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Abstract

This thesis focuses on the organisational determinants of quality of care in the hospital sector.

It consists of three chapters, of which the first two investigate determinants of quality at the

hospital (economies of scale) or surgeon level (surgical skills), while the third examines the

trade-off between hospital quality and costs. Using patient-level data from hospitals in the

English National Health Service, these essays contribute to the understanding of the optimal

organisation of hospital care, related to the consolidation of hospital activity (Chapter 1),

surgeons’ work schedules (Chapter 2) or the efficient use of hospital resources (Chapter 3).

Chapter 1 investigates the existence of hospital economies of scale in quality for planned

hip replacement. It makes use of rich condition-specific patient-reported outcome measures

which increase the scope for risk-adjustment. It shows that hospital volume, though posi-

tively correlated with health outcomes, does not have a causal effect on patient health after

accounting for volume endogeneity.

Chapter 2 focuses on a key actor of quality of care – surgeons – by exploring how breaks

in surgical practice impact health outcomes for patients admitted after a hip fracture. Using

a large panel of surgeons in England, it finds that short breaks of four to six days reduce

30-day mortality rates by around six percent relative to surgeons who had no prior breaks.

Further, results show that short breaks alter the choice of treatment, holding other patient

characteristics fixed.

Chapter 3 estimates the effect of reducing inpatient length of stay, a possible cost-containment

strategy for hospitals, on 28-day readmission rates for emergency chest pain patients. Patients

who are discharged on the same day as admission have lower readmission rates. However, the

effect disappears after instrumenting for patients’ length of stay, indicating that there is no

causal effect of same-day discharge on health outcomes in this context.
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Introduction

Health care represents a considerable sector of the economy. In 2018, health expenditure

averaged 8.8% of GDP in Organisation for Economic Cooperation and Development (OECD)

countries and is forecast to further increase to 10.2% by 2030 (OECD, 2019). At the same time,

health gains have slowed across OECD countries, in part due to an ageing population and the

rising prevalence of chronic diseases (OECD, 2019). In the U.K. for instance, life expectancy

has stalled over the past decade and health inequalities have widened (Elwell-Sutton et al.,

2019). Although not the only determinant of population health, the performance of healthcare

systems is an important driver of health, influencing whether patients stay well (preventive

care), recover quickly when ill (acute care), live well with co-morbidities (chronic care) or

receive appropriate care at the end of life (palliative care). A major policy focus is therefore

on improving the quality of care, such that the care provided is effective, safe and patient-

centred (OECD, 2017a).

The literature has documented the existence of substantial geographic variation in quality

and utilisation of care (Baicker and Chandra, 2004; Chandra and Staiger, 2007; Skinner, 2011).

The evidence suggests that this variation is less due to differences in demand-side factors,

such as patient severity or demand for care, than to supply-side factors (Finkelstein et al.,

2016; Molitor, 2018; Cutler et al., 2019). Among supply-side factors, differences in surgeons’

preferences appear to only partly explain variation in treatment across areas (Molitor, 2018;

Cutler et al., 2019), suggesting that a high share of the variation in quality of care may be

due to differences in hospitals’ production function or choice of inputs (Castelli et al., 2015;

Skinner and Staiger, 2015; Chandra et al., 2016b).

This thesis focuses on quality of care in the hospital sector. Quality of care is a core

policy focus given its importance in patient care pathway and the share of health spending it

represents. In the U.K. alone, hospitals accounted for 40.7% of total health care expenditures in

2018 (Eurostat, 2020). Understanding the drivers of hospital quality would help inform quality-
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enhancing strategies and reduce the variation in quality observed across hospitals (Castelli

et al., 2015; Ali et al., 2018). Previous research has examined the role of external determinants

of hospital quality, such as the impact of hospital market forces, as well as internal aspects

pertaining to e.g., hospital managerial quality or technology utilisation (Gaynor et al., 2015;

Bloom et al., 2020; Barrenho et al., 2021). In relation with the literature outlined above, this

thesis investigates several determinants of quality related to the organisation of hospital care

in the English National Health Service (NHS).

The potential for economies of scale in quality of care has received considerable attention

in the policy world (Luft et al., 1987; Gaynor et al., 2005; Ho, 2014). If higher volumes permit

quality gains via learning effects, there is a rationale for concentrating hospital care or closing

healthcare providers that operate below some safety volume threshold. Using patient-reported

outcome measures, Chapter 1 explores the existence of hospital economies of scale in quality for

a planned orthopaedic surgery, providing causal empirical evidence for England. More recently,

the availability of finer micro-level data has permitted to investigate the role of workforce in

hospitals. Recent evidence suggests for instance that the staffing levels and composition of

clinical teams in hospitals can be important drivers of quality (Bartel et al., 2014; Friedrich

and Hackmann, 2017; Chan, 2021). Chapter 2 contributes to the understanding of on-the-job

performance by investigating the role of breaks in activity on surgical performance.

Raising the quality of care may however come at the expense of higher costs (Hussey et al.,

2013; Jamalabadi et al., 2020). Healthcare systems have been under substantial cost pressure,

due to increased demand driven in part by an ageing population and the rising cost of new

technologies. In recent years, health expenditure has outpaced economic growth across OECD

countries, challenging the sustainability of health systems in the long term (OECD, 2019). In

this context, identifying sources of expensive but low-value care could reduce wasteful expenses

and help deliver more efficient hospital services (Skinner and Staiger, 2015; OECD, 2017b).

Chapter 3 contributes to this strand of literature by reviewing the effect of a cost-containment

strategy, which involves shifting more patients to same-day discharge care, on quality of care.

The remainder of this section gives an overview of each chapter in more detail.
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Chapter 1 explores whether hospitals benefit from economies of scale in quality by investigating

the causal effect of hospital volume on patient health gains from planned hip replacement

surgery. It focuses on a common orthopaedic surgery which is possibly amenable to returns

to scale given the importance of peri-operative and follow-up care. This chapter contributes

to the limited causal literature on volume-outcome effects and the policy debate around the

opportunity to concentrate the provision of care as a means of raising the standards of care

(Luft et al., 1987; Gaynor et al., 2005; Hentschker and Mennicken, 2018; Avdic et al., 2019).

The analysis uses a panel data set of all public hospitals in England between 2011 and

2015. The data set links routine hospital records and hip-specific patient-reported outcome

measures (PROMs), which assess patients’ hip pain and mobility shortly before and after the

surgery. This chapter employs both a pooled OLS model and specifications with hospital fixed

effects to account for unobserved heterogeneity in hospital quality. Differences in hospital case-

mix are accounted for through pre-surgery hip-specific PROMs, medical and socioeconomic

indicators. Nevertheless, higher-quality hospitals may also attract higher volumes of patients

(Luft et al., 1987), if hospital demand responds to quality (Brekke et al., 2014; Chandra et al.,

2016a; Gutacker et al., 2016). To address this possible reverse-causality bias, the analyses use

a measure of predicted hospital volumes obtained from a patient model of hospital choice, as

done in the hospital competition literature (Kessler and McClellan, 2000; Gowrisankaran and

Town, 2003; Gaynor et al., 2013).

Results from the pooled OLS model indicate that the effect of volume on health outcomes

in hip replacement surgery is positive but clinically small, but no longer significant after ac-

counting for the endogeneity of volume with the predicted volumes. Results from an alternative

specification with hospital fixed effects also show a non statistically significant effect of vol-

ume on health outcomes. Together, these results indicate that hospital volume does not have

a causal impact on health outcomes, thus rejecting the hypothesis of positive scale economies

in quality in this context. While a positive causal effect of volume has been sometimes found

for other procedures and settings (Gaynor et al., 2005; Hentschker and Mennicken, 2018; Avdic

et al., 2019), the state of the literature calls for more causal evidence (Sheldon, 2004).
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Chapter 2 investigates the role of short breaks in surgical activity on the performance of

surgeons. It models the causal effect of surgeons’ breaks, defined as the number of days

between two surgeries, on health outcomes for patients admitted for an emergency hip fracture.

It relates to the wider literature on the effect of work schedule or within-team organisation

on performance for the medical workforce (Cook et al., 2012; Caruso, 2014; Chan, 2021). It

contributes to the scarce evidence on the effect of interruptions in practice on patient health

outcomes for surgeons or teams, mostly focused on cardiac procedures (David and Brachet,

2011; Hockenberry and Helmchen, 2014; Huesch, 2014; Van Gestel et al., 2017).

The data set uses hospital records for emergency hip fracture patients admitted in England

between 2009 and 2016, consisting of an unbalanced panel data set of around 2,000 orthopaedic

surgeons. Using a linear probability model, patient health outcomes, measured by 30-day

mortality, are regressed against surgeons’ time breaks, a set of patient controls and surgeon

fixed effects to account for unobserved time-invariant heterogeneity in surgeon ability. Controls

include a rich set of patients’ medical and socio-economic factors (age, gender, ethnicity,

comorbidities, socio-economic deprivation, day of the week dummies, pre-surgery length of

stay and type of hip fracture) and surgeons’ volume of practice. The empirical strategy

exploits the quasi-exogenous variation in surgeons’ time breaks that arises from unanticipated

emergency hip fracture admissions conditional on the large set of controls.

Results show that short breaks of four to six days reduce mortality rates by around six per-

cent, relative to surgeons who had no prior break in surgical practice. Heterogeneity analyses

further suggest that the beneficial effect of short breaks may be more pronounced for surgeons

with lower volume of hip fracture patients. Short breaks also lead to a different choice of the

type of surgery carried out, by increasing the probability of carrying out the less intensive

surgery. Overall, the results indicate that surgeons perform better after short breaks possibly

because they are more alert and apt to choose a more appropriate treatment. The findings

differ from previous small evidence on cardiac surgeries, which suggest a null or detrimental

effect of short breaks, concluding to fast depreciation of surgical skills (Hockenberry et al.,

2008; Hockenberry and Helmchen, 2014).
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Chapter 3 reviews the impact of a possible cost-containment strategy on hospital quality. It

investigates the causal effect of being discharged from hospital on the same day as admis-

sion, therefore reducing patient length of stay in hospital, on quality of care. Discharging

patients on the same day as admission when clinically safe is a potential policy lever to con-

tain costs in hospitals (British Association for Ambulatory Emergency Care, 2014; OECD,

2017a). However, discharging patients too early may result in poorer patient health if not

done appropriately. This chapter contributes to the wider literature on the effect of austerity

measures on quality of care (Borra et al., 2019; Arcà et al., 2020; Bordignon et al., 2020).

The analysis uses patient hospital records from English NHS hospitals between 2010 and

2014. It focuses on emergency patients presenting with chest pain, which is a common reason

for attendance at the Emergency Department. In a linear probability model, an indicator

for whether a patient had an emergency readmission is regressed against the key independent

variable, i.e. being discharged on the same day as admission, with patient medical and socioe-

conomic controls as well as hospital fixed effects. Patients who are discharged on the same day

as admission are likely to be less severely ill, possibly resulting in unobserved patient severity.

To account for this possible omitted variable bias, the chapter employs an instrument variable

strategy where being discharged on the same day as admission is instrumented by patient ex-

posure to a major policy shift. Introduced in 2012, the policy financially incentivised hospitals

to discharge low-severity chest pain patients on the same day as admission (Allen et al., 2016;

Gaughan et al., 2019).

OLS results show that being discharged on the same day is associated with lower 28-day

emergency readmission rates by around 10%, while the IV results indicate no significant effect.

Taken together, the results point to a null causal effect of same-day discharge treatment on

health outcomes, once we account for the endogeneity of patient treatment. The results suggest

that reductions in inpatient length of stay for medically approved conditions can be a valid

strategy to contain costs without harming quality of care. Results are in line with the scarce

existing evidence for longer inpatient stays which finds little systematic effect of shortening

length of stay on health outcomes (Picone et al., 2003; Hauck and Zhao, 2011).
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Chapter 1

Scale economies in the health sector:

the effect of hospital volume on health

gains from hip replacement surgery

1 Introduction

Improving quality of care is a key policy objective in health systems across high income

countries (OECD, 2017a). Policy initiatives commonly rely on the premise that high-volume

healthcare providers are able to deliver better care, by exploiting economies of scale and

learning-by-doing effects often cited in the economics literature (Argote and Epple, 1990;

Benkard, 2000; Mukoyama, 2006; Thompson, 2010; Ho, 2014). For instance, the Leapfrog

group, a coalition of healthcare purchasers in the United States, has set minimum volume

standards for hospital referrals since the early 2000s (Birkmeyer and Dimick, 2004). Simi-

larly, France, Germany and the Netherlands have introduced minimum volume regulations

for certain surgeries (Com-Ruelle et al., 2008; Bauer and Honselmann, 2017; Mesman et al.,

2017).

Despite a large literature investigating the relation between volume and health outcomes

across a range of procedures and countries (Ferguson et al., 1997; Halm et al., 2002; Gutacker

et al., 2017), evidence of a causal effect of volume on quality remains limited due to the

potential endogeneity of volume (Luft et al., 1987). Specifically, volume-outcome studies

are prone to a reverse causality bias if patients’ choice of hospital responds to quality via

reputation or public reporting (Brekke et al., 2014; Gutacker et al., 2016). Yet, understanding
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the causal mechanisms behind the volume-outcome association is essential in the context of

policies seeking to improve quality of care by concentrating the provision of care.

If the volume-outcome association is driven by demand’s responsiveness to quality, some-

times referred to as ‘selective-referral’, concentrating surgical activity will not improve quality

and may have adverse effects on patient accessibility to care (Blanco et al., 2017). Alter-

natively, a higher volume of operations can lead to better outcomes, by increasing surgeons’

technical proficiency via repetition (learning-by-doing) or by fostering coordination within

clinical teams (Bartel et al., 2014; Chan, 2016). Higher volume may also make it economically

viable for hospitals to invest time and resources in more streamlined production processes

that follow patient pathway and to invest in better infrastructure. In contrast to the selective-

referral hypothesis, these mechanisms capture different forms of economies of scale1. In this

instance, more concentrated hospital markets may lead to improved patient outcomes (Gaynor

and Town, 2011; Brekke et al., 2017).

This study investigates the effect of hospital volume on the health gains of patients receiving

a primary (i.e. non-revision) planned hip replacement procedure in the English NHS between

2011/12 and 2015/16. Hip replacement surgery is a common planned procedure, which involves

replacing the damaged part of a hip joint by an artificial one. Hip replacement is well suited to

studying economies of scale given the importance of peri-operative, rehabilitation and follow-

up care2 (Reagans et al., 2005). Hospitals with higher volumes of hip replacement patients may

exert effort to design better pre-surgery and discharge protocols or build up relationships with

healthcare or other providers during patient care pathway (Kizer, 2003; Ho, 2014). Further,

unexplained variations in patient-reported outcomes after hip replacement have been reported

at the hospital (Street et al., 2014) and surgeon level (Varagunam et al., 2015a), while fixation

methods and implant types are associated with differences in revision rates (Healthcare Quality

Improvement Partnership, 2018), suggesting that there is room for quality improvements. Even
1Rapid increases in volume may however also lead to lower quality of care if less clinical time is spent with
each patient (i.e. congestion effect).

2Patients who undergo a planned hip replacement procedure are typically referred to the hospital by their
family physician (called general practitioner in the U.K.) or after being assessed by a musculoskeletal clinic.
They have a pre-surgery assessment with nurse practitioners before being seen by an anaesthetist and operated
by an orthopaedic surgeon or one of the team members. After care can be supervised by an occupational
therapist or a physiotherapist (Healthcare Quality Improvement Partnership, 2018).
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modest improvements in the health gains for individual patients would sum to important gains

at the health system level given the high incidence of hip surgeries in an ageing population.

To test for the presence of economies of scale in health outcomes, we use two alternative

strategies. We first run a pooled OLS model, exploiting variation in volume across all pub-

lic hospitals in England and over time (2011-2015). Variation in volumes can be driven by

geographical differences in population density or in the organisation of hospital services. In

addition, we implement a hospital fixed effects model to account for remaining unobserved

time-invariant hospital factors beyond our set of hospital control variables. This specification

tests for the effect of increasing volumes within hospitals over time on patient health outcomes.

The results from a pooled OLS model show that the observed effect of volume on health out-

comes in hip replacement surgery is positive and clinically small, but no longer statistically

significant once we account for the endogeneity of volume. Results from an alternative speci-

fication with hospital fixed effects further confirm that hospital volume does not have a causal

effect on health outcomes. We therefore conclude that we do not find evidence that economies

of scale affect quality to support the argument for concentrating the provision of care in this

setting.

Our contribution to the previous literature (reviewed briefly in Section 1.1) is threefold.

First, we use patient-reported outcome measures (PROMs) to capture the effect of volume

in terms of improvements in patients’ health status. The English NHS is one of the first

healthcare systems to routinely collect these novel data, which permit an examination of the

benefit of treatment as perceived by the patient. In contrast, post-operative mortality is

very low for planned hip replacement patients (0.06% in our data), rendering commonly used

measures (mortality or complication rates) insensitive to finer variations in quality (Shojania

and Forster, 2008; Varagunam et al., 2015a). Second, the availability of rich patient-reported

data on functional status collected just before the surgery ensures that we thoroughly control

for patient severity and minimise the risk of omitted variable bias through unobserved severity

(Tsai et al., 2006; Kahn et al., 2009).

Third, we address the reverse causality bias by employing a measure of predicted volumes,
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rather than actual volumes. Predicted volumes are derived from a conditional logit choice

model where patients’ choice of hospital is a function of exogenous determinants, including

the distance between patient residence and each hospital. In doing so, we apply a method

commonly used in the literature on hospital competition following the seminal study by Kessler

and McClellan (2000), which uses predicted volumes (patient flows) to construct Herfindahl-

Hirschman indices based on hospital market shares (Gaynor and Town, 2011; Gaynor et al.,

2013; Cooper et al., 2018). We also control for a rich set of hospital variables and characteristics

of the catchment area around the hospital to minimise the risk of omitted variable due to

hospital related variables.

By addressing these two sources of endogeneity, i.e. insufficient risk-adjustment and reverse

causality, and controlling for a rich set of hospital characteristics including hospital fixed

effects, we obtain causal estimates of the effect of hospital volume on patients’ health benefits

following planned hip replacement surgery. Our findings suggest that failing to account for

hospital volume endogeneity can generate a spurious positive relationship whereby hospitals

of higher quality also face a higher demand and thus higher volumes. We also show that

controlling for surgeon volumes does not change our results at the hospital level, suggesting

that the relation between hospital volumes and outcomes does not reflect surgeon effects.

In the remainder of this section we give a brief account of the literature. Section 2 intro-

duces the data. Section 3 lays out the methods and Section 4 presents the results. Section 5

concludes.

1.1 Related literature

Quality improvements driven by volume of practice may occur through different channels. At

the hospital level, economies of scale may take place through better collaboration between sur-

geons and nursing staff, familiarity with the operating theatre, the presence of specialists and

technology-based services or more standardised processes of care (Kizer, 2003; Ho, 2014). A

recent literature has stressed the importance of teamwork and peer effects in surgical settings
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in increasing productivity and efficiency of care. These studies suggest that high volumes of

patients can contribute to better quality of care, via more effective work routines, through

better coordination between nursing staff and surgeons, a better allocation of patients across

surgeons or through more frequent learning opportunities from senior colleagues in the surgical

team (Reagans et al., 2005; Chan, 2016). At the surgeon level, the volume-outcome effect is

more readily understood as a learning-by-doing effect in surgical skills or a better choice of

treatment, with higher volumes leading to better outcomes through improved surgical tech-

nique or ability to detect and prevent complications (Chowdhury et al., 2007).

Previous causal studies have used hospital fixed effects to control for time-invariant un-

observed hospital quality, using within-hospital variation in volumes over time to estimate

learning effects (Hamilton and Hamilton, 1997; Ho, 2002; Sfekas, 2009). Using a quasi-natural

experiment in bariatric surgery in the U.S., several studies exploit the increase in patient

referrals to high-volume hospitals after a policy restricted coverage to hospitals with certain

minimum volume for Medicare patients (Livingston, 2009; Nguyen et al., 2010; Dimick et al.,

2013). Alternatively, the previous literature has exploited the geographical distribution of pa-

tients in an IV setting (Gaynor et al., 2005, for cardiac care in the U.S.), or used the variation

in volume caused by the closure/opening of surrounding clinics (Avdic et al., 2019, for cancer

care in Sweden).

The limited causal literature on orthopaedic surgery suggests mixed results. Luft et al.

(1987) find evidence of both demand’s response to quality (‘selective-referral’) and practice-

makes-perfect effect in hip replacement using simultaneous equation methods with U.S. data.

Hamilton and Hamilton (1997) find no effect of volume on in-hospital mortality for hip frac-

ture patients in Canada, after controlling for unobserved time-invariant hospital quality with

hospital fixed effects. Hentschker and Mennicken (2018) use the distribution of patients and

hospital competitors around the hospital as an instrument for hospital volumes in Germany.

They find that hospital volume reduces in-hospital mortality for emergency hip replacement

after hip fracture.

Medical studies in orthopaedic surgery find a positive association between hospital volume
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and health outcomes after primary hip replacement surgery. Hospitals with high volume of

planned and emergency hip replacement patients are associated with lower mortality rates

or complication rates in England, in the U.S. and in the Netherlands (Judge et al., 2006;

De Vries et al., 2011; Singh et al., 2011). Previous studies find a negative relation between

surgeon volumes and the rate of revisions or complications after primary planned hip replace-

ment, using data from the U.S. (Losina et al., 2004) or Canada (Paterson et al., 2010; Ravi

et al., 2014). These studies further show that patients treated by low-volume surgeons are

associated with higher rates of revision, at both low and high-volume hospitals (Losina et al.,

2004; Ravi et al., 2014). In a setting close to ours, Varagunam et al. (2015b) use Hospi-

tal Episode Statistics from England for 2011/12 and patient-reported outcome measures for

planned hip replacement. They report no association between hospital volume and outcome3

but find a significant and positive association between surgeon volume and PROMs scores.

The authors, however, implicitly assume volume to be exogenously determined.

2 Data

2.1 Sample

We extract data from the Hospital Episodes Statistics (HES) on all planned (i.e. non-

emergency) hip replacement surgeries in England performed between April 2011 and March

2016. HES is an administrative data set on hospital admissions in England, which includes

detailed patient demographic and medical information. The original sample consists of about

360,000 patients. To ensure sample homogeneity, we exclude revision surgeries, which are less

common and more complex procedures4. Patients who are younger than 50 years are also

excluded from the sample as they represent infrequent (i.e. approximately five percent of

planned hip replacements) and atypical medical cases who require replacement of a damaged
3Our results here differ from theirs, potentially because we exclude private hospitals as their reported volumes
do not include all treated patients (see Section 2.1 for more detail).

4For example, revision surgeries represented around 10% of total planned hip patient admissions in our data.
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hip joint much earlier than expected given usual wear. We further exclude uncommon types

of hip replacement (e.g. total prosthetic replacements of the head of the femur or resurfacing

arthroplasties of the joint, which account for less than 0.01% of the sample). Hospitals report-

ing an unusually low number of cases (below 20 annual hip replacements) are also excluded to

attenuate the risk of coding errors. Relaxing these sample restrictions based on patient age or

hospital size does not affect our results (Table A.1 in Appendix).

Since April 2009, a national programme requires hospitals in England to collect patient-

reported outcome measures (PROMs) from patients who undergo certain planned surgeries

(hip or knee replacement, varicose vein and groin hernia repair). Participation in this pro-

gramme is voluntary for patients but mandatory for all hospitals that treat NHS-funded pa-

tients. All eligible orthopaedic patients are asked to report through a paper-based survey

their health status, functioning and health-related quality of life immediately before and six

months after surgery. We use data collected via the Oxford Hip Score (OHS) questionnaire,

which is a hip-specific instrument that has been clinically validated as an accurate measure

of health status for patients with problems of the hip joint (Dawson et al., 1996; Ostendorf

et al., 2004) (see Section 2.2 below for more detail). The PROMs and HES data are linked

based on a number of identifying characteristics, including their unique NHS number (NHS

Digital, 2017). 67% of all hip patient admissions are successfully matched for at least one

PROM record, which corresponds to about 235,000 admission records. We discuss potential

risks of attrition bias in Section 4.5.

We further exclude private hospitals from our sample. Our data set includes all patient

admissions (privately and NHS-funded) in NHS hospitals, but only admissions for NHS-funded

patients in private hospitals. The observed volumes for private hospitals would therefore

underestimate their actual volume of activity. The degree of measurement error depends on

each hospital’s unobserved volume of private patients, such that the relative distribution of

the observed volumes for private hospitals will also differ from the distribution of their actual

volumes. Results from a volume-outcome analysis based on the observed volumes will therefore

be biased. After sample cleaning, restriction to complete PROMs records and exclusion of
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private hospitals, our final sample includes 105,229 patients.

Table A.2 in Appendix indicates that patients in the final sample are slightly older, have

more comorbidities and lower pre-surgery Oxford Hip Score than patients in the initial sample

with private providers. Though the difference is small, this suggests that private providers

in England treat a healthier population overall (Moscelli et al., 2018a). This would impact

the external validity of our results only if the potential for scale economies varies across levels

of pre-operative health. However, this means that we focus on the upper end of the severity

distribution of hip replacement patients for which health gains are more likely to occur.

2.2 Dependent variable

Our measure of patient health, the OHS, contains 12 items relating to functional status (mo-

bility) and pain, each of which is evaluated on a scale from zero to four. Patients are asked

to rate the degree or frequency of pain felt (“During the past four weeks, have you had any

sudden severe pain (shooting, stabbing, or spasms) from your affected hip?”), their ability

to walk (“During the past four weeks, have you been limping when walking because of your

hip?”), use public transportation (“Have you had any trouble getting in and out of a car or

using public transportation because of your hip?”), climb stairs or do household shopping au-

tonomously, among other items5. The OHS is the sum of the scores obtained for each item and

goes from zero (worst) to 48 (best health status). The same OHS questions are distributed to

the patients shortly before and six-month after surgery. We use patients’ post-surgery OHS as

our dependent variable but control for the pre-surgery OHS, thereby assessing patient’s health

gain from the surgery.

2.3 Independent variables

Our key independent variables are the annual hospital volumes, measured as the number of

patients who have undergone a planned primary hip replacement at a given hospital during

each financial year from 2011/12 to 2015/16. In the English NHS, hospitals are organised
5The full questionnaire can be found online at: http://www.orthopaedicscore.com/scorepages/oxford_hip_
score.html [accessed 02.04.2020].
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into legal entities, formally called NHS trusts. We measure volume at the more disaggregated

hospital (site) level rather than at the trust level to obtain the physical concentration of

activity in a facility, which we assume to be more relevant to economies of scale.

We control for patients’ demographic characteristics (age, gender and ethnic group) and

socio-economic deprivation, where the latter is based on the quintiles of the 2010 or 2015

index of multiple deprivation (IMD)6 measured at the small residence area level (lower-level

super output area, LSOA) of the patients. Our model includes pre-surgery OHS grouped in

narrow bands to capture potential non-linear effects. Our model also controls for the patient’s

self-assessed disability status prior to the surgery, symptom duration and living arrangements,

as well as self-reported depression and assistance in filling the questionnaire (Department of

Health, 2012). We count the Elixhauser comorbidities reported in a patient’s hospital stays

up to one year prior to the admission for hip replacement (Elixhauser et al., 1998; Gutacker

et al., 2016). We also control for whether the patient has previously undergone hip surgery on

the other hip in the past year, the primary diagnosis (e.g. osteoarthritis) (Losina et al., 2004)

and the type of surgery (i.e. total hip replacement vs hybrid prosthetic replacement).

We control for a large set of hospital characteristics that may be associated with higher

quality (e.g. via medical expertise or better resources) independently of volumes. We include

controls for hospitals’ teaching status, whether the hospital is a specialist (orthopaedic) hos-

pital7 or a NHS foundation trust (FT) as the latter have greater financial autonomy (Gravelle

et al., 2014). Hospitals located in more affluent areas may enjoy better facilities or find it

easier to recruit healthcare staff. We proxy for these exogenous geographical differences by

using the market forces factor (MFF) which reflects unavoidable differences in hospital costs

of labour or capital and is used to adjust hospital reimbursement tariffs.

To ensure that we isolate the effect of hip replacement volumes on health outcomes from

potential confounders, we also control for the average socio-economic and demographic char-

acteristics of the population in hospitals’ catchment area. Hospitals that serve a more frail or
6The index of multiple deprivation measures deprivation across seven domains, including income, employment
and education.

7We extract information on teaching and specialist status from the Estates Returns Information Collection
collated by NHS Digital (NHS Digital, 2016).
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deprived population may have poorer outcomes, independently of volume, and hospitals may

face higher demand pressure. We define the hospital catchment area as the area within 30

km of the hospital (in line with the competition literature mentioned above) and measure the

proportion of over 65-year-olds and the average deprivation score of the population in that

area. Poorer access and availability of primary care may result in lower coordination of care in

the community and put more strain on the hospital services as a whole. We therefore include

the mean distance to the closest family physician practice, the General Practitioner (GP), for

the population who lives in the hospital catchment area8.

Robustness check analyses also include controls for the degree of competition in the hospi-

tal catchment area, proxied by the number of equivalent public hospitals whose headquarters

lie within 30 km of the hospital, for the overall size of the hospital and for hospital staff

composition. Hospital size is measured by the total number of beds for general acute care (in-

cluding overnight and day-only beds) at the trust level. We construct dummies corresponding

to seven categories of hospital size: less than 400 beds, 400-549 beds, 550-699 beds, 700-849

beds, 850-999 beds, 1000-1149 beds and over 1150 beds. Data are published quarterly by NHS

England and averaged across quarters to obtain hospitals’ yearly mean number of beds. Data

on hospital staff are reported monthly through the Electronic Staff Records and published

quarterly by NHS digital. We construct the proportion of hospital staff who are consultants

(i.e. senior NHS doctors), the ratio of nursing staff to doctors in full time equivalent (FTE)

and the ratio of nursing staff to beds as the yearly mean across quarters.

8We construct these variables based on population statistics from the Office for National Statistics for small
homogenous geographic areas called Lower Super Output Areas (LSOAs). The hospital catchment area
comprises all the LSOAs whose centroid falls within 30 km of the hospital’s headquarters.
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3 Methods

3.1 Baseline model with observed volumes

We study the effect of hospital volume on health gains after hip replacement surgery. Our

econometric model is specified as follows:

yiht = α+ vol
′
htβ1 + x

′
ihtβ2 + k

′
htβ3 + δt + ϵiht, (1.1)

where yiht is the post-surgical OHS of patient i in hospital h at time of admission t, xiht

is a vector of patient characteristics (age in 10-year bands, gender, comorbidities, the pre-

surgery OHS, socio-economic status) to adjust for differences in case-mix across hospitals. kht

is a vector of time-varying controls for hospital characteristics (i.e. NHS foundation trust,

specialist orthopaedic, teaching hospitals and market forces factor factor in given year t)9

and control for characteristics of hospitals’ catchment area (proportion of population over 65

years old, mean deprivation and distance to closest GP). δt is a vector of year dummies which

account for aggregate change in quality over time. ϵiht is a random error term.

Our main interest is in the effect of hospital volume on patients’ post-surgery health status.

Hospital volume volht is entered as a vector of four dummy variables corresponding to volume

categories: volht<150, 150≥ volht>200, 200≥ volht>300 and volht ≥300. This allows for a

non-linear relationship due to decreasing marginal returns to scale; especially at the lower

end of the volume distribution where scale economies are likely to occur. To our knowledge,

there is no evidence on the safety threshold for planned hip replacement using PROMs. Using

volume quartiles would not permit comparability of the results across specifications given that

observed and predicted volumes follow different distributions. We therefore define category

thresholds that allow for more weight to be placed on the lower volume categories given ex-

pected diseconomies of scale, whilst ensuring that we have enough hospitals in each category
9These characteristics are defined at the trust level. For simplicity, we use the same subscript h for hospitals
and trusts.
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and both volume distributions for consistent estimation10. We also present results using the

log of hospital volume. We estimate Equation (1.1) with pooled OLS. We also estimate a

second model where we add hospital fixed effects, denoted with γh, to control for unobserved

time-invariant hospital factors. We adjust standard errors for clustering at the hospital level11.

3.2 Endogeneity concerns

Regression models, such as that defined in Equation (1.1), may provide a biased estimate of

the volume-outcome relationship in the presence of reverse causality from quality to volume,

or omitted variables linked to unobserved patient severity or hospital characteristics.

First, low (high) quality hospitals will face a lower (higher) demand, thus inducing a

positive correlation in our estimates of Equation (1.1). To address this, we borrow from

the literature on the effect of competition on hospital quality. A similar challenge in this

literature arises since hospitals’ market share, measuring the hospital market structure via

the Herfindahl-Hirschman Index (HHI), may be potentially (endogenously) determined by the

quality of the hospital and of its competitors (Gowrisankaran and Town, 2003; Gaynor et al.,

2013). These studies use discrete patient choice models, based on patients’ distance to the

hospital and hospital characteristics, to obtain predicted patient volumes and thus predicted

market shares to derive an exogenous measure of hospital market structure (i.e. exogenous

HHI).

We follow a similar approach but focus on predicted hospital volumes rather than market

shares. This amounts to constructing the volumes that would be observed if patients were

choosing hospitals based on geographical proximity12. Our identification strategy is therefore

based on assumptions commonly made in the literature that i) patients’ residential choices are

not based on the quality of the surgical interventions provided by the surrounding hospitals,
10The smallest volume category accounts for 10% of the volume distribution and a minimum of 21 hospitals.
11Technically, we cluster at the trust (i.e. legal entity) level, given possible correlation across hospitals within

a trust.
12There is an analogy between our method and previous instrumental variable strategies (Gaynor et al., 2005;

Hentschker and Mennicken, 2018) because both rely on the exogeneity of patients’ distance to the hospital.
However, the conditional logit model allows for non-linear effects whereas the first stage in an IV strategy is
estimated by OLS and thus assumes linearity in the parameters.
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and ii) that patients derive higher disutility and costs from travelling further (Kessler and

McClellan, 2000; Gaynor et al., 2005; Gutacker et al., 2016; Hentschker and Mennicken, 2018;

Moscelli et al., 2018a). Whilst residential sorting is plausible in the context of education, as

families may choose to live close to a charter school for instance (Horowitz et al., 2009; Chung,

2015), this is unlikely in the context of acute hospital care in high-income countries. Residen-

tial sorting in our case would imply that patients anticipate their future need for a specific

healthcare procedure, here orthopaedic surgery, when choosing where to live, and have a good

knowledge of this specific aspect of hospital quality. This is even less plausible in the context

of a hip replacement, which is a one-off acute treatment for relatively healthy individuals, as

opposed to patients with chronic conditions who may require repeated treatments for the rest

of their lives. Further, hospital quality has been shown to be only weakly correlated across

conditions (low-risk vs high-risk conditions) and types of care (emergency vs planned care)

(Gravelle et al., 2014; Skellern, 2017) and is likely to vary over time. In particular, Gravelle

et al. (2014) test for correlation between different measures of quality for a sample of English

hospitals, and find that hospitals’ overall mortality rates are not correlated with any measures

of quality related to planned orthopaedic activity (i.e., readmission or revisions after hip or

knee replacements). A formal presentation of the choice model is given in Section 3.3.

Second, family physicians may refer their most severely ill patients to hospitals with better

quality and higher volumes (Geweke et al., 2003; Hentschker and Mennicken, 2018). We

control for differences in hospitals’ case-mix with patients’ self-reported pre-surgery health

and a comprehensive set of comorbid conditions. Pre-surgery measures of functional status

and pain allow us to adjust more thoroughly for differences in patients’ ability to benefit

from surgery than has been possible in previous studies. Any remaining differences between

hospitals in terms of unobserved patient severity should be limited.

Finally, hospitals may be able to provide higher quality through unobserved determinants

of quality that also correlate with volume. By failing to control for these, parameter estimates

in Equation (1.1) will suffer from omitted variable bias. We address these concerns by running

specifications with hospital fixed effects. Results from a hospital fixed effects model estimate
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the effect of change in volume within hospitals over time on patient health outcomes. While

using hospital fixed effects may also curtail relevant variation in volume, e.g. across hospitals,

it allows for a thorough control of potential unobserved time-invariant hospital factors, and

thus mitigates further the risk of omitted variable bias. In addition, we test the sensitivity of

our results to the inclusion of additional time-varying hospital control variables that may be

potentially correlated with volume (degree of competition) or endogenous to volume (overall

size of the hospital, or hospital staff composition) in the robustness checks reported in Sec-

tion 4.5.

3.3 A model of patient choice of hospital

To implement the empirical strategy outlined above, we estimate a conditional logit model of

patient choice of hospital (McFadden, 1974). We include in the choice set all public and private

hospitals that treat NHS patients. The sample includes the whole population of planned hip

replacement patients who had surgery, regardless of whether they participated in the PROMs

survey. The utility of patient i choosing hospital h at time t can be written as:

uiht = Viht + viht, (1.2)

where Viht is the utility of patient i derived from observed characteristics of hospital h and

viht is the unobserved utility. We specify Viht as:

Viht = γ1diht + γ2d
2
iht + γ3d

3
iht + γ4closeiht + z

′
htγz +

K∑
k=1

xikt(γ1diht + γ2d
2
iht + γ3d

3
iht), (1.3)

where diht represents the distance between patient i and hospital h at time t, measured as the

straight-line distance between hospital’s postcode and the centroid of patient’s LSOA of resi-

dence, and γ1 is the associated (dis)utility of travel. We include quadratic and cubic terms of

distance to allow for a non-linear effect on patient’s choice utility. We add a dummy variable,

closeiht, to capture the utility of avoiding any excess travel past the closest hospital. The
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vector zht consists of dummy variables for hospital characteristics (i.e. NHS foundation trusts,

specialist (orthopaedic) hospital, teaching hospital, private hospital) as well as the number of

hospitals (sites) within a trust and whether the hospital is a treatment centre. Hospital groups

(trusts) may direct their patients to a specific hospital (site). Treatment centres typically do

not admit complex patients. We therefore control for these two admission restrictions. We

add interaction terms between all the distance terms and x = (xikt, k = 1, ..,K), a vector

of K patient characteristics (age, sex, socio-economic status, Elixhauser comorbidities, and

whether the patient lives in a rural area13) as the impact of distance on hospital choice also

depends on patients’ socioeconomic and clinical factors14. Standard errors are clustered at the

family physician practice level to account for correlation in hospital choice across patients of

the same practice.

Assuming that the unobserved utility terms viht are iid extreme-value (Train, 2009), the prob-

ability that patient i chooses hospital h at time t can be estimated by maximum likelihood

and is given by:

p̂iht =
exp(V̂iht)∑

h′∈Mit
exp(V̂iht′)

, (1.4)

where Mit is the patient choice set containing patient i’s 50 closest hospitals. The predicted

volume of hospital h is equal to the sum of the estimated probabilities p̂iht across all patients

of choosing hospital h:

v̂olht =

N∑
i=1

p̂iht =

N∑
i=1

exp(V̂iht)∑
h′∈Mit

exp(V̂iht′)
, (1.5)

We estimate Equation (1.4) for the whole sample of planned primary hip replacement pa-

tients in England for all years between 2011/12 and 2015/16, after exclusion of patients under
13The geographical information for lower super output areas (LSOAs) comes from the Office of National

Statistics.
14In a sensitivity analysis, we included an indicator variable for patients who had a hip replacement surgery in

the previous year (slightly under four percent of the sample), to account for the fact they will likely return
to the same hospital. Predicted volumes under this alternative specification were highly correlated with our
baseline predicted volumes (Pearson correlation coefficient = 0.99).
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50 years old who are atypical medical cases for planned hip replacement and hospitals with less

than 20 hip replacement cases per year. In the robustness check presented in Table A.1 in Ap-

pendix, we also relax these sample restrictions when estimating the choice model. Preferences

in hospital choice may vary across years. We therefore estimate the choice model separately

for each year before merging all years to obtain the final sample.

Appendix Tables A.3, A.4 and Figure A.1 present summary statistics for the choice model

sample, consisting of 261,743 patients15. Predicted hospital volumes are less dispersed than

observed volumes (Figure A.2, Appendix). We use the same sample restrictions to compute

observed volumes to ensure that both predicted and observed volumes sum up to the same

total patient population16. The correlation coefficient between both measures of volumes in

our estimation sample is 0.61 (p<0.01).

Conditional logit models have the advantage that they are tractable and computationally

simple. These properties however rely on the assumption of independent error terms. If this

holds, estimated coefficients are invariant to which alternatives/choices are available (indepen-

dence of irrelevant alternatives, IIA). We omit hospital quality from our model specification17,

thus creating potential correlation in the error terms. The IIA property of logit models is prob-

lematic in forecasting exercises (i.e. when forecasting the demand for a new alternative) as it

imposes strong restrictions on substitution behaviours. However, it is considered less crucial

when estimating average aggregate preferences (Train, 2009, p.36). Our model is therefore

an approximation of patients’ demand for hospitals, if they were to ignore hospital quality

considerations. We re-estimate our model with varying sets of alternatives (comprising the

30 and 10 closest hospitals in patients’ choice set). Hospitals’ predicted volumes under both

specifications are highly correlated (Pearson correlation coefficient= 0.97), suggesting that any

potential violation of the IIA assumption does not affect our results.

15Estimated coefficients from the choice model are available in Table A.5 in Appendix.
16The observed volumes with and without these sample restrictions have a correlation coefficient of 0.98.
17As a sensitivity analysis, we also estimate our choice model with hospital quality using hospitals’ average

lagged risk-adjusted Oxford Hip Score gain and standardized overall mortality rates, before removing these
effects for the computation of predicted volumes. Predicted volumes under this alternative specification of
the choice model are highly correlated with our baseline choice model (Pearson correlation coefficient =0.98)
and results are unchanged.
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4 Results

4.1 Summary statistics

In our sample, hospitals treat on average 222 hip replacements patients annually, ranging

from 20 to 1,238 surgeries. Table 1.1 also reports the total, between and within-hospital stan-

dard deviation for all hospital characteristics. The within-hospital standard deviation is much

smaller (40.31), about 27%, than the between-hospital standard variation (147.69) as hospitals

are less likely to experience dramatic changes in volumes over time. 57% of hospitals are NHS

Foundation Trusts (Table 1.1). Teaching hospitals and specialist orthopaedic hospitals account

respectively for 21% and two percent of hospitals. The average hospital has a market forces

factor of 1.08 and a (total) standard deviation of 0.07. On average, 16.93% of the population

in the hospital catchment area is over 65 years old. Population in the hospital catchment area

has a mean deprivation rank of 15,971 (relative to the catchment area with highest deprivation

with a rank of 24,208), and lives on average 1.48 km away from the closest GP practice.

Table 1.1: Summary statistics for hospital characteristics

Mean Std. Dev. Min. Max.

Total Between Within

Observed volume 222.54 156.45 147.69 40.31 20.00 1238.00
Foundation Trust 0.57 0.49 0.49 0.07 0.00 1.00
Teaching hospital 0.21 0.41 0.41 0.06 0.00 1.00
Specialist hospital 0.02 0.13 0.12 0.00 0.00 1.00
Market forces factor 1.08 0.07 0.07 0.03 1.00 1.30
Hospital catchment area
% of pop. over 65 years 16.93 3.10 3.05 0.49 11.23 24.55
Mean deprivation rank 15717.74 3143.93 3224.20 393.15 11383.87 24665.11
Mean distance to GP (km) 1.48 0.54 0.52 0.04 0.78 3.44

Hospital-years 892

Notes: Volume is the number of annual planned primary hip replacements per hospital. The market forces
factor index adjusts hospital resource allocation for unavoidable geographical differences in the costs of labour
and capital. A hospital catchment area comprises all the small homogenous geographic areas (Lower Super
Output Areas, LSOAs) whose centroid falls within 30 km of the hospital’s headquarters. The index of multiple
deprivation ranks each LSOA according to their level of deprivation, from 0 (the most deprived) to 32,844 (the
least deprived).
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Figure 1.1 shows the unadjusted relationship between OHS health gains and hospital volumes,

suggesting a small positive association between hospital volumes and surgery health gain.

Figure 1.1: Association between hospital volume and Oxford Hip Score (OHS) health gain

Notes: Plot of the average OHS health gains (post-surgery minus pre-surgery OHS, unadjusted for other patient
characteristics) per hospital against hospital volumes, for all hospital-years between 2011/12 and 2015/16.

Table 1.2 presents descriptive statistics of patient characteristics. The average pre-surgery

OHS is 17.52 points, and patients gain on average 22 points (from 17.52 to 38.69) six months

after surgery. Patients are on average 70 years old and 40% of our sample are male. On

average, patients report slightly over one (1.37) Elixhauser comorbidity. The large majority

of patients (70%) report having hip-related symptoms for between one and five years.
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Table 1.2: Summary statistics for patient characteristics

Mean Std. Dev. Min. Max.

Post-surgery OHS 38.69 9.03 0 48
Pre-surgery OHS 17.52 8.07 0 48
Age 69.87 8.90 50 99
Male patient 0.40 0.49 0 1
Elix. comorbidity count 0.25 0.73 0 8
Index of multiple deprivation (IMD):
1st quintile 0.24 0.43 0 1
2nd quintile 0.25 0.43 0 1
3rd quintile 0.22 0.42 0 1
4th quintile 0.17 0.38 0 1
5th quintile - Most deprived 0.12 0.32 0 1
Ethnicity: white 0.91 0.28 0 1
Surgery on the other hip 0.18 0.39 0 1
Diagnosed with osteoarthritis 0.97 0.18 0 1
Hybrid prosthetic replacement 0.19 0.39 0 1
PROMs questions:
Self-reported disability 0.61 0.49 0 1
Self-reported depression 0.08 0.27 0 1
Received assistance in filling questionnaire 0.07 0.26 0 1
Symptoms duration:
<1year 0.13 0.34 0 1
1-5 years 0.70 0.46 0 1
6-10 years 0.11 0.31 0 1
>10 years 0.06 0.23 0 1
Living arrangements:
Lives alone 0.28 0.45 0 1
Lives with family 0.71 0.45 0 1
Other 0.01 0.08 0 1

Observations 105229

Notes: The IMD is calculated for small residence areas (LSOAs) in England. The Oxford Hip Scores (OHS)
range from the worst reported health state (=0) to the best (=48) and are collected for each patient shortly
before and six months after the operation.

Table 1.3 presents summary statistics for surgeon characteristics used in Section 4.3. On aver-

age, a surgeon treats around 56 planned hip replacement patients per year. 99% of orthopaedic

surgeons are male. 63% of the surgeons are trained in the U.K. and have on average 24 years

since their primary medical qualification. We exclude surgeons who report less than 10 cases

a year (N=1,130 surgeons, more than half of which only treat one hip replacement patient per
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year), and four surgeon outliers who report more than 300 annual cases.

Table 1.3: Summary statistics for surgeon characteristics

Mean Std. Dev. Min. Max.

Total Between Within

Surgeon yearly volume 56.67 40.69 37.31 14.59 10 270
Male surgeon 0.99 0.11 0.12 0.00 0 1
Years since qualification 24.73 7.52 7.79 1.29 9 45
Qualified in the UK 0.63 0.48 0.49 0.00 0 1

Surgeon-years 4619

Notes: Surgeon volume comprises all patients treated in all hospitals (if the surgeon holds multiple appoint-
ments). We exclude surgeons with less than 10 annual cases or above 300 annual cases who are probable
volume outliers. Years since qualification is the time since primary medical qualification, after which surgeons
follow additional specialty training.

Table 1.4 presents summary statistics for the additional hospital controls used in robustness

checks in Section 4.5. On average, a hospital has slightly under six equivalent rival hospitals in

its catchment area. Hospital bed categories are relatively evenly distributed. Hospitals with

less than 400 beds, the smallest category, stands for eight percent of the hospital sample, and

hospitals with over 1150 beds, the largest category, representing 24% of the hospital sample.

On average, doctors account for 12.68% of hospital staff in full-time equivalent. There are on

average 2.28 nursing staff for one doctor, and 1.53 nurses per bed in our sample of hospitals.
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Table 1.4: Summary statistics for additional hospital characteristics

Mean Std. Dev. Min. Max.

Total Between Within

Number of rivals 5.89 6.79 6.96 0.67 0.00 25.00
Overall number of beds
<400 beds 0.08 0.27 0.25 0.11 0.00 1.00
400-549 beds 0.13 0.34 0.25 0.11 0.00 1.00
550-699 beds 0.15 0.36 0.29 0.17 0.00 1.00
700-849 beds 0.16 0.37 0.32 0.21 0.00 1.00
850-999 beds 0.15 0.36 0.29 0.21 0.00 1.00
1000-1149 beds 0.09 0.29 0.25 0.17 0.00 1.00
>1150 beds 0.24 0.43 0.41 0.16 0.00 1.00
% of doctors in hospital staff 12.68 2.37 2.24 0.76 5.39 25.87
Nurses-doctors ratio 2.28 0.54 0.47 0.23 0.82 7.45
Nurses-beds ratio 1.53 0.34 0.32 0.16 0.90 3.46

Hospital-years 892

Notes: The number of equivalent hospital rivals in the hospital’s catchment area comprises all public hospitals
(trusts) whose headquarters lie within 30 km of the hospital. The number of beds (total of overnight and
day only beds, published quarterly by NHS England) and staff data (the proportion of hospital staff who are
doctors, the nurses-to-doctors ratio and nurses-to-beds ratio) are yearly average for hospital trusts and are
lagged by one year. Data on hospital staff are reported monthly through the Electronic Staff Records and
published quarterly by NHS digital.

4.2 Main results

Table 1.5 provides the results for the pooled OLS regression with observed hospital volumes,

indicating a positive and statistically significant association between hospital volume and

health. Relative to patients treated in hospitals with more than 300 hip replacement cases per

year (the reference group with highest volume), patients treated in hospitals with less than

150 cases (with lowest volume) are estimated to gain 0.72 fewer OHS points. The estimate is

statistically significant at the 0.1% level. Patients treated in hospitals performing between 150

and 200 cases are estimated to gain 0.48 fewer OHS points, and the coefficient is statistically

significant at the one percent level. There is no statistically significant effect of hospital

volumes of 200-300 patients relative to the base category. The volume-outcome association

is therefore weakly monotonic. A change in OHS is considered clinically meaningful if above

four points (Varagunam et al., 2015b). Therefore, the estimated association is quantitatively
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small, at around 20% (0.7 points) of a clinically meaningful change18.

The coefficients on patient characteristics are all statistically significant, though are not

substantial in clinical terms. Patients with higher pre-surgery health (OHS score) also have

higher health after surgery. Coefficients on pre-surgery scores are close to or above four

OHS points, suggesting that the difference is clinically important. Older patients tend to have

worse outcomes and male patients tend to report slightly better outcomes. Our results suggest

the existence of a socioeconomic gradient. More deprived patients have worse outcome than

less deprived ones. Having one more Elixhauser comorbidity leads to a reduced post-surgery

OHS score by about 0.47 points (12% of a minimally clinically important difference). Self-

reported depression, disability, or help in filling questionnaires are negatively associated with

post-surgery outcomes by two OHS points or above. Only specialist orthopaedic hospitals

are associated with slightly better health outcomes, though the difference is not clinically

important.

Table 1.5: Results from OLS regression with observed volumes

Post-surgery OHS

Coefficient SE

Volume [Ref.≥300]
<150 cases -0.720∗∗∗ (0.191)
150-200 cases -0.484∗∗ (0.177)
200-300 -0.242 (0.130)
Pre-surgery OHS [Ref. 0-6 pts]
6-12 pre-surgery OHS 2.996∗∗∗ (0.155)
12-18 pre-surgery OHS 5.007∗∗∗ (0.163)
18-24 pre-surgery OHS 6.314∗∗∗ (0.168)
24-30 pre-surgery OHS 7.174∗∗∗ (0.175)
30-36 pre-surgery OHS 7.987∗∗∗ (0.180)
36-42 pre-surgery OHS 8.730∗∗∗ (0.226)
42-48 pre-surgery OHS 9.250∗∗∗ (0.402)
Age [Ref. 50-59 years]
60-69 years 0.380∗∗∗ (0.097)
70-79 years -0.653∗∗∗ (0.109)
80-89 years -1.463∗∗∗ (0.126)
90-105 years -1.196∗∗∗ (0.294)

18Note however that the total OHS gains at the aggregate level can amount to more substantial health gains.
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Male patient 0.969∗∗∗ (0.056)
Ethnic group [Ref. white]
Other ethnic group -0.934∗∗ (0.332)
Ethnicity not coded 1.083∗∗∗ (0.134)
Deprivation Index IMD [Ref. 1st quintile]
2nd quintile -0.307∗∗∗ (0.075)
3rd quintile -0.579∗∗∗ (0.093)
4th quintile -1.499∗∗∗ (0.095)
5th quintile - Most deprived -2.732∗∗∗ (0.127)
Surgery on the other hip -0.677∗∗∗ (0.075)
Elix. comorbidity count -0.470∗∗∗ (0.055)
Diagnosed with osteoarthritis 1.468∗∗∗ (0.173)
Hybrid prosthetic replacement 0.209∗ (0.084)
Self-reported disability -2.414∗∗∗ (0.066)
Self-reported depression -2.995∗∗∗ (0.132)
Received assistance in filing questionnaire -2.749∗∗∗ (0.137)
Symptoms duration [Ref. <1 year]
1 to 5 years -0.767∗∗∗ (0.082)
6 to 10 years -1.504∗∗∗ (0.106)
More than 10 years -1.815∗∗∗ (0.154)
Living arrangements [Ref. alone]
Lives with family 0.393∗∗∗ (0.059)
Other -0.835∗ (0.374)
Teaching hospital -0.069 (0.137)
Specialist hospital 0.632∗ (0.281)
Foundation Trust -0.007 (0.126)
Market forces factor 0.271∗∗ (0.101)
Mean deprivation rank (catchment area) 0.000 (0.000)
Mean distance to GP (catchment area) 0.307 (0.189)
Year dummies [Ref. 2011] ref.
2012 0.638∗∗∗ (0.102)
2013 0.613∗∗∗ (0.119)
2014 0.758∗∗∗ (0.111)
2015 1.626∗∗∗ (0.132)

R2 0.175
Observations 105229

Notes: In parentheses, robust standard errors are clustered on hospitals.* p < 0.05, ** p < 0.01, *** p < 0.001

In panel A (top panel) of Table 1.6, we report the regression results for observed hospital vol-

umes and predicted hospital volumes using pooled OLS. The covariate coefficients are similar

for the specifications with observed and predicted volumes. We therefore only present the
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coefficients for hospital volume, under different functional forms: using volume categories or

continuous volume in log form. Both functional forms allow for a nonlinear effect of volume

on health outcomes.

Table 1.6: Effect of observed and predicted hospital volumes on patient post-surgery OHS

Observed hospital Predicted hospital
volumes volumes

(1) (2) (3) (4)

Panel A: Pooled OLS
Volume [Ref.≥300]
<150 cases -0.720∗∗∗ 0.012

(0.191) (0.250)
150-200 cases -0.484∗∗ 0.011

(0.177) (0.152)
200-300 -0.242 -0.199

(0.130) (0.140)
Log(volume) 0.404∗∗∗ -0.028

(0.089) (0.178)

R2 0.175 0.175 0.174 0.174

Panel B: Fixed Effects
Volume [Ref.≥300]
<150 cases -0.316 -0.106

(0.239) (0.274)
150-200 cases -0.092 -0.151

(0.174) (0.204)
200-300 -0.146 -0.101

(0.098) (0.118)
Log(volume) 0.202 0.157

(0.195) (0.263)

R2 0.182 0.182 0.182 0.182
Observations 105229 105229 105229 105229

Notes: The same covariates (patient controls, hospital time-varying controls and year dummies) as in Table 1.5
are included. In parentheses, robust standard errors clustered on hospitals. * p < 0.05, ** p < 0.01, *** p <
0.001

Table 1.6, panel A, shows that observed hospital volume is associated with higher patient

post-surgery OHS scores, irrespectively of the functional form of volume chosen. However,

when using the predicted (exogenous) hospital volumes, the volume coefficients reported in
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columns 3-4 are smaller and no longer statistically significant. This suggests the presence of a

spurious positive relation between health outcomes and volumes. After accounting for reverse

causality, due to hospitals with higher quality attracting more patients, hospital volumes are

no longer associated with improved health outcomes (Table 1.6, Panel A, columns 3-4)19.

In panel B (bottom panel) of Table 1.6, we report the same results but estimate a hos-

pital fixed-effects model. Our results are essentially similar: predicted hospital volumes are

not statistically significant, indicating no causal effect of volume on patient health (panel B,

columns 3-4). However, observed hospital volumes are no longer significantly associated with

better patient health outcomes in this context (panel B, columns 1-2). This may be because

the fixed effects specification solely relies on the within-hospital variation in volume over time,

which is limited in this context as shown in summary statistics in Table 1.120. Results are

also robust to the exclusion of (observed) volume outliers (i.e., hospitals treating over 1,000

annual hip replacement cases).

4.3 Testing for the effect of surgeon volume

Volume-outcome effect may be due to hospital factors and/or personnel effects. Healthcare

personnel, and chiefly, surgeons, may experience positive learning effects as their volumes of

activity increase. They may gain technical proficiency and become more apt at detecting

complications. A higher volume of patients, if it entails a more regular practice, may also

ensure that operating skills are maintained over time (Ramanarayanan, 2008; Hockenberry and

Helmchen, 2014). To test that hospital volume is not simply a proxy for individual surgeon

effects, we run the same models but additionally control for individual surgeons’ yearly volume

and characteristics, such as their gender, years since graduation as a proxy for seniority and

being trained in the U.K.
19Note that with predicted volumes, bootstrapping standard errors would be the appropriate technique to

account for the fact that the predicted volumes are generated in a first stage choice model. Model-based
standard errors do not account for sampling variation in the predicted volumes, which may lead to downward-
biased standard errors (Murphy and Topel, 1985). However, because the procedure is computationally
intensive and because larger standard errors would not affect our results as we find a null effect for predicted
hospital volumes, we do not bootstrap the standard errors throughout the study.

20More substantial changes in hospital volumes over time may arise after the closure of nearby hospitals or
hospital mergers. Such quasi-exogenous shocks in volume have been used elsewhere in the literature (e.g.
Avdic et al. (2019))
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Our strategy of predicting hospital volumes based on distance cannot be extended to

surgeon volumes because patients would travel the same distance to surgeons within the same

hospital. We argue that selective referral to high-quality surgeons should be limited, given

that little information was available on surgeon performance during our study period. In

2015/16, online statistics were limited to a surgeon’s 90-day mortality rate after primary hip

replacement (NHS Commissioning Board, 2012), and reported that all surgeons were in line

with expectations21 (Varagunam et al., 2015a). However, we cannot completely exclude that

surgeon volumes are endogenous, e.g., if allocation of patients to surgeons within a hospital is

not random. We therefore do not claim causality of the surgeon volume effect.

Table 1.7 shows the results of a specification where we allow for surgeon effects. As

in Table 1.6, we report results from two specifications: first, we run a pooled OLS model

(panel A) and second, we estimate a surgeon fixed effects model (panel B) to account for

unobserved surgeon effects. Hospital fixed effects will be highly collinear with surgeon fixed

effects, therefore we only include surgeon fixed effects. We alternatively use continuous surgeon

volumes in logs to allow for a nonlinear effect of surgeon volumes on health outcomes (columns

1 and 3) and a categorical variable (columns 2 and 4) for surgeon volume above the safety

threshold (35 annual cases) identified by Ravi et al. (2014) for surgeons performing total hip

arthroplasty in the U.S.

Results from the pooled OLS model indicate that there is a significant effect of surgeon

volume on patient health. The quantitative effect however is small. A 10% increase in surgeon

volume is associated with around 0.05 additional OHS points, equivalent to 1.25% of a clinically

minimal important difference (four OHS points). The effect is stronger (coefficient around 0.6,

i.e. approximately 15% of a minimally important difference) when we compare surgeons who

perform less than 35 annual cases with surgeons above that threshold. The coefficient for

surgeon volumes is stable across specifications.

21This is also stated on the National Joint Registry website to inform patient choice for current data: http:
//www.njrsurgeonhospitalprofile.org.uk/FAQ#10.
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Table 1.7: Results with surgeon volumes, pooled OLS and surgeon fixed effects

Observed hospital Predicted hospital
volumes volumes

(1) (2) (3) (4)

Panel A: Pooled OLS
Hospital volume [Ref.≥300]
<150 cases -0.412∗ -0.534∗∗ 0.103 0.065

(0.172) (0.174) (0.226) (0.237)
150-200 cases -0.243 -0.347∗ 0.153 0.080

(0.165) (0.168) (0.129) (0.142)
200-300 -0.122 -0.194 -0.099 -0.140

(0.117) (0.126) (0.122) (0.136)
Log(surgeon volume) 0.487∗∗∗ 0.537∗∗∗

(0.071) (0.071)
Surgeon volume ≥35 0.570∗∗∗ 0.637∗∗∗

(0.108) (0.108)
Male surgeon 0.608 0.683∗ 0.592 0.689∗

(0.310) (0.309) (0.313) (0.311)
Qualified in the UK 0.281∗ 0.359∗∗ 0.303∗ 0.397∗∗

(0.118) (0.120) (0.120) (0.124)
Years since qualification -0.030∗∗∗ -0.027∗∗∗ -0.030∗∗∗ -0.027∗∗∗

(0.006) (0.006) (0.006) (0.006)

R2 0.177 0.177 0.177 0.177

Panel B: Surgeon Fixed Effects
Hospital volume [Ref.≥300]
<150 cases -0.507∗∗ -0.542∗∗ 0.348 0.309

(0.183) (0.184) (0.243) (0.248)
150-200 cases -0.142 -0.173 0.111 0.073

(0.171) (0.168) (0.174) (0.176)
200-300 -0.088 -0.106 0.033 0.005

(0.098) (0.097) (0.108) (0.110)
Log(surgeon volume) 0.282∗ 0.324∗∗

(0.126) (0.124)
Surgeon volume ≥35 0.203 0.216

(0.155) (0.153)

R2 0.200 0.200 0.200 0.200
Observations 101304 101304 101304 101304

Notes: The same covariates (patient controls, hospital time-varying controls and year dummies) as in Table 1.5
are included. In parentheses, robust standard errors are clustered on hospitals. In panel B, surgeon charac-
teristics (being male, qualification in the U.K. or years since qualification) are not included as they would be
collinear with the surgeon fixed effects or the year dummies. Sample size is slightly smaller due to missing
surgeon characteristics or exclusion of surgeon outliers. * p < 0.05, ** p < 0.01, *** p < 0.001
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Hospitals with small volumes of hip replacement patients, i.e. under 150 cases a year, are

associated with worse health outcomes, even though the effect is smaller once we control for

surgeon volumes and surgeon characteristics. Surgeons who qualified in the U.K. are associated

with slightly better health outcomes, while the number of years since graduation is associated

with slightly worse outcomes, possibly because older surgeons are less familiar with the medical

state-of-the-art knowledge. Results from the specification with surgeon fixed effects (panel B)

however show that surgeon volume is associated with differences in patient health but the

magnitude of the association is smaller once we control for time-invariant surgeon effects with

surgeon fixed effects.

Overall, the results in Table 1.7 confirm that observed hospital volume is significantly as-

sociated with patient health outcomes, even after controlling for surgeon effects. Predicted

hospital volume has no effect on health gains even after controlling for surgeon effects (Ta-

ble 1.7, columns 3 and 4), even when we include surgeon fixed effects (Table 1.7, panel B).

Some surgeons in public hospitals may also treat privately funded patients in private (inde-

pendent sector) hospitals. For these surgeons, our measure of volume is smaller than the total

carried out across public and private hospitals. We run the same analysis on the subsample

of surgeons whom we observe to work only in NHS hospitals (around 55%, N=689)22. Our

results (Table A.6 in Appendix) are unchanged.

The results show that observed hospital volume is associated with health outcomes, even

after controlling for individual surgeon volume and surgeon fixed effects. In a robustness check

in Section 4.5, we control for other measures of personnel effects, such as the proportion of

staff who are doctors or the nurses-to-beds ratio both measured at the hospital level.
22While private hospitals represent an important share of all NHS funded care (i.e. in 2015/16, close to

one third of NHS-funded planned hip replacement patients were treated in private hospitals in our data),
privately-funded hip replacements across all hospitals accounted for less than 13% of the total hip replacement
volume in 2010/11 according to Kelly and Stoye (2016). The likelihood that surgeons working in private
hospitals only treat private patients is therefore low, and any remaining unobserved volumes would be small
in magnitude.
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4.4 Broader measures of volume

Scale economies may also arise from performing treatments that are different but related

to planned hip replacements, and therefore contribute to improvement in health outcomes

for these patients through ameliorated processes or learning-by-doing effects (Schilling et al.,

2003). To address this, in this section, we employ more comprehensive measures of orthopaedic

volumes. We first include emergency hip replacements in our measure of hospital and surgeon

volumes, as this relate to the same procedure but in an emergency rather than an elective

setting. Second, we further add knee replacements, which are also performed in an elective

setting and involve similar surgeon skills. Table A.7 in Appendix present summary statistics

for these different definitions of volumes.

Table 1.8 compares the results when using different measures of hospital volumes. Given

that different definitions of volume have a different support and distribution, we use the

log of volume, rather than the previously defined volume categories, to compare the results.

Columns (1) and (4) correspond to our baseline measure of volume comprising all planned

hip replacements. The coefficient on observed volume is significant in most specifications in

columns 1-3 but diminishes in size as we include additional activity, first by adding emergency

hip replacements (column 2), and then, planned knee replacements (column 3). These results

suggest that these additional surgeries are less relevant to returns of scale and including them

potentially introduces some measurement error. Coefficients for predicted hospital volumes

are not statistically significant for either definitions of volumes (columns 4-6). When we

introduce hospital fixed effects (panel B), as with our baseline results, no measure of volume

is statistically significant.
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Table 1.8: Results with broader measures of hospital volumes

Observed hospital volumes Predicted hospital volumes

(1) (2) (3) (4) (5) (6)

Panel A: Pooled OLS
Log(volume) 0.404∗∗∗ -0.028

(0.089) (0.178)
Log(volume) - with emergency 0.325∗∗ -0.173
hip replacements (0.105) (0.177)
Log(volume) - with emergency 0.295∗∗ -0.205
hip and planned knee replacements (0.106) (0.188)

R2 0.175 0.175 0.174 0.174 0.174 0.174

Panel B: Fixed effects
Log(volume) 0.202 0.157

(0.195) (0.263)
Log(volume) - with emergency 0.070 -0.225
hip replacements (0.236) (0.266)
Log(volume) - with emergency 0.061 -0.151
hip and planned knee replacements (0.234) (0.296)

R2 0.183 0.183 0.183 0.183 0.183 0.183
Observations 105229 105229 105229 105229 105229 105229

Notes: The same covariates (patient controls, hospital time-varying controls and year dummies) as in Table 1.5
are included. In parentheses, robust standard errors are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p
< 0.001

Similarly, Table 1.9 shows the results when adding surgeon volume using these different

definitions. We keep our baseline measure of hospital volume (planned hip replacements) as

results from Table 1.8 show these seem the most relevant to measure returns to scale. Sur-

geon volume is associated with better health post-surgery OHS, though the magnitude of the

association is similar or lower when we include related orthopaedic activity, as with hospital

volumes in Table 1.8. The overall results are unchanged: observed hospital volumes are associ-

ated with patient post-surgery health, even after controlling separately for individual surgeon

volume and characteristics.
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Table 1.9: Results with broader measures of surgeon volumes (pooled OLS)

Observed hospital volumes Predicted hospital volumes

(1) (2) (3) (4) (5) (6)

Hospital volume [Ref.≥300]
<150 cases -0.412∗ -0.439∗ -0.538∗∗ 0.103 0.103 0.044

(0.172) (0.172) (0.179) (0.226) (0.228) (0.235)
150-200 cases -0.243 -0.271 -0.346∗ 0.153 0.152 0.092

(0.165) (0.164) (0.170) (0.129) (0.129) (0.142)
200-300 -0.122 -0.142 -0.186 -0.099 -0.107 -0.137

(0.117) (0.117) (0.128) (0.122) (0.123) (0.136)
Log(volume) 0.487∗∗∗ 0.537∗∗∗

(0.071) (0.071)
Log(volume) - with emergency 0.510∗∗∗ 0.566∗∗∗

hip replacements (0.078) (0.078)
Log(volume) - with emergency 0.295∗∗∗ 0.358∗∗∗

hip and planned knee replacements (0.079) (0.076)
Male surgeon 0.608 0.626∗ 0.682∗ 0.592 0.613∗ 0.675∗

(0.310) (0.305) (0.309) (0.313) (0.309) (0.312)
Qualified in the U.K. 0.281∗ 0.281∗ 0.360∗∗ 0.303∗ 0.304∗ 0.393∗∗

(0.118) (0.118) (0.123) (0.120) (0.121) (0.127)
Years since qualification -0.030∗∗∗ -0.027∗∗∗ -0.027∗∗∗ -0.030∗∗∗ -0.027∗∗∗ -0.027∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

R2 0.177 0.177 0.177 0.177 0.177 0.176
Observations 101304 101304 101304 101304 101304 101304

Notes: The same covariates (patient controls, hospital time-varying controls and year dummies) as in Table 1.5
are included. In parentheses, robust standard errors are clustered on hospitals. Sample size is slightly smaller
due to missing surgeon characteristics or exclusion of surgeon outliers. * p < 0.05, ** p < 0.01, *** p < 0.001

4.5 Robustness checks

Our estimation of predicted volumes based on the patient choice model relies on patients’

distance to the hospital being exogenous to hospital quality, conditional on our set of controls.

This assumes that there are no unobserved patient confounders that relate both to patient dis-

tance to the hospital and to health outcomes. Though untestable, this is plausible considering

our large set of patient controls. Unlike for certain acute conditions that require immediate

treatment, e.g. heart attacks or strokes, where delays in access to care may impact health out-

comes, timely access to care does not affect health outcomes in the case of planned hip surgery

(Tuominen et al., 2010; Brealey et al., 2012). Further, we show in Appendix, Table A.8, that
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patient distance to the hospital is not correlated with patient pre-surgery OHS or with the

number of comorbidities after controlling for main patient socio-economic characteristics23,

suggesting that remaining unobserved confounders are unlikely.

Our dependent variable, post-surgery Oxford Hip Score, is a subjective measure of health.

Patients who care about hospital quality, and select actively into better quality hospitals,

may also answer the outcome questionnaire differently. As a robustness check, we use the

probability of having a revision surgery within three years of the index surgery as an alternative

and objective measure of patient health outcome24. Results, in Appendix Table A.9, confirm

our baseline results with PROMs: there is no statistically significant effect of predicted hospital

volume on mortality rates. Like with PROMs, patients treated in hospitals with smaller

observed volumes are associated with a higher risk of having a revision surgery, though the

effect is only statistically significant at the 10% level.

Furthermore, patient participation in the PROM survey is voluntary and attrition may

happen for different reasons. If attrition is systematically correlated with health outcomes

and hospital volumes, our estimates will be biased. If non-response to the PROMs question-

naires is driven by poorer underlying patient health, our rich set of risk-adjustment variables

(including the pre-surgery OHS) ensures that differences in hospitals’ case mix are accounted

for. In addition, we regress the rate of PROMs participation per hospital, corresponding to

the number of patients who answered the questionnaires out of the total number of eligible

patients, on hospital volumes, patient case-mix and hospital status. Results in Table A.10

in Appendix indicate no systematic correlation between hospitals’ rate of participation to

PROMs and hospital volumes. Overall, this suggests that bias linked to attrition is unlikely.

Hospitals may provide better quality through unobserved time-varying determinants that

correlate with hospital volume. Our large set of hospital-level controls together with the
23Results from Table A.8 show that patient distance to the closest hospital is weakly correlated with the

number of comorbidities (i.e. increasing patient distance to the closest hospital by 100 km is associated with
around 0.6 lower comorbidities) but the effect is driven by patients with the highest distance to the closest
hospital. The correlation disappears when we remove the top percentile of patients with the largest distance
to their closest hospital.

24Post-surgical mortality is another objective measure of health outcomes but it is very low for planned hip
replacement surgery (around 0.06% in our initial sample), as opposed to around 1.3% for three-year hip
revision surgery.
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exclusion of private hospitals mitigates the risk of systematic quality differences (e.g., linked

to ownership type). In addition, we run the following robustness checks. First, previous

studies have found that hospitals in more competitive areas respond to the competition by

increasing quality (Gaynor et al., 2013; Bloom et al., 2015; Cooper et al., 2018), though

the effect varies across countries and procedures25. We therefore control for the degree of

competition in the hospital market, proxied by the number of equivalent rival hospitals in

the hospital catchment area (Bloom et al., 2015; Moscelli et al., 2018b). This is because

competition could be correlated with hospital volume, if higher aggregate supply causes lower

volume for each provider, for a given demand, or if more competitive areas face proportionally

larger demand than less competitive areas even accounting for higher supply.

Second, we check that our results are due to the effect of the volume of hip replacement

patients on health outcomes, rather than the overall size of the hospital. For instance, larger

hospitals may benefit from economies of scope across clinical departments, by pooling resources

or skills, which may benefit the quality of care. We measure hospital size by the total number

of hospital beds for general acute care and include controls for seven categories: less than

400 beds, 400-549 beds, 550-699 beds, 700-849 beds, 850-999 beds, 1000-1149 beds and over

1150 beds. We do not control for hospitals’ size in our baseline model because, similarly to

hip replacement volume, it is prone to a reverse causality effect, whereby hospitals with high-

quality reputation will attract more patients, thus driving hospitals’ bed capacity upward.

Third, hospital staff composition may impact the quality of care, independently of volume.

The presence of experienced colleagues may have a positive effect on the team (Ayoubi et al.,

2017). We additionally control for the proportion of hospital staff who are doctors, the nurses-

to-doctors ratio and the nurses-to-beds ratio across the hospital26. Again, we do not include

this variable in our baseline regressions because staff composition may also reflect hospital

quality, if high-quality hospitals are more successful in recruiting more qualified personnel.
25Feng et al. (2015) find no association between market competition of hospitals and patient-reported health

outcomes for planned hip replacements in England, while Skellern (2017) finds that a pro-competition reform
in the English NHS had a negative effect on PROMs for hip and knee surgeries.

26Variables that are directly under hospital control, such as staff composition and the hospital’s total number
of beds, are lagged by one year, ensuring that they were measured before our dependent variable and thus
could not have been affected by the contemporaneous level of quality.
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The regression results, shown in Table 1.10, do not differ from our main results. The

positive relationship between the observed hospital volumes (lowest volume category) and

the patient outcomes is unchanged and statistically significant. The predicted volumes show

no causal effect on patient health gains in any of the specifications. The coefficients on the

pre-surgery Oxford Hip Scores are stable across specifications. None of the additional hospital

characteristics shows a statistically significant relationship with patient outcomes. The sample

size in Table 1.10 is smaller because of some missing staff characteristics for certain years for

certain hospitals.

Other unobserved mechanisms might be at work within hospitals. For instance, the pres-

ence of physical therapists, whom we do not have data on, could improve patient rehabilitation.

Overall, however, our set of additional controls suggest that our results successfully isolate the

potential for economies of scale in hip replacement from a range of potential confounders.
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Table 1.10: Results with additional hospital control variables

Observed volumes Predicted volumes

Volume [Ref.≥300]
<150 cases -0.690∗∗∗ -0.023

(0.188) (0.246)
150-200 cases -0.432∗ 0.053

(0.178) (0.180)
200-300 -0.276∗ -0.200

(0.140) (0.154)
Measure of hospital competition
Number of rivals -0.012 -0.016

(0.030) (0.031)
Total number of beds (Ref. >1500 beds)
<400 beds -0.267 -0.275

(0.336) (0.338)
400-549 beds -0.368 -0.452

(0.303) (0.308)
550-699 beds -0.304 -0.339

(0.286) (0.287)
700-849 beds -0.071 -0.061

(0.281) (0.276)
850-999 beds 0.043 0.042

(0.278) (0.275)
1000-1149 beds -0.126 -0.078

(0.253) (0.249)
Staff composition
% of doctors in hospital staff -0.004 0.026

(0.071) (0.074)
Nurses-doctors ratio 0.178 0.196

(0.139) (0.149)
Nurses-beds ratio -0.131 -0.140

(0.089) (0.093)

R2 0.175 0.175
Observations 85918 85918

Notes: In parentheses, robust standard errors are clustered on hospitals. The same covariates (patient controls,
hospital time-varying controls and year dummies) as in Table 1.5 are included. A hospital catchment area
comprises all the small homogenous geographic areas (Lower Super Output Areas, LSOAs) whose centroids
fall within 30 km of the hospital’s headquarters. The index of multiple deprivation ranks each LSOA according
to their level of deprivation, from 0 (the most deprived) to 32,844 (the least deprived). The number of equivalent
hospital rivals in the hospital’s catchment area comprises all public hospitals (trusts) whose headquarters lie
within 30 km of the hospital. The number of beds and staff data are lagged yearly average statistics at the
trust level. * p < 0.05, ** p < 0.01, *** p < 0.001
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5 Conclusions

This study investigates the effect of hospital volumes on health gains, as measured by patient-

reported outcomes, for planned hip replacement surgery in public hospitals in England. Our

key finding is that there is a clinically small and positive association between observed hospital

volume and health outcomes, but this disappears once we adjust for volume endogeneity due

to reverse causality (i.e. hospitals with higher quality attract more patients). Our results

differ from the study by Hentschker and Mennicken (2018) who find a positive causal effect

of hospital volume on patient outcomes after emergency hip fracture in Germany. Results

may differ because the authors investigate a more complex procedure typically involving frail

patients, with a high post-surgery mortality rate at around six percent.

Our pooled OLS results overall suggest that the hospital-level association can be driven

by hospital demand’s responsiveness to quality rather than economies of scale. This shows

the importance of accounting for volume endogeneity in volume-outcome studies for planned

procedures whose results may otherwise be biased. In the absence of a causal effect of volume

on patient outcomes, increasing the provision of planned hip replacements at any hospital

would not result in improvements in health outcomes in that hospital. We conclude that

we do not find evidence that economies of scale affect quality to support the argument for

concentrating the provision of care in this setting.

Nevertheless, we find a small positive correlation between volume and outcomes. Trans-

ferring patients from low-volume hospitals with lower-performance to better quality hospitals

could result in health improvements for these patients. However, the potential gains are un-

likely to offset the potential adverse effects of concentrating hip replacement activity. The

hospital market in England is already concentrated, and further concentration may have ad-

verse effects on patient access to care, as proximity remains a key determinant of patient

choice to the provider, especially for relatively older patients in need of a hip replacement

(Gutacker et al., 2016). Policies that concentrate provision of health care may also risk shift-

ing some of the NHS costs onto patients and carers by increasing travel times or transportation
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costs, which may be particularly problematic for patients from disadvantaged socio-economic

backgrounds (Ferguson et al., 1997). Further concentration of care may also affect hospital

competition, which could have knock-on effects on quality efforts (Cooper et al., 2011; Gaynor

et al., 2013; Moscelli et al., 2018b).

The study has some limitations. First, we cannot exclude the possibility that most hos-

pitals may already be operating at the flat end of the volume-outcome curve, despite being

able to observe hospitals with low volumes (the lowest volume category starts at 20 cases

per year). However, the fact that we do find a positive association between outcomes and

observed volumes suggests that there remains room for improvement. Second, we cannot per-

fectly disentangle the various channels behind higher hospital volume. We have focused on a

procedure which is likely to benefit most from economies of scale and for which concentration

of care would be a possible policy option given the planned nature of the surgery. We use

hospital volumes to measure hospital economies of scale (e.g. improvement in processes of

care), but hospital volume may also be a proxy for increased team experience. However, we

include analyses where we control for a range of personnel factors (such as individual surgeon

characteristics and volume, and hospital staff composition). The results are robust to the in-

clusion of these personnel effects, which indicates that attenuation bias linked to measurement

error should not be a concern in this case. Future research could explore empirical strategies

that disentangle the causal contributions of personnel and hospital factors. Volume effects

that are driven primarily by individual surgical learning-by-doing would have different policy

implications, and may be best addressed during surgeons’ medical residency, or via regular

trainings or work schedules that allow for regular practice (Hockenberry and Helmchen, 2014).

Provided that data become available, future research could also investigate the effect of volume

on other dimensions of quality, such as care responsiveness or facility features.
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A Appendix

Table A.1: Results after relaxing restriction to hospitals above 20 annual cases (1) or to
patients above 50 years old (2), for observed or predicted hospital volumes.

(1) (2)

Observed Predicted Observed Predicted

Volume [Ref.≥300]
<150 cases -0.743∗∗∗ -0.042 -0.744∗∗∗ -0.175

(0.203) (0.271) (0.192) (0.219)
150-200 cases -0.449∗∗ -0.018 -0.440∗ -0.008

(0.170) (0.151) (0.169) (0.143)
200-300 -0.231 -0.135 -0.273 -0.193

(0.128) (0.132) (0.139) (0.143)

R2 0.178 0.177 0.178 0.177
Observations 110559 110559 110669 110669

Notes: Results with different sample restrictions. In parentheses, robust standard errors are clustered on
hospitals. Patient controls include, besides the pre-surgery Oxford Hip Scores (OHS), the patient age, sex,
ethnicity, index of multiple deprivation, the number of Elixhauser comorbidities, diagnosis with osteoarthritis,
control for the type of surgery carried out (hybrid prosthetic versus total hip replacement) and for having had a
surgery on the other hip, self-reported disability, depression, assistance in filling questionnaires, the symptoms
duration and the patient’ living arrangements. Hospital controls include hospital status (teaching, specialist
orthopaedic and Foundation Trust hospitals), for the market forces factor index, and for socio-demographic
characteristics of population in hospitals’ catchment area (proportion of over 65-year-olds, mean deprivation
rank and mean distance to the closest GP). * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A.2: Patient characteristics for sample with private providers (1) and final sample (2)

(1) (2)

Mean Std. Dev. Mean Std. Dev.

Post-surgery OHS 39.44 8.69 38.69 9.03
Pre-surgery OHS 18.11 8.11 17.52 8.07
Age 69.68 8.73 69.87 8.90
Male patient 0.40 0.49 0.40 0.49
Elix. comorbidity count 0.23 0.68 0.23 0.71
Index of multiple deprivation (IMD):
1st quintile 0.26 0.44 0.24 0.43
2nd quintile 0.26 0.44 0.25 0.43
3rd quintile 0.22 0.42 0.22 0.42
4th quintile 0.16 0.37 0.17 0.38
5th quintile - Most deprived 0.10 0.30 0.12 0.32
Ethnicity: white 0.88 0.32 0.91 0.28
Surgery on the other hip 0.19 0.40 0.18 0.39
Diagnosed with osteoarthritis 0.96 0.19 0.97 0.18
Hybrid prosthetic replacement 0.18 0.39 0.19 0.39
Self-reported disability 0.57 0.49 0.61 0.49
Self-reported depression 0.08 0.26 0.08 0.27
Received assistance in filling questionnaire 0.06 0.24 0.07 0.26
Symptoms duration:
<1 year 0.14 0.35 0.13 0.34
1-5 years 0.69 0.46 0.70 0.46
6-10 years 0.11 0.31 0.11 0.31
>10 years 0.06 0.23 0.06 0.23
Living arrangements:
Lives alone 0.27 0.44 0.28 0.45
Lives with family 0.72 0.45 0.71 0.45
Other 0.01 0.07 0.01 0.08

Observations 148617 105229

Notes: The index of multiple deprivation (IMD) measures deprivation across seven domains, including income,
employment and education, and is calculated for small residence areas (LSOAs) in England. The Oxford Hip
Scores (OHS) range from the worst reported health state (=0) to the best (=48) and are collected for each
patient shortly before and six months after surgery.
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Table A.3: Patient summary statistics for the choice model

Mean Std. Dev. Min. Max.

Patient age 70.01 9.14 50.00 102.00
Male patient 0.39 0.49 0.00 1.00
Elixhauser conditions 0.27 0.76 0.00 8.00
Index of multiple deprivation (IMD):
1st quintile 0.24 0.43 0.00 1.00
2nd quintile 0.25 0.43 0.00 1.00
3rd quintile 0.22 0.42 0.00 1.00
4th quintile 0.17 0.38 0.00 1.00
5th quintile - Most deprived 0.12 0.33 0.00 1.00
Patient living in rural area 0.27 0.45 0.00 1.00
Distance to chosen hospital (km) 12.94 12.97 0.00 326.35
Patient choosing closest hospital 0.42 0.49 0.00 1.00

Observations 261743

Notes: Statistics are calculated for the total sample of planned hip replacements, after exclusion of hip admis-
sions for revision surgeries, patients below 50 and providers with less than 20 cases a year.

Table A.4: Hospital summary statistics for the choice model

Mean Std. Dev. Min. Max.

NHS Treatment Centre (TC) site 0.03 0.17 0 1
Teaching trust 0.16 0.37 0 1
Specialist trust 0.01 0.09 0 1
#hospital sites within trust 1.89 1.21 1 6
Provider type:
Independent Sector TC 0.07 0.26 0 1
Independent Sector non-TC 0.23 0.42 0 1
NHS Foundation Trust (FT) 0.38 0.49 0 1
NHS non-FT 0.31 0.46 0 1

Observations 465
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Table A.5: Estimated coefficients of the choice model

Est. SE
Distance (km) -0.171∗∗∗ (0.013)
Distance2 0.002∗∗∗ (0.000)
Distance3 -0.000∗∗ (0.000)
Closest -0.025 (0.021)
NHS Trust [Ref. category]
Foundation Trust 0.270∗∗∗ (0.030)
Independent Sector (IS) -0.660∗∗∗ (0.029)
IS Treatment Centre -0.050 (0.037)
Teaching Trust 0.028 (0.030)
Specialist Trust 1.344∗∗∗ (0.072)
1 hospital site [Ref. category]
2 hospital sites -0.359∗∗∗ (0.032)
3 hospital sites -0.369∗∗∗ (0.042)
4 hospital sites -1.127∗∗∗ (0.084)
5 hospital sites -0.596∗∗∗ (0.075)
NHS treatment centre 0.969∗∗∗ (0.058)
Interaction with distance
x Male -0.005 (0.003)
x Patient age -0.001∗∗∗ (0.000)
x Income deprivation [Ref. 1st quintile]
x Deprivation (2nd quintile) 0.010∗ (0.005)
x Deprivation (3rd quintile) 0.009 (0.005)
x Deprivation (4th quintile) -0.012 (0.007)
x Deprivation (5th quintile) -0.052∗∗∗ (0.009)
x Comorbidity count -0.001 (0.001)
x Rural residence 0.050∗∗∗ (0.007)
Interaction with distance2

x Male 0.000∗ (0.000)
x Patient age 0.000∗∗ (0.000)
x Income deprivation [Ref. 1st quintile]
x Deprivation (2nd quintile) -0.000 (0.000)
x Deprivation (3rd quintile) 0.000 (0.000)
x Deprivation (4th quintile) 0.001∗∗∗ (0.000)
x Deprivation (5th quintile) 0.001∗∗∗ (0.000)
x Comorbidity count 0.000 (0.000)
x Rural residence -0.001∗∗∗ (0.000)
Interaction with distance3

x Male -0.000∗ (0.000)
x Patient age -0.000 (0.000)
x Income deprivation [Ref. 1st quintile]
x Deprivation (2nd quintile) -0.000 (0.000)
x Deprivation (3rd quintile) -0.000∗ (0.000)
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x Deprivation (4th quintile) -0.000∗∗∗ (0.000)
x Deprivation (5th quintile) -0.000∗∗∗ (0.000)
x Comorbidity count -0.000 (0.000)
x Rural residence 0.000∗∗∗ (0.000)
N patients 59833
N providers 312

Notes: Conditional logit model of choice of hospital for elective hip replacement patients treated in England
in the financial year 2015/16. Coefficients are marginal utilities. Standard errors clustered on family physician
practice level in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure A.1: Percentage of planned hip patients who went to their Nth nearest provider

Notes: This corresponds to the total sample of 261,743 planned primary hip replacements in England between
2011/12 and 2015/16 over which the multinomial logit model of hospital choice is run.
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Figure A.2: Scatterplot of the observed against the predicted hospital volumes

Notes: Hospital volumes are the number of planned primary (non-revision) patients treated by a hospital in
between 2011/12 and 2015/16 in the English NHS. The predicted volumes are constructed using a conditional
logit model of hospital choice. The data points are for each hospital-year in the final sample.
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Table A.6: Results on subsample of surgeons who work for public hospitals only

Observed hospital volumes Predicted hospital volumes

(1) (2) (3) (4)

Panel A: Pooled OLS
Hospital volume [Ref. ≥300]
<150 cases -0.441∗ -0.650∗∗ 0.247 0.129

(0.201) (0.202) (0.334) (0.355)
150-200 cases -0.156 -0.310 0.079 -0.054

(0.206) (0.209) (0.148) (0.169)
200-300 -0.047 -0.162 -0.177 -0.254

(0.147) (0.163) (0.141) (0.163)
Log(surgeon volume) 0.568∗∗∗ 0.624∗∗∗

(0.091) (0.087)
Surgeon volume ≥35 0.544∗∗∗ 0.626∗∗∗

(0.130) (0.131)
Male surgeon 0.645 0.711∗ 0.625 0.723∗

(0.342) (0.341) (0.347) (0.343)
Qualified in the UK 0.256 0.352∗ 0.281 0.401∗

(0.148) (0.154) (0.147) (0.154)
Years since qualification -0.030∗∗∗ -0.025∗∗ -0.031∗∗∗ -0.026∗∗

(0.008) (0.008) (0.008) (0.008)

R2 0.179 0.178 0.179 0.178

Panel B: Surgeon Fixed Effects
Hospital volume [Ref. ≥300]
<150 cases -0.799∗∗ -0.854∗∗ 0.585 0.530

(0.266) (0.262) (0.357) (0.365)
150-200 cases -0.163 -0.205 -0.022 -0.071

(0.253) (0.248) (0.243) (0.245)
200-300 -0.140 -0.166 -0.102 -0.136

(0.171) (0.169) (0.185) (0.188)
Log(surgeon volume) 0.288 0.362∗

(0.161) (0.152)
Surgeon volume ≥35 0.193 0.220

(0.187) (0.184)

R2 0.205 0.205 0.205 0.205
Observations 61668 61668 61668 61668

Notes: Results for subsample of surgeons working for NHS hospitals only. In parentheses, robust standard
errors are clustered on hospitals. Patient controls include, besides the pre-surgery Oxford Hip Scores (OHS), the
patient age, sex, ethnicity, index of multiple deprivation, the number of Elixhauser comorbidities, diagnosis with
osteoarthritis, control for the type of surgery carried out (hybrid prosthetic versus total hip replacement) and for
having had a surgery on the other hip, self-reported disability, depression, assistance in filling questionnaires, the
symptoms duration and the patient’ living arrangements. Hospital controls include hospital status (teaching,
specialist orthopaedic and Foundation Trust hospitals), for the market forces factor index, and for socio-
demographic characteristics of population in hospitals’ catchment area (proportion of over 65-year-olds, mean
deprivation rank and mean distance to the closest GP). * p < 0.05, ** p < 0.01, *** p < 0.001
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Table A.7: Summary statistics for broader definitions of hospital and surgeon volumes

Mean Std. Dev. Min. Max.

Hospital volume:
Planned hip replacements (baseline) 222.54 156.45 20 1238
With emergency hip replacements 307.32 176.46 20 1238
With emergency hip + planned knee replacements 553.61 317.57 24 2422

Hospital-years 892

Surgeon volume:
Planned hip replacements (baseline) 56.67 40.69 10 270
With emergency hip replacements 66.63 44.24 10 589
With emergency hip + planned knee replacements 121.83 68.22 10 589

Surgeon-years 4619

Table A.8: Correlation between distance to closest hospital and pre-surgery severity

Pre-surgery OHS Elixhauser comorbidities

(1) (2) (3) (4) (5)

Distance to hospital 0.011 -0.007 -0.002 -0.007∗∗ -0.003
(0.010) (0.018) (0.002) (0.002) (0.003)

Distance to hospital (squared) 0.001 0.000∗ 0.000
(0.000) (0.000) (0.000)

Patient age -0.042∗∗∗ -0.042∗∗∗ 0.028∗∗∗ 0.028∗∗∗ 0.028∗∗∗

(0.004) (0.004) (0.001) (0.001) (0.001)
Male patient 2.333∗∗∗ 2.333∗∗∗ 0.015∗ 0.015∗ 0.015∗

(0.057) (0.057) (0.007) (0.007) (0.007)
Deprivation index (rank) 0.000∗∗∗ 0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Ethnicity: white -0.595∗∗ -0.595∗∗ 0.147∗∗∗ 0.147∗∗∗ 0.148∗∗∗

(0.186) (0.186) (0.020) (0.020) (0.020)
Constant 17.623∗∗∗ 17.684∗∗∗ -0.742∗∗∗ -0.728∗∗∗ -0.738∗∗∗

(0.354) (0.367) (0.043) (0.044) (0.045)

R2 0.041 0.041 0.060 0.060 0.060
Observations 100930 100930 100930 100930 100347

Notes: Distance to the hospital is patient’s distance to their closest hospital. Controls also include year
dummies. In column (5), the top percentile of distances in our sample were dropped. The deprivation index
ranks all small geographical areas in England (LSOAs) and goes from one (the most deprived) to 32,844 (the
least deprived). In parentheses, robust standard errors clustered on hospitals. * p < 0.05, ** p < 0.01, *** p
< 0.001
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Table A.9: Results of the effect of hospital volume on 3-year revision rates

Pooled OLS Fixed Effects

(1) (2) (3) (4)
Observed Predicted Observed Predicted

Volume [Ref.≥300]
<150 cases 0.241+ 0.116 0.572+ -0.160

(0.143) (0.154) (0.332) (0.318)
150-200 cases -0.043 0.090 0.242 -0.000

(0.159) (0.145) (0.258) (0.232)
200-300 0.001 0.003 0.240 0.039

(0.111) (0.116) (0.170) (0.167)

R2 0.003 0.003 0.006 0.006
Observations 105229 105229 105229 105229

Notes: In parentheses, robust standard errors are clustered on hospitals. Patient controls include the pre-
surgery OHS score, patient age, sex, ethnicity, index of multiple deprivation, the number of Elixhauser comor-
bidities, osteoarthritis diagnosis, control for the type of surgery carried out (hybrid prosthetic versus total hip
replacement) and for having had a surgery on the other hip, self-reported disability, depression, assistance in
filling questionnaires, the symptoms duration and the patient’ living arrangements. Hospital controls include
hospital status (teaching, specialist orthopaedic and Foundation Trust hospitals), for the market forces factor
index, and for socio-demographic characteristics of population in hospitals’ catchment area (proportion of over
65-year-olds, mean deprivation rank and mean distance to the closest GP). + p < 0.10, * p < 0.05, ** p <
0.01, *** p < 0.001
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Table A.10: Determinants of participation to PROM questionnaires for Oxford Hip Score

PROMs participation rate

(1) (2) (3)

Hospital volume 0.017∗ 0.013 0.012
(0.007) (0.007) (0.008)

Average patient age -0.899∗∗ -1.054∗

(0.341) (0.458)
% of male patients 0.151 -0.009

(0.166) (0.175)
% of patients of white ethnicity 0.099 -0.066

(0.098) (0.114)
Average deprivation rank 0.000 0.000

(0.000) (0.000)
% of patients with surgery on other hip 0.406∗∗ 0.343∗∗

(0.131) (0.116)
Average Elixhauser comorbidity count 1.074 1.232

(2.620) (2.625)
% of patients with osteoarthritis 0.367∗∗∗ 0.268∗∗

(0.083) (0.093)
% of patients with hybrid prosthetic surgery 0.044 0.100

(0.055) (0.052)
% of patients who died after surgery -0.487

(2.556)
Teaching hospital -3.534

(2.347)
Specialist hospital -4.114

(6.443)
Foundation trust 4.006∗

(1.980)
Market forces factor -2.978

(1.834)
% of pop. over 65 years old (catchment area) -1.717∗∗

(0.609)
Mean deprivation rank (catchment area) -0.000

(0.000)
Mean distance to GP (catchment area) 7.633∗∗

(2.555)

R2 0.080 0.150 0.197
Observations 892 892 892

Notes: Results from a Linear Probability Model with 0-100 response variable. The rate of participation to
PROMs questionnaire is the number of patients who answered the PROMs questionnaire (one or both pre- and
post-surgery questionnaires were answered) out of the total number of eligible patients per hospital, expressed
as a percentage. Patient level variables are aggregated at the hospital level and expressed as a percentage, so
that a one unit increase corresponds to one percentage point increase. The market forces factor is standardized
by its sample standard deviation (0.07). The index of multiple deprivation ranks all small geographical areas in
England (LSOAs) and goes from one (the most deprived) to 32,844 (the least deprived). A hospital catchment
area comprises all the small homogenous geographic areas (Lower Super Output Areas, LSOAs) whose centroids
fall within 30 km of the hospital’s headquarters. In parentheses, robust standard errors clustered on hospitals.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Chapter 2

The effect of short breaks on perfor-

mance: Evidence from the medical work-

force

1 Introduction

The organisation and management of human resources matter for firms’ performance (Bloom

and Van Reenen, 2007; Lazear and Shaw, 2007). Within firms, workforce turnover, levels of

staffing or team composition can impact workers’ productivity, by affecting the way workers

learn from task repetition, learn from each other or coordinate (Cook et al., 2012; Bartel et al.,

2014; Chan, 2016, 2021). The labour and medical literature have also explored the role of indi-

viduals’ work schedules, to understand how working hours and shift patterns impact workers’

productivity and wellbeing (Caruso et al., 2006; Brachet et al., 2012; Caruso, 2014; Pencavel,

2015). While long working hours are generally associated with poorer performance, regular

breaks are beneficial for workers’ mental well-being, physical health and safety (Spurgeon,

2003), explaining why most national and international labour regulations mandate regular

rest periods27.

However, regular breaks may also impact workers’ performance, if individual performance

benefits from repeated practice (Ho, 2014). The economics literature posits that experience can

depreciate with interruptions in practice, such that breaks of various lengths may lead to skill

depreciation for certain tasks (Besanko et al., 2010). Empirically, breaks in activity induced
27In the European Union for instance, Working Time Directive 2003/88/EC sets a limit to the weekly hours

of workers and commands regular periods of rest.
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by drops in production levels have been shown to affect worker productivity across a variety

of production settings, such as franchise shops, assembly lines, aircraft or ship production

(Argote and Epple, 1990; Darr et al., 1995; Benkard, 2000; Shafer et al., 2001; Thompson,

2007), though the effect varies across sectors. Alternatively, breaks in activity may reduce

decision fatigue. The psychological literature has shown that repeated decisions being made

in a row can lead to worse judgement making by judges, voters or healthcare workers (Danziger

et al., 2011; Flinn and Armstrong, 2011; Augenblick and Nicholson, 2016; Hunt et al., 2021),

potentially impacting performance. For instance, nurses are more likely to refer patients and

doctors are more likely to prescribe antibiotics as the day passes, reflecting a shift to more

conservative or less appropriate clinical decisions (Linder et al., 2014; Allan et al., 2019). In the

healthcare sector, even short breaks in activity can have important implications for patients.

This paper therefore explores whether surgeons’ time breaks, defined as the number of

days since their last surgery, have a causal impact on 30-day mortality rates after hip fracture

surgery. To this end, I construct a panel of over 2,000 orthopaedic surgeons in the English Na-

tional Health Service (2009-2016). Hip fracture is the most common reason for admission into

emergency orthopaedic wards, with around 70,000 to 75,000 hip fractures occurring annually

in the United Kingdom (National Clinical Guidelines Centre, 2011, p.6). Post-surgical mortal-

ity is high, at around seven percent one month after hip fracture in 2017 (Healthcare Quality

Improvement Partnership, 2018), suggesting potential for improvement at the aggregate level

given the high incidence of hip fractures.

To mitigate concerns of endogeneity linked to surgeon selection, I estimate a fixed effects

model where surgeon fixed effects allow for unobserved time-invariant heterogeneity in surgeon

ability. Interacted hospital-year fixed effects further control for flexible hospital-specific time

trends in health outcomes over the sample period. Results show that, for breaks between

four and six days, average 30-day mortality rates decrease by about six percent (around 0.4

percentage points), compared to surgeons who were in the operating room the day before. A

possible interpretation of the findings is that surgeons who treat a hip fracture patient after a

short break perform better because they are less fatigued.
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Only a few studies have explicitly modelled the effect of time breaks in surgical practice on

quality of care. In a study on a cardiac procedure (transcatheter aortic valve implantations,

TAVI) for one Belgian hospital, Van Gestel et al. (2017) find no effect of time breaks on 24-

month mortality. They however estimate that an additional day between TAVI practices is

associated with a higher probability of adverse events (renal failure and stroke) but show that

this effect is driven by the most extreme values of time breaks, i.e. above 100 days. Using

a panel data on trauma-related ambulance runs in the U.S., David and Brachet (2011) find

evidence of skill decay among paramedics, showing that additional days of inactivity adversely

impact paramedics’ performance, measured by ambulances’ out-of-hospital time. Fluctuations

in performance measured at the hospital or team level may however also arise from labour

turnover, therefore confounding the effect of time breaks for individual surgeons (David and

Brachet, 2011).

The small evidence available on the effect of time breaks for individual surgeons suggests, in

most cases, an adverse effect of breaks on outcomes for cardiac procedures. Hockenberry and

Helmchen (2014)’s study on coronary artery bypass grafting (CABG) in the United States

finds that an additional day away from the operating room raises in-hospital mortality by

2.4%. A previous study by Hockenberry et al. (2008) suggests similar effect of time breaks for

CABG and percutaneous coronary intervention (PTCA), a less invasive cardiac surgery, using

Taiwanese data. The authors indicate that the one-month likelihood of death after CABG

is 17% higher for surgeons after a 3-14 day breaks relative to a 0-2-day break. However,

another U.S. study by Huesch (2014) compares patient outcomes for cardiac surgeons who have

performed a CABG in the previous month and those who have not, and finds no association

with post-surgical length of stay or mortality.

There is limited evidence on the potential mechanisms behind the effect of time between

surgeries on health outcomes. Previous studies have interpreted the adverse effect of time

breaks on patient health outcomes as evidence of depreciation of surgical skills. Hockenberry

and Helmchen (2014) find that time breaks both increase patient mortality and reduce hos-

pitalisation costs, which they suggest indicates that surgeons’ lower performance after time
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breaks is due to inattention and insufficient care being provided. Hockenberry et al. (2008)

test whether the level of task repetition prior to the break, measured by the volume of activ-

ity prior to the break, may explain the adverse effect but find little evidence of this. David

and Brachet (2011)’s findings suggest that overall work inactivity and tasks interference (i.e.

performing a large range of tasks) contribute to paramedics’ lower performance, measured by

out-of-hospital ambulance time, but do not investigate the impact on patient outcomes.

This study makes several contributions to the literature on the effect of time breaks on

patient health outcomes. First, in most settings, time breaks are not exogenously determined.

Changes in practice are likely to respond to changes in performance, resulting in a reverse

causality bias. Surgeons who become worse at treating patients may take breaks more of-

ten, which will introduce a spurious negative relationship between surgical ability and breaks

length. Following David and Brachet (2011), this endogeneity concern is mitigated by focus-

ing on an emergency condition28. Patients break their proximal femur, often after a fall, and

need to be treated within 48 hours of admission to the hospital (National Clinical Guidelines

Centre, 2011). Variation in surgeons’ time breaks is driven by unanticipated emergency ad-

missions in pre-determined schedules, and thus arguably exogenous conditional on the large

set of controls.

Second, this study adds to the understanding of the effect of time breaks on performance,

by testing for heterogeneity in the effect of time breaks along different dimensions of sur-

gical practice. Breaks are defined here as the time elapsed since any orthopaedic surgery;

orthopaedic surgeons tend to perform a range of bone-related surgeries, from hips to knees,

ankles or upper limbs. Heterogeneity analyses indicate that the effect of breaks may be more

important for surgeons with less experience in hip fracture care, as measured by their annual

volume of hip fracture patients, but is not affected by surgeons’ degree of specialisation in

hip fracture care. In addition, I investigate potential mechanisms behind the effect of time

breaks. I find no evidence that surgeon skills deteriorate with time breaks as was suggested

in previous studies on cardiac procedures. Allowing time breaks to be task-specific, thereby
28Related studies commonly include surgeon fixed effects to account for the correlation of ability and average

time breaks across surgeons. However, within-surgeon variations in activity and performance over time may
be spuriously correlated, especially for planned conditions when surgeons choose when and whom to operate.
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measuring the effect of the number of days since last hip fracture surgery and excluding re-

lated orthopaedic surgical activity, does not change the overall results: breaks in hip fracture

activity, like general time breaks, have a null or positive effect on patient health outcomes.

Further, I explore whether surgeons who return to the operating ward after some days off

choose a different type of surgery (namely, total/partial hip replacement versus reduction or

internal fixation of hip fracture using nails or screws), holding patient characteristics and the

type of fracture fixed. If the choice of surgery type explains the effect of time breaks, specific

treatment can be enforced by stricter enforcement of clinical guidelines (Chowdhury et al.,

2007). Findings show that short time breaks also impact the type of surgery carried out,

holding patient characteristics fixed, by decreasing the probability of receiving a full or partial

hip replacement surgery (i.e. increasing the probability of fracture reduction using nails or

screws). Importantly, I provide some evidence that these changes in treatment choices are not

due to differences in the type of patients treated after a break, but rather point to differences

in surgeons’ decision after a break.

The rest of this paper is structured as follows. Section 2 describes the institutional con-

text for surgeons in England. Next, Section 3 introduces the data used and documents the

occurrence of time breaks in surgeons’ activity. Section 4 details the econometric strategy.

Section 5 presents the results and robustness checks, while Section 6 concludes.

2 Institutional setting

Health care in England is free at the point of use for residents and primarily funded by general

taxation. Most hospital care is provided in public (National Health Service, NHS) hospitals.

Patients are seen by surgeons in hospitals either after being referred by their family doctor

(called general practitioner, GP) who act as gatekeepers to planned hospital care, or after

being admitted directly to the hospital through the Emergency Department (Ikenwilo and

Scott, 2007).

After four to six years of undergraduate medical training, medical students, called junior
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doctors, undertake postgraduate training consisting in two years of general training (founda-

tion years), followed by specialty training (British Medical Association, 2020). Upon successful

completion of the specialty training programme, surgeons can become consultants, which is

the most senior status for surgeons in the NHS and refers to surgeons who lead on clinical

decisions with a team including nurses and junior doctors. An estimated 40,395 consultants

were working for the NHS in 2012 (Department of Health, 2013). Consultants’ basic salary is

negotiated nationally at the U.K. level and evolves with career progression along a national

scale (Ikenwilo and Scott, 2007). The basic payment rate can however be modified to account

for extra work or work undertaken on call during unsocial hours. Additional payments can

arise if surgeons receive distinction awards, linked to excellence in clinical practice.

Consultants’ activity is regulated under a consultancy contract which was reformed in

2003 to improve accountability of surgeons’ activity and increase their starting salary29. The

contract stipulates that full-time consultants must take on minimum 10 programmed activities

per week for the NHS, where one programme activity corresponds to around 4 hours during

normal working hours. A typical programmed activity may involve a) direct clinical care

comprising patient care, ward rounds, theatre sessions and emergency work duties and on-call

work; b) supporting professional activities such as training or teaching, NHS responsibilities

such as clinical tutor or director; or c) external duties (e.g. trade union or work for the royal

colleges) (Williams and Buchan, 2006). Emergency work includes both scheduled activities,

as part of surgeons’ rotas in programmed activities, as well as additional work arising during

on-call duties. Consultants may also work for the private sector on the side, though they

are required to undertake an additional programmed activity for the NHS first. A typical

consultant contract balances programmed activities to around 7.5 programmes activities of

direct clinical care and 2.5 of supporting professional activities, though that may vary. In

reality, contracts may often exceed the minimum of 10 programmed activities, especially in

acute specialities (British Medical Association, 2009).

In compliance with the European Working Time Directive, since 1998 the working hours of
29Consultants who started after 2003 were automatically covered by the contract while consultants who started

before could choose to switch to the new contract. In 2012, 97% of consultants were under the 2003 contract
(Department of Health, 2013).
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consultants are limited to a maximum of 48 hours on average per week under the Working Time

Regulation. Junior doctors in training were later included in the regulation in 2004, though

they retain the choice to opt out, e.g., to pursue more training for instance. In addition, the

directive stipulates that consultants are entitled to 11-hour rest a day out of work, a day off

each week, a rest break for working days longer than six hours and 5.6 weeks paid leave each

year (British Medical Association, 2021). Consultants may also refuse non-emergency work

that arise during unsocial hours, ie., outside of 7am to 7pm during the week and anytime

during the weekend. However, consultants may exceed the maximum average weekly working

hours if they also work for the private sector as the directive only covers time for employees

(Ikenwilo and Scott, 2007).

Despite efforts to reconsider consultants’ contracts, the NHS has been under substantial

staffing issues. Staff shortages were estimated at 100,000 vacancies in 2018 (The King’s Fund,

2018), and healthcare staff report chronic excessive workload (Wilkinson, 2015; West, 2020).

The number of doctors and nurses rose by slightly under 10% between 2010 and 2016 but

at a lower rate than hospital activity, with total inpatient admissions soaring by around 17%

during the same period (Propper et al., 2020).

3 Data

3.1 Sample

Using a detailed patient-level hospital administrative data set for all National Health Service

hospitals in England called Hospital Episode Statistics (HES), I extract hospital records for

all patients admitted as emergency patients with a diagnosis of hip fracture between 2009 and

201630. The patient hospital records are then merged with a data set on surgeon characteristics

(surgeon sex, year and country of qualification, training and status on the medical register)

provided by the General Medical Council.

Proximal femoral fracture, or hip fracture, usually occurs among elderly patients after a
30Hip fracture diagnosis is based on the International Classification of Diseases (ICD)-10th revision codes:

S720, S721, S722 and S729.
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fall, often as a result of underlying poor health (National Clinical Guidelines Centre, 2011).

Hip fracture patients who are deemed too frail to undergo surgery are treated non-surgically,

often by non-orthopaedic surgeons (e.g. ortho-geriatrists), though conservative treatment is

deemed rarely appropriate31. The analysis focuses on hip fracture patients who are treated

surgically by orthopaedic surgeons, to ensure that the surgeon population and surgical tasks are

homogenously defined in the sample. Surgeons who treat less than 30 hip fracture patients in

the overall study period (2009-2016) are excluded (N=752 surgeons). This ensures that health

outcomes are estimated on a sufficiently large number of cases, whilst removing reporting

errors in the data or surgeons who very occasionally treat hip fracture cases32. Further, the

final sample excludes surgeons who have received a fitness to practice warning or have been

suspended or erased from the medical register, most likely after a medical error (N=25). The

assumption that time breaks are uncorrelated with a surgeon’s ability would not hold for these

surgeons. The final data set is an unbalanced panel of 2,124 orthopaedic surgeons over eight

years.

The surgeons identified in the administrative hospital data are the doctors who are re-

sponsible for a patient’s episode of care, called consultants in the NHS. Though clinically

responsible for the patient’s care, consultants may not be carrying out the surgery themselves,

e.g. if they are supervising a junior trainee surgeon. Observations where surgeons report more

than four hip fracture cases in a given day are dropped from the sample (i.e. one percent of

the initial sample) as surgeons may not be carrying all surgeries themselves33, which would

introduce measurement error in the definition of time breaks. This potential data limitation

is further addressed in Section 5.4.

Hip fractures are more frequent among an older population, though traumas or accidents

leading to a hip fracture may happen for younger patients. Therefore, only patients below 30-

year-old, for whom the risk of having a hip fracture is substantially lower, accounting for less
31Patients with very short life expectancy, complete immobility or who refuse surgery would receive conservative

treatment for their hip fracture (British Orthopaedic Association, 2007, p.20).
3230 is used as a cut-off as it is generally considered the minimum sample size required for the central limit

theorem to hold. Note that this corresponds to 30 patients over the whole study period (ie, some surgeons
may treat fewer patients per year) and thus remains a conservative sample restriction.

33A hip replacement surgery takes around one to two hours, according to the NHS (NHS, 2020). On average,
a surgeon will be able to complete at most four surgeries in an eight-hour work shift.
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than one percent of emergency hip fracture patients, are removed from the sample34. The final

sample excludes admissions for revision surgeries, which is a more complex and rare surgery

consisting in removing and replacing an existing artificial hip implant (i.e. around one percent

of the sample). Patients who are transferred from another hospital are also removed from the

sample (i.e. around five percent of the initial hip fracture admissions), as transfers may be

decided based on a patient’s particular surgical needs, and thus will be endogenous to hospital

quality. Extreme values for pre-surgery length of stay above 30 days representing less than

one percent of hip fracture admissions and probable coding errors or outliers are dropped from

the sample.

This paper focuses on the effect of surgeons’ time breaks, exploiting observed breaks in

surgeons’ activity. To this end, observations for which surgeon time breaks between surgeries

lies above 31 days are excluded, in order to remove outliers or potential errors35. These are rare

(i.e. top one percentile of the distribution) and may be due to misreporting or exceptionally

long work leaves (e.g. severe illness or incapacity to work). Restricting the sample ensures

that extreme values of breaks are not driving the results. After sample exclusions, the final

data set counts 371,271 observations over eight years (2009-2016).

3.2 Dependent variable

Post-surgical health outcomes are measured using the 30-day mortality rate, which is supplied

by the Office of National Statistics and linked to the hospital records data. The 30-day

mortality rate was on average seven percent for hip fracture patients in our sample, suggesting

that post- surgical death is not negligible (Healthcare Quality Improvement Partnership, 2018).

Patient mortality is measured for 30 days starting from the date of patient admission, also

following patients after being discharged from the hospital.
34Young patients are more likely to break their femur as a result of an important trauma (such as an accident),

as opposed to older patients who are more likely to suffer from osteoporosis and could break their femur
after a fall. This would result in unobservable differences in the severity of the fracture beyond what can
be accounted for via controls for the type of fracture (ie, neck of femur, pertrochanteric, subtrochanteric or
else). Removing very young patients therefore ensures better homogeneity in the profile of patients treated
for a hip fracture. In addition however, I also show that this sample restriction does not affect the results.
Appendix Table B.1 presents results after inclusion of patients under 30 years old and controls for smaller
age groups (5-year age bands).

35Relaxing this sample restriction however does not affect the results.
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The administrative data set only reports all-cause deaths, therefore the exact cause of pa-

tient mortality is not known. In all likelihood, deaths occurring within one month of a major

surgery after hip fracture are linked to the surgery. Further, this data limitation would intro-

duce bias in the results only if unrelated deaths are systematically correlated with surgeons’

variation in time breaks. There are little theoretical reasons for this to be the case.

3.3 Independent variables

The key independent variable is the number of days, including weekend days, bank holidays

or holiday breaks, since the operating surgeon’s last orthopaedic surgery. The latter is not

limited to emergency hip fracture surgery and includes planned surgeries on bones or joints

identified with OPCS chapters, mostly involving joint replacement surgeries for upper or lower

limbs. The data set contains information on the date of surgery but not on the exact time of

the surgery. Therefore, I do not know the order in which surgeries took place in a given day.

The variable for time breaks thus only considers whether the surgeon performed a surgery in

the previous days, but do not take into account surgeries which took place during the same

day. As a result, the minimum value for the time breaks is one and varies by surgeon and day

of surgery.

The control variables include a full set of surgeon dummies (surgeon fixed effects) and

interacted hospital-year dummies (hospital-year fixed effects). Surgeon performance may be

influenced by their volume of hip fracture activity, e.g. if there are positive learning effects from

treating more hip fracture patients. To separate the effect of time breaks from the potential

effect of experience, I control for surgeons’ yearly volume of hip fracture cases, equal to the

number of hip fracture cases treated in the 365 days leading up to the patient admission.

The model includes a comprehensive vector of clinical and socioeconomic patient charac-

teristics, which may be associated with poorer health outcomes. Namely, patient sex, age

(via dummies for 10-year age categories to reflect potential non-linearity in the effect of age),

ethnicity, diagnosis of osteoporosis and the number of emergency and total hospital admissions

in the year leading up to the hip fracture episode, are controlled for. The control variables
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also include patients’ socio-economic status, proxied by the percentage of population who ex-

perience economic deprivation in the patient’s residence area level (known as lower layer super

output area, LSOA36) and produced by the Office for National Statistics.

Hip fracture often signals underlying poor patient health and comorbidities. To thoroughly

account for the potential confounding effect of other comorbidities on health outcomes, the

vector of control variables includes a full set of indicator variables for each Elixhauser condi-

tion (Elixhauser et al., 1998) (see Appendix, Table B.2 for a full list and associated prevalence

in the sample). Importantly, I also control for the type of hip fracture which are associated

with different levels of severity and complexity, by including indicator variables corresponding

to each type of hip fracture (neck of femur, pertrochanteric, subtrochanteric, or unspecified).

In particular, intracapsular fractures, i.e. involving the femoral head or neck of the femur,

may disrupt the blood supply of the femoral head (National Clinical Guidelines Centre, 2011).

Medical guidelines recommend early treatment of the fracture (Healthcare Quality Improve-

ment Partnership, 2018). Health outcomes may be impacted by a long time between patient

fall leading to the fracture, and surgery. To proxy this, I control for patients’ pre-surgery

length of stay, defined as the number of days between patient admission and surgery. Patients

who are admitted on a weekend day may be unobservably more ill (Meacock et al., 2019).

Similarly, patients treated on the weekend may receive a lower level of care, if there are lower

levels of staffing or available services at the weekend. Indicator variables for admission and

surgery during a weekend day are included to account for this possibility.

3.4 Summary statistics

Table 2.1 shows that the 30-day mortality rate decreases over the period studied, reflecting

overall improvement in hip fracture care. The overall number of hospitals and surgeons varies

over time, following hospital mergers or openings, and influx of new surgeons or surgeons’

retirement from practice.

36There are over 32,000 LSOAs in England with an average population of 1,500.
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Table 2.1: Aggregate mortality rates after hip fracture, by year of sample

2009 2010 2011 2012 2013 2014 2015 2016

30-day mortality (mean) 7.16 6.85 6.76 7.01 6.36 6.38 5.95 6.07
N hospitals 144 143 144 141 140 139 135 133
N surgeons 1450 1538 1586 1623 1650 1683 1656 1579

Observations 42295 45452 46348 46915 48343 48009 47510 46399

Notes: Aggregate statistics per year of panel, for all patients admitted emergently with a diagnosis of hip
fracture, after exclusion of uncommon patient characteristics, and low-volume surgeons

Patients in the sample are 81 years old on average and 28% are male (Table 2.2). The

majority of the sample is white. 69% of the admissions for hip fracture involve a fracture

of the neck of the femur. The average patient lives in areas where 14% of the population

is economically deprived. 15% of the sample have a diagnosis of osteoporosis. On average,

patients report slightly over two Elixhauser comorbidities, 0.55 emergency admissions and one

hospital admission in the year leading up to current admission. Pre-surgery length of stay

is two days on average. 27% of the sample are admitted (treated) during a weekend day.

Around half of the sample (48%) receives a hip replacement surgery, as opposed to a reduction

of fracture using nails or screws. On average, patients stay in hospital for 21 days after the

surgery. Summary statistics in Table 2.2 show that some patients have very high values of

pre and post length of stay or number of hospital admissions. Long pre-surgery lengths of

stay may occur if patients break their femur while already in hospital. Though plausible,

these outliers may signal unobserved patient severity. However, because these are emergency

patients, unobserved severity is unlikely to be systematically related to surgeons’ break length

and therefore unlikely to introduce bias in my estimates. To ensure that extreme values are

not influencing the results, I run again the main specification after applying 99% winsorisation,

where (remaining) extreme values are set to the 1 percentile values for all covariates. Results,

shown in Appendix Table B.3, are unchanged.
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Table 2.2: Summary statistics for patient characteristics

Mean Std. Dev. Min. Max.

30-day mortality 0.07 0.25 0 1
Patient age 81.14 10.95 30 113
Male patient 0.28 0.45 0 1
White ethnicity 0.92 0.28 0 1
Income deprivation 0.14 0.10 0 1
Diagnosis of osteoporosis 0.15 0.35 0 1
Elixhauser index 2.28 1.77 0 19
Past emergency admissions 0.55 1.11 0 38
Past all admissions 1.03 4.47 0 207
Pre-surgical length of stay 1.44 2.47 0 30
Surgery during weekend 0.26 0.44 0 1
Admission during weekend 0.27 0.44 0 1
Type of fracture
Neck of femur 0.69 0.46 0 1
Pertrochanteric 0.26 0.44 0 1
Subtrochanteric 0.04 0.20 0 1
Unspecified fracture 0.00 0.05 0 1
Partial or complete hip replacement 0.48 0.50 0 1
Post-surgical length of stay 21.26 19.00 0 111

Observations 371271

Notes: Income deprivation measures the proportion of the population suffering from income deprivation in the
area of residence of the patient (i.e. Lower Super Output Area). Pre-surgery length of stay is defined as the
number of days between patient admission and surgery.

Table 2.3 indicates that 96% of surgeons in the sample are male. Surgeons obtained

their medical degree between 1968 and 2005 and the majority (68%) received their medical

qualification in the United Kingdom. The data set is an unbalanced panel. The average

surgeon is observed for six years and works for slightly more than one hospital (1.20) over

the period. The average time break in the sample lies slightly above one, indicating that

surgeons are in the operating ward almost every day (Table 2.4). Surgeons may perform

different orthopaedic surgeries, such as (planned) hip or knee replacements along with hip

fracture surgeries. Table 2.4 therefore also reports specifically the number of days since a

surgeon’s last hip fracture surgery. On average, around 11 days elapsed between surgeon’s hip

fracture cases, though the median value is much lower, at only three days. The yearly surgeon
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volume averages 50 hip fracture surgeries, ranging from one37 to 763 yearly cases38. Overall,

individual surgeons’ volumes of hip fractures represent around 14% of a surgeon’s activity in

a year.

Table 2.3: Summary statistics for surgeon characteristics

Mean Std. Dev. Min. Max.

Male 0.96 0.20 0 1
Year of qualification 1990.68 7.62 1968 2005
Junior surgeons (i.e. qualified in >1998) 0.21 0.40 0 1
Trained in the UK 0.68 0.47 0 1
#Years in panel 6.01 2.20 1 8
#Hospitals where surgeons work 1.20 0.54 1 6

Observations 2124

Notes: Data on surgeon characteristics were obtained from the General Medical Consult (GMC).

Because my empirical strategy relies on within-surgeon variation in time breaks (via the sur-

geon fixed effects), I also report the within-surgeon standard deviation for the main surgeon

characteristics. The statistics in Table 2.4 confirm that most of the variation in time breaks

occurs within rather than between surgeons.

Table 2.4: Distribution of time breaks and surgeon activity

Mean Median Std. Dev. Min. Max.

Total Between Within

Days since last orthopaedic surgery 1.77 1.00 1.97 0.58 1.91 1.00 31.00
Days since last hip fracture 11.38 3.00 15.83 4.67 15.40 1.00 100.00
Yearly volume of hip fractures 50.68 41.00 66.21 19.71 14.56 1.00 763.00
% of activity in hip fractures 13.85 11.68 10.51 5.92 3.52 0.19 100.00

Observations 371271

Notes: The number of days between two cases varies by surgeon and day of surgery. The days since last surgery
includes any type of orthopaedic activity, identified by the broad OPCS chapters on bones and joints (starting
by letters V, W or O). The proportion of activity in hip fractures corresponds to the proportion of a surgeon
activity spent on hip fracture patients over a year.

37Surgeons with less than 30 hip fractures over the whole sample period are excluded. However their yearly
volume can be lower than 30 cases.

38As a hip replacement lasts around two hours, a surgeon can treat around four hip fractures in 8-hour workday.
Multiplied by the total number of working days, the maximum possible surgeon yearly volume is estimated
at around 800 cases.
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4 Methods

4.1 Baseline model

The aim of this study is to understand whether patients’ health outcomes are affected by the

time elapsed between a surgeon’s orthopaedic surgery cases. A fixed-effects model is specified

as follows:

yisht = β0 +D
′
ishtβ1 + β2ln(volume)st +X

′
ishtβ3 + αs + δht + ϵisht, (2.1)

where yisht is the post-surgical 30-day mortality for patient i treated by surgeon s in hospital

h and admitted to hospital at time t. Xisht is a vector of patient characteristics which may be

associated with poorer health outcomes, namely, patient sex, age in 10-year categories, ethnic-

ity, economic deprivation39, past hospital utilisation, indicator variables for each Elixhauser

comorbidity, pre-surgery length of stay, admission or treatment during a weekend day and the

type of hip fracture.

Surgeons’ time breaks, Disht, are a set of indicator variables corresponding to 1 day, 2-3,

4-6, and above 7 days since the last surgery for the operating surgeon s. This allows for a

non-linear effect of breaks on health outcomes; without assuming a specific functional form.

Though arbitrarily defined, the categories broadly correspond to observed patterns of the

data, from a few days breaks to a week or more (above 7 days)40. The categories are defined

to span the distribution of time breaks but increase in magnitude along the distribution to

ensure sufficient statistical power. Figure B.1 in the Appendix shows the distribution of the

categories in the sample. The effect of interest is in the vector of coefficients β1 for the effect of

surgeons’ time breaks on patients’ health outcomes. In addition, I report results using linear,

linear-quadratic and log of surgeons’ breaks41.
39The data used measure economic deprivation in 2010 and was not updated after that. However, changes in

deprivation level over time across areas will be accounted for by the hospital-year fixed effects.
40These broadly correspond to a weekend, a long weekend with bank holidays or a longer holiday break.

Furthermore, I report in the Appendix the association between a dummy variable for each value of day break
(from one to a 30 day break) and health outcomes which inform the grouping into categories (Table B.4).

41Results using these alternative specifications indicate a significant effect of time breaks for non-linear func-

69



Surgeon fixed effects, αs, account for time-invariant heterogeneity in surgical ability. Changes

in surgeons’ volume of hip fractures over the years may be associated with improvement in

health outcomes as well as shorter time breaks. To isolate the effect of time breaks on health

outcomes from potential confounding surgeon factors, Equation (2.1) includes the surgeon’s

yearly lagged volume of hip fracture patients, volst. Hospital-year fixed effects, δht, account

for aggregate changes in health outcomes over time. While year dummies assume homogenous

time trend across hospitals, interacted hospital-year fixed effects allow for a hospital-specific

flexible time trend42 (Gormley and Matsa, 2014). This controls for unobserved hospital hetero-

geneity in outcomes over time, linked to e.g. differences in the adoption of medical guidelines

(i.e. for teaching vs general hospitals), one-off investments in technical equipment or facilities,

changes in the medical team or in the supply of long-term care around the hospital (Gaughan

et al., 2017). These factors, if they correlate with changes in surgeons’ frequency of activity,

would be important confounders. ϵisht is an idiosyncratic error term.

Equation (2.1) is estimated by a linear probability model (LPM) which is often used to

model health outcomes with fixed effects. Probit or logit models suffer from the incidental

parameters bias with fixed effects (Greene, 2004; Cameron, 2009). The user-written Stata

command reghdfe (Correia, 2016) is used given high dimension of the fixed effects. Standard

errors are adjusted for clustering at the hospital level to account for geographical correlation

across patients of a given hospital43.

4.2 Endogeneity concerns

Causal identification of the effect of time breaks on health outcomes relies on the assumption

that surgeons’ variations in time breaks are exogenous, conditional on the set of fixed effects

and controls.

The model with surgeon fixed effects specified in Equation (2.1) accounts for unobserved

surgeon ability as long as it is time-invariant. Endogeneity issues may however arise if changes

tional form (linear-quadratic and log), though the effect is significant at the 10% level.
42Note that hospital-year fixed effects are not perfectly collinear with surgeon fixed effects as surgeons may

work for several hospitals.
43Clustering standard errors at the surgeon level alongside hospital level, to account for serial correlation due

to some surgeons changing hospitals, did not affect the results.
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in surgeons’ frequency of practice responds to changes in surgeons’ ability. In particular,

surgeons whose surgical ability improves may start treating patients more often and thus,

have shorter time breaks. Equally, patients may choose to go more to hospitals where quality

has improved. This potential reverse causality will introduce a positive bias in the estimates

of time breaks on surgeons’ ability: lower patient mortality will be associated with shorter

time breaks.

This endogeneity concern is mitigated here in the context of an emergency procedure. Due

to the unpredictable nature of hip fracture, the volumes and timings of patient admissions

are not anticipated by surgeons. Further, patients need to be treated within 48 hours after

the hip fracture, which leaves little room for patient choice of hospital or surgeon based on

reputation of quality. Figure B.2 in the Appendix shows that the large majority of emergency

hip fracture patients (78% of the sample) do not bypass their closest hospital.

Similarly, in the emergency setting, surgeons have little control on which patients to treat,

thus alleviating concerns that surgeons would choose to treat less complex patients after a

longer time break. Figure 2.1 plots the average number of Elixhauser comorbidities along

the distribution of time breaks. The number of comorbidities varies only slightly along the

distribution of time breaks, indicating that observed patient severity does not differ greatly

across time breaks. The greater variation in number of comorbidities towards the higher values

of breaks reflects the lower number of cases. The same absence of association is observed for

patient age, another important proxy of severity, and length of time breaks (see Appendix

Figure B.3), further suggesting that bias due to remaining unobserved severity is unlikely.
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Figure 2.1: Mean number of Elixhauser comorbidities, by break length

Notes: Mean and 95% confidence intervals for the number of Elixhauser comorbities per number of days since
last surgery.

In the rest of this section, I provide additional evidence that surgeons’ time breaks are

mostly driven by exogenous factors, such as seasonality effects in the incidence of hip fractures

or surgeons’ fixed work schedule. Figure B.4 in Appendix shows that volumes of admissions

are perceptibly higher over the winter months44. Whilst the volume of hip fracture admissions

remains stable across the days of the week (Figure B.5, in Appendix), surgeons’ time breaks

vary depending on the day of admission, reflecting surgeons’ pre-determined work schedule or

on-call duties over the weekend (Figure B.5, bottom plot). As expected, the average number of

days of breaks without surgical practice is highest after the weekend and decreases afterwards.
44Whilst monthly variations in hip fracture admissions provide interesting within-surgeon variation, the quality

of care may also vary across months, due to, e.g., differences in staffing or higher demand for hospital care
in winter. In additional analyses, I account for potential seasonality in quality of care, by including month
dummies. The results (Table B.6 in Appendix) are fully robust to these controls.
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I further test whether having had an adverse event (i.e. patient death) influences the sur-

geon’s frequency of activity. I create an indicator variable equal to one if a surgeon has had a

patient die in the hospital in the past 30 days. Table B.7 in Appendix shows that having had

a recent patient death is not associated with longer time breaks, indicating that surgeons do

not stay out of practice longer after an adverse event.

5 Results

5.1 Main results

Regression results for the effect of time breaks in surgical practice are reported in Table 2.5,

for the main coefficients of interest. Column (1) first shows the results with the minimum set

of controls, and column (2) presents results from the full set of patient controls. Coefficients

are stable across specifications45., and I therefore focus on the full specification. The full table

of coefficients for the regression with all controls is available in the Appendix (Table B.8).

Results from Table 2.5 show that mortality rates decrease for surgeons returning to surgery

after breaks of four to six days. Patients treated by surgeons after a time break of four to six

days have a 0.402 percentage points lower probability of dying, relative to patients treated by

surgeons who were also in the operating room the day before. The coefficient is statistically

significant at the one percent level. Results indicate no statistically significant effect on patient

health outcomes for very short time breaks, of two to three days, nor for longer time breaks,

of above seven days. Surgeon volume is not statistically associated with mortality46. The

coefficient is close to zero and precisely estimated.

Relative to the average 30-day mortality rate of 6.55% (i.e. the sample mean), the coef-
45Coefficient stability usually indicates that there is limited risk of bias due to unobserved patient severity. Tests

have been developed to measure the potential bias from unobserved severity based on coefficient stability
and variance in the outcome when controls are included (Altonji et al., 2005; Oster, 2019). I further discuss
risk of potential unobserved severity and present a series of robustness checks in Section 5.4

46Note that some studies have reported a positive association between surgeon volume and outcomes for
orthopaedic surgeries, though these have focused on different outcomes (eg. measures of functional status as
in Rachet-Jacquet et al. (2021)) and on a planned procedure which may be more prone to economies of scale
than an emergency procedure.
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ficient for breaks of four to six days corresponds to a relative effect of around six percent47.

This suggests that treating a hip fracture patient after some time off, of between four to six

days, may improve outcomes as surgeons may be more alert and less fatigued.

Table 2.5: Effect of surgeons’ time breaks on 30-day mortality

30-day mortality

(1) (2)

Days since last surgery (Ref: 1 day)
2-3 days 0.069 0.008

(0.105) (0.102)
4-6 days -0.602∗∗∗ -0.402∗∗

(0.148) (0.145)
≥ 7 days -0.441 -0.258

(0.240) (0.228)
Yearly surgeon volume (ln) 0.187 0.136

(0.123) (0.118)
Surgeon FE Yes Yes
Patient controls No Yes
Hospital-year FE Yes Yes
R2 0.010 0.074
Observations 371271 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission and surgeon’s annual lagged volume.
Standard errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001

5.2 Heterogeneity

In this section, I explore whether the effect of time breaks depends on surgeons’ volume of hip

fracture patients or degree of specialisation in hip fracture surgery. Surgeons with relatively

less experience in hip fracture care, proxied by lower annual volume, may benefit more from

short breaks. Alternatively, a higher level of practice may make surgeons more resilient to

fatigue. Surgeon volume is centred around its median values such that the top panel of
47However this represents a smaller effect in magnitude than certain risk factors or patient demographics. For

instance, the effect of a four to six day break corresponds to around 12% of the effect of being in their 70s
or of being male, both age and sex having been reported to be important factors of mortality in this context
(Liu et al., 2017).
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Table 2.6 corresponds to the effect of time breaks for a surgeon with median volume of hip

fracture patients (i.e. around 41 annual surgeries).

Results in the top panel of Table 2.6 are unchanged. Results in the top panel of Table 2.6

are unchanged. The interaction terms are positive, indicating a higher mortality, though the

effect is only statistically significant at the 10% level. This suggests that the beneficial effect

of time breaks may be offset by higher volumes, suggesting that surgeons with higher yearly

volume of practice and thus more experience can be more resilient to fatigue.

Table 2.6: Effect of surgeons’ time breaks, by yearly volume of hip fracture patients

30-day mortality

Days since last surgery (Ref: 1 day) for median volume
2-3 days -0.006

(0.103)
4-6 days -0.410∗∗

(0.144)
≥ 7 days -0.247

(0.230)
Yearly volumes of hip fractures (median) 0.355

(0.428)
Days since last surgery X yearly volume
2-3 days 0.175+

(0.102)
4-6 days 0.518+

(0.277)
≥ 7 days 0.573

(1.157)
R2 0.074
Observations 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission and surgeon’s annual lagged volume.
Standard errors (in parentheses) are clustered on hospitals. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

I also test for heterogeneity in the effect of time breaks across surgeons’ degree of special-

isation in hip fracture, proxied by the share of past annual surgical activity in hip fracture.

Surgeons with lower share of recent activity in hip fracture may benefit more from breaks to

be fully alert. Alternatively, they may suffer more from days out of practice, if interference
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with other tasks has a detrimental effect on focus (Wixted, 2004).

The top panel in Table 2.7 shows the effect of time breaks for surgeons with median share

of surgical activity in hip fracture. Results correspond to the baseline results. The interaction

terms are not statistically significant, indicating that the effect of time breaks does not depend

on surgeons’ degree of specialisation in hip fracture surgery. This may be because the surgeries

considered require broadly similar skills (eg. hip vs knee replacement), such that the relative

share of activity in hip fracture does not make a substantial difference.

Table 2.7: Effect of surgeons’ time breaks, by yearly share of activity in hip fracture

30-day mortality

Days since last surgery (Ref: 1 day) for median % of activity
2-3 days -0.012

(0.104)
4-6 days -0.444∗∗

(0.144)
≥ 7 days -0.267

(0.244)
% of surgical activity in hip fracture (median) 0.359

(1.159)
Days since last surgery X yearly % hip fracture activity
2-3 days 0.919

(0.800)
4-6 days 1.712

(1.208)
≥ 7 days 0.021

(1.985)
R2 0.074
Observations 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission and surgeon’s annual lagged volume.
Standard errors (in parentheses) are clustered on hospitals. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

The within-surgeon variation in volume and specialisation may be limited. Running regres-

sions without the surgeon fixed effects to reduce the potential collinearity between the fixed

effects and the interacted variables does not change the results, and also show statistically

insignificant interaction terms.
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5.3 Potential mechanisms

This section investigates potential mechanisms behind surgeons’ time breaks, by first exploring

the role of surgeons’ time breaks on the type of surgery carried out. Second, I consider the

effect of the number of days since last hip fracture surgery on patient health. While time breaks

in general surgical practice capture the effect of time off, breaks in hip fracture surgery may

more accurately measure the potential for skill depreciation, by focusing on the task-specific

dimension of time breaks.

In what follows, I test whether surgeons who return from a break choose a different type of

surgery to carry out, controlling for other patient characteristics. A strand of literature sug-

gests that surgeons vary in their diagnostic skills and treatment choices (Epstein and Nicholson,

2009; Abaluck et al., 2016; Currie and MacLeod, 2017), and that the latter can also vary for

surgeons over time48. Clinical guidelines produced by the British Orthopaedic Association

indicate that the best surgical treatment depends on the range of factors, such as the type

and stability of the fracture, patients’ frailty and surgical dexterity with implant type. While

internal fixation of the fracture may be preferred to replacement of the joint for the younger

or very frail elderly, complications such as displacement of the fracture or fixation failure may

arise. Partial (hemiarthroplasty) or full replacement of the joint is a more invasive surgery

with higher risks of post-operative complications and subsequent need of revision procedures

(British Orthopaedic Association, 2007, p21-25).

Table 2.8 shows that surgeons returning from a short break are less likely to perform a

partial or complete hip replacement, as opposed to a fixation or reduction of fracture using

nails or screws, holding other patient characteristics fixed. Short time breaks, between four

to six days, reduce the probability of having a full or partial hip replacement surgery by

0.826 percentage points. The effect is statistically significant at the one percent level but

quantitatively small (around 1.7% relative effect).
48Changes in treatment choice can be linked to surgeons’ work environment (Molitor, 2018; Chan, 2021), or

depend on the time of patient admission, as surgeons may choose a less intensive treatment option for patients
admitted near the end of their work shift in order to preserve leisure time (Halla et al., 2016; Costa-Ramón
et al., 2018; Persson et al., 2019; Costa-Ramón et al., 2020).
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To ensure that differences in the choice of surgery do not reflect differences in the severity

of patients treated after a break, Table B.9 in Appendix presents the results of a regression of

the type of fracture on time breaks, conditional on patient and surgeon controls. The results

indicate that surgeons’ time breaks and the probability of treating a patient with a fracture

of the neck of femur (i.e., the most common type of fracture), are not correlated.

Table 2.8: Effect of surgeons’ time breaks on type of surgery

Full or partial
hip replacement surgery

Days since last surgery (Ref: 1 day)
2-3 days 0.003

(0.102)
4-6 days -0.826∗∗

(0.283)
≥ 7 days -0.570

(0.435)
R2 0.074
Observations 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission and surgeon’s annual lagged volume.
Standard errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001

Previous studies have interpreted the detrimental effect of time breaks as evidence of skill

depreciation (Hockenberry et al., 2008; Hockenberry and Helmchen, 2014). This rest of this

section provides a partial test for this by focusing specifically on the effect of breaks in hip

fracture surgery, as opposed to general breaks in surgical practice. The distribution of hip

fracture-specific breaks is less concentrated, as surgeons will work in the operating ward most

days but may not treat hip fracture patients every day. I re-define time breaks categories to

span the entire distribution of hip fracture breaks and present the results in Table 2.9 (column

2).

Defining the time breaks to hip fracture practice does not change the overall results. Breaks

of between 15-45 days have a positive effect on health outcomes, by reducing mortality by 0.40

percentage points, whilst shorter and longer time breaks have no effect. Surgeons who return
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to hip fracture surgery after a while perform better possibly because they are more alert or

apt to choose a more appropriate surgery.

Table 2.9: Effect of general time breaks and hip fracture-specific time breaks on mortality

30-day mortality
(1) (2)

Days since last surgery (Ref: 1 day)
2-3 days 0.008

(0.102)
4-6 days -0.402∗∗

(0.145)
≥ 7 days -0.258

(0.228)
Days since last hip fracture surgery (Ref: 1 day)
2-3 days -0.055

(0.124)
4-6 days -0.025

(0.164)
7-14 days -0.223

(0.128)
15-29 days -0.409∗∗

(0.138)
30-44 days -0.474∗

(0.193)
≥45 days -0.050

(0.189)
R2 0.074 0.074
Observations 371271 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission and surgeon’s annual lagged volume.
Standard errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001

5.4 Robustness checks

This section further tests that the results are not impacted by error measurement in the

data or endogeneity concerns. First, in the NHS hospital administrative database (Hospital

Episodes Statistics), surgical activity is only reported for consultants, whereas patient care

involves a larger clinical team. Reassuringly, the literature shows that senior surgeons have
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a considerable influence on medical teams’ decision (Chan, 2021). Nevertheless, consultants

may not always be the ones carrying out the surgery in practice if they delegate it to the

junior doctors that they supervise. In such case, the operating surgeon may have a different

(unobserved) number of days since their last surgery, resulting in unsystematic measurement

error. This may introduce attenuation bias in the effect of interest. To mitigate this concern,

the same analysis is therefore run on the subsample of consultants who are the least likely to

take on supervisees, defined as the consultants at the start of their consultancy period (N=436

surgeons). This assumes that more senior consultants are more likely to have supervisees,

which seems credible. Results in Table B.10, in Appendix, show that the results are unaffected

by the sample restriction though the point estimate is now slightly larger, consistent with the

hypothesis that there may be some attenuation effect.

In the next robustness checks, I check that the results are not driven by the selective

allocation of patients to hospitals or to surgeons in the emergency ward. As surgeons start

practising more often resulting in shorter time breaks, they may also treat more complex cases,

which will affect patient outcomes. Any remaining unobserved patient severity systematically

correlated with surgeon ability may introduce a negative bias in the estimate of the effect

of practice frequency. Selective patient allocation based on unobserved severity should be

limited for emergency conditions. However, ambulances may direct the most complex patients

to the best hospitals. In a first robustness check, the sample is restricted to the patients who

are treated in their closest hospital, therefore excluding patients who bypassed their closest

hospital or were brought to another hospital by the ambulance. Results shown in Appendix

Table B.11 are unchanged.

Alternatively, patients may be allocated to specific surgeons within the clinical team in

the emergency ward, based on unobserved patient needs. In a first robustness check, I include

a surgeon-specific time trend to account for (linear) changes in surgeons’ outcomes over time.

The time trend would account for changes in surgeons’ patient case mix over time, reflecting

the fact that unobservably more complex cases may be allocated to the most able surgeon

within the clinical team. Linear time trends assume that any selective allocation of patients
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to surgeons is linearly increasing over time, which here seems appropriate to reflect the effect

of surgeon seniority over the sample (i.e. 8 years). Table B.12, in Appendix, shows that the

results are unchanged. In a second robustness check, I run the same specifications only for

the sample of surgeries that took place during a bank holiday or a weekend when surgeons are

on call. The lower levels of staffing and the presence of fewer surgeons on the wards during

these days means there is limited possibility to selectively allocate patients across surgeons.

The results, shown in Table B.13 are unchanged.

A potential limitation of this study is that the reason why surgeons go on breaks is not

known. For instance, an alternative interpretation of the results could be that surgeons, while

observed to be ‘on break’ in the data, perform surgeries elsewhere. This would mean additional

surgical experience which may translate into better health outcomes after the break49. The

HES data report activity for all patients in NHS hospitals, but only activity for NHS patients

in private sector hospitals50. I run again the baseline specification after excluding observations

where surgeons also work in a private hospital (called independent sector treatment centre)

that year51. The sample size is smaller but the results are unchanged (Table B.14). Alterna-

tively, surgeons may appear to be on break when they go for training courses, during which

they would gain knowledge and technical proficiency. It is unlikely that all observed breaks

are due to surgeons going on training courses. However, results should be interpreted as an

upper bound of the actual effect of breaks.

49Note however that the results of this study indicate no statistically significant association between surgeon
volume and mortality rates.

50The HES data cover all admissions paid for by the NHS, which is estimated to represent around 98% of
hospital activity in England (Herbert et al., 2017).

51Surgeons are considered to work for a private (independent sector) hospital if they have treated at least one
NHS patient during that year. Private (independent sector) hospitals do not treat emergency hip fracture
patients. However, surgeons there may treat planned hip replacement surgeries.

81



6 Conclusions

This study investigates the causal effect of surgeons’ breaks in surgical practice on 30-day

mortality, for a large panel of surgeons in the English NHS. The key finding is that time breaks

of between four to six days improve 30-day survival probability by around six percent. Findings

are in line with the previous literature which, with the notable exception of Hockenberry

et al. (2008) and Hockenberry and Helmchen (2014) for coronary bypass surgeries, has found

little compelling evidence that surgeons’ time breaks have a detrimental effect on patient

health outcomes (Huesch, 2014; Pearce et al., 2015; Van Gestel et al., 2017). Hockenberry

et al. (2008) and Hockenberry and Helmchen (2014) find a fast and salient negative effect of

breaks on patient health outcomes. Results potentially differ here because hip fracture surgery

requires a lower range of complex skills (Nembhard, 2000), or because cardiac surgeries involve

a larger surgical team in which case frequent surgeries may also help coordination across tasks.

Emergency departments are known to be strenuous work environments, which could explain

the positive effect for short breaks in this setting. A limitation of this study is that it relies on

all surgeons’ activity to measure breaks, resulting in limited variation in terms of days since

last surgery. Most breaks are concentrated on short breaks of one to three days. Provided

survey data on surgeons’ holidays is available, future research could investigate the effect of

longer breaks.

Nevertheless, the current findings have policy implications for the organisation of activity in

hospitals. Understanding the impact of short-run changes in surgeons’ activity on performance

would allow for better-targeted and more effective policies to increase the quality of care.

Possible policy interventions include regulating surgeons’ work schedules to accommodate more

regular short breaks, without necessarily reducing the overall workload. This also ties in with

the research on the impact of work shift length on performance, which suggests an adverse

effect of long working hours (Brachet et al., 2012; Collewet and Sauermann, 2017). Work

schedules could allow for more regular short breaks to maintain focus and increase alertness.

Given the importance of the health workforce in the production of healthcare, optimizing work
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schedules to reflect these potential effects could translate into substantial effects for healthcare

systems (McConnell et al., 2013; Bloom et al., 2015, 2020).

More generally, the findings raise awareness about non-financial determinants of improve-

ments in quality of care (Lagarde et al., 2019). While a previous literature has stressed the

importance of workforce management quality, reputation, diffusion of clinical information,

team composition or levels of staffing on quality of care, the organisation of activity and type

of work shift are other potential levers of quality (Phelps, 2000; Brachet et al., 2012; Kolstad,

2013; Bartel et al., 2014; Friedrich and Hackmann, 2017; Bloom et al., 2020).

83



B Appendix

Table B.1: Results without sample restriction based on patient age

30-day mortality

Days since last surgery (Ref: 1 day) ref.
2-3 days 0.003

(0.101)
4-6 days -0.404∗∗

(0.142)
> 7 days -0.272

(0.222)
Surgeon yearly volume (ln) 0.137

(0.114)
Surgeon FE Yes
Patient controls Yes
Hospital-year FE Yes

R2 0.076
Observations 373273

Notes: Standard errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table B.2: List of Elixhauser comorbidities and associated sample prevalence

Mean Std. Dev. Min. Max.

Congestive heart failure 0.10 0.31 0 1
Cardiac arrhythmias 0.25 0.43 0 1
Valvular disease 0.08 0.27 0 1
Pulmonary circulation disorders 0.02 0.14 0 1
Peripheral vascular disorders 0.04 0.21 0 1
Hypertension, uncomplicated 0.53 0.50 0 1
Paralysis 0.02 0.14 0 1
Other neurological disorders 0.09 0.29 0 1
Chronic pulmonary disease 0.20 0.40 0 1
Diabetes, uncomplicated 0.15 0.36 0 1
Diabetes, complicated 0.01 0.12 0 1
Hypothyroidism 0.11 0.31 0 1
Renal failure 0.13 0.34 0 1
Liver disease 0.02 0.13 0 1
Peptic ulcer diseases, excl. bleeding 0.01 0.10 0 1
AIDS/HIV 0.00 0.01 0 1
Lymphoma 0.01 0.08 0 1
Metastatic cancer 0.02 0.13 0 1
Solid tumour without metastasis 0.05 0.22 0 1
Rheumatoid arthritis/collagen vascular 0.05 0.22 0 1
Coagulopathy 0.01 0.09 0 1
Obesity 0.01 0.11 0 1
Weight loss 0.02 0.14 0 1
Fluid and electrolyte disorders 0.14 0.35 0 1
Blood loss anemia 0.00 0.04 0 1
Deficiency anemia 0.05 0.21 0 1
Alcohol abuse 0.04 0.21 0 1
Drug abuse 0.00 0.05 0 1
Psychoses 0.01 0.10 0 1
Depression 0.08 0.28 0 1
Hypertension, complicated 0.02 0.15 0 1

Observations 371271
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Table B.3: Effect of surgeons’ time breaks on 30-day mortality (99% winsorisation)

30-day mortality

Coefficient SE

Days since last surgery (Ref: 1 day) ref.
2-3 days 0.004 (0.102)
4-6 days -0.408∗∗ (0.145)
> 7 days -0.255 (0.229)
Surgeon yearly volume (ln) 0.133 (0.118)
40-49 years 0.484∗∗ (0.184)
50-59 years 1.488∗∗∗ (0.166)
60-69 years 2.155∗∗∗ (0.165)
70-79 years 3.301∗∗∗ (0.175)
80-89 years 5.612∗∗∗ (0.173)
90-99 years 10.366∗∗∗ (0.235)
>100 years 18.673∗∗∗ (1.094)
=1 if male 2.999∗∗∗ (0.108)
Other ethnic group 0.889∗∗∗ (0.241)
Ethnicity not coded 0.914∗∗∗ (0.175)
Pre-surgery length of stay -0.068∗∗ (0.024)
Pertrochanteric 0.284∗ (0.124)
Subtrochanteric 0.267 (0.213)
Unspecified -0.535 (0.655)
Congestive heart failure 8.125∗∗∗ (0.242)
Cardiac arrhythmias 2.760∗∗∗ (0.137)
Valvular disease -0.160 (0.166)
Pulmonary circulation disorders 4.855∗∗∗ (0.442)
Peripheral vascular disorders 1.692∗∗∗ (0.224)
Hypertension, uncomplicated -1.628∗∗∗ (0.082)
Paralysis -0.657∗ (0.269)
Other neurological disorders 0.318 (0.164)
Chronic pulmonary disease 2.428∗∗∗ (0.125)
Diabetes, uncomplicated -0.030 (0.128)
Diabetes, complicated -1.303∗∗ (0.389)
Hypothyroidism -0.546∗∗∗ (0.133)
Renal failure 3.213∗∗∗ (0.170)
Liver disease 4.581∗∗∗ (0.437)
Peptic ulcer diseases, excl. bleeding -0.980∗ (0.417)
AIDS/HIV -18.005∗∗∗ (2.134)
Lymphoma 1.217 (0.625)
Metastatic cancer 9.808∗∗∗ (0.551)
Solid tumour without metastasis 2.651∗∗∗ (0.287)
Rheumatoid arthritis/collagen vascular -0.717∗∗∗ (0.163)
Coagulopathy 2.979∗∗∗ (0.575)
Obesity -2.094∗∗∗ (0.331)
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Weight loss 2.375∗∗∗ (0.344)
Fluid and electrolyte disorders 5.307∗∗∗ (0.203)
Blood loss anemia -1.113 (1.051)
Deficiency anemia -0.963∗∗∗ (0.224)
Alcohol abuse -1.035∗∗∗ (0.189)
Drug abuse -1.871∗∗ (0.600)
Psychoses 0.497 (0.424)
Depression -0.607∗∗∗ (0.147)
Hypertension, complicated 2.262∗∗∗ (0.439)
Past emergency admissions 0.507∗∗∗ (0.084)
Past all hospital admissions -0.363∗∗∗ (0.052)
Diagnosed with osteoporosis -0.256 (0.198)
Operated during a weekend 0.173 (0.101)
Admitted during a weekend 0.131 (0.101)
R2 0.074
Observations 371271

Notes: Coefficients are expressed in percentage points. Time breaks corresponds to the number of days since
the operating surgeon’s last surgery. Standard errors (in parentheses) are clustered on hospitals. * p < 0.05,
** p < 0.01, *** p < 0.001
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Table B.4: Association between each day of break and 30-day mortality rates

Coef. SE

Days since last surgery (Ref: 1 day)
2 days 0.025 (0.120)
3 days 0.170 (0.174)
4 days -0.557∗∗ (0.200)
5 days -0.562∗ (0.270)
6 days -0.775∗ (0.336)
7 days -0.396 (0.433)
8 days -0.001 (0.566)
9 days -1.197 (0.741)
10 days -0.972 (0.755)
11 days -0.790 (0.722)
12 days -0.171 (0.879)
13 days -0.594 (1.000)
14 days -0.033 (1.199)
15 days -3.279∗∗ (1.061)
16 days 3.254 (2.043)
17 days -2.473 (1.816)
18 days -1.778 (1.880)
19 days 2.281 (2.227)
20 days 1.440 (2.285)
21 days -1.712 (2.027)
22 days 3.022 (3.862)
23 days -3.869 (2.481)
24 days 0.744 (3.644)
25 days -1.924 (2.962)
26 days 2.831 (5.598)
27 days -3.078 (3.431)
28 days -1.035 (3.740)
29 days 23.150 (17.310)
30 days -6.043∗∗∗ (1.060)
31 days 2.445 (9.333)
R2 0.010
Observations 371271

Notes: Coefficients are expressed in percentage points. Controls include surgeon fixed effects and hospital-year
fixed effects. Standard errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p <
0.001
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Figure B.1: Distribution of the number of days since a surgeon’s last surgery

Notes: The number of days between two surgeries varies by surgeon and day of surgery.

Table B.5: Results using different functional forms of time breaks

30-day mortality
(1) (2) (3)

Time breaks -0.030 -0.095+

(0.020) (0.049)
Time breaks2 0.005

(0.04)
Time breaks (ln) -0.125+

(0.067)
R2 0.074 0.074 0.074
Observations 371271 371271 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission and surgeon’s annual lagged volume.
Standard errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001
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Figure B.2: Percentage of hip fracture patients who go to their Nth closest hospital

Notes: 78% of the patients go to their closest hospital (trust). This is calculated on the sample of patients for
which the information on patient’s residence is non-missing (N=289,514).

Figure B.3: Mean patient age, by break length

Notes: Mean and 95% confidence intervals for average patient age per number of days since last surgery.
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Figure B.4: Admissions for hip fracture, by month of admission

Notes: Aggregate admissions for hip fracture, by month of admission (final sample).

Figure B.5: Variation in hip fracture admissions and time breaks, by day of the week

Notes: Top plot: Aggregate admissions for hip fracture, by day of admission. Bottom plot: Average surgeons’
time breaks (i.e. days since last surgery), by day of admission.
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Table B.6: Effect of surgeons’ time breaks on mortality, with month dummies

30-day
mortality

Days since last surgery (Ref: 1 day)
2-3 days -0.011

(0.103)
4-6 days -0.441∗∗

(0.145)
≥ 7 days -0.326

(0.229)
Month dummies (Ref. January)
February -0.153

(0.206)
March -0.543∗∗

(0.196)
April -0.875∗∗

(0.204)
May -1.198∗∗∗

(0.191)
June -1.375∗∗∗

(0.217)
July -1.502∗∗∗

(0.211)
August -1.240∗∗∗

(0.192)
September -0.963∗∗∗

(0.202)
October -1.077∗∗∗

(0.201)
November -0.650∗∗

(0.204)
December -0.202∗

(0.211)
R2 0.075
Observations 317271

Notes: Coefficients are expressed in percentage points. Time breaks corresponds to the number of days since
the operating surgeon’s last surgery. Only controls that may influence time breaks are included (i.e. month
and day of surgery). Standard errors (in parentheses) are adjusted for clustering at the hospital level. * p <
0.05, ** p < 0.01, *** p < 0.001
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Table B.7: Effect of a recent patient death on surgeons’ time breaks

Time breaks

Patient died in previous month -0.020
(0.018)

Surgeon volume in previous month -0.075∗∗∗

(0.008)
Day of surgery Yes
Month of surgery Yes
Surgeon FE Yes
Hospital-year FE Yes
R2 0.094
Observations 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission, and surgeon’s annual lagged volume.
Standard errors (in parentheses) are adjusted for clustering at the hospital level. * p < 0.05, ** p < 0.01, ***
p < 0.001

Table B.8: Effect of surgeons’ time breaks on 30-day mortality (full table)

30-day mortality

Coefficient SE

Days since last surgery (Ref: 1 day)
2-3 days 0.008 (0.102)
4-6 days -0.402∗∗ (0.145)
≥ 7 days -0.258 (0.228)
Surgeon yearly volume (ln) 0.136 (0.118)
40-49 years 0.468∗ (0.183)
50-59 years 1.457∗∗∗ (0.164)
60-69 years 2.123∗∗∗ (0.163)
70-79 years 3.283∗∗∗ (0.174)
80-89 years 5.651∗∗∗ (0.172)
90-99 years 10.452∗∗∗ (0.233)
>100 years 18.776∗∗∗ (1.097)
=1 if male 2.985∗∗∗ (0.108)
Other ethnic group 0.898∗∗∗ (0.240)
Ethnicity not coded 0.946∗∗∗ (0.176)
Pre-surgery length of stay -0.089∗∗∗ (0.019)
Pertrochanteric 0.286∗ (0.124)
Subtrochanteric 0.253 (0.213)
Unspecified -0.564 (0.657)
Congestive heart failure 8.141∗∗∗ (0.241)
Cardiac arrhythmias 2.759∗∗∗ (0.136)
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Valvular disease -0.184 (0.166)
Pulmonary circulation disorders 4.839∗∗∗ (0.441)
Peripheral vascular disorders 1.623∗∗∗ (0.224)
Hypertension, uncomplicated -1.665∗∗∗ (0.082)
Paralysis -0.641∗ (0.269)
Other neurological disorders 0.338∗ (0.164)
Chronic pulmonary disease 2.411∗∗∗ (0.125)
Diabetes, uncomplicated -0.038 (0.128)
Diabetes, complicated -1.468∗∗∗ (0.386)
Hypothyroidism -0.559∗∗∗ (0.134)
Renal failure 3.164∗∗∗ (0.169)
Liver disease 4.484∗∗∗ (0.436)
Peptic ulcer diseases, excl. bleeding -1.069∗ (0.419)
AIDS/HIV -17.941∗∗∗ (2.138)
Lymphoma 0.580 (0.619)
Metastatic cancer 9.445∗∗∗ (0.549)
Solid tumour without metastasis 2.476∗∗∗ (0.286)
Rheumatoid arthritis/collagen vascular -0.795∗∗∗ (0.163)
Coagulopathy 2.875∗∗∗ (0.574)
Obesity -2.151∗∗∗ (0.331)
Weight loss 2.299∗∗∗ (0.347)
Fluid and electrolyte disorders 5.328∗∗∗ (0.203)
Blood loss anemia -1.184 (1.050)
Deficiency anemia -1.009∗∗∗ (0.224)
Alcohol abuse -1.000∗∗∗ (0.188)
Drug abuse -1.881∗∗ (0.602)
Psychoses 0.544 (0.422)
Depression -0.608∗∗∗ (0.147)
Hypertension, complicated 2.153∗∗∗ (0.439)
Past emergency admissions 0.088 (0.055)
Past all hospital admissions 0.021 (0.013)
Diagnosed with osteoporosis -0.264 (0.197)
Operated during a weekend 0.168 (0.102)
Admitted during a weekend 0.132 (0.101)
R2 0.074
Observations 371271

Notes: Coefficients are expressed in percentage points. Time breaks corresponds to the number of days since
the operating surgeon’s last surgery. Standard errors (in parentheses) are clustered on hospitals. * p < 0.05,
** p < 0.01, *** p < 0.001
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Table B.9: Association between time breaks and type of fracture

Fracture of the
neck of femur

Days since last surgery (Ref: 1 day)
2-3 days 0.248

(0.204)
4-6 days 0.419

(0.289)
≥ 7 days -0.687

(0.463)
R2 0.048
Observations 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, indicator for weekend admission and surgeon’s annual lagged volume. Standard errors (in
parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001

Table B.10: Effect of time breaks on mortality, for surgeons starting their consultancy

30-day
mortality

Days since last surgery (Ref: 1 day)
2-3 days -0.425

(0.270)
4-6 days -1.230∗∗∗

(0.354)
≥ 7 days -0.393

(0.584)
R2 0.089
Observations 51295

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission, and surgeon’s annual lagged volume.
Sample of consultants who started their consultancy in 2008 or after. Standard errors (in parentheses) are
clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table B.11: Effect of time breaks on mortality, without patients who bypass closest hospital

30-day
mortality

Days since last surgery (Ref: 1 day)
2-3 days 0.026

(0.121)
4-6 days -0.436∗∗

(0.166)
≥ 7 days -0.250

(0.248)
R2 0.077
Observations 289508

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission, and surgeon’s annual lagged volume.
Junior surgeons are consultants who start their consultancy in 2008 or after. Standard errors (in parentheses)
are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001

Table B.12: Effect of time breaks on mortality, with a surgeon-specific time trend

30-day
mortality

Days since last surgery (Ref: 1 day)
2-3 days 0.010

(0.103)
4-6 days -0.421∗∗

(0.146)
≥ 7 days -0.259

(0.233)
Surgeon FE Yes
Patient controls Yes
Surgeon time trend Yes
R2 0.077
Observations 371271

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission, and surgeon’s annual lagged volume.
Junior surgeons are consultants who start their consultancy in 2008 or after. Standard errors (in parentheses)
are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table B.13: Effect of time breaks on mortality, on bank holidays or weekend days

30-day
mortality

Days since last surgery (Ref: 1 day)
2-3 days -0.117

(0.205)
4-6 days -0.816∗

(0.348)
≥ 7 days -0.455

(0.609)
R2 0.098
Observations 104144

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission, and surgeon’s annual lagged volume.
Junior surgeons are consultants who start their consultancy in 2008 or after. Standard errors (in parentheses)
are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001

Table B.14: Effect of time breaks on mortality, without surgeons who work in private sector

30-day
mortality

Days since last surgery (Ref: 1 day)
2-3 days -0.068

(0.172)
4-6 days -0.507∗

(0.237)
≥ 7 days -0.406

(0.276)
R2 0.083
Observations 164670

Notes: Coefficients are expressed in percentage points. Controls include patient age, sex, ethnicity, economic
deprivation, pre-surgical length of stay, Elixhauser comorbidities, number of past hospital admissions, diagnosis
of osteoporosis, type of hip fracture, indicator for weekend admission, and surgeon’s annual lagged volume.
Junior surgeons are consultants who start their consultancy in 2008 or after. Standard errors (in parentheses)
are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001
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Chapter 3

Does containing costs reduce hospital

quality?

1 Introduction

Rising healthcare expenditures, due to an increasing demand for health services driven by

demographic changes and technological innovation, pose a challenge to the sustainability of

healthcare systems (OECD, 2015). To limit the growth in healthcare spending, policymakers

must find effective ways of containing healthcare costs without affecting quality of care. The

hospital sector in particular accounts for an important share of healthcare spending. In 2017,

in the U.K., half of government-funded healthcare expenditure was spent on hospitals (Office

for National Statistics, 2017). There may however be scope to reduce unnecessary spending. A

recent report from the OECD suggests that as much as 20% of healthcare expenditure makes

no or only minimal contribution to improving health outcomes (OECD, 2017b).

In this context, reducing patients’ length of stay in hospital when clinically appropriate

is a potential policy lever to reduce costs across many treatments. Shorter inpatient lengths

of stay can also improve patient safety and comfort, by reducing the risk of hospital-acquired

infections and allowing patients to recover in the familiar environment of their home (OECD,

2017a). For this reason, strategies to discharge patients sooner, whereby patients are admitted

to a hospital bed, receive the necessary care and are discharged on the same calendar day,

have been incentivised for a list of low-risk emergency conditions in the English NHS (British

Association for Ambulatory Emergency Care, 2014). However, despite the potential for cost

reduction across hospitals and treatments, real-world evidence around the safety of discharging

patients early rather than admitting them overnight remains weak, especially in emergency
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settings (Miani et al., 2014). Discharging patients too early may result in poorer patient health

and even increase costs if patients have to seek care again later (Chen et al., 2010).

In this study, we investigate the causal effect of being discharged from hospital on the same

day as admission, rather than staying overnight, on hospital quality for emergency patients

admitted with chest pain symptoms in England. Chest pain is one of the most common

reasons for emergency admission (Forberg et al., 2006), with around 200,000 patients admitted

to a hospital each year in England. Although chest pain often resolves itself within a short

timeframe, it can be a symptom of more severe cardiac conditions, such as coronary heart

disease or a myocardial infarction (i.e., heart attack). Therefore, discharging patients too

quickly may come at the cost of poorer quality of care. We proxy hospital quality by patients’

risk of having an emergency admission within 28 days of hospital discharge. Emergency

readmission is a widely used metric of hospital quality, often reported in the U.S. or England

to monitor quality of care. It fits our context particularly well as we may be concerned that

unduly discharging patients on the same day as admission will cause them to be readmitted

later52.

Patients who are discharged on the same day may be unobservably healthier than patients

admitted for an overnight hospital stay, and thus will have better health outcomes indepen-

dently of their inpatient length of stay. Therefore, we control for a wide range of observed

clinical and socio-economic dimensions of patient health available in hospital records (e.g.,

patient age, sex, ethnicity, income deprivation, comorbidities, risk factors and past hospital

utilisation). We further account for possible remaining unobserved patient severity by using

an instrumental-variable approach. In particular, we instrument for whether a patient was

discharged on the same day of admission by using differences in patient exposure to a ma-

jor bonus policy in England that incentivises early patient discharge for certain conditions

(Allen et al., 2016; Gaughan et al., 2019). We utilise the fact that patients who attended the

Emergency Department during daytime were more impacted by the reform than patients who

attended at night (see Section 5 on Methods). In line with a growing IV literature (Duflo,
52While mortality is a commonly used quality metric, it is too rare in this context to be informative: in our

sample only 0.5% of patients died within 30 days of hospital discharge.
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2001; Lundborg and Majlesi, 2018; Aouad et al., 2019; Ma, 2019), our instrument therefore

relies on exogenous variation in the intensity of the effect of the policy, induced by the time at

which patients arrive at an Emergency Department. Importantly, any systematic unobserved

differences in hospital quality or case-mix or differences in patient severity linked to the time

of attendance are accounted for by a set of hospital fixed effects and hour of arrival dummies.

Our OLS results indicate that, after controlling for a rich set of patient characteristics,

being admitted and discharged on the same day is associated with a lower probability of being

readmitted within 28 days. However, our instrumental variable approach suggests that there

is no causal effect of being discharged on the same day as admission on the probability of

being readmitted.

This study makes several contributions to the literature, which we review in more detail

in the next section. First, we contribute to the literature on the trade-off between costs and

quality in the hospital sector, by providing novel causal evidence on the effect of a cost-reducing

strategy on hospital quality. Importantly, the policy considered here pays hospitals a higher

tariff for a lower-cost treatment (ie., same-day discharge treatment rather than overnight

stays). A large literature has sought to assess the relationship between costs and quality of

care (Gutacker et al., 2013; Hussey et al., 2013; Häkkinen et al., 2014; Jamalabadi et al.,

2020), relying on variation in costs across space and/or time. A major endogeneity concern

in this context is omitted variable bias due to possible unobserved patient severity, which

may correlate both with hospital costs and patient health outcomes. By design, because our

instrument relies on the time at which patients attend the Emergency Department (ED), it

varies across patients within hospitals rather than solely across hospitals or regions. Our

setting and instrument therefore mitigate the risk of remaining unobserved variables at both

patient and hospital level.

Second, our study adds to the broader literature on healthcare providers’ behaviour. Un-

derstanding hospitals’ behaviour provides important insights for policymakers. For instance,

Dafny (2005) shows that U.S. hospitals responded to a change in prices by ‘upcoding’ patients

to diagnoses with largest price increases but did not alter the intensity or quality of care pro-
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vided. Dranove et al. (2003) provide evidence that following the public reporting of hospital

performance for cardiac surgery in the U.S., hospitals shift to treating healthier patients, while

Kolstad (2013) finds that surgeons responded to report cards by increasing quality, suggesting

that surgeons are also motivated by reputational concerns. Closer to our setting, Arcà et al.

(2020) find that hospitals responded to austerity measures implemented in certain Italian re-

gions by cutting beds and staff capacity, which led to lower patient health outcomes. In this

study, we consider how reductions in inpatient length of stay may have impacted the care

provided in hospitals. Our results indicate that cost reductions based on inpatient length of

stay can be achieved without harming quality.

Finally, this study contributes to the limited but growing literature using the introduction

of policies as instrumental variables in a panel data framework (Hudson et al., 2017). In

education economics, years of schooling have been instrumented using variation in exposure

to schooling reforms across time or space. Acemoglu and Angrist (2000) estimate returns to

schooling on future earnings for pupils in the U.S., using differences in compulsory schooling

across states and cohorts of students. Duflo (2001) relies on variation in the intensity of a

school construction programme across regions of Indonesia to estimate individuals’ returns to

schooling in terms of wages53. Ma (2019) and Lundborg and Majlesi (2018) exploit variation in

the rolling out of reforms to extend compulsory schooling to estimate the effect of extra years of

schooling on parents’ health and longevity in China and Sweden respectively. In the healthcare

context, we are only aware of few studies with similar IV designs. Aouad et al. (2019) study

the effect of receiving treatment in an ambulatory surgery centre on patient health outcomes

after a colonoscopy in the U.S. Being treated in an ambulatory surgery centre, rather than in

a hospital, is instrumented for by exposure to a change in patients’ cost-sharing for hospital

treatments for certain insurers, which incentivised these patients to receive care in ambulatory

surgery centres. Frimmel and Pruckner (2020) use variation in the legal retirement age driven

by pension reforms in Austria to examine the effect of retirement on healthcare use.
53In this influential study, Duflo uses a similar instrumental design where the instrument is the effect of the

policy, exploiting differences in the intensity of a school construction programme (the policy) across regions
and cohorts of pupils. While the school construction programme was a major national reform, regions and
pupils were impacted to a different degree: more schools were built in some regions while younger pupils
were exposed to the reform for a longer period of time
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In the remainder of this section, we give a brief account of the literature (Section 1.1). Sec-

tion 2 describes our institutional context, while Section 3 lays out our conceptual framework.

Section 4 introduces the data. Section 5 details our instrumental variable strategy. Section 6

presents the results while Section 7 concludes.

1.1 Related literature

A major strand of literature has sought to understand the relationship between costs and

quality, by exploiting geographic variations in costs (see Hussey et al. (2013) and Jamalabadi

et al. (2020) for two recent systematic reviews of the literature). Despite generally mixed find-

ings, the literature suggests that the direction and significance of the cost-quality association

depend on the medical conditions investigated, the measure of outcomes and the ability to ac-

count for patient severity. A positive relationship between costs or prices and quality is more

commonly reported when studies focus on process measures, rather than health outcomes,

and when potential omitted variable bias is accounted for. Some studies also find that the

relationship between costs and quality is non-linear (Steven, 1991; Chen et al., 2010; Gutacker

et al., 2013; Jamalabadi et al., 2020). This may also explain why findings across studies vary

if they are effectively estimating the cost-quality relation at different points of the cost-quality

curve. McKay and Deily (2008) further indicate that the effect may depend on the source of

cost reduction, suggesting that rather than attempting to reduce overall costs, policy makers

should target efficiency efforts on costs that are deemed wasteful. Doyle et al. (2017) for in-

stance find that high spending on inpatient care leads to better chances of survival, but that

higher outpatient spending reduces survival. While there is substantial literature on the trade-

off between costs and quality, there are fewer studies which attempt to account for potential

omitted variable bias linked to unobserved patient severity in regressions with hospital costs

or prices.

Several causal studies investigate the effect of costs on quality and implement instrumental

variable strategies. Stargardt et al. (2014) investigate the effect of hospital costs on 1-year
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mortality for acute myocardial infarction (AMI) patients in Germany, and instrument hospital

costs alternatively with the average costs in the federal state or the average price per square

meter in hospitals’ county. The authors find that lower costs lead to increased mortality.

Another study by Schreyögg and Stargardt (2010) assesses the relationship between hospital

costs and patient health outcomes after AMI in the U.S., where they instrument for hospital

costs by an adjustment index of wages across regions in the U.S. and general overhead costs

per day at the hospital. Their results also suggest that increased costs lead to higher mortal-

ity and readmission rates. Overall, there are concerns that instruments which use variation

across hospitals or regions may not fully account for unobserved severity, as there may remain

unobserved differences in population health across hospitals or regions. Doyle et al. (2015)

investigate whether patients with an emergency condition who are treated in high-spending

hospitals have a lower risk of mortality in the U.S. After documenting that ambulance compa-

nies have different preferences as to which hospital to refer patients, they instrument patients’

probability of being treated in a high-spending hospital by the ambulance service dispatched to

patients. They find that being treated in a higher-spending hospital leads to reduced mortality.

Some studies focus specifically on the effect of inpatient length of stay, as a driver of

costs, on patient health outcomes, which is also our focus. Harrison et al. (1995) find that

the decreasing inpatient length of stay over time in a region of Canada was not associated

with increases in 30-day admission rates or in physician visits after patient discharge from the

hospital for a range of conditions, which include acute myocardial infarction. Picone et al.

(2003) estimate the effect of length of inpatient stay on mortality and functional status for

Medicare patients admitted after a health shock (hip fracture, stroke, coronary heart disease) in

the U.S. They fit a quasi-maximum likelihood discrete factor model to account for unobserved

severity, and find that length of stay does not lead to better patient health outcomes. Hauck

and Zhao (2011) use Australian hospital data to study the causal effect of an additional day

in hospital on patients’ risk of experiencing an adverse event. Instrumenting patient length of

stay by the days and month of patient discharge, the authors show that an additional day in

hospital increases the risk of infections and ulcers. While these studies look at length of stay
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in general, we focus on the lower end of the distribution of length of stay, for the conditions

where it is considered safe to not keep patients overnight. The reduction in hospital length of

stay goes therefore from one to zero hospital days.

A recent strand of literature leverages variation in austerity measures across regions or

over time in Spain or Italy to estimate the effect of cutting costs on hospital quality (Borra

et al., 2019; Arcà et al., 2020). In an austerity context however, other factors, such as eco-

nomic hardship and delayed access to care, can directly affect population health, potentially

confounding the direct role of hospital quality on patient heath. Similarly, enforced austerity

measures may affect hospital quality in many different ways, via cutbacks in medical staff,

reduced hospital capacity or availability of technology and equipment, making it difficult to

identify the relevant mechanisms causing changes in quality (Borra et al., 2019).

More broadly, there is a large literature exploring hospital behaviour in relation to e.g.,

financial incentives, hospital market structure, reputational concerns, ownership status or

institutional context. A large literature has studied the effect of changes in payment systems,

in the context of the widespread adoption of activity-based hospital payment (Hodgkin and

McGuire, 1994; Farrar et al., 2009). Changes in prices prompt hospitals to increase activity

for incentivised surgeries or upcode patient severity (Dafny, 2005; Januleviciute et al., 2016;

Verzulli et al., 2017). The empirical literature on the effect of marketplace competition indicate

mixed effects on quality of care depending on the particular features of the pro-competition

policies (Kessler and McClellan, 2000; Gowrisankaran and Town, 2003; Cooper et al., 2011;

Gaynor et al., 2015), but suggests positive effects on efficiency (Cooper et al., 2018; Longo

et al., 2019) and management quality (Bloom et al., 2015). Other studies consider the role

of intrinsic motivation and reputational concerns by reviewing the effect of reporting public

information on hospital performance. The evidence, mostly from the U.S., on quality efforts is

mixed (Dranove et al., 2003; Lindenauer et al., 2007; Lagarde et al., 2019; Yoon, 2019), while

there are some concerns that providers engage in patient screening. Ownership status may also

impact the care provided. The existing evidence for Europe suggests that private hospitals

are not providing better nor more efficient care (Kruse et al., 2018; Moscelli et al., 2018a).
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Evidence from France indicates that private for-profit hospitals provide similar quality of care

as public hospitals due to a higher capacity to use innovative procedures (Gobillon and Milcent,

2016). The institutional context may also influence hospitals’ provision of care (Francese et al.,

2014; De Luca et al., 2021). De Luca et al. (2021) show that hospitals operating in regions

where the institutional quality is lower, tend to provide less appropriate care, measured by

higher rates of unscheduled c-sections.

2 Institutional context

Since the creation of the National Health Service (hereafter, NHS) in 1948, access to health

care services in England has been universal and funded primarily through general taxation.

Health care is free at the point of use, and this includes both planned (elective) and emergency

care (Dunn et al., 2016)54. However, to access planned hospital care patients need a referral

from their family doctor (general practitioner), who act as gatekeepers. Most hospital care for

NHS patients is provided by public hospitals (NHS Trusts). These are public bodies subject

to financial and regulatory control and are expected to break even55.

Since 2003 in England, hospitals have been funded primarily through a prospective payment

system, moving away from the previous system of block grants (fixed budget). The prospective

payment system, common across OECD countries to fund hospital care, maps the activity of

care provided to pre-determined tariffs. Each patient is mapped to a Healthcare Resource

Group (HRG), the English equivalent of the Diagnosis-Related Groups (DRGs) in the U.S.,

which consists in a series of categories defined by patient characteristics such as diagnoses, age

and procedures carried out. The payment made for a given HRG is calculated from national

costs in recent previous years (Grašič et al., 2015).

Since 2008 and the austerity period that followed the financial crisis, spending on health

care has considerably slowed down, growing by 1.4% annually on average, as opposed to a

long-term annual average growth rate of 3.7% (The King’s Fund, 2020). In this context, the
54Only prescriptions of certain pharmaceuticals, dental and optical care are subject to user charges.
55NHS providers that have been granted a Foundation Trust status have more financial flexibility and are for

instance able to retain surpluses to reinvest in later years.
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healthcare sector has been under substantial pressure to make efficiency savings of between

£15 to £20 billion between 2011 and 2014, resulting in numerous spending cuts and declining

financial strength of hospitals (NHS, 2009; Lafond et al., 2014). The unprecedented slowdown

in health funding over the past decade together with a rising demand for healthcare services

have put financial pressure on the NHS. In 2018/19, nearly half of the NHS providers in

England were in financial deficit at the end of the year (Anandaciva, 2020).

Over time, several pay-for-performance schemes have been introduced with the objective of

linking payment more closely to providers’ performance, both in primary and secondary care.

In the latter, some of these schemes, labelled “best practice tariffs”, incentivise higher quality

of care for a range of conditions (e.g., cataract surgery, gallbladder removal, stroke, or fragility

hip fracture) by inducing hospitals to adopt a range of process measures corresponding to the

best practice (Meacock et al., 2014).

Some schemes also focused on incentivising efficiency of care. Between 2010 and 2014, a

pay-for-performance scheme was introduced and gradually expanded to incentivise hospitals

to increase the number of patients discharged on the same day as admission, and therefore

reduce costs. The scheme was informed by the recommendations from medical associations

who identified a list of 13 planned and 19 emergency conditions that could be safely treated on

the same day as admission rather than involving an overnight admission (British Association

of Day Surgery, 2006; British Association for Ambulatory Emergency Care, 2014). Under the

scheme, a bonus is paid to hospitals for each patient discharged on the same calendar day as

admission, with the aim of progressively changing care practices in hospitals (e.g., allowing for

re-organization of the hospital ward) and reducing medically unnecessary stays (see Gaughan

et al. (2019) for a comprehensive overview of the scheme).

Chest pain, which is the focus of this study, is part of the list of emergency conditions that

where included in this pay-for-performance scheme encouraging hospitals to discharge patients

on the same day as admission. Prior to the policy, around 40% of chest pain patients were

discharged on the same day as their admission, well below the national recommended rate of

60%. Since 2012, hospitals have been financially incentivised to admit and discharge patients
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presenting at the Emergency Department with mild chest pain on the same calendar day. The

financial bonus was significant: hospitals received a tariff for each patient discharged within

the same day which was 37% higher than the tariff for overnight stays (£748 vs £543), despite

it being more costly to keep patients overnight (Monitor and NHS England, 2014).

3 Conceptual framework

To understand how encouraging hospitals to increase technical efficiency might affect hospital

quality, we briefly review some key results from the theoretical literature on hospital behaviour.

Policymakers contract hospital activity with the aim to keep costs of care down while also

inducing hospitals to engage in quality improvement efforts (Chalkley and Malcomson, 1998a).

Prospective payment systems where the fixed case-based tariffs are set at average costs of

providers (yardstick competition), unlike cost reimbursement schemes, provide an incentive

for hospitals to contain costs as hospitals can retain the cost savings. Such schemes may also

induce hospitals to invest in quality if patient demand responds to quality, as more patients will

mean higher hospital revenue for the hospital (Ma, 1994; Chalkley and Malcomson, 1998b).

Only when demand is inelastic, fixed price systems may induce hospitals to lower costs at the

expense of quality if the fixed tariff is low, though the effect of fixed price on quality in this

context depends ultimately on hospitals’ degree of altruism (Chalkley and Malcomson, 1998a).

A related strand of the theoretical literature has been concerned with the effect of pay-

ment schemes where providers are faced with two possible treatment options, typically one

more intensive than the other, for a given diagnosis. Under prospective payment system,

implementing different tariffs for each treatment type, rather than having a unique tariff

based on patient diagnosis, gives hospitals an incentive to overprovide the most intensive (and

profitable) treatment (Malcomson, 2005; Siciliani, 2006; Hafsteinsdottir and Siciliani, 2010).

Keeping a unique tariff per diagnosis induces hospitals to under-provide the most intensive

treatment option, only if hospitals’ degree of altruism is sufficiently low (Hafsteinsdottir and

Siciliani, 2010). Hafsteinsdottir and Siciliani (2010) further show that under prospective pay-

ment systems where fixed tariffs are based on the average cost across providers, refining tariffs
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incentivizes providers to over-provide the more intensive and profitable treatment, especially

if low-severity patients benefit more from the most intensive treatment than the less intensive

option.

In our setting, policymakers set a higher tariff for discharging low risk chest pain patients

on the same day as admission (i.e., the less intensive treatment option), than for keeping pa-

tients overnight (i.e., most intensive treatment). However, in this context, the less intensive

treatment option is the most profitable, given a higher tariff and the lower costs incurred and

low-severity patients likely derive higher clinical benefits more from the less intensive treat-

ment, i.e. same-day admission rather than overnight stays, given the risk of hospital-acquired

infections and the discomfort of not being home. The literature suggests that hospitals would

admit and discharge patients on the same day as long as the marginal savings do not exceed

the marginal reductions in patient benefits. Hospitals may therefore have a financial incentive

to overly treat patients as same-day admission when same-day discharge care becomes more

profitable after the change in tariff, depending on how hospitals weigh profits considerations

against clinical considerations.

4 Data

4.1 Sample

We use detailed patient-level administrative hospital data from English NHS hospitals, known

as the Hospital Episodes Statistics data set. We extract hospital records for all emergency (i.e.,

unplanned) patients admitted to hospital with chest pain between April 2010 and March 2014,

i.e., two years before and two years after the 2012 policy incentivising hospitals to discharge

patients early, i.e. on the same day as admission, for patients with chest pain symptoms (N=

1,269,235 observations). The policy which introduced a bonus for discharging patients early is

expected to encourage hospitals to reduce inpatient length of stay of low-risk patients mainly

from one or two days to zero days where deemed clinically appropriate (Department of Health,

2012, p.60). Consequently, we exclude the most severely ill patients, which has two main
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advantages. First, more severely ill patients have little chance of being discharged on the same

day as admission, as this is unlikely to be clinically appropriate. Including these patients would

therefore dilute the impact of this policy, which we use for our IV strategy. Second, excluding

the severely ill patients for which early discharge is not clinically appropriate increases the

homogeneity of our sample. The choice to only remove relatively small proportions of the

sample strikes a balance between homogeneity and generalisability of results.

We proxy severity of condition in several ways: aged over 95 years (top percentile); diag-

nosed with more than seven comorbidities as defined by Elixhauser (Elixhauser et al., 1998)

(around two percent of the original sample); length of stay over seven days (around four per-

cent of the initial sample); arriving from a care home or psychiatric institution (less than one

percent of the original sample); patients with a previous admission for chest pain within the

past 365 days (around 15% of the original sample)56. We also exclude patients who live more

than 100 km from the admitting hospital (one percent of the original sample). While not a

proxy of severity per se, distance may be a barrier to rapid discharge (e.g., due to concerns

over excessive stress of travel; or availability of transport at certain hours of the day) or it

might indicate data error.

Our IV strategy (explained in detail in the Methods section) exploits the variation in the

effect of the bonus policy induced by the time at which patients arrive at the Emergency

Department (hereafter ED). We therefore merge patient hospital records with the ED data set

to obtain the exact hour at which each patient arrived at the Emergency Department. Around

73% of the sample successfully merges. Unmerged records may be due to patients who were

admitted to a hospital bed without first attending the Emergency Department. For instance,

patients may be given an urgent referral to the hospital from their family physician (General

Practitioner, GP) in which case there is no ED record for these patients. Our final sample

consists of 735,693 patients.

To understand the impact of using the merged sample, we present in Table C.1 in Appendix

key summary statistics for patient characteristics for i) the sample before merging with the ED
56A history of chest pain admissions may indicate a more severe underlying condition. It might also suggest

that the previous treatment was not intensive enough to provide sufficient relief.
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data set and ii) our final merged sample. Patient characteristics are similar in both samples

in terms of the number of comorbidities, patient age, gender, ethnicity, income deprivation,

percentage of the sample suffering from cardiac risk factors or having had an emergency

admission in the past year. This suggests that restricting our sample to the merged sample

does not impact the representativeness of our sample. The only notable difference is that

the rate of same-day discharge is higher in the original unmerged sample (48% versus 43%

in our final sample). This could be due to patients who were referred and admitted to the

hospital directly after seeing their GP. These patients are therefore more likely to be admitted

during daytime (ie. GP office hours) rather than late at night and do not have to wait at

the Emergency Department. This can speed up their admission and subsequent discharge

and explain why they were on average more often discharged on the same day as admission.

Importantly, because both samples are very similar in terms of the many (observed) patient

characteristics, differences in same-day discharge rates are unlikely to be due to unobserved

patient severity.

4.2 Dependent variable

Our dependent variable is an indicator variable equal to one if the patient has an emergency

(unplanned) readmission within 28 days of being discharged from the hospital, and zero other-

wise. Readmission rates are a commonly used measure of health outcomes alongside mortality

rates (Friebel et al., 2018; O’Dowd, 2018). In our sample for chest pain patients, the average

30-day mortality rate is infrequent, at about 0.5%, making it less responsive to finer variations

in hospital quality.

4.3 Independent variables

Our key independent variable is an indicator variable equal to one if a patient is admitted to

hospital, following an Emergency Department attendance, and discharged on the same calen-

dar day. Control variables include patient-level clinical and socio-economic characteristics such

as patient age, sex, ethnicity (coded as white or non-white), number of Elixhauser comorbidi-
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ties (Elixhauser et al., 1998) reported in the current hospital admission (current Elixhauser

comorbidities) and in past hospital admissions during the year preceding the index chest pain

admission (past Elixhauser comorbidities). We also control for whether the patient had any

past (all cause) emergency hospital admission in the year preceding the index chest pain ad-

mission or whether the patient arrived at the Emergency Department by ambulance; both of

which may indicate more severe symptoms or underlying medical conditions. Information on

month and year of attendance are extracted from hospital admission data.

In some cases, chest pain may be the symptom of serious and potentially life-threatening

cardiac or respiratory conditions57. We take into account the patients’ cardiac or pulmonary

comorbidities, which may affect both a doctor’s decision to discharge patients quickly and

patients’ subsequent health outcomes (Prina et al., 2004). In particular, we include a sepa-

rate indicator variable for whether the patient has been diagnosed with cardiac arrhythmia,

congestive heart failure, valvular heart disease or pulmonary circulatory disorders during the

index chest pain admission.

We use relative income deprivation in the area of the patient’s residence as a proxy for

their socioeconomic status. Income deprivation is measured as the proportion of people in a

small geographic area (i.e., lower-layer super output areas (LSOAs)) who claim means-tested

benefits (e.g., income-based employment and support allowance). We assign each LSOA to

quintile groups of the national distribution of income deprivation, and map these to patients

based on their geographic identifiers recorded in HES.

To implement our instrumental variable approach, we construct an indicator variable equal

to one if the patient arrived at the Emergency Department between 6am and 5pm (daytime).

Our instrument relies on variation in the effect of the policy incentivizing early patient dis-

charge from the hospital. We observe that patients who attended the ED during daytime

were more impacted by the policy: the rates of patients who were discharged on the same day

as admission increased faster after the policy than for patients who attended the Emergency

Department at night (see Section 5.2 on our instrumental strategy and Figure 3.1). Our in-
57See patient health information for chest pain from the Mayo Clinic: https://www.mayoclinic.org/diseases-

conditions/chest-pain/symptoms-causes/syc-20370838 [Last accessed: 27/10/2020].

112



strument is the interaction of an indicator variable equal to one if the patient arrived at the

ED during daytime and an indicator variable for the post-policy period 2012 onwards.

4.4 Summary statistics

Around nine percent of patients in our sample have an emergency readmission within 28 days

of discharge from their index admission, and 43% were admitted and discharged on the same

day, which we refer to as same-day discharge (Table 3.1).

Table 3.1: Summary statistics

Mean Std. Dev. Min. Max.

28-day emergency readmission 0.09 0.28 0 1
Same-day discharge (SDD) 0.43 0.49 0 1
Patient age 58.74 17.44 19 95
Male patient 0.53 0.50 0 1
White ethnicity 0.80 0.40 0 1
Elixhauser: current admission 1.19 1.19 0 6
Elixhauser: past admissions (1 year) 0.65 1.27 0 6
Congestive heart failure 0.04 0.19 0 1
Cardiac arrhytmia 0.10 0.29 0 1
Valvular disease 0.04 0.18 0 1
Pulmonary circulatory disorder 0.01 0.10 0 1
Past emergency admission 0.25 0.43 0 1
Arrived to the ED by ambulance 0.54 0.50 0 1
Distance to admitting hospital (km) 9.98 11.08 0 101
1st quintile - Least income deprived 0.15 0.36 0 1
2nd quintile 0.21 0.40 0 1
3rd quintile 0.17 0.38 0 1
4th quintile 0.23 0.42 0 1
5th quintile - Most deprived 0.24 0.43 0 1
Daytime ED arrival (6am to 5pm) 0.72 0.45 0 1

Observations 735693

Notes: Same-day discharge patients are admitted to a hospital bed and discharged from the hospital on the
same calendar day. Quintiles of income deprivation are based on the national distribution of income deprivation
in England and measured for patients’ small area of residence.

The average patient is 58 years old. 53% of patients are male, and 80% are of white eth-

nicity. The average patient has 1.19 comorbidities recorded in the index chest pain admission,

and an additional 0.65 comorbidities recorded during hospital admissions in the previous year.
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Four percent had congestive heart failure, ten percent had cardiac arrhythmia, four percent

had valvular disease, and one percent suffered from pulmonary circulatory disorder. 25% had

a past emergency admission. 54% attended by ambulance. The average patient resides about

10km from the admitting hospital. Almost 50% of the sample fall in the two most deprived

quintiles of income deprivation. Nearly three-quarters (72%) of the patients arrived at the

Emergency Department during daytime, defined as between 6am and 5pm.

5 Methods

5.1 Empirical strategy

Our aim is to measure the causal effect of being discharged on the same calendar day of the

index admission on the probability of the patient being readmitted as an emergency within 28

days of hospital discharge. We employ the following regression model:

yiht = β0 + αh + ϕt + β1SDDiht +X
′
ihtβ2 + ϵiht, (3.1)

where yiht is the probability of having an emergency readmission within 28 day of hospital

discharge for patient i admitted to hospital h in year t. SDDiht is an indicator variable equal

to one if patient i was admitted to a hospital bed and discharged on the same day (same-day

discharge, SDD). αh is a vector of hospital fixed effects that control for time-invariant hospital

factors58. ϕt is a set of indicator variables for each financial year, which allow for aggregate

changes in quality of care over time that arise due to e.g. improvement in medical knowledge

and guidelines, or technology advancement59.

Xiht is a vector of patient characteristics comprising patient age (in 10-year bands), sex,

ethnicity and the number of past and current Elixhauser comorbidities in categories (zero,

one, two to three or four to six comorbidities) to allow for non-linear effects on post-discharge
58Hospital fixed effects would also account for unobserved regional differences, such as potential difference in

the number of emergency departments in an area, difference in doctors’ propensity to admit and discharge
patients or differences in patients’ living arrangements. For instance, in areas with higher proportion of
people living alone, hospitals may keep patients overnight more often.

59For simplicity, hospital and year fixed effects are denoted in the same way in all equations.
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health outcomes. Patient controls also include a set of indicator variables for being diagnosed

with cardiac or pulmonary risk factors, for a past emergency admission, ambulance arrival

to the Emergency Department and the quintile of income deprivation at the small area level.

Patient controls also include a set of dummies for month of the year and day of the week of

admission, to control for seasonality effects, which may affect both the probability of being

discharged the same day and health outcomes. Importantly, we include a set of dummies for

each hour of the day of ED arrival to control for the fact that patients who arrived late at

night might have more severe symptoms or receive different standards of care, for example,

due to lower staffing levels. Our coefficient of interest, β1, measures the effect of being dis-

charged on the same day on the probability of having an emergency readmission within 28

days. We estimate Equation (3.1) by Ordinary Least Squares using a linear probability model.

All standard errors are clustered at the hospital level.

5.2 Instrumental variable approach

Despite the large set of patient controls, a potential endogeneity concern with estimating

Equation (3.1) by OLS is that patients discharged on the same day may be unobservably

different from patients admitted for an overnight stay. Any remaining unobserved differences

in patient severity would therefore introduce an omitted variable bias in our estimate of β1.

In particular, we would expect patients who are admitted and discharged on the same day to

be (unobservably) healthier on average than overnight patients, thus introducing a downward

bias in the OLS estimate of the effect of same-day discharge treatment on readmissions.

We use an instrumental variable approach to address this possible omitted-variable bias.

We instrument the indicator variable for being discharged on the same day as admission by

exploiting variation in patient exposure to a 2012 policy. The latter introduced a bonus

payment (see Section 2) that has been shown to increase the rates of patients admitted and

discharged on the same day nationally (Allen et al., 2016; Gaughan et al., 2019). Specifically,

our IV strategy exploits the variation in the policy-induced increase in such rates for patients
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arriving to the ED at different times of the day. Our treatment of interest, referred to as

same-day discharge, is defined according to the calendar day of admission and discharge.

Patients who arrive to the ED in the early hours of the day have more time to be admitted

and discharged on the same day than patients who arrive late at night. By construction, the

rate of patients admitted and discharged on the same day is therefore highest for patients

who attended the ED in the early hours of the day and decrease as the day passes because

the number of hours left to be discharged before midnight of the same calendar day decreases.

Figure 3.1 illustrates this pattern in our data. Note that we focus on the time of attendance at

ED and not the time of admission to the hospital ward since the former is arguably exogenous

to the hospital and not affected by clinical decisions that are susceptible to gaming60. Once

patients arrive at the Emergency Department, ED personnel will conduct some initial screening

and diagnostic work to determine patients’ health status and the need for hospitalisation. As

a result, patients who attended the ED in the evening will most likely be admitted sometime

after midnight, i.e., in the next calendar day, and, as a consequence, we observe that the rate

of patients discharged on the same day as admission starts rising again from 7pm onwards.

Figure 3.1 also shows that the rates of patients discharged early increased markedly after

the start of the BPT policy, as the plotted lines (dashed and dotted) shift outwards after 2012.

Importantly, the rates of patients discharged on the same day as admission increased faster

after 2012 for patients who arrived at the ED during daytime, i.e. between 6am and 5pm.

Conversely, such rates increased less for patients who arrived at the ED at night, indicating

that they were less impacted by the payment policy. There are two possible reasons for this.

First, patients who arrived in the evening may have been admitted just before midnight, thus

leaving little room for hospitals to respond to the policy incentive by increasing the proportion

of patients who are discharged without staying overnight. Alternatively, for patients who were

admitted just after midnight hospitals already had ample time to discharge all appropriate

patients during the same calendar day prior to the policy reform. As a result, the policy re-

sponse was strongest for patients who arrived during daytime hours, when hospitals had most
60We are also limited by the depth of data recording in inpatient records. Whilst we have the exact time at

which patients attend the ED, we only observe the date at which they are admitted to the hospital ward.
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scope to actively seek to discharge patients early in response to the policy incentive.

Figure 3.1: Same-day discharge rates by arrival time at the Emergency Department, by year

Notes: Same-day discharge refers to patients who were admitted and discharged from the hospital on the same
calendar day. Plot of the rates of same-day discharge patients per hour of patient arrival at the Emergency
Department for each year of the sample (2010-2014).

Figure 3.1 provides the intuition for our instrumental variable strategy. We use these observed

patterns of treatment rates over time to derive our instrument. The rest of this section lays out

our IV strategy more formally. The first stage regression of our IV approach is the following:

SDDiht = δ0 + αh + ϕt + δ1(postt ∗Di) +X
′
ihtδ2 + υiht, (3.2)

where postt takes the value of one from 2012 onwards when the policy came into effect, and

zero otherwise. Di is an indicator variable for arriving at the Emergency Department during
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daytime, i.e. between 6am and 5pm. By defining daytime admissions to correspond to the

hours where the reform had the most important effect on increasing the rates of same-day

discharge treatment, we ensure that we have a strong first stage61. A patient’s exposure to the

policy is determined both by the year of admission relative to the timing of the reform and by

the time of day at which they arrived at the ED. Our instrument is therefore the interaction of

both indicator variables, (postt∗Di). After controlling for year fixed effects and hour of arrival

fixed effects, the interaction term between being admitted after the reform and arriving at the

ED during daytime62 creates plausibly exogenous variation in same-day discharge treatment

and serves as our instrumental variable63.

In the second stage, the readmission indicator variable is regressed on the predicted prob-

ability of being discharged the same day, ŜDDiht, obtained from the first-stage regression, as

follows:

yiht = β0 + αh + ϕt + β1ŜDDiht +X
′
ihtβ2 + ϵiht, (3.3)

The IV results are estimated by standard two-stage least squares (2SLS), using the Stata

command xtivreg. Robust standard errors are clustered on hospitals to account for possible

correlation across patients within hospitals.

5.3 Instrument validity

For our instrumental variable strategy to be valid, our instrument must satisfy a set of as-

sumptions. First, patient exposure to the policy, determined here by the time of arrival at the

ED and financial year, must be significantly correlated with changes in the rates of patients
61We show results of alternative cut-offs for the definition of daytime arrival in robustness checks, section 6.
62Both indicator variables are perfectly collinear with the year dummies and the hour of arrival dummies.

Therefore, only their interaction term is included in Equation (3.2).
63Note that our first stage is akin to a difference-in-differences estimate of the effect of the policy on the rates

of same-day discharge treatment. Several studies (Duflo, 2001; Ma, 2019; Américo and Rocha, 2020)) have
similarly exploited variation in the intensity of a national reform to infer the causal effect of a policy in a
difference-in-differences type design by interacting a group dummy with a post-policy dummy. This uncovers
the causal effect of the program, under the assumption that in the absence of the program, the increase in
same-day discharge rates (or, years of schooling in Duflo (2001)) would not have been systematically different
for patients who presented at the emergency department during day or night time (or, for regions with more
or less schools constructed in the study by Duflo (2001)).
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admitted and discharged on the same day (relevance condition). Figure 3.1 supports this

notion and we provide additional evidence that this condition is satisfied in the next section

where we discuss the results of the first stage.

Second, patient exposure to the policy should be exogenous, conditional on our set of

controls (independence condition). Note that only the interaction of time of arrival at the

emergency department and the post-policy dummy, ie. our instrument, is exogenous. This in-

dependence assumption, though untestable, is likely to hold: our instrument is the interaction

of a major policy, whose timing was decided nationally and implemented for all hospitals at

the same time, and the hour at which patients arrive at the Emergency Department with chest

pain symptoms. We focus on an emergency condition: patients go to the ED after the onset of

the chest pain symptoms, which precludes patient self-selection into hospital if they anticipate

a certain treatment. The timing of the onset of symptoms and the subsequent arrival at the

ED are also exogenously determined and not subject to hospital decision-making. We cannot

rule out that patients who arrived late at night suffer from more severe or acute chest pain.

However, potential differences in symptoms severity by time of day are accounted for via our

set of hour fixed effects as long as their effect on healthcare seeking behaviour does not vary

over financial years, which seems plausible in this context.

Third, our instrument should only impact patient health outcomes indirectly through the

increase in the rate of same-day discharge (exclusion restriction). This assumes that patient

exposure to the policy is unrelated to unobserved characteristics that may directly affect our

outcome variables, namely emergency readmissions. We assess the likelihood of this assump-

tion in the next section. Finally, the effect of our instrument should be monotonic (mono-

tonicity assumption) (Imbens and Angrist, 1994). While our instrument might have had no

effect on the probability of being discharged on the same day for certain groups of patients,

there should be no patients who would have been discharged the same day before the reform

but were admitted with an overnight stay after the reform (i.e. called ‘defiers’). This scenario

seems unlikely given that the policy provided a generous financial incentive for hospitals to

avoid overnight stays for this population and the publication of clinical recommendations.
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Further, the nationally recommended rate for chest pain patients was noticeably higher than

the actual rate prior to the policy (60% recommended vs. 40% actual).

If these conditions hold, our IV estimand is the weighted average causal effect of being

discharged on the same day for patients who were only discharged on the same day because of

the policy but who would have otherwise stayed overnight (i.e., local average treatment effect,

LATE) (Angrist and Imbens, 1995; Angrist and Pischke, 2008).

6 Results

6.1 First-stage results

Table 3.2 shows the effect of our instrument on the probability of being discharged on the same

calendar day (first-stage results; equation (3.2)). Because our instrument utilises the increase

in the rates of patients discharged on the same as admission induced by the bonus policy,

the first stage results can be interpreted as the effect of the policy on same-day discharge.

Our findings indicate that the bonus policy implemented in 2012 for chest pain increased

the rates of same-day discharge by around five percentage points (11% effect relative to the

average same-day discharge rate in the sample) for emergency chest pain patients. The effect

is statistically significant at the 0.1% level. The policy effect is in line with the previous related

literature (Allen et al., 2016; Gaughan et al., 2019) which find effects of similar magnitude

for the same policy using different health conditions. The partial effective F-statistics for the

instrument is 40, above the minimum recommended value of 23 (Montiel-Olea and Pflueger,

2013).
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Table 3.2: Effect of the instrument on same-day discharge rates (first stage)

Same-day discharge

Post-reform*daytime ED arrival (IV) 4.832∗∗∗

(6.325)

Hospital fixed effects Yes
Year dummies Yes
ED hour dummies Yes
Patient controls Yes

F-statistics 40
Observations 735693

Notes: Coefficients are expressed in percentage points. Same-day discharge refers to patients who are admitted
and discharged from the hospital on the same calendar day. Daytime ED arrival is an indicator variable for
patients who arrived at the Emergency Department between 6am and 5pm. Patient controls include patient
age (in 10-year bins), sex, ethnicity, past and current Elixhauser comorbidities in categories, past emergency
admission, ambulance arrival and quintile of income deprivation. Standard errors (in parentheses) are clustered
on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001

The full table of coefficients is shown in the Appendix, Table C.2. The results show that,

as expected, patients with more Elixhauser comorbidities or who are diagnosed with cardiac

or pulmonary risk factors are significantly less likely to be discharged on the day as admission.

The effect is important, ranging from around six percentage points difference for patients

with valvular disease to 19 percentage points differences in the same-day discharge probability

for patients with four to six comorbidities. Older patients have also a significantly lower

probability of being discharged on the same day. The effect of age on same-day discharge

monotonically increases across five-year age categories, from two percentage point difference

for patients aged 26 to 35 years old, up to 19 percentage points difference for patients over 85

years old, relative to patients between 19 and 25 years old. Results also show that, holding

everything else constant, male patients have a lower probability of having a same-day discharge

than female patients. The medical literature suggests that chest pain is often misdiagnosed in

women (Martinez-Nadal et al., 2021), which could explain this result together with biological

differences in risk factors.

To test whether the exclusion restriction assumption is likely to hold, we run a similar

first-stage regression but substitute the post-policy dummy (Postt) with dummies for cal-

endar quarter for the whole period, similar to an event study design. Figure 3.2 plots the
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coefficients on the interaction between the indicator variable for daytime ED arrival and the

calendar quarter fixed effects. Most of the coefficients before the first quarter of 2012 are not

statistically different from zero, indicating that there were no differential trends in the rates of

patients discharged early (same-day discharge) among daytime vs night-time ED attendance

prior to the policy. After 2012, rates begin to diverge as evidenced by the positive and statis-

tically significant coefficient estimates. Note that the effect of the policy increased over time,

with noticeably larger impacts observed two years after the reform (2014).

Figure 3.2: Effect of the instrument on same-day discharge rates, by quarter of year

Notes: Plot of the coefficients (percentage points) and the 95% confidence intervals for the interaction of the
dummy for daytime ED arrival (6am to 5pm) and quarter dummies on same-day discharge rates. Quarter 1
stands for January-March, Quarter 2: April-June, Quarter 3: July-September, Quarter 4: October-December.
The red dashed line is the quarter when the bonus payment policy started. The reference quarter is the second
quarter of 2012 (2012Q2), corresponding to the start of the scheme for chest pain condition.
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These results confirm that the differential increase in same-day discharge rates between day

and night-time patients is due to the reform, rather than to some unobserved differences be-

tween groups of patients. Unobserved differences could affect patient health outcomes directly,

which would violate the exclusion restriction assumption. Figure 3.2 suggests that there is

variation in same-day discharge rates across quarters of years; the first quarter (Q1), i.e. the

winter months, is almost always associated with higher rates of same-day discharge care. While

we account for some of the seasonality variations via our month dummies, same-day discharge

rates still fluctuate across quarters. A possible interpretation is that same-day discharge prac-

tice is influenced by hospitals’ bed occupancy rate (Harrison et al., 2013; Friebel et al., 2018),

which may be higher during winter months given a higher incidence of flu or hip fractures

occurring over winter.

6.2 Main results

Table 3.3 reports the OLS and IV results. The model with OLS coefficients indicates that

same-day discharge care is associated with a lower risk of emergency readmissions, by 0.875

percentage points, equivalent to slightly under a 10% effect relative to the sample average

readmission rate of nine percent. The coefficient is highly statistically significant at the 0.1%

level. Once we instrument for the chance of being admitted and discharged on the same cal-

endar day, the effect becomes statistically insignificant. The point estimate is positive but

small in magnitude and statistically insignificant. The standard errors are larger than under

OLS, as is expected with IV. The results are consistent with the hypothesis that OLS results

suffer from omitted variable bias, in the form of a downward bias in the estimate of being

discharged on the same day as admission on emergency readmissions. Overall, these results

indicate that discharging patients on the same day as admission doesn’t lead to a statistically

significant higher risk of emergency readmission, even though the standard errors are large.

The reduced-form results (i.e. the direct effect of the instrument on readmission rates) pre-

sented in the next section also point to a null but precisely estimated effect (see Table 3.4).
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This suggests that, though imprecise, the IV estimate does point to a null effect.

Table 3.3: Effect of same-day discharge care on emergency readmissions, OLS and IV results

Emergency readmission
OLS IV

Same-day discharge (SDD) -0.875∗∗∗ 1.901
(0.115) (3.040)

R2 0.039 0.036
Observations 735693 735693

Notes: Coefficients are expressed in percentage points. Our instrument is the interaction of an indicator
variable for daytime arrival at the Emergency Department (6am to 5pm) and a post-reform indicator. Patient
controls include patient age (in 10-year bins), sex, ethnicity, past and current Elixhauser comorbidities in
categories, past emergency admission, ambulance arrival and quintile of income deprivation. Standard errors
(in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001.

The full model with all covariates is provided in the Appendix Table C.3. Patient charac-

teristics have the generally expected effects on readmission rates in both models. For instance,

patients with more comorbidities, with past emergency admission or patients who suffer from

risk factors have a higher risk of readmission. Age has a non-linear effect on the probability of

being readmitted. Young patients, between 19 to 25 years old, are at a higher risk of readmis-

sions than patients up until 65, probably indicating unusually severe symptoms for the very

young patients, but at a lower risk of patients older than 75 years old. We further observe that

more deprived patients have slightly higher risk of readmission. Table C.3 also shows that day

of admission is significantly associated with differences in the rates of readmission.

6.3 Reduced-form results

We report here the reduced-form results, equivalent to the direct effect of our instrument on

readmission rates. Given the definition of our instrument, these correspond to the causal effect

of the reform on patient readmission rates. Table 3.4 shows that we find no effect of the bonus

payment policy on patient readmission rates. The coefficient is close to zero and is precisely

estimated.
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Table 3.4: Reduced-form results

Emergency readmission

Post-reform*daytime ED arrival (IV) 0.092
(0.148)

R2 0.039
Observations 735693

Notes: Coefficients are expressed in percentage points. Daytime ED arrival is an indicator variable for patients
who arrived at the Emergency Department between 6am and 5pm. Patient controls include patient age
(in 10-year bins), sex, ethnicity, past and current Elixhauser comorbidities in categories, past emergency
admission, ambulance arrival and quintile of income deprivation. Standard errors (in parentheses) are clustered
on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001.

We further run an event study design where the post-reform dummy is replaced by quarter-

of-year dummies for the whole period, as previously done for the rates of same-day discharge

patients in Figure 3.2. This exercise enables us to graph the trends in readmission rates over

the whole period. Figure 3.3 shows that readmission rates are not affected by the reform.

These findings are in line with results from Allen et al. (2016) which evaluate the effect of the

same policy reform on readmission or mortality rates for cholecystectomy patients.

The absence of pre-trends in readmission rates, evidenced by the insignificant pre-reform

coefficients, suggests that the reform most likely did not have a direct effect on health outcomes,

other than by increasing the proportion of patients discharged on the same day as admission.

This is further suggestive evidence that the exclusion restriction assumption should hold.

However, two features of our instrument, the policy, are noteworthy. First, under the bonus

payment policy, hospitals received a higher payment for patients admitted and discharged

on the same calendar day. Second, the policy might have raised awareness in the medical

community about the existing clinical evidence and best practices in the management of chest

pain patients. Financial help to hospitals and better dissemination of the medical evidence

might have contributed to directly increase the quality of care provided to chest pain patients

(Phelps, 2000; Celhay et al., 2019), which would violate the exclusion restriction. The design

of our instrument mitigates such concerns: the effect of the policy is estimated over time and

within hospitals, based on patients’ time of arrival at the ED. Because any changes in the
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Figure 3.3: Effect of the instrument on emergency readmission rates, by quarter of year

Notes: Plot of the coefficients (percentage points) and the 95% confidence intervals for the interaction of the
dummy for daytime Emergency Department arrival and quarter dummies on 28-day emergency readmission
rates. Quarter 1 stands for January-March, Quarter 2: April-June, Quarter 3: July-September, Quarter 4:
October-December. The red dashed line is the quarter when the bonus payment policy started. The reference
quarter is the second quarter of 2012 (2012Q2), corresponding to the start of the scheme for chest pain condition.

standards of care for chest pain patients would have likely affected all chest pain patients at

the hospital (regardless of their time of arrival, ie. daytime or night time arrivals), the possible

direct effect of the policy on quality of care is controlled for.

Overall, our baseline results point to a null causal effect, though the effect is not precisely

estimated. This is a well-identified feature of instrumental variables: while IV estimates are

unbiased, they are also less efficient than OLS estimates. In this context, our reduced-form

results estimated by OLS indicate that our instrument, the policy, did not have a direct causal

effect on patient health outcomes (Table 3.4). The point estimate is close to zero (0.92) and

precisely estimated (SE= 0.148). Similarly, Figure 3.3 shows a consistent and null effect of the
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instrument on health outcomes over the whole period. This serves to reassure that our main

IV results, though imprecise, do point to a null effect.

6.4 Robustness checks

We run a couple of robustness checks. First, we proxy hospital quality by patients’ risk of

having an (all-cause) emergency readmission within 28 days of hospital discharge. Though

commonly used as an indicator of quality of care, emergency readmissions to hospital may

also be affected by factors unrelated to the quality of care provided during the index hospital

admission64. Emergency readmissions may include for instance admissions for hip fracture

or stroke, which would introduce some measurement error in our estimates. In a robustness

check, we re-define readmissions to include only readmissions with a chest-pain related di-

agnosis. Chest pain can be caused by issues around the heart or lungs. We use the ICD10

codes chapters to identify all conditions linked to the circulatory and pulmonary system (ICD

codes I00-I99 and J00-J99, listed in Appendix, Table C.4). The average readmission rates for

circulatory and with respiratory related causes is lower than all-cause readmissions, at around

four to five percent of the sample. Results in Table 3.5 show a similarly null effect, with a

point estimate close to zero.

Table 3.5: Results with (1) circulatory and (2) including respiratory-related readmissions

(1) (2)

OLS IV OLS IV

Same-day discharge (SDD) -0.849∗∗∗ 0.299 -0.869∗∗∗ -0.433
(0.062) (2.333) (0.064) (2.487)

R2 0.011 0.101 0.017 0.016
Observations 735693 735693 735693 735693

Notes: Coefficients are expressed in percentage points. Standard errors (in parentheses) are clustered on
hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001.

64In our sample, mortality rates are too low (around 0.5%) to introduce bias (e.g. survival bias) in our outcome
measures.
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Second, we define daytime admissions to be between 6am and 5pm, based on the observation

that same-day treatment rates increased most for these patients, resulting in a strong first

stage. In a sensitivity analysis, we also show the results from i) defining daytime arrivals

to be between 7am and 7pm, which corresponds to the normal working hours of consultants,

outside of call duties (British Medical Association, 2009), and ii) not imposing any definition of

daytime arrival by interacting each hour of arrival at the emergency department with the post-

reform dummy, forming a set of instruments. Results in Appendix, Table C.5 are essentially

unchanged, except that the first stage is weaker and the IV results tend to be less precisely

estimated.

Third, we run sensitivity analyses around our sample restrictions. We excluded most

critically ill patients, ie., patients with a high number of comorbidities, long hospital stays or

high number of previous hospital admissions. In Appendix Table C.6, we present OLS and

IV results from our main specifications without these sample restrictions. The results hold,

despite a weaker first stage (F-stat = 35). In addition, we run the reduced form analysis for

the subsample of excluded patients only, to understand the effect of the reform on readmission

rates for these patients. A concern might be that health outcomes could have deteriorated for

these patients because of the reform’s focus on less severely ill patients. Results, in Appendix

Figure C.1, indicate no effect of the reform on readmission rates over time, suggesting that

the reform did not have any adverse effect on health outcomes for these patients either.

Finally, the theoretical and empirical literature on hospital behaviour suggests that hos-

pitals commonly respond to incentives by increasing the volume of patients treated for incen-

tivised conditions (Chandra et al., 2011). In our context, hospitals could therefore obtain the

bonus payment by admitting a higher number of (unobservably) less severely ill patients only

for a short stay, which would introduce a bias in our dependent variable (i.e. lower readmission

rates). We provide some evidence that hospitals did not engage in such strategies by showing

that the evolution of hospitals’ volume of admissions and average patient severity was not

impacted by the policy. Appendix Table C.7 reports the results from an interrupted time

series analysis at the hospital-quarter level which indicates that there was no change in trend
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in chest pain admissions or average patient severity after the reform.

7 Conclusions

This study investigates whether admitting and discharging patients within one day leads to

worse health outcomes for chest pain patients. We find that discharging chest pain patients

on the same day as admission is associated with lower readmissions. However, using an

instrumental variable to account for unobserved patient severity shows that same-day discharge

that has no causal effect on emergency readmissions. Our results provide causal evidence in

an observational context that it is safe to discharge low risk chest pain patients on the same

day as admission.

More broadly, this study sheds light on the effect of cost-reduction strategies on the quality

of care in the hospital sector. Our findings suggest that cost reductions measures that target

unnecessary inpatient lengths of stay have no harmful effects on quality of care. This corrob-

orates results from Allen et al. (2016) who find that the English NHS policy that incentivised

daycase surgery for cholecystectomy patients had no adverse effects in terms of patients’ read-

mission or mortality rates. Policymakers may wish to encourage reduction in inpatient lengths

of stay for certain clinical conditions, as a way of cutting down ineffective spending. Further,

freeing up hospital beds may further allow to increase hospital admissions for other conditions,

thus contributing to better technical efficiency of hospital resources. Alternatively, discharging

patients earlier when possible would help reduce bed occupancy rates which may in turn have

positive effects on quality of care.

However, a recent strand of literature has identified potential adverse effects of the aus-

terity measures that followed the 2008 financial crisis on population health. The unintended

effects of large budget cuts on patient health seem primarily driven by their impact on hospital

staffing levels and resources (Vallejo-Torres et al., 2018; Borra et al., 2019; Arcà et al., 2020;

Bordignon et al., 2020). This suggests that cost-containment strategies may target inpatient

length of stay, up to a certain point after which measures may be detrimental to the quality

of care provided if for e.g. health care staff is overstretched.
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C Appendix

Table C.1: Patient characteristics for the sample after sample restriction (1), and final sample
merged to Emergency Department records (2)

(1) (2)

Mean SD Mean SD

28-day emergency readmission 0.09 0.28 0.09 0.28
Same-day discharge (SDD) 0.48 0.50 0.43 0.49
Patient age 58.16 17.57 58.74 17.44
Male patient 0.51 0.50 0.53 0.50
White ethnicity 0.80 0.40 0.80 0.40
Elixhauser: current admission 1.18 1.19 1.19 1.19
Elixhauser: past admissions (1year) 0.65 1.26 0.65 1.27
Congestive heart failure 0.04 0.19 0.04 0.19
Cardiac arrhytmia 0.09 0.29 0.10 0.29
Valvular disease 0.03 0.18 0.04 0.18
Pulmonary circulatory disorder 0.01 0.11 0.01 0.10
Past emergency admission 0.25 0.43 0.25 0.43
Income deprivation (LSOA) 0.17 0.12 0.17 0.12

Observations 1006803 735693

Notes: Same-day discharge patients are admitted to a hospital bed and discharged from the hospital on the
same calendar day. Income deprivation is expressed as the proportion of people experiencing income deprivation
in patients’ small area of residence called Lower-Super Output Areas (LSOAs).

Table C.2: First stage estimates (full table)

Same-day discharge

Coef. SE

Post-reform*Daytime ED arrival (IV) 4.832∗∗∗ (0.764)
Hour of ED arrival (Ref. Midnight)
1am -0.499 (1.036)
2am -1.346 (1.041)
3am -2.894∗∗ (1.053)
4am -5.048∗∗∗ (1.122)
5am -7.921∗∗∗ (1.153)
6am -12.955∗∗∗ (1.233)
7am -15.443∗∗∗ (1.255)
8am -18.386∗∗∗ (1.280)
9am -21.109∗∗∗ (1.282)
10am -24.220∗∗∗ (1.304)
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11am -29.189∗∗∗ (1.346)
12pm -34.958∗∗∗ (1.414)
1pm -40.837∗∗∗ (1.470)
2pm -46.950∗∗∗ (1.511)
3pm -52.492∗∗∗ (1.546)
4pm -56.364∗∗∗ (1.555)
5pm -60.735∗∗∗ (1.576)
6pm -62.031∗∗∗ (1.456)
7pm -62.734∗∗∗ (1.520)
8pm -60.112∗∗∗ (1.573)
9pm -55.431∗∗∗ (1.909)
10pm -47.580∗∗∗ (2.858)
11pm -42.922∗∗∗ (5.831)
Current Elixhauser comorbidities (Ref. 0)
1 -6.639∗∗∗ (0.338)
2 to 3 -12.234∗∗∗ (0.514)
4 to 6 -19.331∗∗∗ (0.735)
Past Elixhauser comorbidities (Ref. 0)
1 -1.093∗∗∗ (0.198)
2 to 3 0.097 (0.269)
4 to 6 1.001∗ (0.403)
Congestive heart failure -4.761∗∗∗ (0.367)
Cardiac arrhythmia -2.320∗∗∗ (0.236)
Valvular disease -6.462∗∗∗ (0.426)
Pulmonary circulatory disorder -8.937∗∗∗ (0.750)
Past emergency admission -4.033∗∗∗ (0.182)
Arrived to the ED by ambulance -9.963∗∗∗ (0.369)
Patient age groups (Ref. 19-25)
26 to 35 -2.014∗∗∗ (0.416)
36 to 45 -6.118∗∗∗ (0.620)
46 to 55 -9.319∗∗∗ (0.702)
56 to 65 -12.154∗∗∗ (0.730)
66 to 75 -14.145∗∗∗ (0.720)
76 to 85 -16.913∗∗∗ (0.735)
>85 -19.065∗∗∗ (0.727)
Male patient -1.075∗∗∗ (0.166)
White ethnicity -0.540 (0.274)
1st quintile - Least income deprived
2nd quintile 0.298 (0.168)
3rd quintile 0.114 (0.195)
4th quintile 0.019 (0.214)
5th quintile - Most deprived -0.079 (0.276)
Distance to admitting hospital -0.030 (0.048)
Distance to admitting hospital2 -0.000 (0.001)
Day of week dummies (Ref. Sunday)
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Monday 1.690∗∗∗ (0.298)
Tuesday 2.410∗∗∗ (0.319)
Wednesday 2.417∗∗∗ (0.287)
Thursday 2.221∗∗∗ (0.288)
Friday 3.402∗∗∗ (0.268)
Saturday 1.129∗∗∗ (0.199)
Month dummies (Ref. January)
February -0.744∗∗ (0.243)
March 0.719∗ (0.299)
April -2.700∗∗∗ (0.324)
May -2.603∗∗∗ (0.286)
June -2.765∗∗∗ (0.308)
July -2.383∗∗∗ (0.286)
August -3.152∗∗∗ (0.276)
September -2.771∗∗∗ (0.287)
October -2.362∗∗∗ (0.295)
November -1.768∗∗∗ (0.265)
December -0.825∗∗ (0.288)
Year dummies (Ref. 2011)
2010 -2.079∗∗∗ (0.443)
2012 -1.390∗∗ (0.482)
2013 1.969∗∗∗ (0.532)
2014 6.110∗∗∗ (0.769)
Constant 101.314∗∗∗ (1.464)

Observations 735693

Notes: Our instrument is the interaction of an indicator variable for daytime Emergency Department (ED)
arrival (6am to 5pm) and a post-reform indicator. Coefficients are expressed in percentage points. Standard
errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table C.3: Effect on patient 28-day emergency readmission, using OLS or IV model

OLS IV

Coef. SE Coef. SE

Same-day discharge -0.875∗∗∗ (0.115) 1.901 (3.040)
Hour of ED arrival (Ref. Midnight)
1am -0.011 (0.261) 0.002 (0.259)
2am 0.181 (0.287) 0.219 (0.285)
3am -0.078 (0.275) 0.003 (0.299)
4am -0.090 (0.301) 0.052 (0.343)
5am 0.335 (0.280) 0.557 (0.369)
6am 0.143 (0.292) 0.426 (0.420)
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7am 0.012 (0.304) 0.364 (0.505)
8am -0.197 (0.286) 0.236 (0.579)
9am -0.785∗∗∗ (0.228) -0.276 (0.608)
10am -1.246∗∗∗ (0.241) -0.650 (0.723)
11am -1.626∗∗∗ (0.240) -0.893 (0.851)
12pm -1.582∗∗∗ (0.223) -0.689 (1.024)
1pm -1.621∗∗∗ (0.244) -0.565 (1.184)
2pm -1.494∗∗∗ (0.237) -0.268 (1.381)
3pm -1.675∗∗∗ (0.259) -0.295 (1.534)
4pm -1.476∗∗∗ (0.264) 0.012 (1.680)
5pm -1.583∗∗∗ (0.257) 0.026 (1.785)
6pm -1.602∗∗∗ (0.253) 0.120 (1.913)
7pm -1.433∗∗∗ (0.284) 0.309 (1.935)
8pm -0.716∗ (0.304) 0.952 (1.867)
9pm -0.760 (0.423) 0.775 (1.715)
10pm -0.435 (0.643) 0.883 (1.647)
11pm 1.189 (1.894) 2.377 (2.289)
Current Elixhauser comorbidities (Ref. 0)
1 0.801∗∗∗ (0.092) 0.986∗∗∗ (0.211)
2 to 3 1.944∗∗∗ (0.107) 2.284∗∗∗ (0.393)
4 to 6 4.514∗∗∗ (0.287) 5.051∗∗∗ (0.652)
Past Elixhauser comorbidities (Ref. 0)
1 0.467∗∗∗ (0.127) 0.497∗∗∗ (0.129)
2 to 3 2.106∗∗∗ (0.156) 2.103∗∗∗ (0.155)
4 to 6 6.893∗∗∗ (0.270) 6.866∗∗∗ (0.274)
Congestive heart failure 0.733∗∗ (0.237) 0.866∗∗ (0.264)
Cardiac arrhytmia 0.617∗∗∗ (0.141) 0.681∗∗∗ (0.152)
Valvular disease -0.550∗ (0.220) -0.371 (0.298)
Pulmonary circulatory disorder 1.296∗∗ (0.389) 1.545∗∗∗ (0.449)
Past emergency admission 6.558∗∗∗ (0.112) 6.670∗∗∗ (0.171)
Arrived to the ED by ambulance 1.350∗∗∗ (0.081) 1.627∗∗∗ (0.315)
Patient age groups (Ref. 19-25)
26 to 35 -0.640∗∗ (0.220) -0.584∗∗ (0.221)
36 to 45 -1.274∗∗∗ (0.213) -1.105∗∗∗ (0.260)
46 to 55 -1.569∗∗∗ (0.220) -1.311∗∗∗ (0.346)
56 to 65 -1.283∗∗∗ (0.214) -0.946∗ (0.410)
66 to 75 -0.258 (0.236) 0.134 (0.480)
76 to 85 0.996∗∗∗ (0.234) 1.465∗ (0.572)
>85 3.501∗∗∗ (0.315) 4.030∗∗∗ (0.630)
Male patient 0.701∗∗∗ (0.080) 0.731∗∗∗ (0.084)
White ethnicity 1.465∗∗∗ (0.090) 1.479∗∗∗ (0.086)
1st quintile - Least income deprived
2nd quintile 0.207 (0.111) 0.199 (0.113)
3rd quintile 0.406∗∗∗ (0.115) 0.403∗∗∗ (0.117)
4th quintile 0.600∗∗∗ (0.128) 0.599∗∗∗ (0.130)
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5th quintile - Most deprived 0.935∗∗∗ (0.124) 0.938∗∗∗ (0.124)
Distance to admitting hospital -0.010 (0.009) -0.010 (0.009)
Distance to admitting hospital2 0.000 (0.000) 0.000 (0.000)
Day of week dummies (Ref. Sunday)
Monday -0.829∗∗∗ (0.113) -0.876∗∗∗ (0.122)
Tuesday -1.004∗∗∗ (0.122) -1.071∗∗∗ (0.146)
Wednesday -0.828∗∗∗ (0.133) -0.896∗∗∗ (0.155)
Thursday -0.821∗∗∗ (0.125) -0.882∗∗∗ (0.139)
Friday -0.534∗∗∗ (0.131) -0.628∗∗∗ (0.160)
Saturday 0.013 (0.146) -0.019 (0.147)
Month dummies (Ref. January)
February 0.052 (0.167) 0.073 (0.168)
March -3.153∗∗∗ (0.153) -3.173∗∗∗ (0.154)
April 0.441∗∗ (0.144) 0.516∗∗ (0.170)
May 0.320∗ (0.155) 0.392∗ (0.177)
June 0.226 (0.156) 0.303 (0.171)
July 0.377∗ (0.158) 0.443∗ (0.172)
August 0.120 (0.156) 0.207 (0.171)
September 0.350∗ (0.163) 0.427∗ (0.182)
October -0.133 (0.169) -0.067 (0.183)
November -0.115 (0.148) -0.066 (0.156)
December 0.169 (0.177) 0.192 (0.178)
Year dummies (Ref. 2011)
2010 0.313∗∗ (0.108) 0.370∗∗ (0.124)
2012 -0.040 (0.135) -0.098 (0.147)
2013 0.072 (0.142) -0.079 (0.207)
2014 0.159 (0.156) -0.107 (0.312)
Constant 5.363∗∗∗ (0.372) 2.606 (3.009)

R2 0.039 0.036
Observations 735693 735693

Notes: Our instrument is the interaction of an indicator variable for daytime Emergency Department (ED)
arrival (6am to 5pm) and a post-reform indicator. Coefficients are expressed in percentage points. Standard
errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table C.4: List of ICD-10 codes for readmissions

ICD codes Description
I00-I02 Acute rheumatic fever
I05-I09 Chronic rheumatic heart diseases
I10-I15 Hypertensive diseases
I20-I25 Ischemic heart diseases
I26-I28 Pulmonary heart disease and diseases of pulmonary circulation
I30-I52 Other forms of heart disease
I60-I69 Cerebrovascular diseases
I70-I79 Diseases of arteries, arterioles and capillaries
I80-I89 Diseases of veins, lymphatic vessels and lymph nodes, not elsewhere classified
I95-I99 Other and unspecified disorders of the circulatory system
J00-J06 Acute upper respiratory infections
J09-J18 Influenza and pneumonia
J20-J22 Other acute lower respiratory infections
J30-J39 Other diseases of upper respiratory tract
J40-J47 Chronic lower respiratory diseasess
J60-J70 Lung diseases due to external agents
J80-J84 Other respiratory diseases principally affecting the interstitium
J85-J86 Suppurative and necrotic conditions of the lower respiratory tract
J90-J94 Other diseases of the pleura
J96-J99 Other diseases of the respiratory system

Table C.5: IV results from alternative instrument definitions

Emergency readmission
(1) (2)

Same-day discharge (SDD) 4.349 2.685
(5.826) (2.625)

Hospital fixed effects Yes Yes
Year dummies Yes Yes
ED hour dummies Yes Yes
Patient controls Yes Yes

First stage F-statistics 19.40 8.9
Observations 735693 735693

Notes: (1) - the instrument used is the interaction of daytime admission, defined as arrival at the ED between
7am and 7pm, with a post-policy dummy. (2) - the instruments are the interactions between a dummy for
each hour of arrival at the ED and the post-policy dummy. Standard errors (in parentheses) are clustered on
hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001.



Table C.6: OLS and IV results, without exclusion of most severely ill patients

Emergency readmission
OLS IV

Same-day discharge (SDD) -0.587∗∗∗ 3.407
(0.128) (4.152)

R2 0.074 0.069
Observations 930377 930377

Notes: Standard errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure C.1: Trends in emergency readmission rates by quarter of year, for the sample of
severely ill patients

Notes: Plot of the coefficients (percentage points) and the 95% confidence intervals for the interaction of the
dummy for daytime Emergency Department arrival and quarter dummies on 28-day emergency readmission
rates. Quarter 1 stands for January-March, Quarter 2: April-June, Quarter 3: July-September, Quarter 4:
October-December. The red dashed line is the quarter when the bonus payment policy started. The reference
quarter is the second quarter of 2012 (2012Q2), corresponding to the start of the scheme for chest pain condition.
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Table C.7: Evolution of hospital chest pain admissions and average comorbidities

Hospital admissions Average comorbidities

Year quarters -2.661∗∗ 0.006∗

(0.876) (0.002)
Post-reform (2012) -7.904 0.024

(15.011) (0.027)
Post-reform (2012) × Year quarters 1.742 0.002

(1.434) (0.003)
Constant 438.344∗∗∗ 1.288∗∗∗

(6.893) (0.013)

Hospital FE Yes Yes
Hospital-year quarters 3015 3015

Notes: Standard errors (in parentheses) are clustered on hospitals. * p < 0.05, ** p < 0.01, *** p < 0.001.



Conclusions

This thesis considers several determinants of hospital quality of care, using the English National

Health Service as a case study. While there has been a large literature on the effect of financial

incentives and market structure on quality of care, this thesis focused on less often explored

quality determinants related to the organisation of hospital care provision. The stress on

the health care system from the surge in hospital demand experienced during the Covid-19

pandemic has highlighted the importance of hospital capacity planning. This may involve

re-thinking hospital wards’ organisation (e.g. allowing for Covid and non-Covid patients spots

to limit nosocomial infections), ensuring sufficient workforce on the wards or encouraging

same-day hospital discharge when clinically possible to allow for spare bed capacity. This

thesis’s findings shed light on these important aspects of the organisation of hospital care. In

addition, this thesis highlighted the importance of accounting for endogeneity. The results

in Chapters 1 and 3 present different conclusions, before and after endogeneity is accounted

for. This indicates that addressing potential endogeneity is warranted, even when using rich

administrative data sets. The evidence provided throughout this thesis has several policy

implications, which are reviewed below.

Chapter 1 assesses the often-cited potential for hospital economies of scale in quality for

a common planned orthopaedic surgery. Results show that hospital volume does not have a

causal effect on patient health outcomes once the endogeneity of volume linked to hospital

demand being responsive to quality is accounted for. This finding has two main implications.

First, it suggests that economies of scale in quality cannot be an argument to further con-

centrate planned hip replacement care in England. Increasing volume in low-volume hospitals

with poorer quality would not result in health outcome improvements in these hospitals. Our

results are derived from the English hospital market but ought to extend to countries with

similar health systems. A possible limitation to the generalisability of our findings however is

that the English hospital market is quite concentrated and hospitals may already be operating
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at the flat end of the volume-outcome curve, even though we do also observe small hospitals

(i.e. from 20 annual hip replacement cases).

Second, more broadly, findings show that the evidence around economies of scale in quality

should account more systematically for the endogeneity of hospital volume, to avoid misleading

policy implications. While under economies of scale, concentrating hospital activity into larger

healthcare providers may be desirable to achieve quality gains, if quality determines volume

through e.g., hospital reputation, concentrating care would not improve health outcomes;

instead, mechanisms to enhance patient choice of healthcare providers might be preferred to

generate improvements in quality.

There may be other reasons to concentrate hospital care, including for instance efficiency

savings in technical equipment, which are not investigated here. However, in terms of quality

considerations, even if higher volume increases quality or does not affect quality, the optimal

policy may not necessarily be to further concentrate care as this could raise issues of access.

Policies that consolidate care may indeed risk shifting some of the NHS costs onto patients and

carers, by increasing travel times or transportation costs, particularly affecting patients from

disadvantaged socio-economic backgrounds (Ferguson et al., 1997; Watkinson et al., 2021).

Further, the implementation of centralisation policies should be carefully monitored to mitigate

the potential adverse effects of discontinued care in certain hospitals (Friebel et al., 2018).

Chapter 2 focuses on the role of surgeons’ organisation of activity on quality of care.

Results indicate that surgeons who treated a patient for a hip fracture surgery after a few

days off perform better. Breaks of four to six days reduce 30-day mortality rates after hip

fracture by six percent relative to surgeons who were in the operating room the day before.

The positive effect of short breaks is driven by surgeons with relatively lower volume of hip

fracture practice. Findings also report that short breaks affect the type of surgical treatment

chosen, holding fixed patient characteristics and the type of fracture.

Chapter 2 highlights the role of non-financial considerations in surgeons’ performance and

decision-making by showing that short breaks in surgical activity can improve patient survival

after emergency hip fracture. These findings stress the importance of team organisation and
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work schedules on the quality of care provided. Alongside longer-term policies to increase

recruitment of healthcare staff, likely rendered more difficult by the Covid-19 crisis and post-

Brexit restrictions on mobility (Propper et al., 2020), arrangements of work schedules to ensure

regular breaks could improve outcomes, especially for more junior surgeons who may be more

prone to fatigue effects. This could also help staff retention if it improves surgeons’ quality of

work life.

Chapter 3 reviews the effect of shortening inpatient stays on health outcomes for patients

who present at the Emergency Department with low-severity chest pain symptoms. Patients

who are not kept overnight have better health outcomes as measured by 28-day readmission

rates. However, when inpatient length of stay is instrumented for, being discharged early

rather than staying overnight does not lead to significant differences in readmission rates.

In common with Chapter 1, accounting for endogeneity - in this context linked to potential

unobserved patient severity - affects the results.

The results from Chapter 3 have policy implications. They indicate that discharging chest

pain patients on the same day as admission does not lead to worse health outcomes. More

broadly, the findings suggest that cost reductions in inpatient length of stay, i.e., amounting to

more systematically discharging low-severity patients early, can be achieved without harming

quality of care. Our results, though limited to chest pain, focus on the largest emergency

condition amongst the list of medical conditions for which clinical guidelines recommend a

higher rate of same-day discharge. The results may well extend to a larger set of clinical

conditions. More generally, policy initiatives could aim at shortening medically unnecessary

inpatient stays. In England, a national programme for reducing length of stay (RLoS) for

long inpatient stays of 21 days or more, encourages faster patient discharge through the dis-

semination of key principles (e.g., patient and family involvement in the decision to discharge,

multidisciplinary teams). Increasing the supply of long-term care could also reduce the risk

of delayed patient discharge from the hospital (a phenomenon called bed blocking) for frail

patients and reduce hospital costs (Forder, 2009; Gaughan et al., 2015; Moura, 2021).

However, the related literature on the effect of austerity measures on health care sys-
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tems has identified adverse effects of budgetary cuts on health outcomes, primarily driven

by reductions in staffing and hospital capacity (Borra et al., 2019; Arcà et al., 2020). Taken

together, these sets of results suggest that policymakers should be careful about the source

of cost reductions, but that reducing inpatient length of stay for certain conditions and up

to some point, could potentially cut down costs with no adverse effect on quality. Further,

freeing hospital beds by discharging patients when medically possible could increase capacity

for other inpatient surgeries, thus potentially improving the technical efficiency of hospital

resources. Alternatively, keeping fewer patients overnight could result in lower bed occupancy

rates, which may have positive effects on quality.

Overall, recognizing the complex nature of hospitals comprising both medical and admin-

istrative staff (Harris, 1977), policymakers may consider initiatives that focus on improving

the organisation of hospital activity and workforce with potential positive repercussions on

quality (Ali et al., 2018; Lagarde et al., 2019).

The work presented in this thesis has several limitations. Despite the richness of the

data used, Chapters 1-2 are ultimately limited by the difficulty of separating the effect of

individual surgeons from the joint effect of other health care staff and medical teams. While

the data attribute patients to a single responsible surgeon, patient care involves more health

care personnel, such as anaesthetists, trainee doctors and nursing staff who are not identified

in the hospital records used. Chapter 1 investigates whether hospitals benefit from economies

of scale in quality. In various robustness checks, it allows for the role of other factors, such as

individual surgeon volume and characteristics or hospital staff composition, to impact quality

of care. However, the composition and joint experience of (unobserved) medical teams can

also affect quality (Chan, 2021). Similarly, in Chapter 2, controlling for the effect of joint

experience or familiarity with the rest of the team may refine the understanding of the effect

of breaks on patient health outcomes.

Data permitting, future work could seek to establish the relative causal contribution of sur-

geons’ individual learning-by-doing, within-team coordination and hospital-based economies of

scale in quality improvements. With data on individual surgeons’ activity, future studies could
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investigate individual learning-by-doing by using surgeons’ exit from practice as an exogenous

shock on remaining surgeons’ volume as done in Ramanarayanan (2008). Previous work has

relied on workers’ mobility across firms in various settings to disentangle worker effects from

firm effects, assuming exogenous mobility (Abowd et al., 1999; Card et al., 2013; Molitor,

2018). Future work may also seek to uncover the effect of team work by exploiting settings

where surgeons started working at more than one hospital, for example following the opening

of independent sector treatment centres in England. The role of team effect and hospital-wide

scale economies may be disentangled with precise data on hospital staff turnover. Hospital

scale economies should be little affected by staff turnover, whereas if the effect of volume on

quality is mainly driven by team effects, hospitals with high and low staff turnover would have

widely different results.

Another data limitation of Chapter 2 is that the reason for surgeons’ break is not known,

though robustness checks are implemented to rule out several confounding mechanisms. Un-

derstanding on-the-job determinants of surgical practice would have important implications

for workforce policies in health care. Future studies could study how work schedules that

allow for regular breaks impact healthcare staff retention. Shortages of healthcare staff are

an increasing issue across OECD countries and are likely to be exacerbated in England by

the Covid-19 crisis and Brexit (Lee et al., 2019; Propper et al., 2020). In relation to the

organisation of work activity, the economics literature has been concerned with potential skill

depreciation after long interruptions in practice (Hockenberry and Helmchen, 2014). Given

more detailed data on surgeons’ career path, future studies could use the plausibly exogenous

long breaks in surgical practice induced by parental leave.

The interpretation of the findings from Chapter 3 is to some extent limited by the im-

precision of the causal results. The design of the instrumental variable has the considerable

advantage that it accounts for a large range of possible confounders by exploiting patient ex-

posure to a reform over time in a panel data framework. While it finds a null causal effect of

same-day discharge treatment on emergency readmissions, the IV coefficient is not precisely

estimated; the 95% confidence interval comprises the OLS point estimate. The reduced-form
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results and additional robustness checks also indicate a null causal effect with a point estimate

close to zero, which mitigates concerns of a type II error.

Future work could extend analyses to investigate whether the effect of cost reduction

strategies on patient health outcomes depends on hospitals’ organisational characteristics.

For instance, specialist hospitals or teaching units may be more apt to limit the potential

adverse effects of austerity measures or ensure patient safety, via possibly better awareness of

clinical evidence, state-of-the-art practice, or ability to detect complications.

Finally, the thesis implicitly assumes that hospital quality is determined in isolation from

other sectors of care, such as primary, social or long-term care. A more accurate measure of

health outcomes would need to account for other sectors of care and patients’ care pathways.

Hospital quality is likely impacted by patient access to and quality of care provided by General

Practitioners (GPs) and the availability of long-term care (Forder, 2009; Gaughan et al., 2015;

Pinchbeck, 2019). Chapter 1 controls for accessibility to primary care in hospitals’ catchment

area (proxied by distance to the closest GP). All three chapters also include hospital fixed

effects, which control for geographic differences in other aspects of care as long as they are

time-invariant over the study period.

Provided availability of linked data across sectors of care, future research could control for

the degree of integration of care in patient care pathway, using evidence-based good practices.

An example is the communication of post-hospitalisation clinical information to the patients’

General Practitioner for follow-up care. Taking into account the coordination of health care

actors across sectors of care could help improve our understanding of the relative contribution

of the determinants of quality of care.
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