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Abstract

The pressures required for high energy density physics are achieved experimentally
using laser shock compression. This is a dynamic process, with picosecond time
scales. Establishing a melt temperature in a dynamic system is made non trivial
by overshoot of the melting point due to the kinetic barrier for the phase change.
There is therefore a need to be able to model dynamic melt temperatures in such a
way that a static melt curve can be predicted, and to link these simulations to an
experimental method.

By tracking liquid growth to create a numerical melt model, static melt curves of Cu
and Ta (in the range 0-10 GPa) were obtained from dynamic heating simulated using
molecular dynamics. These were in agreement, within an error of 1%, to literature
melt curves and also to the values found using the established static coexistence
method, with the computational cost reduced by two orders of magnitude.

A typical shock target consists of an ablator, the target material and a tamper.
A shock impedance method was developed to model the tamper as a mobile wall
which returned the expected release wave through the bulk material. Different
tamper materials could therefore be used to alter the cooling rate during release.
With Cu as the test material, the literature melt curve (in the range 50-110 GPa) was
recreated, with a 7% error in temperature. This method of modelling a tamper in
molecular dynamics removes the need to know the potential of the tamper material.

Both novel methods developed in this thesis have succeeded in reproducing estab-
lished static melt curves, by modelling dynamic systems. These methods could be
applied to laser shock experiments, in order to verify simulated melt curves at high
pressures.
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Chapter 1

Introduction

1.1 Background and motivation

High Energy Density Physics is defined as occurring at pressures greater than 100
GPa. At these high pressures new exotic states are formed, which are pertinent
to geology and materials science. The Earth’s central pressure is 0.37 TPa and
Jupiter’s is 4.5 TPa. Knowledge of the melt curve at these pressures is therefore
necessary for understanding the structure of planets and the behaviour of their
cores. When shocking materials, either to reach high pressure solid phases or for
inertial confinement fusion, the melt curve needs to be known. For fusion, melting
is required during the first compression stage in order to avoid complex solid state
effects such as solid-solid phase transitions.

Laser shock compression is used to reach these high pressures, because they are
generally not easily achievable using the more traditional method of a diamond anvil
cell. Laser shocks are a dynamic process and interpreting the experimental data to
make it applicable for static systems is complex. The melt curve can be accessed
directly from the shock, or on release afterwards. In the short timescales involved,
thermodynamic equilibrium is not reached. The melt temperature observed is
therefore a dynamic rather than static result, caused by an overshoot which is
dependent on the rate of temperature change.

Existing methods for determining the static melt curve using molecular dynamics
are computationally expensive and have no experimental analogue. A method of
modelling shock melting is therefore needed which can be verified by experimental
results and which will link dynamic to static melt temperatures. This thesis uses
a range of dynamic results to infer the static value. Chapter 3 studies the melt
temperature observed at rapid heating rates, and Chapter 4 models melt on release
from a tamper after a shock.
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Pressures used in this work are relatively low (1-10 GPa in Chapter 3 and 10-100 GPa
in Chapter 4) where potentials are known to be accurate, and the focus has been on
melting throughout, as it is an easily diagnosed phase change in this pressure range.
These conditions were chosen in order to establish proof of principle methods, with
the aim of being applicable to higher pressure experiments, and possibly different
phase changes.

A shock target’s design often includes a tamper. This is used to reduce the free
surface expansion or to provide structural support for the target. Rather than the
shock wave reaching the back of the target (causing a release wave to return through
the target as the surface expands into a vacuum), there is instead a reflected and a
transmitted wave generated at the bulk material to tamper boundary, the velocities
of which depend on shock impedance.

The tamper therefore has a large effect on the behaviour of the target on release.
However, it is often neglected from simulations due to a lack of potentials for the
tamper materials (and interaction potentials for the bulk and tamper), and the
increased computational cost of a larger simulation box. The proposed tamper
method eliminates both of these factors.

Throughout the thesis, the molecular dynamics (MD) code LAMMPS has been
used to simulate melting, and this has formed the basis for the rest of the analysis.

1.2 Overview of thesis

The second chapter provides background information: explaining the motivation,
previous work and methods used. It has an introduction to high energy density
physics, to place this work in context. Each of the results chapters requires an
understanding of shock waves, and for this, the elastic response of solids and the
propagation of shock waves are described. These are followed by an outline of molec-
ular dynamics, and in particular the code LAMMPS. The simulations carried out in
this work depend on shock impedance, dynamic melting and material behaviour on
release after a shock, and an overview of each is given in the background.

In Chapter 3, a numerical melt model is developed. The z shaped temperature
profile formed during dynamic melting is generated using LAMMPS. A simple melt
model tracking the amount of liquid growth is then fitted to it, to obtain the static
melt temperature. This novel approach to finding the static melt curve from dynamic
MD simulations is tested for Cu and Ta.

20



Chapter 4 expands upon this method by applying it to an experimental setup,
modelling a shocked target with a tamper material to control release. The MD
simulations are described and a new method of modelling the tamper is proposed,
which would be applicable to other systems incorporating a tamper. From this, the
onset of melt for a Cu target is obtained at different cooling rates, corresponding to
different tamper materials. A power law fit is used to calculate each static melting
point from several dynamic melting points found in MD, implying that a static melt
curve could be created from dynamic laser shock experiments.

The conclusion is presented in Chapter 5, in which the methods are summarised
and key results reiterated. Suggestions are given to further develop the MD models,
and a potential shock-release experiment is described.
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Chapter 2

Background

The background chapter begins with an introduction to high energy density physics
and shock waves. This is followed by a section on molecular dynamics, focusing on
the code LAMMPS which is used throughout the thesis. Background information on
dynamic melting (which is needed for Chapter 3) and material behaviour on release
after a shock (needed for Chapter 4) is then discussed.

2.1 High energy density physics

In High Energy Density Physics (HEDP), the energy density is on the scale of 1-10
eV, so is comparable to the Fermi energy. It can therefore change chemical bonds
and cause ionisation. This occurs at pressures greater than 1 Mbar (100 GPa). As
a result, new exotic states are formed, and the insulating properties and chemical
processes are altered [1]. Pressures over 10 Mbar give rise to such extreme conditions
that electride structures are created, in which strong interaction between valance and
core electrons leads to a localisation of electron density, effectively producing anions.

As well as opening up possibilities for materials science, these pressures are also
relevant to geology. The central pressures of the planets fit into this category, at 0.37
TPa for Earth and 4.5 TPa for Jupiter. These pressures are not routinely achievable
experimentally using a diamond anvil cell, the traditional method of accessing high
pressures, but they can be reached by using laser compression to produce a shock
wave with velocity greater than 10km/s. HEDP is studied by both simulations and
laser experiments.
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2.2 Achieving high pressures experimentally

2.2.1 Diamond Anvil Cells

A well established method for achieving static compression is to use a Diamond Anvil
Cell (DAC), for which the typical set up is shown in figure 2.1. Diamonds have a
high compressive strength and hardness, and are also transparent to visible light,
UV and X-rays, meaning DACs can be used with a range of diagnostics. One such
diagnostic is a ruby pressure gauge. The wavelength of the fluorescence emission
of a ruby, placed alongside the target material, changes with pressure and can be
calibrated [2]. Normal use of a DAC is below 100 GPa [1]: it is difficult but possible
to achieve pressures over 200 GPa and in a few experiments over 600 GPa [1, 3],
the limiting factor being diffusion between the diamond and the target. However,
reaching these higher pressures is more easily carried out using dynamic methods.

Figure 2.1: Diagram of a typical Diamond Anvil Cell showing the main pressure
loading components, with a close up (right) of the diamond anvils and the target
carrying gasket [4]. (Reprinted figure with permission from A. Jayaraman, Reviews
of Modern Physics, 55, 67, 1983. Copyright 1983 by the American Physical Society.)

2.2.2 Laser compression

The rapid deposition of energy from a laser onto the surface of a material causes
ablation. Due to conservation of momentum, a shock wave is then driven into the
material.

The initial absorption mechanism is multiphoton absorption, by which the laser
produces free electrons and ions in the timescale of femtoseconds. Multiphoton
absorption can occur for intensities greater than 1010W/cm2, as at this intensity the
probability of multiple photons interacting with an atom at the same time becomes
significant. The energy absorbed from the photons needs to be greater than the sum
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of the ionisation potential and the ponderomotive potential in order to release an
electron, and for typical laser energies multiple photons are required.

As the free electrons expand into the vacuum, they oscillate in the electric field
of the laser, gaining energy through inverse Bremsstrahlung absorption; radiation is
absorbed by an electron while in the Coulomb field of an ion, causing the electron
to accelerate. This generates more free electrons through cascade ionisation due to
impacts between the free electrons and atoms. Inverse Bremsstrahlung absorption is
more prevalent in the presence of ions than atoms, so the further ionisation enhances
laser coupling.

Many factors affect the pressure achieved by the laser, such as the laser-target
coupling, laser pulse temporal shape and intensity [5]. The pressure obtainable
(in GPa) can be calculated from scaling laws such as

P = 860

(
I(W/cm2)

1014

)2/3

(λ(µm))−2/3

(
A

2Z

)1/3

(2.1)

where I is the laser intensity, λ is the laser wavelength, and A and Z are the mass
number and the atomic number of the target material [6]. This is shown in figure 2.2
for an infrared laser with a mid-Z element target. Pressure has a strong dependence
on laser parameters and a weaker dependence on the material properties. Equation
2.1 is only valid below the ablation pressure limit of 1014W/cm2, because above this
pressure the coupling between the target and the laser decreases.

Other methods of dynamic compression include using Z-pinch or explosives, but
laser compression is the focus of this thesis.
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Figure 2.2: An example of the scaling law given in equation 2.1 for an infrared laser
(λ = 0.8µm) with A=2Z .

2.3 Shock Waves

A shock wave has a rise time so rapid that it causes a discontinuity in pressure,
strain, velocity and temperature [7]. The wave speed, c, in a gas is related to
pressure, P , and density, ρ, by γ, the adiabatic index (the ratio of the constant
pressure to constant volume specific heat capacities).

c =

(
γP

ρ

)1/2

(2.2)

Therefore in the shocked region, where pressure is increased, the shock speed in-
creases. This positive feedback increases the pressure gradient, forming the pressure
discontinuity. Typically shocks only form in compression, as a decompression causes
the shock speed to decrease as pressure decreases.

2.3.1 Rankine-Hugoniot Equations

The Rankine-Hugoniot relationships occur as a result of conserving mass, momen-
tum and energy across the shock discontinuity. Us is the shock velocity and up is the
particle velocity. ρ, P and e are the density, pressure and specific internal energy
(with subscripts 0 and 1 for before and after the shock passes through the material).
A is the cross sectional area and δt is the time step.
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Conserving mass before and after the shock

ρ1Aδt(Us − up) = ρ0AδtUs (2.3)

(Us − up)ρ1 = Usρ0 (2.4)

The increase in momentum (left in equation 2.5) is equal to the impulse from the
shock front (right)

up(Usρ0Aδt) = (P1 − P0)Aδt (2.5)

P1 − P0 = ρ0Usup (2.6)

And equating the energy increase with the work done by the piston gives

ρ0AδtUs

(
e1 − e0 +

1

2
u2
p

)
= P1upAδt (2.7)

P1up = ρ0Us

(
e1 − e0 +

u2
p

2

)
(2.8)

Together equations 2.4, 2.6 and 2.8 are the Rankine-Hugoniot relationships. From
these, the Hugoniot equation can be formed by combining to eliminate Us and up.

2.3.2 Shock waves in an ideal gas

Before looking at how shock waves propagate in a solid, it is easier to consider an
ideal gas. The ideal gas approximation

e =
1

γ − 1

P

ρ
(2.9)

is used with the Rankine Hugoniot equations, to form the Hugoniot equation of an
ideal gas

ρ1
ρ0

=
(γ + 1)P1

P0
+ (γ − 1)

(γ + 1) + (γ − 1)P1

P0

(2.10)

For a monatomic gas

γ =
5

3

At infinite pressure
ρ1
ρ0

=
γ + 1

γ − 1
= 4 (2.11)

so the limit of compression for a single shock in an ideal monatomic gas is fourfold.
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2.3.3 Shock waves in a solid

Shock velocity, Us, is found to be linear with particle velocity, up, for most materials.

Us = Sup + c0 (2.12)

This linear relationship is an approximation, with S and c0 as constants, and is
shown for Cu in figure 2.3.

Figure 2.3: The linear relationship between shock velocity, Us, and particle
velocity, up, for Cu from experimental data (solid line) and MD (data points)
[8]. This graph shows close agreement between each of the three crystallographic
directions simulated (shown in the legend), and the multidirectional polycrystalline
experiments. (Figure from Q. An, S. N. Luo, L. B. Han, L. Zheng and O. Tschauner,
Melting of Cu under hydrostatic and shock waveloading to high pressures, Journal
of Physics: Condensed Matter, 20, 095220, 2008. IOP Publishing. Reproduced with
permission. All rights reserved.)

The propagation of a shock wave in a solid depends on its elasticity. Young’s
modulus, E, is defined as the ratio of stress, σ, to strain, ϵ,

E =
σ

ϵ
(2.13)

and it is related to the bulk modulus, K, and the shear modulus, µ, by Poisson’s
ratio, ν. The bulk modulus is a measure of the material’s resistance to compression,
and shear modulus is its resistance to shear deformation.

E = 2µ(1 + ν) = 3K(1− 2ν) (2.14)
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The speed of sound, c, in a solid is dependent on these values, and density, ρ. For
longitudinal waves

clongitudinal =

√
K + 4

3
µ

ρ
(2.15)

and for transverse waves
ctransverse =

√
µ

ρ
(2.16)

For a one dimensional solid, the sound speed of a pressure wave can be simplified to

csolid =

√
E

ρ
(2.17)

For a liquid, the bulk modulus is required instead of E, and for a gas γP where P

is pressure and γ is the adiabatic index.

cliquid =

√
K

ρ
(2.18)

cgas =

√
γP

ρ
(2.19)

Equation 2.13 can also be written with an elasticity tensor, C, linking stress, σ, and
strain ϵ

σ = Cϵ (2.20)

In a cubic system, only three components of C are independent and non-zero (C11,
C12 and C44). The bulk modulus, K, and shear modulus, µ, can be expressed in
terms of these components

K =
1

3
(C11 + 2C12) (2.21)

µ = C44 (2.22)

From the definition of the bulk modulus as volumetric stiffness in terms of pressure,
P,

K = −v
dP

dv
= ρ

dP

dρ
(2.23)

where v is the specific volume

v =
1

ρ
(2.24)

The bulk modulus is found experimentally to be approximately linear with pressure
[9], so can be written as

K(P ) = K0 +K ′
0P (2.25)

28



where K0 and K ′
0 are constants. Substituting this into equation 2.23,

dρ

ρ
=

dP

K0 +K ′
0P

(2.26)

which integrates to form the Murnaghan equation of state [9]

P (ρ) =
K0

K ′
0

[(
ρ

ρ0

)K′
0

− 1

]
(2.27)

where ρ0 is the initial density.

Using equation 2.12, the equation of state (equation 2.27) can be rearranged in
order to find K0 and K ′

0 in terms of the constants c0 and S. To do this equations
2.28 and 2.29 are also needed.

P = ρ0Usup (2.28)

up =

(
1− ρ0

ρ

)
Us (2.29)

From this it can be shown that

P (ρ) =
ρ0c

2
0

(
1− ρ0

ρ

)
(
1− S

(
1− ρ0

ρ

))2 (2.30)

By making a substitution to use strain, ϵ, instead of density, where

ϵ = 1− ρ0
ρ

(2.31)

and finding the binomial expansion of equations 2.27 and 2.30, then equating the
first and second order terms of ϵ, the values of K0 and K ′

0 can be expressed as

K0 = ρ0c
2
0 (2.32)

K ′
0 + 1 = 4S (2.33)

linking the wave velocity with the material’s resistance to compression [9].

As with an ideal gas, the Rankine-Hugoniot relationships for a solid can be found
by conserving mass, momentum and energy [10]. The Hugoniot, which describes
the possible end states from a single shock, can be obtained from these equations.
Additional shocks would form another Hugoniot, beginning at the end state of the
previous shocks. The Cu Hugoniot [11] is given as an example in figure 2.4.
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Figure 2.4: The phase diagram of Cu, showing the solid and liquid phases and the
Hugoniot up to 4 Mbar (400 GPa). The dashed and solid lines show two different
studies which closely agree [11]. The Hugoniot jumps at the phase transition.
(Reprinted from D. Hayes, R. S. Hixson and R. G. McQueen. High pressure elastic
properties, solid-liquid phase boundary and liquid equation of state from release
wave measurements in shock-loaded copper. AIP Conference Proceedings, 505:483,
2000, with the permission of AIP Publishing.)

2.4 Molecular Dynamics

Molecular Dynamics (MD) is based on the equations of motion, and was developed
in the 1950s [12]. It has an advantage over similar techniques, such as the Monte
Carlo method, in that MD allows access both to thermodynamic properties and
time-dependent effects [12]. In 1959, MD was limited to running simulations with
fewer than 500 molecules, due to the memory capacity and speed of the computers
available [13]. Now, however, simulations with over 109 particles are possible [14],
allowing MD studies of HEDP to precede experimental work.

MD applies Newton’s equations of motion to a set of interacting particles. The
simplest way this can be expressed algebraically is

xi+1 = xi + δtvi (2.34)

vi+1 = vi +
δtF (xi)

m
(2.35)

to define the position, x, and velocity, v, of each atom, of mass m, for subsequent
time steps.

The force, F, acting on an atom is calculated from the gradient of the potential,
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E,
F = −∇E (2.36)

LAMMPS uses the more complex Verlet method of time integration, which applies
the central difference approximation rather than the forward difference approxima-
tion used in the previous equations.

∆2xn

∆t2
=

xn+1 − xn

∆t
−

xn − xn−1

∆t
∆t

=
xn+1 − 2xn + xn−1

∆t2
= an (2.37)

This therefore determines the next position vector from the previous two

xn+1 = 2xn − xn−1 + an∆t2 (2.38)

It incorporates the acceleration, an, determined by the potential, but not the veloc-
ity.

Quantum MD is possible using a potential which accounts for quantum effects. An
alternative to quantum MD is Density Functional Theory (DFT), which is based on
electron structure. Similar simulations to those which are described in this thesis,
notably for coexistence and Z-method of melting, are routinely carried out in DFT
[15, 16] as well as in MD.

2.4.1 LAMMPS

LAMMPS (Large scale Atomic/Molecular Massively Parallel Simulator) is a classical
MD code distributed by Sandia National Laboratories [17]. LAMMPS can model
particles in a solid, liquid or gas, using a variety of force fields and boundary
conditions to simulate different systems [18]. It is derived from classical dynamics,
and the atomic interactions are modelled from the inputted potential and initial
parameters.

MD calculates the positions and velocities of all the particles at each time step.
These can then be converted to macroscopic properties, such as pressure and energy,
by statistical mechanics [12]. This classical method produces a good match for
experimental results, even for metals where quantum effects would be expected to
be significant [17].

Alternatives to LAMMPS include Amber, DL_POLY, Gromacs and NAMD. The
older codes (such as Amber and early versions of DL_POLY) use the replicated
data model, which requires all atomic information to be replicated on all processors.
More recent codes (including DL_POLY version 4 [19], NAMD and LAMMPS),
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use spatial domain decomposition techniques, so that the amount of atomic data
stored on each processor is approximately inversely proportional to the number of
processors [12].

LAMMPS uses neighbour lists to keep track of nearby particles, within a cut off
distance, in order to calculate the force the atoms are exerting on each other. The
lists are optimised for systems with particles that are repulsive at short distances,
so that the local density never becomes too large. When run in parallel, LAMMPS
partitions the simulation domain into three dimensional sub-domains, one for each
processor. The processors communicate and store information for ghost atoms that
border their sub-domain [18].

2.4.2 Potentials

The force experienced between a pair of atoms, within a set cut-off distance, is
described using a potential. These have a range of complexity: two commonly used
ones are the Leonard-Jones potential and the EAM (Embedded Atom Model) poten-
tial. The Leonard-Jones potential is one of the simplest, and describes interatomic
energies as

E = 4A

((
B

r

)12

−
(
B

r

)6
)

(2.39)

below the cutoff distance, where r is the distance between atoms and A and B are
constants. The minimum of this potential occurs at r = 21/6B where E = −A.

EAM potentials use the formula

Ei = Fα

(∑
j ̸=i

ρβ(rij)

)
+

1

2

∑
j ̸=i

ϕαβ(rij) (2.40)

The embedding energy, F , is a function of the electron density, ρ, and the pair
potential interaction, ϕ. α and β are the elements of the atoms i and j. This method
incorporates the electron cloud, as well as the pair interactions between atoms, and
so is more accurate than the Leonard-Jones potential for modelling metals [20].

These potentials are found either empirically by matching with experimental data
or from quantum mechanics using DFT. Potentials only have guaranteed accuracy
for the pressure range over which they were modelled. Accuracy tends to decrease
at pressures above 100 GPa, due to a lack of experimental data.
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2.4.3 Ensembles

Possible ensembles are NVT, NVE, NPH and NPT. The letters refer to the properties
which are held constant. N is the number of atoms, V is volume, T is temperature,
E is the total energy of the system, P is pressure and H is the enthalpy.

NVT, the canonical ensemble, is used for a system that is in thermal equilibrium
with a heat bath. The NVE is the microcanonical ensemble, which has an exactly
specified total energy. NPH, the isoenthalpic–isobaric ensemble, maintains constant
enthalpy and constant pressure. Enthalpy is defined as

H = E + PV (2.41)

The isothermal–isobaric ensemble, NPT, is useful for measuring the equation of
state.

2.4.4 Box Size

By applying periodic boundary conditions, which mean that if an atom passes
through one side of the simulation box it will reappear on the opposite side, a
smaller number of atoms can be used to represent a much larger system and thus
reduce the run time of the simulation. When a system is anisotropic, for example if
a shock wave is travelling in one direction, the boundaries in that direction cannot
be periodic. In this case, the boundaries would be either fixed and atoms passing
through would be lost, or shrink-wrapped so the box size grows in this direction to
accommodate atoms that would otherwise escape.

Increasing the number of atoms in a simulation reduces thermal noise, as the
distribution of velocities becomes closer to the ideal Gaussian distribution. The
box must be larger than the cutoff distance of the potential, otherwise an atom will
be exerting a force on itself.

In each simulation, a seed is needed to randomly distribute the initial velocity of the
atoms, with the mean velocity determined by the temperature. Running simulations
with different velocity seeds, and then taking an average of the results, provides a
method of reducing thermal noise without increasing the box size.

For melting to take place, a certain number of defects (such as lattice vacancies,
interstitials and dislocations) need to be present in the regular pattern of the crystal
structure [21]. Figure 2.5 shows that the fraction of these defective atoms, αd, needed
to trigger melting is the same for two different box sizes, but occurs at a higher
temperature for the larger simulation box. This increase in melting temperature
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with box size is shown in figure 2.6.

Figure 2.5: The fraction of defective atoms, αd, as a function of the temperature
for Cu MD simulations with 500 atoms (circles) and 6912 atoms (squares) [21]. The
vertical jumps show melting, with a higher melting temperature for the larger box
size, in agreement with figure 2.6. (Reprinted with permission.)

Figure 2.6: Dependence of homogeneous melting in Cu on box size in MD [21]. The
melting point increases with box size, with a stronger size dependence for a smaller
box. (Reprinted with permission.)

While figure 2.6 shows that a smaller number of atoms leads to a lower melting point,
if the simulation size is not sufficiently large then melting will be suppressed because
phonons with a wavelength longer than the simulation cell cannot be modelled [22].
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2.4.5 Shock Waves in LAMMPS

There are three mechanisms that can be used to create a shock compression in
LAMMPS: a momentum mirror, a constant force piston and a constant velocity
piston [18]. A momentum mirror forms a wall which will, if an atom from the bulk
moves through the wall, reflect it back into the bulk material with the same speed.
This carries out the same function as the constant velocity piston. Experimentally,
a laser is more intuitively described as a constant force piston, as the laser intensity
determines the ablation pressure, and therefore the driving force. In practice, all
three systems produce the same results.

Alternatively, target pressures can be reached using barostatting (and temperatures
by thermostatting). The Hugoniostat utilises a thermostat, barostat or both to reach
a P-T point on the Hugoniot for a given pressure [23], from which time dependent
temperatures satisfying the Rankine Hugoniot equations can be reached [18].

Tt − T =
1
2
(P + P0)(V0 − V ) + e0 − e

NdofkB
(2.42)

where Ndof is the number of degrees of freedom, and T and Tt are the instantaneous
and target temperatures. For pressure, volume and internal energy, P0, V0 and e0

are the reference values, P, V and e are the instantaneous values.

2.5 The Kinetics of Melting

2.5.1 Homogeneous and Heterogeneous Melting

There are two types of melting: homogeneous and heterogeneous. Heterogeneous
melting occurs at a boundary, such as a dislocation or a grain boundary. Homoge-
neous melting has a higher nucleation energy barrier, and is therefore less common in
real materials, as these will generally have imperfections which allow heterogeneous
melting. However, it is useful to study homogeneous melting for the parameters that
can be extracted from it, which also apply to heterogeneous melting. Homogeneous
melting can be simulated more easily, and will be the focus of this thesis as it is the
dominant type of melting in a dynamic system where the solid is superheated.

The upper limit of superheating for homogeneous melting is set by a series of
instabilities in the crystal structure. The rigidity catastrophe (due to the vanishing
shear modulus) and the kinetic instability (from the vibrations breaking up the
lattice) are the first to be reached, so cause the onset of melting [1]. Instabilities
which occur at higher temperatures than these are the isochoric, isenthalpic and
isentropic conditions, which occur at the temperatures where the solid and liquid
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have the same volume, enthalpy and entropy respectively [24].

In homogeneous nucleation, for a melted region to remain liquid and then grow,
it must be larger than the critical radius.

2.5.2 The Critical Radius

At the point of melting, energy is needed to overcome the nucleation barrier. The
solid-liquid interface of a nucleation site has an associated energy, so the liquid region
must be sufficiently large, greater than the critical radius, in order not to solidify.
The critical size of a nucleus is predicted to have 200-500 particles for homogeneous
nucleation [24]. This size is determined by the Gibbs free energy.

The Gibbs free energy of the total system is

G = U − TS + PV (2.43)

where U and S are the total energy and entropy. T, P and V are temperature,
pressure and volume. The Gibbs free energy of two phases excluding the interface
is

Gb = µN (2.44)

where µ is the chemical potential and N is the number of moles [25]. The interface
tension, σ, can be defined by this difference

σA = G−Gb (2.45)

where A is the area of the interface. The free energy difference between the initial
(crystal) and final (liquid) state is

∆GV = Gl −Gc (2.46)

The energy of fusion, ∆EF , can be seen for Fe in figure 2.7 as the jump in total
energy at the homogeneous melting temperature, Thm [26]. It is this energy which
is lost as latent heat in a first order phase transition.

To form a liquid sphere in a perfect lattice, the total Gibbs free energy change is

∆G(t) =
4

3
πr3(∆GV +∆EF ) + 4πr2γsl (2.47)

where γsl is the interface energy [27].
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Figure 2.7: Melting curve for BCC Fe, showing the increase in energy with
temperature [26]. The large jump in energy (the energy of fusion, ∆EF ) occurs
during melting, at the homogeneous melt temperature Thm. (Reprinted from Physica
B, 407, T. P. Duy and V. V. Hoang, Atomic mechanism of homogeneous melting
of BCC Fe at the limit of superheating, 978, Copyright 2012, with permission from
Elsevier.)

This gives a critical radius, the value of r where ∆G(t) is at a maximum, of

r∗(T ) =
−2γsl

∆GV +∆EF

(2.48)

which corresponds to a critical energy of nucleation

∆G∗(T ) =
16πγ3

sl

3(∆GV +∆EF )2
(2.49)

∆EF can be expressed by the elastic properties of the material

∆EF =
(18µKϵ2f)

(4µ+ 3K)
(2.50)

µ and K are the shear and bulk moduli, f accounts for a free surface (so is 1 in the
case of homogeneous nucleation), and ϵ is the hydrostatic strain due to the change
in volume.

∆GV can be approximated by using the enthalpy change of fusion ∆HM

∆GV ∼ ∆HM(Tm − T )

Tm

(2.51)

if the difference in heat capacity between the solid and liquid is ignored [27].
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2.5.3 Criteria of Melting

One way of defining melting is the Lindemann criterion, which states that melting
occurs when the root mean square displacement of the atoms reaches a critical
fraction of the interatomic distance. This is due to melting being a vibrational
lattice instability [1]. The value of Lindemann’s constant, the critical fraction cL,
depends on the element; a typical value is around 0.1 [28].

This can be quantified assuming all atoms vibrate around their equilibrium position
with the same frequency νE, the Einstein frequency.

E = 4π2mν2
E < u2 >= kBT (2.52)

where < u2 > is the mean square thermal average amplitude of vibration, E is
average thermal energy and m is the atomic mass. From the Lindemann criterion,
at the onset of melting

< u2 >= cLa
2 (2.53)

where a is the lattice parameter, so the melt temperature can be calculated as

Tm =
4π2mν2

EcLa
2

kB
(2.54)

The relationship between the mean square displacement (called the Lindemann
ratio), and the temperature at the onset of melt, Ton, and at full homogeneous
melt, Thm is shown in figure 2.8.

The Born criterion uses the structural definition of melt, based on a liquid, unlike a
crystal, having no resistance to shear stress. It is dependent on the bulk modulus, K,
the shear modulus, µ, and the shear elastic coefficients C11, C12 and C44, described
in section 2.3.3. The stability criteria for a lattice are

K =
1

3
(C11 + 2C12) > 0 (2.55)

C11 − C12 > 0 (2.56)

µ = C44 > 0 (2.57)

Melt occurs when these criteria are not met, and it has been shown that equation
2.56 fails first, so it is this condition which causes structural melting [29]. The
shear modulus, µ, of Cu is shown in figure 2.9, during melting. The shear modulus
decreases on approaching the melt curve, and the solid to liquid transition is inter-
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Figure 2.8: Lindemann ratio, δL, and density, ρ, as a function of temperature for
Fe. The critical value of the Lindemann ratio is labelled δ∗L [26]. The temperature
at onset of melt, Ton, and the temperature of full homogeneous melt, Thm are also
marked. (Reprinted from Physica B, 407, T. P. Duy and V. V. Hoang, Atomic
mechanism of homogeneous melting of BCC Fe at the limit of superheating, 978,
Copyright 2012, with permission from Elsevier.)

preted as occurring when the shear modulus reaches zero [11].

The Born and Lindemann criteria are met at the same temperature when a surface
free crystal is heated, causing homogeneous melting. This temperature is the limit
of superheating [30].
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Figure 2.9: The experimental Cu shear modulus along the Hugoniot shown
approaching the solid-liquid transition where the shear modulus = 0 [11]. 1
dyne/cm2 = 0.1 Pa. (Reprinted from D. Hayes, R. S. Hixson and R. G. McQueen.
High pressure elastic properties, solid-liquid phase boundary and liquid equation
of state from release wave measurements in shock-loaded copper. AIP Conference
Proceedings, 505:483, 2000, with the permission of AIP Publishing.)

2.6 Diagnosing Melting

2.6.1 Diagnosing Melt in Simulations

The mean square displacement (MSD) of a group of atoms can be used to determine
if they are in a solid or liquid environment, due to the Lindemann criteria.

MSD =
1

N

N∑
i=0

(
dx2

i + dy2i + dz2i
)

(2.58)

for N atoms, with displacements dx, dy and dz from each atom’s initial position.
As the solid is heated, MSD will increase. There is then a sharp rise upon melting,
after which the MSD will continue to increase, with a steeper gradient than when
solid.

The centro-symmetry parameter (CSP) gives another way melting can be identi-
fied. As it is a measure of the disorder of a system, it can determine whether
an atom is in a crystal or a liquid environment (although it could not be used to
distinguish between liquid and an amorphous solid). For a perfect structure which
is centrosymmetric about each atom, CSP = 0.
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It is calculated using the equation

CSP =

N/2∑
i=1

|Ri + Ri+N/2|2 (2.59)

for N nearest neighbours whose positions are given by the vectors R. CSP has a
similar temperature dependence to MSD, but can be used to track individual atoms
rather than just groups. The distribution of CSP is useful as well as the mean value;
a liquid histogram shows a broader range of CSP than a solid.

Figure 2.10: Change in coordination number with increasing temperature for Fe,
shown over two plots for clarity. The single point at 8 is for a BCC solid, and
this decreases and broadens during melting [26]. Broadening also takes place
with disorder caused by increasing temperature, prior to melting. (Reprinted from
Physica B, 407, T. P. Duy and V. V. Hoang, Atomic mechanism of homogeneous
melting of BCC Fe at the limit of superheating, 978, Copyright 2012, with permission
from Elsevier.)

The coordination number is a further way of diagnosing melt. It is the number of
atoms a central atom is bonded to. In a crystal lattice the coordination number
will be known (eg. 12 for FCC and 8 for BCC). This will change during melt as
demonstrated in figure 2.10 for an MD simulation of Fe [26]. Defects will alter
the coordination number slightly, and a change of phase will see a larger shift.
Amorphous materials such as a liquid have a broad profile of coordination numbers.

The CSP and coordination number of each atom can be obtained from LAMMPS,
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and MSD can be found for a group of atoms. In all cases, solid and liquid regions
can be differentiated, although the exact point of transition has some uncertainty, as
thermal effects and defects in the solid give the lattice a more liquid like structure.

2.6.2 X-Ray Diffraction

X-Ray Diffraction (XRD) is a technique that allows melt to be observed experimen-
tally by determining the atomic structures of materials. It can be used in situ, at
the pressures achieved by a diamond anvil cell or through laser compression. The
readings can be carried out in femtoseconds, so this diagnostic can take multiple
measurements over nanosecond timescales, making it ideal for dynamic shock ex-
periments.

The diffraction pattern of a material can be simulated by taking a Fourier transform,
F (q), [31].

I(ks) ∝ |F (q)|2 ∝

∣∣∣∣∣
N∑
j=1

Zjexp(iq . rj)

∣∣∣∣∣
2

(2.60)

where the scattered intensity is I(ks), and Zj is the atomic number of the jth atom
at position rj.

The wavevector, ks, is defined by the x-ray vector, k0, and the reciprocal lattice
vector, q.

ks = k0 + q (2.61)

The XRD pattern is caused by interference of the diffracted x-rays. Constructive
interference occurs when the Bragg condition

nλ = 2dhklsinθ (2.62)

is met, and the path difference is equal to an integer number, n, of wavelengths. dhkl
is the distance between the (hkl) planes and θ is the angle between the incoming
x-rays and the surface of the material. Another way of expressing this is using the
scattering vector Q

Q = 2k0sinθ (2.63)

where the wavevector of the x-ray is k0

k0 =
2π

λ
(2.64)

XRD can be used on liquids as well as for crystals. Liquids have a mean spacing
between atoms, although they do not have a well defined crystal structure, which re-
sults in broad diffraction peaks. This makes XRD a useful diagnostic for identifying
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the change from a crystalline solid to a liquid (an amorphous glass will however have
the same type of diffraction pattern as a liquid). Figure 2.11 shows the evolution
of the XRD pattern of Bi during melt, compared with its static liquid diffraction
pattern.

Figure 2.11: XRD patterns for the transition of Bi from a crystal to a liquid [32].
Time relative to the shock is given in ns. Before the shock, the Bi is solid, shown
in blue with well defined peaks. Melting on release from the shock is shown in red.
For comparison, a static diffraction pattern of liquid Bi is in black. This confirms
that the broad peak of the red patterns is liquid. (Reprinted figure from M. G.
Gorman, R. Briggs, E. E. McBride, A. Higginbotham, B. Arnold, J. H. Eggert, D.
E. Fratanduono, E. Galtier, A. E. Lazicki, H. J. Lee, H. P. Liermann, B. Nagler, A.
Rothkirch, R. F. Smith, D. C. Swift, G. W. Collins, J. S. Wark and M. I. McMahon,
Physics Review Letters, 115, 1, 2015. Copyright 2015 by the American Physical
Society.)

The structure of liquids is defined by the radial distribution function, and it is this
that XRD, or simulated XRD, can measure. The radial distribution function, g(r),
is the density at distance r from a given particle, divided by the mean density. In
figure 2.12, the radial distributions obtained in an MD simulation of Fe [26] contrast
typical plots for solids and liquids.

43



Figure 2.12: The radial distribution of Fe during melting. The sharp BCC
crystal peaks with high intensities transform into a smooth liquid distribution with
increased temperature [26]. The intensity of the plots is offset with temperature.
(Reprinted from Physica B, 407, T. P. Duy and V. V. Hoang, Atomic mechanism of
homogeneous melting of BCC Fe at the limit of superheating, 978, Copyright 2012,
with permission from Elsevier.)

2.7 Simulating Melting

2.7.1 One Phase Method

As the nucleation energy barrier has to be overcome for a solid to melt, when a block
of material is heated too fast for thermodynamic equilibrium to be obtained, it will
become superheated before melting, causing an overestimation of the static melting
point. Modelling melting using this method is known as the one phase method or
the HUM (heat-until-it-melts) method [33], and is quick and simple to perform but
does overestimate melt temperature by up to about 20% [25]. This superheating can
be reduced by decreasing the heating rate, or avoided by using a different method.

2.7.2 The Hysteresis Method

The hysteresis method utilises the superheating from the one phase method, together
with the fact that supercooling also occurs upon solidification. This supercooled
melt temperature, Tl, can be combined with the overheated Ts to estimate the melt
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temperature Tm. The empirical equation

Tm = Tl + Ts −
√

TlTs (2.65)

matches experimental results but has no physical meaning [33]. An example of this
method is given for Al in figure 2.13.

Figure 2.13: Melt temperature Tm (green) for Al obtained from the hysteresis
method, compared to the limits of superheating (black) and supercooling (red) Ts

and Tl [34]. (Reprinted figure with permission from J. Bouchet, F. Bottin, G. Jomard
and G. Zèrah, Physical Review B, 80, 094102, 2009. Copyright 2009 by the American
Physical Society.)

The temperature and volume relationship for Cu during melt and solidification
is shown in figure 2.14. The jumps in volume correspond to a change in phase,
and the hysteresis method calculates the melt temperature to be in between the
two temperatures at which these occur [8]. The hysteresis method is used as a
computationally cheaper alternative to produce similar results to the coexistence
method, despite being based on an empirical equation [35].
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Figure 2.14: A hysteresis loop upon heating (circles) and cooling (triangles) of Cu
modelled in MD [8]. The jump in volume per atom indicates a phase change, showing
a large difference of over 2000K between melting and solidifying. The hysteresis
method can be used to estimate the actual melt temperature in between the two
extremes. (Figure from Q. An, S. N. Luo, L. B. Han, L. Zheng and O. Tschauner,
Melting of Cu under hydrostatic and shock waveloading to high pressures, Journal
of Physics: Condensed Matter, 20, 095220, 2008. IOP Publishing. Reproduced with
permission. All rights reserved.)

2.7.3 The Two Phase Method and the Coexistence Method

The two phase method is an established technique for simulating the melting tem-
perature of a material. It provides an interface between the solid and the liquid,
which allows one phase to grow without the need to overcome an initial nucleation
barrier. The simulation is carried out in the NPT ensemble, and the phase which
remains determines whether the pressure-temperature point is above or below the
melt curve. This is then repeated iteratively until the melting point is found [36].

A similar approach to the two phase method is the coexistence method, in which a
cell containing both solid and liquid is allowed to equilibrate. The main differences
are that the coexistence method is carried out in the NVE ensemble, and both
phases are present at the end [33]. This is demonstrated in figure 2.15, where both
solid and liquid areas can be seen. An equilibrium is reached with one of the phases
growing and the other shrinking, but unlike the two phase method, a homogeneous
end state is not required.

Both of these methods are intrinsically computationally expensive as they require
large simulation cells and long simulations [35]. As a result of this, although these
methods have been used since the 1970s, it is only more recently that they have
been able to produce accurate results [38].
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Figure 2.15: Possible end configurations of the coexistence method [37]. The liquid,
disordered, can be distinguished from the ordered solid crystal, with an intermediate
region between the two. (Reprinted figure with permission from J. R. Morris, C. Z.
Wang, K. M. Ho and C. T. Chan, Physical Review B, 49, 3109, 1994. Copyright
1994 by the American Physical Society.)

2.7.4 The Z Method

An alternative method of simulating melt is the Z method. This begins with one
phase and makes use of the superheating phenomenon to reduce the computing
requirements.

Melting causes a drop in temperature of the system due to the latent heat, which
acts as a sink of energy for the first order phase transition. This reduction in
temperature, combined with the increase in temperature from external heating,
results in the characteristic Z shaped isochores which give the method its name [34].
The pressure and temperature of the liquid immediately after melt is taken to be
the melting point [33]. This method has been found to produce similar results to the
two phase and coexistence methods, although results deteriorate with fewer atoms
and shorter runs [33]. An example of the z-profiles is given in figure 2.16, which
shows that the trough of the z-profile overshoots the melt curve with a small box
size, but agrees with the coexistence method well as the box size is increased [33].

The solid is simulated in the NVE ensemble at a temperature above the estimated
melting temperature. If the simulation is sufficiently long, and the temperature is
above the limit of superheating, TLS, the solid should melt spontaneously and the
temperature will drop to Tm [34]. This drop is shown by the sharp decrease in
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Figure 2.16: Comparison of isochoric curves, with box size given in the legend in
number of unit cells. The melt curve was obtained using the coexistence method
[39]. (Reprinted from S. Wang, G. Zhang, H. Liu and H. Song. Modified Z method
to calculate melting curve by molecular dynamics. The Journal of Chemical Physics,
138(13):134101, 2013, with the permission of AIP Publishing.)

temperature in the z-profile. It can be repeated at decreasing temperatures to find
TLS, the lowest temperature at which melting should occur spontaneously.

MD simulations of Fe found TLS to have a dependence on Tm which was constant
with pressure [40]

TLS

Tm

− 1 =
ln2

3
(2.66)

The time before melt occurs is the waiting time τw. This is shown in figure 2.17 for
four simulations under the same initial conditions. The difference in pressure and
temperature remain constant but the waiting time varies. One limitation of this
method is that it can be difficult to estimate the wait time required to be sure the
lower liquid temperature has been found [34]. The probability distribution of the
waiting time is roughly exponential, and the mean value of τw depends strongly on
how much higher the temperature of the solid is than TLS [41].
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Figure 2.17: Four independent simulations, with the same initial pressure and tem-
perature, demonstrating the range of waiting times before melting [41]. (Reprinted
from D. Alfè, C. Cazorla and M. J. Gillan. The kinetics of homogeneous melting
beyond the limit of superheating. The Journal of Chemical Physics, 135(2):024102,
2011, with the permission of AIP Publishing.)

2.8 Melting Rate

There are two contributing factors to the growth of melt: the increase in the number
of nucleation sites and the growth of existing nucleation sites.

One expression for the nucleation rate is equation 2.67, where nhom is the rate
of formation of homogeneous nucleation sites [42]

nhom = n0exp

(
−∆G∗(T )

kT

)
exp

(
−Q

kT

)
(2.67)

This equation is made up of the driving force term

exp

(
−∆G∗(T )

kT

)
(2.68)

where ∆G∗ is the energy barrier to nucleation, and the diffusivity term

exp

(
−Q

kT

)
(2.69)

where Q is the activation energy of diffusion [27].

For a superheated crystal, the increasing temperature will have an exponential effect
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on both of these terms, rapidly increasing the nucleation rate [27].

The pre-exponential factor can be approximated as

n0 ∼
nkT

h
(2.70)

where n is the number density of atoms, k is Boltzmann’s constant, and h is Planck’s
constant.

An equation for growth rate, u, is given in equation 2.71

u = u0exp

(
−Q

kT

)(
1− exp

(
∆GV

kT

))
(2.71)

where ∆GV is the free energy difference between the initial and final state [42]. This
can also be expressed in terms of the difference in enthalpy before and after melting,
∆Hm, in the form [43]

u = u0exp

(
−Q

kT

)(
1− exp

(
∆Hm

kT

(T − Tm)

Tm

))
(2.72)

which can be simplified as

u = u′
0exp

(
−Q

kT

)(
T − Tm

Tm

)
(2.73)

where u0 and u′
0 are constants.

2.9 Crossing Phase Transitions

2.9.1 Shock Driven

As seen in phase diagrams such as figure 2.4, a method of reaching the melting
point, both experimentally and in simulations, is to pass a shock through the solid
material. The melting temperature, TM , can be obtained from shock temperature,
TH , in a solid-liquid mixed phase zone because

TH = TM (2.74)

for partial melting on the Hugoniot [44], although temperature cannot be measured
directly from XRD, and must be inferred from the strain. This can give the melting
point on the Hugoniot, but using the release after a shock allows more of the phase
diagram to be explored.
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2.9.2 On Release

An experiment at the Linac Coherent Light Source (LCLS) in 2015, compressing
bismuth to 10 GPa, demonstrated how liquid XRD could be used to find the melt
curve at pressures achieved by shock compression [32]. The path of decompression
after the shock wave can be seen in figure 2.18. The shock takes the material to a
point on the Hugoniot. Temperature and pressure then decay quasi-isentropically
until the melt curve is reached. At this point, the latent heat of melting acts as a
sink of energy, causing the path to travel along the melt curve instead of the release
isentrope (line of constant entropy). Once all of the sample has melted, the path
continues along an isentrope, on the liquid side of the melt curve. A free electron
laser was used as the X-ray source and the phase change was observed using XRD,
as shown earlier in figure 2.11.

A more recent study (McGonegle 2019 [45]) suggests that the release in a solid
is not completely isentropic, due to plastic effects in the material. The release
temperatures in MD simulations for Ta were found to be higher than would be
expected for isentropic release, and this was corroborated by experimental results.

Figure 2.18: Phase diagram showing the release isentropes (red, with orange error
estimate) for Bi. The dashed line shows the Hugoniot, and the dotted line is the
melt curve [32]. (Reprinted figure from M. G. Gorman, R. Briggs, E. E. McBride,
A. Higginbotham, B. Arnold, J. H. Eggert, D. E. Fratanduono, E. Galtier, A. E.
Lazicki, H. J. Lee, H. P. Liermann, B. Nagler, A. Rothkirch, R. F. Smith, D. C.
Swift, G. W. Collins, J. S. Wark and M. I. McMahon, Physics Review Letters, 115,
1, 2015. Copyright 2015 by the American Physical Society.)

2.10 Mirror image method

After a shock, release waves propagate inwards in the target from free surfaces,
causing a decrease in pressure. Release waves, unlike shock waves, do not have a
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pressure discontinuity, due to the dependence of wave speed on pressure described
in section 2.3. The change in pressure is therefore adiabatic and nearly reversible,
so release paths are approximately isentropic [46]. This approximation, which is
required by the mirror image method, is valid unless shock melting occurs.

The Hugoniot can be defined using the relationship between pressure and particle
velocity, PH and uH .

PH = ρ0UsuH (2.75)

where ρ0 is the initial density of the material. As shock velocity, Us, is linear with
particle velocity for most metals, this can be expressed as

PH = ρ0uH(c0 + SuH) (2.76)

where c0 and S are constants.

It has been shown experimentally, on release after a shock, that

2uH ≈ uFS (2.77)

where uFS is the velocity of the rarefaction wave from a free surface. This is expanded
upon to include other release velocities, when the shock wave reaches a boundary
with a different material, in the mirror image method [47]. The curve showing
possible release states is found to be a mirror of the Hugoniot, reflected at the
particle velocity of the shock [48].

This is shown in figure 2.19. The Hugoniot is reflected for several given particle
velocities, and these mirror images show the possible new velocities and pressures
of either a release rarefaction wave, or a reflected shock wave (if the new material is
of greater impedance), when the shock wave reaches a material boundary.

The free surface velocity, ur, is given by the equation

uFS = uH + ur (2.78)

and so the approximation in equation 2.77 can be written as

ur

uH

≈ 1 (2.79)
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Figure 2.19: The Hugoniot of a material can be shown as pressure, P, against particle
velocity, u. For any given particle velocity, the mirror image of the Hugoniot at
that point shows the pressure-velocity states that can be found either on release
as a rarefaction wave, or as a further shock wave if there is a boundary with a
material of higher shock impedance [47]. (Reprinted from J. W. Enig. A complete
E, P, V, T, S thermodynamic description of metals based on the P-u mirror image
approximation. Journal of Applied Physics, 34(4):746, 1963, with the permission of
AIP Publishing.)

This is shown to be the case for metals [47], using the Hugoniot relationship and
equation 2.80 for adiabatic release

ur = −
∫ P1

0

((
−dV

dP

)1/2

dP

)
adiabatic

(2.80)

From an initial state (P0, V0) shocked to (P1, V1), and then released to (P ′
0, V

′
0), the

total energy change is given by

E ′ − E0 = β(V ′
0 − V0) =

1

2
(P1 − P0)(V0 − V1)−

∫ V ′
0

V1

(PdV )adiabatic (2.81)

where
β =

Cp

αV0

(2.82)

Cp is the specific heat capacity and α is the thermal coefficient of volume expansion.
Making the substitutions

V ′
0 = V1 −

∫ P1

0

((
dV

dP

)
dP

)
adiabatic

(2.83)
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and ∫ V ′
0

V1

(PdV )adiabatic =

∫ P1

0

(V dP )adiabatic − P1V1 (2.84)

gives ∫ P1

0

((
V − β

dV

dP

)
dP

)
adiabatic

=
P1(V0 + V1)

2
+ β(V0 − V1) (2.85)

Integrating this produces the P-V hyperbola

(P + β)(V − V1) +
(P − P1)(V0 − V1)(β + 1

2
P1)

(P1 + β)ln
(

P1+β
β

) = 0 (2.86)

From this, the accuracy of the mirror image approximation can be found [47].(
ur

uH

)
max

=

(
P1 + 2β

2P1

ln
P1 + β

β

)1/2

(2.87)

This difference between equations 2.79 and 2.87 is shown in figure 2.20 to be less
than 1% for three metals over a pressure range of 10-50 GPa, so the mirror image
approximation is valid [49]. This analysis was modified to include a phase change
on release, by incorporating an additional term to account for the change in volume
between phases, and, in the tested cases of Sn and Pb, the deviation from the mirror
image approximation was shown to still be negligible [50].

Figure 2.20: The deviation in volume of the mirror image method from the actual
volume on release, found using equation 2.87, is shown to be less than 1% for three
different metals [49]. (Reprinted figure from J. M. Walsh and R. H. Christian,
Physical Review, 97, 1544, 1955. Copyright 1955 by the American Physical Society.)

Cu is the principal test material used for this thesis, and the mirror image approxi-
mation was shown to agree with experimental data for Cu in figure 2.21 [51].
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Figure 2.21: A modelled Hugoniot for Cu, using the Wide Regime Equation of
State (WEOS) [51]. The mirror images found at various particle velocities match
experimental release pressures, shown as data points. (H. Liu, H. Song, Q. Zhang,
G. Zhang and Y. Zhao, Matter and Radiation at Extremes, 1, 123, (2016); licensed
under a Creative Commons Attribution (CC BY) license.)

2.11 Impedance

Acoustic impedance, Zacoustic, is defined as

Zacoustic = ρcs (2.88)

where cs is the speed of sound in a material and ρ is density.

Similarly, shock impedance, Z, is determined by the shock velocity, Us, and density

Z = ρUs (2.89)

Shock impedance is the ratio of pressure to volume flow. It is analogous to electrical
impedance, the ratio of potential difference to current.

At a boundary between materials with different shock impedances Z1 and Z2, the
coefficients of pressure reflection and transmission, Rp and Tp, give the reflected and
transmitted pressure relative to the incident pressure (Pr, Pt and Pi) defined as

Rp =
Pr

Pi

=
Z2 − Z1

Z2 + Z1

(2.90)

Tp =
Pt

Pi

=
2Z2

Z2 + Z1

(2.91)
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The coefficient of power reflection, Rw, is given by

Rw =
P 2
r /Z1

P 2
i /Z1

= R2
p (2.92)

Equations 2.90 and 2.91 can also be derived by considering the wave equations,
which must be continuous across the barrier of the two materials [52]. A general
solution to the wave equation

∂2u

∂t2
− c2

∂2u

∂h2
= 0 (2.93)

is
u(h, t) = f(h− ct) + g(h+ ct) (2.94)

where u is the wave function and h is the displacement, with functions f and g. A
similar equation applies to stress, σ,

1

ρc
σ(h, t) = f(h− ct) + g(h+ ct) (2.95)

The continuity at the boundary where h = 0, for the initial (f(−c1t)), reflected
(g(c1t)) and transmitted (k(−c2t)) waves can be expressed as

f(−c1t) + g(c1t) = k(−c2t) (2.96)

and for stress
Z2f(−c1t)− Z2g(c1t) = Z1k(−c2t) (2.97)

From this it can be shown that

g(c1t)

f(−c1t)
=

Z2 − Z1

Z1 + Z2

(2.98)

and
k(c1t)

f(−c1t)
=

2Z2

Z1 + Z2

(2.99)

which is in agreement with the definitions of Rp and Tp

The dependence of equations 2.90 and 2.91 on Z2/Z1 are shown in figure 2.22.
At the limit where Z2/Z1 = 0, Rp = −1 and Tp = 0 so all the pressure is reflected.
When Z2/Z1 −→ ∞, Tp −→ 2 and Rp −→ 1 and all of the pressure wave is transmitted.
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Figure 2.22: The effect of the difference in impedance Z2/Z1 on the reflected
pressure, Rp, and transmitted pressure, Tp. At Z1 = Z2, Tp = 1 and Rp = 0 as
this is equivalent to no boundary.

2.11.1 Tampers

A standard shock target design is ablator/target/tamper. The ablator layer interacts
with the laser, as described in section 2.2.2, and it ablates due to the energy dump.
A shock wave then propagates through the target due to conservation of momentum.
Experiments can also be carried out with the target material being ablated directly.
However, using a separate ablator creates a smoother shock wave and the choice of
material can improve laser coupling.

The target is the material which is being studied under pressure; it is initially
compressed by the ablator, then release or further compression is caused by the
tamper.

Tampers such as LiF [44], PMMA [5] and Be [53] are used to prevent free surface ex-
pansion into a vacuum when the shock wave reaches the back of the target. Instead,
a release wave (or a shock wave, if the tamper’s shock impedance is greater than
that of the target material) is reflected back through the target, and a transmitted
wave continues forward through the tamper. The tamper’s purpose may also be
structural, as it can support a thin layer of target material or allow a more complex
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target design to be deposited onto it.

Using a tamper causes new difficulties in modelling the target, as it would increase
the size of the simulation box, and a potential for the tamper material, as well as an
interaction potential for the target and tamper materials, would be required. The
tamper is therefore sometimes neglected from simulations, which causes a difference
between experimental and simulated results [54].
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Chapter 3

Developing a numerical melt model
to obtain static melt curves from
dynamic simulations

In this chapter, a novel method for finding the melt temperature of simple metals
using molecular dynamics (MD) simulations is described, referred to in this thesis
as the numerical melt method. It uses dynamic results to calculate a static melt
temperature. This bridges the gap between dynamic laser shock compression ex-
periments and the static values relevant to materials and planetary sciences at high
pressures. The coexistence method is the established static technique for finding
the melting point using molecular dynamics, and the proposed method was able to
reproduce results obtained from the coexistence method, with the computational
cost reduced by two orders of magnitude. Using Cu and Ta as test elements, static
melt curves have been found accurately for the pressure range 0 to 10 GPa.

3.1 Introduction

This new method for finding melting points in MD uses a numerical model to
determine the static melt temperature. It has reduced computing times compared
with the coexistence method, and the ability to find the static melt temperature from
dynamic measurements leads to potential applications in dynamic high powered laser
experiments.

Establishing the melt temperature in MD is non trivial, due to the kinetic barrier for
melting leading to overshoot of the melting point, which is explained in Chapter 2.
The two phase and coexistence methods are standard ways of determining the melt
temperature in MD, and are based on static rather than dynamic simulations. In the
coexistence method, solid and liquid regions are both present in order to avoid the
kinetic barrier. However the computational cost is high because multiple simulations
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are needed to iteratively determine the melt temperature, using large box sizes and
long simulation times. One phase models, which have lower computational costs,
are the z-method and the hysteresis method. The hysteresis method produces melt
temperatures which agree with other methods, but has no physical basis. The theory
behind all of these is discussed in Chapter 2.

Rapidly heating a material until it melts forms a z-profile when plotting temperature
against pressure or time. The latent heat acts as a sink, as energy is used to
carry out a first order phase transition. In a static environment, the temperature
would remain constant until all the liquid has melted, but this is not the case in
dynamic situations, such as laser shock compression, where the heating rate is too
high for an equilibrium to be established. The aim of this thesis is therefore to model
dynamic melt, and from that infer the static melt temperature, since high pressure
experimental methods are dynamic but their physical applications are static.

In this chapter, MD simulations were used to study the z-profile at different heating
rates and pressures. Further modelling was carried out on these simulations in order
to extract the static melt temperature, latent heat and specific heat capacity, and
to measure the growth rate of melt.

Cu and Ta were modelled, to check the method on both a face centered cubic
(FCC) and a body centered cubic (BCC) simple metal. Each has an established
MD potential. Previous work defining the Cu melt curve up to 300 GPa is shown
in figure 3.1 [55], with Ta up to 500 GPa [56].
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Figure 3.1: Literature melt curve and Hugoniot for Cu [57] (from DAC experiments)
and Ta [56] (from simulations).

3.2 Method

3.2.1 Overview

Simulations were carried out using the MD code LAMMPS [58]. A block of Cu or Ta
was heated at different rates, and the global temperature was recorded. The onset of
melt could be seen in the mean square displacement (MSD) and the centrosymmetry
parameter (CSP), as well as from the drop in temperature due to the latent heat.
The temperature profile forms a z-shape and the melting process was fitted to this
using a numerical melt model in order to obtain the melt temperature and kinetic
variables. The coexistence method and the hysteresis method were also carried out
so that the results could be compared.

3.2.2 LAMMPS simulations

LAMMPS was used to create a cube of atoms. The atom style was atomic, which
is appropriate for metals [58]. The cube had periodic boundaries and an FCC or a
BCC lattice, for Cu and Ta respectively. For both elements, an Embedded Atom
Model (EAM) was applied (the Sheng EAM potential) [59, 60].

During the simulations, the following values were obtained: temperature, pressure,
MSD, and CSP. The MSD output from LAMMPS has separate x, y and z values,
averaged for all atoms. However, only the total was required as the simulation is
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isotropic. The CSP gives an output for each atom, which shows the deviation from
a perfect lattice. MSD and CSP are both methods of describing which phase the
atoms are occupying, and are discussed in subsection 3.2.4

The units system used was metal, with a time step of 0.001 ps. The data for
individual atoms was stored in a dump file and global variables were printed to a
text file. The z-profile analysis can be carried out with just the global values of
temperature, pressure and MSD, so only the text file is necessary, which reduces
run time and the amount of data storage needed. Thermodynamic variables were
computed and printed every 100 timesteps, as outputting more frequently increases
run time and is unnecessary. Dump files were initially used to image the system in
the visualisation software OVITO (Open Visualisation Tool) [61] at different times
throughout the simulations. While this was an important step to check that the
simulation was running as expected, the CSP and temperature show the onset of
melt clearly, so the imaging is not a necessary part of the z-profile analysis, and
removing it further increased the efficiency of this method.

The setup was run at 300K for 1000 timesteps of 0.001 ps, in order for the system
to equilibrate. The velocity was assigned at 600K, as half of the energy is converted
into potential energy due to equipartition. A velocity seed value was also given.
Simulations could be run with different velocity seeds to find error bars for the
data; using a different seed changed the initial atom velocity distribution, which
allowed simulations to be repeated with the same conditions in order to check the
accuracy of the results. When working on parallel processors, the velocity assigned
to a particular atom is independent of the number of processors, and so there will
be consistency between runs, if the same velocity seed is used.

An NVE (microcanonical) ensemble was used and the pressure was fixed with an
isotropic Berendsen barostat. The simulation box was set to the desired pressure,
with a damping parameter of 1000 bars. This arrangement was chosen so that the
pressure of each simulation could be determined in order to locate points on the
melt curve to investigate.

After the system had equilibrated, the temperature was increased by the fix heat
command. The heat was added every 10 timesteps and the energy flux parameter
was varied to find the temperature profiles at different heating rates. The run time
was dependent on heating rate, and each simulation was taken well into the liquid
phase. The Ta simulations had a longer run time due to the higher melting point.
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3.2.3 Box size

As expected, increasing the number of unit cells in the LAMMPS simulations did
not alter the temperature of the peak and the trough, but it did affect the amount
of thermal noise and the steepness of the profile. This difference can be seen for Cu
with 5x5x5 unit cells and 10x10x10 unit cells in figure 3.2. However, using a box
size of 20x20x20 makes little further difference, suggesting that a greater increase is
not necessary.

An advantage of the numerical melt method is the reduced computational cost,
and the 10x10x10 box used for Cu in the chapter (with 20x20x20 sometimes used
additionally, to check that the results from the two box sizes always matched) is
small compared with the requirements for the coexistence method. Ta needed a
larger box to maintain the same number of atoms, due to the difference between an
FCC and BCC conventional unit cell.

Figure 3.2: Change in z-profile with box size for Cu for a heating rate of 70 K/ps
and a lattice parameter of 3.63 Å. The 10x10x10 and 20x20x20 unit cell profiles
overlap, with the 10x10x10 showing more noise. The 5x5x5 profile has much more
noise and a different shape during melt and at high temperatures.
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3.2.4 Defining melt

The centrosymmetry parameter (CSP) can be used to determine the onset of melt.
A perfect FCC or BCC crystal will have a CSP of 0, and this increases with disorder.
An example of the progression of the CSP during a simulation is shown in figure 3.3.
For the mean CSP (in blue) there are three distinct regions. The slow increases are
due to heating within the same phase and the sharp increase represents the phase
transition.

Figure 3.3: The progression of centrosymmetry parameter (CSP) during melting of
Cu. CSP is given per atom. The blue line shows the mean CSP, orange and green
are the maximum and minimum values.

As shown in figure 3.4, the highest CSP values for each atom occur when that atom
is already in a liquid environment, and are not caused by the disorder at a melt
boundary. The broad, roughly Gaussian distribution with the peak at a CSP of
9-10 is indicative of the liquid phase, and the sharper peak at lower CSP is from
the solid phase. During melting, the distribution would be a combination of those
of the two profiles.

CSP was used to define the growth of liquid in all simulations. MSD (Mean Square
Displacement) was found to show a similar effect; however, the distributions of solid
and liquid MSD had more overlap than those of CSP. In both cases, the mean value
was used to determine melting. The standard deviation could also have given the
melt temperature, as the distribution of CSP and MSD is widest when two phases
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Figure 3.4: Frequency distributions showing the CSP in the timesteps before and
after the highest occurring CSP of each atom. Before the highest CSP, the typical
histogram profile of solid and liquid can be seen but for just before (defined as 1 or
2 timesteps) and afterwards the profile has a liquid like shape.

are present. Alternatives such as the specific heat capacity, shown for solid and liquid
Cu in figure 3.6, could have been chosen to determine the proportion of liquid.

3.2.5 The numerical melt model

A numerical method was developed to model the melting process, and this was then
fitted to the LAMMPS data in order to find a more accurate value of the static
melt temperature than can be obtained from the trough positions. The amount of
liquid produced at each time step, by both nucleation and growth of existing nuclei,
was calculated. This caused a reduction in temperature, due to the latent heat, and
from this a z-profile was formed.

The numerical melt method process is outlined in figure 3.5. The temperature
started at 300K and was increased at each time step according to the heating rate
of the LAMMPS simulation. Heat capacity of a solid is temperature dependent,
so the amount the temperature was increased by changed each time step (with the
rate of input energy constant). Once the melt temperature was reached, melting
could begin. The liquid growth rate and nucleation rate were calculated in each step.

The radius of each nucleus was stored so the growth rate could be used to calculate
the new volume of every site at each time step. When formed, each nucleus was given
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a radius corresponding to the growth rate at that time. This is an approximation,
as the nucleation rate is actually determined by the probability of a nucleus with
the critical radius being formed.

Once a significant amount of liquid is present, the liquid regions will be prohibited
from growing in an ideal sphere, reducing the efficiency of the growth. To account for
this, if the predicted amount of growth for a time step was larger than the amount
of solid present, the volume added to each nucleus per time step was multiplied by
the fraction of solid remaining, in order to slow down melting towards the end, and
better fit the LAMMPS profiles.

From this new volume of liquid, the temperature lost due to latent heat was obtained
and deducted from the current value. This process was repeated for each time step
until no solid remained. After that, the rise in temperature was solely determined
by the liquid heat capacity (which is not temperature dependent).

The curve_fit function of the SciPy Python module was used to find the optimum
value of the melt temperature, Tm, and the values n0 and u0, the nucleation and
growth rate parameters defined in section 3.2.7. From this optimised value, the error
in Tm was estimated by how much these fitted parameters could be altered with the
model remaining, by eye, a good fit to the LAMMPS data.
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Figure 3.5: Flow chart showing the main stages of the numerical method for
modelling the z-profile. For each time step, the temperature is calculated and used
as the input for the next time step. The growth and nucleation rates are u and n
respectively. 67



3.2.6 Specific heat capacity

Specific heat capacity of a solid is linear [62] (or approximately linear [63]) with
temperature. A graph of this is shown in figure 3.6. Upon melting, there is a jump
to the liquid specific heat capacity, which remains constant with temperature.

Figure 3.6: The specific heat capacity of solid Cu increases approximately linearly
with temperature until reaching the melting point [63]. The heat capacity of the
liquid Cu is not temperature dependent. (Reprinted with permission.)

The gradient of the temperature profile, with a constant heating rate, therefore
decreases as it approaches the melting temperature, as the specific heat capacity
of the solid increases. Assuming a linear fit to be a good approximation for the
temperature dependence of specific heat capacity, Cp, the equation

CP (T, T
′) = c0 + f(T ′)

T

Tm0

(3.1)

was fitted to the temperature profile for Cu before any melting begins, at different
heating rates, T ′. Tm0 is the literature static melt temperature, and c0 and f were
found through fitting. c0 was constant at 0.38 J/gK, and f was rate dependent, as
shown in figure 3.7.

It can be seen in figure 3.7 that the temperature dependence of specific heat capacity
is greater at lower heating rates, where f changes the most rapidly. This may be due
to the response time either in the numerical model, as the value of temperature in
the previous time step is used with f to find the temperature gained in the current
step, or in the material, as the non equilibrium conditions mean that heat is being
added faster than the material can thermally respond.
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Figure 3.7: Graph showing the how the value of f , used in equation 3.1, varies
with heating rate. The specific heat capacity therefore has a greater temperature
dependence at lower heating rates.

In order to correct for this, the heat capacity was found using the low temperature
region of the temperature profile, before applying the numerical method. However,
due to the correlation with heating rate, this is could be predicted for some of the
rates without needing to be found for each. A larger range of the temperature profile
would give a more precise fit, but as a linear fit for specific heat capacity is sufficient,
this should be carried out at low temperatures where it is certain that no melt is
occurring. CSP or MSD can be used to check that melting has not begun, and
starting the simulations at 300K, rather than closer to the melting point, gives a
sufficient temperature range.

The specific heat capacity for Ta had a similar linear fit with temperature, and
the same method was applied to it. The dependence on f with heating rate was
comparable to Cu, and the pressure dependence is shown in figure 3.8.
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Figure 3.8: Dependence of specific heat capacity on temperature is characterised
using the equation c = c0 + f(T/Tm). The parameter f , for Ta, is plotted here
against pressure.

3.2.7 Nucleation and growth rate

Homogeneous nucleation rate, nhom, and growth rate, u, have exponential relation-
ships with temperature [42] (as was described in Chapter 2).

nhom = n0exp

(
−∆G∗(T )

kT

)
exp

(
−Q

kT

)
(3.2)

where
n0 ∼

nkT

h
(3.3)

and
u = u0exp

(
−Q

kT

)(
1− exp

(
∆G

kT

))
(3.4)

Q is the activation energy of diffusion, ∆G∗(T ) is the free energy barrier of nucleation
and ∆G is the difference in free energy of the two phases. T is temperature, n is
the number of atoms and k and h are the Boltzmann and Planck constants. The
pre-exponential factor u0 is, unlike n0, independent of temperature.

This can be simplified to the equations

nhom = ATexp

(
−B

kT

)
(3.5)
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and
u = Cexp

(
−D

kT

)(
1− exp

(
E

kT

))
(3.6)

where the parameters A, B, C, D and E are found using best fit of the numerical
melt model to the LAMMPS data.

The nucleation rate used in the final fit was linear with temperature and the growth
rate was constant with temperature. This was a necessary approximation in order
to reduce the number of fitting parameters, and was found to be valid as including
the exponential terms did not alter the obtained profiles due to the relatively small
temperature range during melting. However, this meant that the activation energy
and energy barrier could not be extracted from the numerical method as initially
hoped, as the approximate model is not sensitive enough to find those values accu-
rately. Additionally, this approximation is less accurate at higher pressures (where
there is a greater temperature range during melting, so temperature dependence
becomes more significant) and at low heating rates (when the z-profile is less well
defined, so is harder to fit to).

3.2.8 The coexistence method

Alternative techniques, which are well established for use in MD, were carried out
to compare to the results from the numerical melt method: the coexistence and the
hysteresis methods. The coexistence method incorporates solid and liquid regions
in order to remove the nucleation barrier to melting as the interface between the
two phases already exists. A description of this is given in Chapter 2. The method
used here was based on Liu(2008) [64].

Figure 3.9: Image taken in OVITO showing the arrangement of atoms in the
coexistence simulation, with a liquid in between two regions of solid. The colour
scale is for CSP, with blue being 0 and green 10.

The setup of the LAMMPS simulation is shown in figure 3.9. The system was given
periodic boundaries and the Cu Sheng potential was used [59]. The box size was
20x20x100 unit cells. The initial liquid region was defined as being from 25 to 75
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unit cells in the z direction, with the remainder solid. The lattice parameter was
adjusted to between 3.73Å and 3.64Å, to give a pressure range of 0 to 10 GPa. These
values were obtained by running a small simulation separately for each temperature,
to find which lattice parameters corresponded to each pressure.

The liquid region was set at 3000K (well above the melt temperature), and the
solid at 300K. This was run in the NVE ensemble for 3000 timesteps of 0.001 ps to
thermalise. The atom velocities were then rescaled to set both regions to the desired
initial temperature, and the simulation was run for another 20000 timesteps in the
NVT ensemble. Finally the NVE ensemble was used for 50000 timesteps, allowing
the phases to change.

The required output values (given in a dump file) were CSP and z position, as
it is how the liquid region grows or shrinks along the z direction that determines
whether the system is in equilibrium. This equilibrium occurs at the melting point,
so the simulations were repeated iteratively to find the melt temperature at each
pressure.

3.2.9 The hysteresis method

The hysteresis method acknowledges the overshoot of one phase heating and cooling
and uses them both to estimate the true static melt temperature [33].

Tm = Tl + Ts −
√

TlTs (3.7)

Tm is the calculated melt temperature, and Tl and Ts are the overshot temperatures
at which the phases changed, found when cooling and heating respectively. The
hysteresis method was applied to each heating and cooling rate using one phase MD
simulations. Again, the fix heat command was used to increase the temperature of
the box (which started at 300K) to well above the expected melting point. The box
was then cooled back to a solid. An example of this temperature profile is shown in
figure 3.10. This was repeated at different pressures in order to plot the melt curve
for comparison with other methods.
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Figure 3.10: The evolution of temperature with time for the hysteresis method for
Cu at 0 GPa. The solid is heated to a liquid and then cooled back to a solid. The z
shape at around 20-25ps shows melting. The slight bend in the profile at about 50
ps is due to the change in specific heat capacity during and after freezing.

3.3 Results

The numerical melt method was carried out for Cu and Ta. This section begins with
an analysis of the peak and trough positions of the LAMMPS data to estimate melt
temperature and find latent heat and specific heat capacity. The numerical method
is then applied to fit a melting model to the LAMMPS data and better determine
melt temperature. This result is then compared to the coexistence and hysteresis
methods.

3.3.1 Peak and trough positions

The effect of heating rate on the z-profile obtained in LAMMPS can be seen in
figure 3.11. Increased heating rate increases the temperature of both the peak and
the trough, as well as reducing the difference between them.

The variation of the peak with heating rate and pressure was found, and is shown
in figure 3.12. The gradient of peak temperature against pressure is constant and
matches the literature value of the static melt curve [55]. It can be seen that the
peak temperature also increase with heating rate. Error bars were calculated by
repeating the LAMMPS runs using six different velocity seeds. The errors are larger
at lower pressures, possibly due to a greater relative difference in pressure between
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Figure 3.11: Graph showing the effect of the heating rate on the z profile for Cu at
10 GPa. Higher heating rates cause increased temperatures for both the peak and
the trough. The time is normalised so that the plots overlay each other for easier
comparison.

simulations with different velocity seeds.

Using the trough instead of the peak produced similar results, seen in figure 3.13.
Again the trend is linear with pressure over this range, and is parallel to the literature
melt curve. In this case, the lowest heating rate simulated (8000 K/ns) lies about
100K above the static literature value.

By plotting the temperature of the trough at 0 GPa as a function of heating rate, a
static melt temperature can be inferred at a heating rate of zero. This is shown in
figure 3.14.

At low heating rates, the temperature predicted by this linear fit is reasonably close
to the expected melt temperature (1314K compared to the literature value 1358K),
but as the trough positions do not converge to one value at lower rates, this is
an inconclusive way of finding the static melt temperature. A different method, a
numerical fit to the z-profile, is therefore required to find the static melt temperature
from the temperature profile.
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Figure 3.12: The temperature at which the peaks of the z-profile occur in Cu
at different heating rates and pressures. Peak temperatures and error bars were
obtained by averaging 6 simulations. The red dashed line is the static literature
melt curve, taken from figure 3.1 [55], for comparison with the peaks.

Figure 3.13: The temperature at which the trough of the z-profile occurs for different
heating rates and pressures. Temperatures and error bars were obtained by averaging
6 simulations. As in figure 3.12, the red dashed line is the static melt curve, taken
from figure 3.1 [55].

75



Figure 3.14: Melting temperature obtained from the value of the trough in the z
profile against heating rate. At lower heating rates the linear fit approaches the
literature static value of melt temperature, 1358K.
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3.3.2 Latent heat and specific heat capacity

The latent heat was estimated from the z-profiles by subtracting the temperature of
the trough from the extrapolated overshoot (found by continuing the temperature
profile of the solid up to the time at which the trough occurs), to obtain the
thermal energy which has been lost. This temperature difference, shown in figure
3.15, increases linearly with pressure. It decreases at higher heating rates, while
maintaining the same pressure dependence. The specific heat capacity, calculated
from the gradient of the temperature profile before melting, was then used, along
with the temperature difference, to find the latent heat.

Figure 3.15: The temperature difference between the overshoot of the peak and the
trough increases with pressure and decreases with heating rate. Error estimates are
based on the standard deviation of six different velocity seeds and are larger at the
higher rates.

The value for specific heat capacity of 0.42 J/gK obtained close to 0 GPa is 10%
more than the literature value of 0.385 J/gK for Cu at 25oC, which may be due to
the potential used or because of the dependence of heat capacity on temperature, as
discussed in section 3.2.6. The dependence of heat capacity with pressure is shown
in figure 3.16; it decreases with increasing pressure but does not vary with heating
rate. The difference between the simulated and literature values demonstrates the

77



Figure 3.16: Specific heat capacity of solid Cu, calculated from the gradient of
the temperature profile before melt, decreases at higher pressure. Error bars are
calculated from the standard deviation of 6 simulations. The specific heat capacity
is constant with heat rate within one standard deviation, with the exception of the
highest heating rate which fluctuates, possibly due to a shorter time before melt
increasing the error in the gradient.

need to check the melt curve against those predicted by static methods using the
same potential, and not just the literature result.

Calculated latent heat of fusion is shown in figure 3.17. This increases linearly with
pressure, and decreases slightly with increased heating rate. At a pressure of 0 GPa,
the literature value of 13.05 kJ/mol is within one standard deviation of the calculated
results at lower heating rates. Again, errors were found by using 6 different velocity
seeds. The error bars are large, particularly at higher heating rates, at up to 10%
of the value of latent heat.

These calculated values could be used in the numerical model, in order to reduce
the number of fitting parameters.
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Figure 3.17: The latent heat of fusion for Cu is roughly linear with pressure and
decreases at increased heating rate. Error bars generated from 6 velocity seeds are
consistently large at all pressures.

3.3.3 Numerical melt model

Using the numerical method, a good fit could be found for the LAMMPS data. This
is shown for Cu in figure 3.18 for a heating rate of 300 K/ps. The model predicts
a melt temperature of 1350K at 0 GPa and a latent heat of 12 kJ/mol (literature
values are 1358K and 13.05 kJ/mol [57]).

The pressure dependence of melt temperature up to 10 GPa is shown in figure 3.19.
This matches the literature data [57] within the error bars for 7 out of the 10 data
points. Errors were based on the sensitivity of the fit to the value of the melt
temperature.

The calculated static melting temperature was constant with heating rate above
400 K/ps, which is an improvement over the peak or trough methods, as these were
rate dependent at these heating rates, as shown in figure 3.20. It is also much more
accurate, closely matching the literature melt curve. The specific heat capacity’s
temperature dependence changes with heating rate, so there is loss of precision in
estimating this.
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Figure 3.18: Fitting of the numerical method (orange) to LAMMPS data (blue).
This was at a heating rate of 300 K/ps, with a box size of 20x20x20 unit cells, and
time step of 0.05 ps.

The numerical method was applied to Ta as well as Cu, as shown in figure 3.21.
This was repeated for different pressures in the range of 0-10 GPa (figure 3.22), and
for each the model fits well to the LAMMPS simulations. It can be seen that the
z-profile becomes sharper at higher pressure, and beyond this pressure range the fit
becomes less accurate.

The melt temperature predicted by the numerical method is compared to the lit-
erature value [56] in figure 3.23. The values of temperature for the trough and the
peak are also shown. It can be seen that the numerical method fits literature data
well at pressures up to 12 GPa.
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Figure 3.19: The melt curve of Cu up to 10 GPa, comparing literature data (blue)
[57] with values obtained using the numerical method (orange). Errors are estimated
from the range of melt temperatures which give a close numerical fit to the LAMMPS
data.

Figure 3.20: Comparison of the melt temperature obtained using the trough (orange)
and peak (green) values, with the numerical method (blue) at 1 GPa. The numerical
method gives a constant temperature at faster heating rates, while it breaks down at
lower rates. At higher rates, it matches the literature melt temperature of 1380K.
In contrast, when using the trough, the melt temperature increases rapidly with
heating rate until the temperature profile loses its z shape and the peaks and troughs
converge.
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Figure 3.21: The numerical method fit (orange) to LAMMPS data (blue) for Ta at
a heating rate of 600 K/ps, and pressure of 0 GPa. As for Cu, the numerical method
fits the LAMMPS data closely.

Figure 3.22: The z-profile for Ta is plotted at pressures from 0 to 10 GPa, with a
heating rate of 600 K/ps at all pressures. Within this pressure range, the numerical
method provides a good fit. Both the numerical method and the LAMMPS data
are shown (with the legend referring to the LAMMPS profiles). The temperature
difference between the peak and the trough increases with increased pressure, and
the fit reproduces this.
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Figure 3.23: The melting temperature predicted using the numerical method (blue)
for Ta, plotted against pressure. This is compared to literature values [56] (red),
and shown to be a good fit below 12 GPa. The temperature of the peak and trough
are also given.
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3.3.4 Nucleation and growth

OVITO was used to image the atom positions, and mapping the CSP showed where
melting occurred, which gave some information as to whether melting was growth or
nucleation dominated. An alternative method to determine the melting mechanism
was to plot a histogram of the variation of CSP of an atom’s neighbours with the
CSP of the central atom. Due to the large number of atoms present, a random
sample of central atoms was selected (using a Python random number generator).

If the melting was nucleation dominated, then the CSP of the surrounding atoms
would be independent of that of the central atom. If melting was growth dominated,
then the CSP values should be correlated, as there would be a smaller number of
large liquid regions. The histograms, shown for Cu in figure 3.24, demonstrate that
the CSP of an atom is independent of its neighbours, implying nucleation dominated
growth. The three figures are for before, during, and after melt.

Unlike Cu, for Ta there was not a sharp increase in CSP at the onset of melt. This
can be seen in figure 3.25. However, the distribution of CSP when changing from a
solid to a liquid, given in figure 3.26, remains the same as for Cu.

To check the change in CSP for Ta was not an artefact of heating, or due to the
potential used, the CSP dependence on temperature was compared to CSP values
obtained at static temperatures. This was then repeated using different potentials
(Pun 2015 [65], Zhou 2004 [66] and Ravelo 2014 [67]), and the same CSP profiles
were observed in all cases.

The absence of a sharp increase in CSP for Ta does not fundamentally change
the numerical melt method suggested, but means that the average value of CSP
cannot be relied upon alone for all metals to determine whether melting has started.
Instead, OVITO or a similar tool can be used to check for the onset of melting.

As with Cu, the CSP distribution, given in figure 3.26, is independent of neigh-
bouring atoms, so melting is again shown to be nucleation dominated.
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Figure 3.24: Distribution of the centro symmetry parameter (CSP) of neighbouring
atoms, separated by the CSP of a central atom (with CSP of the central atom given
in the legend) for Cu. The plots were taken at different times (given in the graph
titles), and show the typical distributions of CSP for the material as a solid (top),
liquid (bottom) and during melting (middle). In most cases the CSP distributions
overlap; the only outlier is for the highest central CSP in the middle plot due to the
low number of atoms preventing a smooth distribution forming. This shows that
the CSP distribution is uniform throughout the sample during melting, rather than
most of the melt occurring in a few large nucleation sites.
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Figure 3.25: CSP against time during heating of Ta. The mean value is shown in
blue with the maximum and minimum values given in orange and green. The onset
of melt occurs at about 75 ps, as had been determined from the temperature profiles.
In the CSP profile, this corresponds to a small jump in the mean value, but is more
visible as an increase of minimum CSP.
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Figure 3.26: The evolution of CSP distributions of neighbouring atoms for Ta
during melting, for the CSP of each central atom (given in the legend). Despite
the difference in the mean CSP profile, these distributions before, during and after
melting, are similar to those obtained with Cu shown in figure 3.24.
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3.3.5 The coexistence method

In order to confirm that the numerical method works reliably, the predicted melt
curve has been compared to results from other methods, as well as existing literature
phase diagrams [55]. The melt temperatures were checked by using the same
LAMMPS potential with methods known to produce accurate static results: the
coexistence and the hysteresis methods.

The coexistence method is established as the standard way to find static melt curves
in MD. With the method described in section 3.2.8, the CSP along the z direction
could be used to define the solid and liquid regions, and to determine whether they
were growing, shrinking or remaining stable. Examples of these are given in figure
3.27. The melting temperature occurs when the size of the liquid region remains
constant.

This was found for a range of pressures to produce the phase diagram, shown in
figure 3.28. The error bars are due to the range of temperatures at which the
system appears to be in equilibrium, from the CSP plots. In most cases these are
between 20-50K.
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Figure 3.27: Mean CSP along the z direction for Cu at 7 GPa: 1500K (top), 1600K
(middle) and 1800K (bottom). The higher CSP corresponds to the liquid region
and the lower to the solid. The 1600K plot is in equilibrium, as shown by the
overlapping vertical lines on the graph. This is therefore the melting temperature
at this pressure.
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Figure 3.28: Melt curve formed for Cu using the coexistence method (orange). The
error bars arise from the ambiguity as to when the system is in equilibrium. Within
this error, it matches the literature curve (blue) [57] over the pressure range of 0-12
GPa.
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3.3.6 Hysteresis method

The hysteresis method has the benefit of requiring small simulation times, but it
does not have a physical basis. It is described in section 3.2.9, and uses the equation

Tm = Tl + Ts −
√

TlTs (3.8)

Tm is the hysteresis melt temperature, and Tl and Ts are the melting temperatures
obtained when cooling and heating. Tl and Ts can be found from the MSD shown
in figure 3.29, and the temperature profile given earlier in figure 3.10.

Figure 3.29: The change in MSD with time for Cu at 0 GPa, during heating and
cooling for the hysteresis method. Liquid has a greater MSD than a solid, and
both have an MSD which increases with temperature. Heating occurs until 32ps
(well above the melting point), after which the system is cooled. The onset of
melting can be seen when the gradient increases after 20ps, and freezing begins at
the decrease in gradient after 40ps.

The phase diagram was again formed by repeating this method at a range of
pressures, and is given in figure 3.30. The error bars are based on the imprecision
in identifying when the gradient changes in figures 3.10 and 3.29, which indicate a
phase change. This method has a large uncertainty, mainly from the Tl component,
but agrees with the literature melt curve within this error.
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Figure 3.30: The melting curve for Cu obtained from the hysteresis method, up
to 20 GPa, is shown in green. This is calculated using equation 3.8, from the
superheated melting temperature (blue) and the supercooled freezing temperature
(orange). Error bars are given for the uncertainty in temperature when the phase
transition occurs. This is larger on cooling, due to the less well defined MSD change
shown in figure 3.29. For both heating and cooling the rate of temperature change
was approximately 40 K/ps (rate of energy change was constant across simulations,
but heat capacity varies with pressure, meaning the rate of temperature change was
not constant.)

3.4 Discussion

3.4.1 Peak and trough positions

When the heating rate was too rapid for an equilibrium to be established, the
profile of temperature against time formed a z-profile upon melting. The peak and
the trough of this profile were found to have an approximately linear dependence on
heating rate and pressure. The trough temperature could be used to estimate the
static melting point, as in figure 3.14, but it was due to the lack of accuracy that
the numerical melt method was produced.

However, as specific heat capacity and latent heat could be determined (from the
trough and the temperature profile), these parameters can be used for fitting in the
numerical method, to reduce the number of free parameters.
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3.4.2 Numerical melt method

The numerical method provided a close fit to the LAMMPS simulations. To check
that this was not due to overfitting (meaning that any melt temperature could be
made to fit well to the LAMMPS profile by adjusting the nucleation rate and growth
rate parameters), the range of values that the temperature could take and still give
a reasonable fit was used to form error estimates. The initial parameters were also
varied, and this did not change the outcome, implying the function was successfully
finding the optimum fit.

Approximations of the temperature dependence of growth rate and nucleation rate
were required in order for the fitting to converge, but the close fit to the LAMMPS
data implies that these were valid. The fit was worse when the heating rate was
lower, and at higher pressures (above 15 GPa), both of which are situations where the
approximations would be expected to be less accurate. For low heating rates, growth
would have a greater impact rather than the melt being nucleation dominated. As
pressure increased, so did the temperature difference between the peak and the
trough, and therefore the temperature dependence of the growth and nucleation
rates, which could be ignored at lower pressures, would have more of an effect.

Despite these limitations, the numerical melt model was able to fit closely to the
LAMMPS data for both Cu and Ta, and reproduce the literature melt curves in the
range of 0 to 10 GPa.

3.4.3 Comparison with other methods

As demonstrated in figure 3.31, the numerical method and the coexistence method
(which were both carried out using the same LAMMPS potential) produce results
which are in agreement with the literature value of the Cu melt curve [57]. Error
bars are smaller for the numerical method. The hysteresis method also matched the
literature, but had such large error bars that it was not considered further.

Computational cost is a major improvement for the numerical method over the
coexistence method. For Cu, the numerical method can be carried out on a small
box size of 10x10x10 unit cells, and has a wall time of 23 seconds to run on 20
cores. In contrast, the wall time of a coexistence simulation was about 20 minutes
on 20 cores. The coexistence method could potentially be optimised in terms of
reducing the box size slightly and the number of time steps, but as iteration is used
to find the melt temperature, at least 5 simulations would be needed to predict the
temperature to the desired level of precision.
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Figure 3.31: Graph showing that both the coexistence method (orange) and the
numerical method (green) can be used to reproduce the literature value of the
Cu melt curve (blue) in the pressure range 0-10 GPa. Errors for the coexistence
method are from the range of temperatures where simulations showed equilibrium,
and the errors of the numerical method are judged by the ranges which provided
good numerical fits to the LAMMPS data.

For Ta, the numerical method again produced a melt curve which matched the
literature, and the method had a similarly small computational cost.

3.5 Conclusion

Applying a numerical model to the temperature profiles of melting at rapid heating
rates was shown to reproduce the static melt temperature for pressures in the range
0-10 GPa. This analysis has been carried out for both Cu (FCC) and Ta (BCC)
with the same success, implying the method would be applicable for other simple
metals. In each case, the numerical method accurately predicted (with an error of
approximately 1%) the melt temperature of the metal, when compared to literature
values and the coexistence method.

It was established that using the trough of the z-profile to find melt temperature is
not accurate at high heating rates. Therefore in dynamic experiments, which are
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required to determine the phase diagram at high pressures, the melt temperature
obtained would not be equal to the static melt temperature. The method developed
in this chapter provides a way of finding the static melt temperature at high heating
rates using a numerical model to track liquid growth.

The numerical method uses a simple melt model, without applying the mechanisms
of melt nucleation and growth, but even so produces a good match to the MD
data. In addition to providing the static melt temperature in MD, with a greatly
reduced computing cost compared with the traditional coexistence method, extra
information such as the latent heat and specific heat capacity can also be extracted.

A box size of the order of 4000 atoms will generate a smooth and reproducible
temperature profile. This is much lower than is needed for the coexistence method,
which, when combined with the smaller number of timesteps, reduces the computa-
tional requirements by a factor of 100.

Kinetic variables such as energy barriers could not be calculated, as the model was
not sensitive enough to fit multivariable equations to nucleation rate and growth rate
without introducing large fitting errors and the risk of inaccurate results. However,
further work could be done in this area to improve the fitting to include more
variables, possibly by studying the CSP distribution to determine the dominant
melt mechanism at each heating rate.

By applying a range of heating rates, the static melt curve has been found. While
this analysis was carried out using MD simulations, it would also have applications
in experimental methods. For example, in a high power laser shock experiment, the
heating rate of the incoming shock can be modified, so obtaining the static melt
curve from dynamic measurements should be possible. This could also be done on
release rather than during the shock, using the tamper method simulated in Chapter
4.
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Chapter 4

Finding static melt temperatures,
using a tamper to control release rate

In Chapter 3, it was shown that the melt temperature observed in MD was heating
rate dependent. In this chapter, this is expanded upon to find how it could be
applied to a shock and release experiment.

For a typical shock target, the target material sits between an ablator (which
interacts with the laser in order to form the shock wave) and a tamper (which
determines the release rate of the material after a shock). Different tamper materials
could therefore be used to alter the cooling rate during release, and, if melting occurs
on release, allow the static melting point to be calculated from a set of dynamic
results.

Simulations were carried out using the molecular dynamics code LAMMPS, and
the tamper was modelled as a mobile wall. With Cu as a test material, this method
produced static melting points, in the pressure range of 50 to 110 GPa, which agreed
with the literature melt curve within the uncertainty in temperature of about 7%.

4.1 Introduction

In a dynamic system, the temperature and pressure at which melting occurs is not
the same as the static melting point, and this difference is related to the heating or
cooling rate. Laser shock experiments are dynamic systems, and melting can begin
due to the initial shock wave, or during release after the shock. This chapter looks at
the melting of Cu on release, using multiple cooling rates to calculate static melting
points.
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Cooling occurs as the release wave, formed when the shock wave reaches the tamper,
travels back through the bulk material. As in Chapter 3, the MD code LAMMPS
[58, 18] was used for the simulations. The tamper was modelled as a thin strip of
material which moved in the direction of shock propagation to provide the correct
release wave, but had no thermal velocity and did not interact with the atoms from
the bulk material. Tampers need to be long enough to ensure that the second release
wave, from the shock wave hitting the end of the tamper, comes too late to interfere
with the main simulation, so developing a method where the tamper can be modelled
as a thin wall greatly reduces the computational costs. The method also removes
the requirement for a tamper material potential, and for an interaction potential
between target and tamper. These are the main factors preventing tampers from
being routinely modelled [54].

The LAMMPS model provided the temperature and pressure during release, as
well as the centro symmmetry parameter which was used to determine the onset of
melting. These were found for a slice of material close to the tamper.

For each tamper, the release paths in pressure-temperature should overlap, but
have different end points. A power law fit (equation 4.1) was used to calculate the
static melting point from several dynamic melting points produced by a range of
tampers.

TD = TS +Bβz (4.1)

TD and TS are the dynamic and static melt temperatures, β is the rate of temperature
change, and B and z are constants. An equivalent expression was used for pressure.

The predicted static melt curve produced by this novel method was checked against
the literature melt curve (Dai, 2002 [57]) and the melt curve found using the coexis-
tence method, also modelled in LAMMPS. The agreement between the coexistence
result and the literature means that the LAMMPS potential used is shown to be
accurate in this pressure range.

Work in this chapter was carried out using MD simulations, but it was designed
to replicate a laser shock set up. The information needed to find the static melt
curve would be obtainable from diagnostics, so this method could be applied to
experimental results with minimal change to the analysis.

This chapter is split into two parts: finding an efficient way to model a tamper
in LAMMPS, and then using this method to control the release rate in order to
infer a static melting point. Both of these topics have their own method, results and
discussion sections.
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Setting up the LAMMPS simulation and the effect of the tamper are described
in section 4.2. The method is tested with several tamper materials, and compared
to the expected release pressures in section 4.3, with the discussion in section 4.4.

In section 4.5, a power law fit is applied to the dynamic melting points, and the
criteria for determining onset of melting is discussed. The calculated static melting
points are compared to the literature and coexistence melting curves in section 4.6.
The accuracy of the melt curve and the limitations and applications of this method
are presented in section 4.7, and the conclusion to both parts is given in section 4.8.

Part 1: Modelling a tamper in LAMMPS

4.2 Method

4.2.1 Shock waves in LAMMPS

There are several methods to create a shock wave within LAMMPS. In this chapter,
a piston is used. The piston acts as a wall which has no internal forces and does
not interact with the bulk atoms, except to push them forwards in the direction of
shock propagation causing a pressure wave. The velocity of the piston is constant
throughout the simulation.

An alternative would be to use a piston with constant force rather than one with
constant velocity, and this was tried and was shown to produce the same result.
Other ways of producing shock waves in LAMMPS are discussed in Chapter 2. The
constant velocity piston was seen as the most straightforward option in this case,
as the velocity at which the tamper moves is related to the piston velocity, so it
reduced the number of calculations required in the LAMMPS script.

4.2.2 The LAMMPS set up

These simulations were carried out on Cu using the Sheng potential [59], as in
Chapter 3. As only one potential has been used to test this method, repeating
with different potentials would provide further verification. However, as results
obtained with the Sheng potential matched literature data within error bars, it was
decided that this was not necessary. The two variables which were changed between
simulations were the piston velocity and the linear scaling to this which controlled
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the tamper response. The system modelled in LAMMPS was long and thin, as the
z direction along which the shock travelled was the most important. At the start of
the set up in the z direction was the piston which creates the shock wave, and at
the end was the tamper which controls the release wave.

Figure 4.1: The set up of the LAMMPS simulations (not to scale). The scale along
the z direction is in conventional unit cells. This shows the piston and the tamper
at the ends. Data is taken from the output region and the two pretampers are used
to calculate the tamper movement. The bulk material is from 5 to 95 unit cells, and
this includes the output and the pretampers.

The dimensions were 10x10x100 conventional FCC unit cells, and the boundaries
were periodic in the x and y dimensions and shrink wrapped in z. The different
regions along the z direction were the piston from 0 to 5 unit cells, the bulk material
from 5 to 95, and the tamper from 95 to 100 unit cells. Within the bulk material
were three regions of interest: the output slice from 85 to 90 unit cells, the first
pretamper from 94 to 95, and the second pretamper from 93 to 94 unit cells. This
is illustrated in figure 4.1.

The output slice, where the data is taken, was chosen to be narrow in the z direction
so that the responses to the shock and release waves could be considered uniform,
while still containing a sufficient number of atoms to reduce noise. It was close
enough to the tamper to be affected by the release wave but far enough away that
it would not be used to calculate tamper velocity or experience surface effects. The
purpose of the pretamper regions was to calculate when the tamper should move
and at what velocity, and the method for this is discussed in section 4.2.5.

All the atoms were created with a temperature of 600K (which becomes 300K due to
equipartition) to begin the simulation under ambient conditions. The seed for this
velocity was varied for some of the data sets, to check that the initial distribution
did not affect the end result. The time steps were 10−5ps, as a consequence of the
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potential used. As a result, the box size could be relatively small to reduce the run
time of the simulation, as discussed in section 4.2.7. Thermodynamic variables were
computed and printed every 1000 timesteps, which was less frequent than in the
previous chapter due to the shorter time step.

An NVE ensemble was run for 10000 timesteps to allow the atoms to thermalise.
This number of timesteps was found to be sufficient for the temperature and pressure
of the simulation to stabilise. The piston and tamper then had their forces set to
zero in all directions. The tamper was fixed at zero velocity and the piston was
fixed at zero velocity in x and y, but given a constant velocity in the z direction.
This stage of the simulation was run until the shock wave almost reached the end
of the bulk material. The next step in the LAMMPS script (moving the tamper) is
described in section 4.2.5.

4.2.3 Shock wave velocity

For a shock wave travelling through a solid, the shock velocity, Us is related to the
particle velocity, up by equation 4.2

Us = Sup + c0 (4.2)

where S and c0 are constants for the material.

This equation is an empirical approximation which holds for most materials, and
was demonstrated to be applicable in these simulations as the shock velocity, found
from the gradient in figure 4.2, is linear with particle velocity, as shown in figure
4.3. The constants S and c0 of the bulk material, which are required to calculate
the tamper velocity, can therefore be determined within the LAMMPS simulation
if they are not already known.

Pressure in the bulk material, P, can be found from the shock and particle velocities
and the density before the shock, ρ0, using equation 4.3.

P = ρ0Usup (4.3)

In figure 4.4, equation 4.3 is used to compare the predicted shocked pressure to the
pressure calculated using LAMMPS outputs at different particle velocities. They are
a reasonable match, again implying that the linear relationship between Us and up is
valid in these conditions, and that the method of calculating pressure in LAMMPS,
discussed more in section 4.2.6, is correct. This is repeated for several elements,
using the Rusbank database [68], in figures 4.5 and 4.6.
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Figure 4.2: The velocity of the shock wave in Cu is calculated from the gradient of
displacement of the shock front with time. This was carried out at different particle
velocities, and all gave linear displacements, as would be expected if the shock wave
did not dissipate.
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Figure 4.3: The velocity of the shock wave (calculated from the speed of the shock
front) against particle velocity for Cu. The LAMMPS data is in blue, with the linear
fit in orange, to calculate c0 and S.

Figure 4.4: The pressure measured in LAMMPS (blue) matches the pressure
calculated from the particle and shock speed (orange) for Cu.
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Figure 4.5: Shock velocity is linear with particle velocity. The data points are from
the Rusbank database [68], for the elements given in the legend. The linear fit can
be used to find c0 and S from equation 4.2, to be incorporated in the LAMMPS
simulations.

Figure 4.6: The dependence of pressure on particle velocity is found from the
Rusbank database [68]. A quadratic equation is fitted for each element, and is
in good agreement with the data, as expected from equation 4.3.
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4.2.4 Tampers

The effect of the tamper is dependent on the Hugoniot relationship between pressure
and particle velocity for both the tamper and the bulk material. The release pressure
can be found by combining equations 4.2 and 4.3. Figure 4.7 shows this process for
Cu with an Al tamper.

In figures 4.7 and 4.8, the pressure-velocity profile for the bulk material (blue) is
reflected at an initial particle velocity, to find the possible release waves [47], as
described in Chapter 2. The release particle velocity is found where this reflected
line (orange) intersects with the Hugoniot of the tamper material, as seen in figure
4.7. However, if the tamper has a greater shock impedance than the bulk material,
the pressure will increase, as a new shock wave will be reflected. This is known as
ringing up the target, and is shown in figure 4.8 for Cu with an Au tamper.

Figure 4.7: The release conditions are found using the mirror image of the velocity-
pressure profile at the particle velocity which achieved compression. With a tamper
material, the release pressure is found where the bulk mirror image profile intersects
with the profile for the tamper material. Here the graph of a Cu target with an Al
tamper is shown, with an initial particle velocity of 1.5 km/s, leading to a release
pressure of approximately 40 GPa.

This process is described in the following equations. The Hugoniot pressure as a
function of particle velocity for the bulk and the tamper have the same form

PH(uH) = ρ0B(cB + SBuH)uH (4.4)
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Figure 4.8: When the tamper has a greater shock impedance than the bulk material,
shown here for Cu with an Au tamper, the pressure will increase, as a new shock
wave will be reflected. The new pressure is again found at the intersection of the
tamper pressure-velocity profile and the mirror image of the bulk profile.

PT (uT ) = ρ0T (cT + STuT )uT (4.5)

where PH and uH are the pressure and velocity on the Hugoniot for the bulk material,
with the bulk constants of cB and SB and initial density ρ0B, and similarly for the
tamper in equation 4.5. Equation 4.4 is reflected at a particle velocity for a particular
shock uP to form the release path described in equation 4.6, with the mirror image
pressure PM .

PM(uH) = ρ0B(cB + SB(2uP − uH))(2uP − uH) (4.6)

This mirrored pressure intersects with the tamper pressure at the particle velocity
uR, which is the particle velocity of the tamper and the release wave.

PT (uR) = PM(uR) (4.7)

Repeating this process at different initial particle velocities, uP , gives the reflected
release particle velocities, uR. The relationship between uR and uP is shown to be
linear (over the range of particle velocities which produce the appropriate pressures)
in figure 4.9. The piston velocity in LAMMPS which causes the shock wave is the
same as the particle velocity of the shock.

The entire tamper does not need to be modelled; as shown in section 4.4, a thin wall
like the piston will be sufficient. As well as reducing the computational requirements,
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Figure 4.9: Using the method described in this section, the tamper velocity can
be calculated for each shock particle velocity. The results shown here are for a Cu
target, with the tamper element given in the legend.

this means that tampers for which there is no potential can be used, provided the
relationship between pressure and particle velocity is known. This can either be
found directly in databases such as Rusbank [68], as in figure 4.6, or from knowing
c0, S and ρ0.

To obtain a full set of data in section 4.5, a range of values for uR/uP from 1.6 to 2
were used in the LAMMPS simulations, which did not correspond to any particular
physical tamper materials. When uR/uP is equal to 1 there is no release, and at 2
there is complete release from a free surface. Below a uR/uP of 1.6, melt did not
occur for all pressures, as the release path did not cross the melt curve, so this range
was not included. However, real materials were also modelled to confirm that this
method is valid, with the results given in section 4.3. The range of piston velocities
was chosen so that the shocked state remained solid, but the release path crossed
the melt curve.

4.2.5 Moving the tamper

The velocity of the tamper in LAMMPS becomes a variable as the shock approaches
it and the time at which this occurs is calculated from the shock velocity. The tamper
velocity was increased using the fix move command. The change in velocity, dv, is
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found using equation 4.8.

dv = (uR − vt)(v
3
pt1/vpt2)x10

−6 (4.8)

where the release velocity, uR, is the desired tamper velocity (dependent on the
tamper material) and vt is the current tamper velocity. vpt1 and vpt2 are the velocities
of the pretamper regions, with vpt1 being closer to the tamper. All velocities are
taken in the z direction. This equation would fail if vpt2 was exactly equal to zero;
however, there were thermal fluctuations in the model and the value was precise
enough that this was never the case. The simulation then continued for long enough
for the release wave to reach the piston.

Equation 4.8 was developed empirically to give the tamper velocity a smooth step
function which begins when the shock wave hits the tamper, shown in figure 4.10.
The velocity of pretamper 2 displays the desired effect: the peak at 3 km/s is the
particle velocity of the shock wave, and the end velocity of 4.2 km/s is the velocity
of the release wave.

Figure 4.10: Graph showing the mean particle velocities in the z direction in the
tamper and a pretamper region. The tamper (blue) starts moving in the direction
of the shock when the shock front reaches the pretampers. The final velocity of
pretamper 2, and of the release wave travelling back, are equal to the tamper velocity.
The peak in the pretamper 2 velocity at 3 km/s is the particle speed of the initial
shock wave in this example.
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4.2.6 Defining pressure

The pressure from the LAMMPS simulations was calculated using the stress per
atom and the Voronoi volume. Only the components of stress in the x and y
directions were used, because the waves travelled in the z direction. This is known to
be valid for a fully plastic system, and has been shown to be a reasonable assumption
here, as the pressures of the Hugoniot found using LAMMPS matched the literature
[57]. Using different piston velocities, the Hugoniot was traced out and compared
to the literature phase diagram for Cu. This is shown in figure 4.11. The agreement
with the literature Hugoniot values also suggests that the LAMMPS potential chosen
is accurate within this pressure range.

Figure 4.11: Comparison of the Hugoniot from the LAMMPS set up and the
literature. The literature Hugoniot [57] is shown in purple and the melt curve in
red. The coloured points show the pressure and temperature achieved in LAMMPS
after different shocks. These were taken over a period of time, so are lines rather
than points. The grey, olive and pale blue lines show release back to the Hugoniot
after overshooting due to the high compression rate.

4.2.7 Box size

The Sheng potential [59] was used for Cu due to its accuracy of the Hugoniot and
melt curve. A consequence of this was that the time step needed to be very low
(10−5 ps) in order to cope with the high pressures, and so the box size was reduced
to keep the simulation run time reasonable. It was therefore necessary to carry out
tests on larger boxes to ensure that the small size did not reduce the plastic effects
or delay the onset of melt.
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In figure 4.12, the pressure temperature profile is shown for different sized boxes.
As the paths overlay each other, both on compression and release, plasticity is not
affected, and the smaller box size of 10x10x100 unit cells can be used. There is some
variation between the plots, but as this does not correlate with box size, it can be
dismissed as noise between different runs.

Figure 4.12: Simulations with x and y dimensions of 10, 20, 30 and 50 unit cells
were run (the z dimension remained constant with 100 unit cells). Other than size,
all conditions were the same. They each followed the same pressure temperature
profile, starting at 0 GPa and 300K, being shocked to 200 GPa, and then released.

The centro symmetry parameter (CSP) is plotted against temperature in figure
4.13, to compare the onset of melt for different box sizes. When shocked, the CSP
and temperature increase almost linearly, then on release the temperature decreases
rapidly and the CSP increases when melting occurs. This point is at a similar
temperature for all box sizes, so having a small box is not suppressing the onset of
melt.
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Figure 4.13: The dimensionless centro symmetry parameter (CSP) is plotted against
temperature for different box sizes, and these all produce similar pathways. CSP and
temperature increase during the shock, then there is a sudden drop in temperature
on release, while CSP increases on melting. The box size is given in the legend: the
x and y dimensions were 10, 20, 30 and 50 unit cells (the z dimension was always
100 unit cells)

4.3 Results

Physical tamper materials (Cu, Al, Sn, Si, Zn and Au) were modelled, with Cu as the
bulk material, to confirm that the release pressures were as expected. Subsequent
results in section 4.6 used artificial tampers.

For a Cu tamper, there would not be a boundary between the bulk and the tamper
and there should be no release wave as uR = uP . This is shown to be the case for
the pressure profile in figure 4.14.

Shock impedance was used to check the validity of the simulations for Al, Sn, Si, Zn
and Au tampers. Shock impedance, Z, is given by

Z = ρUs (4.9)

where Us is the shock velocity and ρ is density. It would be expected that modelling
of the tamper material would produce the reflected pressure, Pr, compared to the
incident pressure, Pi, of

Pr

Pi

=
Z2 − Z1

Z2 + Z1

(4.10)
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Figure 4.14: With a Cu tamper there is no release wave, as expected. There is some
disturbance at 4.2 ps when the shock wave reaches the tamper.

where Z2 is the tamper shock impedance and Z1 is the shock impedance of the bulk
material.

Figures 4.15 to 4.17 show the pressure profiles of various tampers, with the predicted
pressure values given as horizontal lines overlaying the LAMMPS data. They also
include the predicted release pressure given by the mirror image method, which
would be expected to be consistent with the LAMMPS data, as it was by this
method that the LAMMPS tamper velocity was calculated.
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Figure 4.15: The pressure profile for an Al tamper with different piston velocities,
each a different colour. The dotted line is the predicted shocked pressure, the dashed
line shows the release pressure predicted from the mirror image method, and the
dash-dotted line gives the release pressure calculated from impedance.

Figure 4.16: The pressure profile for four tamper materials (given in the legend) with
the same piston velocity. As in figure 4.15, the dotted line is the predicted shocked
pressure (which is the same for all of the tampers), the dashed line shows the release
pressure predicted from the mirror image method, and the dash-dotted line gives
the release pressure calculated from impedance. Au has a greater impedance than
Cu, so the pressure increases.
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Figure 4.17: The pressure profile for three tamper materials (given in the legend)
with a different piston velocity to figure 4.16. As in figure 4.15, the dotted line is
the predicted shocked pressure, the dashed line shows the release pressure predicted
from the mirror image method, and the dash-dotted line gives the release pressure
calculated from impedance.
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4.4 Discussion

The combined results of figures 4.15 to 4.17 are given in figure 4.18. It is shown that,
within an error of about 5%, the mirror image pressure (equations 4.4 to 4.7) is in
agreement with the impedance result from equation 4.10, and the LAMMPS simula-
tion, which is using the mirror image method, is behaving as expected. Both meth-
ods of calculating pressure have some values above and some below the LAMMPS
pressure, suggesting there is not a systematic error in the LAMMPS set up. The
two largest errors of the mirror image pressure are for the ringing up with the Au
tamper, and as the main use of this method is to decrease pressure, the relevant
results are within a 5% error range.

Figure 4.18: For each of the release pressures found in figures 4.15 to 4.17, the error
in the pressure calculated from the impedance method is plotted against that of the
mirror method. In both cases the fractional error is given relative to the LAMMPS
data.

From this low error, it can be concluded that using only a thin wall to model
the tamper was sufficiently accurate, reducing the computational requirements and
meaning that a potential for the tamper material is not needed. This method has
been used in the second part of the chapter, but would also have wider applications
as these factors have prevented the modelling of tampers in other research [54].

These simulations were carried out for the test tamper materials of Cu, Al, Sn,
Si, Zn and Au. The Cu tamper confirmed the limiting case in which there was no
release wave, so the particle velocity on release was the same as the particle velocity
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in the shock wave. The tampers produced release velocities which were a factor of
1 to 1.5 greater than the shock particle velocity. The range used for the rest of the
simulations was 1.6 to 2 in order to cross the melt curve. Values this high could be
achieved experimentally by using tamper materials with a shock impedance which
is much less than that of Cu, such as polymers (epoxy would increase the velocity
on release by a factor of about 1.7 and polystyrene 1.9).

Part 2: The effect of cooling rate on melting

4.5 Method

4.5.1 Defining melting

As in Chapter 3, the centro symmetry parameter (CSP) was used to define when
melting occurred. CSP is volume dependent, so changed as the release wave passed
through the output region, in addition to increasing due to melting. To account
for this, a unitless CSP was used, calculated by dividing by area to obtain a
dimensionless value. There is an initial large increase in the unitless CSP due to the
shock wave, with any further increase after this corresponding to melting.

Figures 4.19 and 4.20 give examples of CSP profiles. For the release rate used
in figure 4.19, melting only occurs on release in the slice closest to the tamper, due
to the dissipation of the release wave as it travels back along the z direction. This
is the output slice which is shown in figure 4.1 and is used to obtain the results.
There is an increase in CSP in slice 5 at the end of the simulation time; this is due
to growth of the melt near the tamper rather than nucleation of melt in this region.

For figure 4.20, the initial shock has gone above the melt curve. Slices 2 to 5 display
a delayed onset of melting from the initial shock, rather than on release. Slice 1 is an
outlier because of its proximity to the piston. At lower shock pressures, the absence
of this trend means that melting must be on release rather than being caused directly
by the shock. This is an important step to check, as it was seen in figure 4.11 that
the shock Hugoniot continues past the static melt curve before melting occurs.

The standard deviation of the CSP peaks during melting, and then decreases as
all the material becomes a liquid. This could be used to ensure that melting was
completed on release, because if the release wave only disordered the solid, then the
increase in standard deviation would remain high. An example of the CSP standard
deviation showing melting, from release with different tampers at the highest shocked
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Figure 4.19: Unitless CSP was used to define melting. The graph shows CSP against
time for different slices, 5 unit cells wide, equally spread along the z direction.
Melting at this release rate, shown by an increase in CSP, only occurs in output 6,
which is closest to the tamper (with a position of 85 to 90 unit cells as shown in
figure 4.1).

pressure, is given in figure 4.21.

The rate of temperature change, as well as the temperature and pressure at which
melting begins, is needed to calculate the static melting point. The temperature
gradient for one simulation is given for all slices along the z direction in figure 4.22.
The initial positive peak shows the passage of the shock wave, and the smaller,
broader trough is from the release wave. The minimum value of the trough is taken
as the rate of temperature change. While the temperature gradient of the shock
wave remains roughly constant as it moves along the z direction, the release wave
clearly dissipates, as the troughs decrease in amplitude and become broader. The
exception to this is slice 1, which is affected by the release wave reaching the piston.
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Figure 4.20: When shocked above the melt temperature, slice 6 melts on release.
The other slices only melt later, when sufficient time has passed after the initial
shock wave, rather than as a result of release.

Figure 4.21: The profile of the standard deviation of CSP from slice 6 with different
tampers. The first peak is due to the shock wave, the second peak is on release for
different tampers (with velocity of the tamper as a fraction of piston velocity given
in the legend). Each tamper results in melting, as the standard deviation drops to
a constant value.
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Figure 4.22: In order to define the rate of temperature change, a graph of the
temperature gradient was produced. This is shown for 6 slices along the z direction,
with output 6 closest to the tamper. The initial positive temperature gradient is
caused by the shock wave and the lower amplitude trough is from the release wave.
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4.5.2 Fitting temperature and pressure

The change in cooling rate on release was produced by using different tampers.
Temperature at melting is related to the static melt temperature and the rate of
temperature change by the power law relationship given in equation 4.11 [42].

TD = TS +Bβz (4.11)

TD and TS are the dynamic and static melt temperatures, β is the rate of temperature
change, and B and z are constants. This same relationship is assumed to also hold
for pressure, P, but with different constants.

PD = PS + Aβy (4.12)

Six initial shocked pressures were used, with around eight tampers each. The fitting
was carried out for every initial pressure. An example is given for the maximum
shocked pressure of 200 GPa in figures 4.23 and 4.24, for temperature and pressure
respectively.

Figure 4.23: Using equation 4.11 to plot dynamic melt temperature against cooling
rate. The fitted curve is orange. The error bars are from the noise in temperature at
the point of melting; the error due to this noise is much greater than the uncertainty
as to what time the melt occurs.

For each tamper, the release path in pressure and temperature was the same for
each starting pressure. The static melting point predicted using this fitting method
was confirmed to lie on the release path. An example is shown in figure 4.25, which
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Figure 4.24: Fitting pressure to cooling rate using the assumed power law
relationship equation, 4.12, with the fit shown in orange for the blue data points.
The error in pressure at melting is from the uncertainty in the time at which melt
occurs.

includes the dynamic melting points and the predicted static melting point (blue
and orange circles) as well as the release path (red) and the power law fit (green).
The predicted static melting point agrees with the literature melt curve [57]. The
release path shows fluctuations in temperature, which were the cause of the error
bars in figure 4.23. These fluctuations were due to only 500 atoms being used in the
slice along the z direction.

The process was repeated with different shocked pressures in the range 150 to 200
GPa. This pressure range was used as the release paths from these points on the
Hugoniot cross the melt curve.
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Figure 4.25: For one example of shocked pressure, the melting points for each tamper
(blue circles) are shown. The fitted power law is green, and the static melting point
predicted from this is the orange circle. This lies on the literature melt curve (blue).
The longest release path (red), shows that all melting points and the extrapolated
static melting point lie on the same release path. This path starts at the shocked
pressure, which lies on the literature Hugoniot (orange).

4.6 Results

4.6.1 Predicted melt curve

The main result of this chapter is given in figure 4.26. All except one of the predicted
static melt temperatures, obtained by fitting power law equations to the dynamic
melting points, agree with the literature melt curve within the error margins.

Due to the melt being found on release, the melting points were limited to the
pressure range of 50 to 110 GPa. Below 50 GPa, the full range of release rates did
not cross the melt curve. Above 110 GPa, the initial shocked pressure was close
to the melt curve, so the upper limit was set to ensure that all melting came from
the release wave rather than the shock. This range is shown in figure 4.27. As
can be seen in this graph, while there is clear agreement with the literature melt
curve, the error bars are large, especially in pressure. These were calculated from
the uncertainty in fitting the power law function, as this was the dominant source of
error. For the two largest errors in pressure, the calculated static melting points are
close to the literature value, so this uncertainty may have been overestimated. By
comparison, the uncertainties in temperature and pressure at the time of melting,
shown in the error bars of figures 4.23 and 4.24, were an order of magnitude smaller.
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Figure 4.26: Predicted static melting points of Cu (blue) compared to the literature
melt curve (orange). The error bars are calculated from the uncertainty in fitting
the power law function to pressure and temperature, and are generally larger for
pressure. The calculated values for temperature and pressure correspond well with
the literature values [57].

The calculated melting points were fitted with a polynomial to form a melt curve in
figure 4.28. It is weighted by the uncertainty in each point and includes the ambient
melting temperature as the value at close to 0 GPa. Although individually these
melting points match the literature results, the fit through all of them becomes too
shallow at about 100 GPa, so could not be used to extrapolate the melt curve to
higher pressures.

Despite the limited pressure range and large error bars, the calculated static melting
points do reproduce the literature melt curve, unlike the dynamic results which had
large overshoots of up to 1000 K and 50 GPa at the highest cooling rates used, as
shown in figures 4.23 and 4.24.
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Figure 4.27: An enlarged section of figure 4.26 showing the relevant pressure range
of 40 to 120 GPa. Five of the six static melting points agree with the literature melt
curve within the error bars.

Figure 4.28: Fitting a polynomial (red line) to the obtained melting points (blue).
This is compared to the literature melt curve in orange. The fit is weighted by the
error bars in pressure and temperature, and the ambient melting point is also used
in the fit.
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4.6.2 The coexistence method

The melting points found using the coexistence method are shown in figure 4.29.
The error bars indicate the uncertainty as to whether the liquid region is staying
the same size over the length of the simulation. Running simulations for longer
and at more frequent intervals in temperature may reduce this uncertainty. This
graph shows that, for the pressure range of 10 to 100 GPa, the coexistence method
reproduces literature values within error. The potential used in this chapter must
therefore be valid, and the close agreement suggests that the literature data can be
accepted as the true value of melt temperature for comparison with the melt curve
obtained using the tamper method.

Figure 4.29: Melting points for Cu obtained using the coexistence method (red)
correspond to the literature melt temperature (blue) [57] within error, in the pressure
range 10 to 100 GPa.

4.7 Discussion

4.7.1 Predicted melting points

The literature melt curve for Cu is matched by the calculated static melting points,
with a 7% uncertainty in temperature. This was obtained over a 60 GPa pressure
range, a substantial part of the melt curve before the Hugoniot. Each point is
the result of about 8 dynamic simulations. Using different velocity seeds in the
LAMMPS script did not affect the results, and the error in determining onset
of melt was small compared with the uncertainty in fitting a power law to the
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melt temperatures and pressures against cooling rate. These fitting errors may be
overestimated, and there are potential methods for reducing them, by finding static
pressure using a different technique.

4.7.2 The power law fit

The large error bars for the calculated melting points, shown in figure 4.26, are due
to the uncertainty in fitting equation 4.12 to the dynamic melting pressures. It was
thought that this may have been because the assumption that the relationship for
temperature against cooling rate could also be used for pressure was incorrect. To
check, an exponential fit was applied to pressure against cooling rate, to see if this
gave a more precise fit to the literature melt curve than the power law. This is shown
in figure 4.30, where it can be seen that it did not lead to an improvement. Error
bars are similarly large, and the melting points are less accurate when compared to
the literature.

Figure 4.30: Testing an exponential fit to pressure against cooling rate, rather than
a power law. Some pressures remain similar, but one is much further from the
literature melt curve, and all except one of the error bars are larger.

A different approach was to use the power law fit for temperature only, and find
the pressure from the temperature-pressure release path. This reduced the pressure
error bars to about the same size as the uncertainty in temperature. The results
are shown in figure 4.31. Despite the slightly smaller error bars, the accuracy of the
melting points compared to the literature value is similar to that of the power law
method. However, it would not be possible to use this technique with experimental
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rather than computational data.

Figure 4.31: Comparison of the predicted melt points found by fitting temperature
and pressure (blue) and just temperature (red). The literature melt curve is in
orange.

An issue which exacerbates the problem of the large error bars is that only a
relatively small pressure range is available to study. This is due to the conditions
of melting on release; shocking in the range of 150 to 200 GPa for Cu corresponds
to the release path crossing the melt curve at 50 to 110 GPa. An option would be
to use multiple shocks to release from an off Hugoniot position, but this would be
experimentally challenging, limiting its use, and is beyond the scope of this thesis.

4.7.3 Experimental applications

Experiments using X-ray diffraction have previously been carried out to monitor
melt on release from a laser shock in dynamic conditions, but did not account
for kinetic effects [32]. In this chapter, simulations of different tamper materials
have allowed the release rate to be changed, making the static melt temperature
obtainable from a dynamic system by utilising the power law fit method. To repeat
this experimentally, the temperature and pressure of the melting point would need
to be found for several tampers from each shock pressure.

While there are limitations to this method at present, such as the large error bars
produced, and the restricted pressure range available from release off the Hugoniot,
it has the potential to open up a new laser shock technique, with the aim of finding
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static melt curves experimentally for materials which do not have a known equation
of state.

4.8 Conclusion

Using LAMMPS to model a shock and release experiment with multiple tampers
proved to be a successful method of obtaining the static melt curve for Cu, in the
pressure range 50 to 110 GPa, from dynamic data. The melt curve predicted agreed,
within error bars, with the literature melt curve and the coexistence method.

The tamper was modelled as a thin slice of material forming a wall which did not
interact with the bulk material and, when the shock wave reached it, moved at a
velocity determined by the tamper’s shock impedance in order to send a release
wave back through the bulk. Although most of the simulations were carried out
using artificial tampers to give a range of cooling rates, initially physical tamper
materials (Al, Sn, Si, Zn and Au) were tested to ensure that the tamper modelling
method produced the expected pressure on release. It was found to be accurate
within a 5% error. These metals were test materials: for a Cu target, a lower
impedance tamper, such as a polymer, would be required to give the appropriate
release pressure experimentally.

This novel method of modelling a tamper greatly reduces the computational cost,
as the full length of the tamper is not included, and means that a potential for the
tamper material is not required. It will therefore also have applications in other
research areas, as tampers are often neglected from MD simulations due to these
limitations [54].

As in Chapter 3, melting was defined using the centro symmetry parameter (CSP).
However, to account for the change in volume caused by the shock and release waves,
this was made to be dimensionless. The standard deviation of the CSP for a slice of
material, as well as its mean value, also gave ways of determining melt, as a result
of the distribution of CSP in solids and liquids.

The different tampers altered the cooling rate of the material on release, but did
not change the release path. The power law relationship between the rates of
temperature change and the dynamic melting points was fitted, for each shocked
pressure, and the static melting point obtained. This point also lay on the release
path and, within error bars in pressure and temperature, agreed with both the
literature melt curve and the coexistence method.
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The limitations of this method come from the large uncertainty in fitting the power
law relationship to pressure and the restricted pressure range of the melt curve
available on release. Together this means that, although the individual static melting
points lie on the literature melt curve within their error bars, they cannot be used
to accurately extrapolate to higher pressures. The pressure range was limited by
the release paths from the Hugoniot which cross the melt curve. If the method was
applied to materials other than Cu, or if an alternative compression path was used,
then the range would be different.

Experimental applications for this method could be designed based on existing laser
shock experiments, with an X-ray diffraction diagnostic to find the dynamic melting
points. Artificial tamper materials were used in the simulations, but physical tamper
materials could be found in order to carry this out.

The primary aim of this chapter was to develop a method for calculating the static
melt temperature on release from a shock, and this was achieved with an uncertainty
of about 7%. This means that dynamic temperatures obtained in a shock experiment
could now be used to predict a static result.
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Chapter 5

Conclusion

5.1 Motivation

The primary aim of this thesis was to investigate, using molecular dynamics (MD),
the effect of kinetics on the melt temperature, in order to produce a method for
determining the static melt temperature in dynamic situations. A model for con-
verting dynamic melt measurements into static values is needed because of the large
discrepancy in timescales for the rate of temperature change between high pressure
systems and the experimental methods of reaching them.

Additional benefits of the melt model created in Chapter 3 include a reduction in
the computational cost of finding the static melt temperature in MD by two orders
of magnitude when compared with the established coexistence method, along with
a means of accessing other kinetic variables, and of predicting the temperature of
melting for any given heating rate.

To link this melt model to dynamic experiments, a method of simulating the release
from a tamper was developed in Chapter 4. The tamper is often omitted from
MD simulations as conventionally it requires additional potentials and increases the
computational costs significantly, so this new method will have applications beyond
the one presented here.

5.2 Summary of methods and results

Two novel methods were produced in this thesis. The first was a numerical model
to fit to the z shaped temperature profile of a rapidly melting block of material, in
order to find the temperature at which melting began for a range of heating rates.
The second was a new approach to modelling a tamper to control the cooling rate
of the release wave, and from this predict the static melting point.
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5.2.1 Numerical melt model

In LAMMPS, thermal energy was added to a cube of material at a constant rate,
for a range of pressures and heating rates. The temperature profile was tracked and
the centro symmetry parameter (CSP) was used to find the onset of melting. The
rapid nature of the heating meant that equilibrium was not achieved, and so the
temperature profile formed a z shape.

Initial analysis focused on the peak and the trough of the z profile. They were
both found to increase with heating rate and were linear with pressure. A linear fit
was applied to the graph of trough temperature against heating rate, to estimate
the static melt temperature. This was about 5% lower than the literature value, but
had no physical basis as the melt temperatures did not converge at low heating rates.

To improve upon this estimate, a numerical melt model was developed to fit to
the z profile, and from that the static melt temperature at which melting began for
all heating rates could be found. At each time step, the temperature was increased
according to the LAMMPS heating rate. The amount of melt growth and nucleation
was calculated and used to adjust the volume of liquid present. The temperature
was then decreased due to loss of thermal energy through latent heat for any melting
occurring in that time step.

This method provided a good match to the MD data, despite using a simple melt
model. For high heating rates of 600-1200 K/ps, the static melt temperature found
using the model was accurate and constant with rate.

In the pressure range of 0 to 10 GPa, the literature Cu melt curve was reproduced
using the numerical model, with errors in temperature of about 1%, making this
method very successful at these pressures. It was also in agreement with the coexis-
tence method, which is an established technique for finding the melt temperature in
MD. For pressures of 20-30 GPa, the z profiles became too steep for the numerical
model to fit closely, and as a result the predicted static melt temperatures were less
accurate.

The simulations were also carried out using Ta, and were found to be just as reliable
over 0-10 GPa as Cu, when compared to the literature melt curve. Cu and Ta
are FCC and BCC metals respectively, which implies that the method would be
applicable for other simple metals.

The numerical model’s computational requirements were reduced by two orders of
magnitude, compared with the coexistence method. Additionally, the latent heat of
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fusion and specific heat capacity could be found from these simulations. However,
the most significant consequence of this method is that by accurately finding the
static melt temperature from dynamic melting, it could be applied to laser shock
experiments.

5.2.2 Modelling a tamper

The tamper was modelled in LAMMPS as a thin slice of material forming a wall
which did not interact with the bulk material. When the shock wave, caused by
a constant velocity piston, approached the tamper, it began to move; the time at
which it started was determined using the mean velocity in the pretamper regions.
The tamper velocity formed a step function when plotted against time.

The required tamper velocity was found using the established mirror image method
of plotting the pressure-particle velocity profiles for the bulk and tamper materials,
and reflecting the bulk profile about a given particle velocity to find the release
velocity at the intersection. This was carried out using profiles from the Rusbank
database [68], but could alternatively have been calculated from the constants S

and c0 which link particle and shock velocity.

Five physical tamper materials were investigated (with Cu as the bulk material)
at several shock velocities, to check that the tamper modelling method matched the
pressures on release which had been calculated using the shock impedances of the
tamper and bulk materials. All results fell within a 5% error. Subsequently artificial
tamper impedances were used to produce a range of release rates for analysis.

Melt was observed to occur in the bulk material after the passage of the release
wave, as the decrease in temperature and pressure caused the material to cross the
melt curve. The onset of melt was defined by examining the CSP, corrected to
account for the change in volume. Measurements were taken from thin slices of the
model, to increase precision and ensure melting was caused by the release wave,
rather than the initial shock wave.

For each shocked pressure, a power law relationship was fitted for the temperature or
pressure at melt with the rate of temperature change, to find the static melting point
extrapolated at a cooling rate of zero. The tampers all followed the same pressure-
temperature release path (but had different final positions along the curve), and the
static melting point obtained from fitting the power laws also lay on this path.

131



Simulations were carried out, using Cu as the bulk target material, to obtain static
melt temperatures at pressures between 50 and 110 GPa. This was the full pressure
range for which melt occurred on release. Within error bars (of around 7% in
temperature), these values agreed with the melt curves both from the literature and
formed using the coexistence method.

The largest source of error came from the uncertainty in fitting the power law
function to pressure. An alternative fitting function may be preferable, and this
could be the focus of any further work to improve the accuracy of the method.

5.3 Further work

The numerical melt model was successful in establishing the static melt tempera-
ture from dynamic measurements, but there is potential for including more kinetic
components in the model. This would improve the accuracy at higher pressures,
and mean it could be used to obtain additional information, such as energy barriers.

The numerical method could also be expanded to incorporate cooling. Cooling
temperature profiles lack the prominent z shape, but fitting a numerical model
to estimate the amount of melt may be possible. This would link directly to the
tamper model, and provide a further method of finding the static melting point from
dynamic simulations.

The power law equation used in Chapter 4 proved to be a good fit for temperature
against cooling rate, but caused large uncertainties for pressure. This was the
greatest source of error in the method, so other attempts at optimisation would be
negligible without addressing this first, possibly by using an alternative relationship.
Within this thesis, an exponential fit was tried with no improvement, and while
finding the pressure from the temperature did reduce the error, it does not have an
experimental equivalent.

The range of pressures available for release after a shock is limited by the position
of the Hugoniot relative to the release pathway and the melt curve. Compressing
to a different point of pressure and temperature would allow more of the melt curve
to be explored. This could be achieved using multiple shocks or a ramped shock
to reach a compression state off the Hugoniot, but it would be difficult to do this
experimentally and still have the desired release response from the tamper.

For both methods developed, further test materials should be used, as only Cu and
Ta have been studied so far. Before carrying out a shock and release experiment,
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target materials could be investigated which would have the maximum amount
of melt curve accessible by release from the Hugoniot, to fully utilise the tamper
method. Further optimisation would also be achieved if a suitable high impedance
bulk metal could be found, as that would give a greater range of release rates
available from the tampers.

5.4 Experimental applications

High power lasers are used for shock compression, and may produce melt either
during the shock, or on release. The heating rate of the shock is determined by the
laser parameters, and cooling rate can be altered by the choice of tamper material.
As has been shown in this thesis, carrying out dynamic experiments at a range of
rates gives melting points from which the static melt curve of the target material
can be calculated.

Artificial tampers were modelled in Chapter 4, but physical materials could be used
with the same effect. The ideal tamper materials would depend on the bulk target.
For Cu, low impedance materials such as polymers or certain metals (for example
Al) would ensure the release wave crossed the melt curve; if a higher impedance
target was chosen then more metals would be suitable options for the tamper.

The onset of melt can be determined by X-ray diffraction (as the liquid diffraction
signal is broader and of lower intensity than a solid signal), and as the position of
the diffraction peaks gives the strain, the temperature and pressure can be inferred.
X-ray diffraction has been used previously to find melt on release [32], but without
applying different rates of temperature change to check for kinetic effects affecting
the position of the melt curve. The proposed experiment would be repeated with
different tamper materials, to utilise a range of release rates and thus allow the static
melt curve to be generated.

Two laser beams are needed to do this: one to drive the shock, and the other to
produce X-rays. X-ray Free Electron Lasers (XFELs), for example LCLS, have pre-
viously been required to image liquid diffraction, due to its low intensity compared
with crystal diffraction. However new imaging techniques, such as Single Photon
Energy Dispersive X-ray Diffraction (SPEDX) [69], can detect lower intensity sig-
nals, making them a feasible diagnostic for experiments carried out in UK laser
facilities (e.g. Gemini at the Rutherford Appleton Laboratory) without an XFEL,
if integrated over several shots.
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One difficulty of applying this method experimentally is obtaining independent
pressure and temperature measurements. Diffraction finds the spacing between
atoms, so gives density. From density, for points on a known Hugoniot, pressure
and temperature can be calculated. Away from the Hugoniot, or when the material
does not have a known equation of state, another method for determining pressure
and temperature is needed. VISAR (Velocity Interferometry System for Any Re-
flector) could be used to calculate pressure, but temperature is harder to measure
independently. With several diffraction peaks visible, the relative intensities of the
peaks are affected by the Debye-Waller effect, in theory meaning temperature could
be extracted directly from XRD. In practice, this method would be imprecise because
of the large error in the Debye temperature and uncertainties in intensity caused by
texture of the target. Other alternatives include Extended X-ray Absorption Fine
Structure (EXAFS), Streaked Optical Pyrometry (SOP), Raman Scattering and
Neutron Resonance Spectroscopy (NRS). However, all of these methods have limited
applications (due to requiring transparent materials or certain pressure ranges) or
large errors.

In addition to a melt on release experiment, the novel impedance method of mod-
elling tampers could be applied to other research areas. Previous experiments using
tampers have shown a discrepancy between experimental and modelled results, as
the tamper has been omitted from simulations due to difficulties which this method
would overcome [54].

5.5 Conclusion

This thesis has investigated MD simulations for dynamic melting. In doing so, two
techniques have been developed: a numerical model to track melt at high heating
rates and a method for modelling a tamper in MD. Combined, these show how laser
shock and release experiments could be carried out in order to obtain static melt
curves at high pressures.

The tamper method also has wider applications, as it allows release to be modelled
accurately, without the need for a potential of the tamper material. Both methods
have the additional advantage of significantly reducing the computational cost of
the MD simulations, compared with established techniques.
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