
Semigroups of straight I-quotients:

a general approach

Georgia Schneider

Doctor of Philosophy

University of York

Mathematics

October 2021



Abstract

Let Q be an inverse semigroup. A subsemigroup S of Q is a left I-order in

Q, and Q is a semigroup of left I-quotients of S, if every element in Q can be

written as a´1b, where a, b P S and a´1 is the inverse of a in the sense of inverse

semigroup theory. If we insist on a and b being R-related in Q, we say that S

is straight in Q and Q is a semigroup of straight left I-quotients of S.

In Chapter 4, we give two equivalent sets of necessary and sufficient conditions

for a semigroup to be a straight left I-order. The first set of conditions is in terms

of two binary relations and an associated partial order and the proof relies on

the meet structure of the L-classes of inverse semigroups. The second set of

conditions in terms of two binary relations and a ternary relation and the proof

is purely algebraic.

We characterise right ample straight left I-orders that are embedded as a unary

semigroup into their semigroups of straight left I-quotients. As a special case of

this, we characterise two-sided ample left I-orders that are embedded into their

semigroups of left I-quotients as (2,1,1)-algebras.

Straight left I-orders always intersect every L-class of their semigroup of straight

left I-quotients. We characterise straight left I-orders that intersect everyR-class

of their semigroup of straight left I-quotients. We use this to prove that if a semi-

group S has both a semigroup of straight left I-quotients, Q, and a semigroup

of straight right I-quotients, P , then P and Q are isomorphic if and only if their

R and L relations restricted to S are equal.

We characterise left I-orders whose semigroups of quotients have a chain of

idempotents. As a special case of this, we characterise left I-orders in inverse

ω-semigroups.

We determine when two semigroups of straight left I-quotients are isomorphic.
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Chapter 1

Introduction

The theory of orders and quotients has its history in classical ring theory. Let

R be a subring of a ring Q with multiplicative identity. Then Q is a ring of

left quotients of R and R is an left order in Q if every q P Q can be written as

q “ a´1b for some a, b P R, and if, in addition, every non-zero divisor in R has

an inverse in Q. With this definition, we are able to describe the relationship

between Z and Q. Ore in 1931 [27] proved that a ring R has a ring of left

quotients if and only if it is left Ore. By saying that a ring is left Ore, we mean

that for any non-zero a P R, d P ∆, we have ∆aXRd ‰ 0, where ∆ is the set of

non-zero divisors of R.

Several definitions of a semigroup of quotients have been proposed and studied

by a number of authors. The earliest definition is that of a group of left quotients,

introduced by Dubreil in 1943 [4], building on Ore’s work. A subsemigroup S

of a group G is a left order in G and G is a group of left quotients of S if every

g P G can be written as g “ a´1b for some a, b P S. Dubreil showed that a

semigroup S has a group of left quotients if and only if S is right reversible and

cancellative. By saying that a semigroup S is right reversible we mean for any

a, b P S, Sa X Sb ‰ ∅.

Murata in 1950 [25] extended the notion of a group of left quotients to a

semigroup of classical left quotients by letting the semigroup of quotients be

a monoid, and considering inverses lying in the group of units. A subsemigroup

S of a monoid M is a classical left order in M and M is a semigroup of classical

left quotients of S if every m P M can be written as m “ a´1b for some a, b P S

1



CHAPTER 1. INTRODUCTION 2

where a´1 is the inverse of a in the group of units ofM , and if, in addition, every

cancellative element of S is in the group of units of M . Murata showed that

a semigroup S has a monoid of classical left quotients if and only if S satisfies

the left Ore-Asano condition. By saying that a semigroup S satisfies the left

Ore-Asano condition, we mean that for any a P A, b P S, we have SaXAb ‰ ∅,

where A is the set of cancellative elements of S.

A different definition proposed by Fountain and Petrich in 1986 [9] was restricted

to completely 0-simple semigroups of left quotients. Gould in 1986 [15] extended

this concept to left orders in an arbitrary semigroup, which we will call left

Fountain-Gould orders. A subsemigroup S of a semigroup Q is a left Fountain-

Gould order in Q and Q is a semigroup of left Fountain-Gould quotients of S

if every q P Q can be written as q “ a#b for some a, b P S, where a# is the

inverse of a in some subgroup of Q, and if, in addition, every square-cancellable

element of S lies in a subgroup of Q. We will define square-cancellable formally

in Chapter 2, but for now it is enough to know that it is a necessary condition

for an element to lie in a subgroup of an oversemigroup, in the same way that

cancellativity is a necessary condition for an element to lie in the group of units

of an oversemigroup. Additionally, S is a straight left Fountain-Gould order in

Q, if every q P Q can be written as q “ a#b for some a, b P S, such that aR b in

Q. Gould in 2003 [17] gave necessary and sufficient conditions for a semigroup

to be a straight left Fountain-Gould order.

The concept central to this thesis is that of a semigroup of left I-quotients, first

defined by Ghroda and Gould in 2010 [14]. A subsemigroup S of an inverse

semigroup Q is a left I-order in Q and Q is a semigroup of left I-quotients of S if

every element in Q can be written as a´1b where a, b P S and a´1 is the inverse

of a in the sense of inverse semigroup theory. Note that there is no additional

condition guaranteeing that certain elements have inverses, as in the classical

case and the Fountain-Gould case. The reason for this is that in an inverse

semigroup, every element already has an inverse.

A subsemigroup S of an inverse semigroup Q is a straight left I-order in Q and

Q is a semigroup of straight left I-quotients of S if every q P Q can be written

as q “ a´1b where a, b P S and aR b in Q.

The notion of semigroups of I-quotients has effectively been defined by a number

of authors without using the above terminology. The first case of this is probably
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Clifford in 1953 [2] where he showed that every right cancellative monoid S with

the (LC) condition has a bisimple inverse monoid of left I-quotients. By saying

that a semigroup S satisfies the (LC) condition we mean for any a, b P S there

exists c P S such that Sa X Sb “ Sc. Thus, (LC) is a stronger condition than

right reversibility.

Left I-quotients have also appeared implicitly in work on inverse hulls of right

cancellative semigroups developed in [26] and [23], and taken further in [1].

A related approach recently appeared in Exel and Steinberg’s work on inverse

hulls of 0-left cancellative semigroups [5]. All of these examples are left ample

(or right ample), and so we can determine the structure of their inverse hulls

using Theorem 3.7 of [10]. We will explore this more in Subsection 5.2.1.

Fountain and Kambites also utilise left I-quotients in Section 2 of [7], in which

they use the fact that certain graph products are left I-orders in related inverse

semigroups to show that that this relationship is in fact that of a semigroup and

its inverse hull.

The main purpose of this thesis is to develop a comprehensive theory for semi-

groups of left I-quotients. The ‘I’ stands for ‘Inverse semigroup’. Including this

introduction, this thesis comprises eight chapters. In Chapter 2, we begin by in-

troducing the standard semigroup theory used throughout the thesis along with

the basics of inverse semigroup theory.

In Chapter 3, we give the formal definitions of left I-orders and of straight left

I-orders, along with some preliminary properties of left I-orders. We also pro-

vide a number of examples of left I-orders. In the second section, we show many

of the connections between the historical theory of semigroups of quotients and

that of semigroups of I-quotients, including many results guaranteeing straight-

ness. In the final section of this chapter, we determine when a homomorphism

between straight left I-orders can be lifted to a homomorphism between the

semigroups of straight left I-quotients. Consequently, we find necessary and

sufficient conditions for a semigroup of straight left I-quotients to be unique.

In Chapter 4, we determine the conditions under which a semigroup S is a

straight left I-order. We have two approaches which we cover in two separate

sections. Section 4.2 characterises straight left I-orders using the meet structure

of the L-classes of inverse semigroups, and we give our conditions in terms of
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two binary relations and an associated partial order. Section 4.3 characterises

straight left I-orders in a ‘purely algebraic’ way, and we give our conditions in

terms of two binary relations and a ternary relation. The final section answers

the much simpler question of whether a subsemigroup of a given inverse semi-

group, Q, is straight left I-order in Q. Many of the results in the following

chapters are characterisations of particular classes of semigroups of I-quotients

and each of their proofs rely on at least one of the results from this chapter,

simplifying them considerably in application.

In Chapter 5, we use the results in Chapter 4 to reprove some established results

for semigroups of I-quotients. In the first section, we reprove a characterisation

of straight left I-orders in primitive inverse semigroups from [12]. In the final

section, we reprove the result that left ample semigroups are left I-orders in their

inverse hull if and only if they have the (LC) condition from [10], and we apply

this result to Exel and Steinberg’s work on inverse hulls of 0-left cancellative

semigroups [5].

In Chapter 6, we examine right ample left I-orders. In the first section, we

characterise right ample straight left I-orders that are embedded into their semi-

groups of straight left I-quotients as (2,1)-algebras. In the final section, we char-

acterise two-sided ample left I-orders that are embedded into their semigroups

of left I-quotients as (2,1,1)-algebras.

In Chapter 7, we focus on straight left I-orders that intersect every R-class of

their semigroups of straight left I-quotients. In the first section, we characterise

such straight left I-orders. In Section 7.2, we characterise left ample straight

left I-orders that intersect every R-class of their semigroup of straight left I-

quotients. In the final section, we prove that if a semigroup S has both a

semigroup of straight left I-quotients, Q, and a semigroup of straight right I-

quotients, P , then P and Q are isomorphic if and only if their R and L relations

restricted to S are equal.

In Chapter 8, we consider semigroups of left I-quotients with totally ordered

idempotents. In the first section, we characterise left I-orders whose semigroups

of left I-quotients have totally ordered idempotents. In the last section, we

characterise left I-orders in inverse ω-semigroups, along with three special cases

of inverse ω-semigroups: no kernel, simple and proper kernel.



Chapter 2

Preliminaries

In this chapter, we introduce the semigroup theory used throughout the thesis.

All definitions and results are standard and can be found in [20] and [3] unless

a reference is given.

2.1 General semigroup theory

A semigroup S “ pS, .q is a non-empty set S together with an associative binary

operation on S. Unless stated otherwise, S denotes a semigroup throughout.

If S contains an element 1 such that a1 “ 1a “ a for all a P S, then 1 is called

an identity and S is called a monoid. If S contains an element 0 such that

a0 “ 0a “ 0 for all a P S, then 0 is called a zero element of S. Note that

identity and zero elements, if they exist, are unique.

Let M be a monoid. An element a of M is called a unit if there exists b P M

such that ab “ ba “ 1.

We use S1 to denote the semigroup S with identity adjoined if necessary. That

is,

S1
“

$

&

%

S if S is a monoid,

S Y t1u otherwise,

with the multiplication extended by defining a1 “ 1a “ a for all a P S1.

A non-empty subset T of a semigroup S is a subsemigroup of S if T is a semigroup

5



CHAPTER 2. PRELIMINARIES 6

under the operation of S. In this case, we also say that S is an oversemigroup

of T . If T is a group under the operation of S then it is called a subgroup of S.

If S is a monoid, the units of S form a subgroup called the group of units.

An element e P S is an idempotent if e2 “ e. The set of all idempotents of S is

denoted by EpSq. We define a partial order ď on EpSq by

e ď f if and only if ef “ fe “ e

We call this the natural partial order on idempotents. We write e ă f to denote

that e ď f , but e ‰ f .

A band is a semigroup where every element is idempotent. A semilattice is a

commutative band.

Let A be a set with a partial order ď, and let a and b be two elements of A. An

element c of A is the meet (or greatest lower bound) of a and b if the following

two conditions are satisfied:

(i) c ď a and c ď b.

(ii) h ď a and h ď b implies that h ď c.

We denote the fact that the meet of a and b exists and equals c by a^ b “ c. A

meet of a and b will not necessarily exist, but if it does exist then it is unique. If,

for every a, b P A, the meet of a and b exists, we say that A is a meet semilattice

under ď.

Proposition 1.3.2 of [20] demonstrates that semilattices are precisely meet semi-

lattices. Given a semilattice pS, ¨q, we can define a meet semilattice pS,ďq by

taking ď to be the natural partial order on idempotents. Then a ^ b “ a ¨ b.

Conversely, a meet semilattice pS,ďq is a semilattice under ^.

Let A and B be subsets of S. We write

AB “ t ab | a P A, b P B u.

We write aB for tauB “ tab | b P Bu.

A non-empty subset A of a semigroup S is called a right ideal if AS Ď A, a left

ideal if SA Ď A and an ideal if A is both a right ideal and a left ideal.
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Lemma 2.1.1 (Principal Ideal Lemma for Idempotents). Let S be a semigroup

and let x P S and e P EpSq. Then x P Se if and only if x “ xe.

Proof. If x P Se, then x “ se for some s P S. Therefore, using the fact that e is

an idempotent, we have

xe “ se2 “ se “ x.

Conversely, if x “ xe, then x P Se since x P S.

An ideal M of a semigroup S is called minimal if it does not properly contain

an ideal of S. A semigroup can have at most one minimal ideal. To see this,

suppose that M and N are both minimal ideals of S. Then, since MN is an

ideal contained in both M and N , we have that M “ MN “ N . Therefore a

semigroup S either has no minimal ideals or a unique minimal ideal, which we

call the kernel of S.

A binary relation ρ on S is right compatible if, for all a, b, x P S,

pa, bq P ρ implies that pax, bxq P ρ.

Dually, ρ is left compatible if, for all a, b, x P S,

pa, bq P ρ implies that pxa, xbq P ρ.

Also, ρ is compatible if, for all a, b, c, d P S,

pa, bq P ρ and pc, dq P ρ implies that pac, bdq P ρ.

A right congruence is a right compatible equivalence relation and a left con-

gruence is a left compatible equivalence relation. A congruence is a compatible

equivalence relation. Equivalently, a congruence is a relation that is both a right

congruence and a left congruence.

Let ρ be a congruence on S. Denoting the equivalence class of a P S by aρ, we

can define a binary operation on the quotient set S{ρ in the following way:

paρqpbρq “ pabqρ.

With respect to this operation, S{ρ is a semigroup.
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Let A be an ideal of S. Then for a, b P S, we define a ρA b to mean that either

a “ b or that both a and b belong to A. We call ρA the Rees congruence modulo

A. We shall write S{A to mean S{ρA, and we call S{A the Rees factor semigroup

of S modulo A.

Let S and T be semigroups, T having a zero element, and let A be an ideal of

S. The S is an ideal extension of A by T if the Rees factor semigroup S{A is

isomorphic to T .

A preorder ď is a binary relation that is reflexive and transitive. Given a preorder

on a set A, one may define an equivalence relation „ on A such that

a „ b if and only if a ď b and b ď a.

It is then possible to define a partial order on A {„ by

ras ď rbs if and only if a ď b,

where ras and rbs are the „-classes of a and b, respectively. We will call these

the associated equivalence relation and the associated partial order, respectively.

The equivalence relation R on a semigroup S is defined by the rule that

aR b if and only if aS1
“ bS1.

We might also write RS if the semigroup S used to generate the relation is

unclear. Dually, the equivalence relation L on a semigroup S is defined by the

rule that

aL b if and only if S1a “ S1b.

It is easy to see that R and L are a left congruence and a right congruence,

respectively. We say that aJ b if S1aS1 “ S1bS1. The intersection of R and L
is denoted by H. It is a significant fact that R and L commute in the semigroup

of binary relations on S, and consequently D “ R ˝ L is also an equivalence

relation. We call these five equivalence relations Green’s relations. The R-class

containing the element a will be written as Ra. Similarly for La, Ha, Da and Ja.

It is convenient to visualise a D-class as what Clifford and Preston [3] call an

eggbox picture, in which each row represents an R-class, each column represents
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Figure 2.1: An eggbox picture

Ra

La

a

an L-class, and each cell represents an H-class. Note that this may well be an

infinite eggbox.

We say that a semigroup S is bisimple if it consists of a single D-class. We

say that a semigroup S is simple if it consists of a single J -class. Equivalently,

we can define a simple semigroup as a semigroup with no proper ideals or a

semigroup which is its own kernel. A semigroup S is 0-simple if S2 ‰ 0 and t0u

and S z t0u are the only J -classes.

Theorem 2.1.2 (Green’s Theorem). If a P S, then a lies in a subgroup of S if

and only if aH a2.

There is a preorder associated with Green’s relation R which is defined by the

rule that

a ďR b if and only if aS1
Ď bS1.

Dually, the preorder associated with Green’s relation L is defined by the rule

that

a ďL b if and only if S1a Ď S1b.

Note that these have associated equivalence relations, R and L, respectively.
We may write a ăL b to denote that a ďL b, but that a and b are not L-related.

Lemma 2.1.3. Let S be a semigroup such that EpSq is a semilattice and let

e, f P EpSq. Then e ď f , e ďR f and e ďL f are all equivalent.

Proof. We start by proving that e ď f and e ďL f are equivalent.

Let e ď f . Then e “ ef . Therefore S1e “ S1ef Ď S1f , and so e ďL f .
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Conversely, let e ďL f . Then e P S1f . Since f is an idempotent, we have that

S1f “ Sf . We can therefore apply Lemma 2.1.1, to get that e “ ef . Using the

fact that idempotents commute, fe “ ef “ e, and so e ď f .

The fact that e ď f and e ďR f are equivalent is dual, using the dual of

Lemma 2.1.1.

There is another generalisation of Green’s relation R which is defined by the rule

that aR˚ b if and only if the elements a, b of S are related by Green’s relation R
in some oversemigroup of S. According to Lemma 1.7 of [23], aR˚ b is equivalent

to the condition that xa “ ya if and only if xb “ yb for all x, y P S1. Given

this, it is easy to see that R˚ is transitive and then a left congruence on S.

The relation L˚ is defined dually. The R˚-class containing the element a will be

written as R˚
a. Similarly for L˚

a.

Lemma 2.1.4. Let S be a semigroup such that EpSq is a semilattice. Then

there can be at most one idempotent in each R˚-class (L˚-class).

Proof. Let e, f P EpSq such that eR˚ f . Then e “ 1e “ ee implies that

f “ 1f “ ef . Similarly, f “ ff implies that e “ fe. Therefore, using the

fact that idempotents commute, we have e “ fe “ ef “ f .

The fact that there can be at most one idempotent in each L˚-class is proved

dually.

There are two further preorders associated with R˚ and L˚, namely ďR˚ and

ďL˚ . For a, b P S, we say that a ďR˚ b if and only if a ďR b in some oversemi-

group of S. Note that this has associated equivalence relation R˚. According to

Lemma 2.2 of [17], a ďR˚ b is equivalent to the condition that xb “ yb implies

that xa “ ya for all x, y P S1. Clearly this is a left compatible preorder. The

relation ďL˚ is defined dually.

Lemma 2.1.5. [18] For e, f P EpSq,

e ďR˚ f if and only if e ďR f

and

e ďL˚ f if and only if e ďL f.
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An element a P S is left cancellative if ab “ ac implies b “ c for all b, c P S.

If every element in S is left cancellative, then S is called a left cancellative

semigroup. Dually, an element a P S is right cancellative if ba “ ca implies b “ c

for all b, c P S. If every element in S is right cancellative, then S is called a right

cancellative semigroup. An element a P S is called cancellative if it is both left

cancellative and right cancellative. If every element in S is cancellative, then S

is called a cancellative semigroup.

A semigroup S with zero is defined to be 0-right cancellative if for all a, b, c P S,

ab “ ac ‰ 0 implies that b “ c. Dually, a semigroup S with zero is defined to

be 0-left cancellative if for all a, b, c P S, ba “ ca ‰ 0 implies that b “ c.

An element a P S is square-cancellable in S if for all x, y P S1, xa2 “ ya2 implies

that xa “ ya and a2x “ a2y implies that ax “ ay. This is clearly equivalent to

aH˚ a2, where H˚ “ R˚ X L˚.

Let S and T be semigroups. A function ϕ : S Ñ T is called a homomorphism of

S to T , if for all a, b P S, we have paϕqpbϕq “ pabqϕ. If ϕ is injective, then ϕ is an

embedding of S into T . Note that following the ring theoretic terminology, an

embedding is an injective homomorphism and nothing more. If ϕ is surjective,

then ϕ is an epimorphism. If ϕ is bijective, then ϕ is an isomorphism. We say

that S and T are isomorphic if there is an isomorphism between S and T and

we write S – T .

If a semigroup S has an additional unary operation, we call S a unary semigroup.

If S and T are both unary semigroups and there exists an embedding ϕ : S Ñ T

that preserves the unary operation, we say that S is embedded in T as a unary

semigroup, or S is embedded in T as a (2,1)-algebra. A bi-unary semigroup is a

semigroup equipped with two unary operations. If S and T are both bi-unary

semigroups and there exists an embedding ϕ : S Ñ T that preserves both unary

operations, we say that S is embedded in T as bi-unary semigroup, or S is

embedded in T as a (2,1,1)-algebra.

A transformation on a set X is a function from X into itself. The set of all

transformations on X is a semigroup under composition (from left to right). It

is called the full transformation semigroup on X and is denoted by TX .

A partial transformation on a set X is a function α mapping a subset A of X

into a subset B of X. The set of all partial transformations on X is a semigroup
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under the composition of partial mappings, that is,

domαβ “ pimα X dom βqα´1 and @x P domαβ, xpαβq “ pxαqβ.

It is called the partial transformation semigroup on X and is denoted by PTX .

2.2 Inverse semigroups

An element a of a semigroup S is regular if there exists an element x in S such

that axa “ a. A semigroup S is regular if every element of S is regular.

An element b P S is an inverse of a P S if

a “ aba and b “ bab.

We denote the set of inverses of a by V paq. An inverse semigroup is a semigroup

S such that |V paq| “ 1 for all a P S. The unique element of V paq is denoted

by a´1. Equivalently, an inverse semigroup is a regular semigroup in which all

the idempotents commute. It is worth noting that in an inverse semigroup S,

pa´1q´1 “ a and pabq´1 “ b´1a´1 for all a, b P S.

For an inverse semigroup, each R-class and each L-class contains exactly one

idempotent, namely aa´1 P Ra and a´1a P La. We consequently obtain the

following result.

Lemma 2.2.1. Let a and b be elements of an inverse semigroup. Then aR b if

and only if aa´1 “ bb´1, and aL b if and only if a´1a “ b´1b.

We can therefore immediately see that in an inverse semigroup,

xR y if and only if x´1 L y´1.

Lemma 2.2.2. Let M be an inverse semigroup with an identity, and let a be in

the group of units of M . Then the inverse of a in the group of units is equal to

the inverse of a in the sense of inverse semigroup theory.

Proof. Denote a1 as the inverse of a in the group of units of M , and a´1 as the
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inverse of a in the sense of inverse semigroup theory. We see that

aa1a “ a and a1aa1
“ a1,

so a1 P V paq. Since M is an inverse semigroup, a´1 is the unique element in

V paq. Therefore a1 “ a´1.

The symmetric inverse monoid on a set X, denoted by IX , is the subsemigroup

of PTX consisting of the set of all one-to-one partial transformations of a set X.

The symmetric inverse monoid is an inverse semigroup, where the inverse of α

in the sense of inverse semigroup theory is the inverse of α as a map. That is, if

α : domα Ñ imα, then α´1 : imα Ñ domα such that

αα´1
“ ιdomα and α´1α “ ιimα,

where ιA is the identity map on A, for any A Ď X.

We give Lemmas 2.2.3 and 2.2.5 and their duals, as they are useful results that

we will refer to throughout this thesis.

Lemma 2.2.3. Let a and x be elements in an inverse semigroup. Then

xRxa if and only if x “ xaa´1.

Proof. Let xRxa. By Lemma 2.2.1, we know that this is equivalent to

xx´1
“ pxaqpxaq

´1
“ xaa´1x´1

Therefore, using the fact that in an inverse semigroup idempotents commute,

x “ xx´1x “ xaa´1x´1x “ xx´1xaa´1
“ xaa´1.

Conversely, let x “ xaa´1. Then

xx´1
“ xaa´1x´1

“ pxaqpxaq
´1.

By Lemma 2.2.1, we know that this is equivalent to xRxa.
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Lemma 2.2.4. Let a and x be elements in an inverse semigroup. Then

aLxa if and only if a “ x´1xa.

Lemma 2.2.5. Let a and b be elements in an inverse semigroup. Then

a ďR b if and only if bb´1a “ a.

a ďR b if and only if bb´1a “ a.

Proof. Let a ďR b, i.e. aS1 Ď bS1. Then there exists an x P S1 such that a “ bx.

Then

bb´1a “ bb´1bx “ bx “ a.

Conversely, let bb´1a “ a. Then

aS´1
“ bb´1aS1

Ď bS1.

Lemma 2.2.6. Let a and b be elements in an inverse semigroup. Then a ďL b

if and only if ab´1b “ a.

Definition 2.2.7. Let S be a semigroup that embeds into an inverse semigroup

Q. The inverse hull ΣpSq of S is then the subsemigroup of Q generated by the

elements of S and their inverses. Note that this is dependent on the embedding

chosen, but this detail may be omitted in the case where S has a canonical

embedding into an inverse semigroup.

2.2.1 The meet structure of inverse semigroups

Let Q be an inverse semigroup. As previously described, ďL is a preorder on Q

defined by a ďL b if and only if Q1a Ď Q1b, with associated equivalence relation

L. The associated partial order on the L-classes of Q is then:

La ďL Lb if and only if a ďL b.
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Using this partial order, we can consider the meet of two L-classes. In a general

semigroup, two L-classes need not have a meet, but in an inverse semigroup the

meet always exists.

Lemma 2.2.8. Let Q be an inverse semigroup. Then Q{L is a meet semilattice

under ďL, with La ^ Lb “ Lc if and only if c´1c “ a´1ab´1b.

Proof. In an inverse semigroup, Q, every L-class has a unique idempotent. Using

Lemma 2.1.3, we see that for idempotents e, f P Q,

Le ďL Lf ðñ e ďL f ðñ e ď f.

Therefore the poset Q{L is order isomorphic to the semilattice of idempotents

under the natural partial order.

Proposition 1.3.2 of [20] gives us that the semilattice of idempotents is a meet

semilattice with the meet of e and f equalling ef . Therefore Q{L is a meet

semilattice with Le ^ Lf “ Lef . The result then immediately follows from the

fact that aL a´1a.

Lemma 2.2.9. Let S be a semigroup such that EpSq is a semilattice and let

e, f P EpSq. Then L˚
e ^ L˚

f “ L˚
ef .

Proof. We know that ef ďLS f and ef “ fe ďLS e. Therefore ef ďL˚ e, f .

Now let h P S such that h ďL˚ e, f . By definition h ďL˚ e implies that h ďLQ e

for some Q, an oversemigroup of S. Therefore, there exists q P Q1 such that

h “ qe in Q. Similarly h ďL˚ f implies that there exists P , an oversemigroup

of S such that h “ pf in P , for some p P P 1. Therefore, by calculating in P we

obtain

hf “ pf 2
“ pf “ h.

Consequently h “ hf “ qef in Q, and so h ďLQ ef . Therefore h ďL˚ ef .

2.3 Ample semigroups

Definition 2.3.1 (Left Ample Semigroup). We define a semigroup S to be left

ample if and only if everyR˚-c1ass contains an idempotent, EpSq is a semilattice,
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and S satisfies the left ample condition which is:

paeq`a “ ae for all a P S and e P EpSq

where, for x P S, x` is the (unique) idempotent in the R˚-class of x.

Note that in a left ample semigroup, aR˚ b if and only if a` “ b`.

Definition 2.3.2 (Right Ample Semigroup). We define a semigroup S to be

right ample if and only if every L˚-c1ass contains an idempotent, EpSq is a

semilattice, and S satisfies the right ample condition which is:

apeaq
˚

“ ea for all a P S and e P EpSq

where, for x P S, x˚ is the (unique) idempotent in the L˚-class of x.

We know that x` and x˚ must be unique by Lemma 2.1.4. An ample semigroup

is one which is both left and right ample.

Alternatively, we can define a semigroup S to be left ample or right ample by

using the structure of IX . Let IX be the symmetric inverse monoid on a set X.

We can define three unary operations ´1, ` and ˚ as follows:

a´1 is the inverse of a; a`
“ aa´1 and a˚

“ a´1a.

Let S be a subsemigroup of IX . If S is closed under ´1 then it is an inverse

semigroup. If S is closed under ` then S is a left ample semigroup. If S is closed

under ˚ then S is a right ample semigroup.

A unary semigroup is left ample if and only if it embeds as a unary semigroup

in some IX , where the unary operation on IX is `. Left ample semigroups form

a quasi-variety of unary semigroups. Right ample semigroups may be defined in

a dual way as the subsemigroups of some IX that are closed under ˚. Following

[19], it is worth noting that an ample semigroup S may not be embeddable into

an inverse semigroup in such a way that preserves both ` and ˚.

We give some elementary properties of left ample semigroups. The duals of these

properties apply to right ample semigroups.

Lemma 2.3.3. Let S be a left ample semigroup. Then for all a, b, x P S:
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(i) a`a “ a;

(ii) pabq` “ pab`q`;

(iii) pxaq`x “ xa`;

(iv) x` “ pxaq` if and only if x “ xa`; and

(v) pabq` ď a`.

Proof.

(i) We know that aR˚ a`. Therefore, by the definition of R˚, we have that

a`a` “ a` implies that a`a “ a.

(ii) Using the fact that R˚ is a left congruence, we see that bR˚ b` implies

that abR˚ ab`.

(iii) Since a` is an idempotent, we can use the left ample condition to give us

xa` “ pxa`q`x. We can then apply (ii) to get the intended result.

(iv) Let x` “ pxaq`. Then, using (i) and (iii), we have

x “ x`x “ pxaq
`x “ xa`.

Conversely, let x “ xa`. Then, applying ` to both sides,

x`
“ pxa`

q
`

“ pxaq
`,

using (ii) in the last equality.

(v) Since pabq`a` is an idempotent, we have that

pabq`a`
“ ppabq`a`

q
`

“ ppabq`aq
`,

using (ii). We can then apply (iii) to obtain

ppabq`aq
`

“ pab`
q

`
“ pabq`,

using (ii) again. Putting these together and remember that idempotents

commute, we have that pabq`a` “ a`pabq` “ pabq`, and so pabq` ď a`.



CHAPTER 2. PRELIMINARIES 18

Note the similarity between Lemma 2.3.3 (iv) and Lemma 2.2.3.

Lemma 2.3.4. Let S be a left ample subsemigroup of an inverse semigroup Q.

Then S is embedded as a unary semigroup into Q (i.e. embedded in such a way

that ` is preserved) if and only if RQ X pS ˆ Sq “ R˚.

Proof. Let S be embedded as a unary semigroup into Q. We know that

RQ X pS ˆ Sq Ď R˚ is true by definition. Let a, b P S such that aR˚ b. Hence

we have a` “ b` in S and (by the preservation of `) a` “ b` in Q. Therefore

aa´1 “ bb´1, giving us that aRQ b. Therefore R˚ Ď RQ X pS ˆ Sq as well.

Conversely, let RQ X pS ˆ Sq “ R˚, and let a P S. Since aR˚ a`, we have

that aRQ a`. Since Q is inverse, there is a unique idempotent in each RQ-class.

Therefore a` “ aa´1.

Following [18], for any left ample semigroup S we can construct a (2,1)-

embedding of S into the symmetric inverse semigroup IS as follows. For each

a P S, we define ρa P IS by

ρa : Sa
`

Ñ Sa, @ s P Sa`, sρa “ sa.

Then the map θS : S Ñ IS given by

aθS “ ρa,

is a (2,1)-embedding.

2.4 Semilattices of semigroups

We now describe the following well-known construction.

Definition 2.4.1. Let Y be a semilattice. A semigroup S is called a semilattice

Y of semigroups Sα, α P Y , if S is the disjoint union S “
Ť

αPY

Sα, where

SαSβ Ď Sαβ.
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This definition gives us what we might call the “gross structure” of S. By this

we mean that there are potentially many different ways for S to be a semilattice

Y of semigroups Sα, α P Y . For sα P Sα and sβ P Sβ, we know that sαsβ P Sαβ,

but there are no other restrictions except for the associativity of S. Its “fine

structure” would then be how the products sαsβ are located in Sαβ. We now

introduce such a fine structure.

Definition 2.4.2. Let Y be a semilattice. To each α P Y associate a semi-

group Sα. For each pair α, β P Y , such that α ě β, let φα,β : Sα Ñ Sβ be a

homomorphism such that the following conditions hold:

(i) φα,α “ ιSα for all α P Y , where ιA is the identity map on a set A;

(ii) φα,βφβ,γ “ φα,γ for all α, β, γ P Y such that α ě β ě γ.

We define S as the disjoint union S “
Ť

αPY

Sα with multiplication

sαsβ “ psαφα,αβqpsαφβ,αβq

for sα P Sα and sβ P Sβ.

With respect to this multiplication S is a semigroup called a strong semilattice

Y of semigroups Sα, α P Y .

Figure 2.2: An example of a strong semilattice of semigroups

Sα Sβ

φα,αβ φβ,αβ

Sαβ

φαβ,γ

Sγ

We could also consider strong semilattices of semigroups to be presheaves of

semigroups over meet semilattices. A meet semilattice pY,ďq can be regarded as
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a category with an arrow existing from α to β exactly when α ď β. Now consider

the dual category pY,ďqop, in which the arrows are turned around. That is, there

exists an arrow from α to β, ϕα,β , if and only if α ě β. Then the strong semi-

lattices Y of semigroups are exactly the functors F : pY,ďqop Ñ Semigroups

to the category of semigroups, with Sα “ F pαq and φα,β “ F pϕα,βq.

Not every semilattice of semigroups is a strong semilattice of semigroups, but

clearly every strong semilattice of semigroups is a semilattice of semigroups.

2.4.1 Clifford semigroups

In a semigroup S, an element c is defined to be central if cs “ sc for every s P S.

A Clifford semigroup is an inverse semigroup with central idempotents.

The next theorem from [20] gives an alternative description of Clifford semi-

groups.

Theorem 2.4.3 ([20, Theorem 4.2.1]). Let S be a semigroup. Then the following

statements are equivalent:

(1) S is a Clifford semigroup;

(2) S is a semilattice of groups;

(3) S is a strong semilattice of groups;

(4) S is an inverse semigroup such that xx´1 “ x´1x for all x P S.

Let S be a Clifford semigroup. Since xx´1 “ x´1x for all x P S, we can use

Lemma 2.2.1 to give us that R “ L “ H in S.

Lemma 2.4.4. Let Y be a semilattice, and let S be a strong semilattice Y of

groups Gα, α P Y . Let gα P Gα and hβ P Gβ. Then the following statements

are equivalent:

(1) α ď β;

(2) 1β gα “ gα, where 1β is the identity of Gβ;

(3) gα 1β “ gα, where 1β is the identity of Gβ;
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(4) gα ďR hβ;

(5) gα ďL hβ.

Proof. p1q ñ p2q: Using the fact that S is a strong semilattice, we know that

1β gα “ p1βψqgα,

for some homomorphism ψ : Gβ Ñ Gα. Since homomorphisms between groups

preserve the identity, we know that p1βψq “ 1α. Therefore

1β gα “ 1α gα “ gα.

p2q ñ p4q: By Lemma 2.2.5, gα ďR hβ if and only if hβh
´1
β gα “ gα. Since hβ is

an element of the group Gβ, we have that hβh
´1
β “ 1β, where 1β is the identity

of Gβ. Therefore gα ďR hβ if and only if 1β gα “ gα.

p4q ñ p1q: Since gα R 1α and hβ R 1β, we know that gα ďR hβ implies that

1α ďR 1β. Applying Lemma 2.1.3 gives 1α ď 1β, and therefore 1α1β “ 1α. Since

S is a semilattice, we know that 1α1β P Gαβ. Therefore αβ “ α, and so α ď β.

p1q ñ p3q ñ p5q is dual.

Example 2.4.5. Let Gα “ tpa
b
qα | a, b positive odd integersu be the group of

positive odd fractions, with normal fraction multiplication pa
b
qα p c

d
qα “ pac

bd
qα ,

and let Gβ “ tpa
b
q
β

| a, b positive integersu be the group of positive rationals,

with multiplication pa
b
q
β

p c
d
q
β

“ pac
bd

q
β
.

We define φα,β : Gα Ñ Gβ by

`

a
b

˘

α
φα,β “

`

a
b

˘

β

Let P “ Gα 9YGβ, where 9Y denotes disjoint union. We extend the multiplication

of Gα and Gβ by

`

a
b

˘

α

`

c
d

˘

β
“

`

c
d

˘

β

`

a
b

˘

α
“

´

`

a
b

˘

α
φα,β

¯

`

c
d

˘

β
“

`

ac
bd

˘

β
.

Then P is a strong semilattice Y of groups Gi, i P Y , where Y “ tα, βu with

α ě β. Therefore P is a Clifford semigroup.
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2.5 Primitive inverse semigroups

Remember that the natural partial order on idempotents is defined by f ď e if

and only if fe “ ef “ f . An idempotent element e is called primitive if e ‰ 0

and f ď e implies that either e “ f or f “ 0. This concept is akin to atoms in

lattices [20].

An inverse semigroup S with 0 such that S ‰ t0u is called a primitive inverse

semigroup if all its nonzero idempotents are primitive.

Brandt semigroups are a special class of both primitive inverse semigroups and

completely 0-simple semigroups. They are important for many reasons, one of

which is that there is a one-to-one correspondence between Brandt semigroups

and connected groupoids, as demonstrated by Proposition 6 of [22, Section 3.3].

The structure of completely 0-simple semigroups is given by the Rees Theorem

[20, Theorem 3.2.3], of which the construction given in the following definition

is a special case.

Definition 2.5.1 (Brandt semigroup). Let G be a group and let I be a non-

empty set. Then B “ BpG, Iq is the set pI ˆ G ˆ Iq Y t0u with multiplication

pi, a, jqpk, b, lq “

$

&

%

pi, ab, lq if j “ k,

0 if j ‰ k.

We call such a semigroup a Brandt semigroup.

Lemma 2.5.2. Let B “ BpG, Iq be a Brandt semigroup. Then:

(1) pi, a, jqRB pk, b, lq if and only if i “ k and aRT b;

(2) pi, a, jqLB pk, b, lq if and only if j “ l and aLT b;

(3) pi, a, jq´1 “ pj, a´1, iq.

Let tSi : i P Λu be a family of semigroups with zero, pairwise intersecting only

at the zero element. Let S “
Ť

iPΛ

Si with multiplication

ab “

$

&

%

ab if a, b P Si for some i P Λ,

0 otherwise.
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We then call S the 0-direct union of the Si. In Theorem 5 of [22, Section 3.3],

it is shown that every primitive inverse semigroup is a 0-direct union of Brandt

semigroups, and vice versa.

Following Theorem 3.3.4 and Theorem 3.3.5 of [22], primitive inverse semigroups

are exactly groupoids with zero adjoined and Brandt semigroups are exactly

connected groupoids with zero adjoined.

2.6 Bruck-Reilly semigroups

We start this section by defining a very useful inverse semigroup. We define the

bicyclic monoid as the set B “ N0 ˆ N0 along with the binary operation

pa, bqpc, dq “ pa ´ b ` maxtb, cu, d ´ c ` maxtb, cuq.

This is an inverse semigroup with pa, bq´1 “ pb, aq. The idempotents of the

bicyclic monoid are elements of the form pn, nq and under the natural ordering

of idempotents these form a descending chain

p0, 0q ě p1, 1q ě p2, 2q ě p3, 3q ě . . .

Therefore the bicyclic monoid is an example of an inverse ω-semigroup defined

in Definition 8.2.1.

We now define Bruck-Reilly semigroups, which are a generalisation of the bicyclic

monoid.

Let T be a monoid with group of units H and let θ be a morphism from T into

H. Then the Bruck-Reilly semigroup over T with respect to θ is N0 ˆ T ˆ N0

with multiplication

pm, a, nqpp, b, qq “ pm ´ n ` t, paθt´n
qpbθt´p

q, q ´ p ` tq,

where t “ maxtn, pu and where θ0 is interpreted as the identity map on T . We
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could equivalently write the multiplication as

pm, a, nqpp, b, qq “

$

’

’

’

&

’

’

’

%

pm ´ n ` p, paθp´nqb, qq if n ă p,

pm, ab, qq if n “ p,

pm, apbθn´pq, q ´ p ` nq if n ą p.

We denote the Bruck-Reilly semigroup over T with respect to θ by BRpT, θq.

The proof that this multiplication is associative can be found in Section 5.6 of

[20].

Bruck-Reilly semigroups are important due to several structure theorems by

Reilly [29], Kochin [21] and Munn [24]. Reilly [29] showed that bisimple inverse

ω-semigroups are isomorphic to Bruck-Reilly semigroups of the form BRpG, θq,

where G is a group. Kochin [21] and Munn [24] extended this independently,

showing that simple inverse ω-semigroups are isomorphic to Bruck-Reilly semi-

groups of the form BRpT, θq, where T is a finite chain of groups. Munn [24] also

extended this to a structure theorem of arbitrary inverse ω-semigroups with

kernel, which we will use heavily in Section 8.2.

We give some properties of Bruck-Reilly semigroups in the following Proposition.

Proposition 2.6.1 ([20, Proposition 5.6.6]). Let T be a monoid and let

S “ BRpT, θq. Then:

(1) pm, a, nqRS pp, b, qq if and only if m “ p and aRT b;

(2) pm, a, nqLS pp, b, qq if and only if n “ q and aLT b;

(3) S is an inverse semigroup if and only if T is an inverse semigroup. If T

is an inverse semigroup, then pm, a, nq´1 “ pn, a´1,mq.
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Left I-orders

In this chapter, we will introduce the basic definitions of left I-orders and semi-

groups of left I-quotients and give some examples. We concentrate on straight

left I-orders, the reason being that they are much easier to work with than ar-

bitrary left I-orders. In many situations left I-orders are automatically straight,

as we shall see in the following chapters.

We give some properties of straight left I-orders which we will use throughout

this thesis, especially in the proofs of Theorem 3.3.7 and Theorem 4.2.1.

In Section 3.2, we show that left I-orders sit in the context of other types of left

orders. Consequently, we can use an established result on Clifford semigroups

of left Fountain-Gould quotients to obtain an analogous result for Clifford semi-

groups of left I-quotients.

In Section 3.3, we consider when a homomorphism between straight left I-orders

can be lifted to a homomorphism between the semigroups of straight left I-

quotients. Consequently, we determine necessary and sufficient conditions for

two semigroups of straight left I-quotients of a given semigroup to be isomorphic.

All results are the joint work of myself and Professor Victoria Gould, unless

indicated otherwise through the citation of a supporting reference.

25



CHAPTER 3. LEFT I-ORDERS 26

3.1 Definitions and examples

We give the formal definition of a semigroup of left I-quotients, first introduced

by Ghroda and Gould in [14].

Definition 3.1.1. Let S be a subsemigroup of an inverse semigroup Q. Then

Q is a semigroup of left I-quotients of S, and S is a left I-order in Q, if every

q P Q can be written as

q “ a´1b

for some a, b P S, where a´1 denotes the inverse of a in the sense of inverse

semigroup theory. Right I-orders and semigroups of right I-quotients are defined

dually. If S is both a left I-order and a right I-order in Q, then we say that S is

an I-order in Q, and Q is a semigroup of I-quotients of S.

We now define what it means for a left I-order to be straight. Straightness is

not only a very useful property, but one that appears typical in left I-orders.

Indeed, we cannot find a left I-order which is not straight. We conjecture that

there are left I-orders which are not straight, but we have no counterexample to

date.

Definition 3.1.2. A left I-order S in an inverse semigroup Q is straight in Q

if every element in Q can be written as a´1b where a, b P S and aRQ b. We

also say that Q is straight over S, and we call Q a semigroup of straight left

I-quotients of S. Semigroups of straight right I-quotients are defined dually.

In this thesis we will see that straightness is a very important property for a left I-

order to have. Most of the results in this thesis will be specifically about straight

left I-orders. We will find in later results (for example, Lemma 3.3.4, Lemma

3.3.6 and Lemma 4.3.2) that, if S is straight, we can determine equalities and

products in Q using equalities and relations between elements of S. This makes

straight left I-orders easier to work with than general left I-orders. Because of

this, it is of interest to determine when a left I-order is straight. In this regard,

the following result is an important tool; it is an unpublished observation of

Nassraddin Ghroda and Victoria Gould.

Lemma 3.1.3 (Ghroda, Gould). Let S be a left I-order in Q. Then S is straight

in Q if and only if S intersects every L-class of Q.
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Proof. Let S be straight in Q, and let q “ a´1b P Q such that a, b P S and

aRQ b. Then

q´1q “ b´1aa´1b “ b´1bb´1b “ b´1b,

and so b P S X Lq.

Conversely, suppose S X Lq ‰ H for all q P Q. Let q P Q; we know that

q “ a´1b, where a, b P S. Then

q “ a´1aa´1bb´1b “ a´1fb,

where f “ aa´1bb´1 P EpQq. Since S intersects every L-class, there exists

u P S X Lf , and so f “ u´1u. Hence

puaqpuaq
´1

“ uaa´1u´1
“ ufaa´1u´1

“ ufu´1
“ uu´1.

Similarly pubqpubq´1 “ uu´1.

We can therefore write

q “ a´1fb “ a´1u´1ub “ puaq
´1

pubq,

where uaRQ ub. It follows that Q is straight over S.

The rest of this section is devoted to illustrative examples. The first is a left

I-order in an inverse semigroup with totally ordered idempotents. We will study

these types of left I-orders in Chapter 8.

Example 3.1.4 (Bicyclic Monoid). Let B be the bicyclic monoid and let S be

the R-class of the identity, S “ t p0, nq |n P N0 u. We have that B is an inverse

semigroup and for any pa, bq P B,

pa, bq “ pa, 0qp0, bq “ p0, aq
´1

p0, bq

so B is a semigroup of left I-quotients of S. Additionally, since p0, aqRB p0, bq

for all p0, aq, p0, bq P S, we see that B is straight over S.

One question we can ask is if a given semigroup has at most one semigroup of

left I-quotients. The answer to this is no. We will use a semilattice of groups to
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show this. In the case of semilattices of groups, semigroups of left I-quotients

are exactly semigroups of left Fountain-Gould quotients, so this is not new.

Example 3.1.5 (Counterexample to Uniqueness). Consider the semigroup

pN, ¨q. It lies inside the group pQ`, ¨q and is a left I-order in pQ`, ¨q, since for all
a
b

P Q`, we have a
b

“ b´1a with a, b P N.

We will now show that the semigroup P from Example 2.4.5 is also a semi-

group of left I-quotients of pN, ¨q. We see that P is an inverse semigroup with

pa
b
q´1
α

“ p b
a
qα , and pa

b
q´1
β

“ p b
a
q
β
. We define an embedding ϕ : pN, ¨q Ñ P by

nϕ “

#

pn
1
qα if n odd,

pn
1
q
β

if n even.

We see that P is a semigroup of left I-quotients of pN, ¨q, since

pa
b
qα “ pbϕq

´1
paϕq and pa

b
q
β

“ p2bϕq
´1

p2aϕq.

We know that P is not isomorphic to pQ`, ¨q because P has two idempotents

whilst pQ`, ¨q only has one.

3.2 Connections with other types of semi-

groups of quotients

Up to this point, we have defined semigroups of quotients in terms of inverse

semigroup theory. However, in generality, one could attempt to say that, for Q

a semigroup and S a subsemigroup of Q, that Q is a semigroup of left quotients

of S if every q P Q can be written as q “ a´1b for some a, b P S. However,

this definition has no meaning without defining what we mean by a´1. By

using different interpretations of a´1, we find different types of semigroups of

left quotients.

In this section we look at two different types of semigroups of left quotients

distinct from semigroups of left I-quotients. We look at the connections be-

tween them and semigroups of left I-quotients. We use one of these connections

to obtain necessary and sufficient conditions for a semigroup to be a Clifford

semigroup of I-quotients.
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3.2.1 Semigroups of classical left quotients

The earliest type of semigroups of quotients are groups and use group inverses.

This definition originates from work of Ore on rings of left quotients [27] and was

formalised by Dubreil [4]. For a more comprehensive history, read [3, Section

1.10].

Definition 3.2.1. Let S be a subsemigroup of a group G. Then G is a group

of left quotients of S, and S is a left order in G, if every g P G can be written

as g “ a´1b for some a, b P S.

We know that every group is an inverse semigroup with the inverse elements in

the sense of inverse semigroup theory being equal to the group inverses. There-

fore it is easy to see that every group of left quotients is a semigroup of left

I-quotients. Moreover, since the R-relation in a group is the universal relation,

every group of left quotients is a semigroup of straight left I-quotients.

The question of whether a semigroup has a group of left quotients was answered

implicitly by Ore [27] and formalised by Dubreil [4]. We give the result below.

Definition 3.2.2. A semigroup S is right reversible or left Ore if for any a, b P S,

Sa X Sb ‰ ∅. That is, there exists u, v P S with ua “ vb.

Theorem 3.2.3 ([27], [4]). A semigroup S has a group of left quotients if and

only if S is cancellative and right reversible.

We can generalise groups of quotients by letting the semigroup of quotients Q be

a monoid and considering a´1 to be the inverse of a in the group of units. Note

that this means a is a unit. We call these semigroups of classical left quotients

to distinguish them from other types of semigroups of left quotients.

Definition 3.2.4 ([25]). Let S be a subsemigroup of a monoid M . Then M is

a monoid of classical left quotients of S if

(i) for every cancellative a P S, there exists an a´1 P M ;

(ii) every m P M can be written as m “ a´1b for some a, b P S.

This is a departure from Definition 3.2.1, since only certain elements need group

inverses.
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Proposition 3.2.5. If M is a monoid of classical left quotients of S and M is

an inverse semigroup, then M is a semigroup of straight left I-quotients of S.

Proof. In this proof we will adopt the temporary convention that for a P M ,

a1 denotes the inverse of a in the group of units of M , and a´1 denotes the

inverse of a in the sense of inverse semigroup theory.

Let m P M . Since M is a monoid of classical left quotients of S, we know that

we can write m as m “ a1b for some a, b P S.

Since M is an inverse semigroup, we can apply Lemma 2.2.2 to obtain that

a´1 “ a1. Therefore, we can write m as m “ a´1b for some a, b P S. Hence M is

a semigroup of left I-quotients of S.

We will now prove that M is straight over S by proving that S intersects every

L-class of M . Let q P M . Since M is a monoid of classical left quotients of S,

we know that we can write q as q “ a1b for some a, b P S. We see that

aq “ aa1b “ 1b “ b.

Therefore qL b, and so b P Lq X S. Therefore S intersects every L-class of M .

We apply Lemma 3.1.3 to obtain that M is straight over S.

The question of whether a semigroup has a monoid of classical left quotients

was answered by Murata [25]. We give the result below.

Definition 3.2.6. Let S be a semigroup. We say that S satisfies the left Ore-

Asano condition if for every b P S and cancellative a P S, there exists b1 P S and

cancellative a1 P S such that b1a “ a1b.

Theorem 3.2.7 ([25]). A semigroup S has a monoid of classical left quotients

if and only if S satisfies the left Ore-Asano condition.

The proof of this theorem is similar to that of Theorem 3.2.3.

3.2.2 Semigroups of left Fountain-Gould quotients

A different definition of semigroups of quotients was proposed by Fountain and

Petrich in 1986 [9], although this definition was restricted to completely 0-simple
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semigroups of quotients. Gould generalised this concept to all semigroups, and

to the one-sided case later that same year [15]. In this definition elements are

inverted by finding the inverse in a subgroup. In the literature, these are called

semigroups of left quotients without an additional qualifier. However, in this

thesis I will refer to them as semigroups of left Fountain-Gould quotients, in

order to distinguish them from semigroups of I-quotients.

We use the convention that a# denotes the inverse of a in some subgroup of

Q. From knowledge of subgroups of semigroups, we know that if a# exists, it is

unique.

Definition 3.2.8. Let S be a subsemigroup of a semigroup Q. Then Q is a

semigroup of left Fountain-Gould quotients of S, and S is a left Fountain-Gould

order in Q if

(i) every square-cancellable element lies in a subgroup of Q;

(ii) every q P Q can be written as q “ a#b for some a, b P S.

We give a connection between semigroups of Fountain-Gould quotients and semi-

groups of I-quotients.

Lemma 3.2.9. Let S be a left Fountain-Gould order in Q with Q an inverse

semigroup. Then S is a straight left I-order in Q.

Proof. Let a P S. If a# exists, then clearly a´1 “ a#. We have that every q P Q

can be written as q “ a#b for some a, b P S. Therefore every q P Q can be

written as q “ a´1b for some a, b P S.

We will now prove that S is straight in Q by proving that S intersects every

L-class of Q. Let q P Q. We know that q P Q can be written as q “ a#b for

some a, b P S. We see that

q “ a#bLQ aa#b “ a#abLQ ab.

We know that ab P S. Hence b P Lq XS. Therefore S intersects every L-class of
Q. We apply Lemma 3.1.3 to obtain that S is straight in Q.

We know that if an inverse semigroup is a semigroup of left Fountain-Gould quo-

tients, then it is a semigroup of left I-quotients. However, there are semigroups
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of left I-quotients which are not semigroups of left Fountain-Gould quotients.

We give an example taken from [10, Example 2.3].

Example 3.2.10. Let H be a left order in a group G, and let B “ BpG, Iq be

a Brandt semigroup over G with |I| ě 2. Fixing i P I, we define

Si “ tpi, h, jq |h P H, j P Iu Y t0u.

We claim that Si is a left I-order in B, but not a left Fountain-Gould order in

B. We start by acknowledging that Si is a subsemigroup of B. To prove that Si

is a left I-order in B, we first notice that 0 “ 0´10. For non-zero pj, g, kq P B,

since we can write g “ a´1b for a, b P H, we have

pj, g, kq “ pi, a, jq´1
pi, b, kq.

To prove that Si is not a left Fountain-Gould order in B, we first consider which

elements are in subgroups. We know that 0 is in its own trivial subgroup. By

Green’s Theorem, we know that pm, a, nq P B lies in a subgroup of B if and only

if pm, a, nqH pm, a, nq2, which is true if and only if m “ n. Therefore non-zero

elements of Si that are in subgroups of B are elements of the form pi, a, iq.

Assume Si is a left Fountain-Gould order in B. Consider non-zero pj, g, kq P B

such that j ‰ i. By assumption, we can write this element as

pj, g, kq “ s#t,

for s, t P Si. Since pj, g, kq is non-zero, we know that s and t are non-zero. Also,

by definition, s is in a subgroup of B. Therefore we can write the above equation

as

pj, g, kq “ pi, a, iq#pi, b, nq “ pi, a´1, iqpi, b, nq “ pi, a´1b, nq.

Since j ‰ i, this is a contradiction.

Clifford semigroups of left quotients

Given the connection between left Fountain-Gould orders and left I-orders

demonstrated in Lemma 3.2.9, we see that we can use established results for

left Fountain-Gould orders to obtain results for left I-orders. In this subsection,
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we will use established conditions for a semigroup to be a left Fountain-Gould

order in a Clifford semigroup to give conditions for a semigroup to be a left

I-order in a Clifford semigroup.

The following theorem of Gould gives necessary and sufficient conditions for a

semigroup to be a left Fountain-Gould order in a Clifford semigroup.

Theorem 3.2.11 ([16, Theorem 3.1]). A semigroup S is a left Fountain-Gould

order in a semilattice Y of groups Gα, α P Y , if and only if S is a semilattice

Y of right reversible, cancellative semigroups Sα, α P Y .

We use this theorem give the analogous result for Clifford semigroups of left

I-quotients.

Corollary 3.2.12. A semigroup S is a left I-order in a semilattice Y of groups

Gα, α P Y if and only if S is a semilattice Y of right reversible, cancellative

semigroups Sα, α P Y .

Proof. Let Q be a semilattice Y of groups Gα, α P Y . We know that every

element of Q lies in a subgroup. Consequently, for every a P Q, a# exists and

a´1 “ a#. We can therefore see that a semigroup S is a left I-order in Q if and

only if S is a left Fountain-Gould order in Q. By Theorem 3.2.11, we know that

this is true if and only if S is a semilattice Y of right reversible, cancellative

semigroups Sα, α P Y .

3.3 Uniqueness and extension of homomor-

phisms

We have shown that a semigroup can have two non-isomorphic semigroups of

straight left I-quotients. It is then natural to ask: if S has two semigroups of

straight left I-quotients, Q and P , under what conditions are Q and P isomor-

phic?

To answer this we first consider a related question: when does a homomorphism

from a straight left I-order lift to a homomorphism from its semigroup of left

I-quotients? We will answer both of these questions in this section.

We begin by introducing the following notions.
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Definition 3.3.1. Let S be a subsemigroup of Q and let ϕ : S Ñ P be a

homomorphism of S into a semigroup P . If there is a homomorphism sϕ : Q Ñ P

such that sϕ|S “ ϕ, then we say that ϕ lifts to Q. If ϕ lifts to an isomorphism,

then we say that Q and P are isomorphic over S.

To achieve our goal, we must first examine when two quotients a´1b “ c´1d are

equal, where a, b, c, d P S and S is a left I-order in Q with aRQ b and cRQ d.

This relation has already been determined by Ghroda and Gould [10].

Lemma 3.3.2 ([10, Lemma 2.7]). Let S be a straight left I-order in Q. Let

a, b, c, d P S with aRQ b and cRQ d. Then a´1b “ c´1d in Q if and only if there

exists x, y P S such that

xa “ yc, xb “ yd, xRQ y, x´1RQ a and y´1 RQ c.

However, we need to be able to express the conditions in Lemma 3.3.2 entirely

in terms of elements of S. We remind the reader that in an inverse semigroup

Q, we have that xRQ y if and only if x´1 LQ y´1.

Lemma 3.3.3. Let Q be an inverse semigroup and let x, a P Q. Then

x´1RQ a if and only if xRQ xaLQ a.

Proof. Let x´1RQ a. Using the fact that RQ is a left congruence, this implies

xaRQ xx´1RQ x.

We know that x´1RQ a implies that xLQ a´1. Therefore, using the fact that

LQ is a right congruence, we also have

xaLQ a´1aLQ a.

Conversely, let xa P RxXLa. By [20, Prop. 2.3.7], we have that LxXRa contains

an idempotent, e.

Then, as xLQ e, we have x´1RQ e´1 “ eRQ a.

We can now rewrite Lemma 3.3.2 in terms of relations restricted to S. The next

result is an adaptation of [10, Lemma 2.7].
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xa x

a e

Lemma 3.3.4. Let S be a straight left I-order in Q. Let a, b, c, d P S with aRQ b

and cRQ d. Then a´1b “ c´1d if and only if there exists x, y P S such that

xa “ yc, xb “ yd, xRQ xaLQ a, and yRQ ycLQ c.

Note that since xa “ yc, the conditions imply that xRQ y and aLQ c.

This has internalised the condition a´1b “ c´1d to equalities on S and Green’s

relations in Q restricted to elements of S.

The next thing to address is multiplication on Q. Let a´1b and c´1d be elements

of Q in standard form, meaning that a, b, c, d P S with aRQ b and cRQ d. Since

b, c P S, we know that bc´1 P Q. Therefore, since Q is a semigroup of straight

left I-quotients of S, there exists u, v P S with uRQ v, such that

bc´1
“ u´1v

in Q. Therefore, multiplication on Q is given by

a´1bc´1d “ puaq
´1

pvdq,

where bc´1 “ u´1v in Q. In the same way as we have internalised to S the

condition that a´1b “ c´1d, we need to be able to express bc´1 “ u´1v solely in

terms of elements of S. We start with a useful lemma of Ghroda and Gould.

Lemma 3.3.5 ([10, Lemma 2.6]). Let b, c, u, v be elements of an inverse semi-

group Q such that uRQ v. If bc´1 “ u´1v then ub “ vc.

Proof. We have that

bc´1cb´1
“ pbc´1

qpbc´1
q

´1
“ pu´1vqpu´1vq

´1
“ u´1vv´1u “ u´1u,
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as uRQ v. Therefore, using the fact that idempotents commute,

bc´1c “ bb´1bc´1c “ bc´1cb´1b “ u´1ub.

We can left multiply this by u to obtain

ubc´1c “ ub. (3.1)

We can also see that

vc “ vv´1vc “ uu´1vc “ ubc´1c. (3.2)

We compare (3.1) and (3.2) to obtain our result.

Lemma 3.3.6. Let Q be an inverse semigroup and let b, c, u, v P Q such that

uRQ v. Then bc´1 “ u´1v in Q if and only if

ub “ vc, vRQ vc and LQ
b ^ LQ

c “ LQ
ub.

Proof. Let bc´1 “ u´1v. By Lemma 3.3.5, we have ub “ vc. Since uRQ v, we

know that uu´1 “ vv´1. Therefore, using u´1v “ bc´1 and ub “ vc, we have

v “ vv´1v “ uu´1v “ ubc´1
“ vcc´1.

Therefore, by Lemma 2.2.3, we have vRQ vc. Finally, again using bc´1 “ u´1v

and ub “ vc, we have

b´1bc´1c “ b´1u´1vc “ b´1u´1ub “ pubq´1
pubq.

Therefore, by Lemma 2.2.8, we have that LQ
b ^ LQ

c “ LQ
ub.

Conversely, let

ub “ vc, vRQ vc and LQ
b ^ LQ

c “ LQ
ub.

By Lemma 2.2.3, we know that vRQ vc implies that v “ vcc´1. Using this along

with vc “ ub, we have

u´1v “ u´1vcc´1
“ u´1ubc´1

“ u´1ubb´1bc´1
“ bb´1u´1ubc´1, (3.3)
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using the fact that idempotents commute in the last equality. By Lemma 2.2.8,

we know that LQ
b ^ LQ

c “ LQ
ub implies that b´1bc´1c “ pubq´1pubq. Therefore

bb´1u´1ubc´1
“ bpubq´1

pubqc´1
“ bb´1bc´1cc´1

“ bc´1. (3.4)

Putting Equations (3.3) and (3.4) together, we obtain u´1v “ bc´1.

We now give necessary and sufficient conditions for a homomorphism from a

straight left I-order to an inverse semigroup P to lift to a homomorphism from

its semigroup of straight left I-quotients to P .

Theorem 3.3.7. Let S be a straight left I-order in Q and let T be a subsemigroup

of an inverse semigroup P . Suppose that ϕ : S Ñ T is a homomorphism. Then

ϕ lifts to a (unique) homomorphism sϕ : Q Ñ P if and only if for all a, b, c P S:

(i) aRQ b implies that aϕRP bϕ; and

(ii) LQ
a ^ LQ

b “ LQ
c implies that LP

aϕ ^ LP
bϕ “ LP

cϕ.

If (i) and (ii) hold and Sϕ is a left I-order in P , then sϕ : Q Ñ P is onto.

Proof. First, let ϕ lift to a homomorphism sϕ. Since homomorphisms preserve

Green’s relations, (i) holds. For (ii), let LQ
a ^ LQ

b “ LQ
c . Since Q is inverse,

Lemma 2.2.8 gives us that

a´1ab´1b “ c´1c

in Q. Since homomorphisms preserve inverses, we have that

paϕq
´1

paϕqpbϕq
´1

pbϕq “ pcϕq
´1

pcϕq

in P . Lemma 2.2.8 then gives us LP
aϕ ^ LP

bϕ “ LP
cϕ. Therefore, we see that (ii)

also holds.

Conversely, suppose (i) and (ii) hold. Note that by applying (ii) with a “ b, we

have that for all a, c P S,

p˚q aLQ c implies that aϕLP cϕ.

We define sϕ : Q Ñ P by

pa´1bqsϕ “ paϕq
´1bϕ
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where a, b P S and aRQ b.

To show that sϕ is well-defined, suppose that a´1b “ c´1d where a, b, c, d P S,

aRQ b and cRQ d. Then by Lemma 3.3.4, there exists x, y P S such that

xa “ yc, xb “ yd, xRQ xaLQ a and yRQ ycLQ c.

Therefore, using the fact that ϕ is a homomorphism along with (i) and p˚q, we

have that

xϕaϕ “ yϕcϕ, xϕbϕ “ yϕdϕ, xϕRP xϕaϕLP aϕ and yϕRP yϕcϕLP cϕ.

Therefore, again by Lemma 3.3.4, we have paϕq´1bϕ “ pcϕq´1dϕ. Therefore sϕ is

well-defined.

To see that sϕ lifts to ϕ, let h P S. We can write h “ k´1l, where k, l P S with

kRQ l. We see that

kh “ kk´1l “ ll´1l “ l,

which also implies that

h “ k´1l “ k´1kh.

By Lemma 2.2.4, this implies that hLQ kh. Since ϕ is a homomorphism applying

p˚q gives us that

kϕhϕ “ lϕ and hϕLP kϕhϕ.

By Lemma 2.2.4, it follows that

hϕ “ pkϕq
´1kϕhϕ “ pkϕq

´1lϕ “ hsϕ.

To show that sϕ is a morphism, let a´1b, c´1d P Q with aRQ b and cRQ d. We

know that bc´1 “ u´1v for some u, v P S with uRQ v. By Lemma 3.3.6, this

implies that

vRQ vc “ ub and LQ
b ^ LQ

c “ LQ
ub.

Using (i) and (ii) this gives us

uϕRP vϕRP vϕcϕ “ uϕbϕ and LP
bϕ ^ LP

cϕ “ LP
uϕbϕ.
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Since P is an inverse semigroup, we can apply Lemma 3.3.6 to obtain

bϕpcϕq
´1

“ puϕq
´1vϕ.

Multiplying in Q, we have

a´1bc´1d “ a´1u´1vd “ puaq
´1vd,

with uaRQ ub “ vcRQ vd. Therefore in P

ppa´1bqpc´1dqqsϕ “ ppuaq
´1vdqsϕ

“ ppuaqϕq
´1

pvdqϕ

“ paϕq
´1

puϕq
´1vϕdϕ

“ paϕq
´1bϕpcϕq

´1dϕ

“ pa´1bqsϕpc´1dqsϕ,

so sϕ is a morphism as required.

We have that sϕ is unique, since homomorphisms must preserve inverses.

If (i) and (ii) hold and Sϕ is a left I-order in P , then for any p P P we have

p “ paϕq´1bϕ for some a, b P S. Since sϕ is a homomorphism, and homomor-

phisms between inverse semigroups preserve inverses, we have that

pa´1bqsϕ “ pasϕq
´1bsϕ “ paϕq

´1bϕ “ p,

and hence sϕ is onto. Note that we do not need Sϕ to be straight in P in order

to do this.

We will now use Theorem 3.3.7 to prove that if S has two semigroups of straight

left I-quotients, Q and P , then Q is isomorphic to P if and only if the restrictions

of their R and L-relations to S are equal. To do this we use the next result on

the preorder associated with L in semigroups of straight left I-quotients.

Lemma 3.3.8. Let S be a straight left I-order in Q and let a, b P Q. Then

a ďLQ b if and only if aLQ db

for some d P S.



CHAPTER 3. LEFT I-ORDERS 40

Proof. Let a ďLQ b. By definition there exists q P Q such that a “ qb. We

can write q as c´1d with c, d P S and cRQ d. We can see that a “ c´1db and

ca “ db, and so aLQ db. Conversely, if aLQ db, then since db ďLQ b, we obtain

a ďLQ b.

Theorem 3.3.9. Let S be a straight left I-order in Q and let ϕ : S Ñ P be

an embedding of S into an inverse semigroup P such that Sϕ is a straight left

I-order in P. Then Q is isomorphic to P over S if and only if for any a, b P S:

(i) aRQ b if and only if aϕRP bϕ; and

(ii) aLQ b if and only if aϕLP bϕ.

Proof. If Q is isomorphic to P over S, then Green’s relations are preserved.

Conversely suppose (i) and (ii) hold. Firstly we will use (ii) to show that for all

a, b, c P S:

p˚q a ďLQ b if and only if aϕ ďLP bϕ; and

p˚˚q LQ
a ^ LQ

b “ LQ
c if and only if LP

aϕ ^ LP
bϕ “ LP

cϕ.

We see that p˚q is a direct consequence of Lemma 3.3.8.

For p˚˚q, let a, b, c P S such that

LQ
a ^ LQ

b “ LQ
c .

Since P is an inverse semigroup, P {LP is a meet semilattice by Lemma 2.2.8, so

LP
aϕ ^ LP

bϕ “ LP
p

for some p P P . Since Sϕ is a straight left I-order in P , Lemma 3.1.3 implies

that Sϕ intersects every L-class of P . Therefore there exists some d P S such

that pLP dϕ. Therefore

LP
aϕ ^ LP

bϕ “ LP
dϕ.

We know that c ďLQ a, b. We use p˚q to obtain cϕ ďLP aϕ, bϕ. Therefore, by

the definition of meet, this gives us cϕ ďLP dϕ.
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Similarly, we apply p˚q to dϕ ďLP aϕ, bϕ to obtain d ďLQ a, b. Therefore, by the

definition of meet, d ďLQ c. Applying p˚q once again, we have that dϕ ďLP cϕ.

Putting both together gives us cϕLP dϕ. Therefore

LP
aϕ ^ LP

bϕ “ LP
cϕ.

The converse is similar.

From Theorem 3.3.7, ϕ lifts to a homomorphism sϕ : Q Ñ P , where, for a, b P S,

pa´1bqsϕ “ paϕq´1bϕ. Since every element of Q can be written as a´1b, with

a, b P S, this wholly defines sϕ.

Since ϕ is an embedding, ϕ : S Ñ Sϕ is an isomorphism. Therefore,

ϕ´1 : Sϕ Ñ S is also an isomorphism. By Theorem 3.3.7, ϕ´1 lifts to a

homomorphism Ěϕ´1 : P Ñ Q, where for a, b P S, ppaϕq´1bϕqĚϕ´1 “ a´1b. Since

Sϕ is a left I-order in P , this wholly defines Ěϕ´1.

Clearly sϕ and Ěϕ´1 are mutually inverse, and so are isomorphisms.

There seems to be no simplification of Theorem 3.3.7 in general, along the lines

of Theorem 3.3.9, the reason being that in order to obtain the preservation of

the meet function, one must have two-sided preservation of the ďL function,

which one cannot conclude from a homomorphism.



Chapter 4

The general case

In this chapter, we will determine the conditions under which a semigroup S is a

straight left I-order. We adopt two approaches. The first makes use of the meet

structure of the L-classes of inverse semigroups, and we present our conditions

in terms of two binary relations and an associated partial order. The second is

‘purely algebraic’ in that we give our conditions in terms of two binary relations

and a ternary relation on S.

4.1 Preliminaries

Assume S has a semigroup of straight left I-quotients Q. We aim to identify

properties of S inherited from Q with the eventual goal of reconstructing such

a Q from these properties.

By definition, every element in Q can be written as a´1b, where a, b P S and

aRQ b. Therefore, we can reconstruct Q as ordered pairs of elements of S under

an equivalence relation. That is, we have a bijective correspondence between Q

and the set

tpa, bq | a, b P S, aRQ bu{ „ ,

where pa, bq „ pc, dq if and only if a´1b “ c´1d in Q. We have already determined

this relation in terms of RQ and LQ in Lemma 3.3.4. The conditions given in

Lemma 3.3.4 will determine our „.

The next thing to address is multiplication on Q. We note that for every b, c P S,

42
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bc´1 P Q and therefore, since Q is a semigroup of straight left I-quotients of S,

there exists u, v P S with uRQ v, such that bc´1 “ u´1v in Q. Therefore,

multiplication on Q is given by a´1bc´1d “ puaq´1pvdq, where bc´1 “ u´1v in

Q. In the same way that we internalised to S the condition that a´1b “ c´1d

in Lemma 3.3.4, we need to find a method of expressing bc´1 “ u´1v solely

in terms of elements of S. In Section 4.2, we will use the meets of L-classes
applying Lemma 3.3.6. In Section 4.3, we will use a more algebraic approach,

employing a ternary relation to express this relation.

4.2 The general case using an ordering on in-

verse semigroups

The aim of this section is to prove Theorem 4.2.1.

Before stating the result, we will first introduce the notation used in the Theorem

4.2.1 and throughout this section. We use L1 to denote the equivalence relation

associated with the preorder ďl. We use L1
a to denote the L1-class of a. We use

^ to denote the meet on L1-classes associated with the preorder ďl. For example

L1
a ^ L1

b “ L1
c denotes that the meet of the L1-class of a and the L1-class of b is

the L1-class of c. The relation R˚ will always refer to S.

We use Greek letters in this theorem in order to lessen confusion when applying

the listed properties.

Theorem 4.2.1. Let S be a semigroup and let R1 and ďl be binary rela-

tions on S. Then S has a semigroup of straight left I-quotients, Q, such that

RQ X pS ˆ Sq “ R1 and ďLQ X pS ˆ Sq “ ďl if and only if R1 is a left com-

patible equivalence relation; ďl is a preorder such that the L1-classes form a

meet semilattice under the associated partial order; and S satisfies Conditions

(M1) - (M6).

(M1) For all α, β P S, there exists γ, δ P S such that

γR1 δR1 δβ “ γα and L1
α ^ L1

β “ L1
γα.
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(M2) Right multiplication distributes over meet, that is, for all α, β, γ, δ P S,

L1
α ^ L1

β “ L1
γ implies that L1

αδ ^ L1
βδ “ L1

γδ.

(M3) For all α, β P S, αβ ďl β.

(M4) R1 Ď R˚.

(M5) Let α, β, γ, δ P S such that γR1 γαL1 α and δR1 δβ L1 β. Then γ L1 δ if

and only if αR1 β.

(M6) For all α, β, γ P S, αL1 β L1 γα “ γβ implies that α “ β.

Before we prove this theorem, let us first discuss (M1) - (M6) and why they are

natural properties for this context:

(M1) This is the equivalent to the Ore condition in Definition 3.2.2. It implies

that for α, β P S, there exists γ, δ P S such that αβ´1 “ γ´1δ with γRQ δ.

We will refer to this condition as the Ore condition.

(M2) This property is true in any inverse semigroup and is a result of the fact

that idempotents commute in inverse semigroups.

(M3) This property states that under the preorder ďl, final factors are larger

than the product from which they are taken.

(M4) By definition, the restriction to S of R in any oversemigroup of S, should

be contained in R˚.

(M5) This property demonstrates the fact that in an inverse semigroup, αRQ β

if and only if α´1 LQ β´1.

(M6) This is a cancellation property that occurs in an inverse semigroup.

Note that Properties (M2) - (M6) are true in all inverse semigroups, whilst

Property (M1) is specific to straight left I-orders.

We start the proof of Theorem 4.2.1 by first proving the forward implication.

We assume that S has a semigroup of straight left I-quotients, Q, and we put
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RQ X pS ˆ Sq “ R1, LQ X pS ˆ Sq “ L1 and ďLQ X pSˆSq “ ďl . From knowl-

edge of Green’s relations, we know that R1 is a left congruence on S, and that

ďl is a preorder on S with the associated equivalence relation, L1. Using Lemma

2.2.8, we know that Q{LQ forms a meet semilattice under ďLQ . Since S inter-

sects every LQ-class, this means that S{L1 forms a meet semilattice under ďl.

We now prove that Properties (M1) - (M6) hold.

(M1) Let α, β P S. Then α, β P Q and so, by closure under taking of inverses

and multiplication, αβ´1 P Q. Since Q is a semigroup of straight left

I-quotients of S, there exists γ, δ P S such that αβ´1 “ γ´1δ with γR1 δ.

Lemma 3.3.6 then gives the result.

(M2) Since Q is an inverse semigroup, we can use Lemma 2.2.8 to give us that

L1
α ^ L1

β “ L1
γ is equivalent to α´1αβ´1β “ γ´1γ. Therefore

pαδq´1
pαδqpβδq

´1
pβδq “ δ´1α´1αδδ´1β´1βδ

“ δ´1α´1αβ´1βδ

“ δ´1γ´1γδ

“ pγδq
´1

pγδq.

And so, using Lemma 2.2.8 again, L1
αδ ^ L1

βδ “ L1
γδ.

(M3) This is true in any semigroup, since Q1αβ Ď Q1β.

(M4) Since R1 “ RQ X pS ˆ Sq and Q is an oversemigroup of S, then, by

definition, αR1 β implies that αR˚ β.

(M5) By Lemma 3.3.3, in an inverse semigroup we have that γR1 γαL1 α im-

plies that γ´1RQ α, and similarly δR1 δβ L1 β implies that δ´1RQ β. Then

αR1 β implies that γ´1RQ αRQ βRQ δ´1. We know that γ´1RQ δ´1 im-

plies that γ LQ δ, and so γ L1 δ. The converse is similar.

(M6) Since α and γ are elements in an inverse semigroup, αL1 γα if and only if

α “ γ´1γα by Lemma 2.2.4. Similarly, β L1 γβ if and only if β “ γ´1γβ.

Therefore, γα “ γβ together with αL1 γα and β L1 γβ, implies that

α “ γ´1γα “ γ´1γβ “ β.
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This proves the forward implication of Theorem 4.2.1.

We now prove the converse. This will consist of proving that the following

construction, P , yields a semigroup of straight left I-quotients of S, with

R1 “ RP X pS ˆ Sq and ďl “ ďLP X pSˆSq. For the convenience of the reader,

we now set up the ‘roadmap’ for the proof.

Roadmap 4.2.2. Let S be a semigroup with R1, ďl and L1 satisfying the

conditions of Theorem 4.2.1. Note that by considering (M2) with α “ γ, we

see that ďl is right compatible. Therefore, since L1 is an equivalence relation

associated with a right compatible preorder, L1 is a right congruence.

We begin by defining

Σ “ tpa, bq P S ˆ S | aR1 bu.

We then define an equivalence relation „ on Σ, by

pa, bq „ pc, dq

if and only if there exists x, y P S such that

xa “ yc, xb “ yd, xR1 xaL1 a, yR1 ycL1 c.

Note that xR1 y and aL1 c as a consequence.

We show that this is an equivalence relation in Lemma 4.2.4. We use ra, bs to

denote the equivalence class of element pa, bq under „.

We then define P “ Σ {„ and multiplication on P with the following rule:

ra, bsrc, ds “ rua, vds, where uR1 vR1 vc “ ub, L1
b ^ L1

c “ L1
ub .

Note that such a u and v exist in S by (M1).

We show that P is a semigroup in Lemma 4.2.5 and Lemma 4.2.6 and an inverse

semigroup in Lemma 4.2.8 and Lemma 4.2.9.

We then show that S embeds into P , by defining ϕ : S Ñ P by aϕ “ rx, xas,

where x is an element in S such that xR1 xaL1 a. The existence of such an x is

a consequence of (M1) proved in Lemma 4.2.3. We will prove that this function

is an embedding in Lemma 4.2.10.
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We show that the restriction of RP to pS ˆ Sq is R1 in Lemma 4.2.11, and that

the restriction of ďLP to pS ˆ Sq is ďl in Lemma 4.2.12. Lastly, we show that

P is a semigroup of straight left I-quotients of Sϕ in Lemma 4.2.13.

Now that we have set up the ‘roadmap’, the rest of the section will be the ‘road

trip’. The properties in Theorem 4.2.1 will be used extensively, so the reader

might prefer to have the list of properties in front of them whilst reading. For all

of the following results in this section, S, R1, ďl and L1 are as described in the

conditions of Theorem 4.2.1, and Σ, „, P and ϕ are as described in Roadmap

4.2.2.

The following lemma will provide a few shortcuts in the proof.

Lemma 4.2.3.

(i) For all a P S, there exists an x P S such that xR1 xaL1 a.

(ii) For all a, b, x P S, xR1 xaL1 a and aR1 b implies that xR1 xbL1 b.

(iii) For all x, a P S, we have L1
xa ^ L1

a “ L1
xa.

(iv) For all a, b, x, y P S, aR1 b and xaL1 ya implies that xbL1 yb.

Proof.

(i) By applying (M1) with α “ β “ a, there exists x P S such that xR1 xa

and L1
xa “ L1

a ^ L1
a “ L1

a.

(ii) Let a, b, x P S such that aR1 b and xR1 xaL1 a. Using the fact that R1 is a

left congruence, bR1 a implies that xbR1 xaR1 x. By (i), there exists y P S

such that yR1 ybL1 b. We can then use (M5), to see that aR1 b implies that

xL1 y. Therefore, using the fact that L1 is a right congruence, xbL1 ybL1 b.

(iii) Let x, a P S. By (M3), we know that xa ďl a, Therefore, by the definition

of meet, we have that L1
xa ^ L1

a “ L1
xa.

(iv) Applying (M1) to xa and ya, there exists w, z P S such that

wR1 zR1 zya “ wxa and L1
xa ^ L1

ya “ L1
wxa.
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Since xaL1 ya, this gives us

wR1 wxaL1 xa and zR1 zyaL1 ya.

Using the fact that R1 is a left congruence, we have that aR1 b implies

that both xaR1 xb and yaR1 yb. Therefore we can apply (ii) to both of the

above equations to get

wR1 wxbL1 xb and zR1 zybL1 yb.

Also we can apply (M4) to wxa “ zya to get wxb “ zyb. Therefore

xbL1 wxb “ zybL1 yb.

Lemma 4.2.4. The relation „ is an equivalence relation.

Proof.

Reflexivity: Let pa, bq P Σ. By definition, pa, bq „ pa, bq if there exists x, y P S

such that xa “ ya, xb “ yb, xR1 xaL1 a, yR1 yaL1 a. By Lemma 4.2.3 (i), there

is an x P S such that xR1 xaL1 a. Then take y “ x to get reflexivity.

Symmetry: Let pa, bq „ pc, dq. By definition there must exist x, y P S such

that

xa “ yc, xb “ yd, xR1 xaL1 a, yR1 ycL1 c,

By switching the roles of x and y, we can immediately see that pc, dq „ pa, bq.

Transitivity: Let pa, bq „ pc, dq. Therefore there exists x, y P S such that

xa “ yc, xb “ yd, xR1 xaL1 a, yR1 ycL1 c. (4.1)

Suppose also that pc, dq „ pe, fq. Then there exists w, z P S such that

wc “ ze, wd “ zf, wR1 wcL1 c, zR1 zeL1 e. (4.2)

We need pa, bq „ pe, fq. That is we need X, Y P S such that

Xa “ Ye, Xb “ Yf, XR1 XaL1 a, Y R1 YeL1 e. (4.3)



CHAPTER 4. THE GENERAL CASE 49

We apply Property (M1) to y and w, to get that there exists h, k P S such that

hR1 kR1 kw “ hy, and L1
y ^ L1

w “ L1
hy. (4.4)

We then take X “ hx, Y “ kz giving us that

Xa “ hxa “ hyc “ kwc “ kze “ Ye

Xb “ hxb “ hyd “ kwd “ kzf “ Yf.

using (4.1), (4.4) and (4.2). Also since R1 is a left congruence,

xR1 xa ùñ X “ hxR1 hxa “ Xa

zR1 ze ùñ Y “ kzR1 kze “ Ye.

Using Property (M2) we have that (4.4) implies that L1
yc ^ L1

wc “ L1
hyc. Hence,

using xa “ yc from (4.1) and wcL1 c from (4.2), we have L1
xa ^ L1

c “ L1
hxa. We

can then use (4.1) to give us aL1 xa “ ycL1 c, and so L1
a ^L1

a “ L1
hxa. Therefore

XaL1 a.

The last relation needed can be obtained similarly or achieved quicker by noticing

eL1 cL1 aL1 Xa “ Ye.

Lemma 4.2.5. Multiplication in P is well-defined.

Proof. Let ra, bs, rc, ds P P . From Roadmap 4.2.2, we have that

ra, bsrc, ds “ rua, vds,

where u, v P S are the elements that exist by (M1) such that

uR1 vR1 vc “ ub, L1
b ^ L1

c “ L1
ub.

We need to show that the product, ra, bsrc, ds, depends neither upon the choice

of representative for the equivalence class, nor the choice of u and v appearing

in the rule for multiplication. We start with the choice of u and v.
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Choice of u and v: Let

uR1 vR1 vc “ ub, L1
b ^ L1

c “ L1
ub, (4.5)

so that ra, bsrc, ds “ rua, vds. Also let

sR1 tR1 tc “ sb, L1
b ^ L1

c “ L1
sb, (4.6)

so that ra, bsrc, ds “ rsa, tds. We show that pua, vdq „ psa, tdq, which is true

exactly if there exists w, z P S such that

wua “ zsa, wvd “ ztd, wR1 wuaL1 ua, zR1 zsaL1 sa. (4.7)

Applying Property (M1) to ua and sa, let w and z be elements such that

wR1 zR1 zsa “ wua and L1
ua ^ L1

sa “ L1
wua. (4.8)

Using the fact that aR1 b, we see that

wua “ zsa
pM4q
ùñ wub “ zsb.

Then, as ub “ vc and tc “ sb from (4.5) and (4.6), this gives us wvc “ ztc. We

then use cR1 d, to get

wvc “ ztc
pM4q
ùñ wvd “ ztd.

From (4.5) and (4.6), we also see that

L1
ub “ L1

b ^ L1
c “ L1

sb ùñ ubL1 sb,

which, together with aR1 b, implies that uaL1 sa by Lemma 4.2.3 (iv). Using

the definition of ^, along with (4.7), we then have

L1
ua “ L1

sa “ L1
ua ^ L1

sa “ L1
wua “ L1

zsa.

This gives us the required properties for pua, vdq „ psa, tdq.
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First Variable: Let pa, bq „ pã, b̃q. Therefore there exists x, y P S such that

xa “ yã, xb “ yb̃, xR1 xaL1 a, yR1 yãL1 ã. (4.9)

In order to show well-definedness in the first variable, we need that for all rc, ds P

P , ra, bsrc, ds “ rã, b̃src, ds. With that goal in mind, we apply (M1) to b and c,

to get that there exists u, v P S such that

uR1 vR1 vc “ ub and L1
b ^ L1

c “ L1
ub. (4.10)

Therefore ra, bsrc, ds “ rua, vds.

Our aim is to first find elements ũ and ṽ which witness rã, b̃src, ds “ rũã, ṽds. We

will then prove that pua, vdq „ pũã, ṽdq. Of course, we could use (M1) applied

to b̃ and c, but for our purposes we need to be more careful.

Applying Property (M1) to u and x, we know that there exists s, t P S such that

sR1 tR1 tu “ sx and L1
x ^ L1

u “ L1
sx. (4.11)

We take ũ “ sy and ṽ “ tv.

We want to prove that rã, b̃src, ds “ rũã, ṽds. To prove this, it is sufficient that

ũR1 ṽR1 ṽc “ ũb̃, and that L1

b̃
^ L1

c “ L1

ũb̃
. Rewriting this, we need to prove that

syR1 tvR1 tvc “ syb̃ (4.12)

and

L1

b̃
^ L1

c “ L1

syb̃
. (4.13)

We start by proving each relation in Equation (4.12) in turn:

We know that yR1 x from (4.9) and uR1 v from (4.10). Using the fact that R1 is

a left congruence, yR1 x and uR1 v imply that syR1 sx and tuR1 tv respectively.

Then, as sx “ tu from (4.11), this gives us that syR1 tv. Using left compatibility

of R1 again, vR1 vc from (4.10) implies that tvR1 tvc. Also, using vc “ ub,

tu “ sx, xb “ yb̃, we get

tvc “ tub “ sxb “ syb̃. (4.14)
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We now prove Equation (4.13). We can use (M2) to give us

L1
x ^ L1

u “ L1
sx ùñ L1

xb ^ L1
ub “ L1

sxb.

Using Lemma 4.2.3 (ii), we have that aR1 b imples that xR1 xbL1 b. Using xbL1 b

and L1
b ^ L1

c “ L1
ub, we have

L1
b ^ pL1

b ^ L1
cq “ L1

sxb.

Therefore

L1
b ^ L1

c “ pL1
b ^ L1

bq ^ L1
c “ L1

sxb. (4.15)

Using Lemma 4.2.3 (ii) again, we have that ãR1 b̃ and yR1 yãL1 ã by (4.9) implies

that yR1 yb̃L1 b̃. Therefore, using (4.9), we have that bL1 xb “ yb̃L1 b̃. Using

this together with xb “ yb̃ and (4.15), we have

L1

b̃
^ L1

c “ L1

syb̃
,

which is (4.13). Therefore rã, b̃src, ds “ rsyã, tvds.

Using xa “ yã from (4.9), this also means that rã, b̃src, ds “ rsxa, tvds.

Therefore, in order to have well-definedness in the first variable, one needs

pua, vdq „ psxa, tvdq. This is true exactly if there exists w, z P S such that

wua “ zsxa, wvd “ ztvd, wR1 wuaL1 ua, zR1 zsxaL1 sxa.

Applying Property (M1) to ua and sxa, take w and z to be elements in S such

that

wR1 zR1 zsxa “ wua and L1
ua ^ L1

sxa “ L1
wua. (4.16)

Since aR1 b, we know that wua “ zsxa implies wub “ zsxb by (M4). We then

use sxb “ tvc from (4.14) and ub “ vc from (4.10) to obtain wvc “ ztvc. And

therefore, using (M4) again, cR1 d implies that wvd “ ztvd.

Using Property (M2), L1
x ^ L1

u “ L1
sx implies that L1

xa ^ L1
ua “ L1

sxa. We then

use xaL1 a from (4.9) and Lemma 4.2.3 (iii), to get

L1
xa ^ L1

ua “ L1
sxa ùñ L1

a ^ L1
ua “ L1

sxa ùñ L1
ua “ L1

sxa.
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We then compare this with L1
ua ^ L1

sxa “ L1
wua from (4.16) to obtain

L1
ua “ L1

wua. Lastly, sxaL1 uaL1 wua “ zsxa. Altogether, this proves that

pua, vdq „ psxa, tvdq “ pũã, ṽdq.

Second Variable: Let pc, dq „ pc̃, d̃q. Therefore there exists x, y P S such that

xc “ yc̃, xd “ yd̃, xR1 xcL1 c, yR1 yc̃L1 c̃. (4.17)

In order to show well-definedness in the second variable, we need that for all

ra, bs P P , ra, bsrc, ds “ ra, bsrc̃, d̃s. With that goal in mind, given ra, bs P P , we

apply (M1) to b and c, to get that there exists u, v P S such that

uR1 vR1 vc “ ub and L1
b ^ L1

c “ L1
ub. (4.18)

Therefore ra, bsrc, ds “ rua, vds.

Our aim is to find elements ũ and ṽ which witness ra, bsrc̃, d̃s “ rũa, ṽd̃s. We will

then prove that pua, vdq „ pũa, ṽd̃q.

Applying Property (M1) to v and x, we know that there exists p, q P S such

that

pR1 qR1 qx “ pv and L1
v ^ L1

x “ L1
pv. (4.19)

We take ũ “ pu and ṽ “ qy.

We want to prove that ra, bsrc̃, d̃s “ rũa, ṽd̃s. To prove this, it is sufficient that

ũR1 ṽR1 ṽc̃ “ ũb and L1
b ^ L1

c̃ “ L1
ũb. (4.20)

Rewriting this, we need to prove that

puR1 qyR1 qyc̃ “ pub (4.21)

and

L1
b ^ L1

c̃ “ L1
pub. (4.22)

We start be proving each relation in Equation (4.21) in turn:

We know that uR1 v from (4.18) and that xR1 y from (4.17). Using the fact

that R1 is a left congruence, uR1 v and xR1 y imply that puR1 pv and qxR1 qy

respectively. Then, since pv “ qx from (4.19), this gives us that puR1 qy. Using
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left compatibility of R1 again, uR1 ub from (4.18) implies that puR1 pub. Also,

using ub “ vc from (4.18), pv “ qx from (4.19), and xc “ yc̃ from (4.17), we get

pub “ pvc “ qxc “ qyc̃. (4.23)

We now prove Equation (4.22). Using (M2) on (4.19), we have

L1
v ^ L1

x “ L1
pv ùñ L1

vc ^ L1
xc “ L1

pvc.

We apply L1
b ^ L1

c “ L1
vc from (4.18) and xcL1 c from (4.17) to get

pL1
b ^ L1

cq ^ L1
c “ L1

pvc.

Therefore

L1
b ^ L1

c “ L1
b ^ pL1

c ^ L1
cq “ L1

pvc.

We apply cL1 xc “ yc̃L1 c̃ from (4.17) and ub “ vc from (4.18) to get

L1
b ^ L1

c̃ “ L1
pub.

This concludes the verification of Equations (4.21) and (4.22). Therefore

ra, bsrc̃, d̃s “ rpua, qyd̃s “ rpua, qxds using (4.17).

Therefore, in order to have well-definedness in the second variable, one needs

pua, vdq „ ppua, qxdq. This is true exactly if there exists w, z P S such that

wua “ zpua, wvd “ zqxd, wR1 wuaL1 ua, zR1 zpuaL1 pua.

Applying Property (M1) to ua and pua, take w and z to be elements in S such

that wR1 zR1 zpua “ wua and L1
ua ^ L1

pua “ L1
wua. We use pub “ qxc from

(4.23) and ub “ vc from (4.18), along with aR1 b and cR1 d to obtain

wua “ zpua
pM4q
ùñ wub “ zpub ùñ wvc “ zqxc

pM4q
ùñ wvd “ zqxd.

Using Property (M2), L1
v ^ L1

x “ L1
pv implies that L1

vc ^ L1
xc “ L1

pvc. We then

use xcL1 c from (4.17) and Lemma 4.2.3 (iii), to get

L1
vc ^ L1

xc “ L1
pvc ùñ L1

vc ^ L1
c “ L1

pvc ùñ L1
vc “ L1

pvc ùñ L1
ub “ L1

pub.
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We apply Lemma 4.2.3 (iv) to ubL1 pub and aR1 b to obtain uaL1 pua. Therefore

L1
wua “ L1

ua ^ L1
pua “ L1

ua. Lastly puaL1 uaL1 wua “ zpua, which gives us all

the necessary conditions for pua, vdq „ ppua, qxdq “ pũa, ṽd̃q.

Note that by using well-definedness in the first variable and well-definedness in

the second variable together, we can see that for pa, bq „ pã, b̃q and pc, dq „ pc̃, d̃q,

we get

pa, bqpc, dq „ pã, b̃qpc, dq „ pã, b̃qpc̃, d̃q.

Therefore, by transitivity, this multiplication is well-defined.

Lemma 4.2.6. Multiplication in P is associative.

Proof. Let ra, bs, rc, ds, re, f s P P .

Applying Property (M1) to b and c, we choose u, v P S satisfying

uR1 vR1 vc “ ub and L1
b ^ L1

c “ L1
ub. (4.24)

This gives us that ra, bsrc, ds “ rua, vds. Similarly, we choose p, q P S satisfying

pR1 qR1 qe “ pd and L1
d ^ L1

e “ L1
pd. (4.25)

Then rc, dsre, f s “ rpc, qf s.

Applying Property (M1) to v and p, we know that there exists i, j P S such that

iR1 jR1 jp “ iv and L1
v ^ L1

p “ L1
iv. (4.26)

We want to prove that

pra, bsrc, dsqre, f s “ rua, vdsre, f s “ ripuaq, pjqqf s, (4.27)

and that

ra, bsprc, dsre, f sq “ ra, bsrpc, qf s “ rpiuqa, jpqfqs. (4.28)

This would prove associativity.

In order to prove (4.27), we need

iR1 jqR1 jqe “ ivd (4.29)
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and

L1
vd ^ L1

e “ L1
ivd. (4.30)

We start by proving each relation in Equation (4.29) in turn:

Since R1 is a left congruence, qR1 p implies that jqR1 jp, which in turn is R1-

related to i. Using again the left compatibility of R1, we see that qR1 qe implies

that jqR1 jqe. Also, using qe “ pd and jp “ iv, we see that jqe “ jpd “ ivd.

We now prove Equation (4.30). We apply (M2) to L1
v ^L1

p “ L1
iv to give us that

L1
vd ^ L1

pd “ L1
ivd. And so, using L1

d ^ L1
e “ L1

pd and Lemma 4.2.3 (iii), we have

L1
vd ^ L1

pd “ L1
ivd ùñ L1

vd ^ pL1
d ^ L1

eq “ L1
ivd

ùñ pL1
vd ^ L1

dq ^ L1
e “ L1

ivd

ùñ L1
vd ^ L1

e “ L1
ivd.

We now have proved both (4.29) and (4.30), which together gives us (4.27).

In order to prove (4.28), we need

iuR1 jR1 jpc “ iub (4.31)

and

L1
b ^ L1

pc “ L1
iub. (4.32)

We start by proving each relation in Equation (4.31) in turn:

Since R1 is a left congruence, uR1 v implies that iuR1 iv, which in turn

is R1-related to j. Using again the left compatibility of R1, we see that

cR1 d implies that jpcR1 jpd and pR1 pd implies that jpR1 jpd. There-

fore jR1 jpR1 jpdR1 jpc. Also, using ub “ vc and iv “ jp, we see that

iub “ ivc “ jpc.

We now prove Equation (4.32). We apply (M2) to L1
v ^L1

p “ L1
iv to give us that

L1
vc ^ L1

pc “ L1
ivc. And so, using L1

b ^ L1
c “ L1

vc and Lemma 4.2.3 (iii), we have

L1
vc ^ L1

pc “ L1
ivc ùñ pL1

b ^ L1
cq ^ L1

pc “ L1
iub

ùñ L1
b ^ pL1

c ^ L1
pcq “ L1

iub

ùñ L1
b ^ L1

pc “ L1
iub.
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We have now proved both (4.31) and (4.32), which together gives us (4.28),

finishing the proof.

We have now proved that P is a semigroup. The following lemma provides a

couple of useful shortcuts to help in the later parts of this proof.

Lemma 4.2.7. These statements are true in P :

(i) ra, as “ rb, bs if and only if aL1 b;

(ii) ra, bsrb, as “ ra, as.

Proof.

(i) We know that ra, as “ rb, bs if and only if there exists w, z P S such that

wa “ zb, wR1 waL1 a, zR1 zbL1 b. (4.33)

Let ra, as “ rb, bs. Therefore there exists w, z P S satisfying (4.33). Hence

aL1 wa “ zbL1 b.

Conversely let aL1 b. Applying (M1) to a and b, there exists w, z P S such

that wR1 zR1 zb “ wa and L1
a ^ L1

b “ L1
wa Therefore, since aL1 b, we have

L1
wa “ L1

a ^ L1
b “ L1

a, and consequently zb “ waL1 aL1 b. Comparing with

(4.33), we see that ra, as “ rb, bs.

(ii) By Lemma 4.2.3 (i), there exists y P S such that yR1 ybL1 b. By com-

paring with the definition of multiplication in Roadmap 4.2.2, we see

that ra, bsrb, as “ rya, yas. Since aR1 b, Lemma 4.2.3 (ii) gives us that

yR1 yaL1 a. So by (i), ra, bsrb, as “ ra, as.

Lemma 4.2.8. The semigroup P is regular.

Proof. Let ra, bs P P . By Lemma 4.2.7 (ii), ra, bsrb, asra, bs “ ra, asra, bs. By

Lemma 4.2.3 (i), there exists y P S such that yR1 yaL1 a. Therefore, by our

definition of multiplication, ra, asra, bs “ rya, ybs.
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We want to prove that pa, bq „ pya, ybq. That is there exists w, z P S such that

wa “ zya, wb “ zyb, wR1 waL1 a, zR1 zyaL1 ya.

Applying Property (M1) to a and ya, there exists w, z P S such that

wR1 zR1 zya “ wa and L1
a ^ L1

ya “ L1
wa.

We use (M4) to give us that wa “ zya implies wb “ zyb. We can also use aL1 ya

to give us that L1
wa “ L1

a ^ L1
ya “ L1

a. Therefore aL1 yaL1 wa “ zya.

So we have that ra, bsrb, asra, bs “ ra, bs. Therefore P is regular.

It is good to note that in the exactly same way rb, asra, bsrb, as “ rb, as. Therefore

rb, as P V pra, bsq.

Lemma 4.2.9. The semigroup P is an inverse semigroup, with ra, bs´1 “ rb, as.

Proof. We start by identifying the idempotents of P .

Let ra, bs P P be an idempotent, i.e. let ra, bsra, bs “ ra, bs. We know that

ra, bsra, bs “ rua, vbs, where u and v are the elements that exists by (M1) such

that

uR1 vR1 va “ ub and L1
a ^ L1

b “ L1
ub .

Consequently we know that pa, bq „ pua, vbq. Therefore there exists w, z P S

such that

wa “ zua, wb “ zvb, wR1 waL1 a, zR1 zuaL1 ua.

By Lemma 4.2.3 (ii) we have that aR1 b implies that wR1 wbL1 b. Also, by

applying (M4) to both wb “ zvb and wa “ zua and using va “ ub, we have

wa
pM4q
“ zva “ zub

pM4q
“ wb.

Therefore aL1 wa “ wbL1 b. We then apply Property (M6) to give us a “ b.

Therefore the idempotents of P are of the form ra, as, where a P S.

We now prove that idempotents commute. Let ra, as, rb, bs be idempotents

in P . Applying Property (M1) to a and b, we choose u and v such that
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ra, asrb, bs “ rua, vbs, where

uR1 vR1 vb “ ua and L1
a ^ L1

b “ L1
ua.

By inspection we can see that v and u satisfy the necessary properties for

rb, bsra, as “ rvb, uas. And so we see that, since ua “ vb, we have

ra, asrb, bs “ rua, vbs “ rvb, uas “ rb, bsra, as.

Therefore the idempotents of P commute. Since P is also regular, this means

that P is an inverse semigroup.

Moreover since rb, as P V pra, bsq, we easily see that ra, bs´1 “ rb, as for all

ra, bs P P .

We now prove that S embeds into P . We do this by defining a function ϕ : S Ñ

P , by aϕ “ rx, xas, where x is the element such that xR1 xaL1 a, that exists by

Lemma 4.2.3 (i). Note that rx, xas P P .

Lemma 4.2.10. The function ϕ is an embedding.

Proof.

Well-defined: Let xR1 xaL1 a and let yR1 yaL1 a. By our definition, this

means that aϕ “ rx, xas and that aϕ “ ry, yas. Therefore, i order to prove that

ϕ is well-defined, we need to prove that px, xaq „ py, yaq. This is true exactly if

there exists w, z P S such that

wx “ zy, wxa “ zya, wR1 wxL1 x, zR1 zyL1 y.

Applying Property (M1) to x and y, we take w and z to be elements in S such

that wR1 zR1 wx “ zy and L1
x ^ L1

y “ L1
wx . Trivially wxa “ zya. Using (M5),

xR1 xaL1 a and yR1 yaL1 a implies that xL1y. Therefore

L1
wx “ L1

x ^ L1
y “ L1

x.

For the last necessary property, we notice yL1 xL1 wx “ zy.

Homomorphism: Let a, b P S, and let x, y P S such that xR1 xaL1 a and
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yR1 ybL1 b. Therefore, by definition, aϕ “ rx, xas and bϕ “ ry, ybs. Then

paϕqpbϕq “ rx, xasry, ybs “ rux, vybs “ rux, uxabs,

where u and v are the elements that exist by (M1) such that

uR1 vR1 vy “ uxa and L1
xa ^ L1

y “ L1
uxa.

We want to prove that this is equal to pabqϕ.

Using the fact that R1 is a left conguence, we have that ybR1 y implies that

vybR1 vy, and xaR1 x implies that uxaR1 ux. Therefore

uxab “ vybR1 vy “ uxaR1 ux.

We use xaL1 a to obtain L1
a ^ L1

y “ L1
uxa. We can then apply Property (M2) to

L1
a ^ L1

y “ L1
uxa to give us that L1

ab ^ L1
yb “ L1

uxab. Using ybL1 b, this means that

L1
ab ^ L1

b “ L1
uxab. We can then apply Lemma 4.2.3 (iii) to give us abL1 uxab.

By the definition of ϕ, since uxR1 uxabL1 ab, this means that

pabqϕ “ rux, uxabs “ paϕqpbϕq.

Injective: Let a, b P S such that aϕ “ bϕ. Therefore, choosing x and y such

that xR1 xaL1 a and yR1 ybL1 b, we have that rx, xas “ ry, ybs. This means

there exists w, z P S such that

wx “ zy, wxa “ zyb, wR1 wxL1 x and zR1 zyL1 y.

Therefore, using the fact that L1 is a right congruence, we have that xL1 wx

implies that xaL1 wxa. Consequently, aL1 xaL1 wxa. Similarly, yL1 zy implies

that ybL1 zyb. And so, bL1 ybL1 zyb “ wxb, using zy “ wx in the last equal-

ity. Therefore, we can apply Property (M6) giving us that aL1 wxa “ wxbL1 b

implies that a “ b.

Lemma 4.2.11. Let a, b P S. Then aR1 b if and only if aϕRP bϕ.

Proof. We have already proved that P is an inverse semigroup, so aϕRP bϕ if

and only if paϕqpaϕq´1 “ pbϕqpbϕq´1.
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Let xR1 xaL1 a and yR1 ybL1 b, so that aϕ “ rx, xas and bϕ “ ry, ybs. Then

paϕqpaϕq´1 “ rx, xasrxa, xs “ rx, xs, by Lemmas 4.2.9 and 4.2.7 (ii). Similarly

pbϕqpbϕq´1 “ ry, ybsryb, bs “ ry, ys.

Therefore aϕRP bϕ if and only if px, xq „ py, yq, which is true if and only if xL1 y,

using Lemma 4.2.7 (i). We then use (M5) to give us that this is equivalent to

aR1 b.

Lemma 4.2.12. Let a, b P S. Then a ďl b if and only if aϕ ďLP bϕ.

Proof. We have already proved that P is an inverse semigroup, so aϕ ďLP bϕ if

and only if aϕ “ paϕqpbϕq´1pbϕq by Lemma 2.2.6.

Let xR1 xaL1 a and yR1 ybL1 b, so that aϕ “ rx, xas and bϕ “ ry, ybs. Using

Lemma 4.2.7, we have pbϕq´1pbϕq “ ryb, ysry, ybs “ ryb, ybs “ rb, bs. Therefore

paϕqpbϕq
´1

pbϕq “ rx, xasrb, bs “ rux, vbs,

where u and v are the elements that exist by (M1) such that

uR1 vR1 vb “ uxa and L1
xa ^ L1

b “ L1
uxa.

Note that since xaL a, this means that L1
a ^ L1

b “ L1
uxa.

We use vb “ uxa to give us that paϕqpbϕq´1pbϕq “ rux, uxas. Therefore aϕ ďLP

bϕ if and only if px, xaq „ pux, uxaq, which is true exactly if there exists w, z P S

such that

wx “ zux, wxa “ zuxa, wR1 wxL1 x, zR1 zuxL1 ux. (4.34)

We know that xR1 xa, and so uxR1 uxa as R1 is a left congruence. Therefore we

can use Lemma 4.2.3 (ii) to rewrite (4.34) to the equivalent expression (4.35).

That is, aϕ ďLP bϕ if and only if there exists w, z P S such that

wx “ zux, wxa “ zuxa, wR1 wxaL1 xa, zR1 zuxaL1 uxa. (4.35)

Let aϕ ďLP bϕ, i.e. let w and z exist in S such that (4.35) is satisfied. We

see that uxaL1 zuxa “ wxaL1 xaL1 a. Therefore L1
a ^ L1

b “ L1
uxa “ L1

a. By

definition this means that a ďl b.
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On the other hand, let a ďl b. By definition L1
a ^ L1

b “ L1
a. Therefore

L1
uxa “ L1

a ^ L1
b “ L1

a “ L1
xa.

Applying Property (M1) to xa and uxa, there exists w, z P S such that

wR1 zR1 zuxa “ wxa and L1
uxa ^ L1

xa “ L1
wxa.

Using xR1 xa, we know that zuxa “ wxa implies that zux “ wx by (M4).

Using the fact that uxaL1 xa, we see that L1
wxa “ L1

uxa ^ L1
xa “ L1

xa. Therefore

uxaL1 xaL1 wxa “ zuxa. This gives us (4.35), and so aϕ ďLP bϕ.

Lemma 4.2.13. The semigroup P is a semigroup of straight left I-quotients of

Sϕ.

Proof. Let ra, bs P P . Note that a, b P S with aR1 b.

Let xR1 xaL1 a and yR1 ybL1 b, so that aϕ “ rx, xas and bϕ “ ry, ybs. By

Lemma 4.2.11, aϕRP bϕ. We have

paϕq
´1

pbϕq “ rxa, xsry, ybs “ ruxa, vybs,

where u and v are the elements that exist by (M1) such that

uR1 vR1 vy “ ux and L1
x ^ L1

y “ L1
ux.

We want to prove that paϕq´1pbϕq “ ra, bs.

We see that pa, bq „ puxa, vybq exactly if there exists w, z P S such that

wa “ zuxa, wb “ zvyb, wR1 waL1 a, zR1 zuxaL1 uxa.

Applying Property (M1) to a and uxa, we know that there exists w, z P S such

that

wR1 zR1 zuxa “ wa and L1
a ^ L1

uxa “ L1
wa.

We see that wa “ zuxa implies wb “ zuxb by (M4), and therefore, since ux “ vy

we have wb “ zvyb. We use Property (M5) to get that aR1 b implies xL1y, and

therefore L1
ux “ L1

x ^ L1
y “ L1

x. We then use the fact that L1 is a right congruence

to give us that uxL1 x implies uxaL1 xaL1 a. Therefore L1
wa “ L1

a ^ L1
uxa “ L1

a,
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and so zuxa “ waL1 aL1 uxa. This gives us ra, bs “ paϕq´1pbϕq, where aϕRP bϕ.

We have now finished the proof of Theorem 4.2.1.

4.3 The general case using a ternary relation

on inverse semigroups

This is an alternative approach that does not use partial orders on L-classes, but
instead utilises a ternary relation that implicitly uses this natural order. In some

cases it may be preferable to use this result instead of Theorem 4.2.1 because

the meet structure of the L-classes can be complicated to deal with directly. I

will use the configuration explored in this section later to characterise straight

left I-orders which intersect every R-class of their semigroups of straight left

I-quotients.

I now define the ternary relation U on an inverse semigroup Q.

Definition 4.3.1 (U relation). Let Q be an inverse semigroup. Then

pb, c, uq P UQ
ðñ u´1RQ bc´1.

Note that pb, c, uq P UQ if and only if u´1u “ bc´1cb´1 in Q.

As a motivation for introducing this relation, we will show how it can be used

to construct a similar result to Lemma 3.3.6.

Lemma 4.3.2. Let Q be an inverse semigroup and let b, c, u, v P Q such that

uRQ v. Then bc´1 “ u´1v in Q if and only if ub “ vc and pb, c, uq P UQ.

Proof. Let bc´1 “ u´1v. By Lemma 3.3.5, ub “ vc. Also

u´1u “ u´1vv´1u “ bc´1cb´1.

Therefore pb, c, uq P UQ.

Conversely, let ub “ vc and pb, c, uq P UQ. Since pb, c, uq P UQ, we know that

u´1u “ bc´1cb´1. By left multiplying by u, this gives us that u “ ubc´1cb´1.
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Therefore

ubb´1
“ ubc´1cb´1bb´1

“ ubc´1cb´1
“ u,

and so uRub by Lemma 2.2.3. This means that vRuRub “ vc, and so

v “ vcc´1 by Lemma 2.2.3. Therefore

u´1v “ u´1vcc´1
“ u´1ubc´1

“ bc´1,

where the final equality used u´1uR bc´1, since pb, c, uq P UQ.

We will now prove the relationship between U and the meet of L-classes.

Lemma 4.3.3. Let Q be an inverse semigroup. Then pb, c, uq P UQ if and only

if

LQ
b ^ LQ

c “ LQ
ub and uRQ ub.

Proof. Let pb, c, uq P UQ. Then u´1u “ bc´1cb´1. Then

pubq´1
pubq “ b´1u´1ub “ b´1bc´1cb´1b “ b´1bc´1c,

and so, LQ
b ^ LQ

c “ LQ
ub by Lemma 2.2.8.

We can left multiply u´1u “ bc´1cb´1 by u to obtain u “ ubc´1cb´1. Therefore

pubqpubq´1
“ ubb´1u´1

“ ubc´1cb´1bb´1u´1
“ ubc´1cb´1u´1

“ uu´1,

so uRQ ub as well.

Conversely, let LQ
b ^LQ

c “ LQ
ub and let uRQ ub. By Lemma 2.2.3, uRQ ub implies

that u “ ubb´1, and so u´1u “ u´1ubb´1. Using LQ
b ^ LQ

c “ LQ
ub , Lemma 2.2.8

gives us

b´1u´1ub “ b´1bc´1c ùñ bb´1u´1ubb´1
“ bb´1bc´1cb´1

ùñ u´1ubb´1
“ bc´1cb´1.

Putting these two together gives us u´1u “ bc´1cb´1. Therefore pb, c, uq P UQ.

We can say even more about the relationship between UQ and the meet structure

of LQ-classes in the case that Q is a semigroup of straight left I-quotients.
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Lemma 4.3.4. Let a, b, c, d P S and let S have a semigroup of straight left

I-quotients Q. Then LQ
a ^ LQ

b “ LQ
c if and only if there exists u P S such that

pa, b, uq P UQ and cLQ ua.

Proof. Let LQ
a ^LQ

b “ LQ
c . Then c

´1c “ a´1ab´1b by Lemma 2.2.8. Since Q is a

semigroup of straight left I-quotients, there exists u, v P S with uRQ v such that

ab´1 “ u´1v. Lemma 4.3.2 gives us that pa, b, uq P UQ and ua “ vb. Therefore

c´1c “ a´1u´1vb “ puaq
´1

puaq.

Therefore pa, b, uq P UQ and cLQ ua.

Conversely, let there exist u P S such that pa, b, uq P UQ and cLQ ua. Therefore

c´1c “ a´1u´1ua “ a´1ab´1ba´1a “ a´1ab´1b.

So by Lemma 2.2.8, LQ
a ^ LQ

b “ LQ
c .

We will use this ternary relation to write another set of equivalent necessary and

sufficient conditions for a semigroup to be a straight left I-order. We will use

Theorem 4.2.1 in the proof of this result.

Theorem 4.3.5. Let S be a semigroup and let R1 and L1 be binary relations

on S and U 1 be a ternary relation on S. Then S has a semigroup of straight

left I-quotients, Q, such that RQ X pS ˆ Sq “ R1, LQ X pS ˆ Sq “ L1, and

UQ X pS ˆ S ˆ Sq “ U 1 if and only if R1 is a left congruence, L1 is a right

congruence, and S satisfies Conditions (U1) - (U11).

(U1) For all α, β P S, there exists γ, δ P S such that γR1 δR1 δβ “ γα, and

pα, β, γq P U 1.

(U2) For all α, β P S, pβ, β, αq P U 1 if and only if αR1 αβ L1 β.

(U3) For all α, β, γ, δ P S, pα, β, γq P U 1 and pδ, ϵ, βq P U 1 implies that

pαδ, ϵ, γq P U 1.

(U4) For all α, β, γ, δ P S, pαβ, γ, δq P U 1 and αβ L1 β implies that

pβ, γ, δαq P U 1.
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(U5) For all α, β, γ, δ P S, pα, β, γq P U 1 and β L1 δ implies that pα, δ, γq P U 1.

(U6) Let α, β, γ, δ P S such that pα, β, γq P U 1. Then pα, β, δq P U 1 if and only if

γ L1 δ.

(U7) For all α, β, γ, δ P S, γα “ δβR1 δ and pα, β, γq P U 1 implies that

pβ, α, δq P U 1.

(U8) For all α, β, γ P S, pαβ, β, γq P U 1 implies that pαβ, αβ, γq P U 1.

(U9) R1 Ď R˚.

(U10) Let α, β, γ, δ P S such that γR1 γαL1α and δR1 δβ L1β. Then γ L1 δ if and

only if αR1 β.

(U11) For all α, β, γ P S, αL1 β L1 γα “ γβ implies that α “ β.

We start the proof of Theorem 4.3.5 by proving the forward implication. We

assume that S has a semigroup of straight left I-quotients, Q, and we label

RQ X pS ˆ Sq “ R1, LQ X pS ˆ Sq “ L1 and UQ X pS ˆ S ˆ Sq “ U 1. From

knowledge of Green’s relations, we know that R1 will be a left congruence on S

and L1 will be a right congruence on S. Note that Properties (M1) - (M6) from

Theorem 4.2.1 hold. We now prove that Properties (U1) - (U11) are satisfied.

(U1) Let α, β P S. Then α, β P Q and so β´1 and hence αβ´1 P Q. Since Q is a

semigroup of straight left I-quotients of S, there exists γ, δ P S such that

αβ´1 “ γ´1δ with γR1 δ. Lemma 4.3.2 then gives us that δβ “ γα and

pα, β, γq P U 1. Using Lemma 4.3.3, we see that pα, β, γq P U 1 implies that

γR1 γα.

(U2) We have that pβ, β, αq P U 1 if and only if α´1α “ ββ´1ββ´1 “ ββ´1,

which is true exactly when αR1 αβ L1 β by Lemma 3.3.3.

(U3) Let pα, β, γq P U 1 and pδ, ϵ, βq P U 1. Therefore αβ´1βα´1 “ γ´1γ and

δϵ´1ϵδ´1 “ β´1β in Q. Then

γ´1γ “ αβ´1βα´1
“ αδϵ´1ϵδ´1α´1

“ pαδqϵ´1ϵpαδq
´1.

Therefore pαδ, ϵ, γq P U 1.
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(U4) Let pαβ, γ, δq P U 1 and αβ L1 β. Therefore δ´1δ “ αβγ´1γβ´1α´1. By

Lemma 2.2.4, β L1 αβ implies that β “ α´1αβ. Therefore

pδαq
´1

pδαq “ α´1δ´1δα “ α´1αβγ´1γβ´1α´1α “ βγ´1γβ´1,

and so pβ, γ, δαq P U 1.

(U5) Let pα, β, γq P U 1 and β L1 δ. Then γ´1γ “ αβ´1βα´1 “ αδ´1δα´1, so

pα, δ, γq P U 1.

(U6) Let pα, β, γq P U 1. If pα, β, δq P U 1, then γ´1γ “ αβ´1βα´1 “ δ´1δ.

Conversely if γ L1 δ, then δ´1δ “ γ´1γ “ αβ´1βα´1, and so pα, β, δq P U 1.

(U7) Let γα “ δβR1 δ and pα, β, γq P U 1. Then

β´1δ´1δβ “ α´1γ´1γα “ α´1αβ´1βα´1α “ α´1αβ´1β.

Using δβR1 δ, we know that

δ´1δ “ ββ´1δ´1δββ´1
“ βα´1αβ´1ββ´1

“ βα´1αβ´1.

Therefore pβ, α, δq P U 1.

(U8) Let pαβ, β, γq P U 1. Therefore

γ´1γ “ αββ´1ββ´1α´1
“ αββ´1α´1αββ´1α´1.

Therefore pαβ, αβ, γq P U 1.

(U9) (M4)

(U10) (M5)

(U11) (M6)

This proves the forward implication of Theorem 4.3.5.

We will prove the converse using Theorem 4.2.1. In order to do this, we need to

find a suitable ďl and ^.
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We define ďl as a ďl b if and only if there exists u P S such that

pa, b, uq P U 1 and uaL1 a. (4.36)

We will prove that this is a preorder later. We will often use this definition in

conjunction with Property (U1).

Lemma 4.3.6. Let a ďl b. Then there exists u, v P S such that

uR1 vR1 vb “ ua, pa, b, uq P U 1 and uaL1 a.

Proof. Since a ďl b, we know that there exists x P S such that

pa, b, xq P U 1 and xaL1 a.

Applying (U1) to a and b, there exists u, v P S such that

uR1 vR1 vb “ ua and pa, b, uq P U 1.

By (U6), we have that pa, b, xq P U 1 and pa, b, uq P U 1 implies that xL1 u. Since

L1 is a right congruence, we have xaL1 ua, and therefore uaL1 a.

We now need to find a suitable ^. We will define it first and prove some basic

properties. We will prove that it is the meet of the L1-classes with respect to ďl

later.

We define ^ as L1
a ^ L1

b “ L1
c if and only if there exists u P S such that

pa, b, uq P U 1 and uaL1 c. (4.37)

The fact that this is a well-defined function on L1-classes is not obvious and will

be addressed in Lemma 4.3.9.

We will often use the definition of ^ in conjunction with (U1) as follows.

Lemma 4.3.7. Let L1
a ^ L1

b “ L1
c. Then there exists u, v P S such that

uR1 vR1 vb “ ua, pa, b, uq P U 1 and uaL1 c.
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Note that this gives an alternative stronger definition of ^.

Proof. Since L1
a ^ L1

b “ L1
c, by definition there exists x P S such that

pa, b, xq P U 1 and xaL1 c.

Applying (U1) to a and b, there exists u, v P S such that

uR1 vR1 vb “ ua and pa, b, uq P U 1.

By (U6), we have pa, b, xq P U 1 and pa, b, uq P U 1 together imply that xL1 u.

Since L1 is a right congruence, we have xaL1 ua, and therefore uaL1 c.

In order to prove that ^ is the meet of the L1-classes with respect to ďl we will

use the following lemma. We use ras to denote the „-class of a.

Lemma 4.3.8. Let „ be an equivalence relation on S and let the „-classes of

S form a semilattice under ˝. Additionally, let ď be the binary relation on S

defined by a ď b if and only if ras˝rbs “ ras. Then ď is a preorder on S with the

associated equivalence relation „. Moreover, S { „ is a meet semilattice under

the partial order associated with ď, and ˝ is the meet operation.

Proof.

ď reflexive: Since „-classes of S form a semilattice under ˝, every element is

an idempotent. Therefore, for all a P S, we have ras ˝ ras “ ras, and so a ď a.

ď transitive: Let a, b, c P S such that a ď b and b ď c. Therefore ras ˝ rbs “ ras

and rbs ˝ rcs “ rbs. Consequently

ras ˝ rcs “ pras ˝ rbsq ˝ rcs “ ras ˝ prbs ˝ rcsq “ ras ˝ rbs “ ras,

and so a ď c.

Associated equivalence relation is „: Let a, b P S such that a ď b and

b ď a. Then, using the fact that ˝ is commutative,

ras “ ras ˝ rbs “ rbs ˝ ras “ rbs,

and so a „ b. The converse is clear.
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˝ is the associated meet: Let ras ˝ rbs “ rcs. We see that

ras ˝ rcs “ ras ˝ pras ˝ rbsq “ pras ˝ rasq ˝ rbs “ ras ˝ rbs “ rcs.

Therefore c ď a. Similarly c ď b.

Now let h P S such that h ď a and h ď b. This means that rhs ˝ ras “ rhs and

rhs ˝ rbs “ rhs. Then

rhs ˝ rcs “ rhs ˝ pras ˝ rbsq “ prhs ˝ rasq ˝ rbs “ rhs ˝ rbs “ rhs.

And so h ď c. So rcs is the meet of ras and rbs with respect to ď.

S { „ is a meet semilattice: Let a, b P S. Since the „-classes of S form a

semigroup under ˝, there exists some c P S such that ras ˝ rbs “ rcs.

Our aim is to apply Lemma 4.3.8 with „ “ L1 and ˝ “ ^. It is obvious by

comparing (4.36) and (4.37) that a ďl b if and only if L1
a ^ L1

b “ L1
a . Therefore

our ď in Lemma 4.3.8 will be ďl. We now need to prove that the L1-classes of

S form a semilattice under ^.

Lemma 4.3.9. The L1-classes of S form a semilattice under ^.

Proof. Commutativity will be proved first since it will make the rest of the proof

much easier. Since we have not shown that ^ is a function yet, we can think of

this as a result on the ternary relation L1
a ^ L1

b “ L1
c.

Commutativity: Let L1
a^L1

b “ L1
c. Then by Lemma 4.3.7, there exists u, v P S

such that

uR1 vR1 vb “ ua, pa, b, uq P U 1 and uaL1 c.

By (U7), we see that pb, a, vq P U 1. Combining this with vb “ uaL1 c, this gives

us that L1
b ^ L1

a “ L1
c.

Well-definedness: Let L1
a ^ L1

b “ L1
c. Then, by Lemma 4.3.7, there exists

u, v P S such that

uR1 vR1 vb “ ua, pa, b, uq P U 1 and uaL1 c.

Firstly, let bL1 b̃. Then by (U5), we have pa, b̃, uq P U 1. As we also have uaL1 c,

it follows that L1
a ^ L1

b̃
“ L1

c.
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Secondly, let cL1 c̃. Then pa, b, uq P U 1 and uaL1 cL1 c̃, so L1
a ^ L1

b “ L1
c̃.

Lastly, let aL1 ã. Using commutativity and our previous observations on well-

definedness, we have

L1
a ^ L1

b “ L1
c ùñ L1

b ^ L1
a “ L1

c ùñ L1
b ^ L1

ã “ L1
c ùñ L1

ã ^ L1
b “ L1

c.

Associativity: Let L1
a ^ L1

b “ L1
d. Then, by Lemma 4.3.7, there exists u, v P S

such that

uR1 vR1 vb “ ua, pa, b, uq P U 1 and uaL1 d. (4.38)

Note that (U7) implies that pb, a, vq P U 1 as well.

Also let L1
b ^ L1

c “ L1
e. Then, by Lemma 4.3.7, there exists p, q P S such that

pR1 qR1 qc “ pb, pb, c, pq P U 1 and pbL1 e. (4.39)

Applying (U1) to v and p, there exists i, j P S such that

iR1 jR1 jp “ iv and pv, p, iq P U 1. (4.40)

Note that (U7) implies that pp, v, jq P U 1 as well.

We will prove that

pL1
a ^ L1

bq ^ L1
c “ L1

d ^ L1
c “ L1

jqc “ L1
iua “ L1

a ^ L1
e “ L1

a ^ pL1
b ^ L1

cq. (4.41)

We start by proving jqc “ iua. This is true, since qc “ bc from (4.39), jp “ iv

from (4.40), and vb “ ua from (4.38) together gives us jqc “ jpb “ ivb “ iua.

We now prove that L1
d ^ L1

c “ L1
jqc. We see that

pv, p, iq P U 1, pb, c, pq P U 1
pU3q
ùñ pvb, c, iq P U 1. (4.42)

Using iv “ jp from (4.40) and pb “ qc from (4.39), we see that ivb “ jpb “

jqc. In addition, we can use the fact that R1 is a left congruence to get that

qR1 qc implies that jqR1 jqc. We can then apply (U7) to ivb “ jqcR1 jq and

pvb, c, iq P U 1 from (4.42) to obtain pc, vb, jqq P U 1.

We know that vb “ uaL1 d. Therefore we can apply (U5) to pc, vb, jqq P U 1 to



CHAPTER 4. THE GENERAL CASE 72

obtain pc, d, jqq P U 1. This proves L1
c ^ L1

d “ L1
jqc.

Finally we prove L1
a ^ L1

e “ L1
iua. We have

pp, v, jq P U 1, pb, a, vq P U 1
pU3q
ùñ ppb, a, jq P U 1.

Using jp “ iv and vb “ ua, we see that jpb “ ivb “ iua. In addition, we can use

the fact that R1 is a left congruence to get that uR1 ua implies that iuR1 iua.

We can then apply (U7) to jpb “ iuaR1 iu and ppb, a, jq P U 1 from (4.3) to

obtain pa, pb, iuq P U 1.

We know that pbL1 e. Therefore we can apply (U5) to pa, pb, iuq P U 1 to obtain

pa, e, iuq P U 1. This proves L1
a ^ L1

e “ L1
iua.

Therefore (4.41) is satisfied and so ^ is associative.

Idempotent: Let L1
a ^ L1

a “ L1
c. Then there exists x P S such that

pa, a, xq P U 1 and xaL1 c.

Using (U2), we have xR1 xaL1 a. Therefore L1
a “ L1

xa “ L1
c , and so

L1
a ^ L1

a “ L1
a for all a P S.

Therefore we can apply Lemma 4.3.8 to get that ďl is a preorder on S with the

associated equivalence relation L1. Moreover, S{L1 is a meet semilattice under

the associated partial order and ^ is the meet operation. Therefore, in order to

prove that S, R1 and ďl satisfy the conditions of Theorem 4.2.1, all we need is

(M1) - (M6).

This lemma will provide a shortcut in the proof of (M2).

Lemma 4.3.10. For all a P S, there exists an x P S such that xR1 xaL1 a.

Proof. Applying Property (U1) with α “ β “ a, there exists x P S such that

pa, a, xq P U 1. By Property (U2), this is equivalent to xR1 xaL1 a.

(M1) Let α, β P S. By (U1) there exists γ, δ P S such that γR1 δR1 δβ “ γα,

and pα, β, γq P U 1. By definition, L1
α ^ L1

β “ L1
γα.

(M2) Let α, β, γ, δ P S such that L1
α ^ L1

β “ L1
γ. By Lemma 4.3.7, there exists
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u, v P S such that

uR1 vR1 vβ “ uα, pα, β, uq P U 1 and uαL1 γ. (4.43)

By Lemma 4.3.10, there exists y P S such that yR1 yδL1 δ. Therefore

pδ, δ, yq P U 1 by (U2).

Applying (U1) to α and y, there exists s, t P S such that

sR1 tR1 ty “ sα and pα, y, sq P U 1. (4.44)

Applying (U1) to s and u, there exists p, q P S such that

pR1 qR1 qu “ ps and ps, u, pq P U 1. (4.45)

We can apply (U7) to ps “ quR1 q and ps, u, pq P U 1 to get pu, s, qq P U 1.

Applying (U3) to pα, y, sq P U 1 and pδ, δ, yq P U 1 implies that

pαδ, δ, sq P U 1. (4.46)

Applying (U3) to pu, s, qq P U 1 and pαδ, δ, sq P U 1 implies that

puαδ, δ, qq P U 1. (4.47)

We then apply (U8) to puαδ, δ, qq P U 1 to give us puαδ, uαδ, qq P U 1. There-

fore, by (U2)

qR1 quαδL1 uαδ. (4.48)

Using the fact that L1 is a right congruence, uαL1 γ implies that uαδL1 γδ.

Therefore, putting this together with (4.48) and qu “ ps from (4.45), we

have

γδL1 uαδL1 quαδ “ psαδ. (4.49)

At the same time, using the fact thatR1 is a left congruence, yR1 yδ implies

that tyR1 tyδ. Since ty “ sα, this means that sαR1 sαδ. Therefore, we

can apply Property (U7) to spαδq “ psαqδR1 sα and pαδ, δ, sq P U 1 from

(4.46) to obtain pδ, αδ, sαq P U 1.

Applying (U3) to ps, u, pq P U 1 and pα, β, uq P U 1 implies that
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psα, β, pq P U 1. Since R1 is a left congruence, vR1 vβ implies that

qvR1 qvβ. Also, using ps “ qu and uα “ vβ, we have psα “ quα “ qvβ.

Therefore we can apply Property (U7) to psα “ qvβR1 qv and

psα, β, pq P U 1 to obtain pβ, sα, qvq P U 1.

We then put the results from the two previous paragraphs together to

obtain

pβ, sα, qvq P U 1, pδ, αδ, sαq P U 1
pU3q
ùñ pβδ, αδ, qvq P U 1.

We can apply (U8) to pαδ, δ, sq P U 1 from (4.46) to get pαδ, αδ, sq P U 1.

Therefore sR1 sαδL1 αδ by (U2). SinceR1 is a left congruence, this implies

that psR1 psαδ. Also, using vβ “ uα and qu “ ps, we have qvβδ “ quαδ “

psαδ. Therefore we can apply Property (U7) to qvβδ “ psαδR1 ps and

pβδ, αδ, qvq P U 1 to obtain pαδ, βδ, psq P U 1.

Therefore, we use this last relation and equation 4.49, to see that ps P S

such that pαδ, βδ, psq P U 1 and γδL1 psαδ. Therefore, by definition, we

have L1
αδ ^ L1

βδ “ L1
γδ.

(M3) Let α, β P S. Applying (U1) to αβ and β, we have that there exists

u, v P S such that uR1 vR1 vβ “ uαβ, and pαβ, β, uq P U 1. Applying

(U8), this gives us that pαβ, αβ, uq P U 1. Applying (U2), this gives us

uR1 uαβ L1 αβ. Since there exists u P S such that pαβ, β, uq P U 1 and

uαβ L1 αβ, this means that αβ ďl β.

(M4) (U9)

(M5) (U10)

(M6) (U11)

We have now shown that the relations R1 and ďl satisfy all of the conditions

of Theorem 4.2.1. Applying Theorem 4.2.1 gives us that S has a semigroup of

straight left I-quotients, Q, such thatRQXpSˆSq “ R1 and ďLQ X pSˆSq “ ďl .

Note that consequently LQ X pS ˆ Sq “ L1 as this is the equivalence relation

associated with ďl . Finally we need to check that UQ X pS ˆ S ˆ Sq “ U 1.

Lemma 4.3.11. Let b, c, u P S. Then pb, c, uq P U 1 if and only if pb, c, uq P UQ.
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Proof. Let pb, c, uq P U 1. Referring to (4.37), this means that L1
b ^ L1

c “ L1
ub by

definition. Therefore, since ďLQ X pSˆSq “ ďl , this also means that LQ
b ^LQ

c “

LQ
ub.

Applying (U1) to b and c, there exists p, q P S such that pR1 qR1 qc “ pb and

pb, c, pq P U 1. Applying (U6), we have that pb, c, uq P U 1 and pb, c, pq P U 1 implies

that uL1 p.

Since Q is an inverse semigroup with RQ X pSˆSq “ R1 and LQ X pSˆSq “ L1,

we have uLQ p and pRQ pb. Since RQ is left compatible, we can left multiply

by p´1 to get p´1pRQ p´1pb. Since uLQ p, we know that u´1u “ p´1p, and

therefore u´1uRQ u´1ub. Left multiplying by u then gives us uRQ ub.

By Lemma 4.3.3, we can put these together to get that LQ
b ^ LQ

c “ LQ
ub and

uRQ ub implies that pb, c, uq P UQ.

Conversely, let pb, c, uq P UQ. We know thatQ is an inverse semigroup. Therefore

by Lemma 4.3.3, we know that LQ
b ^ LQ

c “ LQ
ub and uRQ ub. Therefore, since

ďLQ X pS ˆ Sq “ ďl , we have L1
b ^ L1

c “ L1
ub.

Applying (U1) to b and c, there exists p, q P S such that pR1 qR1 qc “ pb and

pb, c, pq P U 1. By definition, L1
b ^L1

c “ L1
pb. Therefore L

1
ub “ L1

b ^L1
c “ L1

pb , that

is ubL1 pb.

Since Q is an inverse semigroup with RQ X pSˆSq “ R1 and LQ X pSˆSq “ L1,

we have ubLQ pb and pRQ pb. From knowledge of Green’s relations we know

that pRQ pb implies that pp´1 “ pbb´1p´1, and therefore p “ pbb´1p´1p “ pbb´1.

Similarly, uRQ ub implies that u “ ubb´1.

Since LQ is right compatible, ubLQ pb implies that u “ ubb´1 LQ pbb´1 “ p, and

therefore uL1 p. We then apply (U6) to pb, c, pq P U 1 to obtain pb, c, uq P U 1.

We have now finished the proof of Theorem 4.3.5.

4.4 Straight left I-orders in given inverse semi-

groups

One may have noticed that in both Theorem 4.2.1 and Theorem 4.3.5, most of

the properties required are true in all inverse semigroups, not just semigroups
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of straight left I-quotients. Consequently, if you are checking whether a given

subsemigroup is a straight left I-order in a particular inverse semigroup, then

this requires a much simpler result.

Corollary 4.4.1. Let S be a subsemigroup of an inverse semigroup Q. Then S

is a straight left I-order in Q if and only if for all b, c P S there exists u, v P S

such that uRQ v and bc´1 “ u´1v.

Proof. Let R1 “ RQXpSˆSq and let ďl “ ďLQ X pSˆSq. Then R1 will be a left

congruence and ďl will be a preorder, such that, denoting the associated equiv-

alence relation by L1, S{L1 is a meet semilattice under the associated partial

order. Properties (M2) - (M6) are true in all inverse semigroups, so are satis-

fied. Therefore the only property to check is the Ore condition, (M1), which

by Lemma 3.3.6 is equivalent to the condition in the result. Conversely in a

straight left I-order (M1) is always true.

We will apply Corollary 4.4.1 on the semidirect product of a semilattice and a

group.

Let Y be a semilattice and let G be a group acting by automorphisms on Y .

That is, let ¨ : GˆY Ñ Y be a group action on Y , such that for every g P G, the

action by g is an automorphism on Y . Then we say that the semidirect product

of Y and G is the semigroup made from pairs pα, gq, where α P Y and g P G,

with the multiplication

pα, gqpβ, hq “ pαpg ¨ βq, ghq.

We write this as Y ¸ G. This is an inverse semigroup with

pα, gq
´1

“ pg´1
¨ α, g´1

q

and a semilattice of idempotents isomorphic to Y . Using Lemma 2.2.1, we also

see that

pα, gqR pβ, hq if and only if α “ β

and

pα, gqL pβ, hq if and only if g´1
¨ α “ h´1

¨ β.
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Corollary 4.4.2. Let Q “ Y ¸ G, where Y is a semilattice and G is a group,

and let S be a subsemigroup of Q. Then S is a straight left I-order in Q if and

only if for all pα, gq, pβ, hq P S, there exists pγ, fq, pγ, jq P S such that fg “ jh

and γ “ pf ¨ αqpj ¨ βq.

Proof. By Corollary 4.4.1, S is a straight left I-order in Q if and only if for

all pα, gq, pβ, hq P S there exists pγ, fq, pδ, jq P S such that pγ, fqRQ pδ, jq and

pα, gqpβ, hq´1 “ pγ, fq´1pδ, jq.

Assume that S is a straight left I-order in Q, and consequently such a pγ, fq and

pδ, jq exists. Since pγ, fqRQ pδ, jq, we have that γ “ δ. We calculate

pα, gqpβ, hq
´1

“ pα, gqph´1
¨ β, h´1

q “ pαpgh´1
¨ βq, gh´1

q (4.50)

and

pγ, fq
´1

pγ, jq “ pf´1
¨ γ, f´1

qpγ, jq “ pf´1
¨ γ, f´1jq. (4.51)

Comparing the last coordinate of (4.50) and (4.51), this gives us that

gh´1 “ f´1j, which is equivalent to fg “ jh since G is a group. Comparing the

first coordinate of (4.50) and (4.51), we have f´1 ¨ γ “ αpf´1j ¨ βq. Acting on

both sides by f we find that this implies that γ “ pf ¨ αqpj ¨ βq.

Conversely, assume that for all pα, gq, pβ, hq P S, there exists pγ, fq, pγ, jq P S

such that fg “ jh and γ “ pf ¨ αqpj ¨ βq. Since G is a group, fg “ jh implies

that gh´1 “ f´1j. Acting on γ “ pf ¨ αqpj ¨ βq by f´1 we then obtain

f´1
¨ γ “ αpf´1j ¨ βq “ αpgh´1

¨ βq.

Therefore (4.50) and (4.51) are equal, and so pα, gqpβ, hq´1 “ pγ, fq´1pγ, jq with

pγ, fqRQ pγ, jq. Therefore S is a straight left I-order in Q by Corollary 4.4.1.



Chapter 5

Proving established results using

my general theorem

Some characterisations of special cases of semigroups of I-quotients already exist

in the work in [13], [12], [10] by Nassraddin Ghroda and Victoria Gould. In this

chapter, we consider two of these established results and prove them both using

the main result of the previous chapter, Theorem 4.2.1.

In Section 5.1, we reprove a characterisation of straight left I-orders in primitive

inverse semigroups.

In Section 5.2, we reprove the fact that left ample semigroups are left I-orders

in their inverse hull if and only if they have the (LC) condition. We apply

this result to Exel and Steinberg’s work on inverse hulls of 0-left cancellative

semigroups [5], which is an example of when semigroups of I-quotients are used

in the literature implicitly.

5.1 Primitive inverse semigroups of left I-

quotients

In this section we reprove Theorem 3.1 of [12] using Theorem 4.2.1. This result

provides a characterisation of left I-orders in primitive inverse semigroups. All

such left I-orders are straight.

Recall that an inverse semigroup S with zero is a primitive inverse semigroup if

78
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all its nonzero idempotents are primitive, where a nonzero idempotent e of S is

called primitive if f ď e implies that f “ 0 or e “ f .

A semigroup S with zero is categorical at 0 if for all a, b, c P S, ab ‰ 0 and bc ‰ 0

implies abc ‰ 0. We say that S is 0-cancellative if for all a, b, c P S, either one

of ab “ ac ‰ 0 or ba “ ca ‰ 0 implies that b “ c.

We will use the following facts about primitive inverse semigroups throughout

this chapter.

Lemma 5.1.1. Let Q be a primitive inverse semigroup. Then

(i) Q is categorical at 0.

(ii) If a, b P Qzt0u, then ab ‰ 0 if and only if a´1a “ bb´1.

(iii) Q is 0-cancellative.

Proof. (i) [3, Lemma 7.61]

(ii) Let a, b P Qzt0u. We have that a´1a “ bb´1 if and only if there exists an

idempotent, e, contained in La X Rb. By [20, Prop. 2.3.7], this is true if

and only if ab P Ra X Lb.

a ab

e b

Let ab P Ra X Lb. Since a is nonzero, zero cannot lie in Ra. Therefore

ab ‰ 0.

Conversely, let ab ‰ 0. Since Q is a 0-direct union of Brandt semigroups,

it follows that a and b are both nonzero elements of the same Brandt

semigroup. Using Definition 2.5.1 and Lemma 2.5.2, we see that for a, b

nonzero elements of a Brandt semigroup, ab ‰ 0 implies that ab P Ra XLb.

(iii) From (ii), we can see that ab “ ac ‰ 0 implies that a´1a “ bb´1 and

a´1a “ cc´1. Therefore b “ a´1ab “ a´1ac “ c. Dually ba “ ca ‰ 0

implies that b “ c.
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We will need the following relation.

Definition 5.1.2 (λ relation). Let S be a semigroup with 0. Then

a λ b if and only if a “ b “ 0 or Sa X Sb ‰ t0u.

In the next proposition we identify some properties of a semigroup which has

a primitive inverse semigroup of left I-quotients. Most of these properties are

from Proposition 2.4 of [12].

We make the convention that if S is a left I-order in Q, then R, L and ďL will

be relations on Q, and R˚ and λ will be relations on S.

Proposition 5.1.3. Let S be a subsemigroup of a primitive inverse semigroup

Q. If S is a left I-order in Q, then

(1) S contains the 0 element of Q;

(2) S is a straight left I-order in Q;

(3) Sa ‰ 0 for all non-zero a P S;

(4) L X pS ˆ Sq “ λ;

(5) R X pS ˆ Sq “ R˚;

(6) if a, b P S, then a ďL b if and only if a λ b or a “ 0.

Proof. Let S be a left I-order in Q.

(1) By definition, since 0 P Q, we have that there exists a, b P S such that

a´1b “ 0.

If a and b are in different Brandt semigroups, then ab “ 0 is an element of

S by closure. If a and b are both elements of the same Brandt semigroup,

B “ BpG, Iq, let a “ pi, g, jq and b “ pk, h, lq, where g, h P G and i, j, k, l P I.

Since a2 is an element of S, we have

a2 “ pi, g, jqpi, g, jq
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and so either 0 P S or i “ j. Similarly, ab and b2 are elements of S, and

so we either have 0 P S or i “ j “ k “ l. In the latter case, we can then

rewrite a and b as a “ pj, g, jq and b “ pj, h, jq and conclude

0 “ a´1b “ pj, g´1, jqpj, h, lq “ pj, g´1h, lq ‰ 0,

which gives us a contradiction. Thus 0 P S.

(2) Suppose that q P Q. If q “ 0, then q “ 0´10 and 0R 0. If q is non-zero,

then q “ a´1b, for some a, b P S. Since a´1b ‰ 0, Lemma 5.1.1 (ii) gives us

that pa´1q´1a´1 “ aa´1 “ bb´1, and so aR b.

(3) Let a “ x´1y ‰ 0 for some x, y P S, where xR y. Then xa “ y ‰ 0.

(4) If a λ b, either a “ b “ 0 and therefore aL b, or xa “ yb ‰ 0 and therefore

x´1x “ aa´1 and y´1y “ bb´1. And so a “ x´1yb and b “ y´1xa, so that

aL b.

Conversely if aL b, then either a “ b “ 0, or a ‰ 0 and a “ x´1yb for some

x´1y P Q, x, y P S, xR y. Therefore xa “ yb ‰ 0 and so a λ b.

(5) It is clear that R X pS ˆ Sq Ď R˚. To show that R˚ Ď R X pS ˆ Sq, let

aR˚ b in S. By (2), there exists y in S such that ya ‰ 0. Hence yb ‰ 0 by

Lemma 2.2 of [8]. By Lemma 5.1.1 (ii), aa´1 “ y´1y “ bb´1 and therefore

aR b in Q.

(6) The relation ďL can only occur within a single Brandt semigroup in Q. In

a Brandt semigroup, a ďL b if and only if either a “ 0 or aL b. We then use

(4) to get the result.

We now give Ghroda and Gould’s characterisation of left primitive inverse semi-

groups of left I-quotients from [12].

Theorem 5.1.4 ([12, Theorem 3.1]). A semigroup S is a left I-order in a prim-

itive inverse semigroup Q if and only if S satisfies the following conditions:

(A) S is categorical at 0;
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(B) S is 0-cancellative;

(C) λ is transitive;

(D) Sa ‰ 0 for all non-zero a P S.

The original proof was constructive in nature. However, by applying Theorem

4.2.1, our proof bypasses this construction. Note that the construction in the

original proof and the construction in the proof of Theorem 4.2.1 are identical

for primitive inverse semigroups.

We start with proving the forward direction. Suppose that Q is exists, then

S inherits Conditions (A) and (B) from Q. By Proposition 5.1.3 we have that

Conditions (C) and (D) hold.

We will prove the other direction using Theorem 4.2.1. Let R1 “ R˚, and let

a ďl b if and only if a λ b or a “ 0. Note that R1 is a left congruence, and L1,

defined as the equivalence relation associated with ďl , is equal to λ.

Lemma 5.1.5. Let S satisfy Conditions (A) - (D). Then

(i) the binary relation ďl is a right compatible preorder;

(ii) S{L1 is a meet semilattice under ďl with

L1
a ^ L1

b “

$

&

%

L1
a if a λ b,

L1
0 if a��λ b.

Proof. (i) We start by proving reflexivity. We want that for all a P S, the

relation a λ a holds. This is trivially true for a “ 0 and for a ‰ 0, we have

SaXSa “ Sa ‰ t0u by (D). So a λ a for all a P S and we have that a ďl a

as required.

We now consider transitivity. Let a ďl b and b ďl c. If a “ 0, we have that

a ďl c immediately. If a ‰ 0, then a ďl b give us that a λ b, and so b ‰ 0.

Since b is non-zero, b ďl c gives us that b λ c. Therefore using (C), a λ b λ c

implies that a λ c, and so a ďl c.

Lastly we consider right compatibility. Let a ďl b and let x P S. If ax “ 0,

we have that ax ďl bx immediately. If ax ‰ 0, then a ‰ 0 and so a ďl b
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implies that a λ b. Therefore Sa X Sb ‰ t0u, and so there exists u, v P S

such that ua “ vb ‰ 0. Since ax ‰ 0, (A) gives us that uax “ vbx ‰ 0 and

so Sax X Sbx ‰ t0u. Therefore ax λ bx, which implies ax ďl bx.

(ii) (a) Let a λ b. We see that L1
a “ L1

b, and so, by the definition of meet, we

have L1
a ^ L1

b “ L1
a.

(b) Now let a��λ b. We will prove that L1
a ^ L1

b “ L1
0. Firstly, by definition,

we have 0 ďl a, b. Secondly, if h ďl a, b and h ‰ 0, this would mean

that hλ a and hλ b. By (C), λ is transitive, and therefore a λ b, a

contradiction. Therefore h is 0, and so h ďl 0. By definition, this

mean that L1
0 is the meet of L1

a and L1
b.

We will use the following lemma repeatedly in our proof of (M1) - (M6).

Lemma 5.1.6. Let S satisfy Conditions (A) - (D). Then xa ‰ 0 implies that

xR˚ xa λ a.

Proof. Let xa ‰ 0. We start by proving xR˚ xa. If u, v P S1 such that ux “ vx,

then obviously uxa “ vxa. Conversely if uxa “ vxa ‰ 0, then ux “ vx by

0-cancellativity. On the other hand if uxa “ vxa “ 0, then by categoricity at 0,

ux “ vx “ 0.

In addition, since xa ‰ 0, we have Sxa X Sa “ Sxa ‰ t0u by (D), so that

xa λ a.

We will now prove (M1) - (M6) with R1 and ďl defined as above.

(M1) Let α, β P S. We need γ, δ P S such that γR˚δR˚δβ “ γα and

L1
α ^ L1

β “ L1
γα .

Case 1: Either α “ β “ 0 or α��λβ. In either case, we have L1
α ^ L1

β “ L1
0 .

Therefore, we can take γ “ δ “ 0.

Case 2: α, β non-zero such that αλβ. This means that L1
α “ L1

β, and so

L1
α ^ L1

β “ L1
α . We know Sα X Sβ ‰ t0u. Therefore there exists γ, δ P S

such that γα “ δβ ‰ 0. By Lemma 5.1.6, γα ‰ 0 implies that γR˚ γα λα,

and so L1
γα “ L1

α. Similarly, δβ ‰ 0 implies that δR˚ δβ.
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(M2) Let L1
α ^ L1

β “ L1
γ and let δ P S.

We need L1
αδ ^ L1

βδ “ L1
γδ . From Lemma 5.1.5 (ii), we need only consider

two cases:

Case 1: αλβ λ γ. By Lemma 5.1.5 (i), λ is a right compatible rela-

tion, and therefore αδ λ βδ λ γδ. By Lemma 5.1.5 (ii), this gives us that

L1
αδ ^ L1

βδ “ L1
γδ .

Case 2: α��λβ and γ “ 0. We want to prove that L1
αδ ^ L1

βδ “ L1
0.

If αδ��λβδ, then Lemma 5.1.5 (ii), we have L1
αδ ^ L1

βδ “ L1
0 and we are

done.

If αδ λ βδ, then, by definition, either αδ “ βδ “ 0 or Sαδ “ Sβδ ‰ t0u.

If αδ “ βδ “ 0, then L1
αδ ^ L1

βδ “ L1
0 ^ L1

0 “ L1
0.

If Sαδ “ Sβδ ‰ t0u, then there exists u, v P S such that uαδ “ vβδ ‰ 0.

By 0-cancellativity, uα “ vβ ‰ 0, and so αλβ, giving a contradiction.

Therefore, in all cases, L1
αδ ^ L1

βδ “ L1
0 “ L1

γδ .

(M3) Let α, β P S. If αβ “ 0, then by definition αβ ďl β. If αβ ‰ 0, then by

Lemma 5.1.6, we have αβ λβ, and so αβ ďl β by the definition of ďl.

(M4) R˚ Ď R˚.

(M5) Let γR˚ γα λα, δR˚ δβ λ β. We want to prove that γ λ δ if and only if

αR˚ β. Note that 0 is its own R˚-class and its own λ-class, so γ “ δ “ 0

implies that γα “ δβ “ 0 and therefore α “ β “ 0. Similarly α “ β “ 0

implies that γ “ δ “ 0. Therefore if any α, β, γ, δ, γα, δβ are zero we are

done. Now assume these are all non-zero.

Firstly, let γ λ δ. To show that αR˚ β, assume that x, y P S1 such that

xα “ yα. We want to prove that xβ “ yβ.

Case 1: x “ y “ 1. Then xβ “ β “ yβ.

Case 2: x P S and y “ 1. Then xα “ α. Since γ λ δ is non-zero, we

know that there exists u, v P S such that uγ “ vδ ‰ 0. We know that

γα is non-zero, and so we can use left multiply xα “ α by γ to obtain

γxα “ γα ‰ 0. By 0-cancellativity, this gives us that γx “ γ ‰ 0. We

then left multiply by u to obtain uγx “ uγ ‰ 0, and so vδx “ vδ ‰ 0. By
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0-cancellativity, this gives us that δx “ δ ‰ 0, and so δxβ “ δβ ‰ 0. We

then use 0-cancellativity once again to obtain xβ “ β. The case in which

y P S and x “ 1 is similar.

Case 3a: x, y P S and xα “ yα ‰ 0. By 0-cancellativity, x “ y and so

xβ “ yβ.

Case 3b: x, y P S and xα “ yα “ 0. We will prove xβ “ 0 by con-

tradiction. If xβ ‰ 0, then by Lemma 5.1.6, xβ λβ. Using the right

compatibility of λ, γ λ δ implies that γβ λ δβ, and therefore using (C),

xβ λβ λ δβ λ γβ. Since xβ ‰ 0, this means that there exists u, v P S such

that uxβ “ vγβ ‰ 0. By 0-cancellativity this gives us that ux “ vγ ‰ 0

and therefore uxα “ vγα. This gives us our contradiction, because vγ ‰ 0

and γα ‰ 0 implies that vγα ‰ 0 by (A), but since xα “ 0, we have

uxα “ 0. Therefore xβ “ 0. Similarly yβ “ 0.

We now consider the converse. Let αR˚ β. Then, since R˚ is a left

congruence γαR˚ γβ, and therefore, as γα ‰ 0, γβ ‰ 0. We then apply

Lemma 5.1.6 to get γβ λ β, which in turn means that γβ λ δβ. Since γβ ‰

0, this means that Sγβ X Sδβ ‰ t0u, and so there exists u, v P S such that

uγβ “ vδβ ‰ 0. We use (B) to give us that uγ “ vδ ‰ 0, and therefore

γ λ δ.

(M6) Let αλ γα, β λ γβ, γα “ γβ. We want α “ β.

Case 1: γα “ γβ “ 0. Since λ is transitive and t0u is a λ-class, this gives

us that α “ β “ 0.

Case 2: γα “ γβ ‰ 0. Using 0-cancellativity, we have α “ β.

Therefore, applying Theorem 4.2.1, we see that S has a semigroup of straight

left I-quotients, Q, such that RQ X pS ˆ Sq “ R1 and ďLQ X pS ˆ Sq “ ďl. We

will now prove that Q is a primitive inverse semigroup.

Let e be a non-zero idempotent of Q and let f be an idempotent of Q such that

f ď e. By Lemma 2.1.3, this means that f ďLQ e.

Since S is a straight left I-order in Q, we know that S intersects every L-class of
Q. Therefore there exists s, t P S such that sLQ f and tLQ e. Therefore s ďl t.

By the definition of ďl, this means that either s “ 0 or s λ t. If s “ 0, then

f “ 0. If s λ t, then sLQ t, and so eLQ f . Since there is a unique idempotent
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in each L-class of an inverse semigroup, this gives us e “ f . Therefore e is a

primitive idempotent.

Since every non-zero idempotent of Q is primitive, Q is a primitive inverse

semigroup.

5.2 Left ample left I-orders in their inverse

hulls

In this section, we prove Theorem 3.7 of [10] using part of Theorem 4.2.1 and

Corollary 4.4.1. This result gives a necessary and sufficient condition for a left

ample semigroup to be a left I-order in its inverse hull.

In Section 2.3, we showed that there is an embedding of a left ample semigroup

S into the symmetric inverse semigroup IS. We take the inverse hull ΣpSq of

S to be the inverse subsemigroup of IS generated by im θS, where θS is the

embedding of S into the symmetric inverse semigroup IS as defined in Section

2.3. Where convenient we identify S with its image under θS in ΣpSq. We begin

with the following useful lemma.

Lemma 5.2.1. Let S be a left ample semigroup and let a, b P S. Then ρaR ρb

in ΣpSq if and only aR˚ b in S.

Proof. Recall that aR˚ b if and only if a` “ b`. We have that ρa RΣpSq ρb if and

only if ρaρ
´1
a “ ρbρ

´1
b if and only if dom ρa “ dom ρb. This is true exactly when

Sa` “ Sb`, which is true if and only if a` “ b`.

Lemma 5.2.2. Let S be a left ample semigroup and let a, b P S. Then ρa ďL ρb

in ΣpSq if and only if Sa Ď Sb.

Proof. Suppose that a, b P S. Using Lemma 2.2.6, we know that ρa ďL ρb in

ΣpSq if and only if ρa “ ρaρ
´1
b ρb. We can rewrite this as ρa “ ρa Id imρb , which

is true if and only if im ρa Ď im ρb. This is equivalent to Sa Ď Sb.

We can therefore immediately see the meet structure of the L-classes of ΣpSq.

Corollary 5.2.3. Let S be a left ample semigroup. Then, for any a, b, c P S,

Lρa ^ Lρb “ Lρc if and only if Sa X Sb “ Sc.
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Proof. Intersection of sets is the meet of set inclusion.

Lemma 5.2.4 ([10, Lemma 2.4]). Let S be a left ample semigroup, embedded

(as a (2, 1)-algebra) in an inverse semigroup Q. If S is a left I-order in Q, then

S is straight.

Proof. Let q “ a´1b P Q where a, b P S. Then

q “ pa`aq
´1

pb`bq “ a´1a`b`b “ a´1b`a`b “ pb`aq
´1

pa`bq.

We have

a`bR˚ a`b`
“ b`a` R˚ b`a

and so a`bRQ b`a and S is straight.

We now give the characterisation of left ample semigroups which are left I-orders

in their inverse hulls from [10]. By saying that a semigroup S satisfies the (LC)

condition we mean for any a, b P S there exists c P S such that Sa X Sb “ Sc.

Theorem 5.2.5 ([10, Theorem 3.7]). Let S be a left ample semigroup. Then

SθS is a left I-order in its inverse hull if and only if S has the (LC) condition.

Proof. Let S be a left ample semigroup such that SθS is a left I-order in its

inverse hull ΣpSq. By Lemma 5.2.4, we know that SθS is straight in ΣpSq. By

Lemma 2.2.8, we know that the L-classes of ΣpSq form a meet semilattice under

ďL. Since SθS intersects every L-class of ΣpSq by Lemma 3.1.3, this means that

for any a, b P S, there exists c P S such that Lρa ^ Lρb “ Lρc Using Corollary

5.2.3, this is equivalent to Sa X Sb “ Sc. This is the (LC) condition.

Now let S be a left ample semigroup with the (LC) condition. By Corollary

4.4.1, we know that SθS is a straight left I-order in ΣpSq if for all b, c P S there

exists u, v P S such that

ρu RΣpSq ρv and ρbρ
´1
c “ ρ´1

u ρv.

By Lemma 3.3.6, this is true if and only if

ρu RΣpSq ρv RΣpSq ρvρc “ ρuρb and Lρb ^ Lρc “ Lρuρb . (5.1)
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Note that since θS is an embedding, ρvρc “ ρvc and ρuρb “ ρub.

Let b, c P S. By the (LC) condition there exists w P S such that

Sb X Sc “ Sw.

Therefore there exists x, y P S such that

xb “ yc “ w.

We take u “ xb` and v “ yc`. We see that

ub “ xb`b “ xb “ yc “ yc`c “ vc. (5.2)

Using, the fact that R˚ is a left congruence, we see that b` R˚ b implies that

ub` R˚ ub. Therefore

u “ xb`
“ xb`b`

“ ub` R˚ ub. (5.3)

Similarly

v “ vc` R˚ vc. (5.4)

Lastly, note that

Sb X Sc “ Sw “ Sxb “ Sxb`b “ Sub. (5.5)

We compare (5.2), (5.3), (5.4) and (5.4) with (5.1). Using Lemma 5.2.1 and

Lemma 5.2.3, we see that (5.1) is satisfied. Therefore, by Corollary 4.4.1, we

have that S is a left I-order in its inverse hull.

Theorem 5.2.5 gives a necessary and sufficient condition for a left ample semi-

group to be a left I-order in its inverse hull. The question of when a left ample

semigroup is a left I-order in other types of inverse semigroup remains an open

question, but we cover two additional special cases in this thesis. The first is

two-sided ample left I-orders, covered in Section 6.2, in which we consider left

I-orders that are both left ample and right ample. The second is left ample

left I-orders that intersect every R-class of their semigroup of left I-quotients,

covered in Section 7.2.
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5.2.1 Exel and Steinberg’s result on the inverse hull of

a 0-left cancellative semigroup in the context of

Ghroda and Gould’s result on left ample left I-

orders

We will now apply Theorem 5.2.5 to Exel and Steinberg’s work on inverse hulls

of 0-left cancellative semigroups [5], as an example of when semigroups of I-

quotients are used in the literature implicitly. Note that as Theorem 5.2.5 is

joint work of Ghroda and Gould, my work is not necessary in order to make this

connection.

Exel and Steinberg’s work is motivated by the study of certain C*-algebras asso-

ciated with the inverse hull of 0-left cancellative semigroups. There are various,

now standard, methods of constructing C*-algebras from inverse semigroups,

such as Exel’s tight C*-algebra [6] or Paterson’s universal C*-algebra [28]. In

[5], Exel and Steinberg consider the tight groupoid of the inverse hull of the

path semigroup of a particular kind of directed graph, and they use this as their

motivating example to study the inverse hulls of 0-left cancellative semigroups.

The path semigroup of a graph has many other useful properties, which they

use to get their strongest results; namely 0-categoricity, right reductivity and

the existence of right local units.

We will be using the dual statements of the results in [5], in order to continue

working with left I-orders instead of the corresponding work on right I-orders.

We start by defining the terms used.

Recall from Section 5.1 that a semigroup S with zero is defined to be categorical

at 0 if for all a, b, c P S, ab ‰ 0 and bc ‰ 0 implies abc ‰ 0.

A semigroup S with zero is defined to be 0-right cancellative if for all a, b, c P S,

ab “ ac ‰ 0 implies that b “ c.

A semigroup S is called left reductive if xs “ xt for all x P S implies that s “ t.

A semigroup S is said to have left local units if for every s P S, there exists an

idempotent element e P EpSq such that es “ s.

We note that if S is a 0-right cancellative semigroup with left local units, then a

non-zero element, s, of S has a unique left local unit, since if es “ s and fs “ s



CHAPTER 5. PROVING ESTABLISHED RESULTS 90

for e, f P EpSq, then es “ fs ‰ 0 and therefore e “ f .

Definition 5.2.6. If S is a 0-right cancellative semigroup with left local units,

then for s P Szt0u, we denote by s̄ the unique idempotent such that s̄s “ s.

We remind readers that S satisfies the (LC) condition if for any a, b P S there

exists c P S such that Sa X Sb “ Sc.

We consider the dual of Theorem 7.22 in [5].

Theorem 5.2.7 ([5, Theorem 7.22]). Let T be a 0-right cancellative, left re-

ductive semigroup that is categorical at zero, has left local units and satisfies the

(LC) condition. Then the non-zero elements of the inverse hull are precisely

those elements of the form ρ´1
s ρt with s̄ “ t̄.

Assuming that S embeds into its inverse hull, this describes S as a left I-order.

We want to show that this is obtainable from Ghroda and Gould’s result on left

ample left I-orders, and my re-working, Theorem 5.2.5.

Firstly, we must prove that the semigroup T described in Theorem 5.2.7 (which

from now on we shall refer to as T ) is left ample. We can do this without using

the (LC) condition.

Lemma 5.2.8. Let S be a 0-right cancellative, left reductive semigroup that is

categorical at zero and has left local units. Then S is left ample.

Proof. We will use Definition 2.3.1 to define a left ample semigroup as a semi-

group where every R˚-c1ass contains an idempotent, EpSq is semilattice, and S

satisfies the left ample condition.

Every R˚-class contains an idempotent: We need that for every s P S,

there exists s` P EpSq such that sR˚ s`. We claim that we can take

s`
“

$

&

%

s̄ if s ‰ 0,

0 if s “ 0.

Obviously 0 is an idempotent that is R˚-related to 0.

Now let s be non-zero. By definition, s̄ is an idempotent. We will prove sR˚ s̄.

Let x, y P S1 such that

xs̄ “ ys̄.
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We can right multiply s and use s̄s “ s to obtain

xs “ ys.

On the other hand, let x, y P S1 such that

xs “ ys.

Using s̄s “ s, we can rewrite this as

xs̄s “ ys̄s.

If this is non-zero, we can use 0-right cancellativity to obtain xs̄ “ ys̄. Otherwise,

we have

xs̄s “ ys̄s “ 0.

Since s is non-zero, we have s̄s “ s ‰ 0. Using categoricity at 0, we therefore

obtain

xs̄ “ 0 “ ys̄.

Therefore, for all x, y P S1, xs “ ys if and only if xs̄ “ ys̄. By definition, this

means sR˚ s̄.

Left ample condition: We need that for every a P S and e P EpSq,

paeq`a “ ae.

If ae “ 0, this is obvious. If ae ‰ 0, then paeq` “ ae. Therefore

aeae “ ae “ aee.

Since this is non-zero, we can use 0-right cancellativity to give us

aea “ ae.

EpSq is a semilattice: We will prove this in two parts. These can be found in

Proposition 3.13 and Proposition 3.15 of [5].

(i) Let s P S and e P EpSq. Then se ‰ 0 implies that se “ s.
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Proof. If se ‰ 0, then se “ see ‰ 0. We can then use 0-right cancellativity to

obtain s “ se.

(ii) Let e, f P EpSq. Then e ‰ f implies that ef “ 0.

Proof. We prove the contrapositive. Let ef ‰ 0. By (i), we have ef “ e. We

right multiply by e to obtain

efe “ e2 “ e.

Since ef is non-zero we know that e is non-zero. Therefore efe is non-zero.

Therefore fe is non-zero. By (i), this gives us that fe “ f .

Since ef “ e, we have that Se Ď Sf . Similarly, fe “ f implies that Sf Ď Se.

Together this gives us that Se “ Sf .

We will now prove that xe “ xf for all x P S.

Let x P S. Either x P Se “ Sf or x R Se “ Sf . If x P Se “ Sf , then Lemma

2.1.1 gives us xe “ x “ xf . If x R Se “ Sf , then Lemma 2.1.1 gives us xe ‰ x

and xf ‰ x. We apply (i) to obtain xe “ 0 “ xf .

Thus xe “ xf for all x P S. We apply left reductivity to obtain e “ f .

From (ii), we easily get commutativity of idempotents. Let e, f P EpSq. If

e “ f , then ef “ e2 “ fe. If e ‰ f , then ef “ 0 “ fe, by (ii).

Since we see that T is a left ample semigroup with the (LC) condition, we should

be able to apply Theorem 5.2.5 directly. However, due to the broad use of the

term ‘inverse hull’, it is perhaps prudent to check that the definition of inverse

hull of T is the same in each paper first.

Ghroda and Gould’s [10] definition of the inverse hull of a left ample semigroup

is defined in Section 2.3, but copied here for convenience. We define

ρa : Ta
`

Ñ Ta, s ÞÑ sa.

In [10], Ghroda and Gould define the inverse hull of a left ample semigroup as

the inverse subsemigroup of IT generated by Tρ, where

ρ : T Ñ IT , a ÞÑ ρa.
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Clearly ρa maps zero to zero. Since T is categorical at zero, ρa maps only zero

to zero, as we now show. Let sa` P Ta` be non-zero and suppose psa`qρa “ 0.

That is,

sa`a “ 0.

Since sa` is non-zero, a` is non-zero. By our definition of `, a is non-zero

and a`a “ āa “ a is non-zero. Since sa` is non-zero and a`a is non-zero, by

0-categoricity, sa`a is non-zero leading to a contradiction.

Since ρa maps only zero to zero, we can consider ρa as ρa : Ta
`zt0u Ñ Tazt0u,

without changing the structure of the inverse hull. Note that Ta`zt0u “ T āzt0u.

We now consider the definition of the inverse hull in [5]. As before, we use the

dual definitions. Let

Fa “ tx P T | xa ‰ 0u

and

Ea “ Tazt0u.

We define

θa : Fa Ñ Ea, s ÞÑ sa.

In [5], Exel and Steinberg define the inverse hull of a 0-right cancellative semi-

group as the inverse subsemigroup of IT generated by Tθ, where

θ : T Ñ IT , a ÞÑ θa.

We will prove that these two definitions are equal by showing that θa “ ρa for

all a P S. We start with their domains.

Lemma 5.2.9. Let T be 0-right cancellative, categorical at 0, and have left local

units. Then x P Fa if and only if x P T āzt0u.

Proof. Let x P Fa. That is let x P T such that xa ‰ 0. Therefore

xāa “ xa ‰ 0.

We use 0-right cancellativity, to obtain

xā “ x ‰ 0.
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Therefore x P T āzt0u.

Conversely, let x P T āzt0u. Therefore,

x “ sā ‰ 0,

for some s P T . Therefore

xa “ sāa

We know that sā ‰ 0 and āa “ a ‰ 0. Therefore, by 0-categoricity,

xa “ sāa ‰ 0, and so x P Fa.

Given that the domains of θa and ρa are equal and the mapping is the same,

this gives us θa “ ρa for all a P S.

We can now apply Theorem 5.2.5 to T to obtain Theorem 5.2.7. Note that the

fact that s and t can be chosen such that s̄ “ t̄ is exactly due to the fact that

left ample left I-orders are always straight (Lemma 5.2.4).



Chapter 6

Right ample straight left I-orders

In this chapter, we characterise right ample and two-sided ample left I-orders.

Note that right ample left I-orders are in no way dual to left ample left I-orders,

as the dual of left ample left I-orders is right ample right I-orders.

Section 6.1 is devoted to the proof of Theorem 6.1.3, which gives necessary and

sufficient conditions for a right ample semigroup to be a straight left I-order

embedded into its semigroup of straight left I-quotients as a (2,1)-algebra.

In Section 6.2, we use Theorem 6.1.3 to prove Corollary 6.2.1, which gives a

necessary and sufficient condition for an ample semigroup to be a left I-order

embedded into its semigroup of left I-quotients as a (2,1,1)-algebra.

6.1 Right ample straight left I-orders - the gen-

eral case

This section is dedicated to the proof of Theorem 6.1.3, which gives necessary

and sufficient conditions for a right ample semigroup to be a straight left I-order

embedded into its semigroup of straight left I-quotients as a (2,1)-algebra. We

begin with the following useful lemma, which is the dual of Lemma 2.3.3.

Lemma 6.1.1. Let S be a right ample semigroup. Then for all a, b, x P S:

(i) bb˚ “ b;

(ii) pabq˚ “ pa˚bq˚;

95
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(iii) xpbxq˚ “ b˚x; and

(iv) b˚ “ pabq˚ if and only if b “ a˚b.

In order to apply Theorem 4.2.1, we must find ďLQ and the associated meet.

Lemma 6.1.2. Let S be a right ample semigroup embedded as a unary semigroup

into an inverse semigroup Q. Then for all a, b, c, x P S,

(i) a ďLQ b if and only if a˚ “ a˚b˚ if and only if a ďL˚ b;

(ii) La ^ Lb “ Lc if and only if c˚ “ a˚b˚; and

(iii) La ^ Lb “ Lxa if and only if ab˚ “ x˚a.

Proof. Since S is embedded in Q in such a way that ˚ is preserved, we have that

for all a P S, a˚ “ a´1a.

(i) Since aLQ a˚ for all a P S, we have that a ďLQ b if and only if a˚ ďLQ b˚.

By Lemma 2.1.5, a˚ ďLQ b˚ if and only if a˚ ďL˚ b˚, which is equivalent to

a ďL˚ b, since aL˚ a˚ for all a P S. By Lemma 2.1.3, a˚ ďLQ b˚ if and only

if a˚ ď b˚, which is equivalent to a˚ “ a˚b˚, since idempotents commute

in a right ample semigroup.

(ii) Lemma 2.2.8 gives the result.

(iii) Let La ^ Lb “ Lxa . Therefore, by (ii), we have a˚b˚ “ pxaq˚. Then, using

Lemma 6.1.1 (i) and Lemma 6.1.1 (iii),

ab˚
“ aa˚b˚

“ apxaq
˚

“ x˚a.

On the other hand let ab˚ “ x˚a. Then, using Lemma 6.1.1 (ii),

pxaq
˚

“ px˚aq
˚

“ pab˚
q

˚
“ pa˚b˚

q
˚

“ a˚b˚,

and so by (ii), we have La ^ Lb “ Lxa .

We now introduce the main theorem of this section.
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Theorem 6.1.3 (Right Ample Straight Left I-Orders). Let S be a right ample

semigroup and let R1 be a binary relation on S. Then S has a semigroup of

straight left I-quotients, Q, such that S is embedded in Q as a unary semigroup

and RQ X pSˆSq “ R1 if and only if R1 is a left compatible equivalence relation

such that S satisfies Conditions (A1) - (A3).

(A1) For all α, β P S, there exists γ, δ P S such that γR1 δR1 δβ “ γα and

αβ˚ “ γ˚α.

(A2) For all α, β, γ P S, γαR1 γβ implies that γ˚αR1 γ˚β.

(A3) R1 Ď R˚.

Proof. We consider the forward implication first. Let S be a right ample straight

left I-order in Q, such that S is embedded in Q as a unary semigroup, and let

R1 “ RQ X pS ˆ Sq. We know that R1 is a left congruence and that therefore

γαR1 γβ implies that γ´1γαR1 γ´1γβ, so (A2) is satisfied. Using Theorem

4.2.1, we know that (M1) and (M4) are satisfied, which are exactly (A1) and

(A3) respectively, using Lemma 6.1.2 (iii).

We will prove the converse by proving each property in Theorem 4.2.1 with

ďl “ ďL˚ . Using the fact that aL˚ a˚ for all a P S, along with Lemma 2.1.3 and

Lemma 2.1.5, this means that a ďl b if and only if a˚b˚ “ a˚, for a, b, P S. Note

that L1 “ L˚. We already know that ďL˚ is a right compatible preorder.

By Lemma 2.2.9, we know that L˚
a˚ ^ L˚

b˚ “ L˚
a˚b˚ . Therefore, using the fact

that there is a unique idempotent in each L˚-class, we have that

L˚
a ^ L˚

b “ L˚
c if and only if c˚

“ a˚b˚.

We will now prove (M1) - (M6) with ďl “ ďL˚ in order to satisfy the conditions

of Theorem 4.2.1.

(M1) Let α, β P S. Applying Property (A1), there exists γ, δ P S such that

γR1 δR1 δβ “ γα and αβ˚ “ γ˚α. We can use Lemma 6.1.1 (ii), along

with αβ˚ “ γ˚α to obtain

pγαq
˚

“ pγ˚αq
˚

“ pαβ˚
q

˚
“ pα˚β˚

q
˚

“ α˚β˚.
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Therefore L˚
α ^ L˚

β “ L˚
γα.

(M2) Let L˚
α ^ L˚

β “ L˚
γ . Then γ˚ “ α˚β˚. Also, let δ P S. We use

Lemma 6.1.1 (iii) twice, to get

δpαδq
˚
pβδq

˚
“ α˚δpβδq

˚
“ α˚β˚δ.

Therefore, using Lemma 6.1.1 (ii),

pα˚β˚δq˚
“ pδpαδq˚

pβδq
˚
q

˚
“ pδ˚

pαδq
˚
pβδq

˚
q

˚
“ δ˚

pαδq
˚
pβδq

˚. (6.1)

Also, since αδ ďl δ which we will prove shortly in (M3), we have that

δ˚
pαδq

˚
“ pαδq

˚. (6.2)

Lastly, using Lemma 6.1.1 (ii),

pγδq
˚

“ pγ˚δq˚
“ pα˚β˚δq˚. (6.3)

Putting all this together,

pγδq
˚ p6.3q

“ pα˚β˚δq˚ p6.1q
“ δ˚

pαδq˚
pβδq

˚ p6.2q
“ pαδq

˚
pβδq

˚,

which gives us that L˚
αδ ^ L˚

βδ “ L˚
γδ .

(M3) By definition, we know that αβ ďL˚ β.

(M4) This is Property (A3).

(M5) Let γR1 γαL˚ α and let δR1 δβ L˚ β. We have that γγ˚ “ γR1 γα. There-

fore we can use Property (A2) to obtain γ˚ “ γ˚γ˚ R1 γ˚α. We also have

that γαL˚ α, and so pγαq˚ “ α˚. By Lemma 6.1.1 (iv) this is equivalent

to α “ γ˚α. Similarly δ˚ R1 δ˚β and β “ δ˚β.

Let γ L˚ δ, and so γ˚ “ δ˚. Therefore α “ γ˚αR1 γ˚ “ δ˚ R1 δ˚β “ β.

Conversely, let αR1 β. We see that γ˚ R1 γ˚α “ αR1 β “ δ˚βR1 δ˚, and

therefore using (A3), γ˚ R˚ δ˚. We know from Lemma 2.1.4, that since

EpSq is a semilattice, there can only be one idempotent in each R˚-class,

and so γ˚ “ δ˚.
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(M6) Let αL˚ β L˚ γαL˚ γβ and let γα “ γβ. We have that

α˚
“ β˚

“ pγαq
˚

“ pγβq
˚,

and so we can use Lemma 6.1.1 (iv) to give us that α “ γ˚α and β “ γ˚β.

We then use the fact that γ L˚ γ˚, to give us that γα “ γβ implies that

γ˚α “ γ˚β, and therefore α “ β.

Therefore, S with ďl “ ďL˚ satisfies the conditions of Theorem 4.2.1 and we

can apply Theorem 4.2.1 to give us that S has a semigroup of straight left

I-quotients, Q, such thatRQXpSˆSq “ R1 and ďLQ X pSˆSq “ ďL˚ . Therefore

LQ X pS ˆ Sq “ L˚.

Let a, b P S. We have that a˚ “ b˚ if and only if aL˚ b, which we see is true

exactly when a´1a “ b´1b in Q. Therefore ˚ is preserved. That is, S is embedded

in Q as a (2,1)-algebra.

6.2 Two-sided ample left I-orders

Now we consider the two-sided ample case, where S is both right ample and left

ample. If S is embedded in Q such that ` and ˚ are preserved, then by Lemma

2.3.4 and its dual, we have that RQ X pS ˆ Sq “ R˚ and LQ X pS ˆ Sq “ L˚.

That is, aRQ b if and only if a` “ b` and aLQ b if and only if a˚ “ b˚, for

a, b P S.

Corollary 6.2.1 (Two-sided ample left I-orders). Let S be a two-sided ample

semigroup. Then S has a semigroup of left I-quotients such that ` and ˚ are

preserved if and only if for all b, c P S, there exists u, v P S such that

ub “ vc, u`
“ v`

“ pvcq`, bc˚
“ u˚b. (‹)

Note that in this case we get, perhaps, the best possible result, in that the Ore

condition is sufficient to give us our result.

Proof. We first consider the forward implication. Let S be a two-sided ample

semigroup with a semigroup of left I-quotients, Q, such that ` and ˚ are pre-

served. We know that aRQ b if and only if a` “ b` and aLQ b if and only
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if a˚ “ b˚. By Lemma 5.2.4, we know that S is straight in Q. Therefore, by

Theorem 6.1.3, Property (A1) is satisfied. Therefore (‹) is satisfied.

For the backward implication, we aim to apply Theorem 6.1.3 with R1 “ R˚.

That is, aR1 b if and only if a` “ b`. Note that this is a left congruence. We

now prove Properties (A1) - (A3).

(A1) Satisfied by (‹).

(A2) Let xaR˚ xb. This means

pxaq
`

“ pxbq`.

We apply Lemma 2.3.3 (ii) to get

pxa`
q

`
“ pxb`

q
`.

Right multiplying this by x gives us

pxa`
q

`x “ pxb`
q

`x.

We then apply the left ample property to give us

xa`
“ xb`.

By the definition of L˚, we know that xL˚ x˚. Therefore, the above equa-

tion implies that

x˚a`
“ x˚b`.

Therefore, applying ` to both sides, we have

px˚a`
q

`
“ px˚b`

q
`.

Then, Lemma 2.3.3 (ii) gives us

px˚aq
`

“ px˚bq`,

and so x˚aR˚ x˚b.

(A3) R1 “ R˚.
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Therefore, Theorem 6.1.3 gives us that S has a straight left I-order, Q, such that
˚ is preserved and RQ X pS ˆ Sq “ R˚. Therefore, by Lemma 2.3.4, ` is also

preserved.



Chapter 7

Straight left I-orders that

intersect every R-class

In this chapter, we characterise straight left I-orders, S, with semigroups of

straight left I-quotients, Q, such that S intersects every R-class of Q.

We know that every straight left I-order, S, intersects every L-class of any

semigroup of straight left I-quotients, Q. By insisting that S also intersects every

R-class of Q, we are asking that S and Q have an even stronger relationship.

This can lead to new results. We have already witnessed some examples of this

in the preceding chapter, as a right ample straight left I-order, S, embedded as

a unary in its semigroup of straight left I-quotients, Q, intersects every R-class

of Q.

Section 7.1 is devoted to the proof of Theorem 7.1.3, which gives necessary and

sufficient conditions for a semigroup, S, to have a semigroup of straight left

I-quotients, Q, such that S intersects every R-class of Q.

In Section 7.2, we use Theorem 7.1.3 to prove Proposition 7.2.1, which gives

necessary and sufficient conditions for a left ample semigroup, S, to have a

semigroup of left I-quotients, Q, such that S intersects every R-class of Q.

In Section 7.3, we use Theorem 7.1.3 to prove Proposition 7.3.1, which states

that if a semigroup S is both a straight left I-order and a straight right I-order,

then its semigroups of I-quotients are isomorphic if and only if their R and L
relations restricted to S are equal.

102
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7.1 Straight left I-orders that intersect every

R-class - the general case

This section is dedicated to the proof of Theorem 7.1.3, which gives necessary

and sufficient conditions for a semigroup, S, to have a semigroups of straight left

I-quotients, Q, such that S intersects every R-class of Q. We will start with an

important property of straight left I-orders that intersect every R-class of their

semigroups of straight left I-quotients.

Lemma 7.1.1. Let S have a semigroup of straight left I-quotients, Q. Then S

intersects every R-class of Q if and only if for all x P S, there exists a P S such

that xRQ xaLQ a.

Proof. Let S be a subsemigroup of an inverse semigroup Q such that S intersects

every R-class of Q. Let x P S. Since Q is an inverse semigroup, we have that

x´1 P Q. Since S intersects every R-class of Q, there exists an a P S such that

aRQ x´1. By Lemma 3.3.3, we have xRQ xaLQ a.

Now let S have a semigroup of straight left I-quotients, Q, such that for all

x P S, there exists a P S such that xRQ xaLQ a. Let q P Q. Since Q is a

semigroup of straight left I-quotients, there exists x, y P S such that q “ x´1y,

with xRQ y. We have that

qq´1
“ x´1yy´1x “ x´1x.

By our assumption, for every x P S, there exists a P S such that xRQ xaLQ a.

By Lemma 3.3.3, this means that aRQ x´1. Therefore, there exists an a P S

such that aRQ x´1RQ q. Therefore, S intersects every R-class of Q.

We will be using Theorem 4.3.5 in this section, so we need to understand the U
relation from Section 4.3 in this context. Note that although we will be using the

U relation as a tool in the proof of Theorem 7.1.3, it will not appear explicitly

in the statement of Theorem 7.1.3. We remind the reader that U is a ternary

relation on an inverse semigroup, Q, which can be defined as

pb, c, uq P UQ if and only if u´1u “ bc´1cb´1.
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Given that S is a subsemigroup of inverse semigroup, Q, with S intersecting

every RQ-class, we can give UQ restricted to S in terms of RQ and LQ.

Lemma 7.1.2. Let S be a subsemigroup of inverse semigroup, Q, such that S

intersects every R-class of Q and let b, c, u P S. Then pb, c, uq P UQ if and only

if there exists m P S such that

cRQ cmLQm and uRQ ubmLQ bm.

In this case we will say that m witnesses pb, c, uq P UQ.

Proof. Let pb, c, uq P UQ. Since c P S, we have c´1 P Q. Therefore, using the

fact that S intersects every R-class of Q, we know that there exists an m P S

such that mRQ c´1, so that mm´1 “ c´1c. By Lemma 3.3.3, this gives us that

cRQ cmLQm. By applying pb, c, uq P UQ, we get

u´1u “ bc´1cb´1
“ bmm´1b´1

“ pbmqpbmq
´1.

Therefore bmRQ u´1, and we can apply Lemma 3.3.3 again, to obtain

uRQ ubmLQ bm.

Conversely let

cRQ cmLQm and uRQ ubmLQ bm.

We apply Lemma 3.3.3 to both expressions to obtain mRQ c´1 and bmRQ u´1.

Therefore

u´1u “ pbmqpbmq
´1

“ bmm´1b´1
“ bc´1cb´1,

and so pb, c, uq P UQ.

We now introduce the main theorem of this chapter.

Theorem 7.1.3 (Straight Left I-Orders that Intersect every R-class). Let S be

a semigroup and let R1 and L1 be binary relations on S. Then S is a straight left

I-order in an inverse semigroup Q with RQXpSˆSq “ R1 and LQXpSˆSq “ L1

such that S intersects every RQ-class if and only if R1 is a left congruence, L1

is a right congruence, and S satisfies the Conditions (R1) - (R6).
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(R1) For all α, β P S, there exists γ, δ,m P S such that

γR1 δR1 δβ “ γα, βR1 βmL1 m and γR1 γαmL1 αm.

(R2) For all α P S, there exists γ P S such that γR1 γαL1 α.

(R3)(r) For all α, β, γ P S, αR1 αβγ implies that αR1 αβ.

(R3)(l) For all α, β, γ P S, αβγ L1 γ implies that βγ L1 γ.

(R4) R1 Ď R˚

(R5) Let α, β, γ, δ P S such that γR1 γαL1α and δR1 δβ L1β. Then γ L1 δ if and

only if αR1 β.

(R6) For all α, β, γ P S, αL1 β L1 γα “ γβ implies that α “ β.

Proof. We begin with the forward direction. Let S be a straight left I-order in an

inverse semigroup Q that intersects every RQ-class and let R1 “ RQ X pS ˆ Sq

and L1 “ LQ X pS ˆ Sq. Obviously R1 is a left congruence and L1 is a right

congruence. Now we prove (R1) - (R6). Note that, by Theorem 4.3.5, we know

that Properties (U1) - (U11) are satisfied with U 1 “ UQ X pS ˆ S ˆ Sq.

(R1) Using Lemma 7.1.2, this is (U1).

(R2) Applying (U1) to α twice, there exists γ P S such that pα, α, γq P U 1. By

(U2), this means that γR1 γαL1 α.

(R3)(r) By definition of ďRQ , we know that

αβγ ďRQ αβ ďRQ α.

Since RQ is the equivalence relation associated with ďRQ , we can use the

anti-symmetric property of ďR on R-classes to give us that αRQ αβγ

implies that αRQ αβ.

(R3)(l) Dual of (R3)(r)

(R4) (U9)

(R5) (U10)
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(R6) (U11)

We now consider the converse. Let S be a semigroup and let R1 be a left con-

gruence on S and L1 be a right congruence on S such that S satisfies Conditions

(R1) - (R6). Note the special application of (R5), in which γ “ δ or α “ β,

which will be used.

We define U 1 to be the ternary relation on S given by pb, c, uq P U 1 if and only if

there exists m P S such that

cR1 cmL1 m and uR1 ubmL1 bm.

Our aim is to apply Theorem 4.3.5. The following lemma will give us some

useful shortcuts for this proof.

Lemma 7.1.4. Let S be a semigroup with a left congruence R1, and a right

congruence L1, such that S satisfies (R1) - (R6). Then, for all a, b, x, y P S,

(i) xR1 xaL1 a and aR1 b implies that xR1 xbL1 b;

(ii) xR1 xaL1 a and xL1 y implies that yR1 yaL1 a;

(iii) aR1 b and xaL1 ya implies that xbL1 yb.

Proof. (i) Let a, b, x, y P S such that xR1 xaL1 a and aR1 b. Using the fact

that R1 is a left congruence, we know that aR1 b implies that xaR1 xb.

Therefore xR1 xaR1 xb.

By (R2), there exists y P S such that yR1 ybL1 b. By (R5), we know that

aR1 b implies that xL1 y. Using the fact that L1 is a right congruence, we

know that xL1 y implies that xbL1 yb. Therefore xbL1 ybL1 b.

Putting these two together, we have xR1 xbL1 b.

(ii) Let a, x, y P S such that xR1 xaL1 a and xL1 y. Using the fact that L1 is

a right congruence, we know that xL1 y implies that xaL1 ya. Therefore

yaL1 xaL1 a.

Implicitly, by Property (R1) with β “ y, there exists b P S such that

yR1 ybL1 b. By (R5), we know that xL1 y implies that aR1 b. Using the
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fact that R1 is a left congruence, we know that aR1 b implies that yaR1 yb.

Therefore yR1 ybR1 ya.

Putting these two together, we have yR1 yaL1 a.

(iii) Let a, b, x, y P S such that aR1 b and xaL1 ya. Applying (R1) to xa and

ya, there exists w, z,m P S such that

wR1zR1zya “ wxa, yaR1 yamL1 m and wR1 wxamL1 xam.

Using yaL1 xa, (ii) gives us that xaR1 xamL1 m. We then use xaR1 xam

and (i) to obtain

wR1 wxaL1 xa. (7.1)

We can then use the fact that yaL1 xaL1 wxa “ zyaR1 z, to get

zR1 zyaL1 ya. (7.2)

SinceR1 is a left congruence, aR1 b implies that both xaR1 xb and yaR1 yb.

We can therefore apply (i) to both (7.1) and (7.2) to get

wR1 wxbL1 xb and zR1 zybL1 yb.

Using aR1 b, Property (R4) gives us that zya “ wxa implies that zyb “

wxb. Therefore xbL1 wxb “ zybL1 yb.

We now have the tools to prove (U1) - (U11) with with R1 “ R1, L1 “ L1 and

U 1 “ U 1.

(U1) True by (R1) and the definition of U 1.

(U2) Let pβ, β, αq P U 1. Therefore, by definition, there exists m P S such that

βR1 βmL1 m and αR1 αβmL1 βm.

By Lemma 7.1.4 (i), we can use the fact that βR1 βm to give us that

αR1 αβ L1 β.
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On the other hand, let αR1 αβ L1 β. Implicitly, by (R1), there existsm P S

such that βR1 βmL1 m. By Lemma 7.1.4 (i), we can use the fact that

βR1 βm to give us that αR1 αβmL1 βm. Thereforem witnesses pβ, β, αq P

U 1.

(U3) Let pα, β, γq P U 1 and pδ, ϵ, βq P U 1. Then there exists m,n P S such that

βR1 βmL1 m and γR1 γαmL1 αm

and

ϵR1 ϵnL1 n and βR1 βδnL1 δn.

Using (R5), we know that β L1 β implies thatmR1 δn. Therefore, using the

fact that R1 is a left congruence, αmR1 αδn. We can then apply Lemma

7.1.4 (i) to γR1 γαmL1 αm to obtain γR1 γαδnL1 αδn. Therefore, since

ϵR1 ϵnL1 n and γR1 γαδnL1 αδn, we see that n witnesses pαδ, ϵ, γq P U 1.

(U4) Let pαβ, γ, δq P U 1 and αβ L1 β. Therefore there exists an m P S such that

γR1 γmL1 m and δR1 δαβmL1 αβm.

Using the fact that L1 is a right congruence, αβ L1 β implies that

αβmL1 βm. We apply (R3)(r) to δR1 δαβm to obtain δαR1 δαβm.

Putting these two facts together, we have

γR1 γmL1 m and δαR1 δαβmL1 βm.

Therefore m witnesses pβ, γ, δαq P U 1.

(U5) Let pα, β, γq P U 1 and β L1 δ. Then there exists m P S such that

βR1 βmL1 m and γR1 γαmL1 αm.

We apply Lemma 7.1.4 (ii) to βR1 βmL1 m to obtain δR1 δmL1 m. There-

fore m witnesses pα, δ, γq P U 1.

(U6) Let pα, β, γq P U 1. Then there exists m,n P S such that

βR1 βmL1 m and γR1 γαmL1 αm.
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Firstly, let pα, β, δq P U 1. Then there exists n P S such that

βR1 βnL1 n and δR1 δαnL1 αn.

We apply (R5) to give us that β L1 β implies that mR1 n. Therefore, using

the fact that R1 is a left congruence, we have αmR1 αn. We then apply

(R5) again to obtain γ L1 δ.

Conversely, suppose that γ L1 δ. Applying Lemma 7.1.4 (ii) to

γR1 γαmL1 αm, we know that γ L1 δ implies that δR1 δαmL1 αm.

Therefore m witnesses pα, β, δq P U 1.

(U7) Let γα “ δβR1 δ and let pα, β, γq P U 1. Then there exists m P S such that

βR1 βmL1 m and γR1 γαmL1 αm.

Applying (R1) to β and α, we know that there exists p, q, n P S such that

pR1 qR1 qα “ pβ, αR1 αnL1 n and pR1 pβnL1 βn.

Since R1 is a left congruence, αR1 αn implies that γαR1 γαn. Therefore,

using γα “ δβ and δβR1 δ, we have that δR1 δβR1 δβn. Applying (R1)

to q and γ, we know that there exists i, j, x P S such that

iR1 jR1 jγ “ iq, γR1 γxL1 x and iR1 iqxL1 qx.

Comparing this with γR1 γαmL1 αm, we obtain xR1 αm by (R5). There-

fore, we have qxR1 qαm by left compatibility. This means we can apply

Lemma 7.1.4 (i) to iR1 iqxL1 qx to obtain iR1 iqαmL1 qαm.

Since qα “ pβ, this means that ipβmL1 pβm. Using βR1 βm, we can

apply Lemma 7.1.4 (iii) to give us ipβ L1 pβ. Therefore

jδβ “ jγα “ iqα “ ipβ L1 pβ.

Using the fact that L1 is a right congruence, this means that we can right

multiply by n to obtain

jδβnL1 pβnL1 βn.
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Therefore by (R3)(l), δβnL1 βn. This mean that there exists n P S such

that

αR1 αnL1 n and δR1 δβnL1 βn.

Therefore pβ, α, δq P U 1.

(U8) Let pαβ, β, γq P U 1. Then there exists m P S such that

βR1 βmL1 m and γR1 γαβmL1 αβm.

Using the fact that R1 is a left congruence, βR1 βm implies that

αβR1 αβm. Therefore by Lemma 7.1.4 (i), we have that

γR1 γαβ L1 αβ.

From our proof of (U2), we have already proved that this implies that

pαβ, αβ, γq P U 1.

(U9) (R4)

(U10) (R5)

(U11) (R6)

We can therefore apply Theorem 4.3.5 to give us that S has a semigroup of

straight left I-quotients, Q, such that RQ X pS ˆ Sq “ R1, LQ X pS ˆ Sq “ L1,

and UQ X pS ˆ S ˆ Sq “ U 1.

Implicitly, by (R1), we can see that for all c P S, there exists an m P S such that

cRQ cmLQm. Therefore, by Lemma 7.1.1, we know that S intersects every

R-class of Q.

7.2 Left ample straight left I-orders that inter-

sect every R-class

Up until this point we have only been able to tell whether a left ample semigorup

is a left I-order in its inverse hull. We will now provide a new result on left ample
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left I-orders in the case that they intersect every R-class of their semigroup of

left I-quotients.

Proposition 7.2.1. Let S be a left ample semigroup and let L1 be a binary

relation on S. Then S is embedded as a unary semigroup in a semigroup of left

I-quotients, Q, such that S intersects every R-class of Q with L1 “ LQ XpSˆSq

if and only if L1 is a right congruence such that S satisfies (L1) - (L4).

(L1) For all α, β P S, there exists γ, δ,m P S such that

γ`
“ δ`

“ pδβq
`, δβ “ γα, β L1 m` and γ L1

pαmq
`.

(L2) For all α, γ, δ P S, γαL1 δα implies that γα` L1 δα`.

(L3) L1 Ď L˚.

(L4) For all α, β, γ P S, αL1 β L1 γα “ γβ implies that α “ β.

We start the proof with this useful lemma.

Lemma 7.2.2. Let S be a left ample semigroup with a right congruence, L1,

such that (L2) and (L3) are satisfied. Then xL1 a` if and only if xR˚ xaL1 a.

Proof. Let xL1 a`. Since L1 is a right congruence, we can right multiply this by

a to obtain

xaL1 a`a “ a.

Similarly, we can right multiply by a` to obtain

xa` L1 a`.

Therefore

xL1 a` L1 xa`
“ pxaq

`x,

using Lemma 2.3.3 (iii) in the last step. Using Lemma 2.3.3 (i), this means that

x`xL1 pxaq`x. We can then apply (L2) to this to obtain

x` L1
pxaq

`x`.
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Using (L3), this means that x` L˚ pxaq`x`. There is only one idempotent in

each L˚-class of a left ample semigroup, so x` “ pxaq`x`. We right multiply

by x and apply Lemma 2.3.3 (iii), to obtain

x “ pxaq
`x “ xa`.

Therefore x` “ pxaq`, by Lemma 2.3.3 (iv).

Conversely, suppose that xR˚ xaL1 a. This means that x` “ pxaq`, and

therefore x “ xa` by Lemma 2.3.3 (iv). We also have xaL1 a “ a`a, using

Lemma 2.3.3 (i). We then apply (L2) to give us that xa` L1 a`a` “ a`.

Therefore

x “ xa` L1 a`.

We start the proof of Proposition 7.2.1 with the forward direction. Let S be

a left ample semigroup embedded as a unary semigroup in a semigroup of left

I-quotients, Q, such that S intersects every R-class of Q. By Lemma 5.2.4, we

know that Q is a semigroup of straight left I-quotients. Therefore Properties

(R1) - (R6) are satisfied with R1 “ RQ X pS ˆ Sq and L1 “ LQ X pS ˆ Sq.

Since S is embedded as a unary semigroup in Q, this means that aR1 b if and

only if aR˚ b, which is equivalent to a` “ b`. We will now prove Properties

(L1) - (L4).

(L1) Using Lemma 7.2.2, this is Property (R1).

(L2) Let α, γ, δ P S such that γαL1 δα, and so γαLQ δα. Using the fact that

LQ is a right congruence, this implies that γαα´1 LQ δαα´1. Since S is

embedded as a unary semigroup in Q, we know that αα´1 “ α` P S.

Therefore γα` L1 δα`.

(L3) Since L1 “ LQXpSˆSq andQ is an oversemigroup of S, then, by definition,

αL1 β implies that αL˚ β.

(L4) (R6)

We now prove the backwards direction of Proposition 7.2.1. Let S be a left
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ample semigroup with right congruence, L1, such that (L1) - (L4) are satisfied.

We take R1 to be R˚, i.e. aR1 b if and only if a` “ b`.

We aim to apply Theorem 7.1.3. By definition L1 is a right congruence. Since

R1 “ R˚, we know that R1 is a left congruence. We must prove Properties

(R1) - (R6). We can prove each of these directly, except for (R3)(l) which is a

little harder. We therefore leave (R3)(l) to the end in order to use the other

properties in the proof.

(R1) Using Lemma 7.2.2, this is (L1).

(R2) Let α P S. By Lemma 7.2.2, we need an γ P S such that γ L1 α`. We can

simply take γ “ α`.

(R3)(r) Let α, β, γ P S such that α` “ pαβγq`. Using Lemma 2.3.3 (v) gives us

both that pαβq`pαβγq` “ pαβγq` and that pαβq`α` “ pαβq`. Then,

using α` “ pαβγq` twice, we have

α`
“ pαβγq

`
“ pαβq

`
pαβγq

`
“ pαβq

`α`
“ pαβq

`,

and so αR1 αβ.

(R4) R1 “ R˚.

(R5) Let α, β, γ, δ P S such that γR1 γαL1α and δR1 δβ L1β. By Lemma 7.2.2,

this means that γ L1α` and δL1 β`.

If γ L1 δ, then α` L1 β`. Since L1 Ď L˚, this implies that α` L˚ β`. Since

there is a unique idempotent in each L˚-class of a left ample semigroup,

this gives us α` “ β`.

Conversely, if α` “ β`, then

γ L1 α`
“ β` L1 δ.

(R6) (L4)

Property (R3)(l) is a little harder and we will use the next lemma to help us.

Lemma 7.2.3. Let S be a left ample semigroup with a right congruence, L1,

such that (L1) - (L4) are satisfied. Then:
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(i) for all a, b, x P S, xR˚ xaL1 a and aR˚ b implies that xR˚ xbL1 b;

(ii) for all c, n, p, q, v P S, pL1 c`, qL1 n` and vpcL1 qc implies that

vpnL1 pn.

Proof.

(i) Let a, b, x P S such that xR˚ xaL1 a and aR˚ b. By Lemma 7.2.2,

xR˚ xaL1 a implies that xL1 a`. Since we know that a` “ b`, this means

that xL1 b`. We then apply Lemma 7.2.2 again to get the required result.

(ii) Let c, n, p, q, v P S such that pL1 c`, qL1 n` and vpcL1 qc. Using the fact

that L1 is a right congruence, pL1 c` implies that pn` L1 c`n` Similarly,

qL1 n` implies that qc` L1 n`c`. Putting these together gives us

qc` L1 n`c`
“ c`n` L1 pn`. (7.3)

Applying Lemma 7.2.2 to pL1 c` gives us pR˚ pc, i.e. p` “ ppcq`. There-

fore p “ pc` by Lemma 2.3.3 (iv).

We use (L2) to give us that vpcL1 qc implies that vpc` L1 qc`. Using (7.3)

along with p “ pc`, we see that

vp “ vpc` L1 qc` L1 pn`.

We can then use the fact that L1 is a right congruence and right multiply

by n to obtain vpnL1 pn.

We now prove Property (R3)(l).

(R3)(l) Let αβγ L1 γ. By (R2), there exists an x P S such that

xR1 xαβγ L1 αβγ.

Note that by (R3)(r), we know that xαβR1 xαβγ. Therefore, using

αβγ L1 γ, we have

xαβR1 xαβγ L1 γ. (7.4)
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We apply (R1) to β and xαβ to get that there exists u, v,m P S such that

uR1 vR1 vxαβ “ uβ, xαβR1 xαβmL1 m and uR1 uβmL1 βm. (7.5)

Using (R5), comparing xαβR1 xαβmL1 m to (7.4), we see that mR1 γ.

Using the fact that R1 is a left congruence, this implies that βmR1 βγ.

Therefore, by Lemma 7.2.3 (i), uR1 uβmL1 βm implies that

uL1 uβγ L1 βγ. (7.6)

Implicitly, by Property (L1), we know there exists n such that β L1 n`. By

Lemma 7.2.2, we know that this means that

βR1 βnL1 n.

We aim to prove that

vR1 vxαβnL1 xαβn. (‹)

We can prove the R1 relation of p‹q quite simply. Since R1 is a left congru-

ence, we know that vxαβR1 vxαβn. Since we already know that vR1 vxαβ

from (7.5), this gives us vR1 vxαβn.

In order to obtain the L1 relation of (‹), we start by applying Lemma 7.2.2

to (7.4) to obtain xαβ L1 γ`. Using vxαβ “ uβ from (7.5) along with

uβγ L1 βγ from (7.6), we have

vxαβγ “ uβγ L1 βγ.

We also note that β L1 n`. We can therefore apply Lemma 7.2.3 (ii) with

c “ γ, n “ n, p “ xαβ, q “ β and v “ v to obtain vxαβnL1 xαβn.

Therefore (‹) is satisfied.

Using the fact that R1 is a left congruence, βR1 βn implies that

xαβR1 xαβn. Therefore we can apply Lemma 7.2.3 (i) to (‹) to obtain

vR1 vxαβ L1 xαβ.

Using the fact that L1 is a right congruence, vxαβ L1 xαβ implies that
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vxαβγ L1 xαβγ. Therefore, using Equations (7.6), (7.5) and (7.4), we have

βγ L1 uβγ “ vxαβγ L1 xαβγ L1 γ.

We have now proven that S with relations L1 and R1 satisfies the conditions

of Theorem 7.1.3. Applying Theorem 7.1.3 we have that S is a straight left

I-order in inverse semigroup Q such that S intersects every RQ-class with

RQ X pS ˆ Sq “ R1. Since RQ X pS ˆ Sq “ R˚, Lemma 2.3.4 gives us that S is

embedded in Q as a unary semigroup.

7.3 Straight left I-orders which are also straight

right I-orders

We are now very familiar with straight left I-orders. A semigroup, S, is a straight

left I-order if there exists an inverse semigroup, Q, such that every element of

Q can be written as a´1b, where a, b P S and a and b are R-related in Q.

There is a dual concept of a straight right I-order. We say that a semigroup, S,

is a straight right I-order if there exists an inverse semigroup, P , such that every

element of P can be written as dc´1, where c, d P S and c and d are L-related
in P . For every result we have on left I-orders, there is a dual result on right

I-orders.

This section proves that when a semigroup is both a straight left I-order and a

straight right I-order, then its respective semigroups of straight I-quotients are

in fact the same inverse semigroup if their R and L relations are equal.

By saying that two semigroups Q and P are isomorphic with respect to a shared

subsemigroup S, we mean that there exists an isomorphism from Q to P , which

is the identity map on S.

Proposition 7.3.1. Let a semigroup S have a semigroup of straight left

I-quotients Q and a semigroup of straight right I-quotients P . Then Q – P

with respect to S if and only if RP X pS ˆ Sq “ RQ X pS ˆ Sq and

LP X pS ˆ Sq “ LQ X pS ˆ Sq.

Proof. The forward implication is obvious. If Q and P are isomorphic with
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respect to S, then their Green’s relations restricted to S will be equal.

We now consider the backwards direction. We define

R1
“ RP

X S ˆ S “ RQ
X S ˆ S

and

L1
“ LP

X S ˆ S “ LQ
X S ˆ S.

For a P S, we use a´1 to denote the inverse of a in P , and a: to denote the

inverse of a in Q. By saying that an element dc´1 of P is in standard form, we

mean that c, d P S such that cL1 d. By saying that an element a:b of Q is in

standard form, we mean that a, b P S such that aR1 b.

By the dual of Lemma 3.1.3, we know that S intersects every R-class of P . Let

x P S. Since x´1 P P , we know that there exists an a P S such that aRP x´1

in P . By Lemma 3.3.3, this implies that xR1 xaL1 a. Since R1 and L1 are

also both restrictions of relations on Q, this means that for all x P S, there

exists a P S such that xRQ xaLQ a. Therefore S intersects every R-class of

Q by Lemma 7.1.1. We can therefore apply Theorem 7.1.3 to give us that S

satisfies Properties (R1) - (R6). Dually, S also intersects every L-class of P , and
therefore we can apply the dual of Theorem 7.1.3 to give us that S satisfies the

duals of Properties (R1) - (R6), which we label (R1)1 - (R6)1.

We want to construct an isomorphism from P to Q. Let dc´1 be an element

of P in standard form. Applying (R1) to d and c, we have that there exists

a, b,m P S such that

aR1 bR1 bc “ ad, cR1 cmL1 m, and aR1 admL1 dm.

We apply Lemma 7.1.4 (ii) to dL1 c and cR1 cmL1 m to obtain dR1 dmL1 m.

We can then apply Lemma 7.1.4 (i) to dmR1 d and aR1 admL1 dm to obtain

aR1 adL1 d.

To summarise, we know that for all d, c P S such that dL1 c, there exists a, b P S

such that aR1 b, ad “ bc and aR1 adL1 d.

We will define θ : P Ñ Q. Let dc´1 be an element of P in standard form. We

define θ as

pdc´1
qθ “ a:b,
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where

aR1 b, ad “ bc and aR1 adL1 d. (7.7)

Note such an a and b exists in S by above. Also, since aR1 b, a:b is an element

of Q in standard form. We will now prove that θ is an isomorphism.

θ is well-defined:

Let dc´1 be an element of Q in standard form, and let

pdc´1
qθ “ a:b and pdc´1

qθ “ p:q.

By definition, this means that

aR1 b, ad “ bc and aR1 adL1 d, (7.8)

and that

pR1 q, pd “ qc and pR1 pdL1 d. (7.9)

We want that a:b “ p:q in Q. By Lemma 3.3.4, this is true if and only if there

exists x, y P S such that

xa “ yp, xb “ yq, xR1 xaL1 a, and yR1 ypL1 p. (7.10)

Applying (R1) to a and p, we have that there exists x, y,m P S such that

xR1 yR1 yp “ xa, pR1 pmL1 m and xR1 xamL1 am. (7.11)

Using property (R5), we can compare pR1 pmL1 m from (7.11) to pR1 pdL1 d

from (7.9), to obtain mR1 d. Using the fact that R1 is a left congruence, we

have that mR1 d implies that amR1 adR1 a, using (7.8) in the last relation. We

can then apply Lemma 7.1.4 (i) to amR1 a and xR1 xamL1 am from (7.11), to

obtain xR1 xaL1 a.

We can apply (R5) to aR1 adL1 d from (7.8) and pR1 pdL1 d from (7.9) to obtain

aL1 p. We use this, along with xR1 y and xa “ yp from (7.11), to see that

xR1 xaL1 a implies that yR1 ypL1 p.

Lastly, since xa “ yp, we can right multiply by d, to get xad “ ypd. Using

ad “ bc and pd “ qc, this gives us xbc “ yqc. We then right multiply in Q by
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c:, to obtain

xbcc:
“ yqcc:. (7.12)

From (7.8), we have that bR1 aR1 ad “ bc. Therefore, by Lemma 2.2.3, we have

that b “ bcc:. Similarly, (7.9) implies that qR1 qc. Therefore, by Lemma 2.2.3,

we have that q “ qcc:. We apply these two facts to (7.12) to obtain that xb “ yq

in both Q and S.

Therefore, we see that (7.10) is satisfied and therefore θ is well-defined.

θ is a homomorphism:

Let dc´1 and kj´1 be elements of P in standard form, and let

pdc´1
qθ “ a:b and pkj´1

qθ “ h:i.

By definition, this means that

aR1 b, ad “ bc and aR1 adL1 d. (7.13)

and that

hR1 i, hk “ ij and hR1 hkL1 k. (7.14)

We want to prove that

ppdc´1
qpkj´1

qqθ “ pdc´1
qθpkj´1

qθ “ pa:bqph:iq. (7.15)

Applying (R1) to b and h, we have that there exists x, y,m P S such that

xR1 yR1 yh “ xb, hR1 hmL1 m and xR1 xbmL1 bm. (7.16)

Using Property (R5), we can compare hR1 hkL1 k from (7.14) and hR1 hmL1 m

from (7.16), to obtain mR1 k. Using the fact that R1 is a left congruence, mR1 k

implies that bmR1 bk. Applying Lemma 7.1.4 (i) to bmR1 bk and xR1 xbmL1 bm

from (7.16), we obtain

xR1 xbkL1 bk. (7.17)

Considering (7.16), we see that pb, h, xq P UQ by Lemma 7.1.2. Since we also

have xR1 y and xb “ yp, we can apply Lemma 4.3.2 to obtain bh: “ x:y in Q.
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Therefore, in Q,

pa:bqph:iq “ a:
pbh:

qi “ a:
px:yqi “ pxaq

:
pyiq. (7.18)

Note that since R1 is left compatible, aR1 b implies that xaR1 xb and hR1 i

implies that yhR1 yi. Therefore, using the fact that xb “ yh from (7.16), we

have

xaR1 xb “ yhR1 yi. (7.19)

And so, pxaq:pyiq is an element of Q in standard form.

By applying the dual of (R1) to c and k, we know that there exists v, u, n P S

such that

vL1 uL1 ku “ cv, nR1 ncL1 c and nkR1 nkuL1 u. (7.20)

Using bR1 a, ad “ bc, and cL1 d, aR1 adL1 d implies that bR1 bcL1 c. Therefore,

by (R5), bL1 n. Since L1 is a right congruence, bL1 n implies that btL1 nt. We

can then apply Lemma 7.1.4 (ii) to ntR1 ntuL1 u from (7.20) to obtain

bkR1 bkuL1 u. (7.21)

Considering (7.20), we see that pc, k, vq is in the dual of UP by the dual of Lemma

7.1.2. Since we also have uL1 v and ku “ cv, we can apply the dual of Lemma

4.3.2 to obtain c´1k “ vu´1 in P . Therefore, in P ,

pdc´1
qpkj´1

q “ dpc´1kqj´1
“ dpvu´1

qj´1
“ pdvqpjuq

´1. (7.22)

Using the fact that L1 is right compatible, we see that dL1 c implies that dvL1 cv

and kL1 j implies that kuL1 ju. Therefore, using cv “ ku from (7.20), we have

dvL1 cv “ kuL1 ju. (7.23)

Therefore pdvqpjuq´1 is an element of P in standard form.

Consulting (7.18) and (7.22), we see that (7.15) is satisfied if and only if

`

pdvqpjuq
´1

˘

θ “ pxaq
:
pyiq.
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By definition, this is true if and only if

xaR1 yi, xadv “ yiju and xaR1 xadvL1 dv. (‹)

We already know that xaR1 yi from (7.19).

Using ad “ bc from (7.13), xb “ yh from (7.16), cv “ ku from (7.20), and

hk “ ij from (7.14), we see that

xadv “ xbcv “ yhku “ yiju.

Using bkL1 xbk from (7.17), we can apply Lemma 7.1.4 (ii) to bkR1 bkuL1 u from

(7.21) to get

xbkR1 xbkuL1 u.

Using xb “ yh from (7.16) and hk “ ij from (7.14), we have xbk “ yhk “ yij

Therefore, we can rewrite the above equation as

yijR1 yijuL1 u. (7.24)

From (R3)(l), we know that yijuL1 u implies that juL1 u Using the fact that

R1 is a left congruence, iR1 ij from (7.14) implies that yiR1 yij. Therefore, we

can use the relations in (7.24) to obtain

yiR1 yijuL1 ju.

Sinc xaR1 yi from (7.19), dvL1 ju from (7.23), and xadv “ yiju, the above

equation implies that

xaR1 xadvL1 dv.

Altogether, this gives us (‹). Therefore (7.15) is satisfied and θ is a homomor-

phism.

θ preserves elements of S:

Let s P S. We can write s as an element of P in standard form as psaqa´1,

where a P S such that sR1 saL1 a. We know that such an a exists by the dual

of Lemma 4.2.3 (i).

Similarly, we can write s as an element of Q in standard form as x:pxsq, where
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x P S such that xR1 xsL1 s. We know that such an x exists by Lemma 4.2.3 (i).

In order to prove that θ preserves elements of S, we need that

ppsaqa´1
qθ “ pxq

:
pxsq,

which is true if and only if

xR1 xs, xsa “ xsa and xR1 xsaL1 sa. (7.25)

We already know that xR1 xs and that xsa “ xsa. Finally, since sR1 sa, we can

apply Lemma 7.1.4 (i) to xR1 xsL1 s to get xR1 xsaL1 sa. We have therefore

satisfied (7.25), and so θ preserves elements of S.

θ´1 is a well-defined homomorphism:

We define θ´1 : Q Ñ P from elements of Q in standard form to elements of P

in standard form. Let a:b be an element of Q in standard form. Then we define

pa:bq θ´1 “ dc´1, where

dL1 c, ad “ bc and aR1 adL1 d.

It is obvious that θ´1 is the inverse of θ.

By the exact dual of everything we have done so far, we know that d and c exist

and that θ´1 is a well-defined homomorphism.

Therefore θ is surjective and onto, and therefore an isomorphism.



Chapter 8

Left I-orders with totally

ordered idempotents

In this chapter, we consider semigroups of left I-quotients, Q, with totally ordered

idempotents, that is, for every e, f P EpQq, either e ď f or f ď e, using the

natural ordering of idempotents. In this case, we say that EpQq forms a chain.

In Section 8.1, we consider the most general case of semigroups of left I-quotients

with totally ordered idempotents. We prove Theorem 8.1.3, which gives neces-

sary and sufficient conditions for a semigroup S to be a left I-order in an inverse

semigroup with totally ordered idempotents.

In Section 8.2, we investigate left I-orders in inverse ω-semigroups. We find

necessary and sufficient conditions for a semigroup to be a left I-order in an

inverse ω-semigroup, along with the three special cases of inverse ω-semigroups:

no kernel, simple and proper kernel.

8.1 Left I-orders in inverse semigroups having

totally ordered idempotents - the general

case

The aim of this section is to find necessary and sufficient conditions for a semi-

group S to be a left I-order in an inverse semigroup with totally ordered idem-

123
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potents.

Lemma 8.1.1. Let Q be an inverse semigroup with totally ordered idempotents.

Then ďL and ďR are both total preorders.

Proof. Let x, y P Q. We know that x´1xLQ x and y´1yLQ y. Since x´1x and

y´1y are idempotents andQ has totally ordered idempotents, either x´1x ď y´1y

or y´1y ď x´1x. Without loss of generality, let x´1x ď y´1y. By Lemma 2.1.3,

this implies that x´1x ďLQ y´1y. Therefore

xLQ x´1x ďLQ y´1yLQ y,

and so x ďLQ y.

The fact that ďR is a total preorder can be proved dually.

Lemma 8.1.2. Let S be a left I-order in Q with totally ordered idempotents.

Then S is straight in Q.

Proof. By Lemma 3.1.3, S is straight in Q if and only if S intersects every L-
class of Q. Let q P Q. Our aim is to prove that q is L-related to some element

of S. Define e “ q´1q P EpQq. We know that qLQ e. Since S is a left I-order

in Q, we have that e “ x´1y, where x, y P S. By Lemma 8.1.1, ďR is a total

order, so either x ďR y or y ďR x.

If x ďR y, then by Lemma 2.2.5, we have that yy´1x “ x. Using the fact that

e is an idempotent, e´1 “ e, so we have

e “ ee´1
“ x´1yy´1x “ x´1x.

Therefore eLQ x P S.

If y ďR x, then by Lemma 2.2.5, we have that xx´1y “ y. Therefore

e “ e´1e “ y´1xx´1y “ y´1y.

Therefore eLQ y P S.

In either case, S X Lq “ S X Le ‰ H, and therefore S is straight in Q.
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We now introduce the main theorem of this section. We denote the equivalence

relation associated with ďl by L1.

Theorem 8.1.3. Let S be a semigroup and let R1 and ďl be binary relations

on S. Then S is a left I-order in an inverse semigroup with totally ordered

idempotents, Q, such that RQ X pS ˆ Sq “ R1 and ďLQ X pS ˆ Sq “ ďl if and

only if R1 is a left compatible equivalence relation, ďl is a right compatible total

preorder, and S satisfies Conditions (T1) - (T5).

(T1) For all α, β P S such that α ďl β, there exists γ, δ P S such that

γR1δR1δβ “ γα and γαL1 α.

(T2) For all α, β P S, αβ ďl β.

(T3) R1 Ď R˚.

(T4) Let α, β, γ, δ P S such that γR1 γαL1 α and δR1 δβ L1 β. Then γ L1 δ if

and only if αR1 β.

(T5) For all α, β, γ P S, αL1 β L1 γα “ γβ implies that α “ β.

Proof. We start the proof of Theorem 8.1.3 by proving the forward implication.

We assume that S has a semigroup of left I-quotients, Q, with totally ordered

idempotents, and we label RQ X pS ˆ Sq “ R1 and ďLQ X pS ˆ Sq “ ďl . From

knowledge of Green’s relations we know that R1 is a left congruence and ďl is

a right compatible preorder. From Lemma 8.1.1, we know that ďl is a total

preorder.

By Lemma 8.1.2, we know that S is straight in Q. Therefore, by Theorem 4.2.1,

we know that Properties (M1) - (M6) hold.

We now prove that Properties (T1) - (T5) are satisfied.

(T1) Let α, β P S such that α ďl β. Since (M1) is satisfied, there exists γ, δ P S

such that

γR1δR1δβ “ γα and L1
α ^ L1

β “ L1
γα.
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Since α ďl β, we have that

L1
γα “ L1

α ^ L1
β “ L1

α,

and so γαL1 α.

(T2) (M3)

(T3) (M4)

(T4) (M5)

(T5) (M6)

This proves the forward implication of Theorem 8.1.3.

We now consider the converse. Let S be a semigroup, R1 be a left compatible

equivalence relation on S, and ďl be a right compatible total preorder on S, such

that S satisfies Conditions (T1) - (T5). We will prove that S is a left I-order,

by showing that the relations R1 and ďl satisfy the conditions of Theorem 4.2.1.

Firstly, since ďl is a total preorder, we have that for all a, b P S either a ďl b or

b ďl a. This implies that either L1
a ^ L1

b “ L1
a or L1

a ^ L1
b “ L1

b, respectively.

Therefore the L1-classes of S form a meet semilattice under the associated partial

order.

Note that since L1 is the equivalence relation associated with ďl, the right com-

patibility of ďl implies that L1 is right compatible. We now need to prove

Properties (M1) - (M6).

(M1) Let α, β P S. Since ďl is a total preorder, either α ďl β or β ďl α.

If α ďl β, then, by (T1), there exists γ, δ P S such that

γR1δR1δβ “ γα and γαL1 α.

Since α ďl β, we have L1
α ^ L1

β “ L1
α “ L1

γα, proving (M1).

If β ďl α, then, by (T1), there exists δ, γ P S such that

δR1γR1γα “ δβ and δβ L1 β.

Since β ďl α, we have L1
α ^ L1

β “ L1
β “ L1

δβ “ L1
γα, again proving (M1).
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(M2) Let L1
α ^ L1

β “ L1
γ. Since ďl is a total preorder, either α ďl β or β ďl α.

Without loss of generality, let α ďl β. Therefore,

L1
γ “ L1

α ^ L1
β “ L1

α,

and so γ L1 α. Since L1 is a right congruence, this implies that γδL1 αδ.

Since ďl is right compatible, α ďl β implies that αδ ďl βδ, and therefore

L1
αδ ^ L1

βδ “ L1
αδ “ L1

γδ.

(M3) (T2)

(M4) (T3)

(M5) (T4)

(M6) (T5)

Therefore, we can apply Theorem 4.2.1 to obtain that S has a semigroup of

straight left I-quotients, Q, such thatRQXpSˆSq “ R1 and ďLQ X pSˆSq “ ďl.

We now prove that Q has totally ordered idempotents. Let e, f P EpSq. Since S

is straight in Q, then, by Lemma 3.1.3, we know that S intersects every L-class
of Q. Therefore there exists s, t P S such that eLQ s and f LQ t. Since ďl is a

total preorder on S, either s ďl t or t ďl s. Without loss of generality, let s ďl t.

Using the fact that ďLQ X pS ˆ Sq “ ďl, this gives us that

eLQ s ďLQ tLQ f,

and so e ďLQ f . By Lemma 2.1.3, this means that e ď f . Therefore the

idempotents of Q are totally ordered.

8.2 Inverse ω-semigroups of left I-quotients

In this section, we consider inverse ω-semigroups of left I-quotients. Inverse ω-

semigroups are inverse semigroups whose idempotents form an inverse ω-chain.

Since an inverse ω-chain is a type of chain, the idempotents in an inverse ω-

semigroup are totally ordered.
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Ghroda [11] gives necessary and sufficient conditions for a semigroup to have a

bisimple inverse ω-semigroup of left I-quotients, extending the result of Gould’s

[15] categorisation of bisimple inverse ω-semigroups of left Fountain-Gould quo-

tients.

In this section, we investigate left I-orders in general inverse ω-semigroups. In-

verse ω-semigroups fall into one of three different types, depending on whether

they have a kernel, and if they have a kernel on whether their kernel is proper.

In Subsection 8.2.1 we give necessary and sufficient conditions for a semigroup to

be a left I-order in an inverse ω-semigroup with no kernel. Inverse ω-semigroups

with no kernel are a type of Clifford semigroup, so we can easily characterise

left I-orders in inverse ω-semigroups with no kernel using Corollary 3.2.12.

In Subsection 8.2.2, we consider left I-orders in general inverse ω-semigroups

using Munn’s [24] structure theorem. We prove Theorem 8.2.12, which gives

necessary and sufficient conditions for a semigroup to be a left I-order in a

general inverse ω-semigroup. We then do the same for three special cases:

inverse ω-semigroups with kernel, simple inverse ω-semigroups, and inverse

ω-semigroups with proper kernel.

Definition 8.2.1. An inverse ω-semigroup, Q, is an inverse semigroup whose

idempotents form an inverse ω-chain; that is,

EpQq “ tei | i P N0
u with e0 ą e1 ą e2 ą . . . .

This is a special case of the previous chapter, since the idempotents are totally

ordered. Therefore, if S is a left I-order in an inverse ω-semigroup, Q, then S is

straight in Q, by Lemma 8.1.2.

Munn [24] provides a structure result for inverse ω-semigroups.

Proposition 8.2.2 ([24]). If Q is an inverse ω-semigroup then it is one of the

following types:

(1) Q is an inverse ω-chain of groups (if Q has no kernel),

(2) Q is a Bruck-Reilly semigroup over a finite chain of groups (if Q is simple),

(3) Q is an ideal extension of a semigroup of Type (2) by a finite chain of

groups (if Q has a proper kernel).
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We consider inverse ω-semigroups of left I-quotients of Type (1) in Subsection

8.2.1. We consider inverse ω-semigroups of left I-quotients of all types in Sub-

section 8.2.2.

8.2.1 Inverse ω-semigroups of left I-quotients with no

kernel

In this subsection, we characterise inverse ω-semigroups of left I-quotients of

Type (1) from Proposition 8.2.2.

Figure 8.1: An ω-chain of groups

G0

G1

G2

Corollary 8.2.3. A semigroup S is a left I-order in an inverse ω-semigroup with

no kernel if and only if S is an inverse ω-chain of right reversible, cancellative

semigroups.

Proof. Let S be a left I-order in an inverse ω-semigroup with no kernel, Q. By

Proposition 8.2.2, Q is an inverse ω-chain Y of groups Gα, α P Y . By Corollary

3.2.12, S is an inverse ω-chain Y of right reversible, cancellative semigroups Sα,

α P Y .

Conversely, let S be an inverse ω-chain Y of right reversible, cancellative semi-

groups, Sα, α P Y . By Corollary 3.2.12, S is a left I-order inQ, an inverse ω-chain

Y of groups Gα, α P Y . By Proposition 8.2.2, Q is an inverse ω-semigroup with

no kernel.
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8.2.2 Inverse ω-semigroups of left I-quotients - the gen-

eral case

In this subsection, we characterise inverse ω-semigroups of left I-quotients. We

start by giving two structure theorems for inverse ω-semigroups with kernel.

Theorem 8.2.4 ([24, Theorem 4.11]). A semigroup K is a simple inverse

ω-semigroup if and only if K – BRpT, θq for a finite chain of groups, T .

Moreover, if T is a chain of d groups, then the number of D-classes of K is d.

Theorem 8.2.5 ([24, Theorem 2.7]). Let K be a simple inverse ω-semigroup

with group of units G0 and let C be a finite chain of groups disjoint from the

non-unit elements of K, with group of units, G0.

Let Q “ C Y K, extending the multiplication of C and K as follows. Let c P C

and x P K. Then

(i) cx “ pc10qx,

(ii) xc “ xp10cq,

where 10 is the identity of G0.

Then Q is an inverse ω-semigroup with kernel. Conversely, if Q is an inverse

ω-semigroup with kernel, then Q is isomorphic to a semigroup constructed as

above.

Note that by Theorem 8.2.4, if C is a group, then G0 Ď K and Q is simple.

This is a very complicated structure, so we devise convenient notation to refer

to a semigroup of this type.

The semigroup ωpC, T, θq.

Let T be a finite chain of d groups. We label the groups that comprise T as

F0, F1, . . . , Fd´1, with F0 the largest and Fd´1 the smallest. Therefore T “
d´1
Ť

α“0

Fα

with associative multiplication satisfying FαFβ Ď Fmaxtα, βu.

Let θ be an endomorphism on T such that Tθ Ď F0. Let K “ BRpT, θq be

the Bruck-Reilly semigroup over T with respect to θ. We remind readers from
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Section 2.6 that this describes K as the semigroup K “ BRpT, θq “ N0 ˆT ˆN0

with multiplication

pm, a, nqpp, b, qq “

$

’

’

’

&

’

’

’

%

pm ´ n ` p, paθp´nqb, qq if n ă p,

pm, ab, qq if n “ p,

pm, apbθn´pq, q ´ p ` nq if n ą p.

Note that units in K have the form p0, h0, 0q, where h0 P F0.

Figure 8.2: A visual representation of ωpC, T, θq with k “ 0

p0, h0, 0q

p0, hd´1, 0q

p0, h0, 1q

p0, hd´1, 1q

p1, h0, 1q

p1, hd´1, 1q

p1, h0, 0q

p1, hd´1, 0q

Let C be a finite chain of k ` 1 groups. We label the groups that comprise

C as G´k, G´k`1, . . . , G´1, G0, with G´k the largest and G0 the smallest. We

require that G0 is the group of units of K, i.e. G0 “ t p0, h0, 0q |h0 P F0 u. Note

that G0 – F0. Therefore C “
0

Ť

i“´k

Gi with associative multiplication satisfying

GiGj Ď Gmaxti,ju.
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Figure 8.3: A visual representation of ωpC, T, θq with k ‰ 0

G´1

G´2

G´k

p0, h0, 0q

p0, hd´1, 0q

p0, h0, 1q

p0, hd´1, 1q

p1, h0, 1q

p1, hd´1, 1q

p1, h0, 0q

p1, hd´1, 0q
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Then ωpC, T, θq is then the union, C YK extending the multiplication of C and

K as follows:

(i) gix “ pgi10qx,

(ii) xgi “ xp10giq,

where gi P Gi, x P K and 10 is the identity of G0.

By Theorem 8.2.5, a semigroup is an inverse ω-semigroup with kernel if and only

if it is isomorphic to ωpC, T, θq for some appropriate C, T, θ.

By Theorem 8.2.4, if k “ 0, then ωpC, T, θq is simple.

We give some properties of ωpC, T, θq in the following two lemmas. These are

proved easily by referring to Lemma 2.2.1 and Lemma 2.2.6. For brevity, we

label elements of Fα with the appropriate Greek letter subscript and elements

of Gi with the appropriate Latin letter subscript.

Lemma 8.2.6. Let Q “ ωpC, T, θq. Then

(1) for all gi P Gi and gj P Gj, gi RQ gj if and only if i “ j;

(2) for all gi P Gi and pm,hα, nq P K, gi RQ pm,hα, nq if and only if i “ 0,

m “ 0, n “ 0 and α “ 0;

(3) for all pm,hα, nq, pp, hβ, qq P K, pm,hα, nqRQ pp, hβ, qq if and only if

m “ p and α “ β.

Lemma 8.2.7. Let Q “ ωpC, T, θq. Then

(1) for all x P K and c P C, x ďLQ c;

(2) for all gi P Gi and gj P Gj, gi ďLQ gj if and only if i ě j;

(3) for all pm,hα, nq, pp, hβ, qq P K, pm,hα, nq ďLQ pp, hβ, qq if and only if

either n ą q or both n “ q and α ě β.

Lemmas 8.2.6 and 8.2.7 are stated as they are for convenience, but their duals

also hold.

Recall the bicyclic monoid, B, from Section 2.6. We introduce a generalisation

of this semigroup.
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Definition 8.2.8. We define the semigroup Bd. Let d be any positive integer.

Then Bd is defined by

Bd “ tpm,nq P B : m “ n pmod dqu,

where B is the bicyclic monoid.

We introduce a homomorphism from simple inverse ω-semigroups to Bd. This

homomorphism is mentioned in [24], but we will show that the semigroup oper-

ation is preserved here for completeness.

Lemma 8.2.9. If Q is a simple inverse ω-semigroup, then there exists a homo-

morphism ϕ from Q to Bd for some d.

Proof. By Theorem 8.2.4, we know that Q “ BRpT, θq. In order to use the

notation we have introduced, we will consider Q as ωpG0, T, θq, where G0 is the

group of units of K. We will label an element of Fα with a subscript α for clarity.

For example, gα is an element of Fα.

We define ϕ : Q Ñ Bd as

pm, gα, nqϕ “ pmd ` α, nd ` αq.

We need to prove that this is a homomorphism. Let pm, gα, nq, pp, hβ, qq P Q.

Our aim is to prove that

ppm, gα, nqpp, hβ, qqqϕ “ pm, gα, nqϕpp, hβ, qqϕ. (‹)

There are three cases: either n “ p, n ą p or n ă p.

Case 1: Let n “ p. Then, by multiplying in the bicyclic monoid,

pm, gα, nqϕpp, hβ, qqϕ “ pmd ` α, nd ` αqppd ` β, qd ` βq

“ pmd ` maxtα, βu, qd ` maxtα, βuq,

since n “ p implies that maxtnd ` α, pd ` βu “ nd ` maxtα, βu. On the other

hand, we have

ppm, gα, nqpp, hβ, qqqϕ “ pm, gαhβ, qqϕ.
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We know that gαhβ P Fmaxtα,βu. Therefore

pm, gαhβ, qqϕ “ pmd ` maxtα, βu, qd ` maxtα, βuq .

This gives us (‹).

Case 2: Let n ą p. Then

pm, gα, nqϕpp, hβ, qqϕ “ pmd ` α, nd ` αqppd ` β, qd ` βq

“ pmd ` α, pq ´ p ` nqd ` αq,

since n ą p implies that nd ` α ą pd ` β. On the other hand, we have

ppm, gα, nqpp, hβ, qqqϕ “ pm, gαphβθ
n´p

q, q ´ p ` nqϕ.

Since Tθ Ď F0, we know that gαphβθ
n´pq P Fmaxtα,0u “ Fα. Therefore

pm, gαphβθ
n´p

q, q ´ p ` nqϕ “ pmd ` α, pq ´ p ` nqd ` αq,

giving us (‹).

Case 3: Let p ą n. This is dual to Case 2.

We can conclude from Lemma 8.2.9 that H is a congruence on simple inverse

ω-semigroups, and the H-trivial semigroups of the form ωpG0, T, θq, where T

has length d, are isomorphic to Bd.

We will now do a same thing for all inverse ω-semigroups with kernel. We will

see that H is a congruence in this more general case, and that the H-trivial

semigroups of the form ωpC, T, θq, where C has length k ` 1 and T has length

d, will be isomorphic to Ak,d, which we define in the following definition.

Definition 8.2.10. We define the semigroup A k,d for d a positive integer and

k a non-negative integer.

If k “ 0, we define A k,d “ Bd. If k is positive, we adjoin k new elements to Bd

to obtain A k,d “ Bd Y tpj, jq | ´ k ď j ď ´1u.

We then define the multiplication over all elements as

pa, bqpc, dq “ pa ´ b ` maxtb, cu, d ´ c ` maxtb, cuq.
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This is consistent with the multiplication of Bd. In this way, we can consider

both Bd and A k,d to be subsemigroups of ZˆZ under the above multiplication.

Note that for pa, bq P Bd and j ď 0,

pa, bqpj, jq “ pj, jqpa, bq “ pa, bq.

Lemma 8.2.11. If Q is an inverse ω-semigroup with kernel, then there exists a

homomorphism ϕ from Q to A k,d for some positive integer d and non-negative

integer k.

Proof. By Theorem 8.2.5, we know that Q “ ωpC, T, θq, where T “
d´1
Ť

α“0

Fα is a

chain of d semigroups and C “
0

Ť

i“´k

Gi is a chain of k ` 1 semigroups.

We define ϕ : Q Ñ A k,d. Since Q “ K Y C, we can define ϕ piecewise.

Let pm,hα, nq P K. Then

pm,hα, nqϕ “ pmd ` α, nd ` αq.

Let gi P Gi with ´l ď i ď 0. Then

giϕ “ pi, iq.

We must check that the image of elements of G0 are well-defined, since these

elements are in the intersection of C and K. Thinking of elements of G0 as

elements of C, ϕ maps them to p0, 0q by the above definition. Thinking of

elements of G0 as elements of K, they have the form p0, h0, 0q, for some h0 P F0,

and so ϕ maps them to p0d` 0, 0d` 0q “ p0, 0q. This gives us well-definedness.

From the proof of Lemma 8.2.9, we know that ϕ restricted to K is a homomor-

phism.

We prove that ϕ restricted to C is a homomorphism. Let gi P Gi and gj P Gj

and let t “ maxti, ju. Then

pgiϕqpgjϕq “ pi, iqpj, jq “ pt, tq,
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We know that gigj P Gt by the definition of C. Therefore

pgigjqϕ “ pt, tq.

Finally, let gi P Gi and pm, gα, nq P K. Then

giϕ pm, gα, nqϕ “ pi, iqpmd ` α, nd ` αq “ pmd ` α, nd ` αq.

On the other hand,

gipm, gα, nq “ pgi10qpm, gα, nq.

We know that gi10 P G0 and therefore gi10 “ p0, h0, 0q for some h0 P F0. There-

fore

gipm, gα, nq “ p0, h0, 0qpm, gα, nq “ pm, ph0θ
m

qgα, nq .

Since h0θ
m P F0 (whether or not m “ 0), we have ph0θ

mqgα P Fα. Therefore

pgipm, gα, nqqϕ “ pm, ph0θ
m

qgα, nqϕ “ pmd ` α, nd ` αq.

The proof that ppm, gα, nqgiqϕ “ pm, gα, nqϕgiϕ is dual.

We introduce the main theorem of this subsection.

Theorem 8.2.12. A semigroup S is a left I-order in an inverse ω-semigroup if

and only if S satisfies the following conditions.

(A) There is a homomorphism φ : S Ñ A k,d for some k ě 0, d ě 1, such that,

defining sφ “ prpsq, lpsqq, the image lpSq is infinitely large.

(B) For x, y, a P S,

(i) lpxq, lpyq ě rpaq and xa “ ya implies x “ y,

(ii) rpxq, rpyq ě lpaq and ax “ ay implies x “ y.

(C) For any b, c P S with lpbq ě lpcq, there exists u, v P S such that

ub “ vc, rpuq “ rpvq and lpuq “ rpbq.

Proof. We start with the forward implication. Let S be a left I-order in an

inverse ω-semigroup, Q. Either Q has a kernel or Q has no kernel. We will deal

with these two cases separately.
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If Q has no kernel, then Q is an inverse ω-chain of groups, by Proposition 8.2.2.

We label the groups that comprise Q as G0, G1, G2, . . . with GiGj Ď Gmaxti,ju.

For conciseness, we will label an element x with a subscript xi to denote that

xi P Gi. We will show that in this case S satisfies Properties (A), (B) and (C).

(A) We define ϕ : Q Ñ B by

xiϕ “ pi, iq,

for xi P Gi. Note that rpaq “ lpaq for all a P S. Also lpaq ě lpbq if and

only if a ďLQ b by Lemma 2.4.4. We show that ϕ is a homomorphism. Let

xi P Gi and yj P Gj. Then

xiϕ yjϕ “ pi, iqpj, jq “ pmaxti, ju,maxti, juq.

On the other hand, since GiGj Ď Gmaxti,ju, we know that xiyj P Gmaxti,ju.

Therefore

pxiyjqϕ “ pmaxti, ju,maxti, juq.

Therefore ϕ is a homomorphism. We restrict ϕ to S to get a homomor-

phism φ : S Ñ B . Note that B “ A 0,1, so φ is of the correct form. By the

proof of Corollary 8.2.3, we know that S intersects every Gi. Therefore

lpSq is infinitely large.

(B) (i) Let x, y, a P S such that lpxq, lpyq ě rpaq and xa “ ya. We right

multiply to obtain xaa´1 “ yaa´1. We know that rpaq “ lpaq, for all

a P S. This gives us lpxq ě rpaq “ lpaq, and so x ďLQ a. By Lemma

2.2.6, this means that xa´1a “ x. Using the fact that a´1a “ aa´1 in

a Clifford semigroup, this gives us xaa´1 “ x. Similarly, lpyq ě rpaq

implies that yaa´1 “ y. Therefore

x “ xaa´1
“ yaa´1

“ y.

(ii) Dual of (B)(i)

(C) Let b, c P S such that lpbq ě lpcq. Hence b ďLQ c. Since S is a left I-

order in an inverse semigroup with totally ordered idempotents, we can

use Property (T1) of Theorem 8.1.3 to give us that there exists u, v P S
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such that

uRQ vRQ vc “ ub and ubLQ b.

Since Q is a chain of groups, we see that RQ “ LQ with xRQ y if and only

if rpxq “ rpyq. Therefore, we see that both rpuq “ rpvq and

lpuq “ rpuq “ rpubq “ lpubq “ lpbq “ rpbq.

Putting this all together, we have

ub “ vc, rpuq “ rpvq and lpuq “ rpbq.

This proves the forward direction when Q has no kernel.

We now assume Q has a kernel. We know that Q “ ωpC, T, θq. We prove that

Properties (A), (B) and (C) hold.

(A) From Lemma 8.2.11, we know there exists a homomorphism ϕ from Q to

A k,d. Since S is a subsemigroup of Q, it follows that we can restrict ϕ to

S to get a homomorphism φ : S Ñ A k,d.

Using Lemma 8.2.6 and Lemma 8.2.7, we see that defining sϕ “ prpsq, lpsqq,

we have

aRQ b if and only if rpaq “ rpbq

and

a ďLQ b if and only if lpaq ě lpbq.

Defining the function l in this way, l partitions the elements of Q into

LQ-classes, and the image lpQq is infinitely large. Since S is a straight

left I-order in Q, we know that S intersects every L-class of Q. Therefore,
the image lpSq is also infinitely large.

(B) (i) Let x, y, a P S such that lpxq, lpyq ě rpaq and xa “ ya. We consider

four cases:

Case 1: lpxq, lpyq, rpaq all non-negative.

This implies that x, y and a are all elements of K. By right mul-

tiplication, we have that xaa´1 “ yaa´1. We start by calculating

xaa´1. Since a and x are both elements of K, we can write them
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as a “ pm, gα, nq and x “ pp, hβ, qq. Then lpxq “ qd ` β and

rpaq “ md ` α. From Proposition 2.6.1, we know that

aa´1
“ pm, gα, nqpn, g´1

α ,mq “ pm, 1α,mq,

where 1α is the identity of Fα.

Since lpxq ě rpaq, we have qd ` β ě md ` α. Since α, β P r0, d ´ 1s,

we have two cases: either q ą m or both q “ m and β ě α.

Case 1a: Let q ą m. We calculate

xaa´1
“ pp, hβ, qqpm, 1α,mq “ pp, hβp1αθ

q´m
q,m ´ m ` qq.

Since θ is a homomorphism into F0, we see that 1αθ
q´m “ 10, the

identity of T . Therefore

xaa´1
“ pp, hβ, qq “ x.

Case 1b: Let q “ m and β ě α. We calculate

xaa´1
“ pp, hβ, qqpm, 1α,mq “ pp, hβ1α, qq.

Since β ě α as an integer, we know that β ď α in the semilattice.

Therefore hβ1α “ hβ by Lemma 2.4.4. Therefore xaa´1 “ x.

In either case, we have xaa´1 “ x. We can obtain yaa´1 “ y similarly.

Therefore,

x “ xaa´1
“ yaa´1

“ y.

Case 2: lpxq, lpyq non-negative, rpaq negative.

This implies that x, y P K and a R K. Therefore, using xa “ ya, we

have

xp10aq “ xa “ ya “ yp10aq.

Since 10a P G0, this gives us rp10aq “ 0. Therefore lpxq, lpyq ě rp10aq

and we have reduced this to Case 1.

Case 3: One of lpxq, lpyq negative, the other non-negative.

Without loss of generality, let lpxq be non-negative and let lpyq be

negative. Since lpxq, lpyq ě rpaq, we have that rpaq is negative. There-
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fore, we have x P K, y P Gj and a P Gk, where j, k negative integers

such that j ě k. This implies that xa P K, but ya P Gj, and therefore

ya R K. Since xa “ ya, this leads to a contradiction.

Case 4: lpxq, lpyq, rpaq all negative.

By the definition of φ, this means that x, y, a are all elements

of the Clifford semigroup C, and rpaq “ lpaq. This gives us

lpxq ě rpaq “ lpaq, and so x ďLQ a. By Lemma 2.2.6, this means

that xa´1a “ x. Using the fact that a´1a “ aa´1 in a Clifford

semigroup, this gives us xaa´1 “ x. Similarly, lpyq ě rpaq implies

that yaa´1 “ y. Therefore

x “ xaa´1
“ yaa´1

“ y.

(ii) Dual of (B)(i).

(C) Let b, c P S such that lpbq ě lpcq. Using Lemma 8.2.7, we see that this

implies that b ďLQ c. Since S is a left I-order in an inverse semigroup with

totally ordered idempotents, we can use Property (T1) of Theorem 8.1.3

to give us that there exists u, v P S such that

uRQ vRQ vc “ ub and ubLQ b.

By Lemma 8.2.6 and Lemma 8.2.7, this gives us that

rpuq “ rpvq, rpvq “ rpvcq and lpubq “ lpbq. (8.1)

Since ub “ vc, we have that

rpubq “ rpvcq “ rpvq “ rpuq. (8.2)

Since φ : S Ñ A k,d is a homomorphism, we have

prpubq, lpubqq “ prpuq, lpuqqprpbq, lpbqq “ prpuq ´ lpuq ` t, lpbq ´ rpbq ` tq,

where t “ maxtlpuq, rpbqu. Therefore, using (8.2), we have

rpuq “ rpubq “ rpuq ´ lpuq ` t,
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and so t “ lpuq. Since lpubq “ lpbq, by (8.1), we also have

lpbq “ lpubq “ lpbq ´ rpbq ` t,

and so t “ rpbq. Therefore lpuq “ t “ rpbq. Putting this all together gives

us

ub “ vc, rpuq “ rpvq and lpuq “ rpbq.

This proves the forward implication. We now consider the converse. Let S

satisfy Properties (A), (B) and (C). We start by proving that S satisfies the

conditions of Theorem 8.1.3, with R1 and ďl defined by

aR1 b if and only if rpaq “ rpbq (8.3)

and

a ďl b if and only if lpaq ě lpbq. (8.4)

Obviously R1 is an equivalence relation and ďl is a total order. We define L1 as

the equivalence relation associated with ďl. We prove that R1 is left compatible

and ďl is right compatible.

Let a, b, x P S such that aR1 b, that is rpaq “ rpbq. Using the fact that φ is a

homomorphism, we have that

prpxaq, lpxaqq “ prpxq, lpxqqprpaq, lpaqq

“ prpxq ´ lpxq ` maxtlpxq, rpaqu, lpaq ´ rpaq ` maxtlpxq, rpaquq.

Therefore

rpxaq “ rpxq ´ lpxq ` maxtlpxq, rpaqu.

Similarly

rpxbq “ rpxq ´ lpxq ` maxtlpxq, rpbqu.

Since rpaq “ rpbq, we know that

maxtlpxq, rpaqu “ maxtlpxq, rpbqu,

and therefore rpxaq “ rpxbq or, equivalently, xaR1 xb. Therefore R1 is left

compatible.
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Now let a, b, x P S such that a ďl b, that is, lpaq ě lpbq. Using the fact that φ

is a homomorphism, we have that

prpaxq, lpaxqq “ prpaq, lpaqqprpxq, lpxqq

“ prpaq ´ lpaq ` maxtlpaq, rpxqu, lpxq ´ rpxq ` maxtlpaq, rpxquq.

Therefore

lpaxq “ lpxq ´ rpxq ` maxtlpaq, rpxqu.

Similarly,

lpbxq “ lpxq ´ rpxq ` maxtlpbq, rpxqu.

Since lpaq ě lpbq, we know that

maxtlpaq, rpxqu ě maxtlpbq, rpxqu,

and therefore lpaxq ě lpbxq or, equivalently, ax ďl bx. Therefore ďl is right

compatible.

We now prove Properties (T1) - (T5) with R1 and ďl defined as in (8.3) and

(8.4).

(T1) Let α, β P S such that α ďl β. By (C), there exists γ, δ P S such that

γα “ δβ, rpγq “ rpδq and lpγq “ rpαq.

Since lpγq “ rpαq, we have that

prpγαq, lpγαqq “ prpγq, lpγqq prpαq, lpαqq “ prpγq, lpαqq .

Therefore lpγαq “ lpαq. Also, using γα “ δβ and rpγq “ rpδq, we have

that

rpδβq “ rpγαq “ rpγq “ rpδq.

Putting this all together, we have

γR1δR1δβ “ γα and γαL1 α.
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(T2) Let α, β P S. By definition, and a now familiar argument,

lpαβq “ lpβq ´ rpβq ` maxtlpαq, rpβqu.

We see that maxtlpαq, rpβqu ´ rpβq, is either zero or positive. Therefore,

for all α, β P S, we have lpαβq ě lpβq, and hence αβ ďl β.

(T3) Let a, b P S such that rpaq “ rpbq. We want to prove that aR˚ b. Let

x, y P S1 such that xa “ ya. It is sufficient to prove xb “ yb. If x “ y “ 1

this is obviously true, so we only need to consider two cases without loss

of generality: either x, y P S, or x P S and y “ 1.

Firstly let x P S and y “ 1. Then xa “ a. Therefore

lpxaq “ lpaq ´ rpaq ` maxtlpxq, rpaqu “ lpaq,

so maxtlpxq, rpaqu “ rpaq, i.e. rpaq ě lpxq. Therefore, using xa “ a again,

rpxaq “ rpxq ´ lpxq ` maxtlpxq, rpaqu “ rpxq ´ lpxq ` rpaq “ rpaq,

so rpxq “ lpxq.

Applying Property (C) with b “ c “ a, we have that there exists X P S

such that lpXq “ rpaq. We know that lpXq “ rpaq ě lpxq. Therefore we

can apply Property (C) with b “ X and c “ x, to obtain u, v P S such

that

uX “ vx, rpuq “ rpvq and lpuq “ rpXq.

Therefore

prpuXq, lpuXqq “ prpuq, lpuqq prpXq, lpXqq

“ prpuq, lpXqq “ prpuq, rpaqq ,
(8.5)

using lpXq “ rpaq in the last equality. Since ϕ is a homomorphism, we can

use rpxq “ lpxq to obtain

prpvxq, lpvxqq “ prpvq ´ lpvq ` maxtlpvq, rpxqu, lpxq ´ rpxq ` maxtlpvq, rpxquq

“ prpvq ´ lpvq ` maxtlpvq, rpxqu,maxtlpvq, rpxquq .

(8.6)
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Since uX “ vx, we can compare the first variable of (8.5) and (8.6), and

use rpuq “ rpvq to obtain

rpvq “ rpuq “ rpuXq “ rpvxq “ rpvq ´ lpvq ` maxtlpvq, rpxqu.

Therefore maxtlpvq, rpxqu “ lpvq. Comparing the second variable of (8.5)

and (8.6), we can then obtain

rpaq “ lpuXq “ lpvxq “ lpxq ´ rpxq ` maxtlpvq, rpxqu “ lpvq, (8.7)

using rpxq “ lpxq. Since xa “ a, we can left multiply to obtain vxa “ xa.

By (8.7), lpvxq “ lpvq “ rpaq, and so we can apply Property (B)(i) to

obtain vx “ v. We right multiply by b to get vxb “ vb. Using rpxq ´ lpxq,

we have that

rpxbq “ rpxq ´ lpxq ` maxtlpxq, rpbqu “ maxtlpxq, rpbqu.

Therefore rpxbq ě rpbq. Also rpbq “ rpaq “ lpvq by (8.7). Putting this to-

gether rpxbq, rpbq ě lpvq, and so we can apply Property (B)(ii) to vxb “ vb

to obtain xb “ b.

Now let x, y P S with xa “ xb. We split this into three cases: Either lpxq

and lpyq are both larger than rpaq, lpxq and lpyq are both smaller than

rpaq, or one is larger and one is smaller.

Case 1: Let lpxq, lpyq ě rpaq.

We can use Property (B)(i) to give us that xa “ ya implies that x “ y.

Clearly then xb “ yb.

Case 2: Let lpxq, lpyq ď rpaq.

Since lpxq ď rpaq, we have that

rpxaq “ rpxq ´ lpxq ` maxtlpxq, rpaqu “ rpxq ´ lpxq ` rpaq. (8.8)

Similarly, since lpyq ď rpaq, we have

rpyaq “ rpyq ´ lpyq ` rpaq. (8.9)
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We know that xa “ ya, so that rpxaq “ rpyaq. Therefore, comparing (8.8)

with (8.9), we have that

rpxq ´ lpxq “ rpyq ´ lpyq. (8.10)

Applying Property (C) with b “ c “ a, we have that there exists X P S

such that lpXq “ rpaq. We know that lpXq “ rpaq ě lpxq. Therefore we

can apply Property (C) with b “ X and c “ x, to obtain u, v P S such

that

uX “ vx, rpuq “ rpvq and lpuq “ rpXq.

Therefore, using lpXq “ rpaq,

prpuXq, lpuXqq “ prpuq, lpuqq prpXq, lpXqq

“ prpuq, lpXqq “ prpuq, rpaqq .
(8.11)

Since ϕ is a homomorphism,

prpvxq, lpvxqq “ prpvq ´ lpvq ` maxtlpvq, rpxqu, lpxq ´ rpxq ` maxtlpvq, rpxquq .

(8.12)

Since uX “ vx, comparing the first variable of (8.11) and (8.12) and using

rpuq “ rpvq gives us

rpvq “ rpuq “ rpuXq “ rpvxq “ rpvq ´ lpvq ` maxtlpvq, rpxqu.

Therefore maxtlpvq, rpxqu “ lpvq. Comparing the second variable of (8.11)

and (8.12), we can then obtain

rpaq “ lpuXq “ lpvxq “ lpxq ´ rpxq ` maxtlpvq, rpxqu

“ lpxq ´ rpxq ` lpvq.
(8.13)

Therefore

lpvq “ rpxq ´ lpxq ` rpaq ě rpxq, (8.14)

since rpaq ě lpxq. We can combine this with (8.10) to obtain

lpvq “ rpyq ´ lpyq ` rpaq ě rpyq, (8.15)
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since rpaq ě lpyq. We can then calculate

lpvyq “ lpyq ´ rpyq ` maxtlpvq, rpyqu “ lpyq ´ rpyq ` lpvq “ rpaq, (8.16)

using (8.15), (8.10) and (8.14). Since xa “ ya, we can left multiply to

obtain vxa “ vya. Using (8.13) and (8.16), we have that lpvyq “ rpaq “

lpvxq. Therefore, we can apply Property (B)(i) to obtain vx “ vy. We

right multiply by b to get vxb “ vyb.

Using rpbq “ rpaq ě lpxq, we have

rpxbq “ rpxq ´ lpxq ` maxtlpxq, rpbqu “ rpxq ´ lpxq ` rpbq.

Using rpaq “ rpbq and (8.14), this implies that

rpxbq “ rpxq ´ lpxq ` rpaq “ lpvq.

Similarly, using rpbq “ rpaq ě lpyq, we have

rpybq “ rpyq ´ lpyq ` maxtlpyq, rpbqu “ rpyq ´ lpyq ` rpbq.

Using rpbq “ rpaq and (8.15), this implies that

rpybq “ rpyq ´ lpyq ` rpaq “ lpvq.

Using rpybq “ rpxbq “ lpvq, we can apply Property (B)(ii) to vxb “ vyb to

obtain xb “ yb.

Case 3: Let one of lpxq and lpyq be greater than or equal to rpaq and the

other be less than or equal to rpaq.

Without loss of generality, let lpxq ě rpaq ě lpyq. This gives us

lpxaq “ lpaq ´ rpaq ` maxtlpxq, rpaqu “ lpaq ´ rpaq ` lpxq.

and

lpyaq “ lpaq ´ rpaq ` maxtlpyq, rpaqu “ lpaq.
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Since xa “ ya, we must have lpxaq “ lpyaq. Therefore

lpaq ´ rpaq ` lpxq “ lpaq.

This means that lpxq “ rpaq and we have reduced this to Case 2.

(T4) Let α, β, γ, δ P S such that γR1 γαL1 α and δR1 δβ L1 β. Then

prpγαq, lpγαqq “ prpγq, lpαqq and prpδβq, lpδβqq “ prpδq, lpβqq .

We know that

prpγαq, lpγαqq “ prpγq ´ lpγq ` t, lpαq ´ rpαq ` tq ,

where t “ maxtlpγq, rpαqu. Therefore prpγαq, lpγαqq “ prpγq, lpαqq im-

plies that lpγq “ t “ rpαq. Similarly, prpδβq, lpδβqq “ prpδq, lpβqq implies

that lpδq “ rpβq.

We can now see that lpγq “ lpδq if and only if rpαq “ rpβq.

(T5) Let α, β, γ P S such that αL1 β L1 γα “ γβ. Then

lpγαq “ lpαq, lpγβq “ lpβq and γα “ γβ.

We know that

lpγαq “ lpαq ´ rpαq ` maxtlpγq, rpαqu.

Therefore, since lpγαq “ lpαq, we have

maxtlpγq, rpαqu “ rpαq,

and so rpαq ě lpγq. Similarly lpγβq “ lpβq implies that rpβq ě lpγq.

We can then apply Property B(ii) to obtain α “ β.

We can now apply Theorem 8.1.3 to give us that S is a left I-order in an inverse

semigroup with totally ordered idempotents, Q, such that for all a, b P S, aRQ b

if and only if rpaq “ rpbq and a ďLQ b if and only if lpaq ě lpbq. Note that this
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implies that aLQ b if and only if lpaq “ lpbq. By Lemma 8.1.2 we also have that

S is straight in Q.

We now need to prove that Q is an inverse ω-semigroup. We know that Q has

totally ordered idempotents, so we only need that Q has a maximal idempotent

and no minimal idempotent. We will do this by

Let e P EpQq. By Lemma 3.1.3, S intersects every L-class of Q. Therefore,

there exists ae P S such that ae LQ e. We define a function L : EpQq Ñ Z by

Lpeq “ lpaeq, where ae P S such that ae LQ e.

We know that such an ae exists by above. The function L is well-defined, since

ae, be P S with ae LQ be LQ e implies that lpaeq “ lpbeq.

We will now prove that L is injective. We see that Lpeq “ Lpfq implies

that ae, af P S such that ae LQ e, af LQ f , and lpaeq “ lpaf q. Therefore

f LQ ae LQ af LQ f . Since Q is inverse, there is a unique idempotent in each

L-class of Q. Therefore e “ f .

Let e, f P EpQq, and let ae, af P S such that ae LQ e and af LQ f . Using Lemma

2.1.3, we see that

e ď f ðñ e ďLQ f ðñ ae ďLQ af ðñ lpaeq ě lpaf q ðñ Lpeq ě Lpfq.

Additionally, we can use the fact that L is an injective function, to obtain

e ă f ðñ Lpeq ą Lpfq. (8.17)

Therefore natural ordering of the idempotents is a subset of the ordering of the

integers. Now we just need that Q has a maximum idempotent and no minimum

idempotent.

From the structure of A k,d, we know that the smallest possible value of lpSq,

and therefore LpEpQqq, is ´k. Let e be the element of EpQq such that Lpeq is

the smallest value. By (8.17), e is the maximum idempotent of Q.

We prove that there is no minimum idempotent by contradiction. Assume that

Q has a minimal idempotent, f . Let af P S such that af LQ f . By Property

(A), lpSq is an infinitely large subset of the integers. Therefore, the fact that
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lpSq has a minimum value implies that lpSq has no maximum. Therefore there

exists t P S such that lptq ą lpaf q. Therefore Lpt´1tq ą Lpaf q, and by (8.17),

t´1t ă f . Contradiction.

Therefore Q is an inverse ω-semigroup.

The previous theorem characterises all inverse ω-semigroups of left I-quotients.

We now consider some special cases of inverse ω-semigroups. Since we have al-

ready dealt with inverse ω-semigroups of left I-quotients without kernel in Corol-

lary 8.2.3, we start by characterising inverse ω-semigroups of left I-quotients with

kernel.

Corollary 8.2.13. A semigroup S is a left I-order in an inverse ω-semigroup

with kernel if and only if S satisfies the following conditions.

(A) There is a homomorphism φ : S Ñ A k,d for some k ě 0, d ě 1, such

that, defining sφ “ prpsq, lpsqq, the image lpSq is infinitely large and there

exists x P S such that rpxq ‰ lpxq.

(B) For x, y, a P S,

(i) lpxq, lpyq ě rpaq and xa “ ya implies x “ y,

(ii) rpxq, rpyq ě lpaq and ax “ ay implies x “ y.

(C) For any b, c P S with lpbq ě lpcq, there exists u, v P S such that

ub “ vc, rpuq “ rpvq and lpuq “ rpbq.

Proof. First, let S be a left I-order in an inverse ω-semigroup with kernel Q.

We know that Q “ ωpC, T, θq. From Lemma 8.2.11, we know there exists a

homomorphism ϕ from Q to A k,d, defined by

pm,hα, nqϕ “ pmd ` α, nd ` αq,

for pm,hα, nq P K and

giϕ “ pi, iq,

for gi P Gi. We can restrict ϕ to S to obtain a homomorphism φ : S Ñ A k,d.
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Assume that rpxq “ lpxq for all x P S. We know that there exists an element

of the kernel of Q, pm,hα, nq, such that m ‰ n. Since S is a left I-order in Q,

there exists s, t P S such that

pm,hα, nq “ s´1t.

Since rpxq “ lpxq for all x P S, we can write rpsq “ lpsq “ i and rptq “ lptq “ j.

We know that homomorphisms between inverse semigroups preserve inverses, so

we can apply ϕ to both sides of this equation to obtain

pmd ` α, nd ` αq “ pi, iq´1
pj, jq “ pi, iqpj, jq “ pmaxti, ju,maxti, juq,

which is a contradiction since m ‰ n. Therefore, there exists an x P S such that

rpxq ‰ lpxq. By the proof of Theorem 8.2.12, we know that S satisfies the rest

of the conditions.

Now let S satisfy Properties (A) - (C). By Theorem 8.2.12, we know that S has

an inverse ω-semigroup of left I-quotients, Q. Also, by the use of Theorem 8.1.3

in the proof of Theorem 8.2.12, we know that for a, b P S,

aRQ b if and only if rpaq “ rpbq and aLQ b if and only if lpaq “ lpbq.

We will now prove that Q has a kernel by contradiction.

Assume that Q does not have a kernel. By Proposition 8.2.2, we know that Q

is a chain of groups. Therefore, if a P S, then a is in a subgroup of Q. By

Green’s Theorem, this implies that aHQ a2, or equivalently, rpa2q “ rpaq and

lpa2q “ lpaq. We know that

`

rpa2q, lpa2q
˘

“ prpaq, lpaqq prpaq, lpaqq “ prpaq ´ lpaq ` t, lpaq ´ rpaq ` tq ,

where t “ maxtrpaq, lpaqu. Therefore, rpa2q “ rpaq implies that t “ lpaq and

lpa2q “ lpaq implies that t “ rpaq. Together this means that rpaq “ lpaq for all

a P S. This contradicts Property (A).

We now characterise simple inverse ω-semigroups of left I-quotients.

Corollary 8.2.14. A semigroup S is a left I-order in a simple inverse

ω-semigroup if and only if S satisfies the following conditions.
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(A) There is a homomorphism φ : S Ñ Bd for some d ě 1, such that, defining

sφ “ prpsq, lpsqq, the image lpSq is infinitely large and there exists x P S

such that prpxq, lpxqq P pt0u ˆ Nq Y pN ˆ t0uq.

(B) For x, y, a P S,

(i) lpxq, lpyq ě rpaq and xa “ ya implies x “ y,

(ii) rpxq, rpyq ě lpaq and ax “ ay implies x “ y.

(C) For any b, c P S with lpbq ě lpcq, there exists u, v P S such that

ub “ vc, rpuq “ rpvq and lpuq “ rpbq.

Proof. Let S be a left I-order in a simple inverse ω-semigroup Q. By Theorem

8.2.4, we know that Q – BRpT, θq for a finite chain of groups, T . By Lemma

8.2.9, we know that there exists a homomorphism ϕ from Q to Bd, defined by

pm,hα, nqϕ “ pmd ` α, nd ` αq,

for pm,hα, nq P Q.

We could also write Q as Q “ ωpC, T, θq, where C “ G0. Considering Q this

way, we can see that the homomorphism above is equal to the homomorphism

from the proof of Corollary 8.2.13. Using Lemma 8.2.6 and Lemma 8.2.7, we see

that defining sϕ “ prpsq, lpsqq, we have aRQ b if and only if rpaq “ rpbq and

a ďLQ b if and only if lpaq ě lpbq.

We will now prove that there exists x P S such that

prpxq, lpxqq P pt0u ˆ Nq Y pN ˆ t0uq .

Consider p0, h0, 1q P Q, where h0 P F0. Since Q is a semigroup of straight left

I-quotients of S, we can write p0, h0, 1q as

p0, h0, 1q “ s´1t, (8.18)

where s, t P S with sRQ t. That is, rpsq “ rptq. Applying ϕ to the left side of

(8.18) gives us

p0, h0, 1qϕ “ p0, dq.
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Applying ϕ to the right side of (8.18) gives us

ps´1tqϕ “ psϕq
´1

ptϕq “ prpsq, lpsqq
´1

prptq, lptqq

“ plpsq, rpsqq prptq, lptqq “ plpsq, lptqq .

Therefore lpsq “ 0 and lptq “ d. If prpsq, lpsqq P N ˆ t0u, we are done by taking

x “ s. If not, then rpsq “ 0, and therefore rptq “ rpsq “ 0. As a result,

prptq, lptqq P t0u ˆ N, and we are done by taking x “ t.

Corollary 8.2.13 then proves the rest of Conditions (A) - (C).

Now let S satisfy Properties (A) - (C). Note that there exists x P S such that

rpxq ‰ lpxq. By Corollary 8.2.13, we know that S has an inverse ω-semigroup

of left I-quotients with kernel, Q. Also, by the application of Theorem 8.1.3 in

the proof of Corollary 8.2.13, we know that for a, b P S,

aRQ b if and only if rpaq “ rpbq and a ďLQ b if and only if lpaq ě lpbq.

We will now prove that Q is simple by contradiction.

Assume that Q is not simple. By Theorem 8.2.5, this means that Q “ ωpC, T, θq,

where C is a finite chain of at least two groups. Let G´k be the largest group

of C. Note that G´k Ę K, where K is the kernel of Q.

Case 1: Let prpxq, lpxqq P N ˆ t0u. We see that rpxq ‰ lpxq. Therefore, by the

proof of Corollary 8.2.13, x is not in a subgroup of Q. Using the structure of

Q, we see that this implies that x is an element of the kernel, K. Since K is an

inverse semigroup, this means that x´1x is also in K.

Since lpxq “ 0, x is the element of S with the smallest possible value of lpSq. By

the proof of Theorem 8.2.12, this implies that x´1x is the maximal idempotent.

Therefore x´1x P G´k Ę K. Contradiction.

Case 2: Let prpxq, lpxqq P t0u ˆ N. We see that rpxq ‰ lpxq. Therefore, by the

proof of Corollary 8.2.13, x is not in a subgroup of Q. Using the structure of

Q we see that this implies that x is an element of the kernel, K. Since K is an

inverse semigroup, this means that xx´1 is also in K.

Since S is a straight left I-order in Q, we can write

xx´1
“ u´1v,
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where u, v P S with uRQ v. By Lemma 3.3.6, this implies that uRQ ux and

Lx ^ Lx “ Lux. We can rewrite this as rpuq “ rpuxq and lpxq “ lpuxq. We see

that

prpuxq, lpuxqq “ prpuq ´ lpuq ` t, lpxq ´ rpxq ` tq ,

where t “ maxtlpuq, rpxqu. Therefore, since prpuxq, lpuxqq “ prpuq, lpxqq, this

implies that lpuq “ t “ rpxq “ 0.

Since lpuq “ 0, u is the element of S with the smallest possible value of lpSq. By

the proof of Theorem 8.2.12, this implies that u´1u is the maximal idempotent.

Therefore u´1u P G´k Ę K We see that

u´1u “ u´1uu´1u “ u´1vv´1u “ pu´1vqpu´1vq
´1

“ pxx´1
qpxx´1

q
´1

“ xx´1xx´1
“ xx´1.

Therefore xx´1 “ u´1u P G´k Ę K. Contradiction.

By Theorem 8.2.4, we can use Corollary 8.2.14 with d “ 1 to obtain the bisimple

case. This is similar, but not identical to Theorem 3.1 of [15].

Corollary 8.2.15. A semigroup S is a left I-order in a bisimple inverse

ω-semigroup if and only if S satisfies the following conditions.

(A) There is a homomorphism φ : S Ñ B such that, defining sφ “ prpsq, lpsqq,

the image lpSq is infinitely large and there exists x P S such that

prpxq, lpxqq P pt0u ˆ Nq Y pN ˆ t0uq.

(B) For x, y, a P S,

(i) lpxq, lpyq ě rpaq and xa “ ya implies x “ y,

(ii) rpxq, rpyq ě lpaq and ax “ ay implies x “ y.

(C) For any b, c P S with lpbq ě lpcq, there exists u, v P S such that

ub “ vc, rpuq “ rpvq and lpuq “ rpbq.

We now characterise inverse ω-semigroups of left I-quotients of Type (3) from

Proposition 8.2.2.
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Corollary 8.2.16. A semigroup S is a left I-order in an inverse ω-semigroup

with proper kernel if and only if S satisfies the following conditions.

(A) There is a homomorphism φ : S Ñ A k,d for some k ě 1, d ě 1, such that,

defining sφ “ prpsq, lpsqq, the image lpSq is infinitely large and includes a

negative number, and there exists x P S such that rpxq ‰ lpxq.

(B) For x, y, a P S,

(i) lpxq, lpyq ě rpaq and xa “ ya implies x “ y,

(ii) rpxq, rpyq ě lpaq and ax “ ay implies x “ y.

(C) For any b, c P S with lpbq ě lpcq, there exists u, v P S such that

ub “ vc, rpuq “ rpvq and lpuq “ rpbq.

Proof. Let S be a left I-order in an inverse ω-semigroup with proper kernel, Q.

By Theorem 8.2.5, we know that Q “ ωpC, T, θq, where C is a finite chain of at

least two groups. Let G´k be the largest group of C. Note that k is a positive

integer and therefore G´k Ę K, where K “ BRpT, θq is the kernel of Q.

By Lemma 8.2.11, we know that there exists a homomorphism ϕ from Q to Ak,d,

defined by

pm,hα, nqϕ “ pmd ` α, nd ` αq,

for pm,hα, nq P K, and

giϕ “ pi, iq,

for gi P Gi. This is the same homomorphism from the proof of Corollary 8.2.13.

Since S is a straight left I-order in Q, Lemma 3.1.3 tells us that S intersects

every L-class of Q. We have that G´k is its own LQ-class. Therefore there exists

s P S X G´k. We see that

lpsq “ ´k,

and so lpSq includes a negative number.

Corollary 8.2.13 then proves the rest of Conditions (A) - (C).

Now let S satisfy Properties (A) - (C). By Corollary 8.2.13, we know that S has

an inverse ω-semigroup of left I-quotients with kernel, Q. Also, by the use of
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Theorem 8.1.3 in the proof of Corollary 8.2.13, we know that for a, b P S,

aRQ b if and only if rpaq “ rpbq and a ďLQ b if and only if lpaq ě lpbq.

Since ďLQ is a total order, the meet structure of the LQ-classes is completely

determined by ďLQ . Therefore, φ : S Ñ A k,d from Condition (A), satisfies the

conditions of Theorem 3.3.7. We apply Theorem 3.3.7 to obtain that φ lifts to

a homomorphism φ̄ : Q Ñ A k,d.

We will now prove that the kernel of Q is proper. This is equivalent to proving

that Q is not simple, which we will do by contradiction.

Assume that Q is simple. We know that there exists an x P S such that rpxq ‰

lpxq. By the definition of A k,d, we see that xφ is in the Bd part of A k,d. We also

know that there exists an s P S such that lpsq is negative. By the definition of

A k,d, we see that sφ is not in Bd. Since Q is simple, we know that x and s are

J -related. Therefore there exists p, q P Q such that

s “ pxq.

We apply φ̄ to this to obtain

sφ “ ppφ̄qxφpqφ̄q.

We see that Bd is an ideal of A k,d. Therefore, since xφ P Bd, we have

sφ “ ppφ̄qxφpqφ̄q P Bd.

However, we also know that sφ R Bd, giving us a contradiction.
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Comptes Rendus de l’Académie des Sciences de Paris, 271:824–827, 1970.



BIBLIOGRAPHY 159

[27] O. Ore. Linear equations in non-commutative fields. Annals of Mathemat-

ics, 32:463–477, 1931.

[28] A. L. T. Paterson. Groupoids, inverse semigroups, and their operator al-

gebras. Birkhäuser, 1999.
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