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Abstract 

Abstract 

The mechanism of suppression in strabismus is unclear and contribution of the 

suppressing eye to the generation of eye movements has received little attention. A 

series of nine experiments tested how the strabismic eye contributes to saccade 
generation in the presence of suppression and also considered the effect of the 

strabismic eye in the presence of abnormal retinal correspondence (ARC). These data 

were compared with data from subjects with normal binocular single vision (BSV). 

Chapters 2 and 3 describe the equipment, laboratory set-up and testing of the equipment 
used in the thesis for measuring eye movements, Skalar IRIS 6500 infrared limbal 
tracker, and presenting stimuli to each eye separately. The design of a novel method for 
dissociation of the eyes using four liquid crystal polymer shutters is presented. 

Chapter 4 compares the characteristics of saccades made by subjects with normal BSV 
(n=5) and strabismus (n=8). The effect of distractors on saccades is explored in Chapter 
5 in subjects with normal BSV (n=5). The experiment documents the distractor effect 
produced in the described laboratory set-up, and compares it with that previously 
reported by Walker et al (1997). This is investigated further by comparing the effect of 
distractor presentations to the dominant eye, non-dominant eye or both eyes. There was 
no difference in the effect on saccade latency or gain with distractors presented to the 
dominant or non-dominant eye. The effect of binocular distractors on saccade gain was 
greater than monocular presentations. 

Chapter 6 repeats the experiment of Chapter 5 in subjects with constant strabismus and 
suppression (n=6) and constant strabismus with ARC (n=2) and found that distractors in 
the strabismic eye did affect saccades however the response differed from normal BSV. 
This was true even though it was shown that the distractor was not perceived by the 
strabismic eye. 

Chapter 7 investigates the influence of the central fixation target in the strabismic eye 
on saccade generation by inducing disconjugate saccade adaptation in subjects with 
normal BSV (n=8) and constant strabismus and suppression (n=6). The findings were 
that in the presence of suppression, disconjugate adaptation similar to that in normal 
BSV was possible. 

The conclusion of this thesis is to suggest that information from the suppressed eye is 

available to the saccadic system by either a sub-cortical pathway or processed cortically 
without conscious awareness. 
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Glossary of abbreviations 

Glossary of abbreviations 

ARC abnormal retinal correspondence 

BSV binocular single vision 

DS dioptre spheres 

ERG electroretinogram 

EOG electro-oculogram 

ET esotropia 

FEF frontal eye fields 

IML internal medullary lamina of the thalamus 

LCP liquid crystal polymer 

LGB lateral geniculate body 

LIP lateral intraparietal area of the posterior parietal cortex 

LS lateral supersylvian area 

MLF medial longitudinal fasciculus 

NRC normal retinal correspondence 

ODC ocular dominance column 

OKR optokinetic response 

PPRF paramedian pontine reticular formation 

RiMLF rostral interstitial nucleus of the medial longitudinal fasciculus 

SC superior colliculus 

SEF supplementary eye fields 

SNpr substantia nigra pars reticular 

VI striate cortex or visual cortex 

V2 area of extrastriate cortex - secondary visual cortex 

V3 area of extrastriate cortex in magnocellular pathway 

V4 area of extrastriate cortex in parvocellular pathway: `colour centre' 

V5 area of extrastriate cortex responsible for motion detection also known as 

mediotemporal cortex or MT 

VEP visually evoked potential 

VOR vestibulo-ocular reflex 

XT exotropia 

V 



Table of contents 

Table of contents 

Acknowledgements ............................................................................................. iii 
Abstract ................................................................................................................ 

iv 

Glossary of abbreviations .................................................................................... V 

Chapter 1 Introduction ....................................................................................... 1 
1.1 Eye movements ........................................................................................ 1 

1.1.1 Saccades ....................................................................................... 1 
1.1.1.1 Saccade latency ..................................................................... 3 
1.1.1.2 Saccade peak velocity .......................................................... 6 
1.1.1.3 Saccade accuracy ................................................................. 7 

1.1.2 The remote distractor effect ....................................................... 10 
1.1.3 Adaptive control of saccades ..................................................... 13 

1.1.3.1 Characteristics of adaptive control .................................... 14 
1.1.3.2 Time course of adaptation ................................................. 14 
1.1.3.3 Site of adaptive control ...................................................... 15 

1.1.3.4 Disconjugate adaptation .................................................... 16 

1.2 Neurophysiology of saccadic eye movements ....................................... 16 

1.2.1 Visual pathways ......................................................................... 16 

1.2.1.1 Retino-geniculo-cortical pathway ...................................... 18 

1.2.1.2 Retino-collicular pathway (sub-cortical pathway) ............. 19 

1.2.2 Cortical areas involved in saccade generation ........................... 19 

1.2.2.1 Striate cortex (V1) ............................................................ 20 

1.2.2.2 Extrastriate areas V2 and V5 ............................................. 20 

1.2.2.3 Frontal eye fields ............................................................... 20 

1.2.2.4 Supplementary eye fields ................................................... 21 

1.2.2.5 Posterior parietal cortex ..................................................... 21 

1.2.2.6 Thalamus ........................................................................... 22 

1.2.2.7 Basal ganglia ...................................................................... 22 

1.2.3 Sub-cortical areas involved in saccade generation .................... 23 

1.2.3.1 Superior colliculus ............................................................ 
23 

1.2.3.2 Paramedian pontine reticular formation ........................... 26 

1.2.4 Cerebellum ................................................................................. 28 

1.2.5 The neural integrator 
.................................................................. 28 

1.3 Binocular vision ..................................................................................... 29 

1.4 Strabismus ............................................................................................. 30 

V1 



Table of contents 

1.4.1 Aetiology of concomitant strabismus ........................................ 
31 

1.4.1.1 Historical considerations .................................................. 
31 

1.4.1.2 Birth trauma ...................................................................... 
32 

1.4.1.3 Heredity ............................................................................ 
32 

1.4.1.4 Refractive error ................................................................. 
32 

1.4.1.5 Relationship of accommodation and convergence ........... 33 

1.4.1.6 Maldevelopment of visual motion processing .................. 33 

1.4.1.7 Evidence of cortical abnormalities ................................... 35 

1.4.2 Treatment of strabismus ............................................................ 35 

1.4.3 Adaptations to strabismus .......................................................... 36 

1.4.4 Suppression ................................................................................ 36 

1.4.4.1 Area of suppression .......................................................... 37 

1.4.4.2 Density of suppression ...................................................... 39 

1.4.5 Mechanisms of suppression ....................................................... 40 

1.4.5.1 Retinal rivalry suppression ............................................... 40 

1.4.5.2 Dichoptic masking ............................................................ 41 

1.4.5.3 Disparity specific or fusional suppression ........................ 42 

1.4.5.4 Saccadic suppression and physiological suppression ....... 42 

1.4.6 Site of suppression ..................................................................... 42 

1.4.6.1 Evidence for retinal or pre-cortical involvement ............. 43 

1.4.6.2 Evidence for cortical involvement ................................... 43 

1.4.7 Abnormal retinal correspondence .............................................. 45 

1.4.7.1 Historical theories on development of ARC .................... 46 

1.4.7.2 Mechanism of ARC ......................................................... 47 

1.4.7.3 Neurophysiology and anatomical evidence 
for the mechanism of ARC .............................................. 48 

1.4.8 Suppression and ARC: Consequence or cause of strabismus? .. 52 

1.5 Aim of thesis ......................................................................................... 
52 

Chapter 2 Materials and methods .................................................................... 55 

2.1 Eye movement recordings ...................................................................... 
55 

2.2 Head stabilisation .................................................................................. 
57 

2.3 Data collection ...................................................................................... 
58 

2.4 Analysis of saccades ............................................................................. 
58 

2.5 Target presentation ............................................................................... 
59 

2.6 Liquid crystal polymer shutter system .................................................. 
61 

2.6.1 Control of shutters ...................................................................... 
62 

vii 



Table of contents 

2.7 Statistical analysis .................................................................................. 
64 

2.8 Ethics approval ...................................................................................... 
64 

Chapter 3 Preliminary experiments ................................................................. 
65 

3.1 Experiment 1: To determine whether the mirror galvanometer 

produces targets suitable as saccadic stimuli ......................................... 
65 

3.1.1 Introduction ................................................................................. 
65 

3.1.1.1 Hypothesis ....................................................................... 65 

3.1.2 Method ........................................................................................ 65 
3.1.2.1 Participants ...................................................................... 

65 

3.1.2.2 Apparatus ......................................................................... 
66 

3.1.2.3 Design of the experiment .................................................. 66 
3.1.2.4 Procedure ......................................................................... 67 

3.1.3 Results ........................................................................................ 67 
3.1.3.1 Saccade latency ................................................................ 68 
3.1.3.2 Saccade gain .................................................................... 70 
3.1.3.3 Saccade peak velocity ...................................................... 71 

3.1.4 Conclusion .................................................................................. 72 

3.2 Experiment 2: To determine the effectiveness of the LCP shutter 

system as a method of dissociation ........................................................ 72 

3.2.1 Introduction ................................................................................. 72 

3.2.1.1 Hypothesis .. ...................................................................... 73 

3.2.2 Method ........................................................................................ 73 

3.2.2.1 Participants ....................................................................... 73 

3.2.2.2 Apparatus .......................................................................... 73 

3.2.2.3 Design of the experiment .................................................. 74 

3.2.2.4 Procedure .......................................................................... 74 

3.2.3 Results ........................................................................................ 
75 

3.2.4 Discussion ................................................................................... 
78 

3.2.5 Conclusion .................................................................................. 
78 

Chapter 4 Characteristics of saccades in strabismus ..................................... 79 

4.1 Introduction .......................................................................................... 
79 

4.1.1 Saccade latency in strabismus .................................................... 79 

4.1.2 Saccade accuracy in strabismus ................................................. 79 

4.1.3 Saccade velocity in strabismus .................................................. 80 

4.1.4 Conjugacy of saccades in strabismus ......................................... 80 

viii 



Table of contents 

4.1.5 Saccades in alternating strabismus ............................................ 
82 

4.2 Experiment 3: Documentation of saccade characteristics 
in strabismus .......................................................................................... 

83 

4.2.1 Hypotheses ................................................................................. 
83 

4.3 Method ................................................................................................. 
83 

4.3.1 Participants ................................................................................ 
83 

4.3.2 Apparatus and stimuli ................................................................ 
84 

4.3.3 Procedure ................................................................................... 
85 

4.4 Results ................................................................................................. 85 
4.4.1 Saccade latency ......................................................................... 86 

4.4.2 Saccade gain ............................................................................. 88 
4.4.3 Binocular coordination of saccades .......................................... 91 

4.5 Discussion ............................................................................................ 96 
4.5.1 Saccade latency ........................................................................ 96 
4.5.2 Saccade gain ............................................................................ 96 
4.5.3 Saccade disconjugacy .............................................................. 97 

4.5.4 Experimental design ................................................................ 98 
4.6 Conclusion ........................................................................................... 98 

Chapter 5 The remote distractor effect in normal BSV ................................ 99 

5.1 Experiment 4: Binocular and monocular distractors 
in normal BSV ..................................................................................... 

99 

5.1.1 Hypotheses ............................................................................... 
102 

5.2 Method ................................................................................................ 102 

5.2.1 Participants .............................................................................. 102 

5.2.2 Apparatus ................................................................................. 
103 

5.2.3 Design of the experiment ......................................................... 104 

5.2.4 Procedure ................................................................................. 
104 

5.3 Results ................................................................................................. 
106 

5.3.1 Saccade latency ........................................................................ 
107 

5.3.2 Saccade gain ............................................................................ 
113 

5.4 Discussion ........................................................................................... 
120 

5.4.1 Saccades without distractors 
.................................................... 

120 

5.4.2 The distractor effect with both eyes ......................................... 121 

5.4.3 The distractor effect in dominant and non-dominant eyes ...... 122 

5.4.4 The distractor effect in binocular and monocular conditions .. 124 

5.5 Conclusion .......................................................................................... 
126 

ix 



Table of contents 

Chapter 6 The remote distractor effect in strabismus ................................. 
127 

6.1 Introduction .......................................................................................... 
127 

6.1.1 Experiment 5: The effect of distractors in strabismus 

with suppression ...................................................................... 
128 

6.1.1.1 Hypotheses ..................................................................... 
128 

6.2 Method ................................................................................................. 
128 

6.2.1 Participants ............................................................................... 
128 

6.2.2 Apparatus ................................................................................. 
129 

6.2.3 Design of experiment ............................................................... 
129 

6.2.4 Procedure ................................................................................. 
129 

6.3 Results ................................................................................................. 
130 

6.3.1 Saccade latency ........................................................................ 
130 

6.3.2 Saccade gain ............................................................................. 
142 

6.4 Discussion ............................................................................................ 
152 

6.4.1 Saccades without distractors .................................................... 152 

6.4.2 Saccade latency ........................................................................ 
152 

6.4.3 Saccade gain ............................................................................ 
153 

6.4.4 Mechanism for the distractor effect in suppression ................. 154 

6.5 Experiment 6: To determine visibility of the distractor ..................... 156 

6.5.1 Method ..................................................................................... 
157 

6.5.1.1 Participants ................................................................... 
157 

6.5.1.2 Design of the experiment .............................................. 157 

6.5.1.3 Procedure ...................................................................... 
157 

6.5.2 Results ..................................................................................... 
158 

6.5.3 Conclusion .............................................................................. 
158 

6.6 Experiment 7: To determine awareness of the distractor .................. 160 

6.6.1 Method .................................................................................... 
160 

6.6.1.1 Participants ................................................................... 
160 

6.6.1.2 Design of the experiment ............................................. 
160 

6.6.1.3 Procedure ..................................................................... 
160 

6.6.2 Results ..................................................................................... 
161 

6.6.3 Conclusion .............................................................................. 
161 

6.7 Experiment 8: The distractor effect in strabismus with ARC ........... 163 

6.7.1 Hypotheses .............................................................................. 
163 

6.7.2 Method .................................................................................... 
163 

6.7.2.1 Participants ................................................................... 
163 

6.7.3 Results ................................................................................... 
164 

X 



Table of contents 

6.7.4 Discussion ............................................................................. 
170 

6.7.4.1 Saccade latency ............................................................ 
170 

6.7.4.2 Saccade gain ................................................................. 
171 

6.7.4.3 Mechanism for the distractor effect in ARC ................ 172 

6.8 Final conclusion .................................................................................. 
173 

Chapter 7 Saccade adaptation in normal BSV and strabismus .................. 175 

7.1 Introduction .......................................................................................... 
175 

7.1.1 Symmetrical adaptation of saccades ........................................ 176 

7.1.2 Disconjugate adaptation in normal BSV ................................. 177 

7.1.3 Disconjugate adaptation in microtropia ................................... 177 

7.1.4 Disconjugate adaptation in strabismus with 
no potential BSV ...................................................................... 178 

7.2 Experiment 9: Disconjugate saccade adaptation in binocular 

and strabismic subjects ........................................................................ 179 

7.2.1 Hypotheses ............................................................................... 179 

7.3 Method ................................................................................................. 
179 

7.3.1 Participants .............................................................................. 179 

7.3.2 Experimental set-up ................................................................. 180 

7.3.3 Stimuli ..................................................................................... 
181 

7.3.4 Design of the experiment ......................................................... 
182 

7.3.5 Procedure ................................................................................. 
183 

7.4 Results .................................................................................................. 
185 

7.4.1 Subjects with normal BSV ...................................................... 
185 

7.4.2 Subjects with strabismus .......................................................... 
191 

7.4.3 Time course of saccade adaptation .......................................... 195 

7.5 Discussion ............................................................................................ 
199 

7.5.1 The no feedback condition ...................................................... 
199 

7.5.2 The response to feedback gain in normal BSV ........................ 199 

7.5.3 The response to feedback gain in strabismus .......................... 200 

7.5.3.1 Appropriate adaptation .................................................. 
201 

7.5.3.2 Mechanisms for normal adaptation without fusion ....... 201 

7.5.3.3 Anomalous responses .................................................... 
202 

7.5.3.4 Mechanisms for abnormal adaptation without fusion ... 203 

7.5.3.5 Clinical factors affecting adaptation .............................. 204 

7.5.4 Time course of adaptation ....................................................... 
205 

7.6 Conclusion .......................................................................................... 
206 

RI 



Table of contents 

Chapter 8 Final discussion and conclusions .................................................. 207 
8.1 Experimental equipment .................................................................... 207 
8.2 Binocular and monocular distractors in BSV ..................................... 208 
8.3 Distractors in strabismus ..................................................................... 208 
8.4 Disconjugate saccade adaptation in BSV ........................................... 210 
8.5 Disconjugate saccade adaptation in strabismus .................................. 210 
8.6 Clinical significance ........................................................................... 211 
8.7 Further research .................................................................................. 212 

References ......................................................................................................... 213 
Appendices ........................................................................................................ 231 

Al. Ethics approval ................................................................................... 231 
A2 Consent form ....................................................................................... 232 
A3 Statistical analysis for Chapter 3 ......................................................... 233 
A4 Shutter control for Chapter 3, Experiment 2 ....................................... 237 
A5 Strabismic subjects clinical details ..................................................... 238 
A6 Statistical analysis for Chapter 4 ......................................................... 247 
A7 Statistical analysis for Chapter 5 ......................................................... 253 
A8 Information sheet ................................................................................. 262 
A9 Prism cover test measurements for Chapter 6 ..................................... 264 
A10 Statistical analysis for Chapter 6 ......................................................... 265 
Al 1 Statistical analysis for Chapter 7 ......................................................... 282 
A12 Time course of adaptation ................................................................. 284 

X11 



Chapter 1 Introduction 

Chapter 1 

Introduction 

This thesis investigates the role of binocular vision and the effects of strabismus, a 

condition when binocular vision is absent or abnormal, on saccadic eye movement 
characteristics and planning. This chapter reviews the literature, which motivated this 

study, and begins with an outline of saccade characteristics and the neural generation of 
saccades. The second part of the chapter considers binocular vision and strabismus with 
emphasis on the adaptations to strabismus. Finally the aims of the thesis are formulated. 

1.1 Eye movements 

Eye movements enhance visual function and require both sensory and motor function to 
have maximal effect. The study of eye movements allows the investigation, localisation 

and treatment of neurological disease, but also allows investigation into the mechanism 
of neurological processing. Eye movements can be classified into five main groups 
(Dodge, 1903), all having differing functions, which are summarised in Table 1.1. 

Type of Eye Movement Function 

Vestibular To minimise retinal image movement during brief head 
movements 

Optokinetic To hold images steady on the retina during sustained head 
movement 

Smooth pursuit To hold images of a moving target on the fovea 

Saccades To bring the object of interest onto the fovea 

Vergence To move the eyes in opposite directions to allow images 
of single objects at any distance to be placed on both 
foveae 

Table 1.1: Classification of eye movements. 

1.1.1 Saccades 

Saccades are rapid eye movements used to redirect the foveae from one object to 

another. They have an abrupt onset of movement due to an extremely high initial 

acceleration of up to 30000°s-2 and have a peak velocity that increases proportionally 

with saccade amplitude up to a maximum of approximately 600°s'1 (Becker, 1989). 
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Chapter 1 Introduction 

They may be voluntary or involuntary in nature, may be evoked by visual, vestibular or 

other sensory stimuli and may be directed to a specific target (goal-directed saccades) or 

used to reset the eyes (re-orientating saccades). 

Becker's classification of saccades highlights the conditions under which saccades may 
be initiated dividing them into two main types: 

" Goal-directed saccades are used to move the fovea onto a specific point in the 

visual world and are divided as follows: re-fixation saccades, which direct the 

eye to selected objects within the visual environment; scanning saccades, used to 

explore the visual environment attracted to salient features; tracking saccades, 
which result as a reflex movement evoked by sudden changes in the extrafoveal 
visual field; and catch-up saccades used to re-fixate moving targets when 
smooth pursuit is insufficient. 

" Re-orientating saccades are not aimed at specific targets but bring invisible parts 
of the visual world into central visual field. Becker (1989) divides them as 
follows: fast phase of the vestibular ocular reflex (VOR), used to reset the eyes 

within the orbit following a vestibularly evoked compensatory movement in the 

opposite direction; fast phase of the optokinetic response (OKR), used to reset 
the eyes within the orbit following a visually evoked compensatory movement in 

the opposite direction; and micro-saccades which are small randomly directed 

saccades which interrupt fixation. 

To generate this fast eye movement an innervational pattern, described as the `pulse' 

and `step', is sent to the extraocular muscles from the brainstem (Robinson, 1964). The 

pulse is a short burst of activity, which drives the eyes at high velocity against the 

viscous properties of the orbital contents. The strength and duration of the pulse 
determines the amplitude of the saccade. The step is an increase in activity to hold the 

eye in the desired position preventing a return to primary position. The pulse is 

generated in pre-motor cells of the brainstem in an area referred to as the `pulse 

generator'. The size of the step signal is derived through integration of the pulse activity 
by a structure known as the neural integrator (Skavenski & Robinson, 1973; Arnold & 

Robinson, 1997). The neural integrator (see section 1.2.5) operates via connections 
between various structures within the brainstem and cerebellum, (Leigh and Zee, 1999). 

2 



Chapter 1 Introduction 

1.1.1.1 Saccade latency 

From the appearance of a peripheral target to the onset of the eye movement a period of 
time elapses to enable visual processing of the target, planning and execution of a 

saccade. This is known either as the initiation time, reaction time or saccadic latency. 

Saccades typically have latencies in the order of 200ms (Leigh & Zee, 1999; Becker, 

1991). The latencies of individual saccades do not have a normal distribution around a 
mean of 200ms, however, the inverse of latency (promptness) is usually normally 
distributed (Carpenter, 1981). Multi-modal distributions may occur when the stimulus 
conditions are stable and controlled. Four separate modes have been identified (Boch & 
Fischer, 1986; Fischer & Ramsperger, 1986; Fischer, 1987) as follows: long latency 

regular saccades with latency in the region of 230ms; short latency regular saccades 
with latency of 150-200ms; express saccades with latencies of 90-130ms; anticipatory 
saccades with latencies of <80ms. Saccadic latency can be affected significantly by the 

nature of stimulus and experimental conditions. 

The effect of target eccentricity on saccade latency is inconsistently reported. A 

summary of findings can be seen in Table 1.2. Wyman and Steinman (1973) 

demonstrated in two subjects, that saccade latency decreases with increasing target step 

size. From Table 1.2 it is apparent that most laboratories report highly increased saccade 
latencies (maximum 150ms increase) for eccentricities of <0.5°, with no significant 
differences for moderate eccentricities (1-15°). Large saccades, between 20° and 60°, 

begin to show a small increase in latency in the region of 20ms. 

The luminance of the target has been shown to affect saccade latency such that it 

decreases at a negatively accelerated rate, by approximately 15ms per logarithmic unit 

of luminance increment above foveal threshold (Wheeless, Cohen & Boynton, 1967). 

Latency is also increased with reducing target contrast (Becker, 1991). 

3 



Chapter 1 Introduction 

Source Effect of saccade amplitude on saccade latency 

Frost & Pappel (1976) No effect 
3 subjects, range of eccentrics 5°- 450 

Bartz (1962) Increasing latency with target eccentricity. 
3 subjects, range of eccentricity 2.5°- 40° 
subjects required to identify type of target verbally - time taken 
to `see' and make saccade not just time to make saccade 

Wyman & Steinman (1973) Decrease in latency with increasing target step size. 
Large increase of up to 150ms for very small target steps of 
0.10 
2 subjects, range of eccentricity 0.05°- 0.5° 

Pirozzolo & Hansch (1981) Increase for small saccades (2°-5°) and large saccades (15°) 
12 elderly subjects, range of eccentricity 2°- 15° 

Findlay (1983) Not affected between 1° and 15° for horizontal saccades 
Conclusions from review of several studies 

Kapoula (1984) Longer latency for 10° saccades than 3° saccades 

Becker (1989) Total increase of 20ms to 30ms as the target amplitude 
increased from 5° to 60° 
No details ofparadigm, subjects or data analysis 

Table 1.2: Summary of reported effects of target eccentricity on saccade latency for horizontal saccades. 

Manipulation of the disappearance of the central fixation point in relation to the onset of 
the target influences saccade latency. Removal of the fixation point for a period of time 

prior to the onset of the target reduces saccade latency (gap paradigm), whereas if the 

extinction of the fixation point is delayed with respect to the onset of the new target 

then saccade latency increases (overlap paradigm) (Saslow, 1967). Saslow demonstrated 

that latency decreased by a maximum of 150ms as the gap increased up to 200ms and 
latency increased by a maximum of 50ms under overlap conditions up to 100ms (see 

Figure 1.1). Under gap conditions the number of short latency, express saccades 
increases (Fischer & Ramsperger, 1984). A neurological mechanism for the gap and 

overlap effects has been attributed to the cells of the rostral superior colliculus (SC), 

which are active during fixation and deactivated during saccades (Munoz & Wurtz, 

1993a). 

Visual attention has been shown to play a role in the occurrence of express saccades. 
Mayfrank, Mobashery, Kimmig and Fischer (1986) have shown that using identical 

fixation points and targets, the instruction to `attentively fixate the fixation target' 

reduced the number of express saccades. Whereas the instruction to `keep your eyes on 

the fixation target, but shift your attention to a peripheral point', gave rise to an increase 

in express saccades. This suggests that presence or absence of a fixation target cannot 
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Chapter 1 Introduction 

account for the occurrence of express saccades. It seems that directed visual attention 
prevents the oculomotor system from producing express saccades. 

300 
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Figure 1.1: Saccade latency as a function of target asynchrony. Each data point represents the mean of 
100 saccades ±2 standard errors. From Saslow, 1967. 

A warning by any sensory stimulus prior to the saccade stimulus reduces saccade 
latency. In a series of step stimuli, with fixation periods between steps of <3s, the 

previous step gives warning of the next step, hence reducing latency as the pattern is 

established. Evenly distributed step intervals between 350 and 650ms have been shown 
to reduce saccade latency such that it decreases with decreasing step interval (Findlay, 

1981). Anticipatory saccades may occur if the target is predictable, for example 

repeatedly from one position to another, in which case the eye movement may precede 
the stimulus. Saccades with latencies up to 80ms are also considered anticipatory, as 
this time period is required for the brain to process the visual signals and plan the motor 

response (Becker, 1991). This was adopted as the criteria in this thesis, saccades with 
latencies less than 80ms were excluded from analysis. 

The latency of saccades can be altered by the presence of a peripheral target, or 
distractor. This is of particular interest in this thesis as Experiment 4 of Chapter 5 and 
Experiments 5 and 8 of Chapter 6 study the effect of distractors on saccade latency and 

accuracy. Levy-Schoen (1969) showed that saccade latency was increased by 40ms 

when a distractor appeared simultaneously in a mirror symmetric position of the 

contralateral hemifield to the stimulus. If the distractor appeared adjacent to the saccade 

stimulus in the same hemifield the latency was unaffected but the accuracy was 
compromised. This phenomenon agrees with subsequent studies in which, when two 
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targets appear, the saccade becomes directed to a point between the targets, termed the 
`global effect', (Findlay, 1982; Deubel, Wolf & Hauske, 1984) (see the remote 
distractor effect, Section 1.1.2). 

1.1.1.2 Saccade peak velocity 

Saccadic peak velocity increases with saccade amplitude, typically saturating for 

saccades of approximately 50°. The normal values for this relationship fall within a 

single smooth curve known as the main sequence (Bahill, Clark & Stark, 1975). Figure 

1.2 shows a typical main sequence. The peak velocity tends to peak at around 500°s4, 

however variations occur in normal subjects from 350 to 700ms. The velocity profile of 
large saccades is skewed such that there is an initial rapid acceleration to reach the peak 

velocity, followed by a slower deceleration. Small saccades, in contrast, show a more 

symmetric profile with the acceleration and deceleration periods being almost 

symmetrical. 

The duration and peak velocity of saccades is dependent upon the position of the eye 

within the orbit due to mechanical factors. Three main positions within the orbit can be 

described; centrifugal; centripetal; and symmetrical. Centrifugal saccades begin at the 

midline and are directed eccentrically, centripetal saccades commence eccentrically and 

end at the midline and symmetric saccades cross the midline. Saccadic velocities for 

these three positions are not significantly different for saccades of <15°, however for 

30° saccades, reductions of around 90°s'1 for centripetal saccades, compared to 

centrifugal saccades, have been reported (Hyde, 1959; Becker, 1989). 

Abducting and adducting saccades' also differ in duration, acceleration and peak 

velocity. Conflicting results have been reported which appear to result from the method 

of recording. EOG recordings have consistently shown that the adducting eye is faster 

than the abducting eye (Boghen, Troost, Daroff, Dell'Osso & Birkett, 1974; Bird & 

Leach, 1976). Whereas with infrared recordings the abducting eye have been shown to 

accelerate faster and achieve a higher peak velocity than an adducting eye (Fricker & 

Sanders, 1975; Hallett & Adams, 1980). Preliminary observations by Becker (1989) 

showed that for the same saccades recorded with the EOG and search-coil methods the 

finding of faster adducting saccades with EOG was not present with the search-coil. The 

difference in peak velocity, abducting saccades faster than adducting saccades, for 

moderate sized saccades has been shown to be in the region of 20ms (Becker, 1989). 

1 Abducting saccades are directed temporally, adducting saccades are directed nasally. 
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Attentional factors, fatigue (Becker, 1989) and drugs that reduce alertness (Jürgens, 

Becker & Kornhuber, 1981) have been shown to reduce saccade peak velocity. Memory 

guided saccades (Becker & Fuchs, 1969) and anti-saccades (Hallett, 1978), in which the 

subject is instructed to look in an equal and opposite direction to the target, showed 
reduced peak velocity compared to saccades made to a permanently visible target. 

Saccade Main Sequence 

700 1 

600 1 

500 1 

400 1 

300 d 

200 i 

100 

0 
0 5 10 15 20 

Saccade amplitude (degrees) 

25 

Figure 1.2: The relationship of saccade amplitude to peak velocity. This relationship is called the in 
sequence. Data collected by H. Griffiths. 

1.1.1.3 Saccade accuracy 

Due to the long processing time, compared to the time it takes to execute them, saccades 
are said to be ballistic movements, which once started cannot be influenced. The perfect 
saccade would rapidly reach the target and stop abruptly without error. This, however, 

does not always occur and is known as dysmetria, leading to the necessity for corrective 

movements following the initial saccade to align the fovea to the target. The corrective 

movements may consist of a second corrective saccade or the eye may slowly glide onto 
the target, known as a glissade. The task (Lemij & Collewijn, 1989), stimulus size 
(Kowler & Blaser, 1995), stimulus brightness (Doma & Hallett, 1988) and the 
background around the target all influence the amount of dysmetria. Saccades may 

undershoot the target, referred to as hypometric saccades, or overshoot the target, 
known as hypermetric saccades. Inaccurate saccades result from two types of error: 
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1. Pulse - step mismatch 
Incorrect pulse size with correct step, the eye therefore gradually creeps onto target. 

2. Step size error 
Correct pulse with incorrect step size, where the eye precisely reaches the target, 
but cannot be maintained at this position. 

Often a combination of these two errors occurs resulting in a combination of glissades 
and corrective saccades (see Figure 1.3). Evidence gained from lesions in monkeys 
shows that the cerebellum is involved in control of pulse and step generation to avoid 
mismatches (Ritchie, 1976; Optican & Robinson, 1980). The cerebellar vermis controls 
pulse size and the flocculus controls the pulse step match (Optican, 1980). 

Methods of measuring accuracy are as follows: 

" Frequency of occurrence, which considers the percentage of under and 
overshooting saccades. 

" Error amplitude, which equals the difference between the target distance and the 

saccade amplitude. Negative values indicate an overshoot, positive values indicate 

an undershoot of saccades and zero indicates a precise saccade reaching the target. 

" Saccade gain, which is the saccade amplitude divided by the target distance. A 

value of 1 represents a saccade that is on target; a value <1 equals an undershooting 
saccade and a value >1 equals an overshooting saccade. This method is used in this 

present study. 

Small 

ö 
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T--- I 
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Figure 1.3: Pulse-step mismatch. Pulse and step 
components of saccadic control signal can be 
mismatched as shown. When the step is correct but 
the pulse is too large (H), a glissadic overshoot is 
generated. When the pulse is too small (B), the 
resulting saccade stops short of its final position and 
a glissade finishes the movement. When the step 
component is incorrect the saccade moves the eye to 
an off-target position, where it remains until visual 
feedback instigates corrective saccade either 
forward to the target (D) or backwards to it (F). 
When both pulse and step are too large (I) or too 
small (A), the primary saccade may be followed by 
rightward glissade, leftward glissade, or no glissade 
at all, depending of relative sizes of components. 
Broken line through each trajectory marks target. 
(From Bahill & Stark, 1979) 
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Most saccades slightly undershoot the target requiring one or two corrective saccades, 
the amount of undershoot is usually around 10% of the total target amplitude (Barnes & 

Gresty, 1973). Whether undershoots occur deliberately in larger saccades, to produce 
the quickest way of getting the eye on target, is debated. In the dark the main saccade is 

often followed by a secondary saccade in the same direction and of approximately 10% 

of the amplitude of the main saccade (Becker & Fuchs, 1969). This has raised the 
hypothesis that the corrective saccade is part of a predetermined two-step sequence and 

not elicited by visual feedback of an unforeseen error. However, the size of the 

corrective saccade highly correlates to the error, even when the target position is altered 
just after initiation of the main saccade, indicating visual input determining the size of 
the required corrective saccade (Becker & Fuchs, 1969; Deubel, Wolf & Hauske, 1982). 
Henson (1978) showed that if saccades were made to consistently overshoot by 
displacing the target during the saccade, the saccadic system adapted until a 10% 

undershoot was re-established. 

Other studies however have not reported consistent undershooting of the target. As can 
be seen in Figure 1.4 the percentage of undershooting saccades has been shown to 
increase, and overshooting saccades decrease, as the stimulus amplitude increases 

(Bartz, 1967; Becker, 1972). Kapoula and Robinson (1986) showed that the range of 
target positions used in an experimental session influenced the accuracy of saccades, 

such that distances at the upper end of the range are underestimated and those at the 
lower end of the range overestimated, regardless of the absolute amplitude. 

Undershoots are more common in centrifugal than centripetal saccades and overshoots 

are more common in centripetal than centrifugal saccades (Becker, 1989). Collewijn, 

Erkelens and Steinman (1988) have shown that the presence of constantly visible targets 

reduces the error considerably (see Figure 1.4). The presence of other objects close to 
the target alters the accuracy of the saccade, such that the saccade relates to a spatial 
average of the target and non-target (Coren & Hoenig, 1972) termed the Global effect 
(Findlay, 1982). The saccade has been shown to land nearer to the stimulus with more 

salient properties (Findlay, 1982). 

Saccade accuracy is reduced if, following the appearance of the target, saccade latency 

is less than 80ms (Findlay, 1981). Saccades of short latency are termed anticipatory or 

predictive saccades and have also been shown to have different dynamics to saccades of 
longer latencies, i. e. >80ms (Bronstein & Kennard, 1987). 
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Figure 1.4: Saccade accuracy as a function of eccentricity. Positive values represent an undershoot of the 
target, negative values an overshoot. Data accumulated from various authors as follows: BEC, Becker, 
1975; COL, Collewijn et al, 1988; FRO, Frost & Pappel, 1976; KAP, Kapoula, 1985; KAR, Kapoula & 
Robinson, 1986; SHA, Sharpe & Zackon, 1987. (From Becker, 1991. ) 

1.1.2 The remote distractor effect 

This thesis will use the remote distractor effect in Experiment 4 of Chapter 5 and 
Experiments 5 and 8 of Chapter 6. 

A distractor is a stimulus presented at non-target locations within the visual field, 

usually simultaneously with presentation of the target. As described in Section 1.1.1.1 

simultaneous presentation of a target and distractor in mirror symmetrical locations has 

been shown to increase saccade latency by approximately 40ms. Whereas, if the target 

and distractor are presented in close proximity saccade latency is not affected but 

accuracy is compromised (Levy-Schoen, 1969). 

Weber and Fischer (1994) have examined the effects of distractors, in normal subjects, 

on express saccades. They presented saccadic stimuli on the horizontal axis in which 
half the trials had simultaneous distractors in the contralateral hemifield and half were 

presented without distractors. There was a significant difference in the saccadic latency 

when the distractor was present and express saccades were absent. This was not thought 

to be an increase in latency due to the time taken to decide which was the actual target, 
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as the subjects were told in advance which side the target would be presented to. They 

also examined the effect of variable sized distractors with the conclusion that smaller 
distractors (0.1° x 0.1°) had less effect on latency than larger distractors (0.4° x 0.4°). 
The eccentricity of the distractor was also significant with the distractor having more 

effect when situated 4° from the midline compared to 12°. The effect of ipsilateral 

distractors was also investigated and found to reduce the number of express saccades 

when presented close to the original fixation region the so-called `dead zone' (Weber, 

Aiple, Fischer & Latanov, 1992). The experiments concerned with contralateral 
distractors used distractors consisting of a vertical strip of three bars, whereas the 
ipsilateral distractor trials used a vertical strip of 23 bars. This discrepancy therefore 
does not allow a complete picture of the distractor effect. 

Walker, Kentridge and Findlay (1995) have shown that the timing of the appearance of 
the distractor was a significant factor. Distractors presented simultaneously with the 

stimulus, but in the contralateral hemifield, increased the saccade latency by 20 to 30ms. 
Latency was also increased if the distractor preceded the target by an interval of 
<100ms and the reverse occurred with distractors appearing between 100ms and 250ms 
before the saccadic stimulus, where the saccade latency reduced compared to the no 
distractor condition. The distractor appearing >100ms in advance of the stimulus was 
thought to act as a warning to the appearance of the stimulus. 

Walker, Deubel, Schneider and Findlay (1997) considered the distractor effect in more 
detail (this study was replicated in Chapter 5). A consistent distractor size was used and 
the location of the distractor was presented at several locations in both the contralateral 

and ipsilateral hemifields. The study reports data collected from six visually normal 
subjects with stimuli presented on a 21-inch colour monitor. Eye movements were 
recorded using a Dual-Purkinje eye tracker. The target used to stimulate visually 
directed saccades was a diagonal cross of length 0.19° and the distractor consisted of a 
0.53° circle. With the offset of the central fixation cross the target and distractor 

appeared simultaneously. Target and distractor positions were varied in four 

experiments to include horizontal and vertical meridians. The results demonstrated a 

reciprocal effect on saccade latency and accuracy depending on distractor location. 

Distractors presented within a window 20° around the target axis modulated amplitude, 
but did not influence latency. Distractors presented >20° from the target axis increased 

latency, but had no effect on amplitude (see Figure 1.5). The latency increase reached a 

peak with distractors at the fixation location. 
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The increase in saccade latency with distractors at the original fixation point has been 

explained as an increase in activity of the fixation cells in the rostral pole of the superior 

colliculus (see Section 1.2.3.1) (Doris & Munoz, 1995; Munoz & Wurtz, 1992,1993a, 

b, 1995 a, b). These fixation cells show a tonic discharge during fixation and represent 

the central 2° of the visual field. Walker, Deubel, Schneider and Findlay (1997) 

suggested that the increased latency found with contralateral distractors up to 100 from 

fixation may be explained by the occurrence of fixation cells further from the fovea than 

the 2° region of the rostral pole. This is supported by the work of Gandi and Keller 

(1995) who reported neurons resembling fixation neurons in more caudal regions of the 

superior colliculus. These neurons extended to areas associated with saccades of 10° or 
less. 

Latency 
increased 

Amplitude 
modified 

Figure 1.5: Schematic diagram of visual field 
Target axis illustrating the reciprocal effects on saccade latency 

and amplitude depending on distractor location. 
Distractors presented within a window of 200 

around target axis modulated amplitude, but did not 
influence latency. Distractors presented away from 
target axis (>20°) increased latency, but had no 
effect on amplitude. (Walker et al, 1997). 

Rafal, Smith, Krantz, Cohen and Brennan (1990) examined the latency of saccades 

made by hemianopic patients to stimuli presented in their intact visual field under 

conditions in which visual distractors appeared in their blind field. They found that 

saccade latency increased when distractors were presented in the blind field. A similar 
increase in latency could not be demonstrated in normal subjects. These findings were 

taken as showing that the distractor effect was specific to the oculomotor system and 

may be observed only when the cortical visual pathway is inoperative, suggesting that 

the sub-cortical visual pathway is responsible for the distractor effect. Walker, Mannan, 

Maurer, Pambakian and Kennard (2000), however, revealed no evidence of blindsight 

inhibitory effects in hemianopic subjects with cortical lesions. They concluded that the 

distractor effect was a normal characteristic of the saccadic system and may be related 

to the process of response competition involved in saccade target selection. This may be 

mediated by the deep colliculus, which depends on the corticotectal pathway for visual 

input. 
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These conflicting results have not been fully explained, however as noted by Findlay 

and Walker (1999) the control data of Rafel, Smith, Krantz, Cohen and Brennan (1990) 

does show a small latency increase for bilateral presentations. A possible explanation 
for differences in the hemianopic subjects may be variations in the extrastriate damage 

which produced the hemianopia (Walker, Mannan, Maurer, Pambakian & Kennard, 

2000). 

Patients with unilateral neglect typically have lesions of the right parietal lobe resulting 
in failure to respond to and lack of awareness of objects in the contralateral side to the 
lesion. Walker and Findlay (1996) studied saccades in two subjects with unilateral 

neglect without hemianopia. Presentation of bilateral targets at equal and opposite 

eccentricities did not result in increased saccade latencies as found in normal subjects. 
They concluded therefore that this could not be attributed to a lack of contralesional 
sensory input. 

1.1.3 Adaptive control of saccades 

The experiments in Chapter 7 involve adaptation of saccades. To obtain optimal saccade 

gain in changing circumstances, the saccadic system is under adaptive control to detect 

errors and adjust gain appropriately. The duration of a saccade is typically between 60 

and 80ms, which is faster than sensory processing of visual information. Direct 
feedback during the saccade to improve accuracy is therefore not possible. Adaptive 

control systems are self-correcting, which continually monitor their own performance. 
In the event of under or overshooting the target, the system adjusts parameters to reduce 
the probability of such an error occurring again. This process is important for making 
long-term gradual changes, for example in ongoing growth development and ageing, but 

also in response to disease or injury affecting saccade parameters and dynamics. 

Konuneral, Olivier and Theopold (1976) reported that patients with unilateral ocular 

motor nerve palsies could adjust the amplitude of saccades depending on which eye was 
forced to view. Abel, Schmidt, Dell'Osso and Daroff (1978) described the same 

response in a patient with partial third nerve palsy. 

Experimental paradigms, which shift the target back towards its original location during 

the saccade (intrasaccadic step) have been used to study saccade adaptation. This leads 

to saccades, which initially overshoot the target, such that adaptive control is required to 

reduce the amplitude of saccades to improve accuracy. 
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1.1.3.1 Characteristics of adaptive control 

Saccade adaptation is direction specific, such that modification of gain in one direction 
does not affect the gain of saccades in the opposite direction (Abel, Schmidt, Dell'Osso 

& Daroff, 1978; Deubel, Wolf & Hauske, 1986). This is desirable as it allows 

adaptation in one direction due to possible changes to a particular pairing of extraocular 

muscles without influencing the unaffected opposite direction. 

Differences have been found in adaptive control requiring gain increases and gain 
decreases although these differences are debated. Miller, Anstis and Templeton, (1981) 

and Deubel, Wolf & Hauske, (1986) found that gain decreases occurred faster than gain 
increases. More specifically Miller, Anstis and Templeton, (1981) reported that gain 
decreases were 60% complete and gain increases only 25% complete over the same 
time scale. This was in contrast to Abel, Schmidt, Dell'Osso and Daroff, (1978) and 
Albano and King, (1989) who described faster adaptation for gain increasing adaptation. 
The main difference in the study by Albano and King, (1989) was that they produced 

saccade dysmetria by electronically adding or subtracting a fraction of the eye position 
signal to adjust the target position. This induced visuomotor errors proportional to 

saccade amplitude, therefore more closely mimicking naturally occurring saccadic 
dysmetria for the primary, as well as corrective, saccades. 

The effect of saccade adaptation on saccade latency has been inconsistently reported. 
Straube, Fuchs, Usher and Robinson (1997) found increased latency of the primary 

saccade in two out of four monkeys studied, as did Takagi, Zee and Tamargo (1998), 

who reported a change in the distribution of latency in adaptive saccades due to the loss 

of express saccades. 

1.1.3.2 Time course of adaptation 

In both monkeys (Optican & Robinson, 1980) and humans (Kommerell, Olivier & 

Theopold, 1976; Abel, Schmidt, Dell'Osso & Daroff, 1978) muscle weakening has been 

shown to result in adaptive changes occurring slowly over a period of days. Fast 

adaptations, occurring within a few minutes (50 to 100 saccades), have been 

demonstrated experimentally using intrasaccadic target steps (Miller, Anstis & 

Templeton, 1981; Deubel, Wolf & Hauske, 1986) and electronic target feedback 

(Albano & King, 1989). This difference in the time course of adaptation suggests that 

two systems may exist; one for fast adaptation and one for slow adaptation. 
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It is possible that the fast adaptation seen in response to experimental conditions may 

not be a true adaptation of the oculomotor system and may therefore represent a 

conscious strategy by the observer in reaction to the stimulus. This however is not 
thought to be the case as the change in gain reported is gradual and follows an 

exponential time course (Deubel, Wolf & Hauske, 1986; Deubel, 1987). A conscious 

strategy to change the amplitude of saccades would be expected to occur abruptly. 

1.1.3.3 Site of adaptive control 

Patients with cerebellar degeneration have been shown to have saccade dysmetria 

suggesting involvement of the cerebellum in adaptive control (Dichgans & Jung, 1974; 

Zee, Yee, Cogan, Robinson & Engel, 1976). Further localisation to the vermis of the 

cerebellum has been found in monkeys (Optican & Robinson, 1980). This was 

concluded by unilateral surgical weakening of the lateral and medial recti, which 

resulted in adaptive compensation depending on which eye was forced to view over a 

period of a few days. However, following total cerebellectomies the saccadic system 

could not compensate for the muscle weaknesses. Furthermore, partial cerebellectomies 

of the vermis, paravermis, and fastigial nuclei eliminated adaptive control of the size of 

saccades but did not affect the step component. 

To investigate the site of adaptation in human subjects Hopp and Fuchs (2002) adapted 
two types of saccade thought to be generated through different neuronal pathways. 
These were targeting saccades, having long latencies and thought to involve higher 

cortical processing, and express saccades, which have very short latencies, thought to be 

processed sub-cortically (i. e. early visual areas, the SC and the brainstem, Fischer & 

Weber, 1993). An experimental paradigm with an intrasaccadic target step backwards 

towards the initial fixation location was used. Gain was found to be adapted for both 

express and targeting saccades in similar proportions leading to the conclusion that 

adaptation occurs after the pathways generating these two types of saccade converge, 
i. e. at or below the SC. 

It may be, therefore, that slow adaptation occurring naturally, for example due to 

disease or trauma, occurs in the cerebellum whereas fast adaptive changes found in 

response to an experimental intrasaccadic step result from a different pathway at or 
below the SC. 
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1.1.3.4 Disconjugate adaptation 

Saccades may also be adapted disconjugately, such that saccades become unequal in the 
two eyes. This has typically been investigated using anisometropic lenses to magnify 
the image to one eye (Lemij & Collewijn, 1991; Kapoula, Eggert & Bucci, 1995; Van 

der Steen & Bruno, 1995). A review of literature relating to disconjugate adaptation in 

normal binocular single vision (BSV) and strabismus is given in Chapter 7. A novel 
method of inducing disconjugate adaptation is used in the experiments of that chapter in 

subjects with bifoveal BSV, and subjects with strabismus but no clinically demonstrable 
BSV. 

1.2 Neurophysiology of saccadic eye movements 

Experiments of Chapters 5,6 and 7 investigate the generation of horizontal saccades in 

relation to presence or absence of binocular vision. Discussion of the results of these 

chapters considers cortical and sub-cortical areas involved in saccade generation. The 

visual pathways and the main areas involved in saccade generation are therefore 

summarised in the following sections. 

Areas within both the cortex and sub-cortex are involved in the generation of saccades. 
Visual information from the retina reaches these structures via two visual pathways. The 

result is a pre-motor command signal to the oculomotor nuclei in the brainstem, which, 
in turn, leads to innervation creating contracture of the required extraocular muscles to 

execute the appropriate saccade. 

1.2.1 Visual pathways 

The majority of retinal ganglion cells project to the LGB. Nine other nuclei within the 
brain also receive retinal input (Hendrickson, Wilson & Toyne, 1970). Table 1.3 lists 

these nuclei and summarises the function of the fibres of each pathway. The two main 
pathways involved in binocular vision and saccadic eye movements are the retino- 

geniculo-cortical pathway and retino-collicular pathway (sub-cortical or tectal 

pathway). These pathways are shown in Figure 1.6 and will be briefly outlined below. 
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Nucleus Function 
Lateral geniculate body 

(retino eniculo-cortical pathway) 
Visual perception 

Pregeniculate nucleus Visual perception 

Superior colliculus 
(retino-collicular pathway) 

Control of eye movements 

Pretectal nuclear complex Control of pupillary responses 

Suprachiasmatic nucleus Control of diurnal rhythms 
& hormonal changes 

Paraventricular nucleus Neuroendocrine regulation 

Supraoptic nucleus Neuroendocrine regulation 

Pulvinar Saccadic suppression & attention 
See section 1.2.2.6 

Accessory optic system Optokinetic reflexes 

Nucleus of the optic tract Optokinetic reflexes 

Table 1.3: Nuclei receiving projections from the retinal ganglion cells and their function. Adapted from 
Hendrickson, Wilson and Toyne, 1970. 

Right Visual Field Left Visual Field 

Pretectum 

Superior Coll cuI.. 
ý 

/I_ Optic Radiations 

vi 
(striate cortex) 

Retino-collicular pathway 
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Figure 1.6: Schematic 

diagram of the visual pathway, 

viewed from below. The 

retino-geniculo-cortical path- 

way projects from the retina to 

the optic nerve, optic chiasm, 

optic tract, lateral geniculate 
body and optic radiations to 

V1. The retino-collicular 

pathway takes the same course 

up to the optic tract where it 

leaves to pass to the superior 

colliculus. Axons from nasal 

retina decussate at the chiasm, 

axons from temporal retina do 

not decussate and remain on 

the ipsilateral side. Stimuli in 

the left visual field are 

processed in the right cortex 

and right visual field in the left 

cortex. Adapted from Daw, 

1995. 
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1.2.1.1 Retino-geniculo-cortical pathway 

The retina is a thin layer of nervous tissue where vision begins with the capture of 
images focused by the optical media of the eye. The landmarks of the retina are the 

optic nerve, retinal blood vessels, area centralis, which includes the fovea and foveola, 

and the peripheral retina, which terminates at the ora serrata (see Figure 1.7). 

The fovea is the point of fixation giving the highest level of visual acuity. It is situated 
in the central retina and defines the vertical division of the visual field splitting the 

retina into nasal and temporal halves. Objects in the temporal visual field are projected 
upon nasal retina and vice versa. Ganglion cells in the retina are the only cells that 

project from the eye to the brain. Ganglion cells located in the nasal retina, project to the 

contralateral side of the brain via the optic chiasm, whereas the temporal retina projects 
to the ipsilateral side. The ganglion cell axons terminate in the thalamic relay nucleus 
called the lateral geniculate body (LGB). From here the post-synaptic fibres pass in the 

optic radiations to the primary visual cortex, known as visual area 1 or V1. Visual 

perception occurs in V1 and in adjacent extrastriate areas. These associated visual areas 
have been named V2, V3, V4, V5 and V6. 

Temporal Retina () Nasal Retina 

Figure 1.7: Retinal landmarks. Dimensions 
shown are in degrees and represent the 
approximate visual angle subtended by each 
structure. 
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1.2.1.2 Retino-collicular pathway (sub-cortical pathway) 

Specialised retinal ganglion cells project axons, which exit the eye to the optic nerve 
and travel to the optic chiasm where nasal retinal fibres decussate and temporal fibres 

remain on the ipsilateral side. They follow the common visual pathway in the optic tract 

until they reach the thalamus. Here the fibres destined for the striate cortex pass into the 
lateral geniculate body, the retino-collicular fibres leave the optic tract and enter the 
brachium of the superior colliculus in the midbrain (see Figure 1.6). 

1.2.2 Cortical areas involved in saccade generation 

The areas involved in neurological sensory and motor processing of saccades are shown 
in Figure 1.8. The cortical areas will be described in this section, sub-cortical areas will 
be discussed in Section 1.2.3 and cerebellum will be described in Section 1.2.4. 

Figure 1.8: Schematic diagram of the major structures that participate in the control of horizontal 
saccades. Excitatory neurons are indicated by solid lines, inhibitory neurons by dashed lines. FEF, frontal 
eye fields; SEF, supplementary eye fields; LIP, lateral intraparietal area; VI, Striate cortex; CN, caudate 
nucleus; TH, thalamus; SNr, substantia nigra; SC, superior colliculus; C, cerebellum; PPRF, paramedian 
pontine reticular formation; MLF, medial longitudinal fasciculus; III, oculomotor nerve nucleus; VI, 
abducens nerve nucleus. 
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1.2.2.1 Striate cortex (Vl) 

Electrical stimulation of the striate cortex evokes saccades to the contralateral field. The 

amplitude and direction of the induced saccades resemble the sensory retinotopic map. 
Striate neurons project to the SC. Lesions of the SC result in the loss of saccades 
following electrical stimulation of the striate cortex (Schiller, 1977). This is thought to 

occur due to a lack of a direct pathway from the striate cortex to the oculomotor nuclei 
in the brainstem. 

1.2.2.2 Extrastriate areas V2 and V5 

Neurons of V2 discharge prior to saccades. It is unclear, however, whether this is 

purely related to the action of attending to a stimulus, rather than active processing 
related to saccade generation (Goldberg & Segraves, 1989). 

Induced lesions of V5 (area MT, which receives input from V1 related to motion, 

velocity and direction) inhibit accurate saccades to moving stimuli in the field relating 
to the region affected by the lesion (Newsome, Wurtz, Dursteler & Mikami, 1985). 

1.2.2.3 Frontal eye fields (Brodmann area 8) 

The frontal eye fields (FEF), situated in the frontal lobes of the cortex, receive 

projections from extra striate areas V4, V5 (MT) and intraparietal sulcus. They also 
have input from the opposite FEF via callosal projections. A large projection from the 
FEF is to the intermediate and superficial layers of the SC. Other projections to the 

thalamus, basal ganglia, pretectum, rostral interstitial nucleus of the medial longitudinal 
fasciculus (riMLF) and the paramedian pontine reticular formation (PPRF) have also 
been identified (Feldon & Burde, 1992). The riMLF is the centre concerned with the 

generation of vertical eye movements, whilst the PPRF generates horizontal eye 

movements. 

Electrical stimulation using electrodes penetrating the FEF have shown a complex 
topographic pattern with large amplitude saccades evoked by medial stimulation and 

small saccades by lateral stimulation. As the electrode progresses deeper into the cortex, 
the direction of the resulting saccade rotates. Areas of the FEF that produce large and 

small saccades project to areas of the SC that produce large and small saccades 

respectively (Komatsu & Suzuki, 1985). 
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Mohler, Goldberg and Wurtz (1973) have shown that almost half of the neurons in the 
FEF have receptive fields. They are generally large, up to a quadrant of the visual field, 

not selective for direction, speed, orientation, shape or colour. Hence they identify 

where the target is, but not what it is. Neurons that are active prior to saccades, active 
during and after saccades and neurons active during fixation have been identified in the 
FEF. Pre-saccadic neurons fire maximally prior to goal-directed saccades made to a 
target in their receptive field. Awareness of a target, which stimulates the receptive 
field, does not produce neuronal activity unless a saccade is made to the target 
(Goldberg & Bushnell, 1981). Post-saccadic neurons discharge in association with goal- 
directed and re-orientating saccades of all directions. Two types of neuron are involved 
in fixation. The first type discharge during fixation and the second type discharge when 
fixation is released (Suzuki & Azuma, 1977). 

The characteristics of neurons that project from the FEF to the SC have been analysed 
by Goldberg and Segraves (1987). The two main groups of neurons were movement 
cells (majority pre-saccadic discharging neurons, very few post-saccadic neurons) and 
fixation cells. This suggests that the role of the FEF in generation of saccades is to 

specify the co-ordinates of the saccade (movement cells) and the maintenance and 

release of fixation (fixation cells) (Goldberg & Segraves, 1989). 

1.2.2.4 Supplementary eye fields 

Another area of the frontal cortex, which lies dorsomedially, has been found to produce 

saccadic eye movements when stimulated with electrodes and has therefore been named 
the supplementary eye field (SEF) (Schlag & Schlag-Rey, 1987). The cells of this area 
discharge prior to the saccade and project to the FEF, thalamus, SC and directly to the 

pons. Some cells in the SEF discharge maximally for saccades made at particular 

positions within the orbit. Also there is evidence that their response adapts with training. 
This has lead to speculation that this area acts as a pre-saccadic motor processing centre, 

which encodes spatial co-ordinates and motor behaviour based on training (Gaymard, 

Pierrot-Deseillingy & Rivaud, 1990). 

1.2.2.5 Posterior parietal cortex 

The posterior parietal cortex has been proposed to be crucial to generation of reflexive 

saccades (Gaymard, Ploner, Rivaud, Vermersch & Pierrot-Deseillingy, 1998). Lesions 

of this area in humans result in a deficit of involuntary saccades (Heide & Kompf, 

1998). Microelectrode recordings in monkeys have established that neurons in the 

21 



Chapter 1 Introduction 

parietal lobe give both sensory and motor related responses, suggesting a role in 

transformation of retinotopic visual signals into motor co-ordinates. The lateral 

intraparietal area (LIP) has been identified as a specific area related to amplitude and 
direction of intended saccades (Anderson & Gnadt, 1989). 

1.2.2.6 Thalamus 

The region of the thalamus involved in eye movements is called the internal medullary 
lamina (IML). Godlowski (1938) was first to recognise that electrical stimulation of this 

area resulted in contralateral saccades. It appears to be involved in the generation of 

saccades and co-ordination of head and eye movements and spatial representation of 
targets. As the IML has connections with the SC, FEF, posterior parietal lobe, basal 

ganglia, LGB, PPRF, vestibular nerve and cerebellum, it is hypothesised that it plays a 

role as a central controller (Schlag-Rey & Schlag, 1989). Schlag-Rey and Schlag, 

(1989) suggest that cells of the IML start and stop processing operations and regulate 
the transfer of information between centres. They also speculate that it may play a role 
in deciding which saccade commands should be prioritised, as several interpretations 

from the various centres will be received based on their individual inputs. 

The pulvinar is the largest part of the thalamus, receiving inputs from striate cortex, 

extrastriate areas, parietal cortex, FEF and SC. It projects to striate cortex, extrastriate 

areas, parietal cortex and FEF. Two parts of the pulvinar have been identified having 

differing functions. The inferio-lateral aspect projects to V5 and discharges in relation 

to movement. This discharge reduces during saccades and has therefore been 

hypothesised to be involved in saccadic suppression (Robinson, McClurkin, Kertzman, 

& Peterson, 1991). The dorsomedial region of the pulvinar is not retinotopically 

organised, it projects to the parietal lobe and appears to be involved with attention 
(Robinson, 1993). 

1.2.2.7 Basal ganglia 

The basal ganglia have a role in the generation of voluntary saccades and inhibition of 
inappropriate reflex saccades. The basal ganglia consist of the caudate nucleus and the 

substantia nigra pars reticular. 

2 Saccadic suppression is the ability to ignore visual input, which sweeps across the retina during saccadic 
eye movements. It prevents perception of fast moving blur as the eye moves. 
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" Caudate nucleus: This receives input from the FEF, SEF and IML of the thalamus. 
Its main projections are to the substantia nigra pars reticular (SNpr). The discharge of 
caudate neurons increases prior to saccades, particularly for memory guided 
saccades. It is thought that the caudate nucleus has a complex role in eye movement 

control, which involves predicting environmental changes (Hikosaka, Sakamoto & 

Usui, 1989). 

" Substantia nigra pars reticular (SNpr): This receives input from the caudate 
nucleus and gives an inhibitory projection to the intermediate layers of the SC. 
Neurons within the SNpr have a high tonic discharge rate that decreases prior to 

saccades, particularly memory guided saccades. Stimulation of the caudate nucleus 
produces inhibition of the SNpr (Hikosaka, Sakamoto & Miyashita, 1993). 

1.2.3 Sub-cortical areas involved in saccade generation 

1.2.3.1 Superior colliculus (SC) 

The SC is essential for the generation of a response to an object of visual or auditory 
interest. Descending pathways from the SC to the PPRF in the pons (an area of the 
brainstem involved in the generation of horizontal saccades) and reticulospinal cell 
groups, generate eye and head movements. The structure, inputs, outputs and function 

of the SC are outlined below. 

The SC, which is sometimes referred to as the tectum, consists of seven layers, divided 

into dorsal (superficial) and ventral (deep) portions. Between these two portions are 
intermediate layers. The superficial portion is exclusively visual in terms of functions 

and connections. The deep portion has connections with multiple sensory and motor 
systems and appears to translate sensory signals into motor commands. One particular 
function is the initiation of rapid eye movements (saccades). 

" Superficial layers of the superior colliculus: Input to the superficial layers of the 
SC occurs directly from retinal ganglion cell axons and projections from layer 5 of 
the striate cortex. 

The visual receptive fields of the superficial layers are organised in a retinotopic 
fashion (Cynader & Burman, 1972; Goldberg & Wurtz, 1972) as shown in Figure 

1.9. The fovea is represented anteriorly with the horizontal meridian passing 
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posteriorly towards representation of the periphery. The upper visual fields are on the 

medial border and lower field on the lateral side. The central 10° of the visual field is 

represented by more than 30% of the SC (Cynader & Burman, 1972). In the macaque 

monkey, cells of the colliculus are not selective to the type, size or direction of the 

stimulus (Cynader & Burman, 1972). In the cebus monkey most cells have been 

found to be selective for size of stimuli and some are orientation specific (Updyke, 

1974). Collicular receptive fields are larger than those of the geniculo-striate system 

and the field size increases with increasing depth within the colliculus (Goldberg & 
Wurtz, 1972). 

" Intermediate layers of the superior colliculus: Neurons that discharge in relation 
to saccades are concentrated in the intermediate layers. Stimulation of these neurons 
of alert Rhesus monkeys evokes conjugate, contralateral saccades. The latency of the 

evoked saccades is about 20-30ms. A map of the amplitude and direction of saccades 

evoked by stimulation of different points of the SC was developed by Robinson 
(1972) (see Figure 1.9). Robinson noted that the correspondence between the motor 

map and the underlying sensory map were formed by the retinotopic projections to 
the superficial layers of the SC. Stimulation of caudal SC elicits large amplitude 

saccades and rostral stimulation evokes smaller saccades. Sparks and Mays (1983) 

found that the current required to evoke a saccade is greater if the animal is actively 
fixing a target and the amplitude of saccade is smaller. Also the direction and 

amplitude of saccades may be altered if stimulation occurs before a pending visually 
triggered saccade. 
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Figure 1.9 Schematic motor map of the intermediate layers of monkey superior colliculi. Isodirection 
lines run from the rostrolateral to caudomedial SC. Positive numbers represent upward directions and 
negative numbers downward directions. The rostral pole shows the fixation cells identified by Munoz and 
Wurtz, 1993a. Adapted from Robinson, 1972 by Munoz and Wurtz, 1993. 
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Cells in rostral SC of cats (Munoz & Guitton, 1991; Munoz, Guitton & Pelisson, 

1991) and monkeys (Munoz & Wurtz, 1993a) have been shown to be maximally 

active during fixation. Munoz and Wurtz (1993b) demonstrated that stimulation of 
these ̀ fixation cells' has an inhibitory effect on saccades. 

" Deep layers of the superior colliculus: Numerous ascending and descending 

afferent pathways enter the deep layers. In cats the deep layers receive extensive 

projections from the extrastriate visual areas. In monkeys, input from the posterior 
parietal cortex, an area important for visual attention, visuomotor discrimination and 
oculomotor control, has been demonstrated (Lynch, Graybiel & Lobeck, 1985). 

Extensive inputs from the FEF have been documented in cats (Hartwich-Young & 
Weber, 1986) and macaque monkeys (Huerta, Krubitzer & Kaas, 1986). The FEF 

contains visually responsive neurons that discharge in association with saccadic eye 
movements. Communications between corresponding and non-corresponding regions 
of the two superior colliculi of cats have been found predominantly in the deep layers 

(Moschvakis, Karabelas & Highstein, 1986). 

The large number of outputs from the deep layers of SC can be divided into two 

main categories; an ascending pathway to the thalamus, which may involve a 

complex feedback loop, and descending pathways, which convey collicular motor 
commands to nuclei within the brainstem and spinal cord. Ascending axons from 
deep SC have also been found to project to the riMLF, which plays a vital role in the 

generation of vertical saccadic eye movements (Buttner, Büttner-Ennever & Henn, 

1977; Buttner-Ennever & Buttner, 1978). A large proportion of the descending fibres 
have been shown to be involved in oculomotor control, many projecting to the PPRF 
(Harting, 1977). 

" Physiology of the superior colliculus: Two types of saccade-related neurons have 
been identified in the monkey SC (Munoz & Wurtz, 1995a and b). These are burst 

cells, which have a high frequency burst occurring just before saccades with no 
build-up of activity, and build-up cells, which show activity beginning with the 

signal to make the saccade that continues until the generation of the saccade. These 

cells are in two functional sub-layers within the intermediate layers of the SC. 

Fixation cells in the rostral SC, previously described by Munoz and Wurtz (1993a 

and b) were found to be part of the build-up cell layer. Munoz and Wurtz (1995b) 

proposed that during fixation, activity is confined to fixation cells in the rostral SC, 
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which suppress saccades via inhibitory connections to saccade cells in the caudal SC 

and excitatory connections with omnipause neurons in the PPRF (see below). Build- 

up cells show early activity prior to the saccade, related to preparation to make a 

saccade such as selection of target amplitude and direction. The burst cells are active 
just before the saccade and provide input to the pons for amplitude and direction of 
the saccade. 

" Lesion Studies: Combined lesions of the FEF and SC give rise to a permanent 
impairment of saccades (Schiller, True & Conway, 1980). Removal of the SC does 

not prevent saccades evoked through stimulation to the FEF (Schiller, 1977; 

Shibutani, Sakata & Hyvarinen, 1984). Ablation of FEF has minimal effect of 

visually guided saccades, however impairment of saccades to command and 

predictive saccades to regular stimuli has been demonstrated in monkeys (Bruce & 

Borden, 1986). Saccades to remembered targets of contralateral field to the FEF 

lesion have also been shown in monkeys (Deng, Goldberg, Segraves, Ungerleider & 

Mishkin, 1986). 

1.2.3.2 Paramedian pontine reticular formation (PPRF) 

Bender and Shanzer (1964) and Bender (1980) defined two areas of the brainstem 

involved in conjugate gaze. One responsible for horizontal gaze in the pons known as 
the PPRF, the other involved in vertical gaze situated in the mesencephalon known as 
the riMLF. The PPRF is situated in the pontomedullary junction at the level of the VI 

nerve nucleus to the IV nerve nuclei3, occupying 2 to 3mm on either side of the midline. 

Fibres carrying activity for horizontal gaze pass from the SC, FEF and the cerebellum. 
They then decussate in the mesencephalon before passing to the PPRF. Inputs are also 

received from the vestibular nuclei and riMLF. Electrical stimulation of the PPRF 

evokes horizontal eye movements to the ipsilateral side, the size and velocity of 

movement being dependent on the stimulus frequency and duration. There are two main 
types of cell within the PPRF; burst neurons, which increase activity during saccades 

and omnipause neurons, which cease activity during saccades. Inhibitory and excitatory 
burst neurons have been identified within the PPRF to allow excitatory signals to be 

sent to agonist muscles and inhibitory signals to antagonist muscles. For example, to 

3 The VI nerve nuclei are the abducens nuclei from which the VI cranial nerves project to the ipsilateral 
orbits to supply the lateral rectus muscle. The IV nerve nuclei are the trochlear nuclei from which the IV 
cranial nerves leave the brain stem dorsally and decussate to pass to the contralateral orbit to supply the 
superior oblique muscle. 
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achieve a saccade to the right, excitatory signals would be required to the right lateral 

rectus and left medial rectus muscles whilst inhibition of the right medial rectus and left 

lateral rectus would be necessary to allow smooth rotation of the eye. Inhibitory burst 

neurons lie in an area of the PPRF called the nucleus paragigantocellularis dorsalis, are 

active prior to and during a saccade and project to the contralateral VI nerve nucleus. 
Excitatory burst neurons, which lie in an area of the PPRF called the dorsomedial 

nucleus reticularis pontis caudalis, receive inhibitory inputs from omnipause neurons 
and project to the ipsilateral IV nerve nucleus. 

Büttner-Ennever and Horn (1999) found that different regions of the motor map of the 
SC give inputs to the excitatory burst neurons and omnipause cells as outlined in Figure 
1.10. They suggest that this provides an anatomical basis for activation of burst cells 
and omnipause cells during saccade generation and for suppression of saccades from the 

rostral pole of the collicular motor map. 
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neurons (OPN) and the 
excitatory burst neurons 
(EBN), which lie 
intermingled with reticulo- 
spinal neurons (RSpN). 
From Büttner-Ennever and 
Horn, 1999. 

Horizontal eye movements are typically considered to be conjugate with both eyes 
being innervated by a common command signal yoking eye movements as stated in 

Herring's law of equal innervation (Herring, 1868). Zhou and King (1998) have 

provided evidence, which conflicts with this principle. Their results suggest that pre- 

motor neurons in the PPRF encode monocular commands for either right or left eye 

saccades. They suggest that organisation of the oculomotor system is probably 

monocular and may be related an evolutionary inheritance of lateral eyes that move 
independently. They also found existence of binocular motor neurons indicating that 

convergence of pre-motor monocular signals may be crucial for binocular co-ordination. 
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1.2.4 Cerebellum 

The cerebellum has a central longitudinal structure called the vermis and two lateral 

hemispheres. Each hemisphere is connected to the vermis by an intermediate area called 
the paravermis. The hemispheres are divided into lobules; anterior, posterior and 
flocculonodular lobe. The vermis is also divided into ten lobules. 

The cerebellum does not appear to be essential for the generation of eye movements as 
visually guided and memory guided saccades have normal latencies, velocities and 
amplitudes following cerebellar lesions. It does however seem to be involved in 

saccadic accuracy, as dysmetria is a common finding in humans with cerebellar lesions 

and animals with induced lesions. A secondary function appears to be gradual 
adaptation of saccades following dysmetria due to central or orbital lesions (Keller, 
1989). Vermal lobules 6 and 7, and possibly 5 and 8, are the area of saccadic 

regulation. The flocculonodular lobe mediates inputs from the vestibular nucleus to the 

oculomotor system. 

1.2.5 The neural integrator 

As described in section 1.1.1 the pattern of innervation from brainstem to extraocular 
muscles consists of a pulse and step. The size of the pulse and step must be correctly 
matched to give an accurate eye movement that is maintained at the eccentric gaze 

position after it. The neural integrator integrates velocity-coded signals into position 

coded signals to achieve this. If the integrator does not function perfectly the eye 
position signal decays with time and the integrator is said to be leaky (Leigh & Zee, 
1999). Clinically this would be evident, as following an appropriate saccade there 

would be a slow drift towards the midline, a corrective saccade would follow to 

reposition the eye to the required gaze eccentricity. A leaky neural integrator therefore 

results in the clinical picture of gaze evoked nystagmus. 

In the presence of a leaky neural integrator restoring forces of the orbit pull the eye back 

towards the midline with a time course of a negative exponential (Leigh & Zee, 1999). 

The time constant of this exponential drift (i. e. 63% of drift back to midline) represents 
the level of function of the neural integrator, hence the longer the time constant the 
better the function. 
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The neural integrator depends on connections between a number of structures in 

brainstem and cerebellum. For horizontal conjugate eye movements the nucleus 

prepositus hypoglossi and the adjacent medial vestibular nucleus are most important. 

The nucleus prepositus hypoglossi is part of the perihypoglossal complex of nuclei 

situated medially to the vestibular nuclei and just caudal to abducens nucleus in the 

pons and has a strong projection to the abducens nucleus. The cerebellum, in particular 
the flocculus and paraflocculus, is also involved. 

Lesions of nucleus prepositus hypoglossi result in partial failure of ipsilateral and 

contralateral gaze holding. Bilateral lesions abolish neural integration for all horizontal 

conjugate eye movements (Cheron & Godaux, 1987; Cannon & Robinson, 1987; 

Godaux, Mattens & Cheron, 1993). 

Lesions of the flocculus and paraflocculus impair neural integration (Zee, Yamazaki, 

Butler & Gücer, 1981). The role of the cerebellum is thought to be to improve 

performance of an inherently leaky integrator in the brainstem. 

1.3 Binocular vision 

Slightly different images of the world are formed on the retina of each eye and are 

conveyed to the brain. If both eyes are used simultaneously binocular vision is said to 
be present. In the majority of people the two images are merged to give a single image, 

this is referred to as binocular single vision (BSV). BSV is usually achieved when the 

object of interest stimulates the fovea of each eye. This is referred to as bifoveal BSV, 

which occurs in the presence of normal retinal correspondence4 (NRC). 

Normal binocular vision is not only advantageous in giving an increased field of view, 

single vision and stereopsis, but also improves visual discrimination compared to 

monocular viewing and this is called binocular summation. Contrast sensitivity, visual 

acuity and flicker detection are all enhanced in binocular vision (Blake & Fox, 1973). 

Binocular summation is only apparent when the eyes are aligned. Jenkins, Pickwell and 
Add-Manan (1992) demonstrated that when fixation disparity was induced, using 
horizontal prisms in front of one eye, Snellen visual acuity reduced to the level found 

monocularly. In naturally occurring fixation disparity binocular visual acuity was found 

° Normal retinal correspondence is a binocular condition in which the fovea and areas on the nasal and 
temporal side of one retina correspond to, and have a common visual direction with, the fovea, temporal 
and nasal areas of the retina of the other eye. 
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to increase when the disparity was prismatically corrected (Jenkins, Add-Manan, 

Pardhan & Murgatroyd, 1994). 

1.4 Strabismus 

This thesis includes experiments which tested the remote distractor effect and saccade 

adaptation in subjects with BSV (Chapters 5 and 7) and subjects with horizontal 

strabismus (Chapters 6 and 7). This section introduces the subject of strabismus 
followed by sections 1.4.1 and 1.4.2 which provide a brief summary of the aetiology 

and treatment of strabismus. Sections 1.4.3 to 1.4.5 then review the literature regarding 

sensory adaptations that may occur in strabismus, as this is the aspect most related to 

this thesis. 

Strabismus is a common clinical condition in which the visual axes are misaligned such 
that only one eye, the fixing eye, looks directly at the target of interest. Heterophoria is 

a latent strabismus revealed only when the eyes are dissociated disrupting fusion. 

Heterotropia is a manifest strabismus present spontaneously without dissociation. The 

term strabismus is used to refer to heterotropia in this thesis. Heterotropia occurs in 2- 

5% of the population (Graham, 1974; Lennerstrand, 1987; Stayte, Reeves & Wortharn, 

1993) with approximately 65% of cases developing before the age of three years, and a 

mean age of onset of 30 months (Graham, 1974). The incidence of strabismus increases 

where there is a family history, with the risk being four times greater in the presence of 

strabismus in the family (Lennerstrand, 1987). 

The direction of strabismus may be horizontal, vertical, torsional or a combination of 
these misalignments. Horizontal deviations can be divided into esotropia and exotropia, 

where one eye deviates nasally or temporally respectively. In unilateral strabismus one 

eye is used for fixation when both eyes are open and the other eye constantly deviates. 

Alternating strabismus occurs when the eye used for fixation swaps voluntarily or 
involuntarily. Strabismus may be associated with reduced vision (amblyopia), double 

vision (diplopia), loss of three-dimensional depth perception (stereopsis) and, in some 

cases, psychosocial difficulties (Burke, Leach & Davis, 1997; Coats, Paysse, Towler & 

Dipboye, 2000). 

Strabismus may be concomitant, where the deviation is the same in all positions of gaze 

or incomitant where the angle of deviation varies with position of gaze. Incomitant 

strabismus may be caused by neurological, mechanical or myogenic conditions 
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affecting the oculomotor nerves or extraocular muscles. The aetiology of concomitant 

strabismus is less clear. It is concomitant strabismus with which this thesis is concerned. 
Concomitant strabismus, although typically equal in angle in all gaze directions, may 

change in size if the fixation distance is altered. This is often associated with 

accommodative effects where accommodative convergence increases eso deviations and 

reduces exo deviations for near fixation. 

Strabismus may be described according to the age of onset of the deviation. Early onset 

or infantile strabismus, is typically a constant heterotropia, usually esotropic with onset 

within the first year of life (Costenbader, 1961; Lang, 1968). Evidence exists to suggest 
that strabismus does not occur until three to five months of age (Friedrich & De Decker, 

1987; Archer, Sondhi & Helveston, 1989) which coincides with the onset of binocular 

vision, vergence and stereopsis (Aslin, 1977; Hainline, Riddell, Grose Fifer, & 

Abrahamov, 1992; Birch, Gwiazda & Held, 1983; Bradick, Wattam-Bell, Day & 

Atkinson, 1983). Late onset strabismus is generally considered to be that occurring after 
two years of age and may be constant or intermittent with potential for development of 

normal binocular single vision if corrected. 

1.4.1 Aetiology of concomitant strabismus 

1.4.1.1 Historical considerations 

The aetiology of infantile strabismus remains unclear. The question remains whether the 

primary pathogenic factor is a sensory defect in the visual cortex that prevents motor 
fusion or a motor defect that prevents the development of sensory binocularity. 
Historically there were two main schools of thought. Worth (1901) proposed that 

strabismus was an inborn irreversible defect of the fusion faculty. It is not totally clear 

what the `fusion faculty' means. It may be speculated that this implied a central cortical 
defect. Chavasse (1939) presented the `nurture' theory that everything necessary for 

normal binocular vision was present at birth in strabismic individuals, but the 
development of fusion in the postnatal period was disrupted by abnormalities of sensory 
input to the eye or output to the extraocular muscles. Providing the obstacles to fusion 

could be removed at an early stage Chavasse believed that strabismus was curable. 

Keiner (1956) postulated a defect of cortical binocularity compounded by direct sub- 

cortical `light tonus' inputs. He found that the luminosity of objects in the visual field 

have an optomotor effect. Keiner claimed that neonates adduct if temporal retina is 
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stimulated and abduct if nasal retina is stimulated. When a balance between adduction 
and abduction is reached in each eye the result is orthophoria (i. e. no manifest or latent 

strabismus). Gobin (1968), based on work by Keiner, suggested that if one half of the 

retina is suppressed, a new balance between adduction and abduction is reached. This 

results in an eccentric part of the retina being directed towards the light, leading to a 

manifest squint, (esotropia if nasal retina is suppressed and exotropia if temporal retina 
is suppressed). 

1.4.1.2 Birth trauma 

Birth trauma may result in strabismus either when there is a direct trauma to an 
extraocular muscle or nerve or when there is resulting brain damage. Whether 

strabismus occurs as a symptom of cerebral palsy, anoxia, or as a direct result of the 
trauma, is difficult to determine. 

McBride, Black, Brown, Dolby, Murray, and Thomas (1979) reported an increased 

incidence of strabismus in breech deliveries compared to normal vertex deliveries. 
Reduced stereopsis was also found post breech delivery. The theory is that pre-natal 

motor deficiencies exist which give rise to the abnormal vertex position and strabismus. 
McBride, Black, Brown, Dolby, Murray, and Thomas (1979) also compared normal 

vaginal delivery with caesarean section and found no significant difference in the 
incidence of strabismus. 

1.4.1.3 Heredity 

Manifest strabismus occurs in just 2-5% of the population and 60% of children with 
strabismus have a close relative with the same condition (Lennerstrand, 1987). Reduced 
horizontal vergence amplitudes and stereoacuity have been found in families of 

strabismic individuals (Niederecker, Mash & Spivey, 1972; Smith, Grutzner, 

Colenbrander, Hegmann & Spivey, 1972; Mash, Hegmann & Spivey, 1975; Cantolino 

& von Noorden, 1969). Defective motion processing has also been shown to be present 
in the parents of strabismics who do not themselves have strabismus (Tychsen, 1989). 

There appears therefore to be a certain, but undefined, genetic component. It may be 

that the factors that predispose to strabismus are hereditary rather than the strabismus 
itself, for example refractive errors. 
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1.4.1.4 Refractive error 

The presence of refractive error appears to be the main aetiological factor in certain 
types of strabismus, as correction of the refractive error eliminates the strabismus. For 

example, fully accommodative esotropia is corrected with the appropriate 
hypermetropic correction and in high hypermetropia accommodation becomes totally 

relaxed as there is no reward for accommodating, hence no accommodative 
convergence occurs and exotropia may develop. However, many people have equivalent 
refractive errors and do not produce strabismus, it is therefore likely that other factors 

are contributing. 

Anisometropia, producing an habitually defocused image in one eye and subsequent 
foveal scotoma, has been considered the cause of microtropia5 (Helveston & von 
Noorden, 1967). 

Aurell and Norsell (1990) in a longitudinal study reported that hypermetropic children 
who developed strabismus showed less emmetropisation than non-strabismic 
hypermetropes. 

1.4.1.5 Relationship of accommodation and convergence 

For each unit of accommodation, an individual will produce a certain amount of 

convergence, known as accommodative convergence. This direct link between 

accommodation and accommodative convergence is the accommodative convergence to 

accommodation (AC/A) ratio. Using the gradient method6 the AC/A ratio in normal 
subjects has been reported as 3: 1 in adults (Plenty, 1988). Abnormally high or low 

amounts of accommodative convergence for each dioptre of accommodation may result 
in strabismus. This is typically seen in the case of convergence excess esotropia where a 
high AC/A ratio results in esotropia occurring only when exerting accommodation. 
Elimination of accommodation for near fixation with convex lenses results in correction 

of the esotropia. 

5 Microtropia, first described by Lang, (1968b), is a small angled strabismus (5100) with a highly 
developed degree of binocular cooperation compared to other forms of heterotropia, however stereoacuity 
is reduced. 
6 The gradient method of measuring the AC/A ratio can be used with concave lenses at 6m or with convex 
lenses at 33cm. Measured at 6m the ratio is calculated using the equation: 

(prism cover test with concave lenses -prism cover test without lenses) _ strength of lenses used 
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1.4.1.6 Maldevelopment of visual motion processing 

Tychsen and Lisberger (1986) described deficits in visual motion processing in adult 
humans who had strabismus with onset in early infancy. The deficits were apparent in 

the pursuit eye movements evoked by moving targets and in the perception of motion. 
They proposed that a primary deficit in the cortical motion-processing pathway may 
lead to strabismus. This theory had the following basis; in the first months of life 

normal infants have an asymmetry in the optokinetic response that strongly favours 

nasally directed motion detection in each eye (Atkinson, 1979; Naegele & Held, 1982). 

This would provide a tonic drive that would promote crossed eyes. This nasally directed 

drive is opposed by a mechanism designed to keep the visual axes aligned, however a 

congenital maldevelopment of temporally directed motion processing could weaken the 

mechanism. The normal nasally directed bias would then dominate, driving both eyes 

nasally creating an esotropia. 

If an infant develops normal binocular vision the nasally directed bias is replaced by a 

symmetrical response by three to five months of age. The pursuit and motion 

asymmetries found in early onset esotropia remain into adulthood providing a sign 

which enables later diagnosis of the early onset. 

Removal of the visual cortex or monocular deprivation in cats gives rise to absence of 

temporally directed tracking whilst nasally directed tracking is unaffected (Hoffman, 

1979). Hoffman hypothesised that this asymmetry occurred due to disruption to an 

ontogenetically and phylogenetically more recent cortical pathway which would 

normally produce temporal tracking. The nasal tracking would remain intact due to the 

sub-cortical pathway direct from the retina to the brainstem, which is not affected by 

deprivation. 

There is partial agreement with this hypothesis in that temporally directed motion 

processing develops later and that it is more susceptible to deprivation than nasally 
directed motion detection pathways. However, the idea that cortical and sub-cortical 

pathways are involved in different directions of motion processing is disputed for three 

reasons (Tychsen, 1992). Firstly, visually evoked potentials? (VEP's) recorded over the 

occipital lobes of infants prior to three months of age show nasally directed bias in the 

responses, which would not be apparent if nasal responses were originating from the 

7A visually evoked potential is a technique of examining the cortical response to visual stimuli using 
electrodes on the intact skull. 
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sub-cortical pathway. Secondly, humans with nasal bias in pursuit also have a nasal bias 

for velocity perception, which can only originate in the cortex. Finally, there are doubts 

over cats being used as a model for human pursuit deficits due to the lack of a 
developed fovea in the cat and the poorly developed feline pursuit system. 

1.4.1.7 Evidence of cortical abnormalities 

Changes within the cortex have been observed following induced strabismus in 

monkeys (Lund, Mitchell & Henry, 1978; Tychsen & Lisberger, 1986). A marked 
reduction in the binocularly driven striate cells is observed and a greater number of 
striate cells are monocularly driven by the contralateral eye (Crawford & von Noorden, 
1979; Crawford, von Noorden & Meharg, 1983; Wiesel, 1982). These findings, 
however, do not significantly help in determining the primary site in the development of 
strabismus, as they may be the result of strabismus and not the cause. A study by 
Tychsen and Burkhalter (1995) report the findings in two naturally strabismic monkeys. 
Connections between ocular dominance columns revealed fewer lateral connections to 

the ocular dominance columns of the opposite eye. As an innate defect this could lead to 

strabismus by depriving vergence motor neurons of appropriate binocular error signals. 

1.4.2 Treatment of strabismus 

Subjects included in Chapter 6 and 7 had undergone various types of treatment for 

strabismus during childhood and in some cases during adulthood. The treatment for 

horizontal misalignment in childhood strabismus includes refractive correction, 
occlusion, orthoptic exercises, prisms and surgical correction. The latter is frequently 

required particularly for alignment of infantile esotropia. In the case of infantile 

strabismus it is accepted that restoration of normal BSV with bifoveal fixation is rare 
(Parks, 1984). The optimum result may be considered a residual small angle strabismus 

of <10 prism dioptres (0) potentially developing abnormal BSV. Success rates for 

correction of infantile esotropia appear high with many authors reporting 80-90% of 

cases being aligned to within 100 (Helveston, Ellis, Schott, Mitchelson, Weber, Taube 

& Miller, 1983; Kushner & Morton, 1984). The long-term results, however, are less 

impressive and this appears to be the case in both those who achieve motor success and 
those with initial motor and sensory success (Hiles, Watson & Biglan, 1980; Lunder, 

Mazow & Jenkins, 1985). The most common occurrence is for the gradual progression 
to consecutive exotropia in the post-operative months or years. Caputo, Guo, Wagner 

and Picciano (1990) highlighted the incidence of consecutive exotropia following 
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surgery for infantile esotropia; of those patients aligned to 1O at six weeks and 

remaining so at six months, exotropia occurred in 11% by three years and 25% at six 

years. 

As the pathogenesis of strabismus has not been identified, treatment is directed at the 

manifestations. Unless the original defect can be identified and treated, the results of 

surgical alignment are, perhaps, more likely to be unstable over time. 

1.4.3 Adaptations to strabismus 

The aim of this thesis is to determine how binocular status impacts on the control of 

saccadic eye movements, in particular, to demonstrate whether sensory adaptations to 

strabismus affect generation of saccadic eye movements. The adaptations to strabismus, 

suppression and abnormal retinal correspondence, and mechanisms for these are 
discussed in this section. 

The frontal placement of human eyes leads to an overlap of major parts of the right and 
left monocular visual fields. Most visible objects therefore stimulate both eyes 

simultaneously. In the presence of normal binocular vision, i. e. undisturbed visual 

orientation, retinal points that are stimulated by the same object in the plane of visual 

attention must be perceived in the same visual direction. So each retinal point of one eye 
has a partner in the other eye with identical localisation. For example, the foveae are 

corresponding retinal points and hence have the same visual direction. Objects that 

stimulate the fovea are perceived as being straight-ahead (principal visual direction). 

Likewise, a point on nasal retina of the right eye corresponds to a specific point of 
temporal retina of the left eye, and has the same visual direction. This retinal point-to- 

point relationship between the right and left eyes is known as normal retinal 

correspondence (NRC). Misalignment of an eye results in stimulation of non- 

corresponding retinal points, giving rise to diplopia, as shown in Figure 1.11. To avoid 
this disturbing symptom, adaptations may occur in strabismus, these being suppression 

or abnormal retinal correspondence (ARC). 

1.4.4 Suppression 

An important foundation of Experiments 5 and 7 is suppression. The vision of the 

strabismic eye may be suppressed to eliminate diplopia, particularly when the onset of 
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strabismus occurs in childhood. The consequence of suppression is a loss of binocular 

vision, loss of depth perception and essentially functioning as if `monocular'. 

"= Fixation target FR = Fovea right eye 
ü= Diplopic image FL = Fovea left eye 

NR = Nasal retina right eye 
PFL = Projection from left fovea 
PNR = Projection from nasal retina right eye 

1.4.4.1 Area of suppression 

Figure 1.11: Right esotropia 
with NRC. The diagram 
represents a subject with a right 
esotropia. The left eye is fixing 
the target (represented by a red 
dot) with the fovea (FL), the 
target stimulates nasal retina 
(NR) of the right eye. The 
central eye (cyclopean eye) 
depicts the cerebral projection 
of retinal points and the 
subject's perception of the 
images in space. The fovea of 
the left eye (FL) projects 
straight ahead therefore the red 
dot is seen straight ahead. The 
nasal retina of the right eye 
projects temporally, hence a 
second image of the red dot is 
seen to the right hand side, this 
is known as pathological 
diplopia. 

Jampolsky (1955) investigated suppression areas using prisms and found nasal retinal 
suppression in esotropia and temporal retinal suppression in exotropia, termed 
hemiretinal suppression (Figure 1.12). As long as the image of fixation object fell on 
temporal retina in an exotropic eye and nasal retina in an esotropic eye, then 

suppression occurred. If the image was moved across the vertical foveal dividing line 

then diplopia was appreciated. This dividing border coincides with the line of separation 
between the crossed and uncrossed optical fibres. 

fovea 
Figure 1.12: Hemiretinal suppression 
(Jampolsky, 1955) 
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Gobin (1968) confirmed the existence of hemiretinal suppression in esotropia and 

exotropia using the synoptophore. This theory, however, is not compatible with 

patients' symptoms, where diplopia of images falling outside the hemiretinal area does 

not occur. 

Pratt-Johnson and Tillson (1983) disputed the concept of hemiretinal suppression and 
described suppression of the whole visual field. Using an Aimark perimeter they 
demonstrated that esotropes have a narrower field of vision and exotropes have a wider 
field of vision with both eyes open. Using an adapted Lees screen, suppression in all 
types of strabismus (except microtropia) was shown to involve the whole visual field of 
the deviating eye except the monocular temporal crescent (see Figure 1.13). No 

evidence was found to support Jampolsky's hemiretinal suppression theory, however 

subjects did appreciate diplopia if images were moved across the vertical foveal divide 

using prisms. Pratt-Johnson and Tilison (1983) described this as the hemiretinal trigger 

mechanism (Figure 1.14). When the image of fixation crosses the foveal divide, from 

nasal to temporal retina or vice versa, this operates the trigger mechanism determining 

whether diplopia or suppression occurs. In the presence of strabismus the image of the 
fixation object falls on the same side of the retina and is suppressed. If the deviation 

changes, or the image is moved on the retina with prisms so that it crosses from one half 

of the retina to the other, diplopia is triggered wherever the visual fields overlap. This 

theory is consistent with clinical experience. 

a) 

L. 

Esotropia with suppression 

b) 

R L A 

Exotopia with suppression 

Figure 1.13: Suppression of the whole visual field of the strabismic eye, except the monocular temporal 
crescent represented by shaded area; a) right esotropia, b) right exotropia (Pratt-Johnson & Tillson, 1983). 
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Differences in the size and shape of suppression areas between studies may be a result 

of the type of testing method and size of the target used. Jampolsky (1955) stressed the 

need for tests determining suppression to be as representative of everyday viewing as 

possible. 

I. R 

ESOTROPIA 

LN 

EXOTROPIA 

0ý 

ý 
L 

LM 

CHANGED TO ESOTROPIA 

Figure 1.14: Hemiretinal trigger 
mechanism. In the presence of 
constant esotropia (top diagrams) there 
is suppression of the whole visual field 

of the strabismic eye, except the 
monocular temporal crescent. This is 
triggered by stimulation of nasal retina 
by the object of fixation. If the 
strabismus is over corrected so that the 
object of fixation stimulates temporal 
retina, diplopia is triggered. The 
bottom diagrams represent this 
mechanism in exotropia (Pratt- 
Johnson & Tillson, 1983) 

The difficulty found when studying suppression in strabismus, as acknowledged by 

Harrad (1996), is that in order to distinguish between the stimuli presented to the two 

eyes they need to be different in some way. Schor (1977) and Jampolsky (1995) have 

shown that similar stimuli are more likely to produce suppression than dissimilar 

stimuli, therefore the nature of stimuli during investigation of suppression can lead to 

the elimination of suppression under such testing conditions. 

1.4.4.2 Density of suppression 

Using red filters to measure the density of suppression at different points on the retina, 
Jampolsky (1955) found that the zero measure point, i. e. the retinal point equal to the 

angle of deviation, was the area of densest suppression. Holopigian, Blake and 
Greenwald (1986) measured the depth of suppression in amblyopes and found an 
inverse correlation between the depth of suppression and the depth of amblyopia. 
Alternating strabismics demonstrated the densest suppression, constant unilateral 

strabismics showed fairly dense suppression and anisometropic amblyopes the weakest. 

PRISMS 
SURGERY 

SPONTANEOUSLY 

CHANGED TO EXOTROPIA 

PRISMS 
SURGERY 

SPONTANEOUSLY 
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Blake (1989) also found that alternating strabismus demonstrated the most powerful 
suppression and suggested that it occurs as it is necessary to overcome or inhibit the 
large monocular pool of cells, within the striate cortex, driven by the contralateral eye. 
Harrad and Hess (1992a) demonstrated weak orientationally tuned suppression in 

anisometropic amblyopes with microtropia and central suppression and more powerful 
(denser) suppression in constant unilateral strabismics. 

Central nervous system depressants, including alcohol, have been shown to weaken 
suppression (Fukai, 1972). 

1.4.5 Mechanisms of suppression 

Gobin (1968) examined amblyopic patients who had never demonstrated a manifest 
strabismus. Finding that they demonstrated a small central area of suppression he 

concluded that suppression may occur before a horizontal deviation. He also suggested 
that hemiretinal suppression was instrumental in the development of strabismus. 
Gobin's theory of the suppression mechanism was based on work by Keiner (1956), 
(see Section 1.4.1.1). Gobin suggested that if one half of the retina was suppressed, a 
new balance between adduction and adduction was reached with an eccentric part of the 

retina directed towards the light. This resulted in a manifest squint, esotropia if nasal 

retina was suppressed and exotropia if temporal retina was suppressed. 

1.4.5.1 Retinal rivalry suppression 

When subjects with normal binocular vision view different stimuli with each eye, they 

see an unstable percept, which fluctuates from one monocular stimulus to the other, and 
rarely both stimuli are seen at the same time. This competition for perceptual dominance 
is called binocular or retinal rivalry. It has often been postulated that the suppression 

seen in binocular rivalry has the same mechanism as pathological suppression seen in 

strabismus (Fahle, 1983; Wolfe, 1983; Sengspiel, Blakemore & Harrad, 1995). Wolfe 

(1983) has shown that normal retinal rivalry suppression does not occur when stimuli 

are briefly presented for less than 15Oms. This finding was replicated in a later study of 

strabismic suppression, which found a similar cut-off point of 150ms (Wolfe, 1986). 

Stimuli presented for durations of less than 150ms resulted in simultaneous perception, 

whereas stimuli presented for more than 150ms resulted in pathological constant 

suppression. Conclusions were drawn from the similarities in these two studies, that 
both physiological suppression and pathological suppression require 150ms of 
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stimulation to be made manifest. Wolfe suggests therefore that the mechanisms for 

retinal rivalry suppression and pathological strabismic suppression are similar. 

Clinical observations and research studies throw doubt on this theory. The characteristic 

alternation of rivalry is not generally seen and strabismic suppression is generally much 

more stable in nature. The strength of suppression in strabismus has been found to be 

much stronger than rivalry suppression in normals (Crawford, Smith, Harwerth & von 
Noorden, 1984). Binocular rivalry suppression shows wavelength dependent 

characteristics that differ from those found in strabismic suppression. Rivalry 

suppression in normal subjects involves selective reduction in the sensitivity of 

chromatic mechanisms relative to luminance mechanisms, such that in a rivalrous 

suppressing phase they show reduced sensitivity to wavelengths between 400-460nm. 

This is in contrast to the suppressing eye in strabismus, which shows reduced sensitivity 
that is independent of stimulus wavelength (Smith, Levi, Manny, Harwerth & White, 

1985). Visual stimuli, such as gratings at different orientations, that lead to binocular 

rivalry tend to stimulate a classic rivalry response rather than suppression in strabismics, 
(Schor, 1977). It is a possibility that strabismic suppression is a modified form of 
binocular rivalry. 

1.4.5.2 Dichoptic masking 

In individuals with normal BSV, if a stimulus of a particular contrast is presented to one 

eye it prevents detection of an identical stimulus of lower contrast in the other eye. This 

is known as dichoptic masking (Abadi, 1976). Harrad and Hess (1992b) suggested that 

this mechanism could be operating in strabismus to create suppression in the presence 

of amblyopia. They postulated that as amblyopic subjects have reduced contrast 

sensitivity in the amblyopic eye compared to the normal eye, the normal eye would 

always receive higher contrast images. By dichoptic masking this would reduce 

perception of the image in the strabismic eye leading to suppression. 

Although this theory is satisfactory to explain suppression in the presence of amblyopia 
it may not explain the often dense suppression found in strabismus in the absence of 

amblyopia. It could, however, suggest that different mechanisms operate depending on 

the type of strabismus and level of amblyopia. 
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1.4.5.3 Disparity specific or fusional suppression 

Fusional suppression occurs in the presence of normal binocular stereopsis. When 

viewing a stereoscopic image the half image seen by each eye may contain areas that 

are not perceived in the stereoscopic image. This suppression in the presence of fusion 
has been described as a possible mechanism in small angle strabismus in the absence of 
amblyopia (McKee & Harrad, 1993). 

1.4.5.4 Saccadic suppression and physiological suppression 

Saccadic suppression eliminates vision during saccades to avoid a blurred image or the 

appearance of motion as the visual field sweeps across the retina. A proposed 
mechanism for this type of suppression is that raised sensitivity before and after a 
saccade masks out the motion on the retina during the saccade (Campbell & Wurtz, 
1978; Moore, Tolias & Schiller, 1998). The site of saccadic suppression is unknown 
however it has been suggested that it selectively involves the magnocellular pathway, as 
this involves information from peripheral retina and detection of motion, and may occur 
in the lateral geniculate body (Ross, Burr & Morrone, 1996). It obviously has a quite 
different purpose and mechanism to suppression occurring in strabismus. 

Physiological suppression occurs in normal BSV to eliminate physiological diplopia. 
This type of diplopia occurs as objects located in front of and behind the object of 
fixation stimulate non-corresponding points. Physiological suppression is therefore a 
constant requirement of normal BSV. Von Noorden and Campos (2002) suggest that we 
become conditioned to binocular seeing and hence to physiological diplopia. They 

propose that physiological suppression occurs at a psychological level, which depends 

on the attention value of the image to be ignored, whereas, pathological suppression in 

strabismus is an active inhibition of afferent visual information involving a 
neurophysiologic process. 

1.4.6 Site of suppression 

Suppression is often described with reference to the retina, but the actual site and 
mechanism of suppression has been the subject of debate. With the greater use of 
neurophysiological techniques increasing evidence for cortical involvement in the 

suppression mechanism has been established. 
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1.4.6.1 Evidence for retinal or pre-cortical involvement 

Differences in pupillary responses in the fixing and suppressing eye in subjects with 
binocular vision, under conditions of retinal rivalry, or in strabismus may suggest that 

the site of suppression is not cortical. The pupillomotor pathways in the light reflex 
leave the optic tract before the LGB and pass to the midbrain. Hence, a common 

pathway for pupil responses and suppression suggests the absence of cortical control. 

Bäräny and Hallden (1948) noted that pupillary constriction was less marked in 

suppressed eyes during retinal rivalry than in normals. This was not confirmed by Lowe 

and Ogle (1966) when they repeated the experiments of B'rräny and Hallden, using a 
more accurate objective measurement of the pupillary responses. However, in 

strabismic subjects Brenner, Charles and Flynn (1969) found reduced pupillary 
responses to light in the suppressing eye compared with the fixing eye. The pupil 
response became weaker with deeper suppression and amblyopia. 

1.4.6.2 Evidence for cortical involvement 

Van Balen (1964) studied retinal rivalry with simultaneously recorded 

electroretinogram (ERG)8 and VEP and found no reduction in the ERG even when the 
VEP was reduced, thus suggesting a post-retinal site for the suppression mechanism in 

normal retinal rivalry. 

Franceschetti and Burian (1971) studied VEP of patients with alternating esotropia and 
found responses of larger amplitude when the fixing eye was stimulated compared to 

when the deviating eye was stimulated. The effect on VEP amplitudes reversed when 
fixation was swapped, always giving larger amplitudes when the fixing eye was 
stimulated. This suggested that cortical cells participate in the suppression mechanism. 

Wright, Ary, Shors and Eriksen (1986) studied transient VEP and found reduced 
responses when retina within an area of suppression was stimulated compared to non- 

suppressing areas, providing evidence for a cortical origin to suppression. 

Hess (1991) utilised spatial adaptation to investigate the mechanism of suppression. 
Adaptation occurs in a normal subject whereby, if a high contrast grating of a certain 

S An electroretinogram is the recording of alterations in electrical potential of the retina in response to a 
light stimulus. 
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spatial frequency is viewed, sensitivity for detection of the same or similar pattern is 

subsequently reduced (Blakemore & Campbell, 1969). Adaptation is spatial frequency 
dependent, orientationally selective and exhibits the property of interocular transfer. 
Interocular transfer occurs when one eye is exposed to a particular spatial frequency 

grating which has the effect of reducing the sensitivity of the other eye to a grating of 
similar spatial frequency. The reduction in sensitivity is greater in the stimulated eye 
than the interocular transfer sensitivity loss. The site of spatial adaptation is known, 
from animal experiments, to be within the striate cortex (Maffei, Fiorentini & Bisti, 
1973; Movshon & Lennie, 1979; Sclar, Lennie & DePriest, 1989). Hess proposed 
therefore that if adaptation could be shown to occur in the strabismic (suppressing) eye 
when both eyes were open then suppression must take place at a site beyond the site of 
adaptation (striate cortex). On the other hand if adaptation did not occur in the 

suppressing eye following stimulation with both eyes open, then the site of suppression 
must be at the same anatomical area as adaptation, or earlier in the visual pathway. Hess 
(1991) found that no adaptation occurred from the suppressing eye indicating that the 

site of suppression is not beyond the site of adaptation, but at the same or an earlier site. 

In a second experiment Hess (1991) looked for sensitivity to targets of different 

orientation presented to the two eyes at the same time. The sensitivity of the suppressing 
eye was orientation specific. As areas of the visual pathway prior to the striate cortex 
are not orientationally sensitive this places the site of suppression within the striate 
cortex close to the site of adaptation. 

Crawford, Smith, Harwerth and von Noorden (1984) found sharply defined ocular 
dominance columns for right and left eyes in strabismic monkeys with a loss of 
binocular neurons. Excitatory intrinsic connections between neighbouring ocular 
dominance columns are selectively lost leaving only inhibitory projections in the 

majority of cells. There is also indirect (psychophysical) evidence that this is also true in 
humans (Blake & Cormack, 1979). 

Horton, Hocking and Adams (1999) surgically induced exotropia in six normal adult 
macaque monkeys by disinserting their medial recti. Four to eight weeks later the 

exotropia was measured and fixation preference was determined. The ocular dominance 

columns were examined to assess local metabolic activity and two distinct patterns were 
found. In those monkeys with a fixation preference for one eye thin dark columns 
alternated with wide pale columns. This pattern arose from reduced metabolic activity 
in the monocular core zones in the suppressed eye and binocular zones of both eyes. In 
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monkeys with alternating fixation thin pale bands were found from reduced metabolic 
activity in binocular areas of both eyes. The authors concluded that this was the first 

anatomical evidence for changes in cortical metabolism that could be correlated with 
suppression scotomas in strabismus. It is not stated however, whether suppression was 
actually demonstrated in these animals. Clinical findings in humans would suggest that 
it is unlikely that suppression would develop in strabismus induced in adulthood as such 

patients tend to be constantly aware of diplopia. 

From the majority of evidence it appears that suppression in strabismus results from a 
cortical loss of perception, but whether the eye continues to give a sub-cortical input is 

unknown. 

1.4.7 Abnormal retinal correspondence 

An alternative adaptation in strabismus is abnormal retinal correspondence (ARC) 

which was present in the subjects of Experiment 8, Chapter 6. ARC is a binocular 

condition in which there is a change in visual projection such that the fovea of the fixing 

eye (non-strabismic eye) has a common visual direction with an area other than the 
fovea of the strabismic eye (pseudo-fovea). The pairing of all retinal elements is 

similarly changed. The resulting abnormal binocular vision is of lower quality to that 

achieved in normal binocular viewing without strabismus, however it typically gives 
rise to depth perception and eliminates diplopia. 

ARC can be divided into two types; harmonious and unharmonious. Harmonious ARC 

occurs when the retinal point of the deviating eye, equal to the angle of deviation, 

corresponds to the fovea of the fixing eye (see Figure 1.15). Hence, the difference 
between the objective and subjective angle9 of deviation (angle of anomaly) is equal to 
the objective angle of deviation. The subjective angle in this case will be zero. In 

unharmonious ARC a point other than that equal to the angle of deviation corresponds 
to the fovea of the fixing eye. Hence the angle of anomaly is less than the objective 

angle of deviation as the subjective angle of deviation is greater than zero. 

9 The objective angle is the angle of misalignment of the visual axes as measured by the examiner. The 
subjective angle is the subject's perception of misalignment of the visual axes. 
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Figure 1.15: Projection diagram 

representing harmonious ARC in right 
esotropia. The fovea of the left eye (FL) 

corresponds to the pseudo-fovea of the 
right eye (PFR). The pseudo-fovea is 

equal to the point representing the angle 
of deviation, therefore the fixation point 
X stimulates the left fovea and right 
pseudo-fovea. Both project straight 
ahead hence the object X is seen singly. 
The objective angle of deviation (angle 

a) is the angle between the fovea and 
pseudo-fovea of the right eye. The 

subjective angle is zero, as point PFR 
equals the angle of deviation. The central 
eye (cyclopean eye) depicts the cerebral 
projection of the images in space. CFL = 
cerebral projection of left fovea, CFR = 
cerebral projection of right fovea, CPRF 

= cerebral projection of right pseudo- 
fovea, CNL = cerebral projection of the 
left nasal retinal point NL. 

Moncrieff (1929) and Burian (1958) both considered unharmonious ARC to occur due 

to an increase in size of deviation, changing ARC from harmonious to unharmonious. 

Travers (1938) proposed that unharmonious ARC preceded harmonious ARC as a stage 
in its development. Cass (1938) considered harmonious ARC to be the primary 

condition with unharmonious ARC being a stage in the treatment of ARC towards 

achieving NRC. Unharmonious ARC has also been explained as an artefact of testing 

techniques (Hallden, 1952; Levinge, 1954). This view was further consolidated by 

Fitton (1967) and Romano, von Noorden and Awaya (1970), who demonstrated that the 

type of ARC is dependent on the method of assessment used. 

1.4.7.1 Historical theories on development of ARC 

ARC was first described as `strabismus incongruous' by Müller in 1826. Von Graefe 

(1855) first described paradoxical diplopia occurring as a consequence of surgical 
intervention in cases of ARC. Early thinking by Müller and von Graefe suggested that 

the anomaly was due to a misplaced macula. Cover test responses and the use of the 

ophthalmoscope have clearly ruled out this possibility. 

The theory of ARC being a sensory anomaly present at birth was proposed by Herring 

(1861). This was later supported by Verhoeff (1938) and Adler (1947) who proposed 
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that the type of retinal correspondence was dependant upon hereditary factors. A 

conflicting view was held by Helmholtz (1856), who suggested that the relationship 
between the two retinae developed with experience. The most direct evidence to support 
the idea of visual experience influencing development was provided in 1962 by Hubel 

and Wiesel. 

Since this time there have been many theories regarding its aetiology and development, 

however there is still a lack of firm evidence on the subject. 

1.4.7.2 Mechanism of ARC 

Pickwell (1980) postulated that inhibition of subpopulations of cells could account for 
ARC. The hypothesis is that suppressed Y-cell activity from the deviating eye could 
account for ARC on the presumption that Y-cell activity is important for normal spatial 
localisation. There is, however, no physiological evidence to support this theory. 

Boeder (1964) considered binocular responses in the presence of strabismus to occur in 

the presence of NRC. His `response shift' mechanism involved a shift in spatial 
localisation such that, in esotropia, when the nasal retinal point equal to the angle of 
deviation is stimulated it responds to the visual direction of the fovea. 

Dengler and Kommerell (1993) quantified the largest amount of visual disparity that 

could still produce depth information in normal human subjects. Stimuli were projected 

onto the fovea of one eye and either nasal or temporal periphery of the other eye. For 

crossed disparities in six subjects the range of thresholds for appreciation of stereopsis 
was 6 to 21°. Uncrossed disparities from 3 to 9° allowed stereopsis. This was, however, 

the maximum uncrossed disparity tested due to the blind spot. They proposed that this 
demonstrates that anomalous binocular vision in strabismic patients includes the fovea 

of the deviating eye and not the peripheral retinal point equal to the angle of deviation. 

Nelson (1981) has also demonstrated plasticity of correspondence in normal BSV and 

proposed that an extension of this occurs in ARC such that an intracortical shift of 
disparity detector activity occurs from the foveae to a convergent disparity in exotropes 

or divergent disparity in esotropes. 
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1.4.7.3 Neurophysiological and anatomical evidence for the mechanism of ARC 

As the primary visual cortex (area VI) has been shown to be the first point in the visual 

pathway containing binocular neurons (Hubel & Wiesel, 1968), it would seem the most 
likely site for neural connections to give rise to anomalous binocular vision in ARC. 

The early components of pattern VEPs in humans probably arise from striate and 

parastriate cortical activity (Jeffreys & Axford, 1972a and b). Topography of the VEP 

response is a technique to examine the spatial distribution of the VEP amplitude over 
the posterior scalp. They reported VEP topography to be correlated to retinotopic 

mapping in the visual cortex. If ARC occurs due to the retinotopic mapping of the 
deviating eye undergoing a physiological shift in the striate cortex during binocular 

viewing then this should be demonstrable using VEP topography. Early VEP studies 

confirmed normal retinotopic mapping during monocular vision in strabismus with 
ARC (McCormack, 1975). 

McCormack (1990) searched for retinotopic remapping in five esotropes and one 

exotrope with ARC. Uniocular stimulation of both foveae (corresponding points) during 

binocular vision in a non-strabismic binocular subject produced identical VEP scalp 
topographies from each eye. In the six strabismic subjects stimulation of anomalously 

corresponding points (fovea/psuedo-fovea) produced different VEP scalp topographies. 

Stimulation of both anatomic foveae during binocular vision in these subjects produced 
identical VEP scalp topographies. The absence of a retinotopic shift in this study 

suggests that no topographic shift occurs at any cortical site contributing to the pattern- 

onset VEPs (areas 17 and 18). McCormack does acknowledge, however, that it could 
be possible that sub-populations of visual cortex cells undergo retinotopic re-mapping 
due to ARC, but these are not revealed by VEPs because they are electrophysiologically 

silent or that there are too few to make a difference to the VEP. 

The results of McCormack (1990) are not in agreement with the earlier work of Campos 

(1980) and Campos and Chiesi (1983) which considered binocular summation effects of 
VEPs to identify the presence of ARC. Their findings of a larger binocular VEP than 

monocular VEP response was taken as evidence for binocular vision in strabismus with 
ARC. The technique used in these studies was considerably different, as the stimuli 

used by Campos (1980) and Campos and Chiesi (1983) were large and not specifically 
directed at anomalously corresponding points as in the work of McCormack (1990). 

Hence, the increased binocular response recorded may be produced from different 
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retinal regions in the two eyes, which activate physiologically separate cortical points 

whose electrical responses sum at the recording electrode. 

Wong, Lueder, Burkhalter and Tychsen (2000) studied five macaque monkeys (three 

strabismic and two non-strabismic) and a group of 192 children with strabismus to 
determine the neural architecture in ARC. They hypothesised that if the neural 

connections required for ARC occur in the striate cortex, horizontal neurons connecting 

right-eye and left-eye ocular dominance columns (ODC) would be present. Their study 
tested two mechanisms that could possibly achieve this with the following hypotheses: 

1. The ODCs are linked by axons of horizontal neurons that project mono-synaptically 
from the right-eye to non-adjacent left-eye ODC. The further apart the ODCs, the 
longer the axon and hence, the connecting axons in strabismics with ARC should be 
longer than in non-strabismics. In this situation the probability of developing ARC 

would not be related to angle of deviation until an upper limit was reached equal to 

the maximum axon length. 

2. ODCs are linked by a chain of horizontal neurons, the number of which increases as 
the distance of corresponding ODCs increases. In this case the axon length in 

strabismics would be the same as non-strabismics. Therefore the larger the angle of 

strabismus the more horizontal neurons and synapses would be required to create the 
link between remote ODCs. The quality of the signal would be degraded such that 

the probability of developing ARC would be inversely proportional to the angle of 
deviation. 

Of the three strabismic macaque monkeys studied, two had naturally occurring 

esotropia, one with presumed ARC and one without ARC, based on a small and large 

deviation respectively. The third monkey had a small esotropia induced by alternate 

occlusion of the eyes from birth to nine months of age. This monkey was also presumed 
to have ARC on the basis that the angle of deviation increased on dissociation, i. e. a 

small esotropia existed with a large latent component. The two non-strabismic monkeys 

served as control subjects. 

Wong, Lueder, Burkhalter and Tychsen (2000) found no significant difference in the 

length of axons between the strabismic and non-strabismic monkeys hence, the first 

hypothesis was rejected in favour of the second. The mean axon length found was 

approximately 7mm. Clinical results, which showed an inverse relationship between 
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size of deviation and quality of binocular responses in the 192 strabismic children, were 
taken to confirm the second hypothesis. As ARC occurred most frequently in deviations 

of less than 100 the authors concluded that this fits with the neuroanatomy of V1, 

requiring just one or two axons, each approximately equal to 7mm, to connect ODCs 

representing anomalously corresponding points from each eye. 

The inherent problem of drawing conclusions about the human visual system from 

animal studies is that it is impossible to be sure that these animals actually had ARC and 
anomalous BSV. In humans it is not uncommon to clinically find a small strabismus or 
an angle that increases on dissociation without demonstrable ARC. This is evident in 

several subjects studied in this thesis. 

Strabismics with ARC show enhanced binocular responses when tests involving visual 
motion, (Wade 1976; Pappel, Stoerig, Logothetis, Fries, Boergen, Oertel & Zihl, 1987) 

or perception of motion-in-depth (Sireteanu, Fronius & Singer, 1981; Kitaoji & 

Toyama, 1987) are utilised, rather than static tests. This has led to the suggestion that 

extrastriate cortex (where motion processing occurs) may be the site of physiological 
changes in ARC. 

Cynader, Gardner and Mustari (1984) investigated responses to binocular visual 

stimulation in area 18 of normal cats and cats with surgically induced exotropia early in 

life. In normal cats 58% of units were binocularly activated by stimulation to either eye. 
A significant difference was seen in the exotropic cats, where only 10% of units were 

activated by stimulation of either eye and the majority of units were driven mainly by 

one eye, but not both eyes. An interesting, but rare, finding was that receptive fields of 
binocular neurons were located on non-corresponding points. The study provides 
evidence for some degree of re-mapping of the retinae onto the visual cortex, in the case 

of unilateral exotropia. The authors emphasise, however, that anomalously located 

receptive fields were found in only three of the seven animals studied. Additionally, 

when background neural activity could be evoked from stimulation of each eye in these 

three animals, it was mainly located in corresponding points in the two eyes. 

A more localised area of cat's extrastriate cortex was investigated by Grant and Berman 

(1991). They examined receptive field positions of neurons in the motion-sensitive 
lateral suprasylvian (LS) area of extrastriate cortex in surgically induced esotropic cats. 
All strabismic cats examined had a major loss of binocularly driven cells in area 17. The 

few remaining binocularly driven cells had receptive field pairs from positions of NRC 
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in the two retinae. In area LS the effects on binocularly driven cells were dependent on 
the magnitude of strabismus. In the four cats with large esotropia (>18°) a loss of 
binocularity occurred in area LS equivalent to that in area 17. Those with moderate 

esotropia (11-15°) showed only a small breakdown of binocularly driven cells, whilst 

the group with small angled esotropia (<_10°) had normal proportions of binocular 

neurons. Additionally, they demonstrated a shift in receptive field position, with visual 
inputs arising from anomalous retinal locations such that anomalous binocular vision 
could exist. They postulate that a similar mechanism could be the basis for ARC and 
anomalous binocular vision demonstrated clinically in humans with small angle 
strabismus. The majority of LS neurons in cats are sensitive to the speed and motion of 

visual stimuli (Spear & Baumann, 1975; Blakemore & Zumbroich, 1987) and to 

motion-in-depth stimuli (Toyama & Kozasa, 1982). If a similar mechanism exists in 
humans then areas of the extrastriate cortex with a role in motion perception, i. e. V5, 

would be involved. The difficulty in this study of comparisons made with cats is that the 

areas involved are not anatomically similar to humans. 

A later study by Sireteanu and Best (1992) revealed a similar adaptive shift of receptive 
field locations in response to surgically induced strabismus in the LS of cats. The 

disparities of the shifted fields were larger, ranging from 12 to 37°, which would be 

difficult to relate directly to ARC found clinically in humans, as it is typically 
demonstrable in angles <10°. Also only 6% of cells were found to have receptive field 

shifts in this study, which makes the likelihood of this forming any robust binocular 

interaction unlikely. This is obviously difficult to prove conclusively in cats. 

Wong, Lueder, Burkhalter and Tychsen (2000) reject the evidence that the 

neuroanatomic mechanism for ARC resides outside VI. The reasons for this are as 
follows: 

1. Fifty percent of binocular connections in VI of naturally strabismic monkeys remain 
(Tychsen & Burkhalter, 1995). 

2. The clinical-neuroanatomic correlation that strabismus of between 2 and 5° have the 
highest likelihood of developing ARC, which corresponds to one or two neuron 
lengths in VI, making this a possible site for such neural connections. 

3. Receptive fields in extrastriate areas are much larger than V l. As axon lengths in the 

visual cortex do not vary from area to area and were found to be approximately 7mm 

in length. This would mean that such axons in extrastriate would link the foveola of 
the right eye with an eccentric point 40° from the foveola of the left eye. Hence large 
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angle strabismus would be just as likely to produce ARC as small angle strabismus, 

which is not found clinically. 

1.4.8 Suppression and ARC: Consequence or cause of strabismus? 

The question still remains as to whether suppression and ARC are the consequence of 

primary strabismus, or whether they are the primary defect, which results in strabismus. 
The finding that children with acquired strabismus report diplopia initially, with 

suppression developing later, suggests that suppression is a consequence of strabismus. 
It may be that a different mechanism exists in early onset strabismus in that suppression 

exists initially, as postulated by Gobin, (1968), and strabismus results. It is generally 
believed through clinical experience that ARC develops in children who have 

longstanding, small angle, stable strabismus, suggesting a gradual adaptation to the 

primary strabismus. It is difficult to diagnose the type of retinal correspondence in 

young children, as accurate subjective responses are required. The presumed gradual 

onset of ARC may therefore purely reflect the onset of reliable subjective responses at 
this later age. 

Although cortical differences in monkeys have been found in the presence of surgically 
induced and naturally occurring strabismus, it is unknown whether they existed prior to 

strabismus or whether they resulted due to abnormal visual experience with strabismus. 

1.5 Aim of thesis 

The aim of this thesis is to determine how binocular status affects the control of 

saccadic eye movements, in particular, to demonstrate whether information from a 

suppressed eye is used for generating saccadic eye movements. 

In order to perform experiments in subjects with strabismus where targets could be 

presented to one or both eyes whilst the fixation target was visible to both eyes, a novel 

method of dissociation was developed and is described in Chapter 2. 

Chapter 3 tests the equipment used to generate saccadic stimuli and present targets to 

each eye. Experiment 1 determines whether a mirror galvanometer used to move the 

fixation target produces suitable saccadic stimuli and Experiment 2 determines the 

effectiveness of the shutter system designed as a method of dissociation. 
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The remote distractor effect described by Walker, Deubel, Schneider and Findlay 
(1997) motivated Experiment 4 of Chapter 5. This study is replicated in subjects with 
normal BSV using distractors along the horizontal axis presented to both eyes, to 
determine the effect of distractors on saccade latency and gain. The results are 

compared with distractors presented to the dominant eye or non-dominant eye during 

binocular viewing of the target. This determined whether the effects of binocular 
distractors on saccade generation are greater than monocular distractors and whether the 
dominant eye has greater influence over saccade generation than the non-dominant eye. 

The same experiment is repeated in Chapter 6 in subjects with strabismus. Experiment 5 

compares binocular and monocular distractors in subjects with strabismus with no 
potential BSV and suppression of the deviating eye. The aim is to determine whether 
distractors presented within the suppression area of the deviating eye affected saccade 
latency and gain. The effect is compared with distractors presented to the fixing eye. As 

a greater effect was found with binocular distractors compared to monocular distractors 
in the BSV subjects (Experiment 4) this was also explored with suppression to further 

establish whether the strabismic eye contributes to saccade generation. 

The strabismic subjects with suppression claimed to be unaware of the distractor when 
it was presented to the strabismic eye. This is explored further in Experiments 6 and 7. 
They are designed to test whether the subjects are able to detect the distractor under this 

condition and also to determine whether the subjects are able to identify the location of 
the distractor despite being unaware of its presence. 

To test whether the sensory adaptation of ARC in strabismus affects saccade generation 
the distractor experiment is repeated in Experiment 8 of Chapter 6 in subjects with 
clinically demonstrable anomalous BSV. It is expected that, as the distractor was visible 
when presented to the deviating eye in these subjects, latency and gain will be affected 
under this distractor condition. The hypotheses test whether the effect of distractors in 

the strabismic eye in ARC were similar to the monocular response in normal BSV and 
whether the location of the effect is shifted due to a change in retinal projection. 

The distractor experiments determine how peripheral targets within the suppression area 

are used to generate saccades. Experiment 9 of Chapter 7 is designed to test how the 

point of central fixation of the strabismic eye contributes to saccade planning in subjects 

with suppression. A study of disconjugate adaptive control is performed to determine 
how manipulation of the fixation target affects saccades in BSV and strabismus with 
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suppression. Disconjugate saccade adaptation is induced by an electronic feedback 

system applied to a target visible to one eye. Comparisons of the response in normal 
bifoveal BSV and strabismus with suppression are made to determine whether the 

suppressing eye conveys information to stimulate the appropriate adaptive control 

process. 
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Chapter 2 

Materials and methods 

Provided in this chapter is a description of the equipment and laboratory set-up used to 

measure eye movements and to present targets to each eye independently. 

2.1 Eye movement recordings 

Horizontal eye movements were recorded using a Skalar IRIS 6500 infrared limbal 

tracker manufactured by Skalar Medical, Delft, The Netherlands. For a full description 

of this method see Reulen, Marcus, Koops, deVries, Tesinga, Boshuizen and Bos, 
(1988). This non-invasive method uses low powered light emitting diodes (LEDs) 
(filtered to remove visible light, leaving only the infrared part of the spectrum) to 
illuminate the external surface of the eye. The brightness of the reflected beam is 

measured. Infrared LEDs and infrared light sensitive detectors are positioned in front of 
the eyes mounted on a lightweight helmet as shown in Figure 2.1. The sensors' 

receptive fields cover the iris-sclera transition on both the nasal and temporal sides. As 

the eye rotates horizontally, for example to an abducted position, the temporal detector 

will measure a decreased infrared reflection and the nasal detector will receive an 
increased scleral reflection, see Figure 2.2. The subtracted nasal and temporal detector 

signal is converted into a voltage and once calibrated represents eye position with 

respect to head position. The resolution of this device is 0.03° and it has a linear 

recording range of ±20° (Reulen, Marcus, Koops, de Vries, Tesinga, Boshuizen & Bos, 

1988). The analogue output from the Skalar IRIS 6500 was passed through a low pass 
100Hz cut-off filter, to reduce mains noise, digitised to 12-bit resolution and sampled at 
5ms intervals (200Hz). 

The eye movement recorder was calibrated by presenting a sinusoidal pursuit stimulus 
that moved horizontally on the projection screen. The amplitude of the stimulus could 
be varied up to ±200 depending on the nature of the experiment. The calibration took 

12.5 seconds during which time the target moved through 4 cycles at 0.32Hz. The 

subject was instructed to follow the target as accurately as possible. Eye position was 
then plotted against target position, for each eye, to ensure linearity of the recording and 

sufficient gain of the signal to provide adequate resolution (see Figure 2.3b). If linearity 

was not achieved the sensor heads were adjusted, the gain of the Skalar amplifier was 
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reduced or if still no improvement the amplitude of the stimulus was reduced. 
Calibration was then repeated. An example of the calibration graphs is shown in Figure 

2.3. Runs of 50 seconds were recorded and calibrations were repeatedly performed after 

every fourth run of experimental conditions or earlier if any head movement occurred. 

a 

b 

ý.. ý 
. 

- 
-ý ýýý ,. ýý-.. ý 

Figure 2.1: Subject wearing helmet Figure 2.2: Principle of infrared eye movement 
containing the Skalar infrared eye tracker and recording. a) Right eye positioned in the midline, 
LCP shutters mounted in front of each eye. infrared light source is directed at the iris sclera 
Head stabilised using head-rest with transition on the nasal and temporal side. b) Right 

adjustable chin and cheek rests. eye moved into an abducted position, the nasally 
positioned detector receives an increased reflection 
from the sclera, whilst the temporal detector receives 
a decreased reflection. 
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Figure 2.3: Example of calibration plot. a) The outputs in volts from the eye movement recorder (shown 
in blue) and mirror galvanometer (shown in pink) were sampled at lOms intervals and plotted at each 
sample. The amplitude of the target movement was measured directly to allow target volts to be converted 
to degrees. b) The outputs from the eye movement recorder were plotted against the output from the 
mirror galvanometer. Inspection of the plot shows a linear relationship between eye and target position. 
The gradient of the linear regression best fit was found, allowing the output from the eye movement 
recorder to be converted into degrees. Calibrations were repeated if a non-linear relationship was found, if 
the target was not followed well, or if there were excessive blinks. The spurious signals are due to the eye 
making saccades at the start of the calibration as the eye catches up with the target. These can also be seen 
in a and c. c) The eye and target position traces were calibrated into degrees and plotted against time to 
ensure that an adequate fit was obtained. Data from strabismic subject 4, Experiment 3, Chapter 4. 

2.2 Head stabilisation 

Subjects were seated in a comfortable office chair, with their eyes 114cm from the flat 

back-projection screen. Their head position was stabilised using a chin-rest, forehead 

support and additional pads that rest against the cheekbones of the face as previously 

shown in Figure 2.1. This arrangement ensured adequate control of head position 

necessary to measure eye movements. Subjects were instructed to keep their head as 

still as possible but if required they could move their head from the chin rest at any 
time, although this would invalidate the test run. Table 2.1 shows that this system of 
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head fixation has been found to deliver comparable stability to a bite bar whilst making 
eye movements (Whittle 2002). Whilst the bite bar achieves greater stability the head- 

rest is within 0.2° and therefore considered sufficiently accurate, with the added 
advantage of greater comfort for the subject. 

Subject Head rotation (degrees) 

Bite bar Head-rest 

1 0.38 0.64 

2 0.23 0.50 

3 0.16 0.25 

Mean 0.26 0.46 

Table 2.1: Average head movements recorded using a bite bar and the headrest shown in Figure 2.1, 
(Whittle, 2002). 

2.3 Data collection 

A PC was used to control target position, shutter opening and collection of eye 

movement data. Viewdac®, a commercially available data acquisition software package 
(Keithley Instruments, Inc., Taunton, MA, USA), was used to generate target position 
signals, shutter combinations and collect the data. The computer had a 90MHz Pentium 

processor and was connected to a DAS 1600 analogue to digital converter. 

2.4 Analysis of saccades 

Eye movement recordings were saved on disk and analysed after the testing session. 
Saccadic eye movement data was analysed using custom written Visual Basic computer 
software. Saccades were detected using acceleration criteria, which defined the start of a 
saccade as occurring when eye acceleration exceeded a pre-set value determined from 

an examination of the acceleration values of the whole eye movement trace. The trigger 

acceleration was set to be twice the noise level. The end of the saccade was identified 

using the same method but with a deceleration criteria. Each identified saccade was then 

checked visually on screen to confirm correct detection of the primary saccade by 

excluding clearly predictive saccades or errors due to loss of fixation. Data of saccade 
latency, peak velocity and saccade amplitude was then transferred to an Excel 

worksheet for further analysis. 
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2.5 Target presentation 

Figure 2.4 shows a schematic diagram of the laboratory set-up. Two targets could be 

displayed on a large flat back projection screen (245 x 76cm) using two modified 
Kodak Carousel slide projectors situated 114cm behind the screen. Targets were 

produced as glass mounted slides and could be moved on the screen along the 
horizontal axis using mirror galvanometers (General Scanning, Banbury, UK) mounted 

close to the front of each projector lens. The modification of projectors included cutting 

away part of the projector body to make space for mounting the mirrors, mounting of 
the mirror galvanometers close to the front of the projector lenses to capture the 

maximum amount of light and fitting of two shutter systems described in further detail 

below. It was important that the targets from both projectors 1 and 2 (see Figure 2.4) 

were similar in size and appearance for experiments in Chapter 7. Each projector had 

the same internal optics and new bulbs were carefully fitted and focussed to produce 
images of similar colour and luminance. Luminance was approximately matched with 
the addition of a neutral density filter to one projector. 

Presentation of the targets onto the screen could be controlled using two methods; 
14mm aperture metal shutters (Uniblitz, Optilas LTD, Milton Keynes, UK) or liquid 

crystal polymer (LCP) shutters (Phillips Optics, Eindhoven, The Netherlands, see 
Section 2.6). These two shutter systems were mounted either side of the projector lens 

as schematically shown in Figure 2.4. The metal shutters were mounted at the focal 

point in the illumination system of the slide projectors and the LCP shutters were 

strapped to the front surface of the projector lens. The metal shutters were used for 

controlling presentation of the targets on the screen (Chapter 3, Experiment 3.2 only), 

whereas the LCP shutters operated silently at a high frequency to allow dissociation of 
the eyes (Chapters 5,6 & 7). 

A third projector, also positioned centrally behind the screen, was used to present a 

stationary background if required in the experiments (projector shown positioned 

obliquely in Figure 2.4 for clarity). 
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2.6 Liquid crystal polymer shutter system 

To investigate binocular vision and suppression in strabismus it is necessary to present 
images to each eye separately, but in the most natural viewing condition possible. It is 

important that the level of dissociation to the eyes is minimal, otherwise the condition 

under investigation (binocular vision or suppression) can break down (Harrad, 1996). 

Red and green filters to dissociate the eyes were not an acceptable method as minimum 
dissociation was required and, in a pilot study by the author, both saccade latency and 

accuracy were found to vary significantly with different coloured targets. A less 

dissociative method using polarisation is used for many clinical tests however this was 

not suitable in this instance, as the back projection screen caused scattering of polarised 
light due to the random translucent fibre content. The metal shutters situated within 
each projector were unsuitable, as a similar shutter mounted in front of each eye would 
have been impractical due to the small apertures. These would have given a restricted 
field of view and an undesirable step change in luminance and they also operated with a 
loud audible click. Commercially available liquid crystal shutter goggles were 

considered, however these contained a polarisor, which reduced the display luminance. 

As there was no suitable system of dissociation available compatible with the laboratory 

projector set-up, a new method was required. Liquid crystal shutters, as used in virtual 

reality systems, were considered as they are rapid, silent, lightweight, of appropriate 

size, had a high transmission of light when open and were affordable. Having located a 

suitable shutter (Figure 2.5), a specification for operation of the shutters was written. 
The Department of Medical Physics, University of Sheffield then designed and built a 

control system for the shutters to the required specification. The requirement was for a 

system that would run four shutters, at the highest possible frequency, with variable 

phase and opening duration. A photograph of the control box is shown in Figure 2.6. 

Figure 2.4 shows the LCP shutter locations within the laboratory set-up. One was 

positioned in front of each eye, mounted on the Skalar headband (Figure 2.1), and one 
in front of each lens of the two modified projectors. In their normal state the shutters are 
highly transparent (Figure 2.5), but application of an external electrical field causes 
them to turn instantly turbid, scattering light and hence closing the shutter (Figure 2.7). 

The shutters operate silently and with a Ims response time. They were controlled by the 

computer via the control box, which ran all four shutters at a constant frequency of 
80Hz. This frequency was used since a lower frequency, such as <60Hz, would give rise 
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to visible target flicker, and a higher frequency, such as >100Hz would reduce target 
luminance. 

Figure 2.5: Liquid crystal polymer shutters 
used to present targets to each eye (Phillips 
Optics, Eindhoven, The Netherlands). 

light ý0 

Figure 2.6: Photograph of LCP shutter control box. 

transparent E-controlled 

Figure 2.7: Schematic diagram of the Liquid crystal polymer shutters 

2.6.1 Control of shutters 

scattering 

The 80Hz square wave signal could be adjusted by two factors using the control box; 

opening duration (10-100%) and opening delay (0-90%) for each of the shutters (Figure 

2.8). These variables allowed sufficient control over shutter openings in relation to each 

other, which, in certain conditions, could enable dissociation of the eyes. Figure 2.9 

shows examples of shutter synchronisation. The computer was programmed in 

Viewdac® for each experiment, to apply the appropriate electrical signal to open the 

correct shutter combinations, synchronised to the target as required. 
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Figure 2.8: LCP shutter control box variables; a 

(a) 80Hz square wave signal generated by the LCP shutter 

control box. 
b 

(b) Shutter opening delay (0-90%) i. e. signal phase shift, 

shown here as half cycle or 50% oft. 
(c) Shutter opening duration (10-100%) shown as 90% of c 

cycle with shutter open. 

(t = time) 

Figure 2.9: Examples of control of the 4 LCP shutters. 

(a) All 4 shutters in phase = no opening delay and 50% 

opening duration. This will give both targets presented to both 

eyes. Control box setting: 
% RE LE R projector L projector 

Duration 50 50 50 50 

Delay 00 00 00 00 

(b) Right eye and right projector in phase with no opening 

delay, left eye and left projector in phase with 50% opening 
delay. All shutters have opening duration of 50%. The right 

projector target is presented to the right eye and the left 

projector target to the left eye. Control box setting: 

% RE LE R projector L projector 

Duration 50 50 50 50 

Delay 0 50 0 50 

(c) Left eye and left projector in phase with 50% delay and 

50% duration, right eye no delay with 50% duration. Right 

projector has 10% delay and 90% opening duration. Left 

projector target is therefore presented to the left eye only and 

the right projector target is presented to both eyes. 

Control box setting: 

% RE LE R projector L projector 

Duration 50 50 90 50 

Delay 0 50 10 50 

shutter open 

() shutter dosed 
t  12.5ms (80Hz) 

H 
opening delay (shown here as 50% oft) 

opening duration (shown here as 90% of t) 

right eye 

left eye 

right projector 

left projector 

right eye 

left eye 

right projector 

left projector 

right eye 

left eye 

right projector 

left projector 
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2.7 Statistical analysis 

Data was analysed using Excel spreadsheets and statistical analysis was performed 
using either Statview 5 statistical software, (SAS Institute Inc. NC. USA) or CLR 

ANOVA 1.12, (Clearlake Research, USA). Cited significance levels are those obtained 

after applying where necessary conservative epsilon corrections for departures from 

covariance homogeneity assumptions (Howell, 1992). 

2.8 Ethics approval 

As the study required recruitment of subjects with strabismus from the Royal 
Hallamshire Hospital eye department, Sheffield South Ethics Committee approval was 
obtained prior to commencing the study (Appendix 1). 

In all experiments, procedures were explained to the subjects verbally and with written 
information sheets and, if willing to participate, they signed a consent form, approved 
by the ethics committee (Appendix 2). 
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Chapter 3 

Preliminary experiments 

This chapter describes the experiments carried out to validate the equipment and 

methods used in later experiments. 

3.1 Experiment 1: To determine whether the mirror galvanometer produces 
targets suitable as saccadic stimuli 

3.1.1 Introduction 

This experiment was designed to test the suitability of the mirror galvanometer as a 
method of presenting saccadic stimuli for future experiments. The mirror galvanometer 
had a phase lag of lms for 1Hz sine wave signals of amplitudes between ±1° and ±10° 
(Whittle, 2002). It was possible, however that, as the mirror changed the target to a new 
position on the screen, the target moving rapidly across the screen was visible to the 

observer, which may have led to an alteration in saccade latency, accuracy and peak 
velocity. The experiment compared these saccade characteristics with and without 

masking of the translucent screen. The mask, a simple piece of cardboard with holes cut 
into it at the target locations, was used to eliminate any chance of the target being seen 
whilst moving between the target locations. However this mask was not suitable for use 
in the main experiments as many target locations were required and projection of 
backgrounds would not have been possible. 

3.1.1.1 Hypothesis 

There is no difference in saccade characteristics with or without masking of the screen. 

3.1.2 Method 

3.1.2.1 Participants 

Four subjects, mean age 29.25 years (range 20 to 38 years), were recruited from the 

student population. They all had minimum visual acuity of 0.0 logMAR in each eye, 

normal bifoveal BSV and stereoacuity of >_60" of arc with TNO test (Table 3.1 shows 

subject details). 
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Subject Age Gender VA Binocular status Stereoacuil 
RE LE (seconds of arc) 

1 20 F 0.0 -0.1 esophoria 
_ 

60 
2 27 M -0.1 -0.1 exophoria 30 
3 32 F 0.0 -0.1 exophoria 30 
4 38 M -0.1 0.0 exo horia 60 

Table 3.1: Characteristics of the four subjects. VA visual acuity in log MAR, RE right eye, LE _ left 

eye. 

3.1.2.2 Apparatus 

Figure 2.4 shows the laboratory set-up. Each subject was seated in front of the 

translucent screen at a distance of 1 14cm from the eye. Head movements were restricted 
by use of a chin and cheek rest. The target was back projected onto the screen and its 

position varied by a mirror galvanometer controlled by a pre-set computer programme. 
Figure 3.1 shows the target used, a circle of diameter subtending 1° with a cross in the 

centre. Eye movements were recorded as described in Chapter 2. A removable 

cardboard mask could be temporarily positioned to cover the rear surface of the screen, 

with the exception of 1.5° holes sited at the target locations, used to prevent any 

visibility of the target as it moved between target locations (Figure 3.2). 

3.1.2.3 Design of the experiment 

The experiment was repeat measures design, with the independent variable being the 

target presentation, with and without the screen mask. Dependent variables were the 

saccade latency, saccade gain and saccade peak velocity. 

Translucent screen (245 x 76cm) 

ý-. . -º 
2cm (subtends 1 1) 

Figure 3.1: Schematic view of the target as it appeared on the translucent screen. 
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Opaque paper mask 

-15° -100 -5° o° +50 +100 +1 50 

Figure 3.2: Schematic view of the mask in place behind the screen. The figure shows the holes (1.5°) in 

the mask, however these were not visible to the subjects. 

3.1.2.4 Procedure 

A calibration routine was carried out, without the mask, before each trial, during which 

subjects were asked to follow the target as it moved in a± 20° sinusoidal waveform, as 

described in Chapter 2. 

At the start of each trial the target stimulus was presented in the centre of the screen for 

a variable period of between 1.5 and 2s. The target was programmed to move in a 

pseudo-random order to amplitudes of -15, -10, -5, +5, +10 and +15°, negative values 

being to the left of centre and positive to the right. The time period at each position 

varied randomly between 0.5 and Is. The subject was instructed to move their eyes as 

quickly and accurately as possible to fixate the centre of the target. Two conditions were 

tested, referred to as masked and unmasked. The masked condition completely 

eliminated the possible persistent image as the target moved from one position to the 

next. This was achieved by placing the paper mask on the reverse side of the translucent 

screen. The unmasked condition allowed the persistent image to be present on the 

screen as the mirror rotated to the new target position. Twenty saccades of each 

amplitude were performed for each test condition. 

3.1.3 Results 

All four subjects were included in the data analysis. 
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3.1.3.1 Saccade latency 

Table 3.2a shows the mean saccade latency for each saccade amplitude, for individual 

subjects in the masked and unmasked conditions. The data for the four subjects was 

pooled, mean saccade latency as a function of saccade amplitude was plotted for the 

masked and unmasked conditions and is shown in Figure 3.3. Figure 3.4 shows the 
distribution of saccade latencies. The mean saccade latency for all amplitude saccades 

masked was 160.8ms (SD=11.1) and unmasked was 163.4 (SD=8.8). 

A three factor repeated measures analysis of variance was used to determine any 
differences in saccade latency between the masked and unmasked screen, right or 
leftward saccades and the three amplitudes used. No significant difference was found 

between the masked and unmasked conditions [F(1,3)=0.092, p>0.05], right or leftward 

saccades [F(1,3)=5.281, p>0.05] or saccade amplitude [F(2,6)=3.399, p>0.05]. No 

significant interaction was found between any combinations of these three factors, 

specifically the masked and unmasked conditions (see Appendix 3.1 for statistical 

analysis). 

200 

EI I 
180 ; 

160 ý 

140 ý 

120 ý 

Iý 
I 

  masked 
" wurxtskad 

-15 -10 -5 05 10 

Stimulus Anplitude (degrees) 

ý 
15 

Figure 3.3: Pooled data of four subjects' saccade latency masked and unmasked. Error bars represent ±1 
standard error from the mean. 
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JD 
E 

70 

60 

50 

40 

30 
masked 

ý- unmasked 

, ýO ADO Nip N1011, NýO le ýýO 

Saccade Latency (ms) 

20 

10 

0 

Figure 3.4: Distribution of saccade latencies for the four subjects - data includes 240 saccades from each 
subject. 

3.1.3.2 Saccade gain 

The accuracy of saccades was quantified by taking the gain, calculated as saccade 

amplitude divided by stimulus amplitude. Hence, a gain of 1 indicates a saccade which 
is precisely on target, a gain <1 indicates a hypometric saccade and >1 a hypermetric 

saccade. 

Table 3.2b shows the mean saccade gain for all stimulus amplitudes for each subject, 

and the mean for the group in masked and unmasked conditions. Figure 3.5 shows the 

group mean saccade gain plotted as a function of stimulus amplitude. In both the 

masked and unmasked conditions 5° stimulus amplitudes in both directions produced 

very slightly hypermetric saccades, 10° left produced saccades close to the stimulus 

with a mean gain of 1.003, and 10° right slightly hypometric saccades. The degree of 
hypometria increased slightly for 15° stimulus amplitudes in both directions. This 

response was expected (Bartz, 1967; Becker, 1972). 

A three factor repeated measures analysis of variance was used to determine any 
differences in saccade gain between the masked and unmasked conditions, right or 
leftward saccades and the three amplitudes used. No significant difference was found 

between the masked and unmasked conditions [F(1,3)=3.068, p>0.05] right or leftward 

saccades [F(1,3)=0.268, p>0.05]. The gain, as expected, was significantly different for 

saccade amplitude [F(2,60=41.88, p<0.001]. No significant interaction was found 

between any combinations of these three factors (see Appendix 3.2 for statistical 

analysis). 
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Figure 3.5: Pooled data of the four subjects' saccade gain, masked and unmasked, for each stimulus 
amplitude. Error bars represent ±1 standard error from the mean. 

3.1.3.3 Saccade peak velocity 

Table 3.2c shows the mean saccade peak velocity in the masked and unmasked 

conditions, for individual stimulus amplitudes, for each subject and the group mean. 
Figure 3.6 shows the log of the mean saccade peak velocity against log of stimulus 

amplitude for the four subjects. R2 values for the masked and unmasked conditions are 
0.8202 and 0.824 respectively. A three factor repeated measures analysis of variance 

was used to determine any differences in saccade peak velocity between the masked and 

unmasked conditions, right or leftward saccades and the three amplitudes used. No 

significant difference was found between the masked and unmasked conditions 
[F(1,3)=4.142, p=0.1347], right or leftward saccades [F(1,3)=1.219, p>0.05]. The peak 

velocity, as expected, was significantly different for saccade amplitude 
[F(2,6)=104.892, p<0.001]. No significant interaction was found between any of the 

three factors (see Appendix 3.3 for statistical analysis). 

The saccade gain, latency and peak velocity were typical of values expected based on 

existing literature as outlined in Chapter 1. This is more specifically addressed in 

Chapter 4. The results support the hypothesis that there is no significant difference in 

saccade characteristics with or without masking of the screen. 

I 
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Figure 3.6: Pooled data for the four subjects. The log of peak velocity is plotted as a function of the log 
of saccade amplitude. A linear regression for the masked and unmasked conditions revealed similar R2 
values. 

3.1.4 Conclusion 

There were no significant differences between the masked and unmasked conditions for 

saccade latency, accuracy and peak velocity. It is therefore considered satisfactory to 

use the mirror galvanometer mounted to the slide projector to present saccadic stimuli in 

future saccade eye movement experiments. 

3.2 Experiment 2: To determine the effectiveness of the LCP shutter system as a 

method of dissociation 

3.2.1 Introduction 

To study strabismus, suppression and retinal correspondence it is necessary to present 
targets to each eye independently whilst both eyes are open. As described in Chapter 2a 

system of such dissociation was specifically designed for this thesis, using four liquid 

crystal polymer (LCP) shutters. This allowed each target on the screen to be visible by 

both eyes, right eye only, left eye only or invisible to either eye. 
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The experiment outlined below will determine whether this method of dissociation is 

effective or whether targets believed to be invisible are actually seen by the subject. 

3.2.1.1 Hypothesis 

There is a significant difference in the number of correct responses when targets are 

presented with all shutters open and either the LCP or metal shutters closed. 

3.2.2 Method 

3.2.2.1 Participants 

Five adult subjects, mean age 20.4 years (range 19.0 - 21.9 years), were recruited from a 
student population, all having a minimum corrected visual acuity of 0.0 logMAR, 

normal binocular single vision, heterophoria <10 0 and stereoacuity >_60" of arc (see 
Table 3.3 for subject details). 

Subject Age Gender VA Binocular status Stereoacuity 
RE LE (seconds of arc) 

1 19 F 0.0 0.0 exophoria 60 
2 20 M 0.0 -0.1 exophoria 30 
3 20 F -0.1 -0.1 exophoria 60 
4 20 M -0.1 0.0 esophoria 60 
5 21 F 0.0 -0.1 exophoria 60 

Table 33: Characteristics of the five subjects. 

3.2.2.2 Apparatus 

Figure 2.4 shows the laboratory set-up used. Each subject was seated in front of the 
translucent screen at a distance of 114cm from the eye. Head movements were restricted 
by use of the chin and cheek rest. A target was back projected onto the translucent 

screen using a Kodak carousel slide projector. Figure 3.1 shows the target used, a circle 

of diameter subtending 1° with a cross in the centre. The target was back projected onto 
the screen and its position varied by a mirror galvanometer controlled by pre-set 

sequences via the computer. On-screen target presentation could be controlled by two 

methods; a) a LCP shutter, positioned between the lens and the mirror galvanometer of 
the projector, and b) metal shutters, positioned behind the lens of each projector. Two 
further LCP shutters were used, one positioned in front of each of the subject's eyes, 
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mounted on a headband. A blurred, random dot stationary background was also 

projected onto the screen using an additional projector. The background was not a 

requisite of this experiment, however it was used to create standard conditions planned 
for later experiments (see Chapter 5, Figure 5.3 for diagram). Eye movements were not 

recorded in this experiment. 

3.2.2.3 Design of the experiment 

The experiment was a forced choice repeated measures design, subjects were asked to 
indicate the position of the target (right or left) when it disappeared from the centre of 
the screen using a joystick. If they did not see the target then they were instructed to 

guess the direction. The independent variable was the state of the shutters, i. e. all 

shutters open, LCP shutter closed or metal shutter closed. The dependent variables were 
the number of correct responses for rightward or leftward target presentations. 

3.2.2.4 Procedure 

The subject was positioned, using a chin and cheek rest, with the eyes 114cm in front of 
the translucent screen, with both eyes open. LCP shutters mounted on a headband were 

positioned in front of each eye. These were operated at 80Hz and run in phase with the 

LCP shutter positioned within the projector. The 1° target was presented centrally for 

2.3s and then jumped randomly 5° to the right or 5° to the left for 200ms and then 

returned to the centre. This target presentation cycle was repeated 20 times in a 50s run. 
Eight runs for each subject were performed, giving a total of 160 target presentation 

cycles, with equal presentations made to the right or left. A 20s break was given 
between each run giving a total time of 9 minutes to complete all 160 presentations. 

A programme operating all the shutters was run to create three stimulus conditions; all 

shutters open (i. e. left/right target visible), metal shutter closed in front of the target 

projector (i. e. left/right target invisible) and LCP shutter closed in front of the target 

projector (i. e. left/right target invisible on the screen if dissociation method effective). 

The subject was instructed to look at the central target at all times and to indicate the 

perceived direction of the target by moving a joystick to the right or to the left when the 

central target disappeared. If the target was not seen to either side the subject was 
instructed to guess the direction. 
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The randomised target positions and shutter sequences are shown in Appendix 4. Of the 
160 target presentations made, 24 were with all shutters open, 96 were with the LCP 

shutters closed and 40 were with the metal shutters closed. 

3.2.3 Results 

Table 3.4 and Figure 3.7 show the percentage of correct responses for each subject in 

each of the shutter conditions. Results from each subject were similar therefore the data 

was pooled. Figure 3.8 shows the pooled data for the group of five subjects. The mean 

number of correct responses for the group was 96.7% in the no shutter condition. The 

mean percentage of correct responses with the metal shutter was 46% and with the LCP 

shutter was 50.6%, where a 50% result would indicate guessing. A paired t-test 

confirmed that there was no significant difference between the responses with the metal 
shutter and the LCP shutter (target right and left: t= -0.992, df = 4, p>0.05, target right: 
t= -0.757, df = 4, p>0.05, target left: t= -0.210, df = 4, p>0.05). T-test details are 

shown in Appendix 3.4. When considering target presentations to the right and left, the 

number of correct responses was similar (see Table 3.4b &c and Figure 3.7b & c). 
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Percentage of Correct Responses - (Right &Left 
subject metal shutter LCP shutter no shutter 

1 42.5 49.0 91.7 
2 62.5 54.2 100.0 
3 47.5 50.0 95.8 
4 32.5 53.1 100.0 
5 45.0 46.9 95.8 

Mean 46.0 50.6 96.7 
SD 10.8 3.0 3.5 
SE 4.9 13 1.6 

b 
Percentage of Correct Responses - (Right) 

subject metal shutter LCP shutter no shutter 
1 50.0 53.2 84.6 
2 75.0 59.6 100.0 
3 35.0 63.8 100.0 
4 35.0 72.3 100.0 
5 60.0 46.8 92.3 

Mean 51.0 59.2 95.4 
SD 17.1 9.8 6.9 
SE 7.7 4.4 3.1 

C 
Percentage of Correct Responses - (Left) 

subject metal shutter LCP shutter no shutter 
1 35.0 44.9 100.0 
2 50.0 49.0 100.0 
3 60.0 36.7 90.9 
4 30.0 34.7 100.0 
5 30.0 46.9 100.0 

Mean 41.0 42.5 98.2 
SD 13.4 6.4 4.1 
SE 6.0 2.8 1.8 

Table 3.4: Percentage of correct responses for each subject in each shutter condition, a) all target 
presentations (right and left of centre), b) target presented to the right of centre, c) target presentations to 
the left of centre. 
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Figure 3.7: Percentage of correct responses for each subject in each shutter condition, a) all target 
presentations (right and left of centre), b) target presented to the right of centre, c) target presentations to 
the left of centre. Dotted line represents 50% correct responses as would be the case in guessing due to 
target being invisible. 
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Figure 3.8: The percentage of correct responses for each shutter condition, pooled data for the group of 
five subjects. Error bars = ±l SE, dotted line represents 50% correct responses as would be the case in 

guessing due to target being invisible. 

3.2.4 Discussion 

The no shutter condition tested subject reliability and target visibility, and shows that 

two subjects gave 100% correct responses, two subjects gave 96% correct responses and 

one subject gave 92% correct responses when the target was clearly visible on the 

screen. This suggests good visibility of a 1° target, through the LCP shutters running at 

80Hz and also suggests high subject sensitivity. 

The metal shutter provides absolute removal of the target from the screen leading the 

subject to make a guess of the direction. The results show that, in this forced choice 

situation, the number of correct responses range from 32 to 62%, giving a mean of 46%. 

A similar result would therefore be expected with the LCP shutter system if it were a 

suitable method of providing total dissociation. Conversely if it were an ineffective 

method of dissociation, the target would be visible making the number of correct 

responses closer to 100%. It can be seen that with the result being 50.6% correct 

responses, the LCP shutters closely matched the metal shutters, hence the subjects were 
forced to guess the direction of the target as the LCP shutter made it invisible, therefore 

the hypothesis is supported. 

3.2.5 Conclusion 

The LCP shutter renders the target effectively invisible to visually normal subjects and 

therefore provides a suitable tool for dissociation of the eyes for use in experiments 
investigating binocular function, suppression and abnormal retinal correspondence. 
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Chapter 4 

Characteristics of saccades in strabismus 

This chapter considers the characteristics of single target visually guided saccades in the 

presence of normal binocular single vision and strabismus. It examines the findings of 
previously reported literature with the findings produced in the laboratory set-up used in 

this thesis, to determine whether the data is comparable. A review of literature reporting 
saccadic characteristics in strabismus is given in the first instance, followed by a 
summary of the saccadic characteristics of the five subjects with normal BSV and eight 
strabismic subjects who were included in the experiments of Chapters 5 and 6. 

4.1 Introduction 

Whilst the characteristics of saccades in normal human subjects are well documented 

there are few studies that consider the characteristics in subjects with concomitant 
strabismus. 

4.1.1 Saccade latency in strabismus 

Stark, Ciuffreda and Kenyon (1981) recorded saccades using an infrared eye movement 
technique in strabismic and amblyopic subjects. Saccades were recorded with both eyes 
open, monocularly fixing with the normal eye and monocularly fixing with the 

strabismic or amblyopic eye. Six of eleven subjects with amblyopia, with or without 
strabismus had saccade latency increased in the affected eye compared to the normal 
eye. Two subjects with intermittent strabismus without associated amblyopia had no 
significant increases in saccade latency in the strabismic eye or differences between the 
fixing and strabismic eyes. They suggest therefore that it is amblyopia and not 
strabismus that affects saccade latency. Their study did not however report the 

characteristics of constant strabismus without amblyopia. 

4.1.2 Saccade accuracy in strabismus 

The accuracy of saccades in the dominant eye of strabismic subjects has been found to 
be comparable to binocular subjects. Van Leeuwen, de Faber, van der Steen and 
Collewijn (1995) studied the saccades of ten adult subjects with constant strabismus, 
two esotropic and eight exotropic, for target amplitudes ranging from 5° to 30° in each 
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horizontal direction. The accuracy of saccades was unchanged by covering the 

strabismic eye, whilst covering the dominant eye resulted in decreased accuracy 
independent of visual acuity. They concluded that saccades seem to be generated based 

on visual input from the dominant eye. 

4.1.3 Saccade velocity in strabismus 

De Faber, van Rijn and Collewijn (1994) compared saccades of eight strabismic 

subjects with amblyopia, one esotropic and seven exotropic, with five binocular controls 

using scleral coil recordings. The control group was found to have abducting saccades, 

which were greater in amplitude than adducting saccades, and peak velocity of the 

abducting eye was, on average, 12°s'1 higher than the adducting eye. In the strabismic 

group abducting saccades were generally faster than adducting saccades. Towards the 
dominant eye they were faster in the dominant eye than the strabismic eye. At 600 

stimulus amplitude the mean peak velocity difference was 66°s'1. Towards the 

strabismic eye the velocity differences were less pronounced with a mean difference of 
25°s'1 for 60° stimulus amplitude. 

In contrast to the above study, Tian (1995) demonstrated no clear difference in peak 

velocity of saccades between binocular control subjects and strabismic subjects with 

constant exotropia. 

4.1.4 Conjugacy of saccades in strabismus 

De Faber, van Rijn and Collewijn (1994) compared saccades of eight strabismic 

subjects with amblyopia, one esotropic and seven exotropic, with five binocular controls 

using scleral induction coil recordings. The logMAR visual acuity in the amblyopic eye 

ranged from 0.1 to 1.0. The control group was found to have abducting saccades, which 

were greater in amplitude than adducting saccades, however the difference was <1°. In 

the strabismic group saccades towards the dominant eye were larger in the dominant eye 

with >1° difference between the two eyes. For 60° stimulus amplitude the mean 
difference in saccade size between the eyes was 5.6° with a range of 1° to 13°. Saccades 

towards the strabismic eye showed variable size differences, but were typically larger in 

the dominant eye. For 60° stimulus amplitude the mean difference in saccade size 
between the two eyes was 1.2° with a range of -1° to 10°, hence saccades were more 

conjugate towards the strabismic eye than towards the dominant eye. 
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Kapoula, Bucci, Eggert and Garraud (1997) examined conjugacy of saccades measured 
using a Skalar infrared system in non-strabismic subjects, esotropes with deviations 

<10A and esotropes of >18A. The results are summarised in Table 4.1. Increased 
disconjugacy in strabismus was attributed to weakness or absence of disconjugate 

adaptive mechanisms. The increase of disconjugacy in subjects with larger strabismus 

supports the idea of more severely deficient adaptive mechanisms due to the total lack 

of binocular interaction, compared to small angled deviations where abnormal binocular 
interactions occur more frequently. Disconjugacy was seen in strabismics with and 
without amblyopia. The disconjugacy did vary depending upon which eye was fixing, 
but no direct pattern was seen in the small angled esotropes. However, in the large 

angled esotropes saccades were always greater when fixing with the strabismic eye. It 

seems, therefore, that binocular vision is important in maintaining binocular oculomotor 
coordination. 

Group Mean Discon u ac 
Non-strabismic (3 subjects) 0.5° divergent 
Esotropia <100 (3 subjects) 1° variable - divergent / convergent 
Esotropia >180 (4 subjects) 1.8° divergent 

Table 4.1: Data of saccade disconjugacy from Kapoula et al (1997). 

In contrast to the study by de Faber, van Rijn and Collewijn (1994), who reported larger 

and more consistently divergent disconjugacy when the non-amblyopic, non-strabismic 

eye abducted, Kapoula, Bucci, Eggert and Garraud (1997) found no directional 

specificity in the seven esotropic subjects. Maxwell, Lemij and Collewijn (1995) 

studied conjugacy of saccades in strabismus with deep amblyopia in ten subjects with 
esotropia and one with exotropia. They reported large amounts of disconjugacy, but did 

not show directional differences. The group studied by de Faber, van Rijn and Collewijn 

(1994) were mainly exotropes, suggesting a possible difference in the behaviour of 
esotropes and exotropes. 

Three reasons for the small divergent disconjugacy typically found in normal binocular 

subjects have been suggested: Kapoula, Hain, Zee and Robinson (1987) suggested that 

the high-burst of saccadic pulse activity leads to disconnection of tonic vergence, 
thereby increasing divergence during a saccade. Zee, Fitzgibbon and Optican (1992) 

proposed that it might be due to either a delay in arrival of pre-motor signals at the 
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motor neurons of the medial rectus with respect to pre-motor signals to the lateral 

rectus, or differences in the mechanical properties of the medial and lateral recti. 

The reasons for increased disconjugacy in strabismus are unclear. As amblyopia and 
strabismus frequently co-exist, studies have not been conclusive regarding whether it is 

the presence of amblyopia or strabismus that leads to disconjugacy. Maxwell, Lemij and 
Collewijn (1995) studied subjects with strabismus and deep amblyopia, ten with count 
fingers (CF) vision and one with 6/60 in the amblyopic eye. They demonstrated 
disconjugate saccades in all subjects, but significantly larger disconjugacy in the 

subjects with CF vision compared to the subject with 6/60, who had saccadic yoking 
almost as good as in the control subjects. They did not find any trend between the angle 
of strabismus and the degree of poor saccadic yoking. These authors therefore suggest 
that it is the deep amblyopia, rather than strabismus, that gives rise to the observed 
disconjugacy. However Kapoula, Bucci, Eggert and Garraud (1997) found similar 
amounts of disconjugacy in esotropia without amblyopia suggesting that strabismus 
alone is sufficient to disrupt saccade conjugacy. Kapoula, Bucci, Eggert and Garraud 
(1997) suggest that the disconjugacy may exist in strabismus without amblyopia due to 

a weakness or absence of disconjugate adaptive mechanisms (see Chapter 7 for further 
discussion). 

Despite the reported disconjugacy of saccades in strabismus it is apparent that the 
disconjugacy is a consistent finding and the strabismic eye does not aimlessly wander as 
might be anticipated in unilateral blindness. Consistent disconjugacy suggests that the 

same extra-foveal retinal area of the strabismic eye corresponding with the fovea of the 
fixing eye is constantly aimed towards the target. 

4.1.5 Saccades in alternating strabismus 

Van Leeuwen, de Faber, van der Steen and Collewijn (1999) studied horizontal 

saccades in six alternating exotropes using the scleral coil technique. These subjects 
were found to alternate the viewing eye during saccades in some circumstances. For 

large symmetric 40° target stimuli they made accurate saccades in which they fixated 

targets to the left with the left eye and targets to the right with the right eye. Smaller and 

eccentric target stimuli produced differences in behaviour between subjects. The authors 

proposed that the finding of saccades, which start with one eye and end with the other, 
suggest that in alternating strabismus saccade programming is based on one eye only, 
and alternates between eyes. 
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4.2 Experiment 3: Documentation of saccade characteristics in strabismus 

The following saccadic eye movement data was collected from subjects with normal 
BSV and subjects with strabismus, following a clinical examination and prior to the 

distractor experiments presented in Chapters 5 and 6. The purpose of this was threefold: 

1. To familiarise subjects, who had not previously carried out eye movement 

experiments, with the equipment, target presentation and task of proposed later 

experiments. 
2. To ensure that any subjects recruited for experiments were reliable, in terms of 

remaining stationary, giving few blinks and generally tolerant to the laboratory 

conditions. 
3. To characterise any differences in certain saccadic parameters between subjects 

with normal BSV and those with strabismus. 

4.2.1 Hypotheses 

For saccades made to a target presented to both eyes: 

1. There will be no difference in saccade latency of the dominant eye in binocular 

subjects and subjects with strabismus. 
2. There will be no difference in saccade gain of the dominant eye in binocular 

subjects and subjects with strabismus. 
3. Saccades will be more disconjugate in strabismic subjects than binocular subjects. 

4.3 Method 

4.3.1 Participants 

Five subjects with normal corrected visual acuity, bifoveal binocular single vision and 

stereoacuity of at least 60" of arc using the TNO test, were included. The mean age of 
the participants was 20.6 years (range 19.0 - 21.8 years). Eight subjects with constant 

strabismus, three with exotropia and five with esotropia, were also studied. 

All eight subjects with constant manifest strabismus underwent a clinical examination. 
The type and size of deviation was confirmed using the cover test and prism cover test 

respectively, at 0.33m, 1.14m and 6m. All subjects were assessed for anomalous BSV 
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or potential normal BSV with their angle corrected with both prisms in free space and 
with the synoptophore. The type of retinal correspondence, normal or abnormal, was 
determined in each case. In those with suppression, confirmed with Worth's lights, 
Bagolini glasses and the polarised four-dot test, the area and density of suppression 

were measured. In those with abnormal BSV confirmed by Bagolini glasses, sensory 
fusion was further investigated using more dissociative tests (polarised 4-dot test and 
Worth's lights). Anomalous motor fusion (prism fusion range and synoptophore) and 
stereoacuity (Frisby, Lang and TNO) were also assessed. Full clinical results of these 
investigative tests are shown in Appendix 5 (subjects 1-8). 

Six of the subjects had suppression with no demonstrable BSV and two subjects with 
esotropia had ARC and anomalous BSV, Table 4.2 summarises the subject details. The 

mean age of the strabismic subjects was 30.6 years (range 18.1 - 62.8years). None of the 

subjects had previous experience of eye movement recording equipment. 

Subj Age VA Strabismus PCT at Retinal Suppression Abnormal BSV 
(years) RE LE 1.14m (A) corresp. Sensory 

fusion 
Motor 
fusion 

SV 

1 62.8 6/5 6/12 LXT 2131 NRC yes no no no 

2 22.8 6/6 6/4 RET 6 BO NRC yes no no no 

3 20.2 6/6 6/4 RET 6 BO NRC yes no no no 

4 41.0 6/4 6/6 LXT 12 BI NRC yes no no no 

5 39.5 6/24 6/5 RET 12 BO NRC yes no no no 

6 19.4 6/5 6/9 LXT 18 BI NRC yes no no no 

7 20.9 6/4 6/6 LET 12 BO ARC no yes yes gross 

8 18.1 6/5 6/6 LET 10 BO ARC no yes yes 200" 

Table 4.2: Summary of clinical details of strabismic subjects. XT = exotropia, ET = esotropia, L/R 
denotes left or right eye, NRC = normal retinal correspondence, ARC = abnormal retinal correspondence, 
PCT = prism cover test, SV = stereoscopic vision. Stereoscopic vision was demonstrated using the gross 
synoptophore slides in subject 7 and 200 seconds of arc on the Lang stereotest in subject 8. 

4.3.2 Apparatus and stimuli 

The laboratory was set-up as described in Chapter 2. Eye movements were recorded 

using the Skalar infrared limbal tracker, head movements were restricted by use of chin 

and cheek rests. The eye movement data was stored on disk and analysed off-line. 

A 1° cross (shown in Figure 4.1) was presented by back projection from a modified 
Kodak carousel slide projector in the centre of the flat translucent screen 114cm from 

the subject. A mirror galvanometer sited in front of the projector was used to move the 
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target randomly to either +4° or +8° eccentricities along the horizontal axis. The target 

was visible to both eyes at all times. 

+ 
. 1.00: 
Target Figure 4.1: 1° target cross 

4.3.3 Procedure 

The subjects were seated in a comfortable office chair with the Skalar infrared eye 
movement recorder and LCP shutters clamped in position. Pursuit eye movements, 

generated using a sinusoidal target motion of 0.32Hz of amplitude ±12°, were used to 

calibrate the eye movement recorder before each trial, as described in Section 2.1. 

The subjects were informed that all targets would initially appear in the centre of the 

screen and always move to the right and then back to the centre. This direction was 

maintained for all subsequent trials as planned for later distractor experiments. The 

target was presented centrally and, to avoid anticipation, there was a random period 
(500 - 1200ms) before the target disappeared and immediately reappeared at either 4° or 
8° on the horizontal axis for 500ms (nominally zero gap). The target then returned to the 

centre point before the next trial. A total of 60 trials were run for each subject, taking a 
total time of approximately 5 minutes. 

The subjects were instructed to look directly at the centre of the small target cross, 
positioned in the middle of the screen and, when it jumped to the right, to move their 

eyes as quickly and accurately as possible to continue looking at the centre of the cross. 
They were told not to anticipate the target movement and that they should only move 
their eyes when they saw it appear. 

4.4 Results 

Data was collected and analysed for all thirteen subjects. The co-operation of all 

subjects was good. The mean number of saccades rejected due to blinks, loss of fixation 

85 



Chapter 4 Characteristics of saccades in strabismus 

or incorrect saccade direction, was 12% (range 5% - 18%) in the BSV group and 15% 

(range 10% - 22%) in the strabismic group, 

4.4.1 Saccade Latency 

Tables 4.3 and 4.4 show saccade latency of the dominant eye for each saccade direction 

and saccade amplitude for the BSV group and the strabismic group respectively. Figure 

4.2 shows the mean group data. This shows that saccade latency was similar for both 

amplitudes and that the strabismic subjects had slightly longer saccade latencies than 

the subjects with BSV. 

Subject Rightward saccades Leftward saccades 

4° target 8° target 4° target 8° target 

1 
149.6 

SD 15.1 
140.4 

SD 24.1 
138.2 

SD 15.1 
132.6 

SD 20.2 

2 
138.1 

SD 19.8 
139.4 

SD 19.7 
139.4 

SD 14.5 
143.1 

SD 22.0 

3 
148.4 

SD 18.8 
147.1 

SD 14.1 
146.0 

SD 15.1 
139.9 

SD 17.9 

4 
174.5 

SD 19.1 
178.5 

SD 22.5 
173.1 

SD 17.2 
177.1 

SD 18.5 

5 
152.9 

SD 13.7 
149.3 

SD 19.5 
150.8 

SD 15.5 
149.5 

SD 16.3 
Mean 152.7 150.9 149.5 148.4 

SD 13.4 16.0 14.1 17.1 
SE 6.0 7.1 6.3 7.7 

Table 4.3: Mean saccade latency (ms) of five subjects with normal BSV. Latencies of the dominant eye 
are presented. SD = standard deviation, SE = standard error. 

To determine whether there was any difference in saccade latency for the BSV group, 
for the two amplitudes and directions, a two-factor repeated measures ANOVA was 

performed. There was no significant difference in saccade latency for different 

amplitudes [F(1,4)=0.458, p>0.05] or direction [F(1,4)=1.941, p>0.05]. (ANOVA 

details in Appendix 6.1). Similarly for saccade latency in the strabismic group, for the 

two amplitudes and directions, a two-factor repeated measures ANOVA was performed. 
There was no significant difference in saccade latency for different amplitudes 
[F(1,7)=4.529, p>0.05] or directions [F(1,7)=0.757, p>0.05]. The data for each direction 

and amplitude was therefore combined for each subject. Pooled data for each group is 

shown in Table 4.5. (ANOVA details in Appendix 6.2). 

86 



Chapter 4 Characteristics of saccades in strabismus 

Subject Rightward saccades Leftward saccades 

4° target 8° target 4° target 8° target 

I 
185.1 

SD 20.1 
180.9 

SD 25.1 
184.6 

SD 26.7 
186.4 

SD 28.8 

2 
159.6 

SD 20.0 
160.6 

SD 20.4 
164.9 

SD 19.1 
167.1 

SD 22.4 

3 
140.8 

SD 17.2 
149.2 

SD 19.3 
145.5 

SD 19.4 
145.9 

SD 19.6 

4 
159.9 

SD 15.3 
163.9 

SD 17.7 
155.6 

SD 14.8 
160.1 

SD 18.7 

5 
164.3 

SD 14.4 
167.5 

SD 19.6 
165.3 

SD 15.6 
166.2 

SD 20.7 

6 
160.7 

SD 20.0 
163.4 

SD 19.2 
158.5 

SD 12.3 
154.8 

SD 20.2 

7 
164.1 

SD 19.9 
166.7 

SD 15.5 
160.7 

SD 18.4 
162.4 

SD 17.6 

8 
138.7 

SD 17.2 
136.5 

SD 17.4 
130.6 

SD 18.1 
132.5 

SD 18.8 
Mean 159.2 161.1 158.2 159.4 

SD 14.6 13.2 15.7 15.9 
SE 5.1 4.7 5.6 5.6 

Table 4.4: Mean saccade latency (ms) of individual subjects with constant strabismus. Latencies of the 
fixing eye presented. SD = standard deviation, SE = standard error. 

Leftward saccades Rightward saccades 
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Figure 4.2: Mean saccade latency for each group plotted against target amplitude. 
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Table 4.5 shows that the strabismic subjects had slightly larger saccade latency 

compared to the BSV group (9. lms) however this was not found to be significantly 
different supporting hypothesis 1 (unpaired t-test, t= -1.081, df = 11, p>0.05). 
Appendix 6.3 gives full details of statistical tests used. 

Group BSV Strabismus 

Mean 150.4 159.5 
SD 14.9 14.7 
SE 6.6 5.2 

Table 4.5: Mean saccade latency (ms) for all saccade amplitudes and directions, pooled data for each 
subject group. SD = standard deviation, SE = standard error. 

4.4.2 Saccade gain 

Table 4.6 shows the mean saccade gain for each subject in the BSV group and Table 4.7 

shows the strabismic group data. Figure 4.3 shows the group mean saccade gain plotted 

against amplitude. This shows that saccades to 411 targets were extremely accurate and 

saccades to 8° targets were slightly hypometric. 

Subject Rightward saccades Leftward saccades 

4° target 8° target 4° target 8° target 

1 
0.984 

SD 0.074 
0.901 

SD 0.057 
0.991 

SD 0.080 
0.904 

SD 0.067 

2 
1.005 

SD 0.084 
0.950 

SD 0.066 
1.080 

SD 0.065 
0.918 

SD 0.072 

3 
0.989 

SD 0.045 
1.001 

SD 0.074 
0.995 

SD 0.066 
0.946 

SD 0.076 

4 
0.948 

SD 0.054 
0.943 

SD 0.088 
0.979 

SD 0.083 
0.967 

SD 0.104 

5 
1.059 

SD 0.054 
0.989 

SD 0.066 
1.012 

SD 0.057 
0.969 

SD 0.073 
Mean 0.997 0.957 1.011 0.941 

SD 0.040 0.040 0.040 0.029 
SE 0.018 0.018 0.018 0.013 

Table 4.6: Mean saccade gain of five subjects with BSV. SD = standard deviation, SE = standard error. 
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Leftward saccades Rightward saccades 
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Figure 4.3: Saccade gain in BSV and strabismic subjects. 

To determine whether there was any significant difference in saccade gain for the BSV 

group, for the two amplitudes and directions, a two-factor repeated measures ANOVA 

was performed (ANOVA details in Appendix 6.4). There was a significant difference in 

saccade gain for different amplitudes [F(1,7)=8.457, p<0.05] showing that the gain to 8° 

targets was significantly less than 4° targets. There was no significant difference in gain 
between saccades to the right and left [F(1,7)=0.0001, p>0.05]. Similarly for saccade 

gain in the strabismic group, for the two amplitudes and directions, a two-factor 

repeated measures ANOVA was performed (ANOVA details in Appendix 6.5). As for 

the BSV group there was a significant difference in saccade gain for different 

amplitudes [F(1,7)=28.290, p<0.01] showing that the gain to 8° targets was less than to 

4° targets. There was no significant difference in gain between saccades to the right and 
left, [F(1,7)=0.757, p>0.05]. The gain of saccades made towards the fixing eye or 

strabismic eye was also compared using a two-factor ANOVA and no significant 
difference was found [F(1,7)=0.916, p>0.05] (ANOVA details in Appendix 6.6). The 

data for each direction was therefore combined for each subject. Pooled data for each 

group is shown in Table 4.8. 
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Subject Rightward saccades Leftward saccades 

4° target 8° target 4° target 8° target 

1 
0.982 

SD 0.075 
0.896 

SD 0.081 
0.998 

SD 0.068 
0.989 

SD 0.078 

2 
0.966 

SD 0.133 
0.929 

SD 0.140 
0.990 

SD 0.112 
0.974 

SD 0.111 

3 
1.198 

SD 0.205 
0.958 

SD 0.178 
1.011 

SD 0.186 
0.861 

SD 0.209 

4 
0.986 

SD 0.080 
0.904 

SD 0.097 
0.967 

SD 0.059 
0.878 

SD 0.095 

5 
0.927 

SD 0.098 
0.810 

SD 0.087 
0.913 

SD 0.091 
0.858 

SD 0.083 

6 
1.055 

SD 0.084 
0.924 

SD 0.108 
0.991 

SD 0.081 
0.939 

SD 0.118 

7 
1.086 

SD 0.045 
0.988 

SD 0.055 
1.088 

SD 0.040 
0.962 

SD 0.059 

8 
1.003 

SD 0.097 
0.899 

SD 0.088 
1.107 

SD 0.075 
0.980 

SD 0.083 
Mean 1.025 0.914 1.008 0.930 

SD 0.086 0.052 0.063 0.056 
SE 0.030 0.019 0.022 0.020 

Table 4.7: Mean saccade gain of eight subjects with strabismus. SD = standard deviation, SE = standard 
error. 

Table 4.8 shows that both BSV and strabismic subjects had accurate saccades to 4° 

targets with a mean gain of 1.0, however the strabismic group had less accurate 

saccades compared to the BSV group for 8° targets. This difference was not found to be 

significantly different supporting hypothesis 2 (unpaired t-test, t=-1.178, df = 11, 

p>0.05). T test details are shown in Appendix 6.7. 

Group BSV Strabismus 

4° target 8° target 4° target 8° target 

Mean 1.004 0.949 1.017 0.922 
SD 0.034 0.031 0.063 0.044 
SE 0.015 0.014 0.022 0.015 

Table 4.8: Mean saccade gain for both saccade directions, pooled data for each subject group. 
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4.4.3 Binocular co-ordination of saccades 

The amplitude of the right eye was subtracted from the amplitude of the left eye to give 
a measure of saccade disconjugacy in degrees. Table 4.9 shows the mean saccade 
disconjugacy for each subject in the BSV group and Tables 4.10 and 4.11 show the 

group data for esotropes and exotropes respectively. Positive values indicate convergent 
disconjugacy and negative values divergent disconjugacy. Figure 4.4 shows individual 

subjects disconjugacy for 8° targets. Figure 4.5 shows typical saccade disconjugacy of 
subjects with BSV and strabismus. 

Table 4.9 shows that four of the BSV subjects demonstrated a small divergent 
disconjugacy and one subject had a minimal convergent disconjugacy for saccades of 
both amplitudes and directions. The three subjects with left exotropia also had divergent 
disconjugacy for saccades of both amplitudes and directions, but this was approximately 
three times the size of the BSV subjects. The five subjects with esotropia had 
inconsistent disconjugacy. Subjects 5 and 8 had convergent disconjugacy for both 

amplitudes and direction. Subjects 3 and 7 had convergent disconjugacy for leftward 

saccades and divergent disconjugacy for rightward saccades, whilst subject 2 had the 

opposite of this. Table 4.12 shows disconjugacy in the esotropic subjects for saccades 
towards the fixing eye or the strabismic eye. This demonstrates that when saccades are 
made towards the strabismic eye disconjugacy becomes increasingly convergent. This is 

true for all subjects with the exception of subject 3. 

To test for any significant difference in saccade disconjugacy in the BSV group, for the 
two amplitudes and directions, a two-factor repeated measures ANOVA was performed 
(ANOVA details in Appendix 6.8). There was a significant difference in saccade 
disconjugacy for different amplitudes [F(1,4)=17.963, p<0.05] showing that the 
disconjugacy to 8° targets was significantly more than 4° targets. There was no 

significant difference between saccades to the right and left [F(1,4)=0.010, p>0.05]. 
Similarly for saccade disconjugacy in the strabismic group, for the two amplitudes and 
directions, a two-factor repeated measures ANOVA was performed for esotropes and 

exotropes (ANOVA details in Appendices 6.9 and 6.10). In both types of strabismus 
there was a significant difference in saccade disconjugacy for different amplitudes 
[esotropia: F(1,4)=14.593, p<0.05, exotropia: F(1,2)=18.879, p<0.05] showing that the 

disconjugacy to 8° targets was slightly more than to 4° targets. 
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Subject Rightward Leftward 
40 8° 4° 8° 

1 -0.24 -0.32 -0.28 -0.36 
2 -0.08 -0.11 -0.10 -0.13 
3 0.15 0.09 0.10 0.08 
4 -0.18 -0.28 -0.10 -0.22 
5 -0.30 -0.39 -0.33 -0.34 

Mean -0.13 -0.20 -0.14 -0.19 
SD 0.18 0.19 0.17 0.18 

Table 4.9: Saccade disconjugacy in five subjects with normal BSV. Positive values represent convergent 
disconjugacy and negative values represent divergent disconjugacy. SD = standard deviation. 

Subject Rightward Leftward 
4° 8° 4° 8° 

2 0.76 1.93 -0.52 -1.29 
3 -1.23 -1.51 0.48 0.94 
5 0.52 0.65 0.76 1.13 
7 -0.55 -0.93 0.74 1.63 
8 0.61 0.62 0.68 1.68 

Mean 0.02 0.15 0.43 0.82 
SD 0.87 1.37 0.54 1.09 

Table 4.10: Saccade disconjugacy in five subjects with esotropia. Positive values represent convergent 
disconjugacy; negative values represent divergent disconjugacy. SD = standard deviation. 

Subject Rightward 
Saccades to fixing eye 

Leftward 
Saccades to strabismic eye 

40 80 4° 8° 
1 -0.53 -0.44 -1.11 -1.84 
4 -0.12 -0.65 -0.53 -1.38 
6 -0.53 -0.86 -0.10 -0.62 

Mean -0.39 -0.65 -0.58 -1.28 
SD 0.24 0.21 0.51 0.62 

Table 4.11: Magnitude of saccade disconjugacy in degrees for three subjects with left exotropia. 
Negative values represent divergent disconjugacy. SD = standard deviation. 
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Subject Saccades to fixing eye Saccades to strabismic eye 
40 8° 4° 8° 

2 -0.52 -1.29 0.76 1.93 
3 0.48 0.94 -1.23 -1.51 
5 0.52 0.65 0.76 1.13 
7 -0.55 -0.93 0.74 1.63 
8 0.61 0.62 0.68 1.68 

Mean 0.11 -0.002 0.34 0.97 
SD 0.59 0.92 0.88 1.42 

Table 4.12: Magnitude of saccade disconjugacy (in degrees) for five subjects with esotropia for saccades 
towards the fixing eye and towards the strabismic eye. Positive values represent convergent disconjugacy; 
negative values represent divergent disconjugacy. SD = standard deviation. 

There was no significant difference in disconjugacy for saccade direction, to the left or 
right, [esotropia: F(1,4)=0.475, p>0.05, exotropia: F(1,2)=1.091, p>0.05]. 

As all of the exotropes had left strabismus these results also indicate that, despite a trend 
for more divergent disconjugacy towards the strabismic eye, this was not statistically 
significant. The disconjugacy of saccades made towards the fixing eye or strabismic eye 
of the esotropic group was compared using a two-factor repeated measures ANOVA 

and no significant difference was found for direction [F(1,4)=0.623, p>0.05]. ANOVA 
details in Appendix 6.11. 

From Tables 4.9 and 4.10 and Figure 4.3 it is evident that both exotropic and esotropic 
subjects showed larger disconjugacy than the subjects with BSV. To compare 
disconjugacy between the strabismic subjects and the binocular subjects unpaired t-tests 

were performed. For exotropic subjects there was no significant difference from BSV 

subjects in disconjugacy for 4° targets (saccades towards fixing eye: t=1.784, df = 6, 

p>0.05, saccades towards strabismic eye: t=1.867, df = 6, p>0.05). The difference was 
significantly different however for 8° targets (saccades towards fixing eye: t=3.163, df 

= 6, p<0.05, saccades towards strabismic eye: t=3.824, df = 6, p<0.01) showing that in 

exotropia disconjugacy was more divergent than in BSV subjects. Details of t-tests in 

Appendix 6.12. For the 5 esotropic subjects there was no significant difference from the 
BSV group for 4° targets, (saccades towards fixing eye: t= -0.888, df = 8, p>0.05, 

saccades towards strabismic eye: t= -1.192, df = 8, p>0.05), or for 8° targets (saccades 

towards the fixing eye: t= -0.420, df = 8, p>0.05, saccades towards strabismic eye: t= 

-1.830, df = 8, p>0.05). Details of Wests in Appendix 6.13. 
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4.5 Discussion 

4.5.1 Saccade latency 

Table 4.5 and Figure 4.2 showed that saccade latency for each group of subjects was 

comparable, being 150.4ms ±14.9 in the BSV group, and 159.5ms ±14.7 in the 

strabismic group. As the target was presented binocularly (as would be the case in later 

distractor experiments of Chapters 5 and 6) and all subjects had Snellen visual acuity of 
at least 6/6 in the fixing eye, this finding was expected and supports hypothesis 1. 

Saccades typically have latency in the order of 200ms (Becker, 1991; Leigh and Zee, 
1999), which is considerably higher than found in this present study. Saccadic latency 

can be affected significantly by the nature of stimulus and experimental conditions. A 

warning by any sensory stimulus prior to the saccade stimulus reduces saccade latency. 
If the timing of saccades is unpredictable saccade latency may be up to 100ms longer 

than a predictable paradigm (Cohen and Ross, 1977). In a series of step stimuli, with 
fixation periods between steps of <3 seconds (as used in this present study), the 

previous step gives warning of the next step, hence reducing latency as the pattern is 

established. Such evenly distributed step intervals between 350 and 650ms have been 

shown to reduce saccade latency, such that it decreases with decreasing step interval 

(Findlay, 1981). The step interval in the present study was randomly varied between 

500 and 1200ms, which could have had the effect of reducing the mean saccade latency. 

Walker, Deubel, Schneider and Findlay (1997) found mean saccade latency of 152ms 

for 4° and 156ms for 8° targets in a similar paradigm with step intervals of between 500 

and 1000ms, which is comparable to the 150.4ms to 159.5 in this current study. 

Section 4.4.1 showed that there was no significant difference in saccade latency for the 
two target eccentricities used, i. e. 4° or 8°. This is consistent with a review of several 

studies reported by Findlay (1983), where the conclusion was that saccade latency was 

unaffected by eccentricity for horizontal saccades between 1° and 15°. 

4.5.2 Saccade gain 

Hypothesis 2 proposed that there would be no difference in saccade gain of the 
dominant eye in binocular and strabismic subjects. Saccades were highly accurate for 40 

targets for both groups of subjects as shown in Table 4.8, with mean gain for both 

groups being close to 1. For 8° targets, saccades were slightly hypometric, the mean 
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gain being 0.949 for the BSV group and 0.922 for the strabismic group, but this 
difference was not significant. The hypothesis was therefore supported. 

The task, stimulus size and brightness and the background around the target all 
influence saccade accuracy. This decrease in accuracy for 8° targets was expected 
(Bartz, 1967; Becker, 1972) as the percentage of undershooting saccades increases, and 

overshooting saccades decreases, as the stimulus amplitude increases, (see Chapter 1, 

Figure 1.4). Kapoula and Robinson (1986) showed that the range of target positions 
used in an experimental session influences the accuracy of saccades, such that distances 

at the upper end of the range are underestimated, and those at the lower end of the range 

overestimated, regardless of the absolute amplitude. 

4.5.3 Saccade disconjugacy 

Figure 4.4 showed that saccade disconjugacy in the BSV group was divergent and <0.4° 
in all subjects, hence saccades of the abducting eye were slightly larger than the 

adducting eye. This compared to the mean divergent disconjugacy in the exotropic 

subjects of 0.7° with a range of -0.1° to -1.8° and a mean convergent disconjugacy in 

the esotropic subjects of 0.4° with a more varied range of -1.3° to +1.9°. Hypothesis 3 

proposed that saccades would be more disconjugate in strabismic subjects than 
binocular subjects. In exotropic subjects this was supported for 8° targets (Appendix 

6.12) but there was no statistical difference between BSV and esotropic subjects 
(Appendix 6.13). From Table 4.12 it is clear that all five esotropic subjects had 

disconjugacy greater than the BSV subjects but this did not reach statistical significance 
due to the variable convergent or divergent disparity seen between subjects. From 
Figure 4.3 highlights the increased disconjugacy in esotropic subjects compared to BSV 

subjects and supports hypothesis 3. 

Of particular interest in the strabismic subjects is the finding, as demonstrated in Figure 

4.4, that disconjugacy in the two subjects with clinically demonstrable anomalous BSV 
(subjects 7 and 8) was larger than four of the six subjects with suppression and no 
demonstrable BSV (normal or abnormal). This does not therefore add support to the 

proposed hypothesis of Kapoula, Bucci, Eggert and Garraud (1997) that absence of 
binocular vision is the cause of disconjugacy. 

The results of this present study have demonstrated smaller disconjugacy than de Faber, 

van Rijn and Collewijn (1994). This is most likely due to the small amplitudes in the 
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present study, however, they are comparable with results for esotropes reported by 

Kapoula, Bucci, Eggert and Garraud (1997) shown in Table 4.1. 

Tables 4.11 and 4.12 demonstrate that both esotropic and exotropic subjects had a 
tendency for disconjugacy to increase when saccades were made towards the fixing eye, 
becoming more convergent in esotropia and more divergent in exotropia. This was not 

statistically significant, but it is possible that this could become significant for larger 

amplitude saccades. This is in contrast to the findings of Kapoula, Bucci, Eggert and 
Garraud (1997) who found no directional differences and de Faber, van Rijn and 
Collewijn (1994) who reported that saccades were more conjugate towards the 

strabismic eye than towards the dominant eye. 

4.5.4 Experimental design 

As intended, the results do not provide a totally comprehensive characterisation of 
saccades in strabismus since the primary aim was to familiarise subjects with the 

equipment and stimuli to be used in the experiments of Chapters 5 and 6, using only 4° 

and 8° target eccentricities. It was established, however, that saccade latency and gain 
(parameters to be collected in later experiments) were equivalent in the two groups of 

subjects. This demonstrated that they were comparable to previously reported literature 

using similar forms of target presentation. Further extensive studies beyond the scope of 
this thesis, using monocular and binocular fixation, would be required to fully document 

saccade parameters in strabismus. 

4.6 Conclusion 

There was no significant difference between the BSV subjects and strabismic subjects 
for saccade latency and gain when targets were presented to both eyes. Saccades were 
of similar amplitude in each eye in the BSV group with only small divergent 
disconjugacy. Disconjugacy for exotropic subjects was also divergent but larger than for 

the BSV subjects. The esotropic subjects had a mixture of convergent and divergent 

disconjugacy with a tendency for increasing convergent disconjugacy for saccades 
towards the strabismic eye. All saccade parameters were therefore comparable to 

previously reported literature 

All subjects were compliant with the task allowing successful recording and analysis of 
saccades and all agreed to take part, and were included in, further experiments described 

in Chapters 5 and 6. 
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Chapter 5 

The remote distractor effect in normal binocular single vision 

This chapter describes the experiment carried out to assess the remote distractor effect 
in normal BSV, particularly to determine differences in the effect with the distractor 

presented to both eyes and one eye only. 

5.1 Experiment 4: Binocular and monocular distractors in normal BSV 

It has been shown, as described in detail in Chapter 1, Section 1.1.2, that the latency and 
accuracy of saccades can be altered by the presence of a peripheral target, known as a 
distractor. Walker, Deubel, Schneider and Findlay (1997) demonstrated that, for 
horizontal saccades, there was a reciprocal effect on saccade latency and accuracy 
depending on distractor location (see Figure 5.1). Distractors presented within a window 

of 20° around the horizontal target axis affected amplitude, but did not influence 

latency. Distractors presented greater than 20° from this axis increased latency, but had 

no effect on amplitude. The latency increase reached a peak with distractors presented at 
the original fixation location. 
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Figure 5.1: Effects of remote distractors on a) saccade latency and b) amplitude. Pooled data for six 
subjects. Error bars =1SE. From Walker, Deubel, Schneider and Findlay (1997). 

The experimental test condition in previous distractor studies has been for the target and 
distractor to be presented to both eyes. The exception is a study by Walker, Mannan, 
Maurer, Pambakian and Kennard (2000), which measured the distractor effect using 

monocular fixation and distractors presented monocularly in eight normal subjects and 
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six subjects with hemianopia. Distractors were presented at equal eccentricity in the 

contralateral hemifield to the target, either 5° or 10°. In the normal subjects they found a 

small difference in the saccade latency increase for temporal field distractors (15ms) 

compared to nasal field distractors (7ms), however this was not statistically significant. 
Due to the nature of the group studied, and with the aim of the study to compare 
distractors in the blind field with distractors in the seeing field, distractors were not 

presented at the original fixation location where the maximum effect would be 

expected. Comparisons were not made to binocular distractor presentations. 

On a variety of visual tasks binocular performance is superior to monocular 

performance, an effect referred to as binocular summation. As this superiority, of the 
two eyes over one, exceeds that predicted on the basis of statistical considerations alone 
(i. e. probability summation) binocular summation is thought to reflect neural interaction 

between the eyes (Blake & Fox, 1973). It is well established that binocular performance 
is greater than that predicted by probability summation models for threshold tasks such 

as increment detection, form recognition, acuity and flicker fusion (Blake & Fox, 1973). 

Reaction time has been found to reduce with an increase in intensity of the visual 

stimulus (Hovland, 1936; Steinman, 1944; Bartlett & Macleod, 1954). Smith (1955) 

found that raising the intensity of a target by 1 log unit decreased reaction time by 25%. 

Poffenberger (1912) was the first to report that binocular reaction time was faster than 

monocular reaction time to the same visual stimulus. Travis (1949) used a 
discrimination task in which subjects were required to identify the break in a Landolt 

ring. The reaction time binocularly was significantly less than monocular performance. 
Smith (1955) quantified this, finding that binocular reaction time was 15 to 19% faster 

than monocular depending on the intensity of stimulus. Differences in reaction time 
binocularly, monocularly in the dominant eye and monocularly in the non-dominant eye 
have been compared by Minucci and Connors (1964) over a range of light intensity 

levels. Overall binocular reaction times were faster than the dominant eye by 6% and 
faster than the non-dominant eye by 10%. 

As distractors hinder saccadic performance it is possible that the presence of distractors 

in both eyes would have a larger effect on saccade latency and accuracy compared with 

monocular presentation and this will be studied in this Chapter. 

Ocular dominance, first described by Porta (1593) is where the input of one eye is 

favoured over the other. The dominant eye is thought to be more involved in visual 
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direction and space localisation (Brod and Hamilton, 1971; Fowler and Stein, 1983). 
Rombouts, Barkhof, Sprenger, Valk and Scheltens (1996) used functional MRI to 

establish a basis of ocular dominance. Their results show that the dominant eye 
activates a larger area of the primary visual cortex than the non-dominant eye. 

With respect to programming and characteristics of eye movements, the difference in 

response of the dominant and non-dominant eye has received very little attention in the 
literature. Moiseeva, Slavutskaya and Shul'govskii (2000) evaluated lateral differences 
in saccade latency, measured with electro-oculogram (EOG), and the latency of the peak 
of rapid pre-saccade potentials, using electroencephalograph (EEG) traces, in response 
to presentation of visual stimuli to the dominant and non-dominant eyes. No consistent 
response was found in saccade latency for dominant or non-dominant stimulation. An 

earlier appearance of EEG potentials in response to stimulation of the dominant eye was 
found. The authors suggested that this may reflect greater rates of attention 
disengagements of fixation and faster sensory processing of the peripheral visual 
stimulus. Potentials immediately preceding the start of the saccades, which reflect the 

process of motor initiation, were increased during stimulation of the dominant eye 
suggesting a leading role for this eye in motor preparation in saccades. 

Han, Seideman and Lennerstrand (1995), in a study of accommodative vergence 
movements, found that the gain of accommodative vergence was larger in non-dominant 

eye stimulation than dominant eye stimulation. 

The aims of the present study were to replicate the binocular distractor effect in our 
laboratory set-up, and compare it with that described by Walker, Deubel, Schneider and 
Findlay (1997). Secondly, to investigate this further by comparing the effects of 
distractor presentations to the dominant eye, non-dominant eye or to both eyes. This has 

not previously been investigated and it is unknown whether the dominant eye has a 
greater input to saccade planning than the non-dominant eye, or whether differences in 

monocular and binocular distractor presentation exist. The unique design of the LCP 

shutter system for dissociation allowed presentation of distractors monocularly whilst 
the fixation target was presented binocularly to determine whether a significant 
difference in saccade latency or accuracy was found compared to binocular distractor 

presentations. 
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5.1.1 Hypotheses 

1. When distractors are presented to both eyes the reciprocal effect of distractors on 

saccade latency and gain, reported by Walker, Deubel, Schneider and Findlay 
(1997) will be replicated in our laboratory set-up. 

2. The effect of distractors on saccade latency when presented to the dominant eye 

will be greater than when presented to the non-dominant eye. 
3. The effect of distractors on saccade gain when presented to the dominant eye will 

be greater than when presented to the non-dominant eye. 
4. The effect of distractors on saccade latency when presented binocularly will be 

greater than when presented monocularly. 
5. The effect of distractors on saccade gain when presented binocularly will be 

greater than when presented monocularly. 

5.2 Methods 

5.2.1 Participants 

Five subjects with normal corrected visual acuity, bifoveal BSV and stereoacuity of at 
least 60" of arc using the TNO test, were recruited from a student population. The mean 

age of the subjects was 20.6 years (range 19.0 - 21.8 years). Table 5.1 shows details of 
the subjects. All were naive to the purpose of the study and had only had one previous 

experience of eye movement recording as reported in Experiment 3 of Chapter 4. The 

characteristics of saccades in this group of subjects have been described earlier in 

Experiment 3. 

Subject Age 
(years) 

VA 
lo MAR 

Refractive 
correction 

Cover Test Prism Cover Test 
at 114cm (A) 

Stereo 
(sec of arc) 

Dominant 
eye 

RE LE RE LE 
1 19.9 -0.1 0.0 piano piano exophoria 4131 60 Right 

2 21.8 -0.1 -0.1 piano piano exophoria 2 BI 60 Right 

3 21.3 -0.1 -0.1 piano piano exophoria 4 BI 60 Right 

4 19.0 -0.1 -0.1 -0.50 -0.50 esophoria 4 BO 30 Left 

5 21.2 0.0 -0.1 -5.50 -5.00 exophoria 2 BI 60 Left 

Table 5.1: Characteristics of the five subjects. VA = logMAR visual acuity, RE = right eye, LE = left 

eye, A= prism dioptre, BI = prism base in, BO =prism base out. 
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5.2.2 Apparatus 

The laboratory was set-up as described in Chapter 2, Figure 2.4. Eye movements were 

recorded using the Skalar infrared limbal tracker and head movements were restricted 
by use of chin and cheek rests. The eye movement data was stored on disk and analysed 

off-line. 

A 1° cross target (see Figure 5.2) was presented by back projection from projector 1 in 

the centre of a flat translucent screen 114cm from the subject's eye. The mirror 

galvanometer sited in front of the projector was used to move the target randomly to 

either 4° or 8° eccentricities along the horizontal axis. This target was visible to both 

eyes at all times. 

Projector 2 back projected a distractor onto the screen. The distractor consisted of an 

unfilled circle, diameter 1.5° (see Figure 5.2) which, when presented, appeared for 

200ms simultaneously with the onset of the target. In the experiment, three distractor 

conditions were used; distractor to both eyes simultaneously, distractor to the dominant 

eye only and distractor to the non-dominant eye only. Distractor presentation to one or 
both eyes was controlled by four LCP shutters, one positioned between the lens and the 

mirror galvanometer of each projector and one positioned in front of each of the 

subject's eyes. Alteration of the timing of the four shutter openings in relation to each 

other allowed dissociation of the eyes and hence presentation of the target to both eyes, 

and the distractor to one eye or both eyes, depending on the condition (see Chapter 2, 

Figures 2.8 and 2.9). 

O 
: 1.5° ý: 1.00 : 
Distractor Target 

Figure 5.2: The appearance and dimensions of distractor and target. 
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The target size, distractor size and distractor duration were selected following a pilot 

study run on two subjects (sizes: 1 °, 1.5° and 2°; durations: l OOms and 200ms). Those 

selected, 1.5° and 200ms, gave the greatest effect and were comparable with Walker, 

Deubel, Schneider and Findlay (1997). The targets were also considered to be of an 

appropriate size to allow visibility by subjects with mild to moderate amblyopia in later 

studies. 

A stationary, blurred, random dot background, of luminance 2cd/m2, was back projected 
by projector 3 and was visible to both eyes under all experimental conditions (Figure 

5.3). 

Translucent screen 

Figure 5.3: Image of the stationary background back projected onto translucent screen, with the 1° target 
cross. 

5.2.3 Design of the experiment 

The experiment was a repeated measures design, with the independent variables being 

target position (4° or 8°), distractor presentation to the dominant, non-dominant or both 

eyes and distractor position (0, ±2°, ±4°, ±6°, ±8°, ±10°). Dependent variables were the 

saccade latency and saccade gain. 

To guard against effects of learning or fatigue the independent variables were 

counterbalanced by randomisation. 

5.2.4 Procedure 

A clinical examination was initially performed to determine the presence of normal 
bifoveal BSV, level of visual acuity and eye dominance. Ocular dominance was 
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determined using the hole-in-the-card test bi-manually (Walls, 1956). This was carried 

our prior to Experiment 3 and up to one week before this current experiment. 

The eye movement recordings were carried out over three testing sessions, each one 
lasting for approximately 45 minutes. This was because longer recording sessions 

would have lead to fatigue and could have reduced the number of saccades for analysis. 
The three sessions were completed over a maximum period of ten days. 

For each eye movement recording session the subjects were seated in a comfortable 
office chair with the Skalar infrared eye movement recorder and LCP shutters clamped 
in position. Before each block of trials the subjects were informed that all targets would 
initially appear in the centre of the screen and always move to the right and then back to 
the centre. This direction was maintained for all subsequent trials to avoid any increase 
in latency on distractor trials caused by the additional discrimination process required to 

select the target direction (Walker, Deubel, Schneider & Findlay, 1997). 

Pursuit eye movements, generated using a sinusoidal target motion of 0.32Hz of 

amplitude ±12°, were used to calibrate the eye movement recorder before each trial, as 
described in Chapter 2, Figure 2.3. 

Figure 5.4 shows the target and distractor positions. The target was presented centrally 

and, to avoid anticipation, there was a random period (500 to 1200ms) before the target 

disappeared and immediately reappeared at either 4° or 8° on the horizontal axis for 

500ms (nominally zero gap). The target then returned to the centre point before the next 
trial. In most trials a distractor appeared simultaneously with the onset of the 4° or 8° 

targets for 200ms. The eccentricity of the distractor varied randomly between -10, -8, 

-6, -4, -2,0, +2, +4, +6, +8 and +10° along the horizontal axis, where positive numbers 

represent distractors ipsilateral to the target and negative numbers represent distractors 

contralateral to the target. Zero indicates distractors presented at the original fixation 

point. 

All three distractor conditions (distractor to both eyes, dominant eye and non-dominant 

eye) were presented during each of the three recording sessions. The order of the 

conditions was randomised between sessions. In 60 out of the 720 saccades collected 
(20 during each distractor condition) no distractor was presented. Twenty saccades at 

each distractor eccentricity were collected for each distractor condition. 
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a) Ipsilateral Distractor Positions 

-10 -8 -6 4 -2 42 

b) Contralateral Distractor Positions 

4 degree saccade 

nnnnn1 ý_ -I- i 

The remote distractor effect in normal BSV 

8 degree saccade 

14 degree saccade 

8 degree saccade 

B8 10 

-10 -8 -6 -4 -2 0246a 10 

c) Distractor Position at Original Fixation Point 
8 degree saccade 

I- 4 degree saccade 

-10 -8 -6 -4 -2 2488 10 

Central Fixation Point += Target 

0- Distracter 

Figure 5.4: Schematic diagram of target and distractor positions. 

Subjects were instructed to look directly at the centre of the small target cross, 

positioned in the middle of the screen and, when it jumped to the right, to move their 

eyes as quickly and accurately as possible to continue looking at the centre of the cross. 
They were told not to anticipate the target movement and that they should only move 
their eyes when movement had occurred. They were told that sometimes a circle (i. e. 
the distractor) may appear anywhere on the screen, but this should be ignored at all 
times. 

5.3 Results 

Saccadic eye movement data from the dominant eye was analysed using Visual Basic 

computer software. Each saccade was checked visually to confirm correct detection of 
the primary saccade. Mean saccade latency and gain for each individual subject was 

calculated for each distractor eccentricity and for each of the three types of distractor. 

Saccades with latency <80ms were excluded as they were considered to be anticipatory 
(Fischer & Webber, 1993) and saccades with latency >450ms were excluded as they 

were not considered to be visually triggered (Walker, Deubel, Schneider & Findlay, 
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1997). In all subjects a small number of saccades could not be analysed due to blinks or 
incorrect fixation. A total of 14% of saccades was therefore excluded from the analysis. 
The data was then transferred to Excel spread sheets for further analysis. 

The results are presented in terms of the distractor effect on saccade latency (Section 

5.3.1) and saccade gain (Section 5.3.2). In each of these sections the response without 
distractors are firstly presented, followed by the response with distractor in monocular 

and binocular conditions. 

5.3.1 Saccade Latency 

Latency without distractors 

The mean saccade latency for target presentations without distractors for each subject 
during each distractor condition (i. e. during testing of distractors to dominant eye, non- 
dominant eye and both eyes) is shown in the last column of Tables 5.2a and b. To 

determine whether saccade latency was different during the three test conditions and for 

4° and 8° saccades, a two-factor repeated measures analysis of variance (ANOVA) was 

performed. The two factors were: distractor condition (dominant eye, non-dominant 

eye, both eyes) and target amplitude (40 and 8°). There was no significant difference in 

saccade latency for saccades without distractors in the three test conditions 
[F(2,8)=0.145, p>0.05], and no significant difference for the two saccade amplitudes 
[F(1,4)=0.042, p>0.05] There were no significant interactions between the factors 

(ANOVA details are shown in Appendix 7.1). Therefore there was no difference in 

saccade latency without distractors throughout the experiment. The mean saccade 
latency for no distractor trials from the three test conditions and both target amplitudes 

were therefore pooled and are shown in Table 5.3. These mean values for saccade 
latency without distractors are used to compare latency with distractor presentations and 

are shown as horizontal lines in Figure 5.5a and b. 

A one-sample t test compared the mean latency for the group reported in this current 

study with the mean saccade latency without distractors reported by Walker, Deubel, 

Schneider and Findlay (1997), which revealed no significant difference between the 

studies (4° targets: t= -0.375, df = 4, p>0.05,8° targets: t= -0.730, df = 4, p>0.05). 
Details oft-tests are shown in Appendix 7.2. 
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Chapter 5 The remote distractor effect in normal BSV 

Mean saccade latency with no distractor 
Subject 4° target 8° degree 

1 145.67 133.37 
2 135.63 141.44 
3 145.00 148.85 
4 171.48 179.81 
5 151.04 147.73 

Mean 149.76 150.24 
SD 13.35 17.64 
SE 5.97 7.89 

Table 5.3: Mean saccade latency of saccades made with no distractor for individual subjects. SD = 
standard deviation, SE = standard error. 

Distractors at fixation 

Tables 5.2a and b show the mean saccade latency with distractors to both eyes, 
dominant eye and non-dominant eye, at each distractor position for each subject. 

Figure 5.5 shows the mean saccade latency pooled for the group, plotted as a function of 
distractor eccentricity with distractors presented to both eyes, the dominant eye and the 

non-dominant eye. The group mean latency ±1 standard error without distractors is 

shown in this figure as horizontal lines for comparison. 

A similar response to distractors was observed in all subjects for all distractor 

conditions, such that saccade latency was increased maximally when distractors 

appeared at fixation and increased in the contralateral non-target hemifield. Ipsilateral 

distractors for 4° saccades showed a small increase in saccade latency when presented to 

the dominant eye and non-dominant eye, but were unaffected when the distractor was 

presented to both eyes. For 8° saccades in all conditions, ipsilateral distractors did not 

affect latency. 

When comparing the three types of distractor presentation, a slightly greater effect was 

demonstrated with the distractor at fixation to both eyes, compared to monocular 

presentation in all subjects. From the pooled data for 4° target eccentricity (shown in 

Table 5.4a) the saccade latency increased by 65.9ms, compared to the no distractor 

condition, when the distractor was presented to both eyes simultaneously, 53. Oms when 

presented to the dominant eye and 41.5ms when presented to the non-dominant eye. 
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Figure 5.5: Effect of distractors on saccade latency, a) target presented at 4°, b) target presented at 8°. 
Pooled data for five subjects with normal BSV is shown. SE = standard error. 

For 8° target eccentricity (Table 5.4b), saccade latency increased by 59.2ms when the 

distractor was presented to both eyes simultaneously, 47.5ms when presented to the 

dominant eye and 44.2ms when presented to the non-dominant eye. To establish 

whether this difference between distractors to the dominant, non-dominant or both eyes 

was significant, a three-factor repeated measures ANOVA was performed. The three 

factors were: eye viewing the distractor (dominant, non-dominant or both eyes), target 
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Chapter 5 The remote distractor effect in normal BSV 

amplitude (4° and 8°) and distractor (no distractor or distractor at fixation). The results 

showed that there was no significant difference between the three distractor conditions 

at fixation [F(2,8)=2.531, p>0.05]. Also, the effect was not significantly different for 

target amplitude [F(1,4)=0.014, p>0.05]. The only effect was for presence or absence of 

a distractor at fixation [F(1,4)=65.00, p<0.01]. No significant interactions were found 

between any of the three factors with the highest level of significance for interactions 

being F(2,8)=1.949, P>0.05). ANOVA details are shown in Appendix 7.3. 

A one-sample t-test compared the mean latency with distractors at fixation for the group 

reported in this current study with the mean saccade latency with distractors at fixation 

reported by Walker, Deubel, Schneider and Findlay (1997), which revealed no 
significant difference between the studies (4° targets: t=2.008, df = 4, p>0.05,8° 
targets: t= 0.990, df = 4, p>0.05). Details oft-tests are shown in Appendix 7.2. 

Distractors contralateral and ipsilateral to the target 
For Hypothesis 1, to show whether the effect on latency differed between contralateral 

and ipsilateral distractors and, for Hypotheses 2 and 4, to test for differences in saccade 
latency with distractors presented to the dominant, non-dominant and both eyes, a four- 

factor repeated measures ANOVA was performed. The four factors were; eye viewing 

the distractor (dominant, non-dominant or both eyes), target amplitude (4° and 8°), side 

of distractor (contralateral or ipsilateral) and position of distractor (2°, 4°, 6°, 8° and 
100). This revealed no significant effect for target amplitude [F(1,4)=0.225, p>0.05], or 

which eye was viewing the distractor [F(2,8)=0.535, p>0.05]. Contralateral distractors 

gave significantly greater saccade latencies than ipsilateral distractors, [F(1,4)=58.176, 

p<0.01]. Distractor position was also significant [F(4,16)=14.959, p<0.01]. When 

considering interactions of the factors, there was a significant interaction between eye 

viewing the distractor and the side of distractor [F(2,8)=22.832, p<0.01]. ANOVA 

details are shown in Appendix 7.4. 

From Figure 5.5 it would appear that this significant interaction reflects a larger 

difference in ipsilateral and contralateral distractors for the both eyes condition. To test 

this, data from the both eyes condition was removed from the four-factor ANOVA and 
the significance disappeared confirming this assumption. ANOVA details are shown in 

Appendix 7.5. 
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Distractor Distractor position (degrees) 
di i con t on 

-10 -8 -6 -4 -2 0 2 4 6 8 10 

Dominant eye 12.07 7.54 9.11 15.40 24.37 52.95 15.45 9.08 11.56 7.15 5.86 
Non-dom eye 17.23 27.00 29.43 30.63 29.14 41.51 27.56 21.63 23.47 19.86 21.40 

Both eyes 8.43 10.46 12.03 12.68 26.40 65.93 19.96 2.39 -2.15 -5.68 -0.56 

b 
Distractor Distractor position (degrees) 

di i con t on 
-10 -8 -6 -4 -2 0 2 4 6 8 10 

Dominant eye 6.79 10.14 18.22 16.59 25.51 47.50 19.66 7.13 6.03 1.77 12.82 
Non-dom eye 12.99 3.72 16.26 16.41 17.45 44.23 17.48 7.55 3.62 1.79 9.44 

Both eyes 13.70 14.87 15.14 18.94 28.79 59.19 18.30 5.32 -3.37 0.08 3.75 

Table 5.4: Mean difference (pooled data for five subjects) in saccade latency (ms) between no distractor 

presentation and distractor presentation at each eccentricity for each distractor condition. a) 4° target 

stimulus, b) 8° target stimulus. Positive values represent an increase and negative values a decrease in 

saccade latency with distractors compared to the no distractor condition. 

5.3.2 Saccade Gain 

Saccade gain was taken to represent a measure of saccade accuracy, calculated by 

dividing the saccade amplitude by the target amplitude, hence a gain of 1 equals a 

saccade precisely reaching the target, >1 equals a hypermetric saccade and <1 equals a 
hypometric saccade. 

Gain without distractors 

The mean saccade gain for target presentations without distractors for each subject 
during each distractor test session is shown in the last column of Tables 5.5a & b. To 

determine whether saccade gain was different during the three test sessions, and for 4° 

and 8° saccades, a two-factor repeated measures ANOVA was performed. The two 

factors were: distractor condition (dominant eye, non-dominant eye, both eyes) and 

target amplitude (4° and 8°). There was no significant difference in saccade gain for 

saccades without distractors in the three test sessions [F(2,8)=0.470, p>0.05]. As 

expected, a significant difference for the two target amplitudes was found 

[F(1,4)=7.789, p<0.05] showing that gain was significantly less for 8° targets than 4° 

targets. There were no interactions between the factors. The mean saccade gain for all 

conditions was therefore pooled and is shown for each amplitude in Table 5.6. 

ANOVA details are shown in Appendix 7.6. 
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Mean saccade gain with no distractor 
Subject 4° target 8° target 

1 0.978 0.883 
2 1.046 0.942 
3 0.999 1.075 
4 0.931 0.953 
5 1.052 1.001 

Mean 1.001 0.971 
SD 0.045 0.072 
SE 0.020 0.029 

Table 5.6: Mean saccade gain of individual subjects for saccades made with no distractor presentation. 
SD = standard deviation, SE = standard error. 

Distractors ipsilateral and contralateral to the target 
Tables 5.5a and b show the mean saccade gain with distractors in both eyes, dominant 

eye and non-dominant eye at each distractor position for each subject. Figure 5.6 shows 
the mean saccade gain pooled for the group plotted as a function of distractor 

eccentricity with distractors presented for each distractor condition. The group mean 

gain without distractors at 4° and 8° are shown in this figure as horizontal lines for 

comparison. Table 5.7 shows the group mean difference in gain for saccades made with 

and without distractors at each eccentricity. 

A similar response to distractors was observed in all subjects for all distractor 

presentations, such that accuracy was unaffected by contralateral distractors, but was 

affected by ipsilateral distractors. With the distractor between fixation and the target the 

saccade was hypometric, whereas with the distractor at greater amplitudes to the target, 

saccades were hypermetric. From the pooled data for 4° and 8° target presentations, 

gain decreased maximally when the distractor was at 2°, i. e. distractor between fixation 

and the target. Saccade gain increased maximally when the distractor was at 10°, i. e. 

with the distractor at greater amplitudes than the target. 
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Distractor Distractor position (degrees) 
condition -10 -8 -6 -4 -2 0 2 4 6 8 10 

Dominant ee 0.011 -0.038 -0.003 0.024 0.054 -0.015 -0.128 -0.026 0.216 0.179 0.240 
Non-dom eye 0.053 0.034 0.036 0.002 0.028 -0.037 -0.049 -0.006 0.242 0.246 0.352 

Both eyes 0.028 0.052 0.068 0.063 0.085 0.024 -0.220 0.077 0.384 0.603 0.824 

b) 

Distractor Distractor position (degrees) 
condition -10 -8 -6 -4 -2 0 2 4 6-1 8 10 

Dominant eye -0.070 -0.039 -0.037 -0.060 -0.037 -0.053 -0.232 -0.232 -0.176 -0.068 -0.011 
Non-dom ee -0.016 -0.036 0.007 -0.021 -0.013 -0.019 -0.135 -0.149 -0.066 -0.022 0.046 

Both eyes -0.012 0.002 0.014 0.035 0.041 0.018 -0.382 -0.342 -0.169 -0.002 0.166 

Table 5.7: Mean difference (pooled data for five subjects) in saccade gain with distractors at each 
eccentricity and without distractors for each distractor condition, a) 4° target presentation, b) 8° target 
presentation. Positive values represent an increase, and negative values a decrease, in gain with distractors 
compared to the no distractor condition. 

When comparing monocular and binocular distractor conditions, a greater effect 
(decreased saccade accuracy) was demonstrated when the distractor was presented to 
both eyes in all subjects. From the pooled data for 4° targets (shown in Table 5.7a) gain 
decreased by 0.220 with the distractor at 2°, when the distractor was presented to both 

eyes simultaneously, by 0.128 when presented to the dominant eye and by 0.049 when 

presented to the non-dominant eye. Saccade gain increased by 0.824 with the distractor 

at 10° when the distractor was presented to both eyes simultaneously, by 0.240 when 

presented to the dominant eye and by 0.352 when presented to the non-dominant eye. 
For 8° target presentation (shown in Table 5.7b) gain decreased maximally by 0.382 

with distractor at 2° when the distractor was presented to both eyes simultaneously, by 

0.232 when presented to the dominant eye and by 0.135 when presented to the non- 
dominant eye. 

Due to expected differences in the response for 4° and 8° target amplitudes (Walker, 

Deubel, Schneider & Findlay, 1997) statistical analysis was performed for each 
amplitude separately. 

For Hypothesis 1, to show whether the effect on gain differed between contralateral and 
ipsilateral distractors and, for Hypotheses 3 and 5, to test for differences in saccade gain 

with distractors presented to the dominant, non-dominant and both eyes, a three-factor 

repeated measures ANOVA was performed. The three factors were; eye viewing the 
distractor (dominant, non-dominant or both eyes), side of distractor (contralateral or 
ipsilateral) and position of distractor (±2°, ±4°, ±6°, ±8° and ±10°). 
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For 4° targets this revealed a significant effect on which eye was viewing the distractor 

[F(2,8)=13.688, p<0.01]. There was a significant difference in the saccade gain between 

ipsilateral and contralateral distractors [F(1,4)=48.635, p<0.01] and distractor position 
[F(4,16)=17.890, p<0.0001]. All interactions were found to be significant with the 
highest p value being 0.0061. This showed that the effect of viewing eye depends on the 

side of the distractor with a significantly greater difference occurring for ipsilateral 

distractors. The effect of viewing eye on position of distractor is significantly greater 

with binocular distractors with the largest difference at 10°. The effect of position 
depends on side of distractor as there is no difference between position for contralateral 
distractors but there is a significantly different effect with position for ipsilateral 

distractors. From Figure 5.6, it would appear that the significant interactions related to 

the viewing eye resulted from the greater effect on gain with distractors to both eyes 
compared with the other two conditions. 

To determine whether this was the case, the three-factor ANOVA was repeated with 
data from the both eyes condition removed to determine whether the significance 
disappeared. This was confirmed, as there were now no significant differences for eye 

viewing the distractor or any interactions between other factors and viewing eye. Details 

of the ANOVA are shown in Appendix 7.8. 

For 8° targets this revealed no significant effect on which eye was viewing the distractor 

[F(2,8)=2.572, p>0.05]. There was a significant difference in the saccade gain between 

ipsilateral and contralateral distractors [F(1,4)=24.230, p<0.01] and distractor position 
[F(4,16)=35.798, p<0.0001]. All interactions were found to be significant with the 
highest p value being 0.0037 (see Appendix 7.9 for further details of the ANOVA) 

showing exactly the same pattern as described for 4° targets. From Figure 5.6 it would 

appear that this interaction results from the greater effect on gain with distractors to both 

eyes compared with the other two conditions. 

To determine whether this was the case, the three-factor ANOVA was repeated with the 
both eyes condition removed. This revealed that there was now no significant difference 

in saccade gain with distractors to the dominant or non-dominant eye [F(1,4)=4.157, 

p>0.05], but there was a significant difference between the viewing eye and the side of 
the distractor [F(1,4)=20.601, p<0.05]. ANOVA details are shown in Appendix 7.10. 

119 



Chapter 5 The remote distractor effect in normal BSV 

5.4 Discussion 

The remote distractor effect was generated in the described laboratory set-up using a 
1.5° distractor presented for 200ms simultaneously with the onset of the target. The 

results are discussed firstly with regard to the no distractor condition, followed by 

discussion relating to each of the hypotheses. 

5.4.1 Saccades without distractors 

In this present study, as shown in Table 5.3, the mean saccade latency with no 
distractors was 150ms (SD ±15.1), which was considerably lower than the typical 

values quoted in the literature as discussed in Chapter 4, Section 4.5.1. The results were 
consistent with the findings of Chapter 4 and Walker, Deubel, Schneider and Findlay 
(1997) using a similar paradigm, this was confirmed statistically, see Appendix 7.2. 

Saccades were highly accurate for 4° targets in the no distractor condition, the mean 

gain for the group being 1.001 (SD ±0.045). For 8° targets, saccades were slightly 
hypometric, the mean gain being 0.971 (SD ±0.072). This decrease in accuracy for 8° 

targets was expected as the percentage of undershooting saccades increases, and 

overshooting saccades decreases, as the stimulus amplitude increases (Bartz, 1967; 

Becker, 1972). Kapoula and Robinson (1986) showed that the range of target positions 

used in an experimental session influences the accuracy of saccades, such that distances 

at the upper end of the range are underestimated, and those at the lower end of the range 

overestimated, regardless of the absolute amplitude. 

A further reason for the slightly reduced gain may be expectational drift where a pre- 
saccadic movement of the eyes away from the fixation target occurs, decreasing the 

amplitude of the required saccade. In experimental paradigms with a known target 
direction expectational drift is frequently seen (Kowler and Steinman, 1979). However, 

saccades with obvious expectational drift were eliminated by the software or by visual 
inspection. Any small amounts existing in this current data would therefore be 

negligible. 
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5.4.2 The distractor effect with both eyes 

Hypothesis 1: The reciprocal effect of distractors on saccade latency and gain, reported 
by Walker, Deubel, Schneider and Findlay (1997), will be replicated in our laboratory 

set-up when distractors are presented to both eyes. 

From Table 5.4 the mean latency effect, with the distractor presented to both eyes at the 

original fixation point, produced an increase of 66ms for 4° targets and 59ms for 8° 

targets. This is greater than that shown by Walker, Deubel, Schneider and Findlay 
(1997) who found a 30ms to 40ms increase in a study of six normal subjects. This 
difference however was not found to be statistically different (see t test details in 

Appendix 7.2). 

There are several reasons why these small differences may have occurred between the 

two studies; Walker, Deubel, Schneider and Findlay (1997) used a colour monitor to 

present stimuli, their target was 0.19° compared with 11 in this current study and they 

used distractors of 0.53° compared with 1.5° in this study. A pilot study revealed that 

the projection method with the use of the LCP shutters slightly reduced the target 

luminance; hence targets with a diameter of less than 1° were difficult to remain 

attentive to. Larger targets than those used by Walker, Deubel, Schneider and Findlay 

(1997) were therefore required to overcome this in the current study. As three distractor 

conditions were tested in this current study (dominant eye, non-dominant eye and both 

eyes) the number of saccades and the length of the study were greater than Walker, 

Deubel, Schneider and Findlay (1997) which could lead to differences in results. 

With contralateral distractors an increase in latency of between 8ms and 26ms for 4° 

targets, and between 14ms and 29ms for 8° targets was found, as shown in Table 5.4. 

This is very similar to that shown by Walker, Deubel, Schneider and Findlay (1997) 

who reported increases of between 20ms and 30ms. The increase in saccade latency for 

contralateral distractors was found to be significantly larger than for ipsilateral 

distractors, and the change in latency at fixation was significantly different with 
distractors. 

From Table 5.4 and Figure 5.5 it can be seen that distractors ipsilateral to the target 

from +4° to +10° had no effect on saccade latency. A small difference between this 

study and Walker, Deubel, Schneider and Findlay (1997) is evident for ipsilateral 

distractors at +2°. Walker, Deubel, Schneider and Findlay (1997) reported no increase 
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in latency in this position whilst the current study showed an increase in the region of 
18ms. This may have been due to the larger distractor diameter used in the present 

study. Neurons within the rostral pole of the superior colliculus, which respond during 

active fixation, represent a central 2° area of the visual field (Munoz and Wurtz, 1992, 

1993a, b). These cells were more likely to be stimulated with the 1.5° distractor used in 

the present study as the outer edge of the distractor was 1.25° from the original fixation 

point, approaching the 2° central area. This may have caused release of fixation to be 

more difficult, therefore increasing the saccade latency. 

In this present study the effects on saccade gain were inverse to the effects observed on 

saccade latency as found in the results of Walker, Deubel, Schneider and Findlay 

(1997). Thus significant changes in gain were found for ipsilateral distractors whilst no 

effect was demonstrated for contralateral distractors. Ipsilateral distractors between 

fixation and the target reduced gain whilst distractors appearing beyond the target 

amplitude increased saccade gain. Specific values of the change in gain for saccades 

with distractors, were not given by Walker, Deubel, Schneider and Findlay (1997) 

however comparisons with their data can be made from Figure 5.1b, Figure 5.6 and 
Table 5.4. In the present study the maximum effect on gain for 4° targets, occurring 

with distractors at +10° eccentricity, were larger than the maximum effect for 8° targets, 

at +2° eccentricity, whilst Walker, Deubel, Schneider and Findlay (1997) found the 

opposite. 

Small differences in the remote distractor effect on saccade latency and gain have been 

highlighted in the present study, compared to that of Walker, Deubel, Schneider and 
Findlay (1997). However, similar findings of a reciprocal effect of distractors on latency 

and gain, a maximum increase of latency at fixation, and equivalent increases in latency 

for contralateral distractors, have been demonstrated. It can be concluded that the effects 

were comparable between studies therefore Hypothesis 1 is supported. 

5.4.3 The distractor effect in dominant and non-dominant eyes 

Hypothesis 2: The effect of distractors on saccade latency when presented to the 

dominant eye will be significantly greater than when presented to the non-dominant eye. 

As the dominant eye is thought to be more involved in visual direction and space 
localisation (Brod and Hamilton, 1971; Fowler and Stein, 1983), and as it activates a 
larger area of the primary visual cortex than the non-dominant eye (Rombouts, Barkhof, 
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Sprenger, Valk & Scheltens, 1996), the experiment tested whether distractors presented 
to the dominant eye would result in a greater effect on saccade latency and accuracy. 

Figure 5.5 and Table 5.4 have shown that the difference in latency was small between 

dominant and non-dominant eye distractors. The maximum difference in latency 

between dominant and non-dominant eyes was 1Ims for a 4° target with distractors at 
the original fixation point. Distractors to the dominant eye tended to give the largest 
increase, although this difference was negligible and not statistically significant, 
therefore Hypothesis 2 is rejected. 

The eye movement data analysed in this current experiment was taken from the 
dominant eye. Hence distractors presented to the dominant or non-dominant eye 
affected saccades of the dominant eye equally. The findings of Zhou and King (1998) 

provide evidence that pre-motor neurons in the PPRF encode monocular commands for 

either right or left eye saccades, suggesting that organisation of the oculomotor system 
is monocular. They also found existence of binocular motor neurons indicating that 

convergence of pre-motor monocular signals may be crucial for binocular co-ordination. 
The results of the current study may suggest that sensory input to one eye has equal 
effects on both eyes. Analysis of saccades of each eye would be required to confirm 
this. 

Hypothesis 3: The effect of distractors on saccade gain when presented to the dominant 

eye will be significantly greater than when presented to the non-dominant eye. 

Figure 5.6 and Table 5.7 have shown that the difference in gain was small between 

dominant and non-dominant eye distractors. Distractors to the non-dominant eye tended 
to give the largest change in gain, although overall this difference was not statistically 
significant (see Section 5.3.2). The maximum difference in gain between dominant and 

non-dominant eyes was 0.112 for 4° targets with distractors at +10°, and 0.097 for 8° 

targets with distractors at +2°. For 4° targets the viewing eye was not significant whilst 
8° targets did give a significant difference between the dominant and non-dominant eye 
depending on the side and position of the distractor. 

An increased effect on gain, with ipsilateral distractors to the non-dominant eye, was 
found that was significantly different for 8° targets. Hypothesis 3 anticipated a greater 

effect of distractors in the dominant eye and was therefore rejected. 
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5.4.4 The distractor effect in monocular and binocular conditions 

Hypothesis 4: The effect of distractors on saccade latency when presented binocularly 

will be greater than when presented monocularly. 

The difference in effect on latency between monocular and binocular distractor 

conditions at fixation was small, with binocular distractors giving a slightly larger 

effect. Table 5.4 shows that this difference was maximum at fixation and amounted to 
12.9ms for 40 targets and 11.7ms for 8° targets, which was not statistically significant. 
The significant results for differences in viewing eye, depending on the side of the 
distractor, was found to be due to the greater difference in the binocular condition 
compared to the monocular conditions. From Figure 5.5 and Table 5.2a it can be seen 
that this finding was not due to the greater contralateral effect binocularly compared to 

monocularly, but was due to the reduced (but still significant) difference between 

contralateral and ipsilateral distractors in the monocular conditions. In view of these 

contrasting results Hypothesis 4 could not be conclusively supported. 

Why there was less difference between the effects of ipsilateral and contralateral 
distractors in the monocular conditions than in the binocular condition is not instantly 

clear. Walker et al (2000) found that temporal field (nasal retina) distractors had a 
greater effect on latency than nasal field distractors, possibly due to naso-temporal 
asymmetry in retinal ganglion cell density. This could have affected the results of the 

present study. As three of the five subjects were right eye dominant and two were left 

eye dominant, when distractors were presented to the dominant eye for rightward 
saccades the effect would have been greater for contralateral distractors for the right eye 
dominant subjects (distractor to temporal retina), but less in the left eye dominant 

subjects (distractor to nasal retinal). This could have reduced the overall effect of the 

side of the distractor. To determine whether this was the reason for the differences 

monocularly the experiment could be repeated with equal numbers of rightward and 
leftward saccades for dominant and non-dominant eye distractors eliminating the retinal 
side bias. 

The effects of distractors at fixation on saccade latency have been attributed to an 
increase in activation of the fixation region of the SC, which is thought to inhibit 

triggering a saccade (Dorris and Munoz, 1995; Munoz and Wurtz, 1993a & b, 1995a & 

b). Walker, Deubel, Schneider and Findlay (1997) concluded that these inhibitory 

effects operate over a wider visual field as they found that distractors at any location in 
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the visual field, except a narrow sector around the target axis, affected saccade latency. 

Modification of this theory has been suggested (Olivier, Dorris & Munoz, 1999), due to 

findings reported by Krauzlis, Basso and Wurtz (1997), that the visual receptive fields 

of collicular fixation neurons are small and encompass only foveal and parafoveal 

regions of the contralateral visual field. Olivier, Dorris and Munoz (1999) proposed that 

the effect seen on latency may be due to a lateral inhibitory network within the 

intermediate layers of the SC. Presentation of a remote distractor would activate a 

second population of saccade-related neurons and lateral. inhibitory interactions would 
therefore delay the motor command to initiate a saccade. 

In the current study, the small trend for increased saccade latency for binocular 

distractor presentations, compared to monocular presentations at fixation (see Figure 

5.5) and the larger contralateral to ipsilateral difference with binocular distractors 

(Appendix 7.4 and 7.5), may represent a slightly larger inhibitory effect in the 
intermediate layers of the SC in binocular distractor presentations. Further studies of 

collicular activity during binocular and monocular distractor presentations would be 

required to investigate this. 

Hypothesis 5: The effect of distractors on saccade gain when presented binocularly will 
be greater than when presented monocularly. 

Distractors appearing simultaneously to both eyes, gave rise to an increased effect on 

saccade gain compared to monocular distractor presentations (see Figure 5.6 and Table 

5.7). In view of the results of this experiment being statistically significant, Hypothesis 

5 is therefore supported. 

The use of a flat projection screen means that distractors would not have stimulated 
directly corresponding points, however the disparity was small and did not give rise to 

diplopia of the distractor in any of the subjects at any eccentricity. Westendorf and Fox 

(1977) have shown that binocular summation is not restricted to excitation arising from 

stimuli registered in strict correspondence. They found binocular summation 
(summation in excess of probability summation) when flashes were presented to non- 

corresponding retinal points within a range of fusion. 

This current study therefore demonstrates that binocular distractors create an enhanced 

effect, which reduces saccade gain more than monocular presentation. The experiment 
found that binocular summation of sensory input reduced motor performance. 
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The effect of distractors presented in the ipsilateral hemifield on saccade accuracy, 
where the saccade is directed to an intermediate position between the target and 
distractor (the global effect) has been attributed to collicular burst cells. It has been 
found that two stimuli, if closely located, can produce a single intermediate peak of 

activity (Glimcher & Sparks, 1993). Olivier, Dorris and Munoz (1999) suggested that 
lateral interaction within the intermediate layers of the SC may also explain this 

response. They proposed that presentation of a distractor in close proximity to the target 

would activate a second population of saccade-related neurons in overlapping receptive 
fields. Lateral excitatory interactions would therefore modify the motor command 
affecting the spatial saccade parameters. 

This present study demonstrated a larger distractor effect on saccade gain for binocular 

compared to monocular distractor presentations. It may be speculated that distractor 

stimulation in both eyes activates a wider population of saccade-related neurons in 

overlapping receptive fields, than monocular distractor presentation, leading to greater 
modification of the motor command. Studies of activity in the intermediate layers of the 
SC with monocular and binocular distractors would be required to investigate this 

suggestion. 

5.5 Conclusion 

The distractor effect has been replicated for binocular distractors in subjects with 

normal bifoveal BSV. The effect is not notably different with distractors presented to 

either the dominant or non-dominant eye. For saccade gain a clear enhanced binocular 

response has been demonstrated in the remote distractor effect, such that distractors 

presented to both eyes have a greater effect on saccade gain than monocular 
presentations in the presence of normal bifoveal BSV. The effect of distractors on 

saccade latency was not different for monocular or binocular distractors at fixation but 

was significantly greater when considering the difference between contralateral and 
ipsilateral distractors. 

The experiments in Chapter 6 will compare the effects described here in normal 
binocular subjects with the effect of monocular and binocular distractors in subjects 

with strabismus. 
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Chapter 6 

The remote distractor effect in strabismus 

This chapter presents the results of the distractor effect in strabismus and relates 

responses to binocular status. Eight subjects were studied and the results provide an 
insight into the programming of saccadic eye movements in the presence of strabismus 

with suppression (Experiment 5) and ARC (Experiment 8). Experiments to determine 

whether strabismic subjects with suppression were aware of the distractor presented 

within the suppression area are also included (Experiments 6& 7). 

6.1 Introduction 

The previously documented binocular and monocular remote distractor effect in 

Experiment 4 of Chapter 5 will be used to answer two questions; firstly, in the presence 

of constant strabismus, does the deviating eye contribute to eye movement planning 
and, secondly, does this depend upon the subject's sensory status? 

If the strabismic eye contributes to saccadic eye movement planning, distractors 

presented to the strabismic eye only should alter saccade latency and gain compared to 

the no distractor condition. As found in Experiment 4, an increased effect on saccade 

gain would also be expected with distractors presented to both eyes, compared to 

monocular presentation. 

As described in Chapter 1, two adaptations may occur in strabismus to avoid diplopia 

and confusion, these are suppression and ARC. In the case of suppression, objects 
appearing within specific areas of the visual field of the deviating eye are not perceived. 
In the presence of ARC, abnormal BSV exists where the subject is aware of objects in 

the visual field of the deviating eye, but has a shift in retinal correspondence to 

compensate for the deviation. 

The experiments presented in this chapter explored the effect of distractors presented 

monocularly and binocularly in subjects with strabismus and these two sensory 

adaptations. In view of the lack of perception of images within the suppression area it 

may be that visual information from these retinal areas does not contribute to eye 

movement planning. In ARC with the presence of anomalous BSV information from the 
deviating eye is perceived, distractors in the deviating eye should therefore affect 
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saccade latency and gain similarly to subjects with normal BSV as described in Chapter 

5. However, changes in retinal localisation, to compensate for the angle of deviation and 

allow anomalous BSV, may also change localisation of the distractor effect. The 

maximum distractor effect may therefore still occur at the original fixation point, with 
distractor stimulating the pseudo-fovea. If re-mapping does not occur then the 

maximum effect may be when distractors are presented to the anatomical fovea, hence 

would be shifted from the original fixation point. 

6.1.1 Experiment 5: The effect of distractors in strabismus with suppression 

6.1.1.1 Hypotheses 

For strabismic subjects with suppression and normal retinal correspondence: 

1. a) Saccade latency will be affected by distractors presented binocularly and 
monocularly to the fixing eye. b) This effect will be equivalent to that 
demonstrated in normal BSV in Experiment 4. c) Saccade latency will be 

unaffected by distractors presented within the suppression area of the strabismic 
eye. 

2. a) Saccade gain will be affected by distractors presented binocularly and 
monocularly to the fixing eye. b) The effect of distractors, presented to the 
fixing eye, will be equivalent to that demonstrated in the dominant eye of 
subjects with normal BSV in Experiment 4. c) Saccade gain will be unaffected 
by distractors presented within the suppression area of the strabismic eye. d) The 

enhanced effect of binocular distractors, as demonstrated in subjects with normal 
BSV in Experiment 4 will not be present. 

6.2 Method 

6.2.1 Participants 

Six subjects with constant strabismus and suppression participated, three with esotropia 

and three with exotropia. Table 6.1 gives a summary of their clinical details. These 

subjects were previously described in Experiment 3, Chapter 4. Two subjects with 

constant strabismus, ARC and anomalous BSV were also investigated and are presented 
later in the chapter in Experiment 8. A clinical assessment of their visual function and 

strabismus was performed prior to Experiment 3 and full details of this are shown in 

Appendix 5 (subjects 1-6). 
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Subj Age VA Strabismus PCT Retinal Suppression Abnormal BSV 
(years) RE LE 1.14m 

A 
corresp. Sensory 

fusion 
Motor 
fusion 

SV 

1 62.8 -0.1 0.2 left XT 2 BI NRC yes no no no 
2 22.8 0.0 -0.1 right ET 6 BO NRC yes no no no 
3 20.2 0.0 -0.1 right ET 6 BO NRC yes no no no 
4 41.0 -0.1 0.0 left XT 12 BI NRC yes no no no 
5 39.5 0.4 -0.1 right ET 12 BO NRC yes no no no 
6 19.4 -0.1 0.1 left XT 18 BI NRC yes no no no 

Table 6.1: Subject details - strabismic group with suppression. VA =1ogMAR visual acuity, RE = right 
eye, LE = left eye, ET = esotropia, XT = exotropia, BO = prism base out, BI = prism base in, SV = 
stereoscopic vision. 

6.2.2 Apparatus 

The equipment and stimuli were exactly as in Experiment 4 of Chapter 5. 

6.2.3 Design of the experiment 

The design was identical to Experiment 4, Chapter 5. 

6.2.4 Procedure 

Within one week of the clinical assessment and participating in Experiment 3 the 

participants attended three separate eye movement-recording sessions within a period of 
ten days. 

The same procedure as described in Chapter 5 was repeated. The only difference in 

procedure was that the angle of deviation was measured before and immediately after 
the eye movement recording session using the prism cover test. This was to firstly 

assess whether the LCP shutters, running at 80Hz, affected the angle of strabismus and, 
secondly, to determine whether the angle of deviation changed following a 30 minute 
recording session. The fixation target used for the prism cover test measurements was a 
central 1° target cross, back projected on to the screen at a distance of 114cm, and the 

subjects were seated with head fixed in the chin and cheek head support, wearing the 

eye movement recorder head band. The LCP shutters were operating at 80Hz in the 

open position. The angle of strabismus was not affected by the dissociation of the 

shutters and did not change over the period of the testing session. These results are 
shown in Appendix 9. 
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6.3 Results 

All six subjects with constant strabismus and suppression completed the experiment and 

were included in the analysis. All had dense suppression in the deviating eye (? filter 8 

using the Bagolini filter bar) and large suppression areas extending beyond the 

distractor eccentricities presented in this study. A preliminary trial showed that whilst 
fixating the central fixation target presented to both eyes, all subjects were unaware of 
the presence of the distractor when presented monocularly to the strabismic eye at all 

eccentricities used, whereas when presented to the fixing eye or to both eyes they were 

visible (see later follow-up study, Experiment 6, Section 6.5). Data analysis followed 

the same sequence as in Experiment 4. 

6.3.1 Saccade latency 

Latency without distractors 

The last column of Tables 6.2a and b shows the mean saccade latency for target 

presentations without distractors for each of the six subjects during each distractor test 

condition (i. e. during testing of distractors to fixing, strabismic and both eyes). Similar 

latencies occurred during all test conditions and both amplitudes, with the mean of the 
five subjects ranging from 158 ±15.5ms to 164 ±15.8ms for 4° targets and 165 ±10.9ms 

to 171 ±14.8ms for 8° targets. Subject 1 had longer latencies compared to the other 

subjects, having a mean of 189ms for all saccades without distractors. 

To determine whether saccade latency was different during the three test conditions and 
for the two target amplitudes (4° and 8°), a two factor repeated measures ANOVA was 

performed. There was no significant difference in saccade latency for saccades without 
distractors in the three test conditions [F(2,10)=3.146, p>0.05], and no significant 
difference for the two saccade amplitudes [F(1,5)=3.887, p>0.05]. ANOVA details are 

shown in Appendix 10.1. The mean saccade latency without distractors for all test 

conditions was therefore pooled and is shown in Table 6.3. 

Latency with distractors 

Individual subject data of saccade latency in each distractor location for the three 

distractor conditions is shown in Table 6.2 a and b. Figure 6.1 shows the groups mean 

saccade latency plotted as a function of distractor eccentricity with distractors presented 
to both eyes, fixing eye and strabismic eye. Saccade latency without distractors is also 

shown for comparison. 

130 



Chapter 6 The remote distractor effect in strabismus 

" 0 M 
CM 

O 
CrJ 

CO 
M 

pp 
to 

O 
O 

p 
O 

M 
W 

r- 
M 

CO 
Co 

" O N. 
CD 

Co 
M 

p 
O 

(D 
e 

0 
O 

C7) 
N 

M 
ý 

pp 
ýT 

N 
M 

ý ý CD 
M 

0 
O 

C') 
f- 

N 
CO 

CM 
00 

ý 
CO 

M 
O 

C)0 
I- 

Co ý 
'OV CND COD 

ýý pp 
CD CMO 

ý ^ L 000 
ý ý M 

1D c0D 
ý p p 

Cn 
i O 23 QO) tý 

ý ý 
t0D CMD tN0 

ý O 

N P- r r' r' r r "- H ý- ý"' ý.. ý.. r. "' ý N r r r ý"' P- r. r 

C C C 

O r- O CA O fý 00 N 00 O 1- O 1ý CO 'tt 1ý gt 'st 0 N U') I- O N O fý 
to U) O Ch O U) %- qt 00 CD O N > r- N O 1- - CA CD CD 

4 
O O N IA 

(n CV U) CC 00 (r) M Cr) to f` st O N Co N CJi U) CÖ N to O M U'f ý ýt 
00 0D U) CD CD st (0 r- 00 ti to U) h h CO 1- 

I 

fý CO Cn to 00 to CO e- 
r ! - r '- t- ! - r r r r r ! - r" r r r r r r r ! - 

CO ý S M O O O O N U) 00 00 N N h CO l* ý O O) O ý M 
M O U) O N Co N CO 'cf 00 to ti ý w w ý- O O vO 1ý ý- 1ý 

00 
o 

M 
U) 

ý 
U) 

0ýpp 
tC) 

CV 
CO 

Cp 
U') 

O) 
U') 

U) CV 
CS) 

f` 
CD 

O M 
U) (O 

CV 
(D 

M 
CO 

ý CG N 
(D CD 

U) cý 
- CD U) 

ee}} 
tn 

O M 
c 
r r r- r" r r r . - f- r r r r r- 

ý 
r r 

ct 
r 

t 
r" ý- P' ý 

0 N M N pppp ý- O U) 0 Co (D M M M r` v N N U) et CD S fý r CM 0 O M O) 
IN l0 00 0 0 

. 
O 

. 
CD 

. (D CM . 
Co to . - N co O ti cD O) O) (D 00 U) to 

. 
00 

. LO ý 'cf . N h f- CTf M . 0 LO LO . C7 . fý h . (0 . of . U) U) . CD r- . U) . tn f- . r CA . M 
f` U) Co CD U) U) CO r- 'ct U) CD f` (O ý CD U) CM 't U) tt U) 
r ! - r r r- r' r r r r r r r ! - r r r r" r' "- r 

ý 0 M U) ýý - U) CD O r- eJ O h (0 C) O CA 1- N t CO U) O U) Co (D CG e- 0 
U) M CD O) N Co N CD O ý CO U) fý O CO M Ill O d' O r- N O CO U) Iý 
N M h CD O (6 N CÖ to U) P- - to - U) N 00 Co) f` O (D Cfl M to ý v 
CA 
r- 

U) 
r 

CD 
f- 

U) 
r 

CD 
r 

e 
r- 

Co 
ý- 

ý f- 
r- 

(0 
r Lo r 

U) 
. - 

CD 
r' 

CO 
P' 

Co 
r 

f- 
r' 

CD 
. - 

ý 
\- 

ct 
r 

U) 
r 

lO 
r 

U) 
r 

r 

N O r- O (D r- 0 U) U) N ý O M M CA O O CA N cl) CO ()) (D 0 0 (J) 0 
U) N O 00 CM O 

. 
Co) 

. 
U) 

. 
C") N (0 Co 1 9 U) h h 0 to N C)0 M 

. N Co 
D 

Cn P- 00 
. N 

N 
O 
ti 

M 
ý 

to 
- 

. CO . (n 
co 

. (O 
u) 

. N 
to 

. Cl 
to 

. CT 
U) 

. 
CD 

. 
t0 

. 
- 

. 9 . O 
- 

. ý . ý . C7) 
CD 

. CD 
f` 

. U) 
ti 

. t0 
ti f` - f` O) 

r" 
( 
"- 

e 
!" r e- r' r 

r 
r r P- e- P- r ý"' 

e N r r' r' f- ! - ý 
1 

O O O eý CM O p r- (0 U) O ti ý O O 00 ý- Co U) N 0 C)0 Co f_ ý fý cM N M C) 
U) U) (D (D 

. 
O 

. 
O 

. 
N 

. 
O 

. 
'ti CO 

. 
M 0 U) O fl CC) (0 O O CO CD X- CD CO 0 M ti 

. e N . Co O O CO M CO ý (D . O . M . f- . M . O . ý . CA . CO . - (D . ýT . cD . to . 00 ý. . N 
h ß) C3) (N N N N N ý O f- U7 LO (D a0 h Co 1-t O) O ý N N M e- 
N ý v- N N N N N r r r ý - %- N N ý N N N N 

f- O O C'7 U) U) U) Co c) N 00 f, Co - O (O N N h U) U) C) - C)) N 0 
N to O CD ýt N 00 ý ý ' CM Co 00 0b ti CD fl (D r1.: et CO U) 
P- ti (fl Ö U) (0 Co M Co U) r- ct U) t- N N r) ari C0 M ö Co r_ LO U) ö Co 
0 (D ti CD (» 00 CO r- 00 (D le U) CD (D C0 ý C7 Co C)0 00 C10 O) Q) N 
N r- ý N T- ý r- e- r P- ý ý ý N- N "- r- r- r- %- 

ý C7 O U) (D M ('M N N U) 'f m e Co - Co LO Co U) CA 1 N 0 Oo h (D U) CA P- U) 
M U) r_ to ti M 

. 
0 

. 
C) 

. 
CA h 

. 
r- 

. 
O 

. 
f`. M h 

. 
et 

. 
N 

. 
U) 

. 
N IN U) O CD O N N C70 

. 
N 

. . Co . 0 . M . N . N C3 M ý- . 00 ý N 00 to 0 00 0A e- st N . N . M . ý . to . (D N N to 
r- CD (D () Cý) ý CO N CO 00 U) U) f- (D (0 ý r- 00 CO f` 00 00 CO e- N r "- r' r r ! - e- l- r" r ý- ý"' r' N P' "- r" r r r 

(Q O) O O r- M O e- N et CQ M h N f` t'M C+) CJ) ti ti CO LO e- CM ý O U) O e- 
p U) 0 N M O ý tt M CC) (D N O Co U) 10 ý O) tt f- M (D U) ý le Cn 

M Co 00 M U) h 0 Co O N LO N Ö N er U) O CO ý - O U) N t0 
ý (D U) ti 00 (D ti N 00 ti LO r1- CO (D ti e- CJ) ý (D P- CO P- CO r- 
N . - r r r r r r r r r r . - r r N . - . - i . - 1 r ! - 

Cx? M O (N CM O CM O v ý CO N U) N ý C)) (D N U) ý aQ f` M U) ý ý O r- ti O U) C) N U) M 
. 

CA C7) 
. 

U) 
. 

CA O 
. 

C3) O 
. 

N 
. 

U) ý 0 ý U) ý- f' 0 
. 

0 0 
. M . O h . (A Pz M 1- M (0 fý (D fý LO . . to . 1- . CY . M . M . CO . CD . f3 CA . to . c4 

C) ct U) ý f- ti "- h CO e U) CO 1- (O 9. - 00 00 I_ h w h N. 
r- r f" r r r r r r r r r . - r "- "- r r r r 

O N CD a0 ý 0 0 0) . - N O N ý t` (D O O M CA t0 O N ý O N O CO - 0 h 
ý (J) ý O (D N O M CO ' R (D r CD N a) 0 0 0) ti N ý Q) to U) 00 to 00 f- - to 

M M M M U) Ö Co , CM 
00 

M 
0 

ý ý 
Co 

. -Z 
h 

h 
A ti 

ti 
- 

ti ý 
. - M 3 M (V N 

A 
Ö 

O 
t0 

- 
00 

(V 
O 
N 

ý 
P' to r ý r Co r ý r 

ti 
! - 

N 
V ý"' 

0 
r 

st r- f- f 
C 
r r 

e 
y 

O 
N 

CD 
. - r 

CD 
ý- 

CO 
ý"' 

( 
r' 

C e 

G1 
l1) 

ý 

C 
ý 0 0 

x N 
Co 
ý v) O N 

ý lZ 

O C) ý N M e U) (D Ö p - N C, '7 U) CD p 
0 N C7 le U) (D 

` ý N N N N N 
N C ` ý6 N 

C 
N 

N N 
` ý 

N 

l8 0 
9 8 C C 

. L] CC :a ý Co +" C] n m 0 D la 
y 7 7 7 7 7 d O W 

ý N 7 7 7 7 d O W 
ý 

.N 7 7 7 7 7 7 d O W 

0 ý V) to u) Co Co Co V) U) 0 0 v) v) v) v) U) (n ý V) tn ý O V) to V) U) ý U) N V) 

co 
m 

f- 

131 



cbmtrAr The remote distracter effect in strabismus 

: 8 8 : 8 8 : ° ä g ý 5 ý $ ý 4 8 ý 't ý 
Ä 6 ý ý N h ý 

m 100 
CD V 

Lo 'co ý r 
t0 1ý 

11 
IA 10 r 

r r r r r r r h r r r r r r r «N r r r r r r r 

g g g 
pp NV p 

IA 
H ý 40 Ö ý pp 

IA 
ýýpp 
IA 

pp 
IA 

ý ý pp 
IA 00 

Ä 
<0V 

ý 8 ý ý 8 pp 
IA 

8 N ý . ý} 
N 

ti 
tf 

CIO 
V 

yyýý 
It1 

Nýy 
O 

C1 
ýA 

P 
10 'ti N 

01 C/ 
00 

h 
^ 

ý: 
O 

r' 
O 

r 
fD 

tV 
tD 

0º 
40 

tri 
r 

tG t0 
Iý 

pQ 
tD t0 IA 

p 8 ý ý ý 

r r r r NNV r r r r r r r r r r r r r r 

co V H 
N 

G 2 '- 
. 
I-. 

10 t0 t0 
H { p 

CV 
H H H y 

O 
p 
{0 1' 

co p 
O tD 

aý 
1A 

H ýA ý r 

oo 
Iý! f'! 

h 3 ý 
i 

ý r 0 8 8 V ý ýyy 
P. 

p 
tD 

ý ý 1 1D 1 1 8 p 1 V! 
'7 ti S N P I N I 

r r r r r r r r r r r r r r r r r r r r 

I 0 H t1 
1` 
ýý 
9 

^ s 
r 1~'1 N 

ý ý H V 
ty C1 t0 

ý ý1pp 
C1 

t1pp 
10 

fD 
t0 

t pp 
O 

pp 
O 

ý { pp 
th s co 

ý{ 
N 

ý 

H f"f 
t0 

1ý 
rf 
r 

V 
tD 

E 
a0 

8 t1ý 
10 

tfý 
F 

t0 
A tD 

t'ý 
Y7 

A 
t0 
yý 

V 
{p 
1A 

0 0 8 
IA 

h 
V 

f- 
to 

tp 
N 

in 
1A 

r 
t0 

1- 
r 

h 

r r r I r r r r r r r r r r r r r r r r r r 

ý ý Q ý 
/ý 

H p ý 
N I O 

ý y 
4> 

Ö g 
O 

ý Q ý 
N 

8 8 
co 

ý Ö 
f0 

ý "W p ý 
t^D 1ý 

8 H 
10 r 

r 

tA tD 
p p 
tJ 

Q 
10 

y ''ý 
1p P. 

A IV 
V. 

1D t p 8 0 1 ý 
Yf 

{ p 8 ý h ý r 0 
r- 

i 
co 

0V ý t p 8 ^ m r to 

r r r r r r r r r r r r r r r r r r r r r 

N H e ý 
r f 

r ý 
A 

r ý 
10 

o 
IA 

^ ý ry 
111 

ý N ý ý 
t 
in 
V 

in 
t0V 

e ý 
rf 

V O S N OV 8 N tý p 
a0 

r 8 V ý 
40 

9 
{ p 
I f' f 

ý H 
O 8 8 H 8 ý ý 0 ýj ý 8 8 H i0 

W. 9- V- 'r. N 

O ý H 
Q1 i0 

H r N Ä C 
t0 W 

m 8 
N 10 1r0 

ti 
10 

G 8 ý 
t^A O 

8 
N r- V- 

Ö 
O 
ý ý 

rý 
ý gp1ý A ý g ý 1ý 

0 
8 471 

0 
10 
r 

P 
N 

Q 
N 

Q1 
r 

p 
^ 
N 

N 
r N N 

N 
h 

r N (V N N r r r r r r 

7 ý ep 
IA 

Q ý 
d0 

rý 
t0 

H pp 
IA 

t pp 
Qý 'f 

qq tti N p ý co ti h t p ý H 
t~ D 

V ýO p 
IA 

H 
O 

aý 
a0 10! 

ý ý H 8 I.; V1 
em 

O 
r 

ti ýpp 
uý 

Ä H ý ti ý ~ y y N t p H 

- 

p 
1Ö 
- 

pW p 
OI 
r 

01 
r 

ýA 
Oý 
r 

00+ 
r 

N 
O 

N N g N r r r r r N 

ý N m 
"ý 

IN S 8 !7 
!1 to N 

p 
1Pi 

N ý tý ä f00 
ý N H p 

IA 
ýV c ý 

t") 
p 
IA 

ý 
tO'f 

ÖI 

ý 
P. 

ý 
co 

$$ 
0 

Ä tNý 
~ r 

0 
ý 

r 
p ~ t0 1% 

10 
h 
t0 

ýr+ jj 
CO ý CO 

N 

r 

w 
CO 
r 

ý 
r P 

r r r r 1 r N r r r r r N r r r 

m C'. (P m a s . ý ý ý P m V 40 Ö 

try 
Ä 

1'J R QI 
a s O 

f'1 
O 

tD 
/ýN 

{D 
^ 

r 

ý r ýj C 
^ 
r 

0 
r 

ý 

r 
8 N 

H 

r 
0 
r 

N 
r r r r r r r r r r r 

aQ 0 
11pp 
IA t0 

ý Q 
D 1 r O 

ý 
Hf 

Y 
t0 

1+ý 
rf 

^ ýýpp ýp "? a ýý 
t 

pp c 
CD 

p 
A 

p pp 
0 

M 0 

( 
ty ^ 1D tU 

I 
QI 

ýy 
fr 

p 
ai 

p 
N 

0 ' ý 1 ýy co a -0 0 
O> 

3 
w W 

8 
co - 

'f 

` t NNV 

ý 7 r WW 
' 

ý ý H O 
ý '+ rý 

!7 A N ý pf öo i0 N tu ý 
ý týp 

a0 t0 t^0 
Cp ö o 

IA 
S 

Pq'1 M 
" 

W 
ýM+º 

t I 

" 
" 

B 
r 

H ty 
r 

n 

r 

ý 

r r 

ýj 
r 

ý ý 

w 

" ýp 
6 

ýp 
1A 
r 

týp 
N 
r 

t0 
r- r 

fý 
0) r 

ty 
r 

co 
P- r 

0 
N 

00 

r r r r r r r 

" 
" , ý " j 

fE a r N A 
r 

r 0 tD 
r es N F) 'V Ifl lO 

C 

;3 ru N e7 a IA tO 

Sý 

M 

ý " O W '^ > 7 ý 7 7 " Q W 

N tA N N N 
; 

is 
a 

V) 2 N 1n Ö d > 
(n N (n N fn tn ý M N 

132 



Sh3&ISr_Q The remote distractor effect in strabismus 

Man saccade latency with no distractor 
Subject 4' target 8' target 

1 191.85 186.53 
2 154.59 162.10 
3 141.03 153.60 
4 158.53 165.24 
5 160.28 175.00 
6 161.95 162.15 

: Man 16137 167.44 
SD 16.72 11.61 
SE 6.83 4.74 

Table 6.3: Mean saccade latency aithout distractor presentation for each of the six subjects with 
strabismus and suppression. SD - standard deviation. SE - standard error. 

Figure 6.1 and Table 6.2 a and b show that all subjects demonstrated a similar response 
with distractors presented to both eyes and to the dominant eye, which was also similar 
to the response found in Experiment 4 in subjects with normal BSV (see Figure 5.5). 
For both 4' and 8' targets latency was unaffected by distractors ipsilatcral to the target 
but increased for contralateral distractors. The maximum increase in latency occurred 
with distractors at the original fixation point (distractor position zero). The effect of 
distractors presented to the strabismic eye is reduced compared to the other conditions. 
Latency is increased for 4' targets with contralateral distractors between -4° and -10°, at 
the original fixation point and very slightly for ipsilatcral distractors at +10°. The mean 
increase for the group was small and similar in these positions, being approximately 
l Oms. For 8' targets latency increased for contralateral distractors between -2° and -6°. 
Similarly to 4' targets the increase was small with the maximum increase of almost 
Ums with distractors at -4'. 

Distractor at fixation 

As in Experiment 4 the largest increase in latency for both eyes and fixing eye distractor 

conditions occurred at the original fixation point, represented as zero. For 4° targets the 
increase in saccade latency at the original fixation point was 66.7ms in the both eyes 

condition and 61.8ms in the fixing eye condition. For 8° targets the increase in latency 

with distractors at fixation was 47.3ms with distractors to both eyes and 51.7ms with 
distractors presented to the fixing eye. 
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Figure 6.1: Effect of distractors on saccade latency, a) target presented at 4°, b) target presented at 8°. 
Pooled data for six subjects with constant strabismus and suppression. 
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Chapter 6 The remote distractor effect in strabismus 

From Figure 6.1 it can be seen that when the distractor is presented to the strabismic eye 

effects on latency are present but less than the other two conditions. The increase at 
fixation for 4° targets was 10.5ms and 8° targets just 2.4ms. 

To establish whether the effect of distractors on latency at fixation when presented to 

the fixing, strabismic or both eyes was significant a three-factor repeated measures 
ANOVA was performed. The three factors were; eye viewing the distractor (fixing, 

strabismic or both eyes), target amplitude (4° and 8°) and distractor (no distractor or 
distractor at fixation). Details of the ANOVA are shown in Appendix 10.2. The results 

showed that there was a significant difference for presence or absence of a distractor at 
fixation [F(1,5)=67.274, P<0.001]. This effect was found to be significantly different 

for the three distractor conditions [F(2,10)=49.064, p<0.0001]. There was no significant 
difference for target amplitude [F(1,5)=0.007, p>0.05]. A significant interaction was 
found between presence of distractor at fixation and eye viewing the distractor 

[F(2,10)=49.064, P<0.0001]. From Figure 6.1 this effect appears to result from a 

smaller response with distractors presented to the strabismic eye compared to the other 
two conditions. This was confirmed when the data from the strabismic eye was removed 
from the ANOVA there was no significant differences related to the eye viewing the 

distractor, (i. e. the effect at fixation was the same with distractors in the fixing eye and 
both eyes). ANOVA details are shown in Appendix 10.3. 

To show whether latency with distractors at fixation to the strabismic eye was 

significantly different from the no distractor condition a two-factor repeated measures 
ANOVA was performed. This showed that there was no significant difference in the 

response to 4° and 8° targets and latency was not significantly different with presence or 

absence of a distractor at fixation [F(1,5)=3.586, P>0.05]. ANOVA details are shown in 

Appendix 10.4. 

Distractors contralateral and ipsilateral to the target 
To show whether the effect on latency differed between contralateral and ipsilateral 

distractors to the fixing, strabismic and both eyes, a four-factor repeated measures 
ANOVA was performed. The four factors were; eye viewing the distractor (fixing, 

strabismic or both eyes), target amplitude (4° and 8°), side of distractor (contralateral or 
ipsilateral) and position of distractor (2°, 4°, 6°, 8° and 10°). ANOVA details are shown 
in Appendix 10.5. This revealed no significant effect for eye viewing the distractor 

[F(2,10)=3.535, p>0.05]. However, this did reveal a significant difference for target 

amplitude [F(1,5)=11.317, p<0.05] and for side of distractor [F(1,5)=103.016, p<0.001], 
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Chapter 6 The remote distractor effect in strabismus 

with contralateral distractors resulting in greater saccade latencies than ipsilateral 

distractors. Distractor position was also significant [F(4,20)=12.289, p<0.0001]. A 

significant interaction was found between eye viewing the distractor and side of 
distractor [F(2,10)=8.045, p<0.01], and an interaction between eye and distractor 

position [F(8,40)=7.498, p<0.0001]. From Figure 6.1 this difference appears to mainly 

result from the reduced response for distractors to the strabismic eye. This was 

confirmed by removal of the data of the strabismic eye from the analysis leaving no 

significant differences between the effect of distractors in the fixing eye and both eyes 
and no interactions between any of the factors relating to eye viewing the distractor; the 

results are shown in Appendix 10.6. 

To determine whether the effect on latency differed between contralateral and ipsilateral 
distractors to the strabismic eye a three-factor repeated measures ANOVA was 

performed. This showed that there was no significant difference in the response for 4° 

and 8° targets. Latency was significantly different with distractors on the ipsilateral side 

compared to contralateral side when presented in the strabismic eye [F(1,5)=9.703, 

p<0.05] and significantly different depending on distractor position [F(4,20)=3.134, 

p<0.05]. From Figure 6.1 this appears to have resulted from the increased effect on 
latency for contralateral distractors between -2° and -6°. Details of the ANOVA are 

shown in Appendix 10.7. 

The effects of distractors on latency in subjects with normal BSV reported in 

Experiment 4 were compared to the findings in strabismus with suppression. A 

summary of the effects in the two groups at the original fixation point is shown in Table 

6.4. 

To test whether there was a difference in the distractor effect at fixation in the two 

groups of subjects a series of three-factor mixed measures ANOVA's were performed 
for each distractor condition. The three factors were; group (BSV or strabismus with 

suppression), target amplitude (4° and 8°) and distractor at fixation (presence or 

absence). 

Distractor 40 tar gets 8° tar ets 
condition BSV group Strabismic group BSV group Strabismic rou 

Dominant eye 53.0 ms 61.8 ms 47.5 ms 51.7 ms 
Non-dom eye 41.5 ms 10.5 ms 44.2 ms 2.37 ms 
Both eyes 65.9 ms 66.7 ms 59.2 ms 47.3 ms 

Table 6.4: Change in saccade latency with distractors at fixation in subjects with normal BSV (n=5) and 
subjects with strabismus and suppression (n=6). The dominant eye represents the fixing eye in strabismus 
and the non-dominant eye represents the strabismic eye. 
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Chapter 6 The remote distractor effect in strabismus 

For distractors in the dominant (fixing) eye there was no significant difference between 

groups [F(1,9)=2.141, p>0.05], or target amplitude [F(1,9)=0.043, p>0.05]. The only 
significant effect was for presence or absence of a distractor [F(1,9)=71.246, p<0.0001]. 
There were no significant interactions between the factors indicating that for both 4° and 
8° targets with distractors to the dominant eye, the distractor effect on latency was the 

same in both groups. ANOVA details are shown in Appendix 10.8. 

For distractors in both eyes there was no significant difference between groups 
[F(1,9)=1.047, p>0.05], or amplitude [F(1,9)=0.633, p>0.05]. The only significant 
effect was for presence or absence of a distractor [F(1,9)=144.796, p<0.0001]. There 

were no significant interactions between the factors indicating that for both 4° and 8° 

targets with distractors to both eyes the distractor effect on latency was the same in both 

groups. ANOVA details are shown in Appendix 10.9. 

For distractors in the non-dominant (strabismic) eye there was no significant difference 

between groups [F(1,9)=0.125, p>0.05], or target amplitude [F(1,9)=0.258, p>0.05]. 
There was a significant difference between presence or absence of a distractor 
[F(1,9)=68.008, p<0.0001] and a significant interaction between presence of a distractor 

and group [F(1,9)=37.127, p<0.001], showing that the effect on latency in strabismic 

subjects was significantly less than subjects with BSV (see Table 6.4). Details of the 
ANOVA are shown in Appendix 10.10. 

To test whether there were differences for ipsilateral and contralateral distractors 

between the groups, a series of four-factor mixed measures ANOVA's were performed 
for each distractor condition. The four factors were; group (BSV or strabismus with 
suppression), target amplitude (4° and 8°), side of distractor (ipsilateral or contralateral) 

and position of distractor (2°, 4°, 6°, 8° and 10°). 

For distractors in the dominant (fixing) eye there was no overall significant difference 

between groups [F(1,9)=2.202, p>0.05]. However, there was a significant interaction 

between side of distractor and group [F(1,9)=10.616, p<0.01]. From Figure 6.1 this 

shows that whilst both groups showed longer latencies for contralateral distractors than 
ipsilateral distractors the strabismic group had a larger difference between the two sides. 
ANOVA details are shown in Appendix 10.11. 

For distractors in both eyes there was no significant difference between groups 
[F(1,9)=2.266, p>0.05]. There was a significant interaction between side of distractor 
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Charter 6 The remote distractor effect in strabismus 

and group [F(1,9)=13.875, p<0.01], showing again that both groups showed longer 
latencies for contralateral distractors than ipsilateral distractors but the strabismic group 
had a larger difference between the two sides. ANOVA details are shown in Appendix 
10.12. 

For distractors in the non-dominant (strabismic) eye there was no significant difference 

between groups [F(1,9)=0.490, p>0.05]. There was a significant interaction between 

position of distractor and group [F(4,36)=2.778, p<0.05], indicating that both groups 
had a similar effect of increased contralateral effect compared to ipsilateral distractor 

effect. However, a difference between groups existed in the position of this effect. 
ANOVA details are shown in Appendix 10.13. 

Individual Subject data 
With distractors presented to the strabismic eye the lack of a clear peak latency increase 

may have been masked as the subjects had different angles of strabismus. Individual 

subject data was therefore plotted and is shown in Figures 6.2 and 6.3 for 4° and 8° 

targets respectively. 

Subject 1 showed an increase in latency at the original fixation point only, for both 4° 

and 8° targets. Subject 2 had increased latency for contralateral distractors greater than 
ipsilateral distractors with maximum effect for distractors at -4°. Subject 3 had a 

maximum increase in latency with distractors on the contralateral side between -4° and 

-6°. Similarly subject 4 had an increase on the contralateral side, at 41 only for the 4° 

targets and with a maximum increase with distractors at -4° for 8° targets. For 4° targets 

subject 5 had an increase for contralateral distractors reaching a maximum at -6°, and 
for 8° targets increases in latency occurred at -6° and the original fixation point. Finally, 

subject 6 showed increased latency for various ipsilateral and contralateral positions for 

4° targets, but had a maximum increase at -10° and for 8° targets increased latency 

occurs for contralateral distractors with a maximum effect at -4°. In all cases the 

maximum, or only, increase in latency occurred at a location stimulating the anatomical 
fovea (or within close proximity to it) of the deviating eye. A summary of this is shown 
in Table 6.5. 

Subjects 1 and 2 showed an increased effect with binocular presentation compared with 
distractors to the fixing eye only. This difference is large for subject 2 but is only 
minimal for subject 1. This is reversed for subjects 4 and 5 who both showed a larger 

effect with distractors to the fixing eye only compared with the binocular stimulation. 
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The remaining two subjects had equal effects for fixing eye and binocular distractor 

presentations. 

a) 4° target 
Subject Distractor at fixation in 

the strabismic eye (ms) 
Maximum 

Increase (ms) 
Position of 
maximum 
increase 

Expected location of 
anatomical fovea 

1 25.30 25.30 0 -1 
2 15.77 27.60 -4 -3 
3 11.71 16.79 -4 -3 
4 -0.92 12.65 -6 -6 
5 1.56 24.32 -6 -6 
6 19.40 37.41 -10 -9 

Mean 12.14 24.01 
SD 9.33 7.91 
SE 3.81 3.23 

b) 8° target 

Subject Distractor at fixation in 
the strabismic eye (ms) 

Maximum 
increase (ms) 

Position of 
maximum 
increase 

Expected location of 
anatomical fovea 

1 21.43 21.43 0 -1 
2 18.87 47.16 -4 -3 
3 -6.84 10.42 -6 -3 
4 -2.95 13.86 -6 -6 
5 -1.78 19.57 -2 -6 
6 -3.92 16.70 -4 -9 

Mean 4.14 21.52 
SD 12.54 13.16 
SE 5.12 5.37 

Table 6.5: Difference in saccade latency with and without distractors presented to the strabismic eye for 
strabismic subjects with suppression. Positive values represent an increase and negative values a decrease 
in saccade latency with distractors. SD = standard deviation, SE = standard error. 
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Figure 6.2: The effect of distractors presented simultaneously with a 4° target to the fixing eye, 
strabismic eye and both eyes, on saccade latency for six strabismic subjects with suppression. Zero 
distractor position represents the original central fixation point, negative values represent contralateral 
distractors and positive values represent ipsilateral distractors. The data for subject 1 is shown with a 
different axis range due to longer latencies than the other subjects. SE = standard error. 
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Figure 6.3: The effect of distractors presented to the fixing eye, strabismic eye and both eyes, 
(simultaneously with an 8° target), on saccade latency for six strabismic subjects with suppression. Zero 
distractor position represents the original central fixation point, negative values represent contralateral 
distractors and positive values represent ipsilateral distractors. The data for subject 1 is shown with a 
different axis range due to longer latencies than the other subjects. SE = standard error. 
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6.3.2 Saccade Gain 

Gain without distractors 

The mean saccade gain for target presentations without distractors for each subject, 
during each distractor test condition, is shown in the last column of Table 6.6a and b. To 

determine whether saccade gain was different during the three test conditions, and for 4° 

and 8° targets, a two-factor repeated measures ANOVA was performed. There was no 

significant difference in saccade gain for saccades without distractors in the three test 

conditions [F(2,10)=0.232, p>0.05]. As expected, a significant difference for the two 

saccade amplitudes was found [F(1,5)=16.483, p<0.01]. The mean saccade gain for all 

conditions was therefore pooled and is shown for each amplitude in Table 6.8. 

ANOVA details are shown in Appendix 10.14. 

Individual subject data of saccade gain in each distractor location for the three distractor 

conditions is shown in Table 6.6a and b. Figure 6.4 shows the groups mean saccade 

gain plotted as a function of distractor eccentricity with distractors presented to both 

eyes, fixing eye and strabismic eye. The mean saccade gain without distractors is also 

shown for comparison. 
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Mean saccade gain with no distractor 

Subject 4° target 8° target 
1 0.976 0.871 

SD 0.176 SD 0.203 
2 0.985 0.937 

SD 0.233 SD 0.281 
3 1.243 0.910 

SD 0.165 SD 0.203 
4 0.951 0.892 

SD 0.109 SD 0.137 
5 0.902 0.794 

SD 0.218 SD 0.187 
6 1.010 0.894 

SD 0.236 SD 0.185 
Mean 1.011 0.883 

SD 0.119 0.049 
SE 0.049 0.020 

Table 6.7: Mean saccade gain without distractors for individual subjects with strabismus and 
suppression. SD = standard deviation, SE = standard error. 

All subjects demonstrated a typical distractor effect with distractors to both eyes and 
fixing eye. For 4° targets a clear decrease in gain occurred for ipsilateral distractors at 
+2° and an increase in gain occurred with distractors beyond the target from +6° to +100 

when distractors were presented to both eyes and fixing eye only. The largest increase 

in gain for both conditions occurred with distractors at +10°. The increase in saccade 

gain at this position was 0.770 in the both eyes condition and 0.587 in the fixing eye 

condition, showing a small enhanced binocular response. For 8° targets a large decrease 

in gain occurred for ipsilateral distractors presented between the original fixation point 

and the target (+2° to +6°) the maximum decrease in gain was 0.286 with distractors to 

both eyes, and 0.304 with distractors to the fixing eye. 

Four of the six subjects showed small alterations to saccade gain when distractors were 

presented to the strabismic eye. From Figure 6.4 it can be seen that, when the distractor 

was presented to the strabismic eye, effects on gain were small for 4° targets. The 

maximum increase in gain occurred at +8° where an increase in gain of 0.187 was 

present. There was a minimal effect at +4° for 8° targets. 
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Figure 6.4: Effect of distractors on saccade gain, a) target presented at 4°, b) target presented at 8°. 
Pooled data for six subjects with constant strabismus and suppression. 
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To show whether the effect on gain differed between contralateral and ipsilateral 

distractors and, to the fixing, strabismic and both eyes, a three-factor repeated measures 
ANOVA was performed for each target amplitude. The three factors were; eye viewing 
the distractor (fixing, strabismic or both eyes), side of distractor (contralateral or 
ipsilateral) and position of distractor (2°, 4°, 6°, 8° and 10°). ANOVA details are shown 
in Appendices 10.15 and 10.16. This showed a significant difference in gain for side of 
distractor at 4° [F(1,5)=24.116, p<0.01] and between distractor position for 4° targets 

[F(4,20)=3.214, p<0.05] and 8° targets [F(4,20)=13.184, p<0.0001]. No significant 

effect was found for eye viewing the distractor for 8° targets [F(2,10)=0.829, p>0.05] 
but this was significant for 4° targets [F(2,10)=4.311, p<0.05]. This effect occurred as 

gain reduced slightly for contralateral distractors between -4° and the original fixation 

point in the fixing eye only. A significant interaction was found between eye viewing 
the distractor, side of distractor and position of distractor for both 4° [F(8,40)=38.311, 

p<0.0001], and 8° targets [F(8,40)=9.449, p<0.0001]. From Figure 6.4 it appears that 

this difference resulted from the reduced response for distractors to the strabismic eye. 
When the data from the strabismic eye was removed from the ANOVA there was no 

significant difference in the effect on gain between the fixing eye and both eyes 

conditions and no significant interactions between the eye viewing distractor and other 
factors. ANOVA details are shown in Appendices 10.17 and 10.18. This indicates that 

the differences found in the distractor effect on gain related to viewing eye resulted 
from the reduced response when distractors are presented to the strabismic eye only. 

To determine whether the effect on gain differed between contralateral and ipsilateral 

distractors to the strabismic eye a two-factor repeated measures ANOVA was 

performed. ANOVA details are shown in Appendices 10.19 and 10.20. For 4° targets 
this showed no significant difference for side [F(1,5)=5.525, p>0.05] or position 
[F(4,20)=2.310, p>0.05] and no significant interactions between the factors. For 8° 

targets there was a significant difference in gain with side of distractor [F(1,5)=7.625, 

p<0.05] but no significant effect for position of distractor or any interactions between 

these factors. 

The effects of distractors on gain in subjects with normal BSV reported in Experiment 4 

were compared to the findings in strabismus with suppression. A summary of the 

maximum effects on gain in the two groups is shown in Table 6.8. 
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Distractor 4° tar gets 8° tar gets 
BSV Strabismus & 

suppression 
BSV Strabismus & 

suppression 
Dominant eye 0.240 0.587 0.232 0.304 

Non-dominant eye 0.352 0.187 0.135 0.057 
Both eyes 0.824 0.770 0.382 0.286 

Enhanced binocular effect 0.472 0.183 0.150 -0.018 

Table 6.8: Summary of maximum change in saccade gain with distractors for the two subject groups. 
Group mean data for five subjects with BSV (reported in Experiment 4) and six subjects with manifest 
strabismus and suppression. The enhanced binocular effect is the change in gain for distractors to both 
eyes minus change in gain for distractors presented monocularly. Monocular values are taken as the eye 
with maximum change in gain. 

To test for differences in gain for ipsilateral and contralateral distractors between the 

groups, a series of three-factor mixed measures ANOVA's was performed for each 
target amplitude and distractor condition. The three factors were; group (BSV or 
strabismus with suppression), side of distractor (ipsilateral or contralateral) and position 

of distractor (2°, 4°, 6°, 8° and 10°). ANOVA details are shown in Appendices 10.21 to 
10.26. 

For distractors in the dominant (fixing) eye there was no significant difference between 

groups; for 4° targets [F(1,9)=0.001, p>0.05] or for 8° targets [F(1,9)=5.048, p>0.05]. 
For 4° targets there was a significant interaction between side, position and group 
[F(4,36)=3.056, p<0.05]. For 8° targets there were no significant interactions. From 

Figures 5.6 and 6.4 the significant difference for 4° targets was a larger effect at +8° and 

+100 in the fixing eye of strabismic subjects than the dominant eye of the BSV subjects. 

For distractors in both eyes there was no significant difference between groups; for 4° 

targets [F(1,9)=0.168, p>0.05] or for 8° targets [F(1,9)=2.692, p>0.05]. The only 
significant interaction related to group was for 8° targets, between side, position and 
group [F(4,36)=5.544, p<0.01]. From Figures 5.6 and 6.4 it appears that this difference 

results from a slightly smaller increase in gain for 10° distractors in the strabismic 
group, which is not the position of main effect with 8° targets. 

For distractors in the non-dominant (strabismic) eye there was no significant overall 
difference between groups; for 4° targets [F(1,9)=0.040, p>0.05] or for 8° targets 
[F(1,9)=0.515, p>0.05]. The only significant interaction related to group was between 

side, position and group for 8° targets: [F(4,36)=3.081, p<0.05], showing that the effect 
on gain in the strabismic group was significantly less than in the BSV group. Whilst for 
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4° targets the effect in the strabismic group was less than the BSV group it was not 

significantly different. 

Individual subject data 

To identify any individual patterns individual subject data was plotted and is shown in 

Figures 6.5 and 6.6 for 4° and 8° targets respectively. Subjects 4 and 5 showed no effect 

on saccade gain with distractors presented to the strabismic eye. Subject 3 demonstrated 

a normal effect for ipsilateral distractors but also increased gain for contralateral 
distractors. For 4° targets subjects 1 and 6 showed a small increase in saccade gain with 
ipsilateral distractors, but atypically the increase began with distractors at +4° (the target 

amplitude) and peaked with distractors at +6°. Subject 2 revealed a variable effect with 

very slightly increased and decreased gains for ipsilateral and contralateral distractors, 

but with no clear pattern. 

Overall, the effects on saccade gain from the strabismic eye were present but small with 
2 subjects having no effect. Two of the six subjects demonstrated larger effects on gain 

with distractors presented to both eyes compared to distractors presented to the fixing 

eye only. 
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Figure 6.5: The effect of distractors presented to the fixing eye, strabismic eye and both eyes, 
(simultaneously with a 4° target), on saccade gain for six strabismic subjects with suppression. Zero 
distractor position represents the original central fixation point, negative values represent contralateral 
distractors and positive values represent ipsilateral distractors. ET = esotropia, XT = exotropia, SE _ 
standard error. 
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6.4 Discussion 

6.4.1 Saccades without distractors 

The mean saccadic latency for the group of six strabismic subjects in the no distractor 

condition (Table 6.3) was slightly higher than that found under the same test conditions 
in the subjects with normal BSV in Experiment 4 (Table 5.3). It can be seen from 
individual subject mean data that some subjects demonstrated short latency saccades, 
which resulted in low gain saccades with large standard deviations. This is the probable 
result of a predictable saccade task of 30 minutes duration in which the subjects were 
aware of the saccade direction prior to commencing the experiment. The target 

amplitude was not entirely predictable as two amplitudes were randomly used. 
Bronstein and Kennard (1997) have reported the phenomenon of short latency low gain 
saccades in predictable tasks. It was necessary to use a known non-randomised direction 

to avoid any increase in latency on distractor trials caused by the additional 
discrimination process required to select the target (Walker, Deubel, Schneider and 
Findlay, 1997). 

6.4.2 Saccade latency 

Hypothesis la postulated that distractors presented binocularly and monocularly to the 
fixing eye would affect saccade latency. This was supported as shown in Figure 6.1 and 
statistically (Appendices 10.3 and 10.6). The experiment revealed significant increases 

in saccade latency for distractors at the original fixation point and for distractors 

contralateral to the target. The effects in the fixing eye and both eyes were compared 
with the response in subjects with normal BSV from the dominant eye and both eyes. 
Figures 5.5 and 6.1 and statistical analysis (Appendices 10.8 & 10.9) showed that the 

effect at fixation was the same in both groups and both had longer latencies for 

contralateral distractors with no effect for ipsilateral distractors. The strabismic group 
however had a larger difference between contralateral and ipsilateral distractors 
(Appendices 10.11 & 10.12). This generally supports hypothesis lb that the effect in 

both groups of subjects can be considered equivalent. 

Due to the lack of perception of images within the suppression area in strabismus 
hypothesis lc proposed that saccade latency would be unaffected by distractors 

presented within the suppression area of the strabismic eye. Figure 6.1 showed that the 

effect in the strabismic eye was considerably less than that found in the fixing eye and 
both eyes. Statistical analysis of the saccade latency with and without distractors at 
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fixation (Appendix 10.4) showed that there was no significant difference supporting this 
hypothesis. However there was a significant difference in saccade latency for 

contralateral and ipsilateral distractors with contralateral distractors leading to longer 

latencies. This indicates that although the distractor effect is not evident at the original 
fixation point distractors within the suppression area do affect saccade latency. 

Hypothesis 1c is therefore rejected. 

When individual subject data was examined the maximum effect produced from the 

strabismic eye appeared to occur when distractors were presented in the area of the 

anatomical fovea. 

6.4.3 Saccade gain 

Hypothesis 2a postulated that distractors presented binocularly and monocularly to the 
fixing eye would affect saccade gain, and this was supported as shown in Figure 6.4 and 

statistically (Appendices 10.17 and 10.18). The experiment revealed significant changes 
in saccade gain for ipsilateral distractors to the target. The effects in the fixing eye and 
both eyes were compared with the response in subjects with normal BSV from the 

dominant eye and both eyes. Figures 5.6 and 6.4 and statistical analysis (Appendices 

10.21 and 10.24) showed that the effects with distractors in both eyes were equivalent 
however, the effect from the dominant eye was larger in the strabismic group. 
Hypothesis 2b was therefore supported for binocular distractors but rejected for 

distractors to the dominant (fixing) eye. This indicates that in strabismus, information 

from the fixing eye has a much greater effect on saccade accuracy than the dominant 

eye in normal BSV. 

The effect of distractors presented to both eyes on gain was not found to be significantly 
different between the two groups (Appendices 10.23 and 10.24). However, the 

enhanced effect of binocular distractors, demonstrated in subjects with normal BSV in 

Experiment 4, was not present in the strabismic subjects possibly as the dominant eye 
had an increased effect. Statistical analysis of the strabismic group (Appendices 10.17 

and 10.18) showed that there was no significant difference in the effect of distractors to 

both eyes and to the fixing eye. Hypothesis 2d was therefore supported. 

Distractors in the strabismic eye had a variable effect on gain between subjects. The 

mean group data show that the effect is significantly different from the response with 
distractors presented to the fixing eye and both eyes (Figure 6.4 and Appendices 10.15 
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and 10.16). When considering differences between ipsilateral and contralateral 
distractors in the strabismic eye, gain was significantly affected depending on the side 

of the distractor and showed increased gain for ipsilateral distractors for 4° targets. 
Distractors presented within the suppression area of the strabismic eye therefore 

affected gain. Hypothesis 2c is therefore rejected. 

6.4.4 Mechanism for the distractor effect in suppression 

In strabismic subjects with suppression the maximum effect on latency, with distractors 

to the fixing eye and both eyes, was equivalent or greater in magnitude to that found in 

the observers with normal BSV. Whilst the maximum effect produced from the 

strabismic eye (distractors presented in the area of the anatomical fovea) was 
approximately one third of the size. The effects on saccade accuracy from distractors to 
the strabismic eye in subjects with suppression were small with two subjects having no 
response at all. 

The reciprocal effects of distractor eccentricity on accuracy and latency have been taken 
to support the suggestion that two independent processes occur, one controlling the 
initiation of saccades (the WHEN system) and the other involved in computation of the 

spatial parameters (WHERE system), (Findlay, 1983; Becker & Jürgens, 1979). 

However more recently Olivier, Dorris and Munoz (1999) following recording of 

neuronal activity in the monkey suggest that both effects may be explained by a single 

mechanism. The superior colliculus has two distinct layers; the superficial layer is 

involved in visual functions and has a dominant input from retina and striate cortex. The 
deep layer is involved in translation of sensory signals into motor commands and 
receives input from cortical regions (LIP, FEF, SEF, SN). Intermediate layers are 
thought to form a motor map that codes amplitude and direction of saccades. Differing 

effects on these regions could affect saccade timing and not metrics. 

Recordings in cortical neurons of cats with alternating esotropia and exotropia show 
only minimal excitatory input from the suppressed eye suggesting that the seat of 

suppression is within the visual cortex (Sengspiel, Blakemore, Kind & Harrad, 1994). 

The presence of a distractor effect from the strabismic eye during suppression may 

suggest that sub-cortical mechanisms exist despite the cortical loss of perception. 

There are many studies that provide evidence for visual processing, in the absence of 
the geniculostriate pathway, mediated by sub-cortical pathways (Pöppel, Held & Frost, 
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1973; Weiskrantz, Warrington, Sanders & Marshall, 1974; Weiskrantz, 1987; Sanders, 

Warrington, Marshall & Weiskrantz, 1974; Zihl, 1980; Barbur, Forsyth & Findlay, 

1988; Braddick, Atkinson, Hood, Harkness, Jackson & Vargha-Khadem, 1992). Of 

particular interest is the study by Rafel, Smith, Krantz, Cohen and Brennan (1990), 

which examined the latency of saccades made by hemianopic patients to stimuli 

presented in their intact visual field under conditions in which visual distractors 

appeared in their blind field. The findings were that saccade latency increased when 
distractors were presented in the blind field. A similar increase in latency could not be 

demonstrated in normal observers. These findings were taken as showing that the 
distractor effect was specific to the oculomotor system and may be observed only when 
the cortical visual pathway is inoperative, suggesting that the sub-cortical visual 

pathway is responsible for the distractor effect. Walker, Mannan, Maurer, Pambakian 

and Kennard (2000) however, revealed no evidence of blindsight inhibitory effects in 

hemianopic observers with cortical lesions. They conclude that the distractor effect is a 

normal characteristic of the saccadic system and may be related to the process of 

response competition involved in saccade target selection and suggest that this may be 

mediated by the deep colliculus, which depends on the corticotectal pathway for visual 
input. 

If the distractor effect from the strabismic eye, as demonstrated in this current study, 

occurs via a sub-cortical retino-collicular route, then how can the variable effects be 

explained? Variability in the response was found; with different effects occurring for 40 

and 8° targets and saccade latency was affected whilst only minimal changes to saccade 

accuracy were demonstrated. Holtzman (1984) reported that collicular `vision' is of 
limited spatial resolution, which may offer one explanation for this. Physiology of the 

superior colliculus of monkeys has shown that receptive fields of collicular neurons are 

much larger than those of the visual cortex (Goldberg and Robinson, 1978). Hence 

localisation of the distractor would be limited thus having less effect on saccade 

accuracy. 

It may be that there are explanations, other than sub-cortical processing, for the finding 

in this present study of a distractor effect in patients with suppression. It may be that a 
high sensitivity exists in suppression for detection of transient onset and offset of a 

target. This has been described in patients with destruction of the striate cortex who 

could detect and localise fast moving targets and flashed targets in his otherwise blind 

hemifield (Barbur, Forsyth & Findlay, 1988). This may mean that the briefly presented 
distractor was perceived cortically but failed to register consciousness to the subject. 
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As outlined in Chapter 1, normal rivalrous suppression, (occurring in subjects with 

normal BSV when presented with dissimilar stimuli to each eye), can be prevented if 

the stimuli are presented briefly (: 5150ms). In such circumstances the stimuli appear as 
if superimposed (Kaufman 1963, O'Shea & Crassini 1984). Wolfe (1986) similarly 
demonstrated that, in six subjects with constant strabismus and suppression, suppression 

does not occur in a dark room when stimuli are briefly flashed for <_150ms, suggesting 

that pathological suppression requires 150ms of stimulation to be made manifest. It is 

possible that under the different lighting levels and target/ distractor luminance that the 
200ms distractor presentation prevented suppression. The method of dissociation used 

may also be a factor. The LCP shutters, operating at 80Hz out of phase to each eye, led 

to 12.5ms samples to each eye. This form of dissociation by time delay may have 

broken down the suppression. 

Switching fixation during target and distractor presentations is another possibility but 

this was not evident from eye movement recordings in the experiments reported here. It 

may be that when the anatomical fovea of the strabismic eye is stimulated with a target 
different to that seen by the fixing eye then attention is swapped momentarily to the 

strabismic eye, breaking down the suppression. 

The next experiment was designed to test the subjects' perception of the stimuli used for 

the distractor experiments. 

6.5 Experiment 6: To determine visibility of the distractor 

It is possible that the method of presenting distractors to the strabismic eye broke down 

suppression and hence gave a misleading result. To determine whether subjects with 

suppression perceived the distractor presented to the strabismic eye for 200ms during 

the saccade task the following experiment was carried out after Experiment 5. It was 

considered appropriate to perform this current experiment following the distractor 

experiment as subjects may have developed a strategy for detecting the distractor within 
the suppression area of the deviating eye or may have become more sensitive to 

presence of the distractor during the long distractor experiment. 
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6.5.1 Method 

6.5.1.1 Participants 

Five of the six strabismic subjects with suppression described in Experiment 5 of this 

chapter (subjects 2,3,4,5 and 6) and two subjects with normal BSV from Experiment 

4, Chapter 5 (subjects 1 and 3) were included in the study. 

6.5.1.2 Design of the experiment 

The experiment design was a detection task. The independent variables were; target 

position (4° and 8°), distractor position (0, ±2°, ±4°, ±6°, ±8°, ±100 and no distractor) 

and distractor condition (dominant eye, non-dominant eye and both eyes). The 
dependent variable was visibility of the distractor as indicated by a joystick response. 

6.5.1.3 Procedure 

The subjects were seated in a comfortable office chair 114cm from the translucent 

screen with the LCP shutters clamped in position. Before each block of trials the 

subjects were informed that all targets would initially appear in the centre of the screen 
and always move to the right and then back to the centre. This direction was maintained 
for all subsequent trials. 

The 1° target cross (see Figure 5.2) was presented centrally to both eyes for a random 

period (500 to 1200ms) it then disappeared and immediately reappeared at either 4° or 
8° on the horizontal axis for 500ms (nominally zero gap). The target then returned to the 

centre point before the next trial. In most trials a distractor appeared simultaneously 

with the onset of the 4° or 8° targets for 200ms. The eccentricity of the distractor varied 

along the horizontal axis randomly between -10, -8, -6, -4, -2,0, +2, +4, +6, +8, +100 

and no distractor as in Experiments 4 and 5 (see Figure 5.4). 

Twenty saccade and distractor trials were presented in a 50 second test run. Six runs 

were completed to allow ten distractor presentations at each position (including no 
distractor). The experiment was performed three times; with distractors presented to the 
dominant eye, non-dominant eye and both eyes. The order of distractor presentation was 

randomised between subjects. 
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The subjects were instructed to look directly at the centre of the small target cross, 

positioned in the middle of the screen and, when it jumped to the right and back to the 

centre, to move their eyes as quickly and accurately as possible to continue looking at 
the centre of the cross. They were told that sometimes as the target jumped to the right a 

circle (the distractor) would appear anywhere on the screen. They were instructed to 

indicate using a joystick every time the distractor was seen. 

6.5.2 Results 

The joystick responses were recorded and analysed off line following the experiment. 
The number of correct responses (or hits) for each distractor position and the number of 
`visible' responses with no distractor (false positives) was determined. 

The number of correct responses, for each subject, of 10 trials in each distractor position 
is shown in Figure 6.7. The horizontal black line represents the number of false positive 

responses in the no distractor condition. 

From Figure 6.7 it is clear that the binocular subjects reliably saw the distractor under 

all 3 conditions whilst the results demonstrate that the distractor was only visible when 

presented to the dominant (fixing) eye or both eyes in the strabismic subjects with 

suppression. 

Signal detection theory was used to measure accuracy of these responses (Green & 

Swets, 1966). Signal detection theory combines the hits and false positives to calculate 

an index of accuracy, d'. For details of d' calculations see Appendix 10.27. These 

results show high d' values for all distractor positions for all 3 distractor conditions in 
both of the binocular subjects. This is in contrast to all of the five strabismic subjects 

with suppression who had high d' values for all distractor positions in the dominant eye 

and both eyes conditions but had extremely low d' values for all distractor positions 

when presented to the non-dominant (strabismic) eye. 

6.5.3 Conclusion 

The results suggest that the distractor was highly visible and easily detected by 

binocular subjects under all conditions and by strabismic subjects when presented to 
both eyes or to the fixing eye. However, when the distractor was presented to the 

strabismic eye the subjects with suppression did not perceive it. 
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The response to distractors presented in the strabismic eye reported earlier in this 

chapter was therefore not due to the method of distractor presentation breaking down 

suppression. Distractors within the suppression area that were not perceived affected 

saccade latency and gain. It would appear therefore that targets presented within the 

suppression area affect saccade programming. 
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Figure 6.7: The number of visible distractors at each eccentricity for 2 subjects with normal BSV (a & b), 
and 5 strabismic subjects with suppression (c to g). Responses were recorded from each subject using a 
joystick to indicate when they were aware of a distractor at any location. The subjects were making 
saccadic eye movements to a target moving from the centre to 4 and 8° right of centre during the 
detection task as described for the distractor experiments in chapters 5 and 6. The black horizontal line 
represents the number of no distractor presentations in which a visible response was made (i. e. false 
positives). 
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6.6 Experiment 7: To determine awareness of the distractor 

It is possible that although subjects reported lack of perception of the distractor that they 

may have been sub-consciously aware of the distractor. Such responses have been 

reported in subjects with visual cortex damage who were unable to see targets in the 
blind field but were able to make accurate eye movements to fixate them, so called 
blindsight (Pöppel, Held & Frost, 1973). Weiskrantz, Warrington, Sanders and Marshall 
(1974) reported a subject with a visual field defect following removal of a tumour that 
had invaded V1. The subject who could not see targets within the field defect could 
however discriminate targets by `guesswork' when asked to make a forced choice of 

which stimulus of two had been presented within the blind field. 

The following experiment was carried out to determine whether subjects with 
suppression, who were not consciously aware of the distractor, were able to identify the 

side of the distractor when presented to the strabismic eye. 

6.6.1 Method 

6.6.1.1 Participants 

The same seven subjects described in Experiment 6 were studied. 

6.6.1.2 Design of the experiment 

The experiment was a forced choice design. The independent variables were; distractor 

position (0, ±2°, ±4°, ±6°, ±8°, ±10° and no distractor) and eye viewing the distractor 

(dominant eye, non-dominant eye and both eyes). The dependent variable was side of 
the distractor as indicated by a joystick response. 

6.6.1.3 Procedure 

The experimental set-up, target and distractor stimuli were identical to that described in 

Experiment 6. The only difference in procedure was the instructions given to the 

subjects. They were instructed to look directly at the centre of the small target cross 

positioned in the middle of the screen and to move their eyes as quickly and accurately 

as possible to maintain fixation of it when it jumped to the right and back to the centre. 
They were told that sometimes as the target jumped to the right, a circle (the distractor) 

160 



Chapter 6 The remote distractor effect in strabismus 

would appear anywhere on the screen. They were instructed to indicate using a joystick 

whether the circle appeared to the right or left of the central original fixation point. If 

they were unsure of the direction they were told to guess. 

6.6.2 Results 

The joystick responses were recorded and analysed off line following the experiment. 
The number of left responses for each distractor condition was determined. 

Figure 6.8 shows the number of left responses out of 10 trials, for each subject, in each 
distractor position. If the side of distractor was correctly indicated with the joystick then 
the graph would show a value of ten for distractor positions -10 to -2, and a value of 
zero for positions +2 to +10. The response of forced choice guessing when no distractor 

was presented represents the subject's bias in response when nothing was visible to 
them. 

From Figure 6.8 a and b it is clear, generally, that the two binocular subjects correctly 
indicated the direction of the distractor under all three viewing conditions. Figure 6.8 c 
to g shows that in the strabismic subjects the distractor direction was only correctly 
indicated when presented to the dominant (fixing) eye or to both eyes, the response was 

clearly different with distractors presented to the non-dominant (strabismic) eye. With 

distractors presented in all positions to the non-dominant (strabismic) eye all five 

subjects responded similarly to their response in the no distractor condition. They either 

randomly guessed the side giving approximately 50% of responses in each direction 

(subjects 4 and 5) or showed a bias by maintaining a single direction for the majority of 
presentations (subjects 2,3 & 6). 

6.6.3 Conclusion 

The results suggest that the distractor was highly visible and correctly localised by 
binocular subjects under all viewing conditions and by strabismic subjects when 

presented to both eyes or to the fixing eye. However, in strabismic subjects when the 
distractor was presented to the strabismic eye it was not perceived and they did not have 

any sub-conscious awareness of it. 
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The response to distractors presented in the strabismic eye reported earlier in this 

chapter, occurred despite lack of awareness of the distractor. Distractors within the 

suppression area that were not perceived affected saccade latency and gain. 

a) Normal BSV (Subject 1, Chapter 5) b) Normal BSV (Subject 3, Chapter 5) 
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Figure 6.8: The number of joystick responses to the left at each eccentricity for 2 subjects with normal 
BSV (a & b), and 5 strabismic subjects with suppression (c to g). Results are shown with distractors 

presented to the dominant eye, non-dominant eye and to both eyes. Negative distractor positions represent 
distractors to the left and positive values are distractors on the right of the central fixation point. Point 

zero represents distractors at the original fixation position. Responses were recorded from each subject 
using a forced choice procedure using a joystick to indicate whether distractors appeared to the right or 
left of the central fixation point. The results on the far right of each graph are the forced choice responses 
when no distractor was presented on the screen, indicating each subject's guessing bias. The subjects 
were making saccadic eye movements to a target moving from the centre to 4 and 8° right of centre 
during the forced choice task as described for the distractor experiments (Experiments 4 and 5). 
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6.7 Experiment 8: The distractor effect in strabismus with ARC 

6.7.1 Hypotheses 

For strabismic subjects with ARC and anomalous BSV: 

1. a) Saccade latency will be increased by distractors presented binocularly and 
monocularly to the fixing eye. b) This effect will be equivalent to that demonstrated 
in normal BSV in Experiment 4 of this thesis. c) Saccade latency will be increased 
by presentation of distractors monocularly to the strabismic eye. d) This effect will 
be equivalent to that demonstrated in normal BSV in Experiment 4. 

2. a) Saccade gain will be affected by distractors presented binocularly, monocularly to 
the fixing eye and monocularly to the strabismic eye. b) The effect of distractors 

presented monocularly on saccade gain will be equivalent to that demonstrated in 

subjects with normal BSV in Experiment 4. c) The effect of distractors presented 
binocularly will be less than that demonstrated in subjects with normal BSV in 

Experiment 4. Subjects with normal BSV demonstrated a significantly greater effect 
for binocular distractors than monocular distractors. Whilst this effect is also 

anticipated in strabismic subjects with anomalous BSV it is expected that the 
binocular increase will be smaller due to a weaker binocular interaction. 

6.7.2 Method 

6.7.2.1 Participants 

Two subjects with constant left esotropia and ARC were investigated (subjects 7 and 8, 
details shown in Table 6.9). Both subjects were included in Experiment 3 of Chapter 4 

where a clinical examination was performed. ARC was diagnosed by the presence of 
sensory fusion confirmed with Bagolini glasses in the presence of the manifest 
strabismus; demonstrable motor fusion using the prism fusion range; a significant angle 

of anomaly on the synoptophore with simultaneous perception, fusion and gross 

stereopsis demonstrable at the subjective angle. Full clinical details of the subjects can 
be found in Appendix 5 (subjects 7& 8). 
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Subj Age VA Strabismus PCT Retinal Suppression Abnormal BSV 
(years) RE LE 1.14m 

(A) 
corresp. Sensory motor SV 

7 20.9 -0.1 0.0 LET 12 BO ARC no yes yes gross 

8 18.1 -0.1 0.0 LET 10 BO ARC no yes yes 200" 

Table 6.9: Summary of clinical details of two subjects with strabismus and ARC. VA = log MAR visual 
acuity, PCT = prism cover test, LET = left esotropia, A= prism dioptre, BO = prism base out, SV = 
stereoscopic vision. 

6.7.3 Results 

A preliminary trial showed that, whilst fixating the central fixation target presented to 
both eyes, both observers were aware of the presence of the distractor when presented to 
the fixing eye, both eyes and unlike the strabismic group, to the strabismic eye. 

The mean saccade latency and gain for the no distractor condition for each subject is 

shown in Table 6.10. It can be seen that these two subjects had different behaviour, 

subject 7 having latencies reflecting the mean of the subjects 1-6, whilst subject 8 had 

short latency saccades. Subject 7 consequently had gains closer to 1.0 with lower 

standard deviations than subject 8 who had relatively low saccade accuracy. The 

subjects were therefore considered individually. 

Tables 6.11 and 6.12 show individual subject data for saccade latency and gain in each 
distractor location for the three distractor conditions. 

Figure 6.9 shows the mean saccade latency plotted as a function of distractor 

eccentricity with distractors to both eyes, fixing eye and strabismic eye for each subject. 
A slightly atypical distractor effect on latency, similar for presentations to the fixing 

eye, strabismic eye and both eyes is seen for both subjects. 
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a) 

b) 

The remote distractor effect in strabismus 

Mean saccade latency with no distractor 

Subject 4° 8° 

7 166.05 
SD 24.07 

161.46 
SD 14.59 

8 134.30 
SD 18.20 

132.80 
SD 16.41 

Mean saccade gain with no dlstractor 

Subject 4° 8° 

7 1.012 
SD 0.170 

0.972 
SD 0.118 

8 1.041 
SD 0.244 

0.853 
SD 0.220 

Table 6.10: Mean saccade latency (a) and gain (b) with no distractor for individual subjects with 
strabismus and ARC. SD = standard deviation. 

a) Distractor fix Ina ee 
Sub ect -10 -8 -6 -4 -2 0 2 4 6 8 10 

7 166 00 160 00 165.71 166 88 170.59 195.00 177.78 164.29 162.50 160.00 172.86 
8 147 50 159 58 139 58 144 41 151.00 165.42 141.25 134 09 142.31 124 09 140.83 

Mean 156.75 159.79 152.65 155.64 160.79 180.21 159.51 149.19 152.40 142.05 156.85 
SD 13.08 0.29 18.48 15.88 13.85 20.92 25.83 21.35 14.28 25.39 22.64 
SE 9.25 0.21 13.07 11.23 9.79 14.79 18.26 15.10 10.10 17.95 16.01 

Distractor strabismic eye 
Subject -10 -8 -6 -4 .2 0 2 4 6 8 10 

7 159.33 161.56 162.31 170.25 168.00 187.33 172 06 161.56 159 71 174.17 178.33 
8 142 86 130.94 151 56 140.91 147.50 146.15 135.94 143.33 131.11 135.00 134.38 

Mean 151.10 146.25 156.94 155.58 157.75 166.74 154.00 152.45 145.41 154.58 156.35 
SD 11.65 21.66 7.60 20.75 14.50 29.12 25.54 12.89 20.22 27.70 31.08 
SE 8.24 15.31 5.37 14.67 10.25 20.59 18.06 9.11 14.30 19.58 21.98 

s Distractor both eve 
Subject -10 -8 -6 -4 .2 0 2 4 6 6 10 

7 165 75 164 12 162 94 171 88 173 44 197.86 181.14 161.15 161.43 163.85 170.50 
8 149 64 146.94 150.00 150.71 152.19 168.33 146 92 131.67 140.91 128.44 127.00 

Mean 157.70 155.53 156.47 161.29 162.81 183.10 164.03 146.41 151.17 146.14 148.75 
SD 11.39 12.14 9.15 14.96 15.03 20.88 24.19 20.85 14.51 25.04 30.76 
SE 8.05 8.59 6.47 10.58 10.63 14.76 17.11 14.74 10.26 17.70 21.75 

b) Distractor fixing ey 
Subject -10 -8 -6 -4 -2 0 2 4 6 8 10 

7 167.11 161.11 169 44 165.26 179 69 203 89 176.56 184.47 162.65 161 84 160.63 
8 138.13 133 50 144 00 137.50 146.82 159.12 151.50 150.36 142.00 127.37 127.50 

Mean 152.62 147.31 156.72 151.38 163.25 181.50 164.03 167.42 152.32 144.61 144.06 
SD 20.49 19.52 17.99 19.63 23.24 31.66 17.72 24.12 14.60 24.38 23.42 
SE 14.49 13.81 12.72 13.88 16.43 22.39 12.53 17.06 10.32 17.24 16.56 

Distractor strabismic eye 
Subject -10 -8 -6 -4 -2 0 2 4 6 8 10 

7 167.65 158 61 165 23 162 50 173.33 184.00 192.78 179.74 162.50 160.00 163.44 
8 138.16 131.07 138 53 133 89 139.41 141.33 13094 133.85 136.43 132.50 126.15 

Mean 152.90 144.84 151.88 148.19 156.37 162.67 161.86 156.79 149.46 146.25 144.80 
SD 20.85 19.47 18.88 20.23 23.99 30.17 43.73 32.45 18.44 19.45 26.36 
SE 14.74 13.77 13.35 14.31 16.96 21.33 30.92 22.95 13.04 13.75 18.64 

a Distractor both eye 
Subject "10 -8 -6 -4 .2 0 2 4 6 8 10 

7 167.00 175.00 172.00 174.21 186.39 200 00 213.33 166.11 157.62 147.73 166.00 
8 136.32 133 93 142 06 144.17 147.06 151.00 136.56 135.77 130.00 128.13 136.92 

Mean 151.66 154.46 157.03 159.19 166.72 175.50 174.95 150.94 143.81 137.93 151.46 
SD 21.70 29.04 21.17 21.24 27.81 34.65 54.29 21.45 19.53 13.86 20.56 
SE 15.34 20.54 14.97 15.02 19.67 24.50 38.39 15.17 13.81 9.80 14.54 

Table 6.11: The effect of distractors on saccade latency (ms) for each distractor position for two subjects 
with manifest strabismus and ARC, a) 4° targets, b) 8° targets. SD = standard deviation, SE = standard 
error 
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Distractor fixing ev 
Sub ect -10 -8 -6 -4 -2 0 2 4 6 8 10 

7 1 064 1 036 1 026 1.030 1 001 0.975 0.891 1.039 1.249 1.369 1 239 
8 0.945 0.988 1.044 1.031 1014 1.065 1.019 0.901 1.311 1.523 1.727 

Mean 1.005 1.012 1.035 1.030 1.007 1.020 0.955 0.970 1.28 1.45 1.48 
ad 0.084 0.034 0.013 0.001 0.009 0.064 0.090 0.098 0.04 0.11 0.35 

se 0.060 0.024 0.009 0.001 0.007 0.045 0.064 0.069 0.03 0.08 0.24 

Distractorfixing es 
Subject -10 -8 -6 -4 -2 0 2 4 6 8 10 

7 1 094 1 021 1 019 1.082 1.095 1 042 0.965 1.055 1.317 1.228 1.193 
8 1 023 0 955 0.998 0 930 0 941 1.016 1.008 1.088 1.395 1.478 1.692 

Mean 1.058 0.988 1.008 1.006 1.018 1.029 0.987 1.072 1.356 1.353 1.442 

ad 0.050 0.046 0.015 0.108 0.109 0.018 0.030 0.023 0.055 0.177 0.353 
se 0.036 0.033 0.011 0.076 0.077 0.013 0.021 0.017 0.039 0.125 0.250 

Distractorfix In ee 
Subject -10 -8 .6 .4 -2 0 2 4 6 8 10 

7 1 064 0 968 0.992 0 985 0 972 1 010 0.912 1 030 1.301 1.357 1 499 
8 1.051 0.930 0.941 1.026 0.914 1.117 1.016 1.151 1.278 1.790 2.200 

Mean 1.058 0.949 0.966 1.005 0.943 1.064 0.964 1.091 1.289 1.573 1.850 

ad 0.009 0.027 0.036 0.029 0.040 0.076 0.074 0.085 0.016 0.306 0.496 
se 0.006 0.019 0.025 0.021 0.029 0.053 0.052 0.060 0.012 0.217 0.351 

b) Distractorfixing ee 
Sub ect -10 -6 -6 -4 -2 0 2 4 6 8 10 

7 0 982 0.983 0 931 0.994 0.991 1.020 0.729 0.722 0.808 0.958 1.049 
8 0 880 0.791 0 890 0 846 0.890 0.847 0 723 0.726 0.723 0.855 0.855 

Mean 0.931 0.887 0.910 0.920 0.940 0.933 0.726 0.724 0.765 0.906 0.952 
SD 0.072 0.136 0.029 0.104 0.071 0.122 0.004 0.003 0.060 0.072 0.137 
SE 0.051 0.096 0.021 0.074 0.050 0.086 0.003 0.002 0.042 0.051 0.097 

Distractor strabismic eve 
Subject "10 -8 -6 -4 -2 0 2 4 6 8 10 

7 0 989 0 962 0 974 0 992 0.985 1.003 0.879 0.743 0.847 0.950 1.024 
8 0 810 0.866 0.801 0.751 0.795 0.802 0.782 0.679 0.681 0.767 0.757 

Mean 0.900 0.914 0.888 0.871 0.890 0.902 0.830 0.711 0.764 0.859 0.890 
SD 0.126 0.068 0.123 0.170 0.134 0.142 0.069 0.045 0.117 0.129 0.188 
SE 0.089 0.048 0.087 0.120 0.095 0.101 0.049 0.032 0.083 0.091 0.133 

s Distractor both eve 
Subject -10 -8 -6 -4 -2 0 2 4 6 8 10 

7 1.003 0 999 0.946 0 996 0.953 0.984 0.753 0.644 0.757 0.946 1.037 
8 0.866 0.925 0 831 0.799 0.852 0.902 0.836 0.738 0.776 0.846 0.919 

Mean 0.934 0.962 0.889 0.898 0.903 0.943 0.794 0.691 0.766 0.896 0.978 
SD 0.097 0.052 0.082 0.139 0.071 0.058 0.059 0.067 0.014 0.071 0.083 
SE 0.069 0.037 0.058 0.098 0.051 0.041 0.042 0.047 0.010 0.050 0.059 

Table 6.12: The effect of distractors on saccade gain for each distractor position for two subjects with 
manifest strabismus and ARC, a) 4° targets, b) 8° targets. SD = standard deviation, SE = standard error. 

166 



Chapter 6 

a) 
Subject 7: LET (6°) 

The remote distractor effect in strabismus 
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Figure 6.9: The effect of distractors presented to the fixing eye, strabismic eye and both eyes on saccade 
latency for two strabismic observers with ARC. a) 4° targets, b) 8° targets. LET = left esotropia, SE _ 
standard error. 

For 40 targets in all distractor conditions subject 7 had no increase in latency for 

contralateral distractors although did have an increase with distractors at fixation (for 4° 

targets: both eyes 31.8ms; fixing eye 29. Oms; strabismic eye 21.3ms and for 8° targets: 

both eyes 38.5ms; fixing eye 42.4ms; strabismic eye 22.5ms). An increase for 

contralateral distractors was present for 8° targets but atypically, for both eyes and 

strabismic eye distractors the maximum increase occurred at +2°. For fixing eye 

presentation the peak increase was at the original fixation point but longer latencies 

were also evident for ipsilateral distractors. 

Subject 8 demonstrated increased latency for all distractor conditions with maximum 
increase at the original fixation point. The effect was weaker for strabismic eye 
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presentations (for 4° targets: both eyes 34. Oms; fixing eye 31.1ms; strabismic eye 
11.9ms; for 8° targets: both eyes 18.2ms; fixing eye 26.32ms; strabismic eye 8.53ms). 

Table 6.13 shows that for both subjects distractors in the strabismic eye gave maximum 
increase in latency when distractors were presented at the original fixation point, 

stimulating the pseudo-fovea and not points close to the anatomical fovea, this was 

particularly evident in subject 7. There was no increase in the effect with distractors to 
both eyes compared to distractors to fixing eye in both observers. Table 6.14 compares 
the change in saccade latency at fixation for the BSV subjects in Chapter 5 with the 

mean data from the two subjects with ARC. 

Subject 

Distractor at fixation 
fixing eye 

Distractor at fixation 
strabismic eye 

Distractor at fovea 
strabismic eye 

Distractor at fixation 
both eyes 

4° 8° 4° 80 4° 80 4° 8° 
7 28.95 42.43 21.28 22.54 -6.34 -3.55 31.81 38.54 

8 31.12 26.32 11.85 8.53 9.03 2.97 34.03 18.20 

Mean 30.04 34.38 16.57 15.54 1.35 -0.29 32.92 28.37 

SD 1.53 11.39 6.67 9.91 10.87 4.61 1.57 14.38 

Table 6.13: Increase in saccade latency with distractors compared to no distractor condition for 
strabismic subjects with ARC. Distractor at fixation indicates distractor at the original central fixation 
point (point zero), distractor at fovea indicates the distractor position stimulating retina at or closest to the 
anatomical fovea. 

Distractor 4° tar gets 8° tar gets 
BSV ARC BSV ARC 

Dominant eye 53.0 30.0 47.5 34.4 
Non-dominant eye 41.5 16.6 44.2 15.5 

Both 65.9 32.9 59.2 28.4 

Table 6.14: Increase in saccade latency (ms) for each distractor condition, with distractors at the original 
fixation point, for five subjects with BSV and two subjects with ARC. 

Figure 6.10 shows the mean saccade gain plotted as a function of distractor eccentricity 
with distractors presented to both eyes, dominant eye and non-dominant eye for each 
subject. The distractor effect on gain was similar for both eyes, fixing eye and 

strabismic eye presentations for both subjects. For both subjects the response was 
typical of the normal response, subject 8 had a reduced effect for 8° saccades but this 

subject did generally have variable saccade gain as shown in Table 6.10b. An increased 

effect with distractors to both eyes compared to fixing eye presentation is evident for 4° 
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Subject 8: LET (5°) 

targets similar to that shown in the binocular subjects reported in Experiment 4, see 
Table 6.15). 

a) 
Subject 7: LET (6°) 

The remote distractor effect in strabismus 
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Figure 6.10: The effect of distractors presented to the fixing eye, strabismic eye and both eyes on saccade 
gain for two strabismic observers with ARC. a) 4° targets, b) 8° targets. LET = left esotropia, SE _ 
standard error. 

Subject/ 
group 

Dominant eye Non-dominant Both Enhanced binocular 
effect 

4° 8° 4° 8° 4° 8° 4° 8° 

7 0.227 0.243 0.181 0.093 0.487 0.219 0.260 -0.024 
8 0.686 0.130 0.651 0.071 1.159 0.017 0.473 -0.113 

BSV 0.240 0.232 0.352 0.135 0.824 0.382 0.472 0.150 

Table 6.15: Summary of maximum change in saccade gain with distractors for two subjects with 
strabismus and ARC and the mean of five subjects with BSV (from Experiment 4). Change in gain for 4° 

targets is taken from distractors at +10° and for 8° targets from +2°. The enhanced binocular effect is the change 
in gain for distractors to both eyes minus change in gain for distractors presented monocularly. 
Monocular values are taken from the eye with maximum change in gain. 
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6.7.4 Discussion 

Two subjects with strabismus and ARC were studied. As their mean saccade latency 

and gain were quite different from each other they were considered individually and no 

statistical analysis of the results was performed. 

6.7.4.1 Saccade latency 

Hypothesis 3a postulated that distractors presented binocularly and monocularly to the 
fixing eye would increase saccade latency. From Figure 6.9 it was shown that both 

subjects demonstrated increased saccade latencies under these distractor conditions 
supporting hypothesis la. Both subjects had increased latencies for contralateral 
distractors and a maximum increase at the original fixation point with the exception of 

subject 7 for 8° targets, where the maximum increase with distractors in both eyes was 

shifted to +2°. This is in the direction of the anatomical fovea, which would have been 

stimulated by distractors at +6°. Hypothesis lb proposed that the effect would be 

equivalent to that demonstrated in normal BSV in Experiment 4. Whilst the pattern of 
the effect in the two groups was similar, the effect in the ARC subjects was shown to be 

less than the BSV group (Table 6.14). The hypothesis is not therefore supported, 
however this may be the result of the limited number of subjects recruited to the study 

with ARC. Increased numbers of subjects would be required to fully explore this. 

Hypothesis lc postulated that saccade latency would be increased by presentation of 
distractors monocularly to the strabismic eye, Figure 6.9 and Table 6.11 supported this. 
Hypothesis Id proposed that the effect would be equivalent to that demonstrated in 

normal BSV. Whilst a similar pattern and location of the response was found the effect 
from the strabismic eye was much less than the non-dominant eye in the BSV group. 

In subjects with strabismus and suppression the effect on latency with distractors 

presented to the strabismic eye was greatest when distractors were presented in a 

position stimulating the expected location of the anatomical fovea. This was not the 

case in the two observers with ARC where distractors presented at the original fixation 

point (i. e. to the pseudo-fovea) had a greater effect on latency than distractors presented 

to the anatomical fovea. The pseudo-fovea (+6° nasal to anatomical fovea for subject 7 

and +5° nasal to anatomical fovea for subject 8) in the two observers studied had 

maximum inhibitory effect over saccades. It appears therefore that in ARC there is a 

170 



Chapter 6 The remote distractor effect in strabismus 

possible cortical and/or sub-cortical retinotopic re-mapping involved in programming of 
saccades. 

6.7.4.2 Saccade gain 

Hypothesis 2a proposed that saccade gain would be affected by distractors presented 
binocularly, monocularly to the fixing eye and monocularly to the strabismic eye. This 

was supported (as shown in Figure 6.10). The response in the two subjects with ARC 

showed quite different magnitudes. Subject 7 had an equivalent effect to the BSV group 
with dominant (fixing) eye distractors whilst the effect was less than the binocular 

subjects in the non-dominant eye. Subject 8 had a larger response from the dominant 

and non-dominant eyes than the BSV subjects for 4° targets but a reduced response for 
8° targets. Hypothesis 2b postulated that the effect of distractors, presented 
monocularly, on saccade gain would be equivalent to that demonstrated in subjects with 
normal BSV in Experiment 4. Due to variability in the response of the two subjects this 

was not conclusively confirmed. 

Hypothesis 2c was also somewhat inconclusive. It proposed that the effect of distractors 

presented binocularly would be less than that demonstrated in subjects in Experiment 4 

with normal BSV. Subjects with normal BSV demonstrated a significantly greater effect 
for binocular distractors than monocular distractors. Whilst this effect was also 
anticipated in strabismic subjects with anomalous BSV it was expected that the 
binocular increase would be smaller due to a weaker binocular interaction. Table 6.14 

showed the enhanced binocular effect for the two subjects with ARC compared to the 

mean effect in the BSV group. For 4° targets both ARC subjects have a large increase in 

the binocular effect and this is comparable to the BSV subjects in subject 8. For 8° 
targets however both ARC subjects have less change in gain for distractors presented 
binocularly than when presented to the dominant eye only. 

It can be seen from Table 6.16 that the effect on the dominant eye of the strabismic 
subjects with suppression is much larger than in BSV subjects or those with ARC and 
anomalous binocular vision. This may indicate that the fixing eye primarily drives 

saccade generation in strabismus, with input to saccade generators from the fixing eye 
having more influence over saccade accuracy. This table also highlights the small, 
enhanced binocular response in strabismic subjects (which resulted from subjects 3 and 
6), greater enhanced binocular response in anomalous BSV and largest enhanced 
binocular response in normal BSV. Saccade generation therefore appears to be affected 
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by sensory status. It is possible that true binocular interaction (summation) may only be 

claimed by the BSV group, as this is the only situation where the binocular response is 

greater than the sum of the monocular results. 

Distractor BSV Strabismus & 
suppression 

Strabismus 
ARC 

Dominant eye 0.240 0.587 0.467 
Non-dominant eye 0.352 0.187 0.426 

Both eyes 0.824 0.770 0.834 
Enhanced binocular effect 0.472 0.183 0.367 

Table 6.16: Summary of maximum change in saccade gain with distractors for each subject group. Group 
mean data for 4° target amplitude shown for five subjects with BSV (reported in Experiment 4), six 
subjects with manifest strabismus and suppression (Experiment 5) and two subjects with manifest 
strabismus, ARC and anomalous binocular vision (Experiment 8). The enhanced binocular effect is the 
change in gain for distractors to both eyes minus change in gain for distractors presented monocularly. 
Monocular values are taken from the eye with maximum change in gain, i. e. dominant eye for strabismic 
groups and non-dominant eye in BSV group. 

6.7.4.3 Mechanism for the distractor effect in ARC 

The strabismic eye distractor effect on saccade latency in ARC was localised similarly 
to subjects with normal BSV, such that the maximum effect on latency was at the 

original fixation point stimulating nasal retina (pseudo-fovea). This may suggest that a 
collicular retinotopic shift in corresponding points equivalent to the angle of deviation 

occurs. 

The effect with binocular distractors was slightly larger than monocular distractors in 
ARC but this did not reach the magnitude of increase seen for subjects with normal 
BSV. Presence of anomalous BSV gave rise to a small, enhanced effect. 

Campos (1980) and Campos and Chiesi (1983) found larger binocular VEP than 

monocular VEP responses in strabismus with ARC, providing evidence for binocular 

vision in strabismus and perhaps supporting the idea of cortical retinotopic re-mapping. 
A neuroanatomic substrate for such re-mapping is suggested by the results of Berman 

and Payne (1983), who found that induced strabismus in kittens prevents the reduction 
in dendritic arborisation normally seen during maturation of the visual cortex. 
Theoretically this would make binocular interaction possible between cortical areas 

separated by a distance more than typically the case, such as a re-mapping in ARC. 

However there is no direct evidence that this actually occurs, topography of the VEP 

response has not confirmed a shift at any cortical site (areas 17 and 18) contributing to 
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the pattern-onset VEP (McCormack, 1975; McCormack, 1990). Topography of the VEP 
is the spatial distribution of VEP amplitude over the posterior scalp and is correlated to 

retinotopic mapping of the visual cortex (Jeffreys & Axford, 1972a & b). The technique 

used in the studies by Campos (1980) and Campos and Chiesi (1983) and McCormack 
(1990) was considerably different, as the stimuli used by Campos (1980) and Campos 

and Chiesi (1983) were large and not specifically directed at anomalously 

corresponding points, as was the case for the work of McCormack (1990). Hence the 
increased binocular response recorded in the former papers may be produced from 
different retinal regions in the two eyes, which activate physiologically separate cortical 
points whose electrical responses sum at the recording electrode. 

Lack of evidence for re-mapping of cortical cells in ARC as discussed above may 
therefore suggest that the distractor effect seen in this current study may be explained by 

re-mapping in the superior colliculus. There is evidence for the existence of a purely 
sub-cortical route for eliciting goal directed saccades in the absence of cortical 
perception, in which the superior colliculus receives direct visual information to allow 
generation of saccades (Cowey & Stoerig, 1991). McCormack (1990) does 

acknowledge that it is possible that changes to the deviating eyes retinotopic mapping 
could occur at sites beyond the visual cortex or in the brain stem and suggests that the 

search for a physiological basis of ARC should be focussed on these other sites. 

6.8 Final conclusion 

In strabismus, with suppression and ARC, increased saccade latency occurred when 
distractors were presented to the strabismic eye compared to the no distractor condition. 
In all subjects with suppression the effect on latency, with distractors presented to the 

strabismic eye, was maximum when distractors were presented towards the location of 
the anatomical fovea. This was not the case in the two observers with ARC where 
distractors presented at the original fixation point (i. e. to the pseudo-fovea) had a greater 
effect on latency than distractors presented to the anatomical fovea. 

The distractor effect on saccade accuracy was normal in the strabismic eye in ARC but 

only minimally affected in 4 of the 6 observers with suppression. An increased effect 

occurred with binocular distractor presentations compared to monocular presentation to 

the fixing eye (comparable to BSV subjects) in strabismic subjects with ARC but not in 

those with suppression. 
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Despite lack of awareness of, and inability to localise the distractor presented to the 

strabismic eye, saccade planning was affected by the presence of a distractor. 

Mechanisms to explain such results may include sub-cortical retino-collicular pathways 

or high sensitivity in suppression for detection of transient onset and offset of a target 

such that briefly presented targets are registered cortically but fail to reach conscious 

perception for the subject. 

Experiment 5 demonstrated that peripheral distractors within the suppression area affect 
saccade generation. The experiments of Chapter 7 investigate this further by exploring 
saccade generation in response to the central fixation target within the suppression area. 
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Chapter 7 

Saccade adaptation in normal BSV and strabismus 

Chapter 6 revealed evidence of peripheral distractors presented within the suppression 

area affecting saccade programming. This chapter investigates the influence of the 

central fixation target in the strabismic eye, also presented within the suppression area, 

on saccade generation. Disconjugate saccade adaptation is studied in this instance in a 
group of subjects with constant strabismus and suppression with no clinical evidence of 
binocular vision or ARC. A group of subjects with normal BSV is also investigated to 

compare the responses. 

7.1 Introduction 

Horizontal saccades are naturally disconjugate, with abducting saccades being faster 

and slightly larger than adducting saccades (Kapoula, Hain, Zee & Robinson, 1987; 

Collewijn, Erkelens & Steinman, 1988; de Faber, van Rijn & Collewijn, 1994). This 

gives rise to relative divergence of the eyes. In normal BSV this is small where 
typically, for horizontal saccades of <20° from the primary position, the two eyes differ 

by <0.5° (Collewijn, Erkelens & Steinman, 1988). Binocular vision requires images to 
fall on the foveae of each eye and therefore precise control over ocular alignment is 

essential. To maintain control, saccades are under an adaptive control system to 

compensate for short or long term changes to the visual system. Adaptive control 

monitors performance and adjusts parameters to improve accuracy and behaviour where 

required. As saccades are ballistic in nature and occur so quickly, on-going feedback is 

not possible, therefore a learning process is involved in saccade adaptation. 

Changes to the visual system, such as natural aging, fatigue or disease processes, may 
lead to saccade adaptation to maintain comfortable BSV. Kommerell, Olivier and 
Theopold (1976) noted that patients with acquired unilateral nerve palsy could adjust 
the amplitude of their saccades depending on which eye was forced to view. Abel, 

Schmidt, Dell'Osso and Daroff (1978) observed the adaptive changes in saccades in a 

patient who had a sudden onset medial rectus paresis. They occluded the non-affected 

eye for one week, during which time the saccades of the paretic eye became larger in 

the appropriate direction. The largest change occurred during the first day, with changes 

on subsequent days being considerably smaller. An exponential curve fitted the time 

course of adaptation with a time constant of 0.85 days. 
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In controlled conditions Optican and Robinson (1980) confirmed the existence of 
adaptive capabilities of the saccadic system in monkeys who had induced strabismus 
following muscle tenectomy. They were able to localise the adaptive controller to the 

vermis of the cerebellum. 

Studies of symmetric saccadic adaptive control have been carried out experimentally by 

techniques such as intra-saccadic step (Deubel, Wolf & Hauske, 1986; Deubel, 1987) 

and electronic feedback systems (Albano & King, 1989). This work will now be 

reviewed, as it will be directly relevant to the experiment described in this chapter. 

7.1.1 Symmetrical adaptation of saccades 

Deubel, Wolf and Hauske (1986) and Deubel (1987) instructed human subjects and 
monkeys to track a target that jumped. During the saccadic response the target made a 
second jump (intra-saccadic step), either in the same direction as the original target, 

gain-increasing paradigm, or in the opposite direction, gain-decreasing paradigm. Their 

results showed that the size of the primary saccade adapted by increasing or decreasing 

respectively in as little as a few hundred trials. Adaptation occurred in an exponential 

manner being faster at the beginning of the experiment. Albano and King (1989) 

reported similar results using a different technique. They used a procedure that 
introduced a visuomotor mismatch between the retinal error signal (retinal distance 

between fovea and target image) and the motor error signal (movement required to 

accurately foveate the target). The saccadic system responded by modifying the 

amplitude of the saccade. This differs from an intra-saccadic step technique, as the 

mismatch applied is proportional to the amplitude of the saccade, effectively mimicking 
naturally occurring saccadic dysmetria for primary as well as corrective saccades. 
Saccade dysmetria was induced by electronically adding or subtracting 20% of the eye 
position signal to the target position. An example of this is shown in Figure 7.1. 
Addition to the target position was termed positive feedback and subtraction from the 
target position, negative feedback. The principle finding was that the adaptive 
mechanism was capable of producing rapid adjustments in saccade gain within 50 to 
100 saccades over a matter of minutes. In many of the experiments up to 90% 

adaptation occurred within the first 50 saccades, hence measurable effects occurred 

within 5 minutes. 
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Figure 7.1: An example of an adaptation trial. Traces represent recorded horizontal target position 
(shown in red) and eye position (shown in green) of a monkey during an adaptation trial. During the 
feedback interval, a portion of the eye position signal was subtracted from the target's position by the 
computer. This is called a negative feedback condition, which mimics a form of dysmetria called 
hypermetria, resulting in a saccade that overshoots the target position. From Albano & King (1989). 

7.1.2 Disconjugate adaptation in normal BSV 

Saccades may also be adapted disconjugately, such that saccades become unequal in the 

two eyes. Lemij and Collewijn (1991) investigated the time course of disconjugate 

saccade adaptation using short term wear of anisometropic spectacles. These are 

spectacle lenses that have different refractive powers resulting in visual images that are 
differently sized, along both the horizontal and vertical axes, for the two eyes. Three 

subjects wore the glasses for varying periods from one to six hours. Saccade 

disconjugacy was then measured using magnetic sensor coils. They demonstrated in all 

three subjects that disconjugate saccades occurred with anisometropias ranging from 

2DS to 8DS (dioptre spheres), with the adaptations almost complete within one hour. 

More recent studies (Kapoula, Eggert & Bucci, 1995; Van der Steen & Bruno, 1995) 

showed that, under similar conditions where the image to one eye was magnified, 
disconjugacy occurred within a period of a few minutes and persisted under monocular 

viewing. This indicated the presence of a fast learning mechanism. 

7.1.3 Disconjugate adaptation in microtropia 

As disconjugate adaptation sub-serves binocular vision, Kapoula, Bucci, Eggert and 

Zamfirescu (1996) questioned whether foveal fusion is a pre-requisite to achieve 
disconjugate adaptations. They studied three microstrabismic subjects who viewed a 

random dot pattern, which was 10% larger in one eye. They were instructed to make 
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saccades to fixed points within the stimulus area. Within 40 seconds, horizontal 

saccades became larger in the eye viewing the larger stimulus by 4 to 10%. The induced 
disconjugacy persisted under monocular viewing. This demonstrated that foveal fusion 

was not required for this mechanism and peripheral fusion was sufficient to drive 

adaptive changes. 

7.1.4 Disconjugate adaptation in strabismus with no potential BSV 

Bucci, Kapoula, Eggert and Garraud (1997) examined the degree of binocular vision 
necessary to stimulate disconjugate adaptation. Using the same experimental set-up as 
described above Kapoula Bucci, Eggert and Zamfirescu (1996) studied two subjects 
with small esotropia and peripheral fusion, two with intermediate esotropia, ARC and 
anomalous BSV and four subjects with large esotropia and no demonstrable binocular 

vision. The conclusions were that subjects with peripheral binocular vision, and those 

with anomalous BSV, were able to demonstrate disconjugate changes of the binocular 

coordination of their saccades appropriate for the induced disparity. However, subjects 
without binocular vision made disconjugate changes to the amplitude of saccades, but 

these were not in the direction appropriate for the induced disparity. This indicates that 
binocular vision, normal or anomalous, is required to simulate the appropriate 
mechanism of saccade adaptation. It is interesting to note that, although subjects with no 
demonstrable binocular vision do not adapt normally to the stimulus, a mechanism 
exists to initiate an anomalous adaptation response. 

In the experiment outlined above all subjects without potential BSV had their angle of 
deviation corrected, or partially corrected, with base out prisms placed over the 
deviating eye, ranging from 2 to 220. The reason stated for this was to render disparities 

similar in all subjects. This may have led to the anomalous responses found in the larger 

angled strabismus with no demonstrable binocular vision, as points stimulated in each 
eye were significantly altered to those normally stimulated without correction of the 
deviation. It may be that with their `normal' ocular alignment, the disparity could be 
detected (possibly sub-cortically) and hence an appropriate disconjugate adaptation of 
saccades could be triggered. Correction of the angle of deviation was not done in the 

experiment described in this chapter. 

Demonstration of disconjugate saccade adaptation, in subjects with strabismus and 
suppression, will show that despite lack of perception of the target in the strabismic eye 
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it is contributing to saccade programming. This will indicate that binocular vision is not 

required to stimulate disconjugate adaptation. 

7.2 Experiment 9: Disconjugate saccade adaptation in binocular and strabismic 

subjects 

7.2.1 Hypotheses 

1. In subjects with BSV or strabismus with suppression there will be no difference in 

saccade disconjugacy at the end of an experimental test session compared to the 
beginning. 

2. Using an electronic feedback system in one eye to induce disparity, subjects with 
normal BSV will show an increase in saccade disconjugacy, which will persist 
when the feedback is ceased. 

3. Using an electronic feedback system in one eye to induce disparity, subjects with 

strabismus and suppression will demonstrate saccade disconjugacy appropriate in 

direction for the stimulus. Anomalous responses reported by Bucci, Kapoula, 

Eggert and Garraud (1997) will not be found, as the angle of strabismus will not be 

corrected in the present study. 

7.3 Method 

7.3.1 Participants 

Fourteen adult subjects participated in this experiment, eight with normal bifoveal BSV 

and six with manifest strabismus. The group with normal BSV (none of whom have 

previously been reported) were all right eye dominant and had no ocular motility 
defects, their details are summarised in Table 7.1. The subjects with strabismus all had 

constant suppression and no clinically demonstrable BSV, their details are summarised 
in Table 7.2. Five of the six strabismic subjects were also included in the experiment in 

Chapter 6. 
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Subj Gender Age Refractive correction Visual acuity PCT Stereo PFR 
(yrs) RE LE RE LE TNO 

1 F 22 nil nil -0.10 -0.10 2A X 15" 40BO 
18BI 

2 F 23 nil nil -0.14 -0.12 40 X 30" 20BO 
14BI 

3 F 19 -1.25/ -1.25/ 0.00 0.00 60 X 30" 25BO 

-1.00 -0.75 IOBI 
4 F 21 nil nil -0.14 -0.16 2A X 30" 40BO 

12BI 
5 M 38 nil nil -0.10 -0.10 20 E 30" 40BO 

14BI 
6 F 46 -1.75/ -1.25/ 0.00 0.00 2A E 30" 40BO 

-1.00 -0.50 6B1 
7 F 31 nil nil -0.04 -0.06 4A X 30" 25BO 

8131 
8 M 34 -4.00/ -3.00/ -0.10 -0.10 60 X 15" 35BO 

-1.00 -0.50 10131 
mean age 293 ±9.6 

Table 7.1: Characteristics of subjects with normal BSV. PCT = prism cover test, TNO = TNO stereo test 
measured in seconds of arc, PFR = prism fusion range measured in prism dioptres, X= exophoria, E_ 
esophoria. 

Subj Gender Age Refractive correction Visual acuity Cover PCT 
(yrs) RE LE RE LE test 

1 F 59 +2.25 +3.00/ +0.50 -0.10 0.20 Left ET 2AET 
2 F 23 +6.50/-0.25 +5.50 * -0.10 -0.20 Right ET 8AET 
4 F 42 nil nil -0.10 0.00 Left XT 12AXT 

5 F 40 nil nil 0.40 -0.10 Right ET 18AET 

6 F 21 +4.00 +5.00 * -0.10 0.00 Left XT 18XT 

9 F 19 +2.75 +3.00/-1.50 -0.10 0.60 Left XT 8AXT 

mean age 34.0 ±15.7 

Table 7.2: Characteristics of subjects with strabismus and suppression. All subjects, with the exception of 
subject 9, were also included in Experiment 3, Chapter 4 and Experiment 5, Chapter 6. The subject 
numbers used allow identification of the same subject throughout. Full clinical details are given in 
Appendix 5. ET = esotropia, XT = exotropia, PCT = prism cover test. * indicates subjects who wore 
contact lenses for the experiment. 

7.3.2 Experimental set-up 

Experiments were performed under dimmed ambient lighting conditions (2cd/m2). The 

subjects were seated comfortably, in the laboratory set-up as shown in Figure 2.4, 

114cm from the flat back projection screen. The subject's head was stabilised using the 

chin rest previously described, ensuring close fitting of cheek rests against the cheek 
bones and instructing the subject to remain firmly in position. 

180 



Chapter 7 Saccade adaptation in normal BSV and strabismus 

7.3.3 Stimuli 

Projectors 1 and 2 projected identical sized targets consisting of a cross subtending 2° 

(see Chapter 5, Figure 5.2 for shape), luminance l8cd/m2. These were projected so that 

they overlaid each other to appear as a single target and they could be moved by mirror 

galvanometers. The LCP shutters were set such that one target was visible to each eye. 
A blurred random dot stationary background (see Chapter 5, Figure 5.3) of luminance 

4cd/m2 was back projected by projector 3, and was constantly visible to both eyes. 

The calibrated eye movement position signal could be scaled by a factor (the feedback 

gain) and used to move one of the targets. Feedback gain, calculated by dividing target 

velocity by eye velocity was selectively applied to one of the targets, visible to one eye 

only, to induce saccade disconjugacy. Feedback gain of +0.1 was used to move the 

target in the same direction as the eye. The electronic feedback system responded with 

a delay in the order of 10 to 15ms due to a combination of frequency response of the 

mirror galvanometer, computing time and sampling effects. A section of an eye 

movement plot is shown in Figure 7.2 where the delay between the eye and target 

movement can be seen. 
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Figure 7.2: Eye movement trace of right eye and target 
position during feedback movement of the target. A 
feedback gain of +0.1 was applied to the target. As the 
eye moves the target moves in the same direction with 
a small time delay. a) shows a 0.5 second portion of the 
data, b) expands the shaded 0.1 second portion. 
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7.3.4 Design of the experiment 

The experiment was performed in two groups of subjects: a group with normal BSV and 
a group with strabismus, normal retinal correspondence and suppression. Two 

experimental sessions were carried out in the BSV subjects and three for the strabismic 

subjects (see Table 7.3). Each experimental session had three phases: A pre-adaptation 

phase, an adaptation phase and a post-adaptation phase. 

Feedback condition Number of subjects 

BSV group (n=8) Strabismic group (n=6) 

Feedback dominant eye 4 6 

Feedback non-dominant eye 4 6 

No feedback 8 6 

Table 73: Number of subjects undergoing each feedback condition in subjects with BSV and subjects 
with constant strabismus and suppression. 

The experiment was a repeated measures design, the independent variables were: 
feedback condition in the adaptation phase (feedback gain to the dominant eye, 
feedback gain to the non-dominant eye, or no feedback gain) and direction of the 
induced disparity (convergent or divergent). Table 7.4 gives further clarification of 
these. The dependent variable was the difference in saccade gain disconjugacy between 

the pre- and post-adaptation phases. 

Saccades may become more accurate with practice to the same eccentricity or may 
fatigue over the duration of testing. Order effects were therefore counterbalanced by 

randomisation of the independent variables between subjects. 

Eye receiving 
Feedback 

Target direction Induced disparity for 

centrifugal saccades 

Induced disparity for 

centripetal saccades 

Right eye Leftward Convergent Divergent 

Left eye Rightward Convergent Divergent 

None Rightward or leftward None None 

Table 7.4: Independent variables, eye receiving feedback, for BSV subjects feedback to the right eye was 
the dominant eye and left eye was the non-dominant eye. In strabismic subjects this depended on the 
individual subjects fixing eye. Convergent disparity is where the adducting eye is required to make a 
larger saccade than the abducting eye, divergent disparity is where the abducting eye is required to make 
larger saccades than the adducting eye. 
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7.3.5 Procedure 

An information sheet detailing the experiment was given to all subjects prior to arrival 
in the laboratory. The procedure was outlined to them and they were encouraged to ask 

questions prior to giving consent to participate in the study. 

Strabismic subjects attended three testing sessions and binocular subjects two testing 

sessions, each separated by a minimum of 24 hours and a maximum of one week. Each 

session consisted of three phases: the pre-adaptation phase (60 trials); the adaptation 

phase (210 trials), and the post adaptation phase (60 trials). Each phase was run in series 
directly after each other with no break. 

All trials consisted of both targets initially making a 5° step in one direction from the 

central fixation point. The pre- and post-adaptation phases were the same in all 

experimental sessions and consisted of a single target step of 5° from the central 
fixation point and back. The same gaze direction and eccentricity was maintained for all 
trials in the session to facilitate fast adaptation. It has previously been shown that 

adaptation is induced according to direction of movement and it is slower if multiple 

eccentricities are used (Miller, Anstis & Templeton, 1981). 

The adaptation phase consisted of two different conditions: 

1. +0.1 feedback gain applied to the target visible to one eye. 
2. A control condition in which there was no feedback applied. 

The feedback gain of +0.1 and target amplitude of 5° were selected after a pilot study, 

which found that larger feedback gain led to subject awareness of target jitter, inability 

to maintain a single image of the target or movement of the target out of the recordable 

range due to the corrective saccade. 

The eight subjects with normal BSV attended two sessions: one session where the 
feedback condition was performed and one session for the control condition. All 

subjects were right eye dominant, four had feedback applied to the dominant eye and 
four had feedback applied to the non-dominant eye. The six subjects with constant 

strabismus attended three sessions; feedback to the fixing eye, feedback to the 

strabismic eye and the control condition. The order of testing these conditions was 

randomised to balance order effect. When feedback was applied to the right eye, 
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saccades were made from the centre to the left and back, whilst when feedback was 

applied to the left eye, saccades were made from the centre to the right and back. This 

was to ensure that when convergent disparity was induced, saccades were always 

centrifugal and when divergent disparity was induced, saccades were always centripetal. 
This is due to the slight differences reported in centrifugal and centripetal saccades 
(Collewijn, Erkelens & Steinman, 1988). For subjects with normal BSV the same 

saccade direction was maintained for the control condition. In the strabismic group the 

saccade direction used when feedback was applied to the strabismic eye was also used 
in the control condition. 

Subjects were instructed to look at the centre of the target cross and move their eyes to 
follow it at all times as quickly and accurately as possible. They were told not to move 
their eyes until they actually saw the target appear in the eccentric position. They were 

also asked to try to keep the target single and clear at all times. The subject was 
informed of the gaze direction prior to commencing the experimental session. Each 

experimental session lasted approximately 30 minutes. Calibration of eye movements 

was performed prior to each phase. 

The two identical overlapping targets, presented to each eye separately using the LCP 

shutters, appeared in the centre of the screen and, after a randomised time delay (500 - 
1500ms), jumped 5° to the right or left of centre. Following a randomised period (500 - 
1500ms) the targets would both return to the centre. In the adaptation phase of the 

feedback condition, both targets jumped from the centre to 5° eccentricity. When the 

eye with feedback moved to fixate the target, the dissociated target visible to that eye 

only moved in the direction of the eye movement by a feedback gain of +0.1 producing 

retinal disparity. This therefore created a stimulus to induce disconjugate saccade 

adaptation. 

Eye movements were recorded using the method described in Chapter 2. The pre- and 

post-adaptation phases were performed with monocular viewing by closing the LCP 

shutter in front of the non-preferred eye. This was to prevent binocular information in 

the post-adaptation phase reducing any increased disconjugacy that may have occurred 
during the adaptation phase. Viewing was binocular during the adaptation phase. 

Following the experiment, the subjects were asked whether the target ever appeared 
double or whether they appreciated depth to the target in relation to the background. 

None of the subjects in either group reported diplopia during any of the test sessions. 
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All of the BSV group was aware of depth of the target compared to the background in 

the feedback conditions but not in the no feedback condition. None of the strabismic 

group was aware of depth in any of the conditions. 

7.4 Results 

Saccadic eye movement data was analysed as outlined in Chapter 2. Each saccade was 

checked visually to confirm correct detection of the primary saccade. Saccades with 
latency <80ms were excluded as they were considered to be anticipatory (Fischer & 

Weber, 1993) and saccades with latency >450ms were excluded as they were not 

considered to be visually triggered (Walker, Deubel, Schneider & Findlay, 1997). In all 

subjects a small number of saccades could not be analysed due to blinks or incorrect 
fixation. This ranged from 8% to 22% with a mean of 12% excluded from the analysis. 

Mean saccade gain for each eye was calculated for the pre- and post-adaptation phase 
for each of the feedback conditions. The gain of the eye without feedback applied was 

subtracted from the gain of the eye with feedback applied, to give the saccade gain 
disconjugacy. This was so that any change in disconjugacy to compensate for the 
induced disparity (adaptation) would be represented by an increasing positive value in 

all cases. The magnitude of the adaptive effect was taken as the change in mean gain 
disconjugacy during the pre- and post-adaptation phases. 

7.4.1 Subjects with normal BSV 

The mean gain of saccades in each eye, and saccade disconjugacy in the pre- and post- 
adaptation phases, are presented for all eight subjects in Table 7.5a (convergent 
disparity) and Table 7.6b (divergent disparity). Subjects 1 to 4 had feedback to the 
dominant right eye during the adaptation phase and subjects 5 to 8 had feedback to the 

non-dominant left eye. Tables 7.5b and 7.6b show the same information for the no 
feedback condition for saccades made in the same direction as Tables 7.5a and 7.6a 

respectively. The magnitude of any adaptation effect is also shown in these tables where 
positive values represent adaptation in the correct direction to compensate for the 
disconjugacy. 

Figure 7.3 shows the pooled mean saccade gain disconjugacy for the group (all 8 

subjects) in the pre- and post-adaptation phases. 
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Normal BSV Group 

a) Feedback condition - convergent disparity (centrifugal saccades) 

Subject Pre-ada tati on phase Post-adaptat ion phase Magnitude 
Gain 
FB 

Gain 
no FB 

Disconjugacy Gain 
FB 

Gain 
no FB 

Disconjugacy of 
adaptation 

1 1.043 1.054 -0.011 1.143 1.064 . '_. 0.080 '7: 0.091 
2 1.055 1.085 -0.030 1.051 0.974 - 0.076 0.106 ., 
3 1.034 1.002 0.032 1.013 0.842. 0.171. " 0.139 
4 0.922 0.844 0.078 1.083 0.859 0.223; '% -' 0.145 , 
5 0.993 0.978 0.015 1.169 0.857 0.312 0.297 
6 0.943 0.965 -0.022 1.003 0.833 0.170 0.192 
7 0.948 0.978 -0.029 1.003 0.916 0.086 0.116 
8 1.208 1.199 0.009 1.170 1.084 0.086 0.077 

Mean 1.018 1.013 0.005 1.079 0.929 0.151** 0.145 
SD 0.091 0.103 0.037 0.073 0.101 0.085 0.071 
SE 0.032 0.037 0.013 0.026 0.036 0.030 0.025 

b) No feedback condition (centrifugal saccades) 
Subject Pre-ada ta tion phase Post-ada tat ion phase Magnitude 

Gain 
FB 

Gain 
no FB 

Disconjugacy Gain 
FB 

Gain 
no FB 

Disconjugacy of 
adaptation 

1 1.095 1.112 -0.017 1.093 1.083 0.010' 0.027 
2 1.080 1.112 -0.032 1.012 1.022 -0.009, 0.023 
3 1.057 1.017 0.040 1.010 0.963 0.047 0.007 
4 1.080 0.974 - 0.106 ý 1.006 0.900 -ýý,. 0.107 ,ý"ý , :. 0.001 �- 
5 1.026 1.015 0.010 1.033 1.020 0.013 0.003 
6 1.005 1.043 -0.038 0.952 0.986 -0.034 0.005 
7 0.937 1.001 -0.065 0.923 0.983 -0.061 0.004 
8 1.166 1.155 0.011 1.100 1.084 0.016 0.005 

Mean 1.056 1.054 0.002 1.016 1.005 0.011 0.009 
SD 0.068 0.064 0.053 0.061 0.062 0.051 0.010 
SE 0.024 0.023 0.019 0.022 0.022 0.018 0.003 

Table 7.5: Mean saccade gain for each eye and saccade gain disconjugacy to 5° target eccentricity in the 
pre- and post-adaptation phases. a) results for feedback condition where convergent disparity was 
induced in the adaptation phase; b) in the no feedback control condition, no disparity was induced in the 
adaptation phase. Subjects 1-4 (shaded section) had feedback applied to the dominant (right) eye and 
hence made saccades from centre to left and back to centre, subjects 5-8 had feedback applied to the non- 
dominant (left) eye and made saccades from centre to right and back to centre. The different gaze 
directions were used so that convergent disparity was always induced with centrifugal saccades and 
divergent disparity centripetal saccades. The same saccade direction was maintained for the no feedback 

condition results shown in b. Saccade disconjugacy was calculated by subtracting the gain of the eye 
without feedback (gain no FB) from the eye undergoing feedback (gain FB). This was to produce relative 
positive values if adaptation occurred. The same eye gains were subtracted in the no feedback condition. 
** represents a statistically significant change between pre- and post-adaptation phases of the 
disconjugacy, paired samples t-test p<O. 01. SD = standard deviation, SE = standard error. 
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Normal BSV Group 

a) Feedback condition - divergent disparity (centripetal saccades) 
Subj Pre-ada tat ion phase Post-ada tation phase Magnitude of 

Gain 
FB 

Gain 
no FB 

Disconjugacy Gain 
FB 

Gain 
no FB 

Disconjugacy adaptation 

1 1.053 0.994 0.059 1.173 1.053 0.120 0.060 
2 1.068 1.021 0.047 , '1.175 0.961 ' , 0.214 , ,,; ý ,,, 'ý ýý 0.166 ' 
3 0.938 0.955 ' -0.018 0.975 ''0.857 - ý`0.118 !°". ' i" ,"ý0.135 °' . ý' 
4 0.984 1.043 -0.059 . 1.126 1.004 0.123 ýýý ''- - 0.182' .": ` 
5 1.019 0.969 0.050 1.244 0.889 0.355 0.305 
6 1.032 0.975 0.057 1.053 0.933 0.120 0.063 
7 1.076 1.014 0.062 0.993 0.885 0.108 0.046 
8 1.237 1.112 0.125 1.116 0.886 0.230 0.105 

Mean 1.051 1.010 0.040 1.107 0.933 0.173** 0.133 
SD 0.088 0.050 0.056 0.094 0.068 0.088 0.086 
SE 0.031 0.018 0.020 0.033 0.024 0.031 0.030 

b) No feedback condition (centripetal saccades) 
Subj Pre-ada tat ion phase Post-ada tation phase Magnitude of 

Gain 
FB 

Gain 
no FB 

Disconjugacy Gain 
FB 

Gain 
no FB 

Disconjugacy adaptation 

1 1.094 1.032 0.062 1.079 1.041 0.038 -0.024 
2 1.104 1.067 0.037 1.058 0.997 0.061 0.024 
3 0.909 0.944 -0.035 0.966 1.008 -0.042, '° - --0.006 
4 0.965 1.019 -0.054- 0.901 -0.938 -0.037 ` - 0.018 
5 1.048 1.003 0.045 1.048 1.002 0.046 0.001 
6 1.005 0.985 0.020 0.961 0.925 0.036 0.016 
7 1.002 0.927 0.075 1.006 0.932 0.074 -0.001 
8 1.167 1.062 0.105 1.096 1.012 0.083 -0.022 

Mean 1.037 1.005 0.032 1.014 0.982 0.032 0.001 
SD 0.083 0.051 0.054 0.067 0.044 0.047 0.018 
SE 0.029 0.018 0.019 0.024 0.015 0.017 0.006 

Table 7.6: Mean saccade gain for each eye and saccade gain disconjugacy to 5° target eccentricity in the 
pre- and post-adaptation phases. a) results for feedback condition where divergent disparity was induced 
in the adaptation phase; b) in the no feedback control condition, no disparity was induced in the 
adaptation phase. Subjects 1-4 (shaded section) had feedback applied to the dominant (right) eye and 
hence made saccades from centre to left and back to centre, subjects 5-8 had feedback applied to the non- 
dominant (left) eye and made saccades from centre to right and back to centre. The different gaze 
directions were used so that convergent disparity was always induced with centrifugal saccades and 
divergent disparity centripetal saccades. The same saccade direction was maintained for the no feedback 
condition results shown in b. Saccade disconjugacy was calculated by subtracting the gain of the eye 
without feedback (gain no FB) from the eye undergoing feedback (gain FB). This was to produce relative 
positive values if adaptation occurred. The same eye gains were subtracted in the no feedback condition. 
** represents a statistically significant change between pre- and post-adaptation phases of the 
disconjugacy, paired samples t-test p<0.01. SD = standard deviation, SE = standard error. 
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  feedback   no feedback 
Figure 7.3: Mean saccade gain disconjugacy, pooled data for the normal BSV group (n=8) a) convergent 
disparity; b) divergent disparity. Error bars = ±1 standard error. 

From Tables 7.5b and 7.6b it is evident that when no feedback was applied during the 

adaptation phase there was no change in saccade gain disconjugacy between the pre- 

and post-adaptation phases in any of the subjects. The mean change in gain 
disconjugacy for the group was just 0.009 ±0.003 for centrifugal saccades and 0.001 

±0.018 for centripetal saccades. 

Tables 7.5a and 7.6a show that using feedback gain to one eye in this experimental set- 

up all subjects demonstrated adaptive changes to saccades producing increased 

disconjugacy following the adaptation phase when feedback was applied to the target 

visible to one eye. The disconjugacy produced was appropriate in direction for the 

induced disparity for all subjects. The mean change in gain disconjugacy for the group 

was just 0.145 ±0.071 for centrifugal saccades (convergent disparity) and 0.133 ±0.086 

for centripetal saccades (divergent disparity). A typical example of the eye movement 

response is shown in Figure 7.4. 
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When no feedback was applied during the adaptation phase there was no change in 

disconjugacy of saccades between the pre- and post-adaptation phases in any of the 

subjects. A paired t-test showed that there was no significant difference (centrifugal 

saccades, t= -0.967, df =7, p>0.05; centripetal saccades, t= -0.079, df = 7, p>0.05). 
Details of the t-tests are shown in Appendix 11.1.1. This control condition indicates that 

there are no changes in disconjugacy due to non-adaptational processes over the course 

of the thirty minute experiment supporting hypothesis 1. 

For convergent disparity the mean change in disconjugacy following adaptation for the 

subjects with feedback to the dominant eye (subjects 1-4) was 0.120 ±0.026 and non- 
dominant eye (subjects 5-8) was 0.170 ±0.097. For divergent disparity the mean change 
in disconjugacy following adaptation for the subjects with feedback to the dominant eye 
(subjects 1-4) was 0.136 ±0.054 and non-dominant eye (subjects 5-8) was 0.130 ±0.119. 
There was no significant difference between feedback to the dominant or non-dominant 
eye (unpaired samples t-test, convergent disparity, t=1.002, df = 6, p>0.05; divergent 
disparity, t= -0.092, df = 6, p>0.05). Statistical details are shown in Appendix 11.1.2. 
The data in the two feedback conditions (dominant eye and non-dominant eye) was 
therefore pooled for further analysis and as shown in Figure 7.3. 

A statistical difference in disconjugacy between pre- and post-adaptation phases was 
found for both convergent and divergent induced disparity (paired samples t-test; 

convergent disparity, t= -5,784, df = 7, p<0.001; divergent disparity, t= -4.386, df =7, 

p<0.01). This supports hypothesis 2, which proposed that with feedback to one eye, 

subjects with normal BSV would show an increase in saccade disconjugacy, which will 

persist when the feedback is ceased. The effect of feedback inducing a convergent or 
divergent disparity was not significantly different (paired samples t-test, t=0.574, df = 7, 

p>0.05) (see Appendix 11.1.2). 
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Saccade adaptation in normal BSV and strabismus 

Pre- adaptation phase 
Both superimposed targets (shown in red) move 
from the centre of the screen to 5° right. Both eyes 
make a saccade very slightly overshooting the 
target. 

Early adaptation phase 1 
Both superimposed targets move from the centre of 
the screen to 5° right. Both eyes make a saccade to 
the right but as the left eye moves (shown in green) 
the target seen by the left eye receives +0.1 
feedback. The target seen by the right eye (dotted 

red line) remains at 5°. In this early stage it is 

apparent that the saccades have become slightly 
disconjugate with the left eye moving slightly more 
than the right eye (shown in blue). 

Early adaptation phase 2 
A second example from early in the adaptation 
period is shown. The primary saccade in the left 

eye is very slightly larger than the right eye. The 
left eye then gradually moves on to target. 

Late adaptation phase 
Disconjugate (convergent) primary saccade, 
LE>RE 

Post-adaptation phase 
Both superimposed targets move from the centre of 
the screen to 5° right and remain at this eccentricity 
(as in the pre-adaptation phase). The left eye 
continues to make a larger saccade due to saccade 
adaptation. 

Time (seconds) 

Right eye Figure 7.4: A typical example of saccadic eye 
Left eye movements recorded in the three experimental 
Target right eye phases. Data from subject 5 with normal BSV. 
Target left eye 
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7.4.2 Subjects with strabismus 

The mean gain of saccades, saccade disconjugacy in the pre- and post-adaptation phases 

and magnitude of adaptation effect are presented for all six subjects in Table 7.7 

(convergent disparity) and Table 7.8 (divergent disparity). Individual subject results are 

presented graphically in Figure 7.5. 

Saccade disconjugacy in the pre-adaptation phase was variable between subjects 

ranging from 1.3° convergent to 0.7° divergent. The response to feedback was also 
variable between subjects with three of the six subjects showing adaptation in an 
appropriate direction for the induced disparity (subjects 2,4 and 9), two showing 
adaptation in an inappropriate direction (subjects 1 and 6), and one having no obvious 
response (subject 5). 

As for the subjects with normal BSV, Tables 7.7c and 7.8c and Figure 7.5 show that no 
change in disconjugacy of saccades occurred between the pre- and post-adaptation 

phases in any of the strabismic subjects when no feedback was applied during the 

adaptation phase, supporting hypothesis 1. 

From Tables 7.7a, 7.7b, 7.8a and 7.8b the group mean results for the feedback 

conditions indicate very little or no overall adaptation effects, however examination of 
individual subject data reveals variable results (as shown in Figure 7.5). Five of the six 

subjects demonstrated adaptive changes to saccade disconjugacy following the 

adaptation phase when feedback was applied to a target visible to one eye. To determine 

whether the changes in disconjugacy for each subject were significantly different from 

the binocular subjects, z scores were calculated and levels of significance determined. 

This was done using the mean and SD of the BSV group and the mean result of each 
strabismic subject to obtain az score. Z scores were then converted to probability (using 

the table of normal distribution) of the subject being different from the BSV group. If 

adaptation occurred in the strabismic subject the p value would be non-significant. A 

summary of these results is shown in Table 7.9 and full details are in Appendix 11.2. 
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Strabismic Group 

a) Feedback fixing eye 

Subject Pre-adaptation Phase Post-adaptation Phase Magnitude of 

Fix Strab Disconjugacy Fix Strab Disconjugacy adaptation 

1 1.152 1.373 -0.221 1.064 1.415 -0.351 -0.130 
2 1.014 0.956 0.058 1.114 0.893 0.222 0.163 
4 1.018 0.940 0.078 1.249 1.050 0.199 0.120 
5 0.753 0.865 -0.112 0.675 0.739 -0.064 0.048 
6 0.998 1.085 -0.087 0.755 1.164 -0.409 -0.322 
9 0.982 0.848 0.134 1.017 0.788 0.229 0.095 

MEAN 0.986 1.011 -0.025 0.979 1.008 -0.029 -0.004 
SD 0.129 0.196 0.136 0.220 0.255 0.293 0.186 
SE 0.053 0.080 0.056 0.090 0.104 0.120 0.076 

b) Feedback strabismic eye 

Subject Pre-adaptation Phase Post-adaptation Phase Magnitude of 

Fix Strab Disconjugacy Fix Strab Disconjugacy adaptation 

1 1.056 1.281 0.225 1.015 0.896 -0.119 -0.314 
2 1.038 1.098 0.060 1.067 1.173 0.105 0.045 
4 0.933 0.812 -0.121 0.918 1.055 0.136 0.258 
5 0.936 1.112 0.176 0.927 1.043 0.116 -0.060 
6 0.902 1.001 0.099 0.753 0.888 0.134 0.035 
9 0.928 1.086 0.158 0.800 1.408 0.608 0.450 

MEAN 0.840 0.915 0.082 0.791 0.927 0.157 0.096 
SD 0319 0352 0.109 0.301 0.373 0.169 0.218 
SE 0.130 0.144 0.044 0.123 0.152 0.069 0.089 

c) No feedback condition 
Subject Pre-adaptation Phase Post-adaptation Phase Magnitude of 

Fix Strab Disconjugacy Fix Strab Disconjugacy adaptation 

1 0.909 1.146 0.237 0.930 1.123 0.193 -0.044 
2 1.055 1.149 0.094 1.090 1.188 0.098 0.004 
4 0.876 0.713 -0.163 1.023 0.833 -0.191 -0.028 
5 0.984 1.314 0.330 1.111 1.448 0.337 0.006 
6 0.980 1.056 0.076 0.960 1.103 0.144 0.068 
9 0.936 1.034 0.098 0.894 1.005 0.111 0.014 

MEAN 0.844 0.916 0.082 0.869 0.947 0.090 0.003 
SD 0324 0365 0.136 0.334 0.382 0.130 0.039 
SE 0.132 0.149 0.056 0.136 0.156 0.053 0.016 

Table 7.7: Mean saccade gain for each eye, saccade gain disconjugacy and difference in saccade gain 
disconjugacy between the pre and post-adaptation phases for each subject following induced convergent 
disparity. Fix = fixing eye, Strab = strabismic eye. The fixing eye was the right eye in subjects 1,4,6 and 
9 and left eye in subjects 2 and 5. Saccade gain disconjugacy was calculated by subtracting eye without 
feedback from eye with feedback, i. e. increased positive values would be expected in the post-adaptation 
phase if adaptation occurred. Where no feedback was applied (c) gain of the fixing eye was subtracted 
from gain of the strabismic eye. SD = standard deviation, SE = standard error. 
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Strabismic Group 

a) Feedback fixing eye 

Subject Pre-adaptation Phase Post-adaptation Phase Magnitude of 
Fix Strab Disconjugacy Fix Strab Disconjugacy adaptation 

1 1.054 1.334 -0.280 1.007 1.486 -0.479 -0.199 
2 0.994 1.051 -0.056 1.158 0.989 0.170 0.226 
4 0.972 1.021 -0.049 1.179 0.983 0.196 0.245 
5 0.881 1.074 -0.193 0.590 0.759 -0.169 0.024 
6 0.987 1.055 -0.069 0.748 0.946 -0.198 -0.129 
9 1.003 0.952 0.051 1.070 0.898 0.172 0.122 

MEAN 0.982 1.081 -0.099 0.959 1.010 -0.051 0.048 
SD 0.057 0.131 0.118 0.238 0.248 0.275 0.184 
SE 0.023 0.054 0.048 0.097 0.101 0.112 0.075 

b) Feedback strabismic eye 

Subject Pre-adaptation Phase Post-adaptation Phase Magnitude of 
Fix Strab Disconjugacy Fix Strab Disconjugacy adaptation 

1 1.106 1.351 0.245 1.012 0.943 -0.069 -0.343 
2 0.987 0.955 -0.032 0.965 1.154 0.190 0.221 
4 0.908 0.971 0.063 0.904 1.061 0.157 0.094 
5 0.773 0.883 0.110 0.976 1.122 0.147 0.037 
6 0.916 1.035 0.119 0.546 0.930 0.384 0.265 
9 1.011 0.886 -0.124 0.862 1.058 0.197 0.321 

MEAN 0.950 1.014 0.063 0.878 1.045 0.167 0.099 
SD 0.113 0.175 0.129 0.171 0.092 0.145 0.242 
SE 0.046 0.071 0.053 0.070 0.037 0.059 0.099 

c) No feedback condition 
Subject Pre-adaptation Phase Post-adaptation Phase Magnitude of 

Fix Strab Disconjugacy Fix Strab Disconjugacy adaptation 

1 0.952 1.192 0.240 0.904 1.118 0.214 -0.026 
2 1.070 1.002 -0.069 1.174 1.128 -0.046 0.023 
4 0.812 0.882 0.070 0.947 1.004 0.056 -0.014 
5 0.981 1.094 0.113 0.981 1.163 0.182 0.069 
6 0.980 1.093 0.113 0.902 1.004 0.102 -0.012 
9 1.026 0.864 -0.162 0.990 0.891 -0.099 0.064 

MEAN 0.970 1.021 0.051 0.983 1.052 0.068 0.017 
SD 0.088 0.130 0.144 0.101 0.103 0.124 0.041 
SE 0.036 0.053 0.059 0.041 0.042 0.050 0.017 

Table 7.8: Mean saccade gain for each eye, saccade gain disconjugacy and difference in saccade gain 
disconjugacy between the post and pre-adaptation phases for each subject following induced divergent 
disparity. Fix = fixing eye; Strab = strabismic eye. The fixing eye was the right eye in subjects 1,4,6 and 
9 and left eye in subjects 2 and 5. Saccade gain disconjugacy was calculated by subtracting eye without 
feedback from eye with feedback, such that increased positive values would be expected in the post- 
adaptation phase if adaptation occurred. Where no feedback is applied (c) gain of the fixing eye was 
subtracted from gain of the strabismic eye. SD = standard deviation, SE = standard error. 
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Figure 7.5: Magnitude of disconjugate saccade gain adaptation in strabismic subjects following 

adaptation period. a) convergent disparity (centrifugal saccades), b) divergent disparity (centripetal 

saccades). 

Three subjects (subjects 2,4 and 9) demonstrated adaptation in a direction appropriate 

to the induced disparity for all conditions (feedback fixing eye and strabismic eye for 

convergent and divergent disparity). The response from subject 9, although appropriate 
in direction, was significantly larger than the binocular subjects when feedback was 
introduced to the strabismic eye (p<0.01, see Table 7.7 and Appendix 11.2). Subject 1 

demonstrated adaptation in the opposite direction to that required for compensation of 

the induced disparity in all conditions where feedback was applied in the adaptation 

phase. Subject 6 demonstrated a mixed response; when feedback was applied to the 

strabismic eye adaptation occurred in the appropriate direction for divergent disparity 

194 



Chapter 7 Saccade adaptation in normal BSV and strabismus 

and no adaptation for convergent disparity; when feedback was applied to the fixing eye 

adaptation occurred in the opposite direction to that required for compensation of the 

induced disparity. Subject 5 did not show any difference in disconjugacy between the 

no feedback and feedback conditions for divergent disparity or convergent disparity 

with feedback to the fixing eye. The only response in this subject occurred for 

convergent disparity when feedback was applied to the strabismic eye, the adaptation 

effect was small and inappropriate to the induced disparity. This subject had variable 

saccade gain and variable disconjugacy in the pre-adaptation phase between testing 

sessions, with pre-adaptation gains ranging from 0.753 to 0.984 in the fixing (left) eye 

and 0.865 to 1.314 in the strabismic (right) eye. From Table 7.9 it appears that this 

subject behaved as the binocular subjects when feedback was in the strabismic eye with 
divergent disparity. It should be noted, however, that the apparent adaptation in these 

conditions was also seen in the no feedback condition. It therefore can be concluded that 

this subject had variable responses and had no clear adaptation effect. 

Subject Fixing eye Strabismic eye 
Convergent Divergent Convergent Divergent 

1 ss* *** *** *** 

2 - - - - 
4 - - - - 
5 - - ** - 
6 
9 - - *** 

Table 7.9: Summary of significance levels of z scores for individual strabismic subjects. Conditions 

where the results were significantly different from the BSV group are represented as follows: *=p< 
0.05; ** = p< 0.01; *** =p<0.001. Where there is no significant difference from the BSV group the 
symbol - is used. Results in red indicate adaptation occurring in an appropriate direction to the induced 
disparity and those in black indicate adaptation occurring in an inappropriate direction to the induced 
disparity. The shaded cells for subject 5 represent results that although were not significantly different 
from the BSV group, were the equivalent to the response in this subject in the no feedback condition, 
hence this subject did not show a difference in the feedback condition compared to the no feedback 

condition. 

7.4.3 Time course of saccade adaptation 

To identify any differences in the response between the subjects with normal BSV and 

subjects with strabismus the adaptation phase was examined further. Figure 7.6 and 7.7 

show the mean saccade gain disconjugacy over the time course of the three 

experimental phases, with feedback applied to the dominant eye (Figure 7.6) and to the 

non-dominant eye (Figure 7.7). The figures are pooled data of three BSV subjects, who 
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demonstrated similar adaptation patterns (see individual subject data shown in 

Appendix 12.1) and three strabismic subjects who adapted in the appropriate direction 

for the induced disparity (see individual subject data shown in Appendix 12.2). The 

mean disconjugacy and standard error for each run (15 saccades) is plotted. 

From Figures 7.6 and 7.7 the time course of adaptation appeared similar in all subjects 

within each group. A small amount of disconjugacy was present in the pre-adaptation 

phase, which was fairly consistent for the four runs. The largest increase in 

disconjugacy occurred in subjects with normal BSV, during the first five to seven runs 

of the adaptation phase (approximately five minutes). Adaptation reached a maximum 
level and then a plateau in the effect was seen in the BSV subjects. A similar effect was 

seen in the strabismic subjects. In both groups of subjects the increased disconjugacy 

persisted during the post-adaptation phase in the absence of feedback to one eye. The 
disconjugacy reduced gradually over the four runs of the post-adaptation phase. 

Four separate two-factor repeated measures trend analyses (Winer, 1962) were 

performed on the data of the adaptation phase to determine whether there was a 
difference between the time course of adaptation for convergent and divergent disparity 

in each group. These are described fully in Appendix 12.3 and details shown in 

Appendix 12.4.1. They revealed that there were no significant differences between the 

time course of adaptation for convergent and divergent disparity, such that for example, 
the data shown in Figure 7.6a was not significantly different from Figure 7.6b and 
Figure 7.6c was not significantly different from Figure 7.6d. 

Four separate two-factor mixed measures trend analyses were performed on the data to 
determine whether there was a difference in the adaptation phases between the two 

groups with feedback to the dominant and non-dominant eye for convergent and 
divergent disparity. These are described fully in Appendix 12.3 and details shown in 

Appendix 12.4.2. They revealed that there were no significant differences between the 

time course of adaptation for BSV subjects and strabismic subjects, such that for 

example, the data shown in Figure 7.6a was not significantly different from Figure 7.6c 

and Figure 7.6b was not significantly different from Figure 7.6d. 
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Chapter 7 Saccade adaptation in normal BSV and strabismus 

To test for differences in the rate of adaptation between groups two three-factor mixed 

measures ANOVA's were calculated, one for feedback to the dominant eye and one for 

feedback to the non-dominant eye. The three factors were group (BSV or strabismic), 
disparity (convergent or divergent) and time (run 5 to run 18). There was no significant 
difference between groups [dominant eye F(1,4)=1.297, p>0.05; non-dominant eye 
F(1,4)=1.600, p>0.05] or interactions between group and the other factors. The only 

significantly different factor was time, [dominant eye F(13,52)=6.384, p<0.0001; non- 
dominant eye F(13,52)=6.778, p>0.0001]. Details of the ANOVA are shown in 

Appendix 12.5. 

The results show that both groups of subjects essentially have the same time course of 
adaptation, as demonstrated in Figures 7.6 and 7.7 and supported statistically. 

7.5 Discussion 

7.5.1 The no feedback condition 

Hypothesis 1 stated that in subjects with BSV or strabismus with suppression there will 
be no difference in saccade disconjugacy at the end of an experimental test session 

compared to the beginning. This was tested by comparing the saccade gain 
disconjugacy, before and after the adaptation phase of 210 saccades, without feedback 

gain being applied. In both groups of subjects there was no difference in disconjugacy 

between the pre- and post-adaptation phases (Figures 7.3 and 7.5). The hypothesis is 

therefore supported. 

The finding that subjects with strabismus with no clinically demonstrable binocular 

vision have stability in disconjugacy during such a task suggests that there is a degree of 

yoking of the eyes and that the two eyes are not operating independently. 

7.5.2 The response to feedback gain in normal BSV 

Hypothesis 2 stated that using an electronic feedback system in one eye to induce 

disparity, subjects with normal BSV will show an increase in saccade disconjugacy, 

which will persist when the feedback is ceased. 

The electronic feedback system applied to a target visible to one eye produced rapid 
disconjugate saccade adaptation, which persisted when the feedback ceased, in all eight 
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subjects with normal bifoveal BSV. In contrast the control condition resulted in no 
significant difference in saccade disconjugacy between the pre- and post-adaptation 
phases. Hypothesis 2 was therefore supported. 

This method of open-loop feedback has previously been described to induce 
symmetrical saccade adaptation (Albano & King, 1989) but this is the first description 

of its use monocularly with dissociation of the eyes, allowing the study of disconjugate 

adaptation. Figure 7.3 shows that the responses produced by the stimuli are large. This 
is because the eye under the feedback condition can never achieve the perfect saccade in 

response to the stimulus. As saccade amplitude is modulated in response to disparity the 
target continues to move further onwards. 

7.5.3 The response to feedback gain in strabismus 

Hypothesis 3 stated that using an electronic feedback system in one eye to induce 
disparity, subjects with strabismus and suppression will demonstrate saccade 
disconjugacy appropriate in direction for the stimulus. Anomalous responses reported 
by Bucci, Kapoula, Eggert and Garraud (1997) will not be found, as the angle of 
strabismus will not be corrected in the present study. 

The primary aim of this study was to determine whether subjects with manifest 
strabismus and no demonstrable fusion, normal or anomalous, could produce 
disconjugate saccades under such test conditions. Figure 7.5 demonstrated that three of 
the six strabismic subjects studied were able to produce appropriate disconjugate 

adaptations despite no clinically detectable binocular co-operation. Two subjects (1 and 
6) produced disconjugate adaptation inappropriate for the disparity and one subject had 

no response. 

The electronic feedback system used to induce disparity in subjects with strabismus and 
suppression, demonstrated appropriate saccade disconjugacy in three subjects, therefore 
Hypothesis 3 is supported. Anomalous responses, similar to those reported by Kapoula, 
Eggert and Garraud (1997), were found in two of the subjects although the angle of 
strabismus was not corrected in the present study. Correction of the angle of strabismus 
does not therefore explain these previously reported responses; therefore this aspect of 
the Hypothesis is rejected. 
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7.5.3.1 Appropriate adaptation 

The three subjects who adapted in the appropriate direction had small angled deviations 

(8A esotropia, 8A exotropia and 12A exotropia), who could be considered likely 

candidates for development of ARC and anomalous binocular vision. Extreme care was 
taken to clinically investigate the subjects with careful questioning for tests requiring 
subjective responses and a complete investigation was performed, employing a full 

range of tests; see results in Appendix 5. There was no clinical suggestion of any gross 
normal or abnormal binocular vision in any of the subjects. This finding has not been 

previously described in the literature. 

Evidence for disconjugate adaptation in the strabismus with presence of gross clinically 
demonstrable binocular co-operation has been previously described. Using a different 

method (magnifying the image in one eye) Bucci Kapoula, Eggert and Garraud (1997) 
demonstrated disconjugate adaptations in intermediate sized strabismus with abnormal 
binocular vision. They describe such adaptations in two subjects with 18 and 210 

esotropia who had positive responses for Bagolini striated glasses, failed to demonstrate 

stereoacuity in free space (TNO and Titmus test) but demonstrated a stereoacuity of 
3600 seconds of arc on the synoptophore. The subjects reported in the present study 
however, differed as they had smaller angles of deviation and did not have demonstrable 

anomalous sensory fusion with Bagolini glasses or stereoacuity on the synoptophore. 

7.5.3.2 Mechanisms for normal adaptation without fusion 

The mechanism for the resulting difference in primary saccade amplitude in each eye in 
BSV is considered to be due to rescaling of the pulse step signal based on the post- 
saccadic disparity, with the primary aim of maintaining binocular single vision. Eggert, 
Kapoula and Bucci (1994) suggested another adaptive mechanism able to produce a 
saccade-initiated pre-programmed vergence command, this too would be disparity 
driven. A mechanism in the strabismic subjects who adapted normally or abnormally is 
less clear. 

In the absence of fusion a benefit in maintaining the retinal image stimulating the 
deviating eye in a reasonably constant position might be to ensure that it remains within 
the suppression area, thus avoiding diplopia. If no adaptation or inappropriate 

adaptation occurred then the location of the image in the deviating eye would no longer 

stimulate retina equal to the angle of deviation, possibly causing symptoms. (None of 

201 



Chapter 7 Saccade adaptation in normal BSV and strabismus 

the subjects experienced diplopia or depth of the target during any of the conditions 

presented). 

The pathway to drive such a response is unclear. It is possible that despite a lack of 

cortical perception of suppressed images that information from the strabismic eye is 

processed cortically or sub-cortically to allow adaptation of saccades and avoid 
diplopia. 

The main body of evidence supports involvement of the cerebellum in adaptive control 

via cortical origins (Dichgans & Jung, 1974; Zee, Yee, Cogan, Robinson & Engel, 
1976; Optican & Robinson, 1980). However, Hopp and Fuchs (2002) adapted two types 

of saccade generated through different neuronal pathways. These were targeting 

saccades, having long latencies and thought to involve higher cortical processing and 
express saccades, which have very short latencies thought to be processed sub-cortically 
(i. e. early visual areas, the SC and the brainstem, Fischer & Weber, 1993). Using an 

experimental gain-decreasing paradigm, gain was found to be adapted for both express 

and targeting saccades in similar proportions. This led to the conclusion that this rapid 

adaptation occurs after the pathways generating these two types of saccade converge, 
that is at or below the SC. A sub-cortical route programming saccade disconjugacy, 

without cortical processing and hence without the awareness of disparity, may therefore 
be possible. 

7.5.3.3 Anomalous responses 

Two of the six subjects demonstrated adaptation of saccades in a direction inappropriate 

(i. e. opposite) to the requirement for the induced disparity. This was consistently the 

case for subject 1 for all experimental sessions and both types of disparity, whereas 

subject 6 demonstrated normal adaptations, no response or inappropriate adaptive 

changes in different test sessions. Subject 1 had a small consecutive strabismus of just 

20 exotropia and demonstrated the largest pre-adaptation phase disconjugacy of all 

subjects (mean 1.7°). Subject 6 had an 18A exotropia, the largest angle of strabismus 

studied in this experiment. These responses were not therefore related to size of 

strabismus. 

Bucci, Kapoula, Eggert and Garraud (1997) have previously described anomalous 

adaptation responses in large angle esotropia ranging from 22 to 300 BO. These four 

subjects all had their angle of deviation corrected during the adaptation experiment, 

raising the question of whether such responses were due either to the subjects 
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attempting to revert to their original angle or being unable to make appropriate 
adaptations due to stimulation of retinal points not usually associated with each other. 
This current study suggests that this was not necessarily the case as inappropriate 

adaptation occurred in two subjects without prismatic correction of their angle. The 

results are also consistent with a study by Maxwell, Lemij and Collewijn (1995) of three 

subjects with constant strabismus, dense amblyopia and no binocular vision. These 

subjects wore a -3.00DS lens in front of the amblyopic eye for one week imposing a 
stimulus for making smaller saccades in the amblyopic eye. In all three the saccade size 
made by each eye changed after the one week adaptation period, in two subjects the 
saccades became smaller, however in one subject the saccades in the amblyopic eye 
became larger. 

To investigate this response further it would be interesting to apply feedback in these 
subjects in the opposite direction. A feedback gain of -0.1 could be applied to the target 
of one eye. If saccade disconjugacy now reversed so that once more the disconjugacy 

was inappropriate for the induced disparity then this would be suggestive of a strategy 
of purpose. 

7.5.3.4 Mechanisms for abnormal adaptation without fusion 

Bucci, Kapoula, Eggert and Garraud (1997) proposed that the anomalous disconjugacy 

(inappropriate for induced disparity) seen in subjects with large angle strabismus and no 
fusion is driven by monocular visual input to improve fixation of each individual eye 

and not to reduce binocular disparity. They suggest that the disconjugate changes are 
driven by monocular visual input and movements of the two eyes are controlled 
independently, so-called utrocular vision (or vision with each eye separately) as 
described by Schor (1981). This is a primitive form of binocular vision found in 

vertebrates with complete decussation of the visual pathways. Bucci, Kapoula, Eggert 

and Garraud (1997) suggested that this form of independent eye control could allow 
avoidance of diplopia, but not establishment of a true binocular linkage. Why a change 
in disconjugacy during saccades under such test conditions would allow improved 

fixation of each eye is not clear. If fixation was improved by such disconjugacy then it 

might be anticipated that this would be the permanent angle of choice during all 

viewing conditions. 

7.5.3.5 Clinical factors affecting adaptation 

To determine if any specific characteristics regarding the diagnosis, history and 
treatment of the subjects, could explain why some subjects did, and others did not, show 
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adaptation, clinical details were considered in relation to the response to feedback. 

Table 7.10 summarises the main points of importance. These factors are discussed in 

this section. 

The level of VA in the strabismic eye did not appear to prevent adaptation as the target 

was easily visible to the strabismic eye in all subjects and subject 9 adapted in the 

appropriate direction (although by a larger amount than the normal BSV group) despite 

having the lowest VA of the group (0.60 logMAR). 

The age of onset of strabismus may have been an important factor as subjects 1 and 5 

who demonstrated constant anomalous responses and no response respectively, reported 
an onset of strabismus before six months of age. This could not be verified, as medical 
records were not available for either of these subjects. On clinical examination they 

were the only two subjects to have asymmetrical monocular OKR with nasal to 

temporal response being reduced compared to the temporal to nasal response in subject 
1 and absent in subject 5. This would appear therefore to support the early onset of 

strabismus in these cases (Mohn, Sireteanu & van Hof-van Duin, 1986; van Hof-van 

Duin & Mohn, 1986). 

The maximum angle of deviation in which an appropriate adaptation response was 
found was 12E (one subject with 120 esotropia and one subject with 120 exotropia). 

The two subjects with strabismus measuring 180, had no response and a variable mixed 

response. This finding is compatible with the results of Bucci, Kapoula, Eggert and 
Garraud (1997) who failed to find normal saccadic adaptation in four subjects with no 
demonstrable fusion and esotropia of between 14 and 30A. The difference in the two 

studies was that the subjects reported by Bucci, Kapoula, Eggert and Garraud (1997) 

were corrected with prisms to fully or partial correct the deviation, to present the 
disparities close to the fovea of the deviating eye. The subjects reported in this current 

study did not have the deviation corrected to determine how they would respond to such 

stimuli in their `normal' sensory state. It appeared that the two subjects with angles of 
deviation >12E (both measuringl8L) did not demonstrate normal saccade adaptation 

with their `normal' strabismic angle. It would be interesting to repeat the experiment 

with larger angles of strabismus to determine whether this finding is consolidated. 
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a) normal adaptation 

Saccade adaptation in normal BSV and strabismus 

Subject Diagnosis Onset Surgery PCT Strabismic 
ears eye VA 

2 constant ET with 1 nil 80ET -0.10 
accom element 

4 consecutive XT 3 Age 4 for esotropia, 2" op 12AXT 0.10 
weeks later as consecutive 

XT 
9 consecutive XT 1.5 Age 4 for ET 8AXT 0.60 

b) mixed response - normal / anomalous adaptation 

Subject Diagnosis Onset Surgery PCT Strabismic 
ears eye VA 

6 Consecutive XT 2 Age 4 for ET, gradual XT 18XT 0.14 
4/5 years later, now stable 

for at least 5 years 

c) anomalous response 

Subject Diagnosis Onset Surgery PCT Strabismic 
ears eye VA 

1 Consecutive ET ?<0.5 Age 53 for XT 20ET 0.20 
now stable for 6 years 

d) no response 

Subject Diagnosis Onset Surgery PCT Strabismic 
ears eye VA 

5 Residual EOET < 0.5 2 years for ET, gradual XT 18AET 0.40 
to 60A by age 34. 

Age 34 for consec. XT, now 
stable for 5 years 

Table 7.10: Summary of clinical characteristics of subjects with each response to adaptation experiment. 
ET =esotropia, XT = exotropia, EOET = early onset esotropia, PCT = prism cover test, 0= prism dioptre, 
VA = visual acuity (recorded as logMAR). 

7.5.4 Time course of adaptation 

In the binocular subjects adaptation occurred rapidly with the maximum increase 

occurring early in the adaptation phase within five to seven minutes. This was 

comparable with studies of conjugate (Deubel, Wolf & Hauske, 1986) and disconjugate 

adaptation (Kapoula, Eggert & Bucci, 1995). For divergent disparity the same time 

course and amount of adaptation occurred in the binocular subjects and three strabismic 

subjects who adapted normally. Similar amounts of adaptation occurred in both groups 
for convergent disparity, which were not statistically different, indicating that the 

strabismic subjects are capable of responding in the same way as BSV subjects. 
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The anomalous adaptation in subjects 1 and 6 had quite different patterns (shown in 

Appendix 12.2). In the adaptation phase subject 1 demonstrated an immediate large 

disconjugacy opposite to that required, occurring within the first fifteen saccades. This 

was very variable throughout the adaptation phase and did not show the gradual 
increase seen in normal adaptation. Subject 6, for convergent disparity, made 

appropriate direction saccade disconjugacy for the first three runs of recording (45 

saccades). In the fourth run an abrupt change is seen where disconjugacy changes to an 
inappropriate direction and remains at a similar but variable amount. These patterns are 

perhaps more suggestive of a deliberate strategy to deal with the stimulus rather than an 

adaptive process. 

7.6 Conclusion 

An electronic open-loop feedback system, applied to one eye under conditions of 
dissociation, induced large saccade disconjugacy in normal BSV. Binocular vision is 

not required for disconjugate saccade adaptation. Five of the six subjects with 

strabismus demonstrated disconjugate changes. Three subjects with manifest 

strabismus, no potential normal BSV or clinically demonstrable anomalous BSV and 

angles of deviation up to 12A, (one esotropia and two exotropia), demonstrated normal 

control of binocular saccades in response to induced disparity. They demonstrated a 

rapid disconjugate adaptation of saccades in an appropriate direction of similar size and 

time scale to subjects with normal BSV. Two subjects (one esotropia and one exotropia) 
demonstrated adaptations in a direction inappropriate for the disparity. 

Visual acuity and size of strabismus did not appear to be significant factors in the type 

of response; however those with early onset strabismus prior to six months did not 
demonstrate normal adaptation. 

Both peripheral (Experiment 5) and central targets (Experiment 9) presented within the 

suppression area of subjects with constant strabismus have been shown to affect 

saccadic programming. 
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Chapter 8 

Final summary and discussion 

The mechanism of suppression in strabismus is unclear and contribution of the 
suppressing eye to visual function has received little attention in the literature. This 
thesis investigated how the strabismic eye contributes to saccade generation in the 
presence of strabismus with suppression and also considered the effect of the strabismic 
eye in the presence of ARC. 

8.1 Experimental equipment 

Due to the lack of a suitable commercially available system for presenting projected 
targets to one or both eyes a system was designed and built for the purpose of this 
thesis. Four liquid crystal shutters were used which provided high light transmission, 
rapid opening and silent operation. Experiments 2 and 7 tested the reliability of this 
system in subjects with normal visual function and subjects with strabismus and 
suppression respectively. When the shutter in front of the projector was closed the 
targets were invisible on the screen. This was confirmed using a forced choice 
procedure where subjects with normal visual acuity were unable to detect the target 
(Experiment 2, Chapter 3). In strabismic subjects, two targets were presented on the 
screen, one visible to each eye. The target presented to the strabismic eye was not 
detected, indicating that the method of dissociation did not break down suppression 
(Experiment 7, Chapter 6). This method therefore, provides a useful tool for future 

studies of eye movements in binocular vision and strabismus. 

A mirror galvanometer was used to move projected targets on the back projection 
screen as saccadic stimuli. During pilot experiments the author was aware, under careful 
observation, that for large target eccentricities as the targets moved they appeared to 
sweep across the screen. Experiment 1, Chapter 3 was designed to test whether the 
mirror galvanometer was a suitable method for producing saccadic stimuli. A mask, 
which eliminated any appearance of the target on the screen as it moved between target 
locations, was used to test this. Saccade characteristics with and without masking of the 
screen were not significantly different and therefore the method was considered 
appropriate. 
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8.2 Binocular and monocular distractors in BSV 

The experiments of Chapters 5 and 6 were motivated by the study of Walker, Deubel, 
Schneider and Findlay (1997). The first objective of Chapter 5 was to repeat their study 

with the laboratory set-up described in Chapter 2. This was successful in that 

comparable results for saccade latency and accuracy were obtained with distractors 

presented to both eyes. The reciprocal effect of latency and accuracy described by 
Walker, Deubel, Schneider and Findlay (1997) was replicated, with latency affected for 

contralateral distractors to the target and accuracy affected for distractors ipsilateral to 
the target. In both studies the maximum effect on saccade latency was found to be with 
distractors presented at the original fixation point. 

This work was explored further to determine whether, in subjects with normal BSV, 

monocular distractors had an equal effect to binocular distractors. Also to determine 

whether distractors presented to the dominant eye had greater effect than distractors 

presented to the non-dominant eye. 

The findings were that distractors presented to the dominant eye or non-dominant eye 
had equal effect on both saccade latency and accuracy. It was concluded therefore that 

each eye has equal input into saccade generation. Binocular distractors were found to 

cause a greater difference in latency, for contralateral distractors compared to ipsilateral 

distractors, than monocular distractor presentations. The effect of binocular distractors 

on saccade gain was also significantly larger than monocular distractor presentations. 
Therefore in BSV the summated sensory signal has a greater effect on the motor 

response. These results were used for comparison to those of subjects with strabismus. 

8.3 Distractors in strabismus 

Monocular distractors presented to the fixing eye or the strabismic eye in six subjects 

with strabismus and suppression produced different results. Distractors presented within 
the suppression area of the strabismic eye did have an effect on saccade latency and 

accuracy, however this effect was small compared to a large response to distractors 

presented to the fixing eye. The effect on latency was approximately a quarter of that 
found in the non-dominant eye in normal BSV and the effect on accuracy was 

approximately a third of the size. A significant finding with distractors presented to the 

strabismic eye was that the maximum increase in saccade latency, typically found in 

normal BSV to occur with distractors at the original fixation point, occurred at a point 

stimulating the area of the anatomical fovea of the deviating eye. 
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There was no difference in the effect on latency with distractors presented monocularly 
to the dominant fixing eye and the response found with binocular distractors. 

Suppression of images of one eye results in lack of sensory summation of inputs in the 

striate cortex and is therefore consistent with this finding. However in three subjects a 
larger effect on saccade accuracy did occur with binocular distractors compared to 

monocular distractors to the fixing eye. 

It has previously been suggested that in strabismus saccades are generated based on 

visual input from the dominant (fixing) eye only (van Leeuwen, de Faber, van der Steen 

& Collewijn, 1995). This conclusion was reached, as the accuracy of saccades in the 
dominant eye of ten subjects with constant strabismus was comparable to binocular 

subjects (van Leeuwen, de Faber, van der Steen & Collewijn, 1995). The accuracy of 

saccades was unchanged by covering the strabismic eye, whilst covering the dominant 

eye resulted in decreased accuracy independent of visual acuity. In this thesis, whilst 
information from the dominant eye had most effect on saccade generation, information 

from the strabismic eye (with suppression) also affected latency and accuracy of 

saccades. 

Experiment 6, Chapter 6 confirmed that distractors presented to the strabismic eye of 

subjects with suppression were not detected by any of the subjects. This therefore raises 

questions regarding the mechanism for an effect of distractors on motor performance 
despite lack of sensory perception of the images. The site of suppression is unknown 
however, as discussed in Section 1.4.6.2 most evidence suggests that it occurs within 

the striate cortex. The findings therefore may suggest that information from the 

suppressed eye is available to the saccadic system by a sub-cortical pathway, directly 

from the retina to the superior colliculus (retino-collicular pathway outlined in Section 

1.2.1.2). An alternative possibility is for a high sensitivity in suppression for detection 

of transient onset and offset of a target such that briefly presented targets are perceived 

cortically but the subject fails to consciously register them. 

Experiment 8, Chapter 6 considered the effect of monocular and binocular distractors in 

two subjects with strabismus and ARC. Both subjects had constant small angled 

strabismus with demonstrable sensory and motor fusion and gross stereoacuity on 

clinical testing. The effect on saccade latency from distractors in the strabismic eye was 
just under half of the effect found in the non-dominant eye of subjects with normal 
BSV. The effect on gain was equal with distractors in the strabismic eye and in the 

fixing eye and similar to the effect in the BSV subjects. An interesting finding was that 

the distractor position giving rise to the largest increase of saccade latency was the 

original fixation point, and not the position stimulating the fovea as was found in the 

suppressing subjects. 
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The increase in saccade latency with distractors at the original fixation point has been 

explained as an increase in activity of the fixation cells in the rostral pole of the superior 
colliculus (see Section 1.2.3.1) (Doris & Munoz 1995, Munoz & Wurtz 1992,1993a, b, 
1995 a, b). These fixation cells show a tonic discharge during fixation and represent the 

central 2° of the visual field. Stimulation of these ̀ fixation cells' has an inhibitory effect 
on saccades (Munoz & Wurtz, 1993b). In strabismic subjects with suppression the 

maximum increase occurred when distractors were at an eccentricity equal to the fovea 

and not when distractors appeared at the location of original fixation. Hence it is 

possible that the fixation cells were responding in relation to the foveal activity of the 
strabismic eye. In contrast, where anomalous BSV existed, the maximum increase in 
latency occurred with distractors at the original fixation point, i. e. stimulation of the 

pseudo-fovea and not in relation to the anatomical fovea. Fixation cells in this situation 
were possibly responding to stimulation of an area other than the anatomical fovea, 

which may represent a collicular re-mapping in the presence of ARC. Further work in 
this area would be required to confirm this. 

8.4 Disconjugate saccade adaptation in BSV 

In contrast to the distractor experiments, which considered saccade generation in 

relation to peripheral distractors or non-targets, Experiment 9, Chapter 7 explored the 

role of the central fixation target in saccade generation. The stimulus consisted of two 
identical overlapping targets, one visible to each eye. Electronic feedback could be 

applied to one target so that as the eye moved, the target also moved in the same 
direction. This provided a stimulus to induce saccade disconjugacy. 

In eight subjects with normal BSV, rapid disconjugate saccade adaptation occurred to 

partially correct the induced disparity. Although there were differences in the time 

course of adaptation between subjects, the majority demonstrated a rapid increase in 
disconjugacy over a period of 5 minutes, which then levelled off. There was no 
significant difference in the rate of adaptation for convergent or divergent disparities. 

8.5 Disconjugate saccade adaptation in strabismus 

The disconjugate adaptive control of gain using the electronic feedback open loop 

paradigm proved a successful way to investigate the input of the suppressing eye in 

strabismus to saccade generation. In Experiment 9, five out of six subjects with constant 

strabismus and suppression demonstrated disconjugate saccade adaptation. Three of 
these subjects produced disconjugacy appropriate for the disparity whilst in two subjects 
the disconjugacy was in an inappropriate direction. The time course of adaptation in the 
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three subjects who responded appropriately was not significantly different from the 
BSV subjects, suggesting that the same mechanism is involved in both groups. 

The results raise the questions of how and why the strabismic eye adapts in this way. 
The purpose of such a response may be a diplopia avoidance strategy such that the 

retinal image stimulating the deviating eye is maintained in a reasonably constant 

position, ensuring that it remains within the suppression area. 

The pathway to drive such a response is unclear. It is possible, despite a lack of cortical 
perception of suppressed images that information from the strabismic eye is used at a 
sub-cortical level to allow adaptation of saccades and avoid diplopia. Hopp and Fuchs 
(2002) concluded that this type of rapid saccade adaptation occurs at or below the 

superior colliculus. A sub-cortical pathway for programming saccade disconjugacy, 

without cortical processing and hence without the awareness of disparity, may therefore 
be possible. 

A non-geniculostriate input to the extrastriate cortex (motion-sensitive area V5) has 

been identified in humans (Holliday, Anderson & Harding, 1997). It is proposed that 

this pathway mediates the residual visual functioning found in blindsight. This may 
therefore indicate that motor changes to saccades with the absence of visual perception 
found in this current study are cortically mediated but via a route that bypasses striate 

cortex. It is possible that it is striate cortex, where suppression might be occurring in 

strabismic subjects, that determines awareness of visual stimuli whilst an extrastriate 

cortical route allows visual information to be used for saccade programming. 

The responses demonstrated from the strabismic eye in both the distractor and 

adaptation experiments may represent a primitive response allowing reaction to 
information of a threat or approaching danger perceived from that eye. 

8.6 Clinical significance 

The overall findings of this thesis may give some insight as to why some patients with 

constant suppression of one eye and no demonstrable binocular vision incur post- 

operative problems of disorientation following correction of strabismus. 

Maintaining the maximum level of visual acuity, by refractive correction of the 

strabismic suppressing eye, may be of continued benefit throughout adulthood to give 
the optimum chance of using information from the suppressing strabismic eye. 

The clinical significance of these findings may be that stabilisation of angle of 

strabismus is more likely in patients who use information from the suppressing eye in 
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this way. Although clinical tests may reveal no demonstrable binocular co-operation of 
the eyes, it is possible that the eyes are behaving as a yoked pair. This may therefore 
lead to a better prognosis for stability in the angle than predicted clinically. Follow-up 

of the strabismic subjects studied in this thesis would be required to substantiate this. 

8.7 Further research 

Experiment 9 concluded that three out of six subjects with strabismus and suppression 
were able to make appropriate disconjugate saccades in response to disparity, whilst two 
made adaptations in an inappropriate direction and one had no change in disconjugacy 
to the stimulus. Further research to examine the post-saccadic period would possibly 
establish the differences in these subjects. It is possible that subjects who were more 
able to produce appropriate vergence movements were those who altered the size of the 
primary saccade, whereas those who could not verge would not benefit from attempting 
to produce disconjugate saccades. 

As previously suggested (Experiment 9) to further investigate the response of 
inappropriate adaptation it would be interesting to apply feedback to the same subjects 
in the opposite direction. If saccade disconjugacy reversed then this would be 

suggestive of a consistent strategy. 

The strabismic observers in this present study all had relatively small angles of 
deviation (<180). It would therefore be of further interest to extend the current 
experiments to include observers with suppression and larger angles of deviation to 
determine whether there is an upper limit for contribution of the strabismic eye to 

saccade programming. It may be that the effect diminishes as the angle increases due to 

either anatomical differences of peripheral retina or the fovea becoming too remote 
from the target to influence the saccade. 

Occasionally patients with longstanding constant strabismus, suppression and no 
demonstrable BSV, who have recently undergone corrective surgery, notice instability 

and general lack of co-ordination post-operatively. Could this be the group of subjects 
who have binocular co-operation despite no clinical evidence for this? If we consider a 
patient with 300 esotropia, objects within the periphery (approximately 15° from central 
fixation) stimulating the fovea of the deviating eye would have maximum influence 

over saccade generation. If surgically this were reduced to <10A, it would then be 

objects within 5° of the central fixation target that would have maximum influence on 
saccade generation, which may have a much greater effect on co-ordination and fixation 

of the central target. Distractor and adaptation experiments performed pre and post- 
operatively may reveal why such problems are encountered. 
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Ethics approval 

Eures (Nffn beat on: 307 Western Bank. Royal IIaUamahlre IloapiUl, W. p Road, Sheffield StO 2. IF 

Iei & F- Nu F. nyaýnel ! O! III ? 'i 2391/New Reg, uQ1 nns . '.? i 17. W 

Email I UOnal. Ka(. Khoantßrih. nhaok 

. "h-- P. nt. -r ('. l Tavlor/Administrator. Us AA A"hoa: 

\ý 

ýý, 1 

ti'A: ý,. ýý ýý1ý ýl. ý. 1ý ýý ý;;, ý: ýº: ýýr ýý 
1 ti 1: Iý ý: äýsi 

Always quote the relevant SSREC Registration Number 

CJI SM LS/I!, 2001 

Miss. H Griffiths, Lecturer 
Ophthalmology & Orihoptics 
0 Floor, R1JII 

Dear Miss. Griffiths 

Ref.: SS/01/232 - Eye movement control in subjects with strabismus 

The above study was seen on 1/11/2001 and I can now confirm unreserved Ethics Committee approval subject to the 
following terms and conditions: 

I. That you familiarise yourself with the ICH Uuidelines laid down for the conduct of human experiments. 
1 It is understood that approval of the investigation does not absolve you from total responsibility for the safety and 

well being of the subjects. 
3 No deviations from or changes of the protocol will be initiated without prior written approval of an appropriate 

amendment, (except when necessary to eliminate unn, edtate hazards to the subjects or when the changes/ involve only luxoncal nr 
adu, in, sirative aspects of the trial). Amendments should be reported in a standardised format giving indication of the 
local implications as well as a brief outline of what the amendment(s) consist of (outline attached) and its significance 
or otherwise in terms of the overall protocol. 

4. That you should promptly report any changes increasing the risk to subjects; or new information that may aflcct 
adversely the safety of the subjects or conduct of the trial. All Unexpected Serious adverse drug reactions 
(SADR's) should be reported in a standardised format (outline attached) within 7-15 days as specified in the FU 
Directive. These should he submitted with relevant interpretation from the investigator and sponsor on the 
significance for the conduct of the trial. (an acknowledgement and/or opinion as to whether approval will continue will be sent 
w, d, u, a few days followutg review, by the Ethics Committee) 

5. That should any untoward event occur during the conduct of the study the Chairman of the Committee or failing 
this, the Administrator be informed immediately. Reports of progress shall be submitted at yearly intervals. 

1 he documents approved were: 
Protocol version I: Dated September 2001 
Information sheet for control group . Date received 15111/01 
Information sheet for strabismic group . Date received 15/11/01 
Consent form version 1: Date received 14/9/01 

I can confirm that this Ethics Committee is organised and operates according to GCP and the applicable laws and 
regulations 

Yours sincerely 

`: 
I Professor'CýTaylor 
\ýr Chairm4n 

C'I: thShareJ\ýaJmm-teamSam\Ponal Appruval\Gn l("iths -01 "232 " 15- I 1-01. doc 

231 



Appendix 2 Consent Form 

Appendix 2 

Consent form 

Centre Number: RHH 
Study Number: SS/01/232 
Patient Identification Number for this trial: S8 

Title of Project: Eye Movement Control in Strabismus 

Name of Researcher: Helen Griffiths 

Please initial box 

1. I confirm that I have read and understand the information sheet dated 14.9.01 
for the above study and have had the opportunity to ask questions. 

2. I understand that my participation is voluntary and that I am free to withdraw at 
any time, 'without giving any reason, without my medical care or legal rights being 
affected. 

3. I understand that sections of any of my medical notes may be looked at by 
responsible individuals from University of Sheffield where it is relevant to my taking 
part in research. I give permission for these individuals to have access to my records. 

4.1 agree to take part in the above study. 

Name of Patient Date 

Name of Person taking consent Date 
(if different from researcher) 

Researcher Date 

Signature 

Signature 

Signature 

Copies: 1 for patient; I for researcher; 1 to be kept with hospital notes 

F-I 

El 

El 
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Appendix 3 Statistical analysis for Chapter 3 

Appendix 3 

Statistical analysis for Chapter 3 

Experiment 1 

A3.1 Saccade latency with and without masking of the screen 

3 factor repeated measures analysis of variance 

Factors 

1. Screen 
2. Saccade 
3. Saccade amplitude 

masked / unmasked 
right / left 
5° / 10° / 15° 

m 
s 
p 

DF SS MS F P epsilon 
Subjects 3 7633.790 2544.597 

m 1 13.104 13.104 0.092 0.7815 
Error 3 427.477 142.492 1.00 

s 1 178.255 178.255 5.281 0.1052 
Error 3 101.258 33.753 1.00 

ms 1 0.040 0.040 0.001 0.9751 
Error 3 104.055 34.685 1.00 

p 2 1022.818 511.409 3.399 0.1031 
Error 6 902.855 150.476 0.63 
mp 2 14.661 7.331 0.7467 0.307 
Error 6 143.347 23.891 0.57 

sp 2 35.789 17.895 0.136 0.8756 
Error 6 790.537 131.756 0.50 

msp 2 20.824 10.412 0.496 0.6318 
Error 6 125.918 20.986 0.94 
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Appendix 3 Statistical analysis for Chapter 3 

A3.2 Saccade gain with and without masking of the screen 

3 factor repeated measures analysis of variance 

Factors 

1. Screen 
2. Saccade 
3. Saccade amplitude 

masked / unmasked 
right / left 
5°/10°/ 15° 

m 
s 
p 

DF SS MS F P epsilon 
Subjects 3 0.026 0.009 

m 1 0.007 0.007 3.068 0.1781 
Error 3 0.006 0.002 1.00 

s 1 0.003 0.003 0.268 0.6404 
Error 3 0.034 0.011 1.00 

ms 1 0.001 0.001 0.854 0.4235 
Error 3 0.005 0.002 1.00 

p 2 0.187 0.093 41.880 0.0003 
Error 6 0.013 0.002 0.52 

mp 2 0.004 0.002 2.126 0.2005 

Error 6 0.006 0.001 0.60 

sp 2 0.006 0.003 3.143 0.1165 
Error 6 0.006 0.001 0.72 

msp 2 0.001 0.000 0.413 0.6794 

Error 6 0.006 0.001 0.96 
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Appendix 3 Statistical analysis for Chapter 3 

A3.3 Saccade peak velocity with and without masking of the screen 

3 factor repeated measures analysis of variance 

Factors 

1. Screen 
2. Saccade 
3. Saccade amplitude 

masked / unmasked 
right / left 
5°/10°/15° 

m 
s 
p 

DF SS MS F P epsilon 
Subjects 3 16685.641 5561.880 
m 1 4715.376 4715.376 4.142 0.1347 
Error 3 3415.108 1138.369 1.00 
s 1 2500.864 2500.864 1.219 0.3502 
Error 3 6155.171 2051.724 1.00 
ms 1 299.151 299.151 0.572 0.5043 
Error 3 1567.959 522.653 1.00 
p 2 201684.658 100842.329 104.892 0.0000 
Error 6 5768.360 961.393 0.98 
mp 2 1389.305 694.652 2.719 0.1443 
Error 6 1532.660 255.443 0.70 
sp 2 69.953 34.976 0.043 0.9580 
Error 6 4860.357 810.059 0.61 
msp 2 837.606 418.803 2.778 0.1400 
Error 6 904.700 150.783 0.59 
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Appendix 3 Statistical analysis for Chapter 3 

Experiment 2 

A3.4 To test for a difference in the number of correct responses with use of the 
metal and LCP shutter. 

Paired t-tests 

Hypothesised difference =0 

metal / lcp shutter -R&L responses 

Mean diff. DF t-value p-value 
-4.640 4 -0.992 0.3774 
Mean diff. 

-4.640 

metal / lcp shutter -R responses 

Mean diff. DF t-value p-value 
-8.140 4 -0.757 0.4911 
Mean diff. 

-8.140 

metal / lcp shutter -L responses 

Mean diff. DF t-value p-value 
-1.440 4 -0.210 0.8438 
Mean diff. 

-1.440 

DF 
4 

DF 
4 

DF 
4 

t-value 
-0.992 

t-value 

-0.757 

t-value 
-0.210 

p -value 
0.3774 

p-value 
0.4911 

p-value 
0.8438 
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Appendix 4 Shutter control for Chapter 3 

Shutter control for Chapter 3, Experiment 2 
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Appendix 5 Strabismic subject clinical details 

Appendix 5 

Strabismic subjects clinical details 

Subject: 1 DOB: 23.12.1940 

Date: 29.7.02 

History: Left exotropia onset approx 6 months of age. Glasses for 
hypermetropia prescribed in childhood. Surgery for exotropia 
at 56 years of age. LLR rec", LMR resect", RLR rec". 
Right occlusion treatment for left amblyopia. 

Refractive Error: RE +2.25, LE +3.00/-0.50 x 180 

Visual Acuity: with glasses RE 6/5 LE 6/12 SN 
-0.10 0.20IogMAR 

Cover Test: 
1/3m & 6m very slight left exotropia 

Ocular Movements: 

%: D=V 

Convergence: With reducing angle to 12cm then LE diverges 
without diplopia 

Binocular Function: (with glasses) 
Worth's Lights N&D left suppression 
Bagolini N&D left suppression 
Pol. 4 dot 1/3m to 6m left suppression 
Stereo TNO/Frisby/Lang negative 
Fusion Range: N&D nil 

Suppression: Area: coffected Density: filter 15 
angle 

4 over conected under corrected 

45A BO 454 BI 3613110 

PCT 113m: 2L XT 1.14m 2L XT 
6m: 3A XT 

"""" = diplopia 

= suppression 

Synoptophore: Obj. Angle +1° Subj. Angle not possible 
Fusion: nil demonstrable with peripheral slides 

OKR: N-T =reduced T-N = normal 
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Appendix 5 Strabismic subject clinical details 

Subject: 2 DOB: 31.7.79 

Date: 24.4.02 

History: Right esotropia noticed by parents from 1 year of age. 
Glasses for hypermetropia prescribed at 3 years of age. 
Left occlusion treatment for right amblyopia from 3 years 
of age. 

Refractive Error: RE +6.50/-0.25 x 90, LE +5.50 

Visual Acuity: with CL's RE 6/6 LE 6/5 SN 
6/6 6/6 red SN 
0.00 -0.10 IogMAR 

Cover Test: with CL's 
1/3m & 6m slight right esotropia with very slight right 
hypotropia 

Ocular Movements: 

Binocular Function: (with CL's) 
Worth's Lights N&D right suppression 
Bagolini N&D right suppression 
Pol. 4 dot 1/3m to 6m right/alternating suppression 
Stereo TNO/Frisby/Lang negative 
Fusion Range: N&D nil 

Suppression: Area: corrected 
angle 

Density: filter 8 

under corrected over corrected 
.... = diplopia 

suppression 
. so 81 0 sc'so asn so 

PCTI/3m: 10AET 3ARHoT 1.14m 6A ET 3A RHoT 
6m: 6A ET 30 RHoT 

Synoptophore: Obj. Angle +4° 4LUR Subj. Angle not possible 
Fusion: nil demonstrable with peripheral slides 

Fixation: Right Central Left Central 

OKR: N-T = normal T-N = normal 
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Appendix 5 Strabismic subject clinical details 

Subject: 3 DOB: 9.1.82 

Date: 8.3.02 

History: Right esotropia noticed by parents from 6 months of age. 
Glasses for hypermetropia prescribed at age 9 months. 
Surgery for esotropia at 13 months and 16 months of age. 
Left occlusion treatment from age 1 to 6 years. 

Refractive Error: RE +3.00/-0.50 x 4, LE +3.25/-0.75 x 174 

Visual Acuity: with glasses RE 6/5 LE 6/4 SN 
6/6 6/6 red SN 
-0.10 -0.14IogMAR 

Cover Test: 
1/3m & 6m slight right esotropia with very slight right 
hypotropia and DVD 

Ocular Movements: 

-1V2D>V 

=/: D=V 

-2D>V 

'/%D=V ? /2D=V 

Convergence: With decreasing angle to 15cm then EE diverges 
without diplopia 

Binocular Function: (with glasses) 
Worth's Lights N&D right/alternating suppression 
Bagolini N&D right suppression 
Pol. 4 dot 1/3m to 6m right suppression 
Stereo TNO/Frisby/Lang negative 
Fusion Range: N&D nil 

Suppression: Area: 
yea 

Density: filter 10 
angle 

f ercune=necýed 

I 

over corrected 

"""" = diplopia 

= suppression 

=/= D>V +2 ýý +'/z 

ý 
45G 81 01 6G BO 

ý 
45A 80 

PCT 1/3m: 6i ET 2A RHoT 1.14m 6A ET 20 RHoT 
6m: 6o ET 2t RHoT 

Synoptophore: Obj. Angle +3° 2LUR Subj. Angle +3° 1AUR 
Fusion: nil demonstrable with peripheral slides 

Fixation: Right Central Left Central 

OKR: N-T = reduced T-N = normal 
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Appendix 5 Strabismic subject clinical details 

Subject: 4 DOB: 31.7.61 

Date: 22.7.02 

History: Parents noticed squint at approx age 3. Surgery at age 3 
led to over correction therefore 2nd operation soon after. 
No glasses, right occlusion from age 3-5 years. No signs 
or symptoms noticed at time of testing. 

Refractive Error: RE +0.75, LE +0.50/+0.25 x 170 - no glasses 

Visual Acuity: RE 6/4 LE 6/6 SN 
6/6 6/9 red SN 
-0.10 0.00IogMAR 

Cover Test: 
1/3m slight left exotropia 
6m slight+ left exotropia 

Ocular Movements: 

Convergence: With decreasing angle to 8cm then LE diverges 
without diplopia 

Binocular Function: 
Worth's Lights N&D left suppression 
Bagolini N&D left suppression 
Pol. 4 dot 1/3m to 6m left suppression 
Stereo TNO/Frisby/Lang negative 
Fusion Range: N&D nil 

Suppression: Area: ed 
over corrected under corrected 

".. u. ---- -... r. wr.... 

F-F- '-= suppression 456 81 354 BI 1481 0 456 BO 

PCT 1/3m: 10A XT 1.14m 12A XT 
6m: 140 XT 

Synoptophore: Obj. Angle -5° Subj. Angle -5° 
Fusion: nil demonstrable with peripheral slides 

Fixation: Right Central Left Central 

OKR: N-T = normal T-N = normal 

Density: filter 6 

"""" = diplopia 
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Appendix 5 Strabismic subject clinical details 

Subject: 5 DOB: 25.1.63 

Date: 31.7.02 

History: Esotropia from birth. No glasses. Left occlusion for right 
amblyopia with limited success. Surgery for esotropia at 
age 2 years. Gradual consecutive exotropia. Surgery for 
exotropia in 1997, RLR rec", RMR resect". 

Refractive Error: nil 

Visual Acuity: RE 6/24 LE 6/5 SN 
6/24 6/6 red SN 
0.40 -0.10IogMAR 

Cover Test: 
1/3m & 6m slight right esotropia 

Ocular Movements: 

0000 

Convergence: With angle to 6cm without diplopia 

Binocular Function: 
Worth's Lights N&D right suppression 
Bagolini N&D right suppression 
Pol. 4 dot 1/3m to 6m right suppression 
Stereo TNO/Frisby/Lang negative 
Fusion Range: N&D nil 

Suppression: Area: 
corrected 

Density: filter 14 
angle 

under corrected over corrected 

......... " """" = diplopia 
1 -1 suppression 

ase 131 25n o , zc ase so -= 

PCT 1/3m: 12A ET 1.14m 12A ET 
6m: 120 ET 

Synoptophore: Obj. Angle +7° Subj. Angle no possible 
Fusion: nil demonstrable with peripheral slides 

Fixation: Right parafoveal nasal Left Central 

OKR: N-T = absent T-N = normal 
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Appendix 5 Strabismic subject clinical details 

Subject: 6 DOB: 20.6.80 

Date: 19.6.00 

History: Esotropia noticed from approx 6 months of age but nil 
detected at hospital eye test until approx 18 months of age. 
Squint operation at age 4 for esotropia. Right occlusion until 
approx age 7. 

Refractive Error: RE +4.00, LE +6.00 

Visual Acuity: RE 6/5 LE 6/6 SN 
6/6 6/6 red SN 
-0.10 0.00IogMAR 

Cover Test: 
with glasses 1/3m slight/mod left exotropia with v sl left hypertropia 

6m slight+ left exotropia 
w/o glasses 1/3m & 6m v sl left esotropia with v sl left hypertropia 

Ocular Movements: 

-2D>V 

- 1/1 

Convergence: With decreasing angle to 12cm then LE diverges 
without diplopia 

Binocular Function: 
Worth's Lights with glasses N&D left suppression 
Bagolini with glasses N&D left suppression 
Pol. 4 dot 1/3m to 6m left suppression 
Stereo TNO/Frisby/Lang negative 
Fusion Range: N&D nil 

Suppression: Area: 
corrected 

an le 
over under corrected 

............... 
45A BI 15ABI 

Density: filter 5 

"""" = diplopia 
-I -= suppression 45A BO a 

PCT 1/3m: 20A XT 50 LHT 1.14m 150 XT 2L LHT 
6m: 150 XT 

Synoptophore: Obj. Angle -9° 2t UR Subj. Angle left suppression 
Fusion: nil demonstrable with peripheral slides 

Fixation: Right Central Left Central 

OKR: N-T = normal T-N = normal 
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Appendix 5 Strabismic subject clinical details 

Subject: 7 DOB: 24.5.79 

Date: 4.7.00 

History: Left esotropia noticed at 4 years of age. No glasses, 
right occlusion at approximately 6 years of age - poor 
compliance. 

Refractive Error: Right +0.50/-0.25 x 90 Left +0.25 nil ordered 

Visual Acuity: RE 6/4 LE 6/6 +1 SN 
6/6 6/6 red SN 
-0.10 0.00IogMAR 

Cover Test: 1/3m slight left esotropia with slight left hypertropia 
6m very slight left esotropia with very slight left hypertropia 

Ocular Movements: 

Convergence: With deviation to 6cm 

Binocular Function: 

Worth's Lights 
Bagolini 
Pol. 4 dot 
Stereo 
Fusion Range: 

Suppression: 

N ABSV D ABSV 
N ABSV D ABSV 
113m to 6m ABSV 
TNO/Frisby/Lang negative 
N4A BO-6A BI D80 BO-6A BI 

Area: Nil Density: n/a 

PCT 1/3m: 10AET 2ALHT 1.14m 10AET 2ALHT 
6m: 4A ET 2A LHT 

Synoptophore: Obj. Angle +4° 2t UR Subj. Angle +1° 2t UR 
Fusion: +1 ° 2L UR 6° cony. -3° div. SV: Gross 

Fixation: Right Central 

OKR: N-T = normal 

Left Central 

T-N = normal 
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Appendix 5 Strabismic subject clinical details 

Subject: 8 

Date: 17.7.00 

DOB: 24.4.83 

History: No glasses, no symptoms 

Refractive Error: RE +0.50, LE +0.50 / +0.75 x 90 

Visual Acuity: RE 6/5 LE 6/5 -3 SN 
6/6 -3 6/6 -3 red SN 
-0.10 -0.10 log MAR 

Cover Test: 1/3m very slight left esotropia with very slight left hypertropia 
6m very slight left esotropia with very slight left hypertropia 

Ocular Movements: 

0 

00 

0 

Convergence: With deviation to 6cm 

Binocular Function: 

Worth's Lights 
Bagolini 
Pol. 4 dot 
Stereo 
Fusion Range: 

Suppression: 

0 

N&D left/alternating suppression 
N ABSV D ABSV 
1/3m to 2m ABSV >2m left/alternating suppression 
TNO/Frisby negative, Lang 200" of arc 
N 10A BO-6i BI D4Li BO-40BI 

Area: Nil 

PCT 113m: 1O 0 ET 3t LHT 
6m: 1 0A ET 30 LHT 

Density: n/a 

1.14m 10A ET 2A LHT 

Synoptophore: Obj. Angle +10° 3i UR Subj. Angle +3° 2A L/R 
Fusion: +2° 20 UR 7° cony. -5° div. SV: detailed 

Fixation: Right Central Left Paramacular nasal 
steady steady 

OKR: N-T = normal T-N = normal 
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Appendix 5 Strabismic subject clinical details 

Subject: 9 DOB: 18.11.83 

Date: 7.11.02 

History: Left esotropia noticed at approx 2 years of age. Glasses for 
hypermetropia from age 2 years and right occlusion for left 
amblyopia from age 3 years. Surgery for esotropia at age 4. 

Refractive Error: RE +2.75, LE +3.00/-1.50 x 180 

Visual Acuity: RE 6/4 LE 6/36 SN 
6/6 6/60 red SN 
-1.00 0.60IogMAR 

Cover Test: 
1/3m slight left exotropia 
6m slight+ left exotropia 

Ocular Movements: 

Y2 

Convergence: With decreasing angle to 10cm then LE diverges 
with diplopia 

Binocular Function: 
Worth's Lights N&D left suppression 
Bagolini N&D left suppression 
Pol. 4 dot 1/3m to 6m left suppression 
Stereo TNO/Frisby/Lang negative 
Fusion Range: N&D nil 

Suppression: Area: corrected 
angle Density: filter 14 

over corrected under corrected b 

............... ................. """" = diplopia 
= 45A BI 12481 0 141 BO 454 BO suppression 

18A BI 

PCT 1/3m: 80 XT 1.14m 8A XT 
6m: 120 XT 

Synoptophore: Obj. Angle -4° Subj. Angle attempts at -2° Fusion: nil demonstrable with peripheral slides 
Fixation: Right Central Left Parafoveal nasal 
OKR: N-T = normal T-N = normal 
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Appendix 6 

Statistical analysis for Chapter 4 

A6.1 Two-factor repeated measures ANOVA for saccade latency - BSV group 

Factors 

Saccade amplitude 4° / 8° a 
Saccade direction right / left d 

DF SS MS F value P value Lambda Power 
Subject 4 3531.652 882.913 
a 1 9.941 9.941 0.458 0.5356 0.458 0.082 
a*subject 4 86.762 21.691 
d 1 40.613 40.613 1.941 0.2360 1.941 0.187 
d*subject 4 83.700 20.925 

a*d 1 0.613 0.613 0.220 0.6637 0.220 0.065 
a*d*sub'ect 4 11.150 2.787 

A6.2 Two-factor repeated measures ANOVA for saccade latency - strabismic 
group 

Factors 

Saccade amplitude 4° / 8° 
Saccade direction 

a 
right / left d 

DF SS MS F value P value Lambda Power 
Subject 7 6010.419 858.631 

a 1 19.845 19.845 4.529 0.0709 4.529 0.444 
a*sub'ect 7 30.675 4.382 
d 1 13.520 13.520 0.757 0.4131 0.757 0.114 
d*sub'ect 7 125.040 17.863 

a*d 1 1.051 1.051 0.182 0.6821 0.182 0.066 
a*d*sub'ect 7 40.339 5.763 

A6.3 Unpaired t-test difference in saccade latency between BSV and strabismic 
groups 

Hypothesised difference =0 

Mean diff DF t value value 
BSV/strab -9.074 11 -1.081 0.3029 BSV/strab 

Mean diff 

I -9.074 

DF 
11 

t value 
-1.081 

p value 
0.3029 

247 



Appendix 6 Statistical analysis for Chapter 4 

A6.4 Two-factor repeated measures ANOVA for saccade gain - BSV group 

Factors 

/ 8° Saccade amplitude 41' a 
Saccade direction right / left d 

DF SS MS F value P value Lambda Power 
Subject 4 0.010 0.002 

a 1 0.015 0.015 8.457 0.0438 8.457 0.595 
a*subject 4 0.007 0.002 
d 1 3.200E-6 3.200E-6 0.004 0.9507 0.004 0.050 
d*subject 4 0.003 0.001 

a*d 1 0.001 0.001 1.629 0.2709 1.629 0.165 

a*d*subject 4 0.003 0.001 

A6.5 Two-factor repeated measures ANOVA for saccade gain - strabismic group 

Factors 

Saccade amplitude 4° / 8° a 
Saccade direction right / left d 

DF SS MS F value P value Lambda Power 
Subject 7 0.064 0.009 

a 1 0.072 0.072 28.290 0.0011 28.290 0.996 

a*subject 7 0.018 0.003 
d 1 7.813E-7 7.813E-7 1.589E-4 0.9903 1.589E-4 0.050 
d*sub'ect 7 0.005 0.005 

a*d 1 0.002 0.002 3.839 0.0909 3.839 0.386 

a*d*subject 7 0.004 0.001 

A6.6 Two-factor repeated measures ANOVA for saccade gain - strabismic group 

Factors 

Saccade amplitude 4° / 8° 
direction 

a 
to fixing eye / to strabismic eye d 

DF SS MS F value P value Lambda Power 
Subject 7 0.064 0.009 

a 1 0.04 0.004 0.916 0.3704 0.916 0.128 

a*sub'ect 7 0.030 0.004 
d 1 0.072 0.072 28.290 0.0011 28.290 0.996 
d*sub'ect 7 0.018 0.003 

a*d 1 1.758E-4 1.758E-4 0.195 0.6719 0.195 0.067 

a*d*subject 7 0.006 0.001 
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A6.7 Unpaired t-test difference in saccade gain between BSV and strabismic 
groups 

a) 4° targets 
Hypothesised difference =0 

Mean diff DF t value value 
BSV/strab -0.013 11 -0.413 0.6877 BSV/strab 

a) 8° targets 
Hypothesised difference =0 

Mean diff DF t value p value 
BSV/strab 0.027 11 1.178 0.2635 BSV/strab 

A6.8 Two-factor repeated measures ANOVA for saccade disconjugacy - BSV 
group 

Factors 

direction right / left d 
Saccade amplitude 4° / 8° 

DF 
11 

DF 
11 

a 

DF SS MS F value P value Lambda Power 
Subject 4 0.505 0.126 
d 1 2.000E-5 2.000E-5 0.010 0.9246 0.010 0.051 
d*subject 4 0.008 0.002 

a 1 0.019 0.019 17.963 0.0133 17.963 0.885 

a*sub'ect 4 0.004 0.001 
d*a 1 0.001 0.001 1.250 0.3262 1.250 0.138 
d*a*subject 4 0.002 4.000E-4 

A6.9 Two-factor repeated measures ANOVA for saccade disconjugacy - exotropic 
subjects 

Factors 

direction right/ left d 
Saccade amplitude 4° / 8° a 

DF SS MS F value P value Lambda Power 
Subject 2 0.428 0.214 
d 1 0.500 0.500 1.091 0.4059 1.091 0.099 
d*subject 2 0.917 0.459 

a 1 0.686 0.686 18.879 0.0491 18.879 0.623 

a*subject 2 0.073 0.036 
d*a 1 0.147 0.147 5.330 0.1473 5.330 0.268 
d*a*sub'ect 2 0.055 0.028 

Mean diff 

-0.013 

Mean diff 
0.027 

t value 
-0.413 

t value 
1.178 

p value 
0.6877 

p value 
0.2635 
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A6.10 Two-factor repeated measures ANOVA for saccade disconjugacy - esotropic 
subjects 

Factors 

direction right / left d 
Saccade amplitude 4° / 8° a 

DF SS MS F value P value Lambda Power 
Subject 4 3.870 0.967 
d 1 1.436 1.436 0.475 0.5288 0.475 0.083 
d*subject 4 12.107 3.027 
a 1 0.338 0.338 14.593 0.0188 14.593 0.817 
a*subject 4 0.093 0.023 
d*a 1 0.084 0.084 0.204 0.6748 0.204 0.064 
d*a*subject 4 1.656 0.414 

A6.11 Two-factor repeated measures ANOVA for saccade disconjugacy - esotropic 
subjects 

Factors 

direction to fixing eye / to strabismic eye d 
Saccade amplitude 4° / 8° a 

DF SS MS F value P value Lambda Power 
Subject 4 3.870 0.967 
d 1 1.824 1.824 0.623 0.4742 0.623 0.093 
d*subject 4 11.719 2.930 

a 1 0.338 0.338 14.593 0.0188 14.593 0.817 

a*sub'ect 4 0.093 0.023 
d*a 1 0.684 0.684 2.593 0.1826 0.684 0.233 
d*a*subject 4 1.056 0.264 
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A6.12 Unpaired t-test difference in saccade disconjugacy between BSV and 
exotropic subjects 

Saccades towards fixing eye (RE) 

a) 4° targets 
Hypothesised difference =0 

Mean diff DF t value value 
BSV/exo 0.257 6 1.784 0.1248 BSV/exo 

b) 8° targets 
Hypothesised difference =0 

Mean diff DF t value value 
BSV/exo 0.452 6 3.163 0.0195 BSV/exo 

Saccades towards strabismic eye (RE) 
a) 4° targets 
Hypothesised difference =0 

Mean diff DF t value p value 
BSV/exo 0.444 6 1.867 0.1111 BSV/exo 

b) 8° targets 
Hypothesised difference =0 

Mean diff DF t value value 
BSV/exo 1.082 6 3.824 0.0087 BSV/exo 

Mean diff 
0.257 

Mean diff 
0.452 

Mean diff 
0.444 

Mean diff 
1.082 

DF 
6 

DF 
6 

DF 
6 

DF 
6 

t value 
1.784 

t value 
3.163 

t value 
1.867 

t value 
3.824 

p value 
0.1248 

value 
0.0195 

p value 
0.1111 

p value 
0.0087 
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A6.13 Unpaired t-test difference in saccade disconjugacy between BSV and 
esotropic subjects 

Saccades towards fixing eye (RE) 

a) 4° targets 
Hypothesised difference =0 

Mean diff DF t value value 
BSV/eso -0.244 8 -0.888 0.4004 BSV/eso 

b) 8° targets 
Hypothesised difference =0 

Mean diff DF t value value 
BSV/eso -0.196 8 -0.420 0.6857 BSV/eso 

Saccades towards strabismic eye (RE) 

a) 4° targets 
Hypothesised difference =0 

Mean diff DF t value value 
BSV/eso -0.478 8 -1.192 0.2674 BSV/eso 

b) 8° targets 
Hypothesised difference =0 

Mean diff DF t value value 
BSV/eso -1.170 8 -1.830 0.1047 BSV/eso 

Mean diff 

-0.244 

Mean diff 

-0.196 

Mean diff 

-0.478 

Mean diff 
-1.170 

DF 
8 

DF 
8 

DF 
8 

DF 
8 

t value 

-0.888 

t value 
-0.420 

t value 
-1.192 

t value 
-1.830 

p value 
0.4004 

p value 
0.6857 

p value 
0.2674 

p value 
0.1047 
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Appendix 7 

Statistical analysis for Chapter 5 

A7.1 Statistical analysis of saccade latency without distractors 

Two-factor repeated measures analysis of variance 

Factors 
1. Viewing eye dominant / non-dominant / both 
2. Saccade amplitude 4° / 8° 

V 

a 

DF SS MS F P X power 
subjects 4 5773.481 1443.370 

a 1 6.902 6.902 0.042 0.8477 0.042 0.053 
Error 4 658.184 164.546 
v 2 11.511 5.755 0.145 0.8671 0.290 0.065 
Error 8 317.100 39.637 
av 2 44.710 22.355 0.801 0.4818 1.602 0.141 
Error 8 223.238 27.905 

A7.2 Comparison of saccade latency in current study with that reported by 
Walker, Deubel, Schneider and Findlay (1997) 

Four one sample t-tests were performed to compare the results of saccade latency in the 
current study with those reported by Walker, Deubel, Schneider and Findlay (1997). 

Saccade latency without distractors 

4° targets 
Hypothesised mean = 152. Oms 

Mean DF t-value p-value 
149.764 4 -0.375 0.7269 
Mean 
149.764 

8° targets 
Hypothesised mean =156. Oms 

Mean DF t-value p-value 
150.240 4 . -0.730 0.5058 
Mean 
150.240 

DF 
4 

DF 
4 

t-value 
-0.375 

t-value 

. -0.730 
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Saccade latency with distractors at fixation 

4° targets 
Hypothesised mean =193.5ms 

Statistical analysis for Chapter 5 

Mean DF t-value p-value 
215.928 4 2.008 0.1150 
Mean 
215.928 

8° targets 
Hypothesised mean =193.5ms 

Mean DF t-value p-value 
209.190 4 0.990 0.3782 
Mean 
209.190 

A7.3: Saccade latency with distractor at fixation and without distractor 

Three-factor repeated measures analysis of variance 

Factors 
1. Viewing eye dominant / non-dominant / both 
2. Saccade amplitude 4° / 8° 
3. Distractor fixation / none 

V 

a 
d 

DF SS MS F P epsilon 

Subjects 4 14954.44 8 3738.612 

a 1 18.073 18.073 0.014 0.9118 

Error 4 5201.707 1300.427 1.00 

d 1 40746.895 40746.895 65.000 0.0013 

Error 4 2507.510 626.878 1.00 

ad 1 63.469 63.469 0.111 0.7554 

Error 4 2279.965 569.991 1.00 

v 2 1131.456 565.728 2.531 0.1407 

Error 8 1787.933 223.492 0.56 

av 2 72.914 36.457 0.670 0.5382 

Error 8 435.323 54.415 0.57 

dv 2 858.869 429.434 1.949 0.2045 

Error 8 1763.091 220.386 0.78 

adv 2 103.464 51.732 1.291 0.3267 

Error 8 320.627 40.078 0.67 

DF 
4 

DF 
4 

t-value 
2.008 

t-value 
0.990 

p-value 
0.1150 

p-value 
0.3782 
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A7.4: Saccade latency with distractors ipsilateral or contralateral to target 

Four-factor repeated measures analysis of variance 

Factors 
1. Viewing eye 
2. Saccade amplitude 
3. Distractor side 
4. Distractor position 

dominant / non-dominant / both 
4° / 8° 
ipsilateral / contralateral 
2°/4°/6°/8°/10° 

V 

a 
s 
p 

DF SS MS F P epsilon 
Subjects 4 96522.342 24130.586 

v 2 319.781 159.890 0.535 0.6055 

Error 8 2392.756 299.095 0.92 

a 1 230.160 230.160 0.225 0.6598 

Error 4 4087.003 1021.751 1.00 

va 2 79.793 39.897 0.582 0.5808 

Error 8 548.478 68.560 0.54 

s 1 3861.764 3861.764 58.176 0.0016 

Error 4 265.523 66.381 1.00 

vs 2 1005.695 502.847 22.832 0.0005 

Error 8 176.193 22.024 0.68 

as 1 101.955 101.955 1.356 0.3090 

Error 4 300.839 75.210 1.00 

vas 2 0.997 0.499 0.016 0.9844 

Error 8 253.461 31.683 0.90 

p 4 7275.995 1818.999 14.959 0.0000 

Error 16 1945.592 121.599 0.56 

vp 8 1003.234 125.404 2.682 0.0223 

Error 32 1496.068 46.752 0.41 

ap 4 85.084 21.271 0.272 0.8916 

Error 16 1250.548 78.159 0.37 

vap 8 282.396 35.300 0.674 0.7108 

Error 32 1677.090 52.409 0.29 

sp 4 430.610 107.653 2.016 0.1406 

Error 16 854.458 53.404 0.53 

vsp 8 261.043 32.630 1.219 0.3198 

Error 32 856.648 26.770 0.34 

asp 4 274.587 68.647 2.144 0.1224 

Error 16 512.371 32.023 0.36 

vase 8 458.149 57.269 2.117 0.0633 

Error 32 865.617 27.051 0.42 
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A7.5: Saccade latency with distractors ipsilateral or contralateral to target - 
dominant / non-dominant eye distractors 

Four-factor repeated measures analysis of variance 

Factors 
1. Viewing eye 
2. Saccade amplitude 
3. Distractor side 
4. Distractor position 

dominant / non-dominant 
4°/8° 
ipsilateral / contralateral 
2°/4°/6°/ 8°/10° 

V 

a 
s 
p 

DF SS MS F P epsilon 
Subjects 4 66377.809 16594.452 

v 1 250.455 250.455 0.653 0.4643 

Error 4 1533.651 383.413 1.00 

a 1 55.094 55.094 0.56 0.8249 

Error 4 3951.174 987.793 1.00 

va 1 5.852 5.852 0.739 0.4385 

Error 4 31.679 7.920 1.00 

s 1 1054.920 1054.920 17.890 0.0134 

Error 4 235.862 58.965 1.00 

vs 1 5.402 5.402 0.544 0.5018 

Error 4 39.734 9.933 1.00 

as 1 70.034 70.034 0.891 0.3986 

Error 4 314.312 78.578 1.00 

vas 1 0.951 0.951 0.023 0.8867 

Error 4 165.009 41.252 1.00 

p 4 3277.139 819.285 7.746 0.0011 

Error 16 1692.395 105.775 0.43 

vp 4 228.916 57.229 1.290 0.3153 

Error 16 709.711 44.357 0.60 

ap 4 200.325 50.081 0.433 0.7830 

Error 16 1851.920 115.745 0.36 

vap 4 61.364 15.341 0.411 0.7984 

Error 16 597.840 37.365 0.45 

sp 4 370.272 92.568 2.754 0.0645 

Error 16 537.816 33.613 0.44 

vsp 4 75.433 18.858 0.858 0.5098 

Error 16 351.689 21.981 0.62 

asp 4 362.174 90.544 2.218 0.1130 

Error 16 653.042 40.815 0.42 

vasp 4 341.334 85.333 3.517 0.0305 

Error 16 388.249 24.266 0.58 
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A7.6 Statistical analysis of saccade gain without distractors 

Two-factor repeated measures analysis of variance 

Factors 
1. Viewing eye dominant / non-dominant / both 
2. Saccade amplitude 4° / 8° 

V 

a 

DF SS MS F P power 
subjects 4 0.041 0.010 
a 1 0.040 0.040 7.789 0.0493 7.789 0.561 
Error 4 0.021 0.005 

v 2 0.001 0.0004 0.470 0.6415 0.939 0.102 
Error 8 0.007 0.001 
av 2 0.001 0.001 0.201 0.8217 0.403 0.072 
Error 8 0.020 0.003 
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A7.7 Saccade gain for 4° targets 

Three-factor repeated measures analysis of variance 

Factors 
1. Viewing eye dominant / non-dominant / both 
2. Side ipsilateral / contralateral 
3. Distractor position 2° / 4° / 6° / 8° / 10° 

Statistical analysis for Chanter 5 

V 

S 

P 

DF SS MS F P epsilon 
Subjects 4 0.618 0.155 

v 2 0.538 0.269 13.688 0.0026 
Error 8 0.157 0.020 0.95 

s 1 1.030 1.030 48.635 0.0022 
Error 4 0.085 0.021 1.00 
vs 2 0.237 0.119 10.292 0.0061 
Error 8 0.092 0.012 0.72 

p 4 1.722 0.430 17.890 0.0000 
Error 16 0.385 0.024 0.40 

vp 8 0.425 0.053 9.030 0.0000 
Error 32 0.188 0.006 0.28 

sp 4 2.020 0.505 19.061 0.0000 
Error 16 0.424 0.026 0.37 

vsp 8 0.513 0.064 11.860 0.0000 
Error 32 0.173 0.005 0.33 
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A7.8 Saccade gain for 4° targets - dominant eye and non-dominant eye 

Three-factor repeated measures analysis of variance 

Factors 
1. Viewing eye dominant / non-dominant 
2. Side ipsilateral / contralateral 
3. Distractor position 2° / 41 / 6° / 8° / 10° 

V 
S 

P 

DF SS NIS F P epsilon 
Subjects 4 0.326 0.081 

v 1 0.053 0.053 3.031 0.1551 

Error 4 0.069 0.017 1.00 

s 1 0.310 0.310 21.363 0.0099 

Error 4 0.058 0.015 1.00 

vs 1 0.016 0.016 1.066 0.3602 

Error 4 0.058 0.015 1.00 

p 4 0.561 0.140 11.699 0.0001 

Error 16 0.192 0.012 0.55 

Vp 4 0.021 0.005 0.998 0.4372 

Error 16 0.085 0.005 0.36 

sp 4 0.638 0.160 10.024 0.0003 

Error 16 0.255 0.016 0.40 

vsp 4 0.008 0.002 0.606 0.6642 

Error 16 0.053 0.003 0.61 
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A7.9 Gain for 8° targets 

Three-factor repeated measures analysis of variance 

Factors 
1. Viewing eye dominant / non-dominant / both 
2. Side ipsilateral / contralateral 
3. Distractor position 21' / 4° / 6° / 8° / 10° 

Statistical analysis for Chapter 5 

V 
S 

P 

DF SS MS F P epsilon 
Subjects 4 0.042 0.011 

v 2 0.082 0.041 2.572 0.1372 
Error 8 0.128 0.016 0.88 

s 1 0.385 0.385 24.230 0.0079 
Error 4 0.064 0.016 1.00 
vs 2 0.084 0.042 12.237 0.0037 
Error 8 0.027 0.003 0.61 

p 4 0.477 0.119 35.798 0.0000 
Error 16 0.053 0.003 0.42 

vp 8 0.114 0.014 5.968 0.0001 
Error 32 0.076 0.002 0.29 

sp 4 0.650 0.612 37.728 0.0000 

Error 16 0.069 0.004 0.39 

vsp 8 0.172 0.022 9.216 0.0000 
Error 32 0.075 0.002 0.36 
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A7.10 Gain for 8° targets - dominant / non-dominant eye 

Three-factor repeated measures analysis of variance 

Factors 
1. Viewing eye dominant / non-dominant 
2. Side ipsilateral / contralateral 
3. Distractor position 2° / 4° / 6° / 8° / 10° 

V 
S 

P 

Statistical analysis for Chapter 5 

DF SS MS F P epsilon 
Subjects 4 0.048 0.012 

v 1 0.082 0.082 4.157 0.1111 

Error 4 0.079 0.020 1.00 

s 1 0.126 0.126 6.009 0.0703 

Error 4 0.084 0.021 1.00 

vs 1 0.015 0.015 20.601 0.0105 

Error 4 0.003 0.001 1.00 

p 4 0.147 0.037 14.171 0.0000 

Error 16 0.042 0.003 0.33 

Vp 4 0.009 0.002 1.222 0.3402 

Error 16 0.029 0.002. 0.63 

sp 4 0.180 0.045 9.774 0.0003 

Error 16 0.074 0.005 0.28 

vsp 4 0.005 0.001 0.555 0.6982 

Error 16 0.032 0.002 0.66 
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Information sheet 

Eye Movement Control in Squint 

`You are being invited to take part in a research study. Before you decide it is important for you 
to understand why the research is being done and what it will involve. Please take time to read 
the following information carefully and discuss it with friends, relatives and your GP if you 
wish. Ask us if there is anything that is not clear or if you would like more information. Take 
time to decide whether or not you wish to take part. 

Consumers for Ethics in Research (CERES) publish a leaflet entitled `Medical Research and 
You'. This leaflet gives more information about medical research and looks at some questions 
you may want to ask. A copy may be obtained from CERES, PO Box 1365, London N16 OBW. 

What is the purpose of the study? 
This study aims to determine how people with squints adapt to use information from their 
squinting eye. The information collected will lead to a better understanding of squints and their 
treatment. 

What will be involved if I agree to take part in the study? 
To study the adaptations occurring in squints various targets will be presented on a large screen, 
to one or both eyes, eye movements made in response to the targets will be recorded. 

Eye movements will be recorded using an eye tracker mounted on a headband. Low powered 
LED's are used to illuminate the external surface of the eye; the brightness of the reflected beam 
is measured. As the eye moves the reflection changes and this signal is sent back to a computer 
for analysis later. There is no contact with the eyes and the light source is invisible. 

Each block of eye movement recording will last for 50 seconds and will be preceded by a 
calibration routine. 

The calibration routine will consist of the target moving smoothly across the screen from right 
to left and back again. You must follow the centre of the target as closely as possible at all 
times. The calibration lasts for approximately 10 seconds. After the calibration it is important 
that you keep your head still ready for the eye movement task. 

The eye movement task: A small cross target will appear in the centre of the screen. After a 
variable amount of time it will disappear and reappear at variable distances to the side. At the 
same time a second larger target may appear on the screen, but this should be ignored at all 
times. The small target will then return to the central position. 

The eye movement recordings will take approximately one hour, breaks will be given 
throughout testing and you will determine the length of breaks. 
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Can I withdraw from the study at any time? 

Yes. You are free to refuse to join the study and may withdraw at any time. You will receive 
the same quality of care at the hospital whether you join the study or not. 

When and where will the study take place? 
We will arrange a time to suit you. The study will take place in the University Department of 
Ophthalmology and Orthoptics, located on 0 floor of the Royal Hallamshire Hospital. 

What other information will be collected in the study? 
Information about your vision and type of squint will be collected in addition to the eye 
movement recordings. 

Will there be effects on my treatment? 
No, your participation in the study is not connected to your treatment in any way. 

Will the information obtained in the study be confidential? 
Any information collected will be treated in confidence, no names will be mentioned in any 
reports of the study and care will be taken so that individuals cannot be identified from details in 
reports of the results of the study. 

Will anyone else be told about my participation in the study? 
No. All information will be treated confidentially. 

What if I wish to complain about the way in which this study has been conducted? 
If you have any cause to complain about any aspect of the way in which you have been 
approached or treated during the course of this study, the normal National Health Service 
complaints mechanisms are available to you and are not compromised in any way because you 
have taken part in a research study. 

If you have any complaints or concerns please contact the project co-ordinator: 

Helen Griffiths Tel: 0114 2713 818 

Otherwise you can use the normal University complaints procedure and contact the following 
person: 

Dr A Mallaband, Research & Consultancy Unit, University of Sheffield, 2/4 Palmerston Road, 
Sheffield, S 10 2TE. Tel: 0114 222 1431 
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Appendix 9 

Prism cover test measurements for Chapter 6 

Subject Clinical Sessi on 1 Sessi on 2 Sess ion 3 
Before After Before After Before After 

j 2A BI 4A BI 2A BI 2A BI 2A BI 2A BI 2A BI 
2 6A BO 8A BO 6A BO 8A BO 8A BO 6A BO 8A BO 
3 6A BO 6A BO 6A BO 6A BO 6A BO 6A BO 6A BO 
4 12A BI 12A BI 12A BI 12A BI 12A BI 12A BI 12A BI 
5 12A BO 12A BO 12A BO 12A BO 12A BO 12A BO 12A BO 
6 18A BI 20A BI 18A BI 18A BI 20A BI 20A BI 20A BI 

7 12A BO 12A BO 12A BO 12A BO 12A BO 12A BO 12A BO 

8 1oA BO l0A BO 12A BO 1oA BO 12A BO 1oA BO 12A BO 
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A10.1 Two-factor repeated measures ANOVA to test for differences in saccade latency without 
distractors. 

Factors 
amplitude 4° / 8° 
eye fixing / strabismic / both 

DF SS MS F-value -value Lambda Power 
subject 5 5792.309 1158.462 

a 1 331.301 331.301 3.887 0.1057 3.887 0.353 
a*subject 5 426.183 85.237 

e 2 193.743 96.872 3.146 0.0871 6.292 0.467 
e*subject 10 307.939 30.794 

a*e 2 19.420 9.710 0.540 0.5989 1.080 0.114 
a*e*subject 10 179.879 17.988 

Statistical analysis for Chapter 6 

a 
e 

A10.2 Three-factor repeated measures ANOVA to test for differences in saccade latency with and 
without distractors at the original fixation point. 

Factors 
eye 
amplitude 
distractor 

fixing / strabismic / both 
4° / 8° 
present / absent 

e 
a 
d 

DF SS MS F-value -value Lambda Power 

subject 5 21032.398 4206.480 

e 2 10173.713 5086.857 49.064 <0.0001 98.127 1.000 
e*sub'ect 10 1036.785 103.679 

a 1 0.821 0.821 0.007 0.9347 0.007 0.051 
a*subject 5 554.007 110.801 
d 1 28890.872 28890.872 67.274 0.0004 67.274 1.000 
d*sub'ect 5 2147.257 429.451 

e*a 2 108.342 54.171 1.213 0.3375 2.427 0.202 

e*a*subject 10 446.457 44.646 

e*d 2 10173.713 5086.857 49.064 <0.0001 98.127 1.000 

e*d*subject 10 1036.785 103.679 

a*d 1 709.577 709.577 9.997 0.0250 9.997 0.720 

a*d*sub'ect 5 354.900 70.980 

a*e*d 2 108.342 54.171 1.213 0.3375 2.427 0.202 

a*e*d*subject 10 446.457 44.646 
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A103 Three-factor repeated measures ANOVA to test for differences in saccade latency with and 
without distractors at the original fixation point. 

Factors 
eye fixing / both 

amplitude 4° / 8° 
distractor present / absent 

e 
a 
d 

DF SS MS F-value -value Lambda Power 
subject 5 16478.91 3295.782 

e 1 0.133 0.133 0.001 0.9753 0.001 0.050 
e*subject 5 631.671 126.334 

a 1 20.922 20.922 0.315 0.5989 0.315 0.074 
a*sub'ect 5 332.153 66.431 
d 1 38815.48 38815.48 88.009 0.0002 88.009 1.000 
d*subject 5 2205.208 441.042 

e*a 1 64.241 64.241 0.931 0.3790 0.931 0.121 
e*a*subject 5 345.121 69.024 

e*d 1 0.133 0.133 0.001 0.9753 0.001 0.050 
e*d*subject 5 631.671 126.334 

a*d 1 654.533 654.533 9.844 0.0257 9.844 0.714 
a*d*subject 5 332.438 66.488 

a*e*d 1 64.241 64.241 0.931 0.3790 0.931 0.121 
a*e*d*subject 5 345.121 69.024 

A10.4 Two-factor repeated measures ANOVA to test for differences in saccade latency with and 
without distractors presented to the strabismic eye at the original fixation point. 

Factors 
amplitude 4° / 8° 
distractor present / absent 

a 
d 

DF SS MS F-value -value Lambda Power 

subject 5 4958.601 991.720 

a 1 24.000 24.000 0.371 0.5689 0.371 0.078 

a*subject 5 323.190 64.638 
d 1 248.970 248.970 3.586 0.1168 3.586 0.330 
d*subject 5 347.163 69.433 
d*e 1 99.145 99.145 4.004 0.1018 4.004 0.362 
d*e*subject 5 123.797 24.759 
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A10.5 Four-factor repeated measures ANOVA to test for differences in saccade latency with 
distractors ipsilateral or contralateral to the target. 

Factors 
eye 
amplitude 
side 
distractor position 

fixing / strabismic / both 
4° / 8° 
contralateral / ipsilateral 
2°/4°/6°/8°/ 10° 

e 
a 
s 
p 

DF SS MS F-value -value Lambda Power 
subject 5 46302.541 9260.508 

e 2 5004.167 2502.084 3.535 0.690 7.070 0.516 
e*sub'ect 10 7078.272 707.827 

a 1 2509.162 2509.162 11.317 0.0200 11.317 0.772 
a*sub'ect 5 1108.622 221.724 

s 1 22294.136 22294.136 103.016 0.0002 103.016 1.000 
s*sub'ect 5 1082.074 216.415 

4 7393.041 1848.260 12.289 <0.0001 49.155 1.000 
*sub'ect 20 3008.069 150.403 

e*a 2 952.348 476.174 2.436 0.1374 4.872 0.372 
e*a*sub'ect 10 1954.630 195.463 

e*s 2 3692.009 1846.004 8.045 0.0083 16.090 0.881 

e*s*sub'ect 10 2294.566 229.457 

e* 8 4464.041 558.005 7.498 <0.0001 59.988 1.000 

e* *sub'ect 40 2976.647 74.416 

a*s 1 109.318 109.318 1.785 0.2391 1.785 0.189 

a*s*sub'ect 5 306.205 61.241 

a*p 4 647.003 161.751 2.358 0.0882 9.433 0.568 

a* *sub'ect 20 1371.724 68.586 

s* p 4 1179.233 294.808 3.680 0.0211 14.720 0.791 

s* *sub'ect 20 1602.193 80.110 

e*a*s 2 901.151 450.576 2.584 0.1246 5.167 0.392 

e*a*s*sub'ect 10 1743.926 174.393 

e*a*p 8 284.385 35.548 0.567 0.7981 4.538 0.224 

e*a* *sub'ect 40 2506.682 62.667 

e*s* 8 583.904 72.988 1.426 0.2155 11.412 0.557 

e*s* *subject 40 2046.675 51.167 

a*s*p 4 227.453 56.863 1.603 0.2124 6.413 0.398 

a*s* *sub'ect 20 709.315 35.466 

e*a*s* 8 535.251 66.906 1.398 0.2272 11.184 0.547 

e*a*s* *sub'ect 40 1914.370 47.859 
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A10.6 Four-factor repeated measures ANOVA to test for differences in saccade latency with 
distractors in the fixing eye and both eyes ipsilateral or contralateral to the target. 

Factors 
eye 
amplitude 
side 
distractor position 

fixing / both 
4°/ 8° 
contralateral / ipsilateral 
2°/4°/6°/8°/ 10° 

e 
a 
s 
p 

DF SS MS F-value -value Lambda Power 
subject 5 38220.581 7644.116 

a 1 2575.067 2575.067 10.608 0.0225 10.608 0.745 
a*subject 5 1213.792 242.758 

e 1 97.054 97.054 0.238 0.6461 0.238 0.068 
e*subject 5 2036.849 407.370 

s 1 24498.563 24498.563 53.959 0.0007 53.959 1.000 
s*subject 5 2270.118 454.024 

4 11022.616 2755.654 14.468 <0.0001 57.870 1.000 
*subject 20 3809.414 190.471 

a*e 1 661.543 661.543 3.676 0.0865 9.676 0.706 
a*e*subject 5 341.853 68.371 

a*s 1 1.922 1.922 0.027 0.8750 0.027 0.052 
a*s*subject 5 350.576 70.115 

a*p 4 429.967 107.492 1.694 0.1908 6.776 0.419 
a*p*subject 20 1269.024 63.451 

e*s 1 99.022 99.022 1.266 0.3116 1.266 0.148 

e*s*sub'ect 5 390.993 78.199 

e*p 4 165.300 41.325 0.746 0.5720 2.984 0.196 

e*p*subject 20 1107.795 55.390 

S*p 4 954.712 238.678 3.167 0.0361 12.668 0.718 

s* *sub'ect 20 1507.304 75.365 

a*e*s 1 605.727 605.727 2.376 0.1839 2.376 0.235 

a*e*s*subject 5 1274.939 254.988 

a*e*p 4 73.222 18.305 0.227 0.9202 0.907 0.089 

a*e*p*subject 20 1614.681 80.734 

a*s*p 4 315.819 78.955 1.555 0.2250 6.218 0.386 

a*s* *sub'ect 20 1015.746 50.787 

e*s* 4 312.826 78.207 1.392 0.2724 5.570 0.348 
e*s*p*subject 20 1123.295 56.165 

a*e*s* 4 130.641 32.660 0.735 0.5789 2.940 0.193 

a*e*s*p*subject 20 888.726 44.436 
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A10.7 Three-factor repeated measures ANOVA to test for differences in saccade latency with 
distractors ipsilateral or contralateral in the strabismic eye. 

Factors 
amplitude 4° / 8° 
side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

a 
s 
p 

DF SS MS F-value p-value Lambda Power 
subject 5 13123.38 

4 
2624.677 

a 1 224.899 224.899 0.746 0.4273 0.746 0.107 
a*sub'ect 5 1507.607 301.521 

s 1 1388.560 1388.560 9.703 0.0264 9.703 0.708 
s*subject 5 715.530 143.106 
p 4 669.165 167.291 3.134 0.0374 12.537 0.712 

*sub'ect 20 1067.507 53.375 

a*s 1 402.820 402.820 4.743 0.0813 4.743 0.417 
a*s*sub'ect 5 424.615 84.923 

a*p 4 428.200 107.050 2.152 0.1118 8.610 0.524 
a*p*subject 20 994.702 49.735 

s* 4 495.599 123.900 2.434 0.0810 9.734 0.584 
s*p*subject 20 1018.269 50.913 

a*s*p 4 316.245 79.061 2.199 0.1060 8.794 0.534 
a*s*p*subject 20 719.214 35.961 

A10.8 Three-factor mixed measures ANOVA to test for differences between strabismic and BSV 
group for saccade latency with distractor in dominant (fixing) eye at the original fixation. 

Factors 
group 
amplitude 
distractor 

BSV / strabismic 
4° / 8° 

present / absent 

g 
a 
d 

DF SS MS F-value -value Lambda Power 
1 3411.855 3411.855 2.141 0.1775 2.141 0.248 

subject(g) 9 14345.263 1593.198 

a 1 8.178 8.178 0.043 0.8398 0.043 0.054 
a' 1 37.707 37.707 0.200 0.6656 0.200 0.068 
a*subject(g) 9 1699.903 188.878 
d 1 31233.495 13233.495 71.246 <0.0001 71.246 1.000 
d*g 1 115.985 115.985 0.265 0.6194 0.265 0.074 
d*subject(g) 9 3945.518 438.391 

a*d 1 165.785 165.785 0.810 0.3915 0.810 0.123 

a*d*g 1 15.019 15.019 0.073 0.7926 0.073 0.057 

a*d*sub'ect 9 1841.791 204.643 
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A10.9 Three-factor mixed measures ANOVA to test for differences between strabismic and BSV 
group for saccade latency with distractor in both eyes at the original fixation. 

Factors 
group 
amplitude 
distractor 

BSV / strabismic 
4°/ 8° 
present / absent 

g 
a 
d 

DF SS MS F-value -value Lambda Power 
1 1474.071 1474.071 1.047 0.3330 1.047 0.145 

subject(g) 9 12675.293 1408.366 

a 1 133.575 133.757 0.633 0.4467 0.633 0.107 
a* 1 0.192 0.192 0.001 0.9766 0.001 0.050 
a*subject(g) 9 1901.555 211.284 
d 1 38984.060 38984.060 144.796 <0.0001 144.796 1.000 
d*g 1 85.522 85.522 0.318 0.5868 0.318 0.079 
d*subject(g) 9 2423.111 269.235 

a*d 1 465.755 465.755 2.382 0.1572 2.382 0.271 
a*d*g 1 109.285 109.285 0.559 0.4738 0.559 0.100 
a*d*sub'ect 9 1759.952 195.550 

A10.10 Three-factor mixed measures ANOVA to test for differences between strabismic and BSV 
group for saccade latency with distractor in non-dominant (strabismic) eye at the original fixation. 

Factors 
group 
amplitude 
distractor 

BSV / strabismic 
4°/ 8° 
present / absent 

g 
a 
d 

DF SS MS F-value -value Lambda Power 
1 157.693 157.693 0.125 0.7318 0.125 0.061 

subject(g) 9 11354.929 1261.659 

a 1 30.826 30.826 0.258 0.6240 0.258 0.073 

a*g 1 1.110 1.110 0.009 0.9254 0.009 0.051 

a*sub'ect 9 1077.107 119.679 
d 1 6638.204 6638.204 68.008 <0.0001 68.008 1.000 
d* 3623.925 3623.925 37.127 0.0002 37.127 1.000 
d*subject(g) 9 878.481 97.609 

a*d 19.926 19.926 0.204 0.6620 0.204 0.069 

a*d*g 80.325 80.325 0.824 0.3878 0.824 0.125 

a*d*sublect 9 877.714 97.524 
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A10.11 Four-factor mixed measures ANOVA to test for differences between strabismic and BSV 
group for saccade latency with distractor in dominant (fixing) eye. 

Factors 
group 
amplitude 
side 
distractor position 

BSV / strabismic 
4° / 8° 
contralateral / ipsilateral 
2°/4°/6°/8°/10° 

g 
a 
s 
p 

SS A1S F-value -value Lambda Power 
10715.767 10715.767 2.2022 0.1887 2.022 0.237 

sub'ect 47691.187 5299.021 

a 1526.194 1526.194 5.282 0.0471 5.282 0.531 
a* 

1 

1145.183 1145.183 3.964 0.0777 3.964 0.419 
a*sub'ect 9 2300.373 288.930 

s 7752.768 7752.768 30.794 0.0004 30.794 0.999 
s* 2672.727 2672.727 10.616 0.0099 10.616 0.836 
s*sub'ect 9 2265.857 251.762 2 

4 7367.248 1841.812 21.389 <0.0001 85.555 1.000 
* 4 300.317 75.079 0.872 0.0403 3.488 0.244 
*sub'ect 36 3100.005 86.111 

a*s 1 223.001 223.001 1.684 0.2267 1.684 0.205 
a*s*g 1 51.998 51.998 0.393 0.5465 0.393 0.086 
a*s*subject(g) 9 1191.904 132.434 

a*p 4 212.105 53.026 0.939 0.4524 3.757 0.262 
a* * 4 66.885 16.721 0.296 0.8785 1.185 0.107 

a* *sub'ect 36 2032.554 56.460 

S*p 4 401.386 100.346 2.363 0.0713 9.454 0.619 

s* * 4 88.319 22.080 0.520 0.7215 2.080 0.158 

s* *sub'ect 36 1528.470 42.457 

a*s*p 4 509.678 12.419 2.385 0.0694 0.539 0.624 

a*s* * 4 388.182 97.046 1.816 0.1471 7.265 0.490 

a*s* *sub'ect 36 1923.556 53.432 
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A10.12 Four-factor mixed measures ANOVA to test for differences between strabismic and BSV 
group for saccade latency with distractor in both eyes. 

Factors 
group 
amplitude 
side 
distractor position 

BSV / strabismic 
4° / 8° 
contralateral / ipsilateral 
2°/4°/6°/8°/ 10° 

g 
a 
s 
p 

DF SS MS F-value p-value Lambda Power 
1 12082.398 12082.398 2.266 0.1665 2.266 0.260 

subject(g) 9 47996.538 5332.949 

a 1 556.221 556.221 2.713 0.1339 2.713 0.303 
a* 1 0.076 0.076 3.708E-4 0.9851 3.708E-4 0.050 
a*sub'ect 9 1845.023 205.003 

s 1 15607.993 15607.993 189.655 <0.0001 189.655 1.000 
s* 1 1141.903 1141.903 13.875 0.0047 13.875 0.923 
s*subject(g) 9 740.672 82.297 

4 10311.794 2577.949 21.809 <0.0001 87.238 1.000 
* 4 49.109 12.277 0.104 0.9804 0.415 0.069 

p*subject(g) 36 4255.314 118.203 

a*s 1 67.541 67.541 0.758 0.4067 0.758 0.118 

a*s*g 1 271.560 274.560 3.080 0.1132 3.080 0.337 

a*s*sub'ect 9 802.328 89.148 

a*p 4 78.950 19.737 0.306 0.8717 1.226 0.110 

a*p*g 4 273.024 68.256 1.060 0.3904 4.240 0.293 

a* *sub'ect 36 2318.401 64.400 

S*p 4 991.924 247.981 3.871 0.0102 15.484 0.860 

s* * 4 149.357 37.339 0.583 0.6770 2.332 0.173 

s* *sub'ect 36 2306.133 64.059 

a*s*p 4 26.904 6.726 0.268 0.8964 1.074 0.102 

a*s* * 4 92.722 23.180 0.925 0.4602 3.700 0.258 

a*s* *sub'ect 36 902.143 25.060 
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A10.13 Four-factor mixed measures ANOVA to test for differences between strabismic and BSV 
group for saccade latency with distractor in non-dominant (strabismic) eye. 

Factors 
group BSV / strabismic 
amplitude 4° / 8° 
side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

g 
a 
s 
p 

DF SS MS F-value p-value Lambda Power 
1 3140.301 3140.301 0.490 0.5016 0.490 0.094 

subject(g) 9 57669.984 6407.776 

a 1 189.925 189.925 0.559 0.4736 0.559 0.101 
a*g 1 41.475 41.475 0.122 0.7348 0.122 0.061 
a*subject(g) 9 3056.298 339.589 

s 1 1792.678 1792.678 20.802 0.0014 20.802 0.987 
s* 1 62.504 62.504 0.725 0.1465 0.725 0.116 
s*sub'ect 9 775.597 86.177 

p 4 1176.263 294.066 5.230 0.0020 20.920 0.954 
* 4 624.894 156.224 2.778 0.0414 11.114 0.703 
*sub'ect 36 2024.159 56.227 

a*s 1 287.034 287.034 3.876 0.0805 3.876 0.411 

a*s* 1 102.431 102.431 1.383 0.2697 1.383 0.176 

a*s*sub'ect 9 666.460 74.051 

a* 4 524.065 131.016 1.997 0.1158 7.988 0.535 

a* * 4 83.080 20.770 0.317 0.8650 1.266 0.112 

a* *sub'ect 36 2361.974 65.610 

s* 4 556.845 139.211 3.290 0.0213 13.161 0.788 

s* * 4 85.276 21.319 0.504 0.7331 2.015 0.154 

s* *sub'ect 36 1523.226 42.312 

a*s*p 4 243.566 60.892 1.760 0.1585 7.038 0.476 

a*s* * 4 191.565 47.891 1.384 0.2590 5.536 0.379 

a*s* *sub"ect 36 1245.821 34.606 

A10.14 Two-factor repeated measures ANOVA to test for differences in saccade gain without 
distractors. 

Factors 
amplitude 
eye 

4°/ 8° 
fixing / strabismic / both 

a 
e 

DF SS MS F-value -value Lambda Power 

subject 5 0.182 0.036 

a 1 0.164 0.164 16.483 0.0097 16.483 0.903 

a*subject 5 0.050 0.010 

e 2 0.004 0.002 0.232 0.7971 0.464 0.077 

e*subject 10 0.076 0.008 

a*e 2 0.009 0.004 0.620 0.5575 1.240 0.124 

a*e*subject 10 0.070 0.007 
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A10.15 Three-factor repeated measures ANOVA to test for differences in saccade gain with 
distractors for 4' targets. 

Factors 
eye fixing/ strabismic/ both 

side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 100 

e 
s 
p 

DF SS NIS F-value p-value Lambda Power 
subject 5 2.826 0.565 

4 0.725 0.181 3.214 0.0343 12.856 0.725 
p*subject 20 1.129 0.056 

s 1 0.225 0.225 24.116 0.0044 24.116 0.975 
s*subject 5 0.047 0.009 

e 2 0.067 0.034 4.311 0.0447 8.622 0.607 
e*subject 10 0.078 0.008 

*s 4 2.502 0.626 44.529 <0.0001 178.116 1.000 
p*s*subject 20 0.281 0.014 

p*e 8 1.840 0.230 12.868 <0.0001 102.943 1.000 
*e*subject 40 0.715 0.018 

s*e 2 0.406 0.203 12.767 0.0013 27.533 0.988 

s*e*subject 10 0.147 0.015 

p*s*e 8 3.600 0.450 38.311 <0.0001 306.489 1.000 

p*s*e*subject 40 0.470 0.012 

A10.16 Three-factor repeated measures ANOVA to test for differences in saccade gain with 
distractors for 8° targets. 

Factors 
eye fixing / strabismic / both 

side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

e 
s 
p 

DF SS MS F-value -value Lambda Power 
subject 5 0.986 0.197 

4 0.752 0.188 13.184 <0.0001 52.737 1.000 
*subject 20 0.285 0.014 

s 1 0.049 0.049 4.718 0.0819 4.718 0.415 

s*subject 5 0.052 0.010 
2 0.009 0.005 0.829 0.4642 1.659 0.151 

e*subject 10 0.056 0.006 
*s 4 0.687 0.172 14.453 <0.0001 57.810 1.000 
*s*subject 20 0.238 0.012 

p*e 8 0.077 0.010 2.093 0.0595 16.742 0.763 
*e*subject 40 0.185 0.005 

s*e 2 0.096 0.048 8.471 0.0070 16.941 0.898 

s*e*subject 10 0.057 0.006 
*s*e 8 0.467 0.058 9.449 <0.0001 75.590 1.000 

p*s*e*subject 40 0.247 0.006 
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A10.17 Three-factor repeated measures ANOVA to test for differences in saccade gain with 
distractors In fixing eye and both eyes for 4° targets. 

Factors 
eye fixing / both 
side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

e 
s 
p 

DF SS AiS F-value -value Lambda Power 

subject 5 1.239 0.248 

e 1 0.370 0.370 4.300 0.0928 4.300 0.385 
e*subject 5 0.431 0.086 

s 1 2.308 2.308 75.813 0.0003 75.813 1.000 

s*subject 5 0.152 0.030 

p 4 3.551 0.888 39.219 <0.0001 156.877 1.000 

p*subject 20 0.453 0.023 

e*s 1 0.060 0.060 0.831 0.1234 1.831 0.192 

e*s*sub'ect 5 0.164 0.033 

e*p 4 0.016 0.004 0.429 0.7863 1.714 0.128 

e* *sub'ect 20 0.182 0.009 

S*p 4 2.699 0.675 67.775 <0.0001 271.098 1.000 

s* *sub'ect 20 0.199 0.010 

e*s* 4 0.099 0.025 1.980 0.1365 7.919 0.485 

e*s*p*subject 20 0.249 0.012 

A10.18 Three-factor repeated measures ANOVA to test for differences in saccade gain with 
distractors in fixing eye and both eyes for 8' targets. 

Factors 
eye fixing / both 
side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

e 
s 
p 

DF SS A1S F-value p-value Lambda Power 

subject 5 0.688 0.138 

e 1 0.061 0.061 2.414 0.1810 2.414 0.239 

e*sub'ect 5 0.127 0.025 

s 1 0.557 0.557 37.721 0.0017 37.721 0.998 

s*sub'ect 5 0.074 0.015 
4 0.536 0.134 21.168 <0.0001 84.673 1.000 

*sub'ect 20 0.127 0.006 

e*s 1 0.001 0.001 0.125 0.7385 0.125 0.060 

e*s*sub'ect 5 0.043 0.009 

es 4 0.003 0.001 0.122 0.9731 0.486 0.070 

e* *sub'ect 20 0.107 0.005 

ss 4 0.595 0.149 34.629 <0.0001 138.515 1.000 

s* *sub'ect 20 0.086 0.004 

e*s* 4 0.007 0.002 0.342 0.8467 1.366 0.111 

e*s* *sub'ect 20 0.099 0.005 
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A10.19 Two-factor repeated measures ANOVA to test for differences in saccade gain with 
distractors presented to the strabismic eye for 4" targets. 

Factors 
side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

S 

P 

DF SS NIS F-value -value Lambda Power 
subject 5 2.041 0.408 

I 1 0.047 0.047 5.524 0.0655 5.524 0.472 
s"sub'ect 5 0.042 0.008 

4 0.128 0.032 2.310 0.0933 9.240 0.558 
'subject 20 0.278 0.014 

S*p 4 0.055 0.014 1.046 0.4087 4.182 0.265 
s"p*subject 20 0.262 0.013 

A10.20 Two-factor repeated measures ANOVA to test for differences in saccade gain with 
distractors presented to the strabismic eye for 8' targets. 

Factors 
side 
distractor position 

contralateral / ipsilateral 
2°/4°/6°/8°/ 10° 

S 

P 

DF SS AMS F-value value Lambda Power 

subject 5 0.525 0.105 

s 1 0.019 0.019 7.625 0.0398 7.625 0.603 

subject S* 5 0.012 0.002 
4 0.018 0.005 0.689 0.6080 2.756 0.183 

'subject 20 0.133 0.007 

S*p 4 0.022 0.006 1.324 0.2954 5.294 0.331 

s" 'subject 20 0.085 0.004 

A10.21 Three-factor mixed measures ANOVA to test for differences in saccade gain between the 
BSV group and the strabismic group with distractors in the dominant (fixing) eye for 4° targets. 

Factors 
group BSV / strabismic 
side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

g 
s 
p 

DF SS A1S F-value p-value Lambda Power 
1 3.300E-5 3.300E-5 0.001 0.9804 0.001 0.050 

subject 9 0.464 0.694 

s 1 0.694 0.694 27.869 0.0005 27.869 0.998 

s' 1 0.146 0.146 5.849 0.0387 5.849 0.575 

s'sub'ect 9 0.224 0.025 
4 1.375 0.344 32.755 <0.0001 131.019 1.000 

s 4 0.331 0.083 7.892 0.0001 31.567 0.997 

'sub'ec 36 0.378 0.010 

ss 4 1.143 0.286 29.662 <0.0001 118.647 1.000 

ss + 4 0.118 0.029 3.056 0.0288 12.226 0.751 

s'p'sub'cct 36 0.347 0.010 
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A10.22 Three-factor mixed measures ANOVA to test for differences in saccade gain between the 
BSV group and the strabismic group with distractors in the dominant (fixing) eye for 8° targets. 

Factors 
group BSV / strabismic 
side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

g 
s 
p 

DF SS AIS F-value -value Lambda Power 
1 0.221 0.221 5.048 0.0513 5.048 0.512 

subject 9 0.395 0.044 

s 1 0.384 0.384 24.557 0.0008 24.557 0.995 
Ss 1 0.015 0.015 0.965 0.3517 0.965 0.137 

s*subjecqg) 9 0.141 0.016 
4 0.335 0.084 17.301 <0.0001 69.205 1.000 

s 4 0.026 0.006 1.320 0.2810 5.282 0.362 
'subject 36 0.174 0.005 

S*p 4 0.370 0.093 18.593 <0.0001 74.370 1.000 
ss s 4 0.013 0.003 0.670 0.6173 2.679 0.194 

ss ssub'ect 36 0.179 0.005 

A10.23 Three-factor mixed measures ANOVA to test for differences in saccade gain between the 
BSV group and the strabismic group with distractors in both eyes for 4° targets. 

Factors 
group 
side 
distractor position 

BSV / strabismic 
contralateral / ipsilateral 
2°/4°/6°/8°/ 10° 

g 
s 
p 

DF SS NIS F-value p-value Lambda Power 

3 0.031 0.031 0.168 0.6912 0.168 0.065 
2 
subject 9 1.642 0.182 

s 2.428 2.482 125.909 <0.0001 125.909 1.000 

s* 0.015 0.015 0.801 0.3940 0.801 0.122 

s*subjecqg) 9 0.174 0.019 
4 3.447 0.862 47.588 <0.0001 190.353 1.000 

* 4 0.007 0.002 0.096 0.9829 0.386 0.067 
*sub'ec 36 0.652 0.018 

s* 4 3.709 0.927 59.289 <0.0001 237.156 1.000 

s* " 4 0.027 0.007 0.430 0.7859 1.720 0.137 

s*p*subjecgg) 36 0.563 0.016 
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A10.24 Three-factor mixed measures ANOVA to test for differences in saccade gain between the 
BSV group and the strabismic group with distractors in both eyes for 8° targets. 

Factors 
group 
side 
distractor position 

BSV / strabismic 
contralateral / ipsilateral 
2°/4°/6°/8°/ 10° 

g 
s 
p 

DF SS NIS F-value -value Lambda Power 
1 0.153 0.153 2.692 0.1353 2.692 0.301 

subject 9 0.513 0.057 

s 1 0.572 0.572 186.170 <0.0001 186.170 1.000 
s* 1 0.006 0.006 1.879 0.2037 1.879 0.223 
s*subjecqg) 9 0.028 0.003 

p 4 0.674 0.168 40.795 <0.0001 163.181 1.000 
* p 4 0.030 0.007 1.795 0.1512 7.181 0.485 

p*subject(g) 36 0.149 0.004 

S*p 4 0.924 0.231 87.425 <0.0001 349.700 1.000 
s* * 4 0.059 0.015 5.544 0.0014 22.177 0.966 
s* *subject 36 0.095 0.003 

A10.25 Three-factor mixed measures ANOVA to test for differences in saccade gain between the 
BSV group and the strabismic group with distractors in the non-dominant (strabismic) eye for 4° 
targets. 

Factors 
group 
side 
distractor position 

BSV / strabismic 
contralateral / ipsilateral 
2°/4°/6°/8°/ 10° 

S 
s 
p 

DF SS DIS F-value p-value Lambda Power 
1 0.011 0.011 0.040 0.8461 0.040 0.054 

subject 9 2.378 0.264 

s 1 0.252 0.252 16.398 0.0029 16.398 0.958 
s* 1 0.044 0.044 2.872 0.1244 2.872 0.318 

s*subject 9 0.138 0.015 
4 0.448 0.112 8.836 <0.0001 35.344 0.999 

* 4 0.091 0.023 1.794 0.1515 7.175 0.485 
*subject 36 0.457 0.013 

s" 4 0.284 0.071 6.433 0.0005 25.734 0.985 

s* * 4 0.075 0.019 1.691 0.1735 6.764 0.459 

s*p*subject(g 36 0.397 0.011 
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A10.26 Three-factor mixed measures ANOVA to test for differences in saccade gain between the 
BSV group and the strabismic group with distractors in the non-dominant (strabismic) eye for 8° 
targets. 

Factors 
group BSV / strabismic 
side contralateral / ipsilateral 
distractor position 2° / 4° / 6° / 8° / 10° 

g 
s 
p 

DF SS NIS F-value p-value Lambda Power 
1 0.034 0.034 0.515 0.4912 0.515 0.097 

subject 9 0.603 0.067 

s 1 0.046 0.046 7.483 0.0230 7.483 0.686 

s* 1 0.001 0.001 0.138 0.7186 0.138 0.063 
s*subjecgg) 9 0.056 0.006 

4 0.050 0.012 2.633 0.0501 10.530 0.675 
* p 4 0.039 0.010 2.077 0.1041 8.310 0.554 
*subject 36 0.171 0.005 

s* - 
4 0.050 0.013 3.319 0.0206 13.275 0.792 

** LS - 4 0.047 0.012 3.081 0.0279 12.323 0.755 
- s*p*subject 36 0.136 0.004 1 1 

d 

A10.27 d' values for visibility experiment 

Signal detection theory was used to calculate an index on accuracy (d') for the response to each distractor 

position when presented to the dominant, non-dominant or both eyes. 

d' az (yes/signal) -z (yes/non-signal) 

Where z (yes/signal) is the standard normal deviate corresponding to the proportion of correct responses 
(hits) and z (yes/non-signal) is the standard normal deviate corresponding to the proportion of false 

positives. Z scores of the proportions were obtained from the table of normal distribution. 

d' values range from +4 (most accurate) to -4 (least accurate). No correct responses with no false 

positives would give a d' value of zero. 

d' values 

a) Subject 1, Exp. 4, Chapter 5 

Distractor position Distractor both eyes Distractor dominant 
eye 

Distractor non- 
dominante e 

-10 2.842 2.842 2.842 

-8 2.842 2.842 2.124 

-6 2.842 2.842 2.842 

-4 2.842 2.842 2.842 

-2 2.842 2.842 2.842 
0 2.842 2.842 2.124 
2 2.842 2.842 2.842 
4 2.842 2.842 2.842 
6 2.842 2.842 2.842 
8 2.842 2.124 2.124 
10 2.124 2.842 2.124 
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b) Subject 3, Exp. 4, Chapter 5 

Statistical analysis for Chapter 6 

Distractor position Distractor both eyes Distractor dominant 
eye 

Distractor non- 
dominante e 

-10 2.564 3.282 2.564 

-8 2.564 3.282 3.282 

-6 3.282 3.282 3.282 

-4 2.564 3.282 3.282 

-2 2.564 2.564 2.564 
0 3.282 3.282 3.282 
2 3.282 2.564 3.282 
4 3.282 2.564 2.124 
6 2.564 3.282 3.282 
g 3.282 3.282 3.282 
10 2.124 3.282 2.564 

c) Subject 2, Exp. 5, Chapter 6 

Distractor position Distractor both eyes Distractor fixing eye Distractor strabismic 
ee 

-10 4.000 4.000 0.718 

.8 4.000 4.000 0.000 

-6 4.000 4.000 0.000 

-4 4.000 3.282 0.000 

-2 4.000 4.000 0.000 
0 4.000 4.000 0.000 
2 3.282 3.282 0.718 
4 4.000 4.000 0.000 
6 3282 4.000 0.000 
8 4.000 4.000 0.718 
10 2.842 3.282 0.000 

d) Subject 3, Exp. 5, Chapter 6 

Distractor position Distractor both eyes Distractor fixing eye Distractor strabismic 
eye 

-10 3.282 3.282 0.000 

-8 3.282 3.282 0.000 

-6 3.282 3.282 -0.718 
-4 3.282 3.282 -0.718 
-2 3.282 3.282 0.000 
0 3.282 3.282 -0.718 
2 3.282 3.282 -0.718 
4 3.282 2.564 0.000 
6 3.282 3.282 -0.718 
8 2.564 3.282 0.000 

10 3.282 2.564 -0.718 
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e) Subject 4, Exp. 5, Chapter 6 

Statistical analysis for Chapter 6 

Distractor position Distractor both eyes Distractor fixing eye Distractor strabismic 
eye 

-10 2.842 2.124 -1.158 
-8 2.842 2.842 -1.158 
-6 2.842 2.842 -1.158 
-4 2.842 2.842 -1.158 
-2 2.842 2.842 -1.158 
0 2.842 2.124 -1.158 
2 2.842 2.842 -1.158 
4 2.842 2.842 -1.158 
6 2.842 2.842 -1.158 
8 2.842 2.124 -1.158 
10 2.842 2.842 -1.158 

1) Subject 5, Exp. 5, Chapter 6 

Distractor position Distractor both eyes Distractor fixing eye Distractor strabismic 
eye 

-10 3.282 3.282 0.000 

-8 3.282 2.564 -0.718 
-6 3.282 3.282 -0.718 
-4 3.282 2.564 -0.718 
-2 3.282 3.282 -0.718 
0 3.282 3.282 -0.718 
2 3.282 3.282 -0.718 
4 3.282 2.564 -0.718 
6 3.282 3.282 -0.718 
8 2.564 3.282 0.000 
10 3.282 2.564 -0.718 

g) Subject 6, Exp. 5, Chapter 6 

Distractor position Distractor both eyes Distractor fixing eye Distractor strabismic 
eye 

-10 2.124 2.564 -0.718 
-8 2.564 3.282 -0.718 
-6 3.282 3.282 -0.718 
.4 3.282 3.282 0.000 

-2 3.282 3.282 0.000 
0 3.282 3.282 -0.718 
2 3.282 3.282 -0.718 
4 2.564 2.124 -0.718 
6 3.282 2.564 -0.718 
8 2.564 3.282 -0.718 
10 2.124 2.564 0.000 
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Appendix 11 

Statistical analysis for Chapter 7 

A 11.1 Subjects with BSV 

A11.1.1 Disconjugacy pre- and post adaptation phase-no feedback condition 
Centrifugal saccades 
Paired t-test 
Hypothesized difference -0 
Pre-adaptation phase / post-adaptation 

Mean dill. 
1-0.009 

Centripetal saccades 
Paired t-test 

phase 
DF 
7 

Hypothesized difference -0 
Pre-adaptation phase / post-adaptation P Nase 

t-value 

-0.967 
pwvalue 
0.336 

Mean diff. DF t-value value 
-0.001 7 -0.079 0.9391 
Mean diff. 

-0.001 

A11.1.2 Disconjugacy pre- and post adaptation phase - feedback condition 
Difference in effect between feedback dominant eye (subjects 1-4) or non-dominant eye (subjects 5-8) 
Unpaired t-test 
Hypothesized difference -0 
Convergent disparity 
feedback dom/ feedback non-dom 

Mean diff. DF t-value P-value 
0.050 6 1.002 0.3552 

Divergent disparity 
feedback dour/ feedback non-dom 

Mean diff. 
0.050 

Mean diff. DF t-value P-value 
-0.006 6 -0.092 0.9301 
Mean diff. 

-0.006 

Difference between pre and post-adaptation phase following feedback gain (alt 8 subjects) 

Convergent disparity 
Paired t-test 
Hypothesized difference -0 
pre-adaptation phase / post-adaptation phase 

Mean diff. 
-0.145 

t-value 
-0.079 

t-value 
1.002 

t-value 
L -0.092 

t-value 
-5.784 

value 
0.9391 

P-value 
0.3552 

P-value 
0.9301 

p-value 
0.0007 

DF 

7 

DF 
6 

I DF 
ý 6 

DF 
7 

Divergent disparity 
Paired t-test 
Hypothesized difference -0 
pre- adaptation phase / post-adaptation phase 

I -0.133 
Difference In effect betNeen convergent and divergent disparity 
Paired t-test 
Hypothesized difference -0 
change in disconjugacy cony. disparity / change in disconjugacy div. disparity 

Man diff. 
0.013 

Mean diff. DF t"value value 
-0.133 7 -4.386 0.0032 
Mean diff. 

Mean diff. DF t-value value 
0.013 7 0.574 0.5837 

DF 
7 

DF 

t"vatue 
-4.386 

t-value 
0.574 

pývalue 
0.0032 

p-value 
0.5837 
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A11.2 Subjects with strabismus 

The results of feedback during the adaptation phase were highly variable amongst 

subjects with some showing adaptation appropriate in direction for the induced disparity 

whilst others demonstrated adaptations in the opposite direction. To determine whether 
individual strabismic subject's results were significantly different from the group of 

subjects with BSV individual z scores were calculated. The probability of results being 

the same as the normal BSV subjects could then be examined. 

z scores were calculated as follows: 

z=x -u 
or 

x= Mean change in disconjugacy following feedback of individual strabismic subject 
µ= Mean change in disconjugacy of BSV group 

or = Standard deviation of BSV group 

z scores were then converted to p using the table of normal distribution (2 tailed). 

Subs Fixin eye Strabismic eye 
Convergent Diver gent Convergent Diver gent 

z score value z score p value z score p value z score value 
1 -3.87 <0.001 -3.86 <0.001 -0.65 <0.001 -5.53 <0.001 
2 0.25 0.802 0.01 1.000 -1.41 0.158 1.02 0.308 
4 -0.35 0.726 1.30 0.194 1.59 0.112 -0.45 0.652 
5 -1.37 0.170 -1.27 0.204 -2.89 0.004 -1.12 0.262 
6 -6.58 <0.001 -3.05 0.002 -1.55 0.122 1.53 0.126 
9 0.70 0.484 -0.13 0.896 4.30 <0.001 2.19 0.028 

Table A11.1: z scores and p values (2 tailed) for individual strabismic subjects. The results of the change 
in disconjugacy in the pre and post adaptation phases for feedback to the fixing eye and strabismic eye to 
induced convergent and divergent disparity are compared for significant differences from the mean and 
SD of the normal BSV group. None significant values indicate a response comparable to the normal BSV 
group response, significant values represent responses significantly different from those found in normal 
BSV. 

Subject Fixin eve Strabismic eye 
Convergent Divergent Convergent Divergent 

2 - - - - 
4 - - - - 
5 - - ** - 
6 
9 - - *** * 

Table A11.2: Summary of significance levels of z scores for individual strabismic subjects. Conditions 

where the results were significantly different from the control group are represented as follows: *=p: 5 
0.05; ** = p: 50.01; *** = p<0.001. Where there is no significant difference from the control group the 
symbol - is used representing no significant difference from the BSV subjects. Symbols in red represent 
adaptation in an appropriate direction for the induced disparity, black represents adaptation in an 
inappropriate direction. 
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Appendix 12 

Time course of adaptation 

A12.1 Individual data of BSV subjects 

Figures A12.1 and A12.2 show the saccade gain disconjugacy during the adaptation 

phase plotted against time for each of the BSV subjects. All subjects, with the exception 

of subject 3 for convergent disparity and subject 7 for divergent disparity, show a 

similar pattern. Saccade gain disconjugacy is seen to increase rapidly over the first 6 

runs (equivalent to approximately 5 minutes) and then continuing to increase at a slower 

rate levelling out in most cases by approximately run 14. Subject 3 for convergent 
disparity shows a slightly different response in that the largest increase occurred in the 

first 4 runs as feedback was applied, this was followed by a gradual decrease in the 

response. Subject 7 showed a large increase in disconjugacy in the first run following 

application of feedback, this remained at a similar level throughout the adaptation 

phase. 

A12.2 Individual data of strabismic subjects 

Figures A 12.3 and A 12.4 show disconjugacy during the adaptation phase plotted against 

time for each of the three strabismic subjects who adapted in an appropriate direction 

for the induced disparity. Figure A12.5 shows the mean saccade gain disconjugacy over 

the time course of the adaptation phase for each of the two subjects from the strabismic 

group who adapted in an inappropriate direction. With feedback applied to the fixing 

eye subject 1 showed an immediate inappropriate change in disconjugacy during run 5 

and this remained throughout the adaptation phase whereas subject 6 initially made 

changes in disconjugacy appropriately for the disconjugacy, but reversed this response 

in run 8 and continued to show increasing inappropriate direction disconjugacy. With 

feedback applied to the strabismic eye subject 1 had a similar response whereas subject 

6 now showed disconjugacy appropriate in direction for the induced disparity. 
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BSV subjects - adaptation phase, feedback to dominant eye 
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285 

1"0 0018Y' "0 0477" - 0.1578 
R-0.4301 

""" 

r 
*I 

0 \" 

246e 10 12 14 16 18 20 22 

,"O OaS' "01 217. -0 60137 

Q"0579 

46 

0 

0 

5 10 12 14 16 1e 20 22 

y. -00013x' "00383x-00146 
R'"0133 

a_q iC 14 16 18 20 22 



Appendix 12 

BSV subjects - adaptation phase, feedback to non-dominant eye 

Convergent disparity Divergent disparity 
o-so 

0.40 

O. 3O 

o2o 

0.10 

0.00 

o. DO 

OAO 

030 

020 

02400 

ý 
ä ow 
a 
Co ric 
0 
cý 

J St. 

L "i. 

0 ]G 

020 

010 

000 
02 

oio 

SAD 

030 

020 

0101 

GAO 

ý"ý00'L":. 0-436""00176 
R"0ý 

-r 

. 

" ""i 

Subject 5 

,i... lw 
K"0 3625 

50 

: aý 
C Subject 6 

ýý: i'\" "..; 1Wý . -JMý 
v" L'+' 

. 
: h- .ý 

1 .: 

Y" -0.0012x'. 0.0481x - 0.0261 
R' "0 . 

9008 

74 66 10 12 14 16 16 20 22 

ý' 

0 

Time course of adaptation 

. 

. 

". 

y=-0 0011>" "0 0326x " 0.0531 
Rý0.2111 

a 10 12 14 te 18 20 22 

y" -0 . 
0003a' " 0.006a " 0.1199 

R'"0.0552 

Tý -=ýTý 
4eec. " 'e ýe 20 l: ". 46e 10 12 11 16 18 20 22 

Subject 7 

.- JOOOY. '": OlN" OOS, ) 

N -i ! o" 

04. +"ýs" 

ýX 

0i ?C 

.T" 

:4" 

0 40 1 

0JO 

0]D 

0 to 

:x 

k 

:K- 

Jx - 

: 20 ý 

'0 

11 

11 « 
:x 

020 

c *c 

I )x 

ý Ic 

ep". 44 ri' 074 
Ilk 

Subject 8 

y" -0 0007. ' . 0.0219. " 0.0304 
R' "0 . 

4M78 

.. 66 10 12 14 16 1B 20 22 

Time (runs), I run = 50 seconds 

Figure A12.2: Saccade gain disconjugacy during the adaptation phase in four BSV subjects with 
feedback applied to the non-donunant eye. Convergent disparity shown on the left and divergent disparity 

on the right. 

286 

0 



Appendix 12 Time course of adaptation 

050 

0.40, 

0. ]01 

020 

o+o 

0 OID 

050 

0 40 1 

030 

0 20 1 

0 10 

000 

Strabismic subjects - adaptation phase, feedback to fixing eye 

Convergent disparity Divergent disparity 

y"-0 OOOta'"00147A "002M 
R'"0W17 

+e 2 

f. 0 0006,0 005 1. " a1456 
R"0 6627 

050 

0A0 

0.30 

0.20 

010 

y--0 002x' "0 0592x " 02114 
R' - 0.7985 

". 

246a 10 12 14 16 18 20 22 

y=-0 0012x' -0 0389x - 0.0224 
R' = 0.4728 

0 00 ýý.. 
02s68 10 12 14 16 18 20 22 02468 10 12 14 16 18 20 22 

Subject 4 

y" -0 0004x' "00111  "00946 
R'*00904 

050 

o40, 

0.30 , 

020 

010 

000 

0 

. 
. 

0 50, 

040 

030 

020 

010 

0 

0 

000 i -, ý,,., ý0246P 
10 12 14 16 18 20 22 02468 10 12 14 16 18 20 22 

Subject 9 

Time (runs), I run = 50 seconds 

Figure A123: Saccade gain disconjugacy during the adaptation phase in three strabismic subjects with 
feedback applied to the fixing eye. Data shown for subjects 2,4 and 9 who showed saccade gain 
disconjugacy in an appropriate direction for the induced disparity. Convergent disparity, shown on the left 

and divergent disparity on the right. NB: Axes shown are not equal in all graphs due to differences in 

response of some subjects. 

050 

040 

0,30 

040 

0 10 

0 00 

Oi0 

'4 '6 16 20 22 

Subject 2 

y= -0.0006x' + 0.0235x - 0.022 
R'=04075 



Appendix 12 

050 

0.40 

0.30 

0.20 

o. 1o 

000 

Time course of adaptation 

Strabismic subjects - adaptation phase, feedback to strabismic eye 
Convergent disparity 

y=-00026x'- 0.059x-0.0933 
R' = 03698 

. 

4 

050 1 

Divergent disparity 

y= -0.001x' + 0.0386x - 0.1075 
0.40 R' = 0.7873 

0.30 ý 

0.20 

0.10 

000 
02468 10 12 14 16 18 20 22 02468 10 12 14 16 18 20 22 

Subject 2 

050 

0 40 

030 

020 

010 

y= 0.0005x' "0 0004x - 0.0332 
Rt " 0.5896 

. 0 
. 

050, 

0.40 

0.30 

. . 

y= -0.0006x= + 0.0105x + 0.1951 
Rz = 0.2089 

0** 

', 0 00 " 0.00 
02468 10 12 14 16 18 20 22 02468 10 12 14 16 18 20 22 

Subject 4 

020 

050 , 

0.10 

0.40 i 

0.30 i 

0.20 

0.10 

000 

y =00021x'- 00363x - 0.5264 
R'=0.6561 

0.40 1 

0.30 i 

0.20 

o. io 

0.00 

-010 
02468 10 12 14 16 18 20 22 

Subject 9 

y=0.0013x' - 0.0154x + 0.0032 
W=0.7873 

. 

. 

2 4ý0 y2 14 16 18 20 22 

Time (runs), 1 run = 50 seconds 

Figure A12.4: Saccade gain disconjugacy during the adaptation phase in three strabismic subjects with 
feedback applied to the strabismic eye. Data shown for subjects 2,4 and 9 who showed saccade gain 
disconjugacy in an appropriate direction for the induced disparity. Convergent disparity, shown on the left 

and divergent disparity on the right. Subject 9 showed a response significantly larger than BSV subjects - 
see Appendix 11.2. NB: Axes shown are not equal in all graphs due to differences in response of some 
subjects. 

288 



Appendix 12 

A) 

b) 

Time course of adaptation 

oa 
-0» 

-0b 
-0 m 
-0ý 
, o0 

T 
+p 

C 
., p 

Ü 
-2W 

_N 
V 
C 
.m 
03 
O 

U 
to 
M 

om 

ow 

020 

000 

0 20 

-040 

J 60 

ow, 

040 

0 81 { 

246e 10 12 6 14 16 te 20 22 

y"0.0088, '- 01282, - 0.8183 
R'"0.1240 

y"0.0081. ' - 0.248. " 1.421 
R' _ 0.8487 

060' 

Subject 6 

Time (runs), 1 run = 50 seconds 

Strabismic subjects - adaptation phase, feedback to strabismic eye 

C00 

Convergent disparity 

268 10 12 14 16 16 20 22 

C1O, 

CA, 

<x, 

ck 

<w" 

Subject I 

. w, 050 

JW, 

0 p, 

JKý 

0 1a 

:x 

y=0.01051'0.2947, "1.5157 
R1 -0 . 

731 

r=0001h'oox1-0027 
R+01917 

Divergent disparity 

o. oo r 2468 10 12 14 16 76 20 22 

-010 

-0.20 

-0.30 

O40 

o. so 

aa 

030 

020 

"0 io 

yý0.0029. ' - 0.0592. " 0.0302 
" a"0J175 

y 0000M' . 0008]ý - 0.0680 
W" 0851 

- 

". 

_ oral 
w +. .1 20 22 02. E! 10 +2 +. +8 +e 20 22 

Subject 6 

Time (runs), 1 run = 50 seconds 

Figure A12.5: a) Saccade gain disconjugacy during the adaptation phase in two strabismic subjects with 
feedback applied to the fixing eye. Data shown for subjects 1 and 6 who showed saccade gain 
disconjugacy in an inappropriate direction for the induced disparity. b) Saccade gain disconjugacy during 
the adaptation phase in two strabismic subjects with feedback applied to the strabismic eye. Data shown 
for subjects 1 and 6, subject 1 shows inappropriate adaptation but subject 6 now shows adaptation 
appropriate for the disparity Convergent disparity shown on the left and divergent disparity on the right. 
NB: Axes shown are not equal in all graphs due to differences in response of some subjects. 

Strabismic subjects - adaptation phase, feedback to fixing eye 

Convergent disparity Divergent disparity 
000 

2.55 10 12 u ]0 22 
-020 

00 07W . 01 551 .0527 -040 

1Y . 0.05a2 -0.50 
-0 50 

" 
-1 00 

""" 20 

40 

. 160 

80 

200 

Subject 1 

." 

I. n 001U' a =u -o J%J 
W-03709 

''ý. ýr 

289 



Appendix 12 Time course of adaptation 

A12.3 Mean data of BSV subjects and strabismic subjects 

Figures A12.6 and A12.7 show the adaptation phase (runs 5 to 18) with polynomial 
curves fitted to the data. The mean data of three subjects with BSV and three subjects 
with strabismus who adapted appropriately are shown. Trend analyses (Winer, 1962) 

were performed on the data to determine whether there were any differences in the 

adaptation curves. This required an equal number of subjects to be compared in each 
group. The three BSV subjects who showed similar adaptation curves were selected for 

analysis, i. e. with feedback to the dominant eye subjects 1,2 and 4; with feedback to the 
non-dominant eye subjects 5,6 and 8. 

Four separate two-factor repeated measures trend analyses were performed on the data 
from each group to determine whether there was a difference between adaptation to 
convergent and divergent disparity. Details of the trend analyses are shown in Appendix 
12.4.1. 

With feedback to the dominant eye these showed no significant linear trend 
[F(1,2)=3.565, p>0.05] for the BSV group but a significant linear fit to the data 

strabismic group [F(1,2)=27.297, p<0.05]. There was no significant difference between 
the linear fit for convergent and divergent disparity for the BSV group [F(1,2)=2.535, 

p>0.05] or strabismic group [F(1,2)=0.131, p>0.05]. There was also no significant 
quadratic relationship for the BSV group [F(1,2)=7.847, p>0.05] or for the strabismic 
group [F(1,2)=17.614, p>0.05]. This was not significantly different for convergent and 
divergent disparity for the BSV group [F(1,2)=0.430, p>0.05] or strabismic group 
[F(1,2)=4.681, p>0.051. With feedback to the non-dominant eye these showed no 
significant linear trend [F(1,2)=9.736, p>0.05] for the BSV group but a significant 
linear fit to the data strabismic group [F(1,2)=20.760, p<0.05]. There was no significant 
difference between the linear fit for convergent and divergent disparity for the BSV 

group [F(1,2)=0.649, p>0.05] or strabismic group [F(1,2)=0.583, p>0.05]. There was a 
significant quadratic relationship for the BSV group [F(1,2)=77.423, p<0.05] but not for 
the strabismic group [F(1,2)=0.704, p>0.05]. This was not significantly different for 

convergent and divergent disparity for the BSV group [F(1,2)=0.264, p>0.05] or 
strabismic group [F(1,2)=0.215, p>0.05]. This shows that the response of disconjugate 

adaptation is not significantly different for convergent and divergent disparities for both 

groups of subjects. 
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Four separate two-factor mixed measures trend analyses were performed on the data to 
determine whether there was a difference in the adaptation phases between the two 

groups with feedback to the dominant eye or non-dominant eye for convergent and 
divergent disparity. Details of the trend analyses are shown in Appendix 12.4.2. 

With feedback to the dominant eye inducing convergent disparity there was a significant 
linear fit to the data [F(1,6)=11.016, p<0.05] and no significant difference between the 

groups [F(1,4)=0.881, p>0.05]. There was also a significant quadratic relationship 
[F(1,6)=19.731, p<0.01] which was significantly different between the groups [F(1,4) 

=11.321, p<0.05]. With feedback to the dominant eye inducing divergent disparity there 

was a significant linear fit to the data [F(1,6)=16.345, p<0.01] and no significant 
difference between the groups [F(1,4)=0.183, p>0.05]. There was also a significant 
quadratic relationship [F(1,6)=8.744, p<0.05] and no significant difference between the 

groups [F(1,4)=0.688, p>0.05]. With feedback to the non-dominant eye inducing 

convergent disparity there was a significant linear fit to the data [F(1,6)=6.349, p<0.05] 
and no significant difference between the groups [F(1,4)=2.067, p>0.05]. 

There was no significant quadratic relationship [F(1,6)=1.286, p>0.05] which was not 
significantly different between the groups [F(1,4)=0.454, p>0.05]. With feedback to the 

non-dominant eye inducing divergent disparity there was a significant linear fit to the 
data [F(1,6)=7.335, p<0.05] and no significant difference between the groups 
[F(1,4)=0.015, p>0.05]. There was also a significant quadratic relationship 
[F(1,6)=99.734, p<0.001] and no significant difference between the groups 
[F(1,4)=1.557, p>0.05]. This shows that the time course of adaptation in response to 
feedback to either eye was not significantly different in the two groups for either types 

of disparity. 

To further test for differences in the rate of adaptation between groups two three-factor 

mixed measures ANOVA's were calculated, one for feedback to the dominant eye and 
one for non-dominant eye. The three factors were group (BSV or strabismic), disparity 

(convergent or divergent) and time (run 5 to run 18). There was no significant 
difference between groups [dominant eye F(1,4)=1.297, p>0.05; non-dominant eye 
F(1,4)=1.600, p>0.05] or interactions between group and the other factors. The only 

significantly different factor was time, [dominant eye F(13,52)=6.384, p<0.0001; non- 
dominant eye F(13,52)=6.778, p<0.0001]. This shows that the response to feedback in 

the two groups was not significantly different under any of the test conditions. Details 

of the ANOVA are shown in Appendix 12.5. 
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Appendix 12 

A12.4 Trend analyses for time course of adaptation 

A12.4.1 Trend analyses - repeated measures 
Factors: Time run 5 to 18 

Disparity Convergent / divergent 

Time course of adaptation 

Two-factor repeated measures trend analysis for three BSV subjects (1,2, &4) with feedback to dominant eye 
Linear 

Source SS DF MS F P 
Trend 0.074 1 0.074 3.565 >0.05 
TrendxS 0.041 2 0.021 
AxTrend 0.004 1 0.004 2.535 >0.05 
AxTrendxS 0.003 2 0.002 
uadratic 

Source SS DF NIS F P 
Trend 0.067 1 0.067 7.847 >0.05 
TrendxS 0.017 2 0.008 
AxTrend 0.002 1 0.002 0.430 >0.05 
AxTrendxS 0.008 2 0.004 

Cubic 
Source SS DF MS F P 

Trend 0.000 1 0.000 0.037 >0.05 
TrendxS 0.004 2 0.002 
AxTrend 0.002 1 0.002 0.820 >0.05 
AxTrendxS 0.005 2 0.003 

Two-factor repeated measures trend analysis for three BSV subjects (5,6, &8) with feedback to non-dominant 
eye 
Linear 

Source SS DF MS F P 
Trend 0.158 1 0.158 9.736 >0.05 
TrendxS 0.033 2 0.016 
AxTrend 0.002 1 0.002 0.649 >0.05 
AxTrendxS 0.008 2 0.004 
uadratic 

Source SS DF 111S F P 
Trend 0.019 1 0.019 77.423 <0.001 
TrendxS 0.000 2 0.000 
AxTrend 0.000 1 0.000 0.264 >0.05 
AxTrendxS 0.000 2 0.000 

Cubic 
Source SS DF MS F P 

Trend 0.001 1 0.001 0.387 >0.05 
TrendxS 0.003 2 0.001 
AxTrend 0.001 1 0.001 1.673 >0.05 
AxTrendxS 0.002 2 0.001 
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Two-factor repeated measures trend analysis for three of strabismic subjects with feedback to the fixing eye 
(three subjects with appropriate direction adaptation - 2,4 & 9). 
Linear 

Source SS DF DIS F P 
Trend 0.154 1 0.154 27.297 <0.05 
TrendxS 0.011 2 0.006 
AxTrend 0.001 1 0.001 0.131 >0.05 
AxTrendxS 0.009 2 0.004 

adratic 
Source SS DF MS F P 

Trend 0.010 1 0.010 17.523 <0.05 
TrendxS 0.001 2 0.001 
AxTrend 0.005 1 0.005 4.691 >0.05 
AxTrendxS 0.002 2 0.001 

Cubic 
Source SS DF AMS F P 

Trend 0.001 1 0.001 0.257 >0.05 
TrendxS 0.011 2 0.006 
AxTrend 0.001 1 0.001 0.204 >0.05 
AxTrendxS 0.007 2 0.003 

Two-factor repeated measures trend analysis for three strabismic subjects with feedback to the strabismic eye 
(three subjects with appropriate direction adaptation - 2,4 & 6). 
Linear 

Source SS DF MS F P 
Trend 0.063 1 0.063 20.760 <0.05 
TrendxS 0.006 2 0.003 
AxTrend 0.025 1 0.025 0.583 >0.05 
AxTrendxS 0.084 2 0.042 
uadratic 

Source SS DF NIS F P 
Trend 0.005 1 0.005 0.704 >0.05 
TrendxS 0.014 2 0.007 
AxTrend 0.001 1 0.001 0.215 >0.05 
AxTrendxS 0.011 2 0.005 

Cubic 
Source SS DF AIS F P 

Trend 0.000 1 0.000 0.053 >0.05 
TrendxS 0.018 2 0.009 
AxTrend 0.006 1 0.006 2.544 >0.05 
AxTrendxS 0.004 2 0.002 
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A12.4.2 Trend analyses - mixed measures 

Time course of adaptation 

Two-factor mixed measures trend analysis for convergent disparity with feedback to the dominant eye 
Factors: Time run 5 to 18 

Group BSV (3 subjects 1,2 & 4) / strabismic (three subjects 2,4 & 9) 

Linear 
Source SS DF MS F P 

Trend 0.119 6 0.020 
TrendxS 0.082 1 0.082 11.016 <0.05 
AxTrend 0.007 1 0.007 0.881 >0.05 
AxTrendxS 0.030 4 0.007 
uadratic 

Source SS DF A1S F P 
Trend 0.027 6 0.005 
TrendxS 0.015 1 0.015 19.731 <0.01 
AxTrend 0.009 1 0.009 11.321 >0.05 
AxTrendxS 0.003 4 0.001 

Cubic 
Source SS DF MS F P 

Trend 0.011 6 0.002 
TrendxS 0.001 1 0.001 0.233 >0.05 
AxTrend 0.000 1 0.000 0.058 >0.05 
AxTrendxS 0.011 4 0.003 

Two-factor mixed measures trend analysis for divergent disparity with feedback to the dominant eye 
Factors: Time run 5 to 18 

Group BSV (3 subjects 1,2 & 4) / strabismic (three subjects 2,4 & 9) 
Linear 

Source SS DF NIS F P 
Trend 0.178 6 0.030 
TrendxS 0.142 1 0.142 16.345 <0.01 
AxTrend 0.002 1 0.002 0.183 0.183 
AxTrendxS 0.035 4 0.009 
uadratic 

Source SS DF NIS F P 
Trend 0.084 6 0.014 
TrendxS 0.055 1 0.055 8.744 <0.05 
AxTrend 0.004 1 0.004 0.688 >0.05 
AxTrendxS 0.025 4 0.006 

Cubic 
Source SS DF NIS F P 

Trend 0.020 6 0.003 
TrendxS 0.000 1 0.000 0.005 >0.05 
AxTrend 0.004 1 0.004 0.840 >0.05 
AxTrendxS 0.017 4 0.004 
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Two-factor mixed measures trend analysis for convergent disparity with feedback to the non- 
dominant eye Factors: Time run 5 to 18 

Group BSV (three subjects 5,6 & 8) / strabismic (three subjects 2,4 & 6) 
Linear 

Source SS DF D1S F P 
Trend 0.096 6 0.016 
TrendxS 0.049 1 0.049 6.349 <0.05 
AxTrend 0.016 I 0.016 2.067 >0.05 
AxTrendxS 0.031 4 0.008 
uadratic 

Source SS DF 111S F P 
Trend 0.035 6 0.006 
TrendxS 0.008 1 0.008 1.286 >0.05 
AxTrend 0.003 1 0.003 0.454 >0.05 
AxTrendxS 0.024 4 0.006 

Cubic 
Source SS DF NIS F P 

Trend 0.013 6 0.002 
TrendxS 0.000 1 0.000 0.223 >0.05 
AxTrend 0.006 1 0.006 3.862 >0.05 
AxTrendxS 0.006 4 0.002 

Two-factor mixed measures trend analysis for divergent disparity with feedback to the non-dominant eye 
Factors: Time run 5 to 18 

Group BSV (three subjects 1,2 & 4) / strabismic (three subjects 2,4 & 9) 
Linear 

Source SS DF NIS F P 
Trend 0.284 6 0.047 
TrendxS 0.183 1 0.183 7.355 <0.05 
AxTrend 0.000 1 0.000 0.015 >0.05 
AxTrendxS 0.100 4 0.025 
uadratic 

Source SS DF MS F P 
Trend 0.015 6 0.002 
TrendxS 0.014 1 0.014 99.734 <0.001 
AxTrend 0.000 1 0.000 1.557 >0.05 
AxTrendxS 0.001 4 0.000 

Cubic 
Source SS DF AMS F P 

Trend 0.022 6 0.004 
TrendxS 0.000 1 0.000 0.075 0.075 
AxTrend 0.001 1 0.001 0.224 0.224 
AxTrendxS 0.021 4 0.005 

297 



Appendix 12 Time course of adaptation 

12.5 Three-factor mixed measures ANOVA for time course of adaptation 

Feedback dominant eye 
To test for differences between the adaptation phase of the three subjects in BSV group (1,2 & 4) and three 
strabismic subjects who adapted in an appropriate direction (2,4 & 9). 

Factors 
1. Group BSV / Strabismic 
2. Disparity Convergent / divergent 
3. Time run 5 to run 18 

g 
d 
t 

DF SS MS F P Lambda Power 
1 0.032 0.032 1.297 0.3183 1.297 0.141 

Error 4 0.098 0.024 
d 1 0.006 0.006 0.099 0.7690 0.099 0.057 
d 1 2.616E-6 2.616E-6 4.191 E-5 0.9951 4.191 E-5 0.050 

Error 4 0.250 0.062 
t 13 0.296 0.023 6.384 <0.0001 82.995 1.000 

13 0.054 0.004 1.157 0.3365 15.039 0.596 
Error 52 0.186 0.004 
dt 13 0.019 0.001 0.825 0.6325 10.722 0.425 
dt 13 0.039 0.003 1.694 0.0903 22.019 0.806 

Error 52 0.093 0.002 

Feedback non-dominant eye 
To test for differences between the adaptation phase of the three subjects in BSV group (5,6 & 8) and three 
strabismic subjects who adapted in an appropriate direction (2,4 & 6). 

Factors 
1. Group BSV / Strabismic 
2. Disparity Convergent / divergent 
3. Time run 5 to run 18 

S 
d 
t 

DF SS MS F P Lambda Power 
1 0.192 0.192 1.600 0.2746 1.600 0.162 

Error 4 0.480 0.120 
d 1 0.139 0.139 4.982 0.0894 4.982 0.397 
d 1 0.012 0.012 0.426 0.5494 0.426 0.080 

Error 4 0.112 0.028 
t 13 0.253 0.019 6.778 <0.0001 88.110 1.000 

13 0.037 0.003 0.990 0.4738 12.871 0.513 
Error 52 0.149 0.003 
dt 13 0.029 0.002 0.682 0.7712 8.867 0.348 
dt 13 0.021 0.002 0.488 0.9215 6.346 0.246 

Error 52 0.169 0.003 
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