen processing and 

presentation which is crucial for the immune response (Figure 3.20). Moreover, 

evidence from the literature highlights the importance of the ubiquitin-proteasome 

system in immune cells and the formation of the so-called immuneproteasome for the 

presentation of antigens and the initialization of the host immune response (Kammerl 

and Meiners, 2016, Çetin et al., 2021). Hence, the downregulation of these transcripts 

may be the result of a prompt inhibition of immune system processes rather than a 

detrimental effect. However, further investigation would be needed to exclude similar 

effects in ALS motor neuron or glial cells which are characterized by an already 

impaired proteostasis and the downregulation of these genes could potentially result 

in further protein aggregation.  
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Figure 3.18: Classification of Transcripts Included in the IPA Protein 
Ubiquitination Pathway. 

A donut plot shows the classification of the transcripts included in the IPA 

protein ubiquitination pathway. For each category, the fold change (FC) 

expression of each gene is displayed in a bar plot while the Log10(Pval) is 

shown as a black line. A dotted grey line is also reported to mark the statistical 

significant threshold (Log10(Pval)= -1.3). X-axis: gene symbol, Y-axis: FC and 

Log10(Pval).  
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Figure 3.19: Metascape Analysis of the Transcripts Included in the 
Protein Ubiquitination Pathway. 

Enrichment network produced by Metascape following the input of the list of 

genes  included in the protein ubiquitination pathway identified with IPA. Each 

node represents a pathway and terms showing a Kappa similarity score > 0.3 

are connected by edges. Clusters are labelled and marked using different 

colours. 

 

 

Thirty-six transcripts (32 downregulated and 4 upregulated) were differentially 

expressed in the ΔD8 comparison and included in the IPA "NRF2 mediated oxidative 

stress response" pathway (z-score= -2.982), while none of them were significantly 

altered in ΔD64. To investigate the role of the transcripts in the oxidative response, a 

network displaying a selection of the most important proteins was generated with IPA 

(Figure 3.21). NRF2 is implicated in various cellular mechanisms but, expression 

changes associated with the end of the first administration cycle mostly affected genes 
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involved in chaperones/stress response or antioxidant genes. The repression of these 

latter genes can be interpreted either as a detrimental short-term effect of ld-IL-2, given 

that this suppression was not detected at D64, or it can be also speculated that ld-IL-

2 can instead have an anti-oxidant effect by dampening the production of ROS and 

therefore reducing the need for the NRF2-associated stress response. However, 

further investigation is necessary to verify this hypothesis, especially in CNS cells. 
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Figure 3.20: NRF2-Mediated Oxidative Stress Response IPA Pathway. 

Graph generated with IPA showing the most important proteins involved in the 

NRF2 pathway. Downregulated genes are shown in green while red indicates 

upregulation. The colour magenta indicates the transcripts present in the data 

set.  
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Another tool provided by IPA, called diseases and functions, was used to further 

investigate molecular mechanisms altered following ld-IL-2 administration. This 

analysis revealed an almost opposite phenotype occurring at D8 and D64. In fact, 

while the vast majority of the pathways showed negative z-scores, which indicates 

inhibition, after the first cycle, a trend towards inversion was visible at the later time 

point with a positive z-score-skewed phenotype (Figure 3.22 and 3.23). This analysis 

reinforces previous observations indicating a rapid inhibition of inflammatory 

mechanisms after the first cycle. In fact a repression of diapedesis of leukocytes -

including phagocytes, monocytes, granulocytes and neutrophils- as well as 

developmental and functional inhibition of these cells was shown (Figure 3.22). Cell 

death mechanisms were also found to be activated in leukocytes. This may indicate a 

reorganization within immune cells happening at this time point. Concomitantly, 

downregulation of cell death processes in neurons and brain cells ("cell death of brain", 

" cell death of brain cells", "apoptosis of cortical neurons") was observed, together with 

a mild activation of the pro-survival "protection of cortical neurons" which is particularly 

interesting in the context of ALS (Figure 3.22 and Appendix 6). Furthermore, 

processes involved in metabolism, synthesis and production of reactive oxygen 

species (ROS) were inhibited at this time point. This latter result is particularly 

interesting and, considering previous findings involving the NRF2 pathway, it could be 

speculated that the treatment promoted a reduction in the production of oxidative 

species therefore diminishing the need of the protective NRF2 pathway, which 

appeared to be inhibited at D8.   

In contrast, ΔD64 analysis revealed an extensive activation of regulatory processes 

("regulation of cells", "suppression of lymphocytes", "differentiation of induced Tregs", 

"regulation of mononuclear leukocytes" and "activation of Tregs") and concomitant 

activation of leukocyte apoptosis (Figure 3.23). This suggested a more evident 

expansion of protective Tregs following the third treatment cycle. However, unlike D8, 

processes involved in immune cell movement and recruitment seemed to increase at 

this time point. The reported activation of the "inflammatory response" process may 

be perceived as counter intuitive. However, when investigating the transcripts included 

in this process by the software, it was clear that several anti-inflammatory agents (such 

as FOXP3, IDO1, IL2RA) were also incorporated and thus "inflammatory response" 

included both pro and anti-inflammatory modulators (Appendix 7). Notably, only the 
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diseases and functions for which the z-score was ≠ 0 are reported in Figure 3.22. The 

completed list with all the enriched terms is reported in Appendices 7 and 8.
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Figure 3.21: ΔD8 IPA disease and function analysis. 

Treemap summarising altered IPA diseases and biological functions resulting 
from the ΔD8 comparison. Each box represents a biological function or a 
disease and they are sized and coloured by their z-score (z-score > 0 in the 
orange colour scale or < 0 in the blue scale). Diseases and functions are 
clustered by IPA into master categories for which the name is displayed by a 
grey label. A widespread downregulation of immunological processes was 
reported at D8.  
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Figure 3.22: ΔD64 IPA disease and function analysis. 

Treemap summarising altered IPA diseases and biological functions resulting 
from the ΔD64 comparison. Each box represents a biological function or a 
disease and they are sized and coloured by their z-score (z-score > 0 in the 
orange colour scale or < 0 in the blue scale). Diseases and functions are 
clustered by IPA into master categories for which the name is displayed by a 
grey label. An opposite phenotype was visible at D64 where most of the 
processes appeared to be upregulated. Evidence of increase activation of 
immune suppressive mechanisms was provided at this time point.  

 

 

The last analysis tool used in IPA was the upstream regulator. This allows the 

identification of transcriptional regulators which are molecules (e.g. transcription 

factors, miRNAs or drugs) known to be capable of modulating expression of 

downstream genes. Therefore, their alteration can explain the overall observed 

transcriptional status of a dataset. Moreover, IPA® allows the researcher to make 

predictions on the activation status of each identified transcription regulator. In 

particular, a factor is predicted as activated if the majority of downstream genes known 

to be induced by it are upregulated or if downregulation is detected for genes whose 

expression is reduced by a transcriptional regulator. An opposite condition is reported 

if a molecule with regulatory action is predicted as inhibited. 

The top ten most significant upstream regulators from ΔD8 and ΔD64 comparisons 

are displayed in Table 3.3. Most of them showed a significant p-value of overlap but 

an insignificant Z-score (Z-score is considered significant if it is either <-2 or >2). This 

suggested that genes downstream to a certain regulator were significantly differentially 

expressed in our dataset but their expression pattern was not sufficient to confidently 

predict its overall activation/inhibition.   

Amongst the top ten most significant upstream regulators identified in the ΔD8 

comparison, five showed also a significant Z-score consistent with an inhibition 

pattern. In particular, TGFB1, IFNG and NFE2L2 exhibited the lowest Z-scores. 

Transforming growth factor beta 1 (TGFB1) is involved in numerous cellular process 

but it has a central role in immunity having both pro- and anti-inflammatory effects. In 

particular, it regulates Treg or Th17 development in a concentration-dependent 

manner where high levels promote Treg whilst low concentration favours Th17, the 
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Treg inflammatory counterpart (Zhou et al., 2008, Sanjabi et al., 2017). Although 

TGFB1 expression was increased in ΔD8, it was predicted to be inhibited. We can 

speculate that this discrepancy can be due to a lag time between change in TGFB1 

gene expression and downstream effects on transcriptional regulation. Interferon-

gamma (IFNG) is a well characterized pro-inflammatory cytokine secreted by both 

innate and adaptive immune system cells with pleiotropic functions (Kopitar-Jerala, 

2017). Following the first treatment cycle, given the expression changes of 

downstream genes, IPA identified IFNG as a significantly inhibited regulator 

suggesting a reduction in inflammatory mechanisms. Moreover, NFE2L2, also known 

as NRF2, showed a negative Z-score and, consistently with previous data, its 

expression is reduced and predicted to be inhibited. Finally, significant and negative 

Z-scores were also reported for FLT1 and TCL1A. The first one is also known as 

VEGFR1 and it is a receptor for vascular endothelial growth factor and involved in 

angiogenesis (Fischer et al., 2008), while T cell leukaemia/lymphoma 1A (TCL1A) is 

an oncogene involved in the maturation and development of T and B cells (Paduano 

et al., 2018).  

Within the top 10 upstream regulators from the ΔD64 comparison, the only one 

showing also a significant Z-score was IL-21 which was predicted as activated. This 

cytokine exerts a wide range of biological functions including several immune 

suppressive effects such as IL-10 induction, promotion of B cell and DCs inhibition 

and reduction in the expression of LPS-induced pro-inflammatory cytokines. 

Moreover, IL-21 alterations have been associated with several autoimmune disorders 

(Leonard and Wan, 2016). Interestingly, although not showing a significant Z-score, 

several other transcriptional regulators with known anti-inflammatory properties were 

identified. In particular, the most significant (highest p-value of overlap) was FOXP3 

but also GATA3 and IL10RA were reported. Overall, these results are in line with 

previous analysis indicating a broad immune suppression at D8, although a more 

evident immune regulation was evident at D64.  
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Table 3.3: Top 10 most significant upstream regulators.  

This table illustrates the top 10 upstream regulators identified by IPA® in our 
two data sets: ΔD8 and ΔD64. For each regulator, its fold change (FC) is 
reported together with the Z-score, the prediction of its activation status 
(activated if Z-score>2 and inhibited if <-2) and p-value of overlap (Fisher's 
Exact statistical test). 
 

 
∆D8 ∆D64 

Upstream 

Regulator 

FC Z-score Predicted 

activation 

Overlap 

p-value 

Upstream 

Regulator 

FC Z-score Predicted 

activation 

Overlap 

p-value 

TP53 -1.54 -1.92 - 6.7E-07 FOXP3 3.34 0.68 - 4.0E-04 

IL10 -1.25 0.09 - 1.3E-06 CBFB 1.22 - - 9.8E-04 

HNFA4 1.25 -0.92 - 3.4E-06 IL21 1.26 2.49 Activated 1.6E-03 

TGFB1 1.25 -5.53 Inhibited 4.1E-06 GATA3 1.40 0.84 - 1.9E-03 

FLT1 -1.51 -2.71 Inhibited 5.3E-06 IL10RA 1.93 0.91 - 2.1E-03 

TCL1A -1.48 -2.0 Inhibited 6.3E-06 RNASE2 4.20 0.78 - 2.1E-03 

NFE2L2 -1.98 -5.46 Inhibited 9.7E-06 IL6 -1.35 0.98 - 3.2E-03 

MTOR -1.51 -1.65 - 1.7E-05 MAFB -1.66 0.81 - 4.6E-03 

IFNG -1.60 -5.54 Inhibited 2.4E-05 STAT6 -1.39 1.36 - 5.1E-03 

NLRP12 -2.00 -0.134 - 3.3E-05 PRKAA1 1.25 0.37 - 5.8E-03 
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3.5 Gene expression changes during the follow-up period 
 

Transcriptional changes occurring in IMODALS patients during the follow-up period 

were analysed to investigate whether the ld-IL-2 effect was sustained once treatment 

ceased. The Limma package in R was used to generate a comparison called ΔD85. 

Similarly to what was done for ΔD8 and ΔD64, the transcriptome of 2MIU-IL2-treated 

patients at D85 was compared to their baseline (D1) and normalised to the same 

comparison within the placebo group. In this way, gene expression variation during 

the follow up period of the trial was analysed. 

 

A total of 508 RefSeq transcripts were found to be significantly (1.2 ≤ FC ≤ -1.2 and p-

value <0.05) differentially expressed (281 upregulated, 227 downregulated) (Figure 
3.24). Interestingly, four main Treg and immune suppression markers (FOXP3, IL2RA, 

CTLA4, IKZF2) were no longer significantly differentially expressed at this time point. 

The comparison of their fold change (FC) from ΔD85 with the results retrieved from 

the previous analyses during the drug administration period (ΔD8 and ΔD64) showed 

that the expression of these markers progressively increased during the treatment 

cycles, but it dramatically decreased once it ceased (Figure 3.25). This suggested 

that 2MIU-IL-2-promoted Treg activation was no longer preserved at D85.  
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Figure 3.23: Transcriptional Changes During the Follow-up Period. 

Volcano plot showing DEGs resulting from the comparisons ΔD85. DEGs are 
colour-coded depending on their fold change (FC) and their significance levels 
(-Log10 p-value): non-significant transcripts or transcripts that failed the FC cut-
off are reported in grey, significant and with FC ≤-1.2 in blue and significant and 
with FC ≥1.2 in red. Three black lines are also shown: the horizontal line 
indicates the significance threshold (-Log10 p-value=1.3 or p-value=0.05) and 
the  two vertical dotted lines mark the FC cut-offs at -1.2 and 1.2 respectively. 
(Empirical Bayesian statistics were conducted using Limma to find significant 
DEGs).  
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Figure 3.24. Longitudinal Comparison of Treg Marker Expression. 

Plot displaying the variation in the expression of 4 key Treg activation  and 
immune suppressive markers – FOXP3, IL2RA, CTLA4 and IKZF2- throughout 
and after the administration period. Their expression increases during the 
2MIU-IL-2 treatment and peaks at D64 but it decrease at D85. On the x-axis 
the different Limma comparisons are shown while on the y-axis each transcript 
FC is reported. 

 

 

Furthermore, to investigate the biological functions of the upregulated and 

downregulated DEGs observed in ΔD85, a GO analysis was carried out using Enrichr. 

Twenty-five upregulated and 23 downregulated significantly enriched GO BPs were 

found and none of these were related to immunological processes (Figure 3.27). 

Interestingly though, an upregulation in mechanisms involved in CNS development, 

including neural tube development and neuron differentiation, were observed, while 

downregulation of neurotransmitter transport and axonogenesis was documented.  
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Figure 3.25: Gene Ontology Analysis During the Follow-up Period. 

Bar plots showing 23 downregulated (A) and 25 upregulated (B) enriched Gene 
Ontology biological processes. Significance threshold lines are reported in 
black (-Log10 p-value=1.3). (Fisher exact statistical test was performed using 
Enrichr and enrichment -Log10 p-value is reported in these graphs). 

 

 

Moreover, a different analysis was conducted with Metascape to visualise 

relationships between altered enriched processes. Upregulated and downregulated 

significantly (1.2 ≤ FC ≤ -1.2 and p-value <0.05) differentially expressed terms from 

ΔD85 were imported and analysed separately with this software (Figure 3.27A and 
B). Interestingly and differently from the Enrichr GO analysis, two immunological 

processes were identified to be downregulated, namely "chemotaxis" and "cytokine-

cytokine receptor interaction". Amongst the upregulated pathways, several 

mechanisms involved in the development and differentiation of different organs and 

tissues was reported. Notably and consistently with the GO analysis, five processes 

involved in the positive regulation of neuron differentiation were upregulated which 

might suggest a possible effect of the three 2MIU-IL-2 treatment cycles on CNS cells.  
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Figure 3.26: Metascape analysis in the follow-up period. 
Enrichment networks generated with the software Metascape showing enriched clusters of pathways for the downregulated 
(A) and upregulated (B) gene lists outputted from the comparison ΔD85. Each node represents a pathway and terms showing 
a Kappa similarity score > 0.3 are connected by edges. Clusters are labelled and highlighted using different colours. 
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Given the identification of interesting pathways/processes suggesting an alteration in 

neuronal development/differentiation, neurotransmission and axonogenesis identified 

from both the GO and Metascape enrichment analyses at D85, transcripts included in 

all these processes were investigated in detail. Twenty-five unique RefSeq terms were 

reported amongst the CNS-related pathways, nine of which had a decrease 

expression while 16 showed were increased (Figure 3.28). Interestingly, several 

transcription factors involved in neurogenesis and neuronal development were 

amongst these altered transcripts. Moreover, transcripts associated with 

axonogenesis and regulation of neuronal branching (COBL, SLC25A12 and FEZ1) 

showed an increased expression after the end of ld-IL-2 treatment. However, 

downregulation of nerve growth factor (NGF) was also reported. This is a crucial factor 

which regulates the survival, proliferation and differentiation of neurons and its 

reduced expression might have detrimental consequences.  
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Figure 3.27: ΔD85 Transcripts included in CNS-related pathways  

In this plot, all the transcripts included in the different CNS-related processes 
and pathways identified to be altered at D85 are reported. In particular, their 
fold change (FC) is displayed on the X-axis while the gene symbol is reported 
on the Y-axis. Moreover, a short description of each protein function is reported 
as well (source: GeneCards.org). Terms showing an increased expression are 
reported in red and decreased genes in blue. Two dotted lines are also 
displayed which indicate the FC cut-off set (1.2 ≤ FC ≤ -1.2|).   
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3.6 Microarray validation 
 
Microarray data validation was performed through qRT-PCR. Four key Treg and 

immune suppression markers (FOXP3, IL2RA, CTLA4, IKZF2) were chosen and 

samples from all 2MIU-IL-2-treated and placebo patients across all time points were 

screened. In line with microarray data, qRT-PCRs showed a time-dependent increase 

in the mRNA levels of these markers during the administration period which peaked 

at D64 (Figure 3.29). This suggested an induction of immune suppression over time 

throughout the trial, with the maximum effect visible following the third treatment cycle. 

At D85, consistently with microarray gene expression data, this upregulation was no 

longer sustained and transcripts showed levels more comparable to the baseline. In 

contrast, no significant alterations were reported longitudinally within the placebo 

group. Notably, a considerable variability in the expression of the four markers was 

registered amongst 2MIU-IL-2-treated patients. This suggested the existence of inter-

individual variations in the response of ALS patients to the drug. This finding is in line 

with flow-cytometry data (Camu et al., 2020) showing a wide range of Treg count 

increases during the administration period (standard deviation of Treg cells measured 

at D8=101.7 and at D64=144.8). Moreover, to further validate agreement between 

microarray and qRT-PCR data, expression values retrieved with the two techniques 

were correlated (Pearson's correlation). Significant positive correlations were reported 

for all the four markers (IL2RA R=0.547 and P-value=1.6E-08; FOXP3 R=0.477 and 

P-value=1.1E-06; CTLA4 R=0.42 and P-value=2.4E-05; IKZF2 R=0.358 and P-

value=3.5E-04). 
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Figure 3.28: Microarray validation  

(A) Graphs showing expression of FOXP3, IL2RA, CTLA4 and IKZF2 in 2MIU-
IL-2 treated (in red) and placebo (in blue) patients at the 4 different time points. 
Data were generated through qRT-PCR. A time-dependent activation of these 
markers is reported in the ld-IL-2 group. Box plots display mean ± SD (technical 
replicates=3). A two-way ANOVA with either Sidak (for comparisons between 
different treatment regimens, significant differences indicated with *) or Tukey 
(for comparisons between time points within the same treatment type, 
significant differences indicated with #) correction for multiple comparisons was 
conducted. * or #: Adjusted p-value<0.05, ** or ##: Adjusted p-value<0.01. (B) 
Plots showing correlation between SST-RMA-normalized microarray intensity 
values and qRT-PCR relative expression. Regression lines (black) and their 
regression confidence bands (grey) are also shown. Each dot represents a 
sample belonging to a patient at a certain time point.  

 

 

In conclusion, microarray gene expression data were validated as they were in line 

with qRT-PCR findings. Nonetheless, a considerable variation was reported amongst 

the 2MIU-IL2-treated patients in the level of upregulation of the four Treg markers. 

Further analysis and discussion relating to these variations is provided in the next 

chapter. 
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3.7 Discussion  
 

The overall aim of the work described in this chapter was to generate gene expression 

profiles from participants recruited into the IMODALS clinical trial to evaluate 

transcriptomic changes at selected time points and longitudinally throughout the trial. 

Moreover, differences between the two treatment regimens (1MIU and 2 MIU-IL2) 

were assessed. A summary of the main results obtained from this section of the study 

is provided below:  

 

1) Total RNA was extracted from white blood cells at different time points (D1, 

D8, D64 and D85) and used to generate microarray gene expression 

profiles. Overall good quality RNA was obtained and microarrays were 

produced for all the samples except for 68WKU83 (patient C01P011 at D8) 

whose RNA was degraded. Nonetheless, QC analysis was successful for 

the remaining 107 microarray gene expression profiles, therefore data 

quality was ascertained.  

 

2) The first comparative analysis performed focused on studying patients' 

transcriptional reaction following three administration cycles. Hence, data at 

D64 were analysed, the time at which the response to ld-IL-2 was 

hypothesized to have reached a peak. Evidence of different transcriptional 

status between the three investigated groups (1MIU, 2MIU-IL2 and placebo) 

was provided in a PCA, where a clear spatial separation was visible. Gene 

expression and gene enrichment analyses were performed and the higher 

dosage revealed a broader degree of immune regulation. In addition, dose-

dependency was identified for the majority (approximately 70%) of the 

commonly differentially expressed genes.  

 

3) Longitudinal gene expression analyses were performed in order to assess 

transcriptional changes occurring throughout the administration period. 

Specifically, two comparisons were produced, namely ΔD8 and ΔD64, so 

that 2MIU-IL-2 patients' transcriptomes at specific time points was 

compared to their baseline levels and normalised to the same comparison 
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in the placebo group. These comparisons were analysed alongside to 

highlight similarities and differences in gene expression changes associated 

with the different stages of the trial. Whilst a broad immune suppression was 

found at the early trial time point, evidence of the expansion of the Treg 

population and activation of immune regulative processes was 

predominantly reported at D64.  

 

4) Transcriptional changes during the follow-up period were also investigated. 

Similarly to the previous longitudinal analyses, the gene expression profiles 

of 2MIU-IL-2 treated patients at D85 (24 days after the last injection) were 

compared to the baseline and normalised to the placebo group. The ld-IL-

2-induced transcriptional variations reported during the course of the trial 

were not sustained following the end of the ld-IL-2 treatment. Nonetheless, 

some interesting CNS-related pathways were found to be altered at this time 

point. 

 

5) Lastly, microarray validation was also carried out through a qRT-PCR 

screening of four Treg markers (FOXP3, IL2RA, CTLA4 and IKZF2). 

Significant and positive correlations were reported for all the investigated 

transcripts between microarray and qRT-PCR data.  

 

The initial analysis of microarray gene expression data at D64 revealed that the higher 

drug concentration (2MIU-IL-2) was able to induce a greater degree of transcriptional 

regulation compared to 1MIU-IL-2. Specifically, an almost double amount of 

differentially expressed genes (DEGs) was found in the 2MIU_vs_Placebo 

comparison compared to 1MIU_vs_Placebo. More interestingly, functional and 

biological processes characteristic of each treatment group were identified following 

gene enrichment analyses. The unique list of genes differentially expressed in the 

comparison 1MIU_vs_Placebo was enriched in processes including cholesterol and 

phospholipid homeostasis, nucleoside catabolism and apoptosis regulation. Only a 

minor number of immune-related mechanisms were identified in this comparison. In 

contrast, a more evidence of immune regulation was visible in the list characteristic of 

2MIU_vs_Placebo. In particular, genes involved in the regulation of the adaptive 

immune system were solely enriched in this comparison, suggesting a broader 
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immune modulation promoted by the higher ld-IL-2 dose. Moreover, genes implicated 

in cellular processes (including intra-cellular transport, transposition, Ca2+ and K+ 

signaling), cell cycle and RNA metabolism were differentially expressed in 

2MIU_vs_Placebo. The latter mechanism is particularly interesting in the context of 

ALS given the RNA dysregulation characteristic of the disease (Butti and Patten, 

2018). Specifically, genes involved in RNA (mRNA and tRNA) subcellular transport 

were particularly enriched in the 2MIU_vs_Placebo dataset. Several pieces of 

evidence in the literature reported an RNA transport impairment in this disease which 

is particularly associated with mutation in ALS-causing genes such as TDP-43, FUS 

and C9orf72 (Coyne et al., 2017). 

A considerable proportion of transcripts (1160 of which 375 were RefSeq-annotated) 

were commonly differentially expressed in both comparisons. Their GO analysis 

revealed a significant enrichment in processes such as the differentiation, function and 

migration of the T cell subset and in the regulation of production, secretion and 

signaling of several cytokines (including IL-10, IL-2, IL-4, IL-7 and IL-15). Additionally, 

results from the Metascape analysis showed specific evidence of Treg mediated 

immune-modulation with terms such as: "RUNX1 and FOXP3 control the development 

of regulatory T lymphocytes", "Immunoregulatory interaction between lymphoid and 

non-lymphoid cell", "negative regulation of immune system process" and "PID IL2 

STAT5 signaling pathway", being enriched. This suggested that both ld-IL-2 doses 

were able to promote an alteration within the immune system and an upregulation of 

Treg markers. Nonetheless, 2MIU-IL-2 seemed to induce a more pronounced 

immune-regulation and, in fact, a dose-dependent expression was identified for the 

majority (~70%) of the commonly DEGs common to both treatment groups. This is in 

line with results reported by Camu et al. which showed a dose-dependent increase in 

the percentage of Tregs in IMODALS participants (Camu et al., 2020). Interestingly, 

ganglioside, ceramide and lipid metabolism were also reported as commonly altered 

at the end of both 1MIU and 2MIU IL-2 treatments and the genes included in such 

processes had increased levels of expression. These mechanisms have been 

implicated in the pathogenesis of several neurodegenerative diseases, including ALS. 

In particular, gangliosides and ceramides were suggested to be modulators of disease 

progression (Moll et al., 2020). Conflicting results have been found and it is still 

debated whether increased or decreased levels are associate with disease 

pathogenesis. Nonetheless, recent findings in SOD1G93A mice suggested that the 
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inhibition of glucosylceramide synthase accelerated disease progression (Dodge et 

al., 2015). Additionally, mutations in the glycosyltransferase GLT8D1 were associated 

with a familial form of ALS and caused a reduced enzyme activity (Cooper-Knock et 

al., 2019). Thus, modification in these processes and increased gene expression can 

potentially contribute to the beneficial effects of ld-IL-2 in ALS patients although further 

investigation is needed.  

Given the reported dose-dependent trend and cost constrains, further analyses were 

conducted comparing only 2MIU IL-2 with placebo participants. 

 

Longitudinal transcriptional analyses identified a broad differential expression in the 

comparison at ΔD8 (2643 significantly DEGs). This can be interpreted as a prompt 

response of the individual to the newly administered drug during the first treatment 

cycle. Over the course of the trial though, an adaptation probably occurred and less 

DEGs were reported at ΔD64. Notably, while most of the genes showed reduced level 

of expression in ΔD8, more upregulation was reported at the later time point. 

GO gene enrichment and IPA® pathway analyses were carried out to identify 

mechanisms longitudinally altered with the treatment. Both revealed a sharp inhibition 

of inflammatory pathways after the first administration cycle (ΔD8). In particular, 

transcripts associated with the function of both innate (neutrophils, eosinophils, 

macrophages and natural killers) and adaptive immune cells (cytotoxic T cells and B 

cells) were downregulated at D8. Of importance, evidence of dysregulation in the two 

branches of the peripheral immune systems is reported in the ALS literature. In 

particular, neutrophil activation correlates with disease severity, predicts patient 

survival and increased expression of neutrophil-specific markers was documented in 

the ALS blood transcriptome compared to healthy controls (Choi et al., 2020, Swindell 

et al., 2019, McGill, 2020). Moreover, natural killer cell alterations in the peripheral 

blood, as well as their infiltration in the spinal cord and motor cortex of ALS patients 

was registered (Gustafson et al., 2017, Garofalo et al., 2020). Although the role of 

monocytes/macrophages in ALS is still to be elucidated and controversial findings 

have been reported, recently, total CD14+ monocyte levels were found to be 

significantly higher and they showed increased M1 activation and pro-inflammatory 

abilities (McCombe et al., 2020, Jin et al., 2020, Du et al., 2020). Moreover, adaptive 

immune system cells such as cytotoxic T cells are known to infiltrate the CNS in ALS 

and contribute to MN loss (Coque et al., 2019, Nardo et al., 2018). NF-kB and cytokine 
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signalling pathways and diapedesis of leukocytes was also inhibited after the first 

treatment cycle and this may contribute to the early stage immune-suppression 

induced by ld-IL-2. Furthermore, cell death mechanisms were reported to be activated 

at this time point. Although this might be perceived as a detrimental effect, these 

processes seemed to be limited to leukocytes. However, this process specificity 

toward leukocytes should be further investigated to exclude possible toxic effects on 

other cell types. In contrast, pro-survival effects were reported on CNS cells with cell 

death pathways being downregulated relating to brain and cortical neurons. Taken 

together these data suggest that the initial suppression of the immune system may 

have beneficial effects by dampening the widespread inflammation characteristic of 

ALS. This seems to be a short-term effect given that the downregulation of the majority 

of the inflammatory pathways was no longer present at D64. However, a robust 

activation of immune-regulatory processes was observed at this later time point, with 

evidence of progressive and time-dependent activation of both Tregs and Th2 being 

provided. Of importance, Th2 share anti-inflammatory and neuroprotective properties 

with Tregs and both cell types are reduced in ALS patients (Beers et al., 2011a, Zhao 

et al., 2012). Lymphocyte suppression and apoptosis induction were recorded at D64 

which might be due to the inhibitory action of Treg/Th2 on inflammatory cells. We can 

speculate that this Treg/Th2 activation, if sustained over time through continued ld-IL-

2 administrations, could lead to a more evident physiological immune-modulation and 

possibly to the re-establishment of an immunological homeostasis.  

Alongside immunological pathway alterations, ld-IL-2 appeared to affect other 

biological mechanisms. The "protein ubiquitination pathway" and the "NFR2-mediated 

oxidative stress response" were altered at D8. Given that these processes are 

disrupted and implicated in the pathogenesis of ALS, a further downregulation 

consequent to the drug administration may be detrimental. To investigate on this 

possibility, transcripts included in these processes were analysed in more detail. 

Dysregulation in proteostasis is a well-known pathological mechanism of ALS. In 

particular, alteration in protein folding and the consequent aggregation together with 

defective protein degradation, have been regularly reported in the ALS literature 

(Medinas et al., 2017, Malik and Wiedau, 2020). The genes included in the IPA "protein 

ubiquitination pathway" were mainly coding for subunits of the proteasome, 

ubiquitination or heat shock proteins. A Metascape analysis revealed a close 

association between these proteins and MHC class I mediated antigen processing and 
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presentation. Such a mechanism is crucial for pathogen recognition and the initiation 

of the adaptive immune response. Therefore, it can be speculated that a 

downregulation of these transcripts at D8 reflected a prompt suppression of 

inflammatory processes rather than a detrimental effect. In fact, the ubiquitin-

proteasome system has been previously reported in the literature as crucial for the 

formation of the immune-proteasome and immune cells substantially rely on this 

mechanism for the production of cytokines and immunoglobulins (Kammerl and 

Meiners, 2016, Çetin et al., 2021). Nonetheless, further investigations is needed to 

exclude the downregulation of genes involved in the protein-ubiquitination pathway in 

CNS cells to rule out the possibility of a further impairment in the proteostasis function.  

 

NFR2 is a transcription factor which promotes the expression of free radical 

scavengers, anti-oxidants but also anti-inflammatory molecules (Sivandzade et al., 

2019). Excessive reactive oxygen species (ROS) generation, oxidative stress and 

consequently oxidative damage are crucial mechanisms in ALS pathophysiology 

(Barber and Shaw, 2010). Moreover, dysregulation in NRF2 signalling pathways has 

been reported in both ALS models and patients' samples and it is now considered a 

promising therapeutic target for this disease (Johnson and Johnson, 2015, Mead et 

al., 2013). Therefore, the observed inhibition of NFR2 pathways could potentially 

represent a detrimental short-term effect of ld-IL-2 given that this suppression was not 

detected at D64. However, considering the concurrent downregulation of mechanisms 

involved in the metabolism, synthesis and production of ROS, we can speculate that 

ld-IL-2 could instead have an anti-oxidant effect dampening the production oxidative 

species and therefore reducing the need for NRF2-mediated activation of anti-oxidant 

genes. However, further research is necessary to demonstrate the validity of this 

hypothesis.  

Consistently with previous results, the IPA upstream regulator analysis identified 

genes with immunological functions as able to recapitulate the overall gene expression 

changes in the comparison ΔD8. In particular, TGFB1, IFNG and TCL1A appeared to 

be inhibited with a significant Z-score. Moreover, as expected, NFE2L2, also known 

as NRF2, was reported as inhibited at D8. In contrast, the more anti-inflammatory IL-

21 was predicted as activated by IPA in the comparison ΔD64. Additionally, despite 

not reaching a significant Z-score and obviating the possibility of activity prediction 
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was not possible, other crucial immune-suppressive genes were identified as 

upregulated at ΔD64, including FOXP3 and GATA3.  

 

The analysis during the follow-up period revealed that the immune-regulatory effect of 

ld-IL-2 was no longer preserved at D85 and the expression of Treg markers (FOXP3, 

IL2RA, CTLA4 and IKZF2) was comparable to baseline levels. These findings are 

consistent with results shown by Camu et al. who reported a decrease in the 

percentage of Treg in patients' blood when treatment ceased (Camu et al., 2020). 

Nonetheless, 508 transcripts were found to be differentially expressed at this post-

treatment time point. Their enrichment analysis revealed no clear alteration in 

immunological pathways, although some CNS developmental processes were 

upregulated (neural tube formation, development and closure and positive regulation 

of neuron differentiation) while axonogenesis and neurotransmitter transport were 

downregulated. Given the potential importance of these mechanisms in 

neurodegeneration, transcripts included in these processes were investigated in more 

detail. Interestingly, transcription factors implicated with neuron differentiation 

(including SOX10, GRHL2 and PROX1) showed an increased expression at D85. 

Moreover, genes involved in neurite outgrowth and axonogenesis were also 

upregulated (COBL, SLC25A12 and FEZ1). This is consistent with previous findings 

which proposed IL-2 as a neurotrophic factor able to promote morphological changes 

in cultured neurons including an increase in neurite length and branching index 

(Sarder et al., 1993, Shen et al., 2010). Nonetheless, these transcriptional changes 

need to be validated in neuronal cells to ascertain this possible protective effect. 

Surprisingly, and in contrast with the above findings, the expression of the nerve grow 

factor (NGF) was slightly decreased (FC= -1.39). This protein regulates neuronal 

proliferation and survival and therefore its reduced expression could represent a 

detrimental effect, if confirmed in MNs.  

 

In line with microarray data, a time-dependent increase in the expression of all of these 

transcripts measured via qRT-PCR was reported within the 2MIU-treated group, 

whereas no significant variations were observed in placebo participants. In particular, 

Treg-specific marker expression peaked at D64 which suggests the existence of a 

cumulative reaction where residual effects of the first two administration cycles impact 

on the last one. During the follow-up post-treatment period though, 2MIU-IL-2 effect 
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was no longer sustained and expression levels were comparable to the baseline. 

Interestingly, this analysis revealed evidence of inter-individual dissimilarities in terms 

of individual patient responses to ld-IL-2. This is consistent with data presented by 

Camu et al. (Camu et al., 2020) and the great variability among participant responses 

in terms of Treg expansion previously reported in other clinical trials evaluating the 

effects of ld-IL-2 in other autoimmune disorders (Hartemann et al., 2013, Koreth et al., 

2011, Rosenzwajg et al., 2018, He et al., 2020). Further discussion and analysis 

regarding these inter-individual dissimilarities is provided in the Chapter 4.  

  



 177 

Chapter 4 – Results: IMODALS Patient 

Variability and Predictive Biomarker 

Identification  

 

The previous chapter provided insights on the transcriptomic differences amongst 

IMODALS trial participants following treatment with low-dose IL2 (ld-IL-2) at different 

time points and dissimilarities in drug-mediated Treg stimulation were reported. For 

this reason, the work describes in this chapter aimed to further investigate these inter-

individual differences and to identify proposed predictive biomarkers that, given their 

level of gene expression at baseline, were able to forecast patient responsiveness to 

ld-IL-2 following three cycles of treatment. Data shown in this chapter were published 

together with a selection of the results shown in chapter 3 as part of an original article 

in the journal Brain Communications (Giovannelli et al., 2021) (see Appendix 1).  

 

4.1 NanoString Analysis 
 

Previous reported gene expression data suggested the existence of differences in the 

magnitude of different Treg marker upregulation within patients throughout the trial 

(see chapter 3). This is consistent with flow-cytometry data (as measured by our 

collaborators Dr Timothy Tree and Dr Marius Mickunas at King's College London) 

which suggested variability in the Treg count following 2MIU-IL-2 administration 

(Camu et al., 2020). Some participants (e.g. C01P021, C01P003) showed a rapid and 

almost exponential increase in their Treg numbers following drug treatment, whilst 

other individuals (e.g. C01P036, C01P016) seemed to have expanded their Treg 

population only mildly at D8 and maintained it at constant level with limited or no further 

increases at D64 (Figure 4.1).  
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Figure 4.1: Treg Expansion Variations in IMODALS Participants 

Graph displaying the number of Tregs per μl of blood of each 2MIU IL-2-treated 
participant at each time point (Flow-cytometry data). Patients are shown with 
different colours and their IDs are reported in the legend. 
 
 

Therefore, classification criteria were proposed and ALS participants were subdivided 

into low, moderate and high Treg-responders depending on their regulatory T cell 

counts as measured at D64. Thus, arbitrary criteria were set as: high responders: 

TregD64 > 250 cells/μl of blood; moderate responders: TregD64 between 250 and 150 

cells/μl of blood; low responders: TregD64 < 150 cells/μl of blood (see Methods section, 

Table 2.2). Importantly, no significant differences were reported in terms of age or 

disease progression (One-way ANOVA statistical analysis with Tukey's multiple 

comparisons) between these three participant subgroups (Figure 4.2). The exclusion 

of these two factors as possible confounding variables is key for the interpretation of 

our data.  
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Figure 4.2: Age and Disease Decline in 2MIU-IL2-Treated Patients. 

Bar plots showing no significant differences between low, moderate and high 
Treg-responders in terms of age (A) or disease decline per month (as reported 
in Table 2.2, page 79) based on points of decline and the ALSFRSR (B). 
Graphs display mean ± standard deviation.  
 

 

The aim of this part of the study was to evaluate the transcriptional response to ld-IL-

2 and how this related with the observed differences in Treg counts. In particular, we 

intended to assess whether these dissimilarities were due to changes in 

immunological transcriptome of the patient group. For this reason, four high, four low 

responders and 4 placebo participants were selected and their RNA samples at D1, 

D8 and D64 were analysed using the NanoString Autoimmune Discovery Panel. This 

contains a total of 755 transcripts: 740 pro- and anti-inflammatory mediators and 15 

housekeeping controls. Notably, data from D85 was not included in this analysis as 

we aimed to identify transcriptional dissimilarities underlying the differences in the 

magnitude of Treg expansion during the active treatment period and also because 

previously reported evidence showed a reduced immune modulatory effect of ld-IL-2 

in the follow-up period. 
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4.1.1 NanoString Quality Control 

 

NanoString gene expression data were analysed using the software nSolver 4.0 in 

order to assess their quality. For each sample, several quality control (QC) parameters 

were computed by the software (see section 2.1.7) (Table 4.1): 

 

- Imaging QC: this metrics indicates the fields of view (FOVs) successfully 

captured by the instrument. A score of at least 0.75 should be documented in 

order to considered the data robust. As reported in the table, all the samples 

passed this QC metric.  

 

- Binding density QC: this parameter reports the concentration of barcodes 

detected by the instrument. The ideal binding density range should be from 0.1 

and 2.25. The vast majority of our samples exceeded this range. As reported 

on the nanoString manual, a plausible explanation of this would be the high 

input amount of RNA used. In fact, as previously mentioned in section 2.1.7, 

higher RNA concentrations were used due to prior poor data obtained using the 

quantities recommended by the company. Consequently, given that more RNA 

sample was loaded, higher barcode density was reported. However, as 

indicated by the nanoString user guide, if the binding density is only slightly out 

of range it does not indicate a problem and it can be ignored. Therefore, we still 

considered the data to be reliable.  

 

- Positive control QC: this score illustrates the correlation between the known 

concentrations of positive controls included in the panel and the counts 

measured by the instrument. This value should be equal or greater than 0.9 

and the vast majority of our samples passed this threshold. Only four samples 

showed lower scores. However, given that they were only slightly outside the 

range (0.86-0.89), they were also considerate acceptable.  

 

- Limit of detection QC: this metric indicates whether counts of the positive 

control POS_E are significantly above the counts of negative controls. If this is 

at least two standard deviations higher, the sample has passed this QC metric. 
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As reported in Table 4.1, most of the samples did not meet this criterion. 

However, when closely investigated, the count mean of the all negative controls 

(NEG_A to NEG_H) is lower the POS_E across all samples (Figure 4.3A). 

Nonetheless, higher counts than expected were recorded for NEG_D and H in 

all the samples whilst the other controls showed counts close to 0 as 

anticipated. This is visible in Figure 4.3B where the removal of NEG_D and H 

increased the expression difference between negative controls and POS_E. As 

reported in the nanoString user manual, these results in one or two negative 

controls could happen due to cross-hybridization with probe targets in the 

samples, which is frequent when using high concentrations of RNA as input. In 

this case, it is advised to closely inspect both positive and negative controls. If 

positive controls show progressively decreasing concentrations and if only one 

or two negative controls are markedly different to the expected values, the data 

is very likely to be robust and reliable. Given that the positive controls from all  

of our samples showed the anticipated expression pattern with POS_A > 

POS_B > POS_C > POS_D > POS_E > POS_F (Figure 4.4) and, as previously 

mentioned, only NEG_D and H had higher counts, our data were considered 

robust.   
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Figure 4.3. Count Differences between Negative Controls and POS_E. 

Dot plots showing the raw counts of POS_E and either all the negative controls 
(A) or excluding NEG_D and H (B) across all the samples screened. The 
horizontal line indicates the mean expression. NEG_D and H showed higher 
raw counts than expected which was probably due to cross-hybridization. Their 
exclusion increased the differences with POS_E.  
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Figure 4.4. NanoString Positive Control Expression.  

This graph displays the raw counts of all the positive controls in all the samples. 
Positive controls belonging to the same sample are connected with lines. 
POS_A to POS_F showed a decreasing pattern consistent with the standard 
concentrations described by the manufacturer.  

 
 
 
Taken together, these results suggested that the transcriptional data generated with 

the nanoString platform were of acceptable quality and were therefore used for further 

gene expression analysis. 
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Table 4.1: NanoString Data QC summary 

Tables 4.1a and 4.1b summarise the quality control scores obtained from the 
Autoimmune Discovery nanoString panel. Sample characteristics are reported 
including: patient IDs, visit day, treatment and response type. These were split 
and run into three different cartridges as indicated in the column "run". Raw QC 
values are reported for each metric (imaging QC, binding density QC, positive 
control QC and limit of detection) and scores outside the reference range are 
reported in red 
 

Table 4.1a 

Run Patient 

code 

Day Treatment 

Type 

Response 

Type 

Imaging 

QC 

Binding 

Density 

QC 

Positive 

Control 

QC  

Limit of 

detection 

QC 

1 C01P003 1 2MIU  High 0.99 2.71 0.99 20.55 

1 C01P003 8 2MIU  High 1 2.38 0.99 26.34 

1 C01P003 64 2MIU  High 0.98 1.97 0.99 20.66 

1 C01P018 1 2MIU  Low 0.95 3.52 0.86 14.29 

1 C01P018 8 2MIU  Low 0.98 3.25 0.94 19.67 

1 C01P018 64 2MIU  Low 1 2.28 0.99 25.48 

1 C01P021 1 2MIU  High 1 0.18 0.97 5.62 

1 C01P021 8 2MIU  High 1 2.55 0.99 19.84 

1 C01P021 64 2MIU  High 1 1.64 0.99 23.96 

1 C01P022 1 Placebo NA 0.96 3.18 0.95 15.44 

1 C01P022 8 Placebo NA 0.95 3.31 0.87 22.45 

1 C01P022 64 Placebo NA 1 1.59 0.99 22.27 

2 C01P011 1 2MIU  Low 0.98 2.85 0.98 20.71 

2 C01P011 8 2MIU  Low 0.99 2.52 0.99 17.58 

2 C01P011 64 2MIU  Low 1 2.79 0.98 16.86 

2 C01P012 1 Placebo NA 0.99 2.51 1 17.23 

2 C01P012 8 Placebo NA 0.98 3.14 0.97 26.92 

2 C01P012 64 Placebo NA 0.98 2.87 0.99 19.37 

2 C01P009 1 2MIU  High 1 2.65 0.99 23.83 

2 C01P009 8 2MIU  High 1 2.88 0.98 24.55 

2 C01P009 64 2MIU  High 0.99 2.39 0.98 23.16 

2 C01P017 1 Placebo NA 0.98 3.21 0.94 23.46 

2 C01P017 8 Placebo NA 0.97 3.24 0.95 22.12 

2 C01P017 64 Placebo NA 0.91 3.38 0.95 23.27 
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Table 4.1b 
 

Run Patient 

code 

Day Treatment 

Type 

Response 

Type 

Imaging 

QC 

Binding 

Density 

QC 

Positive 

Control 

QC  

Limit of 

detection 

QC 

3 C01P031 1 Placebo NA 1 2.28 1 19.43 

3 C01P031 8 Placebo NA 1 2.98 0.95 20.85 

3 C01P031 64 Placebo NA 0.94 3.34 0.89 18.62 

3 C01P037 1 2MIU  High 0.99 2.97 0.97 28.22 

3 C01P037 8 2MIU  High 0.97 2.93 0.98 22.41 

3 C01P037 64 2MIU  High 0.99 3.02 0.97 17.18 

3 C01P016 1 2MIU  Low  1 2.61 0.99 17.12 

3 C01P016 8 2MIU  Low 0.96 3.38 0.88 15.88 

3 C01P016 64 2MIU  Low 1 3.19 0.96 20.27 

3 C01P036 1 2MIU  Low 0.98 3.32 0.92 29.64 

3 C01P036 8 2MIU  Low 0.99 2.98 0.97 20.96 

3 C01P036 64 2MIU  Low 0.97 3.16 0.93 24.55 
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4.1.2 NanoString Gene Expression Analysis and Validation 

 

Following data generation and normalisation (section 2.1.7), gene expression profiles 

were analysed with the aim of finding, across different time points (D1, D8, D64), 

immunological transcripts differentially expressed between patients showing marked 

dissimilarities in Treg counts at the end of the trial (low, high-Treg responders and 

placebo).  

 

A heatmap displaying all the 740 transcripts included in the panel was produced in 

order to gain a general overview of the transcriptional status across patient groups 

(Figure 4.5). An evident difference in gene expression was clearly visible at baseline 

between high and low responders. At D64, although still quite dissimilar, low 

responders seemed to start changing their expression status and became more similar 

to high responders. In contrast, placebo patients showed an opposite trend and their 

phenotype at D8 was more comparable to low responders at baseline.  
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Figure 4.5: NanoString Panel Gene Expression Overview  

Hierarchically clustered heatmap summarising the expression of the 740 
transcripts included in the Autoimmune Discovery nanoString panel. Each gene 
relative expression across different sample groups (H 2MIU D1, D8, D64= high 
responders expression across time points; L 2MIU D1, D8, D64= low 
responders expression across time points and Placebo at D1, D8 and D64) is 
graphed as z-score. Positive z-scores are colour coded in red and negative in 
blue. 
 
 

Subsequently, a principal component analysis (PCA) was performed to assess and 

visualise transcriptional-driven group separations. In particular, a multi-group 

comparison (p-value<0.05) was performed using the software Qlucore and a three 

component PCA was generated (Figure 4.6). High-responder samples from D8 and 

D64 appeared to be spatially distanced from the rest of the samples, whereas, placebo 

and low-responders were more dispersed and partially overlapped.  
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Figure 4.6: Principal Component Analysis of The NanoString Samples 

PCA plot summarising expression differences between samples depending on 
treatment regimen and time point (colour code legend is reported. H 2MIU D1, 
D8, D64= high-responders at D1, D8 and D64; L 2MIU D1, D8, D64= low-
responders at D1, D8 and D64 and Placebo at D1, D8 and D64). This analysis 
was performed using the software Qlucore and a multi-group comparison 
statistical test (p-value<0.05). 

 

 

The Qlucore multi-group comparison revealed a cluster of 81 discriminatory variables 

or transcripts that were responsible for the PCA spatial group separation. This 

comprised of a mixture of both pro and anti-inflammatory markers. Interestingly, at 

baseline, an almost opposite trend was reported between high and low-Treg 

responders in this selected panel of transcripts (Figure 4.7). In particular, a noticeable 

upregulation was reported in low-Treg responders at D1 in transcripts that were 

generally downregulated in high-Treg responders. In this latter group, only a minor set 

of genes showed an expression trend inversion throughout the trial, while the majority 
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of the transcripts seemed to be progressively up or downregulated during 2MIU-IL-2 

administration. In contrast, trend inversions in gene expression were reported in the 

low responders and, although they started from a very different transcriptional status 

at baseline compared to high responders, dissimilarities tended to be less evident at 

the end of the third cycle. Interestingly, at baseline, while patients who responded the 

most showed low levels of pro-inflammatory mediators, such as TLR1, TLR2, 

CXCL10, TNFRSF8, TNFRSF10C and IL12A, low-Treg responders expressed these 

genes considerably more and, concomitantly, their mRNA counts of anti-inflammatory 

agents, including TIGIT, IL2RA, IDO1, GATA3, IKZF2 and CTLA4, was slightly lower. 

However, the expression of these latter immune-modulatory mediators seemed to 

increase in low-Treg responders over the 2MIU-IL-2 administration period, although 

this was not as pronounced as in high-Treg responsive participants. The placebo 

group seemed to show a generally stable expression status across all time points 

although some differences were reported at D8 (Figure 4.7). 

A complete list of all the transcripts included in the set of eighty-one discriminatory 

variables is available in Table 4.2 together with their associated protein functions 

retrieved from the GeneCard database. Additionally, the normalized raw counts of 

each of the discriminatory variable for each sample screened is provided in Appendix 
8. 
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Figure 4.7: Eighty-one Discriminatory Variables 

 

Hierarchically clustered heatmap displaying differences in the expression of 81 
transcripts identified as discriminating variables from the PCA analysis in 
Chap.4_Figure 3. Gene expression variations across sample groups (H 2MIU 
D1, D8, D64= high-responders at D1, D8 and D64; L 2MIU D1, D8, D64= low-
responders at D1, D8 and D64 and Placebo at D1, D8 and D64) are displayed 
as z-scores (positive z-scores in red, negative in blue). An opposite expression 
between high and low-responders is detectable, especially at baseline (D1). 
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Table 4.2: List of The Eighty-one Discriminatory Transcripts  

In this table, all of the 81 discriminating transcripts are listed. In particular, the 
names of the associated genes are displayed together with their accession 
numbers (NCBI database) and a brief description of their protein functions 
(source: https://www.genecards.org/).  

 
Gene	name	and	
transcript	ID 

Function 

ATM	
NM_000051.3	

Serine/threonine	kinase	involved	in	double	strand	break	repair. 

BATF3	
NM_018664.2	

Transcription	factor	involved	in	the	differentiation	of	CD8(+)	
dendritic	cells. 

CCL18	
NM_002988.2	

Lymphocyte	chemotactic	factor.	 

CCL2	
NM_002982.3	

Chemoattractant	for		monocytes	and	basophils.	 

CCNY	
NM_001282854.1 

Cyclin	Y	participates	in	the	regulation	of	cell	division	cycle.	 

CCR4	
NM_005508.4 

Chemokine	(including	CCL17,	CCL22	and	CKLF)	receptor.	 

CD27	
NM_001242.4 

This	receptor	is	required	for	generation	and	long-term	maintenance	
of	T	cell	immunity.	 

CD28	
NM_001243078.1 

Protein	involved	in	T-cell	proliferation	and	survival.	It	also	mediates	
the	production	of	cytokines	and	the	development		of	Th2.	 

CD58	
NM_001779.2 

It	binds	CD2	and	promotes	the	activation	T	cells. 

CHUK	
NM_001278.3 

This	protein	inhibits	the	function	of	NF-kB. 

CSF2	
NM_000758.2 

Cytokine	with	stimulatory	effects	on	a	variety	of	immune	cells	
including	granulocytes,	macrophages,	eosinophils	and	erythrocytes.	 

CSF3R	
NM_000760.3 

CSF3	receptor.	Its	activation	stimulates	the	function	and	
differentiation	of	granulocytes. 

CTLA4	
NM_005214.3 

Important	inhibitory	receptor	expressed	on	Treg	that	mediates	
immune	suppression.	 

CTNNB1	
NM_001098210.1 

Catenin	Beta	1	is	involved	in	cell-cell	adhension	as	it	constitutes	the	
adherens	junctions.		 

CXCL1	
NM_001511.1 

Chemoattractant	for	neutrophils.	 

CXCL10	
NM_001565.2 

Chemokine	that	attracts	monocytes	and	T	cells.	 

CXCL8	
NM_000584.2 

Chemokine	involved	in	neutrophil	attraction. 

CXorf21	
NM_025159.2 

Uncharacterized	protein. 

EGR2	
NM_000399.3 

Early	growth	factor	2	is	a	transcription	factor	involved	in	
myelination. 

FAM98B	 It	promotes	arginine	methylation. 
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NM_173611.3 
FCGR2A/C	
NM_201563.4 

This	protein	is	expressed	on	phagocytic	cells	and	it	mediates	
phagocytosis.	 

FLI1	
NM_001167681.2 

Sequence-specific	transcriptional	activator. 

FOS	
NM_005252.2 

Member	of	the	FOS	gene	family.	It	interacts	with	JUN/AP-1	and	
functions	as	a	transcription	factor	that	regulates	a	variety	of	cellular	
functions.	 

FOSL1	
NM_005438.3 

Member	of	the	FOS	gene	family.			
 

FOXP1	
NM_032682.5 

Transcriptional	repressor	that	mediates	several	processes	involved	
in	both	development	and	adulthood.	 

GALC	
NM_000153.2 

This	lysosomal	protein	catalyses	the	hydrolysis	of	galactose	ester	
bonds. 

GATA3	
NM_001002295.1 

Transcriptional	activator	that	is	fundamental	for	Th2	differentiation. 

HCK	
NM_002110.2 

Protein	expressed	in	haematopoietic	cells	and	that	is	involved	in	
innate	immune	response	regulation. 

HHEX	
NM_002729.4 

Protein	involved	in	haematopoietic	differentiation	and	functions	as	a	
transcriptional	repressor.	 

ICAM1	
NM_000201.2 

Mediates	leukocytes	trans-endothelial	migration.	 

IDO1	
NM_002164.3 

Immune	suppressive	protein	secreted	by	dendritic	cells	(DC)	
following	the	binding	of	CTLA4	(on	Treg)	to	CD80/86	(on	DC). 

IFNGR2	
NM_005534.3 

Subunit	of	the	interferon	gamma	receptor. 

IKZF2	
NM_001079526.1 

Member	of	the	Ikaros	transcription	factor	family.	It	is	involved	in	
lymphocyte	development	and	it	is		crucial	for	Tregs. 

IL12A	
NM_000882.2 

Cytokine	that	stimulates	activated	T	and	NK	cells. 

IL2RA	
NM_000417.1 

IL-2	receptor	alpha	(also	called	CD25)	involved	in	the	immune	
regulatory	processes	mediated	by	Tregs.	 

IL32	
NM_004221.4 

Cytokine	that	participates	in	both	innate	and	adaptive	immune	
responses	by	inducing	the	production	of	other	cytokines	(such	as	
TNF-"	and	IL8). 

IL6ST	
NM_002184.2 

Signal	transducer	of	various	cytokines	including	IL6. 

IRAK3	
NM_007199.1 

Member	of	the	IL1	receptor-associated	kinase	protein	family	that	
negatively	regulates	TCR	signaling.	 

IRF1	
NM_002198.1 

Transcriptional	regulator	involved	in	both	innate	and	adaptive	
immune	responses.	 

ITGAX	
NM_000887.3 

Integrin	subunit	alpha	X	is	a	receptor	for	fibrinogen	that	is	involved	
in	cellular	interactions	during	inflammatory	responses.	 

ITGB8	
NM_002214.2 

Integrin	subunit	beta	8	is	a	receptor	for	fibrinogen	that	mediates	the	
release	of	TGFB1. 

JUN	
NM_002228.3	

Transcription	factor.		

JUNB	 Transcription	factor	activated	by	primary	growth	factors.		
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NM_002229.2	
LCK	
NM_005356.2	

Tyrosine	kinase	involved	in	the	maturation	of	T	cells.		

LIME1	
NM_017806.2	

Protein	involved	in	the	BCR	and	TCR	signaling.	

LITAF	
NM_004862.3	

Protein	that	induces	TNF-"	expression	upon	LPS	stimulus.		

MBD2	
NM_003927.3	

Binds	methylated	DNA	and	induces	transcriptional	repression.		

MERTK	
NM_006343.2	

Receptor	tyrosine	kinase	involved	in	several	physiological	processes	
including	in	the	inhibition	of	TLRs-mediated	innate	immune	
response.		

MICB	
NM_005931.3	

Binding	to	its	receptor	causes	the	activation	of	NKs	and	T	cells.		

MPV17L2	
NM_032683.2	

This	protein	is	essential	for	the	assembly	and	stability	of	the	
mitochondrial	ribosome.		

MYC	
NM_002467.3	

Non-specific	transcription	factor.	

NFKBIZ	
NM_001005474.1		

Protein	that	inhibits	NFkB	activity.		

PHACTR2	
NM_001100165.1	

Phosphatase	and	active	regulator.		

PLAUR	
NM_001005376.1	

Urokinase	receptor	which	participates	in	plasmin	formation.	

PRKCH	
NM_006255.3	

Member	of	the	PKC	(protein	kinase	C)	family.		

PTGS2	
NM_000963.1	

Fundamental	enzyme	for	prostaglandin	biosynthesis.		

PTPN11	
NM_002834.3	

Member	of	the	protein	tyrosine	phosphatase	family	which	regulate	a	
variety	of	different	cellular	processes.	

PTPN22	
NM_012411.5	

Member	of	the	protein	tyrosine	phosphatase	family	that	negatively	
regulates	the	T	cell	receptor	(TCR)	signaling.	

RAD51B	
NM_002877.5	

Mediates	the	DNA	repair	processes.		

RASIP1	
NM_017805.2	

Protein	that	plays	a	crucial	role	in	vasculogenesis	and	angiogenesis.	

RIT1	
NM_006912.4	

Ras-related	GTPase	involved	in	the	regulation	of	p38	MAPK-
dependent	signaling	cascades.		

SH2B3	
NM_005475.2	

This	protein	is	a	negative	regulator	of	cytokine	signaling	and	it	is	
involved	in	haematopoiesis.	

SLAMF1	
NM_003037.2	

Member	of	the	SLAM	receptor	family	involved	in	the	regulation	and	
interconnection	of	innate	and	adaptive	immune	response.	

SMAD3	
NM_005902.3	

TGFB-	induced	signal	transducer.	

SULT1A1	
NM_177534.2	

Sulphotransferase	that	catalyses	the	addition	of	sulphate	on	different	
molecules.		

TET2	
NM_001127208.2	

Enzyme	involved	in	the	myelopoiesis.		
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TIGIT	
NM_173799.2	

TIGIT	is	produced	by	a	subset	of	Tregs.	It	binds	CD155	on	DCs	and	it	
inhibits	IL-12	secretion	while	inducing	IL-10	production.	Thus,	it	
mediates	the	suppression	of	Th1	and	Th17	but	not	Th2.	

TLR1	
NM_003263.3	

Toll-like	receptor	1	has	a	key	role	in	pathogen	recognition	and	innate	
immunity	activation.	

TLR2	
NM_003264.3	

Involved	in	pathogen	recognition	and	activation	of	innate	immunity	
in	response	to	bacteria.		

TLR4	
NM_138554.2	

Receptor	implicated	in	signal	transduction	induced	by	LPS.	

TLR7	 	
NM_016562.3	

Toll	like	receptor	that	is	activated	by	single-stranded	RNA	which	
promotes	NF-kB	and	the	inflammatory	response.	

TNFRSF10C	
NM_003841.3	

Receptor	of	the	cytotoxic	ligand	TRAIL	which	protects	from	TRAIL-
induced	apoptosis.		

TNFRSF1A	
NM_001065.2	

Member	of		the	TNF	receptor	superfamily.	Its	binding	to	TNF-"	
induces	receptor	trimerization	and	activation.		

TNFRSF8	
NM_152942.2	

Member	of	TNF-"	receptor	which	is	expressed	on	activated	T	and	B	
cells	and	promotes	inflammation.		

TNFRSF9	
NM_001561.4	

Member	of	the	TNF-receptor	superfamily	which	mediates	clonal	
expansion,	survival	and	development	of	T	cells.	

TNNI2	
NM_003282.2	

Inhibitory		subunit	of	troponin.		

TOLLIP	
NM_019009.2	

Protein	involves	in	the	IL-1	signaling	pathway.		

TRAF3IP2	
NM_001164281.1	

Involved	in	innate	immunity	interacting	with	TRAF	protein,	IkB	and	
NF-kB.		

TXK	
NM_003328.1	

Non-receptor	tyrosine	kinase	involved	in	regulation	of	the	
development,	differentiation	and	function	of	T	cells	and	NKT	cells.		

UBE2E3	
NM_006357.2	

Member	of	the	E2-ubiquitin-conjugating	enzyme	family.		

 
 
 

Subsequently, nanoString gene expression data were correlated with qRT-PCR 

previously generated (see Chapter 3.5) for data validation. As expected, strong and 

significant positive correlations were reported for IL2RA (Pearson correlation, R= 

0.895, R2= 0.802, P-value= 1.61E-13), CTLA4 (Pearson correlation, R= 0.890, R2= 

0.793, P-value= 3.5E-13) and IKZF2 (Pearson correlation, R= 0.728, R2= 0.530, P-

value= 4.86E-07) (Figure 4.10). This suggested the overall validity and reliability of 

nanoString transcriptomic data.   
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Figure 4.8: Nanostring Data Validation.  

Three plots are displayed showing the correlation between nanoString (X-axis) 
and qRT-PCR (Y-axis) expression data from IL2RA (A), CTLA4 (B) and IKZF2 
(C). Positive and very significant correlations were detected suggesting 
agreement between expression data retrieved from these two techniques. 
Pearson correlation coefficient (R), R2 and P-value are displayed in the top left 
corner of the plot. Each dot represents a sample collected from a patient at a 
specific time point. 

 

 

Surprisingly though, FOXP3, the most important transcription factor for Treg functions 

and differentiation, was not amongst the eighty-one variables accounting for group 
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separation in the PCA analysis. Moreover, no significant correlation (Pearson 

correlation, R= -0.031, R2= 0.0009, P-value= 0.854) was reported between expression 

data retrieved from qRT-PCR and nanoString (Figure 4.8).  

 

 

Figure 4.9: Correlation Between qRT-PCR and NanoString FOXP3 

Expression Data.  

Plot showing the correlation between FOXP3 expression data retrieved from 
either nanoString or qRT-PCR. As expected, no significant correlation was 
found due to the different primers able to detect different FOXP3 isoforms (qRT-
PCR= NM_001114377, NM_014009 while nanoString 
= NM_014009 only). Pearson correlation coefficient (R), R2 and P-value are 
displayed in the top left corner of the plot. Each dot represents a sample 
collected from a patient at a specific time point. X-axis: normalised FOXP3 
expression values obtained using the NanoString instrument, Y-axis: 
normalised FOXP3 expression values calculated from microarray analysis.  

 

To further investigate this, FOXP3 nanoString mRNA counts were closely inspected 

and plotted separately (Figure 4.9). No significant expression differences in FOXP3 

were detectable over time in the different patient groups. This result was in contrast to 

what was previously reported from our microarray and qRT-PCR gene expression 

data. However, this could be explained by the different probes used for the different 
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techniques. In fact, nanoString primers were capable of detecting only one transcript 

variant (NM_014009) of FOXP3 while Clariom D microarray probes and qRT-PCR 

primers recognised two isoforms (NM_001114377, NM_014009). The variant 

NM_014009 encodes for the full length FOXP3 (FOXP3fl) whilst NM_001114377 

transcript had a deletion of exon 2 (it lacks amino acids 72-106, also referred to as 

FOXP3Δ2). While only 20-30% of the total FOXP3 mRNAs are in the NM_014009 

(FOXP3fl) isoform, 70% of transcripts are NM_001114377 (FOXP3Δ2) in human CD4+ 

CD25+ Tregs. Exon 2 contains a nuclear export sequence (NES) which promotes 

cytoplasmic localization of FOXP3fl and therefore, this isoform is more localised in the 

cellular cytoplasm compared to FOXP3Δ2 (Mailer, 2018). These results suggested 

that the isoform FOXP3Δ2 was specifically upregulated following the ld-IL-2 

administration in ALS patients, while no significant variation was detected in FOXP3fl.  
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Figure 4.10: Expression of the FOXP3 Isoform NM_014009 Measured 

through NanoString.  

Violin plots showing the expression of FOXP3 (NM_014009) in each patient 
group. Each dot represents a sample and the mean (horizontal lines) and SD 
(vertical lines) of each group are also shown. On the x-axis the normalised 
expression of FOXP3 (NM_014009) is reported for each sample (placebo in 
blue, low Treg-responders in red and high Treg-responders in green). No 
significant variations are reported across different patient groups throughout 
the trial. 
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4.1.3 NanoString Pathway Scoring Analysis 

 

Following the gene expression analysis, a broader biological investigation was 

performed in order to identify altered cellular processes characteristic of the different 

patient groups (placebo, low and high-Treg responders) at specific time points (D1, 

D8 and D64). This was achieved by carrying out a pathway scoring analysis. This tool 

is provided by the nCounter Advanced Analysis 2.0 software 

(https://www.nanostring.com/products/analysis-solutions/ncounter-advanced-

analysis-software) and it allows the summarization of the changes at the gene 

expression level by grouping genes into functionally and biologically related groups. 

Subsequently, a score is computed reflecting the level of activation (the majority of the 

genes included in a process showed increased expression and therefore a positive 

score was assigned to the pathway) or inhibition (negative scores) of a certain 

pathway.   

 

Transcripts included in the Autoimmune Discovery nanoString panel are annotated as 

involved in fifty-five inflammatory pathways known to be involved in the onset of 

several autoimmune disorders. The pathway scoring analysis identified a marked 

inhibitory trend throughout the trial of nearly all of these pro-inflammatory processes. 

Interestingly, this tendency was reported for both high and low-Treg responders 

(Figure 4.11). However, baseline scores of these processes were considerably 

different between the two groups. In fact, patients who showed less Treg expansion 

at the end of the treatment tended to exhibit higher positive scores in these 

inflammatory pathways at D1. In contrast, high-Treg responders exhibited lower 

baseline scores. These results suggested that a very different immunological state 

was characteristic of the two Treg responder groups prior to drug administration with 

the lowest responsive patients showing a more inflammatory prone phenotype. 

Therefore, this might have had a significant influence on participant Treg reaction to 

2MIU-IL-2. Placebo patients showed positive scores which indicated activation of the 

inflammatory pathways throughout the trial. While D1 and D64 scores were 

comparable, a further increase was reported at D8. The relevance of this surge is still 

to be understood.  
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Figure 4.11: Longitudinal Pathway Scoring Analysis. 

Graph showing results from pathway scoring analysis performed using 
Advanced Analysis nSolver software. Pathway scores are plotted as a function 
of the different treatment type and time points (H 2MIU D1, D8, D64= high-Treg-
responders at D1, D8 and D64; L 2MIU D1, D8, D64= low-Treg-responders at 
D1, D8 and D64 and Placebo at D1, D8 and D64). Positive scores suggest 
activation of a pathway whilst negative scores indicates inhibition. An evident 
downregulation of several pro-inflammatory pathways is reported in both high 
and low-Treg-responders.  

 

 

To gain a better understanding of each patient pathway scores in a panel of key 

inflammatory pathways, ten biological processes were selected and plotted 

separately: antigen processing and presentation, B cell receptor signaling pathway, 

chemokine signaling pathway, JAK-STAT signaling pathway, MAPK signaling 

pathway, natural killer cell mediated cytotoxicity, NF-kB signaling pathway, TNF 

signaling pathway, PI3K-Akt signaling pathway and Toll-like receptor signaling 

pathway (Figure 4.12). These were chosen as they are involved in the general 

inflammation process and are not specific to a particular inflammatory disease. All the 

pathways showed a reduction in their score over time in both high and low-Treg 

responders while an increase was observed within the placebo participants. 

Interestingly, the high-Treg responders exhibited tighter and less dispersed scores 

whilst both low responders and placebo were more variable. In particular, two low-

Treg responders – C01P018 and C01P36 showed very high scores in all the 

pathways. Interestingly, C01P036 was the participant showing lowest value of Treg 

count at the end of the administration period (52.22 cells/ul of blood). However, both 

patients showed a sharp reduction in the pathway scores following the end of the first 

(D8) and third (D64) treatment cycles which was consistent with a drug-induced 

immune suppression. 
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Figure 4.12a 
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Figure 4.12b 
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Figure 4.12: Longitudinal Inflammatory Pathway Scoring.   

Box and whisker plots displaying pathway scores for a selection of ten 
inflammatory processes (Figure 4.12a: A-F: antigen processing and 
presentation, B cell receptor signaling pathway, chemokine signaling pathway, 
JAK-STAT signaling pathway, MAPK signaling pathway, natural killer cell 
mediated cytotoxicity; Figure 4.12b: G-J: NF-kB signaling pathway, TNF 
signaling pathway, PI3K-Akt signaling pathway, Toll-like receptor signaling 
pathway).  Each dot represents a trial participant while the median values is 
reported as a thick horizontal line.  A time-dependent reduction in the scores of 
these inflammatory pathways was reported in both low and high-Treg 
responders whilst an increase was evident within the placebo group.  Legend: 
H 2MIU 1, 2, 3= high-Treg-responders at D1, D8 and D64; L 2MIU 1, 2, 3= low-
Treg-responders at D1, D8 and D64; Placebo 1, 2, 3= placebo patients at D1, 
D8 and D64.  



 207 

Amongst the pathways investigated with the scoring analysis, one was particularly 

interesting in the context of ALS as it summarises processes involved in 

neurodegenerative diseases.  For this reason, this was plotted separately to visualise 

each patient score (Figure 4.13). Similar to the pathways reported above, both high 

and low-Treg responders showed a marked time-dependent decrease in this score. In 

contrast, an increase was evident within the placebo group. Considering that for this 

analysis the Autoimmune Discovery panel was used, these results suggested that 

inflammatory pathways participating in neurodegeneration were progressively 

inhibited over time as a result of the 2MIU-IL-2 administration.  

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Longitudinal Neurodegenerative Disease Pathway Scoring. 

Box and whisker plot showing patient scores of the pathway called 
"neurodegenerative diseases". Each dot represents a trial participant while the 
median value is reported as a  thick horizontal line. A decrease in the median 
score was visible over time in both low and high-Treg responders whilst the 
placebo group showed a mild increase. Legend: H 2MIU 1, 2, 3= high-Treg-
responders at D1, D8 and D64; L 2MIU 1, 2, 3= low-Treg-responders at D1, D8 
and D64; Placebo 1, 2, 3= placebo patients at D1, D8 and D64.  
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Taken together, the results from the nanoString gene expression analysis suggested 

that immunological difference were evident prior to drug administration. In particular, 

low-Treg responders showed a more inflammatory prone phenotype at recruitment 

which might have had a significant influence on their ability to react to the 2MIU-IL-2 

administration. Nonetheless, an inhibition of these pro-inflammatory processes was 

evident over time both in the high and in the low-Treg responders. 
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4.2 Predictive Biomarker Analysis 
 
Given the reported dissimilarities between Treg responder groups, which were 

particularly pronounced at time of recruitment, the work described in this chapter also 

aimed to identify predictive biomarkers of the outcome of the trial. In particular, the 

final objective was to identify a small number of transcripts that could be used to build 

a predictive model in a way that their gene expression at D1 would be able to forecast 

target engagement at the end of the three cycles of treatment. This reflected the 

degree of IL2-receptor stimulation on Treg and therefore the magnitude of their cellular 

expansion following three cycles of 2MIU-IL-2 administration.  

 
 
4.2.1 Preliminary Screening 

 

NanoString gene expression analysis revealed a marked transcriptional difference 

between high and low-Treg responders, which was particularly evident at baseline 

(D1). Therefore, with the aim of finding predictive biomarkers, correlation analyses 

were carried out. In particular, a preliminary screen was conducted by correlating the 

expression of all the targets included into the Autoimmune Discovery nanoString panel 

at D1 with the Treg counts at D64 or with the expression of IL2RA at D64 (nanoString 

data). IL2RA was chosen as a second independent variable because it is a marker of 

Tregs and both our longitudinal microarray analysis and qRT-PCR validation indicated 

a time-dependent increase in this transcripts which reached a peak at D64, suggesting 

an expansion in the Treg population. Moreover,  IL2RA was also selected because of 

the direct action of IL-2 on its protein synthesis, as several pieces of evidence in the 

literature suggested an increased expression of this receptor subunit after the cytokine 

administration (reviewed in (Malek and Castro, 2010)). Subsequently, only transcripts 

showing significant correlation with both of the measurements at D64 were selected 

for further investigation. The decision of focusing on the significant and commonly 

correlated genes was made to identify potentially more robust biomarker candidates.  

 

Fifty transcripts showed a significant (p-value<0.05) correlation with the Treg count at 

D64 while 72 were significantly correlated with IL2RA expression at D64. We then 
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ranked these transcripts by their p-value with rank=1 indicating the transcripts showing 

the lowest p-values. The comparison of the two lists identified 35 transcripts to be 

commonly and significantly correlated with the two chosen variables measured at D64. 

Lastly, a combined score was computed by adding the two ranks calculated for the 

Treg and IL2RA correlations. A table summarising R2, p-value and rank for each 

correlation and combined scores is reported in Table 4.2. The top five transcripts 

showing the best combined scores were BTLA, SBNO2, TRAF2, CD27 and BLNK 

which were selected as proposed biomarker candidates to be further investigated. 

Importantly, TLR9 was also included as, despite being the twelfth term for combined 

score, it was the transcript showing the best correlation with IL2RA at D64 (rank=1). 

Unfortunately, due to time and cost constraints, the remaining 29 transcripts, which 

commonly significantly correlated, were not analysed further. 
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Table 4.2: Preliminary Biomarker screening results. 

This table illustrates the list of 35 transcripts for which expression at D1 
significantly correlated with both Treg count and IL2RA expression (nanoString 
data) measured at D64. For each term, R2, p-value and rank are reported for 
each correlation analysis and the combined score is also shown.  

 
 Correlation with Treg 

count at D64 

Correlation with IL2RA 

expression at D64 

 

 R
2
 Pval Rank R2 Pval Rank Combined_score 

BTLA 0.829 0.002 1 0.808 0.002 2 3 

SBNO2 0.736 0.006 5 0.762 0.005 5 10 

TRAF2 0.691 0.010 9 0.785 0.003 3 12 

CD27 0.794 0.003 2 0.656 0.015 13 15 

BLNK 0.705 0.009 6 0.651 0.015 15 21 

AFF3 0.644 0.017 14 0.676 0.012 10 24 

SOX8 0.641 0.017 15 0.665 0.014 11 26 

RASIP1 0.783 0.003 3 0.607 0.023 25 28 

LCK 0.646 0.016 12 0.633 0.018 17 29 

MPV17L2 0.704 0.009 7 0.619 0.021 22 29 

RABEP2 0.559 0.033 27 0.783 0.004 4 31 

TLR9 0.554 0.034 31 0.821 0.002 1 32 

DLD 0.580 0.028 21 0.656 0.015 12 33 

GMPPB 0.591 0.026 19 0.655 0.015 14 33 

FKBP5 0.556 0.034 29 0.728 0.007 6 35 

ZC2HC1A 0.675 0.012 10 0.586 0.027 32 42 

UCN 0.338 0.131 17 0.605 0.023 27 44 

PHRF1 0.503 0.049 49 0.716 0.008 7 56 

TNFSF8 0.547 0.036 33 0.611 0.022 23 56 

MYC 0.569 0.031 25 0.581 0.028 33 58 

SPHK2 0.742 0.006 4 0.541 0.037 54 58 

ADA 0.590 0.026 20 0.568 0.031 41 61 

FADS3 0.502 0.049 50 0.625 0.020 21 71 

TRAF3IP2 0.543 0.037 35 0.571 0.030 38 73 

TNFAIP6 0.523 0.043 41 0.576 0.029 36 77 

SPRY4 0.569 0.031 26 0.542 0.037 53 79 

UBASH3A 0.510 0.047 44 0.577 0.029 35 79 

IL6ST 0.698 0.010 8 0.501 0.049 72 80 

CD48 0.645 0.016 13 0.511 0.046 68 81 

TMBIM1 0.524 0.042 40 0.559 0.033 45 85 

RUNX1 0.537 0.039 37 0.551 0.035 50 87 

PROCR 0.545 0.036 34 0.536 0.039 61 95 

CXCL9 0.555 0.034 30 0.520 0.043 66 96 

WDFY4 0.513 0.046 42 0.541 0.038 56 98 

IRF8 0.524 0.042 38 0.521 0.043 65 103 
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4.2.2 qRT-PCR Validation and Correlation 

 

Given that the NanoString analysis was performed only on a selection of the trial 

participants (four high, four low-Treg responders and four placebo), the preliminary 

screening involved only eight out of twelve 2MIU-IL-2 treated patients. Therefore, qRT-

PCRs were conducted to obtain baseline expression values of the six gene candidates 

(BLNK, BTLA, CD27, SBNO2, TLR9 ,TRAF2) from all 12 2MIU-IL-2 treated patients 

in order to confirm the validity of the proposed biomarkers. These data were correlated 

with the Treg counts at D64. Importantly, IL2RA was not used as a second dependent 

variable at this stage. Although this was useful in the previous analysis to identify more 

robust candidates, the outcome we finally aimed to forecast was the number of Tregs 

at D64. Such a model with this predictive capability would allow the stratification of 

patients and the identification of the more Treg-responsive individuals who would 

benefit the most from treatment with ld-IL-2. 

 

Correlation plots were generated for each of the six biomarker candidates (Figure 
4.14) and a summary of the scores obtained from the Pearson correlations are 

provided in Table 4.3. While, BLNK, BTLA, SBNO2 and TRAF2 did not show any 

significant relationship (Figure 4.14C-F), a strong negative and significant correlation 

was observed in the case of TLR9 (R= -0.809, R2= 0.654, p-value=0.0014) (Figure 
4.14A). A milder positive correlation was reported for CD27 although it did not reach 

statistical significance (R= 0.416, R2= 0.173, p-value=0.179). Nonetheless, for both 

TLR9 and CD27, gene expression was able to clearly separate the three groups of 

drug-responders. When visually inspected, CD27 showed an interesting trend and its 

scores were probably influenced by the patient C01P032 (Figure 4.14B). This was a 

moderate-Treg responder, the most variable class which is therefore more difficult to 

predict. In this case, patient C01P032 could be considered as having an outlier trend 

and its removal would increase the correlation scores (R= 0.764, R2= 0.583, p-

value=0.006). Nonetheless, given the particularly small sample size, the exclusion of 

a patient could excessively influence the predictive analysis. For this reason, a 

decision was made not remove it from further analyses. However, both the linear 

models using either TLR9 or CD27 showed good root mean squared errors 

(RMSETLR9=81.4, RMSECD27=126.0). This metric is a measure of the standard deviation 
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of the residuals that indicate the prediction error (this was computed as the difference 

between predicted and the actual outcome). RMSE is a scale-dependent variable, 

which means that it needs to be interpreted in the context of the range of values 

assumed by the dependent variable (Treg count at D64). As mentioned before, its 

standard deviation was quite high (SDTreg_D64=144.8) and given that RMSE of both the 

single linear regressions were less than the SDTreg_D64, this suggested that the two 

models tended to estimate the outcome better than a random model. 
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Figure 4.14: Biomarker Candidates' Correlation Plots. 

Linear regression plots showing the correlation between the expression of 
TLR9 (A), CD27 (B), BLNK (C), BTLA (D), SBNO2 (E) and TRAF2 (F) at the 
baseline (D1) and the Treg number at D64 for each 2MIU-IL-2 treated patient. 
Each dot represents a trial participant (average expression values computed 
from three qRT-PCR experiments, N=3) and they are colour-coded depending 
on their Treg-response type: high (orange), moderate (green) and low (yellow). 
A regression line (black) and its regression confidence bands (grey) are also 
shown. A strong linear and negative correlation was found for TLR9 (A: R= -
0.809, R2= 0.654, p-value=0.0014) while a mild, positive relationship was 
reported for CD27 (B: R= 0.416, R2= 0.173, p-value=0.179) although it did not 
reach statistical significance. No evident or significant trend was reported for 
the rest of the biomarker candidates (BLNK, BTLA, SBNO2 and TRAF2). 
 

Table 4.3: Biomarker Candidates’ Correlation Scores 

This table displays the correlation scores (Pearson' correlation) and associated 
p-values (T-test statistics) computed for each biomarker candidate. A 
significant correlation was found only for TLR9 although interesting scores and 
a trend was reported for CD27.  
 
 

ID R R2 P-value 

TLR9 -0.809 0.654 0.0014 

CD27 0.416 0.173 0.17 

SBNO2 0.273 0.074 0.38 

BLNK -0.209 0.043 0.51 

BTLA 0.039 0.0016 0.9 

TRAF2 0.023 0.0005 0.9 
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4.2.3 Multiple Linear Model 

 

Given the intriguing results obtained from the single linear models, expression data 

from TLR9 and CD27 at D1 were combined and used as variables to create a more 

robust multiple linear regression model (Figure 4.15). Patient C01P032, the same mild 

responder mentioned in the previous analysis, increased variability and was spatially 

distanced from the rest of the mild-Treg responders. Despite this, the model plot 

showed an evident separation of the three Treg-responders subgroups with the high 

and low responders being clearly clustered and spatially separated. The multiple 

model performed better that the aforementioned single linear models and its metrics 

were encouraging (R2= 0.694, Adjusted R2= 0.626, p-value= 0.005). In particular, the 

coefficient of determination (R2) and the fitting root mean squared error (RMSE) 

obtained with this last model were better than those retrieved from the one using TLR9 

as the only independent variable (R2multiple=0.694 RMSEmultiple=76.7, R2TLR9=0.654, 

RMSETLR9=81.4). This suggested a greater prediction ability of the multiple linear 

model.  
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Figure 4.15: Multiple Linear Regression Model. 

This 3D plot displays the multiple linear regression model obtained using the 
expression of both TLR9 and CD27 at D1 as predictors of the response variable 
(number of Tregs at D64). A model with intriguing scores was obtained (R2= 
0.6937and p-value= 0.00487). Each dot represents a patient and they are 
colour-coded depending on their Treg-response type: high (orange dots), 
moderate (green squares) and low (yellow triangles). The regression plane is 
also displayed in black dotted lines. X-axis: the relative expression of TLR9 at 
D1; Y-axis: Treg counts at D64; Z-axis: the relative expression of CD27 at D1. 

 



 218 

Therefore, the computed multiple model formula (Formula 4.1) could be used to 

predict the Treg count after three cycles of 2MIU-IL-2 treatment in random ALS 

patients knowing their levels of CD27 and TLR9 expression at baseline.  

 

Treg	number	D64 = 724.57 + (59.49 ∗ CD27) + (−625.00 ∗ TLR9) 
 
Formula 4.1: Multiple linear model equation which would be able to predict Treg levels 
and thus patients’ Treg-response to 2MIU-IL-2 administration given their measured 
level of TLR9 and CD27 expression at time of recruitment.  
 

 

Moreover, the performance of the model was visually inspected by correlating the 

experimentally measured values, or observed Treg counts at D64, with the predicted 

ones (Figure 4.16). As expected, a strong positive correlation was reported (R= 0.833, 

R2= 0.693, p-value= 0.0007) suggesting the robustness of the model. 
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Figure 4.16: Model Predicted vs Observed Treg Values 

Plot showing the correlation between flow-cytometry-measured Treg counts 
(observed) and the Treg numbers predicted using the multiple linear model 
(predicted). Correlation metrics (R= 0.833, R2= 0.693, p-value= 0.0007) 
suggest an acceptable predictive model. Each dot represents a sample and a 
red dotted regression line is also shown.    



 220 

Subsequently, tests were conducted in order to verify that the linear model 

assumptions (linearity, normality, homoscedasticity and independence; section 2.1.8) 

were met. This validation is crucial as, if these were not satisfied, the model would be 

impossible to interpret and to use. A summary of the scores obtained from these 

analyses is provided in Table 4.4. The first two tests aimed to confirm the linearity 

assumption. In fact, in the Global Statistics, the null hypothesis presumed a linear 

relationship between the two predictors and the outcome variable. This was not 

rejected (p-value>0.05) and therefore the linearity assumption was verified. The link 

function instead validated whether the dependent variables were continuous (and 

therefore a linear model can be used) and not categorical which would require the 

employ of other models (such as logistic regression). The obtained results were 

consistent with continuous variables as the null hypothesis (=variables are continuous) 

was not rejected (p-value>0.05). Skewness and Kurtosis are two tests that are useful 

to assess the normality of a given data set. The statistical hypotheses underlying these 

tests was that the distribution of the data was not symmetrical (normally distributed) 

but positively or negatively skewed or tailed. Scores obtained from both these tests 

suggested that the data followed a normal distribution and therefore this assumption 

was also acceptable. Lastly, a heteroscedasticity test was performed to verify that the 

residual variance is constant. This hypothesized homoscedasticity and, given that the 

null hypothesis was not rejected, this linear model assumption was also confirmed.  
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Table 4.4: Linearity Assumption Tests 

This table summarises the results obtained from the statistical tests used to 
verify the linear model assumptions. These were performed using the gvmla() 
function in R (see chapter 2). For each test, the outputted value and p-value is 
reported together with the final decision on whether an assumption was met or 
not.   

 
Statistical test name Value P-value Decision 

Global Statistics 3.3473 0.5015 Assumption acceptable 

Link Function 0.5375 0.4635 Assumption acceptable 

Skewness 1.5319 0.2158 Assumption acceptable 

Kurtosis 0.3788 0.5382 Assumption acceptable 

Heteroscedasticity 0.8991 0.3430 Assumption acceptable 

 

 
 
To further validate the linear model assumptions and to graphically evaluate data, 

diagnostic plots were generated (Figure 4.17). The first graph called residual vs fitted 

was used to check the linear assumption. Dispersed data around the horizontal line 

without showing a clear pattern suggested a linear relationship between predictors 

and the outcome variable (Figure 4.17A). The Q-Q plot, shown in Figure 4.17B, was 

useful to inspect the normal distribution of the residuals. Data showing such a 

distribution should follow the red straight line. The majority of our samples were close 

to the reference line although some seemed to deviate slightly. However, they were 

all inside the standard error lines (dashed red lines) and therefore residuals were 

assumed to be normally distributed. The scale-location plot (Figure 4.17C) was 

generated to assess the homogeneity of the residual variance. Data seemed to be 

dispersed without a clear pattern which was consistent with a homoscedasticity. 

Lastly, the residual vs leverage plot was produced in order to depict samples with the 

greatest influence on the model. In fact, the leverage is an indicator of the impact of 

each data point as it iteratively removes one value and calculates the difference 

between the resulting model and the original one. Therefore, the larger the leverage, 

the more impactful is that data point on the model. Cook's distance was also shown 

and this score was computed as a combination of residual size and leverage. Data 

points outside the Cook's distance can be considered influential. Figure 4.17D 
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suggested that most of the data had a very mild impact on the model (leverage around 

0.2). However, one data point seemed to be influential as it was beyond the Cook's 

distance. As expected, this value belonged to patient C01P032, the mild Treg-

responder who seemed to have an outlier trend and for which removal would increase 

model performance. Nonetheless, as previously discussed, given the small patient 

size, it was not removed.  

 

 

 

 

 

 

 

 



 223 

 

Figure 4.17: Diagnostic Plots. 

This figure shows four diagnostic plots produced to visually inspect data and to 
verify if the linear assumption was met in the multiple linear regression model. 
These were generated using the plot() function in the basic R package A) 
Residual vs fitted plot is useful to check the linearity assumption. B) Q-Q plot is 
produced to visually assess the normal distribution of the data residuals. C) 
Scale-location plot allows the examination of data homoscedasticity. D) 
Residual vs Leverage plot helps with the identification of influential data points.  
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In addition, given that the proposed predictive biomarker model was a multiple linear 

regression model and therefore two predictors were used to forecast the outcome 

variable, a collinearity check was performed. This is the phenomenon by which two 

independent variables are correlated to each other. Ideally, no collinearity should be 

detected as this would impact the reliability of model. In fact, the information provided 

by the two predictive variables would be redundant which potentially leads to over-

fitting (Bruce, 2017). Collinearity was assessed by computing the variance inflation 

factor (VIF). This calculates how the variance of the regression coefficients increases 

due to a correlation between the two or more predictors. A VIF value greater than 5 or 

10 is generally accepted as in indicator of collinearity (Surles, 2007). The calculated 

VIF value indicated no cross correlation between TLR9 and CD27 in the proposed 

model (VIF= 1.084).  

 

Altogether, both the results from the tests assessing the linear model assumptions and 

the collinearity check suggested that our multiple linear regression model was reliable.  

 

Finally, a leave one out cross validation (LOOCV) was performed. This is an unbiased 

estimate of how the model fitted to the training data set would perform on new unseen 

data. The computed LOOCV metric was encouraging (RMSELOOCV= 84.28). Although 

these might be interpreted as a high score, as mentioned before, RMSE is scale-

dependent measurement and therefore needs to be interpreted in the context of the 

range of values assumed by the dependent variable (Treg count at D64, 

SDTreg_D64=144.8). The LOOCV RMSE was less than the SD of Treg counts at D64 

and it was also close to the RMSE of the model (RMSEmultiple=76.7). Therefore, we 

concluded that the model was sufficiently robust when predicting new sets of data.  
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4.3 Discussion 
 

The aim of the work described in this result chapter was to investigate on the inter-

individual dissimilarities in patient Treg expansion following 2MIU-IL-2 treatment and 

how this correlated with their transcriptomic profile. In particular, immunological gene 

expression variations were evaluated through the use of the nanoString platform and 

the Autoimmune Discovery panel.  

Given the considerable variations reported by Camu and colleagues (Camu et al., 

2020) in terms of the Treg increase at the end of the trial, in this section of the study, 

patients were arbitrarily classified into high, moderate and low Treg-responders 

depending on the number of Tregs reported at D64 (high responders: TregD64 > 250 

cells/ul of blood; moderate responders: TregD64 between 250 and 150 cells/ul of blood; 

low responders: TregD64 < 150 cells/ul of blood). Importantly, no significant changes 

were detected in these three groups in terms of age or disease decline per month. 

This is of crucial importance as immunological changes have been previously 

associated with the aging process (Montecino-Rodriguez et al., 2013) and a faster 

disease decline could have accounted for any reported transcriptional variability. 

Therefore, the exclusion of these two factors as possible confounding variables is key 

for the interpretation of our data.  

 

A summary of the key findings reported in this chapter is provided below: 

 

1) RNA samples from D1, D8 and D64 from four high, four low Treg-responders 

and four placebo were screened through nanoString to investigate the 

immunological transcriptomic changes that could account for the observed Treg 

dissimilarities throughout the course of the trial. Following the generation of 

nanoString gene expression profiles, quality controls were performed and the all 

the samples was considerate of acceptable quality to be included in the 

subsequent data analyses. A general overview of the expression of all the 

transcripts included into the panel across the different samples suggested a 

significant difference between high and low Treg-responders which was 

particularly evident at the baseline (D1). The subsequent multigroup comparison 

performed using the software Qlucore allowed the identification of 81 genes 
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being significantly differentially expressed and able to spatially separate the 

groups in a PCA plot. Moreover, a pathway scoring analysis revealed a more 

inflammatory-prone phenotype in the low compared to the high Treg-responders 

at time of recruitment. 

 

2) Given the evident transcriptional dissimilarities reported between low and high 

Treg-responders at D1, the second objective of this study section was to identify 

a small number of transcripts whose expression at time of recruitment would be 

able to predict patient Treg-responsiveness (measured as number of Tregs at 

D64) at the end of the three administration cycles.  

A preliminary screening analysis was conducted by correlating the expression 

of all the transcripts included in the Autoimmune Discovery panel with either the 

Treg levels measured at D64 by flow cytometry (Camu et al 2020) or the IL2RA 

expression at D64 (nanoString data).  Six promising biomarker candidates were 

selected (BTLA, SBNO2, TRAF2, CD27, BLNK and TLR9) and further 

investigated through qRT-PCR to obtain a complete expression dataset from all 

the 12 2MIU-IL-2 treated patients (given that nanoString analysis was only 

conducted on a selection of eight patients: four high and four low Treg-

responders). The analysis of the full dataset revealed only one significant and 

strong negative correlation between TLR9 expression at baseline and Treg 

numbers at D64 (R= -0.809, R2= 0.654, p-value=0.0014). Although it did not 

reach statistical significance, CD27 baseline expression showed a trend toward 

a correlation with Treg levels at D64 (R= 0.416, R2= 0.173, p-value=0.179). 

Given the results obtained with the single linear models, CD27 and TLR9  

expression data were combined and used to build a multiple linear regression 

model. Interestingly, this latter and more complex model appeared to perform 

better than the two single analyses and its metrics were particularly encouraging 

(R2= 0.694, Adjusted R2= 0.626, p-value= 0.005). Of importance, tests were 

carried out in order to ascertain the linear model assumptions and a leave one 

out cross validation (LOOCV) was performed to validate the robustness of our 

model when predicting new sets of data. 

 

The performed nanoString analysis allowed the identification of a cluster of 81 genes 

showing an almost opposite expression between high and low Treg-responders at 
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time of recruitment. In particular, although this included genes encoding for both pro- 

and anti-inflammatory agents, it is interesting to note that the level of some pro-

inflammatory mediator expression was higher in low compared to high Treg-

responders at D1. This included some toll-like receptors (TLR1 and TLR2), which have 

been previously reported to be elevated in ALS and in other neurodegenerative 

disorders (Casula et al., 2011, Azam et al., 2019); some members of the tumour 

necrosis factor superfamily (TNFRSF8 and TNFRSF10C), a class of TNFα known to 

be implicated in the disease pathogenesis (Guidotti et al., 2021); and a chemokine 

ligand (CXCL10), whose levels of expression were previously shown to be negatively 

correlated with rate of ALS progression (Tateishi et al., 2010). In contrast, an opposite 

pattern was evident for some anti-inflammatory agents (including  TIGIT, IL2RA, IDO1, 

GATA3, IKZF2 and CTLA4), whose importance for Treg and immune suppression has 

been discussed in previous sections. These results suggested that less responsive 

individuals to ld-IL-2 were characterised by a more inflammatory prone phenotype at 

time of recruitment and therefore their reaction to the treatment appeared to be milder. 

This result is completely novel to the ld-IL-2 research, however, dissimilarities in the 

baseline immune transcriptional status might explain the previously reported inter-

individual differences in other clinical trials investigating low levels of this cytokine as 

a treatment for different autoimmune disorders (Koreth et al., 2011, Koreth et al., 2016, 

Rosenzwajg et al., 2020, He et al., 2020). Nonetheless, it is important to notice that 

low vs high Treg-responders dissimilarities tended to became less evident over time 

during the administration period, as ALS patients who responded less appeared to 

have a more similar transcriptional phenotype to the high responders at D8 or D64. 

Placebo patients were instead characterised by less evident variations throughout the 

trial and, interestingly, their gene expression was more similar to the low Treg-

responders at D1.  

Consistently, the pathway scoring analysis showed that less responsive patients 

generally had increased baseline levels of activation of pro-inflammatory pathways 

compared to high Treg-responders. Nonetheless, a steep inhibition of nearly all these 

processes was reported in all the screened patients treated with the cytokine 

throughout the administration period regardless of their Treg responsiveness. More 

interestingly, some pathways appeared to have a greater degree of inhibition following 

2MIU-IL-2 treatment in low compared to high Treg-responders. Therefore, we could 

speculate that, despite having a more inflammatory-prone transcriptome at the 
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beginning of the trial, the ld-IL-2-mediated expansion of the Treg population in low 

responders, although mild, was able to promote a continuous downregulation of pro-

inflammatory pathways. In line with this, when closely investigated, ten processes 

involved in general inflammation (antigen processing and presentation, B cell receptor 

signaling pathway, chemokine signaling pathway, JAK-STAT signaling pathway, 

MAPK signaling pathway, natural killer cell mediated cytotoxicity, NF-kB signaling 

pathway, TNF signaling pathway, PI3K-Akt signaling pathway and Toll-like receptor 

signaling pathway) appeared to be downregulated both in the high as well as in the 

low Treg-responders over time whilst being upregulated in the placebo group. Two low 

responders (C01P018 and C01P36) appeared to be particularly inflammatory prone 

at the baseline and their pathway scores increased the variability of that group score. 

Interestingly, patient C01P036 was the participant showing the lowest Treg number at 

D64 (52.22 cells/ul of blood). Nonetheless, the variability seemed to be less evident 

over time suggesting that even this extremely low responder was able to downregulate 

these inflammatory pathways following 2MIU-IL-2 administration. Intriguingly, both 

high and low Treg-responders appeared to downregulate genes included in the 

pathway called "Neurodegenerative disease" and therefore progressively reduced 

scores were registered in both treated groups. In contrast, increased scores were 

reported over time in the placebo group. Despite this very interesting result, it is 

important to stress that the genes included in the Autoimmune Discovery nanoString 

panel are known to have a crucial role in the immune system and in the onset of 

autoimmune disorders. Therefore, inferring a reduced neurodegeneration or a 

decrease in disease progression would represent an over interpretation of the results. 

However, this evidence might suggest that the inflammatory pathways underlying and 

participating in neurodegenerative processes were mitigated following treatment 

administration. 

 

Similarly to microarray data, nanoString results were validated by correlating the 

expression levels of the four key Treg transcripts (FOXP3, IL2RA, CTLA4 and IKZF2) 

measured by qRT-PCR with those retrieved from the nanoString analysis. Strong, 

positive and very significant correlations were found for IL2RA, CTLA4 and IKZF2 

which supported the validity and reliably of the nanoString gene expression profiles. 

However, surprisingly, no significant correlation was recorded for FOXP3. Consistently 

with this, FOXP3 was not amongst the aforementioned 81 discriminatory variables. 
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This apparent paradoxical result can be explained by the different variants recognized 

by the qRT-PCR probes and the ones included in the nanoString panel. In fact, whilst 

qRT-PCR allowed the detection of two splicing isoforms (NM_001114377, 

NM_014009), only the variant NM_014009 was identified by the Autoimmune 

Discovery panel. This latter variant encodes for the full length FOXP3 (FOXP3fl), 

which constitutes only 20-30% of the total FOXP3 mRNAs, whilst 70% of the 

transcripts are NM_001114377, which is the result of exon 2 skipping (FOXP3Δ2) 

(Mailer, 2018). A recent review described specific functions associated with the 

different variants and their impact in health and disease (Mailer, 2018).  Exon 2 

seemed to be crucial for the inflammatory Th17 as it interacted with transcription 

factors (such as RORα and RORγt), which are responsible for their differentiation  

(Zhou et al., 2008, Mailer, 2018). This exon harbours a nuclear export sequence (NES) 

which promotes the relocalization of the protein from the nucleus to the cytoplasm. 

Interestingly, predominant localization of FOXP3 in the nucleus has been reported to 

be mainly associated with CD4+CD25+ Tregs (Magg et al., 2012). In addition, 

increased FOXP3fl levels were linked with several autoimmune and inflammatory 

disease such as psoriasis, rheumatic arthritis and inflammatory bowel disease (Mailer, 

2018). Moreover, in a recent report, immunodysregulation polyendocrinopathy 

enteropathy X-linked syndrome (IPEX), a disease characterized by mutations in 

FOXP3 and autoimmunity, FOXP3Δ2 was found to support Treg development and 

mitigate IPEX symptoms (Frith et al., 2019). Taken together, this body of evidence 

suggests a crucial importance of FOXP3Δ2 for Tregs. Therefore, our data indicating a 

preferential increase in the expression in this splice variant, and not FOXP3fl, is 

probably consistent with augmented suppressive capacity of ALS Tregs following 

2MIU-IL-2 treatment. PCR validation of these results is currently planned to be 

conducted by Mariam Alajmi, an MSc student in Prof Janine Kirby's laboratory.  

 

Lastly, following a biomarker screening, a predictive multiple linear regression model 

was generated able to forecast the level of Treg expansion in ALS patients given their 

baseline expression of two gene: TLR9 and CD27.  Specifically, patients showing 

higher levels of TLR9 and lower levels of CD27 were more likely found to respond 

more to the 2MIU-IL-2 treatment. Toll-like receptors (TLR) are a class of pattern 

recognition receptors implicated in pathogen identification and immune-response 

initiation. TLR9 is localized on the endoplasmic reticulum and recognizes 
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unmethylated CpG motifs, characteristic of bacterial and viral DNA. Dysregulation of 

TLR9 signaling has been associated with several autoimmune but also 

neurodegenerative diseases (Fiebich et al., 2018, Marongiu et al., 2019). Interestingly, 

increased TLR9 expression was reported in the spinal cord of SOD1G93A transgenic 

mice (Letiembre et al., 2009). Moreover, mice lacking of SMCR8, a protein which 

interacts with C9ORF72 to regulate autophagy and lysosomal function, had disrupted 

TLR3, TLR7 and TLR9 signaling which resulted in widespread inflammation (McAlpine 

et al., 2018). CD27 is a member of the tumor necrosis factor receptor family. It is 

expressed on a variety of immune cells including CD4+, CD8+ T cells, B cells and NKs. 

The binding of its ligand CD70 leads to the activation of these cells and an 

inflammatory response. However, CD27-CD70 was found to play a key role in Treg 

generation in the thymus and genetic ablation of either protein lead to a reduced 

number of thymic Tregs (Coquet et al., 2013). Moreover, CD27-deficiency caused 

reduction in the frequency of Tregs (Winkels et al., 2017, Claus et al., 2012). 

Interestingly, a recent study reported CD27 as one of the downregulated transcripts 

solely differentially expressed in rapidly progressive patient monocytes (Zhao et al., 

2017). Collectively these data highlight the great potential of this predictive model for 

future ALS clinical treatments with ld-IL-2. If validate in a larger cohort, these 

transcripts could serve both as biomarkers of target engagement, to monitor the 

efficacy of the drug administration in each affected individuals, and as a crucial tool 

for patient stratification. Importantly, there is an urgent need for such tools in ALS 

clinical research, as currently no effective biomarkers have been identified despite a 

thorough investigation over the past 20 years (Bakkar et al., 2015, Verber et al., 2019). 

If proven valuable after appropriate validation steps, our model could be used for future 

precision medicine approaches, which would allow the stratification of ALS individuals 

to enrich for patients who are more likely to respond to ld-IL-2. 

 

In conclusion, results presented in chapter 3 and 4 highlight the molecular effects of 

ld-IL-2 as a treatment for ALS. Data are consistent with a dose-dependent IL-2 effect 

on gene expression, with increased transcripts showing a greater level of upregulation, 

and similarly, decreased DEGs being more downregulated following the higher dose 

administration of IL-2. This is in line with a greater degree of Treg marker upregulation 

and a more evident Treg expansion, as measured by flow cytometry (Camu et al., 

2020), in the 2MIU-IL-2-treated group compared to 1MIU. For this reason, this was 
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proposed as ideal treatment dosage for ALS and further clinical investigation are 

currently being conducted investigating only the effects of 2MIU-IL-2 in a larger phase 

III trial (MIROCALS, see chapter 6 for trial description). Blood longitudinal 

transcriptomic analysis revealed evidence of reduced inflammation as early as after 

the first injection cycle, although Treg markers upregulation reached a peak only 

following the third cycle, suggesting a cumulative effects of repeated 2MIU-IL-2 

administrations. Gene expression analyses also suggested the presence of inter-

individual dissimilarities in patient reaction to 2MIU-IL-2 due to different inflammatory 

transcriptional phenotypes at recruitment. In this respect, the generated predictive 

model is of crucial importance as, if validate, would allow ALS patient stratification and 

it could be used as biomarker of target engagement in clinical trial settings. 
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Chapter 5 – Results: The Effects of IL-2 on CNS 

Cells 

 
Considering the promising effects of ld-IL-2 reported in the peripheral blood of the 

IMODALS participants, and also taking into account that this cytokine is able to cross 

the blood brain barrier, the overall aim of the work described in this chapter was to 

characterize the effect of IL-2 on central nervous system (CNS) cells. Specifically, the 

first objective was to evaluate the transcriptional response of this cytokine on induced 

neuronal progenitor cell (iNPC)-derived astrocytes reprogrammed from ALS or healthy 

control fibroblasts (iAstrocytes) using the Oxford Nanopore cDNA sequencing 

technique. Additionally, normal murine MNs were co-cultured with iAstrocytes in the 

presence of IL-2 to establish whether this cytokine reduces ALS iAstrocyte-induced 

toxicity, though increasing MN viability and axon arborization. To our knowledge, this 

was the first time that the molecular effects of IL-2 were investigated on astrocytes or 

MNs. Results reported in this last chapter were collected over the period from June 

2020 to July 2021. Due to several Covid-19 related impediments (such as: reduced 

working hours, limited laboratory occupancy and delays in the arrival of consumable 

deliveries), some data are still preliminary although the aim is to complete data 

collection following the completion of the PhD.  

 

5.1 Treatment Optimization 
 

Given the novelty of this type of work involving IL-2 and CNS cells, the first objective 

was to optimize the treatment settings. Specifically, this cytokine was administered at 

different concentrations and with different incubation times to test for the best 

combination that allowed the most evident reaction. The experiments were conducted 

on nine iNPC-derived astrocytes reprogrammed from the fibroblasts of: three sporadic 

ALS (sALS) (namely P009, P12 and P17), three ALS patients carrying a C9orf72 

mutation (P78, P183 and P201) and three age-matched controls (155, 161 and AG). 

Importantly, these fibroblasts were not biopsied from patients included into the 

IMODALS trial but these cells were available in our Department and they are routinely 

used by Dr Laura Ferraiuolo and her team.  
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Firstly, the expression of the IL-2 receptor subunits (IL2RA, IL2RB and IL2RG) was 

assessed through qRT-PCR in untreated ALS and in healthy control iAstrocytes to 

ascertain their presence on these cells under basal conditions. This is of crucial 

importance as the lack of the receptor would preclude any molecular effect of the 

cytokine. Results from IL2RA revealed that the expression of this subunit was 

extremely low (threshold cycle (Ct) > 32) in all the investigated iAstrocyte lines (Figure 
5.1). This was particularly evident in two experimental replicates of two sALS 

iAstrocytes (P009 and P12), in which expression was probably below the sensitivity of 

the instrument.  
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Figure 5.1: Basal IL2RA Level of Expression in iAstrocytes 

This bar graph show the level of IL2RA expression in the iAstrocytes 
reprogrammed from healthy controls (155, 161and AG), sALS (P009, P12 and 
P17) and C9 ALS (P78, P183 and P201). In particular, on the X-axis, two 
experimental replicates (indicated in the graph as Exp Rep 1 or 2, N=2) for each 
line are displayed alongside each other whilst on the Y-axis raw Ct (threshold 
cycle) values are reported. Each dot represent a technical replicate (three 
technical replicates were performed for each line but often no Ct value was 
detected by the qRT-PCR instrument, therefore in several occasions less than 
three dots are displayed for one experimental replicate). This suggests that 
IL2RA expression is very low in this cells. Data are reported as mean ± SD. A 
colour legend indicates the different iAstrocyte lines. 

 

Subsequently, the expression of IL2RB and IL2RG were investigated. Both the DCt 

value, which is the difference between the threshold cycle of the gene of interest and 

the reference housekeeping gene (GAPDH), and the relative expression value 

(normalized on the average DCt of the healthy controls) were plotted in Figure 5.2A 

and 5.2B-C, respectively. These data suggested that the other two subunits of IL-2 

receptor were expressed in all the iAstrocyte lines. However, elevated levels of IL2RB 

were reported in P12 and P78 lines whereas IL2RG expression was increased in 

P201. Importantly, a qualitative analysis was conducted here as only two experimental 

replicates were performed, statistical analysis is pending and will be performed in the 

future following the collection of the third replicate. This will assess any significant 

difference between astrocyte lines in the subunit expression.   
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Figure 5.2: Basal IL2RB and IL2RB Level of Expression in iAstrocytes 

In these figures, the basal level of expression of IL2RB and IL2RG are reported. 
(A) A bar graph shows the DCt (difference between the threshold cycle of the 
gene of interest and the reference housekeeping gene GAPDH) of IL2RB and 
IL2RG across all the samples. Each dot represents the mean DCt from three 
technical replicates. Two experimental replicates (N=2) are reported for each 
iAstrocyte line. Moreover, two plots show the relative expression of IL2RB (B) 
and IL2RG (C) (data normalized on the average DCt value of the healthy 
controls).  Each dot represents the mean relative expression from three 
technical replicates. Two experimental replicates (N=2) are reported for each 
iAstrocyte line. Data are reported as mean ± SD. A colour legend is also shown.  

 

 

Taken together, these data suggest that iAstrocytes predominantly expressed an IL-2 

receptor which is only made of the subunits IL2RB and IL2RG. This is consistent with 

an intermediate affinity IL-2 receptor. In fact, as review by Spolski and colleagues and 

as mention in the introduction, three receptor classes have been reported in the 

literature: the low affinity (with a constant of dissociation Kd ~10−8 M) receptor, which 
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only consists of the subunit IL2RA; the intermediate affinity (Kd ~10−9 M), which 

contains IL2RB and IL2RG subunits; or the high affinity (Kd ~10-11 M) receptor made 

of IL2RA, IL-2RB and IL2RG (Spolski et al., 2018) (see Figure 1.5). Therefore, given 

the constant of dissociation of the intermediate affinity receptor, iAstrocytes were 

hypothesized to react to nanomolar concentrations of the cytokine.  

 

Therefore, a decision was made to test for different nanomolar concentrations of IL-2 

and different incubation periods to find the optimal treatment combination. Various 

settings were tested and samples analysed through qRT-PCR. In particular, the 

expression of IL2RB was measured as several pieces of evidence suggest that it is 

induced following IL-2 treatment (as reviewed by (Spolski et al., 2018). Additionally, 

three other genes (MYB proto-oncogene, cyclin D2 or CCND2 and caspase-3 or 

CASP3), the expression of which was previously reported to be increased following 

the exposure to this cytokine (Beadling and Smith, 2002, Kovanen et al., 2005), were 

also investigated. Importantly, transcriptomic data published in these papers were 

obtained from both human peripheral blood mononuclear cells and T cells and these 

genes appeared to be commonly differentially expressed upon IL-2 receptor 

stimulation. However, to our knowledge, no similar studies were previously conducted 

on astrocytes. Therefore, an additional aim was to investigate whether these genes 

were also induced in iAstrocytes as a result of a common regulative effect promoted 

by the cytokine.  

 

Firstly, two different incubation periods (1 hr or 4 hrs) and two IL-2 doses (10 and 

100nM) were tested as an initial trial involving only two iAstrocyte lines per group 

(Figure 5.3). Although a trend toward an increase was reported over time in several 

lines, a significant increase in CASP3 and CCND2 was reported exclusively in the P78 

line following exposure to 10nM IL-2 for 1 hr. Generally, high standard deviations were 

reported. Interestingly, most of the lines exposed to the control condition (1:1000, 

phosphate-buffered saline (PBS) + 5% glucose solution) for 4 hrs showed higher 

levels of expression of the four transcripts compared to the 1hr counterpart.  
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Figure 5.3: The Effect of IL-2 (10 or 100nM) for 1 or 4 Hours on 

iAstrocytes 

Levels of  expression of IL2RB, MYB, CASP3 and CCND2 following either 10 
or 100nM IL-2 treatment for 1 or 4 hours are displayed in this figure. No 
significant increases are reported except for CASP3 and CCND2 in P78. 
Interestingly, higher expression levels are visible after 4hrs in samples exposed 
to the control condition (1:1000, 5% PBS + glucose solution). This preliminary 
analysis was performed on a selection of 6 out of 9 iAstrocytes (2 healthy 
controls: AG and 155, 2 sALS: P12, P17 and 2 C9 ALS: P78 and P201). A 
colour legend indicating the different treatment settings is shown on the right 
hand side of the figure. Each dot represents the mean relative expression from 
three technical replicates. Three experimental replicates (N=3) are reported for 
each iAstrocyte line. Expression data of each gene in each iAstrocyte line were 
normalized to GAPDH and to the control condition at 1hr (1:1000, 5% PBS + 
glucose solution).  Mean ± SD are displayed. One-way ANOVA with Tukey's 
correction for multiple comparisons was performed (* : Adjusted p-value < 0.05; 
** : Adjusted p-value < 0.01).  
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To investigate this further, a literature review was carried out. Intriguingly, a recent 

study suggested that the foetal bovine serum (FBS), included in the culture medium 

of human induced pluripotent stem cell-derived astrocytes, was capable of inducing 

transcriptional changes that were comparable to those promoted by a treatment with 

TNF-α. In fact, cells similarly acquired a reactive and inflammatory phenotype with 

either FBS or TNF-α (Perriot et al., 2018). This is in line with other studies in the 

literature that investigated the effect of several cytokines (although not IL-2) in 

astrocytes, which were treated in either reduced or in serum-free medium 

(summarised in Table 5.1). This is interesting considering that data reported in Figure 
5.3 were obtained using medium containing 10% FBS. Nonetheless, contradictory 

methods are reported in the literature as other research groups used higher FBS 

concentration (10%) in their medium when treating cells with different cytokines (Table 
5.1). Given this body of evidence, FBS was hypothesized as impactful on gene 

expression levels of IL2RB, MYB, CASP3 and CCND2 and able to mask the effect of 

the IL-2 treatment. This was particularly when assessing the longest exposure time (4 

hrs).  

 

 

Table 5.1: Experimental Settings in Previous Studies Testing Cytokines 

in Astrocytes 

This table summarises the evidence from the literature regarding treatment 
settings when investigating cytokine effects on astrocytes. Author and date of 
the study is reported in the first column while the complete citation is available 
in the bibliography. For each paper, the type of astrocyte and cytokine used are 
reported together with chosen experimental settings (i.e dose, treatment time 
and medium ingredients). Particular attention was given to the chosen FBS 
concentrations which are reported in bold.  
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Paper Cell type 

used 

Cytokine 

tested 

Dose of 

cytokine 

tested 

Ingredients of media used 

during cytokine 

treatments 

Cytokine 

incubation 

time 

(Thelin et 
al., 2020) 

iPSC-
derived 
astrocytes 

IL-1b, IL-4, IL-
6, IL-10, TNF-
a 

1-10,000 
pg/ml 
100-
1,000,000 
pg/mml 
(IL6) 

- DMEM/F12 Glutamax 
- Neurobasal  
- L-glutamine  
- N2 supplement  
- non-essential amino acids 
- B27 supplement  
- β-mercaptoethanol  
- insulin  
- serum-free 

1-24-48-72 
hours 

(Burmeister 
et al., 
2019a) 

Murine 
primary 
astrocytes 

IL-20 1-10-30-
100 ng/ml 

- DMEM 
- penicillin/streptomycin 
- 5% FBS 

30 min, 2 
and 4 hours 

(Santos et 
al., 2017) 

iPSC-
derived 
astrocytes 

IL-1b 10ng/ml - DMEM/F12 Glutamax  
- N2 supplement  
- B27  supplement 
- 10% FBS 

5 hours 

(Tarassishin 
et al., 2014) 

Mouse and 
human 
astrocytes 

IL-1b 10 ng/ml - DMEM 
- antibiotics 
- 0.5% FBS 

6 and 22 
hours 

(Wang et 
al., 2014) 

Primary 
cultured 
astrocytes 

IL-1b 0.02 to 2 
ng/ml 

- DMEM 
- 5 µg/ml bovine insulin 
- 0.6% glucose 
- 10% FBS 

6h and 24h 

(Norden et 
al., 2014) 

Murine 
primary 
astrocytes 

Activated with 
LPS (1h) and 
then IL-10 (3 
hours) 

10 ng/ml Unclear astrocyte medium 
ingredients, however, before 
treatment, cells were 
washed with serum-free 
medium 

3 hours 

(Jang et al., 
2013) 

Murine 
primary 
astrocytes 

IL-4 and IL-10 10 ng/ml - DMEM  
- 100 U/ml penicillin 
- 100 μg/ml streptomycin 
- 10% FBS 

8 hours and 
24 hours 

(Semple et 
al., 2010) 

Murine 
primary 
astrocytes 
WT and 
CCL2-/- 

IL-1b 10 ng/ml - DMEM  
- 1% FBS medium 

2-4-8-16-24 
hours 

(Ma et al., 
2010) 

Murine 
primary 
astrocytes 

IL-6/R (IL-6 + 
sIL-6R), IL-17, 
IL-6R + IL-17 

10 ng/ml 
and 25 
ng/ml 

-DMEM 
- glucose (6 g/l)/glutamine (2 
mM) 
- non essential amino acid (0.1 
mM)  
- 0.1% gentamicin 
-serum free 

2-4-8-24 
hours 

(Dong et al., 
1999) 

Rat primary 
astrocytes 

IFN-γ   250 U/ml -DMEM 
- glucose (6 g/l)/glutamine (2 
mM) 
- non essential amino acid (0.1 
mM)  
- 0.1% gentamicin 
-serum free 

1-2-12 hours 
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Therefore, to test this hypothesis, the experiment was repeated such that iAstrocytes 

were only cultured in medium containing 10% FBS during their differentiation (until 

D5), whilst the treatment (at D6) was performed in 1% FBS medium. As more 

encouraging results were registered with 10nM IL-2, we decided to focus on this 

concentration to perform a preliminary evaluation of this treatment in 1% FBS medium 

for 1 or 4 hrs (Figure 5.4). While no variation was reported amongst the healthy 

controls, results showed a trend toward an increased expression of the investigated 

genes in both C9 and sALS iAstrocytes. This was particularly evident for  MYB  and 

CCND2 following 4 hrs of IL-2 exposure although the data did not reach statistical 

significance. However, it is important to notice that we used a very stringent type of 

statistical test (Two-way ANOVA with Tukey's multiple comparison correction), which 

is affected by the small number of replicates. 
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Figure 5.4: The Effect of  IL-2 (10nM in 1% FBS medium) for 1 or 4 Hours 

on iAstrocytes.  

This figure summarises the changes in the expression of  IL2RB, MYB, CASP3 
and CCND2 following the exposure to 10nM IL-2 in 1% FBS medium for 1 or 4 
hours. No differences are reported amongst the healthy control (155, 161 and 
AG) lines while both C9 (P78, P183 and P201) and sALS (P009, P12 and P17) 
iAstrocytes show a trend toward an increased expression, although they do not 
reach statistical significance. Each dot represents the mean relative expression 
from three technical replicates. One experimental replicate (N=1) and three 
biological replicates are reported for each iAstrocyte line. Expression data of 
each gene in each iAstrocyte line were normalized to GAPDH and to the control 
condition at 1hr (1:1000, 5% PBS + glucose solution).  Mean ± SD are graphed. 
Two-way ANOVA with Tukey's correction for multiple comparisons was 
performed.  

 

 

To increase the statistical power of the analysis, all the ALS iAstrocyte samples 

following 4 hr treatment were grouped together and analysed regardless of their 

genetic background (Figure 5.5). A significant (p-value < 0.05, Two-tailed unpaired T 

test) increase was reported for IL2RB, MYB and CASP3.  High variability was reported, 

which was particularly evident for the expression of CCND2.  
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Figure 5.5: Effect of IL-2 (10nM in 1% FBS Medium) for 4 hrs on 

iAstrocytes.  

In this figure, the expression data from the 3 C9 (P78, P183 and P201) and 3 
sALS (P009, P12 and P17) iAstrocytes were plotted together to increase the 
statistical power of the analysis. Each dot represents the mean relative 
expression from three technical replicates. One experimental replicate (N=1) is 
reported for each of the 6 iAstrocyte lines. Expression data of each gene in 
each iAstrocyte line were normalized to GAPDH and to the control condition at 
4 hr (1:1000, 5% PBS + glucose solution).  Mean ± SD are graphed. Two-tailed 
unpaired T-test was performed.  

 

 

Taken together, these data suggested that reduced FBS levels increased the 

detectability of gene expression changes in iAstrocytes. Moreover, the most evident 

reaction was obtained following 4 hr treatment with IL-2. In particular, 10nM seemed 

to be the most promising concentration. However, to validate this hypothesis, 

experiments were performed by treating cells with a range of different IL-2 

concentrations (1, 5, 10, 50, 100nM) (Figure 5.6). A steady increase in the expression 

of all the four genes, which peaked with 10nM IL-2, was reported in most of the ALS 

iAstrocyte lines, particularly in C9 ALS cells. However, the level of expression tended 

to be decreased with higher IL-2 doses (50 and 100nM). Consistent with previous 

findings, MYB and CASP3 appeared to be the major induced transcripts although the 

MYB increase in C9 ALS iAstrocyte was the only one to reach statistical significance 
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(Two-way ANOVA with Tukey's multiple comparison correction). However, when all 

ALS patient derived iAstrocytes were plotted together (both C9 and sALS lines), 

significant increases in expression were detected for both CASP3 and MYB (Figure 
5.6D). Generally, some changes were also reported in the healthy controls whilst a 

sharp, but more variable, peak in MYB expression was registered with 10nM IL-2.  
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Figure 5.6: IL-2 Dose-Dependency in iAstrocytes.  

This figure summarises gene expression changes of the four genes following 
treatment with different concentration of IL-2 (1, 5, 10, 50 and 100nM) for 4 hrs 
in 1% FBS medium. Results from three biological replicates of (A) healthy 
controls (155, 161 and AG), (B) C9 ALS (P78, P183 and P201), (C) sALS 
(P009, P12 and P17) or all the ALS iAstrocytes together (P78, P183, P201, 
P009, P12 and P17) are displayed. Each dot represents the mean relative 
expression from three technical replicates. One experimental replicate (N=1) is 
reported for each iAstrocyte line. Expression data of each gene in each 
iAstrocyte line were normalized to GAPDH and to the control condition (1:1000, 
5% PBS + glucose solution). Mean ± SD are graphed. Two-way ANOVA with 
Tukey's correction for multiple comparisons was performed (* : Adjusted p-
value < 0.05; ** : Adjusted p-value < 0.01).  
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Taken together, these data suggested that the optimal treatment settings for 

iAstrocytes were 10nM IL-2 in 1% FBS medium for 4 hr. Although statistical 

significance was reported in limited number of cases, this decision was further 

supported by the fact that these cells predominantly express the intermediate affinity 

receptor, whose constant of dissociation is ~10−9 M. Therefore, it was proposed to use 

10nM as the most suitable concentration at which iAstrocytes would illicit a response 

to treatment. Additionally, as previously reported in the literature (Santos et al., 2017, 

Tarassishin et al., 2014, Wang et al., 2014, Norden et al., 2014, Jang et al., 2013, 

Semple et al., 2010, Ma et al., 2010, Burmeister et al., 2019a, Dong et al., 1999), short 

incubation periods seemed to be ideal to study gene expression changes in astrocytes 

and, in line with this, 4hr was chosen as treatment time length. Moreover, as 

summarised in Table 5.1, reduced levels of FBS were repeatedly used in different 

studies to test the effect of interleukins on astrocytes (Perriot et al., 2018, Tarassishin 

et al., 2014, Norden et al., 2014, Semple et al., 2010, Burmeister et al., 2019a, Dong 

et al., 1999) as higher concentrations seemed to promote a reactive and inflammatory 

transcriptional phenotype (Perriot et al., 2018). 
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5.2 Cytotoxicity Assays 
 

As previously discussed, CASP3 has been reported in the literature as an IL-2 induced 

transcript. Consistently with this, increased expression was reported in our iAstrocyte 

lines following IL-2 treatment (Figure 5.7). Caspases are a well-defined class of 

proteases that are crucial mediators of apoptosis. Given this, an investigation was 

performed in order to exclude any possible cell death induction following 4 hr treatment 

with IL-2. To this end, lactate dehydrogenase (LDH) cytotoxicity assays, which are 

colorimetric assays that allow the measurement of damaged cells in culture, were 

carried out (see section 2.2.3).  

 

Following 4 hrs of 10nM IL-2 treatment in 1% FBS medium, LDH assays were 

performed (Figure 5.7). Low percentages of cell damage were observed 

(approximately 2-4%) and, importantly, no significant (two-tailed unpaired T test) 

increase in cytotoxicity was reported following IL-2 treatment in either healthy controls, 

C9 or sALS iAstrocytes compared to the control condition (1:1000, PBS + 5% glucose 

solution for 4 hrs). Interestingly, a significant difference was reported only for the 

control line 161. However, data indicated a decrease in the levels of damaged cells 

following IL-2 treatment. A similar trend was reported for patients P78 and P201 

although statistical significance was not reached.  
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Figure 5.7: LDH Cytotoxicity Assays.  

Scatter plots showing the percentage of cytotoxicity following control (1:1000, 
PBS + 5% glucose solution) or IL-2 (10nM, 4 hrs in 1% FBS medium) 
treatments are reported. All the 9 iAstrocyte lines were screened (healthy 
controls: 155, 161 and AG; C9 ALS: P78, P183 and P201; sALS: P009, P12 
and P17). No significant variations (two-tailed unpaired T tests) were reported 
between IL-2 treated and control (spontaneous LDH release in untreated 
astrocytes) samples.  Each dot represents a technical replicate and mean ± SD 
are graphed. 

 

 

Taken together, these data showed that no cytotoxicity was associated with the 

optimized IL-2 treatment in iAstrocytes and therefore, this was considered safe for 

iAstrocytes.  
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5.3 iNPC-derived Astrocytes Transcriptional Profile 
 

To investigate the molecular effects of IL-2 on iAstrocytes, RNA samples from 3 

healthy controls (155, 161 and AG), 3 ALS patients carrying a C9orf72 mutation (P78, 

P183 and P201) and 3 sALS (P009, P12 and P17)-derived astrocytes were 

transcriptionally profiled using the Oxford Nanopore cDNA sequencing technique. 

Results from the quality control, differential expression and gene enrichment analyses 

are described in the next paragraphs.  

 

5.3.1 RNA Samples and Sequencing Quality Control 

Following 4 hr exposure to either 10nM IL-2 or PBS + 5% glucose solution in media 

containing 1% FBS, cells were harvested and RNA extracted, which was then used 

for library preparation. RNA sample characteristics are summarised in Table 5.2. 

Overall, good quantity and quality scores were obtained and extremely high RIN (RNA 

integrity number) numbers were observed. Therefore, the quality of the RNA samples 

was ascertained. In particular, RNA integrity is of crucial importance for the Oxford 

nanopore technique to allow long-read sequencing.   
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Table 5.2: Astrocytic RNA Sample Quality.  

RNA sample characteristics are summarised in this table. For each RNA 
sample, cell details (iAstrocyte line name, ALS and treatment types) are 
reported together with RNA concentration, 260:280 ratio and RIN value.  

 
Sample 
name 

Astrocyte 
line 

ALS 
type 

Treatment type Concentration 
(ng/ul) 

260/280 
ratio 

RIN 

155 G 155 NA PBS + 5% glucose 98 2.11 9.7 

155 IL2 155 NA IL2 (10nM) 106.9 2.12 9.9 

AG G AG NA PBS + 5% glucose 239.5 2.14 10 

AG IL2 AG NA IL2 (10nM) 163.7 2.14 10 

161 G 161 NA  PBS + 5% glucose 314.3 2.11 10 

161 IL2 161 NA IL2 (10nM) 303.9 2.11 10 

P78 G P78 C9 ALS PBS + 5% glucose 75.6 2.06 10 

P78 IL2 P78 C9 ALS IL2 (10nM) 128.9 2.07 10 

P183 G P183 C9 ALS PBS + 5% glucose 287.1 2.12 10 

P183 IL2 P183 C9 ALS IL2 (10nM) 282.6 2.12 10 

P201 G P201 C9 ALS PBS + 5% glucose 169.4 2.15 10 

P201 IL2 P201 C9 ALS IL2 (10nM) 142.9 2.14 10 

P009 G P009 sALS PBS + 5% glucose 122.5 2.12 10 

P009 IL2 P009 sALS IL2 (10nM) 151.4 2.13 10 

P12 G P12 sALS PBS + 5% glucose 182.5 2.15 10 

P12 IL2 P12 sALS IL2 (10nM) 203.1 2.11 10 

P17 G P17 sALS PBS + 5% glucose 98 2.1 10 

P17 IL2 P17 sALS IL2 (10nM) 89.7 2.11 10 
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Following library preparation and sequencing by Matt Wyles, a QC analysis was also 

performed to assess the quality of the sequencing process. This was conducted using 

the MultiQC software by Matt Parker and a general summary of the obtained scores 

can be found in Table 5.3. A considerably high number of mapped reads were 

obtained (average = 27 millions). This yield was greater than the typical number of 

reads reported on the Oxford Nanopore guide (generally 7-12 millions, 

https://nanoporetech.com/). Additionally, both the percentage of the total reads that 

were mapped onto the human genome and the proportion of sequences being 

assigned to a known gene were very high (81.9 and 83.0% on average respectively). 

The mean sequence length was greater that 400 bp for all the samples (525 bp on 

average), which suggested that the majority of the reads were from full-length 

transcripts. Moreover, the average percentage of GC bases was around 45% which is 

consistent with human samples.  
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Table 5.3: Summary of MultiQC scores.  

This table summarises, for each astrocyte sample, the quality of the reads 
obtained using Oxford Nanopore cDNA sequencing. In particular, for each 
sample, the millions of sequenced reads, the percentage of mapped reads and 
their proportion of assignment to the genome are reported. Moreover, the 
average sequence length and percentage of GC bases are also included. 
These scores were retrieved from the software MultiQC and were useful to 
inspect the quality and assess the yield of the sequencing process.   

 

Sample Mapped 
reads 
(Millions) 

% 
Mapped 
reads 

% 
Assigned 
reads 

Avg 
sequence 
length 

Avg 
%GC 

 
155_G 22.3 73.70% 76.90% 429 bp 45% 
155_IL2 17.7 80.00% 81.60% 544 bp 46% 
AG_G 14.3 61.00% 70.20% 473 bp 45% 
AG_IL2 26.4 72.70% 77.20% 486 bp 45% 
161_G 40.4 86.60% 87.40% 593 bp 46% 
161_IL2 39.2 87.50% 87.30% 546 bp 46% 
P78_G 30.1 85.50% 84.90% 545 bp 46% 
P78_IL2 29.2 84.10% 83.90% 512 bp 45% 
P183_G 30.1 85.50% 84.90% 545 bp 46% 
P183_IL2 29.2 84.10% 83.90% 512 bp 45% 
P201_G 40.4 86.60% 87.40% 593 bp 46% 
P201_IL2 39.2 87.50% 87.30% 546 bp 46% 
P009_G 35.4 86.80% 87.20% 540 bp 46% 
P009_IL2 10.3 87.70% 87.50% 571 bp 46% 
P12_G 35.4 86.80% 87.20% 540 bp 46% 
P12_IL2 26.4 72.70% 77.20% 486 bp 45% 
P17_G 16 83.10% 81.50% 501 bp 45% 

P17_IL2 10.4 83.00% 81.40% 480 bp 45% 
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Additional quality control was performed by generating diagnostic plots using the 

software MultiQC (Figure 5.8). As previously mentioned, all the samples were 

characterized by a good proportion of assigned reads (~80%) and a limited numbers 

of unassigned ones (~20%) (Figure 5.8A). As expected, the sequence length graphs 

showed that all of the generated libraries had a similar distribution with a peak at 

around 500 bp (Figure 5.8B). The sample obtained from the iAstrocyte line 161 

treated with PBS + 5% glucose solution (161_G) showed a considerably higher 

proportion of reads having 500 bp length. Nonetheless, this result was not considered 

problematic as 161_G showed a distribution of sequence lengths similar to all the rest 

of the samples and, for the purpose of differential expression analysis, the difference 

in library sizes were addressed using DESeq2 median of ratios normalization method 

(as described in the method section 2.2.5). The per sequence GC graph showed the 

average content of guanosine and cytosine residues (in percentage) across the 

sequences in a sample. A library passing this QC metric should have a roughly normal 

distribution of these bases with a peak corresponding to the overall GC content of the 

analysed organism (human ~ 42-45%). As reported in Figure 5.8C the majority of the 

samples met this criterion showing a Gaussian distribution of the percentage of GC 

content. However, samples obtained from astrocytes AG (healthy control) treated with 

PBS + 5% glucose solution and P12 (sALS) treated with IL-2 showed an additional 

peak at around 35%. This might indicate either a contamination in the library 

preparation process or an enrichment for A/T rich sequences and therefore this was 

taken into consideration as a possible limitation of the study. Lastly, the quality of a 

given base call was assessed by measuring the Phred quality score. This indicated 

the probability of a base being correctly recognised. Usually values above 20 (which 

is equal to a 99% accuracy and therefore to a probability of an incorrect base call of 

1% as this is calculated as: 10-(Phred score/10)) are generally accepted as good quality 

scores. The per sequence quality score plot displays the distribution of the mean 

quality scores all the bases of each sequence in a sample. Gaussian distribution of 

the scores showed peaks corresponding to a Phred scores of around 23 for all the 

samples which indicated a good level of sequencing accuracy for the majority of the 

reads (Figure 5.8D).  

 

These results are consistent with acceptable good quality sequencing and data were 

subsequently used for gene expression analysis. 
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Figure 5.8: iAstrocyte cDNA Sequencing QC Plots.  

In this figure, quality controls diagnostic plots are displayed. (A) The 
assignment graph shows the proportion of reads being assigned to a specific 
gene compared to unassigned ones. As expected, the majority of the reads 
were assigned. X-axis: percentage of reads, Y-axis: sample names. (B) The 
distribution of the read length is shown in this plot. All the samples show a peak 
at 500bp which indicated that most of the reads were from full-length 
transcripts. X-axis: sequence length reported in base pairs, Y-axis: the read 
counts. (C) This graph shows the percentage of GC content per sequence in a 
sample. The majority of libraries showed a normal distribution with a peak at 
42%, which is consistent with the human transcriptome, however two samples 
had an additional peak at around 35%. X-axis: percentage of GC content, Y-
axis: percentage of sequences. (D) The per sequence quality (or Phred) score 
is displayed. Most of the reads from all the samples had a good quality score 
of approximately 23. X-axis: mean quality score per sequence, Y-axis: number 
of read counts.  

 
 
Although not strictly considered a quality control metric, a principal component 

analysis (PCA) was also carried out to summarise and visually inspect differences and 

similarities amongst transcriptional profiles of sequenced samples. The PCA plot 

revealed a clear separation between samples 161 (healthy control) and P201 (C9 

ALS) - regardless of their treatment type - and all the rest of the samples along the 

first principal component, which account for most of the variance within the data 

(Figure 5.9). This suggested a substantial difference in their transcriptomes compared 

to the other samples possibly indicating an outlier trend of these two iAstrocyte lines.  
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Figure 5.9: Principal Component Analysis of iAstrocyte Sequencing Data 

Cartesian plot displaying principal component analysis of the Oxford nanopore 
sequencing data. Samples are colored by ALS group type (healthy controls in 
green, C9 ALS in red and sALS in blue), while iAstrocyte line names are 
reported in the plot next to each dot (the name of the line is accompanied by 
either G or IL2 to indicate the treatment type: either PBS + 5% glucose or IL-2, 
respectively). Importantly, although 18 samples were screened, only 12 dots 
were displayed in this plot. This is because some of the samples were so similar 
that the PCA assigned the same PC1 and PC2 scores. In such cases, the 
names of the overlapping samples are written close each other and next to their 
common dot (e.g. samples G_P201 and G_161).  
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To further investigate on the reason why 161 and P201 were plotted distantly in the 

PCA, different sources of variation were investigated. First of all, the possibility of 

batch effects was explored (Figure 5.10) as RNA was extracted at different times and, 

as reported in the methods (section 2.2.4), samples were divided and processed in 

two batches for library preparation. However, no clear batch effect was identified for 

both processes. In fact, although cell line 161 was the only one whose RNA was 

extracted on 5th February and therefore, difference in the extraction process could 

have explained the spatial separation, the RNA of line P201 was produced on the 

same day as AG samples, which were displayed on the left-hand side of the graph 

together with the rest of the samples. This suggested that no batch effect was reported 

in terms of RNA extraction (Figure 5.10A). Similarly, differences in the sequencing 

library preparation did not result in a batch effect as 161 and P201 belonged to 

separate batches (Figure 5.10B). 
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Figure 5.10: Principal Component Analysis – Investigation of Potential Batch Effect.  

In these images the PCA plot is colored by either the RNA extraction date (A) or the library preparation ID (B) to investigate on 
possible batch effects. Nonetheless, RNA from 161 and P201 were extracted at different times and their libraries were not processed 
on the same days and therefore, no clear technical problems could have accounted for this spatial separation. 
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Additionally, some confounders were investigated as possible causes of the 161 and 

P201 spatial separation (Figure 5.11). These included gender and age of the patients 

and healthy controls at which their skin biopsy was taken and the number of passages 

at which the iNPCs were kept in culture before starting the differentiation to astrocytes. 

However, 161 and P201 were from a male and a female donor respectively and 

therefore no clear gender difference was identified (Figure 5.11A). Although 161 was 

the youngest healthy control (31 years of age), P201 was one of the oldest samples 

(66 years of age) and therefore, the spatial distance could not be explained as the 

result of a different age cluster with a dissimilar transcriptional profile (Figure 5.11B). 

Interestingly, P201 was the sample cultured for the highest number of passages (24 

passages) and, similarly, 161 was the one kept longer in culture (19 passages) 

amongst the healthy controls (Figure 5.11C). However, it is unlikely that this was the 

source of the separation as other samples, such as P12 and P17, were also 

maintained in culture for a high number of passages (21 and 19 respectively) but these 

were on the left -hand side of the PCA plot.  
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Figure 5.11: Principal Component Analysis– Investigation of Possible Confounders.  

To investigate for possible confounders, in these images, the PCA was coloured by gender type (A) or samples were named 
by age (B) or passage number (C) at which iNPCs were kept in culture before being differentiated to astrocytes. No clear 
association of gender, age and passage was identified and able to explain 161 and P201 separation.   



 262 

Moreover, to further validate the spatial separation of 161 and P201, data were also 

analysed using multidimensional scaling (MDS), another dimensionality reduction 

technique (extensively described in chapter 3) (Figure 5.12A). In agreement with the 

PCA analysis, MDS also revealed a spatial separation of 161 and P201. Upon the 

removal of these samples (Figure 5.12B), as expected, three groups were clearly 

recognized with the healthy controls and the two ALS groups being separated. 

Moreover, lesser differences were reported between samples treated with IL-2 or with 

the control condition (PBS + 5% glucose solution), as the major source of variation 

was anticipated to be the disease condition. 
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Figure 5.12: Multidimensional Scaling Plots 

Two multidimensional scaling (MDS) plots, either including all samples (A) or excluding 161 and P201 (B), are shown. Samples 
are colour coded by ALS group type (healthy controls in green, C9 ALS in red and sALS in blue). Similarly, to the PCA plot 
161 and P201 (regardless of their treatment type) were spatially distanced. Their removal allows the identification of the three 
disease-associated  groups: healthy controls, C9 ALS and sALS (highlighted with coloured circles).
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Despite these results suggesting 161 and P201 as possible outliers, a decision was 

made not to exclude those samples from our subsequent differential expression 

analysis. In fact, the removal of 4 out of 18 samples would have probably excessively 

biased the analysis and would have increased the number of falsely differentially 

expressed genes detected. Additionally, when data were analysed by creating a 

correlation heatmap (Figure 5.13), although 161 and P201 appeared to be less 

correlated compared to the rest of the samples, their coefficients were ≥ 0.99. This 

extremely high score did not justify their classification as outliers and therefore their 

exclusion from any further differential expression analysis. Nonetheless, we 

recognized this as a limitation of our study and, in light of a future publication, we aim 

to sequence other samples in order to be able to validate these as outliers and, if 

confirmed, to exclude them and re-run the differential expression analysis.  
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Figure 5.13: Gene Expression Correlation Heatmap to Detect Outliers. 

Hierarchically clustered heatmap displaying the correlation scores between the 
gene expression profile of a sample with all the other samples. As expected, 
161 and P201 correlated with each other whilst being more different from the 
rest of the samples. Nonetheless, the lowest correlation coefficient computed 
was = 0.99 and therefore this does not justify the exclusion of 161 and P201 
from any subsequent analysis. To allow easier interpretation ALS group types 
are also reported in different colours (healthy controls in green, C9 ALS in red 
and sALS in blue).  
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5.3.2 Differential Expression Analysis 

 
Following quality control analysis, Oxford Nanopore sequencing data was used to 

perform differential gene expression analyses in order to assess the effect of IL-2 on 

these cells. In particular, three analyses were carried out, one for each iAstrocyte 

group (healthy controls, C9 ALS and sALS), in which treated samples were compared 

to the control condition (PBS + 5% glucose solution). These will be subsequently 

referred to in the text as HC_IL2vsG for the healthy controls, C9_IL2vsG for the C9 

ALS and SALS_IL2vsG for the sALS samples.  

 

The comparison HC_IL2vsG retrieved 83 genes as significantly differentially 

expressed (log2FC ≤ -0.58 or ≥ 0.58 which is equal to 1.5 ≤ FC ≤ -1.5 and p-value 

<0.05) of which 41 were decreased and 42 increased (full list reported in Appendix 
9). Interestingly, of these 83 genes (annotated using Ensembl transcript IDs), only 53 

were also annotated as having an official gene symbol. The number of significantly 

(1.5 ≤ FC ≤ -1.5 and p-value <0.05) differentially expressed genes promoted by IL-2 

increased in ALS patient-derived astrocytes. In fact, 183 DEGs were identified in 

SALS_IL2vsG (59 decreased and 124 increased, Appendix 10), whilst 456 were 

identified in the C9_IL2vsG comparison (230 decreased and 226 increased, 

Appendix 11). Therefore, the C9 ALS patients seemed to be the most responsive 

group, with the greatest observed transcriptional variation promoted by IL-2. Similarly 

to the healthy controls, the proportion of genes being also annotated with a gene 

symbol was reduced to 116 for SALS_IL2vsG and to 276 for C9_IL2vsG. These results 

are summarized in three volcano plots displayed in Figure 5.14.  
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Figure 5.14: Differentially Expressed Genes Following IL-2 Treatment in 
iAstrocytes. 

Volcano plots displaying DEGs resulting from the comparisons HC_IL2vsG (A), 

SALS_IL2vsG (B) and C9_IL2vsG (C). DEGs are plotted and colour-coded 

depending on their logarithmic fold change (log2FC) and their significance 

levels (-Log10 p-value): non-significant transcripts are reported in grey, 

significant and with log2FC ≤ -0.58 in blue and significant and with log2FC ≥ 

0.58 in red. Three black lines are also shown: the horizontal one indicates the 

p-value threshold (-Log10 p-value=1.3) and two vertical dotted lines mark the 

FC cut-offs (log2FC ≤ -0.58 or ≥ 0.58 which is equal to 1.5 ≤ FC ≤ -1.5). Official 

gene symbols are displayed for some of the top differentially expressed genes 

(notably, some of the top DEGs are not named as these were not annotated 

with any official gene symbol, whilst only Ensembl transcript ID was available). 

A greater number of DEGs was retrieved in ALS patients compared to healthy 

controls following IL-2 treatment. This was particularly evident in C9orf72 ALS. 

(Wald statistics was conducted by DESeq2 to find significant DEGs). 

  

 

Subsequently, DEGs from the three comparisons were analysed to find any genes 

whose expression was commonly altered as a result of the IL-2 treatment. However, 

no terms were found as differentially expressed in common in the three groups 

(healthy controls, C9 ALS and sALS) (Figure 5.15). Additionally, only 10 genes were  

altered in both sporadic and C9orf72 ALS patient-derived  astrocytes. Amongst those, 

one stimulated by retinoic acid 8 (STRA8) was increased in both ALS groups following 

IL-2 treatment. This is intriguing considering that multiple studies have linked retinoids 

to ALS (Riancho et al., 2016). An even more limited number of terms was found as 

commonly expressed between healthy controls and C9 ALS and between healthy 

controls and sALS. Interestingly, cytotoxic and regulatory T cell molecule (CRTAM) 

was found to be upregulated in both healthy control and C9 ALS patients following IL-

2 treatment. This protein mediates the activation and differentiation of several T cell 

subsets. A complete list of these commonly differentially expressed genes is provided 

in Table 5.4. Altogether these results suggested that IL-2 was able to promote 

transcriptional variations that were unique and characteristic of each of the three 

different subgroups.  
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Figure 5.15: Commonly Differentially Expressed Genes in iAstrocytes 
Following IL-2 Treatment. 

Venn Diagram displaying common DEGs between the three groups following 

IL-2 treatment. A very limited number of genes appeared to be in common 

which suggested that this cytokine is able to promote characteristic 

transcriptional alteration in each of the groups 
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Table 5.4: List of Common Differentially Expressed Genes.  

In this table, genes commonly differentially expressed in the three analyses 

(HC_IL2vsG,  C9_ IL2vsG and sALS_ IL2vsG) are listed. For each gene, both 

Ensemble ID and gene symbol are displayed (where no gene symbol was 

available, the symbol "-" was used) together with log2FC and p-value of each 

of the three comparisons ("NA" is shown if a gene was not significantly 

differentially expressed in a comparison).  

 
 

Ensembl ID Gene 

Symbol 
HC_IL2
vsG 
log2FC 

HC_IL
2vsG 
pvalue 

C9_Ivs
G 

log2FC 

C9_IL2
vsG 
pvalue 

sALS_IL
2vsG 
log2FC 

sALS_IL
2vsG 
pvalue 

ENSG00000279026 - -5.781 0.001 -4.502 0.032 NA NA 

ENSG00000251533 LINC00605 -5.446 0.003 -5.300 0.006 NA NA 

ENSG00000241754 - -5.287 0.006 -4.709 0.042 NA NA 

ENSG00000206228 HNRNPA1P4 -4.946 0.037 -4.502 0.032 NA NA 

ENSG00000171786 NHLH1 -4.857 0.020 -4.820 0.016 NA NA 

ENSG00000261204 - 2.105 0.046 2.376 0.028 NA NA 

ENSG00000184956 MUC6 4.811 0.017 4.670 0.022 NA NA 

ENSG00000109943 CRTAM 5.106 0.007 5.487 0.001 NA NA 

ENSG00000234155 LINC02535 -4.609 0.036 NA NA -4.717 0.018 

ENSG00000246316 - -2.602 0.047 NA NA 5.665 0.002 

ENSG00000235052 - NA NA -4.820 0.016 4.849 0.018 

ENSG00000267676 THA1P NA NA -2.744 0.009 2.332 0.015 

ENSG00000283141 LINC02666 NA NA -2.506 0.022 -4.300 0.024 

ENSG00000268307 LINC02560 NA NA -2.192 0.032 5.279 0.006 

ENSG00000249572 - NA NA -0.898 0.012 1.247 0.012 

ENSG00000201098 RNY1 NA NA 0.583 0.023 -1.084 0.011 

ENSG00000180730 SHISA2 NA NA 1.068 0.034 -4.965 0.003 

ENSG00000258123 LINC02444 NA NA 4.359 0.040 -4.671 0.008 

ENSG00000272040 - NA NA 5.206 0.005 5.879 0.001 

ENSG00000146857 STRA8 NA NA 5.416 0.016 5.132 0.015 
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5.3.3 Gene Enrichment Analysis 

 

Following differential expression analysis, gene enrichment was performed with the 

aim of discovering pathways and biological processes which were modified in 

response to the IL-2 treatment. Two different analyses were carried out: the first one 

using the software Enrichr and REVIGO, which focused on altered GO biological 

processes (GO BP), and the second one was performed utilising Ingenuity Pathway 

Analysis (IPA). Results obtained using these different methods are discussed in the 

following paragraphs. 

 

Lists of upregulated and downregulated genes from the three comparisons were 

imported separately into Enrichr, GO analyses were carried out and similar terms were 

summarised by REVIGO (semantic similarity cut off= 0.5).  

 

For the comparison HC_IL2vsG, a total of 76 increased and 100 decreased GO BPs 

were found to be significantly (p-value <0.05) enriched which were summarised into 

30 and 35 clusters by REVIGO, respectively. These are displayed in Figure 5.16 and 

further grouped into master categories which are marked in the image by using 

different colours. Several processes involved in the CNS homeostasis were 

documented to be altered (both increased and decreased) with the treatment. In 

particular, several terms linked to the myelination and axonogenesis processes 

appeared to be upregulated, suggesting a possible protective central effect of the 

interleukin on healthy control astrocytes. Additionally, a multitude of immune-related 

GO BPs were reported to be both increased and decreased. This indicates that IL-2, 

at this range of treatment doses, does not induce a consistent immune stimulation or 

suppression but, in turns, alters the expression immunological genes in a 

characteristic way. Several processes involved in ion homeostasis were also altered 

(the majority of which were downregulated, particularly those involving K ions) 

together with pathways implicated in the fatty acid metabolism and in mitochondrial 

homeostasis. In addition, different mechanisms responsible for the regulation of 

oxidative stress were also downregulated ("negative regulation of hydrogen peroxide-

induced cell death", "regulation of response to oxidative stress",  "regulation of cellular 

response to oxidative stress", "regulation of reactive oxygen species biosynthetic 
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process"), potentially reflecting a reduction in the ROS biosynthesis in response to the 

treatment. This is consistent with the results found in the IMODALS trial participants, 

which also indicated a decrease in the production of ROS species and in NRF2 

pathway activation. 
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Figure 5.16: Enriched GO BPs in Healthy Controls iAstrocytes Following 
IL-2 Treatment. 

In this image, the enriched and REVIGO clustered GO BPs from the 

comparison HC_IL2vsG are displayed. Per each cluster representative (the 

name of which is reported on the Y-axis), the number of biological processes 

included in that cluster is shown. To clearly visualise the directionality of the 

altered processes (either increase or decrease), positive values of GO BPs 

were used to indicate upregulation whilst negative for downregulation. The 

terms are also manually grouped into master categories as indicated by the 

different colours.  

 

 

The Enrichr analysis of the DEGs resulted from the comparison SALS_IL2vsG 

retrieved 106 upregulated and 70 downregulated significantly (p-value <0.05) enriched 

GO BPs. These were summarised into 61 increased and 43 decreased REVIGO 

clusters respectively (Figure 5.17). Consistent with the healthy control astrocytes, 

sALS patient-derived cells also showed an extensive alteration of CNS-related 

processes in response to IL-2 administration. In fact, myelination pathways were 

increased whilst GO BPs involved in dendritic spine and axonogenesis were both up 

and downregulated. Processes implicated in the nerve growth factor response 

appeared to be decreased, which might constitute a detrimental effect. However, 

pathways involved in the signalling of neurotrophins, a class of growth factor 

implicated in neuronal survival and development, were upregulated. Additionally, a 

substantial increase in catecholamine neurotransmission was reported. In line with 

healthy control results, mixed alterations of immune-related processes were reported 

together with changes in ion homeostasis pathways. In addition to modifications in 

metabolic mechanisms involving lipids (triglycerides), the metabolism of amines and 

glucose also appeared to be affected. In particular, the process of gluconeogenesis 

seemed to be increased whilst glycogen biosynthesis was reduced. This is of particular 

importance for astrocytes, which are pivotal for providing neurons with the necessary 

energy sources. As mentioned in the introduction, decreased glycogen mobilization 

and degradation to glucose has been reported in ALS, together with an increment in 

glycogen levels. Therefore, these alterations induced by IL-2 may be protective and 

may be able to alleviate the impaired glucose metabolism in astrocytes. Processes 

linked to the cellular response to retinoic acid were also increased in response to the 
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treatment. Interestingly and consistently with healthy control data, GO BPs involved in 

the regulation of oxidative stress response were enriched in sALS patient-derived 

astrocytes following IL-2 treatment. However, these ROS regulative processes 

appeared to be increased rather than decreased as in the healthy controls. 
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Figure 5.17: Enriched GO BPs in sALS iAstrocytes Following IL-2 
Treatment. 

In this image, the enriched and REVIGO clustered GO BPs from the 

comparison SALS_IL2vsG are displayed. Per each cluster representative (the 

name of which is reported on the Y-axis), the number of biological processes 

included in that cluster is shown. To clearly visualise the directionality of the 

altered processes (either increase or decrease), positive values of GO BPs 

were used to indicate upregulation whilst negative for downregulation. The 

terms are also grouped manually grouped into master categories as indicated 

by the different colours.  

 

 

Lastly, the Enrichr analysis of the comparison C9_IL2vsG identified 73 upregulated 

and 36 downregulated significant (p-value <0.05) GO BPs, which were summarised 

into 30 increased and 30 decreased REVIGO clusters (Figure 5.18). Interestingly, 

despite the fact that this comparison retrieved the highest number of DEGs (456), 

these were enriched into a smaller number of biological processes in the GO analysis 

compared to the healthy controls and sALS. This was probably because a large 

proportion of DEGs were long intergenic non protein coding (LINC) RNAs and because 

the software Enrichr did not have ontology information for a multitude of C9_IL2vsG 

differentially expressed genes. Therefore, data were also subsequently analysed 

using a different enrichment software (IPA, see following paragraphs) to ensure an 

exhaustive pathway analysis. In line with previous results from both healthy controls 

and sALS astrocytes, a significant alteration in CNS processes was reported. In 

particular, axonogenesis and myelination pathways seemed to be consistently 

increased in all the three comparisons. However, C9_IL2vsG also revealed an 

increment in synaptic and dendritic transport. Additionally, as per previous results, 

mixed up and downregulation of immune-related and ion homeostatic pathways were 

reported. Metabolic processes also seemed to be consistently impacted by the 

treatment although phospholipids and monocarboxylic acids appeared to be the 

principal targets in IL-2-treated C9 ALS astrocytes. Interestingly and as observed in 

healthy controls, negative regulation of cell death processes involving ROS and 

mitochondria were increased and therefore the treatment seemed to induce an 

important reduction in these toxic pathways.  
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Figure 5.18: Enriched GO BPs in C9-ALS iAstrocytes Following IL-2 
Treatment. 

In this image, the enriched and REVIGO clustered GO BPs from the 

comparison C9_IL2vsG are displayed. Per each cluster representative (the 

name of which is reported on the Y-axis), the number of biological processes 

included in that cluster is shown. To clearly visualise the directionality of the 

altered processes (either increase or decrease), positive values of GO BPs 

were used to indicate upregulation whilst negative for downregulation. The 

terms are also manually grouped into master categories as indicated by the 

different colours.  

 

 

A subsequent gene enrichment analysis was performed using the software IPA to 

retrieve significantly altered pathways following the IL-2 treatment. Similarly to what 

was previously done for microarray gene expression data, two different IPA tools were 

used, namely:  canonical pathway, which allowed the identification of enriched 

pathways included in the Ingenuity Knowledge Base®, and the "diseases and 

functions" tab, which highlighted disease-characteristic mechanisms and biological 

functions within the data sets. Interesting enriched pathways resulted from the IPA 

canonical pathway analyses (Figure 5.19). In healthy controls, 13 terms were 

enriched (Figure 5.19A). In particular, the IL-2 treatment seemed to induce 

modification in the STAT3 pathway, which was the most significantly altered pathway 

although no activation or inhibition (Z-score=0) was predicted. This suggested a mixed 

phenotype with both increased and decreased genes being included in this process. 

However this pathway enrichment is interesting as STAT3 is known to be crucial for a 

multitude of astrocytic functions including differentiation (Hong and Song, 2014), 

proliferation (Tsuda et al., 2011) and reactivity (Ceyzériat et al., 2016). Intriguingly, the 

pathway "CREB signaling in neurons" appeared to be activated in the IL-2 treated 

healthy control astrocytes. The cyclic AMP response element binding protein (CREB) 

signalling is known to exert a key and neuroprotective role in both neurons and 

astrocytes (Pardo et al., 2017).  

 

In sALS astrocytes, 12 canonical pathways appeared to be enriched although their 

significance level (p-value of enrichment) is generally reduced compared to healthy 

controls (Figure 5.19B). Nonetheless, it is worth noting that a neuroprotective pathway 
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involved in a neurodegenerative disease (“Neuroprotective Role of THOP1 in 

Alzheimer's disease”) was enriched in these astrocytes, which suggested a possible 

beneficial effect of IL-2 treatment on these cells. Interestingly, both heathy controls 

and sALS canonical pathway analysis revealed evidence of alterations of immune-

related pathways ("Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid 

arthritis" was enriched in both while "CCR3 signaling in eosinophils" and "Role of 

WNT/GSK-3b signaling in the pathogenesis of Influenza" were altered in healthy 

controls and sALS respectively). This suggested an effect of the interleukin on the 

transcription of immunological genes, which are expressed in immune cells but also 

astrocytes.  

 

The IPA canonical pathway analysis of the C9 ALS astrocyte returned 14 terms as 

significantly enriched (Figure 5.19C). The top scoring one was the "Gustation 

pathway", which was inhibited and whose importance in ALS is uncertain. However, 

despite their Z-scores =0, interesting alterations in the retinol (also known as vitamin 

A) and retinoate biosynthesis were reported. This is consistent with other results from 

the Enrich and REVIGO analyses, where vitamin A processes were enriched, although 

these were not reported in C9 ALS astrocytes. These data suggested an IL-2-driven 

modification in vitamin A metabolism, a potentially interesting results as this molecule 

is known to impact on crucial mechanisms in ALS-related pathogenesis including 

neuronal differentiation, cellular proteostasis and antioxidant defence. Additionally, 

some pathways involved in synaptic stimulation and neuronal transmission were 

altered in response to IL-2 in C9 ALS astrocytes. These included "Synaptic long-term 

depression" and "GABA receptor signalling". Consistently with Enrichr and REVIGO 

analysis, the metabolism of lipids appeared to be impacted by the treatment (with the 

term "triacylglycerol degradation" being significantly enriched in IPA's canonical 

pathway analysis). 
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Figure 5.19: Enriched IPA Canonical Pathways in iAstrocytes Following  

IL-2 Treatment.  

Bar plots displaying IPA canonical pathway analysis retrieved from HC_IL2vsG 

(A), SALS_IL2vsG (B) and C9_IL2vsG (C) gene lists. Activated (z-score>0, in 

orange) or inhibited pathways (z-score<0, in blue) are shown. Significant 

pathways but with z-score equal to 0 (in white) or with no activation prediction 

available in the software (in grey) are also reported. A significance threshold is 

displayed as a dotted orange line (-Log10 p-value=1.3).  

 

 

Subsequently, the IPA tool called diseases and functions revealed a large number of 

processes being impacted by the IL-2 treatment. To gain a clear interpretation of these 

results, data reported in the following paragraphs only shows diseases and functions 

with computed positive or negative Z-scores, which indicate processes being activated 

or inhibited with the treatment. Interestingly, in the case of the healthy control 

astrocytes (Figure 5.20), genes involved in the proliferation of immune cells and T 

lymphocytes appeared to be markedly inhibited whilst more general terms like 

"quantity of cells" and "cell viability of tumour cell lines" were activated with the IL-2 

treatment. Additionally, the process "quantity of neurons", which is particularly 

interesting in the context of ALS, also appeared to show a positive Z-score. These 

findings suggested a general increase in the survival of these cells and it would be 

interesting to validate the possible impact of IL-2 on neuron quantity. Nonetheless, 

although genes implicated in the proliferation of immune cells were inhibited, the term 

"leukopoiesis" was activated. This is consistent with the immune modulatory effect of 

the cytokine, which promotes a reorganization within the immune system rather than 

a general suppression. Lastly, the increase reported in the term "quantity of metal" 

suggested an impact of IL-2 on ion and metal homeostasis, which is in line with the 

Enrichr and REVIGO results.  
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Figure 5.20: IPA Disease and Function Analysis in Healthy Control 

iAstrocyte 

This treemap shows the diseases and functions retrieved from the IPA analysis 

of HC_IL2vsG data set. Each box represents a biological function or a disease 

and they are sized and coloured by their z-score (z-score > 0 in the orange 

colour scale or < 0 in the blue scale). Diseases and functions are clustered by 

IPA into master categories for which the name is displayed by a grey label.  

 

 

A similar analysis for sALS astrocytes returned a greater number of diseases and 

functions being altered and with a computable activation status (Z-score) (Figure 
5.21). Consistent with the heathy control results, the processes "quantity of metal ion" 

and "quantity of metal" appeared to be significantly enriched and activated. Moreover, 

in line with previous analysis, a mild inhibition of proliferative processes involving 

immune cells was reported ("quantity of B lymphocytes", "quantity of hematopoietic 

progenitor cells" and "quantity of pre-B lymphocytes"). Surprisingly, terms linked to the 

formation of different kinds of tumours were enriched (both activated and inhibited), 

whilst necrosis and apoptosis of epithelial cells appeared to be increased. These data 

might indicate a possible detrimental effect of IL-2 in sALS astrocyte as these terms 
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seemed to indicate an activation of cell death mechanisms. To exclude this 

hypothesis, an in-depth study of the genes included in these cancer and cell death 

pathways was conducted. A complete list of all the transcript names and functions with 

the associated fold changes and significance levels is provided in Appendix 12. A 

reduced number of genes were included in the "apoptosis of epithelial tissue" (5 

genes) and in the "necrosis of epithelial tissue" (7 genes) pathways, and all of these 

transcripts were also included in the larger list of 60 genes that were differentially 

expressed in the three cancer processes ("malignant solid tumour", "non-melanoma 

solid tumour" and "formation of solid tumour"). Proteins encoded by these genes 

exerted a variety of different functions (including different transcription regulators, and 

several receptor subunits) whose alteration has been linked to cancer, whilst their 

importance in astrocytes is unclear  (see Appendix 12 for a brief summary of each 

gene function). Amongst these, only two genes (BIK and BMF) were found as having 

a direct effect on apoptosis by promoting its activation. Their expression appeared to 

be increased following IL-2 treatment, which might suggest a detrimental effect. 

However, transcriptional alteration of only two genes is probably not enough to 

confidently deduce an increase in cellular death. Moreover, given that the previous 

LDH data did not suggest any increase in cytotoxicity, these results are difficult to 

interpret and might indicate an activation of genes involved in cell death although this 

occurs at later time points. Therefore, further investigation is needed to exclude any 

possible detrimental long-term effects. Interestingly, some genes (FZD7 log2FC= 5.34, 

SHISA2 log2FC= -4.97, WNT3 log2FC= 4.67) involved in the Wnt pathway were 

differentially expressed and included in the list of tumour-related processes. This 

pathway has been shown to play a crucial role in cancer as well as in cellular 

proliferation (Teo and Kahn, 2010). Therefore, the alteration of the expression of these 

genes may exert a supportive effect in astrocytes.  

Additionally, the IPA analysis also revealed an evident activation of the process 

"quantity of glycogen" in treated sALS astrocytes compared to untreated. This result 

is in contrast with what was reported from the Enrichr and REVIGO analysis in sALS 

astrocytes (suggesting a reduction in glycogen accumulation and an increased 

glucose synthesis). This mechanism also needs additional research to clarify these 

apparently contradictory results and to validate any beneficial effect of IL-2 on 

astrocyte glucose metabolism. 
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Figure 5.21: IPA Disease and Function Analysis in sALS iAstrocyte 

This treemap shows the diseases and functions retrieved from the IPA analysis 

of SALS_IL2vsG data set. Each box represents a biological function or a 

disease and they are sized and coloured by their z-score (z-score > 0 in the 

orange colour scale or < 0 in the blue scale). Diseases and functions are 

clustered by IPA into master categories for which the name is displayed by a 

grey label.  

 

 

Lastly, a disease and function analysis was also conducted in C9 ALS astrocytes 

(Figure 5.22). In line with previous findings, several processes involved in the 

metabolism of glucose and carbohydrates were altered in these cells following IL-2 

treatment. The "accumulation of carbohydrate" was increased, which may reflect the 

activation of the "quantity of glycogen" in sALS cells. Nonetheless, in C9 astrocytes 

the "metabolism of polysaccharide" was also increased and mixed alterations in 

mechanisms involving glucose were reported ("uptake of D-glucose" and  "glucose 

tolerance" being increased and "concentration of D-glucose" and "transport of 

glucose" being decreased). Therefore, further investigation is also needed in this type 

of cell to verify a beneficial effect of IL-2 on glucose metabolism and to ascertain that 

astrocytes are more supportive to MNs following the treatment. Additionally, the 
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transport and oxidation of lipids was reduced in the C9_IL2vsG comparison. The latter 

process is particularly interesting because, as lipid oxidation is one of the main 

consequences of oxidative damage, this might represent an additional indicator of a 

reduction in the oxidative stress induced by IL-2. 

 

 

 

 

Figure 5.22: IPA Disease and Function Analysis in C9 iAstrocyte 

This treemap shows the diseases and functions retrieved from the IPA analysis 

of C9_IL2vsG data set. Each box represents a biological function or a disease 

and they are sized and coloured by their z-score (z-score > 0 in the orange 

colour scale or < 0 in the blue scale). Diseases and functions are clustered by 

IPA into master categories for which the name is displayed by a grey label.  
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5.4 The Effects of IL-2 on MN Viability and Morphology 
 

The last aim of this chapter was to assess whether IL-2 treatment had any effects on 

the viability and morphology of mouse MNs. In particular, these cells were co-cultured 

with iAstrocytes from one sALS (P17), one patient carrying a C9orf72 mutation (P78) 

and one healthy control (155) to evaluate whether the cytokine was able to reduce 

ALS astrocyte-mediated MN toxicity whilst increasing cell viability. Additionally, given 

that it has been reported in the literature that IL-2 promoted morphological changes in 

neurons, including an increase in the branching index and arborization, differences in 

the number of neurites in treated cells were also investigated.  

 

Importantly, data reported in this section were collected from only one experimental 

replicate. In fact, despite being attempted six times, just one co-culture experiment 

was successfully completed. This was due to several technical problems experienced 

with iAstrocytes and MNs including both bacterial and yeast infections. Due to time 

constraints, it was therefore not possible to replicate data but the plan is to produce 

triplicates following completion of the PhD.  

 

Patient-derived astrocytes were firstly treated with IL-2 in vitro, then MNs were seeded 

on top of them and two additional IL-2 treatments were performed in order to allow 

both iAstrocyte and MNs to interact with the cytokine. Two control conditions were 

performed: i) Dimethyl Sulfoxide (DMSO, 1:1000) and ii) PBS + 5% glucose solution, 

in order to exclude the possibility of any effect of glucose contained in the PBS used 

to dilute IL-2. Cells were imaged at D1 and D3 following MN plating.  

 

Data revealed a trend towards an increase in the number of viable MNs (identified as 

a cell body with at least one axon) co-cultured with all the three iAstrocyte lines (155, 

P78 and P17) following treatment with 10nM IL-2 (Figure 5.23). This was particularly 

evident in MNs co-cultured with heathy control astrocytes, which reached statistical 

significance at both D1 and D3 (One-way ANOVA with Tukey's correction for multiple 

comparisons). MNs seeded on top of P78 astrocytes (C9orf72-ALS mutant) showed 

an IL-2 mediated trend increase at D1 whilst a statistically significant difference was 
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reported at D3 between negative control (DMSO) and IL-2 treated cells. In addition, 

there was a trend towards significance (Adjusted p-value= 0.054) between the control 

condition (1:1000, PBS + 5% glucose solution) and IL-2. Less variations were reported 

in MNs co-cultured with patients 17 (sALS) which only showed a trend towards a 

viability increment at D1. Importantly, in the presence of all the astrocytic lines, no 

significant differences in the MN viability were reported between cells treated with 

either DMSO or PBS + 5% glucose solution. Therefore, the reported increases in MN 

viability were not mediated by glucose.  

 

 

Figure 5.23: The Effect of IL-2 on MN Viability in Co-cultures with 

iAstrocytes. 

These graphs show the number of viable MNs (cells with at least one axon) 

following co-culture with iAstrocytes (healthy control: 155 in blue, C9 ALS: P78 

in red and sALS: P17 in green) for 1 or 3 days and IL-2 treatment (10nM). 

Additionally, two control conditions were also included: DMSO (1:1000) and 

PBS + 5% glucose solution (1:1000). Significant (One-way ANOVA with 

Tukey's correction for multiple comparisons) increases in the number of viable 

MNs were reported following IL-2 treatment in cells co-cultured with healthy 

control astrocytes (at D1 and D3) and P78 (only at D3). A trend towards 

protection was seen in P17. Each dot represents a technical replicate (five 

technical replicates per each condition) from only one experimental replicate. 

Mean ± SD are graphed. * : Adjusted p-value < 0.05; ** : Adjusted p-value < 

0.01.  
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In addition, the number of MN neurites were also assessed to test the hypothesis of 

augmented branching index of the axons and dendritic arborization promoted by IL-2 

(Figure 5.24). A significant (One-way ANOVA with Tukey's correction for multiple 

comparisons) increase in the neurite counts of MN co-cultured with the healthy control 

astrocytes following IL-2 treatment was reported both at D1 and D3. In the presence 

of P78 astrocytes, a considerable trend toward a significant neurite increment 

(Adjusted p-value= 0.06, between cells treated with PBS + 5% glucose or IL-2) was 

registered at D1 while statistical significance was reached at D3, when an increase in 

neurites was reported in IL-2 treated cells compared to DMSO negative controls. 

However, an insignificant increase (adjusted p-value= 0.14) was registered between 

cells treated with PBS + 5% glucose or IL-2. In contrast, no increases in the number 

of neurites were documented for MN co-cultured with P17.  
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Figure 5.24: The Effect of IL-2 on MN Neurites in Co-cultures with 

iAstrocytes. 

These graphs show the number of neurites detected in MNs co-cultured with 

iAstrocytes from a healthy control (155 in blue), an ALS patient carrying a 

C9orf72 mutation (P78 in red) and a sALS (P17 in green) for 1 or 3 days in the 

presence of either IL-2, PBS + 5% glucose solution or DMSO. Significant (One-

way ANOVA with Tukey's correction for multiple comparisons) increases in the 

number of viable MNs were reported following IL-2 treatment in cells co-

cultured with healthy control astrocytes (at D1 and D3) and P78 (only at D3). 

No statistically significant change was reported in P17. Each dot represents a 

technical replicate (five technical replicates per each condition) from only one 

experimental replicate. Mean ± SD are graphed. * : Adjusted p-value < 0.05; ** 

: Adjusted p-value < 0.01.  

 

 

In conclusion, these results, although still preliminary, suggest that IL-2 induced a 

protective and a survival-promoting effect on MNs co-cultured with healthy control 

astrocytes. Milder effects were generally reported in the presence of ALS astrocytes 

as only P78 seemed to react to IL-2 by increasing MN viability and the number of 

neurites. This may suggest that the cytokine is able to affect MN viability or slightly 

reduce astrocyte-induced toxicity in just a selection of responsive ALS patients.  
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5.5 Discussion 
 

The objective of this last part of my PhD research was to evaluate the effect of IL-2 on 

CNS cells, specifically on astrocytes and motor neurons. In fact, this cytokine was 

previously shown to cross the blood brain barrier and its receptor subunits were found 

to be widely distributed in different CNS anatomical regions. To this end, induced-

neuronal progenitor cells (iNPCs)-derived astrocytes reprogrammed from 3 healthy 

controls, 3 sporadic ALS and 3 ALS patients carrying a C9orf72 mutation were grown 

together with healthy murine MNs. Unfortunately, the results reported in this section 

are considered preliminary as several impediments, mainly related to the Covid-19 

pandemic resulting in laboratory closures and limited access, impacted on data 

collection. Nonetheless, we intend to increase replicates and gather new data in due 

course following competition of the PhD.   

 

A summary of the results collected in this section of the study is provided below: 

 

1) Firstly, an optimization was performed to identify the best experimental settings 

for the IL-2 in vitro treatment. The basal expression of the IL-2 receptor subunits 

was investigated via qRT-PCR analysis. Data revealed that, while the subunits 

IL2RB and IL2RG were consistently detected at generally high levels in all the 

investigated lines (3 healthy controls, 3 sALS and 3 C9orf72 ALS astrocytes), 

the expression of IL2RA was barely or not detectable in all the samples. This 

suggested that the intermediate affinity receptor was the main one present on 

astrocytes. Different IL-2 concentrations (1, 5, 10, 50 or 100nM), treatment 

times (1, 4 or 24 hrs) and experimental settings (1 or 10% FBS media) were 

tested and the expression of genes (IL2RB, MYB, CASP3 and CCND2) known 

for being upregulated in response to IL-2 in immune cells was monitored. The 

best combination of settings able to promote the maximum transcriptional 

induction was a 4hr long treatment with 10nM IL-2 diluted in media containing 

1% FBS. 

 

2) Given that for the treatment optimization the expression of CASP3, a crucial 

protein implicated in the regulation of apoptosis, was monitored and reported 
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to be increased with the IL-2 treatment, cytotoxicity assays were performed. 

These were carried out in order to ascertain that the treatment did not lead to 

an increase in cell death. Results indicated no significant difference between 

astrocytes treated with IL-2 and the controls, which suggested that the cytokine 

administration did not induce cytotoxicity.  

 

3) Subsequently, Oxford Nanopore cDNA sequencing was used to evaluate gene 

expression changes in response to the optimized IL-2 treatment in 3 healthy 

controls, 3 ALS patients carrying a C9orf72 mutation and 3 sALS-derived 

astrocytes. Three different transcriptional analyses were carried out in which, 

within each astrocyte group (healthy controls, C9orf72 ALS and sALS), IL-2-

treated samples were compared to the control condition to find significant 

DEGs. Interestingly, ALS patient-derived astrocytes showed a greater number 

of genes being significantly differentially expressed following the IL-2 treatment 

compared to the healthy controls. In particular, those carrying a C9orf72 

mutation seemed to be the most reactive with the greatest transcriptional 

regulation. Subsequently, gene enrichment analyses were conducted in order 

to identify biological processes and pathways being altered following IL-2 

administration. In particular, two analyses were performed using different 

software programmes (Enrichr and REVIGO or IPA) to ensure a complete 

functional interpretation of the differentially expression data sets. 

 

4) Lastly, co-cultures of patient-derived astrocytes and healthy mouse MNs were 

performed in order to assess whether IL-2 was capable of reducing the 

astrocyte-induced MN toxicity. Therefore, increases in cell viability were 

monitored through this assay and, given the evidence in the literature 

suggesting augmented neuron arborization levels and branching index 

following IL-2 treatment, MN morphological changes were also examined. Due 

to COVID-19-related restrictions and to multiple cell culture infections, the co-

culture data collected are only preliminary (one replicate) and therefore need 

further investigation. 
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To our knowledge, this was the first time that IL-2 was tested in astrocytes and 

therefore, an initial treatment optimization was necessary. Despite not being able to 

collect all the necessary experimental replicates and having reported a limited number 

of statistically significant results, a 4hr long treatment with 10nM IL-2 diluted in media 

containing 1% FBS was identified as the best combination of treatment settings. This 

decision was supported by the well-established constant of dissociation of the 

intermediate affinity receptor (Kd ~10−9 M), which is expressed on iNPC-derived 

astrocytes and that is able to react to nanomolar IL-2 concentrations (Spolski et al., 

2018). We appreciate that this range of doses is greater than what was used to 

stimulate Tregs, which constitutively express the high affinity receptor (Kd ~10-11 M). 

However, it is not possible to exclude any reaction of astrocytes or other CNS cells 

following peripheral administration of ld-IL-2 given that the cytokine does cross the 

blood brain barrier and a limited number of high affinity receptor may be also present 

in these cells despite not being detected via qRT-PCR. Therefore, the objective was 

to study the in vitro reaction of astrocytes to nanomolar doses of IL-2 and to compare 

these results with future expression data retrieved from the CSF of ALS participants 

included into another clinical trial (MIROCALS, see chapter 6 for a more detailed 

description), which also aims to investigate the CNS transcriptomic effects of 

subcutaneous injection of 2MIU-IL2 in ALS patients. In addition, the decision of 

conducting the treatment in media contain 1% FBS was supported by the collected 

data in 10% FBS showing limited effects and also considering a recent study, which 

suggested that the serum is able to induce an inflammatory-like phenotype in these 

cells (Perriot et al., 2018). Therefore, we hypothesized that high FBS concentrations 

might mask the effect of IL-2. In line with this, multiple other research groups chose to 

use reduced or no FBS in their media when treating astrocytes with different 

interleukins (see Table 5.1). Lastly, the chosen treatment time (4 hrs) is consistent 

with previous literature indicating short time points (from 2 to 6 hrs) as ideal for 

monitoring of gene expression changes in astrocyte following treatment with different 

cytokines (Thelin et al., 2020, Tarassishin et al., 2014, Norden et al., 2014, Jang et al., 

2013, Semple et al., 2010, Ma et al., 2010, Burmeister et al., 2019a, Dong et al., 1999).  

 

RNA samples from IL-2 treated and control iAstrocytes were used to produce Oxford 

Nanopore cDNA sequencing expression data. Quality control analysis revealed a 

considerably high number of mapped and assigned reads and average read lengths 
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consistent with full-length transcripts. Unfortunately, while the majority of the samples 

showed an expected distribution of the per sequence GC content (with a peak at 42-

45% which is consistent with the human transcriptome), two samples showed an 

unexpected additional peak at 35%, which might indicate either a contamination or an 

enrichment in A/T rich sequences. We appreciate this as a limitation to our analysis 

and therefore we are now planning to sequence other patient-derived astrocytes and 

healthy controls to increase the number of replicates. Nonetheless, high Phred quality 

scores were obtained (~23 in all the samples), which suggested a per base level of 

sequencing accuracy greater than 99%. A principal component analysis was also 

carried out in order to visually inspect differences and similarities amongst 

transcriptional profiles. Surprisingly, four samples belonging to a healthy control (161, 

both IL-2 treated and control) and a C9orf72-ALS (P201, both IL-2 treated and control) 

appeared to be grouped and spatially distanced from all the rest of the samples. 

However, this difference was not the result of a batch effect nor it was not ascribable 

to gender and age dissimilarities of the fibroblast donors or to differences in the cell 

culture process (passage number). The spatial separation was also confirmed by 

multidimensional scaling (MDS), an independent dimensionality reduction technique. 

Although the removal of these four samples allowed a group separation consistent 

with the different disease types (healthy control, sALS and C9orf72 ALS), these were 

not considered as outliers. This decision was reinforced by the fact that an additional 

analysis revealed very high correlation scores (>0.99) suggesting tight similarities 

between all the investigated samples. Moreover, the exclusion of 4 out of 18 samples 

would have potentially biased the subsequent differential expression analysis. 

Nonetheless, this was considered as a major limitation to our study and, as mentioned 

before, the aim is to repeat the sequencing using different fibroblast donors and to 

include those in the transcriptomic analyses to reinforce and validate our results. 

Gene expression analyses were performed and surprisingly, the three astrocyte 

groups appeared to react very differently to the IL-2 treatment. In fact, no genes were 

identified as commonly differentially expressed in all the three comparisons whilst 

limited similarities were reported between paired data sets. Interestingly though, 

despite the limited DEGs in common, some biological processes were found to be 

similarly altered in all the comparisons. In particular, mechanisms involved in CNS 

homeostasis, especially myelination and axonogenesis, were upregulated in all the 

treated astrocyte groups. This suggested a possible protective effect of IL-2 on CNS 
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homeostasis. Additionally, genes involved in the synaptic vesicle and anterograde 

transport were increased only in healthy controls and C9orf72 ALS treated astrocytes. 

This is particularly interesting as accumulating evidence in the ALS literature suggest 

defects in axonal transport (as reviewed in (De Vos and Hafezparast, 2017)). 

Additionally, the activation of the IPA term "quantity of neurons" indicated a possible 

pro-survival effect of IL-2 on neurons which was mediated by the healthy control 

astrocytes. This is consistent with what was previously reported in the literature by 

Sarder and colleagues who proposed that IL-2 induced a pro-survival effect which was 

indirectly mediated by soluble factors released from glial cells (Sarder et al., 1993). 

Moreover, the canonical pathway analysis in healthy astrocytes revealed "CREB 

signaling pathway in neurons" as an additional interesting CNS-related mechanism 

being significantly enriched. This pathway is crucial for the regulation of neuronal 

plasticity and survival. However, a recent report also showed pivotal protective effects 

in astrocytes involving the regulation of mitochondrial functions, lipid metabolism and 

redox protection (Pardo et al., 2017).  

Modifications in the oxidative stress response system were also reported in all the 

three comparisons. In particular, reduction in the ROS biosynthesis and in the 

oxidative damage-induced cell death mechanisms were documented, together with 

alteration in the regulation of  the oxidative stress response system. Moreover, the IPA 

analysis of C9orf72 ALS astrocytes treated with IL-2 revealed an inhibition in the 

oxidation of lipids, one of the main consequences of oxidative stress. This result is in 

line with previous data from the IMODALS trial indicating an inhibition of processes 

involved in the production of ROS and reduction in the NRF2 pathway activation at 

D8. Therefore, this reinforces the hypothesis of an additional beneficial impact of IL-2 

on the oxidative state with potential key protective effects on this ALS pathological 

mechanism.  

Both the Enrichr - REVIGO analysis and IPA revealed that several processes involved 

in immune system homeostasis (such as lymphocyte activation and function and 

cytokine production) were also modified in all the three comparisons. Despite the 

challenging interpretation of these alterations, these data suggested that genes known 

for their activity within the immune system are also expressed in astrocytes and their 

transcription was regulated by IL-2 in an immune-regulative way. In fact, similarly to 

the results from the peripheral blood of IMODALS patients, the IL-2 administration did 
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not induce a general immune suppression but it rather promoted a characteristic 

immunological reorganization.  

Moreover, both enrichment analyses suggested a modification in pathways involved 

in glucose biosynthesis and storage. This is of striking importance for astrocytes as 

these cells are responsible for providing neurons with the necessary energy (glucose-

lactose shuttle) and for the glucose accumulation into glycogen. As previously 

mentioned, these mechanisms are impacted in ALS with evidence of reduced 

glycogen degradation to glucose and increased glycogen production being reported 

in the literature (Allen et al., 2019b, Li et al., 2019, Dodge et al., 2013). Surprisingly, 

contrasting results were found in the two gene enrichment analyses. In fact, while the 

Enrichr and REVIGO sALS data suggested a beneficial alteration characterized by 

increased gluconeogenesis and reduced glycogen synthesis, opposite results were 

found from the IPA analysis where the quantity of glycogen seemed to be increased 

in sALS. Similarly, activation of the "accumulation of carbohydrate" process was 

increased in C9orf72 ALS, however, this was accompanied by increased uptake of D-

glucose and metabolism of polysaccharides. More investigation is therefore needed 

to elucidate these apparently paradoxical results and to verify any possible beneficial 

effect on glucose metabolism.  

Moreover, the Enrichr and REVIGO analysis of sALS treated astrocytes and the 

C9orf72 IPA analysis revealed evidence of an alteration in the biosynthesis and 

cellular response to retinol (also known as vitamin A). This molecule has been 

previously associated with ALS although contrasting evidence is reported in the 

literature. In fact, in a recent Chinese study, vitamin A serum levels were found to be 

increased in ALS patients compared to healthy controls and the authors proposed 

retinol as a risk factor for this disease (Wang et al., 2014). Nonetheless, in a different 

report, a selection of MNs from familial and sporadic ALS cases displaying higher 

retinoic acid receptor β levels appeared to be more resistant to cellular death (Kolarcik 

and Bowser, 2012). Additionally, a retinoid-free diet in healthy rats was found to cause 

a range of clinical symptoms similar to ALS (atrophy, muscular weakness and MN 

loss) (Corcoran et al., 2002) and the treatment of mSOD1 mice with a retinoid X 

receptor agonist extended their lifespan and reduced reactive astrogliosis (Riancho et 

al., 2015). Given the modifications induced by IL-2, further investigations will be 

needed to fully elucidate another potentially interesting effects of this cytokine on CNS 

cells.  
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Lastly, albeit being preliminary, encouraging results were reported in co-cultures, 

which suggested an increase in MN viability in cells co-cultured with both astrocytes 

derived from a healthy control and from an ALS fibroblast donor carrying a C9orf72 

mutation. Additionally, an augmented number of neurites was reported in the same 

astrocyte lines. Nonetheless, no significant improvements were seen in MN co-

cultured with one sporadic ALS astrocytic line. Taken together, these data suggested 

a possible impact of IL-2 on ALS astrocyte-induced MN toxicity although this effect 

may be limited to a number of responsive patients. Unfortunately, as these fibroblasts 

were biopsied from patients who were not on the IMODALS trial, their systemic and 

Treg response is unknown and therefore this data on CNS cells cannot be related to 

an IL-2-induced immune system response. Additionally, the healthy control astrocyte 

data revealed a possible pro-survival effect of the cytokine on normal cells which is 

consistent with previous reports in the literature indicating IL-2 as having a protective, 

survival -promoting effects on healthy neurons (see chapter 1.5) (Sarder et al., 1993).  
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Chapter 6 – Final Discussion and Future 
Directions 
 
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease and 

currently no disease modifying treatment is available. The objective of this study was 

to evaluate the molecular effects of low-dose interleukin-2 treatment to validate the 

hypothesis of a protective impact in ALS patients due to the immune modulatory 

properties of the cytokine. Whilst ld-IL-2 has been previously shown to promote 

regulatory T cells expansion and induce a physiological immune regulation in other 

autoimmune disorders (as reviewed in section 1.4), this was the first time ld-IL-2 was 

trialed in ALS patients and also the first time its gene expression changes were 

monitored in such individuals over the treatment period.  

 

The majority of this study focused on generating and analysing transcriptional profiles 

of IMODALS clinical trial participants. Evidence revealed a successful Treg expansion 

following three treatment cycles with ld-IL-2. In particular, consistent with previous 

findings reported in the literature (see section 1.4) and with our collaborators' data 

(Camu et al., 2020), a dose-dependent gene expression reaction was reported. 

Therefore, 2MIU-IL-2 was proposed as the most effective dose to treat ALS patients. 

Additionally, evidence of longitudinal transcriptional alterations was documented. 

Specifically, data were consistent with an evident initial immune suppression (D8) 

whilst the establishment of an immune regulatory condition (Treg expansion) was 

achieved at later trial stages (D64), suggesting the existence of a cumulative reaction 

to successive doses of ld-IL-2. Nonetheless, these effects were not sustained 

following cessation of the treatment (D85) as the expression of Treg markers was 

determined to be returning towards baseline levels. Therefore, continuous ld-IL-2 

administrations might be required to preserve a Treg expansion in ALS patients.  

 

Interestingly, our data demonstrated the existence of inter-individual differences in 

patients' abilities to react to the drug. This was in line with previous studies 

investigating the effects of ld-IL-2 in other autoimmune disorders, which documented 

some individuals being more responsive than others (Koreth et al., 2011, Koreth et al., 
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2016, Saadoun et al., 2011, Rosenzwajg et al., 2020, He et al., 2020, Castela et al., 

2014). Therefore, IMODALS patients were classified into low, moderate and high-Treg 

responders and substantial baseline (D1) differences were reported in their 

transcriptome with the low responders having a more inflammatory-prone phenotype 

at time of recruitment. Additionally, a predictive biomarker analysis was conducted and 

two genes (TLR9 and CD27) were successfully identified as baseline predictors of 

patient responsiveness (as measured by the number of Tregs at D64) to three cycles 

of 2MIU IL-2. This result is of particular interest and, if validated, this may be crucial 

for future precision medicine approaches, to allow patient stratification and the 

identification of the best therapeutic strategy for each individual. Importantly, the 

significance of this findings may not be limited to ALS but could impact the 

pharmacological research of the aforementioned autoimmune disorders that trialed ld-

IL-2 and reported inter-individual differences.  

 

A limitation of this study is the small participant group size, which particularly affected 

the analyses. In particular, we recognise age, sex and genetic background as crucial 

variables possibly impacting on the ALS transcriptional phenotype. Nonetheless, in 

such a limited sized cohort, we believed that stratifying for these factors would have 

considerably reduced the statistical power of our analyses. This limited participant size 

also substantially affected the proposed predictive biomarker research, which 

therefore needs validation. Additionally, we appreciate the possibility of genetic 

variants (i.e. in genes encoding for the IL-2 receptor subunits) underlying the inter-

individual difference within patients in terms of Treg-responsiveness to the cytokine. 

However, although blood for extracting DNA sample was collected as part of the trial, 

this has not yet been sequenced due to funding restraints and therefore this type of 

analysis was not yet possible. Lastly, the IMODALS trial was underpowered in 

detecting any effect on survival as patients were followed-up over a period of only six 

months. In fact, this was not an aim of this clinical trial, which only focused on the 

safety and the investigation of the molecular effects of ld-IL-2. Nonetheless, given the 

evidence in the literature suggesting a significant correlation between Treg number 

and patient survival (Rentzos et al. 2012, Mantovani et al. 2009, Henkel et al. 2013) 

and that, in ALS mouse models, Treg expansion ameliorated symptoms and 

prolonged survival (Beers et al. 2008, 2011, Sheean et al. 2018), it is justified to 

hypothesise an effect of ld-IL-2 on disease progression.  
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The aim is to address all these limitations by analysing data from a larger trial called 

Modifying Immune Response and OutComes in ALS (MIROCALS, NCT03039673), 

which is currently underway. This randomized (1:1), placebo-controlled, double-blind, 

parallel group trial will investigate the effects of five cycles of 2MIU IL-2 in a 

considerably greater cohort of 220 ALS patients over a period of 18 months. This will 

allow more complex examination of gene expression changes throughout the trial and 

further investigation on the variability in Treg-response as well as the validation of the 

robustness of our proposed predictive model. RNA from both peripheral blood and 

CSF is currently being processed in our laboratory to generate gene expression 

profiles with the aim of comparing peripheral and central transcriptional changes 

following repeated ld-IL-2 administrations. In contrast to IMODALS, MIROCALS 

patients have been recruited at diagnosis, and have been treated with riluzole for three 

months prior to the start of the ld-IL-2 (or placebo) administration, providing a unique 

resource to establish the longitudinal effects of riluzole treatment as well as ld-IL-2 in 

a large, clinically and genetically characterized cohort of patients. One of the primary 

end points of MIROCALS is the assessment of any increase in patient survival to 

validate this cytokine as an immune modulatory drug able to reduce the speed of 

disease progression. The other primary objectives of the trial are to evaluate clinical 

efficacy using a range of clinical tests and to further validate the safety of the drug. 

Secondary and explorative outcomes include the identification of biomarkers of drug 

responder status, deep immune phenotyping, neuroimaging and genomic analysis. 

Importantly, an extensive genetic characterization of the participants will be carried 

out providing the chance to associate any variants with high or low Treg-responders.   

 

Considering the IL-2 penetrance across the blood brain barrier, the last part of this 

work focused on the study of the molecular effects of this cytokine on CNS cells, 

specifically astrocytes and MNs. Importantly, astrocytes were investigated as they are 

known to be crucial in the pathogenesis of ALS and as they are also able to modulate 

different immune system cells, including Tregs (as reviewed in section 1.2b). To our 

knowledge, this was the first time IL-2 was tested on induced neuronal progenitor cell 

(iNPC)-derived astrocytes reprogrammed from ALS or healthy control fibroblasts. 

Therefore, the initial aim was to optimize the treatment and a combination of settings 

(10nM IL-2 for 4 hrs in media containing 1% FBS) was successfully identified as ideal 

for these cells. Subsequently, Oxford Nanopore gene expression profiling of these 
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astrocytes revealed evidence of interesting biological processes and pathways being 

altered following IL-2 administration. In particular, the activation of processes involved 

in CNS homeostasis (including myelination and axonogenesis), reduction in oxidative 

stress with decreased production of ROS and modification in the astrocyte glucose 

metabolism were reported. All these processes are implicated in ALS and their IL-2-

mediated alteration can be protective and potentially able to reduce astrocyte-

mediated MN toxicity. This is in line with preliminary data suggesting an increase in 

MN viability and in neurite numbers in cells co-cultured with an IL-2-treated astrocyte 

line reprogrammed from an ALS patient carrying a C9orf72 mutation. In contrast, 

insignificant differences were reported with a sporadic ALS individual. These results 

may reflect the inter-individual differences observed in the IMODALS trial, where only 

a selection of participants appeared to be strongly responding to ld-IL-2 compared to 

the rest of the individuals who showed only a partial response. Unfortunately, this 

hypothesis could not be verified as fibroblasts from IMODALS patients were not 

collected and the cells used for iAstrocyte differentiation belonged to different 

individuals suffering from ALS. 

 

Several limitations and impediments (mainly related to the Covid-19 pandemic) 

characterized the last part of this work involving CNS cells and therefore we recognize 

these data as preliminary despite being interesting and encouraging. Specifically, the 

reduced number of replicates (which particularly affected the co-culture experiments) 

impacted the ability to draw definite conclusions. Additionally, Oxford Nanopore 

transcriptomic data revealed unexpected variability in our samples (161 and P201 

were spatially distanced from the rest of the samples in the PCA) and this might have 

reduced the number of identified differentially expressed genes and prevented the 

identification of potentially interesting altered processes. Therefore, the aim is to 

address these limitations by increasing the number of replicates and by generating 

new transcriptomic data from patient-derived astrocytes reprogrammed from other 

ALS patients and healthy controls to validate our results.  

 

The last part of this PhD study focused on the astrocyte reaction to IL-2. However, in 

terms of future work, it will be interesting to study this cytokine on ALS patient-derived 

MNs to investigate whether it exerts any protective effects on the degenerating cells 

characteristic of the disease.  
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In conclusion, despite the reported limitations, our data are completely novel and 

intriguing as the effect of IL-2 in ALS was investigated here for the first time. The 

results successfully demonstrated a Treg expansion, a concomitant peripheral 

immune regulation and evidence of activation of CNS protective pathways. This has 

the potential to reduce the ALS pathological neuroinflammatory condition and possibly 

to increase patient survival. Additionally, a predictive model was proposed, which, if 

validated, may be able to stratify patients and select the most responsive ones to ld-

IL-2. This could be crucial for future precision medicine approaches focusing on this 

type of treatment for ALS patients.  
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Appendix 8: Table including the 81 discriminatory variables resulting from the Qlucore 

analysis of the nanoString data. For each transcript, normalized raw count expression 

is reported for each sample screened. Samples are named by patient ID and the 

treatment type and date of sample collection (either D1, D8 or D64) is also shown. 

 

Appendix 9: Full list of significant (log2FC ≤ -0.58 or ≥ 0.58 which is equal to 1.5 ≤ FC 

≤ -1.5 and p-value <0.05)) DEGs resulted from the comparison HC_IL2vsG.  

 

Appendix 10: Full list of significant (log2FC ≤ -0.58 or ≥ 0.58 which is equal to 1.5 ≤ 

FC ≤ -1.5 and p-value <0.05)) DEGs resulted from the comparison SALS_IL2vsG.  

 

Appendix 11: Full list of significant (log2FC ≤ -0.58 or ≥ 0.58 which is equal to 1.5 ≤ 

FC ≤ -1.5 and p-value <0.05)) DEGs resulted from the comparison C9_IL2vsG.  

 

Appendix 12: This table shows all the genes included in 5 IPA diseases and functions, 

namely: "apoptosis of epithelial tissue" (reported in the table with the letter A), 

"necrosis of epithelial tissue" (reported as B), "malignant solid tumour" (reported as 

C), "non-melanoma solid tumour" (reported as D) and "formation of solid tumour" 

(reported as E). For each gene, the logarithmic fold change (log2FC) and the p-value 

(comparison SALS_IL2vsG) are reported together with the IPA term. Additionally, a 

summary of the function exerted by the encoded protein is also included (source: 

https://www.genecards.org/).  
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