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ABSTRACT

This thesis investigates estimation and inferential methods for dynamic panel

data models with multifactor error structure. Chapter 2 reviews the existing esti-

mation methods for short T dynamic panel data models and compare their finite

sample behaviour by means of Monte Carlo simulation. Chapter 3 investigates the

speed of US firms that reverted back to its long-run equilibrium of target leverage

ratio. These firms’ behaviours are highly heterogeneous and unobserved common

shocks are likely to influence the speed of adjustment of these firms. To ascertain

these economic activities, we develop a robust method against cross-sectional het-

eroskedasticity by employing the approach proposed by Hayakawa et al. (2021). The

estimation results confirm that the managers partially adjust the leverage quickly

toward the target leverage. Chapter 4 extends the quasi-maximum likelihood (QML)

estimator for short T dynamic panel data models with interactive effect proposed by

Hayakawa et al. (2021) to panel vector autoregression (VAR) models with interac-

tive effects. In chapter 5, we apply the model averaging method of Kuersteiner and

Okui (2010) to the Instrumental Variable (IV) estimator of Norkutė et al. (2021)

for the dynamic heterogeneous panel data model with a multifactor error structure.
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Chapter 1

Introduction

Over the past few decades, the number of empirical research using panel data sets
in economics and finance has grown dramatically and has been occupying a central
place. Panel data combines cross-section and time series data, which is useful for
research in labor economics, health economics, empirical finance, macroeconomics,
among many others. There are mainly two statistical advantages to using panel data
set in empirical studies. The first one is the gain of higher estimation precision by
having a larger number of observations than pure cross-sectional or time-series data
set. The second one is the ability to control potentially endogenous unobserved
effects. We often categorise panel data sets into micro (or short) panels, macro
(or long) panels and large panels. The macro panels have a large number of time
observations (T ), while the number of cross-section units (N) can be small. The
micro panels have relatively small T but large N . Finally, N and T of large panels
are both sizable.

In this thesis, we focus on studying estimation methods for analysing micro pan-
els and large panels. In particular, we investigate the estimation and inferential
methods for linear dynamic panel data models with unobserved additive and inter-
active effects. The dynamic panel data models can capture the dynamic behavioral
relationships of the cross-sections, which are very useful for forecasting and various
counter-factual analyses, such as impulse response analysis. Since the appearance
of two important research papers, Pesaran (2006) and Bai (2009), the econometric
methods for the models with interactive effects have been one of the central themes
in the literature. Despite of the important contributions by Chudik and Pesaran
(2015), Moon and Weidner (2017) and Norkutė et al. (2021), the methodological
developments for dynamic panel data models with interactive effects have not been
sufficient and more studies are required.

Chapter 2 compares some conventional estimators and recent developed estima-
tor for short T dynamic panel data model. In particular, we consider three recently
developed estimators, namely transformed maximum likelihood (TML) estimator,
bias-corrected method of moments (BMM) estimator and double filter instrument
variable (DFIV) estimator, along with the Instrument Variable (IV) estimator of
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Anderson and Hsiao (1982, 1981) and the Generalized Method of Moments (GMM)
estimators of Arellano and Bover (1995), Arellano and Bond (1991) and Blundell
and Bond (1998). The distinctive feature of the TML estimator of Hsiao et al. (2002)
is that it allows the initial value to depend on fixed effects and does not require the
initial values to have the same mean across i (Hayakawa and Pesaran (2015a)). The
BMM estimator of Chudik et al. (2020) uses the differenced dependent variable as
an instrument, and exploits quadratic moment conditions. The advantage of this es-
timator is that it can allow more general conditions, such as the deviations of initial
value from their long run means. The DFIV estimator of Hayakawa et al. (2019)
uses the forward demeaning to eliminate the individual effects and the backward
demeaning is applied to the instruments. In Monte Carlo simulation, we compare
the finite sample behaviour of the TML, BMM and DFIV estimators under different
initial conditions. The results show that the TML and BMM estimators mostly
outperform the DFIV estimator.

In Chapter 3, we extend the quasi maximum likelihood (QML) estimator for
short dynamic panel data models with interactive effects proposed by Hayakawa
et al. (2021) to the case where the errors are cross-sectionally heteroskedastic, using
a similar approach discussed in Hayakawa and Pesaran (2015a). Extending the
error to cross-sectionally heteroskedastic is important in empirical studies, because
heteroskedasticity is commonly observed, and it is standard practice to control for
its impact on estimation and inference. (Hansen (2020)). We apply the developed
method to a annual panel data set which consists of 16,502 US firms over the period
from 1960 to 2017 to empirically asses the trade off theory (Graham and Harvey
(2001)). We find that the speed of adjustment (SOA) of US firms is between 74%
and 86% from 1960 to 1999, whilst it decreases around 32% from 2000 to 2007,
followed by around 60% after 2008. The value of SOA we have found is higher than
that in other existing research (Ozkan (2001), Fama and French (2002), Kayhan and
Titman (2007), Flannery and Rangan (2006), Lemmon et al. (2008) and Dang et al.
(2014)), which suggests the importance of controlling unobserved interactive effects.

Chapter 4 extends the QML estimator of Hayakawa et al. (2021) for the esti-
mation of short panel vector autoregressive (VAR) models with interactive effects.
Holtz-Eakin et al. (1988) and Binder et al. (2005), among others, consider estima-
tion and inference for cross-sectionally independent short panel VAR model. The
finite sample evidence provided by Juodis (2018) shows that the TML estimator
outperforms the GMM based estimators in short panel VAR models.. A few studies
focus on the estimation of panel VAR models with cross section dependence (Mutl
(2009) and Huang (2008)), however, these methods are not asymptotically justified
for the models with interactive effects. In the Monte Carlo results, we show that
the proposed QML estimator performs reasonably well.

Based on Kuersteiner and Okui (2010), in Chapter 5 we proposes a method to
choose a set of weights to average instrumental variable (IV) estimators proposed
by Norkutė et al. (2021) for large dynamic panel data models with interactive ef-
fects. Norkutė et al. (2021) provides IV estimators that use the lagged defactored

2



covariates in the model as IVs. Therefore, this IV estimator does not need to search
for instruments outside the model. However, when T increases, the number of valid
instruments rises. Norkutė et al. (2021) is silent about how to choose a set of
instruments to avoid the problems due to having too many instruments or weak
instruments. To tackle this problem, we take the approach proposed by Kuersteiner
and Okui (2010). In particular, they propose a procedure to choose a set of weights
to average the IV estimators, which are computed using different subset of available
IVs. The weights are chosen so that the mean squared error of the average of the
IV estimators is theoretically minimised. The estimator is called model average two
stage least square (2SLS) estimator, and we apply this approach to the IV estimator
of Norkutė et al. (2021). The empirical evidence shows that the proposed model
average 2SLS estimator can reduce the bias but not MSE.

The rest of this thesis is organized as follows. In the second chapter, we review
the existing methods for short dynamic panel data models with additive effects, then
in the third chapter we extend the quasi maximum likelihood (QML) estimator for
short dynamic panel data models with interactive effects proposed by Hayakawa
et al. (2021) to the case where the errors are cross-sectionally heteroskedastic, using
a similar approach discussed in Hayakawa and Pesaran (2015a). Then, in chapter 4,
we extend the QML estimator of Hayakawa et al. (2021) for the estimation of panel
vector autoregressive (VAR) models with interactive effects. Finally, in Chapter
5, based on Kuersteiner and Okui (2010), we propose a method to choose a set of
instrumental variables (IVs) which minimise the theoretical mean squared errors of
the IV estimator (proposed by Norkutė et al. (2021)), for large dynamic panel data
models with interactive effects. Chapter 6 concludes the thesis.
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Chapter 2

Short T dynamic panel data
models: A survey

2.1 Introduction

Panel data combines cross-section and time series data. In recent years, there has
been a dramatic proliferation of available panel data sets, which are useful for re-
search in labor economics, health economics, empirical finance, macroeconomics,
among many others. There are mainly two statistical advantages to using panel
data set in empirical studies. The first one is the gain of higher estimation precision
by having a larger number of observations than pure cross-sectional or time-series
data set. The second one is the ability to control potentially endogenous unobserved
effects. We often categorise panel data sets into micro panels and macro panels. The
macro panels have a large number of time observations (T ), while the number of
cross-section units (N) can be small. The micro panels have relatively large N but
small T . In this chapter, we focused on micro panels. The study for short T panels is
important because, for example, household panel data has observations over several
years only for each cross-section unit.

If panel data models contain lagged dependent variables, we call this model
as dynamic panel data model. The dynamic panel data models can capture the
dynamic behavioral relationships of the cross-sections. It is well known that the
least square based estimator is inconsistent for dynamic panel data models when
T is fixed. The within group estimator eliminates the individual effects by first
differencing the variables, but the bias arises due to the correlation between the
within transformed regressors and the error terms. Nickell (1981) analyses the bias
of within group estimators, and he provides that it is O(1/T ).

To deal with this endogenous problem, instruments variable (IV) estimators/
Generalized Method of Moments (GMM) estimators have been proposed. Anderson
and Hsiao (1982) propose a just identified IV estimator for the first differenced
model.

Arellano and Bond (1991) propose a GMM estimator which exploits all the
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available instruments, which is more efficient than the IV estimator of Anderson
and Hsiao (1982). Blundell and Bond (1998) argue that the first differenced GMM
estimator of Arellano and Bond (1991) suffers from weak instrument problem when
the model is persistent and/or mean variance dominates the idiosyncratic variance.
To overcome these problems, they propose to extend the first differenced GMM
estimator by combining the lagged level instruments, which is called system GMM
estimator.

Bun and Windmeijer (2010) show that when the variance ratio of individual
effects to idiosyncratic errors is large, the system GMM estimators also can face the
weak instrument problem.

Besides these traditional GMM estimators, Chudik and Pesaran (2017) develop a
novel GMM estimator by using a self-instrumenting target variable and a quadratic
moment condition. The instruments have maximum correlation with target variables
and do not have the weak instrument problem. Moreover, this GMM estimator is
robust under flexible initial conditions. Hayakawa et al. (2019) propose a double
filter instruments variable estimator (DFIV), which uses the forward filter to elimi-
nate individual effects and a backward filter as instruments. Hayakawa et al. (2019)
also show that the DFIV estimator has the same asymptotic distribution as the
bias-corrected fixed effect (FE) estimator as N and T tend to infinity.

As an alternative to GMM estimators, Hsiao et al. (2002) propose the trans-
formed maximum likelihood (TML) method. Under suitable assumptions on the
initial value process, the TML estimator is shown to be consistent and more effi-
cient than other conventional GMM estimators.

However, the procedure can fail to achieve the global maximum. Bun et al.
(2017) have found that taking non negative variance constraint in transformed like-
lihood estimator performed better than the unconstrained transformed likelihood
estimator.

Although many estimators have been provided, experiments under the same
setting for a comparative assessment of the performance of these estimators have
been under-researched. This is what we provide in this chapter.

The rest of this chapter is structured as follows. Section 2.2 analyses the bias of
classical estimators. Section 2.3 reviews some GMM estimators and ML estimators.
Section 2.4 investigates finite sample performance of the estimators discussed in
2.2-2.3 by using Monte Carlo simulation. Section 2.4 presents concluding remarks.

2.2 Bias of Conventional Estimators

It is well known that the least square estimator suffers from serious bias in dy-
namic panel data models when T is fixed. Nickell (1981) analysed the bias of the
within group estimator for dynamic panel data models when the number of time
observations, T , is fixed.

For simplicity, let us consider the following panel AR(1) model

yi,t = φyi,t−1 + αi + ui,t, |φ| < 1; i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (2.1)
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where yi,0 are observed and αi are unobserved unit-specific effects, uit is indepen-
dently, identically distributed (i.i.d) with mean 0 and variance σ2

u, with 0 < σ2
u <∞.

The standard method to eliminate individual effects αi is to subtract the time
mean of equation itself (within transformation). The within model can be expressed
as

ỹi,t = φỹi,t−1 + ũi,t, (2.2)

where ỹi,t = yi,t − ȳi, ỹi,t−1 = yi,t−1 − ȳi,−1 and ũi,t = ui,t − ūi in which ȳi =
1

T

∑T
t=1 yi,t, ȳi,−1 =

1

T

∑T
t=1 yi,t−1. The least square (LS) estimator is given by

φ̂LS =

(
N∑
i=1

T∑
t=1

(yi,t−1 − ȳi,−1)2

)−1( N∑
i=1

T∑
t=1

(yi,t−1 − ȳi,−1) (yi,t − ȳi)

)

=φ+

∑N
i=1

∑T
t=1 (yi,t−1 − ȳi,−1) (ui,t − ūi) /NT∑N

i=1

∑T
t=1 (yi,t−1 − ȳi,−1)2 /NT

.

(2.3)

Consider the numerator. Taking probability limits as N tends to infinity, we
have 1

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

(yi,t−1 − ȳi,−1) (ui,t − ūi,−1) =

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

yi,t−1ui,t − plim
N→∞

1

NT

N∑
i=1

T∑
t=1

yi,t−1ūi

− plim
N→∞

1

NT

N∑
i=1

T∑
t=1

ȳi,−1ui,t + plim
N→∞

1

NT

N∑
i=1

T∑
t=1

ȳi,−1ūi.

(2.4)

By weak law of large numbers, the first term of equation (2.4) is given by

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

yi,t−1ui,t = E (yi,t−1ui,t) = 0. (2.5)

For the second term of equation (2.4), we have

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

yi,t−1ūi = plim
N→∞

1

NT

N∑
i=1

ūi

T∑
t=1

yi,t−1

= plim
N→∞

1

NT

N∑
i=1

T ȳi,−1ūi = plim
N→∞

1

N

N∑
i=1

ȳi,−1ūi.

(2.6)

1See the derivation in Appendix A at the end of the thesis.
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For the third term of equation (2.4), we have

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

ȳi,−1ui,t = plim
N→∞

1

NT

N∑
i=1

ȳi,−1

T∑
t=1

ui,t

= plim
N→∞

1

N

N∑
i=1

ȳi,−1ūi.

(2.7)

For the fourth term of equation (2.4), we have

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

ȳi,−1ūi = plim
N→∞

1

N

N∑
i=1

ȳi,−1ūi. (2.8)

Therefore

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

(yi,t−1 − ȳi,−1) (ui,t − ūi,−1) = − plim
N→∞

1

N

N∑
i=1

ȳi,−1ūi, (2.9)

but as

T∑
t=1

yi,t−1 =
1− φT−1

1− φ
ui1+

1− φT−2

1− φ
ui2+..+ui,T−1+

1− φT

1− φ
yi0+

T − 1− Tφ+ φT

(1− φ)2
αi

(2.10)
we can easily derive that

− plim
N→∞

1

N

N∑
i=1

ȳi,−1ūi = −σ
2
u

T 2

T − 1− Tφ+ φT

(1− φ)2
. (2.11)

Therefore the LS estimator φ̂LS has an O(T−1) bias when N tends to infinity
(see Hsiao (2014) for more detailed derivation).

2.3 Existing Estimation Methods

2.3.1 Conventional IV/GMM estimation

Due to the correlation between yi,t−1 and ui., least square estimator is biased on
dynamic panel data models when T is fixed. Therefore, IV/GMM approach play an
important role in estimation of short T dynamic panel data models.

We now consider three IV/GMM estimators which are widely used in empirical
research. Firstly, we consider the AH-IV estimator by Anderson and Hsiao (1982,
1981).

Taking first difference of the model (2.1), we have

∆yi,t = φ∆yi,t−1 + ∆ui,t, |φ| < 1; i = 1, . . . , N ; t = 2, . . . , T, (2.12)
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where ∆yi,t = yi,t − yi,t−1, ∆yi,t−1 = yi,t−1 − yi,t−2 and ∆ui,t = ui,t − ui,t−1.
Anderson and Hsiao (1982) proposes two valid instruments, yi,t−2 and ∆yi,t−2.

Therefore, the AH-IV estimator is based on the following moment conditions

E (yi,t−2∆ui,t) = 0,

E (∆yi,t−2∆ui,t) = 0, t = 3, 4, . . . , T.
(2.13)

The AH-IV estimator is given by

φ̂AH−IV =

(
N∑
i=1

T∑
t=3

∆yi,t−2∆yi,t−1

)−1( N∑
i=1

T∑
t=3

∆yi,t−2∆yi,t

)
. (2.14)

However, Arellano (1989) show that the AH-IV estimator suffers from a weak
instrument problem when the autoregressive coefficient tends to unity.

Arellano and Bond (1991) propose a more efficient AB-GMM estimator that
uses all the available instruments but require stronger conditions on individual ef-
fects and the initial values. AB-GMM estimator require E(yi,s∆ui,t) = 0, for i =
1, . . . , N, s = 0, 1, . . . , t− 2, and t = 2, 3, . . . , T .

The moment conditions of the AB-GMM estimator can be expressed as

E (yi,s∆ui,t) = 0, for s = 0, 1, . . . , t− 2; t = 2, . . . , T. (2.15)

Stacking the moment conditions as a vector form, we have

E
(
Z
′

i∆ui

)
= 0, (2.16)

where ∆ui = (∆ui,2,∆ui,3, . . . ,∆ui,T )
′

and the instrument

Zi =


yi,0 0 0 0 0 0 · · · 0 · · · 0
0 yi,0 yi,1 0 0 0 · · · 0 · · · 0
0 0 0 yi,0 yi,1 yi,2 · · · 0 · · · 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · yi,0 · · · yi,T−2

 (2.17)

is a (T − 1)× T (T−1)
2

block diagonal matrix.
Under the above moment condition, we can build the one-step AB-GMM esti-

mator

φ̂
(1)
AB−GMM =

((
N−1

N∑
i=1

∆y
′

i,−1Zi

)
V −1

(
N−1

N∑
i=1

Z
′

i∆yi,−1

))−1

(
N−1

N∑
i=1

∆y
′

i,−1Zi

)
V −1

(
N−1

N∑
i=1

Z
′

i∆yi

)
,

(2.18)
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where ∆yi = (∆yi,1, . . . ,∆yi,T )
′
, ∆yi,−1 = (∆yi,0, . . . ,∆yi,T−1)

′
. The weighting

matrix V −1 is the inverse of the covariance matrix E
(
Z
′

i∆ui∆u
′
iZi

)
, as

V −1 =

(
N−1

N∑
i=1

E
(
Z
′

i∆ui∆u
′

iZi

))−1

=

(
N−1

N∑
i=1

Z
′

iDD
′
Zi

)−1

, (2.19)

where D is the (T − 1)× T first difference matrix as

D =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
. . .

0 0 −1 1

 . (2.20)

Then, based on the one-step AB-GMM estimator, we can get the one-step AB-GMM
residuals ∆ûi.

Using the one-step AB-GMM residual ûi, we can build a two-step AB-GMM
weight matrix as

V̂
−1

2 =

(
N−1

N∑
i=1

Z
′

i∆ûi∆û
′

iZi

)−1

. (2.21)

Then, the two-step AB-GMM estimator is given by

φ̂
(2)
AB−GMM =

((
N−1

N∑
i=1

∆y
′

i,−1Zi

)
V̂
−1

2

(
N−1

N∑
i=1

Z
′

i∆yi,−1

))−1

(
N−1

N∑
i=1

∆y
′

i,−1Zi

)
V̂
−1

2

(
N−1

N∑
i=1

Z
′

i∆yi

)
.

(2.22)

Although AB-GMM estimator is consistent in short T dynamic panel data mod-
els, this estimator needs distributional assumptions on individual effects. Also, when

the autoregressive parameter is close to unity or the variance ratio (
σ2
α

σ2
u

) increases,

there is a large finite sample bias in the AB-GMM estimator.
Arellano and Bover (1995) and Blundell and Bond (1998) provide the system

GMM (SYS-GMM) estimator by using lags of the first differenced dependent vari-
ables as instruments for the level equation2. Also, Arellano and Bover (1995) demon-
strate the forward orthogonal transformation can be seen as the first difference trans-
formation to remove fixed effects plus a GLS transformation to eliminate the serial
correlation. The SYS-GMM estimator require E(yi,s∆ui,t) = 0 and E(∆yi,t−1(αi +

2More detail can be found in Appendix A
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ui,t)) = 0, for i = 1, . . . , N, s = 0, 1, . . . , t− 2, and t = 2, 3, . . . , T . The SYS-GMM
estimator uses extra moment conditions:

E [∆yi,t−1 (ui,t + αi)] = 0, for t = 2, 3, . . . , T. (2.23)

This moment condition relies on the covariance stationarity of the initial value. The
equation (2.1) can be expressed as

∆yi,t = φt−1∆yi,1 +
t−2∑
s=0

φs∆ui,t−s for t = 2, . . . , T. (2.24)

If we want to guarantee E (∆yi,tαi)=0, we need to assume E (∆yi,1αi) =0. Therefore,
we need to restrict E [(yi,0 − αi/(1− φ))αi] = 0 which means that the initial value
is stationary.

Based on the moment conditions (2.15) and (2.23), the moment restrictions can
be written as a vector form

E
(
Z∗
′

i u
∗
i

)
= 0, for i = 1, . . . , N, (2.25)

where u∗i = (∆ui,ui + αiιT−1) is a 2(T − 1)× 1 vector , ui = (ui,2, . . . , ui,T )
′
, ιT−1

is the (T − 1) vector of ones and

Z∗i =


Zi 0 0 · · · 0
0 ∆yi,1 0 · · · 0
0 0 ∆yi,2 · · · 0
...

...
...

. . . 0
0 0 0 · · · ∆yi,T−1

 . (2.26)

Then, under the moment condition (2.25), the one-step SYS-GMM estimator is
given by

φ̂
(1)
SY S−GMM =

((
N−1

N∑
i=1

y∗
′

i,−1Z
∗
i

)
V ∗−1

(
N−1

N∑
i=1

Z∗
′

i y
∗
i,−1

))−1

(
N−1

N∑
i=1

y∗
′

i,−1Z
∗
i

)
V ∗−1

(
N−1

N∑
i=1

Z∗
′

i y
∗
i

)
,

(2.27)

where y∗
′
i =

(
∆y

′
i y
′
i

)′
, y∗

′
i,−1 =

(
∆y

′
i,−1 y

′
i,−1

)′
and

V ∗−1 =

(
N−1

N∑
i=1

Z∗
′

i HZ
∗
i

)−1

, (2.28)
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where H is 2(T − 1)× 2(T − 1) weight matrix, as
2 −1 · · · · · · · · · 0

−1
.
.
.

.

.

.

.

.

. 2

.

.

.

.

.

. 1

.

.

.

.

.

.
.
.
.

.

.

.
0 · · · · · · · · · · · · 1

. (2.29)

When the autoregressive parameter tends to one, the SYS-GMM estimators are
not consistent because the instrument variables will not be correlated to the explana-
tory variables3. Bun and Windmeijer (2010) also argue that when the variance ratio
is large the SYS-GMM estimator faces the weak instrument problem. Therefore,
the ML based approach can be attractive under such circumstances (Hsiao et al.
(2002)) 4.

2.3.2 Bias-corrected method of moments (BMM) estima-
tion

Chudik and Pesaran (2017) provide a novel bias-corrected method of moments
(BMM) estimator. The advantage of the BMM estimator is that we do not re-
quire additional assumptions on individual effects and initial values5. Therefore,
this estimator can be widely applicable.
Assumption 1 |φ| < 1, and it is assumed that φ in a compact set.
Assumption 2 The error term ui,t is serially and cross-sectionally independently
distributed, with E(ui,t) = 0 and E(u2

i,t) = σ2
i,t, such that 0 < c1 < σ2

i,t < c2 where c1

and c2 are positive constants. Also, it is assumed that σ̄2
t ≡ N−1

∑N
i=1 σ

2
i,t → σ̄2

t as
N →∞, and supi,tE|ui,t|4+ε < c2 for some ε > 0.
Let observations yi,t be from arbitrary past, where t = −mi + 1, . . . , T . Then, from
equation (2.12), we can express ∆yi,1 as

∆yi,1 = bi − (1− φ)

mi−1∑
`=0

φ`ui,−` + ui,1, (2.30)

where

bi = −φmi (1− φ)

(
yi,−mi −

αi
1− φ

)
(2.31)

Assumption 3 It is assumed that E(b2
i ) = σ2

bi and σ̄2
bi = N−1

∑2
i=1 σ

2
bi → σ̄2

as N → ∞, and supiE|bi|4+ε < c2 for some ε > 0. It follows the condition,
E(bi∆ui,t) = 0, for t = 2, 3, . . . , T and i = 1, . . . , N .

3See Appendix A for discussions of the weak instruments problem of the AB-GMM estimator
and the relationship between the SYS-GMM estimator and the AB-GMM estimator.

4In the Monte Carlo results of Hsiao et al. (2002), the ML based estimator outperforms the
GMM based estimator.

5Chudik et al. (2020) propose a new BMM type estimator by augmenting the AH estimator.
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Chudik and Pesaran (2017) use endogenous regressors ∆yi,t−1 to construct the
moment conditions. This moment condition is

E (∆ui,t∆yi,t−1) = −σ2
i,t−1, t = 2, 3, . . . , T − 1. (2.32)

Note E(∆ui,t)
2 = σ2

i,t−1 + σ2
i,t and E(∆ui,t−1∆yi,t) = −σ2

i,t. Then, we have

σ2
i,t−1 = E(∆ui,t)

2 + E(∆ui,t+1∆yi,t) (2.33)

Therefore, we obtain the quadratic moment condition,

E(∆ui,t∆yi,t−1) + E(∆ui,t)
2 + E(∆ui,t+1∆yi,t) = 0, t = 2, 3, . . . , T − 1. (2.34)

Averaging the moment conditions (2.34) over t, then substituting the model
(2.12) into ∆ui,t and ∆ui,t+1, we have

E (Mi,T (φ)) = 0, i = 1, 2, . . . , N, (2.35)

where

Mi,T (φ) =
1

T − 2

T−1∑
t=2

(
(∆yi,t − φ∆yi,t−1) ∆yi,t−1 + (∆yi,t − φ∆yi,t−1)2 + (∆yi,t+1 − φ∆yi,t) ∆yi,t

)
.

(2.36)

Then, the BMM estimator can be obtained by

φ̂BMM = argmin
φ∈Θ

∥∥M̄NT (φ)
∥∥ , (2.37)

where Θ ⊂ (−1, 1] is a compact set and M̄NT (φ) = 1
N

∑N
i=1Mi,T (φ).

As noted in Chudik and Pesaran (2017), the BMM estimator is less restrictive
in terms of the initial condition.

The asymptotic properties of estimator are as follows:
Theorem 1 : Suppose that Assumptions (1)-(3) hold, and consider the BMM esti-
mator φ̂ as T be fixed and N →∞,

√
N
(
φ̂BMM − φ

)
d→ N

(
0, σ2

BMM

)
, (2.38)

where σ2
BMM = B̄−2S.
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The variance term σ2
BMM can be estimated as

σ̂2
BMM = ˆ̄B−2Ŝ,

where

ˆ̄B =
N∑
i=1

(
D1i +D2i + 2Ĥi

)
, Ŝ =

∑N
i=1 V̂

2
i

N
,

with

D1i =

∑T−1
t=2 ∆y2

i,t−1

T − 2
, D2i =

∑T−1
t=2 ∆y2

i,t

T − 2
, Ĥi =

∑T−1
t=2 ∆ûi,t∆y

2
i,t−1

T − 2
,

∆ûi,t = ∆yi,t − φ̂BMM∆yi,t−1,

V̂i = −
T−1∑
t=2

(
∆ûi,t∆yi,t−1 + ∆û2

i,t + ∆ûi,t+1∆yi,t
)
.

(2.39)

2.3.3 Double filter IV/GMM estimation

Next, we consider the double filter IV (DFIV) estimator proposed by Moon and
Phillips (2000), Hayakawa (2009) and Hayakawa et al. (2019). We make the following
assumption
Assumption 4 (a) The unobserved individual effects αi is i.i.d. with E(αi) = 0
and V ar(αi) = σ2

α ;(b)

yi,0 =
αi

1− φ
+ ei,0, where ei,0 ∼ iid

(
0,

σ2
u

1− φ

)
(2.40)

Stacking T observations for each i yields

yi = φyi,−1 + αiιT + ui, (2.41)

where yi = (yi,1, yi,2, . . . , yi,T )
′
, yi,−1 = (yi,0, yi,1, . . . , yi,T−1)

′
, ui = (ui,1, ui,2, . . . , ui,T )

′

and ιT is T × 1 vector of one. Define (T − 1) × T forward orthogonal deviations
matrix as

F = diag(c1, c2, . . . cT−1)


1 −1

T−1
· · · · · · −1

T−1
... 1 −1

T−2
· · · −1

T−2
...

...
...

. . .
...

0 0 0 · · · −1

 , (2.42)

where ct =
√

(T − t) (T − t+ 1). Multiplying (2.41) by F , the model to be esti-
mated becomes

ẏi = ẏi,−1 + u̇i, i = 1, . . . , N. (2.43)
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where ẏi = Fyi = (ẏi,1, ẏi,2, . . . , ẏi,T−1)
′
, ẏi,−1 = Fyi,−1 = (ẏi,0, ẏi,1, . . . , ẏi,T−2)

′
and

u̇i = Fui = (u̇i,1, u̇i,2, . . . , u̇i,T−1)
′

Then, we use the variables deviated from past
means as instruments. We define

B = diag(cT−1, . . . , c2, c1)



−1 1 · · · 0 0 · · · · · · 0
−1
2

−1
2

1 0 · · · · · · 0
...

...
. . . . . .

...
−1
T−3

−1
T−3

· · · −1
T−3

1 0 0
−1
T−2

−1
T−2

· · · −1
T−2

−1
T−2

1 0
−1
T−1

−1
T−1

· · · −1
T−1

−1
T−1

−1
T−1

1


, (2.44)

Then, we define the instruments as

ÿi = Byi = (ÿi,2, . . . , ÿi,T )
′

(2.45)

where

ÿi,t = cT−t+1

(
yi,t −

yi,t−1 + · · ·+ yi,1
t− 1

)
, t = 2, . . . , T (2.46)

Hence, we have a moment condition E(ÿi,su̇i,t) = 0 for 2 ≤ s ≤ t ≤ T − 1. The
DFIV estimator is

φ̂DFIV =

(
N∑
i=1

T−1∑
t=2

ÿi,tẏi,t−1

)−1( N∑
i=1

T−1∑
t=2

ÿi,tẏi,t

)
. (2.47)

Theorem 2 Asymptotic variances of DFIV estimator with fixed T and large N
asymptotics is given by

Avar
(
φ̂DFIV

)
=
(
1− φ2

)(T−1∑
t=2

c2
T−t+1At

)(
T−1∑
t=2

ξtcT−t+1

(
1− φψt−1

t− 1

)2
)−2

,

with

ξt = ct

(
1− φψT−t

T − t

)
, ψt =

1− φt

1− φ
,

At =

(
1− 2φψt−1

t− 1
+

1

(t− 1)2

(
(t− 1) (1 + φ)

1− φ
− 2φ (1− φt−1)

(1− φ)2

))
.

(2.48)

2.3.4 Maximum Likelihood Estimation

Apart from the GMM type estimators, Hsiao et al. (2002) provide the TML esti-
mation for short T dynamic panel data models. As we know, the TML estimator
is more efficient than the GMM type estimators in general (Hsiao et al. (2002),
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Hayakawa and Pesaran (2015a) and Kruiniger (2013)). However, the initial condi-
tion is important for the ML type estimator. It is still unclear whether the TML
estimator has good performance in different initial conditions.

To begin with, we consider the transformed model (2.12). By recursive substi-
tution, we have (2.12) and let mi = m, we have

∆yi,1 = φm∆yi,−m+1 +
m−1∑
j=0

φj∆ui,1−j

= φm∆yi,−m+1 + νi,1.

(2.49)

There are two assumptions for initial values, ∆yi,1 :
Assumption 5 (i) |φ| < 1 and m → ∞, the process has been going on. Then we
have

E (∆yi,1) = lim
m→∞

φmE (∆yi,−m+1) + lim
m→∞

E

(
m−1∑
j=0

φj∆ui,1−j

)
,

V ar (∆yi,1) =
2σ2

u

1 + φ
,

Cov (νi,1,∆ui,2) = −E
(
u2
i,1

)
= −σ2

u and Cov (νi,1,∆ui,t) = 0,

for t = 3, 4, . . . T ; i = 1, . . . N.

(2.50)

(ii) If the process has started from a finite past period, we have

E (∆yi,1) = b,

V ar (∆yi,1) = cσ2
u, where c > 0, Cov (νi,1,∆ui,2) = −σ2

u and

Cov (νi,1,∆ui,t) = 0 for t = 3, 4, . . . , T, i = 1, 2, . . . , N.

(2.51)

Let ∆yi = (∆yi,1, . . . ,∆yi,T )
′
and ∆u∗i = (∆yi,1 − b∗,∆ui,2, . . . ,∆ui,T )

′
, where b = 0

under infinite past starting point and b = b∗ which is an unknown parameter under
finite past starting point. Note that Assumption 5 (ii) restricts that the expected
∆yi,1 are the same across all individuals, but it does not require that the initial value
yi,−m+1 have the same mean across all individuals. The covariance matrix of u∗i is
given by

Ω = σ2
u


ω −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . . −1
0 0 0 −1 2

 = σ2
uΩ
∗, (2.52)
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where ω = (1/σ2
u)V ar (∆yi,1) = 2

1+φ
. Assume ui,t is independent normal, the joint

probability distribution function of ∆yi is

N∏
i=1

(2π)−T/2 |Ω|−1/2 exp

{
−1

2
∆u∗

′

i Ω−1∆u∗i

}
, (2.53)

The TML estimator φ can be obtained by maximising the following log-likelihood
function,

logL(φ, σ2
u, b) = −NT

2
ln(2π)− N

2
ln |Ω| − 1

2

N∑
i=1

∆u∗
′

i Ω−1∆u∗i ,

(φ̂, σ̂2
u, b̂) = argmax logL(φ, σ2

u, b).

(2.54)

Under the first and the second order conditions with a fixed number of parameters,
the transformed MLE is consistent and asymptotically normally distributed.

Hsiao et al. (2002) recommend using the AH-IV estimator φ̂AH−IV as an initial
(consistent) estimator. σ2

u can be estimated by

σ̂2
u =

∑N
i=1

∑T
t=3

(
∆yi,t − φ̂∆yi,t−1

)2

2N(T − 2)
. (2.55)

Under Assumption 4 (i), an initial estimate of ω can be obtained by 2

1+φ̂AH−IV
.

Under Assumption 4 (ii), we can estimate ω by following procedure:
(i) Estimate ω by

ω̂ =

∑N
i=1(∆yi,1 − b̂)2

(N − 1)σ̂2
u

, (2.56)

where σ̂2
u is given by (2.55) and b̂ =

∑N
i=1 ∆yi,1
N

is a consistent estimator of b.

(ii) Using ω̂ and b̂ in minimum distance estimator of

N∑
i=1

∆u∗
′

i Ω∗−1∆u∗i (2.57)

to obtain minimum distance estimator of φ.
Repeat the process (i) and (ii) until converge, we can obtain consistent ω̂.

Hayakawa and Pesaran (2015a) extends the transformed likelihood estimation
to the case where the errors are cross-sectionally heteroskedastic. In Hayakawa and
Pesaran (2015a), they allow E(ui,t) = 0 and E(u2

i,t) = σ2
ui such that 0 < σ2

ui < K <
∞, for i = 1,. . . ,N and t = 1, 2, . . . , T . Thus, the covariance matrix of u∗i is given
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by

Ω(ωi) = σ2
ui


ωi −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . . −1
0 0 0 −1 2

 = σ2
uiΩ

∗(ωi), (2.58)

where ωi > 0 is a free parameter. Then, the log-likelihood function is give by

logL(θN) =− NT

2
ln(2π)− T

2

N∑
i=1

lnσ2
ui −

1

2

N∑
i=1

ln[1 + T (ωi − 1)]−

1

2

N∑
i=1

1

σ2
ui

∆u∗
′

i Ω(ωi)
−1∆u∗

′

i ,

(2.59)

where θN = (b, φ, ω1, . . . , ωN , σ
2
u1, . . . , σ

2
uN)

′
.

Therefore, the transformed likelihood estimation encounters the incidental pa-
rameters problem when sample size N increases. By using mis-specified model where
the error variances are assumed to be homoskedastic, we can construct a pseudo log-
likelihood function

logLp(θp) =− NT

2
ln(2π)− NT

2
lnσ2

u −
N

2
ln[1 + T (ω − 1)]−

1

2σ2
u

N∑
i=1

∆u∗
′

i Ω(ω)−1∆u∗
′

i ,
(2.60)

where θp = (b, φ, ω, σ2
u)
′
. By minimizing log-likelihood function (2.60), we ob-

tain θ̂p. To give the assumption of the relationship between the true value θ0N =
(b0, φ0, ω01, . . . , ω0N , σ

2
01, . . . , σ

2
0N)

′
and the pseudo true value θ0p = (b0p, φ0p, ω0p, σ

2
0p)
′

below
Assumption 6 The average true value as

σ̄2
0N = N−1

N∑
i=1

σ2
0i, and ω̄0N =

N−1
∑N

i=1 ω0iσ
2
0i

N−1
∑N

i=1 σ
2
0i

, (2.61)

as N →∞

σ̄2
0 = lim

N→∞
σ̄2

0N and ω̄0 =
limN→∞N

−1
∑N

i=1 ω0iσ
2
0i

limN→∞N−1
∑N

i=1 σ
2
0i

. (2.62)

If |σ0i| and |ω0i| are finite and bounded away from zero, the above assumption is
satisfied.
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On theorem 2 of Hayakawa and Pesaran (2015a), they show that the pseudo estima-
tor is consistent with the average true value when N is large, θ0p = (b0, φ0, σ̄

2
0, ω̄0).

Hayakawa and Pesaran (2015a) use a mis-specified model to provide the rela-
tionship between the true value and the pseudo true value. Hayakawa and Pe-
saran (2015a) show that the quasi(pseudo) ML estimators are consistent under mis-
specification.

2.4 Comparison of Finite Sample Behaviour of

the Estimators

In this section, we use Monte Carlo simulations to investigate the finite sample
performance of the TML estimator, the BMM estimator and the DFIV estimator
in difference scenarios. In this exercise, we examine the behaviour under different
initial conditions. We report the bias, root mean square error (RMSE) and size of
the t-test for each estimator.

2.4.1 Monte Carlo design

In this Monte Carlo simulations, the yi,t are generated as

yi,t = φyi,t−1 + αi + ui,t, ui,t ∼ U(−0.25, 0.25), t = 1, 2, . . . T ; i = 1, . . . , N.

αi =
T∑
t=1

γtui,t + πi, πi
iid∼ N(0, 1).

The processes of initial value yi,0, as

yi,0 = µi + ηπi + vi, vi
iid∼ N(0, 1), (2.63)

where µi = αi
1−φ is long run means. If γ 6= 0, the individual effects are uncorrelated

with errors ui,t. The AB-GMM estimator and SYS-GMM estimator are not satisfied
when γ 6= 0. If η 6= 0, the deviations of starting values from the long-run means
affect initial value. The SYS-GMM estimator is not satisfied when η 6= 0.

Follow above setting, we consider four cases, as

1. γ = 0.8, η = 1.

2. γ = 0.8, η = 0.

3. γ = 0, η = 0.

4. γ = 0, η = 1 .
The sample size T = {5, 10}, N = {100, 200, 500, 1000} and the parameter,

γ = {0.4, 0.8}. The number of replications is 2000.

2.4.2 Monte Carlo results

In the Monte Carlo simulation results, we investigate the behaviour of the TML
estimator, BMM estimator and DFIV estimator in finite sample.

18



Table 2.1 reports the bias, RMSE and size of the t-test for the TML estimator,
the BMM estimator and the DFIV estimator. We allow individual effects to be
correlated with errors ui,t and the deviations of initial values from their long-run
means. As we can see that the bias and the RMSE of the TML estimator is small in
the Case 1. The size of the t-test based on the TML estimator is close to the nominal
value of 0.05. As φ increases from 0.5 to 0.8, the TML estimator still performs better
in terms of the bias, RMSE and size. In the Case 1, the bias of the BMM estimator
is small in finite sample. The RMSE of the BMM estimator is slightly larger than
that of the TML estimator in Case 1. As we can see that the size of the t-test based
on the BMM estimator is close to 5% for all values of N considered. Compared to
the TML estimator and the BMM estimator, the RMSE of the DFIV estimator is
slightly larger. The size of the t-test based on the DFIV estimator is close to the
norminal value of 0.05.

In Table 2.2, we restrict the individual effects uncorrelated with the deviations of
initial values from their long-run means, whilst the individual effects are correlated
with errors. We can see that the bias and the RMSE of the TML estimator are
smaller that those in the Case 2. The reported size is close to 5% for all the values
of N considered. The bias of the BMM estimator is small in Case 2. As expected,
the RMSE of the BMM esimator is slightly larger than that of the TML estimator.
Also, the size of the t-test based on the BMM estimator is close to the nominal value
of 0.05. The bias of the DFIV estimator is small when both N and T are small. The
size of the t-test based on the DFIV estimator is close to the nominal value of 0.05.

In Table 2.3, we restrict the individual effects uncorrelated with the deviations
of initial values from their long-run means and the individual effects uncorrelated
with errors. In this case, the bias and the RMSE of the TML estimator are small
and the size of the TML estimator is close to 5%. The RMSE of the DFIV estimator
is larger than the TML estimator, and the size is close to the nominal value of 0.05.

Table 2.4 shows the results for the case in which the individual effects are un-
correlated with errors but correlated with the deviations of initial values from their
long-run means. As to be expected, the RMSE of the DFIV estimator is larger than
those of the BMM estimator and the TML estimator in Case 4.

From table 2.1 to 2.4, we can see that the performance of the TML estimator
the BMM and the DFIV estimator is robust to the different initial conditions.
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Table 2.1 Case 1, Bias, RMSE and Size. (γ = 0.8, η = 1)

Results for φ = 0.5.

Bias(×100) RMSE(×100) Size

T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

TML

5 0.04 0.00 -0.03 0.01 1.37 0.76 0.60 0.42 7.70 5.40 5.35 5.15
10 -0.03 0.02 0.00 0.00 1.05 0.59 0.46 0.33 6.75 4.60 5.75 5.25

BMM

5 0.04 -0.01 -0.03 0.00 1.54 0.84 0.68 0.48 6.80 5.15 4.80 4.95
10 -0.04 0.03 0.01 -0.01 1.41 0.84 0.65 0.46 5.20 5.30 5.30 4.60

DFIV

5 0.01 0.05 0.03 0.03 4.18 2.46 1.91 1.35 5.05 3.70 5.25 4.60
10 -0.09 -0.05 0.01 0.01 4.26 2.36 1.85 1.34 5.25 4.55 5.00 3.90

Results for φ = 0.8.

Bias(×100) RMSE(×100) Size

T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

TML
5 0.04 0.00 -0.07 0.01 2.26 1.29 1.01 0.70 7.35 5.65 5.60 5.00
10 -0.04 0.03 -0.01 -0.01 1.21 0.68 0.52 0.37 7.45 4.85 5.55 5.85

BMM

5 0.04 0.00 -0.06 0.01 2.48 1.44 1.13 0.80 5.70 5.95 6.10 5.35
10 -0.07 0.05 -0.01 -0.01 1.68 0.97 0.75 0.52 5.45 5.60 5.15 4.45

DFIV

5 0.05 -0.01 0.02 -0.02 3.22 1.90 1.46 1.05 3.60 3.55 4.45 4.95
10 0.02 -0.01 0.02 -0.01 1.88 1.06 0.84 0.57 4.20 4.60 4.45 4.30

yi,t = φyi,t−1 +αi +ui,t, ui,t ∼ U(−0.25, 0.25), t = 1, 2, . . . T ; i = 1, . . . , N . αi =
∑T
t=1 γ

tui,t +

πi, πi
iid∼ N(0, 1). The processes of initial value yi,0, as yi,0 = µi + ηπi + vi, vi

iid∼ N(0, 1), where
µi = αi

1−φ is long run means.
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Table 2.2 Case 2, Bias, RMSE and Size. (γ = 0.8, η = 0)

Results for φ = 0.5.

Bias(×100) RMSE(×100) Size

T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

TML

5 -0.01 -0.03 -0.05 0.01 1.92 1.06 0.83 0.59 6.45 4.95 5.00 5.70
10 -0.03 0.00 0.01 0.01 1.42 0.82 0.62 0.45 6.05 5.25 5.10 5.20

BMM

5 -0.01 -0.05 -0.05 0.00 2.19 1.19 0.94 0.68 6.00 4.70 4.65 4.70
10 -0.02 0.01 0.02 -0.01 2.03 1.19 0.91 0.63 4.90 5.15 4.75 5.05

DFIV

5 0.02 0.01 0.04 -0.02 4.24 2.45 1.89 1.38 5.65 4.45 4.75 4.40
10 -0.04 -0.06 -0.01 -0.03 4.18 2.42 1.85 1.29 5.30 4.00 5.00 4.45

Results for φ = 0.8.

Bias(×100) RMSE(×100) Size

T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

TML
5 -0.03 -0.05 -0.09 0.03 3.24 1.81 1.43 0.99 6.60 4.90 5.60 5.60
10 -0.06 -0.01 0.00 0.02 1.66 0.95 0.74 0.53 6.10 5.60 5.40 5.90

BMM

5 0.05 -0.06 -0.09 0.03 3.76 2.11 1.66 1.18 5.35 4.75 5.40 5.70
10 -0.05 0.03 0.00 0.00 2.48 1.49 1.12 0.78 4.95 5.65 5.00 4.90

DFIV

5 0.04 -0.02 0.02 -0.03 2.42 1.41 1.08 0.79 4.60 4.10 4.75 5.00
10 0.01 0.00 0.01 -0.01 1.36 0.79 0.62 0.42 4.65 4.60 5.10 4.60

See the note to Table 2.1.
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Table 2.3 Case 3, Bias, RMSE and Size. (γ = 0, η = 0)

Results for φ = 0.5.

Bias(×100) RMSE(×100) Size

T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

TML

5 -0.01 -0.03 -0.05 0.01 1.92 1.05 0.83 0.59 6.45 4.95 4.95 5.65
10 -0.03 -0.01 0.01 0.01 1.42 0.82 0.62 0.45 6.00 5.45 5.10 5.20

BMM

5 -0.01 -0.05 -0.05 0.00 2.19 1.19 0.94 0.68 6.00 4.70 4.65 4.70
10 -0.02 0.01 0.02 -0.01 2.03 1.19 0.91 0.63 4.90 5.15 4.75 5.05

DFIV

5 0.02 0.01 0.04 -0.02 4.24 2.45 1.89 1.38 5.65 4.45 4.75 4.40
10 -0.04 -0.06 -0.01 -0.03 4.18 2.42 1.85 1.29 5.30 4.00 5.00 4.45

Results for φ = 0.8.

Bias(×100) RMSE(×100) Size

T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

TML
5 -0.03 -0.05 -0.09 0.03 3.24 1.81 1.43 0.99 6.65 4.90 5.50 5.50
10 -0.06 -0.01 0.00 0.02 1.66 0.95 0.74 0.53 5.95 5.65 5.35 5.90

BMM

5 0.05 -0.06 -0.09 0.03 3.76 2.11 1.66 1.18 5.35 4.75 5.40 5.70
10 -0.05 0.03 0.00 0.00 2.48 1.49 1.12 0.78 4.95 5.65 5.00 4.90

DFIV

5 0.04 -0.02 0.02 -0.03 2.42 1.41 1.08 0.79 4.60 4.10 4.75 5.00
10 0.01 0.00 0.01 -0.01 1.36 0.79 0.62 0.42 4.65 4.60 5.10 4.60

See the note to Table 2.1.
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Table 2.4 Case 4, Bias, RMSE and Size. (γ = 0, η = 1)

Results for φ = 0.5.

Bias(×100) RMSE(×100) Size

T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

TML

5 0.04 0.00 -0.03 0.01 1.37 0.77 0.60 0.42 7.55 5.40 5.35 5.15
10 -0.03 0.03 0.00 0.00 1.05 0.59 0.46 0.33 6.80 4.70 5.65 5.35

BMM

5 0.04 -0.01 -0.03 0.00 1.54 0.84 0.68 0.48 6.80 5.15 4.80 4.95
10 -0.04 0.03 0.01 -0.01 1.41 0.84 0.65 0.46 5.20 5.30 5.30 4.60

DFIV

5 0.01 0.05 0.03 0.03 4.18 2.46 1.91 1.35 5.05 3.70 5.25 4.60
10 -0.09 -0.05 0.01 0.01 4.26 2.36 1.85 1.34 5.25 4.55 5.00 3.90

Results for φ = 0.8.

Bias(×100) RMSE(×100) Size

T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

TML
5 0.04 0.00 -0.07 0.01 2.26 1.29 1.01 0.70 7.30 5.70 5.60 4.95
10 -0.04 0.03 0.00 0.00 1.21 0.68 0.52 0.37 7.55 4.80 5.50 5.80

BMM

5 0.04 0.00 -0.06 0.01 2.48 1.44 1.13 0.80 5.70 5.95 6.10 5.35
10 -0.07 0.05 -0.01 -0.01 1.68 0.97 0.75 0.52 5.45 5.60 5.15 4.45

DFIV

5 0.05 -0.01 0.02 -0.02 3.60 1.90 1.46 1.05 3.60 3.55 4.45 4.95
10 0.02 -0.01 0.02 -0.01 1.88 1.06 0.84 0.57 4.20 4.60 4.45 4.30

See the note to Table 2.1.

2.5 Concluding remarks

This chapter compares the performance of different estimators for short T dynamic
panel data models, namely, the TML estimator, the BMM estimator and the DFIV
estimator. In the Monte Carlo experiment, we particularly investigate effects of
different initial conditions for these estimators. We find that in terms of the bias
and the RMSE, the TML estimator and the BMM estimator perform better for all
the designs. The size of the t-tests based on the TML estimator and the BMM
estimator is close to the nominal level. The DFIV estimator is the least efficient in
our design.

23



Chapter 3

The speed of adjustment to the
target capital structure in the US

3.1 Introduction

The capital structure irrelevance theory (Modigliani and Miller (1958)) is one of the
most important theories of corporate finance. The idea of this theory is that the
value of a company is not influenced by its capital structure. The assumption of cap-
ital structure irrelevance theory is based on the perfectly efficient markets. Although
this assumption is quite strong in the real world1, it gives the clear explanation of
financing strategy. After Modigliani and Miller (1958) developed the capital struc-
ture irrelevance theory, many researchers relaxed the assumption of the perfectly
efficient markets by including corporate tax, bankruptcy cost and agency-related
costs (Kraus and Litzenberger (1973), Scott Jr (1976) and Kim (1978)). Much of
the extant literature focuses on two preeminent capital structure theories. One is
the static trade-off model (Graham and Harvey (2001)), in which firms choose op-
timal leverage to balance the costs and benefits. The other is pecking order theory
by Myers and Majluf (1984), in which the most preferred way of financing by firms
is self financing by retained earning, then by debt, and the least preferred is by
issuing new equity. The above two main theories are successful in explaining firms’
heterogeneous capital structure.

Due to the shocks, firms may temporarily deviate from their target leverage.
To investigate whether or not firms adjust their leverage towards target leverage
is important for examining trade off theory (Ross et al. (2014), Arioglu and Tuan
(2014) and Drobetz and Wanzenried (2006)). Also, to investigate how fast firms
adjust their leverage towards their target leverage would help us to understand the
behavior of firm management while considering financing policy. However, the target
leverage is not observed in practice. This issue increases the difficulty of estimation
of the speed of adjustment (SOA). In empirical literature, we often assume the

1Modigliani and Miller (1963) developed the theory by including taxes.
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target leverage is associate with firms characteristics (e.g., growth opportunities,
tangibility, size, profitability and non-debt tax shields). But, the explanatory power
of these characteristics are very low (Westerlund et al. (2021) and Lemmon et al.
(2008)). Therefore, Westerlund et al. (2021) indicate that controlling for unobserved
heterogeneity is important in estimating the SOA.

Some researchers apply the ordinary least squares (OLS) method to estimate
the SOA, which yield estimated values ranging from 9% to 18% per year (Fama and
French (2002), Kayhan and Titman (2007), Flannery and Rangan (2006) and Lem-
mon et al. (2008)). As the OLS estimator tends to be downward biased for dynamic
models, other researchers estimate SOA using the generalised method of moments
(GMM) or instrumental variable (IV) method. Under the GMM/IV estimation,
the SOA is estimated around 17% to 34% per year (Flannery and Rangan (2006),
Lemmon et al. (2008), Huang and Ritter (2009) and Dang et al. (2014)). Iliev and
Welch (2010) estimated an negative SOA, which implies that leverage is not mean
reverting. Dang et al. (2012) and Dang et al. (2014) consider asymmetric capital
structure adjustments. They develop dynamic panel threshold models to investigate
heterogeneous SOA in different regimes. They find that more constrained firms have
higher SOA over the pre-crisis period.

In the recent literature, the importance of controlling unobserved heterogeneity
in the model has been emphasised for estimating the SOA . Lemmon et al. (2008)
indicate that including the firms’ fixed effects and time effects in the model is im-
portant for estimating SOA. Westerlund et al. (2021) also recognize this unobserved
heterogeneity should not be ignore on estimation of a partial adjustment model.
Westerlund et al. (2021) and DeAngelo and Roll (2015) indicate that controlling
conventional additive effects in the partial adjustment model is not enough to re-
solve the endogeneity problem. As suggested by Westerlund et al. (2021), controlling
unobserved interactive effects in partial adjustment model is important. However,
the aforementioned works do not control heteroskedasticity, which is likely in the
firm data models.

In this chapter, we estimate the SOA controlling the unobserved interactive ef-
fects and cross-sectional heteroskedasticity using US firms data from 1960 to 2017.
We apply the approach proposed by (Hayakawa et al. (2021)) to control the het-
eroskedasticity in the model, which is new in the literature. The data contain 315,621
firms-year observations that consist of 16,502 firms from 1960 to 2017. We use a
rolling window approach to examine the trade off theory because this approach is
used to evaluate the stability of coefficients of the model in the sample size. The
approach which we take is to use rolling 8 year fixed windows of data to estimate
SOA.

Following Hayakawa et al. (2021), we have estimated the number of factor by
using the sequential multiple testing likelihood ratio (MTLR) procedure, which pro-
vides the evidence of unobserved interactive effects that may affect the estimation
of the SOA. In the results, we show that the SOA decrease from around 0.9 to 0.5
from 1960 to 1982. The SOA are fluctuated in the range of 0.2 to 0.8 from 1990 to
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2010.
This chapter is organized as follows: Section 2 sets out the partial adjustment

model. Section 3 introduces robust QML estimators for the short T dynamic panel
data models with interactive effects. This section also introduces the sequential
multiple testing likelihood ratio procedure for estimating the number of factors.
Section 4 studies the potential determinants of the SOA. Data and empirical results
are reported in Section 5, and Section 6 concludes.

3.2 Partial adjustment model

To understand whether firms have target leverage ratio and how quickly they adjust
toward them, we use the following standard partial adjustment model of leverage
(Flannery and Rangan (2006)):

∆li,t = φ
(
l∗i,t − li,t−1

)
+ ui,t, i = 1, . . . N, t = 1, . . . , T. (3.1)

where li,t is the actual leverage ratio and l∗i,t is the target leverage ratios for firm i at
time t. ui,t is the error term. φ is the SOA to the target leverage ratio. The higher
the value of φ, the faster the adjustment is.

The target leverage is associated with firm characteristics as:

l∗i,t = δ
′
xi,t, (3.2)

where xi,t is a k × 1 vector of exogenous variables and δ is a k × 1 vector of struc-
tural parameters. As we can see, the target leverage differs across firms and over
time accordingly to the time varying firm characteristics. These firm characteristics
include profitability, growth opportunities, firm size, tangibility and non-debt tax
shields etc. According to the trade off theory, δ 6= 0, and the variation in l∗i,t should
be nontrivial.

Substituting (3.2) into (3.1), we have

li,t = ρli,t−1 + β
′
xi,t + ui,t, (3.3)

where ρ = 1− φ and β = φδ.

3.3 Econometric methodology

3.3.1 Estimation method

In much of the literature (See eg. Flannery and Rangan (2006), Lemmon et al.
(2008) and Dang et al. (2012)), they find that firms’ specific unobserved fixed ef-
fects substantially influence estimated SOA. However, most literature ignore that
distinct sources of firms specific unobserved effects may varies over times. Also,
most empirical work assume that the errors are cross-sectionally homoscedastic. To
capture this corss-sectional dependence, we apply estimation method by Hayakawa
et al. (2021) and extend it to permit cross-sectionally heteroskedasticity.
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From model (3.3), we have

li,t = ρli,t−1 + β
′
xi,t + ui,t, for t = 0, . . . , T ; i = 1, . . . , N, (3.4)

with

ui,t = αi + γ
′

if t + ei,t, (3.5)

where αi denote unit-specific fixed effects and γ
′
if t denote an interactive effects with

f t an m× 1 vector of unobserved common factors, γi an m× 1 vector of associated
factor loading, and ei,t is the idiosyncratic error term.

First, we combine (3.4) and (3.5) and eliminate the individual effects αi by first
differencing. Then, we have

∆li,t = ρ∆li,t−1 + β
′
∆xi,t + g

′

tγi + ∆ei,t, for t = 2, . . . , T ; i = 1, . . . , N, (3.6)

where gt = ∆f t for some t ≥ 2.
When the process start from some arbitrary point at t = −S + 1 with ∆li,−S+1

as given, we have

∆li,1 = ρS∆li,−S+1 +
S−1∑
j=0

ρjβ
′
∆xi,1−j + g̃

′

1γi +
S−1∑
j=0

ρj∆ei,1−j, (3.7)

where g̃1 =
∑S−1

j=0 ρ
jg1−j.

Following from Hsiao et al. (2002) and Hayakawa et al. (2021) the initial value
∆li,1 depends on the ∆xi which can be observed. Then, we have ∆li,1 as

∆li,1 = b+ π
′
∆xi + ξi,1, (3.8)

with

ξi,1 = g̃
′

1γi + vi,1, (3.9)

where b is a constant, π is a T×1 vector of constant, ∆xi =
(
∆x

′
i,1,∆x

′
i,2, . . . ,∆x

′
i,T

)′
and vi,1 is independently distributed across i, such that vi,1

i.i.d.∼ (0, ωiσ
2
i ), and

Cov (vi,1,∆ei,2) = −σ2
i

Cov (vi,1,∆ei,t) = 0, for t = 3, . . . , T
(3.10)

Let ∆li = (∆li,1,∆li,2, . . . ,∆li,T )
′
, and the T × (Tk + k + 2) matrix given by

∆W i =


1 ∆X

′

i 0 0

0 0 ∆X
′

i,2 ∆yi,1
...

...
...

...

0 0 ∆X
′

i,T ∆yi,T−1

 (3.11)
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Stacking the T observations for each i, the transformed model can be expressed as

∆li = ∆W iϕ+ ξi
ξi = Gγi + ri,

(3.12)

where ϕ =
(
b,π

′
,β
′
, ρ
)′

, G
′

= (g̃1, g2, . . . , gT ), ri = (vi,1,∆ei,2, . . . ,∆ei,T )
′
, and

ξi = (ξi,1, ξi,2, . . . , ξi,T )
′
.

Consider the transformed model (3.12) and under the heteroskedasticity, we have

E
(
rir

′

i

)
= σ2

i


ωi −1 0

−1 2
. . . 0
. . .
. . . 2 −1

0 −1 2

 = σ2
iΩ(ωi) (3.13)

Since γi and ri are independently distributed, we have

V ar (ξi) = Σξ (ψN) = σ2
iΩ (ωi) +GΩγG

′
= σ2

i

(
Ω (ωi) +QiQ

′

i

)
, (3.14)

where Q
′

i = σ−1
i GΩ1/2

γ , rank(Qi) = m, and

ψN =
(
ω1, . . . , ωN , σ

2
1, . . . , σ

2
N , vec(Q1)

′
, . . . , vec(QN)

′)′
.

The quasi-log-likelihood function of the transformed model (3.12) is given by

` (θN) = −NT
2

ln (2π)− N

2
ln |Σξ (ψN)| − 1

2

N∑
i=1

ξ
′

i (ϕ) Σξ (ψN) ξi (ϕ)

= −NT
2

ln (2π)− NT

2
ln (2σi)−

1

2

N∑
i=1

ln
∣∣∣Ω (ωi) +QiQ

′

i

∣∣∣−
1

2

N∑
i=1

1

σ2
i

ξ
′

i (ϕ)
(
Ω (ωi) +QiQ

′

i

)−1

ξi (ϕ) ,

(3.15)

where θN =
(
ϕ
′
,ψ

′

N

)′
However, to find the optimal solution from the above likeli-

hood function (3.15) is impossible, because the number of parameters increases with
N (Neyman and Scott (1948) ). To deal with this problem, we follow Hayakawa and
Pesaran (2015b) to show that pseudo quasi maximum likelihood estimator of ϕ are
consistent under mis-specification.
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The pseudo log-likelihood function of the transformed model (3.12) is given by

`p (θ) = −NT
2

ln (2π)− N

2
ln |Σξ (ψ)| − 1

2

N∑
i=1

ξ
′

i (ϕ) Σξ (ψ) ξi (ϕ)

= −NT
2

ln (2π)− NT

2
ln (2σ)− N

2
ln
∣∣∣Ω (ω) +QQ

′
∣∣∣−

1

2σ2
ξ
′

i (ϕ)
(
Ω (ω) +QQ

′
)−1

ξi (ϕ) ,

(3.16)

Based on the heteroskedastic errors, the pseudo-true value of θ is θ∗ =
(
ϕ
′
∗,ψ

′

∗

)′
which is the solution of limN→∞E (∂`p(θ∗)/∂θ) = 0.

Follow Theorem 2 of Hayakawa and Pesaran (2015b), we have the pseudo true
value

θ∗ =
(
ϕ
′

0, ψ̄
′)

=
(
ϕ
′

0, σ̄
2
0, ω̄0, vec

(
Q̄0

)′)′
= θ̄0, (3.17)

where

σ̄2
N,0 =

∑N
i=1 σ

2
i0

N
, , ω̄N,0 =

N−1
∑N

i=1 ωi,0σ
2
i0

N−1
∑N

i=1 σ
2
i,0

, and Q̄N,0 =

∑N
i=1

1
σi
GΩ1/2

η

N
(3.18)

σ̄2
0 = lim

N→∞
σ̄2
N,0, ω̄0 =

limN→∞
∑N

i=1 ωi,0σ
2
i,0

limN→∞N−1
∑N

i=1 σ
2
i,0

, and Q̄0 = lim
N→∞

Q̄N,0 (3.19)

By maximizing pseudo log likelihood function (3.16) respect to θ, we can obtain
the pseudo estimator θ̂2. Then as N →∞, the estimator θ̂ is asymptotically normal
with

√
N
(
θ̂ − θ∗

)
d→ N

(
0,A∗−1B∗A∗−1

)
, (3.20)

where

θ∗ =
(
ϕ
′

0, σ̄
2
0, ω̄0, vec

(
Q̄0

)′)′
A∗ = lim

N→∞
E

(
− 1

N

∂2`p (θ)

∂θ∂θ
′

)
B∗ = lim

N→∞
E

(
1

N

∂2`p (θ∗)

∂θ

∂`p (θ∗)

∂θ
′

)
.

(3.21)

2Following Hayakawa et al. (2021), we use an eigenvalue approach to simplify the computations.
See Appendix B for details.

29



3.3.2 Estimating the number of factor

For estimating the number of factors, we follow Hayakawa et al. (2021) by using a
sequential multiple testing likelihood ratio procedure. The LR statistics for testing
H0 : m = m0 against H1 : m = mmax, for m0 = {0, 1, 2, . . . ,mmax − 1} and mmax =
T − 2, are give by

LRN (mmax,m0) = 2
[
`N

(
θ̂mmax

)
− `N

(
θ̂m0

)]
d→ χ2(r0), for m0 = 0, 1, 2, . . . , T − 3,

(3.22)

where θ̂m = argmaxφm`N (θm) and r0 = T (T + 1)/2− 3− (Tm0 −m0 (m0 − 1) /2).
The testing procedure as follow,

Table 3.1 Sequential multiple testing likelihood ratio procedure

m̂ = 0 if LRN (mmax,m0 = 0) < χ2
r0

[p/N(T − 2)]

m̂ = 1 if LRN (mmax,m0 = 0) ≥ χ2
r0

[p/N(T − 2)] and LRN (mmax,m0 = 1) < χ2
r0

[p/N(T − 2)]

m̂ = 2 if LRN (mmax,m0 = 0) ≥ χ2
r0

[p/N(T − 2)] ; LRN (mmax,m0 = 1) ≥ χ2
r0

[p/N(T − 2)]

and LRN (mmax,m0 = 2) < χ2
r0

[p/N(T − 2)]

The parameter p can be viewed as the nominal size of test.

3.4 Firm specific characteristics

• Growth Opportunities
Myers (1977) explains that the firms’ value is the present value of options to make
further investments. In some situations, the firm financed with risky debt will give
up investment opportunities because it could make a positive net contribution to the
market value of the firm. Therefore, the debt ratio of a firm is inversely related to
the growth opportunities. Dang et al. (2012) also indicates that most of high growth
firms are young and they may limit internal fund (debt). Most of low growth firms
are mature and they may seek to maintain a high leverage ratio. In this chapter,
we use market value of assets to the book value of assets as a proxy for growth
opportunities (Dang et al. (2012) and Flannery and Rangan (2006)).

• Tangibility
In Hall (2012) and Halling et al. (2016), tangibility is the ratio of property, plant, and
equipment to total assets. Tangible assets are easy to collateralize and thus they
reduce the agency costs of debt. Ozkan (2001) indicates that firms with greater
tangible assets have a higher debt capacity. Therefore, the relationship between
tangibility and leverage ratio is positive. However, Rajan and Zingales (1995) in-
dicates that the relationship on tangibility varies across the different estimators.
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Halling et al. (2016) also find that the relationship between asset tangibility and
leverage varies substantially among countries.

• Size
In general, large firms are mature with high tangibility, more diversification and

profitability. Therefore, large firms enjoy easier access to the capital market ( Ferri
and Jones (1979) and Ozkan (2001)). The credit rating of small size firms is generally
low, so they prefer lower leverage ratio to avoid liquidation. We use the natural log
of total assets, measured in year-2000 dollars, as a proxy for size.

• Profitability
In pecking order theory (Myers (1984) and Myers and Majluf (1984)), firms first
prefer internal financing (retained earning), then debt, and lastly raising equity.
Therefore, highly profitable firms prefer internal financing over external finance.
Following Dang et al. (2012) and Ozkan (2001), we use the ratio of the earnings
before interest, tax and depreciation (EBITD) to total assets as a proxy for prof-
itability.

• Non-debt tax shields
Firms can benefit from non-debt tax shields when they own large fixed assets. Firms
can also benefit from debt tax shields. DeAngelo and Masulis (1980) indicates that
non-debt tax shields can be a substitute for interest expenses. Therefore, there is an
inverse relationship between the leverage ratio and non-debt tax shields. Following
Ozkan (2001) and Dang et al. (2012), we use the ratio of annual depreciation ex-
pense to total assets as a proxy for non-debt tax shields. However, firms with higher
depreciation ratios generally have relatively low growth opportunities. Therefore,
the depreciation ratio may also be a proxy for growth opportunities (Barclay and
Smith Jr (1995) and Krishnaswami and Subramaniam (1999)). Following the ar-
gument about growth opportunities, higher depreciation ratios generally have rela-
tively low growth opportunities. Thus, this implies that there is a positive relation
between the leverage ratio and non-debt tax shields (Ozkan (2001)).

3.5 Data and Empirical Results

3.5.1 Data

First, we collect balance sheet annual data for US firms from the CRSP/Compustat
database. The sample consists of 596,198 firms’ annual observations from 1960 to
2017. Then, following empirical studies by (Dang et al. (2012) and Ozkan (2001)),
we procreate data as follows. First, we exclude utilities (SIC codes: 4900-4999)
and financial firms (SIC codes: 6000-6999) because these industries have different
accounting considerations. Second, in order to satisfy the order conditions for iden-
tification (Hayakawa et al. (2021)), we retain the firms with at least five years of
observations. Third, we remove the observations that include missing data. Finally,
all of the variables are winsorized at the 1st and 99st percentiles to avoid the impact
of extreme outliers (Flannery and Rangan (2006) and Dang et al. (2012)). This
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leaves us with data preprocessing, the panel data set with 315,621 firms-year obser-
vations that consist of 16,502 firms from 1960 to 2017. In Table 3.2, we present the
summary statistics for the variable.

Table 3.2 Variable Definition

Variable Definitions

Leverage The ratio of total debt to total assets

Growth Opportunities The ratio of total liabilities plus the market value of equity to total assets

Tangibility The ratio of property, plant, and equipment to total assets

Size The natural log of total assets, measured in year-2000 dollars

Profitability The ratio of earnings before interest and taxes to total assets

Non-debt tax shields the ratio of depreciation to total assets

The data set is a panel of US firms collected from the CRSP/Compustat database over the
period 1960-2017. Following Flannery and Rangan (2006) and Dang et al. (2014), we collect
data from CRSP/Compustat database and the Data items used in target leverage model are as
follows. Leverage: ((dltt+ dlc)/at). Growth Opportunities: ((dltt+ dlc+ pstkl+ csho× prcc)/at).
Tangibility: (ppent/at). Size: ((ln(at×CPI2000/CPI)), where CPI is the consumer price index).
Non-debt tax shields: (dp/at).

3.5.2 Empirical results

In this section, we report the empirical results based on the annual US samples from
1960 to 2017.

Figure 3.2 shows that leverage ratio of US firms increase from about 18.5% to
27.8% from 1960 to 1970. In Figure 3.2, we can see that leverage ratio of US firms
increased from 25.3% to 28.3% from 1968 to 1975. From 1971 to 2010, the leverage
ratio of US firms fluctuated between 24.3% and 30.6%. After 2010, we can see the
leverage ratio of US firms increased from about 24.3% to 29.3% The leverage ratio
in the period of Global Financial Crisis (2007–2009) increased from around 25.53%
(2007) to 27.55% (2008), and then decreased to 25.50% in 2009.

The Figure 3.2 shows the result of the rolling window approach. The solid line
graphs in the figures represent the estimated coefficients. These graphs show the
two standard deviation bands (upper and lower bands of doted lines) that confirms
the coefficients statistical significance. From the figure 3.2, We can see the SOA is
fluctuated from 1967 to 2017.

Byoun (2008) find that the SOA is around 33% when firms have above-target
debt with a financial surplus and about 20% when firms have below-target debt with
a financial deficit, but that the SOA is substantially decreased when firms have a
financial deficit with above-target debt or when they have a financial surplus with
below-target debt. Byoun (2008) also indict that firms make the most significant
adjustments toward the target when they have above-target debt with a financial
surplus. Firms therefore appear to face lower adjustment costs in reducing debt
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from the above-target debt level than in issuing debt with the below-target debt
level, or the costs of keeping above-target debt may be much higher than those of
keeping below-target debt.

In figure 3.2, we can see the SOA decrease from around 0.9 to 0.5 from 1967 to
1987. Therefore, from the results above it is deduced that the average firms may
face a financial deficit with above-target debt in 1980s . As we know that the U.S.
economy experienced a deep recession between 1980 and 1982.

From 1987 to 1990, the SOA increase from around 0.5 to 0.8. Between 1987 and
1990 the average firms may have above-target debt with a financial surplus. Again,
the SOA decrease from around 0.8 to 0.4 between 1990 and 1996. In this period,
the average firms may face a financial deficit with above-target debt. Between 2004
and 2008, the SOA decrease from around 0.8 to 0.3.

As we know that the financial crisis of 2007–2008 was the sharp decline in eco-
nomic activity. The SOA substantially decreased because the average firms face a
financial deficit with above-target debt in financial crisis.

Then, the SOA increase from around 0.3 to 0.8 between 2007 and 2012. From
2013 to 2016, the SOA decrease from around 0.8 to 0.5. As we know that the
2015–2016 stock market selloff was the period of decline in the value of stock prices
globally that occurred between June 2015 to June 2016. The average firms’ face
a financial deficit with above-target debt. In our empirical result, we confirm that
the SOA conditional on the required external capital changes as measured by a
financial deficit or financial surplus (Byoun (2008)). Also, we find that there are
some unobserved factors that influence the partial adjustment models in the US
firms.

Figure 3.1 Mean of leverage ratio from 1960 to 2017
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Figure 3.2 Rolling window estimate: the speed of adjustment of US firms

The data set is a panel of US firms collected from the CRSP/Compustat database over
the period between 1960-2017. The approach which we take is to use rolling 8 year fixed
window.
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3.6 Conclusion

This chapter investigates the SOA on US firms from 1960 to 2017. This chapter also
extends the short T quasi maximum likelihood estimator by Hayakawa et al. (2021)
to the case where the errors are cross-sectionally heteroskedastic. As we consider
the partial adjustment model with multi-factors error structure and cross-sectionally
heteroskedasticity, we find that the quasi maximum likelihood estimator can be used
to well estimate the SOA.

Using a large firm- year observations, we have some significant findings. First,
we find that there are some unobserved factors that influence the partial adjust-
ment models in the US firms. Second, we find evidence that average managers
partially adjust leverage toward their target leverage fluctuated in the range of 0.3
to 0.8 from 1967 to 2017. The SOA conditional on the required external capital
changes as measured by a financial deficit or financial surplus. Based on empirical
results, we confirm that firms follow the trade-off theory. In this chapter we consider
the partial adjustment model with multi-factor error structure and cross-sectionally
heteroskedasticity. However, we do not consider asymmetric capital structure ad-
justments. It would be interesting to extend the model to the asymmetric partial
adjustment model in future research.

It is also interesting to investigate SOA by heterogeneous dynamic partial ad-
justment capital structure models. More specifically, consider the following target
leverage ratio as

l∗i,t = α∗ + α∗i + δ
′

ixi,t, (3.23)

where α∗ is constant term and α∗i is the unobserved unit- specific fixed effects. The
leverage ratio li,t adjusts to its target according to the rule

∆li,t = φi
(
l∗i,t − li,t−1

)
+ ui,t, i = 1, . . . N, t = 1, . . . , T. (3.24)

Substituting (3.23) into (3.24), we have

li,t = α + αi + ρili,t−1 + β
′

ixi,t−1 + ui,t, (3.25)

with

ui,t = γ
′

if t + ei,t, (3.26)

where α = α∗φ, ρi = 1− φi, βi = φiδi.
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Chapter 4

Estimation in short panel vector
autoregressions with error
cross-sectional dependence

4.1 Introduction

In the last several decades there has been a tremendous interest in the study of panel
data models with error cross-sectional dependence. Cross-sectional dependence is
a typical feature of many empirical datasets. Ignoring it can lead to inconsistent
estimates and misleading inferences. Developing tools to detect and account for
cross-sectional dependence has therefore, not surprisingly, been at the forefront of
econometric research.

The surge of popularity towards cross-sectional dependence in mainstream re-
search has been for large N and large T panel data models. This has motivated
researchers to acknowledge its value in big data environments. The study of the er-
ror cross-sectional dependence on short T panel data is also important because the
use of such data can overcome aggregation problems (see Sarafidis and Wansbeek
(2012)). Intuitively, the characteristics of social data are usually not independent
but rather interrelated. Therefore, allowing for error cross-sectional dependence is
more realistic in empirical studies. For extensive surveys of cross-sectional depen-
dence (see Sarafidis and Wansbeek (2012) and Chudik and Pesaran (2013)).

The two most common ways of accounting for cross-sectional dependence within
the literature is either through a spatial error structure or a multi-factor error struc-
ture. In the former case, the spatial dependence is captured through a weight matrix
which typically characterises the location and/or distance (physical or economical)
between units. In the latter case, dependence is characterised through a set of fac-
tors and their loadings. In this chapter, we focus on a dynamic multivariate panel
data model, namely the panel vector autoregressive (VAR) model with multi-factor
error structure.

Early theorization of the estimation and testing of short T panel VAR model
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with nonstationary individual effects can be traced back to Holtz-Eakin et al. (1988).
Their panel VAR model is applied to investigate the dynamic relationship between
wages and hours worked in American males. The results show that lagged hours is
important in the hours equation.

Besides the methods of Holtz-Eakin et al. (1988), who use instrumental variables
within the context of quasi-differenced autoregressive equations, Binder et al. (2005)
first proposed the Quasi Maximum Likelihood (QML) estimation method for panel
VAR models. In their study, they compare the random effect (RE) and fixed effect
(FE) QML estimator and also show that the RE QML estimator is more efficient
than the FE QML estimator. Binder et al. (2005) also compares the performance
of the QML estimator and the Generalised Method of Moments (GMM) estima-
tor. Their simulation results indicate that the performance of the QML estimator
is better than that of the GMM estimator when individual effects have large vari-
ations. They also propose a unit root test within the context of the short T panel
VAR model. When N tends to infinity, the unit root t statistic is asymptotically
distributed as a standard normal variate. Their panel unit root test assumes slope
homogeneity given the small T dimension. To allow for a panel unit root test with
slope heterogeneity, the model would require large N and large T . They also provide
a cointegration test to identify whether the variables cointegrated. Juodis (2018)
extend the QML estimation method to panel VAR models with additional strictly
exogenous regressors and possible cross-sectional heteroskedasticity. He shows that
the likelihood based estimator outperforms the GMM based estimator in terms of
bias and root mean square error. He further demonstrates that the multivariate
transformed likelihood estimator is only consistent under a restricted parameter set
and that the unrestricted QML estimator can not be globally identified for T = 2.

The above estimation methods have focused on panel VAR models without cross-
sectional dependence. It should be noted, however, that few studies have considered
panel VAR models with cross section dependence. For multivariable models with
a spatial error term, Mutl (2009) provides a three steps estimation approach for
short T panel VAR model with spatial dependence. For the panel VAR model with
interactive effects, Huang (2008) provides an estimation method for non-stationary
panel VAR model for large N and large T data set. He uses three steps to deal
with the unobserved factor error structure. In the first step, Huang (2008) uses
ordinary least squares (OLS) estimation ignoring the cross-sectional dependence. In
the second step, he performs factor analysis on the residual. In the third step, he
uses the factor augmented FM method to re-estimate.

Hayakawa et al. (2021) develops a quasi maximum likelihood estimator for short
T dynamic panel data models with interactive effect. This chapter extends the
transformed maximum likelihood approach for estimation of dynamic panel data
model by Hsiao et al. (2002) to the case where the errors have a multi-factor struc-
ture. Hayakawa et al. (2021) also propose a sequential multiple testing likelihood
ratio (MTLR) procedure for estimating the number of factors.

The purpose of this study is to extend the univariate short T dynamic panel data
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model under cross section dependence to the multivariate setting. In particular it
considers a panel VAR model with cross-sectional dependence and adopts the quasi
maximum likelihood (QML) approach to estimation. The results are expected to
lead to a better understanding of cross-sectional dependence and the link across
units in an unrestricted fashion.

The rest of this chapter is structured as follow. In Section 4.2, the panel VAR
model and underlying assumptions are presented. The QML estimator is described
in Section 4.3. Section 4.4 discusses identification of the parameters. In Section 4.5,
we derive the asymptotic distribution of the QML estimator. Section 4.6 describes
the Monte Carlo simulation setting and provides the corresponding results. Section
4.7 provides some concluding remarks.

Notations: Denote small positive constants by ε. E0(.) denotes expectations

taken under the true probability measure.
p→ denotes convergence in probabil-

ity. Denote almost sure convergence by
a.s.→.

d→ denotes convergence in distribution
for fixed T and as N → ∞. int(Θ) denotes interior of the set Θ. Rκ denotes
κ−dimensional Euclidean space.

4.2 Short T panel VAR model with interactive

effects

First, we consider panel VAR model as,

zi,t = Φzi,t−1 + (Im −Φ)ai + ξi,t, for t = 1, . . . , T ; i = 1, . . . , N, (4.1)

where Φ is an m × m matrix of slope coefficients, ξi,t is defined as below and it
is assumed that zi,0 is observable. We consider the panel VAR model for short T
under the stationary assumption. The multi-factor structure of reduced form VAR
can then be written as

ξi,t = Γif t + εi,t, (4.2)

where Γi is an m× r matrix of factor loadings, f t is an r × 1 vector of unobserved
common factor, and εi,t is an m×1 vector of idiosyncratic errors 1. Let z̃i,t = zi,t−ai
and note that the model can also be written as

(Im −Φ L) z̃i,t = ξi,t, for t = 2, 3, . . . , T,

with

∆zi,1 = − (Im −Φ) z̃i,0 + ξi,1.

1Huang (2008) also proposed the estimation method for panel VAR model with multi-factor
structure error. The main difference between Huang (2008) and this study is that our model
includes individual and time effects and the estimation method is different. Also, our study focuses
on short T panel VAR model but Huang (2008) considers panel VAR with large N and large T .
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When T is fixed, it is necessary to consider the initialization of the zit process for
estimation and inference, which is reflected in the assumptions that will follow.2

In the multi-factor error structure term, we treat the unobserved factor as fixed
parameters and the associated factor loadings as random, which are independent
of the idiosyncratic errors. Bai (2013) in Section 3.2 also provides an estimation
method for a panel VAR model with a multi-factor error structure. The main
difference between the model of Bai (2013) and our model is that we use a different
method to overcome the incidental parameter problem. Moon and Weidner (2017)
in their Example 1 provides an estimation method for the panel VAR model with a
multi-factor error structure as well. However neither of these provides a thorough
analysis of the multivariate structure.

We begin by stating the main assumptions which are similar to those of Hsiao
et al. (2002), Binder et al. (2005) and Hayakawa et al. (2021)

Assumption 1 The idiosyncratic error εi,t are distributed independently for all
i and t, with E (εi,t) = 0, and variance V ar (εi,t) = Σ. where Σ is a m ×m sym-
metric positive define matrix, εi,t have finite fourth moment.

Assumption 2 The factor loadings Γi have finite fourth moments and are dis-
tributed independently of the idiosyncratic errors εj,t and common factors f t, for
all i, j and t. The covariance matrix of Γi is finite and positive definite.

Assumption 3 The vector of individual effects, ai can be correlated with zj,t,
Γj and εj,t for all i, j, t.

Assumption 4 The factor loadings, Γi, for i = 1, . . . , N is distributed indepen-
dently of unobserved factors f t, for all i and t, and ai are i.i.d. with zero means and
a finite rm× rm covariance matrix, as given bellow

V ec(Γi)
iid∼ (0,ΣΓ) . (4.3)

Assumption 5 The initial deviations, z̃i,0, are i.i.d. across i, with zero means and
constant non-singular variance, E(z̃i,0z̃

′

i,0) = Ψz̃0 .

Under Assumption 5 and stationarity, the process zit can either start from an infi-
nite past or a finite past.

Due to the incidental parameter problem in fixed effects panel VAR models, we
take the first difference of equation (4.1) and (4.2) to eliminate the individual effects.
This transformation avoids the incidental parameters problem yielding the following

2Cheng and Zhou (2018) show that the QMLE is inconsistent for short T dynamic panel data
model when treating initial value as fixed constants. When treated as a random variable, the
QMLE is consistent for N tend to infinity.

39



expression

∆zi,t = Φ∆zi,t−1 + Γigt + ∆εi,t, for t = 2, . . . , T ; i = 1, . . . , N, (4.4)

where gt = ∆f t.
To obtain a consistent QML estimator one needs to work with the uncondi-

tional joint probability distribution of (∆zi,1,∆zi,2, ...,∆zi,T ), or the distribution
of (∆zi,2,∆zi,3, ...,∆zi,T ) conditional on ∆zi,1, and ensure that these distributions
are free of the incidental parameters problem. This will clearly be the case if the
unconditional distribution of ∆zi,1 does not depend on any incidental parameters.
Thus, we further consider the following assumption:

Assumption 6 The following moment restrictions are satisfied:

E(κi,0ε
′

i,1) = 0,

and

E(κi,0∆ε
′

i,t) = 0 for t = 2, 3, . . . , T,

where κi,0 = (Im −Φ)z̃i,0.

Combining Assumption 6 with Assumptions 1-5 and using definition of ∆zi,1 we
now have

∆zi,1
iid∼ (0,Ψ), (4.5)

where Ψ = (Im−Φ)Ψz̃0(Im−Φ
′
)+Σ, Cov(∆zi,1,∆εi,2) = −Σ and Cov (∆zi,1,∆εi,t) =

0, for t = 3, 4, . . . , T , i = 1, . . . , N.

Let ∆Zi =
(
∆z

′
i,1,∆z

′
i,2, . . . ,∆z

′
i,T

)′
and ∆Zi,−1 =

(
0
′

m,∆z
′
i,1,∆z

′
i,2, . . . ,∆z

′
i,T−1

)′
which are Tm×1 matrices,G = (f 1, g2, . . . , gT )

′
a T×r matrix, ei =

(
ε
′
i,1,∆ε

′
i,2, . . . ,∆ε

′
i,T

)′
a Tm×1 vector, and χi = G∗vec (Γi)+ei with G∗ = (G⊗ Im) which is a Tm×rm
matrix. It follows that

χi = R (Φ)∆Zi, (4.6)

where R(Φ) is given by the Tm× Tm matrix

R(Φ) =


Im . . . . . . 0

−Φ Im
...

...
. . . . . .

...
0 . . . −Φ Im

 . (4.7)

.
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4.3 Quasi maximum likelihood estimation

Multiplying R−1(Φ) on both sides of equation (4.6), we have

∆Zi = R−1(Φ)χi. (4.8)

We define the variance of ∆Zi as

ΣRχ = V ar(∆Zi) = E
((
R−1(Φ)χi

) (
R−1(Φ)χi

)′)
= R−1(Φ)Σχ(φ)R

′−1(Φ),

(4.9)

where

Σχ(φ) = G∗ΣΓG
∗′ + Σe,

= QQ
′
+ Σe,

(4.10)

Σe = E
(
eie

′

i

)
=


Ψ −Σ 0
−Σ 2Σ 0

...
. . .

...
0 −Σ 2Σ

 (4.11)

and Q = G∗ΣΓ
½ is a Tm × rm matrix. We further define ϕ =

(
V ec(Φ)

′)′
which is a m2 × 1 vector and φ =

(
V ech(Ψ)

′
, V ech(Σ)

′
, V ec(Q)

′)′
which is a

(Trm2 +m(m+ 1)) × 1 vector. Our main interest is in the parameters ϕ, and
therefore we treat the interactive effects as nuisance parameters. Because QQ

′
is

of reduced rank, rank(QQ
′
) = rm < Tm, it is not possible to identify Q without

additional restrictions. This is because for any orthonormal rm × rm matrix Λ,
QQ

′
= Q∗Q∗′ where Q∗ = QΛ. To avoid such non-trivial identification rm(rm−1)

2

restrictions need to be imposed on Q in line also with the usual (rm)2 restric-
tions typically imposed on V ar(G∗vec(Γi)) in factor analysis. The number of non-

redundant parameters of Q is then given by Trm2− rm(rm−1)
2

(see also Hayashi et al.
(2007)).

The quasi-log-likelihood function of the transformed model (4.8) can be expressed
as

`N (θ) = `N (ϕ,φ) ∝ −N
2

log |ΣRχ| −
1

2

N∑
i=1

(
R−1(Φ)χi

)′
Σ−1
Rχ

(
R−1(Φ)χi

)
,

(4.12)

with the unknown parameters θ =
(
ϕ
′
,φ
′
)′

collected in the
(

(Trm2 − rm(rm−1)
2

) + m(m+1)
2

+m2
)
×

1 vector.
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4.3.1 An eigenvalue approach for the computation of the
QML estimator

Here we consider an eigenvalue approach that simplifies the computation of the
QML estimator. Consider the log-likelihood given in (4.12) without any restrictions
on Q which can be further written as follows.

The determinant of ΣRχ is given by

|ΣRχ| = |R−1(Φ) (Σχ)R
′−1(Φ)|

= |R−1(Φ)(G∗ΣΓG
∗′ + Σe)R

′−1(Φ)|
= |R−1(Φ)||G∗ΣΓG

∗′ + Σe||R
′−1(Φ)|

= |R(Φ)|−1|G∗ΣΓG
∗′ + Σe||R

′
(Φ)|−1

= |G∗ΣΓG
∗′ + Σe|

= |QQ′ + Σe|,

(4.13)

where |R−1(Φ)| = |R(Φ)|−1 = 1.
The quasi-log-likelihood function in (4.12) can then be written as

`N (θ) ∝ −N
2

log |Σe +QQ
′| − 1

2

N∑
i=1

(R−1(Φ)χi)
′
(R−1(Φ)ΣχR

′−1(Φ))−1(R−1(Φ)χi)

= −N
2

log |Σe +QQ
′| − 1

2

N∑
i=1

χ
′

i (Σχ)−1χi.

(4.14)

RecallQQ
′
is rank deficient, rank(QQ

′
) = rm < Tm, and Ω is positive definite.

We decompose

|Σe +QQ
′| = |Σe||Irm +Q

′
Σ−1
e Q.| (4.15)

Thus, equation (4.15) can be written as

|Σe +QQ
′| = |Σe||A|, (4.16)

where A = Irm + Q
′
Σ−1
e Q is a non-singular matrix. By the Woodbury matrix

identity, we have

(Σχ)−1 =
(
Σe +QQ

′
)−1

= Σ−1
e −Σ−1

e Q
(
Irm +Q

′
Σ−1
e Q

)−1

Q
′
Σ−1
e

= Σ−1
e −Σ−1

e QA
−1Q

′
Σ−1
e

(4.17)
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Using the above results, the quasi-log-likelihood function can then be written as

`N(θ) ∝ −N
2

log |Σe| −
N

2
log|A| − N

2

[
Tr
(
CN(ϕ)Σ−1

e

)
− Tr

(
CN(ϕ)Σ−1

e QA
−1Q

′
Σ−1
e

)]
,

(4.18)

where CN(ϕ) =
1

N

∑N
i=1

(
χiχ

′
i

)
.

For analytical convenience, we next define P = Σ−½
e QA

−½ where rank (P ) = rm.
We then have

Irm − P
′
P = Irm −A−½Q

′
Σ−1
e QA

−½, (4.19)

From equation (4.16), we know

Q
′
Σ−1
e Q = A− Irm. (4.20)

Thus, we can rewrite

Irm − P
′
P = Irm −A−½ (A− Irm)A−½

= Irm − Irm +A−1.
(4.21)

Therefore, from the above equations we have

A−1 = Irm − P
′
P . (4.22)

Also from the quasi-log-likelihood function (4.18), we have

Tr
(
CN(ϕ)Σ−1

e

)
= Tr

(
Σ−½
e CN(ϕ)Σ−½

e

)
= Tr (DN(θ)) , (4.23)

where we denote

DN (θ) = Σ−½
e CN(ϕ)Σ−½

e . (4.24)

Hence, we have

Tr
(
CN(ϕ)Σ−1

e QA
−1Q

′
Σ−1
e

)
= Tr

(
P
′
DN(θ)P

)
. (4.25)

From the above results, the quasi-log-likelihood function can then be written as

`N(θ) ∝ −N
2

log |Σe|+
N

2
log|Irm − P

′
P | − N

2

[
Tr (DN(θ))− Tr

(
P
′
DN(θ)P

)]
.

(4.26)

In line with the discussion in Section 4.3, P is not identified without additional
restrictions. It is easily seen that the value of `N(θ) is invariant to the orthonomal
transformation of P , identification of P is not possible without restrictions (Bai
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(2009) and Bai and Ng (2002)). For example, P̃ = PΛ, where Λ is an arbitrary
rm×rm invertible matrix and Λ

′
Λ = Irm. Using P̃ , the likelihood function remains

unchanged. Denoting P = (p1, . . . ,prm), where pt is the tth column of P (a Tm×1

vector of unknown parameters) we impose the following
rm (rm− 1)

2
orthogonality

conditions

p
′

tps = 0, for all s 6= t = 1, 2, . . . , rm. (4.27)

Using these restrictions, the quasi likelihood function can be expressed as

`N(θ) ∝ −N
2
log|Σe|+

N

2

rm∑
t=1

log
(

1− p′tpt
)

+
N

2

rm∑
t=1

p
′

tDN(θ)pt −
N

2
Tr (DN(θ)) .

(4.28)

Taking the first derivative with respect to pt and setting this to zero, yields

DN(θ)p̂t =

(
1

1− p̂′tp̂t

)
p̂t, for t = 1, 2, . . . , rm, (4.29)

where p̂t is quasi-maximum likelihood estimator of pt. Then, p̂t is the eigenvector
of DN(θ) and associated with the first rm largest eigenvalue of DN(θ). We denote
the eigenvalues by λt(θ) and λt(θ) is

λt(θ) =
1

1− p̂′tp̂t
. (4.30)

Thus, the concentrated quasi-log-likelihood function can be expressed as

`N(θ) ∝ −N
2
log|Σe| −

N

2

rm∑
t=1

log (λt(θ)) +
N

2

rm∑
t=1

(λt(θ)− 1)− N

2

Tm∑
t=1

(λt(θ)) .

(4.31)

In maximising the likelihood above, we consider a number of random initial values.

4.4 Identification

In this section, we establish the order condition on m and T for identification of the
number of interactive effects.

4.4.1 Order Condition

In deriving the order condition on m and T , from the first difference model (4.8) we
can see that θ can only be identified from the distinct elements of V ar(∆zi,t) = ΣRχ .

Since Q enters ΣRχ as A∗ = QQ
′
, we need to consider the unknown elements of A∗
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under different rank conditions. To identify θ, we need the rank (A∗) = rank (Q) =
rm < Tm. Recall also from Section 4.3 that the number of non-redundant elements
of Q is given by Trm2 − rm(rm−1)

2
.

Then the order condition for identification of θ is given by

Tm(Tm+ 1)

2
≥ Trm2 − rm(rm− 1)

2
+m2 +m(m+ 1). (4.32)

This order condition is satisfied if T > 3 and the number of endogenous variables
m ≥ 1, for r = 0, 1, . . . , T −2. The largest number of factors that satisfies the above
condition is T − 2.

4.4.2 Global Identification

Consider the average quasi log- likelihood function defined by (4.14) expressed as

¯̀
N (θ) = N−1`N(ϕ,φ) =

− T

2
log(2π)− 1

2
log|Σχ(φ)| − 1

2N

N∑
i=1

χ
′

i(ϕ)Σχ(φ)−1χi(ϕ).
(4.33)

Assumption 7 (i) θ ∈ Θ = Θϕ×Θφ, where Θϕ is a compact subset of Rnϕ with
nϕ = m2 and Θφ = ΘΨ×ΘΣ×Θq where q = vec(Q), Θq is a compact subset of Rnq ,
ΘΨ and ΘΣ are compact subsets of RnΨ and RnΣ with nq = Trm2− rm(rm− 1)/2,

nΨ = m(m + 1)/2 and nΣ = m(m + 1)/2; θ0 = (ϕ
′
0,φ

′

0)
′

= (vec(Φ0)
′
,φ
′

0)
′

lies
in the interior of Θ, (ii) for some cmax > cmin > 0, cmin ≤ infφ∈Θφλmin (Σχ (φ)) ≤
cmax, (iii)A (φ) = limN→∞N

−1ΣN
i=1E0

(
∆Z

′

i,−1Σχ(φ)−1∆Zi,−1

)
is positive definite

almost surely uniformly on φ ∈ Θφ, where the expectation is taken with respect to
the true probability measure.

The global identification condition requires limN→∞E0

[
¯̀
N(ϕ,φ)

]
to attain a

unique maximum at θ0 = (ϕ0,φ0) ∈ Θ. Under Assumptions 1-7 and using results
in Hayakawa et al. (2021) that readily extend to the multivariate case, we have that

¯̀
N(ϕ0,φ0)− ¯̀

N(ϕ,φ)
a.s.→ lim

N→∞
E0

[
¯̀
N(ϕ0,φ0)− ¯̀

N(ϕ,φ)
]
≥ 0, (4.34)

where

2 lim
N→∞

E0

[
¯̀
N(ϕ0,φ0)− ¯̀

N(ϕ,φ)
]

=κ(φ,φ0) + (ϕ−ϕ0)
′
A(φ) (ϕ−ϕ0) +

2 (Φ−Φ0) %0(φ,φ0),
(4.35)

with

κ (φ,φ0) = Tr
[
Σ−1
χ (φ)Σχ(φ0)

]
− log (|Σχ(φ0)|/|Σχ(φ)|)− T ≥ 0, (4.36)

and

%(φ,φ0) = Tr
{

[Σχ(φ)−Σχ(φ0)] Σ−1
χ (φ)LB(Φ0)−1

}
≥ 0. (4.37)
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Under Assumption 7, A(φ) is a positive definite matrix and we have

(ϕ−ϕ0)
′
A(φ) (ϕ−ϕ0) ≥ λmin [A(φ)] (ϕ−ϕ0)

′
(ϕ−ϕ0) > 0, (4.38)

with (ϕ−ϕ0)
′
A(φ) (ϕ−ϕ0) = 0 if and only if ϕ = ϕ0. However, as explained in

Hayakawa et al. (2021), w(θ,θ0) = κ(φ,φ0)+2 (Φ−Φ0) %0(φ,φ0) is not ensured to
be non-negative, and hence global identification of the parameters of interest cannot
be guaranteed.

4.4.3 Local Identification

As global identification of the parameters of interest on the parameter space Θ
cannot be guaranteed, we proceed by considering a restriction of Θ on which iden-
tification and consistency can be shown.

Consider the following definition:

Definition 1 Let Nε(θ0) be a set in the closed neighbourhood of θ0 defined by
Nε(θ0) = θ ∈ Θϕ ×Θφ : ‖θ − θ0‖ ≤ ε for some ε > 0, such that w(θ,θ0) = κ(φ,φ0)+
2 (Φ−Φ0) %0(φ,φ0) ≥ 0 for all values of ϕ ∈ Θϕ and φ ∈ Θφ where Θϕ is a com-
pact subset of Rnϕ with nϕ = m2 and Θφ = Θφ × ΘΣ × Θq where q = vec(Q), Θq

is a compact subset of Rnq ; Θφ and ΘΣ are compact subsets of Rnφ and RnΣ with
nq = Trm2 − rm(rm− 1)/2, nφ = m(m+ 1)/2 and nΣ = m(m+ 1)/2.

Given the local nature of the analysis, henceforth we consider the more restricted
parameter space as set out in the following assumption:

Assumption 8 θ ∈ Θε = Nε(θ0), where Nε(θ0) is given in Definition 1; Θε is a

compact subset of Rnθ with nθ = (Trm2− rm(rm−1)
2

)+m(m+1)
2

+m2 ; θ0 = (ϕ
′
0,φ

′

0)
′
=

(vec(Φ0)
′
,φ
′

0)
′

lies in the interior of Θε.

We make the following conjecture.

Conjecture 1 The vector of true parameters θ0 = (ϕ
′
0,φ

′

0)
′

is identified on Θε.

Remark Conjecture 1 is a natural extension to the multivariate case of the identi-
fication analysis of Hayakawa et al. (2021) within the univariate context.

4.5 Asymptotic properties of the estimator

Consider the average log-likelihood function given by equation (4.33). To show the
consistency and asymptotic normality of the QML estimator the following conditions
need to be met:
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(1) Θε is a compact subset of Θ.
(2) C̄N(θ)

a.s.→ CN(θ)(a non − stochastic function of θ) uniformly on Θε, where
C̄N(θ) = −2¯̀

N (θ) and C̄(θ) = E0

(
C̄N(θ)

)
.

(3)θ0 ∈ int(Θ) is the unique minimum of C̄(θ).
If the above three conditions are satisfied then it follows that θ̂N

a.s.→ θ0 on Θε

(See Hayakawa et al. (2021)).

Taking a Taylor expansion of
∂ ¯̀
N(θ̂)
∂θ

= 0 at θ0, we can derive the asymptotic

distribution of θ̂. Then, we need to check the behaviour of the score function s̄N(θ) =
∂ ¯̀
N(θ̂)
∂θ

, and Hessian matrix, HN(θ) = −∂2 ¯̀
N(θ̂)

∂θ∂θ
′ . If E0

[
¯̀
N (θ0)
∂θ

]
= 0, the Hessian

matrix, HN

(
θ̌
) a.s.→ HN (θ0) and following the mean value theorem, the asymptotic

normality of the QML estimator:

√
N s̄N

(
θ̂
)

=
√
N s̄N (θ0)−HN(θ̌)

√
N(θ̂ − θ0) = 0, (4.39)

where θ̌ lie between θ̂ and θ0.
We summarise the above discussion and the resultant asymptotic distribution in

the following theorem:

Theorem 1 Suppose that Assumptions 1- 7(ii),(iii) and 8, as well as the order
condition (4.32) and Conjecture 1, hold. Denote the QML estimator of θ0 by θ̂ =
argmaxθ∈Θε

¯̀
N(θ), where ¯̀

N(θ) is given by (4.33). Then, the QML estimator θ̂ is
almost surely locally consistent for θ0 on Θε for values of the VAR coefficient Φ
sufficiently close to Φ0 as formalised by Definition 1, and

√
N
(
θ̂ − θ0

)
d→ N

(
0,H−1(θ0)B(θ0)H−1(θ0)

)
, (4.40)

where B(θ0) = limN→∞E0(N
∂ ¯̀
N(θ̂)
∂θ

∂ ¯̀
N(θ̂)
∂θ
′ ) and H(θ0) = limN→∞E0(∂

2 ¯̀
N (θ0)

∂θθ
′ ).

4.6 Monte Carlo simulation

In this section, we provide simulation evidence to show that the proposed estimator
for the short T panel VAR with individual and interactive time effects have good
finite sample properties.

We generate zi,t as

zi,t = Φzi,t−1 + ai + ξi,t, t = −S + 1, . . . , 0, 1, . . . , T ; i = 1, 2, . . . , N, (4.41)

and

ξi,t = Γ
′

if t + εi,t. (4.42)
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We assume the number of factors, r, is known and equal to the true number, r0,
which we set equal to two, namely, r = r0 = 2. We start the process with

zi,−s+1 = ai + ξi,t, ξi,t
iid∼

(
0m,

s−1∑
j=0

Φj
0Σχ(Φj

0)
′

)
, (4.43)

and set s = 60. By discarding the first sixty observations, the impact of the initial
value can be reduced. The elements in Φ are denoted by φll.

For the generating process of the factor loadings, we consider

Γτ`i ∼ N
(
0, σ2

Γτ`

)
, for all τ = 1, . . . r; ` = 1, . . . ,m.

The factors f t are generated as

fτt = ρfτfτ,t−1 +
(
1− ρ2

f`τ

)½
ufτ , ufτ ∼ N

(
0, σ2

f

)
for τ = 1, . . . , r, (4.44)

where ρf`τ = 0.5 and σ2
f = {1, 5}. The individual effects, αi are generated as

α`i = a0ε̄i + a1ηi, ` = 1, . . . ,m, (4.45)

where ε̄i = T−1
∑T

t=1 εi,t, εi,t ∼ N(0,Σ) and ηi ∼ N(0,Ση), with Ση =

[
1 0
0 1

]
and

Σ =

[
1 0.5

0.5 1

]
. a0 and a1 are constants that are used to control the correlation

between the individual effects and the idiosyncratic error. Setting a0 = 1 and a1 = 1
allows for the individual effects to be correlated with the idiosyncratic error.

We set the number of endogenous variables to m = 2 and consider the following
values for the number of individuals N and time units T , N = (100, 300, 500) and
T = (5, 6, 7), respectively. All simulations were carried out using 1000 replications.

For the matrix of the autoregressive parameters we consider the following values:

• Case 1. Stationary panel VAR with maximum eigenvalue of Φ, λmax(Φ) = 0.3

Φ =

[
0.2 0.1
0.1 0.2

]
.

• Case 2. Stationary panel VAR with maximum eigenvalue of Φ, λmax(Φ) = 0.6

Φ =

[
0.4 0.2
0.2 0.4

]
.

• Case 3. Stationary panel VAR with maximum eigenvalue of Φ, λmax(Φ) = 0.8

Φ =

[
0.6 0.2
0.2 0.6

]
.
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4.6.1 Monte Carlo results

We report results for the bias, MAE (Mean Absolute Error) and RMSE (Root
Mean Square Error) of the QML estimator for our panel VAR model. We focus
on the results for the parameters of interest namely, Φ11 and Φ21 as the results
for Φ12 and Φ22 are very similar. Throughout, the considered sample sizes are
N = {100, 300, 500} and T = {5, 6, 7}, the number of factors is 2, and for the
variance of the factors we consider the values σ2

f = {1, 5}.
Tables 4.1-4.3 report the bias, MAE, and RMSE for cases 1-3 of the autoregres-

sive parameters and σ2
f = 1. In these simulation results we can observe that the

bias and RMSE decrease as N increases. Also, when the maximum eigenvalue of Φ
increases, the bias slightly increases across most of the cases. Furthermore, the bias
of Φ21 is smaller than the bias of Φ11. For the MAE of the QML estimator, we see
that the MAE of Φ11 is between 0.14 and 0.18 when N = 100 and T = 5. From
Tables 4.1- 4.3 we also see that the MAE of Φ decreases as N increases, and when T
increases, the MAE of Φ decreases. As the maximum eigenvalue of Φ increases, the
MAE of Φ slightly increases. Similarly, we find that the MAE of Φ21 is smaller than
the MAE of Φ11. With regard to the RMSE of Φ, this decreases as N increases.
Also, the RMSE of Φ21 is smaller than the RMSE of Φ11.

In Tables 4.4-4.6 we report the bias, MAE, RMSE for cases 1-3 with σ2
f = 5. In

this case the variance of the factors σ2
f increases from 1 to 5. These tables show that

as σ2
f increases, the bias of Φ slightly decreases. Also, we see that the bias of Φ21 is

smaller than that of Φ11 across most cases. Similarly, the MAE of Φ decreases when
the variance of the factors σ2

f increases. The MAE of Φ decreases as N increases
from 100 to 500. The RMSE of Φ also decreases when variance of the factors σ2

f

increases. The RMSE of Φ decreases when N increases.
Based on the above simulation findings, we find that (1) the variance of σ2

f

influences the performance of the QML estimator of the short T panel VAR model
with interactive effects. (2) The performance of the QML estimator is influenced by
the maximum eigenvalue of Φ.
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Table 4.1 Bias, MAE and RMSE of Φ11, Φ21,σ2
f = 1, and λmax(Φ) = 0.3

N T=5 T=6 T=7

(r, r0) (2,2) (2,2) (2,2)

Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Φ11

100 -0.0234 0.1414 0.2137 -0.0166 0.1140 0.1809 -0.0180 0.0981 0.1686
300 -0.0213 0.0899 0.1462 -0.0198 0.0665 0.1163 -0.0241 0.0626 0.1370
500 -0.0210 0.0642 0.1090 -0.0203 0.0577 0.1213 -0.0158 0.0471 0.1090

Φ21

100 0.0063 0.1193 0.1832 0.0196 0.0955 0.1541 0.0027 0.0858 0.1454
300 0.0027 0.0690 0.1110 -0.0013 0.0591 0.1106 0.0035 0.0495 0.0979
500 -0.0026 0.0529 0.0892 0.0025 0.0414 0.0751 -0.0010 0.0399 0.0839

Φj,l, for j = 1, . . .m, l = 1, . . . is the coefficient in row j and column l of Φ.
r0 is true value of factor, we assume the number of factor is 2.

Table 4.2 Bias, MAE and RMSE of Φ11, Φ21,σ2
f = 1, and λmax(Φ) = 0.6

N T=5 T=6 T=7

(r, r0) (2,2) (2,2) (2,2)

Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Φ11

100 -0.0586 0.1694 0.2451 -0.0511 0.1466 0.2229 -0.0351 0.1127 0.1893
300 -0.0401 0.1173 0.1810 -0.0275 0.0834 0.1346 -0.0146 0.0647 0.1123
500 -0.0349 0.0954 0.1568 -0.0298 0.0740 0.1262 -0.0199 0.0514 0.1048

Φ21

100 -0.0025 0.1439 0.2098 0.0122 0.1156 0.1724 -0.0009 0.0979 0.1541
300 0.0004 0.0943 0.1422 0.0021 0.0695 0.1127 0.0003 0.0555 0.1044
500 -0.0024 0.0770 0.1152 -0.0009 0.0561 0.0927 0.0022 0.0412 0.0776

Φj,l, for j = 1, . . .m, l = 1, . . . is the coefficient in row j and column l of Φ.
r0 is true value of factor, we assume the number of factor is 2.
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Table 4.3 Bias, MAE and RMSE of Φ11, Φ21,σ2
f = 1, and λmax(Φ) = 0.8

N T=5 T=6 T=7

(r, r0) (2,2) (2,2) (2,2)

Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Φ11

100 -0.1135 0.1878 0.2726 -0.0981 0.1677 0.2589 -0.0720 0.1331 0.2025
300 -0.0840 0.1555 0.2158 -0.0491 0.1113 0.1706 -0.0361 0.0924 0.1507
500 -0.0668 0.1303 0.2014 -0.0413 0.0997 0.1670 -0.0344 0.0786 0.1458

Φ21

100 -0.0470 0.1689 0.2405 -0.0244 0.1313 0.1863 -0.0217 0.1126 0.1682
300 -0.0332 0.1191 0.1709 -0.0093 0.0913 0.1367 -0.0027 0.0755 0.1239
500 -0.0215 0.1067 0.1643 -0.0094 0.0772 0.1255 -0.0059 0.0638 0.1137

Φj,l, for j = 1, . . .m, l = 1, . . . is the coefficient in row j and column l of Φ.
r0 is true value of factor, we assume the number of factor is 2.

Table 4.4 Bias, MAE and RMSE of Φ11, Φ21,σ2
f = 5, and λmax(Φ) = 0.3

N T=5 T=6 T=7

(r, r0) (2,2) (2,2) (2,2)

Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Φ11

100 -0.0206 0.1090 0.1851 -0.0142 0.0805 0.1312 -0.0082 0.0646 0.1160
300 -0.0106 0.0662 0.1180 -0.0092 0.0482 0.0920 -0.0087 0.0429 0.0893
500 -0.0094 0.0492 0.0910 -0.0076 0.0399 0.0766 -0.0072 0.0272 0.0572

Φ21

100 0.0028 0.0856 0.1460 0.0025 0.0657 0.1094 -0.0007 0.0552 0.1046
300 -0.0012 0.0519 0.0943 0.0016 0.0414 0.0819 -0.0017 0.0355 0.0812
500 -0.0035 0.0416 0.0796 -0.0024 0.0336 0.0705 -0.0026 0.0237 0.0480

Φj,l, for j = 1, . . .m, l = 1, . . . is the coefficient in row j and column l of Φ.
r0 is true value of factor, we assume the number of factor is 2.
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Table 4.5 Bias, MAE and RMSE of Φ11, Φ21,σ2
f = 5, and λmax(Φ) = 0.6

N T=5 T=6 T=7

(r, r0) (2,2) (2,2) (2,2)

Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Φ11

100 -0.0348 0.1462 0.2388 -0.0211 0.1094 0.1752 -0.0180 0.0823 0.1508
300 -0.0052 0.0922 0.1452 -0.0111 0.0646 0.1246 -0.0101 0.0480 0.0879
500 -0.0105 0.0745 0.1211 -0.0066 0.0477 0.0781 -0.0110 0.0372 0.0775

Φ21

100 0.0054 0.1160 0.1809 0.0046 0.0915 0.1469 0.0034 0.0700 0.1207
300 0.0116 0.0745 0.1128 0.0084 0.0543 0.0974 0.0030 0.0382 0.0680
500 0.0056 0.0628 0.1013 0.0057 0.0388 0.0623 0.0018 0.0318 0.0632

Φj,l, for j = 1, . . .m, l = 1, . . . is the coefficient in row j and column l of Φ.
r0 is true value of factor, we assume the number of factor is 2.

Table 4.6 Bias, MAE and RMSE of Φ11, Φ21,σ2
f = 5, and λmax(Φ) = 0.8

N T=5 T=6 T=7

(r, r0) (2,2) (2,2) (2,2)

Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Φ11

100 -0.0790 0.1598 0.2490 -0.0683 0.1414 0.2273 -0.0552 0.1132 0.1995
300 -0.0474 0.1213 0.1913 -0.0248 0.0836 0.1309 -0.0282 0.0766 0.1358
500 -0.0384 0.1000 0.1593 -0.0227 0.0753 0.1284 -0.0194 0.0583 0.0992

Φ21

100 -0.0400 0.1329 0.2039 -0.0218 0.1169 0.1914 -0.0206 0.0936 0.1515
300 -0.0103 0.0950 0.1502 0.0090 0.0726 0.1146 0.0022 0.0658 0.1158
500 -0.0089 0.0859 0.1381 0.0053 0.0641 0.1132 0.0092 0.0483 0.0811

Φj,l, for j = 1, . . .m, l = 1, . . . is the coefficient in row j and column l of Φ.
r0 is true value of factor, we assume the number of factor is 2.

4.7 Concluding remarks

In this study, we extend the work by Hayakawa et al. (2021) to the multivariate
case by considering the panel VAR model for short T with individual and inter-
active effects. The Monte Carlo results show that the proposed QML estimator

52



performs reasonably well. But, in line with the theoretical results in Hayakawa
et al. (2021), we conjecture that global identification of the QML estimator is not
possible. Further research into the identification conditions for the QML estimator
in the multivariate case would be of future interest.

In this study, by extending the univariate model to the multivariate context we
have not assumed that the coefficients are sparse. It would be of interest in future
research to consider quasi maximum likelihood estimation of large scale panel VAR
models with sparse coefficients in the presence of cross-sectional dependence. Fur-
thermore, it would also be of interest to extend the panel VAR model to panel error
correction setting and investigate nonstationarity under cross-sectional dependence.
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Chapter 5

Constructing Optimal Instruments
on Dynamic Heterogeneous Panels
with Defactored Regressors and
Multifactor Error Sructure

5.1 Introduction

In recent years, there has been a dramatic proliferation of research concerned with
studies of the panel data model with large cross-section and time-series dimensions,
N and T , respectively. The richer the content of the data, the more complicated
and general the panel data models can become. In this paper, we consider dynamic
panel data model with cross-sectionally heterogeneous slopes and a multi-factor error
structure.

By extending Pesaran (2006), Chudik and Pesaran (2015) propose mean group
CCE (CCEMG) estimation of panel autoregressive distributed lag models. Chudik
and Pesaran (2015) employ a mean group type estimator to deal with the slope
heterogeneity, and propose to augment the regression with the cross-sectional av-
erages of dependent variables and covariates and their lags, in order to control the
interactive effects.

Recently, Norkutė et al. (2021) has proposed a novel instrumental variable (IV)
estimator for the dynamic panel data models. Their approach initially projects out
the common factors from the exogenous covariates of the model, and constructs
instruments based on defactored covariates in order to build a consistent first step
IV estimator. They found that the estimator performs satisfactorily. This estimator
has some advantages over the CCEMG estimator of Chudik and Pesaran (2015).
Firstly, the IV estimator employs the principal component estimator for defactoring
the exogenous covariates, therefore it do not need to seek external variables to
approximate the factors when the number of unobserved factors is larger than the
number of covariates plus one. By contrast, in this situation the CCE estimation
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requires additional sets of variables, which are not in the original model of interest
but expected to from a part of the dynamic system. Secondly, the CCE estimator
is subject to the small T bias of least squares estimators, whilst the IV estimator
is not. Chudik and Pesaran (2015) propose to adjust the bias using the jackknife
method, which might not be very effective for small or moderate T .

One important issue of the IV approach by Norkutė et al. (2021) is that they are
silent about the optimal choice of the instruments. For this approach, the number
of valid instruments for each cross-section unit can increase proportionally to T 2.
Therefore, how many of which instruments to choose is an important issue.

To date, a number of studies have proposed different types of methods for in-
struments selection. Donald and Newey (2001) developed the mean square error
criteria to choose among valid instruments. By choosing instruments to minimize
approximate mean square error (MSE), Donald and Newey (2001) show that the
finite sample properties of 2SLS estimators can be improved. Hansen (2007b) takes
a different approach by focusing on selecting the weights for averaging across least
squares estimators. This method is particularly useful in reducing estimation vari-
ance. Other instrument selection methods are shrinkage and parameter penalization.
Knight and Fu (2000) propose the asymptotic property of the Lasso type estimator
and show that the limiting distributions can have positive probability mass at 0
when the true value of the parameter is 0. Fan and Li (2001) and Fan and Peng
(2004) propose penalized likelihood estimators. Hansen (2007a) propose the least
square model averaging approach based on the restricted weights. Kuersteiner and
Okui (2010) propose the model averaging method that weigh predicted value of en-
dogenous variables in the estimation stage for the two stage least squares (2SLS)
estimator. By choosing the weight to minimize the approximate MSE, the optimal
IV estimator can be obtained 1. Chen et al. (2016) provide an weighting scheme
based on weighting individual estimators. This method can also be applied in a
heterogeneous dynamic panel data model. Windmeijer et al. (2019) consider the
case that some of the available instruments can be invalid, e.g. some instruments
have a direct effect on the outcome, and some of instruments are associated with
unobserved confounders.

In this chapter, we apply the model averaging method of Kuersteiner and Okui
(2010) to the IV estimator of Norkutė et al. (2021) for the dynamic heterogeneous
panel data model with regressors and a multifacctor error structure. The first step
in this process is to compute several 2SLS estimators with different numbers (and
sets) of instruments. Next, we estimate the weights for averaging the obtained 2SLS
estimators (Kuersteiner and Okui (2010)).

This chapter is organized as follows: Section 2 sets out the model, assumptions,
estimation method and its asymptotic property. Section 3 introduces the model
average IV estimators. Section 4 studies the Mean Group estimator. The Monte
Carlo experiments and its results are reported in Section 5. Section 6 concludes.

1Kuersteiner and Okui (2010) call this estimator the model average two stage least square
estimator.
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Proofs of theorems, lemmas and propositions are contained in the Appendix.

The following notation is used in the remainder of this chapter. P i = X i

(
X
′

iX i

)−1

X
′

i

is the projection onto the column space ofX i, whereX i is a full column rank matrix
for each individual i. A k vector of ones is denoted as ιk. The lp norm is denoted

by ‖.‖p and ∆ is finite positive constant. (N, T )
j→ ∞ denote that N and T tend

to infinity jointly.

5.2 Model, asymptotic property of IV estimator

5.2.1 The models and Assumptions

Consider the following dynamic heterogeneous panel data model with a multifactor
error structure:

yi,t = φiyi,t−1 + x
′

i,tβi + ui,t; i = 1, . . . N ; t = 1, . . . , T , (5.1)

with

ui,t = γ
′

y,if y,t + εi,t, (5.2)

where xi,t is an k× 1 vector of explanatory variables, φi is a scalar cross-sectionally
heterogeneous coefficient for yi,t−1 with sup1≤i≤N |φi| < 1 and βi is an k × 1 vector

of cross-sectionally heterogeneous coefficients. f y,t =
(
fy,1t, fy,2t, . . . , fy,myt

)′
is an

my × 1 vector of unobservable factors, γy,i is an my × 1 vector of associated factor
loadings, and εi,t is the idiosyncratic error term.

Regressors, xi,t is the following process:

xi,t = Γ
′

x,ifx,t + vi,t, (5.3)

where fx,t = (fx,1t, fx,2t, . . . , fx,mxt)
′

is an mx × 1 vector of unobservable factors

and Γx,i =
(
γ1,i, . . . ,γk,i

)
is the mx × k associated factor loadings matrix, and

vi,t = (v1,it, v2,it, . . . , vk,it)
′

is the idiosyncratic error term which is independent of
εi,t.

Follow above description, the model can be expressed as

yi,t = w
′

i,tθi + ui,t; i = 1, . . . N ; t = 1, . . . , T , (5.4)

where wi,t =
(
yi,t−1,x

′
i,t

)′
and θi = θ + λi with θi =

(
φi,β

′

i

)′
, λi

i.i.d.∼ (0, Σλ), Σλ

is a fixed positive definite matrix and θ = E (θi).
Stacking the T observations for each i, we have

yi = W iθi + ui ; i = 1, . . . N, (5.5)
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where yi = (yi,1, . . . , yi,T )
′
,W i =

(
yi,−1,X i

)
= (wi,1, . . . ,wi,T )

′
, yi,−1 = (yi,0, . . . , yi,T−1)

′
,

X i = (xi,1, . . . ,xi,T )
′

and

ui = F yγy,i + εi (5.6)

with F y =
(
f y,1,f y,2, . . . ,f y,T

)′
, and εi = (εi,1, εi,2, . . . , εi,T )

′
.

Similarly,

X i = F xΓx,i + V i, (5.7)

where F x =
(
fx,1,fx,2, . . . ,fx,T

)′
and V i = (vi,1,vi,2, . . . ,vi,T )

′
. For the observed

lags of X i we have

X i,−1 = F x,−1Γx,i + V i,−1

...

X i,−J = F x,−JΓx,i + V i,−J ,

(5.8)

where J is the maximum number of lags that we can observe.
In the model, the factors F x,F x,−1, . . . ,F x,−J are unobserved. Therefore, we

can apply principal components approach to estimate F x,F x,−1, . . . ,F x,−J by Bai
(2003) and Bai (2009). In addition, the number of factors, mx and my can be
estimated by Bai and Ng (2002). In this chapter, we focus on constructing the
optimal instruments, so we treat the number of factors as given. Next, we consider
the following projection matrices:

MFx = IT − F x

(
F
′

xF x

)−1

F
′

x;

MFx,−1 = IT − F x,−1

(
F
′

x,−1F x,−1

)−1

F
′

x,−1;

...

MFx,−J = IT − F x,−J

(
F
′

x,−JF x,−J

)−1

F
′

x,−J .

(5.9)

Assume V i is independent of εi, F x, F y and γy,i. Premultiplying X i by MFx ,
we can show MFxX i = MFxV i. Similarly, premultiplying X i,−1 by MFx,−1 , we
can show MFx,−1X i,−1 = MFx,−1V i,−1. Now, it is easily seen that

E
(
X
′

iMFxui

)
= E

(
X
′

i,−1MFx,−1ui

)
= · · · = E

(
X
′

i,−JMFx,−Jui

)
= 0 (5.10)

Therefore, premultiplying X i,−1, . . . ,X i,−J by MFx,−1 , . . . ,MFx,−J , respectively, we
get the set of IVs:

Zi =
(
MFxX i,MFx,−1X i,−1, . . . ,MFx,−jX i,−j, . . . ,MFx,−JX i,−J

)
, (5.11)

where Zi is T × (J + 1)k matrix and J is the maximum number of lags of X i.
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5.2.2 IV estimation method and asymptotic property

In this section, we introduce IV estimator for dynamic heterogeneous panel data
models by Norkutė et al. (2021). Before we introduce estimation, we consider the
following assumptions:
Assumption 1 : εi,t is independently distributed across i and t, with E (εi,t) = 0,
E
(
ε2
i,t

)
= σ2

ε,it, and E|εi,t|8+c ≤ 4 <∞ for a small positive constant c.
Assumption 2 : (i) x`i,t and εi,t are independently distributed for all `, t and i and

` = 1, . . . , k; (ii) E (v`i,t) = 0 and E|v`i,t|8+c ≤ 4 <∞; (iii) T−1
∑T

t=1

∑T
s=1E|v`i,tv`i,s|1+c

≤ 4 < ∞; (iv) E|N−1/2
∑N

i=1 (v`i,tv`i,s − E (v`i,tv`i,s)) |4 ≤ 4 < ∞ for all `, t and
s; (v) the largest eigenvalue of E(v`iv

′

`i) is bounded uniformly for every `, i and T ;
(vi) N−1T−2

∑N
i=1

∑T
t=1

∑T
s=1

∑T
q=1

∑T
r=1 |cov(v`isv`it, v`iqv`ir)| ≤ ∆ <∞.

Assumption 3 : f y,t = ψy (L) efy ,t and fx,t = ψx (L) efx,t, where ψy (L) and

ψx (L) are absolutely summable, efy ,t
i.i.d.∼

(
0,Σfy

)
and efx,t

i.i.d.∼ (0,Σfx), where Σfy

and Σfx are positive define matrices. All elements of efy ,t and efx,t has finite fourth
order moments and are group wise independent from vi,t and εi,t.

Assumption 4 : γy,i
i.i.d.∼

(
0,Σγy

)
and Γx,i

i.i.d.∼ (0,ΣΓx), where Σγy and ΣΓx

are positive definite matrices. All elements of γy,i and Γx,i has finite fourth order
moments and independent from vi,t, εi,t, efx,t and efy ,t.

Assumption 5 : (i) θi = θ + λi, λi
i.i.d.∼ (0, Σλ), where Σλ is a fixed positive

definite matrix; (ii) λi is independent from Γx,i,γy,i,vi,t, εi,t, efy,t and efx,t; (iii)

Prob (|λr,i| > z) ≤ 2exp
(
− z2

2(a+bz)

)
, for all z, i and fixed a, b > 0, where λr,i is the

r-th element of λi for 2 ≤ r ≤ 1 + k.
Assumption 6 : (i) Ãi,T = 1

T
Z
′

iW i, B̃i,T = 1
T
Z
′

iZi have full column rank for all

i for large T ; (ii) E
∥∥∥Ãi,T

∥∥∥2+2c

≤ ∆ <∞, E
∥∥∥B̃i,T

∥∥∥2+2c

≤ ∆ <∞ for all i for large

T .
Assumption 7 : (i) Ai,T = 1

T
Z
′

iMFxW i and Bi,T = 1
T
Z
′

iMFxZi have full column

rank for all i for large T ; (ii) E ‖Ai,T‖2+2c ≤ 4 < ∞, E ‖Bi,T‖2+2c ≤ 4 < ∞ for
all i for large T .

Assumption 8 : (i) E ‖λi‖4 ≤ ∆; (ii) E
∥∥∥T−1/2V

′

iF x

∥∥∥4

≤ ∆;

(iii) E
∥∥∥N−1/2T−1/2

∑k
`=1

∑N
l=1

(
V
′

iv`l − E
(

(V
′

iv`l

)
γ
′

`l

)∥∥∥4

≤ ∆;

(iv) E
(
T−1/2

∑k
`=1

∑T
t=1

(
v2
`i,t − E(v2

`i,t)
))2

≤ ∆.

Assumption 9 : Ai = plimT→∞ Ãi,T has full column rank, Bi = plimT→∞ B̃i,T

and Σi = plimT→∞ T
−1Z

′

iMFxuiu
′
iMFxZi are positive definite, uniformly.

In practice, we can apply principle components approach to estimate factor struc-
ture by Bai (2003) and Bai (2009). For the unknown number of factors, Bai and Ng
(2002) provide the information criteria that can be applied. Consider the empirical
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counterpart of the projection matrices defined in (5.9), we have

M F̂x
= IT − F̂ x

(
F̂
′

xF̂ x

)−1

F̂
′

x;

M F̂x,−1
= IT − F̂ x,−1

(
F̂
′

x,−1F̂ x,−1

)−1

F̂
′

x,−1;

...

M F̂x,−j
= IT − F̂ x,−j

(
F̂
′

x,−jF̂ x,−j

)−1

F̂
′

x,−j;

...

M F̂x,−J
= IT − F̂ x,−J

(
F̂
′

x,−J F̂ x,−J

)−1

F̂
′

x,−J .

(5.12)

We have the following associated instrument matrix:

Ẑi =
(
M F̂x

X i,M F̂x,−1
X i,−1, . . . ,M F̂x,−j

X i,−j, . . . ,M F̂x,−j
X i,−J

)
. (5.13)

The two stage least squares (2SLS) estimator of θi is defined as

θ̂i =
(

ˆ̃A
′

i,T
ˆ̃B−1
i,T

ˆ̃Ai,T

)−1 ˆ̃A
′

i,T
ˆ̃B−1
i,T

ˆ̃gi,T , (5.14)

where2

ˆ̃Ai,T =
1

T
Ẑ
′

iM F̂x
W i,

ˆ̃Bi,T =
1

T
Ẑ
′

iM F̂x
Ẑi and ˆ̃gi,T =

1

T
Ẑ
′

iM F̂x
yi. (5.15)

From the model (5.5) and the 2SLS estimator (5.14), we have

θ̂i = θi +
(

ˆ̃A
′

i,T
ˆ̃B−1
i,T

ˆ̃Ai,T

)−1 ˆ̃A
′

i,T
ˆ̃B−1
i,T

(
T−1Ẑ

′

iM F̂x
ui

)
⇒
√
T
(
θ̂i − θi

)
=
(

ˆ̃A
′

i,T
ˆ̃B−1
i,T

ˆ̃Ai,T

)−1 ˆ̃A
′

i,T
ˆ̃B−1
i,T

(
T−1/2Ẑ

′

iM F̂x
ui

) (5.16)

Following proposition is the limiting property of the T−1/2Ẑ
′

iM F̂x
ui.

Proposition 1 Consider the model (5.5). Under Assumptions 1-9, as (N, T )
j→∞

such that N/T → c with 0 < c <∞, we have

T−1/2Ẑ
′

iM F̂x
ui = T−1/2Z

′

iMFxui +
√
TOp

(
c−2
NT

)
, (5.17)

where cNT = min{
√
N,
√
T}.

2By Norkutė et al. (2021), we can see that using M F̂x
Ẑi as instruments is expected to be more

efficient than using Ẑi as instruments for first step IV estimator of θi.

59



Under the above proposition , we can see that T−1/2Ẑ
′

iM F̂x
ui is Op(1) as (N, T )

j→
∞ such that N/T → c with 0 < c <∞. We summarise the asymptotic property in
the following theorem:

Theorem 1 : Consider the model (5.5). Under Assumptions 1-9, as (N, T )
j→ ∞

such that N/T → c with 0 < c <∞. for each i,

√
T
(
θ̂i − θi

)
d→ N

(
0,
(
A
′

iB
−1
i Ai

)−1

A
′

iB
−1
i ΣiB

−1
i Ai

(
A
′

iB
−1
i Ai

)−1
)
. (5.18)

Thus, above result shows that the individual 2SLS estimator θ̂i is
√
T consistent

to θi.

5.3 Constructing optimal instruments

In Norkutė et al. (2021), the number of valid instruments for θi can increase propor-
tionally to T 2. Thus, the more instruments variables can be used when T is large.
The selection of number of instruments is an important issue because there is a well
known trade off between efficiency and bias (e.g., Bekker (1994), Han and Phillips
(2006) and Ng and Bai (2009)). We survey the literature that there is no studies
clearly to discuss how to choose the instruments in this approach.

Kuersteiner and Okui (2010) provide method of constructing optimal instruments
by weighting the predicted value of endogenous variable in the estimation stage.
This weights can be found by minimizing the asymptotic MSE of average 2SLS
estimators. In this section, we consider a method to choose an optimal set of model
averaging approach.

To begin with, we rewrite the model (5.1) as

yi,t = φiyi,t−1 + x
′

i,tβi + ui,t = w
′

i,tθi + ui,t,

wi,t =
(
yi,t−1,x

′

i,t

)′
= gi,t(zi,t) + ei,t,

(5.19)

where gi,t(zi,t) is a (1 + k) vector function of zi,t and zi,t is a vector of exogenous
variables 3. We use a short hand notation gi,t = gi,t(zi,t) in the remainder of
this chapter. Note ui,t and ei,t are unobserved random variable with finite second
moments which do not depend on zi,t. Stacking the T observations for model (5.19)
for each i, we have

yi = W iθi + ui,

W i = Gi +Ei,
(5.20)

where Gi =
(
gi,1, . . . , gi,T

)′
is the T × (1+k) matrix and Ei = (ei,1, . . . , ei,T )

′
is the

T ×(1+k) matrix. The set of instruments has the form Zj
i = (ψ1(Zi), . . . ,ψj(Zi)),

3From Norkutė et al. (2021) and previous section, we know that these exogenous variables
include defactored of xi,t and its lags.
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where ψj are function of Zi, for j = 1, . . . , J with J is the maximum lags of variables
that we can observe. Therefore, the number of instruments increase when j increase,
that is,

Z1
i = (ψ1(Zi)) =

(
MFxX i,MFx,−1X i,−1

)
,

Z2
i = (ψ1(Zi),ψ2(Zi)) =

(
MFxX i,MFx,−1X i,−1,MFx,−2X i,−2

)
,

...

ZJ
i = (ψ1(Zi), . . . ,ψJ(Zi)) =

(
MFxX i, . . . ,MFx,−jX i,−j, . . . ,MFx,−JX i,−J

)
.

The 2SLS estimator of Norkutė et al. (2021) can also be expressed as

θ̂
j

i =
(
W

′

iP
j
iW i

)−1

W
′

iP
j
iyi, (5.21)

where the projection matrix, P j
i , is defined as

P j
i = M F̂x

Ẑ
j

i

(
Ẑ
j′

i M F̂x
Ẑ
j

i

)−1

Ẑ
j′

i M F̂x
(5.22)

with

Ẑ
j

i =
(
ψ1(Ẑi), . . . ,ψj(Ẑi)

)
=
(
M F̂x

X i, . . . ,M F̂x,−j
X i,−j

)
,

which is an T × (j + 1)k matrix where 1 ≤ j ≤ J .
A weighting vector for the projection matrix is defined as

ωi = (ωi1, . . . , ωiJ)
′
, (5.23)

where ωi is a J × 1 vector and
∑J

j=1 ωi,j = 1. Then, we can weight P j
i as

P i =
J∑
j=1

ωi,jP
j
i , (5.24)

where P i is symmetric but not idempotent.
We estimate a weight vector ωi that minimizes a linear combination of approx-

imate mean square error of η
′
iθ̂i, denoted as sηi(ωi)

4. This is defined as5 sηi(ωi) =
η
′
iSi (ωi)ηi, where ηi ∈ R1+k.

Before we introduce the criterion of estimation of weighting matrix, we consider
the following assumptions:

4If model include more than one endogenous variable, we choose ωi to minimizes a linear
combination of the approximate mean square error sηi(ωi), where it is an estimator of η

′

iSi (ωi)ηi,

where η̂i
p→ ηi and ηi is user specified.

5See Theorem 2 for the definition of Si (ωi).
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Assumption 10 Define ω+
i = (|ωi,1|, . . . , |ωi,J |)

′
. We have following conditions: (i)∑J

j=1 ωi,j = 1 ; (ii) ωi ∈ l1 for all T , where l1 = (x = (x1, . . .)|
∑∞

t=1 |xt| ≤ Cl1 <∞)

for some constant Cl1 , J ≤ T ; (iii) As T →∞ and J →∞, j̃
′

ω+
i =

∑J
j=1 |ωij|j →

∞, where j̃ = (1, . . . , J)
′
.

Assumption 11 (i) j̃
′

ω+
i /
√
T =

∑J
j=1 |ωij|j/

√
T → 0 or (ii) j̃

′

ω+
i /T =

∑J
j=1 |ωij|j/T →

0 and J/T → 0.
Assumption 12 (i) H̄ i ≡ E(gi,tg

′
i,t) exists and is nonsingular. (ii) for some α >

1/2,

supj≤Jj
2α
(
supη′iηi=1η

′

iG
′

i

(
IT − P j

i

)
Giηi/T

)
= Op(1).

(iii) Let T+ be the set of positive integers. There exists a subset J̄ ⊂ T+ with a finite
number of elements such that

supj∈J̄supη′iηi
η
′

iG
′

i

(
P j
i − P

j+1
i

)
Giηi/T = 0,

with probability approaching 1, and for all j 6∈ J̄ , it follow that

infj 6∈J̄ ,j≤Jj
2α+1

(
supη′iηi=1η

′

iG
′

i

(
P j
i − P

j+1
i

)
Giηi/T

)
> 0,

with probability approaching 1.
Assumption 13 (i) Let eai,t be the ath element of ei,t. Then E(uri,te

s
ai,t|zi,t) are

constant and bounded for all a and r, s ≤ 5. Denote σ2
u,i = E(u2

i,t|zi,t), σeu,i =

E(ei,tui,t|zi,t) and Σe,i = E(ei,te
′
i,t|zi,t) (ii) maxt≤TP

J
i,tt → 0, where P J

i,tt denote

the (t, t)th element of P J
i (iii) gi,t is bounded. (iv) ZJ ′

i Z
J
i are nonsingular with

probability approaching 1. (v) P i,tt denote the (t, t)th element of P i.
The optimal weight ω∗i is the solution of minωi∈Ωsηi(ωi), where Ω is some set. In

this chapter, we consider two versions of Ω:

(i) Ωp =
{
ωi ∈ q|ω

′

iιJ = 1;ωi,j ∈ [0, 1],∀j ≤ J
}
,

(ii) Ωu =
{
ωi ∈ q|ω

′

iιJ = 1;∀j ≤ J
}
,

where q is a space of absolutely summable sequences and ιJ is a J × 1 vector of
one. In the beginning, we consider positive weights, such that Ω = Ωp. Let gi,t =

Πizi,t,
6 where Πi is the projection coefficient matrix and the estimator Ĥ i = Ĝ

′
iĜi
T

=(
Ẑ
j
i Π̂i

)′(
Ẑ
j
i Π̂i

)
T

7. Denote Ẽi
8 be some preliminary residual from first stage regression

6In first stage regression, Donald and Newey (2001) and Kuersteiner and Okui (2010) use a
nonparametric reduced form. In this chapter, we use linear form in first stage regression.

7We use simple LS estimation for first stage regression, such that Π̂i =

(
Ẑ
j′

i Ẑ
j

i

)−1

Ẑ
j′

i W i.

8Ẽi = W i −Zji Π̂i.
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which is T × (1 + k) matrices. Similarly, define the residuals ũi = yi −W iθ̂pre,i
9.

Let ẽη,i = ẼiĤ
−1

i ηi, where ηi is a some fixed user-specified vector. Define

σ̂2
u,i =

ũ
′

iũi
T

, σ̂2
η,i =

ẽ
′

η,iẽη,i

T
, σ̂ηu,i =

ẽ
′

η,iũi

T
. (5.25)

Let Û i =
(
ê1
η,i, . . . , ê

J
η,i

)′ (
ê1
η,i, . . . , ê

J
η,i

)
is the J×J matrix, where êjη,i =

(
P J
i − P

j
i

)
W iĤ

−1

i ηi
is a T × 1 vector. Define Γi be the J × J matrix whose (j

′
, j) element is min(j

′
, j)

and let j̃ = (1, . . . , J)
′
. When we consider Ω = Ωp, the criterion ŝηi(ωi) is

ŝηi(ωi) = σ̂2
ηu,i

(j̃
′

ωi)
2

T
+ σ̂2

u,i

ω
′
iÛ iωi − σ̂2

η,i(J − 2j̃
′

ωi + ω
′
iΓiωi)

T
. (5.26)

Then, the optimal weight is given by

ω∗i = arg min
ωi∈Ωp

ŝηi (ωi) . (5.27)

When we consider Ω = Ωu, the criterion ŝηi(ωi) is

ŝηi(ωi) = σ̂2
ηu,i

(j̃
′

ωi)
2

T
+
(
σ̂2
η,iσ̂

2
u,i + σ̂2

ηu,i

) ω′iΓiωi
T

− j̃
′

ωi
T

b̂T+

σ̂2
u,i

ω
′
iÛ iωi − σ̂2

η,i(J − 2j̃
′

ωi + ω
′
iΓiωi)

T
,

(5.28)

where

b̂T = η
′

iĤ
−1

i [2(σ̂2
u,iΣ̂ei + dσ̂eu,iσ̂

′

eu,i +
1

T

T∑
t=1

Ĝiσ̂
′

eu,iĤ
−1

i σ̂eu,iĜ
′

i+

1

T

T∑
t=1

(
Ĝiσ̂

′

eu,iĤ
−1

i Ĝiσ̂
′

eu,i + σ̂eu,iĜ
′

iĤ
−1

i σ̂eu,iĜ
′

i

)
)]Ĥ

−1

i ηi,

(5.29)

with d = dim (θi).
The optimal weight is given by

ω∗i = arg min
ωi∈Ωu

ŝηi (ωi) . (5.30)

Thus, we can weight P j
i by the optimal weight ω∗i =

(
ω∗i,1, . . . , ω

∗
i,J

)′
as

P ∗i =
J∑
j=1

ω∗i,jP
j
i , (5.31)

9We use 2SLS estimator for θ̂pre,i, such that θ̂pre,i =
(
W
′

iP
j
iW i

)−1

W
′

iP
j
iyi, and denoted

that θ̂pre,i does not depend on the weighting vector. Also, the number of lags j can be selected by
the first-stage Mallows criterion.
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The model average 2SLS estimator, θ̂
∗
i , now is defined as

θ̂
∗
i =

(
W

′

iP
∗
iW i

)−1

W
′

iP
∗
iyi. (5.32)

By minimizing the approximation to the higher order MSE of θi, we can se-
lect the optimal weights. Following Kuersteiner and Okui (2010), the theorem
provides the approximate MSE of θi conditional on the exogenous variable zi,t,

E

[(
θ̂i − θi

)(
θ̂i − θi

)′
|zi,t

]
by σ2

u,iH
−1
i +Si (ωi) , where σ2

u,iH
−1
i is the first-order

asymptotic variance and Si (ωi) is the dominant term in the approximate MSE of
θi.
Theorem 2 : Consider the model (5.19) and suppose Assumption 1-13 are satisfied.
Define µi,t(ωi) = E(u2

i,tei,t)P i,tt and µi(ωi) = (µi,1(ωi), . . . , µi,T (ωi))
′
, where P i,tt

is (t, t) element of T × T matrix of P i. As j̃
′

ω+
i →∞, T →∞, we have

T
(
θ̂i − θi

)(
θ̂i − θi

)′
= Q̂i (ωi) + q̂i (ωi)

E
[
Q̂i (ωi) |zi,t

]
= σ2

u,iH
−1
i + Si (ωi) + T i (ωi)

(q̂i (ωi) + T i (ωi)) /tr (Si (ωi)) = op(1),

(5.33)

with

Si (ωi) = H−1[Cum[ui,t, ui,t, ei,t, e
′

i,t]

∑T
t=1(P i,tt)

T
+ σ2

u,i

G
′

i (IT − P i) (IT − P i)Gi

T
+

E
(
u2
i,1ei,1

) T∑
t=1

g
′

i,tP i,tt/T +
T∑
t=1

gi,tP i,ttE
(
u2
i,1ei,1

)
/T +

G
′

i (IT − P i)µi (ωi)

T
+

µ
′
i (ωi) (IT − P i)Gi

T
+ σeu,iσ

′

eu,i

(
j̃
′

ωi

)2

T
+
(
σ2
u,iΣe,i + σeu,iσ

′

eu,i

) (ω′iΓiωi
)

T
−

2
j̃
′

ωi
T

[
σ2
uΣe,i + dσeu,iσ

′

eu,i +
1

T

T∑
t=1

gi,tσ
′

eu,iH
−1
i σeu,ig

′

i,t

]
−

2
j̃
′

ωi
T 2

(
T∑
t=1

(
gi,tσ

′

eu,iH
−1
i gi,tσ

′

eu,i + σeu,ig
′

i,tH
−1
i σeu,ig

′

i,t

))
]H−1

(5.34)
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and10

d = dim (θi) ,

Cum
[
ui,t, ui,t, ei,t, e

′

i,t

]
= E

(
u2
i,tei,te

′

i,t

)
− σ2

u,iΣe,i − 2σeu,iσ
′

eu,i,

Q̂i (ωi) = H−1
i D̂i (ωi)H

−1
i ,

D̂i (ωi) =
(
hi + ch1i + ch2i

) (
hi + ch1i + ch2i

)′
− hih

′

iH
−1
i

(
3∑
q=1

cHqi

)′
−

(
3∑
q=1

cHqi

)
H−1

i hih
′

i

− hich
′

2iH
−1
i

(
cH1i + cH2i

)
−
(
cH1i + cH2i

)
H−1

i c
h
2ih

′

i

− ch2ih
′

iH
−1
i

(
cH1i + cH2i

)′
−
(
cH1i + cH2i

)
H−1

i hic
h′

2i.

In above theorem, σ2
u,iH

−1
i is the first-order asymptotic variance. And q̂i (ωi)

and T i (ωi) go to zero faster than Si (ωi). Therefore, Si (ωi) is the dominant term

in the MSE of estimator. The bias could be eliminate by setting j̃
′

ωi = 0, so
we need to consider an expansion of model average 2SLS estimator that contains
additional higher order term. By using the average predicted value of the endogenous
variable in the estimation stage, we can construct optimal instruments for 2SLS
estimator on dynamic heterogeneous panel data model with defactored regressors
and a multifactor error.

5.4 Mean group 2SLS estimator

Our interest parameters are over group of the coefficients, θ. From Pesaran and
Smith (1995), we know cross-section estimator, θ̂, is inconsistent as N, T →∞. In
practice, we can estimate individual consistent estimators of θi, and then calculate
the coefficient means to get Mean Group estimators. Now, we consider the Mean
Group estimator of θ:

θ̂
∗
MA2SLSMG =

1

N

N∑
i=1

θ̂
∗
i . (5.35)

From Assumption 5, we can show that the asymptotic property of θ̂
∗
MA2SLSMG, as

θ̂
∗
MA2SLSMG − θ =

1

N

N∑
i=1

(
θ̂
∗
i − θ

)
=

1

N

N∑
i=1

(
θ̂
∗
i − θi

)
+

1

N

N∑
i=1

λi, (5.36)

10The model average 2SLS estimator has the form as
√
T (θ̂i−θ) = Ĥ

−1

i ĥi. Let the decomposi-

tion of Ĥi and ĥi are Ĥi = Hi + cH1i + cH2i + cH3i + rHi and ĥi = hi + ch1i + ch2i, The detail of these
decomposition and the definition of q̂i (ωi) and T i (ωi) are in the proof of Theorem 2 in Appendix
c.
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where the first of right hand side

1√
NT

N∑
i=1

(
θ̂
∗
i − θi

)
=

1√
NT

N∑
i=1

J∑
j=1

ω∗i,j

(W ′

iM F̂x
Ẑ
j

i

T

)Ẑj′

i M F̂x
Ẑ
j

i

T

−1(
W

′

iM F̂x
Ẑ
j

i

T

)−1

×

(
W

′
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(5.37)

which implies 1
N

∑N
i=1

(
θ̂
∗
i − θi

)
= Op

(
1√
NT

)
.

Then, we can see

√
N
(
θ̂
∗
MA2SLSMG − θ

)
=

1√
N

N∑
i=1

λi + op (1) . (5.38)

As N →∞, we can see

1√
N

N∑
i=1

λi
d→ N (0,Σ∗λ) . (5.39)

Therefore, we know that θ̂
∗
MA2SLSMG is

√
N consistent.

And the variance estimator of θ̂
∗
MA2SLSMG is given by

Σ̂
∗
λ =

1

N − 1

N∑
i=1

(
θ̂
∗
i − θ̂

∗
MA2SLSMG

)(
θ̂
∗
i − θ̂

∗
MA2SLSMG

)′
. (5.40)

Follow Norkutė et al. (2021), we can show that Σ̂
∗
λ is consistent and it does not have

small T bias. Firstly, we decompose (5.40) as

N∑
i=1

(
θ̂
∗
i − θ + θ − θ̂

∗
MA2SLSMG

)(
θ̂
∗
i − θ + θ − θ̂

∗
MA2SLSMG

)′
=

N∑
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λiλ
′

i +
N∑
i=1

(
θ̂
∗
i − θi

)(
θ̂
∗
i − θi

)′
+

N∑
i=1

(
θ̂
∗
i − θi

)
λi +

N∑
i=1

λi

(
θ̂
∗
i − θi

)
−

N
(
θ − θ̂

∗
MA2SLSMG

)′ (
θ − θ̂

∗
MA2SLSMG

)
.

(5.41)
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Then we can show consistent of Σ̂
∗
λ as

Σ̂
∗
λ −Σ∗λ =
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(5.42)

Then, we can see that the asymptotic property of θ̂
∗
MA2SLSMG as

√
N
(
θ̂
∗
MA2SLSMG − θ

)
d→ N (0,Σ∗λ) . (5.43)

5.5 Monte Carlo simulation design

We compare the performance of four estimators. First, we consider MA2SLSMG
estimator with Ω = Ωu. The criterion for finding weights of MA2SLSMG estimator
is (5.28). Second, we consider P-MA2SLSMG estimator with Ω = Ωp and the
criterion is (5.28). Third, we consider Ps-MA2SLSMG estimator with Ω = Ωp and
the criterion is (5.26). Fourth, we consider 2SLSMG estimator with all available
instruments.

In this experiments, we consider two instruments set with true factors projection
matrix:

a : Z2
i =

(
MFxX i,MFx,−1X i,−1,MFx,−2X i,−2

)
;

b : Z5
i =

(
MFxX i,MFx,−1X i,−1, . . . ,MFx,−5X i,−5

)
.

Denote MA2SLSMGa, P-MA2SLSMGa and Ps-MA2SLSMGa use 6 instruments.
MA2SLSMGb,P-MA2SLSMGa and Ps-MA2SLSMGb use 12 instruments. We use the
similar Monte Carlo design as Norkutė et al. (2021) to investigate the performance
of MA2SLSMG, P-MA2SLSMG and Ps-MA2SLSMG estimators.

5.5.1 Dynamic heterogeneous panels data model with multi-
factor error structure

We consider the data generating process as following:

yi,t = φiyi,t−1 + β1,ix1i,t + β2,ix2i,t + ui,t, i = 1, . . . N ; t = −49, . . . , T , (5.44)

(5.45)

where

ui,t =

my∑
s=1

γsifs,t + εi,t, (5.46)
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with

fs,t = ρffs,t−1 + (1− ρ2
f )

1/2ζs,t, (5.47)

with ζs,t
i.i.d.∼ N(0, 1) for s = 1, . . .my. We set my = 3 and ρf ∈ {0.1, 0.9}. We allow

the idiosyncratic error term, εi,t, is drawn as

εi,t = ςεσi,t (εi,t − 1) /
√

2, (5.48)

where

ςε =
πµ

1− πµ
my, σ2

i,t = ηiϕt, ηi
i.i.d.∼ χ2

2/2, ϕt = t/T,

and εi,t
i.i.d.∼ χ2

1.

(5.49)

We set πµ ∈ {1/4} .
The process for the regressors are drawn as

x`it =
mx∑
s=1

γ`sifs,t + v`it, i = 1, . . . N ; t = −49, . . . , T ; ` = 1, 2, (5.50)

where k = 2, mx = 2, f y,t = (f1t, f2t, f3t)
′

and fx,t = (f1t, f2t)
′
.

We set

v`i,t = ρv,`v`i,t−1 +
(
1− ρ2

v,`

) 1
2 $`i,t, for ` = 1, 2, (5.51)

where ρv,` ∈ {0.1, 0.9} for all ` and $`i,t
i.i.d.∼ N

(
0, σ2

$it

)
, σ2

$it

i.i.d.∼ U (0.5, 1.5). Factor

loadings in ui,t are generated as γsi
i.i.d.∼ N (0, 1), for s = 1, . . . ,my = 3, and the factor

loadings in x1it and x2it are generated as

γ1si = ργ,1sγ3i +
(
1− ρ2

γ,1s

)1/2
ξ1si; ξ1si

i.i.d.∼ N (0, 1) ;

γ2si = ργ,2sγsi +
(
1− ρ2

γ,2s

)1/2
ξ2si; ξ2si

i.i.d.∼ N (0, 1) ;
(5.52)

for s = 1, . . . ,mx = 2. We set ργ,11 = ργ,12 ∈ {0, 0.3} and ργ,21 = ργ,22 = {0.5} . The
factor loading matrix is defined as

Γi =

γ1i γ11i γ21i

γ2i γ12i γ22i

γ3i 0 0

 . (5.53)

The slope coefficients are generated as

φi = φ+ ηφi, β1,i = β1 + ηβ1i and β2,i = β2 + ηβ2i. (5.54)
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Here we consider φ ∈ {0.5, 0.8}, β1 = 3 and β2 = 1. For the design of heterogenous

slopes, ηφi
i.i.d.∼ U (−0.2, 0.2), and

ηβ`i =
[
(0.4)2/12

]1/2
ρβξβ`i +

(
1− ρ2

β

)1/2
ηφi, (5.55)

where

ξβ`i =
v̄2
`i − v̄2

`[
N−1

∑N
i=1

(
v̄2
`i − v̄2

`

)2
]1/2

, (5.56)

with v̄2
`i = T−1

∑T
t=1 v

2
`it, v̄

2
` = N−1

∑N
i=1 v̄

2
`i, for ` = 1, 2. To investigate size and

power, we consider null hypothesis, H0 : φ = φ, H0 : β1 = β1 and H0 : β2 = β2. For
the size of t-test, we consider null hypothesis, H0 : φ = φ + 0.1, H0 : β1 = β1 + 0.1
and H0 : β2 = β2 + 0.1. All tests are carried out at 5% significance level. We
consider T ∈ {25, 50, 100}, N ∈ {25, 50, 100} , and all experiments are replicated
1000 times. Depending of endogeneity increases when factor more persistent or
correlation between the factor loadings increases because the strength of IVs increase
when |φi| increase, |ρv,`| increasing or |βi| increases11. In this simulation setting, we
fixed correlation between the factor loadings and |β`i|. By controling ρv,` and ρf , we
can investigate the effect of strength of IVs and degree of endogeneity. The following
table summarise Monte Carlo designs:

Endogeneity
IVs Weak Strong

Low Case A: (ρv,` = 0.1, ρf = 0.1) Case C: (ρv,` = 0.9, ρf = 0.1)
High Case B (ρv,` = 0.1, ρf = 0.9) Case D (ρv,` = 0.9, ρf = 0.9)

5.5.2 Monte Carlo simulation results

Table 5.1 to Table 5.8 report the bias and MSE of MA2SLSMGa,b, P-MA2SLSMGa,b,
Ps-MA2SLSMGa,b, 2SLSMGa,b estimates, and size (%) and power (%) of associ-
ated t-tests for dynamic heterogeneous panel data model with {φ} = {0.5, 0.8} and
{β1, β2} = {3, 1}.

Table 5.1 to Table 5.2 consider the case of weak instruments and low degree
of endogeneity with 6 and 12 instruments, respectively. In Table 5.1, the results
show that the bias of φ of MA2SLSMGa is smaller than that of 2SLSMGa in most
scenarios. But the MSE of MA2SLSMGa is larger than that of 2SLSMGa. The size
of the t-test associated with the MA2SLSMGa is similar with 2SLSMGa in most
scenarios and when N and T are large they are close to the nominal value. The
bias, MSE, size and power perform similarly in terms of 2SLSMGa estimators .

Table 5.2 reports results for the case in which the 12 instruments are employed.
The results show that the bias of φ of MA2SLSMGb is smaller than 2SLSMGb in most
scenarios. The MSE of MA2SLSMGb is slightly larger than 2SLSMGb when both N
and T are relatively small but they become similar as N and T get larger. As shown

11See Appendix c for the discussion of IVs strength and degree of endogeneity
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in Table 5.2, the MSE of P-MA2SLSMGb is smaller than that of MA2SLSMGb.
In the case of weak instruments and low degree of endogeneity, P-MA2SLSMG
estimators show similar performance with 2SLSMGb estimators in terms of bias,
MSE, size and power.

In Table 5.3 and Table 5.4, we consider the case of weak instruments and high
degree of endogeneity with 6 and 12 instruments, respectively. Looking at Table
5.3 and Table 5.4, it is apparent that the performance of MA2SLSMGa estimator
is worse than that of 2SLSMGa in most scenarios. In Table 5.3, the performance
of P-MA2SLSMG estimator is similar to that of 2SLSMG estimator in all scenar-
ios. When the number of instruments increases to 12, the bias and MSE of P-
MA2SLSMG estimators of φ is smaller than that of 2SLSMG estimator in Table
5.4.

In Table 5.5 and Table 5.6, we consider the case of strong instruments and low
degree of endogeneity with 6 and 12 instruments, respectively. MA2SLSMG estima-
tor still performs worse than P-MA2SLSMG estimator and 2SLSMG estimator in
Table 5.5 and Table 5.6. In Table 5.5, the performance of P-MA2SLSMG estimator
is similar to that of 2SLSMG estimator. When instruments increase, the bias of
P-MA2SLSMG estimator is smaller than 2SLSMG estimator in most scenarios.

In Table 5.7 and Table 5.8, we consider the case of strong instruments and high
degree of endogeneity with 6 and 12 instruments, respectively. P-MA2SLS estimator
of φ performs better than 2SLSMG estimator when the number of instruments
increases. The bias of of P-MA2SLSb estimator of β is smaller than that of 2SLSMGb

estimator but the MSE is slightly larger than 2SLSMG estimator of β.

5.6 Conclusions

This chapter develops model average 2SLS mean group estimators for dynamic het-
erogeneous panel data models with defactored regressors and a multifactor errors
structure to reduce the uncertainty of instruments selection. First, we use lag de-
fector regressor as instruments to obtain consistent IV estimator of cross-sectionally
heterogeneous slope vector θi. Then, we apply modal average method to construct
optimal instruments by weighting the first stage regression. Finally, we construct
mean group estimator by weighting cross-sectionally heterogeneous model average
IV estimator. When the degree of endogeneity is high, instruments weak and in-
struments contain many uninformative instruments, it is recommended to use P-
MA2SLS estimators. To compare this method with other instruments selection
methods (Fan et al. (2020) ,Lee and Shin (2020), Abadie et al. (2019), Belloni et al.
(2012), Fan and Li (2001) etc.) would be an interesting area in further research.
Norkutė et al. (2021) allow idiosyncratic errors are heteroskedasticity in equation for
yi,t but Kuersteiner and Okui (2010) assume idiosyncratic errors are homoscedastic.
It would be interesting to extend this assumption to robust weighting method.
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Table 5.1 (Case A: Low degree of endogeneity, Weak IVs) Bias, MSE of
MA2SLSMGa, P-MA2SLSMGa, Ps-MA2SLSMGa, 2SLSMGa estimates and Size
(%) and power (%) of the associated t-tests for the dynamic heterogeneous panel
data model with {φ, β1, β2} = {0.5, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -0.060 -0.131 -0.258 0.123 0.107 0.030 6.2 4.7 5.2 83.9 95.5 99.6
50 -0.012 -0.108 -0.036 0.077 0.038 0.018 6.7 5.6 3.6 94.5 99.8 100.0
100 -0.033 0.028 -0.054 0.063 0.030 0.016 6.9 5.2 4.8 97.4 100.0 100.0

P-MA2SLSMGa

25 -0.264 -0.193 -0.241 0.083 0.043 0.022 6.3 5.8 5.8 91.5 99.2 100.0
50 -0.251 -0.186 -0.236 0.068 0.031 0.016 7.4 5.1 4.4 96.2 100.0 100.0
100 -0.054 -0.112 -0.012 0.056 0.031 0.015 5.6 6.4 5.0 98.8 100.0 100.0

Ps-MA2SLSMGa

25 -0.073 0.047 -0.110 0.113 0.064 0.031 6.8 6.7 5.7 86.2 97.2 99.6
50 -0.047 -0.069 0.021 0.066 0.032 0.017 5.7 5.0 5.0 96.6 99.8 100.0
100 0.118 0.015 -0.033 0.059 0.030 0.014 5.6 6.1 4.4 98.7 100.0 100.0

2SLSMGa

25 -0.264 -0.193 -0.241 0.083 0.043 0.022 6.3 5.8 5.8 91.5 99.2 100.0
50 -0.251 -0.186 -0.236 0.068 0.031 0.016 7.4 5.1 4.4 96.2 100.0 100.0
100 -0.054 -0.112 -0.012 0.056 0.031 0.015 5.6 6.4 5.0 98.8 100.0 100.0

Results for β1.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -0.477 0.102 -0.130 0.587 0.275 0.123 7.4 4.1 3.7 32.1 55.2 78.5
50 -0.002 -0.096 0.032 0.199 0.116 0.053 5.1 4.5 3.5 61.3 81.1 96.9
100 0.021 0.130 0.050 0.119 0.057 0.029 4.6 5.3 3.8 82.4 97.9 99.9

P-MA2SLSMGa

25 0.023 0.099 -0.052 0.494 0.244 0.116 6.3 5.2 4.3 37.1 58.5 82.7
50 -0.051 -0.006 -0.061 0.228 0.097 0.057 7.5 3.8 5.4 59.0 85.6 97.3
100 0.126 -0.124 0.018 0.119 0.058 0.029 5.8 4.6 4.1 82.4 97.4 100.0

Ps-MA2SLSMGa

25 0.000 -0.376 0.220 0.584 0.348 0.170 3.7 5.2 6.4 33.1 50.7 78.4
50 -0.044 -0.021 0.102 0.199 0.105 0.057 5.2 3.5 5.9 61.5 84.8 98.4
100 0.168 0.059 -0.094 0.125 0.061 0.028 5.5 5.3 4.2 81.2 98.3 100.0

2SLSMGa

25 0.023 0.099 -0.052 0.494 0.244 0.116 6.3 5.2 4.3 37.1 58.5 82.7
50 -0.051 -0.006 -0.061 0.228 0.097 0.057 7.5 3.8 5.4 59.0 85.6 97.3
100 0.126 -0.124 0.018 0.119 0.058 0.029 5.8 4.6 4.1 82.4 97.4 100.0

yi,t is generated as yi,t = φiyi,t−1 + β1,ix1i,t + β2,ix2i,t + ui,t, ui,t =
∑my
s=1 γsifs,t + εi,t, x`it =∑k

`=1 φ`x`i,t−1 +
∑mx
s=1 γ`sifs,t + v`it, φ` = 0, ` = 1, 2; i = 1, . . . , N ; t = −50, . . . , T and the

first 50 observations are discarded; v`i,t = ρv,`v`i,t−1 +
(

1− ρ2
v,`

) 1
2

$`i,t, ρv,` = 0.5 for all ` and

$`i,t
i.i.d.∼ U (0.5, 1.5) ; fs,t = ρffs,t−1 + (1 − ρ2

f )1/2ζs,t, ζs,t
i.i.d.∼ N(0, 1) for s = 1, . . .my =

3; εi,t = ςεσit (εit − 1) /
√

2, εit
i.i.d.∼ χ2

1 with σ2
it = ηiϕt, ηi

i.i.d.∼ χ2
2/2, and ϕt = t/T for t =

0, . . . , T ; ςε =
πµ

1−πµmy; γsi
i.i.d.∼ N (0, 1), for s = 1, . . . ,my, γ1si = ργ,1sγ3i +

(
1− ρ2

γ,1s

)1/2
ξ1si,

γ2si = ργ,2sγsi +
(
1− ρ2

γ,2s

)1/2
ξ2si, ξ`si

i.i.d.∼ N (0, 1) for ` = 1, 2, s = 1, . . . ,mx = 2. φi =

φ + ηφi, β1,i = β1 + ηβ1i; β1,i = β1 + ηβ1i and β2,i = β2 + ηβ2i, ηφi
i.i.d.∼ U (−0.2, 0.2), and

ηβ`i =
[
(0.4)2/12

]1/2
ρβξβ`i +

(
1− ρ2

β

)1/2

ηφi, where ξβ`i =
v̄2`i−v̄

2
`[

N−1
∑N
i=1(v̄2`i−v̄2` )

2
]1/2 with v̄2

`i =

T−1
∑T
t=1 v

2
`it, v̄

2
` = N−1

∑N
i=1 v̄

2
`i. We set ρβ = 0.4 for ` = 1, 2.. We set ργ,11 = ργ,12 = ργ,21 =

ργ,22 ∈ {0.8} for correlated factor loading in x1i,t and ui,t.
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Table 5.2 (Case A: Low degree of endogeneity, Weak IVs) Bias, MSE of
MA2SLSMGb, P-MA2SLSMGb, Ps-MA2SLSMGb, 2SLSMGb estimates and Size (%)
and power (%) of the associated t-tests for the dynamic heterogeneous panel data
model with {φ, β1, β2} = {0.5, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -0.099 -0.106 -0.212 0.090 0.045 0.024 7.1 5.5 6.3 90.6 99.6 100.0
50 0.040 -0.119 -0.052 0.070 0.036 0.018 6.4 5.7 5.2 94.9 99.9 100.0
100 -0.033 0.036 -0.058 0.061 0.031 0.016 6.5 5.6 5.6 97.4 99.9 100.0

P-MA2SLSMGb

25 -0.181 -0.145 -0.186 0.071 0.036 0.019 6.6 5.9 6.8 94.7 99.7 100.0
50 -0.210 -0.176 -0.210 0.064 0.030 0.015 6.9 5.9 5.2 97.1 100.0 100.0
100 -0.042 -0.118 -0.022 0.055 0.030 0.014 5.5 6.5 5.1 99.1 100.0 100.0

Ps-MA2SLSMGb

25 -0.096 0.010 -0.163 0.109 0.061 0.029 6.8 6.4 5.7 86.7 97.2 99.7
50 -0.062 -0.085 -0.001 0.066 0.032 0.017 6.0 4.9 4.8 96.7 99.8 100.0
100 0.106 0.005 -0.046 0.059 0.030 0.014 5.5 6.1 4.5 98.4 100.0 100.0

2SLSMGb

25 -0.166 -0.132 -0.169 0.070 0.036 0.019 6.8 5.9 6.6 94.5 99.7 100.0
50 -0.193 -0.163 -0.196 0.063 0.030 0.015 7.0 5.9 5.0 97.2 100.0 100.0
100 -0.037 -0.114 -0.017 0.055 0.030 0.014 5.4 6.6 5.2 99.0 100.0 100.0

Results for β1.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -0.460 0.071 -0.169 0.519 0.233 0.110 8.4 5.2 3.7 34.9 58.5 81.5
50 -0.018 -0.080 0.038 0.199 0.115 0.051 5.1 5.0 3.2 61.1 84.0 98.2
100 0.030 0.114 0.051 0.118 0.057 0.029 4.6 5.4 4.2 81.6 98.0 100.0

P-MA2SLSMGb

25 0.032 -0.003 -0.034 0.452 0.226 0.105 5.6 4.8 4.5 38.5 59.6 84.5
50 -0.059 -0.020 -0.061 0.222 0.094 0.056 7.8 3.5 5.8 59.9 86.1 97.4
100 0.118 -0.117 0.016 0.118 0.057 0.029 5.8 4.4 4.2 82.8 97.4 100

Ps-MA2SLSMGb

25 0.070 -0.347 0.188 0.581 0.340 0.152 3.5 4.5 5.7 33.2 51.4 78.5
50 -0.031 -0.035 0.102 0.199 0.106 0.058 5.3 3.6 5.4 60.9 84.4 98.2
100 0.176 0.061 -0.089 0.125 0.061 0.028 5.6 5.3 4.1 81.2 98.3 100.0

2SLSMGb

25 0.036 -0.005 -0.024 0.451 0.224 0.105 5.8 4.6 4.3 38.4 60.4 84.6
50 -0.051 -0.020 -0.054 0.222 0.094 0.055 7.7 3.4 5.8 60.1 85.9 97.5
100 0.121 -0.114 0.021 0.117 0.057 0.029 5.8 4.4 4.1 82.7 97.2 100.0

The DGP is the same as that for Table 5.1 except the number of instruments are 12.
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Table 5.3 (Case B: High degree of endogeneity, Weak IVs) Bias, MSE of
MA2SLSMGa, P-MA2SLSMGa, Ps-MA2SLSMGa, 2SLSMGa estimates and Size
(%) and power (%) of the associated t-tests for the dynamic heterogeneous panel
data model with {φ, β1, β2} = {0.5, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 2.706 2.880 2.593 0.360 0.247 0.200 16.2 19.7 27.3 82.6 96.1 99.1
50 2.005 1.966 1.977 0.197 0.138 0.096 10.6 16.9 23.3 90.3 98.1 99.9
100 1.027 1.126 1.025 0.113 0.066 0.039 9.2 9.0 12.8 94.4 99.6 100.0

P-MA2SLSMGa

25 1.739 2.003 2.012 0.170 0.132 0.113 12.7 17.9 25.5 93 99.6 100.0
50 1.166 1.126 1.180 0.120 0.064 0.051 10.1 9.8 17.0 94.8 99.9 100.0
100 0.536 0.461 0.615 0.073 0.040 0.024 6.0 6.1 8.1 96.4 100.0 100.0

Ps-MA2SLSMGa

25 1.140 1.402 1.127 0.242 0.151 0.111 8.4 9.8 10.8 79.8 92.3 97.1
50 0.701 0.369 0.599 0.243 0.080 0.052 6.6 5.5 6.1 88.3 96.3 98.8
100 0.338 0.224 0.208 0.089 0.046 0.022 5.9 5.7 5.0 94.1 98.8 99.4

2SLSMGb

25 1.739 2.003 2.012 0.170 0.132 0.113 12.7 17.9 25.5 93 99.6 100.0
50 1.166 1.126 1.180 0.120 0.064 0.051 10.1 9.8 17.0 94.8 99.9 100.0
100 0.536 0.461 0.615 0.073 0.040 0.024 6.0 6.1 8.1 100 96.4 100.0

Results for β1.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -1.189 0.216 0.138 3.062 0.580 0.279 6.7 5.8 5.0 22.3 36.6 55.6
50 -0.052 -0.105 -0.147 0.507 0.335 0.127 5.5 5.5 5.3 35.8 54.7 79.6
100 -0.253 -0.354 -0.344 0.274 0.140 0.075 5.6 5.4 5.7 53.6 75.9 93.0

P-MA2SLSMGa

25 0.027 0.189 0.200 0.837 0.460 0.222 5.4 5.9 4.4 26 41.9 63.3
50 -0.449 0.035 -0.306 0.506 0.223 0.122 7.1 5.2 5.6 35.2 61.5 81.6
100 -0.203 -0.524 -0.362 0.255 0.122 0.064 5.3 4.6 6.1 54.2 76.4 93.6

Ps-MA2SLSMGa

25 0.695 0.105 0.296 1.903 0.796 0.500 4.7 5.2 4.8 23.2 35.3 56.6
50 -0.444 -0.520 -0.202 0.561 0.280 0.277 5.5 4.1 6.1 37.2 54.7 77.4
100 -0.093 -0.278 -0.273 0.307 0.144 0.071 6.2 5.2 5.3 54.1 76.6 93.8

2SLSMGb

25 0.027 0.189 0.200 0.837 0.460 0.222 5.4 5.9 4.4 26 41.9 63.3
50 -0.449 0.035 -0.306 0.506 0.223 0.122 7.1 5.2 5.6 35.2 61.5 81.6
100 -0.203 -0.524 -0.362 0.255 0.122 0.064 5.3 4.6 6.1 54.2 76.4 93.6

The DGP is the same as that for Table 5.1 and the number of instruments are 6.
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Table 5.4 (Case B: High degree of endogeneity, Weak IVs) Bias, MSE of
MA2SLSMGb, P-MA2SLSMGb, Ps-MA2SLSMGb, 2SLSMGb estimates and Size (%)
and power (%) of the associated t-tests for the dynamic heterogeneous panel data
model with {φ, β1, β2} = {0.5, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 3.828 3.933 3.618 0.355 0.311 0.261 28.3 42.3 50.5 97 99.8 100.0
50 3.938 3.735 3.795 0.304 0.243 0.218 29.0 42.3 61.0 98.6 100.0 99.9
100 2.726 2.952 2.867 0.174 0.150 0.128 20.7 32.6 48.8 99.5 100.0 100.0

P-MA2SLSMGb

25 2.912 3.181 3.136 0.229 0.220 0.198 23.0 35.3 47.5 99 99.9 100.0
50 2.564 2.513 2.617 0.177 0.124 0.126 20.3 27.5 44.6 99.4 100.0 100.0
100 1.711 1.568 1.741 0.101 0.066 0.056 12.0 17.2 28.7 99.7 100.0 100.0

Ps-MA2SLSMGb

25 1.066 1.312 1.081 0.253 0.157 0.110 8.0 9.6 10.5 78.7 91.8 96.7
50 0.683 0.390 0.563 0.244 0.088 0.053 6.5 6.5 5.8 87.8 95.6 98.6
100 0.339 0.229 0.202 0.089 0.046 0.023 6.1 5.4 4.6 94.0 98.8 99.5

2SLSMGb

25 3.052 3.339 3.295 0.240 0.233 0.213 24.2 37.6 49.2 99.1 99.9 100.0
50 2.794 2.732 2.854 0.191 0.138 0.142 22.1 30.3 48.4 99.6 100.0 100.0
100 1.942 1.789 1.967 0.111 0.074 0.065 13.4 19.2 35.0 99.9 100.0 100.0

Results for β1.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -0.354 0.212 -0.049 1.000 0.442 0.193 7.0 5.8 4.8 25.6 42.8 64.7
50 -0.010 -0.114 -0.171 0.390 0.232 0.097 4.5 5.9 4.2 39.1 61.3 85.7
100 -0.234 -0.279 -0.369 0.254 0.129 0.063 5.2 4.9 4.7 55.6 78.7 96.0

P-MA2SLSMGb

25 0.251 0.277 0.211 0.703 0.398 0.193 4.4 5.8 4.7 29.1 45.5 68.8
50 -0.250 0.129 -0.139 0.454 0.207 0.107 7.2 5.2 6.1 37.5 65.4 86.0
100 -0.153 -0.450 -0.293 0.236 0.111 0.061 5.6 4.7 6.0 56.6 79.7 95.7

Ps-MA2SLSMGb

25 0.309 -0.077 0.161 1.282 0.839 0.517 4.9 5.1 4.6 22.5 34.1 55.5
50 -0.483 -0.521 -0.240 0.560 0.314 0.282 5.7 4.3 5.8 36.7 53.3 76.9
100 -0.074 -0.278 -0.290 0.309 0.144 0.073 6.2 5.3 5.1 54.1 77.1 93.1

2SLSMGb

25 0.301 0.291 0.206 0.703 0.399 0.192 4.3 5.6 4.8 29.1 46.2 68.9
50 -0.223 0.166 -0.103 0.451 0.208 0.107 6.9 5.2 5.5 37.3 65.6 86.1
100 -0.127 -0.415 -0.259 0.234 0.109 0.060 5.8 4.3 5.9 56.6 80.0 95.8

The DGP is the same as that for Table 5.1 except the number of instruments are 12.
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Table 5.5 (Case C: Low degree of endogeneity, Strong IVs) Bias, MSE of
MA2SLSMGa, P-MA2SLSMGa, Ps-MA2SLSMGa, 2SLSMGa estimates and Size
(%) and power (%) of the associated t-tests for the dynamic heterogeneous panel
data model with {φ, β1, β2} = {0.5, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -0.151 -0.242 -0.347 0.183 0.094 0.048 6.3 5.7 6.0 72.1 91.6 97.7
50 -0.131 -0.169 -0.060 0.100 0.051 0.025 5.1 6.5 5.4 88.5 97.9 99.7
100 -0.149 -0.023 -0.092 0.067 0.035 0.017 5.5 5.4 4.8 96.6 99.6 100.0

P-MA2SLSMGa

25 -0.348 -0.352 -0.303 0.103 0.052 0.028 6.6 5.8 6.3 83.9 97.5 99.9
50 -0.154 -0.144 -0.250 0.074 0.036 0.020 6.6 5.8 5.3 93.9 99.9 100.0
100 -0.025 -0.125 -0.026 0.064 0.032 0.015 5.3 5.1 5.1 96.8 100.0 100.0

Ps-MA2SLSMGa

25 0.124 -0.060 -0.275 0.453 0.137 0.081 6.4 4.7 5.0 67.3 86.1 94.1
50 -0.004 0.015 0.008 0.126 0.058 0.029 6.7 5.5 4.9 85.2 97.2 99.3
100 0.044 -0.006 0.000 0.074 0.036 0.000 5.3 5.1 5.7 95.3 99.3 99.8

2SLSMGa

25 -0.348 -0.352 -0.303 0.103 0.052 0.028 6.6 5.8 6.3 83.9 97.5 99.9
50 -0.154 -0.144 -0.250 0.074 0.036 0.020 6.6 5.8 5.3 93.9 99.9 100.0
100 -0.025 -0.125 -0.026 0.064 0.032 0.015 5.3 5.1 5.1 96.8 100.0 100.0

Results for β1.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -0.116 0.321 0.304 1.894 0.836 0.452 5.5 5.1 5.2 18.2 26.5 43.5
50 0.490 0.335 0.358 0.505 0.229 0.128 7.0 4.5 5.8 40.5 59.5 84.2
100 0.361 0.209 0.238 0.183 0.096 0.050 4.4 4.3 5.8 69.8 89.1 99.0

P-MA2SLSMGa

25 0.895 0.286 0.410 1.365 0.672 0.358 6.0 5.3 6.2 21.5 31.9 47.8
50 0.231 0.292 0.269 0.410 0.198 0.110 5.9 4.5 5.1 41.1 63.2 88.2
100 0.222 0.088 0.145 0.186 0.084 0.042 5.6 4.7 4.9 70.1 92.9 99.5

Ps-MA2SLSMGa

25 0.272 -0.250 0.581 3.907 1.982 1.234 5.5 5.4 6.6 13.9 19.4 34.1
50 -0.089 0.037 0.167 0.793 0.350 0.215 5.6 4.4 6.4 33.7 52.8 75.0
100 -0.008 0.085 0.000 0.243 0.110 0.000 6.2 5.0 5.0 63.0 85.1 96.7

2SLSMGa

25 0.895 0.286 0.410 1.365 0.672 0.358 6.0 5.3 6.2 21.5 31.9 47.8
50 0.231 0.292 0.269 0.410 0.198 0.110 5.9 4.5 5.1 41.1 63.2 88.2
100 0.222 0.088 0.145 0.186 0.084 0.042 5.6 4.7 4.9 70.1 92.9 99.5

The DGP is the same as that for Table 5.1 and the number of instruments are 6.
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Table 5.6 (Case C: Low degree of endogeneity, Strong IVs) Bias, MSE of
MA2SLSMGb, P-MA2SLSMGb, Ps-MA2SLSMGb, 2SLSMGb estimates and Size (%)
and power (%) of the associated t-tests for the dynamic heterogeneous panel data
model with {φ, β1, β2} = {0.5, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -0.365 -0.434 -0.563 0.105 0.055 0.034 7.1 6.1 8.6 85.2 97.1 100.0
50 0.024 -0.065 -0.033 0.082 0.041 0.022 5.8 6.7 5.9 93.1 99.4 100.0
100 -0.051 0.013 -0.002 0.069 0.034 0.017 6.1 6.2 4.8 96.1 99.5 100.0

P-MA2SLSMGb

25 -0.358 -0.436 -0.393 0.082 0.043 0.023 6.2 7.4 7.1 90.3 99.2 100.0
50 -0.170 -0.150 -0.224 0.066 0.032 0.018 6.5 5.3 5.8 96.3 100.0 100.0
100 -0.009 -0.116 -0.026 0.059 0.031 0.014 5.6 5.8 5.5 97.2 100.0 100.0

Ps-MA2SLSMGb

25 -0.153 -0.289 -0.452 0.171 0.115 0.068 5.8 4.5 5.6 71.4 90.6 95.6
50 -0.144 -0.203 -0.185 0.104 0.049 0.025 6.1 6.0 5.5 89.5 98.4 99.5
100 -0.116 -0.134 0.000 0.071 0.034 0.000 5.7 5.2 5.6 95.9 99.5 99.7

2SLSMGb

25 -0.366 -0.449 -0.407 0.081 0.043 0.023 6.3 7.4 7.3 90.8 99.3 100.0
50 -0.183 -0.174 -0.238 0.066 0.032 0.018 6.2 4.9 5.8 96.3 100.0 100.0
100 -0.027 -0.129 -0.043 0.059 0.031 0.014 5.8 6.0 5.4 97.2 100.0 100.0

Results for β1.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 0.114 0.607 0.662 1.236 0.546 0.283 7.9 4.9 5.1 22.6 34.5 54.9
50 0.327 0.228 0.327 0.412 0.194 0.101 6.5 4.3 6.1 43.1 64.3 88.2
100 0.253 0.155 0.111 0.176 0.087 0.046 4.6 4.0 4.7 70.5 90 99.3

P-MA2SLSMGb

25 0.674 0.350 0.621 1.079 0.541 0.272 6 5.2 6.1 24.7 37.8 58.2
50 0.247 0.309 0.206 0.351 0.174 0.097 6.5 5.5 5.3 42.2 68.4 90.8
100 0.206 0.092 0.148 0.167 0.079 0.039 5.2 5.3 4.8 72.3 92.9 99.5

Ps-MA2SLSMGb

25 0.442 0.517 1.057 2.664 1.281 0.910 5.1 4.6 5.8 16.4 23.5 39.3
50 0.125 0.459 0.543 0.721 0.304 0.180 5.2 4.5 5.4 38.7 60.2 82.8
100 0.311 0.268 0.000 0.218 0.099 0.000 5.9 5.0 4.0 68.1 88.9 98.5

2SLSMGb

25 0.688 0.395 0.650 1.074 0.532 0.268 6.3 4.7 5.8 24.9 38.5 59.0
50 0.264 0.354 0.226 0.349 0.173 0.097 6.6 5.5 5.2 43.0 68.9 91.2
100 0.240 0.114 0.176 0.166 0.079 0.039 5.0 5.1 4.5 73.0 93.2 99.6

The DGP is the same as that for Table 5.1 except the number of instruments are 12.

76



Table 5.7 (Case D: High degree of endogeneity, Strong IVs) Bias, MSE of
MA2SLSMGa, P-MA2SLSMGa, Ps-MA2SLSMGa, 2SLSMGa estimates and Size
(%) and power (%) of the associated t-tests for the dynamic heterogeneous panel
data model with {φ, β1, β2} = {0.5, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 3.099 3.258 3.021 0.424 0.338 0.235 14.6 22.2 27.8 76.8 91.4 97.5
50 3.347 3.202 3.058 0.386 0.243 0.179 18.7 23.4 33.1 88.0 97.2 99.2
100 1.936 2.001 2.107 0.178 0.121 0.094 11.4 15.6 26.0 92.4 98.8 99.8

P-MA2SLSMGa

25 2.385 2.325 2.608 0.232 0.161 0.148 14.5 21.9 32.0 92.1 99.1 100.0
50 2.134 1.955 2.130 0.180 0.105 0.100 14.5 15.5 27.7 93.9 99.5 100.0
100 1.325 1.275 1.472 0.114 0.064 0.050 10.7 9.8 19.3 95.5 99.8 100.0

Ps-MA2SLSMGa

25 1.910 2.035 1.851 0.397 0.266 0.155 10.0 12.5 13.7 74.8 87.9 95.1
50 1.429 1.438 1.454 0.231 0.180 0.119 8.7 9.5 13.1 83.3 92.7 97.7
100 0.916 0.824 0.807 0.155 0.100 0.050 7.6 6.7 9.0 88.8 96.0 99.1

2SLSMGa

25 2.385 2.325 2.608 0.232 0.161 0.148 14.5 21.9 32.0 92.1 99.1 100.0
50 2.134 1.955 2.130 0.180 0.105 0.100 14.5 15.5 27.7 93.9 99.5 100.0
100 1.325 1.275 1.472 0.114 0.064 0.050 10.7 9.8 19.3 95.5 99.8 100.0

Results for β1.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -5.349 -3.727 -3.043 9.332 4.398 2.076 7.3 6.1 5.7 8.1 7.9 11.0
50 -4.440 -4.395 -4.569 4.018 2.221 1.253 7.6 7.1 7.3 8.7 12.6 14.6
100 -3.065 -3.457 -3.653 2.119 1.137 0.645 6.8 7.5 9.5 12.1 19.5 25.4

P-MA2SLSMGa

25 -2.163 -3.503 -3.766 5.497 3.135 1.704 6.3 6.4 6.0 9.5 11.5 14.8
50 -4.064 -2.688 -3.734 3.313 1.607 0.991 5.3 6.1 7.0 9.5 14.2 18.4
100 -2.361 -2.734 -3.056 1.664 0.981 0.487 5.9 7.5 6.5 13.3 20.3 27.3

Ps-MA2SLSMGa

25 -1.346 -2.933 -1.562 12.377 6.287 3.214 4.8 4.6 5.1 8.0 8.3 12.7
50 -3.407 -2.662 -2.803 5.372 3.307 1.506 6.3 5.7 6.9 9.7 12.4 17.6
100 -1.740 -2.363 -1.591 2.480 1.399 0.618 5.9 6.3 4.9 13.7 19.0 30.6

2SLSMGa

25 -2.163 -3.503 -3.766 5.497 3.135 1.704 6.3 6.4 6.0 9.5 11.5 14.8
50 -4.064 -2.688 -3.734 3.313 1.607 0.991 5.3 6.1 7.0 9.5 14.2 18.4
100 -2.361 -2.734 -3.056 1.664 0.981 0.487 5.9 7.5 6.5 13.3 20.3 27.3

The DGP is the same as that for Table 5.1 and the number of instruments are 6.
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Table 5.8 (Case D: High degree of endogeneity, Strong IVs) Bias, MSE of
MA2SLSMGb, P-MA2SLSMGb, Ps-MA2SLSMGb, 2SLSMGb estimates and Size (%)
and power (%) of the associated t-tests for the dynamic heterogeneous panel data
model with {φ, β1, β2} = {0.5, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 3.405 3.467 3.136 0.293 0.248 0.195 23.9 35.1 45.3 95.5 99.9 100
50 4.645 4.382 4.347 0.384 0.306 0.266 34.3 49.6 66.9 98.8 100 100
100 3.702 3.766 3.809 0.261 0.216 0.205 26.8 44.5 63.4 99.6 100 100

P-MA2SLSMGb

25 2.880 2.976 3.091 0.218 0.190 0.172 21.0 33.8 47.6 98.2 100 100
50 3.425 3.188 3.398 0.239 0.171 0.183 26.9 36.3 56.9 99.8 100 100
100 2.625 2.551 2.720 0.158 0.114 0.108 20.0 29.0 50.3 99.4 100 100

Ps-MA2SLSMGb

25 1.934 2.042 1.801 0.388 0.251 0.151 11.2 12.5 14.2 75 89.2 95.1
50 1.341 1.406 1.429 0.216 0.161 0.098 8.3 9.8 12.1 83.7 93.7 98.3
100 0.948 0.823 0.822 0.151 0.096 0.046 8.0 7.5 9.6 90.4 96.4 99.3

2SLSMGb

25 2.952 3.069 3.170 0.223 0.197 0.179 21.6 35.4 49.0 98.7 100.0 100.0
50 3.593 3.357 3.572 0.252 0.184 0.198 27.9 38.8 59.7 99.9 100.0 100.0
100 2.840 2.760 2.927 0.171 0.127 0.122 22.2 32.8 54.8 99.6 100.0 100.0

Results for β1.

Bias(×100) MSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -4.859 -3.458 -3.125 5.585 2.521 1.250 7.9 5.5 6.1 9.7 11.2 15.2
50 -5.657 -5.736 -5.563 2.930 1.835 1.068 8.2 9.6 11.5 7.9 13.5 14.7
100 -5.207 -5.618 -5.709 1.789 1.139 0.745 7.8 10.5 18.0 11 15.3 20.4

P-MA2SLSMGb

25 -2.521 -3.647 -4.109 4.094 2.379 1.362 7.0 7.2 6.8 9.8 12 16.3
50 -5.646 -4.120 -4.909 2.785 1.407 0.982 7.4 7.8 10.4 9.2 14.3 19
100 -3.805 -4.285 -4.518 1.498 0.920 0.566 6.7 9.7 10.9 11.9 17.5 24.1

Ps-MA2SLSMGb

25 -1.975 -3.021 -1.484 12.084 6.242 3.233 4.6 5.1 5.0 7.3 8.0 13.0
50 -3.317 -2.504 -2.626 5.274 3.102 1.409 6.1 5.3 6.4 10.1 12.1 18.4
100 -1.879 -2.400 -1.575 2.462 1.358 0.613 6.2 6.2 5.2 13.7 19.2 30.7

2SLSMGb

25 -2.592 -3.719 -4.173 4.068 2.361 1.364 6.9 7.0 7.3 9.7 11.6 16.3
50 -5.814 -4.347 -5.082 2.767 1.406 0.996 7.4 8.0 10.3 9.4 13.9 19.0
100 -4.085 -4.556 -4.765 1.478 0.932 0.583 6.7 9.8 12.3 11.4 17.2 24.0

The DGP is the same as that for Table 5.1 except the number of instruments are 12.
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Chapter 6

Conclusion

In this thesis, we have developed estimation and inferential methods for linear dy-
namic panel data models with unobserved additive and interactive effects for short
panels and large panels.

In Chapter 2, after a review of Nickell (1981) bias, the conventional instrumental
variable (IV) of Anderson and Hsiao (1981, 1982) and generalised method of mo-
ments (GMM) estimation methods of Arellano and Bond (1991) and Blundell and
Bond (1998) for short dynamic panel data models, the transformed maximum likeli-
hood (TML) estimator of Hayakawa and Pesaran (2015a), the bias-corrected method
of moments (BMM) estimator of Chudik and Pesaran (2017), and the double filter
instrumental variable (DFIV) estimator of Hayakawa et al. (2019) are discussed. To
assess the finite sample behaviour of these estimators, a Monte Carlo experiment is
conduced. We particularly investigate the effects of different initial conditions. We
find that in terms of the bias and the RMSE, the TML estimator and the BMM
estimator perform better for all the designs. The size of the t-tests based on the
TML estimator and the BMM estimator is close to the nominal level. The DFIV
estimator is the least efficient among these three estimators in our design.

In Chapter 3, we have extended the quasi maximum likelihood (QML) estimator
for short dynamic panel data models with interactive effects proposed by Hayakawa
et al. (2021) to the case where the errors are cross-sectionally heteroskedastic, us-
ing a similar approach discussed in Hayakawa and Pesaran (2015a). Extending the
error to cross-sectionally heteroskedastic is important in empirical studies, because
the heteroskedasticity is generic and standard in real world (See Hansen (2020)).
We apply our method to an annual panel data set which consists of 16,502 US firms
over the period from 1960 to 2017 to empirically assess the trade off theory (Graham
and Harvey (2001)). In particular We find that the speed of adjustment (SOA) of
the US firms is between 74% and 86% from 1960 to 1999, whilst it decreases around
32% from 2000 to 2007, followed by around 60% after 2008. The value of SOA we
have found is higher than that in other existing research (Ozkan (2001), Fama and
French (2002), Kayhan and Titman (2007), Flannery and Rangan (2006), Lemmon
et al. (2008) and Dang et al. (2014)), which suggests the importance of controlling
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unobserved interactive effects. As a future research agenda, it would be intriguing
to extend the current framework to accommodate an asymmetric partial adjust-
ment model. Similarly, it would be illuminating to extend to permit heterogeneous
dynamic partial adjustment capital structure.

In Chapter 4, we extended the QML estimator of Hayakawa et al. (2021) for
the estimation of short panel vector autoregressive (VAR) models with interactive
effects. Holtz-Eakin et al. (1988) and Binder et al. (2005), among others, consider
estimation and inference on cross-sectionally independent short panel VAR models.
The finite sample evidence provided by Juodis (2018) shows that the TML estimator
outperforms the GMM based estimators. A few studies focus on the estimation of
panel VAR models with cross section dependence (Mutl (2009) and Huang (2008)),
however, these methods are not asymptotically justified for the models with interac-
tive effects. In the Monte Carlo results, we show that the proposed QML estimator
performs reasonably well. But, in line with the theoretical results in Hayakawa
et al. (2021), we conjecture that global identification of the QML estimator is not
possible. Further research into the identification conditions for the QML estimator
in the multivariate case would be of future interest. Also it would be of interest
to consider quasi maximum likelihood estimation of large scale panel VAR models
with sparse coefficients in the presence of cross-sectional dependence. Furthermore,
it would also be of interest to extend the panel VAR model to panel error correction
setting and investigate nonstationarity under cross-sectional dependence.

Based on Kuersteiner and Okui (2010), in Chapter 5 we have proposed a method
to choose a set of weights to average instrumental variable (IV) estimators proposed
by Norkutė et al. (2021) for large dynamic panel data models with interactive ef-
fects. Norkutė et al. (2021) provides the IV estimators that use lagged defactored
covariates in the model as instrumental variables. Therefore, this IV estimator does
not need to search for instruments outside the model. However, when T increases,
the number of valid instruments rises. Norkutė et al. (2021) is silent about how to
choose a set of instruments to avoid the problems due to having too many instru-
ments or weak instruments. To tackle this problem, we take the approach proposed
by Kuersteiner and Okui (2010). In particular, they propose a procedure to choose
a set of weights to average the IV estimators, which are computed using different
subset of available instrumental variables. The weights are chosen so that the mean
squared error of the average of the IV estimators is theoretically minimised. The
estimator is called model average two stage least square (2SLS) estimator, and we
apply this approach to the IV estimator of Norkutė et al. (2021). The empirical
evidence shows that the proposed model average 2SLS estimator can reduce the
bias but not the mean squared errors (MSE). As a future research agenda, we may
apply another instruments selection method, such as Windmeijer et al. (2019), to
see whether it can improve MSE.
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Appendix A

Appendix to Chapter 2

A.1 Bias of LS estimator

Given t, the LS estimator as

plim
N→∞

(
φ̂t − φ

)
=

plimN→∞ 1/N
∑N

i=1(yi,t−1 − ȳi,−1)(ui,t − ūi)
plimN→∞ 1/N

∑N
i=1(yi,t−1 − ȳi,−1)2

. (A.1)

Suppose

At = plim
N→∞

1/N
N∑
i=1

(yi,t−1 − ȳi,−1)(ui,t − ūi)

and by taking expectation across i, we have

At =Ei(yi,t−1 − ȳi,−1)(ui,t − ūi)
=Ei(yi,t−1ui,t)− Ei(yi,t−1ūi)− Ei(ȳi,−1ui,t) + E(ȳi,−1ūi),

(A.2)

where Ei(yi,t−1ui,t) = 0. By setting stationarity assumption in the AR(1) model, we
have

yi,t =
αi

(1− φ)
+
∞∑
j=0

φjui,t−j. (A.3)

Then substitute (A.3) to (A.2), we have

At =− Ei

{
(
∞∑
j=0

ui,t−j−1φ
j)(

1

T

T∑
s=1

ui,t)

}
− Ei

{
ui,t
T

T∑
s=1

∞∑
j=0

uis−j−1φ
j

}
+

Ei

{
(

1

T

T∑
s=1

∞∑
j=0

ui,t−j−1φ
j)(

1

T

T∑
s=1

ui,t)

}
.

(A.4)
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And we know Eiui,t = Eiui,tαi = 0 and Eiu
2
i,t = σ2

u, then

At =− 1

T
Ei
{(
ui,t−1 + ui,t−2φ

1 + ui,t−3φ
2 + . . .

)
(ui1 + . . .+ ui,t−1 + ui,t + . . .+ ui,T )

}
−

1

T
Ei

{
ui,t

T∑
s=1

(
uis−1φ

0 + uis−2φ
1 + . . .+ uis−t−1φ

t + . . .+ uis−T−1φ
T + . . .

)}
+

1

T
Ei

{(
T∑
s=1

uis−1φ
0 +

T∑
s=1

uis−2φ
1 + . . .+

T∑
s=1

uis−t−1φ
t + . . .+

T∑
s=1

uis−T−1φ
T + . . .

)(
1

T

T∑
s=1

uis

)}

=− σ2
u

T

(1− φt−1)

1− φ
− σ2

u

T

(1− φT−t)
(1− φ)

+
σ2
u

T

[
1

1− φ
− 1

T

(1− φT )

(1− φ)2

]
=− σ2

u

T (1− φ)

{
1− φt−1 − φT−t +

1

T

(1− φT )

(1− φ)

}
.

(A.5)

For Bt, we have

Bt =Ei (yi,t−1 − yi.−1)2

=Ei

(
∞∑
j=0

φjui,t−j−1 −
1

T

T∑
s=1

∞∑
j=0

φjuis−j−1

)2

=Ei

(
∞∑
j=0

φjui,t−j−1

)2

− 2

T
Ei

(
∞∑
j=0

φjui,t−j−1

)(
∞∑
s=1

∞∑
j=0

φjuis−j−1

)
+

1

T 2
Ei

(
T∑
s=1

∞∑
j=0

uis−j−1

)2

=Ei
(
φoui,t−1 + φ1ui,t−2 + . . .

)2−

2

T
Ei

((
φoui,t−1 + φ1ui,t−2 + . . .

)(
φ0

T∑
s=1

uis−1 + φ1

T∑
s=1

uis−2 + . . .

))

=
σ2
u

1− φ2
− 2σ2

u

T (1− φ2)

{
1− φt

1− φ
+ φ

(1− φT−t)
1− φ

}
+

σ2
u

T (1− φ)2

{
1− 2φ(1− φT )

T (1− φ2)

}
=

σ2
u

1− φ2

(
1− 1

T

)
+

σ2
u

T (1− φ2)

[
1− 2

(
1− φt + φ− φT−t+1

1− φ

)]
+

2φ

1− φ2

[
σ2
u (1− φ2)

2T (1− φ2)
−
σ2
u

(
1− φT

)
T 2 (1− φ)2

]

=
σ2
u

1− φ2

(
1− 1

T

)
+

2φ

1− φ2

{
− σ2

u

T (1− φ)

(
−(1− φ)

2φ
+

1− φt+ φ− φT−t+1

φ
− (1− φ2)

2φ(1− φ)
+

(1− φT )

T (1− φ)

)}
=

σ2
u

1− φ2

(
1− 1

T

)
+

2φ

1− φ2
At.

(A.6)
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Then we can know the bias of within group estimator is

plim
N→∞

(φ̂t − φ) =
At
Bt

=


σ2
u

1− φ2

(
1− 1

T

)
+

2φ

1− φ2
At

At


−1

=


σ2
u

1− φ

(
T − 1

T

)
+

2φ

1− φ2
− σ2

u

T (1− φ)

[
1− φt−1 − φT−t +

1

T

(
1− φT

)
(1− φ)

]

− σ2
u

1− φ2

[
1− φt−1 − φT−t +

1

T

(
1− φT

)
(1− φ)

]


−1

=

{
2φ

1− φ2
−
[

1 + φ

T − 1
(1− φt−1 − φT−t +

1

T

1− φT

1− φ
)

]−1
}−1

=

 2φ

(1− φ) (1 + φ)
− T − 1

1 + φ

[
1− φt−1 − φT−t +

1

T

(
1− φT

)
(1− φ)

]−1

−1

= − 1 + φ

T − 1

(
1− φt−1 − φT−t +

1

T

(
1− φT

)
(1− φ)

)
×{

1− 2φ

(1− φ) (T − 1)

[
1− φt−1 − φT−t +

1

T

(
1− φT

)
(1− φ)

]}−1

.

(A.7)

We can observe that yi,t−1 is correlated with ui.. Therefore, LS estimator is
inconsistent and the bias is of order T−1. Apart from that, within group estimator
exhibits a downward bias when φ > 0.

A.2 Hsiao et al. (2002) Transformed likelihood

estimation in standard dynamic panel data

models with fixed effects

Consider the model include regressors, then the model can be written as

yi,t = φyi,t−1 + βxi,t + αi + µi,t, t = 1, . . . , T ; i = 1, . . . , N. (A.8)

We assume yi0 and xi0 are available. By taking first difference, the model can be
expressed as

∆yi,t = φ∆yi,t−1 + β∆xi,t + ∆µi,t, t = 2, 3, . . . , T ; i = 1, . . . , N (A.9)

where ∆yi,t = yi,t− yi,t−1, ∆xi,t = xi,t− xi,t−1 and ∆ui,t = ui,t− ui,t−1. However, we
cannot find ∆yi,1 because yi,−1 is not observed. Therefore, starting from ∆yi,−m+1
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and by continuous substitution, ∆yi,1 can be expressed as

∆yi,1 = φm∆yi,−m+1 + β
m−1∑
j=0

φj∆xi,1−j +
m−1∑
j=0

φj∆ui,1−j, i = 1...N. (A.10)

Because ∆xi,1−j , j=1,2,. . . are unobserved, the mean of ∆yi,1 conditional on ∆yi,−m+1

and ∆ui,1−j for j=0,1,2,... as

ηi,1 =E(∆yi,1|∆yi,−m+1,∆xi,1,∆xi,0, ...) (A.11)

=φm∆yi,−m+1 + β
m−1∑
j=0

φj∆xi,1−j, i = 1, 2, ..., N.

Because ηi,1 is a free parameter, we will encounter incidental parameter problem.
To deal with this problem, ηi,1 should be a function of a finite number parameters.
Meanwhile, xi,t should be generated by

xi,t =ui + gt+
∞∑
j=0

ajεi,t−j,
∞∑
j=0

|aj| <∞,

or

∆xi,t =g +
∞∑
j=0

djεi,t−j,
∞∑
j=0

|dj| <∞,

(A.12)

where εi,t ∼ i.i.d.(0, σ2
ε ). If the generating processes xi,t follow random walks with

drift and the drift parameters are different in different individual or xi,t have different
trend in different individual. Thus, the transformed likelihood method will confront
the incidental parameters problem. we continue assume that |φ| < 1 and m → ∞,
or m is finite and E(∆yi,t−1|∆xi,1,∆xi,2, ...,∆xi,T ) is the same for all i.

Hsiao et al. (2002) distinguish two case: strictly exogenous and weakly exoge-
nous. When the disturbance term ui,t is independent with current, lagged and future
value of xi,t, regressors are strictly exogenous. When the disturbance term ui,t is
independent with current and lagged value of xi,t, regressors are weakly exogenous.

For the model with strict exogenous regressors, the joint probability density
function of ∆yi condition on ∆xi can be written as

f(∆yi|∆xi) =f(∆yi,T |∆yi,T−1, ...,∆yi1,∆xi)

f(∆yi,T−1|∆yi,T−2, ...,∆yi,1,∆xi)

f(∆yi,T−2|∆yi,T−3, ...,∆yi,1,∆xi)...

f(∆yi,2|∆yi1,∆xi)f(∆yi,1|∆xi).

(A.13)

And, ηi,1 = E(∆yi,1|∆yi,−m+1,∆xi,1,∆xi,0, ...) can be expressed as

ηi1 = b∗ + β∆xi1 + βΣm−1
j=1 φ

jE(∆xi,1−j|∆xi) + qi1. (A.14)
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Under assumption, b∗ = b = 0 and qi,1 = ηi,1 − E(ηi,1|∆xi). From x generating
process, we know

∆xi,t = g +
∞∑
j=0

d∗jεi,t−j,

∞∑
j=0

|d∗j | <∞, (A.15)

If m is finite, we have
E(∆xi,1−j|∆xi) = bj + π

′

j∆xi. (A.16)

Therefore, f(∆yi,1|∆xi) can be written as

∆yi1 = b∗ + π
′
∆xi + νi1, (A.17)

where π is a unknown T × 1 vector and νi1 = qi,1 +
∑m−1

j=0 φj∆ui,1−j.

For model include weak exogenous regressors, ∆wi,t = (∆yi,t,∆xi,t). The joint
pdf of (∆wi,1, . . . ,∆wi,T ) is

f(∆wi,T |=i,T−1)f(∆wi,T−1|=i,T−2), ..., f(∆wi,2|=i,1)f(∆wi,1|=i,0), (A.18)

where =i,t = (∆wi,t,∆wi,t−1, ...,∆wi,1), t = 1, 2, ..., T − 1 , and =i,0 normalized at
unity. Thus, the likelihood function can be expressed as

N∏
i=1

T∏
t=1

f(∆yi,t, | =i,t−1,∆xi,t). (A.19)

As we know

E(∆yi,1|∆xi,1) = b∗ + β
m−1∑
j=0

φjE(∆xi,1−j|∆xi1) +
m−1∑
j=0

φjE(∆ui,1−j|∆xi1). (A.20)

By using projection, E(∆xi,1−j) = ψj0 +ψj1∆xi,1, and E(∆ui,1−j) = ϕj0 +ϕj1∆xi,1.
The ψj0, ψj1, ϕj0, ϕj1 can derived from the parameters of the joint probability density
function. Under above result, E(∆yi,1|∆xi,1) = δj0 + δ∆xi,1, where δj0, δj1 can be
treat as free parameters. Thus,

∆yi,1 = δ0 + δ1∆xi,1 + ξi,1, (A.21)

where

ξi,1 = β

m−1∑
j=1

φj(∆xi,1−j−ψj0−ψj1∆xi1) +
m−1∑
j=0

φj(∆ui,1−j−ϕj,0−ϕj,1∆xi,1). (A.22)

Therefore, the likelihood function can be expressed as

(2π)
−NT

2 |Ω|
−N

2 exp{−1

2

N∑
i=1

∆u∗
′

i Ω−1∆u∗i }, (A.23)
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where

∆u∗i = [∆yi,1− b∗−π∗
′
∆xi,∆yi,2−φ∆yi,1−β∆xi,2, . . . ,∆yi,T −φ∆yi,T−1−β∆xi,T ]

′

(A.24)
By minimizing

∑N
i=1 ∆u∗

′
i Ω−1∆u∗i , the MLE of (φ, β) is given by

(
φ̂

β̂

)
=[(

N∑
i=1

G̃
′

iG̃i)− (
N∑
i=1

G̃
′

i∆X̃
∗
i )(

N∑
i=1

∆X̃
∗′
i ∆X̃

∗
i )
−1(

N∑
i=1

∆X̃
∗′
i G̃i)]

−1×

[(
N∑
i=1

G̃
′

i∆ỹi)− (
N∑
i=1

G̃
′

i∆X̃
∗
i )(

N∑
i=1

∆X̃
∗′
i ∆X̃

∗
i )
−1(

N∑
i=1

∆X̃
∗′
i ∆ỹi)],

(A.25)

where ∆X̃
∗
i = (p1,p1∆x

′
i), G̃i =

(
∆ỹi,−1,∆x̃i

)
and ∆ỹi = P∆yi with ∆ỹi,−1 =

P (0,∆yi,1, . . . ,∆yi,T−1)
′

and ∆x̃i = P (0,∆xi,2, . . . ,∆xi,T )
′
, p1 is the first column

of P and P = D−1/2C. C and D is defined in Eqs. (3.5) and Eqs (3.6) of Hsiao
et al. (2002), respectively.

A.3 Transformed likelihood estimators

δ =
(
b∗

π

)
, θ =

(
φ
β

)
, vi = P∆ui

∗ = ∆ỹi −∆X̃i
∗
δ − G̃iθ and ψ(δ, θ) =

∑N
i=1 vi

′
vi.

Differentiate ψ(δ,θ) with respect to θ and equal to zero

∂ψ(δ,θ)

∂θ
= −2

N∑
i=1

G̃i

′

(∆ỹi −∆X̃i
∗
δ − G̃iθ) = 0. (A.26)

(
N∑
i=1

G̃i

′

G̃i)θ̂ =
N∑
i=1

G̃i

′

(∆ỹi −∆X̃i
∗
δ̂), (A.27)

then we get

θ̂ = (
N∑
i=1

G̃i

′

G̃i)
−1(

N∑
i=1

G̃
′

i∆ỹi −
N∑
i=1

G̃
′

i∆X̃
∗
i δ̂). (A.28)

Differentiate ψ(δ,θ) with respect to δ and equal to zero

∂ψ(δ,θ)

∂δ
= −2

N∑
i=1

∆X̃i
∗
′

(∆ỹi −∆X̃i
∗
δ − G̃iθ) = 0. (A.29)

(
N∑
i=1

∆X̃i
∗
′

∆X̃i
∗)δ̂ =

N∑
i=1

∆X̃i
∗
′

(∆ỹi − G̃iθ̂), (A.30)
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then we get

δ̂ = (
N∑
i=1

∆X̃i
∗
′

∆X̃i
∗)−1(

N∑
i=1

∆X̃i
∗
′

∆ỹi −
N∑
i=1

∆X̃i
∗
′

G̃iθ̂). (A.31)

Substitute (A.28) to (A.30), then

(
N∑
i=1

∆X̃i
∗
′

∆X̃i
∗)δ̂ =

[(
N∑
i=1

∆X̃i
∗
′

∆ỹi)− (
N∑
i=1

∆X̃i
∗
′

G̃i)(
N∑
i=1

G̃i

′

G̃i)
−1(

N∑
i=1

G̃i

′

∆ỹi −
N∑
i=1

G̃i

′

∆X̃i
∗δ̂)]

(A.32)

⇒ [(
N∑
i=1

∆X̃i
∗
′

∆X̃i
∗) + (

N∑
i=1

∆X̃i
∗
′

G̃i)(
N∑
i=1

G̃i

′

G̃i)
−1(

N∑
i=1

G̃i

′

∆X̃i
∗)]δ̂ =

[(
N∑
i=1

∆X̃i
∗
′

∆ỹi)− (
N∑
i=1

∆X̃i
∗
′

G̃i)(
N∑
i=1

G̃i

′

G̃i)
−1(

N∑
i=1

G̃i

′

∆ỹi)].

(A.33)

⇒ δ̂ = [(
N∑
i=1

∆X̃i
∗
′

∆X̃i
∗) + (

N∑
i=1

∆X̃i
∗
′

G̃i)(
N∑
i=1

G̃i

′

G̃i)
−1(

N∑
i=1

G̃i

′

∆X̃i
∗)]−1×

[(
N∑
i=1

∆X̃i
∗
′

∆ỹi)− (
N∑
i=1

∆X̃i
∗
′

G̃i)(
N∑
i=1

G̃i

′

G̃i)
−1(

N∑
i=1

G̃i

′

∆ỹi)].

(A.34)

Substitute (A.31) to (A.28), then

θ̂ = (
N∑
i=1

G̃i

′

G̃i)
−1×

[(
N∑
i=1

G̃i

′

∆ỹi)− (
N∑
i=1

G̃i

′

∆X̃i
∗)(

N∑
i=1

∆X̃i
∗
′

∆X̃i
∗)−1(

N∑
i=1

∆X̃i
∗
′

∆ỹi −
N∑
i=1

∆X̃i
∗
′

G̃iθ̂)]

(A.35)

⇒ [(
N∑
i=1

G̃i

′

G̃i)− (
N∑
i=1

G̃i

′

∆X̃i
∗)(

N∑
i=1

∆X̃i
∗
′

∆X̃i
∗)−1(

N∑
i=1

∆X̃i
∗
′

G̃i)]θ̂ =

[(
N∑
i=1

G̃i

′

∆ỹi)− (
N∑
i=1

G̃i

′

∆X̃i
∗)(

N∑
i=1

∆X̃i
∗
′

∆X̃i
∗)−1(

N∑
i=1

∆X̃i
∗′∆ỹi)]

(A.36)
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⇒ θ̂ = [(
N∑
i=1

G̃i

′

G̃i)− (
N∑
i=1

G̃i

′

∆X̃i
∗)(

N∑
i=1

∆X̃i
∗
′

∆X̃i
∗)−1(

N∑
i=1

∆X̃i
∗
′

G̃i)]
−1×

[(
N∑
i=1

G̃i

′

∆ỹi)− (
N∑
i=1

G̃i

′

∆X̃i
∗)(

N∑
i=1

∆X̃i
∗
′

∆X̃i
∗)−1(

N∑
i=1

∆X̃i
∗
′

∆ỹi)].

(A.37)

A.4 Derivatives first- and second-order derivatives

of log-likelihood function

Likelihood function: (2π)−
NT
2 |Ω|−N2 exp{−1

2

∑N
i=1 ∆ui

∗(Ω)−1∆ui
∗}, where

∆u∗i = [∆yi,1− b∗−π∗
′
∆Xi,∆yi2− φ∆yi1− β∆xi2, ...,∆yi,T − φ∆yi,T−1− β∆xi,T ]

′

and

Ω = σ2
u


ω −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . . −1
0 0 0 −1 2

 = σ2
uΩ
∗.

Let ϕ = (b∗,π
′
, φ, β)

′
, and

∆W̃i =


1 ∆x

′
i 0 0

0 0 ∆yi,1 ∆xi,2
0 0 ∆yi,2 ∆xi,2
...

...
...

...
0 0 ∆yi,T−1 ∆xi,T ,

 .

(Ω∗)−1 = adj(Ω∗)
|Ω∗| and we know |Ω∗| = 1 + T (ω − 1),

adj(Ω∗) =


(1) (2) · · · (3) (4)
(5) (6) · · · (7) (8)
...

...
...

...
...

(9) (10) · · · (11) (12)
(13) (14) · · · (15) (16)

 ,
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For (1): ∣∣∣∣ 2 −1
−1 2

∣∣∣∣
2×2

= 3,∣∣∣∣∣∣
−2 −1 0
−1 2 −1
0 −1 2

∣∣∣∣∣∣
3×3

= 4, · · · ,

∣∣∣∣∣∣∣∣∣
2 −1 · · · 0
−1 2 · · · 0
...

...
. . . −1

0 0 −1 2

∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

= T.

For (2) and (5):

(−1)

∣∣∣∣∣∣∣∣∣∣∣

−1 −1 0 · · · 0
0 2 −1 · · · 0

0 −1 2
... 0

...
...

...
...

...
0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

=

∣∣∣∣∣∣∣∣∣
2 −1 · · · 0

−1 2
... 0

...
...

...
...

0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(T−2)(T−2)

= T − 1.

For (3) and (9)

(−1)(T−1)+1

∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 · · · 0
2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
... · · · 0

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

= (−1)(T+1)

∣∣∣∣∣∣∣∣∣
−1 0 0 · · · 0
2 −1 0 · · · 0
...

...
... · · · 0

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(T−2)×(T−2)

=

(−1)(T−(T−1))

∣∣∣∣−1 0
−1 2

∣∣∣∣ = 2.

For (4) and (13)∣∣∣∣∣∣∣∣∣∣∣

−1 2 −1 · · · 0
0 −1 2 · · · 0
0 0 −1 · · · 0
...

...
...

...
...

0 0 · · · 0 −1

∣∣∣∣∣∣∣∣∣∣∣
= ... =

∣∣∣∣−1 2
0 −1

∣∣∣∣ = 1.
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For (6)∣∣∣∣∣∣∣∣∣∣∣

ω 0 0 · · · 0
0 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

...
...

0 0 · · · −1 2

∣∣∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

= (−1)(1+1)ω

∣∣∣∣∣∣∣∣∣∣∣

2 −1 · · · 0
−1 2 · · · 0
0 −1 · · · 0
...

... · · · ...
0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
(T−2)×(T−2)

=

ω(T − 1).

For (7) and (10)

(−1)T

∣∣∣∣∣∣∣∣∣∣∣

ω 0 0 · · · 0
−1 −1 0 · · · 0
0 2 −1 · · · 0
...

...
...

...
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

= ω

∣∣∣∣∣∣∣∣∣
−1 0 · · · 0
2 −1 · · · 0
...

...
...

...
0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(T−2)×(T−2)

=

(−1)T−(T+1)ω

∣∣∣∣−1 0
−1 2

∣∣∣∣ = 2ω.

For (8) and (14)∣∣∣∣∣∣∣∣∣∣∣

ω 0 0 · · · 0
−1 −1 0 · · · 0
0 2 −1 · · · 0
...

...
...

...
...

0 0 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

= ω

∣∣∣∣∣∣∣∣∣
−1 0 · · · 0
2 −1 · · · 0
...

...
...

...
0 0 · · · −1

∣∣∣∣∣∣∣∣∣
(T−2)×(T−2)

=

ω

∣∣∣∣−1 2
0 −1

∣∣∣∣
2×2

= ω.
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For (11)∣∣∣∣∣∣∣∣∣∣∣∣∣

ω −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 2 0
0 0 0 0 · · · 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

= 22(T−1)

∣∣∣∣∣∣∣∣∣∣∣

ω −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
(T−2)×(T−2)

=

2[ω

∣∣∣∣∣∣∣∣∣
2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(t−3)×(T−3)

+ (−1)3

∣∣∣∣∣∣∣∣∣
−1 0 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(T−3)×(T−3)

] =

2[(T − 2)ω −

∣∣∣∣∣∣∣∣∣
2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(T−4)×(T−4)

] = 2((T − 2)ω − (T − 3)).

For (12) and (15)∣∣∣∣∣∣∣∣∣∣∣∣∣

ω −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 2 0
0 0 0 0 · · · −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣

ω −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
(T−2)×(T−2)

=

ω

∣∣∣∣∣∣∣∣∣
2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(t−3)×(T−3)

+ (−1)3

∣∣∣∣∣∣∣∣∣
−1 0 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(T−3)×(T−3)

=

(T − 2)ω −

∣∣∣∣∣∣∣∣∣
2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(T−4)×(T−4)

= (T − 2)ω − (T − 3).
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For (16)∣∣∣∣∣∣∣∣∣∣∣

ω −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

...
...

0 0 . . . −1 2

∣∣∣∣∣∣∣∣∣∣∣
(T−1)×(T−1)

=

ω

∣∣∣∣∣∣∣∣∣∣∣

2 −1 · · · 0
−1 2 · · · 0
0 −1 · · · 0
...

... · · · ...
0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
(T−2)×(T−2)

+ (−1)(2+1)(−1)

∣∣∣∣∣∣∣∣∣∣∣

−1 −1 0 · · · 0
0 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

...
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
(T−2)×(T−2)

=

(T − 1)ω −

∣∣∣∣∣∣∣∣∣
2 −1 · · · 0
−1 2 · · · 0
...

...
...

...
0 0 · · · 2

∣∣∣∣∣∣∣∣∣
(T−3)×(T−3)

= (T − 1)ω − (T − 2).

Then we can see that

(Ω∗)−1 = (1 + T (ω − 1))−1×
T (T − 1) · · · 2 1

(T − 1) (T − 1)ω · · · 2ω ω
...

...
...

...
...

2 2ω · · · 2[(T − 2)ω − (T − 3)] (T − 2)ω − (T − 3)
1 ω · · · (T − 2)ω − (T − 3) (T − 1)ω − (T − 2)


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log-likelihood function:

lnL = −NT
2

ln(2π)− N

2
ln |Ω| − 1

2

N∑
i=1

[(∆yi −∆W̃iϕ)
′
Ω−1(∆yi −∆W̃iϕ)]

= −NT
2

ln(2π)− NT

2
ln(σ2

u)−
N

2
ln[1 + T (ω − 1)]−

1

2

N∑
i=1

[(∆yi −∆W̃iϕ)
′
Ω−1(∆yi −∆W̃iϕ)].

Differentiate log-likelihood function with respect to ϕ and equate to zero

∂ lnL

∂ϕ
= −1

2
× (−2)

N∑
i=1

∆W̃i

′

(Ω̂)−1(∆yi −∆W̃iϕ̂)] = 0

⇒
N∑
i=1

(∆W̃i(Ω̂)−1∆yi) =
N∑
i=1

(∆W̃
′
i (Ω̂)−1∆W̃iϕ̂)

⇒ ϕ̂ = (
N∑
i=1

∆W̃
′
i (Ω̂

∗)−1∆W̃i)
−1(

N∑
i=1

∆W̃i(Ω̂
∗)−1∆yi),

where, (Ω̂)−1 = 1
σ2
u
(Ω̂∗)−1.

Differentiate log-likelihood function with respect to σ2
u and equate to zero

∂ lnL

∂σ2
u

= −NT
2σ̂2

u

− (−1)
1

2(σ̂2
u)

2

N∑
i=1

[∆yi −∆W̃iϕ̂)
′
(Ω̂∗)−1(∆yi −∆W̃iϕ̂)] = 0

⇒ σ̂2
u =

1

NT

N∑
i=1

[∆yi −∆W̃iϕ)
′
(Ω̂∗)−1(∆yi −∆W̃iϕ̂)].

Differentiate log-likelihood function with respect to ω and equate to zero

By
∂
A(x)
B(x)

∂x
=

B(x)
∂A(x)
∂x
−B(x)

∂x
A(x)

(B(x))2 ,

∂ lnL

∂ω
= − NT

2[1 + T (ω̂ − 1)]
− 1

2σ2
u[1 + T (ω̂ − 1)]2

1

NT

N∑
i=1

[∆yi −∆W̃iϕ̂)
′
Φ(∆yi −∆W̃iϕ̂)] = 0

⇒ 1 + T (ω̂ − 1) =
1

NT

N∑
i=1

[∆yi −∆W̃iϕ̂)
′
Φ(∆yi −∆W̃iϕ̂)]

⇒ ω̂ =
T − 1

T
+

1

NT 2

N∑
i=1

[∆yi −∆W̃iϕ̂)
′
Φ(∆yi −∆W̃iϕ̂)],
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where

Φ = [1 + T (ω − 1)]


0 0 . . . 0 0
0 (T − 1) . . . 2 1
...

...
...

...
...

0 2 · · · 2(T − 2) (T − 2)
0 1 · · · (T − 2) (T − 1)



− T


T (T − 1) 2 1

(T − 1) (T − 1)ω 2ω ω
...

...
...

...
...

2 2ω · · · 2[(T − 2)ω − (T − 3)] (T − 2)ω − (T − 3)
1 ω · · · (T − 2)ω − (T − 3) (T − 1)ω − (T − 2)



=


−T 2 −T (T − 1) · · · −2T −T )

−T (T − 1) −(T − 1)2 · · · −2(T − 1) −(T − 1)
...

...
...

...
...

−2T −2(T − 1) . . . −4 −2
−T −(T − 1) . . . −2 −1



= −


T 2 T (T − 1) · · · 2T T )

T (T − 1) (T − 1)2 · · · 2(T − 1) (T − 1)
...

...
...

...
...

2T 2(T − 1) . . . 4 2
T (T − 1) . . . 2 1

 .

Second order differential:
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∂2 lnL

∂ϕ∂ϕ′
= −

N∑
i=1

∆W̃i

′

Ω−1W̃i = − 1

σ2
u

N∑
i=1

∆W̃i

′

(Ω∗)−1W̃i.

∂2 lnL

∂ϕ∂σ2
u

= − 1

σ4
u

N∑
i=1

[∆W̃i(Ω
∗)−1(∆yi −∆W̃iϕ)].

∂2 lnL

∂ϕ∂ω
= − 1

σ2
u[1 + T (ω − 1)]2

N∑
i=1

[∆W̃i

′

Φ(∆yi −∆W̃iϕ)].

∂2 lnL

∂ω2
= −(−1)

NT

2[1 + T (ω − 1)]2
+

1

2
(−2)

T

σ2
u[1 + T (ω − 1)]3

N∑
i=1

[∆yi −∆W̃iϕ)
′
(Φ)(∆yi −∆W̃iϕ)].

∂2 lnL

∂(σ2)2
= −(−1)

NT

2σ4
u

+
−2

2σ6

N∑
i=1

[∆yi −∆W̃iϕ)
′
(Ω∗)−1(∆yi −∆W̃iϕ)].

∂2 lnL

∂ω∂σ2
u

= (−1)
1

2σ4
u[1 + T (ω − 1)]2

N∑
i=1

[(∆yi −∆W̃iϕ)
′
(Φ)(∆yi −∆W̃iϕ)].
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Appendix B

Appendix to Chapter 3

B.1 Computing for the QML estimator

To compute the pseudo QML estimators, we use the eigenvalue approach by Hayakawa
et al. (2021). Form pseudo log-likelihood function (3.16), we have∣∣∣Ω (ω) +QQ

′
∣∣∣ = |Ω (ω)|

∣∣∣Im +Q
′
Ω−1 (ω)Q

∣∣∣
and(

Ω (ω) +QQ
′
)−1

= Ω−1 (ω)−Ω−1 (ω)QA−1Q
′
Ω−1 (ω) ,

(B.1)

where A = Im +Q
′
Ω−1 (ω)Q. Then, the pseudo log likelihood function (3.16) can

be written as

N−1`p,N (θ) ∝ −T
2

ln
(
σ2
)
− 1

2
ln |Ω (ω)| − 1

2
|A| −

1

2σ2

(
tr
(
BNΩ−1 (ω)

)
− tr

(
BNΩ−1 (ω)QQ

′
Ω−1 (ω)

))
,

(B.2)

where

|Ω (ω)| = 1 + T (ω − 1) , and BN =
N∑
i=1

ξi (ϕ) ξ
′

i (ϕ) /N (B.3)

Let P = Ω−1/2 (ω)QA−1/2 and rank (P ) = m, we have

Im − P
′
P = Im −A−1/2Q

′
Ω−1 (ω)QA−1/2, (B.4)

and we know

Q
′
Ω−1 (ω)Q = A− Im, (B.5)
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and

Im − P
′
P = Im −A−1/2 (A− Im)A−1/2

= Im −A−1
(B.6)

Therefore, we have

A−1 = Im − P
′
P

and

tr
(
BNΩ−1 (ω)QA−1Q

′
Ω−1 (ω)

)
= σ2tr

(
P
′
CN (φ)P

)
,

(B.7)

where

CN (φ) = σ−2Ω−1/2 (ω)BN (ϕ) , (B.8)

and φ =
(
ϕ
′
, ω, σ2

)′
. Then, the pseudo log likelihood function (B.2) can be ex-

pressed as

N−1`N (φ,P )∝

−T
2

ln
(
σ2
)
− 1

2
ln [1+T (ω−1)]+

1

2
ln
∣∣∣Im−P ′P ∣∣∣− 1

2

{
tr (CN (φ))−tr

(
P
′
CN (φ)P

)}
(B.9)

As we know that P
′
P can be diagonalised by an orthonormal transformation. To

fix the rotation problem, we impose the m(m− 1)/2 orthogonality conditions

p
′

spt = 0 for all s 6= t = 1, 2, . . . ,m, (B.10)

where pt and ps are the tth and sth column of P , respectively. Based on the restric-
tion (B.10), the pseudo log likelihood function (B.9) can be written as

N−1`N (φ,P ) ∝

− T

2
ln
(
σ2
)
− 1

2
ln [1 + T (ω − 1)] +

1

2

m∑
t=1

ln
(

1− p′tpt
)

+
1

2

m∑
t=1

p
′

tCN (φ)pt −
1

2
tr (CN (φ)) .

(B.11)

Then, taking the first derivatives with respect to pt and setting this derivative to
zero, as

CN (φ) p̂t −
(

1

1− p̂′tp̂t

)
p̂t = 0, for t = 1, . . . ,m. (B.12)

The concentrated pseudo log likelihood function in term of φ can be written as

N−1`N (φ,m) ∝

− T

2
ln
(
σ2
)
− 1

2
ln [1 + T (ω − 1)]− 1

2

m∑
t=1

ln (λt (φi)) +
1

2

m∑
t=1

(λt (φ)− 1)− 1

2

T∑
t=1

λt (φ) ,

(B.13)
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where λt (φ) is the tth eigenvalue of CN (φ). By maximised this pseudo log like-
lihood function respect to φ =

(
ϕ
′
, ω, σ2

)
, we can obtain the pseudo estimator

φ̂ =
(
φ̂, ω̂, σ̂2

)
.

B.2 Monte Carlo simulation

B.2.1 Monte Carlo design

We consider the following dynamic panel data model with one regressor and two
unobserved factors:

yit = ρyi,t−1 + βxi,t + uit, for t = −49, . . . , 1, . . . , T ; i = 1, . . . , N, (B.14)

with

uit = αi +

my∑
s=1

γys,ifs,t + eit. (B.15)

The fixed effect αi are generated as αi
iid∼ N (0, 1). The factor loadings, γys,i are

generated as

γys,i
iid∼ (0,m0/

√
m0) . (B.16)

The idiosyncratic errors, ei,t are generated as ei,t ∼ N(0, σ2
i ) σ

2
i ∼ U [0.5, 1.5].

The regressors, xi,t are generate as

xi,t = αxi +
mx∑
s=1

γxs,ifs,t + vi,t, vi,t = ρxvi,t−1 +
√

(1− ρ2
x)εi,t, for t = 1, . . . , T,

(B.17)

with ρx = 0.95, and εi,t
iid∼ N (0, 1) . The factor loadings of regressor, γxs,i are

generated as γxs,i
iid∼ N

(
0,mx/

√
mx

)
. We set αxi = αi + vi, where vi

iid∼ N (0, 1), for
all i.

We generate unobserved common factors, fs,t

fs,t = ρf,sfs,t−1 +
√(

1− ρ2
f,s

)
ςfs,t, ςfs,t

iid∼ N (0, 1) , for s = 1, 2, . . . ,m0, and t = 1, . . . , T,

(B.18)

with ρf,s = 0.5.
In this Monte Carlo experiments, we consider T = (5, 10) andN = (100, 300, 500, 1000).

The parameter ρ = {0.4, 0.8} and β = 1. The number of factor, m0 = 2.
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B.2.2 Monte Carlo results

Table B.1 Bias, MSE of Robust QML estimates and Size (%) of the associated
t-tests for the dynamic panel data model with {ρ, β} = {0.4, 1}, using the estimated
number of factors, m̂.

ρ Bias(×100) RMSE(×100) Size(×100)
T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

5 0.42 0.13 -0.01 -0.09 6.76 3.57 2.55 1.77 8.90 5.75 5.35 4.00
10 0.01 0.00 0.00 -0.02 2.75 1.57 1.22 0.85 5.90 5.25 4.85 5.50

β
5 -0.48 -0.25 -0.09 0.02 10.97 6.31 4.73 3.34 5.55 4.65 4.25 4.45
10 0.33 -0.15 -0.01 0.02 7.17 4.15 3.14 2.28 4.90 4.20 4.55 4.40

yi,t is generated as yit = ρyi,t−1 + βxi,t + uit, uit = αi +
∑my
s=1 γys,ifs,t + eit, for i = 1, . . . , N ;

t = −49, . . . , 1, . . . , T . The fixed effect αi are generated as αi
iid∼ N (0, 1). The factor loadings,

γys,i
iid∼
(
0,m0/

√
m0

)
. The idiosyncratic errors are generated as ei,t ∼ U [0.5, 1.5]. The regressors,

xi,t are generate as xi,t = αxi+
∑mx
s=1 γxs,ifs,t+vi,t, where vi,t = ρxvi,t−1+

√
(1− ρ2

x)εi,t, ρx = 0.95,

εi,t
iid∼ N (0, 1) and mx = 2. We set αxi = αi+vi, where vi

iid∼ N (0, 1), for all i. The common factors

are generated as fs,t = ρf,sfs,t−1 +

√(
1− ρ2

f,s

)
ςfs,t, where ςfs,t

iid∼ N (0, 1), for s = 1, 2, . . . ,m0,

and ρf,s = 0.5. The number of factor, m0 = 1.

Table B.2 Bias, MSE of Robust QML estimates and Size (%) of the associated
t-tests for the dynamic panel data model with {ρ, β} = {0.8, 1}, using the estimated
number of factors, m̂.

ρ Bias(×100) RMSE(×100) Size(×100)
T/N 100 300 500 1000 100 300 500 1000 100 300 500 1000

5 0.03 -0.03 -0.02 0.06 6.25 3.26 2.60 1.80 7.65 5.75 4.80 4.95
10 -0.01 0.06 -0.02 -0.02 2.12 1.17 0.89 0.66 5.40 4.80 4.05 5.05

β
5 -0.72 -0.25 0.12 -0.06 11.18 5.97 4.82 3.46 6.50 3.60 5.20 5.00
10 0.11 -0.03 -0.02 -0.06 7.35 4.05 3.16 2.35 5.15 3.90 3.50 4.85
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B.3 Summary statistics

Table B.3 Summary statistics

Variables Number of Mean Median Std.Dev. Min. Max. Skew Kurt

observations

Leverage 315621 0.2741 0.2335 0.2613 0.0000 2.5661 2.1415 12.2456

Profitability 315621 −0.0080 0.0747 0.3506 −4.6060 0.4128 −5.2004 42.1898

Growth opportunities 315621 1.5451 0.9933 1.9953 0.0000 27.9605 5.3999 45.4098

Tangibility 315621 0.0455 0.0383 0.0339 0.0000 0.2519 1.8726 8.3645

Size 315621 0.3216 0.2677 0.2409 0.0000 0.9298 0.6869 2.4917

Non-debt tax shields 315621 4.3679 4.2578 2.8161 −2.2026 10.9785 0.1233 2.3068

The data set is a panel of US firms collected from the CRSP/Compustat database over
the period 1960-2017. Leverage ratio greater than one means the firm owns more liabilities
than it does assets. It indicates that the firm is extremely leveraged.
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Figure B.1 Number of firms from 1960 to 1967
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Figure B.2 Mean of leverage ratio from 1960 to 1967
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Figure B.3 Mean of leverage ratio from 1968 to 1975
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Figure B.4 Mean of leverage ratio from 1976 to 1983
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Figure B.5 Mean of leverage ratio from 1984 to 1991
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Figure B.6 Mean of leverage ratio from 1992 to 1999
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Figure B.7 Mean of leverage ratio from 2000 to 2007
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Figure B.8 Mean of leverage ratio from 2008 to 2017
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Appendix C

Appendix to Chapter 5

C.1 Proofs of Lemmas and Theorem for IV esti-

mation

Lemma 1 : Suppose {Xi,T} are independent across i for all T with E (Xi,T ) = µi,T
and E|Xi,T |1+c < ∆ <∞ for some c > 0 and all i, T . Then N−1

∑N
i=1 (Xi,T − µi,T )

p→
0 as (N, T )

j→∞.
Proof :
See proof Lemma 1 in Hansen (2007b).
Lemma 2 : Suppose a k × 1 vector, {xi,T}, are independent across i for all T
with E (xi,T ) = 0, E

(
xi,Tx

′
i,T

)
= Σi,T , and E ‖xi,T‖2+c < ∆ < ∞ for some c >

0. Assume Σ = limT,N→∞N
−1
∑N

i=1 Σi,T is positive definite and the minimum

eigenvalue of Σ is strictly positive. Then, N−1/2
∑N

i=1 xi,T
d→ N(0,Σ) as (N, T )

j→
∞.
Proof :
See proof Lemma 2 in Hansen (2007b).

Lemma 3 : As (N, T )
j→∞ such that N/T → c with 0 < c <∞, for i = 1, . . . , N

and ` = 1, 2, . . . , k,

T−1
∥∥∥F̂ x − F xGx

∥∥∥2

= T−1

T∑
t=1

∥∥∥f̂x,t −G′xfx,t∥∥∥2

= Op

(
c−2
NT

)
, (C.1)

(
F̂ x − F xGx

)′
F̂ x

T
= Op

(
c−2
NT

)
, (C.2)

(
F̂ x − F xGx

)′
F x

T
= Op

(
c−2
NT

)
, (C.3)
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(
F̂ x − F xGx

)′
F y

T
= Op

(
c−2
NT

)
, (C.4)

(
F̂ x − F xGx

)′
εi

T
= Op

(
c−2
NT

)
, (C.5)

(
F̂ x − F xGx

)′
v`,i

T
= Op

(
c−2
NT

)
, (C.6)

(
F̂ x − F xGx

)′
W i

T
= Op

(
c−2
NT

)
, (C.7)

N−1/2

N∑
i=1

(
F̂ x − F xGx

)′
v`,i

T
γ
′

`i = O
(
N−1/2

)
+Op

(
c−2
NT

)
, (C.8)

GxG
′

x −

(
F
′

xF x

T

)−1

= Op

(
c−2
NT

)
, (C.9)

F
′

xF̂ x

T

p→ Λx as (N, T )
j→∞, (C.10)

where F x = F xGx, Γxi = G−1
x Γxi, and Gx and Γx are invertible mx×mx matrices.

Proof :
See proof Lemma B.4 in Norkutė et al. (2021).

Lemma 4 : As (N, T )
j→∞ such that N/T → c with 0 < c <∞.

(i) T−1/2X
′

i

(
M F̂x

−M F̂x

)
ui =

√
TOp

(
c−2
NT

)
.

(ii) T−1/2X
′

i,−1M F̂x,−1

(
M F̂x

−MFx

)
ui =

√
TOp

(
c−2
NT

)
.

(iii) T−1/2X
′

i,−1

(
M F̂x,−1

−MFx,−1

)
MFxui =

√
TOp

(
c−2
NT

)
.

(iv) T−1/2X
′

i,−JM F̂x,−J

(
M F̂x

−MFx

)
ui =

√
TOp

(
c−2
NT

)
.

(v) T−1/2X
′

i,−J

(
M F̂x,−J

−MFx,−J

)
MFxui =

√
TOp

(
c−2
NT

)
.
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Proof :

By using F̂
′
xF̂ x
T

= Imx , we have M F̂x
−MFx = P Fx−P F̂x

= −
(
F̂
′
xF̂ x
T
− P Fx

)
. We

can decompose Lemma 4 (i) as

T−1/2X
′

i

(
M F̂x

−MFx

)
ui = −T−1/2X

′

i

(
F̂
′

xF̂ x

T
− P Fx

)
ui =

− T−1/2
X
′

i

(
F̂ x − F xGx

)
T

G
′

xF
′

xui − T−1/2
X
′

i

(
F̂ x − F xGx

)
T

(
F̂ x − F xGx

)′
ui

− T−1/2X
′

iF x

T
Gx

(
F̂ x − F xGx

)′
ui − T−1/2X

′

iF x

T

GxG
′

x −

(
F
′

xF x

T

)−1
F ′xui

= − (b1 + b2 + b3 + b4) .

(C.11)

By using Cauchy–Schwarz inequality, we have

|b1| ≤ T 1/2

∥∥∥∥∥∥
X
′

i

(
F̂ x − F xGx

)
T

∥∥∥∥∥∥ ‖Gx‖

∥∥∥∥∥F
′

xui
T

∥∥∥∥∥ ≤
T 1/2 ‖Γx,i‖

∥∥∥∥∥∥
F
′

x

(
F̂ x − F xGx

)
T

∥∥∥∥∥∥ ‖Gx‖
∥∥∥∥ F x√

T

∥∥∥∥∥∥∥∥ ui√T
∥∥∥∥

+ T 1/2

∥∥∥∥∥∥
V
′

i

(
F̂ x − F xGx

)
T

∥∥∥∥∥∥ ‖Gx‖
∥∥∥∥ F x√

T

∥∥∥∥∥∥∥∥ ui√T
∥∥∥∥ =
√
TOp

(
c−2
NT

)
,

(C.12)

from

∥∥∥∥F ′x(F̂ x−F xGx)T

∥∥∥∥ = Op

(
c−2
NT

)
,

∥∥∥∥V ′i(F̂ x−F xG)
T

∥∥∥∥ = Op

(
c−2
NT

)
by Lemma 3, and from

Assumption 4 we know ‖Gx‖ = Op (1), ‖Γx,i‖ = Op (1), ‖F x‖√
T

= Op (1),
∥∥∥ ui√

T

∥∥∥ ≤
‖γi‖ ‖F y‖√T + ‖λi‖ ‖F y‖√T + ‖εi‖√

T
= Op (1) , cNT = min

(√
N,
√
T
)
.
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|b2| ≤
√
T

∥∥∥∥∥∥
X
′

i

(
F̂ x − F 0

xGx

)
T

∥∥∥∥∥∥
∥∥∥∥∥∥∥
(
F̂ x − F xGx

)′
ui

T

∥∥∥∥∥∥∥
≤
√
T ‖Γx,i‖

∥∥∥∥∥∥
F
′

x

(
F̂ x − F xGx

)
T

∥∥∥∥∥∥
∥∥∥∥∥∥∥
(
F̂ x − F xGx

)′
ui

T

∥∥∥∥∥∥∥+

√
T

∥∥∥∥∥∥
V
′

i

(
F̂ x − F xGx

)
T

∥∥∥∥∥∥
∥∥∥∥∥∥∥
(
F̂ x − F xGx

)′
ui

T

∥∥∥∥∥∥∥ =
√
TOp

(
c−4
NT

)
,

(C.13)

and by Lemma 3 we know

∥∥∥∥∥u′i(F̂ x−F xGx)
′

T

∥∥∥∥∥ ≤ ‖γi‖
∥∥∥∥F ′x(F̂ x−F xGx)T

∥∥∥∥+‖λi‖
∥∥∥∥F ′y(F̂ x−F xGx)T

∥∥∥∥+∥∥∥∥ε′i(F̂ x−F xGx)T

∥∥∥∥ = Op

(
c−2
NT

)
.

|b3| ≤
√
T

∥∥∥∥∥X
′

iF x

T

∥∥∥∥∥ ‖Gx‖
∥∥∥∥(F̂ x − F xGx

)′
ui/T

∥∥∥∥
≤
√
T ‖Γx,i‖

∥∥∥∥∥F
′

xF x

T

∥∥∥∥∥ ‖Gx‖
∥∥∥∥(F̂ x − F xGx

)′
ui/T

∥∥∥∥+

√
T

∥∥∥∥ V i√
T

∥∥∥∥∥∥∥∥ F x√
T

∥∥∥∥ ‖Gx‖
∥∥∥∥(F̂ x − F xGx

)′
ui/T

∥∥∥∥ =
√
TOp

(
c−2
NT

)
.

(C.14)

from Lemma 3, we have
∥∥∥u′i(F̂ x − F xGx)/T

∥∥∥ = Op(c
−2
NT ). And by Assumption 2,

3, 4, we have ‖Gx‖ = Op(1), ‖Γxi‖ = Op(1),
∥∥∥ V i√

T

∥∥∥ = oP (1) and ‖F x‖√
T

= Op(1).

|b4| ≤
√
T

∥∥∥∥∥X
′

iF x

T

∥∥∥∥∥
∥∥∥∥∥∥GxG

′

x −

(
F
′

xF x

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥F

′

xui
T

∥∥∥∥∥
≤
√
T ‖Γx‖

∥∥∥∥∥F
′

xF x√
T

∥∥∥∥∥
∥∥∥∥∥∥GxG

′

x −

(
F
′

xF x

T

)−1
∥∥∥∥∥∥
∥∥∥∥ ui√T

∥∥∥∥+

√
T

∥∥∥∥ V i√
T

∥∥∥∥∥∥∥∥ F x√
T

∥∥∥∥
∥∥∥∥∥∥GxG

′

x −

(
F
′

xF x

T

)−1
∥∥∥∥∥∥
∥∥∥∥ ui√T

∥∥∥∥ =
√
TOp

(
c−2
NT

)
,

(C.15)

from Lemma 3, we have GxG
′

x−
(
F
′
xF x
T

)−1

= Op(c
−2
NT ). By Assumption 2, 3 and 4,

we have
∥∥∥ V i√

T

∥∥∥ = Op(1), ‖Γx‖ = Op(1) and
∥∥∥ ui√

T

∥∥∥ = Op(1).
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Then, we can see∥∥∥T−1/2X̂
′

i

(
M F̂x

−M F̂x

)
ui

∥∥∥ =
√
TOp

(
c−2
NT

)
. (C.16)

Thus,

T−1/2X
′

iM F̂x
ui = T−1/2X

′

iMFxui +
√
TOp

(
c−2
NT

)
(C.17)

Lemma 4 (iv) (v) can be shown in a similarly way. Also can see the proof of
Lemma 10 in Appendix A, Norkutė et al. (2021).

Proof of Proposition 1 :

Consider T−1/2Ẑ
′

iM F̂x
ui, where the instruments variable set as

Ẑi =
(
M F̂x

X i,M F̂x,−1
X i,−1, . . . ,M F̂x,−j

X i,−j, . . . ,M F̂x,−j
X i,−J

)
. (C.18)

Then, the first component of M F̂x
Ẑi in T−1/2Ẑ

′

iM F̂x
ui as

T−1/2X
′

iM F̂x
ui

= T−1/2X
′

iMFxui + T−1/2X
′

i

(
M F̂x

−MFx

)
ui

= T−1/2X
′

iMFxui +
√
TOp(c

−2
NT ),

(C.19)

by the Lemma 4 (i). Next we consider the second component ofM F̂x
Ẑi in T−1/2Ẑ

′

iM F̂x
ui

as

T−1/2X
′

i,−1M F̂x,−1
M F̂x

ui

= T−1/2X
′

i,−1M F̂x,−1
MFxui + T−1/2X

′

i,−1M F̂x,−1

(
M F̂x

−MFx

)
ui

= T−1/2X
′

i,−1M F̂x,−1
MFxui +

√
TOp(c

−2
NT )

= T−1/2X
′

i,−1MFx,−1MFxui + T−1/2X
′

i,−1

(
M F̂x,−1

−MFx,−1

)
MFxui +

√
TOp(c

−2
NT )

= T−1/2X
′

i,−1MFx,−1MFxui +
√
TOp(c

−2
NT ).

Finally we consider the last component of M F̂x
Ẑi in T−1/2Ẑ

′

iM F̂x
ui as

T−1/2X
′

i,−JM F̂x,−J
M F̂x

ui

= T−1/2X
′

i,−JM F̂x,−J
MFxui + T−1/2X

′

i,−JM F̂x,−J

(
M F̂x

−MFx

)
ui

= T−1/2X
′

i,−JM F̂x,−J
MFxui +

√
TOp(c

−2
NT )

= T−1/2X
′

i,−JMFx,−JMFxui + T−1/2X
′

i,−J

(
M F̂x,−J

−MFx,−J

)
MFxui +

√
TOp(c

−2
NT )

= T−1/2X
′

i,−JMFx,−JMFxui +
√
TOp(c

−2
NT ),
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by Lemma 4 (iv) and (v). Therefore, we can show that

T−1/2Ẑ
′

iM F̂x
ui = T−1/2Z

′

iMFxui +
√
TOp(c

−2
NT ). (C.20)

Proof of Theorem 1 :

First we consider 2SLS estimator without model average, as

√
T
(
θ̂i − θi

)
=

(
W

′

iM F̂x
Ẑi

(
Ẑ
′

iM F̂x
Ẑi

)−1

Ẑ
′

iM F̂x
W i

)−1

×

W
′

iM F̂x
Ẑi

(
Ẑ
′

iM F̂x
Ẑi

)−1 (
T−1/2Ẑ

′

iM F̂x
ui

)
=
(

ˆ̃A
′

i,T
ˆ̃B−1
i,T

ˆ̃Ai,T

)−1 ˆ̃A
′

i,T
ˆ̃B−1
i,T

(
T−1/2Ẑ

′

iM F̂x
ui

)
,

(C.21)

where Ẑi =
(
M F̂x

X i,M F̂x,−1
X i,−1, . . . ,M F̂x,−J

X i,−J

)
.

As (N, T )
j→∞ as N/T → c for 0 < c <∞ and by Proposition 1, we have

T−1/2Ẑ
′

iM F̂x
ui = T−1/2Z

′

iMFxui + op(1). (C.22)

Under Assumptions 1 − 9 and for each i, T−1/2Z
′

iui
d→ N (0,Σi). And we can see

that ˆ̃Ai,T
p→ Ãi,T and ˆ̃Bi,T

p→ B̃i,T as T →∞.

From Assumption 9, we see that plimT→∞
ˆ̃Ai,T = Ai and plimT→∞

ˆ̃Bi,T = Bi.
Thus, we have following asymptotic property :

√
T
(
θ̂i − θi

)
d→ N

(
0,
(
A
′

iB
−1
i Ai

)−1

A
′

iB
−1
i ΣiB

−1
i Ai

(
A
′

iB
−1
i Ai

)−1
)
. (C.23)

C.2 Proofs of Lemmas and Theorem for Model

average 2SLS estimator

For ease of reading, we repeat the model (5.19) as

yi,t = w
′

i,tθi + ui,t,

wi,t =
(
yi,t−1,x

′

i,t

)′
= g(zi,t) + ei,t.

(C.24)

Consider model average 2SLS estimator on above model, we have
√
T
(
θ̂i − θ

)
= Ĥ

−1

i ĥi. (C.25)

We define H i =
G
′
iGi
T

and hi =
G
′
iui√
T

, where Gi =
(
gi,1, . . . , gi,T

)′
and gi,t = g(zi,t).

Following Alvarez and Arellano (2003), Donald and Newey (2001), Okui (2009)
and Kuersteiner and Okui (2010), we have following Lemmas:
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Lemma 5 If there is a decomposition, ĥi = hi + chi + rhi , h̃i = hi + chi , Ĥ i =
H i + cHi + rHi , and

h̃ih̃
′

i − h̃ih̃
′

iH
−1
i c

H′

i − cHi H−1
i h̃ih̃

′

i = D̂i (ωi) + rDi (ωi) , (C.26)

such that chi = op(1), hi = Op(1), and H i = Op(1), the determinant of H i is
bounded away from zero with probability 1, ρiω,T = tr (Si (ωi)), and ρiω,T = op(1),∥∥cHi ∥∥2

= op (ρiω,T ) ,
∥∥rhi ∥∥ = op (ρiω,T ) ,

∥∥rHi ∥∥ = op (ρiω,T ) ,

rDi (ωi) = op (ρiω,T ) , E
[
D̂i (ωi) |zi,t

]
= σ2

iH i +H iSi (ωi)H i + op (ρiω,T ) ,

Then, we have

T
(
θ̂i − θi

)(
θ̂i − θi

)′
= Q̂i (ωi) + q̂i (ωi)

E
[
Q̂i (ωi) |zi,t

]
= σ2

u,iH
−1
i + Si (ωi) + T i (ωi)

(q̂i (ωi) + T i (ωi)) /tr (Si (ωi)) = op(1), as T →∞, j̃
′

ω+
i →∞.

(C.27)

Proof :
From model average 2SLS estimator, we have

√
T
(
θ̂i − θ

)
= Ĥ

−1

i ĥi. And

we decompose Ĥ
−1

i ĥi into terms that are linear and quadratic in the difference of
estimates and true values, as

Ĥ
−1

i ĥi = H−1
i ĥi −H−1

i

(
Ĥ i −H i

)
H−1

i ĥi +H−1
i

(
Ĥ i −H i

)
H−1

i

(
Ĥ i −H i

)
Ĥ iĥi.

And we know1
∥∥cHi ∥∥2

= op (ρiω,T ),
∥∥rHi ∥∥ = op (ρiω,T ),

∥∥rhi ∥∥ = op (ρiω,T ). Then,
we have

ĥi = h̃i + op (ρiω,T )

Ĥ i −H i = cHi + op (ρiω,T ) .
(C.28)

Therefore,

√
T
(
θ̂i − θ

)
= Ĥ

−1

i ĥi

= H−1
i h̃i −H−1

i c
H
i H

−1
i h̃i + op (ρiω,T )

= Ĥ
−1

i

(
h̃i − cHi H−1

i h̃i

)
+ op (ρiω,T ) .

1See the proof of Theorem 2 for
∥∥cHi ∥∥2

,
∥∥rHi ∥∥ and

∥∥rhi ∥∥.
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Next, let τ̃ i = h̃i − cHi H−1
i h̃i and

τ̃ iτ̃
′

i =
(
h̃i − cHi H−1

i h̃i

)(
h̃i − cHi H−1

i h̃i

)′
= h̃ih̃

′

i − h̃ih̃
′

iH
−1
i c

H′

i − cHi H−1
i h̃ih̃

′

i + cHi H
−1
i h̃ih̃

′

iH
−1
i c

H
i

= D̂i (ωi) + rDi (ωi) + cHi H
−1
i h̃ih̃

′

iH
−1
i c

H
i

= D̂i (ωi) + op (ρiω,T ) ,

where2 rDi (ωi) = op (ρiω,T ),
∥∥cHi ∥∥ = op (ρiω,T ).

Then, we have

T
(
θ̂i − θi

)(
θ̂i − θi

)′
= H−1

i

(
τ̃ iτ̃

′

i

)
H−1

i + op (ρiω,T )

= H−1
i

(
D̂i (ωi) + op (ρiω,T )

)
H−1

i + op (ρiω,T )

= H−1
i D̂i (ωi)H

−1
i + op (ρiω,T )

= Q̂i (ωi) + op (ρiω,T ) .

Lemma 6

(i) tr (P i) =
∑J

j=1 ωi,j · j = j̃
′

ωi (Hansen (2007a), Lemma 1.1).

(ii)
∑T

t=1 (P i,tt)
2 = op(j̃

′

ω+
i ).

(iii) H i =
G
′
iGi
T

= Op(1) and hi =
G
′
iui√
T

= Op(1).

Proof : (i)

tr (P i) = tr

(
J∑
j=1

ωi,jP
j
i

)
=

J∑
j=1

ωi,j · j = j̃
′

ωi.

2See the proof of Theorem 2 for rDi (ωi) and
∥∥cHi ∥∥.
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(ii) By Assumption (13) and Lemma 6 (i), it imply

T∑
t=1

(P i,tt)
2 =

T∑
t=1

J∑
j,j′=1

ωijωij′P
j
i,ttP

j
′

i,tt ≤

T∑
t=1

J∑
j,j′=1

|ωij||ωij′ |P
j
i,ttP

j
′

i,tt ≤

maxt
(
P J
i,tt

)( J∑
j=1

|ωij′ |

)
T∑
t=1

J∑
j=1

|ωij|P j
i,tt ≤ C ·maxt(P J

i,tt)tr
(
P+
i

)
=

op(1)
(
j̃
′

ω+
i

)
= op

(
j̃
′

ω+
i

)
,

where ω+
i = (|ωi,1|, . . . , |ωi,J |) and P+

i =
J∑
j=1

|ωi,j|P j
i .

(iii) {G′iGi} and {G′iui} obeys a LLN. And by assumption,Gi and ui are orthogonal
so the 2SLS estimator is consistent. Then, by CLT, we can show H i and hi are
Op(1) 3.
Lemma 7

(i) Let eg,i (ωi) = G
′

i (IT − P i) (IT − P i)Gi/T and ∆ (ωi) = tr (eg,i (ωi)). Then,
∆ (ωi) = op(1).

(ii)
G
′
i(IT−P i)ui√

T
= Op

(
∆ (ωi)

1/2
)

.

(iii) E
(
E
′

iP iui|zi,t
)

= σeu,ij̃
′

ωi.

(iv) Let f(ωi) : ωi → R with f(ωi) > 0 be a function of ωi such that f(ωi)→∞
as T →∞. Then

√
f(ωi)∆(ωi)

T
= Op (f(ωi)/T + ∆ (ωi)).

(v) j̃
′

Γij̃ ≤ C j̃
′

ω+
i .

(vi) E
(
E
′

iP iuiu
′
iP iEi

)
= σeu,iσ

′
eu,i

(
j̃
′

ωi

)2

+
(
σ2
u,iΣe,i + σue,iσ

′
eu,i

) (
ω
′
iΓiωi

)
+

Cum
(
ui,t, ui,t, ei,t, e

′
i,t

)∑T
t=1 (P i,tt)

2.

(vii) E
(
G
′

iuiu
′
iP iEi|zi,t

)
=
∑T

t=1 gi,tP i,ttE
(
u2
i,te

′
i,t

)
= Op(j̃

′

ω+
i ).

(viii) E
(
G
′

i (IT − P i)uiu
′
iP iEi/T |zi,t

)
= G

′

i (IT − P i)µi(ωi)/T = op

(
j̃
′
ω+
i

T
+ ∆ (ωi)

)
,

where µi,t(ωi) = E(u2
i,tei,t)P i,tt and µi(ωi) = (µi,1(ωi), . . . , µi,T (ωi))

′
.

(ix) E
(
G
′

iuiu
′
iGiH

−1
i E

′

iP iEi|zi,t
)
/T 2 = Op(T

−1) +
(
σ2
u,iΣe,ij̃

′

ωi/T
)

.

3See Chapter 7 and Chapter 12 of Hansen (2020).
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(x) E
(
G
′

iuiu
′
iP iEiH

−1
i

(
E
′

iGi +G
′

iEi|zi,t
))

/T 2 =

Op(T
−1)+

(
j̃
′

ωi/T
)(∑T

t=1 gi,tσ
′
eu,iH

−1
i σeu,igi,t/T +

∑T
t=1 gi,tσ

′
eu,iH

−1
i gi,tσ

′
eu,i/T

)
.

(xi) E
(
GiG

′

iH
−1
i E

′

iGi|z
)

=
∑T

t=1 gi,tg
′
i,tH

−1
i E(u2

i,tei,t)G
′

i/T
2 = Op(T

−1).

Proof :
See proof of Lemma A.6 in Kuersteiner and Okui (2010).
Lemma 8 Let

Ξ (ωi) = tr

(
G
′

i (IT − P i)Gi

T

)
. (C.29)

From previous, we know ρiω,T = tr (Si (ωi)). Then, we have

(Ξ (ωi))
2 = op (ρiω,T ) . (C.30)

Proof :
See proof of Lemma A.7 in Kuersteiner and Okui (2010).
Lemma 9 If for some sequence L ≤ J, L →∞, L 6∈ J̄4, supm6∈J̄ ,m≤L|

∑m
j=1 ωi,j| =

Op(1/
√
T ) as J →∞, and

∑J
j=1 ωi,j = 1 for any J , then it follows that ω

′
iΓiωi →∞

as J →∞.
Proof :

See proof of Lemma A.3 in Kuersteiner and Okui (2010).
Proof of Theorem 2:

The model average 2SLS estimator can be expressed as

√
T
(
θ̂i − θi

)
=

(
W

′

iP iW i

T

)−1
W

′

iP iui√
T

= Ĥ
−1

i ĥi.

(C.31)

Expand this forms as

ĥi =
W

′

iP iui√
T

=
(Gi +Ei)

′
P iui√

T

=
G
′

iui√
T
− Gi (IT − P i)ui√

T
+
E
′

iP iui√
T

= hi + ch1i + ch2i

= hi + chi ,

(C.32)

where hi =
G
′
iui√
T

, ch1i = −Gi(IT−P i)ui√
T

, ch2i =
E
′
iP iui√
T

, and chi = ch1i + ch2i.

4J̄ is define in Assumption 12 (3).
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By Lemma 6 (iii), we know hi = Op (1). And by Lemma 7 (i), (ii), we have

ch1i = Op

(
∆ (ωi)

1/2
)

= op (1) , (C.33)

where ∆ (ωi) = op(1). By Lemma 7 (iii) we have

ch2i = Op

max
|j̃ ′ωi|,

√√√√(ω′iΓiωi
)

+
T∑
t=1

(P i,tt)
2

 /
√
T

 = op(1). (C.34)

For ch2i, we know j̃
′

ωi/
√
T = o (1) because |j̃

′

ωi|/
√
T ≤ j̃

′

ω+
i /
√
T = o(1). And,

by Lemma 6 (ii) we have
∑T

t=1 (P i,tt)
2 = op

(
j̃
′

ω+
i

)
. By Lemma 7 (v) we have

ω
′
iΓiωi = O

(
j̃
′

ω+
i

)
. Therefore,

chi = Op

(
∆ (ωi)

1/2
)

+Op

max
|j̃ ′ωi|,

√√√√(ω′iΓiωi
)

+
T∑
t=1

(P i,tt)
2

 /
√
T

 = op (1) .

(C.35)

Next, we consider the decomposition of Ĥ i as

Ĥ i =
W

′

iP iW i

T
=

(Gi +Ei)
′
P i (Gi +Ei)

T

=
G
′

iP iGi +G
′

iP iEi +E
′

iP iGi +E
′

iP iEi

T

=
G
′

iGi

T
− G

′

i (IT − P i)Gi

T
+
E
′

iP iEi

T

+
E
′

iGi +GiEi

T
+
EiP iEi

T

+
E
′

i (IT − P i)Gi +G
′

i (IT − P i)Ei

T
= H i + cH1i + cH2i + cH3i + rHi ,

(C.36)

where

H i =
G
′

iGi

T
,

cH1i = −G′i (IT − P i)Gi/T,

cH2i =
(
E
′

iGi +G
′

iEi

)
/T,

cH3i = E
′

iP iEi/T,

rH =
(
E
′

i (IT − P i)Gi +G
′

i (IT − P i)Ei

)
/T.

(C.37)
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By Lemma 6 (iii), we know H i = Op (1). And by the definition and Lemma 8 and

Lemma 7 (i), we have cH1i = O (Ξ(ωi)) = op (1). By CLT, we have cH2i = Op

(
1/
√
T
)

.

And by similar arguments as before, we have

cH3i = Op

max
|j̃ ′ωi|,

√√√√(ω′iΓiωi
)

+
T∑
t=1

(P i,tt)
2

 /T

 . (C.38)

Next, we analyze
∥∥ch1i∥∥ · ∥∥cH1i∥∥,

∥∥ch1i∥∥ · ∥∥cH2i∥∥ and
∥∥ch1i∥∥ · ∥∥cH3i∥∥.

1

By Lemma 6 and Lemma 7 (i), we have∥∥ch1i∥∥ · ∥∥cH1i∥∥ = Op

(
∆ (ωi)

1/2 Ξ (ωi)
)

= Op

(
(Ξ (ωi))

2) = op (ρiω,T ) . (C.39)

2

Let f(ωi) = T (tr (Si (ωi))−∆ (ωi)). By Lemma 9, we know that ω
′
iΓiωi →∞

as T →∞. This implies that f(ωi)→∞. Then, by Lemma 7 (iv), it is hold that

∆(ωi)
1/2/
√
T = op

(
f(ωi)

T
+ ∆(ωi)

)
= op(tr (Si (ωi))) = op (ρiω,T ) . (C.40)

Therefore, we have∥∥ch1i∥∥ · ∥∥cH2i∥∥ = Op

(
∆ (ωi)

1/2
)
Op

(
1/
√
T
)

= Op

(
∆ (ωi)

1/2 /
√
T
)

= op (ρiω,T ) .

(C.41)

3

By Lemma 7(i), ∆ (ωi) = op(1) and the fact that cH3i = Op(tr (Si (ωi))) =
Op (ρiω,T ) ., we can show

∥∥ch1i∥∥ · ∥∥cH3i∥∥ = Op

(
∆ (ωi)

1/2
)
Op

max
|j̃ ′ωi|,

√√√√(ω′iΓiωi
)

+
T∑
t=1

(P i,tt)
2

 /T


= Op

∆ (ωi)
1/2max

|j̃ ′ωi|,
√√√√(ω′iΓiωi

)
+

T∑
t=1

(P i,tt)
2

 /T


= op

max
|j̃ ′ωi|,

√√√√(ω′iΓiωi
)

+
T∑
t=1

(P i,tt)
2

 /T


= op (ρiω,T ) .

(C.42)

121



Next, we analyze
∥∥ch2i∥∥ · ∥∥cH1i∥∥,

∥∥ch2i∥∥ · ∥∥cH2i∥∥ and
∥∥ch2i∥∥ · ∥∥cH3i∥∥.

4

By Lemma 7 (i) and Lemma 8, we have

∥∥ch2i∥∥ · ∥∥cH1i∥∥ = Op

max
|j̃ ′ωi|,

√√√√(ω′iΓiωi
)

+
T∑
t=1

(P i,tt)
2

 /
√
T

O (Ξ (ωi))

= Op

Ξ (ωi)max

|j̃ ′ωi|,
√√√√(ω′iΓiωi

)
+

T∑
t=1

(P i,tt)
2

 /
√
T


= op

∆ (ωi)
1/2max

|j̃ ′ωi|,
√√√√(ω′iΓiωi

)
+

T∑
t=1

(P i,tt)
2

 /
√
T


(C.43)

By Lemma 7 (iv), it is implied that

∆ (ωi)
1/2 |j̃

′

ωi|/
√
T ≤ (j̃

′

ωi)
2/T + ∆(ωi) = O (ρiω,T ) . (C.44)

And ∆ (ωi)
1/2 = op(1) such that op

(
∆(ωi)

1/2j̃
′

ωi/
√
T
)

= op(ρiω,T ). By Lemma

7 (iv) and let f(ωi) =
(
ω
′
iΓiωi

)
+
∑T

t=1 (P i,tt)
2, we have√√√√∆ (ωi)

((
ω
′
iΓiωi

)
+
∑T

t=1 (P i,tt)
2
)

T
= Op

(
ω
′
iΓiωi +

∑T
t=1 (P i,tt)

2

T
+ ∆ (ωi)

)
= Op(ρiω,T ).

(C.45)

Thus, we have
∥∥ch2i∥∥ · ∥∥cH1i∥∥ = op(ρiω,T ).

5

By similar arguments as before, we have

∥∥ch2i∥∥ · ∥∥cH2i∥∥ = Op

max
|j̃ ′ωi|,

√√√√(ω′iΓiωi
)

+
T∑
t=1

(P i,tt)
2

 /T

 , (C.46)

where j̃
′

ωi/T = O (tr (Si (ωi))) and
√(
ω
′
iΓiωi

)
+
∑T

t=1 (P i,tt)
2/T = op (tr (Si (ωi))) .
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6

Also, we have

∥∥ch2i∥∥ · ∥∥cH3i∥∥ = Op

(
max

(
|j̃
′

ωi|2,

((
ω
′

iΓiωi

)
+

T∑
t=1

(P i,tt)
2

))
/T 3/2

)
= op (ρiω,T ) ,

(C.47)

where
(
|j̃
′

ωi|/T
)3/2

= o (ρiω,T ) and
((
ω
′
iΓiωi

)
+
∑T

t=1 (P i,tt)
2
)
/T = Op (ρiω,T ).

We also have
7 ∥∥ch2i∥∥2 ·

∥∥cH1i∥∥ = op (ρiω,T )

8 ∥∥ch2i∥∥2 ·
∥∥cH2i∥∥ = op (ρiω,T )

9 ∥∥ch2i∥∥2 ·
∥∥cH3i∥∥ = op (ρiω,T )

10∥∥cH1i∥∥2
= Op

(
Ξ (ωi)

2) = op (ρiω,T )

11∥∥cH2i∥∥2
= Op (1/T ) = op (ρiω,T )

12

∥∥cH3i∥∥2
= Op

((
max

(
|j̃
′

ωi|,
√(
ω
′
iΓiωi

)
+
∑T

t=1 (P i,tt)
2

)
/T

)2
)

= op (ρiω,T )

Therefore, by Cauchy-Schwarz inequality,
∥∥cHi ∥∥2

= op (ρiω,T ). By Lemma 7 (iv),

we can show that each term of cHi is Op(∆(ωi)
1/2/
√
T ) = op(g(ωi)/T + ∆(ωi)) =

op(ρiω,T ) for g(ωi) = T (tr(S(ωi)) − ∆(ωi)). Therefore, we have
∥∥rHi ∥∥ = op(ρiω,T ).

From above discussion, we know that Ĥ i = H i + op(1) and ĥi = hi + op(1).
Now, we can discuss Lemma 5 by using above results.
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From equation (C.26), we have

h̃ih̃
′

i − h̃ih̃
′

iH
−1
i c

H′

i − cHi H−1
i h̃ih̃

′

i =

(
hi + ch1i + ch2i

) (
hi + ch1i + ch2i

)′
−
(
hi + ch1i + ch2i

) (
hi + ch1i + ch2i

)′
H−1

i

(
3∑
q=1

cHqi

)′

−

(
3∑
q=1

cHqi

)
H−1

i

(
hi + ch1i + ch2i

) (
hi + ch1i + ch2i

)′
= D̂i (ωi) + rDi (ωi) ,

(C.48)

where

rDi (ωi) = −hich
′

1iH
−1
i

(
3∑
q=1

cHqi

)′
−

(
3∑
q=1

cHqi

)
H−1

i c
h
1ih

′

i

− ch1ih
′

iH
−1
i

(
3∑
q=1

cHqi

)′
−

(
3∑
q=1

cHqi

)
H−1

i hic
h′

1i

− hich
′

2iH
−1
i c

H′

3i − cH3iH−1
i c

h
2ih

′

i − ch2ih
′

iH
−1
i c

H′

3i − cH3iH−1
i hic

h′

2i

−
(
ch1i + ch2i

) (
ch1i + ch2i

)′
H−1

i

(
3∑
q=1

cHqi

)′

−

(
3∑
q=1

cHqi

)
H−1

i

(
ch1i + ch2i

) (
ch1i + ch2i

)′
= op (ρiω,T ) .

(C.49)

and

D̂i (ωi) =
(
hi + ch1i + ch2i

) (
hi + ch1i + ch2i

)′
− hih

′

iH
−1
i

(
3∑
q=1

cHqi

)′
−

(
3∑
q=1

cHqi

)
H−1

i hih
′

i

− hich
′

2iH
−1
i

(
cH1i + cH2i

)
−
(
cH1i + cH2i

)
H−1

i c
h
2ih

′

i

− ch2ih
′

iH
−1
i

(
cH1i + cH2i

)′
−
(
cH1i + cH2i

)
H−1

i hic
h′

2i.

(C.50)

Next, calculating the expectation of D̂i (ω).

E
(
hih

′

i|zi,t
)

= E
(
G
′

iuiu
′

iGi|zi,t
)

= σ2
u,iH i.

E
(
hic

h′

1i|zi,t
)

= E
((
−G′iuiu

′

i (IT − P i)
)
Gi/T |zi,t

)
= −σ2

u,iG
′

i (IT − P i)Gi/T.

E
(
ch1ih

′

i|zi,t
)

= E
(
−G′i (IT − P i)uiu

′

iGi/T |zi,t
)

= −σ2
u,iG

′

i (IT − P i)Gi/T.

(C.51)
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By Lemma 7 (vii), we have

E
(
hic

h′

2i|zi,t
)

= E
(
G
′

iuiu
′

iP iEi/T |zi,t
)

= E
(
u2
i,1e1i,t

) T∑
t=1

g
′

i,tP i,tt/T = Op

(
j̃
′

ω+
i /T

) (C.52)

E
(
ch2ih

′

i|zi,t
)

= E
(
E
′

iP iuiu
′

iGi/T |zi,t
)

= Op

(
j̃
′

ωi/T
)
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By Lemma 7 (viii), we have
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Again, we have
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By Lemma 7 (viii), we have
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where Cum
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Also,
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By Lemma 7 (xii), we have
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and
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by Lemma 7 (ix).
Next,
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by Lemma 7 (vii) and
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by Lemma 7 (xi).
Similarly,
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C.3 Endogeneity and strength of IVs

From the Monte Carlo results of Lee and Shin (2020) and Kuersteiner and Okui
(2010), we can find that the mean square error (MSE) and median absolute deviation
(MAD) of model averaging 2SLS estimator is slightly larger than 2SLS estimator
with all avaialbe instruments when endogeneity is low. It is happen because the
weight estimation often give the outliers in model average 2SLS estimator.

Here, we would like to see the endogeneity of the model. For ease of discussion,
we repeat the model (5.19)

yi,t = φiyi,t−1 + x
′

i,tβi + ui,t = w
′

i,tθi + ui,t,
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(
yi,t−1,x
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)′
= g(zi,t) + ei,t,

(C.67)

where ui,t = γ
′
y,if y,t + εi,t and xi,t = Γ

′

x,ifx,t + vi,t. From the model, we can see
the endogeneity come from Cov(yi,t−1, ui,t). By continuous substitution, yi,t−1 can
be expressed as
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Stacking the T observations for each i, we have
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From above equation, we can see that the lag defactor regressors are the feasible
instrumental variables for yi,−1. As well as, we can show that

E
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X
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)
= . . . = E
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X
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= 0 (C.70)

Assume xi,t and ui,t are uncorrelated and f y,t = ρff y,t−1 +ζt, we can see the degree
of endogeneity is controlled by
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where γx1,i is a mx by 1 vector of factor loading in x1i,t .
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From above equation, we observe the endogeneity increase when factors more
persistent, correlation between the factor loadings increasing or |φi| increasing.

Next, we investigate the strength of IVs. The strength of IVs is controlled by

E (yi,t−1v`i,t−l) = E
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(C.75)

Thus, the strength of IVs increase when |φi| more persistent, v`i,t−l increasing or
|β`i| increasing.

As the degree of endogeneity is low, Lee and Shin (2020) have shown the bias
of MA2SLS is smaller than the 2SLS estimator with all available instruments but
the MSE of MA2SLS estimator is larger than 2SLS estimator. In our simulation,
we will investigate this situation.

C.4 Supplementary material

In this supplement, we provides Monte Carlo results under different scenario. Table
9 to Table 16 consider dynamic heterogeneous panel data model with {φ} = {0.8}
and {β1, β2} = {3, 1}, correlated factor loadings in x1i,t and ui,t.
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Table C.1 (Case A: Low degree of endogeneity, Weak IVs) Bias, RMSE of
MA2SLSMGa, P-MA2SLSMGa, Ps-MA2SLSMGa, 2SLSMGa estimates and Size
(%) and power (%) of the associated t-tests for the dynamic heterogeneous panel
data model with {φ, β1, β2} = {0.8, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -0.268 -0.200 -0.248 0.094 0.049 0.026 5.4 5.3 5.3 87.4 98.0 99.9
50 -0.079 -0.094 -0.062 0.069 0.034 0.017 5.8 5.6 4.4 96.0 99.9 100.0
100 -0.034 0.017 -0.060 0.060 0.029 0.015 6.7 5.0 5.5 98.4 100.0 100.0

P-MA2SLSMGa

25 -0.344 -0.249 -0.285 0.079 0.040 0.020 6.5 6.2 6.7 92.6 99.5 100.0
50 -0.252 -0.202 -0.261 0.066 0.031 0.016 6.7 5.8 5.1 96.3 100.0 100.0
100 -0.062 -0.116 -0.027 0.056 0.030 0.015 5.8 6.4 5.3 99.1 100.0 100.0

Ps-MA2SLSMGa

25 -0.154 -0.122 -0.135 0.108 0.060 0.041 6.6 7.0 5.1 86.7 96.5 98.5
50 -0.055 -0.069 -0.004 0.068 0.035 0.021 5.4 4.7 5.4 96.2 99.3 99.9
100 0.090 0.003 -0.045 0.059 0.031 0.015 6.3 6.1 4.9 98.4 99.9 100.0

2SLSMGa

25 -0.344 -0.249 -0.285 0.079 0.040 0.020 6.5 6.2 6.7 92.6 99.5 100.0
50 -0.252 -0.202 -0.261 0.066 0.031 0.016 6.7 5.8 5.1 96.3 100.0 100.0
100 -0.062 -0.116 -0.026 0.056 0.030 0.015 5.8 6.4 5.3 99.1 100.0 100.0

Results for β1.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -0.708 -0.031 -0.028 0.607 0.287 0.137 6.6 5.2 4.5 30.9 54.0 76.9
50 -0.025 -0.140 0.036 0.214 0.123 0.056 4.7 4.9 4.6 58.9 80.0 97.3
100 0.015 0.143 0.047 0.121 0.058 0.030 4.7 4.4 4.1 80.9 97.8 100.0

P-MA2SLSMGa

25 -0.044 0.104 -0.049 0.518 0.259 0.119 6.3 5.3 4.9 34.3 55.6 80.3
50 -0.069 -0.010 -0.055 0.241 0.109 0.059 7.2 4.5 5.5 56.5 83.7 96.9
100 0.113 -0.134 0.013 0.119 0.059 0.030 5.9 4.1 4.4 81.5 97.0 100.0

Ps-MA2SLSMGa

25 -0.001 -0.444 0.058 0.563 0.351 0.248 4.6 5.6 5.8 29.8 48.4 73.6
50 -0.150 0.045 0.102 0.217 0.131 0.066 4.9 5.3 4.9 57.1 81.2 96.3
100 0.146 0.017 -0.118 0.130 0.070 0.031 5.2 4.5 4.4 79.6 97.0 99.9

2SLSMGa

25 -0.044 0.104 -0.049 0.518 0.259 0.119 6.3 5.3 4.9 34.3 55.6 80.3
50 -0.069 -0.010 -0.055 0.241 0.109 0.059 7.2 4.5 5.5 56.5 83.7 96.9
100 0.113 -0.134 0.013 0.119 0.059 0.030 5.9 4.1 4.4 81.5 97.0 100.0

The DGP is same as that for Table 5.1 except the number of instruments are 6.
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Table C.2 (Case A: Low degree of endogeneity, Weak IVs) Bias, RMSE of
MA2SLSMGb, P-MA2SLSMGb, Ps-MA2SLSMGb, 2SLSMGb estimates and Size (%)
and power (%) of the associated t-tests for the dynamic heterogeneous panel data
model with {φ, β1, β2} = {0.8, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -0.298 -0.209 -0.332 0.077 0.037 0.019 7.3 5.8 5.9 93.3 99.9 100.0
50 -0.058 -0.183 -0.123 0.061 0.032 0.016 5.9 5.7 5.1 97.0 99.8 100.0
100 -0.099 -0.032 -0.110 0.057 0.028 0.015 6.6 5.9 5.3 98.7 100.0 100.0

P-MA2SLSMGb

25 -0.307 -0.288 -0.329 0.064 0.032 0.018 5.8 5.7 7.4 95.8 99.9 100.0
50 -0.280 -0.234 -0.301 0.060 0.029 0.015 7.0 6.1 5.6 97.5 100.0 100.0
100 -0.078 -0.162 -0.072 0.055 0.029 0.014 5.7 6.0 5.3 99.3 100.0 100.0

Ps-MA2SLSMGb

25 -0.177 -0.108 -0.164 0.110 0.060 0.042 6.8 6.7 4.8 86.2 96.5 98.3
50 -0.051 -0.094 -0.031 0.070 0.035 0.024 6.2 4.5 5.7 96.3 99.1 99.8
100 0.073 -0.009 -0.054 0.060 0.031 0.015 5.7 5.6 4.4 98.4 99.9 99.9

2SLSMGb

25 -0.294 -0.276 -0.317 0.064 0.032 0.017 5.7 5.6 7.6 95.7 99.8 100.0
50 -0.264 -0.220 -0.287 0.060 0.029 0.015 7.0 6.1 5.6 97.6 100.0 100.0
100 -0.069 -0.156 -0.065 0.054 0.029 0.014 5.8 5.9 5.3 99.3 100.0 100.0

Results for β1.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -0.553 -0.023 -0.117 0.511 0.236 0.110 7.7 4.9 4.3 34.0 58.2 82.3
50 0.083 -0.118 0.034 0.197 0.118 0.051 4.5 5.2 3.0 61.7 82.2 98.1
100 0.020 0.101 0.046 0.117 0.056 0.029 4.4 4.9 4.0 82.3 98.0 100.0

P-MA2SLSMGb

25 0.005 0.013 -0.011 0.449 0.230 0.105 5.6 5.1 4.9 37.9 60.1 85.4
50 -0.087 -0.025 -0.055 0.224 0.099 0.056 7.1 4.2 5.5 58.8 85.5 97.5
100 0.128 -0.122 0.012 0.117 0.057 0.029 5.6 4.3 4.5 82.3 97.4 100.0

Ps-MA2SLSMGb

25 0.104 -0.399 0.090 0.569 0.360 0.239 4.2 5.8 5.9 30.3 47.7 73.4
50 -0.164 0.053 0.124 0.219 0.132 0.073 4.8 5.4 5.6 56.6 81.2 96.4
100 0.143 0.025 -0.111 0.132 0.071 0.031 5.3 4.7 4.0 79.1 97.2 99.9

2SLSMGb

25 0.013 0.020 0.005 0.447 0.229 0.105 5.6 5.4 4.7 38.0 60.5 85.4
50 -0.081 -0.021 -0.045 0.223 0.099 0.056 7.4 4.2 5.5 59.1 85.9 97.8
100 0.132 -0.118 0.017 0.117 0.057 0.029 5.6 4.3 4.5 82.3 97.3 100.0

The DGP is same as that for Table 5.1 except the number of instruments are 12.
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Table C.3 (Case B: High degree of endogeneity, Weak IVs) Bias, RMSE of
MA2SLSMGa, P-MA2SLSMGa, Ps-MA2SLSMGa, 2SLSMGa estimates and Size
(%) and power (%) of the associated t-tests for the dynamic heterogeneous panel
data model with {φ, β1, β2} = {0.8, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 1.203 1.294 1.184 0.152 0.088 0.067 12.4 13.2 15.3 88.6 98.4 99.8
50 1.114 1.114 1.060 0.102 0.066 0.040 9.6 12.7 14.9 95.0 99.4 99.7
100 0.729 0.789 0.704 0.084 0.044 0.025 8.1 7.2 10.3 96.4 99.7 100.0

P-MA2SLSMGa

25 0.950 1.082 1.092 0.095 0.067 0.047 9.7 12.7 18.4 95.6 99.7 100.0
50 0.845 0.834 0.865 0.090 0.044 0.031 8.7 8.3 12.8 96.8 99.7 100.0
100 0.545 0.487 0.624 0.066 0.036 0.022 6.5 7.6 10.1 97.8 100.0 100.0

Ps-MA2SLSMGa

25 1.010 1.019 0.860 0.173 0.232 0.059 8.8 9.6 10.8 86.9 94.3 98.1
50 0.936 0.677 0.821 0.193 0.062 0.040 8.5 7.3 9.3 91.6 97.5 99.4
100 0.461 0.518 0.476 0.090 0.110 0.027 6.9 7.1 6.4 94.6 98.6 99.6

2SLSMGa

25 0.950 1.082 1.092 0.095 0.067 0.047 9.7 12.7 18.4 95.6 99.7 100.0
50 0.845 0.834 0.865 0.090 0.044 0.031 8.7 8.3 12.8 96.8 99.7 100.0
100 0.545 0.487 0.624 0.066 0.036 0.022 6.5 7.6 10.1 97.8 100.0 100.0

Results for β1.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 0.034 0.193 0.058 1.315 0.626 0.328 7.0 5.7 5.1 23.8 37.2 55.4
50 0.461 0.229 0.285 0.476 0.288 0.125 4.2 6.4 4.4 40.1 57.6 82.2
100 0.024 0.102 -0.015 0.267 0.145 0.074 6.1 5.1 5.9 53.6 79.5 94.9

P-MA2SLSMGa

25 0.369 0.530 0.422 0.834 0.445 0.221 5.2 5.6 3.6 27.2 45.2 66.0
50 0.129 0.425 0.116 0.484 0.204 0.116 6.3 4.8 5.0 40.8 66.0 86.5
100 0.128 -0.180 0.110 0.231 0.112 0.064 4.8 3.2 5.8 56.9 81.5 97.0

Ps-MA2SLSMGa

25 0.680 -0.280 0.583 1.369 0.810 0.424 4.7 6.3 5.5 22.5 31.3 54.9
50 -0.049 -0.023 0.178 0.585 0.311 0.205 4.8 5.7 6.5 36.7 56.4 77.3
100 0.158 0.026 -0.030 0.344 0.259 0.081 6.6 5.5 4.8 55.6 76.2 94.2

2SLSMGa

25 0.369 0.530 0.422 0.834 0.445 0.221 5.2 5.6 3.6 27.2 45.2 66.0
50 0.129 0.425 0.116 0.484 0.204 0.116 6.3 4.8 5.0 40.8 66.0 86.5
100 0.128 -0.180 0.110 0.231 0.112 0.064 4.8 3.2 5.8 56.9 81.5 97.0

The DGP is same as that for Table 5.1 except the number of instruments are 6.
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Table C.4 (Case B: High degree of endogeneity, Weak IVs) Bias, RMSE of
MA2SLSMGb, P-MA2SLSMGb, Ps-MA2SLSMGb, 2SLSMGb estimates and Size (%)
and power (%) of the associated t-tests for the dynamic heterogeneous panel data
model with {φ, β1, β2} = {0.8, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 1.426 1.527 1.350 0.117 0.081 0.057 16.9 21.7 24.7 97.1 99.8 100.0
50 1.654 1.531 1.592 0.099 0.067 0.051 14.4 20.4 29.9 99.3 100.0 100.0
100 1.194 1.278 1.229 0.079 0.050 0.035 10.3 13.7 22.5 99.2 100.0 100.0

P-MA2SLSMGb

25 1.241 1.403 1.380 0.092 0.072 0.055 13.1 18.1 25.9 99.1 100.0 100.0
50 1.295 1.263 1.299 0.087 0.051 0.043 13.2 14.4 25.5 99.3 100.0 100.0
100 1.044 0.927 1.040 0.070 0.040 0.028 9.7 10.5 17.8 99.5 100.0 100.0

Ps-MA2SLSMGb

25 1.086 0.988 0.845 0.183 0.235 0.062 8.9 9.3 10.0 86.6 93.8 97.8
50 0.984 0.691 0.824 0.198 0.079 0.042 7.9 7.1 9.2 91.1 97.2 99.3
100 0.499 0.471 0.473 0.094 0.081 0.028 7.2 6.7 5.7 94.5 98.5 99.5

2SLSMGb

25 1.268 1.434 1.413 0.093 0.074 0.056 13.2 18.6 26.1 99.2 100.0 100.0
50 1.344 1.309 1.350 0.088 0.052 0.044 13.2 15.0 26.9 99.3 100.0 100.0
100 1.102 0.991 1.101 0.071 0.042 0.030 10.1 11.0 18.7 99.6 100.0 100.0

Results for β1.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -0.033 0.223 0.116 0.858 0.433 0.189 7.2 5.8 4.7 24.9 45.5 68.8
50 0.340 0.260 0.176 0.395 0.232 0.098 5.0 5.8 4.8 42.4 64.9 87.7
100 0.014 0.156 0.044 0.235 0.127 0.064 5.0 5.4 5.8 57.3 83.2 97.7

P-MA2SLSMGb

25 0.348 0.377 0.303 0.661 0.392 0.189 4.7 6.5 4.2 29.8 48.4 70.5
50 0.088 0.351 0.189 0.438 0.196 0.102 7.0 4.1 4.8 40.8 69.5 89.5
100 0.182 -0.111 0.131 0.225 0.104 0.060 5.3 3.7 5.5 59.7 82.6 97.4

Ps-MA2SLSMGb

25 0.725 -0.188 0.603 1.366 0.819 0.486 4.3 6.4 5.9 23.0 31.6 53.5
50 0.064 0.031 0.215 0.597 0.366 0.221 4.7 5.2 6.7 36.9 57.0 76.4
100 0.239 0.037 -0.037 0.367 0.240 0.082 7.0 5.3 4.3 55.8 76.2 93.8

2SLSMGb

25 0.381 0.367 0.304 0.665 0.394 0.190 4.7 6.3 4.6 29.9 48.4 70.8
50 0.099 0.363 0.199 0.438 0.198 0.103 7.0 4.0 5.2 41.0 69.5 89.1
100 0.198 -0.096 0.138 0.228 0.105 0.060 5.5 3.9 5.7 59.9 83.0 97.3

The DGP is same as that for Table 5.1 except the number of instruments are 12.
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Table C.5 (Case C: Low degree of endogeneity, Strong IVs) Bias, RMSE of
MA2SLSMGa, P-MA2SLSMGa, Ps-MA2SLSMGa, 2SLSMGa estimates and Size
(%) and power (%) of the associated t-tests for the dynamic heterogeneous panel
data model with {φ, β1, β2} = {0.8, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -0.173 -0.124 -0.283 0.098 0.052 0.027 6.3 5.3 4.8 86.5 97.4 99.6
50 0.000 -0.089 -0.015 0.063 0.035 0.017 5.9 6.9 6.0 97.2 99.8 100.0
100 -0.069 0.007 -0.038 0.058 0.028 0.014 6.1 5.0 4.6 98.2 100.0 100.0

P-MA2SLSMGa

25 -0.317 -0.256 -0.266 0.075 0.040 0.019 5.6 5.8 5.0 91.0 99.5 100.0
50 -0.142 -0.115 -0.187 0.062 0.029 0.015 6.6 6.0 5.3 97.5 100.0 100.0
100 0.019 -0.077 0.011 0.055 0.029 0.013 5.4 5.6 5.2 98.8 100.0 100.0

Ps-MA2SLSMGa

25 -0.037 0.134 -0.166 0.127 0.083 0.037 6.5 5.8 6.7 82.7 96.5 98.4
50 -0.065 -0.047 0.016 0.078 0.035 0.020 7.0 5.9 5.4 95.0 99.7 99.5
100 0.046 0.021 -0.038 0.061 0.029 0.014 6.3 5.4 4.3 97.2 99.9 100.0

2SLSMGa

25 -0.317 -0.256 -0.266 0.075 0.040 0.019 5.6 5.8 5.0 91.0 99.5 100.0
50 -0.142 -0.115 -0.187 0.062 0.029 0.015 6.6 6.0 5.3 97.5 100.0 100.0
100 0.019 -0.077 0.011 0.055 0.029 0.013 5.4 5.6 5.2 98.8 100.0 100.0

Results for β1.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 0.433 0.475 0.173 2.551 1.146 0.616 5.4 4.3 4.3 15.4 20.9 33.8
50 0.577 0.155 0.337 0.635 0.326 0.150 6.7 5.1 5.5 35.8 50.5 76.3
100 0.163 0.220 0.201 0.205 0.100 0.054 4.3 5.1 4.9 63.5 88.4 98.9

P-MA2SLSMGa

25 0.790 0.178 0.834 1.716 0.874 0.443 6.9 5.6 4.8 18.6 24.7 42.5
50 -0.050 0.380 0.301 1.072 0.266 0.137 5.3 5.3 5.4 36.4 57.5 81.5
100 0.126 0.041 0.107 0.205 0.095 0.047 6.1 4.8 4.7 65.2 89.0 99.2

Ps-MA2SLSMGa

25 -0.464 -0.507 0.470 4.769 3.533 1.562 5.1 4.8 4.9 11.8 14.8 24.6
50 -0.183 -0.035 0.359 1.042 0.498 0.584 5.2 4.3 4.9 29.0 43.7 67.4
100 0.150 -0.038 0.052 0.265 0.126 0.070 6.1 5.6 5.2 58.5 81.4 96.7

2SLSMGa

25 0.790 0.178 0.834 1.716 0.874 0.443 6.9 5.6 4.8 18.6 24.7 42.5
50 -0.050 0.380 0.301 1.072 0.266 0.137 5.3 5.3 5.4 36.4 57.5 81.5
100 0.126 0.041 0.107 0.205 0.095 0.047 6.1 4.8 4.7 65.2 89.0 99.2

The DGP is same as that for Table 5.1 except the number of instruments are 6.
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Table C.6 (Case C: Low degree of endogeneity, Strong IVs) Bias, RMSE of
MA2SLSMGb, P-MA2SLSMGb, Ps-MA2SLSMGb, 2SLSMGb estimates and Size (%)
and power (%) of the associated t-tests for the dynamic heterogeneous panel data
model with {φ, β1, β2} = {0.8, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -0.367 -0.330 -0.450 0.073 0.038 0.021 6.1 5.9 6.4 93.7 99.6 100.0
50 -0.004 -0.107 -0.021 0.061 0.031 0.016 5.7 5.9 5.8 97.2 99.7 100.0
100 -0.063 0.019 -0.036 0.057 0.028 0.014 5.9 5.5 5.0 98.6 100.0 100.0

P-MA2SLSMGb

25 -0.390 -0.345 -0.389 0.066 0.035 0.017 5.6 6.0 6.5 94.7 99.8 100.0
50 -0.205 -0.142 -0.222 0.059 0.028 0.015 6.7 5.8 5.6 98.1 100.0 100.0
100 -0.015 -0.105 -0.010 0.054 0.029 0.013 5.0 5.8 5.1 98.9 100.0 100.0

Ps-MA2SLSMGb

25 -0.162 -0.071 -0.260 0.117 0.081 0.032 6.9 5.6 6.2 84.5 96.7 99.1
50 -0.118 -0.139 -0.076 0.068 0.032 0.019 6.3 6.1 4.8 95.9 99.7 99.7
100 0.001 -0.041 -0.082 0.059 0.029 0.014 6.2 5.5 4.5 97.9 99.9 100.0

2SLSMGb

25 -0.392 -0.354 -0.395 0.065 0.035 0.017 5.8 5.8 6.0 94.9 99.8 100.0
50 -0.211 -0.153 -0.230 0.059 0.028 0.015 6.7 5.7 5.6 98.1 100.0 100.0
100 -0.025 -0.112 -0.017 0.054 0.029 0.013 5.2 5.7 5.0 99.1 100.0 100.0

Results for β1.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 0.390 0.744 0.610 1.391 0.609 0.346 5.3 4.6 5.5 19.3 30.4 50.8
50 0.554 0.323 0.408 0.465 0.216 0.109 6.4 4.5 4.9 42.8 61.7 86.8
100 0.290 0.220 0.184 0.173 0.086 0.047 5.0 4.5 5.4 71.4 91.6 99.3

P-MA2SLSMGb

25 0.949 0.408 0.941 1.204 0.614 0.318 6.2 5.3 5.8 21.9 33.1 54.7
50 0.356 0.395 0.320 0.383 0.200 0.106 5.7 5.3 5.9 41.9 65.0 88.9
100 0.222 0.124 0.159 0.179 0.083 0.040 6.0 4.6 4.0 71.2 92.3 99.5

Ps-MA2SLSMGb

25 -0.430 0.270 1.092 4.191 3.919 1.349 5.2 4.7 6.0 12.9 17.7 29.9
50 0.055 0.249 0.586 0.807 0.466 0.426 4.9 4.3 5.1 31.3 50.2 72.2
100 0.263 0.100 0.156 0.238 0.116 0.062 5.8 4.9 5.4 63.4 85.2 98.0

2SLSMGb

25 0.968 0.414 0.954 1.188 0.599 0.314 6.4 5.3 6.0 22.3 33.0 55.2
50 0.382 0.424 0.329 0.381 0.198 0.103 5.7 5.8 5.7 42.3 65.8 89.6
100 0.250 0.142 0.185 0.178 0.083 0.040 5.9 4.8 3.9 72.1 92.7 99.5

The DGP is same as that for Table 5.1 except the number of instruments are 12.
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Table C.7 (Case D: High degree of endogeneity, Strong IVs) Bias, RMSE of
MA2SLSMGa, P-MA2SLSMGa, Ps-MA2SLSMGa, 2SLSMGa estimates and Size
(%) and power (%) of the associated t-tests for the dynamic heterogeneous panel
data model with {φ, β1, β2} = {0.8, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 1.114 1.149 0.992 0.158 0.092 0.062 9.6 13.4 13.1 88.7 96.3 99.2
50 1.217 1.106 1.116 0.128 0.069 0.040 10.8 12.9 14.8 94.5 99.0 100.0
100 0.601 0.686 0.709 0.078 0.043 0.026 7.1 7.9 12.1 95.9 99.5 99.9

P-MA2SLSMGa

25 0.872 0.899 1.026 0.101 0.058 0.042 9.3 11.7 14.6 95.0 99.7 100.0
50 0.882 0.783 0.838 0.085 0.043 0.031 10.1 8.5 12.8 96.8 99.8 100.0
100 0.576 0.510 0.636 0.068 0.034 0.022 7.4 6.5 10.7 97.0 100.0 100.0

Ps-MA2SLSMGa

25 0.804 1.071 0.874 0.187 0.129 0.057 9.5 9.3 9.0 83.5 93.9 98.6
50 0.622 0.780 0.738 0.156 0.073 0.063 7.0 7.6 11.2 91.6 97.7 98.4
100 0.474 0.421 0.345 0.100 0.046 0.027 6.7 6.8 6.4 93.9 98.5 99.4

2SLSMGa

25 0.872 0.899 1.026 0.101 0.058 0.042 9.3 11.7 14.6 95.0 99.7 100.0
50 0.882 0.783 0.838 0.085 0.043 0.031 10.1 8.5 12.8 96.8 99.8 100.0
100 0.576 0.510 0.636 0.068 0.034 0.022 7.4 6.5 10.7 97.0 100.0 100.0

Results for β1.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGa

25 -3.259 -0.650 -0.557 12.646 5.252 2.623 6.9 6.3 5.3 8.2 9.7 13.2
50 -1.717 -1.832 -2.341 5.085 2.648 1.338 5.1 4.6 5.2 8.4 11.7 15.9
100 -1.279 -1.988 -1.609 2.830 1.376 0.716 6.0 6.7 6.1 13.1 18.6 28.4

P-MA2SLSMGa

25 -0.561 -1.496 -1.266 6.404 3.454 1.796 5.7 5.6 5.6 9.5 11.1 13.5
50 -2.029 -0.224 -1.695 4.139 1.884 1.084 5.8 4.9 5.5 10.0 15.6 20.2
100 -1.239 -1.850 -1.745 2.065 1.132 0.518 4.1 6.5 4.4 13.3 19.0 29.6

Ps-MA2SLSMGa

25 -0.545 -1.788 0.026 21.612 9.841 4.872 5.2 4.1 4.7 7.6 7.1 10.9
50 -0.168 -2.386 -1.024 9.862 3.787 4.215 6.1 5.5 4.5 9.2 9.1 17.3
100 -0.787 -1.221 -1.476 5.629 1.775 1.510 6.8 5.0 5.7 13.0 17.2 28.0

2SLSMGa

25 -0.561 -1.496 -1.266 6.404 3.454 1.796 5.7 5.6 5.6 9.5 11.1 13.5
50 -2.029 -0.224 -1.695 4.139 1.884 1.084 5.8 4.9 5.5 10.0 15.6 20.2
100 -1.239 -1.850 -1.745 2.065 1.132 0.518 4.1 6.5 4.4 13.3 19.0 29.6

The DGP is same as that for Table 5.1 except the number of instruments are 6.
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Table C.8 (Case D: High degree of endogeneity, Strong IVs) Bias, RMSE of
MA2SLSMGb, P-MA2SLSMGb, Ps-MA2SLSMGb, 2SLSMGb estimates and Size (%)
and power (%) of the associated t-tests for the dynamic heterogeneous panel data
model with {φ, β1, β2} = {0.8, 3, 1}, correlated factor loadings in x1i,t and ui,t.

Results for φ.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 1.121 1.165 0.931 0.095 0.062 0.039 12.2 15.8 17.8 97.4 99.8 100.0
50 1.585 1.444 1.476 0.099 0.062 0.046 14.9 18.2 28.0 98.5 100.0 100.0
100 1.122 1.192 1.184 0.076 0.048 0.033 10.9 13.2 20.8 99.3 100.0 100.0

P-MA2SLSMGb

25 0.954 1.055 1.078 0.082 0.055 0.039 10.2 14.2 20.5 98.5 99.9 100.0
50 1.221 1.107 1.206 0.083 0.045 0.039 12.1 12.9 21.6 99 100.0 100.0
100 0.950 0.847 0.970 0.068 0.038 0.026 9.6 9.7 15.9 99.6 100.0 100.0

Ps-MA2SLSMGb

25 0.779 1.007 0.928 0.182 0.129 0.064 10.4 9.8 9.6 84.7 93.9 98.6
50 0.632 0.781 0.707 0.159 0.074 0.062 7.4 8.0 11.4 91.4 97.8 98.5
100 0.455 0.423 0.338 0.097 0.046 0.027 6.7 6.8 6.2 94.3 98.5 99.5

2SLSMGb

25 0.967 1.076 1.093 0.082 0.055 0.039 10.4 14.3 21.1 98.6 99.9 100.0
50 1.248 1.142 1.240 0.083 0.046 0.040 12.4 13.5 22.2 99.0 100.0 100.0
100 0.999 0.888 1.012 0.069 0.038 0.027 9.9 10.2 17.3 99.6 100.0 100.0

Results for β1.

Bias(×100) RMSE(×100) Size Power

T/N 25 50 100 25 50 100 25 50 100 25 50 100

MA2SLSMGb

25 -2.512 -0.842 -1.044 6.574 2.750 1.291 7.2 6.7 5.2 10.3 14.4 18.5
50 -1.889 -2.251 -2.328 3.170 1.697 0.868 5.7 5.1 6.4 11.1 14.7 21.5
100 -1.935 -2.607 -2.462 1.907 1.066 0.540 6.5 6.5 6.8 13.6 17.5 29.7

P-MA2SLSMGb

25 -0.414 -1.453 -1.555 4.225 2.544 1.329 6.0 6.0 5.6 11.3 13.6 19.1
50 -2.647 -1.365 -2.137 2.944 1.397 0.869 6.5 4.8 5.9 10.9 16.1 23.0
100 -1.631 -2.158 -2.301 1.659 0.931 0.453 4.8 7.1 5.1 13.5 19.4 30.8

Ps-MA2SLSMGb

25 -0.402 -1.640 0.534 21.090 10.174 4.935 4.4 4.4 4.6 7.8 6.9 11.0
50 -0.344 -2.256 -0.762 10.274 3.917 3.750 6.7 5.2 4.2 8.8 9.3 17.5
100 -1.030 -1.088 -1.471 4.764 1.844 1.523 6.9 5.3 5.2 13.0 17.6 28.4

2SLSMGb

25 -0.465 -1.547 -1.561 4.164 2.555 1.323 6.0 6.5 5.8 10.9 13.4 18.8
50 -2.617 -1.473 -2.199 2.908 1.382 0.862 6.6 4.8 6.1 11.3 15.9 23.4
100 -1.663 -2.222 -2.344 1.647 0.930 0.453 5.2 7.2 5.3 13.5 19.1 30.8

The DGP is same as that for Table 5.1 except the number of instruments are 12.
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