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Abstract

Machine learning (ML) is becoming more widely used in many different sectors, in-

cluding automotive, aviation and healthcare. ML has a great potential to change society

and to improve peoples’ lives. However, the prospect of ML also poses many challenges;

one of the biggest challenges is safety. Thus, there are two important questions that

require urgent answers: (1) Are well-established safety engineering methods still appropri-

ate and effective in assuring the safety of ML in some representative healthcare scenarios?

(2) Are there new opportunities for well-established safety engineering methods with the

development of ML and why are they specifically good for safety in this domain?

In this thesis, the first question is explored from the viewpoint of designing ML models.

The second question is explored from two perspectives: explanaibility of ML models in

support of safety assurance; and using ML to update safety analysis. Both these questions

are addressed in the context of healthcare. In other words, this thesis investigates how

ML can be embraced in the safety assurance of healthcare applications.

Through exploration of three concrete clinical case studies, the thesis demonstrates

that well-established safety engineering methods can be applied to ML systems to integrate

safety into their design process in healthcare. It further identifies different ways in which

ML can assist well-established safety engineering methods, and concludes that there are

many opportunities for greater synergy between ML and safety engineering in healthcare

and, potentially, in other domains.
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Chapter 1

Introduction

Machine Learning (ML) incorporates a family of methods that enable computer systems

to derive general capabilities from training data, hence they can be applied in situations

beyond their initial training dataset. The power of modern ML methods means that their

applications are very varied, including autonomous driving and medical image analysis.

There is a growing interest in the use of ML in healthcare due to the complexity of

the problems faced by clinicians and the availability of data on which to train systems.

There is evidence that ML-based systems can undertake some tasks more effectively than

humans [1] and this leads to a desire to migrate such systems from research into clinical

practice, thus contributing to patient safety. However, it is also necessary to show that the

systems do not adversely impact safety, which is the classical role of safety engineering.

This thesis explores the ways in which ML and safety engineering can be combined

to provide benefits in healthcare. It is hoped that this work will help to enable the safe

introduction of ML into clinical practice.

1.1 Context

ML is a branch of Artificial Intelligence (AI) based on the idea that systems can learn

from data, identify patterns and make decisions with minimal human intervention. It is

born from pattern recognition and the theory that computers can learn without being

programmed to preform specific tasks. Alpaydin [2] describes ML as “optimising a perfor-

mance criterion using example data and past experience”. Unlike traditional methods of

software development, ML is capable of analysing high-dimensional data, identifying and

exploring unknown patterns in data, so it has wide applicability.

1



Chapter 1: Introduction

ML is a natural outgrowth of the intersection of computer science and statistics, in-

volving the underlying theories and techniques from both fields. From computer science,

it exploits the key ideas of using efficient algorithms for optimisation, model representa-

tion, and performance evaluation. From statistics, it inherits the basic concept of learning

and inferring the statistical properties of a given dataset. However, computer science has

focused primarily on how to program computers manually, whereas ML focuses on the

question of how to get computers to “program themselves”. Statistics has focused primar-

ily on what conclusions can be inferred from data, whereas ML incorporates additional

questions about what computational architectures and algorithms can be used to most

effectively capture, store, index, retrieve and merge the data, how multiple learning sub-

tasks can be orchestrated in a larger system, and questions of computational tractability [3]

to ensure the utility of the resultant systems.

Safety engineering is an established discipline, having its roots in the space and nuclear

industries in the mid 1900s. Safety engineering focuses on hazards – situations which, if

not controlled, could lead to harm, e.g. injury or loss of life. Loss of brakes on a car

and delivering drugs at an incorrect rate are both examples of hazards. A key aspect of

safety engineering is safety assurance which aims to influence the design of the system

(“design for safety”) and/or to provide evidence of its safety both pre-deployment and

post-deployment (“demonstrate safety”).

There are many safety engineering methods. Some are exploratory, asking “what if?”

questions; these tend to be used to identify hazards. For example, asking “what if drug

X was delivered at too high a rate?” might get the response “it could lead to atrial

fibrillation”. Deductive methods are used to investigate potential causes of hazards, e.g.

“incorrect entry of delivery rate on the infusion pump” or “infusion pump motor runs

over-speed”, in the example above. Deductive methods are complemented with inductive

methods which identify effects of the hazards or the causal chain from low-level problems,

e.g. “line from infusion pump to patient blocked” to hazards. Deductive and inductive

methods are complementary; inductive methods can confirm the results of deductive anal-

ysis but also identify problems (including hazards) missed by deductive analysis. One of

the most common deductive methods is Fault-Tree Analysis (FTA) [4] which builds cause-

effect models of system component failure. Failure Modes and Effects Analysis (FMEA) [5]

is probably the most commonly used inductive method and is typically used to explore

the impact of component failures on the wider system. Event Tree Analysis (ETA) [6] is

2



1.1 Context

an inductive method often used to explore the consequences of hazards.

Many safety engineering methods have been adapted to apply to software or software-

intensive systems. The exploratory methods are of most interest in this thesis. A well-

known exploratory method is Hazard and Operability Analysis (HAZOP) [7] initially

developed in the chemical industry. HAZOP and its derivatives analyse flows in the

system using guidewords to prompt analysis of possible deviations from intent. One of the

adaptations of HAZOP to software, known as Software Hazard Analysis and Resolution

in Design (SHARD) [8], considers deviations including omission (flow not provided when

intended), commission, early/late and incorrect value. As well as considering the potential

impact of these deviations, the methods also consider whether or not the deviations are

credible (can occur in the system design). If they are credible and undesirable (potentially

hazardous), then ways are identified to make the deviation less likely to occur or to mitigate

its effects if it does arise; these controls are often seen as means to satisfy Derived Safety

Requirements (DSRs). This helps to design for safety.

A range of methods are used to provide evidence of safety, including the use of inductive

methods. For example, FMEA might be used to show that no single point of failure gives

rise to a hazard. More generally, tests and other forms of analysis are used to show that the

DSRs are met. In many industries, the results of the analyses and tests are drawn together

into a safety case, which is a “structured argument, supported by evidence, that a system

is safe to use in a given context” [9]. Safety arguments are often presented graphically and

provide the rationale that explains why the evidence is sufficient to show that applicable

safety requirements are met. In industries where there are formal regulatory schemes it is

quite common to require a safety case in support of regulatory approval, see for example

the Federal Drug Administration (FDA) regulations on infusion pumps [10].

Safety cases are typically prepared pre-deployment but safety engineering does not

stop when a system starts operation. Rather, safety engineering includes monitoring of

system operation to provide ongoing assurance of safety or to identify problems that need

to be rectified.

The same safety engineering and assurance principles apply when the systems employ

ML but, as we shall see in this thesis, some adaptation is needed to deal with the particular

characteristics of ML-based systems.

Healthcare can be viewed as “the organised provision of medical care to individuals

or a community”. Archaeological records show that medicine has a long history, for

3



Chapter 1: Introduction

example surgery being carried out on fractured bones in Iron Age Britain [11]. However,

healthcare, as we now know it, has more recent origins. The “organised provision” was

in part driven by concerns for patient safety and included the licensing of practitioners.

Licensing started around 500 years ago in the United Kingdom (UK) and the rules and

standards have evolved over time. More recently, there has been a broadening of safety

concerns beyond licensing of practitioners to include:

• Patient safety – the absence of preventable harm to a patient during the process of

healthcare and reduction of risk of unnecessary harm associated with healthcare to

an acceptable minimum [12];

• Medication safety – use of medicines to achieve the desired outcomes and improv-

ing quality of life, while minimising risks of accidental injury due to errors in the

medication process [13];

• Safety of medical devices – designing and manufacturing devices so that, when used

as intended they will not compromise the safety of patients [14].

Of course, nowadays, many medical devices contain software and some stand-alone

software applications (apps), e.g. on-line triage systems, are now available. This has led

the regulatory community to address the safety of Software as a Medical Device (SaMD)

[15].

In the last few years there has been a growing interest in developing SaMD using ML

and a number of ML-based SaMD are now available for clinical use [16]. The regulatory

community is now addressing the safety of ML-based SaMD, see Chapter 2 for a discussion,

but there remain many research questions which are made all the more challenging by the

fact that the field is evolving so fast. This growing interest in the use of ML in healthcare

and the importance of assuring safety of patients provides the context for the research

presented in this thesis.

1.2 Research Questions and Contributions

There is now a nexus between healthcare, ML and safety engineering and this gives rise to

two important questions: (1) Are well-established safety engineering methods still appropri-

ate and effective in assuring the safety of ML in some representative healthcare scenarios?

(2) Are there new opportunities for well-established safety engineering methods with the

4



1.3 Structure of the Thesis

development of ML and why are they specifically good for safety in this domain? Due to

the rate of development of ML-based SaMD and the potential benefit from deploying such

systems, these questions require urgent answers in the healthcare context.

This thesis explores these questions, for example identifying safety challenges posed

by ML from a general and a regulatory perspective. The thesis then presents technical

solutions which go some way towards answering those questions. More specifically, the

contribution of this thesis is three-fold:

1. Showed how to use well-established safety engineering methods to proactively in-

corporate patient safety in the design of ML, supported by a clinical case study

employing Reinforcement Learning (RL) to aid sepsis treatment. This addresses

question 1.

2. Demonstrated how explainability can help to improve the safety assurance of ML,

supported by a clinical case study employing Convolutional Neural Networks (CNNs)

to determine when to wean a patient from mechanical ventilation. Given the de-

mand for mechanical ventilators during the COVID-19 pandemic, this is especially

important and timely. This addresses question 2.

3. Demonstrated how to use ML to update and enhance well-established safety en-

gineering methods, supported by a clinical case study employing Bayesian Net-

work (BN) structure learning to understand the correlations of different factors con-

cerning the delivery of Beta-Blockers (BBs). This also addresses question 2 but from

a different perspective.

1.3 Structure of the Thesis

The rest of the thesis is structured so as to highlight the three major contributions. Chap-

ter 2 provides background on healthcare, ML, safety assurance and the regulatory frame-

work for safety related systems in healthcare, setting the context for the case studies in

Chapters 4 to 6. The healthcare issues, ML methods and safety methods used in the three

case studies are quite different, so additional background and a survey of the relevant lit-

erature is provided in each of these three chapters to make them self-contained. Chapter 3

presents an overview to illustrate the different emphases of these three contributions and

to show how they relate to each other.
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Chapter 1: Introduction

Chapter 4 presents a case study which shows how well-established safety engineering

methods can be adapted and applied to an ML-based system which uses RL to make

recommendations for sepsis treatment. At a more detailed level, this chapter shows the

use of an exploratory safety engineering method, SHARD, to identify hazards and hazard

causes, including those relating to ML, and how DSRs can be produced so that they can

be used to influence the ML learning process. It also illustrates the roles of different risk

mitigation methods in overall system safety and culminates with the presentation of a

safety case. Thus, this chapter addresses question 1.

Chapters 5 and 6 provide complementary answers to question 2, with Chapter 5 focus-

ing on the use of explainability to support safety assurance and Chapter 6 showing how

ML can be used to update and enhance safety analysis.

Chapter 5 uses CNNs to make predictions about patients’ readiness for weaning from

mechanical ventilation. It shows three uses of explainable AI methods in support of

safety assurance. First, it uses influential instances to determine the right training dataset

for the problem concerned. Second, it uses feature importance to show the validity of

the learnt model and support the clinical decision making in operation. Third, it uses

counterfactual explanations both to provide assurance about model robustness and to

make the predictions more actionable in operation.

Chapter 6 considers the use of ML to validate and refine the results of safety engi-

neering methods. The case study concerns clinical practice for medication management,

specifically the delivery of BBs following thoracic surgery. It presents a safety analysis of

the clinical practice identifying potential causes of hazardous effects on patients, such as

Atrial Fibrillation (AF). It then employs ML methods, specifically BN structure learn-

ing, on data generated from the clinical practice to identify the actual causes. For the

most part, this confirmed the exploratory analysis, i.e. SHARD, but also identified some

important differences, which are used to update the safety analysis.

The case study in Chapter 5 is primarily a patient safety issue, whereas the other two

case studies, in Chapter 4 and 6, illustrate medication safety (as well as patient safety)

issues. The case study in Chapter 4 also directly illustrates the issues of safety of ML-based

SaMD. Thus the three case studies contribute to answering the two research questions from

different and complementary perspectives. Chapter 7 reflects on the results of this work

as a whole, identifies areas for future work, and presents overall conclusions.
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Chapter 2

Background & Literature Review

Part of this chapter is based on my previous publications [17] [18]. This chapter first

gives a broad overview of ML, safety engineering and healthcare to set the context for

the rest of this thesis. Then it provides a literature review on assuring AI/ML-based

medical devices in healthcare, mainly from a regulatory perspective. This is particularly

relevant because AI/ML-based systems used in healthcare are currently mainly regulated

as medical devices and the safety engineering discipline both influences the way regulators

assure safety and, in turn, is influenced by regulators. The literature review presented in

this chapter provides a deeper understanding of the challenges posed to regulators by the

emergence of ML and how the different legislative frameworks respond to the challenges.

This highlights the importance and the value of conducting this work, specifically with

the two research questions outlined in Chapter 1.

For ease of presentation, the rest of chapters are largely self contained with a focus

on one specific research question in each chapter. Therefore, the details of the particular

healthcare concern, the related work, the specific ML methods and the safety engineering

methods used are introduced in the each individual chapter.

2.1 Machine Learning

This section introduces the basic concepts of ML and gives an overview of the different

categories of ML methods. This will give the basis for understanding the specific ML

methods used in the later chapters. More details on the specific ML methods used for the

three case studies are presented in Chapters 4 to 6.
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Chapter 2: Background & Literature Review

2.1.1 Basic Concepts of Machine Learning

In ML, data plays an indispensable role, and learning algorithms are used to discover and

learn knowledge or properties from the data without relying on rule-based programming.

The quality and quantity of the dataset have a fundamental effect on the learning and

prediction performance. There are two general dataset types:

• Unlabelled dataset D: X = {x(n) ∈ Rd}Nn=1

• Labelled dataset D: X = {x(n) ∈ Rd}Nn=1, Y = {y(n) ∈ R}Nn=1

Where X denotes the feature set containing N samples. Each sample is a d-dimensional

vector x(n) = [x
(n)
1 , x

(n)
2 , ......, x

(n)
d ]T and called a feature vector or feature sample, while

each dimension of a vector is called an attribute, feature, variable or element. Y stands

for the label set, recording what label a feature vector corresponds to. Another form of

labelled dataset is described as {x(n) ∈ Rd, y(n) ∈ R}Nn=1, where each {x(n), y(n)} is called

a data pair.

Given a sample spaceX and a label space Y , there exists some target function y = f(x),

so that for any x ∈ X, this function outputs the correct y in the label space. In ML, we

want to find a function g(x) that is as close as possible to f(x) when we don’t know what

f is. The dataset used to learn the function g(x) is called the training set (training

data). The dataset reserved for testing the performance of g(x) is called test set (test

data) [19].

2.1.2 Categories of Machine Learning

Based on the given dataset and the problem being addressed, there are generally three

types of ML, (1) supervised learning, (2) unsupervised learning, and (3) RL. It is worth

mentioning that in this thesis, the ML methods we used are supervised learning and RL,

unsupervised learning is out of the scope of this thesis.

• Supervised learning: the training set given for supervised learning is the labelled

dataset. Supervised learning tries to find the relationships between the feature set

and the label set, which is the knowledge and properties we can learn from labelled

dataset. If each feature vector x corresponds to a label y ∈ L,L = {l1, l2, ......, lc}

(where c usually ranges from 2 to a hundred), the learning problem is denoted as

classification. On the other hand, if each feature vector x is corresponding to a real
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2.1 Machine Learning

value y ∈ R, the learning problem is defined as regression problem. The knowledge

extracted from supervised learning is often utilized for prediction and recognition.

• Unsupervised learning: the training set given for unsupervised learning is the

unlabelled dataset. Unsupervised learning doesn’t figure out the “right answer”

based on the input data, but it explores the data and can draw inferences from the

dataset to describe hidden structures from unlabelled data. Unsupervised learning

is also used for clustering [20], probability density estimation, finding association

among features, and dimensionality reduction [21]. In general, an unsupervised

algorithm may simultaneously learn more than one of the properties listed above,

and the results from unsupervised learning could further be used for supervised

learning.

• Reinforcement learning [22]: RL is a learning method that interacts with its

environment by producing actions and discovering errors or receiving rewards. Trial

and error search and delayed reward are the most relevant characteristics of RL. In

this type of learning, there are three primary components: the agent (the learner or

decision-maker), the environment (everything the agent interacts with) and actions

(what the agent can do). The environment gives the agent a state st. Next, the agent

takes an action at. Then the environment gives back a reward rt, as well as the next

state st+1. This loop continues until the environment gives back a terminal state,

which ends the episode. The objective is for the agent to automatically determine

the ideal behaviour within a specific context in order to maximise its performance.

Reward feedback is required for the agent to learn which action is best; this is known

as the reinforcement signal. The agent will reach the goal much faster by following

a good policy.

2.1.3 Key Elements of Machine Learning

No matter what type of ML is chosen (supervised, unsupervised, reinforcement), ML could

be considered to consist of a combination of three components [23]. The components are:

• Representation. From a practical standpoint, a key step in the development of a

ML system is how to represent the knowledge. Conversely, choosing a representation

for a learner is akin to choosing the set of all possible hypotheses it can possibly

learn. This set is called the hypothesis space or hypothesis set H, which contains

9
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several hypotheses h (a mapping function or distribution). The goal of the learning

is to find the best h, called the final hypothesis, approximating the target function.

For example, neural networks form one type of representation, as do decision trees,

probabilistic graphical models and support vector machines.

• Evaluation. Evaluation is essentially the way to “score” candidate hypotheses. An

evaluation function, also called an objective function, utility function, loss func-

tion, scoring function or fitness function in some contexts, is needed to distinguish

one hypothesis h from another. Mean squared error or likelihood are examples of

different evaluation functions that will imply somewhat different preference in the

hypothesis space.

• Optimisation. Finally, optimisation is the way to search the hypothesis space to

obtain the highest-scoring one, i.e. the final hypothesis, which either minimises or

maximises the objective function. The choice of optimisation techniques is key to

the efficiency of the learning process. For example, stochastic gradient descent and

greedy search are two different ways of optimising a model class. Note that once

a model has been trained, it may not be possible to recover exactly how it was

optimised.

Based on these concepts, a simple illustration of ML is shown in Figure 2.1.

Figure 2.1: A simple illustration of Machine Learning

2.1.4 Approaches to Machine Learning

This section introduces some of the important and popular approaches to ML. These are

summarised in Table 2.1 with a brief description of each approach.

Table 2.1: Approaches to ML
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Model Description

Neural Network [24]

A Neural Network (NN) is a non-linear network of neu-

rons inspired by the human brain. It is configured for

applications such as pattern recognition and data classi-

fication through a learning process. The learning process

involves adaptive adjustments to the connections between

the neurons. Typically, there are three different layers in

an NN, including an input layer, hidden layers, and an

output layer.

1. Input layer: all the inputs are fed in the model

through this layer.

2. Hidden layers: there can be more than one hidden

layer which are used for processing the inputs re-

ceived from the input layers.

3. Output layer: the data after processing is made

available at the output layer.

The representations used by NNs are generally opaque

to humans, therefore are useful only in the context of

learning from input data and can’t be integrated with

domain knowledge. The learning algorithm for a neural

network can either be supervised or unsupervised.
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Random Forest [25]

A Random Forest (RF) aggregates thousands of decision

trees. Each decision tree in the forest considers a random

subset of features in the training dataset. This increases

diversity in the forest, which leads to more robust overall

predictions. By identifying the most important predic-

tors of an outcome, a random forest would have a better

performance than a decision tree. In addition, it also cor-

rects for overfitting that can occur with a single decision

tree. The random forest algorithm is often supervised

learning.

Support Vector Ma-

chine [26]

A Support Vector Machine (SVM) is a discriminative

classifier formally defined by a separating hyperplane. In

other words, given a labelled training set, the algorithm

outputs an optimal hyperplane, which categorizes new

examples. In two-dimensional space this hyperplane is

either a straight line or non-linear boundary dividing a

plane into two parts where each class lies in either side. A

non-linear boundary can be defined using kernels. SVM

are a supervised learning method.

Probabilistic Graphical

Model [27]

Probabilistic Graphical Models (PGMs) represent com-

plex domains using probability distributions. The graph-

ical models bring together graph theory and probability

theory, and provide a flexible way for modelling large col-

lections of random variables with complex interactions.

The nodes (or ovals) correspond to the variables in the

domain, and the edges correspond to direct probabilistic

interactions between them. Therefore, a graphical model

is understandable by humans and domain knowledge can

more readily be integrated than with NNs. Markov net-

works and BNs are the most common form of PGMs.

There are both supervised and unsupervised uses of the

algorithms.
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2.1.5 Performance Metrics for ML Models

It is important to evaluate the performance of ML models. This can help in choosing

amongst the many different types of ML model to find the one that is best suited to a

given problem. Here we introduce some of the more commonly used metrics: accuracy,

precision, recall, F1 score, as well as the AUC-ROC performance measure, which plots true

positives against false positives. This is the generally accepted set of evaluation metrics

for deep learning.

The accuracy of a model is calculated as the ratio of the number of correct predictions

to the total number of predictions. Formally:

Accuracy =
TP + TN

TP + FP + TN + FN

where, TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False

Negatives in the predictions. Similarly, specificity is given by:

Specificity =
TN

TN + FP

and can be interpreted as the true negative rate. Further, precision is given by:

Precision =
TP

TP + FP

and can be interpreted as the proportion of the positive predictions that were correct.

Recall is given by:

Recall =
TP

TP + FN

and can be interpreted as the true positive rate (i.e. the number of true positives divided

by the total number of elements that actually belong to the positive class). A model can

have a high precision or recall and do badly on the other metric. An F1 score takes both

scores into account so as to better evaluate the model’s performance. It is given by:

F1-Score = 2× Precision×Recall

Precision+Recall

The Receiver Operating Characteristic Curve (ROC) curve demonstrates the model’s abil-

ity to provide predictions at various decision thresholds. It assesses how well a model can

distinguish between the classes and is a plot of the True Positive Rate (TPR) of a model

against its False Positive Rate (FPR). The Area Under the Curve (AUC) denotes the

probability of the classifier ranking a random positive sample in the data higher than a

random negative sample. For a “random” model the AUC-ROC would be 0.5 and for a

“perfect” model it would be 1. Section 5.4.4 illustrates the use of the ROC and presents

a comparison of a set of ML models using AUC-ROC in Figure 5.4.
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2.2 Safety Engineering and Safety Cases

This section covers both safety engineering methods and safety cases. As indicated in

Chapter 1, safety engineering originated around 70 years ago motivated by perceived risks

in space flight and nuclear power. In practice, many advances in safety engineering have

been prompted by major accidents and incidents and the excellent safety record in some

domains is the result of effective processes of learning from incidents and accidents. There

are many safety engineering methods, and this chapter illustrates some of the more widely

used methods, including introducing SHARD which is used in two of the case studies.

The concept of Safety Cases originated from Lord Cullen’s report [28] into the accident

on the Piper Alpha platform in 1988. The Offshore Installations (Safety Case) Regulations

came into force in 1992, requiring safety cases for all installations. Since then, safety cases

have become widely used for justification of system safety in many other domains such as

aviation and nuclear power. Recently safety cases have been increasingly introduced into

healthcare. The term “assurance case” is also often used as a generalisation of the safety

case concept. In this thesis, the focus is on safety cases, but the term assurance case will

be used where appropriate, e.g. to be consistent with the literature.

2.2.1 Safety Engineering Methods

Healthcare is often encouraged to consider practices in other safety-critical industries,

e.g. aviation, which adopt systematic safety analysis to support safety management see,

for example [29]. We identify the key principles of safety engineering as interpreted in

healthcare, then introduce one of the methods from well-established safety engineering

which we use in our case studies.

First, and most fundamental, is the need for hazard and risk analysis. A hazard is a

defined as a “potential source of harm” in ISO 14971 [30] which is recognised both by the

FDA and in Europe (where it is referred to as EN ISO 14971). It is necessary to identify

hazards in normal operation, under fault conditions and arising from human error. Risk is

normally considered as the combination of the severity and likelihood of harm arising from

the hazard. Some definitions of risk in healthcare also include duration of harm, but we

view this as one element to assess severity [31]. ISO 14971 defines processes for hazard and

risk analysis for medical devices, and guidance is provided in ISO/TR 24971 [32]. Results

of hazard and risk analysis should be used to inform design, e.g. to prompt redesign to

eliminate hazards or to minimise risk associated with the hazards. There is also a need to
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ensure that design changes do not introduce new hazards.

As well as the guidance in ISO/TR 24971, there are methods from well-established

safety engineering which are relevant to healthcare. For example, checklists can be used

where a new system is similar to older ones (this may be relevant when clearing systems

through the 510(k) pathway, see Section 2.4). There are also flow-based methods, for

example HAZOP [7] from the chemical industry. All of these methods have relevance in

healthcare, but variants of HAZOP are potentially most relevant for SaMD as the focus

is on functions and information flow.

Hazard and safety analysis of computer-based systems often use variants of HAZOP

that consider information flows through systems, e.g. SHARD [8]. SHARD is suitable

for identifying both hazards and causes of hazards as it focuses on deviations from intent

that could be hazardous. One advantage of the method is that it can be applied to any

form of information flow so it can not only be used on computer-based systems, but also

on clinical workflows. It provides a structured approach to the identification of deviations

from intent by systematically applying the guidewords (omission, commission, early, late

and incorrect) to each flow:

• Omission – no flow provided when intended;

• Commission – flow provided when not intended;

• Incorrect – wrong information;

• Early – flow is earlier than intended;

• Late – flow is later than intended.

The application of the guidewords requires judgement. For example, commission is not

meaningful for a flow that is provided continuously. We have shown how to use SHARD

on a clinical workflow in Chapter 6, where we first developed a decision-making model

concerning the delivery of beta-blockers for patients undergoing thoracic surgery who are

at risk of atrial fibrillation, then applied SHARD on the decision model and the results

were recorded in Table 6.1. Once hazards have been identified they can be assessed for

severity, using clinical knowledge. We introduce the World Health Organisation (WHO)

categories for risk severity in Section 2.3.2 and show how they might be interpreted in the

context of medication safety in Section 2.3.3.
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Analysis methods such as FTA and FMEA mentioned in the introduction are often

used to evaluate the likelihood of the hazard occurring. This information can be combined

with the severity determined in hazard analysis to enable risk to be determined. The use

of safety engineering methods informs the development of the safety case and provides

some of the evidence.

2.2.2 Development of Safety Cases

Early safety cases, e.g. those developed in response to the Offshore Installations (Safety

Case) Regulations, were complex and often multi-volume textual documents that could

be very hard to understand and to maintain. Work to address these problems led to

development of tools, e.g. the Safety Argument Manager (SAM) toolset [33] and definition

of a systematic approach to safety case construction [34]. This work resulted in a clear

definition of the concept: “A Safety Case is a structured argument, supported by a body of

evidence that provides a compelling, comprehensible and valid case that a system is safe

for a given application in a given operating environment.”, which is now widely adopted.

2.2.2.1 Arguments

The term “argument” is used in the safety case context to mean the rationale or reasons for

believing something, not a dialogue that presents point and counter-point. In this thesis

we use Goal Structuring Notation (GSN) for structuring and presenting safety arguments

in a graphical manner, although there are other argument notations such as Claims Ar-

gument Evidence (CAE) [35]. GSN is based on work on the structure of natural language

arguments [36], but it was simplified in order to make it easy to use, resulting in four key

concepts: Goals, Strategies, Context, Solutions. The legend showing these elements of the

notation is presented in Figure 2.2.

• Goals – these elements represent the claims that we wish to make and support, which

are shown as rectangles in Figure 2.2. Normally a safety case has a top-level goal

which is concerned with safety of a particular system in its context of use. Goals can

be broken down into sub-goals until the goals can be proved (see Solutions below);

• Strategies – these explain the reason/rationale for decomposing goals into sub-goals

where this is not obvious. This is represented as a rhombus in Figure 2.2;

• Context – these elements help to constrain goals or strategies. For example, the
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operating environment for the system, which gives the context for the system itself.

This is represented as a stadium in Figure 2.2;

• Solutions – these elements represent evidence that support or prove the leaf goals in

the GSN, which are represented as a circle in Figure 2.2;

• Supported by – these represent the main argument flow from top goal through sub-

goals and strategies to solutions, which are represented as solid-headed arrows in

Figure 2.2;

• In context of – these represent the links from the main argument flow to contextual

elements, which are represented as open-headed arrows in Figure 2.2;

• To be developed – these annotations indicate that part of the argument is yet to

be developed, i.e. it is deferred for now, which is represented by a diamond under

another argument element (usually a goal) in Figure 2.2.

If satisfactory solutions can be provided for each leaf goal, then the top-level goal and

all the intermediate goals are proven within the constraints or assumptions provided by

the contextual elements.

Figure 2.2: Goal Structuring Notation Legend

The main benefit of using GSN is that the argument structure is much more explicit

and visible than in a textual safety case. In practice, safety cases are often large collections

of documents, but an effective (GSN) argument can help in navigating the information.

Figure 4.10 gives an example of how to present a safety argument using GSN. The top goal

in Figure 4.10 concerns the safe delivery of intravenous fluid and vasopressor medications

for sepsis treatment and the strategies include arguing over the hazards identified for the

delivery of these two medications in the context of clinical practice for treating sepsis.
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2.2.2.2 Evidence

What kind of evidence is needed to prove the leaf goals will depend on the technology

used in the system and the system properties of concern. In practice, it is common to

provide evidence that all hazard-related risks are mitigated to an acceptable level. Thus

evidence will come from the use of safety engineering methods, such as FTA which allows

the likelihood of the hazard occurring and hence the risk to be estimated.

For most systems, the safety case will also contain evidence drawn from testing. Testing

is often focused on showing that the system works as intended. This has a role in a safety

case, but more importantly, tests can provide evidence about the absence of hazardous

behaviour. Therefore, tests may need to be focused on abnormal situations, such as

overload of a computer system, to show that it “fails safely” under such conditions. For

software-intensive systems, the required evidence is often determined by the standards

in the domain, such as IEC 62304 for medical devices [37]. There are many different

standards, but there is little agreement on what is appropriate evidence [38].

2.2.3 Safety Case Limitations

There have been some criticisms of safety cases. Wassyng et al [39] have produced quite

a philosophical review of safety cases; their focus is on software, but the ideas seem much

wider. They make comparisons between safety cases and the established disciplines, e.g.

civil engineering, saying that: “the safety case approach lacks the highly prescriptive and

domain specific nature that can be seen in other engineering disciplines”. However, when

the safety case is used for a system, it would be sensible to keep the relevant prescription

or standards for the normal design of the system and leaving the flexibility of goal-based

approaches for radical design where such standards are not available. Therefore it seems

appropriate to use goal-based approaches for AI/ML based SaMD as such standards are

not yet available.

Leveson has stated that a key flaw of safety cases is that they are prone to confirmation

bias [40], i.e. tend to emphasise the evidence that supports the safety claims, and overlook

contradictory evidence. This is valid, and is consistent with the idea that safety cases

present a rationale, not point and counter-point. However, it can be seem to reinforce the

need for effective safety cases rather than undermining the safety case concept.

Another concern is that safety cases are often “static”, i.e. not updated once the

system is put into service. This means that if a system is updated then the evidence
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should be updated and the associated argument should be reviewed to see whether or not

it is still valid.

Finally, most safety cases are system-focused, but to be valid they must also consider

the environment of use. For example, if part of the safety argument rests on the fact that

users are given alerts, but it is known that clinicians suffer from alert fatigue, then this

aspect of the safety case is not valid. It is always important to consider the safety of a

system in context, and the safety case must address enough of the context of use to be

valid and compelling.

2.2.4 Safety Cases in the Healthcare Domain

Safety cases have been used widely for many years in the aerospace, nuclear-energy and

transportation domains. However, their use in healthcare has been fairly recent and is

primarily due to their inclusion in a recent guidance document under a FDA pilot pro-

gram [10]. This guidance, issued in 2014, was developed to assist industry in preparing

pre-market submissions for infusion pumps and to identify device features that manu-

facturers should address, in which it requires safety case to organise the information of

infusion pump. The definition of safety case given by FDA in this guidance is “The safety

assurance case (or safety case) consists of a structured argument, supported by a body of

valid scientific evidence that provides an organised case that the infusion pump adequately

addresses hazards associated with its intended use within its environment of use. The ar-

gument should be commensurate with the potential risk posed by the infusion pump, the

complexity of the infusion pump, and the familiarity with the identified risks and mitigation

measures.”

This is consistent with the general definition given above and was motivated by the

level of problems seen with infusion pumps [41]. There is growing interest in adopting

safety cases in healthcare, especially for digital innovations [42] and medical devices [43].

The evolving approach to regulation of medical devices is considered in more detail in

Section 2.4.
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2.3 Healthcare

2.3.1 Nature of Healthcare

Healthcare is deeply rooted in the conditions of life, the conditions of work and the social

relations of society. As noted in Chapter 1, healthcare has a long history but our focus here

is on the approaches and challenges arising in “modern healthcare”, i.e. in the 21st Century.

Over the past 20 years from the release of “To Err is Human” by the Institute of Medicine

(IoM) [44], healthcare has increasingly focused on improving patient safety and healthcare

quality. However, although many initiatives aim to improve patient safety by imposing or

encouraging a range of quality improvement strategies, healthcare has evolved slowly [45]

by comparison with other safety critical industries, e.g. aerospace. Thus, it is essential

to understand the nature of healthcare first, then to draw parallels between healthcare

and other industries, highlighting their similarities and differences, before concluding what

learning and experience can be transferred from these other domains.

Healthcare is a complex socio-technical system and is very different from other safety-

critical industries:

• First, healthcare contains an extraordinarily diverse set of activities. On the one

hand, it encompasses a lot of routine practices, such as infection control strategies

with standards designed to prevent the transmission of germs in all healthcare set-

tings [46]. On the other hand, it also involves highly unpredictable and hazardous

activities. For example, in hospital medicine, clinical staff often face very high levels

of uncertainty as the patient’s disease may be masked by other similar conditions,

difficult to diagnose, the symptoms or treatment are complicated by multiple co-

morbidities and so on [47]. For example, there might be a “trade-off” in treating

a patient who has low platelets (bleeding tendency) but also has a clot (for which

clinicians would normally use a blood thinning agent).

• Second, in healthcare, automation of procedures is relatively low with many of the

healthcare tasks being “hands on” [48]. A lot of surgical procedures have to be done

by surgeons in a broad spectrum of situations. Although it is possible to define

overall processes, the exact procedures or solutions will have to be determined by

surgeons and may need to be modified “on the fly” if a situation arises that wasn’t

anticipated. Thus such procedures are more liable to error. By comparison, in other

industries, many procedures are automated and humans are more often monitoring
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activities rather than undertaking them.

• Third, healthcare, even in national systems such as the NHS in England, is decen-

tralised and fragmented [49] [50]. This makes it very difficult to standardise and

regulate design of both medical equipment, including SaMD, and the associated

procedures. For example, it is highly desirable to standardise the design of infusion

pumps as several accidents have occurred because of them [51], but it is very diffi-

cult to achieve standardisation in practice [47]. In addition, if nurses are constantly

having to work with different medical devices when delivering care, unnecessary

variability will be introduced, thus increasing the potential for errors.

• Fourth, healthcare is extremely heterogeneous, using a mix of old-fashioned technol-

ogy and state-of-the-art devices. For example, even now, paperwork and fax are still

commonly used. On the other hand, a lot of advanced diagnostic devices are also

deployed in healthcare, and there is a growing interest in making use of AI/ML in

diagnosis and even in recommending treatments.

• Finally, in healthcare, major adverse events are usually investigated locally, although

they may be subject to wider investigation or reported in the media if they are

deemed of particular significance [48]. In the healthcare reporting culture, an indi-

vidual doctor is usually blamed or ascribed responsibility for the accident [52], which

is in striking contrast with pilot near-immunity in aviation. This, to some extent,

contributes to the reactive (and defensive) attitude [53] in healthcare when dealing

with adverse events (in contrast with the learning that has happened in aviation).

These factors need to be taken into account if seeking to adopt and adapt practices

from other safety-critical industries.

2.3.2 Patient Safety

Patient safety began as a discipline, emphasising prevention of harm to patients, in re-

sponse to evidence that adverse medical events are widespread and preventable and that

there is “too much harm” [54]. Patient safety can also be treated as a property that

emerges from healthcare systems design to achieve high reliability under conditions of

uncertainty and risk. Illness brings the first condition of risk in healthcare and patient

safety applies to the second condition of risk, which is the therapeutic intervention to

combat the illness. Patient safety has been increasingly recognised as an issue of global
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importance, which aims to make risky interventions reliable through the design of safe

healthcare systems, including clear policies, organisational leadership capacity, data to

drive safety improvements, skilled healthcare professionals and effective involvement of

patients in their own care [54].

Currently, there is no standardised definition of patient safety. The IoM (which has

now changed its name to The Health and Medicine Division) defined patient safety as

“the prevention of harm to patients” [55], which is quite abstract and doesn’t give concrete

guidance. The WHO defined patient safety as “the absence of preventable harm to a patient

during the process of healthcare and reduction of risk of unnecessary harm associated with

healthcare to an acceptable minimum” [12]. The emphasis in this definition is placed on

healthcare systems that, first reduce risk to an acceptable minimum, and second are free

from preventable harm. Here, an acceptable minimum must be interpreted given current

knowledge, resources available and the context in which care was delivered weighed against

the risk of non-treatment and the benefits/risks of other treatment(s) [12]. This principle

of balancing benefits and risks also applies to the introduction of medical devices.

Preventing harm is another important aspect of patient safety. Every point in the

process of care-giving contains a certain degree of inherent risk, although this is not well-

appreciated by patients. A number of countries have published studies showing that

significant numbers of patients are harmed during healthcare, either resulting in permanent

injury, suffering due to increased length of stay in healthcare facilities, disability or even

death. Having a systematic approach to severity classification would help in making

international comparisons and assessing the outcome of any patient safety improvement

programme. Whilst there are merits in classifying type, severity and duration of harm

separately, most practical harm scales conflate these elements when assigning a degree

of harm (as noted in Section 2.2.1). For example, the WHO’s conceptual framework for

the international classification for patient safety categorises the degree of harm as follows:

none, mild, moderate, severe, fatal [56]. We illustrate how this severity scale can be

interpreted in the context of medication safety in Section 2.3.3.

While a goal of zero harm is desirable, this may not always be feasible as some of the

harm might not be preventable. But eliminating preventable harm is certainly a much

more reasonable goal to achieve in the context of patient safety. This is also what the

WHO implies when defining patient safety. Currently, there is also no clear and agreed

definition of preventable harm. Most working definitions include the idea that the harm
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is “identifiable” in that it can be attributed to medical care and “modifiable” in that

it is possible to avoid [57]. According to a systematic review of preventable harm in

healthcare [58], the most prevalent preventable harms cited in the included studies were

medication adverse events, defined as errors in prescribing, delivering or monitoring the

effects of a drug, but this does not include regular side effects. This emphasises the

importance of medication safety.

2.3.3 Medication Safety

Medications are the most common treatment intervention employed in healthcare around

the world. When used safely and properly, they can significantly improve patient wellbeing.

However, inappropriate medications, e.g. giving a medicine to which a patient is allergic,

or giving the wrong dose of an appropriate medication, could also cause patient safety

incidents despite the good intention of care providers. For this reason, medication safety

has become a priority for improving patient safety in healthcare organisations [59]. For

example, “Tall Man Lettering” is used to try to reduce the likelihood of administering the

wrong medication [60].

Medication safety is defined as freedom from preventable harm with medication use

by The Institute for Safe Medication Practices Canada (ISMP Canada) [61]. Medication

safety has a critical impact on patient outcomes, e.g. readmission rate, length of stay, post-

acute referral and organisational outcomes, and consequently increased overall costs to the

healthcare system. As medication errors continue to be a leading cause of patient harm in

hospitals, with an estimate that one in every five doses administered to patients is liable to

medication error in the typical US hospital [62], both government and regulatory agencies

have paid close attention and have revised their standards to place a strong emphasis on

a systematic approach to assure medication safety. For instance, NHS England in 2014

circulated Patient Safety Alert, Stage Three: Directive [63] to reinforce the importance of

learning from medication errors to improve medication safety.

To support effective learning it is important to have a clear mapping of the consequence

of medication errors to severity of harm. From our literature review, we discovered little

information to help produce such a mapping. Studies such as [18] and [19] either just give

a severity classification without a detailed description of how they mapped their patient

results to the severity, or they focus on error types and their causes, but do not identify the

severity of the patient outcome. Further work is needed on how to categorise the severity
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Table 2.2: Examples of Severity Classes derived from the use of medications

Severity None Mild Moderate Severe Fatal

Summary
No symptoms

(detected)

Symptoms short-term,

requiring minimal in-

tervention

Harm or loss of

function may be

long-term, requiring

intervention

Life-saving inter-

vention needed;

long-term harm or

permanent loss of

function

Death caused or

brought forward by

the incident

Examples

Substitution of

ceftriaxone for

cefotaxime

Use of antibiotics

to treat viral in-

fections (NB re-

duces utility of

antibiotics)

Nausea, vomiting or

diarrhoea from over-

dose of epirubicin

Forgetting to specify

maximum daily dosage

for an “as required”

drug

Accidental sedation

due to prescribing di-

azepam not diltiazem

Digestive problems

including ulcers and

internal bleeding

(caused by non-steroidals)

Hypotension due to

overdose of lisinopril

Dyspepsia and ulcers

from overuse of non-

steroidal anti-

inflammatory drugs

for arthritis

Blindness due to

prescribing a diu-

retic to patients with

low blood pressure

Renal failure from

diuretics

Hearing loss from

gentamicin

Lung damage and

possible sepsis by

giving oral treatment

to patient with

dysphagia

Weekly dose of

methotrexate given

daily

Ten times overdose

of insulin

Haemorrhage from

incorrect use of

warfarin

of harm and giving concrete examples of how to map the consequences (patient outcomes)

to different severities. In order to illustrate this, we present examples of patient harm in

Table 2.2 using the WHO severity classification introduced in Section 2.3.2. This table

is intended to be illustrative but refining and expanding it, e.g. by considering different

aspects of human function such as vision and respiration, might aid in future hazard and

risk assessment.

2.3.3.1 Medication Error

As medication errors are important indicators of medication safety, an understanding of

what defines medication error and how to classify medication errors is important.

However, the definition of medication error varies between studies and there is no

consensus. Lisby et al [64] conducted a systematic literature review of medication error

and found 26 different terminological frameworks.

The United States National Coordinating Council for Medication Error Reporting and

Prevention [65] defines a medication error as “any preventable event that may cause or

lead to inappropriate medication use or patient harm while the medication is in the con-
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trol of the healthcare professional, patient, or consumer. Such events may be related to

professional practice, healthcare products, procedures, and systems, including prescribing,

order communication, product labelling, packaging, and nomenclature, compounding, dis-

pensing, distribution, administration, education, monitoring, and use.” This definition is

broadly stated and underscores that errors arise in, and are preventable at, different levels

or phases in the medication process.

Bates et al [66] defined medication error as “error in the process of ordering, dispensing,

or administering a medication, regardless of whether an injury occurred or whether the

potential for injury was present.” This definition emphasises the divorce between an error

and its consequence.

Aronson et al [67] defined medication error as “a failure in the treatment process that

leads to, or has the potential to lead to, harm to the patient.” This definition is similar

to the definition of a hazard, which implies that what should be counted as medication

errors have a potential to cause harm to a patient. Therefore, those minor errors which

don’t have the potential to cause harm should be excluded. Medication error has also

been defined as an unintentional reduction in the probability of treatment being timely

and effective, or an increase in the risk of harm relating to medicines and prescribing [68].

As with definitions, there are also a number of different approaches to classifying

medication errors. Among them, three commonly used classifications for medication errors

are:

• By medication process;

• By type & modality;

• By psychological theory.

When classifying by medication process, errors are linked to the stages in the sequence

of the medication use process, usually prescribing, transcribing, dispensing, administering

and monitoring [69] [70]. This approach is particularly useful for management purposes, as

different phases of the medication process often happen in different places, with different

actors. For example, prescribing normally will occur in a hospital or in a GP’s surgery,

accordingly the dispensing stage might happen in a community pharmacy or in a pharmacy

affiliated with a hospital. Thus, this classification could help managers to control issues

arising within their sphere of responsibility.

25



Chapter 2: Background & Literature Review

When classifying by type & modality, the focus is on the administration elements,

which are often referred to as “five rights”: right patient, right drug, right dose, right route,

right timing (frequency and duration) [71]. This is normally complemented by Modality.

Modality examines the way in which errors occur, including omission, commission, early,

late and value which bears strong similarity to categorisation used in exploratory safety

analysis methods, such as SHARD. Thus, combining the modality with the type will give

a precise characterisation of the error, e.g. wrong drug, duplicated drug, wrong dose,

omitted dose. A lot of studies [72] [73] adopted this classification as it could give a richer

context to explain what goes wrong around the five rights for patient administration.

My previous work has shown how to link the five rights to modality in order to better

understand risk as part of a study on medication safety [17] [18].

When classifying by psychological theory, errors are associated with the way they hap-

pen. In consequence, it yields four broad types of medication errors [74]: knowledge-based

errors, rule-based errors, action-based errors and memory-based errors. This approach not

only describes the errors, but also gives a hint about how to help reduce their occurrence

based on how they occur. For example, knowledge-based errors, which can be related to

any type of knowledge, general, specific or expert, can obviously be prevented (at least in

principle) by improving knowledge, e.g. by ensuring the basic principles of therapeutics

are taught properly and the procedures are aligned with the best practices. Memory-based

errors can be tackled by putting in place computer systems that detect such errors or using

checklists that could prompt the healthcare professionals.

These different approaches to classifying medication errors are neither mutually ex-

clusive nor orthogonal. There is no strong evidence to identify which method is more

effective than others [75]. The approach which should be taken will depend on the set-

ting and the purpose of the classification. However, the literature shows that there is a

common problem in that the definitions and classifications of medication errors are often

applied inconsistently in the studies or even mixed up, which makes it hard to understand

whether the classifications are complete or not and whether errors are counted fairly.

2.3.4 Medical Devices

A medical device is defined as follows by Council Directive 93/42/EEC [76], “any instru-

ment, apparatus, appliance, material or other article, whether used alone or in combina-

tion, including the software necessary for its proper application intended by the manufac-
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turer to be used for human beings for the purpose of :

• diagnosis, prevention, monitoring, treatment or alleviation of disease,

• diagnosis, monitoring, treatment, alleviation of or compensation for an injury or

handicap,

• investigation, replacement or modification of the anatomy or of a physiological pro-

cess,

• control of conception;

and which does not achieve its principal intended action in or on the human body by phar-

macological, immunological or metabolic means, but which may be assisted in its function

by such means”.

Historically, medical devices were often stand-alone systems with embedded software.

However, recently, the Medicines & Healthcare products Regulatory Agency (MHRA)

and others [77] have expanded the scope of medical devices so that stand-alone software

applications (apps), e.g. Clinical Decision Support System (DSS), are also considered

as medical devices. MHRA have produced a medical device (app) determination flow

chart [78] to help judge whether or not a particular app is a medical device, which we will

discuss further in Section 2.4.

A growing number of ML-based DSS are being developed to provide guidance on

the safe prescription of medicines, guideline adherence, diagnostic decision support and

prognostic scoring [79]. ML-based DSS can be found in clinical domains such as radiology,

using algorithms that learn from training data to classify images [80] [81] [82]. Significant

examples of such usage of ML include the identification of malignant lesions and cancers

from skin photographs [83] [84], analysis of echocardiograms to detect heart problems, e.g.

hypertrophic cardiomyopathy and pulmonary artery hypertension [85], and prediction of

sight-threatening diseases from eye scans using optical coherence tomography [86].

Outside of diagnostic support, ML systems are being developed to provide other kinds

of decision support, such as treatment recommendations [87] [88]. Other work on decision

support provides risk predictions where many complex and interacting factors have to be

taken into consideration. For example, one project has used BN to predict the risk of

developing coronary heart disease [89], based on life-style data collected over many years.
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Another project has used ML to predict the risk of suicide attempts [90], again based on

complex data.

Research has also focused on automatic triage for patients or prioritising individual

access to clinical services by screening referrals. Babylon Health has an ambitious mission:

“to put an accessible and affordable health service in the hands of every person on earth”.

They have a growing range of services [91], including an on-line triage tool which analyses

data provided by patients to advise them on a course of action, e.g. to consult a physician

or to visit a pharmacist. The tool uses a range of ML technologies, e.g. recurrent NNs for

processing and analysing the text input by the user. It also employs an extensive medical

knowledge base to assist in interpreting the information on symptoms provided by the

user [92]. Whilst Babylon see their technology as helping address some of the problems of

clinician shortages, their work is not without its critics [93].

2.4 Regulation and Safety Assurance

This section reviews the current standards and regulatory practices for assuring the safety

of AI/ML based software systems used in healthcare in the USA, UK and EU. It also con-

siders insights from the wider research community that might inform the safety assurance

of AI/ML based SaMD in healthcare.

AI/ML-based software is defined as a medical device when it is intended to diagnose,

treat or prevent health problems under the Food, Drug, and Cosmetic Act (in the USA) [15]

as we indicated in section 2.3.4. There are common concepts and principles relating to

safety and regulation of medical devices, even though the approval and regulation of such

devices are handled differently in the USA, the EU and the UK. Therefore, we first consider

these widely applicable concepts and principles, then discuss each jurisdiction in turn and

finally summarise the similarities and differences in a table.

2.4.1 General Concepts and Principles

The approaches in the three jurisdictions all seek to balance benefit against risk – this

is somewhat different to traditional safety engineering which is much more focused on

risk. Benefits are typically assessed in terms of type, magnitude, likelihood and dura-

tion [31] [94]. As noted above, risk typically reflects severity (which might include dura-

tion specifically) and likelihood of the harm, although the precise risk classifications for
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medical devices are different in the three jurisdictions (see below for details). Any resid-

ual risks associated with the intended use of a medical device should be acceptable when

weighed against the benefits to the patient. More specifically, the benefit/risk profile in

the intended target groups for use of the medical device and any undesirable side-effects

must be acceptable when weighed against the intended performance of the device. This

evaluation should be carried out according to the state-of-the-art in the relevant medical

field.

Further, at a more detailed level, all medical devices must be designed and manufac-

tured so that they achieve the performance intended by the manufacturer and will not

adversely affect the clinical condition or the safety of the patients, when used for their

intended purpose in the specified conditions. This also applies to the safety and health of

users of the medical devices or, where applicable, other persons who might be affected [95].

Achievement of the clinical performance should be supported by sufficient clinical evidence.

These concepts and principles can be seen across the three jurisdictions even though

there are some differences in the details of the approaches, e.g. in the approach to risk

classification of medical devices (at least between the USA and Europe).

2.4.2 Regulation in the USA

In the USA, medical devices are regulated by a centralised agency, i.e. the FDA. The

process for approving medical devices, including AI/ML-based systems, varies according

to their risks. Device classification depends on the intended use of the device, and on

its indicated use, i.e. the way its use is described on labels or verbally by the device

vendor [96]. In addition, a major factor in classification is the risk to the patient or the

user. Class I is for the lowest risk devices, Class II for medium risk and Class III for

the highest risk. There is a process for assessing risk of medical devices by consulting a

product classification database or by making a request to the FDA. This would also be

the case for AI/ML-based systems.

In the USA, the FDA “clears” medical devices, including software, through one of the

following four pathways:

• Pre-market approval – the most stringent review for high-risk devices which requires

that safety and effectiveness is demonstrated by providing extensive scientific evi-

dence [97];
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• 510(k) – demonstrating that an algorithm is at least as safe as another, legally

marketed, algorithm [98];

• De novo – for novel low and moderate risk devices (where there are no existing

counterparts so the 510(k) pathway cannot be used) and safety and effectiveness can

be assured through general controls [99];

• Humanitarian device exemption – used for devices intended for diagnosis or treat-

ment of a rare disease where it is hard to get enough clinical evidence to meet FDA’s

normal standards for safety and effectiveness [100].

The clearance pathways introduced above are meant to assess the safety of the device

as a whole, rather than to clear or certify specific algorithms that the device uses. Thus,

there is no specific, or separate, pathway for AI/ML-based systems and they are often

approved through one of the first three pathways. According to [101], the number of

approved AI/ML-based devices has increased substantially since 2015. Most of them are

approved through the 510(k) pathway and only a few are approved through pre-market

approval. The 510(k) pathway is used for the approval of evolutionary medical devices and

such devices are generally exempt from the rigorous pre-market approval. Although some

AI/ML-based systems employ advanced ML methods, e.g. deep learning, which is often

considered to be revolutionary in techniques compared with other rule-based software, it is

not necessarily viewed as a revolutionary medical device in terms of the FDA framework

(if the application is not new). So as long as it is possible to find a similar medical

device that has already been approved even if it uses conventional software, the AI/ML-

based system can be approved through the 510(k) pathway by showing that the hazards

identified for the previous system have also been sufficiently controlled in the new AI/ML

based system. There have been criticisms of the 510(k) pathway [102], for example that

it doesn’t require either pre-market or post-market assessment of safety and effectiveness.

Further, allowing claims of “substantial equivalence” over a chain of products can lead to

approval of a product that is radically different to from the original device which might

have been introduced decades ago. No AI/ML-based systems have used the humanitarian

exemption; this is unsurprising as there is unlikely to be sufficient data on rare diseases

to make ML a viable approach.

More recently, the FDA has been exploring new approaches to regulation of AI/ML-

based systems, recognising the rapid evolution of medical devices and that they can con-
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tinue learning in operation, meaning that it is impractical to assess every iteration of the

device. The FDA has proposed a framework for dealing with modifications to AI/ML-

based systems for public discussion and consultation, using the term SaMD [15]. This

proposal builds on previous work, including risk classification principles [103] and software

modification guidance [104]. The FDA has also started a pilot programme to pre-certify

developers of SaMD with the intent that this will enable streamlining certification of an

actual product [105]. In other words, the focus is on assessing and certifying the organ-

isation developing the medical device, rather than on the device itself. Based on this

work, and the feedback from the consultation, the FDA has proposed an action plan for

AI/ML-based SaMD, with five key action areas [106]:

• Change control plan – documentation of ways in which the algorithms will change

over time, yet remain safe and effective;

• Good ML practice – definition of good practices for developing AI/ML-based sys-

tems, e.g. data management, interpretability, akin to software engineering good

practices;

• Patient-centred approach – providing transparency to users of the systems and to

patients more generally, e.g. describing the data used to train the algorithms;

• Bias and robustness – improving the scientific basis for assessing algorithms, e.g.

where biases relating to race or ethnicity might impact safety or effectiveness;

• Real-world performance – adopting a Total Product Life-Cycle (TPLC) approach

involving collecting and monitoring real-world data.

These action areas, e.g. the TPLC approach, help to address one of the criticisms of the

501(k) pathway as they provide a means for post-market assessment. The FDA proposals

explicitly distinguish “locked” algorithms that do not change over time from those that

adapt, e.g. continue learning in operation. Typically, AI/ML-based systems approved to

date by the FDA have been “locked”. Under current policy, changes to approved AI/ML-

based systems could require a further pre-market submission, but the TPLC approach is

intended to allow devices to “continually improve while providing effective safeguards” [15].

The third case study, see Chapter 6, might provide one way of doing this.
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2.4.3 Regulation in the European Union

The European Union (EU) is in a period of transition in how it deals with medical de-

vices, replacing three Directives including Council Directive 93/42/EEC on Medical De-

vices (MDD), with two Regulations [107]. The new Regulation (EU) 2017/745 on medical

devices (MDR) [108] came into effect on May 26 2021 replacing the MDD. Separate Di-

rectives and Regulations addressing in vitro devices are not covered here.

The original definition of medical device in the MDD 93/42/EEC [109] included soft-

ware only where it was part of other medical devices, although later guidance [77] for the

Directive included standalone software. This change in scope has now been formalised

in the MDR [108], which includes standalone software with a medical purpose in the

definition of an active medical device; this is what the FDA refer to as SaMD.

As with the USA, the clearance process for medical devices also varies with the asso-

ciated level of risk [94]. There are four risk classes for medical devices: Class I, Class IIa,

Class IIb and Class III with Class I the lowest risk and Class III the highest risk. The

medical device classification depends on the intended purpose of the device, its length of

use and how invasive the device is. All active implantable medical devices, e.g. prosthetic

heart valves, fall into Class III. Class IIa includes active diagnostic devices when they

are intended for direct diagnosis or monitoring of vital physiological processes. However,

diagnostic devices that monitor physiological processes where the nature of variations, e.g.

in cardiac performance, is such that they could result in immediate danger to the patient

fall into Class IIb [94]. Active therapeutic devices that administer or exchange energy to

or from the human body are in Classs IIa, but if they can do so in a potentially hazardous

way they will fall into Class IIb. Other devices, e.g. non-invasive tubing to evacuate bodily

fluids, fall into Class I. Associated control or monitoring devices inherit the class of the

primary medical devices.

In the USA medical devices are approved by a centralised agency, the FDA; this is

not the case in the EU despite the existence of a central body, the European Medicines

Agency (EMA). For Class I devices the manufacturer usually bears the responsibility for

ensuring that their products comply with the regulations, and there is no formal approval

process. Medical devices in the higher risk classes are handled by private organisations,

known as Notified Bodies, that have been accredited to carry out a conformity assessment

and issue a Conformité Européenne (CE) mark. Although issued in a single country, CE

marks are recognised throughout the EU and the manufacturer can select the country, and
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Notified Body, to which they submit their product for approval. For a higher risk medical

device, a clinical investigation might be necessary [110]. The EU doesn’t have an explicit

510(K) pathway for approving medical devices as in the USA, however it is still possible

to use information on equivalent devices to facilitate the approval process for the clinical

evaluation.

Turning to AI/ML-based medical devices, the EU does not seem to have addressed

such systems directly, but has been working on the related issue of “big data” with the

National Heads of Medical Agencies (HMA) [111]. However, the EU has posted a web

page [112] that provides a link to the US FDA 2019 proposed framework for AI and ML

in SaMD [15] and this is presumably intended to encourage EU citizens to contribute to

the US FDA consultation. The European Commission has been active in AI ethics and

related issues. It published a white paper on excellence and trust in AI [113] and a report

on the safety and liability aspects of AI [114] which, although general, are likely to be

applied to AI/ML-based medical devices.

Despite the lack of specific rules on AI/ML-based medical devices, it seems likely that

the new MDR will have an impact on such systems because of the way it now treats

software. A medical device is now defined more broadly and specifically includes software

for the “prediction” and “prognosis” of diseases not only for diagnosis and treatment. It

introduces a new classification rule for software. As a consequence, risk classification of

many software products and apps will be up-classed, i.e. move into a higher classification.

For example, Rule 11 of the MDR [108] states that: “Software intended to provide infor-

mation which is used to take decisions with diagnosis or therapeutic purposes is classified

as class IIa, except if such decisions have an impact that may cause:

• Death or an irreversible deterioration of a person’s state of health, in which case it

is in class III; or

• A serious deterioration of a person’s state of health or a surgical intervention, in

which case it is classified as class IIb.”

This means that AI/ML-based devices can be assessed as being in class III whereas,

previously the highest was Class IIb [77]. Another major change is that manufacturers have

to appoint at least one person responsible for regulatory compliance. In addition, there is

now a heightened requirement for post-market monitoring and traceability of the devices

as in the USA although the detailed requirements vary between the jurisdictions [115].

33



Chapter 2: Background & Literature Review

2.4.4 Regulation in the UK

In the UK, the MHRA is responsible for regulating medical devices. Since the UK has

recently left the EU, a new UK Conformity Assessed (UKCA) marking has been introduced

to apply to medical devices from 1st January 2021 [116]. However, CE marking will

continue to be recognised until 30 June 2023 [117]. UK Notified Bodies are no longer able

to issue CE marks and the EU no longer recognises the UK Notified Bodies. Note that the

situation in Northern Ireland is different, so strictly the following applies to Great Britain

(GB) not the UK, despite the use of the term UKCA.

The three EU Directives mentioned previously are given effect in UK law through the

Medical Devices Regulations 2002 (SI 2002 No 618, as amended) (UK MDR 2002) [117].

These Regulations (in the form in which they existed on 1 January 2021) continue to have

effect in Great Britain after the transition period. This means that since 1 January 2021,

the Great Britain route to market and UKCA marking requirements is still based on the

requirements derived from current EU legislation and that the changes to introduce the

MDR in the EU will not automatically apply in the UK.

All medical devices placed on the market in GB must be registered with the MHRA

from 1st January 2021. All suppliers need to register with the MHRA and, if they are

based outside the UK, appoint a UK Registered Person to carry out registration on their

behalf. As in the EU, compliance of Class I devices is based on their manufacturers’ self-

declaration. All other UKCA marked devices must have compliance assessed by an UK

approved body.

Turning to AI/ML-based medical devices, the Care Quality Commission (CQC) and

the MHRA conducted a regulatory sandbox (experimental study) on the use of ML in

diagnostic devices. The sandbox involved a range of stakeholders including developers

of AI/ML-based systems for healthcare and NHS trusts where these systems might be

used. The sandbox report [118] includes five main findings and recommendations which

are summarised below:

• Governance – the CQC needs to work with service providers using AI/ML-based

systems to identify good governance in relation to the clinical, information, technical

and human aspects of the system;

• Registration – suppliers of AI/ML-based systems who also deliver clinical activity

(services) will have to register with the CQC;
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• Technical standards – standards to assure the public that services provided by reg-

istered suppliers are safe and effective will need to be developed by other National

bodies (presumably standards organisations such as the British Standards Institu-

tion (BSI);

• Close assurance gaps – 1) provide guidance on validation of algorithms both at the

CE marking stage (presumably now UKCA marking stage) and when implementing

at a new site; 2) provide clarity on how hospitals should implement ML devices

within clinical pathways to ensure high-quality care;

• Clear communication – encourage medical device suppliers to provide greater clarity

on how their devices perform, including whether or not they employ ML.

The report refers to, and builds on the FDA’s proposed regulatory framework for

AI/ML-based SaMD and proposes a slightly different approach to classifying systems,

and gives some examples of SaMD to illustrate the classes, which is shown in Figure 2.3.

The report also highlights the complexity of the regulatory framework, identifying

around a dozen bodies, even treating all the Medical Royal Colleges as a single organisa-

tion. This shows the organisational, as well as technical, complexity in making regulatory

changes to enable safe introduction of AI/ML-based devices into clinical practice. The

government has already recognised the regulatory complexity, and has produced a blog

post [119] on regulating AI in healthcare to clarify the roles of the major regulatory and

advisory bodies. And it also envisioned a joined-up approach to set up a single platform to

bring all the regulatory strands together and a joined-up regulatory sandbox for AI where

innovators can find all of the sandbox initiatives from different regulators. REFORM [120]

has also produced resources on data-driven healthcare which seeks to provide an easily

understood introduction to the “full regulatory pipeline for data-driven technologies in

healthcare” including AI/ML-based medical devices.

2.4.5 Summary of Regulation in the Three Jurisdictions

The similarities and differences of medical devices regulations across the three jurisdictions

have been summarised in Table 2.3. The comparison is conducted from six perspectives.

Some studies suggested that medical device regulation in the EU is less rigorous compared

with that of the USA due to the decentralised nature of medical devices regulation in

Europe and different Notified Bodies might not always work to the same standards [101],

35



Chapter 2: Background & Literature Review

Figure 2.3: Examples of existing clinical applications of ML in diagnostics where darker

purple boxes indicate that more care is needed when using these solutions in live clinical

services. Taken from [118].

although it is not straightforward to draw that conclusion from the table. In addition,

there is no centralised publicly available database of approved medical devices in Europe

in contrast with the USA, this will also make it more difficult to assess the comparative

rigour of the approval processes.

In terms of AI/ML-based medical devices, it is clearly that the FDA is taking the lead in

tackling the challenges associated with such systems. For “locked” AI/ML algorithms, the

traditional paradigm of medical device regulation seems to be less problematic, although

the impact of AI/ML-based system can be broader than the traditional SaMD, which is

not taken into account in the current regulations. For adaptive AI/ML-based medical
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devices, i.e. continuous learning, it seems that the new proposed framework for TPLC

might be promising. But it is still too early to say that TPLC will be the final solution. In

addition, the new risk categorisation for AI/ML-based medical devices proposed by CQC

& MHRA based on the level of autonomy of the device and scope of the influence might

be also a good direction to carry forward the regulation paradigm.

Table 2.3: The similarities & differences of medical device regulation in USA, EU and UK

Similarities Differences

Medical device classification
Higher risk to the patient and/or the user

associated with higher classification

Three classification in the USA

Four classification in the EU & UK

Regulatory bodies N/A

Centralised in the USA (FDA)

Decentralised in the EU & UK

(National Notified Bodies)

Regulatory pathway

Higher risk classes require more rigorous

approval, e.g. Pre-market approval in the USA

and clinical investigation in the EU

No specific pathway for AI/ML-based devices

Data related to equivalent devices can assist

the approval processes

Four specific pathways in the USA

Self-declaration for low risk devices

in the EU & UK; General requirements

for higher risk devices, e.g. safety,

performance and reliability in the EU&UK

Public access to

approval documents
N/A

Available in the USA

Limited availability in the EU & UK

Approval documentation N/A

Recorded by the FDA

CE mark in Europe

UKCA mark in the UK (strictly GB)

Post market requirements

Requirements vary with classification

Adverse incidents involving medical devices must

be reported to the relevant authorities

Requirements to withdraw or recall non-conformal

devices until the problems are rectified

Medical device tracking and surveillance

for certain Class II and Class III devices

in the USA

A voluntary program of third party

inspections of devices in the USA

Post-market surveillance report required for

Class I device; periodic safety update report

required for Class IIa, IIb, III in the EU&UK

.
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2.4.6 Safety Assurance and Regulation in Other Communities

There has been a growing interest in AI/ML-based medical devices not only from regula-

tory bodies but also in academia and in industry. This section focuses on the academic

and industrial activities.

First, a discussion paper reviewing the FDA’s current approach to regulating AI/ML-

based software identifies a number of limitations, e.g. in dealing with AI/ML software that

continues to learn in operation [121]. The paper proposes a lifecycle-based framework for

regulation and makes three key recommendations:

• Provision of adequate evidence of safety and effectiveness prior to product introduc-

tion, ideally gained in clinical trials;

• Identify allowable (safe) changes to the software that would not necessarily require

further pre-market assessment using the term “safe harbor”;

• Periodical review of accumulated changes to demonstrate that the risk/benefit profile

remains acceptable.

Second is work on reporting for clinical trials involving AI/ML-based medical devices.

The CONSORT-AI extension of these reporting guidelines [122] considers clinical trials

involving AI/ML-based systems. In particular it identifies the need for:

• Explanations of the intended use of the AI intervention in the context of the clinical

pathway;

• Identification and analysis of performance errors;

• Recognition of the limits to generalisability.

The first point is very similar to one of the recommendations of the CQC sandbox [118].

Third is an analysis of trends in AI and the use of such technology in a clinical con-

text, which considered known AI problems, e.g. bias, and their potential impact on

clinical safety [79]. It draws on well-known analyses of concrete problems in AI [123] and

other sources providing an interpretation of issues such as distributional shift in a clinical

context. The paper also proposes a set of tests which help to identify whether or not dis-

tributional shift, or the other general AI problems, are of concern for a particular system.

Detailed mitigation strategies are outside the scope of the paper but it does suggest that
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an adaptation of the Standards for Reporting of Diagnostic Accuracy initiative [124] could

help to address bias in ML.

Fourth, the Topol Review [125] focused on the healthcare workforce to deliver the dig-

ital future including the educational changes needed for the safe and effective introduction

of AI and robotics. Three of the recommendations are relevant to AI/ML-based systems:

• Patients should be involved throughout the design and implementation of AI software

(co-design) so their needs and preferences are reflected in the system;

• Resources should be developed to educate and train healthcare professionals in all

relevant aspects of AI development including health data provenance, the ethics of

AI and critical appraisal and interpretation of AI;

• A national programme of “Industry Exchange Networks” should be established to

enable the NHS to access skills in industry.

Fifth, a review of the AI/ML-based systems approved by the FDA in 2020 [126] pro-

duced a database which summarises the capabilities of each system, the approval pathway,

etc. They found most of the approved AI/ML-based medical devices are cleared through

the 510(k) pathway, with a few through the de novo pathway and only one through the

pre-market assessment pathway. They also found that some medical devices are not an-

nounced as AI/ML-based in the FDA database but found that they are claimed to have

such technology in other online resources, which suggested that greater clarity is needed to

improve the ability to analyse and track the introduction of AI/ML-based medical devices.

Finally, a recent review of current regulatory approaches argues for moving from eval-

uation of AI/ML-based medical devices to taking a systems view [127]. This is somewhat

analogous with the recommendations above to consider an AI/ML-based system in the

context of the clinical workflow, but rather broader in that it might ultimately lead to

regulation of the practice of medicine. The authors claim that the systems approach would

better deal with systems that learn in operation, i.e. adaptive AI/ML-based system, and

with decision-making involving collaboration between the AI/ML-based systems and hu-

mans. Whilst the paper does not present a concrete model of how to move towards the

systems approach, it does recognise the need to define a transition path from current reg-

ulatory practices and provides some insights that might assist in the safe and progressive

introduction of AI/ML-based medical devices into clinical use. Some of the case studies
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in this thesis reflect this systems view, for example showing how to assess the role of

ML-based SaMD in the context of a clinical workflow.

2.5 Conclusion

This chapter has provided background for the rest of the thesis, presenting introductions

to healthcare, safety engineering and ML. The case studies in Chapters 4 to 6 introduce

additional detail where appropriate, e.g. on clinical conditions being addressed, or on ML

methods that are used. The discussion of regulation shows the complexity of introducing

ML systems into clinical practice. This thesis does not address regulation directly but aims

to provide a set of contributions that could help to realise technically sound approaches to

support regulatory practices for ML-based SaMD and for supporting safety through life,

consistent with the notion of TPLC introduced by the FDA.

Three findings are highlighted from the literature survey, particularly from the analysis

of regulation and safety assurance in Section 2.4:

• Most of the approved AI/ML-based medical devices are cleared through the 510(k)

pathway, with some through the de novo pathway and only a few through the pre-

market approval pathway;

• Technology suppliers do not always accurately state whether their products use ML

and how their devices perform;

• There is no centralised publicly available database of approved medical devices in

EU in contrast with the USA.

Similarly, three over-arching recommendations for assuring ML-based SaMD are given:

• Provide more clarity on how hospitals should implement ML devices within clinical

pathways to ensure high-quality care;

• Provide for more assurance about the clinical aspects of the ML algorithms, e.g.

providing more guidance to support clinical validation of algorithms;

• Establish an international publicly accessible database for approved AI/ML medical

devices.

This thesis makes contributions, especially based on the first two recommendations as

will be seen in Chapters 4 and 5.
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Chapter 3

Overview of the Thesis

Chapter 1 gave a brief outline of the three main contributions of this thesis which are

presented in Chapters 4-6 respectively. The aim in this Chapter is to give an overview of

the work that has been done and to give greater clarity on the three main contributions

and on their relationships.

Operational 
safety case

Development Operation

Decision 
to 

Deploy

Development 
Safety Case

Explanation

System as 
deployed

Updated 
safety 

analysis

Safety
analysis Explanation

System as 
developed

Figure 3.1: Overview of the Thesis

We do this in relationship to an overview diagram (see Figure 3.1) that shows the

developmental and operational phases for a system, with the decision to deploy. Although

the decision to deploy marks the transition from development to operation, these phases

are strongly related and the constituent elements are mirrored across the two phases.

These elements are: the system itself, safety analysis, and explanations, all of which

support the safety case. We made the distinction between the development safety case

and the operational safety case, where the development safety case is intended to support

the decision to deploy whilst the operational safety case builds on the development safety
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case but is intended to be updated based on the operational information. This also shows

that safety is an ongoing issue which needs to be managed throughout the system’s life. In

particular, updating the safety case might, in extreme cases, lead to a decision to revoke

approval for use of a system where the risks are deemed to be too high.

The system in this thesis mainly means ML models but we also include clinical prac-

tice. In safety critical domains, safety analysis is often used to influence the design of

the system and to provide assurance of safety by producing evidence to feed into the

safety case. ML models, by comparison with conventional software, are often viewed as

“black boxes”. Explainable AI methods have been developed aiming to provide human

interpretable representations of the ML models. These explanations, e.g. showing feature

importance, can provide evidence for the safety case thus helping to assure safety of the

ML models. Thus, where the system employs ML models, the system itself, the safety

analysis and the explanations have a symbiotic relationship and jointly underpin the safety

case.

Safety analysis is subject to uncertainty, e.g. assumptions about the operational con-

text for the system. When data is available from operation, we can apply ML on the data

to update safety analysis based on the insights gained. Therefore, we refer to updated

safety analysis in the operation phase.

We use this overview diagram to show the contributions of the individual case studies,

and how we can embrace ML in the safety assurance of healthcare applications. The three

contributions are illustrated in the following Chapters 4 to 6, where the scope of each

contribution is highlighted using this overview figure.

The first contribution, set out in Chapter 4, addresses question 1 and encompasses

the system as developed, safety analysis and development safety case. The case study

employs RL in support of sepsis treatment, and is based on a previously published RL

model; the RL model and the clinical pathway form the system as developed. The case

study shows how to use well-established safety engineering methods, specifically SHARD,

to proactively incorporate patient safety in the design of the RL model. The results of

the SHARD analysis are used to identify DSRs that are used to “drive” the design of

the RL model and to produce a new RL model which has better safety properties than

the previously published work. Safety controls including, but not limited to, the DSRs

for the RL are summarised using bow-tie diagrams and this summary of hazard causes

and controls is used to guide the construction of the development safety case. The key
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contribution in this case study is to show how well-established safety engineering methods

can be applied to ML-based SaMD thus showing that they are appropriate and effective in

assuring the safety of ML in this healthcare application. In addition, it briefly illustrates

the role of explanations, but this is addressed in much more detail in Chapter 5.

The second research question is addressed in different ways by Chapters 5 and 6. The

second contribution, set out in Chapter 5, encompasses the system as developed, explana-

tions and the development safety case. The case study employs CNN to assist clinicians in

determining when to wean a patient from mechanical ventilation; the CNN model forms

the system as developed. The focus of Chapter 5 is on explanations and explainability, so

it incorporates an overview of explainable AI methods and shows how various explainable

AI methods can support safety assurance in the context of the ML development process.

First, it uses influence functions (a way to identify which input instances have a strong

effect on the trained model without retraining the model) to guide the model learning

process to meet safety requirements (mainly related to timing of weaning). Second, it uses

feature importance (a way to rank or score the input features based on their contribution

to the model prediction) to help make the learnt model interpretable by clinicians and

hence contribute to assurance of its clinical validity and thus to patient safety. Third it

uses counterfactual examples (informally, “what is not, but could have been”) to shed

light on model robustness. The chapter explicitly shows the role of these explainable AI

methods in contributing to the development safety case for the DSS, and hence their role

in contributing to safety assurance. It also illustrates the potential of counterfactual and

feature importance explanations in operation to support clinical decision-making.

The third contribution, set out in Chapter 6, encompasses safety analysis, updated

safety analysis, and the operational safety case (which implicitly draws on the development

safety case). The case study employs Bayesian Network structure learning to understand

the correlations of different factors concerning the delivery of Beta-Blocker for patients who

have undergone thoracic surgery and who are potentially at risk of atrial fibrillation; the

clinical practice for medication management for such patients forms the system. It shows

how to use ML to update and enhance the results of safety analysis and the operational

safety case, providing a different perspective on research question 2. It shows how a

Bayesian Network can extract information from operational data both to confirm (validate)

aspects of the safety analysis and to update it to reflect what actually occurs in operation

as opposed to what is predicted during safety analysis. This case study illustrates how a
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clinical practice might deviate over time, i.e. evolve from development phase to operation

phase, so it shows the role of ML in improving safety analysis in general, not just when

an ML-based SaMD is used.

The three case studies cover all the artefacts identified in Figure 3.1, with individual

contributions as presented above. The limitations of the individual case studies are ac-

knowledged in the relevant chapter. Whilst the individual contributions are worthwhile

in their own right, taken together, they illustrate the potential for a rich and supportive

interplay between ML and safety engineering in healthcare, as we show in more detail in

the following chapters.
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Chapter 4

Safety-Driven Design of Machine

Learning

This chapter is based on my previous publication [128] [129] [130] and contributes to

answering research question 1. ML is becoming more widely employed in healthcare and

there are a growing number of ML-based SaMD. The challenges in assuring safety of ML-

based SaMD include showing that the learnt model respects relevant safety requirements.

Indeed we might characterise the first question as treating ML as “a problem”. At a

technical level, answers to this question depend on the ML method used. The case study

in this chapter addresses this question in the context of an SaMD which employs RL. The

other two case studies have a different focus and show the role of ML as “a solution”.
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Development Operation

Decision 
to 

Deploy

Development 
Safety Case

Explanation

System as 
deployed

Updated 
safety 

analysis

Safety
analysis Explanation

System as 
developed

Figure 4.1: Overview for the Case Study

The contribution of the chapter is summarised in Figure 4.1; the elements highlighted in

red show the focus of the chapter. ML has the potential to bring significant clinical benefits.
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However, there are patient safety challenges in introducing ML in complex healthcare

settings and in assuring the technology to the satisfaction of the different regulators.

The work presented in this chapter tackles the problem of proactively assuring ML in

its clinical context as a step towards enabling the safe introduction of ML into clinical

practice. In particular, the chapter considers the use of deep RL for sepsis treatment.

The methodology starts with the modelling of a clinical workflow that integrates the RL

model for sepsis treatment recommendations; the clinical workflow and the RL-based DSS

form the System as developed. Then Safety analysis is carried out based on the clinical

workflow, identifying hazards and safety requirements for the RL model. The design of

the RL model is enhanced to satisfy the safety requirements for mitigating a major clinical

hazard: sudden change of vasopressor dose. A rigorous evaluation is conducted to show

how these requirements are met. A Development safety case is presented, providing a basis

for regulators to make a judgement on the acceptability of introducing the RL model into

sepsis treatment in a healthcare setting. The overall argument is broad in considering the

wider patient safety considerations, but the detailed rationale and supporting evidence

presented relate to this specific hazard. Whilst there are no agreed regulatory approaches

to introducing ML into healthcare (see the discussion in Chapter 2), the work presented

in this chapter has shown a possible direction for overcoming this barrier and exploit the

benefits of ML without compromising safety.

4.1 Introduction

As outlined in Chapter 2 ML has considerable potential in healthcare, but before such

applications can be deployed, it is necessary to demonstrate their safety. Healthcare

regulators have developed standards for assuring the safety of digital systems [131], e.g.

DCB0160 from NHS Digital [9]. However, these standards and the associated regulatory

approaches assume that software is developed in a “conventional way” and thus are not

well-suited to ML applications, where systems are produced without explicit programming

but by automatically learning from complex datasets. Although these issues are starting

to be addressed, e.g. by the US Federal Drug Administration (FDA) [15], there is still a

disconnect between regulatory practices and the processes for assuring ML in healthcare.

Indeed, one of the key findings of a recent study by the UK Care Quality Commission

(CQC) was “the need for more assurance about the clinical aspects of the algorithms in

machine learning, and more clarity on how hospitals should implement machine learning
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devices within clinical pathways to ensure high-quality care” [118]. This indicates the

need for more focused effort on practical methods of safely translating ML from research

into clinical practice. One of the problems to be addressed is that development of ML

is often undertaken in “silos”, e.g. focusing on particular data analysis challenges [132],

without addressing the broader issues of clinical adoption. To overcome this problem it

is necessary to bring together expertise and stakeholders from many disciplines including

clinical practice, ML and safety engineering.

The chapter provides a concrete clinical case study for sepsis treatment using ML,

specifically deep RL in this case. Sepsis is a life-threatening condition and a major cause

of fatalities in hospitals. It is hard to detect the onset of the condition and the optimal

treatment is as yet unclear [133]. RL is well-suited to decision-support problems and

several researchers have already applied RL to the problem of recommending optimal

sepsis treatment, e.g. [88]. We have also adopted RL, as the existing work both gives a

baseline on which to build and to demonstrate how to achieve safety-driven design of the

RL model.

In particular, we developed and applied a novel methodology that incorporates safety

engineering processes to support development and refinement of the clinical workflow and

the ML model. The safety engineering process identifies hazards (i.e. sources of potential

patient harm), hazard causes and requirements for hazard controls. The design of the ML

model is then enhanced to satisfy the relevant safety requirements and a rigorous evaluation

is undertaken to provide evidence that these requirements are met. The evidence feeds

into a safety case which presents the safety rationale, including showing the completeness

of the controls. This work provides a process for assuring the safety of the ML model

in its clinical context of use thus supporting regulators in assessing the acceptability of

introducing an ML model into a healthcare setting.

The rest of the chapter is structured as follows. Section 4.2 discusses the background

and related work, including the safety of ML in healthcare with a particular emphasis

on sepsis. Section 4.3 describes the methodology we have used in this work covering the

clinical, safety and ML elements outlined above. Section 4.4 presents our detailed clinical

case study on the treatment of sepsis, focusing on mitigating a major clinical hazard:

sudden change of vasopressor dose. A discussion of the role of the work and the possible

future directions is presented in Section 4.5. Section 4.6 presents conclusions.
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4.2 Background and Related Work

As discussed in Chapter 2 it is common to categorise ML algorithms into three types

according to the way they are trained, viz: supervised learning, unsupervised learning

and RL. All three types have been explored in healthcare. There is a lot of work using

supervised learning for classification problems in healthcare, e.g. for breast cancer screen-

ing [1, 134]. Comparatively, there is less work employing the other two types of ML in

healthcare.

Unsupervised learning identifies previously unknown correlations in data with the min-

imum of human supervision. A typical application in healthcare is to try to identify phe-

notypes – that is groups of patients who are homogeneous in how the specific medical

condition is presented. Examples include Acute Respiratory Distress Syndrome (ARDS),

identifying hypo- and hyper-inflammatory phenotypes [135] and sepsis, identifying four

novel phenotypes [136]. RL is an ML technique that is often used in complex decision

making tasks to find an optimal strategy [22]. It has been applied to identify optimal

treatments in healthcare very recently, e.g. determining treatment regimes in chronic dis-

ease and automated medical diagnosis [137]. It involves an agent seeking to maximise its

reward through interaction with its environment. A more focused discussion of RL and

its application to sepsis can be found in Section 4.4.

Although there are many research activities investigating how to exploit the potential

benefits of ML in healthcare, few studies have progressed to deployment in clinical care

[138]. Thus, researchers are now beginning to realise that more effort needs to be put

into safe deployment of ML in healthcare. For example, “sepsis watch”, has reported on

the work of a multi-disciplinary team including statisticians, data scientists and clinicians

introducing a deep-learning based sepsis detection and management system into clinical

care [139]. In this work, front-line clinical staff were highly engaged in the design and

development of the workflow, ML model, and its application. Several iterations occurred

throughout the product lifecycle to improve the ML model to suit its clinical context of

use. Rigorous evaluation was carried out with external partners to assess the possible

inequality and bias introduced by ML and they conducted operational impact evaluation

to demonstrate safety and efficacy. They emphasised the importance of multi-disciplinary

working and early involvement of all stakeholders in order to successfully integrate ML

technologies into routine clinical care.

In [138] the authors took a broad view of the issues, providing an overview of the
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barriers to deployment of ML and translating research into practice. The work focuses on

developing a “roadmap” for accelerated translation of ML based interventions into health-

care, which includes choosing the right problems, developing a useful solution, carrying

out rigorous evaluation, and deploying responsibly, by first undertaking “silent mode” op-

eration, i.e. running the system but not using its results, to evaluate the technology. They

then suggest undertaking a clinical trial but they think a randomised control trial (RCT)

might not be feasible as it requires a different workflow compared with the control group,

which might lead to confusion, and suggest that other forms of trial might be more ap-

propriate, e.g. a pre-post study. Similar to “sepsis watch” they emphasise the importance

of multi-disciplinary teams, although no actual deployment was reported.

When it comes to effectiveness research in healthcare, the “gold standard” is RCTs

[140]. However, only a few projects have carried out RCTs for ML-based applications. For

example, an RCT was conducted on an ML-based severe sepsis prediction algorithm finding

reductions in average length of stay and in-hospital mortality in the group using the ML-

based tool as opposed to the control group [141]. Another project studied a deep learning-

based polyp detection system. Evaluation of its use during colonoscopy showed increases

in polyp adenoma detection rates against the control group [142]. A third example is an

AI-based decision-support tool used to aid anaesthetists in controlling hypotension [143].

Like the polyp detection system, this decision-support tool operates in real-time and was

shown to be effective, i.e. to reduce periods of intraoperative hypotension.

Despite these successes, there remains a debate about the practicality and effective-

ness of RCTs for ML-based tools. For example [144] discusses the cost and difficulty of

conducting RCTs, including the effort involved, e.g. clinician training, and the problem of

evaluation where the ML-based systems continue learning from operational data, an issue

which the FDA is currently investigating [15], proposing a TPLC approach for updating

the deployed ML model.

Both “sepsis watch” [139] and the work on “roadmaps” [138] provide useful insights and

guidance into the successful translation of ML applications into clinical practice. However,

despite their emphasis on multi-disciplinarity neither considers the early involvement of

safety engineers nor a proactive approach to managing patient safety, although patient

safety is mentioned in both papers. The work described here extends the notion of multi-

disciplinarity to include safety engineering thus enabling proactive management of safety

when introducing ML-based systems in healthcare, whether an RCT is used or not.
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4.3 Methodology

Figure 4.2: Framework for integrating ML system into clinical care

Our methodology is shown in Figure 4.2 and incorporates concepts from “sepsis watch”

[139] and the work on “roadmaps” [138], extended to enable the proactive incorporation

of patient safety into the development of ML models. The rectangular boxes describe the

activities performed while the solid arrows show the flow of the activities. The dashed

arrows represent the information that pertains to assurance rationale and evidence, which

is captured in the safety case. The “flow” starts at the top left, iterates through Solution

design, Solution development and Pre-trial testing & assessment, ending with Rigorous

Evaluation or/and Clinical Trial.

In this chapter, we are mainly concerned with the Solution design, Solution develop-

ment, Pre-trial testing & assessment and the Safety Case, which are all marked in green in

Figure 4.2. Infrastructure is an important element to enable the deployment of ML models

in healthcare but is out of scope for this chapter. The elements marked in blue have a clin-

ical focus and are largely outside the scope of this chapter, although an overview of sepsis

is given in Section 4.4 to provide context for the safety work and ML model development.

Solution design comprises Clinical workflow design, Hazard identification & safety re-

quirements and ML Model design. In order to deploy ML models effectively in healthcare,

it is important to ensure they fit into the clinical context. Clinical workflow design de-

fines the integration of the ML model into the socio-technical clinical setting to address
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the healthcare problem, supporting the clinicians in their work. Thus, it is necessary to

involve the front-line staff at this step to identify potential constraints or requirements

to ensure that the clinical workflow is feasible and efficient for the end-users. Addition-

ally, the clinical workflow will serve as the basis for proactive safety analysis, including

identifying hazards and deriving safety requirements for the ML model design. ML Model

design includes identifying the set of input features that will be used in training the model

so that it is effective in its clinical setting and for the problem being addressed. Although

there are various techniques to help to select the relevant features, it is important to in-

corporate clinical domain expertise to identify the right set of features. Once the input

features have been identified, it is time to extract the right data for the model development

because the quality and quantity of the data will directly determine how good the ML

model can be [145]. In addition, it is necessary to identify the performance metrics that

are most suitable and informative to evaluate the ML model, given the problem being

addressed [146].

Solution development comprises Clinical workflow development, Safety barrier visual-

isation and ML Model development. Clinical workflow development includes developing

user interfaces to support the implementation of the clinical workflow which would help

the front-line staff to use the ML model effectively. The front-line staff would be par-

ticularly involved in testing and validating the functions, information, control, and visual

components of the interface. Safety barriers are means of controlling the potential hazards

that we identified previously based on the clinical workflow to reduce the risk that they

will compromise patient safety. In this chapter, we especially focus on the barriers that

can be implemented in the ML model itself. This may include altering the input features

used by the ML model to ensure it takes into account safety-relevant information or im-

proving the interpretability of the ML model to help clinicians make informed decisions.

The ML Model development involves training the model using the data identified during

the Solution design, augmented if necessary to implement the defined Safety barriers.

Pre-trial testing & assessment mainly concerns the technical issues of the ML model’s

readiness for use, e.g. predictive accuracy based on the previously defined performance

metrics. The ethical and other challenges could be evaluated later [147], e.g. in the rigorous

evaluation through clinical trials. In practice, there is no clear cut distinction between the

activities shown in Figure 4.2. In fact, the activities often overlap and iterate. Ideally the

safety activities occur in conjunction with the clinical and ML model design & development
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activities. The iteration between Solution Design, Solution development and the Pre-trial

testing & assessment is the basis for developing the ML model to be safe enough to go on

to a pilot study or a “silent mode” use prior to rigorous evaluation, e.g. clinical trials.

In our methodology, the safety case draws evidence from all the phases in Figure 4.2

and documents the safety rationale for the integrated workflow including the ML model

at all stages in its development.

Next, we apply the methodology to a clinical case study involving treatment of sepsis

patients.

4.4 Clinical Case Study: Sepsis Treatment

Basic Concepts of RL

RL consists of an agent interacting with its environment by performing actions and

receiving feedback from the environment. The environment is often represented

by a Markov Decision Process (MDP) in which an assumption is made that the

future state of the process depends only on the current state; that is, given the

current state, the future state does not depend on the cumulative history of past

states. An MDP is defined by M = ⟨S,A, P,R⟩, where S is the state space, A is the

action space, P is the transition function with P (s′|s, a) denoting the probability

of reaching state s′ if taking action a in state s. R is the reward function such that

R(s, a, s′) is the immediate reward given to the agent for transitioning between

states s and s′ via action a. A policy is a function defining the agent’s behaviour

and maps a perceived state of the environment to an action for the agent to take.

The clinical case study focuses on the treatment of sepsis. Sepsis is a life-threatening

organ dysfunction which is caused by a dysregulated host response to infection [148]. It

is estimated that one in five deaths worldwide are due to sepsis [149]. A major challenge

is early detection of sepsis since the earlier the treatment begins the greater the chance

of patient recovery. Once the condition has been detected, treatment normally involves

administration of antibiotics and infection source control. When it turns into septic shock,

administration of intravenous (IV) fluids and vasopressors will be necessary, but deciding

on the treatment strategy for IV fluids and vasopressors is often difficult. Different fluid

and vasopressor treatment strategies have been tested leading to quite different results

in terms of patient mortality [150]. Further, many healthcare agencies and communities
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have devoted significant efforts to sepsis management, e.g. the Surviving Sepsis Campaign

[151]. Despite such efforts, the optimal strategy for the administration of IV fluids and

vasopressors remains unclear. Consequently, researchers have harnessed RL to learn the

“optimal” treatment strategy for recommending IV fluids and vasopressors, e.g. [152] [88].

We start this work by using a previously published deep RL model [152] for sepsis

treatments which recommends IV fluids and vasopressors. In particular, we apply our

methodology and show how to integrate the ML model into clinical care in a way that

enables proactive management of patient safety. The clinical case study shows the itera-

tion round the Solution design, Solution development and Pre-trial testing & assessment

“loop” in our methodology. The main work products of this iteration, e.g. the Clinical

workflow and the Hazard analysis and safety requirements as well as the the Safety case

are shown in the following subsections. For ease of presentation we combine the design

and implementation of the Clinical workflow and ML model in the following section.

4.4.1 Clinical Workflow Design and Development

Figure 4.3: High-level workflow design

There are two main ways of introducing ML models into healthcare: either replacing

clinicians or assisting them. For example, [1] explained that an ML model for breast cancer

screening can be used in the standard double-reading process to replace the second reader

while maintaining an equivalent performance. In our work, the ML model serves as a DSS,

assisting clinicians in sepsis treatment as shown in Figure 4.3. First, a doctor recommends

initial doses of IV fluids and vasopressors for the sepsis patient. Then the doctor is shown

the recommendations from an RL agent for the same sepsis patient. Afterwards, the

doctor makes the final decision on the recommended dosage for IV fluids and vasopressors,

reflecting the role of the ML model as a decision aid. This is different from most current

advisory systems in healthcare in that they make recommendations first, then doctors

53



Chapter 4: Safety-Driven Design of Machine Learning

choose to accept them or to modify them, without the explicit initial recommendation.

The reason for designing the workflow this way is to support later pilot studies and/or

clinical trials to evaluate the ML model not only in a technical sense, but also to see how

it affects the clinicians’ behaviour in the socio-technical context, e.g. due to automation

bias. Mosier and Skitka [153] defined automation bias as resulting from people’s using the

outcome of the decision aid “as a heuristic replacement for vigilant information seeking

and processing”. In this case, we can measure pre- and post-advice decision accuracy

from the clinicians as indicators of the influence of automation on decision-making. For

example, a negative consultation occurs if a pre-advice decision is correct but changed

to an incorrect post-advice decision. After evaluation, if confidence and trust has been

built in the ML model, then it would be appropriate to alter the workflow to allow the

clinicians to use the ML model like a normal advisory systems, i.e. without the explicit

initial recommendation.

The detailed workflow that integrates the ML model is shown in Figure 4.4. This work-

flow shows a broader view of sepsis treatment including the screening activities. There are

often two distinct phases: the initial resuscitation and the more stable period thereafter.

However, the workflow intentionally doesn’t distinguish these two phases, but is intended

to give guidance for both as appropriate.

The workflow starts by screening the patient for (suspected) sepsis. The screening

criteria are based on published NHS improvement protocols [154]; if necessary, it can also

be altered to suit the local hospital screening protocol. Here, Early Warning Score (EWS)

[155] is used and sepsis is suspected if EWS is greater than 3 and at least one sepsis red flag

criterion, e.g. newly altered mental state, is present. The rest of the workflow shows both

the initial resuscitation for sepsis and septic shock and the treatment afterwards, i.e. the

stable period. It is mainly based on the sepsis 6 pathway from the Sepsis Trust [156] and the

Hour-1 Bundle from the Surviving Sepsis Campaign [151]. The Hour-1 bundle is designed

for initial resuscitation but IV fluids and vasopressors will continue to be given in the stable

period, most likely for several days. This is shown as recommendation 1 in Figure 4.4,

and is the doctors’ initial recommendation based on current clinical practice. If necessary,

recommendation 1 can also be altered to suit the local hospital protocol. Further, the ML

model, i.e. the RL agent, is integrated into the clinical workflow shown as recommendation

2, which matches the high-level workflow design in Figure 4.3. The final decision is made

by the doctors after they are informed about the RL agent’s recommendation. As noted
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above, we designed the clinical workflow this way to reflect its role as a decision aid, and

to enable us to assess how much the RL agent influences the behaviour of the doctors

and whether the RL model could indeed improve clinical results, e.g. reducing in-hospital

mortality. Importantly, the approach helps to ensure that an accountable doctor makes

the final decision [147].

The workflow concludes with the nurses administering the IV fluids and vasopressors

as advised by the doctors. It is important to recognise the role of nurses in this clinical

workflow as they usually are the ones at the bedside actually making the adjustments

according to more general guides set by the doctors. This also needs to be considered in

the hazard analysis especially deriving the causes and controls of the hazards (as detailed

in the next section).

After the iteration on the designs of the clinical workflow and ML model (model de-

sign is discussed in Section 4.4.3), development begins. Implementing the clinical workflow

involves integrating tools and providing appropriate user interfaces for clinical staff. In-

tegration requires data exchange with the Electronic Health Record (EHR), particularly

to transfer the features that the RL model needs to process in order to recommend the

doses for the patient. This work is primarily the responsibility of IT specialists, including

those working for vendors of Healthcare IT (HIT) systems that are integrated into the

clinical workflow. User interfaces will be needed for clinicians both to provide them with

information, e.g. recommended doses from the RL model, and to enable them to input

information, including recording decisions they have made [157]. It is good practice to

employ “user-centred design” [158] where specialists in user interface design work with all

the different classes of user, including nurses and doctors, to produce appropriate systems.

Generally the design process will be iterative, to define and refine functions, information,

control, and visual components of the system. These capabilities need to be provided

in compliance with relevant standards and guides, to allow the hospital to comply with

audit requirements – in general to support management processes as well as clinical ones.

Finally, staff need to be trained to understand the new workflow and to work effectively

with the tools. Using the clinical staff who were engaged in design and development to

train other users may prove effective, as they will understand and be able to explain the

systems from a user perspective.
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4.4.2 Hazard Identification and Safety Requirements

The safety engineering process starts by identifying hazards, then the system or situation

is analysed to determine potential causes of the hazards and the potential clinical effects.

For each identified hazard the associated risk is estimated and used to determine the

priority for the introduction of safety barriers (means of preventing the causes of hazards or

reducing the impact of hazards if they do arise). Once safety barriers have been identified

and introduced, then the risk associated with the hazards can be re-evaluated.

In this chapter, we only show the hazard identification for the delivery of vasopressors;

IV fluid can be analysed in a similar way. The analysis was carried out by a multi-

disciplinary team comprising two safety engineers, one Intensive Care Consultant and

two ML engineers, using the SHARD method (which was introduced in Chapter 2). The

hazards identified, prompted by the use of the SHARD guidewords, are as follows:

• Omission – No vasopressor administered;

• Commission – Unnecessary vasopressor administered;

• Incorrect – Wrong vasopressor administered;

• Incorrect – Wrong dose administered (this hazard concerns a single dose);

• Incorrect – Sudden change of vasopressor dose administered (this hazard concerns

two consecutive doses);

• Late – Delay in administering vasopressor.

The guideword early is not considered, as there is ongoing clinical research about

whether or not to deliver vasopressor earlier to increase Mean Arterial Pressure (MAP)

for sepsis treatment. The guideword incorrect results in three potential hazards: one

concerns administering the wrong vasopressor; another concerns administering a single

wrong vasopressor dose; the third concerns a sudden change of vasopressor dose between

two consecutive doses. Current clinical practice is to change the dosage of vasopressors

gradually as a sudden major change in the dose can be dangerous to some patients, e.g.

resulting in acute hypotension (arising from rapidly decreasing doses), hypertension or

cardiac arrhythmias (arising from rapidly increasing doses) [159] [160] [161]. Because the

half life (the period of time for the concentration of a drug in the body to reduce by 50%)
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of Norepinephrine (a commonly used vasopressor) is measured in seconds or minutes [162],

changes in Norepinephrine can have rapid effects on patients.

After the identification of the potential hazards, we applied SHARD to the clinical

workflow to identify the causes of the hazards. This is done by going through each activity

(the rectangular boxes) in Figure 4.4 with a focus on recommendation 2, i.e. the part of

the workflow marked in green. Table 4.1 shows a fragment of the SHARD analysis with a

focus on one hazard – sudden change of vasopressor dose administered – identified above.

The full SHARD analysis can be found in Appendix A. Table 4.1 is a high-level summary

of the analysis. The full analysis is also included in the material at the link above, but a

brief summary of the approach is presented here.

The SHARD analysis works “backwards” through the workflow, starting with the

identified hazards then considers each activity in the workflow in turn, following the process

outlined in [163]. Each hazard, e.g. “No vasopressor administered” is an output deviation

from the final activity – “administer vasopressor as decided by doctor” in this case. The

hazard can have many causes. First, it can arise within (an internal deviation) the final

activity in the workflow; internal deviations are identified using the SHARD guidewords.

For example, omission by the nurse responsible for vasopressor administration, perhaps

due to a heavy workload, leads to the hazard “no vasopressor adminstered”. Second, the

hazard can be caused by deviations in activities earlier in the workflow which propagate

from earlier activities to the final activity. Specifically, input deviations of the final activity

arise from output deviations of the preceding activity, and so on through the workflow. For

example, in this case, the input deviation for the final activity “administer vasopressor as

decided by doctor” can be an omission of the final dose recommendation, which ultimately

contributes to the hazard “no vasopressor adminstered”.

In this way we can identify how deviations from intent for each activity can combine and

propagate through the complete workflow to give rise to hazards, noting that the deviation

of one class, e.g. omission, can lead to the deviation of another class, e.g. incorrect. This

process enables us to produce a summary of possible hazard causes, taking into account

the complex interdependencies between the activities, as illustrated in Table 4.1. The

severity classification used in the table is based on the DCB160 standard developed by

NHS digital [9].

As indicated above, Table 4.1 summarises the detailed analysis, combining the results

from analysing all the different activities in the workflow in Figure 4.4. The possible causes

58



4.4 Clinical Case Study: Sepsis Treatment

Table 4.1: Fragment of SHARD analysis showing a single Hazard

Guide word Deviation (Hazards) Possible Causes Effects Severity

Incorrect

Sudden change of

vasopressor dose

is administered

(concerns two

consecutive doses)

1 Kink of line

2 The pump fails, e.g. due to electrical problem or

bag/syringe not installed correctly

3 The delivery line might not be connected to

patient’s central line, e.g. due to the patient

pulling out the central line

4 The drug might not be added to the diluent, so

the syringe/bag just contains saline (a problem

when bags/syringes are being changed over)

5 Nurse prepared wrong dose (e.g. due to

calculation error)

6 Inappropriate titration of dose by nurse

7 Doctor fails to check current dose

8 Initial recommendation by doctor has a sharp

change in dose and doctor carried through the

recommendation (not considered in this paper)

9 RL agent recommends a sharp change in dose

and doctor accepts the advice, e.g. due to

automation bias

10 Features in state space of the RL model are not

sufficient to represent the patient conditions for

sepsis decision making

11 Reward function used for RL model is coarse

12 Cost function used for RL model development is

not appropriate

13 Hyperparameters used for RL model development

are not optimised

14 Training data for RL model development is not

appropriate

15 Data corruption (e.g. invalid or wrong data

produced by over-writing patient’s features)

16 Features for wrong patient entered

17 Wrong patient feature values entered (e.g. due to

unit difference)

18 Test results for wrong patient received

19 Incorrect test results received

Acute Hypotension,

Strokes, Renal failure,

Heart attack could

occur from a sharp

drop in the dose

Hypertension,

Cardiac Arrhythmia,

Strokes, Raised

intracranial pressure,

Pulmonary oedema

could occur from a

sharp rise in the dose

Major/

considerable

of most interest in this chapter are numbers 10-14, which are highlighted in the table, as

they directly affect the RL recommendation, i.e. recommendation 2 in the workflow. In

addition, causes 1 to 6 can arise from the administration phase, which is the final activity

in the workflow. Causes 7 to 9 can arise from the final decision phase which is the activity

before administration in the workflow, where cause 9 is a combination of an RL agent

failure (a potential consequence of numbers 10-14) and a human error (automation bias).
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Causes 15 to 19 can affect the quality of the input data to the RL model, which is the

initial activity in recommendation 2 in the workflow. The possible causes in Table 4.1 can

arise from different types of failure, e.g. technical failure and human errors. However, a

single cause can trace back to multiple different sources. For example, cause 2 can arise

from a technical failure, but also a human error. Although our focus is mainly on the ML

components in this chapter, the visualisation of controls in Section 4.4.5 addresses some

of the other possible causes identified in Table 4.1.

Table 4.2: Safety Requirements for RL model derived from Hazard analysis

ID Description Type Allocation

R0
Sudden changes in recommended dose

shall be close to clinician practice
Performance & Safety RL model development

R1

Feature representation in the state space

shall be sufficient to allow the control

of sudden changes in recommended dose

Performance & Safety RL model design

R2

An appropriate reward function shall be

defined to allow the recognition of

desired clinical outcome

Performance & Safety RL model design

R3
An appropriate cost function shall be

defined to penalise hazardous behaviours
Performance & Safety RL model development

R4
Hyperparameters shall be optimised

based on the validation dataset
Performance & Safety RL model development

R5
Patient cohort shall be defined using

recognised criteria, i.e. sepsis-3
Performance & Safety RL model design

Safety requirements are derived from the hazard analysis to control the hazard causes

identified in Table 4.1. To produce a set of requirements for the ML components in

the workflow it is helpful to identify the interfaces in the workflow that bound those

components. The key interface is between “Recommendation by RL agent” and the “Final

decision” in Figure 4.4 which shows the interface between the ML model and the clinicians.

Given this, we can identify that the hazardous interface failure is “RL agent recommends

a sharp change in dose” (an output deviation from the ML model) which contributes to the

clinical hazard “Sudden change of vasopressor dose administered”. Thus the requirements

derived from controlling the hazardous interface failure help guide the design of the ML

model which falls within the scope of “Recommendation 2” in the clinical workflow.
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The resultant requirements are set out in Table 4.2. R0 follows directly from the

definition of the hazardous interface failure. Requirements R1 to R5 are lower level design

and development requirements necessary to support R0. R1 relates to cause 10 and is

concerned with input feature issues. Defining the features in the state space for the RL

model is a design issue, so R1 is allocated accordingly. R2 relates to cause 11 in Table 4.1.

Similarly, it is allocated to “RL model design” as this is the phase in the methodology

where reward functions are defined. Requirements R3, R4 and R5 relate to causes 12, 13,

and 14 respectively; they are all allocated appropriately. Thus, Table 4.2 covers all the RL

agent-related causes in Table 4.1 and, if the requirements are satisfied, this should reduce

the likelihood of the hazardous interface failure arising – “RL agent recommends a sudden

change in dose”. The requirements have to be produced using specialist knowledge of ML,

reinforcing the need for a multi-disciplinary team. Causes 15 to 19 in Table 4.1 should be

addressed in the user interface design to reduce the likelihood that such causes arise.

4.4.3 Model Design and Development

In this chapter, we have adapted the RL model in [152] to train an agent to learn the

optimal policy for sepsis treatment; from now on we refer to this as the original policy.

The adapted RL model used 47 features to represent the state space (as against 48 in the

original work), including patients’ demographics, Elixhauser premorbid status, vital signs,

laboratory values, fluids and vasopressors received to satisfy safety requirement R1 in Table

4.2. A definition of the features used in the RL model together with a feature correlation

matrix is presented in Appendix B. The action space includes 25 possible actions with

five discretised choices for the dose of IV fluids and five for vasopressors respectively, as

shown in Table 4.3. The terminal reward is based on 90-day mortality (as against hospital-

mortality in the original work) with +15 for survival and -15 otherwise. The intermediate

reward uses Sequential Organ Failure Assessment (SOFA) score and Arterial Lactate (the

level of lactate from arterial blood) as they did in the original work to satisfy safety

requirement R2. The detailed intermediate reward function is shown in equation 4.1.

The SOFA score is a measurement of organ failure with high values associated with poor

outcomes; similarly, high levels of lactate suggest stress or inadequate organ perfusion and

are associated with poor outcomes in sepsis treatment. A well-established and widely-used

RL algorithm – Double Deep Q-networks (DQN) [164] is used to determine the policy (a

brief introduction to DQN is given in the box below). Therefore, the cost function used
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a standard double DQN loss function plus one regularisation term, as indicated in the

original work to satisfy safety requirement R3.

r(st, st + 1) = C01 (sSOFA
t+1 = sSOFA

t & sSOFA
t+1 > 0)+

C1(s
SOFA
t+1 − sSOFA

t ) + C2 tanh(s
Lactate
t+1 − sLactatet )

(4.1)

Principles of Deep Q-Networks (DQN)

DQN is a widely-used modern RL algorithm, which combines Q-learning [165] with

a deep artificial neural network. It learns a policy by employing the same core

update rules and operating principles as Q-learning but using a neural network in

order to represent its Q-function. DQN uses the experiences or samples ⟨s, a, r, s′⟩

generated by interaction with the environment to train the neural network, where

r is the observed immediate reward. A common implementation uses a squared

error loss of the difference between the output of the so called prediction network,

Q(s, a; θ) and the desired target Qtarget = r + γ maxa′Q(s′, a′; θ) to update the

neural network’s weights.

Simple DQNs have some shortcomings and there are various ways of refining them

to improve their performance. One way to improve algorithmic stability is to use

double DQN which introduces a second network — the target network. The purpose

of the target network, parameterised by θ′, is to provide a stationary target upon

which the Q-function can converge. Periodically, the target network is updated to

match the prediction network.

In double DQN, the prediction network θ is used to select the greedy action a′ =

argmaxa′Q(s′, a′; θ), while the target network θ′ is used to estimate its Q-value.

The standard double DQN loss is shown in Equation (4.2).

L(θ) = E[(Qdouble−target −Q(s, a; θ))2], (4.2)

where Qdouble−target = r + γQ(s′, argmaxa′Q(s′, a′; θ); θ′).

The data used for model development is based on the same dataset and the same

patient cohort taken from MIMIC-III – a large publicly available database [166] – as

in the original work. Patients are included in the cohort when they meet the sepsis-3
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Table 4.3: Dosage actions

Dose of vasopressor (mcg/kg/min)

No.: 0 1 2 3 4

Range: 0 (0.002, 0.079) (0.08, 0.2) (0.201,0.449) (0.45, 1.005)

Median: 0 0.04 0.135 0.27 0.786

Dose 0 0 1 2 3 4

of 1 5 6 7 8 9

IV 2 10 11 12 13 14

fluid 3 15 16 17 18 19

4 20 21 22 23 24

criteria [148] – suspected infections combined with SOFA score ≥ 2. Exclusion criteria

are: 1. not adult, 2. IV fluid intake not documented, 3. possible withdrawal of treatment,

4. erroneous intake or output data. Patients’ data were coded as multidimensional discrete

time series with 4 hour time steps. There is no “right” time step but 4 hours was chosen

as this is long enough that changes in vasopressor dose could arise. In addition, using this

time step allows direct comparison with the original work. The detailed MIMIC-III data

pre-processing can be found in the supplement to [88]. This satisfies safety requirement

R5. The resulting patient cohorts were divided into a training dataset (80%, 20,938), a

validation dataset (10%, 2,149) and a testing dataset (10%, 2,160). For detailed patient

features included in the state space, see the supplement to [88]. The hyperparameters are

manually tuned and optimised using the validation data to satisfy safety requirement R4.

By satisfying requirements R1 to R5, we could state that this will also satisfy requirement

R0, but it is necessary to evaluate the RL model after training to see if this is the case,

see Section 4.4.4.

The RL model was developed in Python and uses the TensorFlow library [167]; the

code developed is available at: https://github.com/Yanjiayork/sepsisRL. As the MIMIC-

III dataset was generated by recording the real clinicians’ actions, we refer to it as the

clinician policy in contrast with the (learnt) original policy. We evaluated the original

policy and compared it against the clinician policy, i.e. the real patient trajectories in

the test dataset, including whether or not they show the sudden major change related to
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the hazardous interface failure “RL agent recommends a sudden change in dose” when

recommending vasopressor dosage for each patient.

4.4.4 Pre-trial Testing and Assessment

As indicated above, this phase of the methodology mainly concerns the technical issues of

the ML model’s readiness for use. Evaluation of performance is standard in ML after the

training of the model. In our work, we first evaluate the original policy from the safety

perspective – specifically in terms of sudden changes in the recommended vasopressor

dosage by the RL agent, given our focus on this hazardous interface failure. Then, we

evaluate the policies from both performance and explanation perspectives.

4.4.4.1 Safety Evaluation

According to [168], doses of Norepinephrine over 0.5 mcg/kg/min are usually considered

to be “high” and suggest the need for rescue or second-line therapy. Doses over 1.0

mcg/kg/min are rarely used. In the action space, shown in Table 4.3 in Section 4.4.3,

moving from action 0 to action 4 in the following step for the same patient, or vice versa,

gives a dose change > 0.75 mcg/kg/min, as 0.786 mcg/kg/min is the median for action 4

and the median for action 0 is 0. This is clearly in a dangerous range and it is considered

hazardous, i.e. “RL agent recommends a sudden change in dose”.

We evaluated the maximum vasopressor dose change for the clinician policy and the

original policy on the test dataset, which has 2,160 patients, by calculating the max abso-

lute vasopressor dose change in one step for each patient during their treatment. Figure

4.5 shows the comparison of max absolute vasopressor dose change between the clinician

policy and the original policy for these 2,160 patients. The max absolute vasopressor

dose change following the original policy is substantially higher than that of following the

clinician policy. This implies that the original policy gives rise to the hazardous inter-

face failure, because of the prevalence of these sudden major dose changes. The apparent

“noise” in Figure 4.5 arises because the patients are sorted (ordered) first by the maximum

change in the test data (i.e. the clinician policy), then by the maximum change in the

original policy and, for some patients the clinician policy gave a higher maximum change

than the original policy. Table 4.4 shows the exact number of patients for the different

dose changes. In the clinician policy, we found 3% (60 patients) among 2,160 patients have

a dose change > 0.75 mcg/kg/min. In contrast, in the original policy, we found 35% (756
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patients) among 2,160 patients have this sudden change. This is consistent with Figure

4.5.

Figure 4.5: Original Policy: Comparison of max absolute vasopressor dose change in one

step for each patient in the test dataset between the clinician and the learnt optimal policy

Figure 4.6: Modified Policy: Comparison of max absolute vasopressor dose change in one

step for each patient in the test dataset between the clinician and the learnt modified

policy

In response to the above clinical safety concerns, we modified the model in order to

further satisfy safety requirement R0 in Table 4.2, which is to reduce the rate of sud-

den major vasopressor dose changes to be closer to the clinician policy. We made two

alterations to enable the RL agent to learn a safer policy.

Firstly, we added an extra feature in the state space, which is the relative dose change

compared with the previous vasopressor dose for each patient. This enables the agent to

take account of the difference between the current step and the previous step in terms of

vasopressor dose while learning the policy, rather than merely using the current step state
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features. Secondly, we also altered the cost function used for training. We have added a

second regularisation term to penalise the output Q-values when the recommended dose is

higher or lower than the previous dose by 0.75 mcg/kg/min (i.e., a jump from action 0 to

action 4 or vice versa in one step when recommending vasopressor doses for the patients).

These changes are summarised in Table 4.5.

Table 4.4: Summary of max dose change between consecutive doses for the three policies

Dose of vasopressor (mcg/kg/min)

Small-Medium Dose Change (0-0.75) Large Dose Change (>0.75)

Clinician Policy 97% (2,100) 3% (60)

Original Policy 65% (1,404) 35% (756)

Modified Policy 92% (1,990) 8% (170)

Table 4.5: Major changes in the modified RL model

Features in state space (R1) Cost Function(R3)

RL model in [32] 48
L(θ) = E[(Qdouble−target −Q(s, a; θ))2] +

λ1max(|Q(s, a; θ)|−Qthresh, 0)

Modified RL model

48 (Removed one feature

– timestep, added an extra

one – relative dose change )

L(θ) = E[(Qdouble−target −Q(s, a; θ))2] +

λ1max(|Q(s, a; θ)|−Qthresh, 0) +

λ2max(|Vchange|−0.75, 0)

Vchange is the agent recommended dose (argmax

of Q(s, a; θ)) minus the vasopressor dose

in the previous step; λ1 and λ2 are the tuning

parameters that decide how much to penalise the

flexibility of the model.

This reflects the importance of iteration of the model design and development in or-

der to meet safety requirement R0, through further refinement to meet the lower level

requirements, specifically R1 and R3.

After the implementation of these two alterations we have learnt a new modified policy.

Figure 4.6 shows the maximum absolute vasopressor dose change in one step for each

patient between the clinician policy and the modified policy. It shows a clear reduction in

sudden major dose changes and the absolute change is much more reasonable compared

to Figure 4.5. The exact number of patients for the different dose changes in the modified

policy are also shown in Table 4.4. Table 4.4 shows that there are 8% (170 patients)
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amongst the 2,160 patients in the test dataset found with the maximum dose change, i.e.

> 0.75 mcg/kg/min in the modified policy. Thus, the modified policy has reduced the

rate of such sudden major changes of vasopressor dose by 77.5% when compared with the

original policy. Therefore, we consider this modified policy meets requirement R0 through

satisfying the lower-level requirements (R1 to R5). For detailed implementation of the

modified policy, refer to my previous paper [128].

4.4.4.2 Performance Evaluation

Table 4.6: Performance comparison for different policies

Policy Estimated Discounted Reward

Clinician policy 7.16

Original policy 10.9

Modified policy 8.07

It is not feasible to evaluate the policy on real patients because of ethical, legal and

risk issues. Instead, we have carried out off-policy evaluation to assess the performance of

the original policy and the modified policy by fitting an MDP model M̂ from the current

data to approximate the environment. The fitted M̂ can then be used to estimate what

the next state is if the agent follows a different policy from the clinician policy, which is

what recorded in the dataset, at a specific state. Once the next state is estimated, we

then could estimate the reward R̂ for the agent following original policy and the modified

policy respectively using equation 4.1. Finally the H-step discounted value of the original

policy and the modified policy can be computed using the estimated reward R̂ recursively

following the equation v = E[
∑H

t=1 γ
t−1rt], where γ is the discount factor and rt is the

observed immediate reward at step t. The final estimated value averaged the resulting

value function across all the observed trajectories in the test dataset (refer to [169] [170]

for a detailed description of the method). The average discounted reward of the chosen

actions under the clinician policy across all of the trajectories in the test dataset is also

calculated as the benchmark, as shown in Table 4.6. It shows that the original policy has

a higher value than our modified policy. However, our modified policy is still higher than

the clinician policy and in terms of vasopressor delivery, it is safer in the sense of avoiding
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sudden vasopressor changes and its dangerous effects on patients.

4.4.4.3 Model Explanations

Figure 4.7: Feature importance (from out of bag score) for clinician policy and the modified

policy

A further important aspect of assessment is to understand the interpretability of the

modified policy, i.e. the extent to which the recommendations made by the RL agent

reflect clinical understanding. In ML it is common to train a surrogate model to approx-

imate a complex ML model [171]. Often a simpler ML model is used as the surrogate.

In this case we trained two random forest classifiers as surrogate models to understand

the relative importance assigned to the features when recommending vasopressor in the

modified policy and the clinician policy, see Figure 4.7. Note that the clinician policy is

the dose decided by clinicians and extracted from MIMIC-III. When training these two

random forest classifiers, the classes are binarised in the same way where 0 means no va-
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sopressor prescribed (action 0) and 1 means vasopressor prescribed (action 1, 2, 3, 4). In

other words, the current dose of vasopressor was discarded for both random forest classi-

fiers (clinician and modified policy) as the concern here is what features influence whether

or not vasopressor is recommended, not the size of the recommended dose. Note that the

label for training these two random forest classifiers is generated based on the different

policies of interest and there is no ground truth in this case.

The relative importance of each feature was estimated using an out-of-bag score on the

whole dataset, by permuting the values of each feature, which is also called permutation

feature importance [172]. Note that the clinician policy can only represent what was

recorded in MIMIC-III, not necessarily what was in the clinicians’ minds when they made

their decisions, thus Figure 4.7 shows the relative importance of the clinical features for the

classification, rather than directly comparing decision-making. With this caveat, in both

policies, SOFA plays the most important role, which is as expected as SOFA describes

sepsis-related organ failure. The two policies also give high importance to mean blood

pressure and white blood cell count (WBC count). Gender and re-admission are of low

importance in both policies; this is unsurprising as these parameters would not be expected

to affect the decision to recommend vasopressor (or not). However, compared with the

clinician policy, the modified policy is more balanced rather than having such a heavy focus

on SOFA. And by comparison with the clinician policy, the modified policy places emphasis

on other important factors, e.g. shock index, which has been shown to indicate the need for

vasopressor therapy [173]. Thus the feature importance assessment has confirmed that the

decisions suggested by the modified policy rely primarily on sensible clinical parameters,

and it is not dominated by a single factor, i.e. SOFA.

Further discussion of ML model explanations is presented in Chapter 5.

4.4.5 Safety Barrier Visualisation

Our understanding of the hazards, potential causes of hazards, safety requirements and

means of satisfying the requirements does not arise all at once. Instead, this understanding

emerges and is refined by iteration around the Solution design, Solution implementation

and Pre-trial testing & assessment phases shown in Figure 4.2. We use Bow Tie Diagrams

(BTDs) to consolidate this emerging understanding. BTDs represent a barrier model of

safety, where barriers are a collection of related controls, and provide a graphical view

of how hazards are controlled [174]. Through the visualisation of the safety barriers and
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controls it can help to expose the weak points in the system and identify the need for

new barriers and controls, if necessary. This implies that there are two types of barriers

and controls: pre-existing and newly introduced that arise from the safety analysis. The

visualisation of the safety barriers and controls also helps in the development the safety

case by showing how the risks associated with the system or situation are being managed.

Here, we use AdvoCATE [175] to produce the BTDs and safety case (see Section

4.4.6). AdvoCATE is an advanced Assurance Case Automation Toolset developed by

NASA. Two linked BTDs are presented as follows: Figure 4.8 presents the BTD for the

hazardous interface failure “RL agent recommends a sharp change in dose” and Figure

4.9 presents the BTD for the hazard “sudden change in vasopressor dosage adminstered”

which also shows the role of the hazardous interface failure, and its patient safety impact

within the clinical workflow (as modelled in Figure 4.4).

We start with Figure 4.8. The elements in the figure as are follows:

• Context (square with the black and yellow border) – an activity or condition that is

part of normal operation, but which can be a source of harm when control is lost,

in this case the activities related to the RL agent in the workflow, grouped together

as “Recommendation 2” in Figure 4.3;

• Top event (orange circle) – the occurrence of an undesirable event, in this case the

hazardous interface failure “RL agent recommends a sudden change of vasopressor

dose”;

• Threats (round-cornered blue box) – a cause that contributes to the top event, in

this case arising from the design and development of the RL agent, i.e. causes 10 to

14 in Table 4.1;

• Barriers (round-cornered box with yellow heading) – a group of related controls

that reduce the likelihood that a threat causes the top event. For example, “design

considerations” includes different controls over the way the RL agent is designed and

developed;

• Controls (associated with a barrier) – a specific control for a threat, in this case the

controls address all the threats that can give rise to the interface hazard.

To further illustrate how the safety barriers in Figure 4.8 are linked to the previous

sections, we consider one of the threats at the bottom left of the figure, specifically “Cost
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function for RL model development is not appropriate”. This threat is cause 12 in Table

4.1 and it is addressed by safety requirement R3 in Table 4.2. There are a total of three

controls for this threat with two under the “design considerations” barrier and one under

the “Evaluation” barrier. Among them, the control “Add a second regularisation term

...” was newly introduced in “Pre-trial testing & assessment” (see Section 4.4.4) in order

to further satisfy requirement R3 also shown in Table 4.5. This illustrates how the BTD

draws together the safety work done at different phases of the workflow to provide a

consolidated visualisation of hazards, threats, controls, etc. The BTD also provides extra

information in terms of temporal dependencies, showing how the threats can combine to

result in the hazardous interface failure or the ultimate hazard if the controls fail.

Figure 4.9 presents a partial BTD for the hazard “Sudden change of vasopressor dose

administered” (Figure 4.8 and Figure. 4.9 link to form a more complete BTD). The

events in Figure 4.9 link directly to the causes in Table 4.1, for example, one of the threats

“kink of line” is cause 1 in the table. The completeness of the BTDs in terms of coverage

of threats can be checked by inspection against Table 4.1. In addition, the hazardous

interface failure is also shown as a threat in Figure 4.9, which helps us to see how the

design and development of the RL model can contribute to patient harm. In other words,

the BTD in Figure 4.9 enables us to understand the role of the RL model in its clinical

context and to proactively and systematically address patient safety in its design. The

main entities in the BTD in Figure 4.9 are:

• Context – the final activity in the workflow in Figure 4.3;

• Top event – the hazard “sudden change in vasopressor dosage adminstered”;

• Threats – causes from the SHARD analysis in Table 4.1 that contribute to the top

event, e.g. “kink of line” and the hazardous interface failure;

• Barriers – clinician and other barriers, e.g. “infusion pump” which addresses the

“kink of line” threat;

• Controls – for example “infusion pump alarm” is part of the “infusion pump” barrier.

The assemblage of new and pre-existing controls are presented in Figure 4.9, e.g.

“Infusion pump alarm” and “Nurses refer back to the doctor if they have a concern”

are pre-existing controls. The “Interpretability” barrier is newly introduced in order to

support the doctor to make an informed final decision as shown in the top-level workflow,
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see Figure 4.3. The implementation of this control is explained in Section 4.4.4 and

illustrated in Figure 4.7 by showing the feature importance for the modified policy.

The BTDs are an important result of iteration through the framework shown in Figure

4.2. The phases are not linear and may be visited multiple times, e.g. as is shown in Sec-

tion 4.4.4 where model design and development is revisited, responding to the propensity

of the original RL agent to produce sudden vasopressor dose changes. The resultant modi-

fication of the RL agent is reflected in the BTD by adding a new control under the “Design

considerations” barrier. Further, as mentioned above, developing safe clinical applications

of ML requires a multi-disciplinary team, at least including clinicians, ML experts, human

factors specialists and safety engineers. However, these disciplines are not necessarily all

involved at the same time and the BTDs provide a platform for integrating and visualising

information arising from the different specialisms in a way that could support communi-

cation and gaining a shared understanding of the issues across disciplines.
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Figure 4.8: Bow Tie Diagram for interface hazard “RL agent recommends a sharp change

in dose”
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4.4.6 Safety Case

All the phases of the methodology in Figure 4.2 feed into the safety case. The safety

case is generated using AdvoCATE, as we mentioned earlier; the goals are automatically

numbered by the tool, so the numbers are not always obvious.

Here, we present two linked safety arguments in Figure 4.10 and Figure 4.11 with the

top goal G0 “Risk of delivery of IV fluid and vasopressor medications in sepsis treatment

is controlled”. The term “controlled” is used as it is unrealistic to assume that the risk

in sepsis treatment can be eliminated, given the dependence on individual patient charac-

teristics and circumstances, including comorbidities. This goal decomposes naturally into

the IV and vasopressor treatment; as our focus in this chapter is on vasopressors, the IV

goal (G2) is left undeveloped.

The goal G1 “Risk of delivery of vasopressor in sepsis treatment is controlled” is

stated in the context of the clinical workflow in Figure 4.4 and the RL model. This goal

is then supported by strategy S1 which is to argue over the hazards and is set out in the

context (C2) of the hazard log. A hazard log summarises information about all hazards

including severity, causes and controls. In this case study the hazards are identified through

the SHARD analysis in Section 4.4.2. G1 is supported by showing how the hazards are

controlled. For brevity here we focus on showing how a single hazard “Sudden change

of vasopressor dose administered” is controlled, i.e. goal G3. The remaining hazards can

be addressed in a similar way, through goal G4 as indicated in GSN using the diamond

symbol, i.e. to be developed. The strategy for meeting goal G3 is an argument over the

barriers showing that they are diverse and effective, see goal G5.

In Figure 4.10, goal G5 is further decomposed across the barriers shown in Figures

4.8 and 4.9. Some of these sub-goals relate to the pre-existing barriers and controls, e.g.

clinician and training procedure, G6 and infusion pump, G11. The rest of the sub-goals

are all related to the RL model with G7 relating to the overall performance of the model,

G8 relating to the safety requirements in Table 4.2, which includes data preparation and

“design considerations” described in Section 4.4.3 and G10 relating to the “interpretabil-

ity” described in Section 4.4.4. G7 is supported by Table 4.6, which shows the overall

performance of the modified policy. G10 is supported by the solution Figure 4.7 show-

ing the “Ranked feature importance using the random forest tree”. Data preparation is

included as a barrier in Figure 4.8 and it is integrated with G8 as it is one of the safety

requirements in Table 4.2.
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Figure 4.10: Top Safety Argument

Goal G8, “Requirements for model design and development are satisfied”, is further

decomposed, in Figure 4.11, into six goals that addresss the safety requirements R0 to

R5. Goal G26 and solution E13 provide direct support for requirement R0, in terms

of the evaluated safety performance. Evidence E13 includes Table 4.4 and Figures 4.5

and 4.6 which compare the original and modified learnt policies with the clinician policy.

Requirement R0 is further supported by the other goals which relate to the five more

detailed requirements, R1 to R5.

The four goals G12 to G15 all have a single sub-goal that is more “concrete” and thus

identifies how the higher-level goal is met. For example, goal G16 defines the broadening

of the set of features in the state space for the RL model to reduce the occurrence of the

hazardous interface failure “RL agent recommends a sharp change in dose”, by including
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Figure 4.11: G8 Safety Argument

the relative dose change in the state space (see Section 4.4.4) and thus meeting goal G12.

The other sub-goals G17-G19 have a similar role with respect to goals G13-G15. The

solutions for goals G16-G19 summarise the relevant information in Sections 4.4.3 and

4.4.4. Finally, goal G9 “data preparation to identify a suitable patient cohort” is solved

directly, reflecting the removal of outliers (solution E9) and the patient inclusion criteria

set out in section 4.4.3 (solution E8). The process of developing the safety case for the

overall clinical workflow shows how the different phases in the methodology link together

and support each other demonstrating the safety of the RL model in its clinical context.
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4.5 Discussion

The best way to safely and justifiably deploy ML in clinical care remains an open issue.

Some work has compared the route of introducing ML into clinical deployment with the

process of drug discovery [176], which highlights the difficulties being faced. The work

reported in this chapter has made an initial attempt to address this issue by integrating

safety into the design and development of the ML model in order to minimise the risk of

patient harm without compromising its potential benefit. We illustrated our methodology

through a concrete clinical case study which concerns sepsis treatment. The clinical case

study we show is important and also challenging as sepsis is a major cause of fatalities

worldwide and its optimal treatment remains uncertain. The use of RL is suitable given

that the problem is to find the optimal treatment. The results show the feasibility and

promise of our methodology. Therefore, we review and reflect on the work presented to

give insight into the steps that could potentially lead to wider use of ML in healthcare

including acceptance by regulators.

First, in healthcare, technology needs to be developed and assured in its clinical con-

text. We believe that this is true in general, but particularly important for ML due to its

complex and subtle nature. We demonstrated the merit of doing so by first modelling a

clinical workflow which explicitly shows the role of ML in its clinical context. This helps

us to understand how the ML model is intended to be used and thus to determine the risk

associated with it. We call this “safety-driven design”, which proactively manages patient

safety by identifying the potential hazards, evaluating the ML model against the hazards,

and finally finding ways to improve its safety in a systematic way if any weaknesses of

the model are exposed. The work here focuses on a major clinical hazard within a safety

case that considers wider socio-technical patient safety factors. However, to gain further

confidence in the utility of the methodology it would need to be tested in different clinical

settings and for different clinical conditions.

Second, ML design & development and safety work must proceed in parallel – there

is no simple linear ordering of development and analysis tasks, and the safety work needs

to be contemporaneous with design in order to “drive it”. Further, a multi-disciplinary

approach is essential to safely introduce ML into healthcare [177]. As indicated previously,

ML models are often developed in isolation and a culture change will be required to

overcome this. Our methodology is intended to support this multi-disciplinary approach

but also including safety engineers, in contrast to earlier work, e.g. [139]. The BTDs in
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particular provide an effective way of integrating and visualising the relationships between

the work of the different disciplines.

Third, as our methodology and the clinical case study have shown, there is iteration

between design, development, safety and assessment activities prior to pilot studies. As

a result, safety artefacts, e.g. BTDs and the safety case, evolve during this iteration.

However, changes will also occur in the operational phase of the system as clinical under-

standing evolves, working practices adjust to the new technology and the behaviour of the

ML model becomes better understood. Thus, the BTDs and safety case should continue to

evolve during operation and the associated risks need to be reassessed from time to time.

Although neither our methodology nor the clinical case study extend into operations at

this stage, it is essential that safety and risk continues to be monitored in operation. In

Chapter 6 we show how ML can be used on operational data to inform updates.

Finally, for ML models to be deployed in healthcare, it is essential to involve and

influence regulators. As explained earlier, a report from the UK Care Quality Commission

(CQC) [118] has emphasised the importance of safety and assurance of ML and the clarity

of its use in the clinical context. We believe that our methodology can provide advantages

in practice by assuring the safety of the ML in a clearly defined clinical workflow in a way

that enables effective communication between the developers and users of ML models and

regulators, thus facilitating their safe introduction.

4.6 Conclusion

We have developed a methodology for “safety-driven design” and shown how it can be

used to guide design & development to improve safety of ML models. It is proactive in

that it leads to improvements of the ML models as they are being produced. In contrast,

a “design-first, assess safety later” approach can result in expensive rework or even de-

ployment of unsatisfactory systems. This chapter has presented a novel methodology that

can be used for development of ML models systematically incorporating patient safety

considerations. It has integrated key aspects of clinical workflow design, ML design and

development, and safety analysis to provide a pragmatic and integrated approach to safely

introducing ML into a healthcare setting. It has built on recent research on the use of

RL for sepsis treatment – and shown how the “safety-driven design” methodology can

result in safety-significant improvements. In particular, the clinical case study concerns

using an RL model to recommend vasopressors and IV fluids for the treatment of sepsis,
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which showed that “safety-driven design” can identify unsafe behaviour of the RL model,

specifically sudden changes in vasopressor dose, and guide the model learning to reduce

this undesirable behaviour. It also provided an interpretation of the learnt model to help

clinicians to make informed decisions. The results of this iterative and multi-disciplinary

work were integrated and visualised through the use of BTDs and a safety case showing

the rationale for believing that the RL model is acceptable for use in its clinical context.

Further, we have shown a possible direction for regulators to undertake the assessment

of ML models. We believe that it could help satisfy the CQC’s stated need for “more

assurance about the clinical aspects of the algorithms in machine learning” [118]. We

have not conducted an RCT for the ML models developed here. The intent is that our

analysis approach could serve as a risk-reduction step, prior to conducting a clinical pilot

study and an RCT, as indicated in Figure 4.2. It is not intended to replace these evaluation

methods but to help meet the safety preconditions for rigorous clinical evaluation. In this

way, our work may enable healthcare to gain the benefits of ML without compromising

patient safety.

Returning to the research questions, this case study provides a positive answer to

question 1: are well-established safety engineering methods still appropriate and effective

in assuring the safety of ML in some representative healthcare scenarios? They are appro-

priate – the case study has demonstrated that they are applicable and give sound results

which are credible in the real world. They are effective – the case study shows that they

contribute to assuring safety. Specifically, DSRs R1 & R3 improve the design of the ML

model and the safety analysis results provide evidence for the safety case.

This chapter provides a positive answer to question 1 in a specific context. However,

since the scope and focus of this thesis is healthcare, we have no evidence that the method-

ology introduced here would generalise to other domains. Because we used RL in this case

study we would have more confidence that the methodology would apply to other applica-

tions in healthcare using RL for making treatment recommendations. Exploration of the

methodology in other domains, or with other ML models, would be a major undertaking

which is outside the scope of this thesis.
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Chapter 5

The Role of Explainability in

Assuring Safety of Machine

Learning

This chapter is based on my previous publication [178] [179] [180] [181] and contributes to

answering research question 2. Established approaches to assuring safety-critical systems

and software are difficult to apply to systems employing ML. In many cases, ML is used

on ill-defined problems, e.g. optimising sepsis treatment, where there is no clear, pre-

defined specification against which to assess validity. This problem is exacerbated by

the “opaque” nature of ML where the learnt model is not amenable to human scrutiny.

Explainable AI methods have been proposed to tackle such issues by producing human-

interpretable representations of ML models which can help users to gain confidence and

build trust in the ML system. However, there is not much work explicitly investigating the

role of explainability for safety assurance in the context of ML development. This chapter

identifies ways in which explainable AI methods can contribute to safety assurance of

ML-based systems.

The contribution of the chapter is summarised in Figure 5.1; as in Chapter 4, the

elements highlighted in red show the focus of the chapter. The case study is based on a

concrete ML-based clinical DSS, concerning weaning of patients from mechanical ventila-

tion. This DSS was developed for the case study and constitutes the System as developed.

A range of explainable AI methods were employed to produce Explanations which, in

turn, provide evidence to support safety assurance. The results are also presented in a
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Development safety case to show where, and in what way, explainable AI methods can

contribute to a safety case prior to deployment. Further, the case study briefly explores

the role of Explanations to provide assurance in operation.

Operational 
safety case

Development Operation

Decision 
to 

Deploy

Development 
Safety Case

Explanation

System as 
deployed

Updated 
safety 

analysis

Safety
analysis Explanation

System as 
developed

Figure 5.1: Overview for the Case Study

5.1 Introduction

In healthcare, ML is used on various problems, e.g. learning optimal treatments, or to

detect abnormalities in radiology images, where it has achieved outstanding performance.

However, assuring safety for such systems employing ML remains a challenge. In many

domains there are well-established approaches and standards for assuring safety-critical

systems and software. Assurance means establishing justified confidence in the system for

its intended use. The assurance principles underlying these standards include validating

that the system works as intended and verifying that the system meets explicit safety

requirements. These assurance principles remain essential for systems employing ML.

However, the details of these approaches and standards can be difficult to apply where

systems use ML.

First, the established approaches are based, implicitly or explicitly, on the V life-cycle

model moving from requirements, through design onto implementation then testing. In

contrast, the development of ML-based systems follows a very different, much more iter-

ative, life-cycle with four main phases: data management, ML algorithm selection, model

learning, and model verification & validation, which makes it hard to apply established

methods. Some emerging standards and guidance better reflect the ML life-cycle, e.g.

the US Federal Drug Administration (FDA) proposed regulatory framework on AI/ML-
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based Software as a Medical Device (SaMD) [15] and Assurance of Machine Learning for

Autonomous Systems (AMLAS) [182].

Second, because of the “black box” (opaque) nature of the ML models [183], it is hard

to assess what has been learnt, which exacerbates the challenging of defining concrete

requirements for the safety of SaMD in its clinical context. Instead, human performance

is often used as a “gold standard” and the current practice is often to (seek to) achieve

performance that is better than humans. This makes validation difficult as human perfor-

mance is variable both from individual-to-individual and over time for a single individual.

Also, performance will vary from patient-to-patient, e.g., with comorbidities, and clinicians

might not agree on the best treatment strategy.

To overcome such problems, the ML community is actively studying “explainablity”,

which is intended to “peek inside the black box” and to illuminate the underlying workings

of the ML models. Explainability is often equated with producing explainable artificial

intelligence methods, which seek to provide human interpretable representations of ML

models [79]. Although there is considerable variation in the definition of terms such as

explainability, interpretability and transparency, in this thesis we adopt the view from the

FDA AI/ML-enabled Medical Devices Transparency Workshop [184] that explainability is

one component of transparency. Transparency is a much broader concept in their definition

and we see interetability as a necessary facet of explainability, as suggested by Gilpin et

al [185].

Explainable AI methods produce explanations which can be local, i.e. relate to a

specific output or prediction of an ML model or global, i.e. explain the ML model as

a whole. Explainable AI methods can therefore, in principle, have a role in validation

by giving stakeholders, including clinicians, assurance that the ML model will produce

valid predictions beyond the data used in development. We will consider the role of

various explainable AI methods in safety assurance. Our focus is on development activities

and deployment decisions for ML-based systems. Operations and incident investigation

are outside the scope of this chapter, although we briefly consider the potential role of

explainability in operations.

The chapter identifies the ways in which explainable AI methods can contribute to

safety assurance of ML-based systems and demonstrates the role of various explainable AI

methods using a clinical case study concerned with predicting readiness for extubation from

mechanical ventilation. Further, it shows the potential use of these methods in supporting
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a safety case for ML systems. The rest of the chapter is structured as follows. Section 5.2

presents the background and related work with Section 5.2.1 amplifying on the challenges

of assuring ML-based systems and the limitations of established safety assurance methods

when addressing ML and Section 5.2.2 giving an introduction to the different types of

exaplainable AI methods. Section 5.3 considers the need for explainability in the ML life-

cycle, including the potential roles of explainable AI methods. These potential roles are

then illustrated in Section 5.4 using an clinical case study of a DSS for weaning patients

from mechanical ventilation; the section also contains details on the development of the

DSS. This is followed by a discussion and conclusions in Sections 5.5 and 5.6, respectively.

5.2 Background and Related Work

5.2.1 Challenges of Assuring ML-based Systems

This section discusses established approaches to assurance of safety-critical systems and

identifies their limitations when dealing with systems employing ML.

We use the term assurance to mean confidence that the system behaviour is as intended

in the environment of use, where as intended includes being safe. In this context, we are

interested in assurance of patient safety when ML-based systems are used in a healthcare

context.

Most approaches to assurance emphasise verification and validation, although the

definitions of the terms can vary. The International Medical Device Regulators Fo-

rum (IMDRF) define the terms as follows:

• Verification – confirmation through provision of objective evidence that specified

requirements have been fulfilled [14];

• Validation – confirmation through provision of objective evidence that the require-

ments for a specific intended use or application have been fulfilled [14].

To interpret these definitions we can say that validation is concerned with building the

right system, including defining requirements that meet our intent and that verification

is concerned with building the system right by verifying that the system meets these

requirements. Verification & Validation (V & V) should encompass safety requirements

and, as previously explained, safety engineering methods can be used to identify hazards

and to assess risks. Where risks are deemed too high, DSRs are identified to reduce the
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likelihood of hazard occurrence, e.g. by controlling hazard causes, or to mitigate the

consequences of the hazard should it arise. Chapter 4 has shown how these established

safety engineering methods can be applied to ML-based systems in healthcare. However,

where requirements are not stated explicitly, explainable AI methods can help by providing

explanations that enable direct validation of the ML model as a whole, e.g. predictions

are based on valid clinical factors and consistent with clinical knowledge. In this chapter

we will show how explainable AI methods can contribute to safety assurance and provide

evidence to feed into a safety case.

There are a number of initiatives concerned with the assurance of ML in safety-critical

systems both in healthcare and more generally. For example, AMLAS defines a process for

assurance of the safety of ML-based systems to reflect the ML development life-cycle, which

identifies both evidence artefacts and argument patterns (standard forms of argument that

can be instantiated for a particular system) in GSN. AMLAS also considers issues of the

robustness of ML-based systems, e.g. response to unexpected inputs. The FDA also

proposed a total life-cycle regulatory approach for ML-based SaMD [15]. However, these

approaches are evolving in that they provide good high-level guidance and objectives, but

how to meet such objectives is not sufficiently detailed. The work we present here is

intended to be complementary to, and build on, these approaches and shows how XAI

methods can provide evidence to meet these objectives, and thus contributes to improving

their maturity.

In addition, it is always desirable to consider assurance “through life”, as proposed by

the FDA [15], not just as an activity undertaken prior to deployment. This includes getting

feedback from operations to check whether or not the assumptions made in pre-deployment

assurance activities are sound. This is even more important for ML-based systems than

it is for “conventional” systems because of the opacity of ML models. However, there

are other important aspects of using explainable AI methods for operational assurance for

ML-based systems including the need to show compliance with legal frameworks such as

the General Data Protection Regulations (GDPR) [186]. Further, as performance criteria

for ML models tend to give only statistical assurance, e.g. 93% accuracy, explainable

AI methods can have an important role in giving concrete insights to system users, e.g.

clinicians, related to a specific prediction. Explainable AI methods might also have a role

in accident and incident investigation, see [181] for a discussion, but this is outside the

scope of this chapter.
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5.2.2 Explainable AI Methods

The study of explainable AI methods seeks to provide insight into how and why ML

models make their predictions. Work on explainable AI includes formalising definitions

of explainability [187] [188], development of explainable AI methods themselves and es-

tablishing evaluation methods. In this section we provide a brief introduction to some

relevant explainable AI methods. There are many different ways to categorise explainable

AI methods, e.g. local or global based on the scope of the explanation. Here we present

explainable AI methods in three different classes based on the explanation generating

mechanism, as shown in Table 5.1.

Some ML models are perceived as intrinsically interpretable to the user, so we refer to

these as interpretable models. This includes linear/logistic regression, decision trees,

K-nearest neighbours, decision rules, Bayesian models, general additive models (GAMs),

etc. Note that, although normally these models are viewed as intrinsically interpretable,

when the number of input features are beyond human ability to grasp, e.g. when a decision

tree is very deep, it is still difficult for humans to interpret the model. In addition, these

interpretable ML models are often used as a surrogate to approximate other complex ML

models giving insight into the more complex ML model [171]. Figure 4.7 is an example of

using a simpler ML model, RF to approximate the complex RL model.

When it comes to explaining more complex ML models, e.g. NNs, which are not

intrinsically interpretable, a post-hoc explanation can be used to provide insights without

knowing the mechanisms by which the model works (e.g. by showing feature importance).

There are two main post-hoc explanation classes: feature importance and example-based

explanations. Feature importance is the more widely researched method [185], which can

be model-agnostic (explainable ML methods that work for any class of ML model) or

model-specific (explainable AI methods that work only for a given class of ML model).

Example-based methods were relatively recently proposed and are often model-agnostic.

We now describe each of these two classes in more detail.

5.2.2.1 Feature Importance Methods

Generally, feature importance methods for complex ML models try to build a simpler

model than the original one (sometimes known as the “explanation model”), as the original

model is hard to interpret. Lundberg [189] has pointed out that many current feature

importance methods use the same explanation model, which is a linear function summing
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the effects of all feature attributions to approximate the output of the original model;

methods that match this definition are called additive feature attribution methods.

Feature importance methods rank or score the input features based on their influence

on the model prediction. There are two main ways to obtain the feature importance score,

one is perturbation-based and the another is gradient-based.

Perturbation-based methods observe the difference between the original model pre-

diction and the prediction after perturbation by removing, masking or altering an input

feature or set of input features. This approach has wide applicability and can be used on

image, tabular, or textual data [190] [191]. For example, perturbation was implemented for

image classification by occluding different segments of an input image and observing the

change in the predicted probability of the classification [192]. There are several popular

perturbation-based methods.

Local Interpretable Model-Agnostic Explanations (LIME) [193] provides local explana-

tions by approximating a complex ML model with an interpretable model which can then

be used to explain the prediction. LIME is based on the assumption that it is possible to

fit an interpretable model around a single input sample that mimics the local behaviour

of the complex ML model.

Several perturbation-based explainable AI methods are based on Shapley values from

cooperative game theory [194], which provide a way to assign the gain from a cooperative

game to its players. Shapley values are used to explain a model prediction by treating input

features as the players and the model prediction as the gain resulting from the cooperative

game. Computing Shapley values is exponential in the size of the model input features,

hence approximate methods have been proposed, e.g. aggregation based methods [195]

and Monte Carlo sampling [196]. There are also approaches for graph-structured data

such as natural language text and images [197].

SHapley Additive exPlanations (SHAP) [189] is another approximation for Shapley

values. KernelSHAP is a model agnostic weighted linear regression approximation of the

exact Shapley value inspired by LIME. TreeSHAP [198] is an efficient estimation approach

for tree-based models and is model-specific. The work on SHAP has wider significance

as it has defined a new class of additive feature importance measures, unifying several

existing explainable AI methods [189].

Perturbation-based explainable AI methods tend to be very slow since they perturb

a single input feature or set of features at a time, so the computational cost increases as
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the number of input features in the ML model grows. Further as complex ML models are

typically nonlinear, explanation is heavily dependent on the (size of the) set of features

that are perturbed at the same time. In contrast, gradient-based methods are potentially

more efficient.

In essence, gradient-based methods calculate the gradient of the output with respect

to the input. For example, in an image classification task a “saliency map” is produced

by calculating the gradient of the output with respect to the input, identifying pixels that

have a significant influence on the classification [199]. There are a number of variants of

gradient-based methods. Gradient * Input multiplies the gradient (strictly the partial

derivative) by the input value to improve the sharpness of feature importance [200]. Sim-

ilarly, Integrated Gradients computes the average gradient of the output with respect

to each input feature by integrating from a baseline to the current feature value [201]. It

is one of the popular additive feature attribution methods. DeepLIFT (Deep Learning

Important FeaTures) [202] works with deep NNs and it is a good approximation to the

Integrated Gradients method [203]. Similar to integrated gradients, it also defines a

“reference activation” which is often viewed as “uninformative” in context, e.g. a totally

black image for image classification. It works by comparing the activation of each neuron

to its “reference activation” and uses the difference to determine an importance score for

each input.

5.2.2.2 Example-Based Methods

Example-based explanations explain the ML model by selecting particular instances from

the dataset or creating new instances. It comprises counterfactual explanation, adversarial

examples and influential instances, see Table 5.1.

Counterfactual explanations for ML models were introduced by Wachter et al

[204] but bear similarities to earlier work in psychology [205]. Counterfactuals can be

thought of as “what is not, but could have been”. Counterfactual explanation is intended

to produce a sparse human-interpretable example by changing some input features to

achieve a different output, for example, when the ML model predicts that the patient

should continue with mechanical ventilation, counterfactual explanations would provide

the clinician with information on which features related to this patient need to change,

such as successful completion of a Spontaneous Breathing Trial (SBT), in order to change

the prediction.
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Generally, given an input x, an ML classifier f , and a distance metric d, a counterfac-

tual explanation x′ which produces the desired output y can be generated by solving the

optimisation problem:

x′ = argmin{yloss(f(x′), y) + d(x, x′)} (5.1)

where yloss “pushes” the counterfactual x′ towards a different classification than the

initial input x, and the second term keeps the counterfactual x′ close to the initial input x.

There are four desirable properties for identifying good counterfactuals [171]. First, they

should achieve the desired outcome as closely as possible, which is related to the first term

in Equation 5.1. Second, the counterfactuals should be as close as possible to the original

instance, which is related to the second term in Equation 5.1, i.e. the distance measure.

Third, the counterfactuals should be sparse, i.e. an ideal counterfactual needs to change

only a small number of features from the original instance. Fourth, it is desirable to have

diverse counterfactuals, which can give the user a choice of what features to change, given

the feasibility of the change. On-going research seeks to incorporate these properties

in the loss function and optimisation methods. An overview of existing counterfactual

explanation methods for ML is provided by Verma et al [206]. In this chapter we used

the Diverse Counterfactual Examples (DiCE) method [207], which can produce diverse

counterfactual examples.

Adversarial examples are typically generated by adding small, intentional pertur-

bations to the input features to cause an ML model to make an incorrect prediction [208].

There are many techniques to create adversarial examples, e.g. by minimising the distance

between the adversarial example and the input instance, which is similar to counterfac-

tual examples. However, adversarial examples are intended to deceive the ML model

instead of interpreting the model. Therefore, the changes in the inputs are often imper-

ceptible for a human observer, which makes it more popular for use in object classifica-

tion [209] [210] [211]. For example, adversarial images have been added to the training

dataset to improve model robustness [212].

Influential instances are intended to identify which input instances have a strong

effect on the trained model by treating the model as a function of the training data rather

than fixed. Two approaches for identifying influential instances are often used – deletion

diagnostics and influence functions. Deletion diagnostics is not practical for big training

datasets as it needs to remove a single training instance every time to observe the effect

of this instance until the effect of all of the training data has been observed. Rather than
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deleting the training instance, influence functions up-weight the instance in the loss func-

tion by a very small amount in order to measure the effects of this instance on the model

parameters or predictions. It is an approximation method, but more computationally ef-

ficient which is especially important when the training dataset is very large (see Section

5.4.5 for more details on the use of influence functions).

Table 5.1: Categorisation of Explainable AI Methods with examples

Type of explanation Scope
Model Specific

/Agnostic
Examples of explainable AI methods

Interpretable Models Global Specific

A model by itself interpretable for the

user, e.g. linear/logistic regression,

decision tree

Post-hoc

explanation

Feature

importance

explanations

Local Agnostic LIME

Local Agnostic KernelSHAP

Local Specific TreeSHAP

Local Specific Gradient * Input

Local Specific Integrated Gradient

Local Specific DeepLIFT

Example-

based

explanations

Local Agnostic Influential instances

Local Agnostic Counterfactual explanations

Local Agnostic Adversarial examples

5.3 Explainability in the ML Life-cycle

In order to influence the design of ML, it is most useful to consider safety assurance in

the context of ML development process. Therefore, we also explore the role of explain-

ability in assuring safety of ML in the context of the ML development process. Different

development processes have been proposed, but the essence of them are ultimately the

same. For example, CRISP-DM includes six different phases, i.e. business understanding,

data understanding, data preparation, modelling, evaluation and deployment [213]. Here

we simplify the phases of the ML development process to include data management, ML

algorithm selection, model learning and model V & V, as shown in Figure 5.2 with an ex-

plicit representation of the deployment decision. One can consider that data management

is comparable to the first three phases of CRISP-DM, ML algorithm selection & model
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learning are comparable to modelling in CRISP-DM, and model V & V is comparable to

evaluation in CRISP-DM. Although here we show the four activities in sequence, in reality

the ML development process is inevitably iterative.

Figure 5.2 also shows the relevant stakeholders who might be interested in the ex-

planations in the different phases. Our focus here is on the development activities, but

we briefly consider the potential role of explainability in operation, see Section 5.3.5; for

a discussion of the wider role of explainability including incident and accident investiga-

tion see my previous publication [181]. In the rest of this section we discuss the role of

explainability against each stage of the development process shown in Figure 5.2.

Data 
management

ML 
algorithm 
selection 

Model 
verification 
& validation

Developers

Authorities*
Operation

Users
Assessment & 
improvement

Deployment 
decision

Development process

* may involve regulators,
hospital managers,
developers, insurers

Model 
learning 

Figure 5.2: Process for development and operation of an ML System

5.3.1 Data Management

The first phase of the ML development process is data management. The Royal Soci-

ety’s Policy Briefing on Explainable AI emphasises that data quality and provenance is

part of the explainability pipeline, specifically saying that “Understanding the quality and

provenance of the data used in AI systems is therefore an important part of ensuring that

a system is explainable” [214]. This includes showing that the data comes from appro-

priate sources to address the problem concerned by the ML model. A widely accepted,

harmonised framework for assessment of EHR data quality highlights conformance, com-

pleteness and accuracy [215]; we prefer accuracy to the original term plausibility because
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plausibility means that the values are in the possible range but accurate means that the

data is not only possible but correct. These criteria would be applicable to any ML sys-

tems developed using EHR data. In addition to these three criteria we also identify data

relevance and data balance as being particularly important to the development of ML

models [182] [216]. As real world data may contain biases, contain errors, and be incom-

plete, explaining how these five criteria are met can be at least as important as explaining

the ML model itself.

For safety assurance, a safety case would need to address all five of the criteria. The

evidence to ensure data quality is essentially technical, for example data conformance

would include showing that data observes defined formats, e.g. correct units for weight

[215]. However, demonstrating data relevance and data balance would include a judgement

that the training data contained clinically relevant factors, are balanced for the problem

being addressed; to do this requires clinical expertise. However, we acknowledge that often

it is not possible to choose data that gives both feature balance and class balance. Instead,

it might be useful to explain that some important features are balanced, e.g., gender, if

the model is intended to be used for both male and female patients. In terms of class

balance, this has long been an active research area in ML community [217]. It should be

noted that data management is both crucial and labour intensive. Indeed, it may consume

more effort than the rest of the ML life-cycle. Thus, arguments about data management

will be an important part of the ML safety case.

5.3.2 ML Algorithm Selection

The second phase in the development process is ML algorithm selection (also referred to

as model selection; here we use the term ML algorithm selection to avoid the confusion

with model selection in the training phase where the ML algorithm is the same but hyper-

parameters of the model are tuned to be different). It is important to understand what

kind of problem is being addressed and what kind of ML methods are suitable for the

problem at hand. For example, if the problem is to identify optimal treatments in health-

care, then RL might be more appropriate than others, as RL is widely used in complex

decision making tasks to find an optimal policy [22]. On the other hand, if the problem is

image classification then NNs might be more appropriate. In addition, another important

aspect to consider at this stage is the explainability of the ML model. In Section 5.2.2

we identified that some ML models are intrinsically interpretable whereas others need to
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be supplemented with post-hoc explainable AI methods. Guidelines on model selection,

balancing model performance against explainability, have been proposed [218].

When it comes to ML algorithm selection, safety requirements are often implicitly

transformed into explainability and performance requirements. Note that sometimes peo-

ple make statements such as “use of deep NNs is not safe”. When they make this kind of

statement, they are implicitly making the judgement that deep NNs are opaque, i.e., not

explainable. This is why we argue that safety requirements are partially, but not wholly,

transformed into explainability requirements. It would be ideal to have an interpretable

model which can achieve performance as high as black box models. When this is not the

case, a trade-off between explainability and performance would be necessary [218] and

post-hoc explanations should be considered either in later phases of development or in

operation to produce effective explanation. The rationale for the ML algorithm choice,

including the performance-explainability trade-offs, needs to be documented in the safety

case.

5.3.3 Model Learning

The third phase in the development process is model learning. For model learning, hy-

perparameter selection, loss function definition and class balance need to be considered in

order to meet safety requirements. In addition, explainable AI methods can help in terms

of failure class understanding and robustness. At this stage two particular explainable AI

methods are relevant. One is adversarial examples and the other is influential instances,

see Section 5.2.2:

• Adversarial examples are often added to training data to improve model robustness

in object classification tasks. This is often referred to as adversarial training or

robustness training [219] [212]. This is becoming widespread in domains such as

autonomous vehicles, for example in improving performance at reading road signs

under adverse conditions [220], but we believe it has wider applicability, e.g. for

image classification in radiology.

• Influential instances are useful for “model debugging” as they can help to under-

stand model behaviour and predictions by treating the model as a function of the

training dataset, rather than being fixed [171]. Due to the computational cost, in-

fluential instances have not been widely used until recently with the availability of

93



Chapter 5: The Role of Explainability in Assuring Safety of Machine Learning

more efficient algorithms such as influence functions which have made it possible to

implement the approach on large datasets [221]. Due to these algorithmic improve-

ments, the use of influential instances will increase, helping to determine what data

to include or to exclude in the model training in order to improve model prediction

and help to debug the model.

Note that these forms of explainable AI methods are of particular interest to ML

model developers, but they help to ensure the soundness of the learning process and thus

contribute to safety assurance.

5.3.4 Model Verification and Validation

The final phase in the development process is model V&V. We believe that explainability

has a general role in validation but could also have a role in verification if there are

specific explainability requirements to verify. However, such explainability requirements

need to be defined in a specific situation, therefore our focus here is on validation. We

derived three distinct objectives, reconciling approaches proposed by the FDA [15] and

the IMDRF [14], which reflect key criteria for use of ML models in healthcare, although

we note that explanations cannot guarantee that all these criteria are met [214] [218].

First is performance, which can be measured using standard ML practices, e.g. evalua-

tion of the proportion of false positives and false negative, or AUC-ROC. This is necessary

but not sufficient to assure safety of ML, see [181].

The second objective is analytical or technical validation, showing that the software

for ML models is correctly constructed, and that it is accurate and reliable. Further, the

ML models produce repeatable results, giving the same predictions from the same inputs.

This objective can be met by employing established safety-critical software development

practices including formal specifications, traceability from specification to implementation,

use of test coverage criteria and static code analysis methods [130]. We do not see a role

for explainable AI methods for this aspect of validation.

Third is clinical validation which measures the ability of the system to generate a clin-

ically meaningful output associated with the intended use of the system in its operational

environment. Here we define two specific sub-objectives where we believe explainable AI

methods have a role in supporting clinical validation:

• Clinical association – demonstrate that the association between the system output

94



5.3 Explainability in the ML Life-cycle

and the targeted clinical condition in the intended population is supported by evi-

dence;

• Robustness – demonstrate the ability to distinguish the different classes of intended

condition or recommended treatment without over-reliance on a specific input fea-

ture.

Feature importance explanations can help to demonstrate clinical association by show-

ing that the output predictions are based on clinically meaningful and relevant factors of

the input. This involves ranking input features based on their importance score or con-

tribution score and making the rankings visible to clinicians so that they can exercise

clinical judgement. In addition, this goal links back to data relevance and data balance,

as data balance is directly related to the intended user population for the ML system,

such as gender balance as we mentioned above. Thus clinical association is addressed

from two perspectives: input features are relevant (data relevance) and outputs are based

on relevant inputs (feature importance).

Example-based methods, especially counterfactual explanations, can help to assess

model robustness. As mentioned in Section 5.2.2 counterfactuals are generated by min-

imising the distance from the original input but producing a different prediction. There-

fore, the further the distance from an initial input to a counterfactual, the more robust the

ML model is, i.e. the model is “harder to fool”. Thus the distance measure between the

initial input and its corresponding counterfactuals can be used to define a robustness score

for the ML model, see for example [222]. In an extreme case, if only one feature changed

in the counterfactual examples from the original instance, this is analogous with a “single

point of failure” which is a situation that needs to be avoided (the concept has origins in

nuclear safety engineering [223] but is now quite widely used in critical industries). Thus,

counterfactuals can also help show that this standard safety criterion is met if multiple

input features have to change to produce a different classification.

The use of explainable AI methods in support of ML model V & V will contribute evi-

dence to the safety case, complementing other activities including performance assessment

and safety-critical software engineering. It should be noted that explanations should be

re-generated when the ML models are updated so that they accurately reflect the state of

the models.
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5.3.5 Operation

As discussed in Section 5.2.1, assurance should be considered to be a “through life” ac-

tivity. This would include, for example, a clinician seeking assurance about a particular

prediction, especially if acting on it can have a profound impact on patient safety. Explain-

able AI methods can play a role here. Local feature importance explanation is relevant

but counterfactual examples also have a role, for example, helping a clinician to decide

whether or not a proposed change in treatment is likely to bring about the desired effect

for a particular patient. Again, the role and significance of explainability in operation is

examined in more detail in [181].

5.4 Clinical Case Study: Weaning from Mechanical Venti-

lation

This section presents our case study of weaning patients from mechanical ventilation. It

describes the construction of the DSS covering each stage of the development process

described in Figure 5.2, illustrating the use of explainable AI methods where appropriate.

The role of the explainable AI methods in a safety argument is then shown in Section 5.4.8.

The section starts by presenting the clinical context of weaning from mechanical ventilation

and outlining the issues in defining a suitable DSS to support weaning decision-making.

5.4.1 Clinical Background

Mechanical ventilation via an endotracheal tube, sometimes also called invasive mechanical

ventilation, is one of the most widely used interventions for patients admitted to Intensive

Care Units (ICUs). Mechanical ventilation is a life-saving medical procedure used to assist

or replace spontaneous breathing for patients with acute respiratory difficulties. Studies

have shown that around 40% of ICU patients require invasive mechanical ventilation [224].

This consumes significant ICU resources with estimated daily costs around £1,738 in the

UK [225] and $2,300 in the US [226].

Weaning patients from mechanical ventilation covers the process of liberating the pa-

tient from mechanical support and removing the endotracheal tube (extubation). Time

spent in this weaning process occupies a significant proportion of the total duration of

mechanical ventilation [227]. Assessment of weaning readiness is a complex clinical task,

which often includes determining whether or not the underlying disease of the patient
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has been successfully treated, together with haemodynamic stability, the patient’s level of

consciousness, and the current values for ventilator settings. The final stage is often to

conduct a series of SBTs, using either unsupported T-piece breathing or low-level Pressure

Support Ventilation (PSV) over at least 30 minutes [228].

Despite advances in medical knowledge, weaning too early or too late are problem-

atic. Delays in assessing readiness to wean are a common cause of late weaning. As a

consequence, patients with prolonged ventilation might experience airway trauma, post-

extubation delirium, drug dependencies, ventilator induced pneumonia, other forms of

increased morbidity and even higher fatality rates [229] [230] [231]. There are also non-

clinical effects including increased costs and greater strain on hospital resources, e.g. it

has been reported that patients on prolonged ventilation use 37% of ICU resources [232].

On the other hand, premature extubations may lead to extubation failure, where re-

intubation is required within 48-72 hours. Studies have shown that up to 25% of pa-

tients suffer extubation failure due to recurrence of respiratory insufficiency and require

re-intubation [233], which can cause severe patient discomfort and result in even longer

stays in the ICU with associated increases in cost and resource demands [234]. As with

delayed extubation there can be increased fatality rates [235].

Considering the risks of prolonged dependence on mechanical ventilation and prema-

ture extubation, it is important to identify the ideal time point for weaning from mechan-

ical ventilation from both a patient and healthcare provider point of view. However, there

is no consensus on a standardised weaning protocol [236], even though they can be of ben-

efit [237]. In practice protocols can vary between institutions, and may include different

parameters [238]. This is mainly due to uncertainty, so an automated prediction model to

indicate when extubation may be appropriate is likely to be helpful to clinicians seeking

to make better-informed decisions.

5.4.2 Designing a Decision Support System

A number of projects have investigated DSS for weaning. Given the variation in weaning

protocols and the clinical uncertainties it is perhaps unsurprising that a wide range of

features have been considered for predicting extubation failure. These include demographic

information (e.g., age, reason for intubation) [239], vital signs (e.g., heart rate, respiratory

rate) [240], blood gas analysis (e.g., sodium, potassium, serum anion gap, oxygen/carbon

dioxide partial pressure) [241], and respiratory parameters (e.g., duration of mechanical
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ventilation, tidal volume) [239] [242]. What is striking is the variation in the factors used

in different studies:

• subjects’ age, reasons for intubation, duration of mechanical ventilation, Acute Phys-

iology And Chronic Health Evaluation (APACHE II) scores, and breathing patterns

obtained during a 30-minute SBT [239];

• tidal volume, minute ventilation, breathing frequency, and maximum inspiratory

pressure [242];

• pre-extubation serum anion gap values and ratio of arterial oxygen partial pressure

to fractional inspired oxygen (P:F ratio) [241];

• signal power of the respiratory flow obtained during the inspiratory phase [243];

• cardiorespiratory behaviour [244] and respiratory pattern parameters [245].

Generally, these studies use small numbers of features in training and prediction. In

contrast, one approach employing RL uses 32 features [246]. Some work reports systematic

approaches to identifying the relevant features. One study has sought to identify relevant

features by comparing all combinations of three features from a total of 57, [240] eventually

selecting 6 features from the best two models. Work using a Light Gradient Boosting

Machine [247] initially considers 92 features and reduces them to 36 for the final model.

This work [247] and the RL approach [246] analyse feature importance to help to interpret

the models.

Most of the previous work, as shown above, predicts extubation outcomes, therefore we

decided to build a richer model that monitors patient states every hour. This is different

from, and complements the existing work and it can help clinicians choose the most ap-

propriate action at each time step, e.g. continuing intubation or commencing extubation,

including initiation of an SBT. The case study also illustrates the role of explainable AI

methods, as presented in Section 5.3. In addition, it also includes explanation for data

management by first presenting the rationale for data inclusion. The case study illustrates

many, but not all, of the explainable AI methods for safety assurance in the context of

ML development, and also briefly indicates the potential role of explainable AI methods

during operation.
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Assessed for eligibility/ undergoing invasive ventilation (n = 8860)

Successfully discharged adult undergoing invasive ventilation (n = 7328)

Excluded (n = 1532)
• Not adult  (n = 12)
• Not successfully discharged from the hospital  (n = 1521)  

Excluded (n = 4643)
• Any of the considered features i.e. 25, 

not documented or erroneous input 

Well formed successfully discharged adult cohort (n = 2685)

Excluded (n = 386)
• Experienced extubation failure (n=249)
• Ventilator support less than 8 hours (n =137) 

Included (n = 2299)

Train dataset  
(n = 1839)

Validation dataset 
(n = 229)

Test dataset 
(n = 231)

Figure 5.3: Patient inclusion diagrams in MIMIC-III

5.4.3 Data Management

Data to train the ML models was extracted from MIMIC-III [166]. We initially selected

8,860 admissions who underwent invasive mechanical ventilation from the dataset. We

excluded non-adult patients and also those who died in the hospital as these fatalities can

be caused by factors that are beyond the weaning process, in line with other work [246]

[247]. This resulted in 7,328 adult patients who were successfully discharged following

invasive ventilation, see Figure 5.3.

Based on the literature surveyed, e.g. clinical studies of “protocolized” weaning [248],

and clinical judgement, we extracted 25 features including patient demographics, e.g. age,

gender, ethnicity, laboratory tests, e.g. arterial pH, and vital signs, e.g. heart rate,

oxygen saturation (SpO2), and ventilator information, e.g. ventilator mode, Positive End-
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Expiratory Pressure (PEEP), and mean airway pressure as shown in Table 5.5. Also,

the feature correlation matrix is presented in Appendix C. We took the patient data and

produced a series of records with values for the features on an hourly basis, for each patient

from when the ventilator mode was recorded until the last time it was recorded. This

ensured that the records covered the whole invasive ventilation period and also the non-

invasive ventilation support period (NB non-invasive modes were also included). Where

multiple values for a feature were available in an hour, they were averaged. Further, some

features in MIMIC-III are not available for every hour so they had to be estimated. We

used the previous valid value, if available, to fill in the gaps, i.e. forward propagation; if

there was no valid previous value then back propagation was used. After this process, if

a patient record still had missing values for some features, i.e. no values were recorded

during the period considered, or was obviously erroneous then they were deleted. This

processing resulted in a well-formed, successfully discharged adult cohort of 2,685 patients,

see Figure 5.3. The main reason for the substantial reduction in number of patients is the

absence of values of some features, so these patient records had to be discarded as deep

learning will not accept missing data during training.

As a further processing stage we excluded patients who had ventilation support for less

than 8 hours as they were likely to be undergoing routine ventilation following elective

surgery. Post-operative extubation presents a minimal risk of adverse extubation outcomes

and it was not our intention to consider such cases in this work.

There is a question about whether or not to include patients who had extubation

failure which we defined as the need for re-intubation within 48 hours to be consistent with

previous studies [228] [249]. Figure 5.3 shows that patients who experienced extubation

failure were excluded, producing a final cohort of 2,299 patient admissions for use in our

study. The rationale for this choice is presented in Section 5.4.5 where we consider the

use of influential instances to understand the effects of including patients who suffered

extubation failure.

Here we summarise the rationale for the data management in terms of the five criteria

introduced in Section 5.3.1, based on the description above:

• Conformance – data for different patients are all processed using the same units, e.g.

all of the weights are in kilograms;

• Completeness – missing feature values at each hour are established by forward and

backward propagation when it is possible; if records are still incomplete, then they
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are discarded;

• Accuracy – outliers are corrected using clinical knowledge when it is possible and

discarded otherwise;

• Data relevance – the chosen features are based on the previous literature, see Section

5.4.2;

• Data balance – in the included cohort, 40% of the patients are female and 60% are

male. The class balance for continued intubation and extubation are considered

during the training, and a weighted loss function is used to guide the training.

5.4.4 ML Algorithm Selection

ML algorithm selection is strongly influenced by performance, as previously indicated.

Here we use the performance metrics introduced in Section 2.1.5 to evaluate candidate

ML models.

CNNs make predictions by extracting features without explicit, pre-defined knowledge

of what is important in the data. CNNs have proven useful in image analysis, and their

application has been explored in various other domains such as time series forecasting and

data generation. The rationale for considering using a CNN for this task is that they are

fast at run time and have the potential to produce accurate predictions for the type of

tabular data employed here, see for example [250] [251] [252] [253].

Figure 5.4: Performance of ML models

CNN Convolutional Neural Network

ANN Artificial Neural Network

LR Logistic Regression

SVM Support Vector Machine

DT Decision Tree

RF Random Forest

Table 5.2: Legend for Figure 5.4

For the case study, the performance of a number of ML models, including CNNs,

were evaluated on the same dataset to support model selection, see Figure 5.4 and Table
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Table 5.3: Performance comparison with different ML classifiers

Methods Accuracy Precision Recall F1-Score AUC

CNN 86% 82% 86% 84% 0.94

ANN 85% 84% 76% 79% 0.76

Logistic Regression 82% 78% 84% 79% 0.83

Support Vector Machine 70% 61% 61% 61% 0.61

Decision Tree 81% 76% 74% 74% 0.74

Random Forest Tree 87% 90% 77% 80% 0.77

5.3. CNNs have the best performance and more importantly achieve better performance

than intrinsically interpretable ML models such as logistic regression, but the performance

difference is still considerable. As mentioned in section 5.3.2 there is a trade-off between

performance and explainability. If performance over-rides the need for explainablility, then

CNN should be chosen. On the other hand, if intrinsic interpretability is more important,

then logistic regression should be chosen. In this case study, CNNs have been chosen, and

post-hoc explainable AI methods can be used to help to explain the model, see the rest of

the section for details.

For completeness, we now give a brief overview of our CNN architecture. In CNNs,

convolution computations are generally followed by non-linearities, also known as activa-

tion functions. The most commonly used activation is the Rectified Linear Unit (ReLU),

given by ReLU(x) = max(0, x), where the response of a network is zeroed for negative val-

ues of the features learnt. Stacking multiple layers of convolutions and activation functions

together extracts features in a CNN. These features are then passed into fully connected

layers that learn to make the prediction.

The architecture of our CNN went through extensive tuning. The input features are

passed through a series of 4 convolution layers with filter sizes 64, 128, 256, 256 and

dropout is used in the final convolution layer. The output from this convolution layer is

then flattened and passed into a fully connected layer of size 128 nodes which is then fed

into the output layer, making the prediction through a sigmoid function with a threshold

set at 0.5. The architecture of the CNN model is summarised in Table 5.4.

5.4.5 Model Learning

As we indicated in Section 5.3.3 there are two explainable AI methods that can be useful

at this stage: adversarial examples and influential instances. Because adversarial examples
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Table 5.4: CNN architecture

Conv1D with 64 filters of Kernel size 1

Conv1D with 128 filters of Kernel size 1

Conv1D with 256 filters of Kernel size 1

Conv1D with 256 filters of Kernel size 1

Dropout with probability 0.5 of leaving out units

Fully connected layer with 128 neurons

Sigmoid output

are difficult to generate for tabular data, here we focus on the use of influential instances in

their role for “debugging” ML models. This shows how they provide assurance about the

appropriateness of the ML model learning process, in the context of the safety requirement.

When preparing the dataset for the case study, one issue that came up was whether

or not to include the extubation failure patients. As mentioned earlier, extubation failure

is defined as the need for re-intubation within 48 hours [228] [249]. Some of the literature

suggests that premature extubation could cause extubation failure [254]. Therefore, the

label in the dataset for extubation failure patients might not be optimal, so it might

negatively influence the prediction. We can view this as a failure class as explained in

Section 5.3.3. To explore this issue further, we trained two CNN models to predict the

readiness for extubation in the next hour in order to observe the effect of extubation

failure patients. In the first model, we excluded all of the extubation failure patients

in the training dataset. In the second model, we included all of the extubation failure

patents in the training dataset. The accuracy of the second model is slightly reduced by

comparison with the first model. We randomly picked one of the test instances that was

“interesting” in that the two models produced different predictions. For this instance,

the first model predicted the patient should continue to be intubated, which is also the

true (correct) label. However, the second model predicted that the patient was ready

for extubation in the next hour. We used influence functions to identify the influential

training instances for this test instance.

The key idea behind influence functions is to up-weight the loss of a training instance

by an infinitestimally small step ϵ, which results in new model parameters:

θ̂ϵ,z = argmin(1− ϵ)
1

n

n∑
i=1

L(zi, θ) + ϵL(z, θ) (5.2)
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where θ is the model parameter vector and θ̂ϵ,z is the model parameter after upweighting

z by ϵ. L is the loss function used for training the model. The influence of upweighting z

on the parameters θ̂ given by Cook and Weisberg [255] is as follows:

Iup,params(z) =
dθ̂ϵ,z
dϵ

|ϵ=0= −H−1

θ̂
∇θL(z, θ̂) (5.3)

Where Hθ̂ is the Hessian matrix and ∇θL(z, θ̂) is the loss gradient with respect to the

parameters for the training instance z. Next, we can apply the chain rule to calculate the

influence of upweighting instance z on the loss of a test instance ztest:

(5.4)

Iup,loss(z, ztest) =
dL(ztest, θ̂ϵ,z)

dϵ
|ϵ=0

= ∇θL(ztest, θ̂)
T dθ̂ϵ,z

dϵ
|ϵ=0

= −∇θL(ztest, θ̂)
TH−1

θ̂
∇θL(z, θ̂)

Training instances

−
I u

p
,l
o
s
s

Figure 5.5: Top 30 most influential training instances
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Figure 5.6: Distribution of influential instances

In this work, we use the influence functions algorithm developed by Koh and Liang [221]

to calculate −Iup,loss(zi, ztest) for each training instance zi for this test instance. Figure
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5.5 shows the top 15 helpful training instances (most positive −Iup,loss(zi, ztest)) and the

top 15 harmful training instances (most negative −Iup,loss(zi, ztest)) for this test instance.

From the figure, it shows there are three instances of patients who had extubation failure

among the harmful training instances, which indicates that including the extubation failure

patients made the predictions for the test instance worse. Figure 5.6 shows some of the

most influential data points (magnitude of −Iup,loss(zi, ztest) is large) from the extubation

failure patients and that more of them have a negative influence than a positive influence.

This suggests that the inclusion of extubation failure could make the prediction ready

to extubate when it is not the case. Thus, we decided to exclude the extubation failure

patients from the training dataset and the first CNN model was taken forward to the

V&V stage. In a more general situation when prior knowledge is not available, i.e. we

don’t know what subset of the data could be problematic, we can still choose a test

instance where the prediction is wrong and identify the influence of the training instances

on this prediction. Then, further investigation could be done to understand what input

features strongly impact the influence score, e.g. by perturbation [221] or by using decision

trees [171]. The performance for the chosen training dataset, with the CNN architecture

described in Table 5.4, is shown in Figure 5.4.

In summary, the use of influential instances has helped to show an appropriate process

for meeting safety requirements and it explicitly contributes to the safety requirement “to

extubate in a timely manner”.

5.4.6 Model Verification and Validation

In this section, we focus on clinical validation, as set out in Section 5.3.4, and illustrate

the use of explainable AI methods for demonstrating clinical association and robustness.

We do not consider analytical validation here.

5.4.6.1 Feature Importance Explanations

Here we illustrate the role of feature relevance in satisfying the clinical association safety

assurance objective. This is done using DeepLIFT [202] which is a model-specific XAI

method for deep NNs. When explaining deep NNs, the features are the set of inputs to

the model. DeepLIFT compares the activation of each neuron to its “reference activation”

and attributes to each input feature an importance score based on the difference. The

“reference activation” is obtained through some user-defined reference input and in this
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case, the reference sample is the minimum values of all of the input features obtained from

the data set. We chose this method for two main reasons. First, it deals effectively with

discontinuities in the gradient of the CNN model as it uses a difference from reference

approach. Second, it avoids the problem of model saturation where using gradients would

just assign zero to the features [202].

An overview of the results of using DeepLIFT is shown in Fig. 5.7; these values are

averaged over the whole dataset, so this can be viewed as global feature importance. The

feature ranking correlates well with clinical expectations, helping to give confidence in the

model. Those features that score near zero in Fig. 5.7, e.g. ethnicity, gender and age, have

little influence on the weaning decision, which is as expected. The top five features also

align with clinical evidence. Patients who are undergoing invasive mechanical ventilation

are often sedated to maintain physiological stability and to control pain levels. Sedation

is reflected in the Richardson Agitation Scale (RAS) with negative values representing

sedation and 0 meaning that they are alert and calm, thus more likely to be suitable for

extubation. This is consistent with the first entry in the weaning checklist used in [256] that

patients are “cooperative and pain free”. The second most important feature is “Inspired

O2 fraction” which is the third checklist entry in [256]. The third most important feature

is “ventilator category”, which is the mode used for ventilation and is under direct clinician

control; some modes are unsuitable for spontaneous breathing so cannot easily support

weaning. The fourth and fifth most important features, peak inspiratory pressure and

positive end-expiratory pressure (PEEP) set are airway pressures representing how hard

the ventilator is having to work; PEEP is also the third entry in the weaning checklist

in [256].

Here we have demonstrated valid clinical association through clinical evidence (relevant

literature support) and expert opinion (consultation with clinicians). Overall, the benefit

of the feature importance results is that they enable clinical judgement to be applied

despite the opacity of the CNN model which contributes to safety assurance. Also, feature

importance is of most value in making the behaviour of the ML model visible to clinicians,

rather than directly to patients.

5.4.6.2 Counterfactual Explanations

The final concern in model V&V is robustness of the ML model and here we show how

to use counterfactuals to demonstrate robustness. Table 5.5 shows a set of counterfactual
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Figure 5.7: Feature Importance for the CNN Model

examples for a particular patient identifying which features need to change in order to

“flip” the prediction from continued intubation to extubation. The left hand column

shows the 25 features used by the model and the prediction of the ML model is included

in the bottom row. The original instance is shown first, with the four rightmost column

showing counterfactual examples. These counterfactual examples have been generated

using DiCE [207]. Certain features cannot be varied, e.g. age and gender; the dashes in

the rightmost four columns indicate no change from the original input. The change in

prediction is shown in the bottom row.

Identifying counterfactual examples is undertaken by minimising the distance from

the original instance to a counterfactual that produces a different prediction. Thus, given

the way these counterexamples are generated, it can help to gain confidence in model

robustness and the absence of single points of failure. In this case, as shown in Table

5.5, the minimum number of features that have to change to “flip” the prediction is five,

showing robustness for this instance. However, one instance is not sufficient to show ML

model robustness. More of the input instances in the dataset need to be investigated in

order to generate a robustness score as defined in [222].

Another use of counterfactual examples to inform clinician judgement is considered in

Section 5.4.7. Further comparison of counterfactuals to feature importance is presented
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Table 5.5: Counterfactual examples for a given original instance

Features Original instance
Counterfactual Examples

1 2 3 4

Admit Type Emergency — — — —

Ethnicity White — — — —

Gender Female — — — —

Age 78.2 — — — —

Admission Weight 86.5 — — — —

Heart Rate 119 — 110 — —

Respiratory Rate 24 26 — — 21

SpO2 98 — — 96 —

Inspired O2 Fraction 100% — 40% — —

PEEP set 10 5 5 5 0

Mean Airway Pressure 14 — 10 — 10

Tidal Volume (observed) 541 — — 560 —

PH (Arterial) 7.46 — — — —

Respiratory Rate(Spont) 0 — 24 — 21

Richmond-RAS Scale -1 — 0 — 1

Peak Insp. Pressure 21 — — — —

O2 Flow 5 — — — 10

Plateau Pressure 19 — — — —

Arterial O2 pressure 124 108 118 — —

Arterial CO2 Pressure 33 — — — —

Blood Pressure (systolic) 101 — — — —

Blood Pressure (diastolic) 65 — — — —

Blood Pressure (mean) 76 — — — —

Spontaneous breathing trials No result
Successfully

Completed

Successfully

Completed

Successfully

Completed
—

Ventilator Mode
CMV/ASSIST/

AutoFlow
PCV+ SIMV/PSV SIMV/PSV CPAP/PPS

Predicted outcome 0.93 0.44 0.17 0.36 0.46

in discussion, Section 5.5.1.

5.4.7 Operational use of the ML Model

The operation of ML models is often uncertain. Thus, there is merit in extending the

notion of assurance to operation, providing support to a clinician to give confidence to

act on the particular model prediction. One way of approaching this is to use local

108



5.4 Clinical Case Study: Weaning from Mechanical Ventilation

explanations.

Figure 5.8 visualises the feature importance values for a single patient, i.e. local

feature importance. Here, a positive feature importance score contributes to moving the

output towards intubation being continued. In contrast, a negative feature importance

score contributes to moving the output towards extubation. The sum of the positive

contributed features are far greater than the sum of the negative contributed features,

thus the prediction for this patient, for the next one hour, is to remain intubated.

Figure 5.8: Feature Importance for a Single Patient

However, clinicians might want to find out when the patient would be ready to ex-

tubate. This brings us back to counterfactuals. The counterfactual examples shown in

Table 5.5 are for the same patient shown in Figure 5.8, and could potentially help the

clinician to identify actions to take so that the patient becomes ready to extubate. As

shown in the table, it is beneficial to generate multiple counterfactual examples, so that

the clinicians can choose one that is most practical to implement. In the counterfactual

examples shown, changes in the ventilator mode and SBT successfully completed would

both indicate progress towards extubation. Note our model has not been used in operation

yet, so the material presented here just illustrates the possibilities.

5.4.8 Safety Arguments

As with the other case studies, the safety argument is presented using GSN. Figure 5.9

presents a partial safety argument for the weaning case study, emphasising the role of

explainability. The top goal (G0), which states that the ML model meets its safety re-

quirement, is set out in the context of the definition of the ML model and the associated

safety requirement – that “prediction of readiness for extubation is timely”.
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Figure 5.9: Partial Safety Argument for Weaning ML Model emphasising Explainability

The top-level argument strategy is a decomposition across the stages of the develop-

ment process. We consider each of the goals in turn. The argument shows solutions for

all the goals, with the exception of G5, as this is analytical/technical validation which is

not covered in the case study. The amber solutions (S3, S5 and S6) reflect explainable AI

methods.

G1: Data satisfies the five criteria – this is supported by the analysis in Section 5.4.3

(S1) showing that the data meet the five criteria: conformance, completeness, accuracy,

data relevance and data balance introduced in Section 5.3.1.

G2: Model selection reflects explainability – this is supported by the analysis in Sec-

tion 5.4.4 (S2) which shows that the CNN outperforms other available ML methods, and

suitable post-hoc explainable AI methods are available.

G3: Model learning reflects safety requirement – this is directly, but partially, sup-

ported by the use of influential instances (S3) which show the rationale for excluding

extubation failure patients. Note that other evidence is needed (hence the goal is shown
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as needing development), e.g. to show appropriateness of parameter selection for training

the model.

G4: Model V & V shows safety requirements met – this is broken down into G5: an-

alytical/technical validation, which is undeveloped, G6: performance demonstrated sup-

ported by S4 and G7: clinical validation which is decomposed into two sub-goals covering

the V&V criteria introduced in Section 5.3.4.

G6: Performance demonstrated – this is directly supported by the AUC-ROC perfor-

mance in Figure 5.4 and other metrics shown in Table 5.3 (S4) which shows the superiority

of the CNN performance to other ML models.

G8: Valid clinical association demonstrated – this is supported by the feature impor-

tance (S5) although it should be noted that clinical judgement is needed to assess the

appropriateness of the feature ranking.

G9: Robustness demonstrated – this is partially supported by the counterfactuals in

Table 5.5 (S6) (this is a partial solution to G9 as the explanations only relate to a single

prediction, and there are also other ways to demonstrate robustness).

As noted above, this argument is incomplete and the evidence presented in this chapter

should not be taken as sufficient to justify deployment of the CNN model described here

in a clinical context. However, it is a valuable part of an overall safety case.

5.5 Discussion

Safety assurance of ML models in healthcare is an active area of research. Although

explainability is often said to help in safety assurance of ML, no work so far has explored

the possibilities systematically and identified precisely how explainability can help safety

assurance. This chapter seeks to fill this gap. We illustrated how explainability can help

in safety assurance in the context of the ML development process. Explainability used

here includes explaining the data and the use of explainable AI methods to reflect the

Policy Briefing on explainable AI from the Royal Society [214]. The role of the different

explainable AI methods in the development and operation phases is summarised in Table

5.6 along with the interested stakeholders. We first extrapolated the safety objectives at

the different stages of the ML development process. Then we used a concrete healthcare

case study to demonstrate how explainable AI methods can help to meet these safety

objectives, particularly in model learning and model V&V. Specifically, we have shown

the value of influential instances for model learning, which is of particular interest to ML
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developers. Further, we have shown the value of feature importance and counterfactuals

in model V&V, which is of particular interest to ML developers, regulators and others

involved in deployment decisions, see Figure 5.2. In this section, we first discuss the

relationships we observed between feature importance and counterfactuals. Then, we

discuss the other complementary methods that can also help safety assurance of ML.

Table 5.6: Role of Explainable AI Methods in the development and operation phases

Phases Activity Explainable AI methods Stakeholders

Development

Data Management N/A

ML developers

Regulators

Hospital managers

ML Algorithm Selection
Trade-off performance &

explainability
ML developers

Model Learning
Adversarial examples

Influential instances
ML developers

Model V & V
Global feature importance

Counterfactual explanations

ML developers

Regulators

Hospital managers

Insurers

Operation Decision Support
Local feature importance

Counterfactual explanations

Expert users – clinicians

Decision recipients – patients

5.5.1 Relationships between Feature Importance and Counterfactuals

Although we have used the explainable AI methods to illuminate different perspectives,

there is a relationship between the DeepLIFT method and counterfactual explanations.

Research shows that DeepLIFT can be viewed as a variant of gradient-based methods

where the gradient for the non-linearity is calculated using the ratio between the difference

in output and the difference in input and the gradient for the linearity is just the weights

[203]. The importance score given by DeepLIFT is equal to (x − x′) multiplied by the

modified gradient, where x is the input features and x′ is the “reference activation”, see

the proof [203]. The input features for our CNN model are normalised between 0 and

1, so the minimum value of the input features is a zero-array after normalisation. Thus,

in this case the importance is defined as x × the modified gradient. Where the feature

has a higher score using DeepLIFT, i.e. the absolute score for a feature is greater than

zero, perturbation of this feature will make a larger difference in the prediction given
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that the input feature values are on a similar scale. As counterfactual explanations are

proposed as a way to provide perturbations that would have changed the prediction of

a model, we expect a correlation between the importance scores produced by DeepLIFT

and the counterfactual explanations. This is observed in our experiments, and we consider

counterfactual example 2 in Table 5.5 to illustrate this. Here, the change of ventilator

mode, RAS scale, PEEP set and Inspired O2 fraction produce a different prediction,

where these features are shown to have high importance score in Figure 5.7. Therefore,

changes to these features will help to “flip” the prediction.

It is also worth noting that Respiratory rate (spontaneous) has a zero score as shown

in Figure 5.8. This is because the input feature value is zero. Therefore, in this case, this

feature is not important but this might not be true in other cases. In the counterfactual

example 2, arterial O2 pressure also changed from 124 to 118, even though this feature

only weighs 0.05 in Figure 5.8. If we investigate this counterfactual example by changing

the arterial O2 pressure back to 124, the new prediction is 0.169, which is a small change

from 0.168 (this is the original prediction of the counterfactual example 2 in Table 5.5).

This is consistent with our expectation as it has a small importance score in Figure 5.8.

Further, DeepLIFT can be combined with counterfactuals. Specifically, we can use

DeepLIFT to assign a contribution score to each feature that changed in a counterfactual

example whilst treating the original instance as the “reference activation”. This can help

users to understand how much individual feature changes in the counterfactual example

contribute to flipping of the prediction’s classification compared with the original instance.

Where diverse counterfactual examples are available, the feature importance can help to

choose between them. It can also be used to influence the generation of the counterfactual

examples. For example, if there are many features in the counterfactual example that have

a very low contribution score, e.g. less than 1%, then that example might be discarded

or the features values not allowed to change. This facilitates the identification of sparse

counterfactual examples which is particularly important when choosing between diverse

counterfactuals. See my previous publication [180] for the detailed implementation.

5.5.2 Complementary Safety Assurance Methods

As indicated earlier, although the use of explainable AI methods can contribute to safety

assurance, it is not enough to assure safety by itself. In this section, we will highlight some

relevant complementary methods that also contribute to safety assurance.
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First, any safety critical software should be developed in a quality management frame-

work, see for example [257]. For all software, quality management includes configuration

control, traceability from requirements to implementation and test, and change control.

For SaMD it should also assure the quality of data used for training ML models [215].

From a safety assurance point of view, the aim of quality management is to ensure that the

evidence produced to support the safety case properly reflects the build state of the system

that is to be deployed. Whilst none of this is new, it may be challenging for AI/ML-based

SaMD due to the highly iterative nature of the ML development process.

Second, it is important to apply established methods from safety critical software

engineering, adapted as necessary for AI/ML-based SaMD. One such method is static

analysis, that is analysing the code without executing it, looking for “bugs”, such as

division by zero or using the wrong type of data; see [130] for an illustration of applying

static analysis to ML code in healthcare. It is also standard practice to measure test

coverage of the software when undertaking V&V. For conventional software, it is common

to use structural coverage, e.g. ensuring that all branches in the code have been executed

at least once. The obvious analogy for NNs is neuron coverage [258], although there is

some debate about whether or not this is an appropriate criterion [259]. Nonetheless,

coverage is significant when considering safety, as assurance is clearly undermined if there

are significant parts of the ML model for which we have no test evidence. In the context

of this chapter, static analysis seems most readily and immediately applicable.

Third, there are assurance methods that address the specific challenges of V&V for

AI/ML-based software. We briefly consider two methods that are relevant to deep NNs. It

is possible to apply formal methods (mathematical techniques of verification) to deep NNs.

For example [260] applies Satisfiability Modulo Theories (SMT) solvers to find adversarial

examples for NNs used in image analysis. Further, the ideas of concolic testing, which seeks

to maximise code coverage, have been applied to deep NNs [261]. This work addresses

structural coverage, including neuron coverage, and other properties such as Lipschitz

continuity. It uses symbolic approaches to generate inputs to improve test coverage to

generate a test suite for a given deep NN and also assists in finding adversarial examples.

Finally, these methods can support regulatory processes, particularly those focusing on

AI/ML-based SaMD. Our aim here was not to propose alternatives to regulatory processes,

but to identify where explainability could help to provide safety assurance evidence to

support those processes.
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5.6 Conclusion

In this chapter, we have developed a CNN model to predict readiness for extubation from

mechanical ventilation, and have demonstrated how to apply explainable AI methods to

the system to achieve safety assurance for the CNN model. To our knowledge, this is

the first systematic attempt to explore the role of explainability in assuring safety of

ML, with a particular focus on pre-deployment decision-making. We believe this will be

of particular interest to regulators, as it illustrates how to use explainable AI methods

to provide evidence to support relevant safety objectives, e.g. for clinical association,

articulated by the FDA and IMDRF.

The case study illustrates the practical use of explainable AI methods in safety assur-

ance. Specifically, it illustrates three different explainable AI methods:

• Influential instances – for showing how to debug the ML model, including helping

to define the most appropriate training dataset;

• Feature importance – for showing valid clinical association;

• Counterfactual explanations – for showing Ml model robustness and the absence of

single-point failures.

From a safety assurance perspective, these uses of explainable AI methods contribute

most to model learning and validation. The case study also shows how the use of these ex-

plainable AI methods feeds into a safety case, e.g. as required by healthcare standards [9].

Future work will include further exploration of explainable AI methods and development

of further case studies with the aim of refining and validating the approach.

In addition, we believe it would be valuable to consider the role of explainable AI

methods in accident and incident investigation for AI/ML-based SaMD. Being able to

explain what happened may be crucial in order to learn from experience and to preserve

confidence in a system. For example, it might be that counterfactual examples would

help in understanding how an adverse event could have been avoided and thus indicate

requirements for ML model retraining. This would help in achieving a TPLC approach to

managing risks of AI/ML-based SaMD as proposed by the FDA [15].

Returning to the research questions, this case study provides a positive answer to

question 2: are there new opportunities for well-established safety engineering methods

with the development of ML and why are they specifically good for safety in this domain?
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Opportunities have been identified for employing explainable AI methods to make

contributions to safety. In model learning, influential instances help to improve safety

of the learnt model. In model V&V, feature importance was used to demonstrate valid

clinical association. Further, counterfactuals have been used to show robustness, especially

against single failures. These two uses of explainable AI methods have a particular focus

on validation. Turning to operation, the case study has demonstrated the potential to

use feature importance and counterfactuals for a particular patient, providing assurance

to the clinician/end user prior to them taking action.

The explainable AI methods we demonstrated here are used for supervised learning

and for tabular datasets. The extension of the approach to RL and unsupervised learning

is not obvious as the explainable AI methods presented in this chapter are not generally

applicable to such methods. Similarly, the use of counterfactuals on image data is an

ongoing research topic and how easy it is to generate such counterfactuals remains unclear.

Therefore, within the limits outlined above it seems likely that the approach developed

here would generalise to other supervised ML models and application domains using tabu-

lar datasets. Many, although not all, of the explainable AI methods are model agnostic so

can be applied regardless of the “base” supervised ML model being used. There is already

evidence of use of explainable AI methods in other domains, e.g. autonomous vehicles.

However, as with the other case studies, substantive effort would be required to validate

the generalisability of the approach in other domains and such work is outside the scope

of this thesis.

The code for applying various explainable AI methods is available at: https://github.com/

Yanjiayork/mechanical ventilator.
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Chapter 6

Using Machine Learning to

Update Safety Analysis

This chapter is based on my previous publications [262] [263] [264] and contributes to

answering research question 2. Safety analysis is often viewed as subjective and uncertain;

in practice, the results of safety analysis are rarely validated in operation. The use of ML

presents a new opportunity to validate and update the results of well-established safety

engineering methods based on the information from operation. The contribution of the

chapter is summarised in Figure 6.1; as in previous chapters, the elements highlighted in

red show the focus of the chapter. The case study uses well-established Safety analysis

methods to proactively identify potential causes of medication error. As healthcare is now

data rich, and a lot of data is captured in operation, it is possible to augment safety analysis

with ML to discover actual causes of medication error from the data, and to identify

where what was predicted in the safety analysis is inaccurate or incomplete, enabling the

production of an Updated safety analysis, better reflecting “ground truth”. The updates

feed into the Operational safety case.

This case study focuses on medication management for patients taking Beta-Blocker

(BB) before surgery involving the thorax, e.g. oesophagectomy. Such patients are at risk

of atrial fibrillation (AF) in post-operative care. The desirable treatment is to continue

to give BBs after surgery to reduce the risk of developing AF. This case study combines

SHARD with Bayesian network (BN) structure learning to produce the analysis results,

showing the potential use of ML to update safety analysis and transforming the way that

safety is managed in complex healthcare environments.
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Figure 6.1: Overview for the Case Study

6.1 Introduction

Safety engineering methods are normally used predictively. They are used to to identify

hazards, hazard causes, and the associated risks before a system is deployed. The system

is then monitored during its operation to manage risks. When systems are used in highly

controlled environments and built using components with a long service history, these

predictions can be accurate. However, as systems become more complex, especially in

adaptive socio-technical contexts, it is more difficult to make credible predictions of safety.

Indeed, recent analyses of Quantitative Risk Assessment (QRA) by Rae et al [265] show

that analyses even of technical systems are rarely accurate, and the paper systematically

identifies causes of deviations between prediction and reality in order to propose ways of

improving QRA (and hence safety management). In general, it can be observed that safety

analysis is often “open loop” and that there is little effective feedback from operation to

confirm or, if necessary, refine the safety analysis to reflect ground truth.

As noted in Chapter 2, healthcare is a complex social-technical domain and includes

a diverse set of activities that have to deal with its nonlinear, dynamic and unpredictable

nature [47] [266], which potentially increases the gap between initial safety analysis and

ground truth for medication management. Medication errors can arise in different phases

of treatment and have many different potential causes ranging from clinical factors, e.g.

due to comorbidities, via technical factors, e.g. due to problems with EHR, to human

and organisational factors, e.g. under-staffing. These factors are variable and context-

sensitive [131]. Understanding the variation and the significance of the causes of med-

ication errors in different contexts is particularly important to support clinicians and
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healthcare organisations in anticipating, monitoring and responding to medication errors

to achieve medication safety [267].

Our contribution in this chapter is twofold. First, it presents a new methodology that

provides a practical means of augmenting the initial safety analysis through using ML

to analysis data from operation. Second, it shows that the methodology can be applied

to management of medication safety, giving clinically meaningful results. This enables

medication safety to be managed effectively and dynamically, using the results of ML.

The case study we present considers the complex setting of ICUs where patients may be

taking multiple medications due to comorbidities, and the post-operative care is perhaps

the most difficult to manage, especially when the treatment is time-critical. This work is

extremely important as patients in ICUs are at high risk and medication errors can be

life-threatening [268].

The rest of the chapter is structured as follows. Section 6.2 discusses the background

and related work, including the use of ML in medication safety. Section 6.3 presents our

methodology, showing how to use ML to update safety analysis. Section 6.4 presents

the details of the case study, which concerns the management of AF in post-operative

care in an ICU following thoracic surgery, to illustrate our methodology. A discussion of

the methodology including some possibilities for future work is presented in Section 6.5.

Section 6.6 presents conclusions.

6.2 Background and Related Work

This section considers medication safety, adding to the general discussion in Section 2.3.3,

then discusses the use of ML in support of safety assurance to show the novelty of our

methodology.

Medication safety is critical in healthcare and is a key factor in improving patient

safety [269]. As medication errors continue to be a leading cause of avoidable harm in

hospitals [270] [271], both regulatory agencies and research communities have made efforts

to improve medication safety. Statistical analyses of medication errors across the whole

process from prescription to administration, e.g. [272] [273], typically show that a high

proportion of prescriptions in hospitals are subject to some form of error although, of

course, the majority are corrected prior to administering the drugs.

As well as statistical analyses, there is work intended to establish practical and proac-

tive means for identifying and detailing the underlying causes of errors and finding po-
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tential controls for those errors, e.g. [274] [275]. The Safety Assurance of Intravenous

Medication Management Systems (SAM) project [276] [277] focused on using technology

to automate cross-checks to reduce certain classes of error. This is an innovative approach

to the issue and is notable for considering the acceptability of the technology to patients

and clinicians.

In addition, ML has been applied to different medical applications as outlined in Section

2.3.4, mainly as clinical DSSs with the aim of improving safety in healthcare, e.g. diagnosis

and treatment practices. Here we present a few examples of work that has used ML to

understand or support safety engineering directly. We note that, in order to find such

examples, we needed to look outside healthcare.

An example from the Oil and Gas industry [278] uses Deep Neural Networks (DNNs)

for risk assessment of (unintended) movements of the platform, which might ultimately

lead to damage to the wellhead. The authors are cautious about their findings and note

that care needs to be taken in selecting models to support safety-related decision making.

Further, there have been accidents with Unmanned Air Systems (UAS), e.g. Watchkeeper,

where the accident causation was very different to that predicted in the initial safety

analysis [279]. Work is under way using ML to identify the causal factors that contributed

to the accidents, including differences between the UAS’ behaviour and the operators’

perception of what was happening.

The intent of our work is to use ML to update safety analysis hence to improve medi-

cation safety. The use of ML in this way to update and enhance safety analysis is novel.

6.3 Methodology

Figure 6.2 shows the methodology we introduced for updating safety analysis using ML.

It shows the development phase, the operation phase and the safety case, which is similar

to the overview Figure 6.1, but with a different emphasis to illustrate how to use ML to

update safety analysis. There are two elements in the development phase (Figure 6.2):

System as developed and Safety analysis. Unlike the previous two clinical case studies,

here the “system” is defined as clinical practice rather than ML models. Safety analysis

is conducted for the clinical practice, which helps to produce the foundation of the safety

case. There are two steps for the safety analysis. First, identifying hazards associated with

the clinical practice of interest. Second, determining the potential causes and effects of the

hazards, together with severity (degree of harm) and likelihood of the hazards, to estimate
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risk associated with the hazard. There are two mirrored elements in the operation phase

(Figure 6.2): System as deployed andML. With the growing deployment of EHR and other

hospital systems, it is possible to record the data from different aspects of clinical practices

in healthcare. This gives an opportunity to use ML to learn from the data, e.g. to identify

patterns of what goes ‘right’ and ‘wrong’ in operation. For example, using variables to

represent the hazards, causes of hazards, and effects of hazards from the safety analysis

can help us to understand the dependencies between the factors identified in the safety

analysis or even identify other factors that we did not consider in the safety analysis in

the development phase. Finally, safety analysis and also the safety case can be updated

based on the ML results.

Figure 6.2: Framework for using ML to update Safety analysis

The inspiration for developing this methodology comes from Hollnagel’s characteri-

sation of ‘Safety-I’ and ‘Safety-II’ [280]. In ‘Safety-I’, sometimes also referred to as the

traditional approach to safety management, the focus is on failure – implicitly assuming

that effective system design and compliance with good operating procedures will be safe.

It also assumes that it is possible to analyse potential failures and to design mechanisms

or procedures to control these failures and thus to assure safety. Hollnagel states that the

purpose of safety management in Safety-I is to keep the number of accidents and incidents

as low as possible by reacting to unacceptable events, due to system malfunction or human

fallibility [280]. However, ‘Safety-I’ does not properly cater for the current socio-technical

systems and will become even less effective as they become more complicated. Hollnagel
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emphasises that safety management should therefore move from ensuring that ‘as few

things as possible go wrong’ to ensuring that ‘as many things as possible go right’ which

he characterises as ‘Safety-II’ [280]. Although our methodology is inspired by Safety-II, it

is intended to go further and to provide a practical way of gaining insight from operation.

More specifically, the methodology is a combination of Safety-I and Safety-II (we believe

these two views are complementary and not alternatives). It uses well-established safety

engineering methods to analyse clinical practice (the System as developed in Figure 6.2)

to understand the hazards and potential causes for the hazards. This is the Safety-I point

of view. Then the methodology uses ML to learn from the data which is generated from

the clinical practice; this is influenced by the Safety-II point of view. Understanding what

‘goes right’ in operation can help in updating the safety analysis, for example showing

that potential hazard causes do not arise in practice. We see our methodology as a way

of implementing some aspects of Safety-II, which can be seen more as a broadly-stated

concept than as a practical methodology.

Our methodology is intended to be ‘agnostic’ with respect to the safety analysis meth-

ods that are used, however we illustrate the methodology in the case study using a flow-

based analysis method, SHARD, as this is effective in assessment of decision-making pro-

cesses and helps to identify the factors that can contribute to medication errors. Similarly,

our methodology is intended to be ‘agnostic’ to particular ML methods, but the case study

uses BN structure learning as it is effective in identifying dependencies and can reveal fine

structure in complex datasets.

Whilst the immediate focus of the methodology is on updating safety work products,

it could also help relevant decision-makers to understand when it is desirable to improve

clinical practices or data collection methods from EHR, if there is value in doing so,

e.g., to start recording important data that was not previously available for analysis.

Further, by identifying opportunities for making these improvements, we intend that the

methodology can influence real-world safety management practices and ultimately improve

patient safety.

6.4 Clinical Case Study: Beta-Blocker Delivery

This section presents our case study, which focuses on medication management for patients

taking BBs before thoracic surgery. The case study is intended to show how to implement

this methodology and to evaluate it. We start by presenting the clinical context of delivery
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BBs for such patients.

6.4.1 Clinical Background

Patients undergoing thoracic surgery are at risk of disturbances of heart rhythm, typically

AF in post-operative care after opening the chest [281] [282] [283]. There is debate about

whether or not all patients should receive BBs following surgery but, as a minimum,

treatment should continue to give BBs following thoracic surgery to reduce the risk of AF

for those who were receiving BBs before surgery [284] [285].

Oesophagectomy is a thoracic operation whereby the oesophagus (food pipe) is re-

moved, usually to treat oesophageal cancer. We use oesophagectomy as a concrete example

of thoracic surgery in this case to illustrate the framework. As oesophagectomy prevents

the patient from taking food or drugs orally, especially in the first week after surgery, the

challenge is how to give the right form of BBs when the patient is unable to swallow. If

BBs are not continued post-operatively, then there is an increased risk of developing AF

which can lead to strokes that may be fatal – one analysis gives an odds ratio of death

from AF of 1.5 for men and 1.9 for women [286].

There are a number of published guidelines on post-operative care for oesophagectomy.

The pathway in Figure 6.3 has been synthesised from a number of publications [287] [288]

[289] and focuses on the delivery of nutrition and medication. The pathway shows the

differences between the presence or absence of a feeding tube (FT). Patients may be fitted

with a FT during the operation and this also can be used for some forms of medicine. If

there is no FT, medication has to be given by IV injection or infusion. This increases the

complexity of giving BBs post-operatively, as commonly used BBs, e.g. bisoprolol, do not

have an IV form. Also, the IV form of BBs, e.g. metoprolol and atenolol, may be less

familiar to clinicians, and may not be immediately available on the ward. Further, the

calculation of equivalent doses makes mapping between oral and IV form of BBs error-

prone.

A further complicating factor is that patients may have other medications, e.g. pain-

killers given epidurally, and there can be an adverse interaction with BBs leading to a

potentially dangerous reduction in Blood Pressure (BP). Overall, there are many potential

difficulties in managing delivery of BBs in post-operative care. This makes it a rich case

study to illustrate our methodology.
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Figure 6.3: Pathway for Nutrition and Medication following oesophagectomy

6.4.2 System – the Clinical Practice

As we mentioned earlier, the system is defined as clinical practice in this case study. In

order to illustrate how clinicians carry out their work in this context, we developed a

decision-making model related to delivery of medication in post-operative care following

an oesophagectomy.

The decision-making model used to represent the clinical practice gives the basis for
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conducting the safety analysis. Section 6.4.3 presents the associated safety analysis, con-

ducted using SHARD, summarised in a table.

Figure 6.4: Decision-making flowchart for prescription and administration of medication

The simplified decision-making model is shown in Figure 6.4, which identifies the

roles of the different professionals involved in this process. The main stakeholders in

this clinical practice are the doctor, the pharmacist and the nurse with responsibilities

for the prescribing, dispensing and administering phases, respectively. The surgeons are

also included as they normally determine whether or not an FT is fitted, which serves

as an important context for the medication decision-making. In practice, the situation is

more complex, e.g. as more than one nurse will be involved in administering medications

and sometimes because of understaffing, the nurses might not be able to administer the

medicine as expected, but Figure 6.4 is intended to map the clinical roles rather than the

work of particular individuals.

In Figure 6.4 the ‘administration’ outcome represents the success of the overall medi-

cation management process. Figure 6.4 also shows three types of failure: fail to prescribe,

fail to dispense and fail to administer — the outputs of decisions C, D and F respectively.

These are cases where the BB will not be administered, which might increase the risk of

AF. There are also potential controls for these failures. In general, these involve the other
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professionals (nurse or pharmacist) referring back to the doctor for resolution, e.g. if the

medication is detected to be of an inappropriate form to administer. In addition, this

decision-making model shows the complicating factors, e.g. the presence of an FT and the

need to calculate equivalent doses, that we mentioned in Section 6.4.1.

6.4.3 Safety Analysis

In safety management it is common to organise risk analysis and control around the notion

of a hazard – a situation which, if not controlled, could lead to harm [290], as mentioned

earlier. Identifying hazards is often carried out by experts who determine specific situations

which could give rise to harm, prompted by the guidewords. This case study uses SHARD

guidewords (omission, commission, early, late and incorrect) to identify hazards. The

identified hazards, as confirmed with the judgement of medical experts, are as follows:

• Omission – failure to administer BB to patients who took BB pre-operation (Hazard

1);

• Commission – unnecessary BB administered (Hazard 2);

• Incorrect – patient receives wrong BB (e.g. contra-indication with other medications

or comorbidities) (Hazard 3);

• Incorrect – underdosage of BB (e.g. not all prescribed doses administered) (Hazard

4);

• Incorrect – overdosage of BB (e.g. repeated administration of doses) (Hazard 5).

However, it should be noted that there may be an appropriate omission in order to

reduce the possibility of a different harm – worsening hypotension despite the potential

increased risk of AF. Timing issues (early and late) are not separately considered as hazard

categories here, as any harmful effects would be ‘caught’ by the under and over cases of

the incorrect hazard category.

The clinical outcomes from these hazards could vary significantly. AF is most likely

to be caused by omission (a failure to administer BBs). The effect of ‘incorrect’ depends

on the medication administered; it might just cause dizziness, although the worst-case

outcomes might be more severe.

Having identified hazards, it is necessary to determine potential causes of hazards as

this gives a basis for defining controls and to reduce risks. Here we also use SHARD to
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Table 6.1: SHARD results of the decision-making model (* assumes correct medicate)

Guideword Deviation
Possible Causes (Labels correspond to

decisions in Fig. 3)
Potential Detection/Protection Potential Effects

Omission

No BB

administered

(Hazard 1)

1○ G. Patient is suffering hypotension

(may be due to epidural) and nurses

decide not to administer

2○ B, F. Wrong form of BB prescribed

or dispensed for available route, so nurses

do not administer

3○ A, C. No BB prescribed or dispensed

4○ Understaffing of wards leads to doses

being missed (organisational factor)

5○ Complete failure of IV device or

infusion pump (technical factor)

1. Clinicians should check

BP and medications using

drug chart on a daily basis

2. Pharmacist should

review prescription with

clinician if suitable

medication unavailable

3. Nurse should identify the

wrong form and query with

clinician

AF

Commission

Unnecessary

BB

administered

(Hazard 2)

A. Unnecessary BB prescribed

E. Unnecessary BB dispensed

Busy ward leads to administering

medicine for wrong patient

(organisational factor)

1. Pharmacist should

review the prescriptions

2. Nurses should check the

prescriptions before

administering

Adverse

interactions with

other medication

or comorbidities

Incorrect

Wrong BB

administered

(Hazard 3)

D. Incorrect substitution
1. Pharmacist should

review the prescriptions

Adverse

interactions with

other medication

or comorbidities

Incorrect
Under dosage*

(Hazard 4)

C. Incorrect dose calculation

G. Patient is suffering hypotension (may

be due to epidural) and nurses decide not

to administer

Understaffing on wards leads to some

doses being missed (organisational factor)

Inappropriate recommendation from EPR

(technical factor)

Rate error of IV device or infusion pump

(technical factor)

1. Order entry from the

EPR might help the

clinician to prescribe

correct dosage

2. Pharmacist might pick

up the error

3. Nurses might pick up

the error

AF

Incorrect
Over dosage*

(Hazard 5)

C. Incorrect dose calculation

A. Doctor might prescribe both forms of

BB to let the nurse choose the suitable

one and both doses are given to the

patient.

Inappropriate recommendation from EPR

(technical factor)

Rate error of IV device or infusion pump

(technical factor)

1. Order entry from the

EPR might help the

clinician to prescribe

correct dosage

2. Pharmacist might

pick up the error

3. Nurses might pick

up the error

Hypotension
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identify the causes of the hazards, by applying the guidewords to the decision-making

model in Figure 6.4. The analysis results are summarised in Table 6.1 with the following

columns: the guideword applied to the flow of information, the interpretation of that

guideword (deviation), possible causes of the deviation (either local failures or incorrect

inputs from earlier in the process), ways of detecting the deviation and protecting against

it, and finally the potential effects. Using SHARD, it is common to work through the whole

system description, starting at the end and working backwards. Therefore, in our case, the

SHARD analysis starts at the end of the decision-making model, i.e. the administration.

In addition, we also include technical and organisational factors that are not explicit

in the decision-making model (the entries in blue). The entries in the deviation column

correspond to the hazards identified above. The entries in the detection/protection column

include use of EHR to make recommendations on order entry but are heavily dependent

on the medical staff.

When assessing the risk associated with the hazard, it is common to quantify the

likelihood of these causes and to use these figures to prioritise the introduction of risk

controls. Where it is difficult to quantify the likelihood of hazard causes, the analysis is

typically qualitative, and judgement is needed on the choice of controls to manage risk cost-

effectively. In this case study, risk assessment is essentially qualitative based on clinical

judgement. For example, understaffing of wards, as shown in Table 6.1, might be the

most likely cause of failure to administer BBs to patients following a thoracic operation.

This information can then be used to prioritise the introduction of new controls. However,

even this qualitative approach can be difficult in a medical setting because of the many

shaping factors such as the patient’s general health, comorbidities, etc. This is a further

motivation for using ML to complement the safety analysis. We show in Section 6.4.5.2

that hazard 1 – failure to administer BB to patients following a thoracic operation – would

cause a 11% increase in the likelihood of AF post-operation, a result which no qualitative

analysis could produce.

6.4.4 Data Generated from Clinical Practice

Following our safety analysis, we have identified that factors such as the presence of hy-

potension (maybe due to epidural) can influence the decision to administer BBs (the first

entry in Possible Causes Column in Table 6.1). To understand whether or not these fac-

tors really are significant requires analysis of real data generated from the clinical practice.
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Whilst this could be seen as simply confirming expert opinion, experts’ views can vary, so

being able to base the results on extensive datasets helps to resolve inconsistent opinions.

That is, the safety analysis has given us a hypothetical view of the causes and effects

reflecting Safety-I. However, the actual risk still needs be evaluated and validated based

on real clinical data supporting Safety-II.

For brevity, we use Hazard 1 – no BB administered – as an illustration in this case

study, i.e. the 1st row in Table 6.1. Given the clinical context, there are three primary

variables for us to consider, Pre beta, Surgery, Post beta (see Table 6.2). The reason why

we categorise Surgery based on whether it involves the thorax or not is that, 1) any major

thoracic surgery (not only oesophagectomy) carries the risk of AF in post-operative care

especially for patients taking BBs before the surgery, see the research [283]; 2) in order

to get more data to carry out ML, it is useful to consider all thoracic surgery rather than

just oesophagectomy. Thus, the data analysis should identify these patients, along with

the potential causes and effects of medication error, i.e. the 3rd and 5th columns in the

1st row in Table 6.1, which means that we should consider: hypotension, epidural, busy

ward, understaffing of wards, failure or error rate of IV device or infusion pump, from the

causes column and AF from the effect column.

In this case study, we only focus on a subset of the potential causes of Hazard 1 –

Hypotension and Epidural – because of the scope of the MIMIC-III dataset. We use it to

provide the ‘real data’ that generated from the clinical practice. All the SQL queries used

to extract the data are available online at https://github.com/Yanjiayork/papers. Six of

the variables identified above can be found in the MIMIC-III dataset and are described in

Table 6.2.

We used the Current Procedural Terminology (CPT) codes [291] to determine whether

patients definitely had thoracic surgery, definitely did not, or possibly did (where there

are alternative ways of doing the operation) in MIMIC-III. For example, CPT code 43415

is defined as ‘suture of an oesophageal wound or injury; transthoracic or transabdominal

approach’ which clearly can be conducted via the chest or the abdomen, hence we give it

the value 1. On the other hand, CPT code 31760 is ‘tracheoplasty; intrathoracic’ which is

definitely thoracic surgery, hence is given the value 2, and, of course, excision procedures

on the oesophagus (oesophagectomy) are all given value 2.

The MIMIC-III records are time-stamped, and the records are analysed to identify

patients taking BBs at any time before an operation whilst in hospital (Pre beta), and
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Table 6.2: Variables extracted from MIMIC-III Dataset

Variables Variable Code Variable Values

Surgery Surgery

Value = 0, ‘not thoracic’

Value = 1, ‘might be thoracic’

Value = 2, ‘definitely thoracic’

Receiving BB before surgery Pre beta
Value = 0, ‘not receiving BB’

Value = 1, ‘receiving BB’

Receiving BB after surgery Post beta
Value = 0, ‘not receiving BB’

Value = 1, ‘receiving BB’

Hypotension Hypotension
Value = 0, ‘no Hypotension’

Value = 1, ‘has Hypotension’

Epidural catheter placed Epidural
Value = 0, ‘no Epidural’

Value = 1, ‘has Epidural’

Having AF during the encounter AF
Value = 0, ‘no AF’

Value = 1, ‘has AF’

within 24 hours after surgery (Post beta), as this is the most critical time. The value

for Hypotension is based on the first reading after 6am on the day following surgery (less

than 100mmHg is viewed as Hypotension and given the value 1). This time is chosen as

it is when patients would normally have their BBs, so this BP reading is the one that

is most likely to affect the nurse’s decision about whether or not to administer the BB

(this is entry 1○ for hazard 1 in Table 6.1). Information about AF is inferred from the

International Classification of Diseases, Ninth Revision (ICD 9) code, beginning with 427.

After the data preparation, 7,202 encounters were identified as relevant to this study,

and had associated ‘flags’ indicating whether or not the patients suffered from AF, etc.

A potential limitation for the data extraction is that when inferring the development of

AF, we used the diagnosis table in MIMIC-III to determine which patient has AF after

surgery, but because we do not have the medication history information for the patients

(maybe due to our limitations in understanding the database), we might include chronic

AF in the dataset and not be aware of it. It would be ideal if we could identify and exclude

any such patients.
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6.4.5 Applying ML to the Generated Data

After extracting the data generated from the clinical practice, we use ML to learn the

real behaviour based on these data. It is important to note that many ML methods

could be used to explore the data. However, in order to validate the safety analysis

results, it is preferable to choose a ML method which can present the result so that it is

understandable for humans. In other words, intrinsically interpretable ML models should

be preferred. As we introduced in Section 5.2.2, logistic regression and Bayesian models are

all viewed as interpretable model. Although, logistic regression can also highlight the most

significant correlations between pairs of variables, a learned Bayesian network model can

real a much finer structure by distinguishing between direct and indirect dependencies

[27], which is particularly helpful in this case as it can be directly used to compare to

the resulting structure from the safety analysis. For the reasons above, we decided to

use BN structuring learning. Here we first use BN structure learning to understand the

relationships between the different factors we extracted from the safety analysis in Section

6.4.3 that might compromise medication safety. Then, we use parameter learning to

quantify the dependencies among these factors, which gives valuable clinical findings.

Finally, the result of applying ML is used to update and enhance the safety analysis.

6.4.5.1 Learning Bayesian Structure from Data

A BN is a directed graph of nodes and edges connecting those nodes. Each node represents

a random variable, while the edge between the nodes represents probabilistic dependencies

among the corresponding variables. Associated with each node is a conditional probabil-

ity table which specifies the probability of each node state given every combination of

states of parent nodes. We use BNs as they have the potential to reveal a much finer

structure by distinguishing between direct and indirect dependencies, by comparison with

other statistical methods, such as logistic regression which focus on the most significant

correlations.

BNs have a two-phase lifecycle. First, they are constructed, either by hand based on

domain knowledge or by ‘structure learning’ from observational data [27]. In this case,

the structure of a BN was learnt automatically using ML. To do this requires that we

define a hypothesis space of possible structures for searching as well as a score function to

measure each structure by a defined searching algorithm, such as greedy search [292]. In

this case study, we use a greedy search-and-score methodology to learn the BN structure.
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BN structure learning provides a means to make sense of the complex correlations in

clinical data that have hampered other approaches. Secondly, it is necessary to determine

the probability distribution of each node in order to fully specify BNs.

The structure of the BN was learnt from the six variables shown in Table 6.2 using

BDeu (Bayesian Dirichlet equivalence uniform) score [293] based on the data prepara-

tion described in Section 6.4.4. BDeu is a widely-used scoring metric for learning BN

structures for discrete data. Figure 6.5 presents the results. Note that arrow directions

in the structure learnt should not be interpreted as showing causality, only a statistical

correlation.

The model in Figure 6.5 generally reflects the safety analysis in Table 6.1, but there is

one point of interest. It shows no direct dependency between Epidural and Hypotension,

despite the fact that it shows Post beta has an individual direct dependency with both

Hypotension and Epidural. This is a very interesting finding, as our safety analysis shows

that Hypotension should be the reason for patients not receiving Post beta rather than

Epidural. Epidural might affect Post beta because it has the potential to cause Hypoten-

sion, but itself should not influence whether or not to administer BB. So, we expect there

to be a direct dependency between Epidural and Hypotension, especially when Epidural

has a direct dependency with Post beta as shown in Figure 6.5.

Figure 6.5: Learnt Bayesian Network Structure based on Safety analysis

We initially thought that it might be to do with confounding factors, e.g. normal

BP readings will be obtained if they are measured whilst vasopressor medications such

as phenylephrine or nor-epinephrine are being given by infusion. However, even when we

‘corrected’ the value of the variable by considering Hypotension to be present although

the BP reading is normal, whilst such infusions were being given did not alter the learnt
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structure. On reflection, this might best be explained as follows.

Epidural can cause Hypotension, but it might just cause a slight drop of the BP, not

sufficiently severe to count as Hypotension [294]. Also, the means of giving Epidural,

e.g. infusion or bolus will influence the result. If Epidural is given by bolus, it is more

likely to cause Hypotension [295]. In addition, different patients will react differently and

often the patients can bring up their BP in a short time (then keep it up) with their own

bodily mechanisms. As we chose one time to read BP, this might not be immediately after

epidural. Thus, it is not surprising that there is no direct dependency between Epidural

and Hypotension.

Alternatively, Figure 6.5 might suggest a new pattern of how nurses carry out their

work in the real world. If a nurse is aware that the patient has an epidural (and it should

be quite obvious), a decision might be made not to give the BB, even when their BP is

normal as they know the potential effect of epidural and BBs on BP. The combination

of these two events is capable of causing a severe drop in BP in some situations [295].

Thus, a direct dependency is learnt between Epidural and Post beta, even when there is

no direct dependency between Epidural and Hypotension.

To confirm what really happened, it will be useful to refer back to clinicians by asking

them focused questions based on the ML analysis results or observing their behaviours.

This shows that ML can not only help to update and enhance the safety analysis, but also

refine the questions that need to be asked in order to understand the real world.

6.4.5.2 Learning Parameters from Data

Based on the structure learnt in Figure 6.5, we used Bayesian estimation to learn the

parameters for the network. Once the parameters of the BN have been specified, it allows

exploration of the impact of decisions as the context evolves, i.e. probabilistic inference.

As specific information about the context is known (e.g. the patient who had Pre beta

underwent thoracic Surgery), we instantiate the variables corresponding to the context

in the network (i.e. Pre beta = 1 Surgery = 2), which revises the probability for other

variables (e.g. Post beta or AF) in the BN to the posterior probability conditioned on the

known context. 80% of the dataset was used to estimate the parameters, and 20% was

used to test them by predicting the development of AF given the values for the remainder

of the variables. Table 6.3 compares the BN and logistic regression methods for predicting

AF. It shows that BN had slightly better prediction accuracy than logistic regression.
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Table 6.3: Predictive accuracy of estimation methods

Methods Accuracy Recall Specificity

BN 72% 6% 98%

LR 70% 5% 96%

Table 6.4: Effects of post beta on AF for patients with pre beta and undergoing thoracic

surgery

Development of AF Post beta = 0 Post beta = 1

AF = 0 40% 51%

AF = 1 60% 49%

In order to understand the extent to which Post beta affects the development of AF,

when patients underwent thoracic Surgery and had Pre beta (i.e. the effect of Hazard

1) we assessed the posterior probability of developing AF conditioned on Surgery = 2,

Pre beta = 1 and Post beta. The results are given in Table 6.4 and show that giving

BBs after surgery reduces the probability of developing AF from 60% to 49%. In medical

terms this is referred to as an 11% absolute risk reduction, or it may be expressed as the

number needed to treat of 9 which is good for a medical intervention [296] [297]. This is

an important finding as it not only confirms our SHARD analysis, but also is clinically

significant. This confirms that giving Post beta to patients who have Pre beta and have

had thoracic Surgery is beneficial in controlling AF.

Further, in order to assess how significant an influence Hypotension has on patients not

receiving BB (first row of Table 6.1), we determined the posterior probability of Post beta

conditioned on Surgery = 2, Pre beta = 1 and Hypotension, see Table 6.5. This shows

that presenting Hypotension decreases the probability of getting Post beta from 45% to

24%. Again, this is an important clinical finding.

Table 6.5: Effects of hypotension on post beta for patients with pre beta and undergoing

thoracic surgery

Post beta Hypotension = 0 Hypotension = 1

Post beta = 0 55% 76%

Post beta = 1 45% 24%
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6.4.6 Updating Safety Analysis and the Safety Argument

The result from applying the ML to the generated data can be used to update the safety

analysis. Based on the learnt BN structure and Tables 6.4 & 6.5, it can be confirmed that

the hazard cause 1○ in Table 6.1, i.e. patient is suffering hypotension and nurses decided

not to administer, is valid, but the hypotension is not due to epidural. This also needs

to be reflected in the safety case. Traditionally, safety cases strongly reflect the safety

analysis of the system, but our methodology presents a way to update the safety analysis

based on the ML results. As earlier, we use GSN for the safety argument.

A partial argument for control of the risks associated with AF is presented in Figure

6.6. The top goal is ‘Prevention of AF’ – amplified to say control of the risk of AF through

use of BBs. The context includes patient characteristics and the hospital setting assumed

to be an ICU, etc.

Figure 6.6: Safety Argument for Prevention of AF (with Emphasis on Omission of BBs)
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The argument is broken down in several layers reflecting the decision-making model

(Section 6.4.2) and the safety analysis (Section 6.4.3). The top strategy is a breakdown

across the phases of medication management, reflecting the structure of Figure 6.4. Below

this, the structure is organised first by types of hazard with under and over dosage grouped

together in the incorrect dosage goal, and then by types of controls over the hazard causes.

For brevity, Figure 6.6, only provides detail on Hazard 1 to illustrate the concept, leaving

the rest of the argument undeveloped. The safety analysis and the learnt BN structure

together provide the context for the ‘Omission of BB’ goal, which relates to Hazard 1.

The goal is further decomposed to show that the causes associated with this hazard are

controlled. Thus the sub-goals correlate strongly with the possible causes column in the

first row in the safety analysis (Table 6.1), except for leaf Goal A that nurse doesn’t

administer BB due to hypotension controlled. This goal doesn’t refer to epidural, to

reflect the update to the safety analysis based on the ML results. Cause 3○ in row 1 of

Table 6.1 arises from prescribing and dispensing, therefore this cause is not dealt with

under the administering branch.

Furthermore, the BNs also alert us to the level of risk related to Hypotension and show

that the presence of Hypotension will reduce the chance of getting Post beta by 21%, as

shown in Table 6.5. This may be a key point to introduce stronger controls. After the

introduction of new controls, we can use BNs to continue to learn from the new data, which

should show that the effect of presence of Hypotension on getting Post beta is reduced, if

the control is effective.

6.5 Discussion

This chapter presented a new methodology, shown in Figure 6.2, recognising the distinc-

tions between Safety-I and Safety-II, and providing a way of reconciling the two views of

safety. The methodology proposed is novel, and has many potential benefits.

First, the methodology provides a practicable means of using ML to update safety

analysis. This is intended to be a generic methodology, reflecting the fact that many sys-

tems are now data rich and ML can be used on available datasets to provide feedback from

operation to the safety analysis. Our clinical case study used to illustrate the methodology

demonstrated that safety engineering methods and ML are mutually supportive. Conduct-

ing safety analysis can help us proactively identify the relevant variables to explore in ML

and to understand what kind of knowledge we expect to derive, rather than just believing
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what the ML is telling us (treating it as a ‘black box’). The ML is used to update and

enhance the safety analysis to show whether or not it is sound and reflecting ground truth

rather than being merely hypothetical or subjective or seen as a mere paper-based exercise

with little relevance to actual clinical practice.

Second, the ‘culture of paper safety’ has been a major threat to the validity of safety

cases for complex systems in socio-technical environments [298] [299] [300]. Our method-

ology can help to avoid the problem of ‘paper safety’ and to focus on ‘real safety’. In

our case study, although we can’t go back to influence the practices in the hospitals from

which the MIMIC-III data was collected, the methodology has the potential to do so if it

is used in a ‘live’ setting with access to clinicians.

Third, it would be valuable to identify ways to automatically update the safety analysis

and safety case based on the ML results. One possible approach would be to use dynamic

safety cases as part of the feedback mechanism. A dynamic safety case [301] has the

evidence, and potentially the arguments, updated as the system operates. In the context

of our methodology, this would mean using ML to continue learning from data generated

from the clinical practice to update the safety case. To be useful, such updates also need

to be associated with criteria for alerting clinicians, e.g. if there is a trend in the data that

suggests that planned interventions are ceasing to be effective. This would further assist

in focusing on ‘real safety’.

Whilst ML is very powerful, it is also possible to end up with misleading results.

Here, we focus on the pragmatic issues that affected the production of the BNs used in

this clinical case study, specifically the process for structure learning. Our approach to

structure learning for BNs uses the BDeu scoring function, for which we must determine a

single hyper-parameter, the equivalent sample size α. We found that the learnt structure

is quite sensitive to the hyper-parameter α. There is a general trend that with the increase

of α, more arcs are added in the structure, but not necessarily for every increase of α.

Currently, there is no generally accepted rule for determining the right value of α, although

there is some ongoing research into rules to set the value of α [302] [303].

Finally, it is possible to combine other methods to increase understanding of, and

confidence in, the learnt structures. We have previously shown how the BN structure

learning can be augmented with process mining [262]. BN structure learning can show

statistical correlations between different factors, no matter whether they occur or not, e.g.

the presence of absence of hypotension, and it can also evaluate the effects of one factor
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on another when the context is known, see Section 6.4.5.2. Process mining can show what

has really happened, and cannot explicitly identify when activities do not happen as there

is no event and no timestamp [304]. Thus, it can discover temporal relationships between

different activities which the BNs cannot. In our case study, process mining can help to

give further insights into the results of the BN structure learning but is not a substitute

for it, see my previous publication for the details [262].

6.6 Conclusion

This chapter has introduced a new methodology for updating and enhancing safety analysis

carried out in the development phase by applying ML to the data generated from clinical

practice in the operation phase. This gives insights that can then be used to help to

ensure medication safety by updating the initial safety analysis. We believe that the

combination of safety analysis methods and ML methods to enable reduction of the gap

between development and operation is a unique approach, especially valuable when systems

become more data rich and goes some way to implementing Hollnagel’s notion of Safety-II

without losing the merits of Safety-I.

We employed a case study focusing on post-operative care following thoracic surgery

both to illustrate and to validate the methodology. In the case study we were able to

identify clinically meaningful results relating to thoracic surgery. It also shows the unan-

ticipated mis-alignment between the development phase and operation phase reflected

through the initial safety analysis and the ML results. Although, for this case study, only

clinical factors were considered in the ML analysis, it would be ideal to cover the range of

factors that can cause and control hazards, including technical and organisational, as well

as clinical factors. It would be necessary to obtain data on each factor to enable accurate

analysis of the influences on medication error, and undesirable outcomes, e.g. AF. To

provide this dataset requires much more extensive preparation, e.g. drawing on hospital

administrative data, as well as clinical data such as is available in MIMIC-III. This would

help to maximise the potential value of this methodology. In addition, this methodology

might be able to support the FDA’s proposed TPLC approach by using ML to update

safety analysis and the safety case in order to assure the safety of SaMD through life.

This chapter complements the second case study and provides a further answer to

question 2, are there new opportunities for well-established safety engineering methods

with the development of ML and why are they specifically good for safety in this domain?
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Opportunities have been identified and illustrated for improving safety analysis using ML.

The work of the chapter has shown how ML can be used for validating the SHARD

safety analysis showing that the majority of predicted hazard causes do arise. It has also

shown that it is possible to refine the safety analysis based on insights from operational

data by identifying that a predicted hazard cause does not arise and could be discounted.

Note that safety analysis is often “open loop”, i.e. there is a lack of systematic means

to validate safety analysis, so this helps to get feedback for improving the application of

safety engineering methods.

To investigate generalisability of this methodology, it is worth mentioning that results

from this case study can’t be assumed for other hospital settings, even when the same

clinical practices are of concern. But the methodology would still hold, which means that

the safety analysis and data generated should all reflect the local clinical practice. Further,

the work presented here has only used BN structure learning for tabular datasets, and how

easy it is to use other ML methods remains an open question. Because of the nature of

the methodology we need to find variables to represent the hazards, causes of hazards,

effects of hazards, so this approach would most likely only work for tabular datasets.
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Chapter 7

Conclusions

In concluding, we return to the two questions raised in the introduction, provide a summary

of the contributions in the thesis, consider generalisability of the contributions, then outline

possible future work.

7.1 Research Question 1

The first question that this thesis addresses is are well-established safety engineering meth-

ods still appropriate and effective in assuring the safety of ML in some representative

healthcare scenarios?

7.1.1 Response to Research Question 1

Healthcare is very complex and clinicians may encounter situations that are unprecedented.

However, clinical pathways are defined for commonly occurring situations – which we

can therefore characterise as representative. Further, the clinical pathway provides the

foundation for applying established safety engineering methods. Thus, the use of RL in

support of sepsis treatment in Chapter 4 provides a positive answer to research question 1.

It shows that well-established safety engineering methods are still appropriate and effective

in assuring the safety of ML by providing links from hazard analysis conducted against

the clinical pathway, via DSRs to concrete changes to the RL model development.

As well as answering question 1, undertaking this work has identified some insights

from the use of SHARD and some limitations of the method in this context. Key insights

which we believe would apply to other uses of SHARD in healthcare are:
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• It is critical to define the clinical pathway before applying SHARD (it is a precon-

dition);

• The clinical pathway needs to be defined at a suitable level to include the ML-based

SaMD, i.e. not too abstract, so it is helpful in identifying interface hazards between

the human and the SaMD, and not too detailed, so the analysis can be completed

with a reasonable level of effort;

• The identified interface hazards can further be used to determine DSRs for the ML-

based SaMD;

• Identifying the potential causes of the deviations is the most laborious part of the

method;

• Clinical knowledge is essential for determining the effects and credible causes of

hazards.

The importance of the clinical pathway and clinical knowledge for the effective use of

SHARD is also seen in the case study in Chapter 6.

SHARD also has some limitations in the context of analysing ML-based SaMD in

healthcare, and we use NNs to illustrate the problems. First, when SHARD is used

for a conventional software system it is applied to data flows between major functional

blocks. There will typically be a fairly modest number of blocks, each block will have a

fairly discrete function, and the blocks will not be highly interconnected. This means that

analysing each flow and working back from the output to the input is fairly straightforward,

even if it is laborious. However, NNs have very complex data flows and layers in an NN are

fully interconnected making following a “flow” through the network practically impossible

for anything but the simplest NN.

Second, the individual neurons in an NN are quite primitive so it is hard to determine

appropriate guidewords and to make sound judgements about potential deviations at such

a low level of detail. Also, there may be thousands of neurons in a large NN, making

manual analysis impossible. Trying to analyse at the level of layers in the NN would

also pose problems as it will be hard to identify the function performed by the layer (by

comparison with blocks in conventional software).

Thus, SHARD and similar methods can support analysis of ML models in context,

e.g. integrated in a clinical pathway, showing the potential impact of hypothetical failure
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modes of the ML model in the wider context, but it is very difficult if not impossible to

use SHARD to analyse the failure behaviour of the ML model itself, especially when it is

complex.

All the case studies used GSN which is another well-established safety-engineering

method, although the uses in each case study are rather different. The usage in Chapter

4 is perhaps the most typical example of GSN, showing that the risks associated with an

ML-based DSS for sepsis treatment are controlled, and supporting this with evidence from

design and development of the ML model. Chapter 5 highlights the role of explainability

in showing that an ML Model meets its safety requirements and in validating those safety

requirements. Finally, Chapter 6 shows how the safety argument can be updated based on

analysis of real-world data; this is a relatively unusual usage of GSN but may contribute

to development of dynamic safety cases [301].

GSN is a very flexible notation and this has been of value in constructing arguments for

the three case studies; no difficulties have been found in applying the notation, despite the

very different nature of the arguments. In some contexts, safety argument patterns have

been identified for commonly-arising situations, e.g. arguing over all hazards associated

with a system. It may be that, in time, argument patterns can be produced for situations

exemplified by the case studies in this thesis, but more experience would be needed to have

confidence that the approaches followed here are general enough to encode as patterns.

It should be noted that there are argument patterns for dealing with assurance of ML,

see AMLAS [182], but these are domain-independent patterns and there remains a “gap”

between these generic patterns and what needs to be done in a healthcare context to

demonstrate regulatory compliance as well as safety – although, as we show below, the

work presented here goes some way towards meeting regulatory requirements.

7.1.2 Regulatory Context

Here, we further consider this question in the context of the regulatory approaches in the

USA, Europe and the UK presented in Section 2.4, drawing mainly on the work presented

in Chapter 4.

The regulatory frameworks in the three jurisdictions cover, and the associated stan-

dards identify, a number of requirements for applying safety engineering methods to ML-

based SaMD. Some of the more significant requirements identified in Chapter 2 are set

out here together with a discussion of how they have been addressed in this thesis:
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• ISO 14971 [30]: it is necessary to identify hazards in normal operation, under fault

conditions and arising from human error – the SHARD analysis of the clinical path-

way (see Figure 4.4 and Table 4.1) fulfils this role, where “fault conditions” are taken

to include potentially unsafe behaviour of the RL model;

• ISO 24971 [32] (1): results of hazard and risk analysis should be used to inform design

– the SHARD analysis helps to identify DSRs (see Table 4.2), which specifically

influence the RL learning process, e.g. shaping the cost function, hence they directly

inform design of the ML to reduce risk;

• ISO 24971 [32] (2): ensure that design changes do not introduce new hazards –

the iterative nature of the methodology (see Figure 4.2) ensures that changes are

scrutinised to see whether or not they introduce new hazards, although in our case

study, only one major hazard is considered;

• Benefit vs risk (underlying many standards/regulations): there is a need to weigh

benefits against risks – this can be seen in Chapter 4 especially in Tables 4.4 and

4.6 which show that the original learnt policy has a better performance when using

off-policy evaluation, but it raises a new safety concern as there are many sudden

changes in vasopressor dose for one patient. In contrast the modified policy presents

a lower performance when compared to the original learnt policy, but it reduces the

rate of sudden changes in vasopressor dose, which is considerably safer based on

clinical knowledge. This reflects the balance between risk and benefit;

• CQC/MHRA sandbox [108] and CONSORT-AI guidelines [122]: provide clarity on

the intended use of ML devices within clinical pathways to ensure high-quality care

– this is done by incorporating the ML model in the clinical pathway in Figure 4.4.

The standards and regulatory documents state requirements for the safety assurance of

ML, as shown above. As well as showing that the established safety engineering methods

are appropriate and effective applied to representative ML-based systems in healthcare,

we have also shown above that they help to support regulatory compliance.

7.2 Research Question 2

It is easy to think of ML as a “problem”, rather than as a “solution”. The second question

takes the “solution” point of view seeking to understand are there new opportunities for
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well-established safety engineering methods with the development of ML and why are they

specifically good for safety in this domain?

7.2.1 Response to Research Question 2

The work presented in Chapters 5 and 6 show quite different opportunities for safety

engineering methods with the development of ML. We briefly summarise each but focus

mainly on the “why” part of the question.

Chapter 5 shows the opportunity for explainable AI methods to make contributions

to safety. In development, the methods help to improve safety of the learnt model and to

demonstrate clinical association and robustness of the ML model as a whole. In operation

the case study has demonstrated how to use explainable AI methods to provide assurance

to the clinician/end user relating to treatment of a single patient.

Why are these methods specifically good? Established safety engineering practices

work, in part, by “flowing down” DSRs to system components. The adaptation of this

approach to ML models was shown in Chapter 4 with the DSRs constraining the state

space and cost function in the RL model (rather than being more direct requirements

on the system itself as is typically the case [163]). In addition, in Chapter 5 we show

how to use of influential instances in support of “design for safety”. So in this case, the

“why” is because the use of explainable AI methods allows the intent of the established

safety engineering methods to be preserved, even with complex ML models. Similarly, the

use of counterfactuals gives a way of implementing another established safety engineering

principle, to show that no single point of failure can give rise to a hazard – by exploring the

details of the learnt model in a way that would be impossible using established methods

such as FMEAs. Finally, the use of feature importance supports clinical validation of

the ML model as learnt – in safety engineering terms this is showing that the nominal

behaviour is safe. This would traditionally be done by expert review or simulation – the

use of feature importance enables clinicians to undertake this expert review which they

would otherwise be unable to do. In summary “why are they specifically good for safety

in this domain?”; it is that they use ML methods to enable established safety engineering

principles to be applied to ML models, where this cannot be done using the established

safety engineering methods. Thus in “applying ML to ML” we are able to bring complex

ML models within the scope of established safety engineering principles.

Chapter 6 has identified and demonstrated opportunities for improving safety analysis
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using ML. In particular it has shown how to validate and refine safety and hazard anal-

ysis based on insights gained by using BNs to identify safety-relevant correlations in the

operational data and comparing them with the predictions from the SHARD analysis.

Why is this approach specifically good? In principle, safety engineering is undertaken

“through life”. In practice, safety analysis is often “open loop” unless an accident or

incident occurs; in such cases the investigation may identify desirable improvements to

safety analysis as well as to the system itself. Thus, the use of ML to analyse operational

data gives the opportunity to improve established safety engineering practices, by allowing

the “loop to be closed” during ongoing operations, not only after an incident or accident

when it is arguably too late. In summary “why are they specifically good for safety in

this domain?”; it is that they have the potential to fill a gap in current safety engineering

practices (as opposed to principles) and one that will become ever more important as

systems become more complex. However, we must acknowledge that we haven’t “applied

ML to ML” in this case and it remains to be seen how effective the approach explored in

Chapter 6 would be if applied to ML-based SaMD.

7.2.2 Regulatory Context

The notion of using ML as part of the “solution” is not explicit in regulations, but it is

implicit in some of the exploratory work in the wider community. The IMDRF has done

work on Quality Management Systems (QMSs) for SaMD [14] and on Clinical Evaluation

of SaMD [257]. The IMDRF proposals indicate challenges for evaluation and validation of

ML-based SaMD – which also represent opportunities. A regulatory sandbox conducted

by the CQC and MHRA [118] also identifies opportunities for ML methods. We outline

how the work presented in this thesis can help to realise these opportunities.

• IMDRF Clinical Evaluation [14]: is there a valid clinical association between your

SaMD output, based on the inputs and algorithms selected, and your SaMD’s targeted

clinical condition? – the global feature importance (see Figure 5.7) gives confidence

that the model is considering relevant clinical factors, e.g. ventilator mode and peak

inspiratory pressure;

• CQC and MHRA sandbox [118] (1): those interacting with the tool have a good

understanding of what it does and doesn’t do – the explanations of the data (see

Figure 5.3) show that the tool only deals with adult patients (what it does do) and
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7.2 Research Question 2

doesn’t deal with those who undergo elective surgery and need breathing support

(what it doesn’t do);

• CQC and MHRA sandbox [118] (2): clinicians who interact directly with ML systems

understand how they work and how to use them – the counterfactual explanations

(see Table 5.5) focus on a specific patient, helping clinicians to see what actions to

take (how to use the outputs from the system) to increase the chances of a successful

extubation.

The regulators, especially the FDA, emphasise the need to manage safety through life

although they are not specific about how this might be done or managed. However, there

are some ideas about how to do this in the research literature. We present an assessment

of how these ideas can be realised using the work presented in this thesis.

• Work-as-imagined vs work-as-done [305]: in Hollnagel’s terms, safety analysis is

undertaken on work-as-imagined, i.e. as modelled in development, not work-as-

done, i.e. in operation. He says that there is a need to understand work-as-done,

including ‘what is done right’, to ensure safety. Our approach has taken this abstract

concept and shown how to make it useful and actionable by employing ML to analyse

data from work-as-done. Thus, our work could help to achieve sound adoption of

Hollnagel’s ideas and the associated concepts of Safety-I and Safety-II [280] which

are quite influential in healthcare;

• Updating safety cases [301]: it is necessary to update the reasoning about the safety

of ongoing operations – the role of the BN in updating the reasoning in the safety

case is explicit in Chapter 6, specifically in the context for the goal “Omission of BB”

(see Figure 6.6). The FDA ML-based SaMD action plan [106] identified the need to

collect and monitor real-world data to implement TPLC, which is proposed in order

to manage ML models that continue learning in operation. Therefore, updating

safety cases will be critical in order to reflect the changes in risk in operation;

• Dynamic safety cases [301]: these are an extension of the ideas of updating safety

cases to enable the argument and evidence to be updated automatically. Some

researchers [43] have suggested using dynamic safety cases to support the TPLC

approach proposed by FDA to allow the ML model to continue to learn in operation.

Using ML to analyse operational data seems inevitable to enable such concepts to

be implemented, and we see our work as an initial step in this direction.
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This work shows the role of ML in supporting through life safety management which

is clearly important in healthcare, whether or not ML-based SaMD are used. It also sheds

some light on the ideas of dynamic safety cases although it is far from realising the overall

concept as identified in the literature, e.g. [301]. The work also gives some insight into

possible ways of providing through-life support for systems, potentially contributing to

realising the FDA’s TPLC concept although more would need to be done to understand

how to “apply ML to ML” as noted above.

7.3 Summary and Directions for Future Work

This thesis has explored issues at the intersection of ML, safety engineering and healthcare.

Whilst significant progress has been made there are many more opportunities to explore.

We close by summarising the key contributions, presenting some general findings then

identifying some broad themes for future work.

7.3.1 Summary

This thesis has made three major contributions:

1. Showed how well-established safety engineering methods can be applied to ML-based

systems to assure safety, both supporting “design for safety” and producing evidence

to demonstrate safety (see Chapter 4);

2. Demonstrated the role of explainability in helping to provide safety assurance for

ML-based SaMD (see Chapter 5);

3. Demonstrated how to use ML to enhance well-established safety engineering methods

including updating safety analysis from operational data (see Chapter 6).

The three case studies do not illustrate all the possible synergies between ML and safety

engineering but they do provide substantive and complementary contributions. Further

these contributions address some of the requirements for demonstrating safety of ML-based

SaMD identified by regulators (see Sections 7.1.2 and 7.2.2).

7.3.2 General Findings

Two broad themes have emerged from this work.
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First, it is very important to model the pathways in which ML-based SaMD are used

so as to conduct effective safety engineering. The experience in conducting the research

presented in this thesis is that clinical pathways are often weakly defined with a lot of

implicit assumptions. Further, there can be many quite different published pathways for

the same clinical issue. Hence, we believe that real benefit can accrue from up-front effort

in defining clinical pathways precisely enough, including identifying the role of ML-based

SaMD in the pathway, so that they can be subjected to hazard and safety analysis and

validating these pathways with clinicians prior to their use.

Second, we have presented a number of methodologies in this thesis, and it might be

expected that future work would be to try to unify these into one overarching methodology.

However, we do not take this view. Healthcare is an extremely complex socio-technical

enterprise and trying to produce one comprehensive methodology is likely to be very

difficult – and, more importantly, not very useful. We believe that the methodologies we

have produced are appropriate for their purpose, and that Figure 3.1 serves to show how

the different elements of this work fit together.

7.3.3 Generalisability

There is a question of generalisability of the work undertaken in this thesis. The scope

of this thesis is in healthcare. Therefore, we do not have evidence that the methodologies

and techniques we used apply in other domains, but there may be merit in exploring them

in other domains. In addition, all of the case studies use tabular data (from MIMIC-III)

so we would have more confidence in getting satisfactory results if the methodologies are

applied to other tabular data in healthcare. Also, the work presented in this thesis uses

RL and supervised learning (CNNs and BN structure learning). We do not have evidence

that the methodologies would work well with unsupervised learning.

The first methodology should generalise well to other healthcare applications using

deep RL. The second methodology should generalise well to other healthcare applications

using supervised learning as many of the explainable AI methods are model agnostic,

i.e. can be applied independent of the “base” supervised ML model used. The third

methodology should generalise well to other healthcare applications that have good data

from operation. We expect this to include cases which incorporate ML-based SaMD within

clinical practice.

It is tempting to seek to generalise the results of the research as widely as possible,
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however we would suggest caution. In approaching other case studies it will be instructive

to see if their characteristics are similar to those we have presented here. If they are

similar, this suggests that the methodologies developed should be evaluated for use on the

new case study and they may well be usable with minimal adaptation.

7.3.4 Future Work

In Chapters 4 to 6, we considered future work for the individual methodology, e.g. by

applying the methodology in new healthcare settings, or seeking to progress the work

using different ML methods. Here, we consider three broad perspectives on future work

rather than focus on the individual methodologies.

First, all our analysis drew on the MIMIC-III dataset. Whist this is a very valuable

data source, it would facilitate ML and safety research in healthcare further if there were

more open source healthcare datasets. In addition, MIMIC-III only includes clinical in-

formation. As noted above, healthcare is a socio-technical system, so it would be valuable

to have a dataset that also includes organisational information, e.g. on shift patterns or

stress factors on a ward, that might contribute to risk and lead to undesired outcomes.

To take forward some of the work described here, particularly that in Chapter 6, would

need access to a richer dataset that included these additional factors. Whilst there might

be concerns from healthcare staff about such data collection, without such data it will

be difficult to achieve through-life learning to improve patient safety, addressing all the

potentially relevant factors. Thus work to identify and gather such datasets will be an

important element of any future work in this area.

Second, development and assessment of ML-based SaMD are highly iterative. The case

study in Chapter 4 was greatly facilitated by using AdvoCATE and it was easier to track

the changes in models, DSRs, etc. with the tool than without it. However, the tool was

also limited in the sense that it embeds concepts that are more relevant to aerospace which,

to an extent, get in the way when considering healthcare situations. For example, the tool

will automatically generate safety arguments from the BTDs (using built-in patterns) but

we had to bypass this mechanism in our work. Developing effective tools is difficult, but

there would be merit in exploring how to develop tools like AdvoCATE but better adapted

to the healthcare domain, e.g. supporting definitions of clinical pathways, and so on.

Finally, the work carried out in this thesis is multi-disciplinary. Several of the papers

which inspired the individual case studies, e.g. on sepsis, emphasised the need to take a
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multi-disciplinary approach. However, to our knowledge, we are the first to fully embrace

safety engineering within the multi-disciplinary team. It seems essential that future work

in this area takes a multi-disciplinary approach – and ideally expands the team to include

human factors specialists, statisticians, and so on. If this happens, then our work on

embracing ML in safety assurance in healthcare might be seen as a key step towards

developing a fully inclusive approach to addressing the enormous challenges facing the

global healthcare system.
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Appendix A

SHARD analysis for the clinical

workflow in case study 1

This appendix presents the full SHARD analysis for the clinical workflow shown in Figure

4.4, using the approach described in Section 4.4.2 in case study 1 presented in Chapter

4. The detailed description of SHARD can be found in [8]. Our analysis focuses on

vasopressor administration; provision of oxygen and administration of antibiotics are not

analysed here.

Tables A.1 and A.2 present the summary of the SHARD analysis results and is the

basis for Table 4.1. Tables A.3 to A.7 below present analyses of five key activities in the

workflow, working back from nurse administration (Table A.3) to input of patient feature

data (Table A.7). Working back (rather than forward) means that hazards are identified

at the outset where we focus on the final output of the workflow, and the later analyses

can focus on finding possible causes for the identified hazards. Tables A.8 and A.9 are a

summary analysis for the RL recommendation in the workflow that enable us to identify

interface hazards – what can go wrong with the RL model and present problems that the

clinicians must manage.

Severity is only included for Tables A.1 and A.2 (as they show the final effects on

the patients). The classification: Minor, Significant, Considerable, Major, Catastrophic is

used based on NHS Digital standard DCB160 [9].

In all the tables the leftmost column is the prompt (SHARD guideword) and the next

column is the deviation or deviations that can arise. This is followed by possible causes

of the deviation(s). The remaining columns differ between the summary (Tables A.1 and

A.2) and the more detailed tables.
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Table A.1: Overall Administration of Vasopressors, Part 1

 
Guide word Deviation Possible Causes Effects Severity Justification or 

Design 
recommendations 

Omission  No vasopressor 
administered  

1. Nurse fails to administer the 
vasopressor (e.g. due to workload) 
2. Doctor does not produce final decision 
(e.g. due to workload) 
3. Initial recommendation by doctor is not 
produced (not considered) 
4. Failure to output results due to software 
fault in RL agent (e.g. errors in the display 
code) 
5. Algorithm or hardware does not have 
the capability to process the input data 
(e.g. inadequate memory allocation) 
6. Data corruption (e.g. invalid or wrong 
data produced by over-writing patient’s 
features) 
7. Some features are not entered (e.g. due 
to staff workload) 
8. Some test results are missing or not 
available 
9. Wrong form of patient features entered 
 

Continuous 
hypotension 

Considerable  

Commission  Unnecessary 
vasopressor 
administered  

1. Nurse administers to wrong patient 
2. Doctor produces unnecessary final 
decision (e.g. due to miscommunication at 
handover) 
 

Potential danger 
to the patient, e.g. 
Cardiac 
Arrhythmia 

Considerable  

Incorrect 1. Wrong 
vasopressor 
administered 

1.1 Allergy is not recorded, or wrong 
information provided  
1.2 Doctor fails to check allergies and thus 
wrong vasopressor decided 
1.3 Patient allergic to initial vasopressor 
recommended by doctor (not considered) 
1.4 Patient allergic to vasopressor 
recommended by RL agent (not credible) 
 

1. Adverse drug 
effect 
 

Major/consid
erable 

 

2. Wrong dose 
administered 
(this hazard 
concerns single 
dose) 
 
 
3. Sudden drop 
of vasopressor 
dose 
administered 
 
 
4. Sudden 
increase of 
vasopressor 
dose 
administered 
(3&4 hazards 
concern two 
consecutive 
doses) 

2.1 Wrong initial dose recommended by 
Doctor (not considered) 
2.2 RL recommends wrong equivalent 
dose and doctor accepts the advice, e.g. 
due to automation bias  
2.3 Failure to update display with new 
recommendation 
2.4 Algorithm or hardware does not have 
the capability to process the input data 
correctly (e.g. software fault)  
 
3.1 Kink of line 
3.2 The pump fails, e.g. due to electrical 
problem or bag/syringe not installed 
correctly 
3.3 The delivery line might not be 
connected to patient's central line, e.g. due 
to the patient pulling out the central line 
3.4 The drug might not be added to the 
diluent, so the syringe/bag just contains 
saline (a problem when bags/syringes are 
being changed over) 
3.5 Initial recommendation by doctor has a 
sharp drop in dose and doctor carried 
through the recommendation (not 
considered) 
3.6 RL agent recommends sharp drop in 
dose and doctor accepts the advice, e.g. 
due to automation bias 
 
4.1 Initial recommendation by doctor has a 
sharp rise in dose and doctor carried 
through the recommendation (not 
considered) 

2. Potential 
danger to the 
patient  
 

Considerable Careful interface 
design required for 
using RL agent, 
especially causes 
(2&3&4) 6 to 9.  
 
(2&3&4) 10 to 11 
might also need to be 
considered when 
designing the interface 
for using the RL 
model, but it might 
also arise from errors 
in the lab. 
 
Careful RL model 
design required, 
especially causes 
(2&3&4) 1 to 5 

3.1 Acute 
Hypotension 
3.2 Strokes,  
3.3 Renal failure 
3.4 Heart attack 
 

Major/consid
erable 

4.1 Hypertension 
4.2 Cardiac 
Arrhythmia 
4.3 Strokes 
4.4 Raised 
intracranial 
pressure 
4.5 Pulmonary 
oedema 
 

Major/consid
erable 
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4.2 RL agent recommends sharp rise in 
dose and doctor accepts the advice, e.g. 
due to automation bias 
 
(3&4) 1. Inappropriate titration of dose by 
nurse 
(3&4) 2. Doctor fails to check current dose 
 
(2&3&4)1. Features in state space of the 
RL model are not sufficient to represent 
the patient conditions for sepsis decision 
making 
(2&3&4)2. Reward function used for RL 
model is coarse 
(2&3&4)3. Cost function used for RL 
model development is not appropriate 
(2&3&4)4. Hyperparameters used for RL 
model development are not optimised 
(2&3&4)5. Training data for RL model 
development is not appropriate 
 
(2&3&4) 6.  Nurse prepared wrong dose 
(e.g. due to calculation error) 
(2&3&4) 7. Data corruption (e.g. invalid 
or wrong data produced by over-writing 
patient’s features) 
(2&3&4) 8. Features for wrong patient 
entered 
(2&3&4) 9. Wrong patient feature values 
entered (e.g. due to unit difference) 
(2&3&4) 10. Test results for wrong patient 
received 
(2&3&4) 11. Incorrect test results received 
 

Late Delay of 
administering 
vasopressor 

1. Late to get central line access 
2. Late to get the vasopressor 
4. Delay in administration (e.g. due to 
nurse workload) 
5. Delay of the initial recommendation by 
the Doctor (not considered) 
6. Algorithm or hardware does not have 
the capability to process the input data in a 
timely fashion (e.g. inefficient algorithm 
or infinite loop or inadequate memory 
allocation or hardware limitations)  
7. Some patient features are not entered at 
all or not entered on time (e.g. due to staff 
workload)  
8. Some test results are delivered late, 
missing or not available 
9. Failure to output results due to software 
fault in RL agent (e.g. errors in the display 
code) 
10. Data corruption (e.g. invalid or wrong 
data produced by over-writing patient’s 
features) 
11. Wrong form of patient features entered 
 

Continuous 
Hypotension or 
increased 
mortality 

Considerable  
 
 
 
 
 

Early N/A N/A N/A N/A There is ongoing 
clinical research about 
whether to deliver 
vasopressor earlier to 
increase MAP for 
sepsis treatment, thus it 
is not discussed further 
here.  
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In Tables A.1 and A.2, the final three columns show the effect on the patient, followed

by its severity and a justification or design recommendations. Design recommendations

are included if it is judged that the risk can be, or needs to be, better controlled. In Tables

A.3 to A.7, the final two columns are the output deviation – what “problem” can be passed

on to the next activity in the workflow, and a justification or design recommendations.

Several of the rows in Tables A.1 and A.2 are simple. For example, with omission there

is a single deviation and a simple list of possible causes. Cause 3 is in blue indicating it is

not analysed further; this colour coding is also used elsewhere in the tables with the same

meaning.

The row for incorrect in Tables A.1 and A.2 is more complex. There are four possible

deviations, i.e. four possible ways in which the administered vasopressor could be incorrect.

The first sub-row (wrong vasopressor) is simple, like omission. Deviations 2-4 are grouped

into one sub-row as they have many common possible causes. The label x.y, e.g. 2.1, is

the yth possible cause of deviation x. Those labelled (3&4) or (2&3&4) show that they

can cause two or all three of the deviations. The effect column is sub-divided again to

reflect the different clinical effects of the three different sub-cases of incorrect.

Early is not analysed in Table A.2 or any of the subsequent tables as the clinical effects

are a matter of debate.

Table 4.1 is derived from Tables A.1 and A.2. It covers deviations 3 and 4 for incorrect,

but grouped together as “sudden change” rather than separating out sudden increase or

sudden decrease. Combining entries 3.5 & 4.1 and entries 3.6 & 4.2 reduces the 21 possible

causes in Tables A.1 and A.2 to the 19 presented in Table 4.1. Entries (2&3&4)1-5 are

the RL-related causes and appear as possible causes 10-14 in Table 4.1.

Table A.3 considers the final activity — administration in the workflow. The output

deviations here are the deviations in Tables A.1 and A.2; for example, compare the entries

for incorrect. Propagation can also be seen between the activities in the workflow, e.g.

the input deviations in Table A.3 are the output deviations in Table A.4. The numbering

of the input and output deviations in one table shows internal “flows”, specifically the

number following the input deviation shows that it contributes to the corresponding output

deviation.

Table A.4 shows the penultimate activity — final decision by the doctor in the work-

flow. All input deviations labelled X can contribute to different classes of deviation, e.g.

omission to late in this case, which are highlighted in red. This colour code applies to
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Table A.3: Nurses Administer Vasopressors as Advised by Doctor

 
Guide word Input Deviation Internal Deviations Output Deviation Justification or 

Design 
recommendations 

Omission Final decision is not 
provided 

Nurse fails to administer the vasopressor 
(e.g. due to workload) 

No vasopressor 
administered  

 

Commission  Unnecessary final decision 
is provided 

Nurse administers to wrong patient Unnecessary vasopressor 
administered  

 

Incorrect Wrong vasopressor is 
decided (1) 
Wrong dose is decided (2) 
A sharp drop in dose is 
decided (3) 
A sharp rise in dose is 
decided (4) 

1.1 Allergy is not recorded, or wrong 
information provided  
 
2.&3&4 Nurse prepared wrong dose 
(e.g. due to calculation error) 
3.1. Kink of line 
 
3.2 The pump fails, e.g. due to electrical 
problem or bag/syringe not installed 
correctly 
3.3 The delivery line might not be 
connected to patient's central line, e.g. 
due to the patient pulling out the central 
line 
3.4 The drug might not be added to the 
diluent, so the syringe/bag just contains 
saline (a problem when bags/syringes 
are being changed over) 
 
3&4. Inappropriate titration of dose 
 
 
 

1. Wrong vasopressor 
administered 
2. Wrong dose 
administered (this hazard 
concerns single dose) 
3. Sudden drop of 
vasopressor dose 
administered 
4. Sudden increase of 
vasopressor dose 
administered 
(3 & 4 concern two 
consecutive doses) 

 

Late Delay in final decision 1. Late to get central line access 
2. Late to get the vasopressor 
3. Delay in administration (e.g. due to 
nurse workload) 

Delay of administering 
vasopressor 

 

Early  N/A N/A N/A There is ongoing 
clinical research 
about whether to 
deliver vasopressor 
earlier to increase 
MAP for sepsis 
treatment, thus it is 
not discussed further 
here.  

 

other tables as well. They are labelled with O meaning omission, C meaning commission,

etc. The red deviation in this case is an omission from the RL agent.

Tables A.8 and A.9 assess the RL recommendation in the workflow as a whole, i.e. the

dotted green box in Figure 4.4. The protections are ways of controlling the possible causes.

Some of these reflect the practice in developing the initial model; the design requirements

are those changes that were identified to produce the modified model. They correspond to

safety requirements R1-R5 in Table 4.2 and provide the detail behind the recommendation

“Careful RL model design required, especially causes (2&3&4) 1 to 5” in Tables A.1 and

A.2.
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Table A.4: Final Decision/Final Dose Decided by Doctor

 
Guide word Input Deviation Internal Deviations Output Deviation Justification or 

Design 
recommendations 

Omission  Initial recommendation by 
Doctor is not produced (not 
considered) 
XO. RL agent does not 
produce recommendation 

Doctor does not produce final decision 
(e.g. due to workload) 
 

Final decision is not 
provided 

 

Commission  N/A (RL agent produces 
unnecessary 
recommendation is covered 
by Incorrect) 

Doctor produces unnecessary final 
decision (e.g. due to miscommunication 
at handover) 

Unnecessary final decision 
is provided 

 

Incorrect Patient allergic to initial 
vasopressor recommended 
by doctor (not considered) 
Patient allergic to 
vasopressor recommended 
by RL agent (not credible) 
Wrong equivalent dose 
recommended by the RL 
agent (2) 
Wrong initial dose 
recommended by doctor 
(not considered) 
Initial recommendation by 
doctor has a sharp drop in 
dose (not considered) 
Recommendation by RL 
agent has a sharp drop in 
dose (3) 
Initial recommendation by 
doctor has a sharp rise in 
dose (not considered) 
Recommendation by RL 
agent has a sharp rise in 
dose (4) 

1.1 Doctor fails to check allergies and 
thus wrong vasopressor decided 
1.2 Allergy information is incorrect 
 
2.1 RL recommends wrong equivalent 
dose and doctor accepts the advice, e.g. 
due to automation bias  
3.1. RL agent recommends sharp drop in 
dose and doctor accepts the advice, e.g. 
due to automation bias  
4.1. RL agent recommends sharp rise in 
dose and doctor accepts the advice, e.g. 
due to automation bias 
 
3&4. Doctor fails to check current dose 

1. Wrong vasopressor is 
decided 
2. Wrong dose is decided 
3. A sharp drop in dose is 
decided 
4. A sharp rise in dose is 
decided 

Patient allergic to 
vasopressor 
recommended by 
RL agent is not 
credible as the RL 
agent only 
recommends 
noradrenaline-
equivalent dose 
 
 
The input deviation 
which are marked as 
not considered come 
from 
recommendation 1 
from the doctors and 
this is out of the 
scope of the paper 

Late  Delay of the 
recommendation from the 
RL agent 
Delay of the initial 
recommendation by the 
doctor (not considered) 
XO. RL agent does not 
produce recommendation 

 Delay in final decision Delay of the initial 
recommendation by 
the doctor is from 
recommendation 1, 
so is not considered 
further 

Early  N/A N/A N/A  
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Table A.5: Recommendation by RL Agent

 
Guide word Input Deviation Internal Deviations Output Deviation Justification or 

Design 
recommendations 

Omission  Processing of patient data 
does not produce a result 
(crash) 

Failure to output results due to software 
fault in RL agent (e.g. errors in the 
display code) 
 

XO. RL agent does not 
produce recommendation 

 

Commission  N/A N/A N/A (RL agent produces 
unnecessary 
recommendation is 
covered by Incorrect) 

 

Incorrect Processing of the patient 
data is incorrect (2&3&4) 

2.  Failure to update display with new 
recommendation 
(2&3&4)1. Features in state space of the 
RL model are not sufficient to represent 
the patient conditions for sepsis decision 
making 
(2&3&4)2. Reward function used for 
RL model is coarse 
(2&3&4)3. Cost function used for RL 
model development is not appropriate 
(2&3&4)4. Hyperparameters used for 
RL model development are not 
optimised 
(2&3&4)5. Training data for RL model 
development is not appropriate 
  

1. Patient allergic to 
vasopressor recommended 
by RL agent (not credible) 
2. Wrong equivalent dose 
recommended by RL agent 
3. Recommendation by RL 
agent has a sharp drop in 
dose 
4. Recommendation by RL 
agent has a sharp rise in 
dose 

 

Late  Processing of the patient 
data is slow  

N/A Delay of the 
recommendation from the 
RL agent 

 

Early  N/A N/A N/A  

 
  

Table A.6: RL Agent processes the patient data

 
Guide word Input Deviation Internal Deviations Output Deviation Justification or 

Design 
recommendations 

Omission  Some features are missing 
XI. Patient features are in 
wrong form, e.g. string 
when numeric expected 

 Algorithm or hardware does not have 
the capability to process the input data 
(e.g. inadequate memory allocation) 
 
 

Processing of patient data 
does not produce a result 
(crash) 

Use good systems 
engineering practice, 
e.g. resource 
analysis 

Commission  N/A (covered by Incorrect) N/A 
 

N/A  

Incorrect Wrong patient data 
provided 
Patient data provided 
incorrectly  
 

Algorithm or hardware does not have 
the capability to process the input data 
correctly (e.g. software fault)  
 

Processing of the patient 
data is incorrect 

Use good software 
engineering practice, 
e.g. static analysis 

Late  Patient features are 
provided late 

Algorithm or hardware does not have 
the capability to process the input data 
in a timely fashion (e.g. inefficient 
algorithm or infinite loop or hardware 
limitations) 
 

Processing of the patient 
data is slow  

Use good software 
engineering practice, 
e.g. algorithm 
complexity analysis, 
timing analysis 

Early  N/A N/A N/A  
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Appendix A: SHARD analysis for the clinical workflow in case study 1

Table A.7: Input Patient Features

 
Guide word Input Deviation Internal Deviations Output Deviation Justification or 

Design 
recommendations 

Omission  Some test results are 
missing or not available 
 

1. Data corruption (e.g. invalid or wrong 
data produced by over-writing patient’s 
features) 
2. Some features are not entered (e.g. due 
to staff workload) 

Some features are missing  

Commission  Duplicate test results 
received (not hazardous) 

N/A (covered by Incorrect) N/A (covered by Incorrect)  

Incorrect Test results for wrong 
patient received (2) 
Incorrect test results 
received (3) 
 

1&2&3. Data corruption (e.g. invalid or 
wrong data produced by over-writing 
patient’s features) 
1.1 Wrong form of patient features entered 
2.1 Features for wrong patient entered 
3.1 Wrong patient feature values entered 
(e.g. due to unit difference) 
 

XI. Patient features are in 
wrong form, e.g. string 
when numeric expected 
2. Wrong patient data 
provided 
3. Patient data provided 
incorrectly 

 

Late  Some test results are 
delivered late 
 

Some patient features are not entered on 
time (e.g. due to staff workload) 

Patient features are 
provided late  

Timing errors in 
algorithms are 
unlikely to be 
significant given 
response time of 
system 

Early  N/A N/A N/A  
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Table A.8: Interface between RL agent and Clinical care, Part 1

 
Guide 
word 

Deviation Possible Causes Linked 
hazard 

Protections Design requirements 

Omission RL agent 
does not 
produce 
recommenda
tion  

1. Failure to output results 
due to software fault in RL 
agent (e.g. errors in the 
display code) 
2. Algorithm or hardware 
does not have the capability to 
process the input data (e.g. 
inadequate memory 
allocation) 
3. Data corruption (e.g. 
invalid or wrong data 
produced by over-writing 
patient’s features) 
4. Some features are not 
entered (e.g. due to staff 
workload) 
5. Some test results are 
missing or not available 
6. Wrong form of patient 
features entered 

No 
vasopressor 
administered 

 Apply good practice from 
systems engineering, 
software engineering and 
user interface design 
(details out of the scope of 
the paper).  

Commissi
on 

N/A (RL 
agent 
produces 
unnecessary 
recommenda
tion is 
covered by 
incorrect) 

N/A N/A   

Incorrect 1. Patient 
allergic to 
vasopressor 
recommende
d by RL 
agent (not 
credible) 

 1. Wrong 
vasopressor 
administered 

  

 
 
 
 
2. Wrong 
equivalent 
dose 
recommende
d by RL 
agent 
 
3.RL agent 
recommends 
a sudden 
drop in dose 
 
4. RL agent 
recommends 
a sudden 
increase  in 
dose 

2.1 Failure to update display 
with new recommendation 
2.2 Algorithm or hardware 
does not have the capability to 
process the input data 
correctly (e.g. software fault)  
 
(2&3&4)1. Features in state 
space of the RL model are not 
sufficient to represent the 
patient conditions for sepsis 
decision making 
(2&3&4) 2. Reward function 
used for RL model is coarse 
(2&3&4) 3. Cost function 
used for RL model 
development is not 
appropriate 
(2&3&4) 4. Hyperparameters 
used for RL model 
development are not 
optimised 
(2&3&4) 5. Training data for 
RL model development is not 
appropriate 
 
 
(2&3&4) 6. Data corruption 
(e.g. invalid or wrong data 
produced by over-writing 
patient’s features) 
(2&3&4) 7. Features for 
wrong patient entered 
(2&3&4) 8. Wrong patient 
feature values entered (e.g. 
due to unit difference) 

 
2. Wrong 
dose 
administered 
 
3. Sudden 
drop of 
vasopressor 
dose 
administered 
 
4. Sudden 
increase of 
vasopressor 
dose 
administered 

1.1 The 47 included features, 
e.g. demographics, lab values, 
were chosen to represent the 
most important parameters that 
clinicians would consider when 
deciding treatment for patients. 
1.2 Add one extra feature to 
enable the RL agent to take 
account of the relative 
vasopressor dose change. 
 
2. The terminal reward is based 
on patients' 90-day-mortality 
and an intermediate reward is 
also added based on SOFA 
score and Arterial Lactate level.  
 
3.1 Use a standard double DQN 
loss function plus one 
regularisation term in cost 
function to penalise output Q-
values when it is outside of the 
allowed thresholds. 
3.2 Add a second regularization 
term to the cost function to 
penalise sudden dosage change 
while learning the optimal 
policy. 
 
4.  Multiple values are tried and 
the best value is chosen based 
on the validation error. 

 
1. Feature representation in 
the state space shall be 
sufficient to allow the 
control of sudden changes 
in recommended dose 
 
2. An appropriate reward 
function shall be defined to 
allow the recognition of 
desired clinical outcome 
 
3. An appropriate cost 
function shall be defined to 
penalise hazardous 
behaviours 
 
4. Hyperparameters shall 
be optimised based on the 
validation dataset 
 
5. Patient cohort shall be 
defined using recognised 
criteria, i.e. sepsis-3 
 
 
For causes (2&3&4) 6-10 
Apply good practice from 
systems engineering, 
software engineering and 
user interface design 
(details out of the scope of 
the paper). 
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Appendix A: SHARD analysis for the clinical workflow in case study 1

Table A.9: Interface between RL agent and Clinical care, Part 2

(2&3&4) 9. Test results for 
wrong patient received 
(2&3&4) 10. Incorrect test 
results received 

 
5.1 Real world data (MIMIC 
III) is used and sepsis 3 
definition is used to determine 
patient cohort 
 
5.2 Outliers are corrected and 
missing data is addressed, e.g. 
using sample-and-hold 
approach. 
 
1 to 5: Hold-out test data was 
used to evaluate the 
appropriateness of the learnt 
policy in comparison with the 
clinician policy. 

Late Delay of the 
recommenda
tion from the 
RL agent 

1. Algorithm or hardware 
does not have the capability to 
process the input data or in a 
timely fashion (e.g. inefficient 
algorithm or infinite loop or 
hardware limitations)  
2. Some patient features are 
not entered at all or not 
entered on time (e.g. due to 
staff workload)  
3. Some test results are 
delivered late, missing or not 
available 
4. Failure to output results 
due to software fault in RL 
agent (e.g. errors in the 
display code) 
5. Data corruption (e.g. 
invalid or wrong data 
produced by over-writing 
patient’s features) 
6. Wrong form of patient 
features entered 

Delay of 
administering 
vasopressor 

  

Early  N/A N/A N/A   
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Appendix B

Feature correlation matrix for the

RL model in case study 1

This appendix presents the 47 features used to represent the state space in the RL model

in case study 1 presented in Chapter 4, see Table B.1. A feature correlation matrix is also

presented. As the matrix is big, it is split into three parts in Figures B.1 to B.3.

Table B.1: List of features used in the RL model

Feature Abbreviation Feature Description

Gender Gender

Age Age

re admission Readmission to intensive care

mechvent Mechanical ventilation

Weight kg Weight

GCS Glasgow coma scale

SysBP Systolic blood pressure

MeanBP Mean blood pressure

DiaBP Diastolic blood pressure

HR Heart rate

RR Respiratory rate

Temp C Temperature

FiO2 1 FiO2

Potassium Potassium

163



Appendix B: Feature correlation matrix for the RL model in case study 1

Sodium sodium

Chloride chloride

Glucose Glucose

Magnesium Magnesium

Calcium Calcium

Hb Hemoglobin

WBC count’ White blood cells count

Platelets count Platelets count

PTT PTT

PT PT

Arterial pH Arterial PH

paO2 PaO2

paCO2 PaCO2

Arterial BE Arterial base excess

HCO3 Bicarbonate

Arterial lactate Arterial lactate

SOFA SOFA

SIRS SIRS

Shock Index Shock Index

PaO2 FiO2 PaO2/FiO2 ratio

cumulated balance Cumulated fluid balance since admission

(includes preadmission data when available)

SpO2 SpO2

BUN BUN

Creatinine Creatinine

SGOT SGOT

SGPT SGPT

Total bili total bilirubin

INR INR

max dose vaso Maximum dose of vasopressor over 4h

input total total input since hospital (when pre-ICU data available)

or ICU admission
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input 4hourly Current IV fluid intake over 4h

output total total input since hospital (when pre-ICU data available)

or ICU admission

output 4hourly Urine output over 4h

Figure B.1: Feature correlation matrix for case study concerning sepsis treatment, Part 1
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Figure B.2: Feature correlation matrix for case study concerning sepsis treatment, Part 2
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Figure B.3: Feature correlation matrix for case study concerning sepsis treatment, Part 3
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Appendix C

Feature correlation matrix for the

weaning model in case study 2

Figure C.1 shows the feature correlation matrix for the weaning model in case study 2

presented in Chapter 5.
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Appendix C: Feature correlation matrix for the weaning model in case study 2

Figure C.1: Feature correlation matrix for case study concerning ventilator weaning
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Abbreviations

AF Atrial Fibrillation

AI Artificial Intelligence

AMLAS Assurance of Machine Learning for Autonomous Systems

AUC Area Under the Curve

AUC-ROC Area Under The Receiver Operating Characteristics Curve

BB Beta-Blocker

BN Bayesian Network

BP Blood Pressure

BSI British Standards Institution

BTD Bow Tie Diagram

CAE Claims Argument Evidence

CE Conformité Européenne

CNN Convolutional Neural Network

CQC Care Quality Commission

DiCE Diverse Counterfactual Examples

DNN Deep Neural Network

DSR Derived Safety Requirement
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DSS Decision Support System

EHR Electronic Health Record

EMA European Medicines Agency

ETA Event Tree Analysis

EWS Early Warning Score

FDA Federal Drug Administration

FMEA Failure Modes and Effects Analysis

FTA Fault-Tree Analysis

GDPR General Data Protection Regulations

GSN Goal Structuring Notation

HAZOP Hazard and Operability Analysis

HIT Healthcare IT

ICU Intensive Care Unit

IEEE Institute of Electrical and Electronics Engineers

IMDRF International Medical Device Regulators Forum

IoM Institute of Medicine

ISMP Canada The Institute for Safe Medication Practices Canada

LIME Local Interpretable Model-Agnostic Explanations

MAP Mean Arterial Pressure

MHRA Medicines & Healthcare products Regulatory Agency

ML Machine Learning

NN Neural Network

PEEP Positive End-Expiratory Pressure

PGM Probabilistic Graphical Model

172



PSV Pressure Support Ventilation

QMS Quality Management System

RF Random Forest

RL Reinforcement Learning

ROC Receiver Operating Characteristic Curve

SAM Safety Argument Manager

SaMD Software as a Medical Device

SBT Spontaneous Breathing Trial

SHAP SHapley Additive exPlanations

SHARD Software Hazard Analysis and Resolution in Design

SOFA Sequential Organ Failure Assessment

SVM Support Vector Machine

TPLC Total Product Life-Cycle

UKCA UK Conformity Assessed

WHO World Health Organisation
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