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Abstract

With 5G and beyond networks, energy consumption and operational costs go up

because of a focus on network densification. New technologies are needed for bet-

ter resource management. In spite of the access network’s ability to handle large

amounts of traffic, the backhaul network has slowed cellular network growth and

efficiency. Even though passive fiber-optic networks are generally available in the

backhaul network, capital expenditures and indirect operating costs hamper ultra-

dense deployments. The use of mmWave links as a backhaul management option

in the light of network softwarization (Software Defined Networking, SDN) may be

one way to combat the above issue, but this may not be the best solution since

there is a possibility of NLOS communication in the mmWave backhaul link due

to various obstacles, such as densely situated base stations and transceivers located

at low heights, such as street lights. Essentially, the above-mentioned issue can

be resolved by using Intelligent Reflecting Surfaces (IRS), also known as software-

controlled metasurfaces, on the backhaul side, which will allow signals to travel from

the source base station to the destination base station even in the absence of LOS

links (mmwave links). Part I of this thesis examined the benefits of adding IRS

channels along with backhaul mmWave channels. The MILP optimisation model is

designed to minimise backhaul networks’ total power consumption and to guarantee

maximum service to their users. Based on the MILP results, using IRS channels to-

gether with mmWave channels can reduce both static and dynamic backhaul power

if a certain number of mmWave channels is blocked simultaneously. In our study

range and input parameters, the number of active elements within an IRS can fur-

ther optimize dynamic backhaul power. The IRS can also be deployed in minimum

numbers through mmWave channels to optimize the number of users served.

1



Furthermore, IRS provides the advantages of edge computing in a multi-channel,

multi-user downlink communication system in which the necessary bandwidth is

guaranteed to all users. The objective of IRS is to minimize latency (including

process delay and transmission delay) and power consumption. On the basis of the

results of the model, it has been demonstrated that by modifying the weights of the

objective function, which reflect the operator preferences, the system can minimize

IRS latency, IRS power consumption, or both.

2



Chapter 1

Introduction

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Current Work and Limitations . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

As outlined in this chapter, the motivation for studying the use of Intelligent Reflect-

ing Surface (IRS) elements in a future backhaul network to overcome the challenges

of intermittent connectivity, outages, and rapidly changing channel conditions is de-

scribed. As mobile devices become more densely deployed, latency becomes a critical

issue and we establish how IRS can be helpful in minimizing the latency associated

with mobile access. The last section of this chapter discusses the limitations of

the related work, presents our contribution to using IRS to improve Signal-to-Noise

Ratio (SNR) in backhaul networks, to minimize latency in Mobile Edge Comput-

ing on the access side, and concludes by summarizing how the rest of the thesis is

organized.
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Chapter 1 Introduction

1.1 Motivation

It is estimated that modern wireless communication networks such as 5G and the

future 6G networks will support more than 6 billion users. However, a significant

proportion of applications require high data rates, [5]-[6], which will make more

congestion on the current available spectrum. In addition, the demand for data

services continues to grow, as revealed by the latest wireless network statistics,

which show that in 2019, the data traffic of mobile users was 68% more than the

previous year, i.e., 38 Exabyte (EB) as compared to the 27 EB in 2018 , [7]. As a

result, Ericsson predicts a growth of 27% per year in mobile data traffic until 2025[5].

Today’s 5G [8],[9] focuses on a user-centric, comprehensive, concrete system design,

resulting in a vision of more than 10 Gbps per user peak data rate with an less than

1ms of end-to-end delay (E2ED) [10].

In addition, 5G user density is supposed to be around 300 users per kilometre [8] ,

[11], which will increase load on the capacities offered by current wireless networks.

Therefore, new schemes such as MIMO (Multi Input Multi Output) are implemented

with the latest modulation techniques and further spectrum exploitation to satisfy

the demands. Also, in 5G, cell sizes are expected to be small; therefore, mass

deployment of small cells (SC) is one solution to offer limited capacity on demand.

Furthermore, Umbrella eNodeBs also known as macro-base stations are used to

provide coverage for small base stations (SBS) in SCs on demand [12].

These small cells (SC) can take advantage of reusing frequencies, thus improving

the area spectrum efficiency. The purpose of the backhaul network is to provide a

connection between the core network and base stations (BSs), and normally, fibre

optic is used for this purpose. However, providing fibre optic connections for all

the BSs in small cells may result in higher implementation and maintenance costs

4



1.1 Motivation

Figure 1.1: IRS used to provide virtual path to the user.

for the telecom operators. Under those circumstances, researchers have come up

with wireless backhaul (BH) solutions, which relay the user traffic towards the op-

erator’s core network using the wireless interface to provide the required capacity

with limited costs. Due to the massive spectrum available in the 60, 70, or 80 GHz

bands, millimetre Wave (mmWave) technology is considered an exciting candidate

for future 5G backhaul networks. Although, due to Friis law, omnidirectional free

path loss increases at these frequencies [13], beamforming techniques can be applied

to compensate for the path loss [14]. However, shadowing is one of the vital factors

for mmWave signals causing outages, intermittent connectivity, and rapidly varying

channel conditions [15]. Thus the deploying mmWave in the backhaul link has its

limitations, i.e., as the base stations are nearly deployed, there is a chance of block-

age due to some obstacle that will obstruct the mmWave link, causing the re-routing

of the backhaul traffic.

A new emerging hardware technology known as the Intelligent Reflecting surface has

just arrived; it reflects the impinging plane wave in the shape of a beam, thus acting

5



Chapter 1 Introduction

as a reconfigurable reflectarray by employing Micro-Electrical-Mechanical Systems

(MEMS) or varactor diodes [16], [17] and [18] to achieve a desired objective. The

objective includes but is not limited to increasing the received power of the wanted

signal, decreasing the interference power, or improving the relationship between

these two. IRS can accomplish these goals via beam-focussing, which changes the

amplitude of the radiation pattern in a particular direction or changes the direction

of the beam called beam steering. In Fig.1.1, IRS enhances coverage by creating vir-

tual links for users with blocked direct link to the BS. There are many use cases where

IRS can be employed [19], which includes: unmanned aerial vehicles (UAV) com-

munications, mmWave coverage extension, wireless information and power transfer,

physical layer security, etc.

In Mobile Edge Computing(MEC), mobile devices with resource-incentive applica-

tions can make use of computational offloading [20]. Nevertheless, when the commu-

nication link used to offload the computational tasks is not favourable, the benefits

brought by MEC cannot be fully exploited. Fortunately,by leveraging the benefits of

IRS, MEC paradigm can also be employed here to mitigate the propagation-induced

impairments.

1.2 Current Work and Limitations

IRS has recently drawn the attention of many researchers. For example, the au-

thors in [21],[22] presented a detailed description of IRS technology and discussed

advanced solutions and theoretical performance shortcomings. Energy efficiency ap-

proaches for phase transition of IRS elements and power allocation are presented

in [23], where an exact model of IRS power consumption is exhibited. A practical

application in outdoor environments shows that the IRS power allocation techniques

6



1.2 Current Work and Limitations

[24] can produce up to 300% energy efficiency compared to amplify-and-forward and

multi-antenna systems. Joint Active and passive beamforming is mentioned in [16],

where some recommendations are provided for optimal deployment of IRS. In [19],

the far-field path loss model for IRS-based connection is derived by making use of

techniques associated with optical physics where each reflective element acts as a

diffuse scatterer. There is a practical IRS application described in [25], that uses

256 positive intrinsic negative diodes (PINs) with 2-bit phase transition to achieve

a 21.7 dBi antenna gain at 2.3 GHz, and a 19.1 dBi antenna gain at millimetre wave

(mmWave) frequency of 28.5 GHz.

1.2.1 Backhaul optimisation using IRS elements

The majority of the studies examined the use of IRS in future Access networks to

accomplish various objectives; however, only one of the studies [26], employed IRS

to provide wireless multi-hop backhauling services for multiple base stations (BSs)

connected in a mesh topology. According to the authors, the authors analysed

the performance of the proposed architecture from the perspective of Rician fading

channels. This was done in order to calculate the probability of error and outage.

In the simulation, it was determined that the IRS supported mesh backhauling

architecture has several desirable characteristics that can be utilized to overcome

the backhauling challenges. The proposed system model does not consider any

backhaul traffic routing or the power consumption of IRS elements.

In the first part of this thesis, we developed an optimization model to determine the

amount of backhaul power saved by introducing IRS channels along mmWave chan-

nels while guaranteeing maximum connectivity. This scheme shows the optimum

value of active elements in an IRS-supported backhaul channel under the assump-

tion that renewable sources, for example, solar panels, are utilised to activate these

7



Chapter 1 Introduction

elements.

1.2.2 Latency minimisation in Mobile Edge Computing using

Intelligent Reflecting Surface

Mobile Edge Computing implements cloud computing capabilities near to the mo-

bile users, i.e., at the edge of the mobile network. The main intentions are reducing

the latency, ensuring highly efficient network operation, and improving the user

experience. In [27], authors formed a joint user association and computation of-

floading problem to minimise mobile users’ energy consumption and MEC servers.

They disintegrated it into two sub-problems i.e., user association and computation

offloading. As the name suggests, the user-association subproblem decides whether

a mobile user can be served by a specific base station. In contrast, the computation

offloading sub-problem jointly optimises the computational resources, transmission

power, and offloading schemes. To reduce the computational latency, an IRS was

introduced in [28] in MEC systems and a latency minimisation problem was formu-

lated based on this model, subject to the constraints on IRS phase shifts and edge

computing capability constraints. The authors developed algorithms to optimise the

communication and computation settings. However, their work did not consider any

impact on power consumption imposed by introducing IRS elements in the model.

Against this background, in this part of the thesis, we examine the advantages of

IRS in a mobile edge computing setting in a multi-channel-based multi-user down-

link communication system by guaranteeing that all the users are served. A MILP

model with objective function and constraints is developed. The objective function

is to jointly minimize the latency (including process delay and transmission delay)

and the power consumed by the IRS elements.
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1.3 Thesis Outline

Figure 1.2: Thesis Organization

1.3 Thesis Outline

The thesis is organized into 7 chapters, as shown in figure 1.2, and the remaining

part of it is outlined as follows:

• Chapter 2: In this chapter, we present background on the established work

related to this thesis. We present a detailed description of the IRS construc-

tion, its channel model and novel idea of using IRS for frequency selectivity is

9



Chapter 1 Introduction

elaborated. Then, the use cases and key requirements for 5G are addressed. It

then sheds light on small cell networks and the associated challenges as a key

enabler to 5G. We then presented a brief overview of mmWave backhaul along

with its its channel model, and architecture. Finally, a brief background of

the Mobile Edge Computing (MEC ) paradigm along with the issue of latency

is exhibited.

• Chapter 3: In this chapter, the basics of optimisation problems and their for-

mulation in MILP is exhibited. We present a node-link formulation to design

our network models that consider each link’s capacity. A piecewise Linear-

ization technique is developed to linearise the non-linear objective functions

and constraints. Moreover, a brief review of genetic algorithms to solve the

optimisation problems is also presented.

• Chapter 4: This chapter presented the idea of using the IRS in the mmWave

backhaul links to overcome the issue of blockages and how the IRS can provide

savings in the backhaul power consumption. We developed an optimisation

model based on MILP to minimise the total backhaul power while guaran-

teeing the maximum users are served. We evaluate the suggested architecture

under different scenarios related to the type of blockages in backhaul, the avail-

ability of IRS channels by measuring the power consumed by base stations for

forwarding the backhaul traffic and the power consumed by IRS elements.

• Chapter 5: In this chapter, an IRS is proposed for employment in Mobile

Edge Computing (MEC) systems to reduce the computational latency. A

latency-minimisation problem is formulated based on the MILP model, subject

to practical constraints on the total edge computing capability. The benefits

of using IRSs in the MEC system were evaluated under various simulation

environments.
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• Chapter 6: In this chapter, a heuristic based on a genetic algorithm is de-

veloped to validate the results obtained from the optimisation problems. We

specified binary chromosomes resembling our decision variable. A unique se-

lection and mutation process for the generated population using those chromo-

somes is also presented. We also devised a repair function to check the validity

of generated chromosomes and repair according to certain constraints. Differ-

ent fitness functions are evaluated related to our optimisation problems. The

results obtained from heuristics are comparable with those results obtained

earlier with the MILP model.

• Chapter 7:This chapter concludes the thesis and discusses possible future

directions for research.

1.4 List of Publications

• Aftab, N., Zaidi, S. A. R., McLernon, D. C., & Lawey, A. “optimisation of
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Networks”, (to be submitted to IEEE Transactions on Green Communications

and Networking ).
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Surface Assisted Future Access Networks”, (to be submitted to Conference ).
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1.5 Conclusions

This chapter describes the rationale for exploring the use of Intelligent Reflecting

Surface (IRS) elements to prevent intermittent connectivity, outages, and rapidly

changing channel conditions in a future backhaul network. With more mobile devices

being deployed, latency becomes a critical concern, and we discuss how IRS can

help minimize latency associated with mobile access. In addition to discussing the

limitations of related work, we presented our contribution to improving the Signal-

to-Noise Ratio (SNR) of wireless backhaul networks, as well as reducing latency

on the access side of Mobile Edge Computing and the chapter is concluded by

summarizing how the rest of the thesis is organized.
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In this chapter, we are going to provide the background knowledge with respect to

backhaul communications using mmWave based on IRS and how to minimize latency

using IRS in a MEC system. An in-depth description of the IRS, its configuration,

and the different advantages IRS offers in 5G and future 6G networks is presented.

We discuss key performance indicators (KPIs) for 6G and small cell deployments for

5G. A study of mmWave backhaul communication with the implementation of IRS

is presented. Towards the end of the chapter, we describe mobile edge computing

in terms of its communication and computation models.

2.1 Intelligent Reflecting surface(IRS)

Recently, IRS, also called metasurfaces, has been developed to control the propaga-

tion medium, thus enhancing the quality of service (QoS) to expand the wireless
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Chapter 2 Background Theory

Figure 2.1: The architecture of IRS, where a single reflecting element is marked in
red [1].

networks energy and spectral efficiencies. This technology is expected to play an

essential role in the energy and spectral efficiency of 5G and beyond future wireless

networks. IRS employs nearly passive antenna elements, introducing phase shifts

to the received signals and reflecting them to the destination. Thus, to get an ef-

ficient transmission, multiple reflectors are implemented, and the reflected signals

add coherently after the proper selection of introduced phase shifts. Thus, the

signal-to-noise ratio (SNR) improves dramatically and hence, enhances the spec-

trum efficiency [29], [30]. The following sub-section explained the configuration of

the IRS.
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2.1 Intelligent Reflecting surface(IRS)

2.1.1 IRS configuration

The IRS is normally embedded on a printed circuit board (PCB), and the metasur-

faces are located on the top of a dielectric substrate, having an extensive number of

metallic patches printed periodically, as shown in Fig.2.1. In a reflecting element,

two different metallic patches are connected through a common varactor diode, each

of which is connected with the conductive cylindrical post, thus forming a parallel

connection between the varactor and the cylindrical post[1]‘. Those cylindrical posts

passes through a dielectric substrate and a control layer and ends at the metal layer,

whereas, the metal layer performs the role of a ground plane. Thus, the substrate’s

thickness and the length of the cylindrical post determine the circuit’s inductance.

In the control layer, a DC voltage is applied by the FPGA-based controller, and the

capacitance of each varactor varies depending on the individually controlled bias

voltages. An insulation layer eliminates electromagnetic leakage from the metal

layer. When an RF signal reaches the metallic patch, the current flows through the

metallic patch is divided into two different paths, i.e., through the cylindrical post

and the varactor. The distributed current meets on the opposite side of the metallic

patch and hence the RF signal is reflected back by that metallic patch.

2.1.2 IRS path Loss

The potential performance gains brought by adopting IRS can be confirmed by

formulating a path loss model for received power and SNR performance. Based

on wireless communication’s conventional two-way channel model, the authors in

[21] specified a simplified path loss model. As shown in Fig.2.2, in addition to the

straight path from the transmitter to the receiver, each reflective element in the IRS

provides the second path from transmitter to receiver, thus establishing a two-way
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Figure 2.2: An IRS-aided two-way channel model for wireless communications
where IRS controller can configure each IRS element

signal propagation model. The signal power at the receiver can be determined by

the combination of all the signals from all the paths, as follows

PRx (d) = PT x

(
λ

4π

)2 ∣∣∣∣∣1l +
N∑

n=1

κne−j△ϕn

d1,n + d2,n

∣∣∣∣∣
2

, (2.1)

where, PT x and PRx represents the transmit and receive power of signals, respect-

ively, the number of elements in IRS are denoted by N , and l represents the length

of the direct path, from which the distance d between transceivers can be approx-

imated. Through each n-th reflecting element, the distance between the transmitter

and IRS is denoted by d1,n, and the distance between IRS and receiver is denoted

by d2,n. In Eq.(2.1), the summation term represents the signal reflections through

different paths due to IRS elements. The distance between each direct and reflected

path through the n-th element determines the phase difference, △ϕn. Whereas, κn,

represents the reflection coefficient that depends on the reflected object’s EM prop-

erties, which is traditionally uncontrolled without using the IRS. However, in case

of IRS, the phase shift of each IRS element can be controlled in a way such that

κn = ej△ϕn ; thus, both the phase of the direct path and reflected signal through N
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2.1 Intelligent Reflecting surface(IRS)

elements are coherently aligned.[31]. Usually, an assumption is made for distances,

i.e., l ≈ d1,n + d2,n ≈ d for all n, which approximates the signal strength obtained

in Eq.(2.1), as

PRx (d) ∝ (N + 1)2 PT x

(
λ

4πd

)2

. (2.2)

Thus, in the absence of direct link or with a large number of reflecting elements,

N , the above path loss can be simply rewritten as

PRx (d) ≈ N2
(

λ

4πd

)2

. (2.3)

The N2 term in IRS supported path loss Eq.(2.3) introduces some extra gain to the

received signal power compared to the received signal power in free space path loss.

2.1.3 Frequency Selectivity using IRS

The IRS does not only provide the gain in the path loss, but it also provides fre-

quency selectivity, a unique feature of IRS, which can be determined by the equi-

valent circuit of each reflecting element of an IRS as shown in Fig.2.3, where, L1

represents the inductance resulting from two conductive cylindrical posts, and L2, R

and C are passive elements of the the varactor, which can be determined according

to the varactor model in [32]. By choosing the suitable capacitance C, the amplitude

and phase shift of the reflected signal can be configured. To be explicit, for a signal

of frequency f, the impedance of the reflect element circuit can be written as

Z (C, f) =
j2πfL1

(
j2πfL2 + 1

j2πfC
+ R

)
j2πfL1 +

(
j2πfL2 + 1

j2πfC
+ R

) , (2.4)
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Figure 2.3: The equivalent circuit of an IRS element(in dotted box)

thus the reflection coefficient of each IRS element is given by

ϕ (C, f) = Z(C, f) − Z0

Z(C, f) + Z0
. (2.5)

From Eq.(2.5), with determined circuit parameters, signals of different frequencies

can generate different responses (reflection coefficients) through the same IRS ele-

ment.

2.1.3.1 Comparison of IRS with other related Technologies

The proposed IRS differs remarkably from related technologies like amplify-and-

forward (AF) relay and the backscatter communication. First, opposed to the AF

relay, which amplifies and regenerates signals to assist source-destination transmis-

sion. IRS as a nearly passive array only reflects the signal, without any transmitter

module, consuming comparatively less transmit power than AF relay. Second, unlike

the traditional radio frequency identification (RFID) tag of the backscatter commu-

nication, which interacts with the receiver by reflecting the signal sent by a reader,

IRS is primarily used to improve the communication efficiency of an existing link
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Table 2.1: A comprehensive comparison between IRS and other related technologies

Technology Functional No. of transm- Duplex Energy Hardware Role

mechanism itter RF Chains consumption cost

needed

MIMO relay Active, receive N Half/full High High Helper

and transmit duplex

Backscatter Passive, reflect 0 Full duplex Very low (10 μW) [33] Very low Source

IRS Nearly passive, reflect 0 Full duplex Low (5 mW) [24] Low Helper

rather than producing its own information by reflection. Thus, in backscatter com-

munication, the direct-path signal (i.e., from reader to the receiver) is unwanted

interference and therefore receiver must suppress/cancel this interference. However,

in IRS-enabled communications, the same information is conveyed by both the dir-

ect and reflected path signals. A further comprehensive comparison between the

IRS and other technologies is compiled in table 2.1.

To study the benefits of the IRS in wireless communications, extensive research

works have been made to evaluate its channel estimation [34], capacity analysis

[35] and modelling of practical reflecting phase shifts [36], along with the associ-

ated phase shifts design [37]. In particular, joint design of the IRS phase shift and

precoding at the BS is introduced in [37]. To reduce the transmit power while the

received signal-to-interference-plus-noise ratio (SINR) is maintained. These studies

are then expanded to the most efficient discrete phase shift settings [38]. Never-

theless, the developed algorithm in [37] has an extreme computational complexity

which prevents its applicability in large-scale IRS. Guo et al. [39], suggested a low-

complexity algorithms to decrease the complexity, whereas Pan et al. [40], presen-

ted majorisation-minimisation (MM) algorithms for the case of multi-cell scenarios.

Moreover, to overcome the overhead due to the IRS channel estimation, authors in

[41] grouped the IRS elements, so the same phase shift coefficient is shared by each

group. As a result, they optimised the phase shift and power allocation in ortho-
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gonal frequency division multiplexing (OFDM) systems. Moreover, the use of IRS

is also explored in simultaneous wireless information and power transfer (SWIPT)

[42], as well as in enhancing the physical-layer security [43]. These remarkable re-

search contributions encouraged us to investigate further the benefits of IRS in the

future 5G networks.

2.2 Small Cell Infrastructure in 5G Network

This section presents a collection of feature 6G Key Performance Indicators (KPIs)

featured in various surveys. It then proposes one of the crucial technologies for

improving the capacity of 5G networks, namely small cells, and then presents the

related deployment challenges of small cells.

2.2.1 Key Performance Indicators in 6G

From the 1G network to the 5G network, and now to the future 6G network, the key

performance indicators have largely stayed the same. However, with progression of

each generation the minimum requirements have become more stringent. There is

one exception, the energy efficiency KPIs, which were introduced in 5G, but without

specifying specific targets.

According to many analysts, 6G is likely to have a similar set of KPIs as previous

generations, but with much greater ambitions as shown in Fig.2.4. Even though

the KPIs were largely independent in 5G (although less strict at high mobility and

for large coverage areas), a cross-relationship between the KPIs is desirable in 6G

through a definition of groups. There should be no discrepancy in the requirements

for different indicators in a group, but they should be completed at the same time.
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Figure 2.4: 6G networks requirements

As a result, we will go from a situation where broadband connectivity is delivered in a

single way to a situation where the specifications of different broadband applications

become too specialised to be unified simultaneously. Therefore, 6G will need to be

configurable in real-time to cover these different groups.

The following are the desirable KPIs for 6G Wireless Access.

Extreme Data Rates: Both indoor and outdoor connections are expected to

reach peak data rates of 1 Tbps. A minimum 1 Gbps data rate is intended to be

experienced by 95% of users in every location.

Enhanced Spectral efficiency and Coverage: Through the use of improved

MIMO technology and modulation schemes, peak spectral efficiency could be in-

creased to 60 bits per second. However, the greatest expected improvement will

come from the uniformity of the spectral efficiency throughout the coverage area.
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The spectral efficiency should be 3 bits per second per Hz from the perspective of

the end-user. Furthermore, it is necessary to develop new PHY layer algorithms

to enable broadband connectivity in scenarios with high mobility and more broadly

those for which legacy wireless network generations do not fully meet the needs.

Extra Wide Bandwidths: In order to support high peak rates, the maximum

bandwidth must be increased significantly. A mmWave band can have bandwidths

of up to 10 GHz, while THz and visible light bands can reach 100 GHz.

Enhanced Energy Efficiency: As part of the focus on sustainable development,

6G technologies are expected to strive for greater energy efficiency, both in terms of

the total power consumption per device and the transmission efficiency. Accordingly,

efficiency should reach up to one terabit per joule in the latter case. A core element

of 6G is the development of energy-efficient communication strategies.

Ultra-Low Latency: By using bandwidths greater than 10 GHz, we can achieve

a latency of 0.1 ms and a jitter of 1 micro second, resulting in extremely precise

timing.

Extremely High Reliability: The requirement for mission-critical applications

up to 10−9 reliability is prevalent in some new use cases. It is unlikely that all of

these requirements will be simultaneously supported, but different use cases will

have different sets of KPIs, where of only some reach the maximum requirements

mentioned above.

2.2.2 5G Dense Small Cells Deployments

In 5G, the deployment of small cells to provide the local coverage and capacity using

the low transmit power base stations (BSs), will be a critical enabler for increasing

the future network’s capacity and coverage, particularly in city centres and areas
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with high traffic [8]. The typical coverage range of small cells is form ten to hundreds

of meters [44]. They are classified as femtocells, picocells and microcells, subject to

the coverage distance and transmit power, as shown in table 2.2, where a macro-cell

is just included for comparison. These small cells can be used both indoors and

outdoors environments.

Table 2.2: Classification of Cellular cells

Cell type Typical BS transmit Number
cell size power of users

Femtocell 10-20 (m) ≤ 100 (mW) Few
Picocell 4-200(m) 0.25-2 (W) 20-40

Microcell 200(m) -2 (km) ≤ 2 (W) 100
Macrocell 30-35 (km) 5-40(W) Many

A combination of radio technologies and different small cells results in a Heterogen-

eous Network (HetNet), as shown in Fig. 2.5. Due to the multi-tier architecture of

HetNet networks, it is supposed to be one of the significant technologies in 5G net-

works. Specifically, the base stations of different tiers have distinct characteristics

such as access technology, coverage area and transmit power [45]. Therefore, despite

the gains such as localise coverage and high capacity, brought by small cells, many

challenges like interference management, user association and ackhaul bottleneck

need to be solved. A brief description of one of the challenge related to our thesis,

i.e., user association and backhaul bottleneck, is given below.

User Association and Backhaul Bottleneck

In wireless communication research, user association issue has received much at-

tention. Already developed user association strategies employ a mixture of criteria

such as the available bandwidth, link quality (quality of reference signal received),

and traffic type to improve the network efficiency with a lower probability of ser-

23



Chapter 2 Background Theory

Figure 2.5: HetNet principle

vice interruption [46], [47]. However, one of the critical factors generally overlooked

is backhaul bottleneck, where the role of the backhaul network is to connect the

access networks to the core networks using wired medium like fibre optics or wire-

less interface(e.g. microwaves and mmWave). In the next section, we presented an

idea of preferring the wireless technologies over the wired technologies for small cells

backhaul.

2.3 Solutions to small-cell backhauling

Consider a backhaul network with a single macro-cell region, where the macro-cell

BS is connected with the core network via fibre connection, and will serve as the

gateway node to the core network for a set of small-cell BSs. Fig.2.6, portrays the

conceptual view of small-cell backchaining. For the small cell backhaul connection,

optical fibre is supposed to be the ideal candidate to accommodate endless capacity

and high reliability; however, due to increased operational challenges, and higher
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Figure 2.6: The conceptual idea of small-cell backhauling

associated costs, it is not reasonable to install adequate fibres in each small cell

for future networks [48],[49]. Thus, wireless backhaul technologies have become a

preferable solution for small cell backhaul due to their cost-efficiency and flexibility

of deployment. In the next section, we will present a comparative analysis of wired

mediums like optical fibre with other wireless interfaces.

2.3.1 Millimetre-wave band

Millimetre wave bands (millimetre waves) at 60 GHz and 70-80 GHz are preferable

choices for line-of-sight (LOS) wireless backhaul solutions for future 5G networks due

to the availability of high spectrum and hence, the higher data rates. In addition,

these bands benefit from “light license” or “license exemption”, which allows for

efficient frequency reuse, resulting in a much lower spectrum cost [15],[50]. Moving

to the mmWave band, the ITU has released some other bands at 28–30 GHz, 38-

40GHz and 57-64 GHz ( the free-licensed band ), which is extended to 71 GHz,

thus giving a contiguous band of 14 GHz. Furthermore, in the E-band, 71–76 GHz,
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Figure 2.7: Different candidates mmWave bands for 5G

81–86 GHz, and 92–95 GHz bands are allocated for mmWave bands [51]. Ofcom

in the UK has released one of the pioneer mmWave bands, centred at 26 GHz for

5G networks, ranging between 24.25 – 27.5 GHz [52]. Fig. 2.7, shows the mmWave

candidate bands for 5G.

2.4 Analysis of mmWave wireless communications

The analysis on mmWave wireless communications can be tracked back to the 1960s

when researchers began to study the propagation aspects of wireless signals on the

mmWave band [53]. Some of them also investigated applications of mmWave wireless

transmissions in the the radar and satellite communication systems [54], [55]. With

the fast development in antenna technologies and electronic circuits, industries and

vendors start implementing mmWave wireless communications in the current 5G

cellular systems. Consequently, the research on mmWave wireless communications

has freshly attracted much attention from both the academia and industry. In the
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Figure 2.8: Rain attenuation of mmWave signals [2]

following section, we will focus on the latest research outcomes on the characteristics

of mmWave wireless communications.

2.4.1 Propagation Characteristics of mmWave Wireless Signals

As one of the important technologies of 5G cellular systems, mmWave communic-

ations can make use of more than giga-Hertz (GHz) available frequency spectrum

from 30 GHz to 300 GHz. Because the mmWave frequency range is very wide and

different mmWave sub-bands have different propagation characteristics, only a few

mmWave sub-bands, as mentioned in section 2.3.1, will be employed in 5G cellular.

2.4.1.1 Rain attenuation and atmospheric absorption at mmWave frequencies

Compared to the wireless signals in the sub-6 GHz band, mmWave signals suffer

from huge propagation loss. One of the main reasons is that the propagation loss of

wireless signals is quadratic to the signal frequency. Another significant reason is the

weather condition may contribute significantly to the path loss of mmWave signals.

It is well known that the atmospheric and molecular absorption and rain attenuation

limit the range of mmWave communications [3, 56, 2]. Rain attenuation, also known
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Figure 2.9: Atmospheric and molecular absorption of mmWave signals[3]

as Specific attenuation γR (dB/km) is depends on the rain rate Rα (mm/h), and is

given by [56],

γR = kRα, (2.6)

the values for the coefficients k , and α are determined as afunction of f (GHz)

are given in [56, table 5]. In the heavy rain, mmWave signals experience signific-

ant attenuation because raindrops are comparable to wavelengths of mmWave and

therefore causing a high signal scattering. The attenuation due to rain at mmWave

frequencies is shown in Fig.2.8, whereas the attenuation due to the atmospheric and

molecular absorption is shown in Fig.2.9. It can be deduced from Fig.2.8 and Fig.2.9,

the propagation range in the mmWave bands is more affected by rain attenuation

at 71-86 GHz, while, 60 GHz (V-band) suffers most from oxygen absorption. How-

ever, at sea level, the total attenuation by atmospheric gases at 71 -86 GHz band

lies between 0.37 to 0.5 dB/km, which is insignificant considering the deployment

density of small cells [57]. In the UK, the rainfall rate that surpasses 0.01% of the

average year, is 35 mm/hr as specified by ITU-R P.837 and is designated as a heavy
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rain. According to [56], the rain attenuation at this rainfall rate is estimated as 14

– 15 dB/km. Hence, for a mmWave backhaul link of 100m, the attenuation due

to rain is almost 1.5 dB, which is comparatively lower than its path loss over the

same distance. Therefore, mmWave communications are primarily used for small

cell backhaul with cell sizes on the order of 300 m [58].

2.4.1.2 MmWave Channel Models and Path Loss calculation for Backhaul

Networks

3GPP has recommended TR 38.901 and TR 38.900 channel models for above 6 GHz

frequency, providing specifications on the channel’s path gain, spatial and delay

characteristics [59]. A lot of research work also concentrates on estimating mmWave

channels. Here we focus on some relevant work based on the outdoor scenario.

From the measurements in [58],[60], it is observed that the transmission range of

mmWave signals can go beyond even 200 m in outdoor environments, which matches

the conclusion above. Moreover, Haneda et al. [61] developed mmWave channels

for frequencies range of 6 GHz to 100 GHz and examined several factors, like path

loss, LOS probability, penetration, shadowing and blockage models. They classified

blockages into two classes; one is the fixed blockage, i.e., due to the buildings and

other structures, and the other one is the dynamic blockage which is due to humans,

cars and trucks, etc. Note, that most of the above mmWave channel measurement

and modelling concentrates on the access tier, which portrays the communication

channel between end users and base stations, whereas our work concentrates on

the backhaul tier of the mm Wave communication, which is considerably different

from the access tier. For example, the transmit power is relatively high in the

backhaul network, so more powerful devices can be deployed. Moreover, in the

absence of dynamic blockage, the backhaul links are usually line-of-sight. Therefore,
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to simplify our analysis for path loss modelling of backhaul network, the conventional

assumption of additive white Gaussian noise (AWGN) channels is considered. The

capacity of the mmWave backhaul channel is given by Shannon’s capacity as

C = B log2(1 + SINR), (2.7)

where B is the bandwidth of mmWave backhaul channel, SINR is signal to interfer-

ence plus noise ratio, which is defined as

SINR = PRx

σ2 + I
, (2.8)

where, PRx, denotes the power of the desired transmitter’s signal at the receiver,

σ2 represents the power of thermal noise and I denotes the combined power of all

the interfering signal from other transmitters. Nevertheless, due to the higher sig-

nal attenuation at mmWave frequencies, interference among the adjacent mmWave

channels can be ignored. As a result of the static nature of the backhaul network,

simple techniques for allocating frequency can be implemented at the beginning.

Now, the Friis transmission equation is used for the calculation of PRx and is given

as

PRx (d) = PT x × GT x × GRx ×
(

λ

4πd

)η

, (2.9)

where, the transmit power, antenna gains at the transmitter and receiver are de-

noted by PT x, GT x, and GRx, respectively. λ, denotes the wavelength of the signal,

whereas the propagation distance and path loss exponent are represented by d and

η , respectively. Eq.(2.9) governs the LOS propagation in free space and reveals that

with the increase in the frequency, the path loss also increases. Hence, mmWaves

are supposed to be the best candidate for short-distance communication links like
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small cells backhaul. The ratio of power transmitted PT x to power received PRx, is

known as free space path loss PLfree , and by assuming the isotropic antennas at

the transmitter and receiver i.e., GT x = GRx = 1, and η = 2 for free space, PLfree

is given as

PLfree = PT x

PRx

, (2.10)

=
(

4πd

λ

)2

,

=
(

4πdf

c

)2

.

By using Eq.(2.10) the free space path loss in dBs [62], and is given by

PLfree(dB)
= 20 log10

(
fBH(MHz)

)
+ 32.45 + 20 log10

(
d(km)

)
. (2.11)

In. Eq.(2.11), fBH denotes the frequency of mmWave backhaul link in MHz. Let

the signal attenuation due to atmospheric gases (i.e., vapour and oxygen) and rain

at distance, d are expressed as

PLd(dB) = d(km)(Lvap + LO2 + LR)(dB/km), (2.12)

where, Lvap, LO2 and LR (γR) represent the signal attenuation due to vapour, oxygen

[3] and rain [56], respectively. Thus, the total path loss PL(dB) can be expressed

as the sum of the free space path loss (PLfree) and the signal attenuation due to

atmospheric gases and rain PLd(dB) as

PL(dB) = PLfree(dB) + PLd(dB) . (2.13)
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Hence, the signal to noise ratio SNR(dB), for mmWave channel [14], and is given as

SNR(dB) = PT x(dBm) + GT x(dBi) + GRx(dBi) − Nth(dBm) − NF(dB) (2.14)

− PL(dB) − Txloss(dB) − Rxloss(dB) − Lmargin ,

where, PT x(dBm) is the transmit power, GT x(dBi) and GRx(dBi) are the transmitter and

receiver antenna gains, respectively. Nth(dBm) stands for the thermal noise, NF(dB)

denotes the noise figure, PL(dB) is the total path loss, Txloss(dB) and Rxloss(dB) represent

the transmitter and receiver losses, receptively and LMBH is the link margin. The

thermal noise Nth(dBm) is given by

Nth = 10 log10

(
kBT(K)B(Hz)

)
, (2.15)

where, kB denotes the Boltzmann’s constant (joules per kelvin), T is the absolute

temperature (kelvin) and B denotes the channel bandwidth (Hz).

2.4.1.3 Blockage in mmWave backhaul

It is commonly assumed that the wireless signals cannot diffract easily around those

obstacles whose size is considerably larger than the wavelengths of wireless signals.

Consequently, backhaul links in the 60 GHz band with smaller wavelengths are prone

to blockage by obstacles in outdoor and indoor environments. For instance, there

are large numbers of trees, buildings and billboards in the dense urban outdoor area

as well as moving big vehicles. Thus, for a partially blocked mmWave backhaul link

the path loss in Eq.(2.13), become

PL(dB) = PLfree(dB) + PLd(dB) + BL(dB) (2.16)
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Figure 2.10: IRS supported mmWave backhaul due to dynamic blockage [4]

where BL(dB), is the random blockage parameter in the range of 20-50 dBs to incor-

porate dynamic blockages due to the bigger obstacles like cars or truck in mmWave

backhaul. As already mentioned in section 2.1.2, introducing IRS in the wireless sys-

tem enhanced the gain by a factor of N2, so to tackle the issue of dynamic blockage

in mmWave backhaul, we introduce an IRS along the mmWave channel as shown in

Fig.2.10. In the next section, we will provide some background information related

to the architecture of mmWave backhaul networks.

2.4.2 Architecture of mmWave backhaul

To achieve better performance, reliability, cost-effective solution and high backhaul

throughput, different mmWave backhaul topologies are employed by the research

community and industry. Two famous topologies are discussed here.

2.4.3 Star topology

This approach assumes a centrally located macro base station and the small cell

base stations are distributed in the vicinity of that macro base station as shown

in Fig.2.11. All the small base stations have the same coverage and transmission
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Figure 2.11: Star topology of Small cell wireless backhaul

power. Traffic from small cells is aggregated at the macro base station; then, it is

transmitted to the core network through the existing fibre connections [49].

2.4.4 Mesh Topology

In a mesh topology, traffic from one small cell is layered with the help of other

small cells to the macro base stations, which is connected to the core network via a

fibre link [49], as shown in Fig.2.12. It has certain benefits over star topology, like

it can provide greater resilience to traffic fluctuations and availability due to the

path redundancy between the small cells. Nevertheless, these advantages come with

related costs such as scalability issues and complexity of topology management,

although they can be optimised by applying proper planning. In our backhaul

scenario, we used mesh topology for mmWave backhaul.

2.5 Mobile Edge Computing Paradigm

Cloud computing as an efficient computing platform has enjoyed rapid development

over the last few decades, mainly driven by ever-growing computing and processing

34



2.5 Mobile Edge Computing Paradigm

Figure 2.12: Mesh topology of Small cell wireless backhaul

demands of client devices. Recently, a brightly new concept of Mobile Edge Com-

puting(MEC) gained significant attention from both academia and industry, which

is promising to provide computing services with high bandwidth, ultralow latency

and real-time access through shifting cloud computing from the centralized data

centres located remotely to the edge of mobile networks proximate to end-users [63].

In this section, we present the basic background of Mobile Cloud computing (MCC),

Mobile Edge Computing (MEC) and forces that driven the shift of cloud computing

from the centre to the edge of the networks.

2.5.1 Mobile Cloud Computing

As the most effective and convenient communication tools, mobile devices like smart-

phones have become part and parcel of our daily lives. Due to the limited size and

resources of these devices, they cannot effectively handle the computation-intensive

or latency-critical tasks. Therefore, the concept of Centralized Cloud Computing

CCC [64] appeared to offload the ever-increasing computation-intensive tasks to re-

mote powerful data centres for computing, also called central clouds. Mobile Cloud
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Computing MCC is a refined concept in which CCC is integrated into the mobile

environment, thus enables the mobile users to explore the benefit of cloud resources

[65]. MCC can be interpreted as a combination of mobile networks and CCC [66],

and it can be considered as one of the most common tools to access applications

and services on the internet by mobile users. The primary function of CCC/MCC

is computation offloading, i.e., shifting intensive computation from resource-limited

UEs to powerful central cloud data centres.

Although the CCC / MCC can provide mobile users with high-performance com-

puting services, the location of central clouds is still far away from users. Therefore,

excessive transmission latency occurred while accessing the CCC/MCC services.

Thus, the MEC systems are developed to deal with UEs’ computation-intensive

latency-critical tasks.

2.5.2 Mobile Edge Computing

The concept of MEC was first proposed by European Telecommunications Standards

Institute, ETSI in 2014 as a new platform for providing cloud computing capabilities

near to mobile users [67]. Thus, the reason behind introducing MEC is that UEs’

computation-intensive and latency-critical tasks can be offloaded at the edge of

wireless networks by using edge cloud servers for computational processing. These

cloud servers, also known as MEC servers, are deployed at the wireless network’s base

stations to release the pressure from resource-limited UEs to do massive computing

workloads and hence increase their battery lifetime. MEC servers are typically data

centres on a small-scale, used by telecom or cloud computing operators, and they

are located in conjunction with base stations, as shown in Fig.2.13. In this way,

the MEC allows the BSs to have the ability of storage and processing, and thus

guarantee that the UEs can be directly connected to the edge clouds.
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Figure 2.13: A simplified Mobile Edge Commuting (MEC) architecture of mobile
network

In comparison with the MCC, the MEC has four main advantages in the aspects of

latency reduction, energy saving, context awareness, and privacy/security enhance-

ment as they are available iclose to the users. The attractive advantages of MEC

lead to the fact that it has been seen as one of the key enablers in shaping future

advanced wireless networks. Recently, both academia and the industry gave signi-

ficant attention to the MEC [68] , [69], by identifying a large number of use cases

for MEC. Some use cases, including but not limited to, are intelligent video acceler-

ation and massive machine-type communications (mMTC). [20]. Currently, the full

potential of this MEC paradigm has not been fully realized, primarily due to the

low availability of the computation off-loading link. Devices at the edge of the cell,

for example, have a low success rate of off-loading and/or may have a longer latency

if they off-load their computations. Therefore, these devices must rely on their own
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computing resources. Unfortunately, these resources are frequently inadequate to

handle resource-intensive applications. Accordingly, from a communications per-

spective, it is important to improve the efficiency of MEC.

2.6 Computation Task Model

The computation tasks can be affected by various parameters such as task size,

computation intensity, latency, bandwidth utilization, context awareness, scalability,

and generality, etc., and thus developing accurate computation task models is highly

sophisticated. It is known that latency used for communication and computation,

have been widely considered as one of the important performance metrics for MEC

systems, and the objective is to complete the UEs’ computation in tensive latency-

critical tasks with low latency. Hence, to properly describe the properties related

to e latency, we adopt a reasonable and mathematically tractable computation task

model in this thesis, which has also been widely used in the existing MEC literature.

For a given computation task with fixed computation task size, it can be fully

characterized by a positive parameter [L, c]. Here, L denotes request size (in bits)

of the computation task-input data, c is the required computational resources to

compute 1-bit of task-input data, also called computation workload/intensity.

2.6.1 Computation Offloading Modes

According to the structural characteristics of various applications or computation

tasks, different computation offloading modes should be leveraged to deal with differ-

ent computation tasks [70]. In this subsection, we introduce computation offloading

modes, which are local offloading, complete offloading and partial offloading mode.
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• Local computing: all task data is processed locally at the node without

passing it to the MEC server. Factors affecting the effectiveness of local com-

puting are node’s data read speed and CPU performance.

• Complete offloading: all task data is transmitted to the MEC server, where

the MEC server processes these tasks using its computing resources. Factors

that affect the efficiency of complete offloading are the task size, computing

power of the MEC server, channel condition and channel capacity.

• Partial offloading: According to the offloading algorithm, the data task is

divided into two components, some of the data is processed locally, while the

remaining data is processed in the MEC server. Partial offloading algorithms

consider factors like data transmission, computing resource allocation and en-

ergy consumption before taking offloading decisions. Therefore, partial of-

floading is comparatively considered one of the most complex models because

it must integrate different influencing factors.

In this thesis, we selected complete offloading scheme for MEC by assuming that all

users will have limited resources available to them.

2.6.2 Communications in MEC Systems

In MEC systems, communications act as an essential part for completing users’

computation tasks, which typically happen between UEs and BSs (with co-located

MEC servers) through wireless channels. For computation tasks, communications

mainly correspond to the computation offloading from UEs to the MEC servers (at

BSs) in the uplink mode, whereas in downlink mode, communications is related to

download the computation results from the MEC servers the UE. In fact, BSs not

only provide wireless interfaces for MEC servers, but also allow access to remote
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central clouds (large-scale data centres) through backhaul links, thus assisting the

MEC servers to further offload some computation-intensive tasks to enjoy the more

powerful computing capabilities at the central clouds.

Next, we will analyse the communications in MEC systems for the latency percept-

ive. The maximum achievable communication rate (in bits per second), i.e., the

channel capacity, R is given with the help of the Shannon-Hartley theorem [71], as

R = B log2

(
1 + S

N0

)
, (2.17)

where B denotes the bandwidth of the wireless channel in Hertz (Hz), S indicates

the average received signal power in watts (W), N0 denotes the average power of

the noise and interference over the bandwidth. Based on the computation task

model, [L, c], the communication latency, ttrans (also called transmission latency),

for offloading L bits of computation task-input data from a MEC server to the UE

in downlink can be calculated as

ttrans = L

R
, (2.18)

where, R is the capacity for computation offloading given by Eq.(2.17). Fig.2.14,

shows an IRS is introduced in the MEC setting to reduce the transmission delay by

offering more capacity (data rate) to a single user in downlink mode.

2.6.3 Computation in MEC system

Computation also plays an important role in MEC systems for completing the UEs’

computation tasks. Similarly, in this part, we mainly pay attention to the analysis

of the latency related to computation in MEC systems. Based on the computation
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Figure 2.14: An IRS-supported single user downlink communication system with
the provision of MEC

task model presented earlier, i.e., the computation latency for completing the task

[L, c] by the MEC server is given as

tproc = Lc

f
, (2.19)

where f denotes the CPU Cycles allocated by MEC server for each user task.

2.7 Conclusions

The purpose of this chapter was to provide an overview of backhaul communications

using mmWave based on IRS and to discuss how to minimize latency by using IRS

in a MEC system. Detailed information is provided on the IRS, its configuration,

and the numerous advantages it offers in 5G and future 6G networks. Moreover this
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chapter discusses the key performance indicators for the deployment of small cells

in 5G and 6G networks. MmWave backhaul communication is analysed in conjunc-

tion with the implementation of IRS. Towards the end of the chapter, mobile edge

computing is described in terms of its communications and computation models.
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In this chapter we will provide background information related to the optimization

problem modelling which will help us to understand and solve it. The focus of this

chapter is to describe linear programming and the AMPL model, the optimization

tool we used to solve optimization problems. We will model a small wireless network

using the node-link formulation. The remainder of this chapter explains genetic

algorithms that can be used to verify the results presented.

Taking a look at the tools that will be utilized for our optimization problem, we will

now lay the foundation for our optimization problem.

3.1 Mixed Integer Linear Programming (MILP)

Linear Programming (LP), mathematical modelling technique and a particular ex-

ample of mathematical programming [72]. LP is considered as is one of the three
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constrained optimisation classes (linear, nonlinear and integer), having all of its

mathematical expressions (equations and inequalities) linear, as its name suggests

[73]. The standard form of linear programming model is based on four components:

• The objective function characterises optimisation outcome, and the optimisa-

tion problem aims to minimise or maximise this objective function based on

whether the model’s result is a cost or a reward.

• Provide a model for the variables where their values represent the feasible solu-

tion of the objective function when all constraints are satisfied. On the other

hand, these variables are the best objective values if they lead to the optimal

solution [74]. When one of these variables is a non-integer, the optimisation

technique is known as Mixed Integer Linear Programming (MILP).

• Constraints are a set of linear mathematical expressions (including both equa-

tions and inequalities), which will shape the feasible region of the solution for

a particular optimisation problem (polyhedron region).

• Boundaries of variables that are used to restrain the lower and upper limits of

all the variables in the model.

In order to properly understand the MILP programming, consider the following

problem that will use all these components together to formulate the problem [75].

Objective function

y = cT .x, (3.1)

with subject to the following constraint

A � x ≥ b, (3.2)
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and a constraint for non-negativity, i.e.,

x ≥ 0, (3.3)

where y is the objective function and the transposed vector of cost / reward coeffi-

cients vector is represented by cT as

c =



c1

c2

...

cn


, (3.4)

the vector of decision variables is represented by x and is given as

x =



x1

x2

...

xn


, (3.5)

A denotes the constraint matrix which is

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

... ... ... ...

am1 am2 · · · amn


, (3.6)

in Eq.(3.2), b is the minimum requirement that is must be met and is given by
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b =



b1

b2

...

bn


. (3.7)

In spite of the fact that several approaches can be utilised to solve constrained op-

timisation problems, systematic approaches are almost always preferred for solving

linear programming problems because of their convexity. One of the most common

methods among them is the Branch-and-Bound strategy [76]. In order to conduct an

intelligent and repeated search of all feasible solutions, B&B breaks down the entire

polyhedron region into smaller subsets. An upper and lower bound is determined

for each subset, and it excludes any subset exceeding the cost/reward ratio of the

feasible solution. Once a feasible solution is discovered, whose cost/reward is within

the bounds of any subset, this partitioning process ends. It is important to note

that B&B is also referred to as implicit enumeration, separation and evaluation, or

divide and conquer.

3.1.1 Network Modelling Problem

A network optimization problem can be formulated using a variety of approaches in

linear programming. In this thesis, network models are designed using the node-link

formulation. A network is formulated by assuming that both the demands and the

links are generally directed, as well as considering total link flow at each link. With

the exception of the source and destination nodes, the total traffic leaving a particu-

lar node plus the total traffic entering that node must equal zero [77]. Between each

of the two end nodes of a considered demand, intermediate or transition nodes exist
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through which traffic enters and leaves the node via its incoming and outgoing links.

The total flow at each intermediate node of the considered demand equals the total

flow at all the outgoing links for each intermediate node. This is known as the flow

conservation law. In the event that the consider demand is generated at the node

(source node), then the demand volume equals the total outgoing flow; otherwise,

when the node is a sink node, the demand volume equals the total incoming flow.

To illustrate the node-link formulation, consider a three node network shown in

Fig.3.1, having three demand volumes, i.e., Λ13, which is from node 1 to node 3,

Λ12 which is from node 1 to node 2 and Λ23 which is from node 2 to node 3. By

implementing the flow conservation at node 1 for demand volume and employing

the rule that anything entering into the node is considered as negative and anything

leaving that node is considered as positive, gives us the flow equation as

−Λ13 + Λ13,13 + Λ13,12 − Λ13,31 − Λ13,21 = 0, (3.8)

where:

Λ13,13 is the volume of the demand with node 1 as a source node and node 3 as a

destination node, which is flowing through the link from node 1 to node 3;

Λ13,12 is the volume of the demand with node 1 as a source node and node 3 as a

destination node, which is flowing through the link from node 1 to node 2;

Λ13,31 is the volume of the demand with node 1 as a source node and node 3 as a

destination node, which is flowing through the link from node 3 to node 1;

Λ13,21 is the volume of the demand with node 1 as a source node and node 3 as a

destination node, which is flowing through the link from node 1 to node 3;

Λ13 is the total volume of the demand with node 1 as a source node and node 3

as a destination node.
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(a) Demand flow from node 1 to node 3

(b) Demand flow from node 1 to node 2

(c) Demand flow from node 2 to node 3

Figure 3.1: Example of demand flows in three nodes network
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The following equations are obtained by employing flow conservation at nodes 2 and

3 for the demand volume Λ13, with the same assumptions as before. Thus at node

2

−Λ13,12 − Λ13,32 + Λ13,23 + Λ13,21 = 0, (3.9)

also, at node 3

−Λ13,13 − Λ13,23 + Λ13 + Λ13,31 + Λ13,32 = 0. (3.10)

For the demand volume λ13, it is essential to mention that node 1, 2 and 3 act as a

source node, an intermediate node and a sink node, respectively. Thus

Λ13,31 = Λ13,32 = Λ13,21 = 0, (3.11)

thus, the former flow conservation equations for the demand volume λ13, for each of

the nodes 1, 2, and 3 will become:

Λ13,12 + Λ13,13+ = Λ13

−Λ13,12 + Λ13,23 = 0

−Λ13,13 − Λ13,23 = −Λ13. (3.12)

By the same analogy, for the demand volume λ12, the system equations can be

written as
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Figure 3.2: Link capacity example in three nodes network

Λ12,12 + Λ12,13 = Λ12

−Λ12,13 + Λ13,32 = 0

−Λ12,12 − Λ12,32 = −Λ12. (3.13)

Similarly for the demand volume, Λ23

Λ23,21 + Λ23,23 = Λ23

Λ23,13 − Λ23,21 = 0

−Λ23,13 − Λ23,23 = −Λ23. (3.14)

Now by assuming that each of the undirected link can be represented by two arcs

and at some instant, the demand can flow in one of these arcs only. Therefore, some

extra constraints can be added into the model to consider the capacity of each link

as shown in Fig. 3.2Here, if χ denotes the capacity of a link from node 1 to 2, the

corresponding capacity constraint can be written as

Λ12,12 + Λ13,12 ≤ χ12. (3.15)
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Now by using the same analogy for all the other links present in the network and

combining all of them gives us the system model as

O = Λ12,12 + Λ12,13 + Λ12,32 + Λ13,12 + Λ13,13 + Λ13,23+

Λ23,21 + Λ23,13 + Λ23,21 + Λ23,23 (3.16)

In Eq.(3.16), O denotes the objective function of the model, which we want to

minimize. In particular, here, the cost occurs due to the routing of the traffic in the

whole network.

subject to

Λ12,12 +Λ12,13 = Λ12

−Λ12,13 +Λ12,32 = 0

−Λ12,12 −Λ12,32 = −Λ12

Λ13,12 +Λ13,13 = Λ13

−Λ13,12 +Λ13,23 = 0

−Λ13,13 −Λ13,23 = −Λ13

Λ23,21 +Λ23,23 = Λ23

−Λ23,21 +Λ23,13 = 0

−Λ23,13 +Λ23,23 = −Λ23

Λ12,12 +Λ13,12 ≤ χ12

Λ23,21 ≤ χ21

Λ12,13 +Λ13,13 +Λ23,13 ≤ χ13

Λ13,23 +Λ23,23 ≤ χ23

Λ12,32 ≤ χ32

this only holds for all non negative Λ.

To model and solve the optimisation problems, several programming languages are

utilised nowadays. Over the years, various modelling and optimisation languages
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have been developed by modelling language providers, like Optimised Programming

Language (OPL) and the (AIMMS). In [78], a detailed description of some of the

modelling languages with their providers is presented. We have chosen "A Mathem-

atical Programming Language" (AMPL) to model our optimisation problems due

to the likeliness of its statements with the algebraic notations and generality of its

syntax. [79]. The user of the AMPL program enters their codes and data into the

software, where these codes are transformed into an intermediate file, that a solver

can understand. A mathematical program that works by reading the intermediate

file and implementing a suitable algorithm is a solver. There are various choices

of solvers like Coin-or Branch and Cut (CBC) [80], GNU Linear Programming Kit

(GLPK) [81], and the generally accepted IBM CPLEX[82]. In this work, CPLEX is

adopted as the optimisation problem solver.

3.2 Non-Linear objective function or constraints

Most of the optimization problems in wireless communication can be expressed in

terms of linear constraints. Flow rate or limits on data rate use, for example, are

generally linear functions. However, many objective functions tends to be non-linear.

Design problems for which the objective contains some non-linear constraints which

are function of some non-linear functions become non-linear, e.g.,

• In backhaul optimisation problem, the data flow rate/capacity C flowing

through any node (BS) is related to the SNR (γ) as

C = B log2(1 + γ), (3.17)

the log2 function in Eq.(3.17) is non-linear.

• In MEC paradigm, one of the objective function is to minimise transmission
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delay, which in turns depends on a capacityC of the channel.

ttrans = L

C
, (3.18)

as L is a constant so 1
C

, make this objective function non-linear.

Various methods exist for solving non-linear problems. One of these is to divide

the non-linear functions into different linear sections (piecewise Linearization). The

benefit of this technique is that we then have a linear problem to which any MILP

algorithm, such as CPLEX, can be used. The detailed description is as follows.

3.2.1 Piecewise Linearization technique

This technique can be used to linearise both concave and convex functions. First

we applied this technique to linearise, Eq.(3.17), which is a concave function, by

dividing the SNR between its maximum and minimum value given by the model

into small regions (or segments) as

γ̄r = r
(

γ(max) − γ(min)

NR
+ γ(min)

)
, ∀r ∈ NR, (3.19)

where NR is the total number of segments. Now the capacity C̄r in each segment

against γ̄r , can be given as

C̄r = B log2(1 + γ̄r) ∀r ∈ NR. (3.20)

The plot of C̄r against γ̄r is shown in Fig.3.3 segments value of capacity. Now as

the given capacity γ can lie in any region between γ̄r−1−γ̄r , so we introduce a set
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Figure 3.3: Linearization of Capacity-SNR Eq.(3.17)

γr having each element equals to γ .

γ =
NR∑
r=1

γr, ∀r. (3.21)

Now for each segment r, we check whether the γr lies in that segment, by introducing

following constraints

γ̄r−1Zr ≤ γr ≤ γ̄rZr, ∀r, (3.22)
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where, Zr is a binary variable which is defined as

NR∑
r=1

Zr = 1, ∀r, (3.23)

The above set of constraints (Eq.(3.21)- Eq.(3.23) ensure that the variable Zr should

only be one for the value of r, where the given SNR γr exactly lies in the range

specified by γ̄r−1 − γ̄r . Now we will find the capacity, C by summing over all the

segments r

C =
NR∑
r=1

[
C̄r−1Zr + (γr − γ̄r−1Zr)

C̄r − C̄r−1

γ̄r − γ̄r−1

]
, ∀r, (3.24)

as Zr is only 1 for a single value of r, so it will find the approximated value of

capacity, C against that SNR, γ in that particular region r.

3.3 Genetic Algorithm

Genetic algorithms are a family of optimization algorithms which are applied to find

the optimal solution (s) to a computational problem by maximizing or minimizing

a particular function. These algorithms come under the category of evolutionary

computation [83]. They mimic the biological processes of natural selection and re-

production to determine "test solutions" [84]. There are many processes of genetic

algorithms which are random, as in evolution. However, one can use this s optimiz-

ation technique to establish the level of control and randomization [84]. Therefore,

these algorithms are much more robust and effective than the exhaustive search

and the random search algorithms [83], because no extra information relating to the

given problem is needed. This unique characteristic of a genetic algorithm enables it

to find the solutions to those problems, which cannot be handled by other optimiza-
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tion techniques owing to the absence of continuity, linearity, derivatives or different

other components.

3.3.1 Components, Structure, & Terminology

Because genetic algorithms simulate a biological process, much of the relevant ter-

minology comes from biology. However, the entities of this terminology in genetic

algorithms are much simpler than their biological equivalents [85]. The standard

essential components of almost all genetic algorithms are:

• An initial population of chromosomes.

• Fitness function for optimisation.

• Selection of chromosomes that will reproduce.

• Crossover for producing next-generation of chromosomes

• Mutation of chromosomes in the new generation

3.4 Conclusions

In this chapter, we have provided background information related to optimization

problem modelling that will assist us in understanding and solving the problem.

We discussed linear programming and the AMPL model in this chapter, which was

used to solve optimization problems. The node-link formulation was used to model

a small wireless network. Throughout the remainder of this chapter we will describe

genetic algorithms that can be employed to test the results presented.

56



Chapter 4

Optimisation of IRS in 5G and Bey-

ond Backhaul Networks
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Optimization of Intelligent Reflecting Surfaces in 5G and Beyond

Backhaul Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 MILP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

In this chapter we present a general framework for developing policies that optimize

user association, the routing of user traffic across backhaul channels to the core

network, and which base stations or backhaul channels should be switched off to

minimize energy usage. Furthermore, the problem of optimization is extended to

examine the impact of the power consumption of active elements within the IRS

on the overall backhaul power. Further, what impact will the availability of IRS

channels for blocked mmWave channels have on the number of users served?

4.1 Introduction

With 7.1 billion people connected to mobile services by 2021, the demand for con-

nectivity continues to rise. In consequence, by 2025, there will be 7.49 billion unique
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mobile subscribers, which is equivalent to 90% of the world’s population [86]. The

deployment of small cells (SCs) can provide limited capacity on demand to meet

the demands of a large number of users in 5G. In addition, umbrella eNodeBs (also

called macro base stations) are deployed to provide coverage to small Base Stations

(BS)[12]. The backhaul connects the SBs and MBS to the core network; typically,

fibre optic cable is used as a media for backhaul. The provision of optical fibre

connections to each BS of a SC, however, could lead to increased network operator

deployment and maintenance costs. As a result, researchers have proposed wireless

backhaul (BH) solutions, which route user traffic towards the core network of an

operator via a wireless interface to provide the required capacity at a reasonable

cost. Due to the large amount of spectrum available in the 60, 70, or 80 GHz range,

millimeter-wave technology is a promising candidate for backhaul solutions. Even

though the omnidirectional free path loss increases at those frequencies due to Friis

Law [13], it can be compensated by beamforming, which can result in high antenna

gains [14]. However, shadowing is one of the greatest threats for mmWave signals,

causing outages, intermittent connectivity, and rapidly varying channel conditions

[15]. Thus, the utilization of mmWave in the backhaul link has its limitations, i.e.,

as the base stations are deployed, there is a possibility of the mmWave link being

blocked, causing the rerouting of the backhaul traffic.

New emerging hardware technology known as the Intelligent Reflecting surface, also

called software-controlled metasurfaces, has just arrived; it reflects the impinging

plane wave in the shape of a beam, thus acting as a reconfigurable reflectarray by

employing Micro-Electrical-Mechanical Systems (MEMS), PIN or varactor diodes

[37], [17] and [18]. In this work, we deployed IRS in the backhaul links along the

mmWave channel to overcome the blockage in mmWave links as shown in Fig. 4.1.

To the best of our knowledge, most of the researchers focused on implementing IRS
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on the access side. Still, no one had explored the feasibility of using the IRS in the

backhaul transmission, i.e., from a source base station to a destination base station

by adapting the propagation environment along the mmWave channel. Therefore,

the study focuses on (i) saving in static BH power due to the IRS channels along

the mmWave channels when several mmWave channels get entirely blocked simul-

taneously in a grid topology (ii) saving in dynamic and overall BH power due to the

partial blockage of mmWave channels in a grid topology. Moreover, by plotting the

dynamic backhaul power against the number of IRS elements, the optimum value

of IRS elements can be achieved within the studies range of values for those IRS

elements and the input parameters of our problem (iii) optimization of a number of

users by deploying a minimum number of IRS.

The remainder of this chapter is organized as follows. In section II, expressions for

the capacity and power in the access and backhaul networks are derived. In Section

III, a MILP objective function is introduced with all the constraints. In Section IV,

all the results are discussed. Finally, Section V concludes the chapter.

Notation: For ease of reference, Table 4.1 , 4.2 , 4.3 and 4.4 summarizes the main

parameters, variables, indices and input parameters respectively, which will be used

throughout this chapter. Furthermore, vectors and matrices are denoted by bold-

face lower-case and upper-case letters, respectively. Finally, upper-case calligraphic

letters represent the sets.

4.2 Optimization of Intelligent Reflecting Surfaces in

5G and Beyond Backhaul Networks

Several studies have investigated enhancing the link efficiency of mmWave commu-

nication in the presence of static blockages. However, dynamic blockages e.g. parked
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(a) mmWave communication between two BSs (b) A parked truck between two BSs blocking
LoS mmWave path in an urban environment,
so an IRS aided transmission is used for the
backhaul traffic.

Figure 4.1: An IRS is deployed along the mmWave channel for backhaul transmis-
sion

cars/truck see Fig.4.1(b), causes user traffic to be interrupted in the backhaul link.

To alleviate this problem, most studies propose re-routing of user traffic through

other backhaul link or may be served through completely different access link if

required, such a solution, unfortunately incurs penalty in terms complex re-routing

algorithms.

Our main focus is on optimization of future 5G networks with IRS supported mm-

Wave mesh backhaul model. We consider a HetNet scenario, where both MBS and

SBS are deployed to serve the UEs. We focus on a single MBS fixed at the origin,

and a set of BSs is deployed forming a grid (3x3) as shown in the Fig. 4.2(a). The

BSs are connected to each other as well as the MBS through mmWave links, thus

forming a mesh backhaul network. MBS has a direct fiber-optic connection to the

core network, thus all the user traffic pass through the MBS. As discussed earlier,

due to the inevitable blockage between BSs, mmWave communication may not be

accomplished in the backhaul link, hence, IRS are deployed along with the mmWave

links so that the traffic can still be routed through the reflecting IRSs. We assume

that the users are uniformly scattered around the service area. Each user u receives

at a rate captured by Ru, in Mbps. We focus on downlink transmissions, with the

MBS serving as a source node and the UEs are the sink nodes.
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(a) mmWave backhaul transmission (b) IRS supported backhaul transmission

Figure 4.2: System Model for backhaul transmission

For the access network, we assume a set of microwave links between the user equip-

ment UE and the serving base stations. In our analysis, only the small base station

can provide the access links, so MBS does not provide access links to users. We

use a constant power allocation, i.e., the maximum transmitted power of each cell

is divided equally into its physical resource blocks (PRBs). Assuming each BS has

a total bandwidth, BAN in the access side, while, BBH is the bandwidth for each

backhaul link in the backhaul side.

According to the specific user data requirement, a base station can assign any num-

ber of its resource blocks to that particular user but their is a limit on number of

maximum resource blocks a base station can assign according to the demand of user.

We assume that if there is no UE anchored to a BS, the RF transceivers at the BS

are switched off to save energy.

For the backhaul traffic, the mmWave transceivers installed on the BS will be

switched off if there is no incoming or outgoing traffic being serviced by the BS.

The distance between adjacent BSs is set to 100 meters [10], while the IRS are de-

ployed between the two adjacent BS in such a way that the distance between IRS

and any of the BS is always less than the distance between adjacent BS. For the

Backhaul traffic, we consider mmWave communication from a source base station

with a single antenna transmitter to a single-antenna destination base station, as
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we leave the multi antenna analysis for future work. A V-band (60 GHz) is chosen

for mmWave backhaul transmission although it has high path loss and atmospheric

attenuation which can be compensated by highly directional antennas. Moreover,

as the BS are deployed in a range of 100-200 meters causing the atmospheric atten-

uation lies within the acceptable range. In our setup, an IRS with N elements is

configured to reflect the signal from transmitting base station towards the destin-

ation base station, as illustrated in Fig.4.2(b). Now by using the [87, eq(12)], the

capacity of IRS supported SISO system is given by

RIRS(N) = log2

1 +
P
(
Nα

√
βIRS

)2

σ2

 , (4.1)

where, P is the transmit power of the transmitting base station, α∈(0,1] denotes

the fixed amplitude reflection coefficient and
√

βIRS is the product of βsr and βrd,

representing the LOS channel gains between the source BS to the IRS and IRS

to the destination BS respectively and σ2 is the power of white Gaussian noise.

Moreover, unlike the work in [87], we don’t consider the direct path with gain βsd

in the IRS channel, this is because we assume the direct path is either blocked or

very weak, and Tx and Rx base stations may use the antenna on a mechanical

base to align the signal between them. As the channel capacity depends upon the

transmitter power, number of reflecting elements, gains and the noise associated with

the backhaul channel, we, therefore, study the impact of increasing the number of

reflecting elements in our scheme. Without losing any generality, and for the sake

of simplicity, we exclude fibre optic links from our study by assuming very high

capacity links (e.g., 40, or 100 Gbps) with negligible power consumption [88]. Next,

we find the expressions for the capacity and power in the access and the backhaul

networks, which will be used in our MILP model.
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Table 4.1: ENERGY-EFFICIENT MILP MODEL PARAMETERS

Parameters Comments Parameters Comments

MBS Set of macro base station nodes PmaxBH
bs

Maximum BH power of a base station

SBS Set of small base station nodes BBH mmWave bandwidth in Backhaul link

BS Set of all base station nodes PBH
0i,j

Minimum non-zero output power of the

UE Set of user nodes BH transceiver ∀i, j ∈ BS, i ̸= j

PRB Set of physical resource blocks dBH
i,j Distance between two base stations i and j

CH Set of all the channels ( denotes CH1 and CH2 the in Backhaul, ∀i, j ∈ BS, i ̸= j

direct mmWave link and IRS link respectively) ∆BH Slope of the BH load-dependent power consumption

Nn
m Set of neighbours of node m in the network ,∀m ∈ N fBH Frequency at which Backhaul link is operating

dAN
bs,u Distance of user from base station in meters υBH

i,j,ch Path loss in dBs when there is a link between

ϵAN
bs,u Range parameter in meters i.e., two base stations over each channel at backhaul link

if a user lies in certain range of a BS ϑBH
Tx Transmitted antenna Gain in backhaul link

ϖrb Bandwidth of each PRB ϑBH
Rx Received antenna Gain in backhaul link

υAN
bs,u Path loss in dBs of each user from the base station χBH

Tx Losses at the transmitter side in backhaul link

in the access side χBH
Rx Losses at the receiver side in backhaul link

PAN
0bs

Minimum non-zero output power of the transceiver NFBH Noise Figure for backhaul link

in the access side NBH
th

Thermal noise in backhaul

∆AN
bs

Slope of the load-dependent power consumption LMBH Link Margin of the backhaul link

in the AN link βBH Blockage weightage

ΨAN
bs,u Linear path gain of each user from the base station ΓBH

i,j Binary random parameter for backhaul links

in the access side ∀i, j ∈ BS, i ̸= j

κAN
bs,u Large scale fading in dBs of each user from the N Number of active elements in an IRS

base station in the access side ℘ power of single active element in IRS

ιAN
bs,u Linear large scale fading of each user from the ϵvap+O2 Signal attenuation due to vapour water and oxygen

base station in the access side at the Backhaul link

ςAN
bs,u,rb Linear small scale fading of each resource block consumed ϵRain Signal attenuation due to rain at the Backhaul link

by each user from the base station in the access side υBH
i,j,ch Path loss in dBs of each backhaul link

GAN
bs,u,rb Gain of each resource block consumed by each user ∀i, j ∈ BS, i ̸= j at each channel

from the base station in the access side ρBH
i,j,ch Total gain of each backhaul link ∀i, j ∈ BS, i ̸= j

BAN LTE bandwidth in the access side at each channel

RAN
u Demand of each user in Mbps LBH

i,j,ch Linear path loss of each backhaul link

ηAN Efficiency of amplifier in the access side ∀i, j ∈ BS, i ̸= j at each channel

PmaxAN
bs

Maximum power of a base station in the access side w1 Weightage parameter for the IRS power

PAN
bsrb

Transmitted power of each base station for each PRB w2 Weightage parameter for the users

σAN Noise variance in access side M Very large +ve number

γAN
bs,u,rb SINR of each PRB associated with each user u assigned

from the base station
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4.2.0.1 Access Network

In the access network, only those users are able to associate to a BS if those users

are within a certain range, ϵANbs,u (in meters) of the BS. The total path gain GAN
bs,u,rb

achieved by each user u from the base station bs for each resource block rb is the

product of the path gain ΨAN
bs,u, large scale fading ιAN

bs,u, and small scale fading ςAN
bs,u,rb,

and in linear scale is given as

GAN
bs,u,rb = ΨAN

bs,uιAN
bs,uςAN

bs,u,rb, ∀bs ∈ BS, u ∈ UE, rb ∈ PRB. (4.2)

The path loss in the access side which is the function of the distance dbs,u, [89] in

dBs, is given by

υAN
bs,u = 38 + 30 log10 (dbs,u) , ∀ bs ∈ BS, u ∈ UE, (4.3)

υAN
bs,u = 128.1 + 37.6 log10 (dbs,u) , ∀ bs ∈ MBS, u ∈ UE,

where Eq (4.3) corresponds to the path loss equation for BSs. The linear path gain

is given by

ΨAN
bs,u = 10

(
−υAN

bs,u
10

)
, ∀ bs ∈ BS, u ∈ UE. (4.4)

Large scale fading κAN
bs,u(dB) of each user from the BS (pico cell) is incorporated into

the path gain Eq.(4.2), by the addition of a zero-mean Gaussian random variable

[90], with standard deviation 6 (for SBS) and 10 (for MBS) is given as

κAN
bs,u = N (0, 6), ∀ bs ∈ SBS, u ∈ UE, (4.5)

κAN
bs,u = N (0, 10), ∀ bs ∈ mBS, u ∈ UE.
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Table 4.2: ENERGY-EFFICIENT MILP MODEL VARIABLES‘

Variables Comments
σAN

bs,u,rb Binary indicator set to 1 if a PRB is assigned by a base station bs to the user u

ϱAN
bs,u Binary indicator set to 1 if the user u is served by the base station bs

PAN
bs

RF output power of each base station in the access link

PAN
Tbs

Total power consumed by each base station in the access link

CAN
bs,u Capacity of the access link between a base station bs and the user u

φAN
bs Binary indicator set to 1 if the base station is associated with any user.

φAN
u Binary indicator set to 1 the demand RAN

u of a user u is satisfied or otherwise 0

pBH
i,j,ch Power consumed by each backhaul link on each channel

σBH
i,j,ch Binary indicator set to 1 if any traffic is flowing through backhaul link otherwise 0

ξs,u,i,j Traffic flow variable from the source node s to the destination node u passing through

the intermediate links i and j ∀s ∈ MBS, u ∈ UE, i, j ∈ N : i ̸= j and j inNm[i]

PBH
bs,ch Power consumed by each base station for backhaul traffic on each channel

RBH
i,j,ch Rate of each backhaul link on each Channel

ΥBH
i,j,ch SNR of each Backhaul link on each channel

The corresponding linear large scale fading ιAN
bs,u is given by

ιAN
bs,u = 10

(
κAN

bs,u
10

)
, ∀ bs ∈ BS, u ∈ UE. (4.6)

Small scale fading is associated with the resource blocks having different frequency

bands, so a Rayleigh fading channel is used to incorporate the effect of small scale

fading ςAN
bs,u,rb, in the linear scale. In Rayleigh fading, the received power will fol-

low the negative exponential distribution, which can be generated by summing the

squares of two Gaussian random numbers, each with zero mean and 0.5 variance,

and is given by

ςAN
bs,u,rb =

[
N (0,

1√
2

)
]2

+
[
N (0,

1√
2

)
]2

, (4.7)

∀ bs ∈ BS, u ∈ UE, rb ∈ PRB.
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The maximum transmitted power of each base station ρmaxAN
bs in the access side

is given in Table (4.4). As we assume that BS transmits constant power to each

allocated resource block, thus the required transmit power P AN
bs (in milliwatts) of

each PRB in any BS is

P AN
bsrb = P maxAN

bs

card (PRB) , ∀bs ∈ BS, (4.8)

in Eq.(4.8), card (PRB) denotes the cardinality (total number of PRBs a base sta-

tion can handle) of set PRB. Thus, the SINR in the access side is given as

ΥAN
bs,u,rb =

P AN
bsrbG

AN
bs,u,rb(

ηAN
∑BS

l=0,l ̸=0PGAN
l,u,rbϵ

AN
l,u

)
+ σAN

, (4.9)

∀bs ∈ BS, u ∈ U, rb ∈ R,

where σAN is the noise variance in the access side, [90], and calculated in Table

(4.4)and ηAN is the scaling factor meaning that only 50% of PRBs can interfere at

any time with that particular PRB, thus the corresponding Channel Capacity at

the access side is given as

CAN
bs,u =

∑
rb∈P RB

σAN
bs,u,rbϖrb log2(1 + ΥAN

bs,u,rb), ∀bs ∈ BS, u ∈ UE. (4.10)

Now, the load dependent RF power of each base station in the access side is given

by multiplying the total number of allocated PRBs, σAN
bs,u,rb, with the power of each

PRB, P AN
bs as

P AN
bs =

∑
u∈U

∑
rb∈P RB

σAN
bs,u,rbP

AN
bsrb, ∀bs ∈ BS. (4.11)
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Table 4.3: ENERGY-EFFICIENT MILP MODEL INDICES

Indices Comments

bs Index of the base stations

i, j Indices of two nodes in the model, on which the user traffic transverse form one node to another

u Index of user nodes

rb Index of the physical resource block

In Eq.(4.10), ϖrb is the bandwidth of a single resource block and σAN
bs,u,rb is a binary

indicator that takes 1 when the rbth resource block from a base station bs is assigned

to a user u, or it takes 0 otherwise. In order to find the total power consumption

by each base station in the access link, linear approximation in [91] is used, where

the variable RF output power, P AN
bs and the power consumed by each base station

is related as

P AN
Tbs

=
(
φAN

bs P AN
0bs + ∆AN

bs P AN
bs

)
, ∀bs ∈ BS, (4.12)

where, φAN
bs is binary variable which is 1 if the demand of the user is anchored by a

base station by assigning single/multiple resource blocks to that user or otherwise

0. Eq.(4.10) and Eq.(4.12) give the channel capacity, CAN
bs,u and the total power

consumed, P AN
Tbs

by each small base station in the access side. Similarly, in the next

section, we will define the expressions for capacity and the total power consumed

by each small base station in the backhaul network.

4.2.0.2 Backhaul Network

Let υBH
i,j,ch denotes the path loss in dB, between two base stations i and j over channel,

ch, whereas ch = 1, corresponds to the mmWave channel, while ch = 2, refers to the

IRS channel. Now, by using [91, Eqs.(6)-(8)], υBH
i,j,ch, for mmWave channel is given
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as

υBH
i,j,ch = 20 log10(fBH) + 32.45 + 20 log10(dBH

i,j /1000)+

(dBH
i,j /1000) ∗ (ϵvap+O2 + ϵRain) + Γ BH

i,j βBH ,

∀i, j ∈ BS, ch = 1 : j in Nmi
and j ̸= i. (4.13)

In Eq.(4.13), fBH denotes the frequency of backhaul link and dBH
i,j is the distance

between two base stations. ϵvap+O2 ans ϵRain represent the signal attenuation due

to atmospheric gases and rain respectively. The addition of βBH in Eq.(4.13), is to

incorporate the effect of blockage in the mmWave channel, while Γ BH
i,j , denotes the

random binary variable. For the IRS supported BH channel, the path loss, υBH
i,j,ch in

dB is given as

υBH
i,j,ch = 20 log10(fBH) + 32.45 + 20 log10(dHS

i,j /1000)+

(dHS
i,j /1000)(ϵvap+O2 + ϵRain) + 20 log10(fBH)+ (4.14)

32.45 + 20 log10(dHS
i,j /1000)+

(dHS
i,j /1000)(ϵvap+O2 + ϵRain) − 20 log10(N),

∀i, j ∈ BS, ch = 2 : j in Nmi
and j ̸= i.

The pathloss, υBH
i,j,ch in Eq.(4.13) and Eq.(4.14), is used to specify a parameter ρi,j,ch,

which can be determined by subtracting from the total losses the gains of the trans-

mitter and the receiver of the BH link[14], and is given in dBm as

ρi,j,ch(dbm) =
(
χBH

Tx +χBH
Rx + υBH

i,j,ch + LMBH + NF BH
)

(dB)
(4.15)

+NBH
th (dBm) − ϑBH

Tx (dBi) − ϑBH
Rx(dBi),

∀i, j ∈ BS, ch ∈ CH : j in Nmi
and j ̸= i,
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where, the parameters χBH
Tx and χBH

Rx represent the transmitter and receiver losses,

receptively, LMBH is the link margin. NF BH denotes the noise figure, NBH
th stands

for the thermal noise in dBm, while ϑBH
Tx (dBi) and ϑBH

Rx(dBi) are the transmitter and re-

ceiver antenna gains respectively. Thus, in linear scale, ρi,j,ch(dbm) can be represented

by LBH
i,j,ch, as

LBH
i,j,ch = 10

ρi,j,ch
10 , ∀i, j ∈ BS, ch ∈ CH : j in Nmi

and j ̸= i. (4.16)

Let ΥBH
i,j,ch is the SNR of the backhaul link which is related to backhaul link’s capacity

RBH
i,j,ch and the backhaul bandwidth, BBH by the Shannon’s capacity theorem as

RBH
i,j,ch = BBH log2

(
1 + ΥBH

i,j,ch

)
, (4.17)

ΥBH
i,j,ch = 2

RBH
i,j,ch

BBH − 1,

∀i, j ∈ BS, ch ∈ CH : j in Nmi
and j ̸= i.

As Eq. (4.17) is non-linear, a piecewise linear approximation techniques is utilized

[92] for its approximation. Now by using Eq.(4.16) and Eq.(4.17), the Tx power

consumed by the BH transceiver of link (i, j), [13], can be found as

pBH
i,j,ch = ΥBH

i,j,chLBH
i,j,ch, ∀i, j ∈ BS, ch ∈ CH : j in Nmi

and j ̸= i. (4.18)

The backhaul power, P BH
i

consumed by each base station i, is sum of the power

consumed by all transceivers on the backhaul links associated with that particular
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base station i, and is given as

P BH
i

=
∑

j∈Nmi

∑
ch∈CH

σBH
i,j,chP BH

0i,j +
∑

j∈Nmi

∑
ch∈CH

∆BHpBH
i,j,ch, (4.19)

∀i, j ∈ BS : j ̸= i,

where, σBH
i,j,ch is a binary variable, which is 1, when the BH link (i, j) on channel

ch is active and 0 otherwise, P BH
0i,j denotes the minimum non-zero output power of

the BH transceiver of the link,and ∆BH
i,j represents the slope of the load-dependent

power consumption on the BH link. In Eq.(4.19), the first term denotes the static

BH power, while the last term denotes the dynamic BH power. Therefore, the total

backhaul power P BH
Ti

is the sum of backhaul power consumed by each BS and the

power consumed by active elements of IRS if they are used is

P BH
Ti

= P BH
i

+ w1
∑

i∈B

∑
j∈Nm[i]:j in B

℘ σBH
i,j,2 N, (4.20)

∀i, j ∈ BS : j ̸= i,

where, ℘ is the power consumed by a single IRS element and w1 is the weightage

parameter; having a value less than 1 represents that the IRS are powered by the

solar panels or their efficiency will significantly increase in near future. The path

loss given by equations (4.13) and (4.14) of mmWave and IRS channel respectively,

is the deciding factor to route the backhaul traffic through the backhaul links. For

our setup, as the path loss of unblocked mmWave channel is always better than

the path loss of IRS channel, so the backhaul traffic tends to pass through the

mmWave channels. But the occurrence of blockage in the mmWave channel would

have a severe impact on its path loss and make it comparable with the path loss

of IRS. Moreover It is important to mention that the last term in Eq.(4.14) is the
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improvement in the path loss of IRS channel due to the reflecting elements in IRS,

N [93]. In addition, due to the higher signal attenuation at mmWave frequencies,

we ignore the interference among the adjacent BH channels. This is a plausible

assumption, as low-complexity frequency allocation techniques can be executed at

an initial stage due to the static nature of the BH network.

4.3 MILP model

The model objective is to minimize the total BH power power consumption of the

topology given by Eq.(4.20), while guaranteeing that the maximum users, σAN
u are

to be served by the network.

Minimize P BH
Ti

− w2
∑
u∈U

σAN
u , ∀i ∈ BS. (4.21)

Subject to the following constraints:

∑
j∈Nmi : j in BS ∪ {u}

ξs,u,i,j −
∑

j∈Nmi : j in BS ∪ {u}
ξs,u,j,i =



σAN
u Ru if i = s

−σAN
u Ru if i = u

0 otherwise

,

(4.22)

∀s ∈ MBS, u ∈ UE, i ∈ N.


∑

s∈MBS
Mξs,u,bs,u ≥ ∑

rb∈P RB
σAN

bs,u,rb

∑
s∈MBS

ξs,u,bs,u ≤ M ∑
rb∈P RB

σAN
bs,u,rb

, ∀bs ∈ BS, u ∈ Nmbs
: u ̸= bs, (4.23)
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∑

rb∈P RB
σAN

bs,u,rb ≥ ϱAN
bs,u

∑
rb∈P RB

σAN
bs,u,rb ≤ MϱAN

bs,u

, ∀bs ∈ BS, u ∈ UE. (4.24)


∑

bs∈BS

∑
rb∈P RB

σAN
bs,u,rb ≥ φAN

u

∑
bs∈BS

∑
rb∈P RB

σAN
bs,u,rb ≤ MφAN

u

, ∀u ∈ UE. (4.25)

CAN
bs,u ≤

∑
bs∈BS

1.5 RAN
u φAN

u , ∀u ∈ Nmbs
: u ̸= bs. (4.26)

ϱAN
bs,u ≤ ϵAN

bs,u ∀bs ∈ BS, u ∈ U. (4.27)

∑
bs∈SBS

ϱAN
bs,u ≤ 1, ∀u ∈ UE. (4.28)

∑
u∈U

σAN
bs,u,rb ≤ 1, ∀bs ∈ BS, rb ∈ PRB. (4.29)

∑
u∈U

ϱAN
bs,u ≥ φAN

bs (4.30)

∑
u∈U

ϱAN
bs,u ≥ MφAN

bs , ∀bs ∈ BS,
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P AN
bs

≤ P maxAN
bs , ∀ bs ∈ BS, (4.31)

∑
s∈M

∑
u∈U

ξs,u,i,j =
∑

ch∈CH

RBH
i,j,ch, ∀i, j ∈ BS : i ̸= j and j in Nmi

. (4.32)


MRBH

i,j,ch ≥ σBH
i,j,ch

RBH
i,j,ch ≤ MσBH

i,j,ch

, ∀i, j ∈ BS, ch ∈ CH : j in Nmi
and j ̸= i, (4.33)

∑
ch∈CH

σBH
i,j,ch ≤ 1, ∀i, j ∈ BS : i ̸= j and j in Nmi

. (4.34)

∑
ch∈CH

P BH
i,j,ch ≤ P maxBH

i,j , ∀ i, j ∈ BS, : j ̸= i. (4.35)

The minus sign in objective function, Eq.(4.21), refers to the maximization of num-

ber of users, σAN
u . Moreover, the total BH power, P BH

Ti
at each base station, is

the sum of static BH power, dynamic BH power and the power consumed by IRS

elements if they are used. The constraints ensure that the user traffic demand is

served, the traffic routing is only done on active BSs and there is no violation of

maximum link capacity. The decisions variables specify the user traffic demands

Ru, the users associated with each BS ϱAN
bs,u, for each flow ξs,u,i,j, the total traffic

sent on each link Ri,j and the on/off switch state of transceivers of all the BSs (ϱAN
bs,u

and σBH
i,j,ch). Constraint (4.22) represents the flow conservation for the access and
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Figure 4.3: Flow conservation principle

backhaul traffic. For better understanding, Fig. 4.3 illustrates the principle of flow

conservation. The multiplication of rate variable, Ru by binary indicator, σAN
u is to

make it sure either that user is served by a base station or not.

The constraint (4.23) ensures that the resource blocks can only be assigned by a

base station to the user if there is a flow on the access link between that particular

base station-user pair. The binary variable σAN
bs,u,rb, is used in Eq.(4.11) to calculate

the load dependent RF power of each base station in the access side. Constraint

(4.24) ensures if there is a single or multiple resource blocks are assigned to a user

from a base station, then the binary indicator ϱAN
bs,u is set to 1 thus showing that the

transceivers in that base station are switched ON in the access link . Constraint

(4.25) ensures the user connectivity i.e., if the demand of the user is anchored by a

base station by assigning single/multiple resource blocks to that user thus, making

φAN
u equals to 1. Constraint (4.26) ensures that the capacity of each user from a base

station is less than 1.5 times the total demand required by that user. In constraint

(4.26), demand of each user, RAN
u is multiplied with the the binary variable, φAN

u , to

ensure that the capacity constraint (4.26) should only considers active user demands.

It is important to mention here that constraint (4.26) is only employed for the first

two sets of results where we are forcing the model to serve all the users. Hence,
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in those scenarios, we can’t allow the model to allocate all the resource blocks to

the users, which will impact access power which is not included in our objective

function; thus, we introduce a limit on the maximum capacity offered to each user.

Constraint (4.27) ensures that the user is only served by that particular base station;

if the user lies with in the range, ϵAN
bs,u of the base station, Constraint (4.28) ensures

that the user is allowed to be served by a single base station in the access side.

There is also a possibility that a particular user is not served by any base station

i.e., user blocking is allowed. Constraint (4.29) ensures that if a resource block is to

be assigned by a base station to the user, in that case, it only assigns that resource

block to a single user. Constraint (4.30) ensures the switching of the base station,

i.e., φAN
bs is set to 1, if the base station is anchored to any user in the access side,

otherwise 0. The binary variable φAN
bs is used in Eq.(4.12) to consider the static

power of only serving BSs in calculating the total access power. The constraint

(4.31) ensures that the power consumed by each base station, P AN
bs in eq.(4.11) for

forwarding the access link traffic is less than the maximum access link power P maxAN
bs

of each base station, the value of P maxAN
bs is given in Table 4.4.

This constraint (4.32) ensures that if there is a flow between two base stations in the

backhaul link then it will be equal to the rate of that backhaul link. The constraint

(4.33) ensures if there is any traffic on the backhaul link using any channel then it

will switch rate indicator σBH
i,j,ch to 1. The binary variable σBH

i,j,ch is used in Eq.(4.19)

to calculate the load dependent RF power of each base station in the Backhaul side.

Constraint (4.34) ensures the traffic through each backhaul link is passed through

only one channel, i.e, it can pass through either the mmWave or the IRS channel.

As each backhaul link is supported by two channels i.e., mmWave or IRS channel,

so splitting of BH traffic between the these two channels is not allowed. Constraint

(4.35) ensures that the power consumed by each base station for each backhaul link

75



Chapter 4 Optimisation of IRS in 5G and Beyond Backhaul Networks

is less than the maximum backhaul power P maxBH
bs of the base station.

Therefore, form Eq.(4.32), the flow variable, ξs,u,i,j in our optimization problem,

gives us the rate (capacity) of each backhaul link on each channel. From the rate

variable RBH
i,j,ch, the model will find the associated SNR, ΥBH

i,j,ch of the each backhaul

link by using Eq.(4.17). Thus , the model will find the power consumed by each

backhaul link, pBH
i,j,ch and power consumed by each base station, P BH

i in serving all

the attached BH links By using Eqs.(4.19) , (4.18).

4.4 Results

As mentioned earlier, IRS channels are deployed along the mmWave channels to

provide the alternative path to the BH traffic for each blocked mmWave channel.

Although, the number of active elements in each IRS also provides a gain in the

path loss, which is much better than the path loss of the blocked mmWave channel

but still these active elements of each IRS channel (if it is used) also consumed

power. Hence, introducing the IRS channels along the mmWave channels in the

network added the burden on the BH power. The user association at the access side

is accomplished by constraint (4.26). Moreover, in Eq.(4.19), the total backhaul

power includes the static BH power, the load-dependent dynamic BH power, and

the power consumed by active elements of all the used IRS channels. The results

have been divided into three sections. The first section assumes that some of the

mmWave channels are blocked simultaneously in a grid topology where users density

is continuously varied. Hence, the impact on the static BH power is investigated

by introducing the IRS channels along the mmWave channels. Then how can we

achieve the maximum saving in the dynamic and total backhaul power explored in

section two. Finally, in the last section, our focus is on increasing the number of
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Table 4.4: ENERGY-EFFICIENT MILP MODEL INPUT PARAMETERS

Parameters Comments

Range parameter in meters i.e., if a user lies in certain range of a BS ϵAN
bs,u 50-300 (m) [90]

Bandwidth of each resource block ϖrb 180 (KHz) [90]

Demand of each user RAN
u 1-100 Mbps[94]

LTE bandwidth in the access side BAN 20 (MHz) [90]

Noise variance in the access side σAN
(

10− 174
10

)
BAN [90]

Maximum transmitted power of small base station in access side PmaxAN
bs

∀ bs ∈ SBS 10
24
10 (mW) [90]

Maximum transmitted power of small base station in access side PmaxAN
bs

∀ bs ∈ MBS 10
46
10 (mW) [90]

Scaling factor in SINR calculation of each PRB ηAN 0.5

Range parameter in the access side, ϵAN
bs,u 80-200 (m)

Minimum non-zero output power of small base station in access side PAN
0bs

∀ bs ∈ SBS 130 (W) [90]

Minimum non-zero output power of small base station in access side PAN
0bs

∀ bs ∈ SBS 6.8 (W) [90]

Set of physical resource blocks, PRB 100 [90]

Slope of the load-dependent power consumption in the access side ∆AN
bs

∀ bs ∈ SBS 4.0 [90]

Slope of the load-dependent power consumption in the access side ∆AN
bs

∀ bs ∈ SBS 4.7 [90]

Number of transceiver chains in the BH link ΠBH
i,j , ∀i, j ∈ BS, i ̸= j 1

Maximum transmitted power of a base station in the backhaul side PmaxBH
i,j

∀i, j ∈ BS, i ̸= j 224 (mW) [95]

Operating frequency of backhaul link fBH 60 (GHz) [96]

mmWave bandwidth in backhaul link BBH 500 (MHz) [50]

Minimum non-zero output power of the BH transceiver ,PBH
0i,j

3900 (mW) [95]

Slope of the load-dependent power consumption in the BH link ∆BH
i,j (treated as microwave BS) 4 -40[97]

Number of active elements in each IRS, N 1000-5000

Power of single active element in IRS, ℘ 5 (mW) [24]

Very large +ve number, M 10000

Signal attenuation due to vapour water and oxygen at the Backhaul linkϵvap+O2 16 (dB) [3]

Signal attenuation due to rain at the backhaul link ϵRain 2 (dB) [56]

Transmitted antenna gain in backhaul link ϑBH
Tx 30 (dBi) [98]

Received antenna gain in backhaul link ϑBH
Rx 30 (dBi) [98]

Losses at the transmitter side in backhaul link χBH
Tx 5(dB) [99]

Losses at the receiver side in backhaul link χBH
Rx 5 (dB)[99]

Noise Figure for the backhaul link NFBH 6 (dB) [100]

Link Margin of backhaul link LMBH 9 (dB)[98]

thermal noise the backhaul link NBH
th

(dBm) −174+ 10log10

(
BBH 106

)
[14]

Number of Users 10-30

Blockage weightage βBH 40 (dB)

Binary random parameter for backhaul links ΓBH
i,j , ∀i, j ∈ BS, i ̸= j 10-100%

Weightage parameter 1 for objective function w1 0-1

Weightage parameter for the users, w2 0/1
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served users by deploying the minimum number of IRS channels in a tree topology.

simplify the analysis, the results do not take the access power consumption explicitly,

but it is restricted by the fact that capacity is limited by constraint (4.26). the model

objective can be easily extended to include explicit access power minimization.

4.4.1 Static BH Power Analysis

To study the impact of introducing IRS channels on the static component of backhaul

power, a grid topology containing nine base stations is considered, as shown in

Fig.4.4. Initially, the users are distributed in the vicinity of only one BS, i.e., BS#3.

The objective function here, is to only minimize the total BH power, and this can

be done by setting w2 = 0, in the objective function (4.21). Thus the capacity

constraint (4.26) in the access side is removed from the optimization problem and

forces the model to serve all the users. In Eq.(4.20) the total BH power, P BH
Ti

also

contains the dynamic component of BH power, which is included only to get the

flow conservation working. Generally, in the absence of any blockage in the mmWave

channels, the backhaul traffic would take the shortest route, i.e., it is generated from

gNB and routed via BS#2 to BS#3 using only the mmWave channels. Now consider

a blockage scenario, in which two of the mmWave backhaul channels got blocked

simultaneously, i.e., the BH channel between BS#1 and BS#2 and the BH channel

between BS#4 and BS#5. As discussed earlier, due to the inevitable blockage

between BSs, mmWave communication may not be accomplished in these backhaul

links. Thus, the backhaul traffic takes more hops to reach BS#3, as shown in

Fig.4.4(a), increasing the static power of backhaul links, as more BSs are involved

in routing the backhaul traffic for the users in BS#3.

In Fig.4.4(b), an IRS channel is introduced along each mmWave channel. Now with

the same blockage scenario as mentioned in the last paragraph, the model would
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(a) In the absence of IRS, the backhaul traffic
will take more multi-hops by using the un-
blocked mmWave channels to reach BS#3

(b) In the presence of IRS, the backhaul traffic
will take less hops by also using the IRS chan-
nels along with the unblocked mmWave chan-
nels to reach BS#3

Figure 4.4: Backhaul traffic route for users of BS#3, when some of the mmWave
links got blocked

decide whether to take more hops using only the unblocked mmWave channels or

lesser hops via a combination of unblocked mmWave channels and the IRS channels.

The first choice consumes more static BH power but zero IRS power, while the second

choice consumes less static power but non-zero IRS power. For the particular case

of users distributed in BS#3, the model picked a later option by preferring fewer

hops via a combination of IRS unblocked mmWave channels, thus consuming less

BH power.

The impact on the BH power is further investigated by distributing the users in

different scenarios, while considering those two mmWave channels are still blocked.

In the first scenario, users are successively distributed in the vicinity of a first, second

and third Bs, and so on, while the same approach is followed in the second scenario,

where the users are now distributed in two BSs each time. Similarly, in the third

scenario, users are distributed in the vicinity of three BSs, while in the last scenario,

users are distributed uniformly in the whole grid. In each scenario, the maximum

BH power saving is determined by the saving occurred due to a specific BS/BSs

user distribution, while the average BH power-saving would take the average of all

the savings in BH power among all the BS/BSs user distributions. The simulation
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(a) When the number of active elements of IRS N ,
is 700
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(b) When the number of active elements of IRS N ,
is 1000
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(c) When the number of active elements of IRS N ,
is 2000

Figure 4.5: %age of average and maximum total Backhaul power saving for various
users distributions,

is repeated 100 times for each scenario, and the percentage saving in maximum and

average BH power is plotted for different values of active elements in then IRS, as

shown in Fig.4.5. For N = 700, it is observed that highest saving in both the the

maximum and average BH power occurred, when the users are distributed in the

first scenario (i.e., in the vicinity of a single BS) as shown in Fig.4.5 (a), while the

least savings are observed when the users are distributed uniformly in the whole

grid. The gradual decrease in backhaul power savings is because more BH links are

used for the users, distributed in more than one cell. When N, is further increased

to 1000, again, the highest savings are observed for a single cell user distribution
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scenario, as shown in Fig.4.5(b). However, these savings are comparatively less

than the case when N, was 700, as there is more burden of power consumed by

active elements of IRS. With the further increase in N to 2000, the savings in BH

power keep on decreasing from single-cell to uniformly distributed scenario, where

they ultimately become zero, as shown in Fig.4.5(c). Form the above results, the

maximum saving in static power is observed for N=700. It is noteworthy to mention

that the percentage saving in total BH power is mostly coming from the static power

as dynamic BH power is almost 3% of the static BH power.

The above investigation is taken into account the failure of two fixed mmWave

channels which occurred near the source BS (gNodeB), the future work will be the

investigation of the saving in BH power due to the impact of location of failure in

mmWave channels, i.e., either it will be near the gNB or far away from it, which

will give another degree of freedom.

4.4.2 Dynamic BH Power Analysis

The last observation inferred that deploying the IRS channels along the mmWave

channels gave us some savings in the total BH power. Specifically, the static com-

ponent of BH power is significantly reduced due to fewer hops, whereas the dynamic

component of BH power is relatively unchanged. As mentioned earlier, the path

loss of IRS channel in Eq.(4.14), also depends on N , which is related to dynamic

backhaul power in Eqs. (4.17, 4.18). Therefore, we studied the impact of N on the

dynamic and the total BH power.

In the first setup, named as fixed blockage, all the mmWave channels are assumed to

be partially blocked simultaneously as shown in Fig.4.2, by adding a fixed blockage

parameter of 40 dBs in Eq.(4.13), thus making the path loss of mmWave channel

severely bad but still usable. The users with specific demand rates are uniformly
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distributed in the grid. The N is varied in the range of 1000 to 5000 elements, by

ignoring the values less than 1000, as they would not give us the enough gain in the

path loss of IRS channel as compared to the path loss of partially blocked mmWave

channel. Moreover, selecting such a large value for N in an IRS is only possible in

the mmWave backhaul networks because each IRS can be configured “offline”. The

objective function here is again to minimize the backhaul power by setting w2 = 0 in

the eq.(4.25), so the capacity constraint (4.26) in the access side is removed from the

optimization problem and forces the model to serve all the users. The dynamic BH

power, the total BH power, which includes the static and dynamic BH power plus

the power consumed by IRS elements and the number of active BH channels, are

plotted against N in Fig.4.7, for different values of load-dependent slope of dynamic

BH power, ∆BH , and weightage parameter for IRS power, w1 as given in Eq.(4.19).

Initially, when ∆BH = 4 and w1 = 1, all the BH traffic is routed through the mmWave

backhaul channels as the IRS component in BH power is large enough to dominate.

Keeping ∆BH =4, and reducing the impact of IRS power component by making

w1=0.06. Now, initially varying the N from 1000 and 1800, all the BH traffic is

routed through the partially blocked mmWave backhaul channels due to negligible

improvement in path loss of the IRS channel Eq.(4.14), and hence the total backhaul

power includes the power consumed by the mmWave channels. When N is further

increased between 1800 to 4800, the path loss offered by the IRS is better than the

path loss of partially blocked mmWave channels.

Therefore, the model prefers IRS channels for routing for some of the BH traffic

of blocked mmWave channels, while other BH traffic is still routing through the

partially blocked mmWave channels, as shown in Fig.4.7(c). This diversion causes

a decrease in the dynamic and the total BH power, as shown in Fig.4.7 (a) and (b)
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(c) Number of active backhaul channels for ∆BH =
4 andw1 = 0.06
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(d) Number of active backhaul channels when
∆BH = 40 andw1 = 0.06

Figure 4.6: Impact on the BH power due to the number of active elements (N) in
an IRS, when different mmWave links undergo random blockage, i.e., either 0 dB or
40dBs

respectively. The IRS power component in total BH power in Eq.(4.19) is compar-

atively small during this range.With the further increase in N beyond 4800, results

in the further reduction of the path loss of the IRS channel; on the contrary, it

also significantly increases the power consumption of IRS channels, hence abstain-

ing the model to prefer IRS channels over the partially blocked mmWave channels.

Therefore, the model switches OFF all the IRS channels, and the traffic again starts

flowing from the mmWave channels, and the dynamic and total BH power curves
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return to the initial value. Now by changing ∆BH from 4 to 40 and w1 to 1, signi-

ficantly increased the dynamic and total BH power for each value of N. However,

the larger value of IRS power component abstain the model to prefer IRS channels

over partially blocked mmWave channels. Therefore, w1 is reduced to 0.06, and

the dynamic and total BH power starts decreasing with N , also as the IRS power

component is too low as compared to the BH power component; more number of

IRS channels are used as shown in Fig.4.7 (d) as compared to the Fig.4.7 (c). Thus,

helping the model to use IRS channels for a longer range of N . Now by fixing ∆BH

to 40 and changing w1 to 0.6, both the dynamic and total BH power decreases with

increase in N,then after a certain value of N, they started to increase. At when

N=4600, an increase in dynamic BH power is observed, where the model switched

off one of the IRS channels and an already serving base station in the BH to save

the BH power. Thus, all the BH traffic is rerouting with users still associated with

previous BSs, causing more hopes to reach the BSs in the backhaul. With a further

increase in N , beyond N=4600, the both dynamic BH power again starts decreasing

again.

The above proposition is our baseline scenario for all future analyses. In the above

analysis, all the mmWave channels are assumed to be partially blocked; this phe-

nomenon is scarce. Thus a random blockage parameter of 40 dBs, is chosen so that

nearly half of the mmWave channel undergo blockage at a time, whereas reaming

settings remain unchanged. The dynamic and the total power is plotted against N

in Fig.4.6. Again the dynamic and total backhaul power follow the same trends for

the particular values of ∆BH and w1 as was shown in Fig.4.7.

By comparing the results of fixed blockage with those of random blockage, we see

that in the case of fixed blockage, the network used IRS channels to pass some of the

partially blocked mmWave channels, however, the remaining BH traffic was forced
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(a) Semi-log plot of the dynamic backhaul power
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(b) Total backhaul power
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(c) Number of active backhaul channels for ∆BH =
4 andw1 = 0.06
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(d) Number of active backhaul channels when
∆BH = 40 andw1 = 0.06

Figure 4.7: Impact on the BH power due to the number of active elements (N) in
an IRS, when all the mmWave links undergo fixed blockage of 40 dB

to go through the partially blocked mmWave channels with greater path loss, since

there was no alternative. However, for the random blockage, the model optimizes the

traffic of partially blocked mmWave channels that are diverted through unblocked

mmWave channels and IRS channels, thus reducing the number of IRS channels used,

as illustrated in Fig.4.6(c) and (d). It is also observed that in the case of random

blockage, the specific value of both the dynamic and total BH power against each

value of N Fig.4.7 (a) and (b) is less then the corresponding values in fixed blockage

case as shown in Fig.4.6(a ) and (b), as we have a number of good links
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Figure 4.8: Impact on the BH power due to the number of active elements (N) in
an IRS, when different mmWave links undergo random blockage, i.e., either 0 dB or
40dBs, considering the capacity constraint at the access side

with lower power requirements. Also we got more saving in dynamic BH power

for random blockage as compared to fixed blockage (for each value of ∆BH and w1),
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as the model has the opportunity to use good links that help in minimizing the

dynamic BH power. From the previous discussion, it can be proclaimed that using

the IRS channels along the mmWave channels can provide savings in the static

BH power (depending on the users distribution) as well as the dynamic BH power.

The results also reveal the optimum number of IRS elements values for maximum

saving in dynamic and backhaul power within the studies range of values for those

elements and the input parameters of our problem. It is also observed that the

power consumed by IRS is one of the limiting factors for minimizing the backhaul

power, especially when the same network provider is responsible for providing power

to IRS along with the mmWave BSs.

4.4.2.1 Considering the Access power

In this section we consider the capacity constraint on the access side, only those

users are allowed to be served by the model, whose demand Ru is less than the

capacity CAN
bs,u offered to them by associated base station and is given as

CAN
bs,u ≥

∑
bs∈SBS

RAN
u φAN

u , ∀u ∈ Nmbs
: u ̸= bs. (4.36)

The other objective function and constraints remains same.The Fig.4.8, shows the

dynamic and backhaul power for IRS elements, and it can be observed that the

system follows the same trends but with different weightage parameters, which shows

that the system is very sensitive to weightage parameters.

4.4.3 Users Analysis

The question arises on how introducing the minimum number of IRS still serves

the maximum user association with optimum backhaul power. Consider a network
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topology comprising macro and small base stations connected via mmWave channels,

as shown in Fig.4.9(a), and thirty users are uniformly distributed in the vicinity of

those BSs. User association is classified into two categories, i.e., in the first category,

named as fixed users association; users can only be served by the nearest BS while,

in the second category termed as optimized user association, a user can be served by

one of the nearby BSs, provided it lies in the range of that particular BS. Consider

a case in which two of the mmWave channels are blocked simultaneously, as shown

in Fig.4.9(a), i.e.,channels between BS#1-BS#3 and the channel between BS#12-

BS#15 are blocked. The impact on user association due to blockage is studied

under those three scenarios, based on the availability of the IRS channel. The

objective function here is to maximize the number of users (by setting w2 = 1),

while minimizing the dynamic BH power, which is only needed to smooth the BH

traffic flow. In the first scenario, only mmWave channels are used for routing BH

traffic; it is revealed that the total number of served users decreases in the absence

of any IRS channel for both fixed and optimized user associations.

Moreover, in the case of optimized user association, an increase in the range para-

meter also caused an increase in the number of served users. In the second scenario,

as it is not cost-effective to deploy the IRS channel with each mmWave channel,

a novel approach uses a drone to provide the IRS channel for one of the blocked

mmWave channels. As the two mmWave channels are assumed to be blocked, so the

model will decide which one of the blocked mmWave channels will be served by the

IRS; hence, the resulted number of users for this scenario is shown in Fig.4.9(d). The

numbers of served users in this scenario increase significantly for both the optimized

and fixed user association compared to the 1st scenario due to the IRS availability

for blocked mmWave channels. Furthermore, in this scenario, the number of served

users kept on increasing as the range parameter increases till the point, (ϵAN
bs,u=200
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(a) Tree topology for mmWave backhaul net-
work where IRS channel is deployed along each
mmWave channel

(b) When backhaul traffic of each blocked mm-
Wave channel is rerouted trough alternative
IRS channel

(c) when there is limited number of IRS, so the
model has to optimized the number of served
users accordingly
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Figure 4.9: Impact on the number of served users due to the blockage of only two
fixed mmWave channels with/without the support of IRS

meters), the network can serve all the users with only one IRS channel as one of

the blocked mmWave channel traffic is diverted through other mmWave channels

through the farthest BSs.

It is further noted that when ϵAN
bs,u=100, users are connected with nine BSs, whereas

for ϵAN
bs,u=200, only seven BSs are used to serves users. For ϵAN

bs,u=100, user#33 was

the only user connected to the BS#7, but when ϵAN
bs,u is increased to 200, user#33 is

now connected with one of the neighbouring BS, i.e., BS#1, therefore enabling the

model to switch OFF BS#7. In the third scenario, every mmWave channel has the
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(a) Several mmWave channels blocked simul-
taneously with limited IRS availability
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Figure 4.10: Impact on the number of served users due to blockage of several
mmWave channels

support of the IRS channel in the BH link to ensure the maximum user association

as shown in Fig.4.9(a).

It is observed that by using the IRS channels for those two blocked mmWave chan-

nels, the network can serve all the users for both fixed and optimized users as-

sociation. In the case of optimized users with smaller range parameters, all the

alternative IRS channels for the blocked mmWave channels are used. But, with an

increase in ϵAN
bs,u, the network starts associating users to the farthest BS instead of

the nearest one to save BH power in a manner that the minimum number of BH

links are used, e.g. for ϵAN
bs,u =200 meters; several mmWave channels, including one of

the blocked mmWave channels, are no longer needed; hence, the BH traffic required

only one IRS channel for the other blocked mmWave channel, which is still in use,

thus consuming less dynamic BH power. Consequently, we can use this model to

reduce the cost of deploying IRS even though we do not explicitly have this target

in the objective function.

The above investigation took into account the blockage of only two fixed mmWave

channels, but due to the random nature of blockage in mmWave channels, the impact

90



4.5 Conclusions

on the number of served users by blocking random mmWave channels as shown

in Fig4.10(a), is studied, in which seven random mmWave channels are blocked

simultaneously for the same number of users, i.e., 30. In the first scenario, no IRS

channel is available to provide the alternative link to the blocked mmWave channel,

whereas, in the second scenario, two IRS provided by the drones, which are present

to provide the alternative path to the blocked mmWave channels, and in the third

scenario, four IRS channels are available.

The simulation is repeated 100 times for different sets of blocked mmWave channels,

and the average number of served users is plotted against the coverage parameter

ϵANbs,u, as shown in Fig.4.10. It is revealed that the number of served users increases

with the introduction of IRS channels along with the mmWave channel. However,

increasing the IRS channels from two to four has little impact on the average number

of served users. Furthermore, by comparing Fig.4.9 and Fig.4.10, it is also observed

that the average number of served users decreases with an increase in the number

of blocked mmWave channels for the same number of IRS. Furthermore, it is also

found that the increase in the coverage parameter resulted in more served users along

with a lesser number of IRS channels. It is important to mention that these results

obtained without capacity constraints at the access side and without considering

access side power consumption, this is to simplify the analysis and focus on the

mmWave vs IRS supported backhaul.

4.5 Conclusions

Throughout this chapter, we discussed how IRS could be incorporated into the back-

haul links of future wireless networks in order to reduce their power consumption

in the event of blockage or to maximize their user capacity. In order to minimize
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backhaul power while maintaining service to the maximum number of users, a MILP

optimisation model was developed. When certain mmWave channels are simultan-

eously blocked, introducing IRS along the mmWave channels can save both static

and dynamic backhaul power in comparison to rerouting to mmWave backhaul links

only. Using the optimal number of IRS along mmWave channels can also maximize

the number of users served. Furthermore, it is necessary to reduce the power con-

sumption of each IRS element in order to make IRS blocks (which contain many

elements) comparable with backhaul connections in terms of power consumption.
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In this chapter, we examine the advantages of IRS in an edge computing setting in

the context of a multi-channel-based, multi-user, downlink communication system

by guaranteeing service to all the users. We first introduce the system model which

is the foundation of our optimization framework. We then introduce the MINLP

objective function with all the constraints. We then present a linearisation technique

in order to make our model linear so that it can be solved by a linear solver such

as CPLEX. Using the linear objective function and constraints, we propose a MILP

model. It is our objective to jointly minimise both the latency (including the process

delay) and the power consumption of the IRS elements. By controlling the weights

of the objective function, which reflects the preferences of the operator, the IRS

elements can be tailored to minimise latency, IRS power consumption, or both.
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5.1 Introduction

New advances in programmable metamaterials [101], are fostering the emergence

of intelligent reflective surfaces (IRS) that are designed to improve the energy and

spectral efficiency of wireless communication [22]. IRSs are composed of an IRS

controller and many near-to-passive reflection elements which are controlled by the

IRS controller. The IRS controller determines the phase shift of these elements. At

the receiver, the signals reflected from the IRS will combine coherently with those

reflected from other paths, resulting in an amplification of the received signals [29],

[30]. IRSs are normally embedded on printed circuit boards (PCBs) and the metas-

urfaces are located on top of a dielectric substrate, as illustrated in Fig.5.1. Two

metallic patches are attached to each reflecting element by a common varactor/pin

diode, which is connected to the cylindrical conductive post, thereby forming a par-

allel connection between the diode and the cylindrical post. These cylindrical posts

pass through a dielectric substrate, a control layer, and end at a metal layer, while

the metal layer serves as a ground plane. In this case, the inductance of the circuit

is determined by the thickness of the substrate and the length of the cylindrical

post. By using an FPGA-based controller, a DC voltage is applied to each varactor,

causing its capacitance to vary as a function of the bias voltage. An insulation layer

is used to prevent electromagnetic leakage. Following reception of the RF signal,

current starts flowing through the metallic patch and then splits into two paths:

via the varactor and cylindrical post. Consequently, the RF signal is reflected by

that metallic patch on the opposite side, where the distributed current meets. In

addition, it is important to note that each IRS element is tuned by a varactor/pin

diode, which requires a power supply circuit [102].

To investigate the advantages of IRSs in wireless communications, comprehensive

research efforts have been spent into their channel estimation [34] and capacity
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Figure 5.1: The architecture of IRS, where a single reflecting element is marked in
red.

analysis [35]. In [41], IRS elements are grouped together, where the same phase

change coefficient is shared by all the elements of each group.

According to their study [103], different bias voltages were applied to a single re-

flecting element to achieve frequency selectivity over a particular frequency range.

In the study, the authors considered a frequency range of 5.5 GHz to 6 GHz. They

varied the bias voltage from 0 to 19 volts, which produced a phase shift of almost

180 degrees. Through their work, they laid the foundation for frequency selectivity

using the IRS, where users won’t receive interference from other users.

In today’s 5G and future 6G era, billions of sensors and machines are anticipated

to be connected. [104]. Due to the limited processing capabilities of these devices,

they are unable to accommodate time critical and resource-intensive applications.
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Figure 5.2: IRS aided single user downlink system with MEC server

This problem can be addressed by network operators deploying strong computing

nodes adjacent to the network’s edge, generally at the base stations (BSs) [105]. In

this manner, devices with low computational power can benefit from the comput-

ing capabilities of edge devices by offloading their resource-intensive tasks to these

devices. It is known as Mobile Edge Computing (MEC), and nodes with higher pro-

cessing power are referred to as MES servers. Nevertheless, devices that are typically

located at the cell edge may have a higher computational offloading latency than

if they were to perform their computation locally if the link employed to offload

the computation is not optimal [106]. Therefore, these devices are forced to use

their own computing resources, with the limitation that resource-intensive applic-

ations cannot be supported. It is therefore imperative to improve communication

performance between devices that support MEC.

As part of the MEC paradigm, a variety of techniques have been proposed to ad-

dress the issue of higher latency due to unfavourable channel conditions. In [68],

for example, it was suggested that if a channel between the MEC server and the
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user is not suitable to support an adequate transmission rate, then deferring the

computational offloading will be a better option until a more appropriate channel

can be created or by switching completely to another frequency/spatial channel that

offers better performance and quality. Furthermore, the authors propose that mobile

devices that cannot communicate directly with MEC servers due to the unfavourable

wireless channel make use of D2D communication with the nearby devices in order

to transmit their computational tasks to the MEC server. Moreover, the authors in

[28], presented a concept of employing IRS in the MEC setup in order to decrease

the computation latency. Iterative algorithms are used to optimize the framework’s

computing and communication settings to achieve low latency. The authors, how-

ever, did not account for the power consumption of the IRS infrastructure when the

same network provider is also responsible for powering the MEC servers.

To further investigate IRS’s role in the MEC paradigm, we have formulated an

optimization problem to minimise the computational latency of MEC and the power

consumed by IRS by exploiting its frequency selectivity. As shown in Fig.5.2, an

IRS-aided single user MEC scenario is illustrated. The user is unable to receive a

favourable channel from the base station as a result of blocking, and the IRS-aided

channel helps to minimise the latency by enhancing the capacity and rate offered to

the user.

5.2 System Model and Problem Formulation

This section introduces the communications and computational models and defines

a minimisation problem focusing on the computational latency and power consumed

by IRS elements; details are as follows.
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Figure 5.3: An IRS-enhanced multi-user downlink communication system with
MEC nodes

5.2.1 Communication Model

The proposed IRS-assisted downlink multi-user system is illustrated in Fig.5.3, con-

sidering two base stations, BS1 and BS2. The users are uniformly distributed in

a grid, and each user demands a specific data rate captured by Rd, in Mbps. Each

user acts as a sink node and is severed by any of these BSs acting as a source node.

Moreover, BS1 is supported by an IRS to enhance the receive SNR offered to the

user, thus the improved SNR provides better coverage and less latency. By employ-

ing the 3GPP Urban Micro (UMi) environment from [107, Table B.1.2.1-1], having

a carrier frequency of 3 GHz, the channel gains between the BSs, IRS and users are

modelled . We use the LOS path between the BS-IRS and IRS-user, whereas an

NLOS path is considered between the BS-user. These paths are explicitly defined for

distances ≥ 10 m [107, Table B.1.2.1-1]. Ntot denotes the total number of elements
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Figure 5.4: A diagram illustrating different IRS sub-sections with elements within
each row controlled by a controller

in the IRS, which are divided into n sub-sections having Xn, number of elements as

shown in Fig.5.4. Each user can be allocated a single or no IRS section n, according

to its demand Rd. The benefit of sectioning of IRS elements is given by the fact

that each sub-section of the IRS is assumed to reflect a specific channel by using

frequency selectivity as previously mentioned. Each section of IRS is assigned to a

particular channel , αf so that the corresponding reflective element of that section is

1. The reflection coefficient of other elements in other sections that are not assigned

to that channel is assumed to be zero. We assume 5 dBi antennas at the base station

and IRS, and each user has an omnidirectional antenna with 0 dBi.

Assuming both the base station, s and user, d have single antenna, then the rate in

(bit/sec/Hz) of the single-input single-output (SISO) channel without IRS is given

by (12 in [87]), as

RSISO = log2

(
1 + P |hsd|2

σ2

)
, (5.1)

where P , is the transmit power assigned to each user by a BS, assuming fixed

and equal power allocation for all the users. The deterministic flat-fading channel

between base station s and the user d is denoted by hsd ∈ C, and σ2 represents the
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Table 5.1: ENERGY-EFFICIENT MILP MODEL PARAMETERS

Parameters Comments Parameters Comments

BS Set of base stations Pmax
s Maximum power of a base station

U Set of all users P
srb

Transmitted power of each base station for each PRB

s Index of the base stations σ2 Noise power

d Index of user nodes βs,d Path loss in dBs of each user from the base station

n Index of the section of IRS elements βs,r Path loss in dBs between the IRS and the base station

N set of IRS sections βr,d Path loss in dBs of each user from the IRS

Xn Number of elements in nth IRS section, GT X Transmitter antenna gain

Ntot Total number of IRS elements M Very large +ve number

ds,d Distance of user from the base station in meters αd Number of requests generated by each user per second

PRB Set of physical resource blocks fs CPU computational capability of each base station s

ds,r Distance between IRS and the base station c Number of CPU Cycles required to process a single bit,

dr,d Distance between the IRS and the user L Request size in bits

B LTE bandwidth µs Service request rate

α Reflection Coefficient for each IRS element w1 Weightage parameter for the transmission delay

ϖch Bandwidth of each channel w2 Weightage parameter for the process delay

Rd Demand of each user in Mbps w3 Weightage parameter for the power

ψs Binary parameter that assign consumed by the IRS elements

IRS to only first base station,ψs

receiver noise power. Furthermore, all the channels use different frequencies, so we

only need to rely on SNR rather than SINR. Interestingly, the expression (5.1) only

depends on the amplitude of the channel but not on the phase, therefore |hsd| in

Eq.(5.1) can be replaced with
√

βsd , thus

RSISO = log2

(
1 + Pβsd

σ2

)
, (5.2)

where, βs,d denotes the NLOS channel gain between the base station s and user d.

To get a deterministic model, we neglect the effect of shadow fading. Thus, βs,d, as
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Table 5.2: ENERGY-EFFICIENT MILP MODEL VARIABLES‘

Variables Comments

Vs,d,n Binary indicator set to 1 if the base station s uses section n in its nearby IRS to serve the user d, otherwise 0

Ys,d Binary indicator set to 1 if s serves a user d, otherwise 0

Cs,d,n Capacity of each user d from the base station s over nth section of active elements of IRS

κs,d,n Transmission delay of each user d from the base station bs over, nth section of active elements of IRS.

Λs,d Requests of each user d, anchored by, each base station bs

λs Request arrival rate from all the users served by each bs

Zbs,d Binary indicator set to 1 if the requests of user d are anchored by the base station bs

Υs,d,n Received SNR at user d which is served by a base station bs, and aided by the nth section of nearby IRS

a function of distance dsd (in linear scale), is given by [107], as

βsd = 10
(
GTX−35.1−36.7 log10(dsd)

10

)
, (5.3)

where, GT X represents the transmitter antenna gains at the BS. According to [87],

the capacity between the base station s and user d through the n-th sub-section of

IRS is given as

Cs,d,n = Vs,d,nϖch log2

1 +

P
(√

βsd + Xnα
√

βIRS
)2

σ2


 , (5.4)

∀s ∈ BS, d ∈ U, n ∈ N,

where ϖch is the bandwidth of a single channel, σ2 is the power of white Gaussian

noise, α ∈ (0, 1] denotes the fixed amplitude reflection coefficient and
√

βIRS is the

product of βsr and βrd, representing the LOS channel gains between the BS-IRS and

IRS-user respectively and are (in linear scale) given by

βsr = 10
(
GTX−37.5−22 log10(dsr)

10

)
, (5.5)
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βrd = 10
(
GTX−37.5−22 log10(drd)

10

)
, (5.6)

Note, in Eq.(5.4), n is indexed over each configuration of IRS elements denoted by

N , whereas Xn refers to number of elements in each nth configuration of IRS. In

Eq.(5.4), a binary variable, Vs,d,n is generated, which is set to 1, if the system reserved

a capacity Cs,d,n between a base station s and user d over the nth configuration,

otherwise it is is zero. Let Υs,d,n denotes the SNR between base station s and user

d through the nth IRS sub-section, then from Eq.(5.4), it is given as

Υs,d,n =

P
(√

βs,d + Xnα
√

βIRS
)2

σ2

 , (5.7)

∀s ∈ BS, d ∈ U, n ∈ N.

Thus, as the Υs,d,n depends upon the transmitter power, channel gains, noise and

number of elements in each sub-section of IRS, we, therefore, study the impact of

sectioning of IRS elements in our scheme.

5.2.2 Computational Model

In this model, assuming the limited computing capabilities of users, a complete of-

floading scheme is investigated where all the users tasks are loaded into the MEC

server’s and processed using the MEC server computing resources [70]. In complete

offloading, the latency is the summation of transmission delay and process delay.

Factors affecting the effectiveness of complete offloading are channel capacity and

computing power of MEC server. At first, latency calculations due to the transmis-

sion and process delays in the downlink are established.
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The transmission delay, κs,d,n(in seconds) is given as

κs,d,n =


L

Cs,d,n 106 if Cs,d,n > 0

0 elsewise
, (5.8)

∀ s ∈ BS, d ∈ U, n ∈ N,

where, L denotes the request size in bits and capacity Cs,d,n is in Mbps. For the

process delay, we assume a MEC server in each BS, and each server follows the

M/M/1 queuing model, so under the existence of steady state, the process delay,

ιs(in seconds) at each base station, s can be written as

ιs = 1
µs − λs

, ∀s ∈ BS, (5.9)

where, µs and λs are the service request rate and request arrival rate respectively.

The service request rate µs(requests per second), is a function of CPU processing

speed in Hz (denoted by fs), number of CPU cycles required to process a single bit

(denoted by c) and L [28], and is given as

µs = floor
(

fs

c L

)
, ∀s ∈ BS. (5.10)

The request arrival rate, λs(requests per second), from all the users served by each

base station s, and is given as

λs =
∑
d∈U

Λs,d , ∀s ∈ BS, (5.11)

where, Λs,d associates all the requests of each user d to each base station s, and is
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given as

∑
s∈BS

Λs,d = αd , ∀d ∈ U, (5.12)

here, αd denotes the number of requests generated by each user in each second.

5.2.3 Problem Formulation

Due to the non-linearity of Eq.(5.9) and Eq.((5.8), first, we formulate the non-linear

model with the objective function and constraints in P1. Then a Linearisation

technique is introduced to make the model linear, which will help us in defining the

linear model, as given in P2.

P1. Non Linear Model

Our optimization problem’s primary goal is to minimise the latency including trans-

mission and process delays, and power consumed by IRS elements. In addition,

due to the limited number of IRS elements (sections), the model will optimize IRS

sections according to the user’s demand. The problem is formulated as an MINLP,

whose objective function give as

Minimize w1
∑

s∈BS,d∈U,n∈N

κs,d,n + w2
∑

s∈BS

ιs + w3
∑

s∈BS

∑
d∈U

∑
n∈N

Vs,d,n χn. (5.13)

with subject to the following constraints:

∑
s∈BS

∑
n∈N

Vs,d,n ≥ φd (5.14)

∑
s∈BS

∑
n∈N

Vs,d,n ≤ M φd ,

∀ d ∈ U,
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Rdφd ≤
∑

s∈BS

∑
n∈N

Cs,d,n, ∀ d ∈ U, (5.15)

∑
d∈U

φd = card(U), ∀ d ∈ U, (5.16)

∑
n∈N

Vs,d,n ≥ Ys,d (5.17)

∑
n∈N

Vs,d,n ≤ M Ys,d ,

∀ s ∈ BS, d ∈ U,

λs ≤ 0.9 ∗ µs ∀s ∈ BS (5.18)

∑
s∈BS

Ys,d ≤ 1, ∀ d ∈ U, (5.19)

∑
n∈N

Vs,d,n ≤ 1, ∀ s ∈ BS, d ∈ U, (5.20)

∑
d∈U

∑
n∈N

χn Vs,d,n ≤ Ntot, (5.21)

∀s ∈ BS.
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Λs,d ≥ Ys,d (5.22)

Λ ≤ M Ys,d ,

∀ s ∈ BS, d ∈ U,

In constraint (5.14), the binary association variable is generated from the variable

Vs,d,n, means if there at least one base station, s and one IRS section n reserved to

a particular user d, then φd should be set to 1 for that user which indicates that

the user is served. It is important to mention that when the users are served by

either BS1(without using IRS) or by BS2, Vs,d,n can still be 1 due to the fact that

n = 1 corresponds to the scenario when zero IRS element is used. In Constraint

(5.16), demand of each user, Rd is multiplied with the the binary variable, φd, to

ensure that the capacity constraint holds for active user demands. Constraints (5.16)

ensures all the users are served by the BSs. In Constraint (5.17), the variable Ys,d

is generated using the variable Vs,d,n, which means that if there at least one IRS

section assigned to a user d associated to BS, then Ys,d is set to 1, otherwise it is

zero. Constraint(5.18) ensure the validity of Eq.(5.9). Constraint (5.19) ensures

that each user is served by only one BS. Constraint (5.20) ensures that each user

d is allocated one IRS configuration, recall that a configuration of an IRS could be

to use a particular section (n>1) or not to use the IRS at all (n=1). Constraint

(5.22) ensures that a user d only connects to a bastion bs that receives that user

requests rate, Λs,d. Finally, Constraint (5.21) ensures that sum of IRS elements in

the utilized sections of the IRS do not exceed total number of elements of that IRS.

P1.1 Linearisation of non-Linear equations

Suppose we want to find the value of delay κs,d,n against a certain value of capacity

Cs,d,n in Eq.(5.8). First, we divide the capacity between its maximum and
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5.2 System Model and Problem Formulation

Figure 5.5: Linearisation of Transmission delay - capacity Eq.(5.8).

minimum value given by the model into small regions (or segments) as

C̄s,d,n,i = i

(
Cs,d,n(max) − Cs,d,n(min)

I
+ Cs,d,n(min)

)
,

∀ s ∈ BS, d ∈ U, n ∈ N, i ∈ I, (5.23)

where, I is the total number of segments. Now the transmission delay κ̄s,d,n,i in

each segment against C̄s,d,n,i , can be given as

κ̄s,d,n,i =


L

C̄s,d,n,i 106 if C̄s,d,n,i > 0

0 elsewise
, (5.24)

∀ s ∈ BS, d ∈ U, n ∈ N, i ∈ I.

The plot of κ̄s,d,n,i against C̄s,d,n,i is shown in Fig.5.5. Now as the given capacity

Cs,d,n, can lie in any region between C̄s,d,n,i−1−C̄s,d,n,i , so we introduce a variable
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Cs,d,n,i whose value is given by

Cs,d,n =
I∑

i=1
[Cs,d,n,i] ∀ s ∈ BS, d ∈ U, n ∈ N, i ∈ I (5.25)

Now for each segment i, we check whether the Cs,d,n,i lies in that segment by

introducing following constraints

C̄s,d,n,i−1Zi ≤ Cs,d,n,i ≤ C̄s,d,n,iZi, (5.26)

∀ s ∈ BS, d ∈ U, n ∈ N, i ∈ I,

where Zi is a binary variable which is defined as

I∑
i=1

Zs,d,n,i = 1 ∀ s ∈ BS, d ∈ U, n ∈ N, i ∈ I (5.27)

The above set of constraints (Eq.(5.25)-Eq.(5.27), ensure that the variable Zi

should only be one for the value of i, where the given capacity Cs,d,n exactly lies in

the range specified by C̄s,d,n,i−1−C̄s,d,n,i . Now we will find the delay, κs,d,n by

summing over all the segments i as

κs,d,n =
I∑

i=1
[κ̄s,d,n,i−1Zs,d,n,i + (5.28)

(
Cs,d,n,i − C̄s,d,n,i−1Zs,d,n,i

) κ̄s,d,n,i − κ̄s,d,n,i−1

C̄s,d,n,i − C̄s,d,n,i−1

]

∀ s ∈ BS, d ∈ U, n ∈ N, i ∈ I

From Eq.(5.27), as Zs,d,n,i is only 1 for a single value of i, so it will find the

approximated value of delay κs,d,n against that capacity Cs,d,n in that particular

region i. Similar set of constants can be defined to linearise Eq.(5.9) by assuming

L = 1 and µs − λs as C just for the case of reference.
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Table 5.3: ENERGY-EFFICIENT MILP MODEL INPUT PARAMETERS

Parameters Comments

Set of all the users, U (uniformly distributed) 40

Set of physical resource blocks, P RB 100

set of IRS sections, N 1-5

Number of elements in each nth IRS section, Xn 0,25,50,100,150

Total number of elements in an IRS, Ntot 1500-5000

Distance of user from the base station in meters, dAN
s,d 10-100 meters

Distance between IRS and the 1st base station, dAN
s,r 20 meters

Distance between the IRS and the users, dAN
r,d 10-50 meters

LTE bandwidth , B 20 (MHz) [90]

Reflection Coefficient for each IRS section, α 1

Bandwidth of each channel, ϖch 180 (kHz) [90]

Demand of each user, Rd 0.1-0.2 Mbps[94]

Maximum power of a base station, P max
s 200 mWatts [90]

Transmitted power of each base station for each P RB, P
Pmax

s
PRB

mWatts

Power of single active element in IRS, ℘ 5 (mW)[24]

Noise variance, σ2
(

10− 174
10

)
B [90]

Transmitter Antenna Gain ,GTX 5 dBi

Number of requests generated by each user, αd 1-3 requests/seconds

Number of CPU Cycles required to process a single bit, c 750 cycles/sec

Number of CPU Cycles allocated by MEC server 5 × 108cycles/sec[108]

in each BS to a single user, fs

Request size in bits, L 300 Kb[109]

Service request rate, µs (in requests/sec) floor( 5×108

750 300×103 )
Binary parameter that assign IRS to only first base station,ψs =1 if s=1
Weightage parameter for the transmission delay w1 10-1000
Weightage parameter for the process delay, w2 500-1000000
Weightage parameter for the power consumed by IRS elements, w3 0-1000
Very large +ve number, M 10000

P2. Linear Model

The above set of equations will linearise variables defined in Eqs.(5.9) and Eq.(5.8).

Therefore, we can express our MILP model using the objective function in Eq.(5.13)

and all constraints mentioned in Eq.(5.14)-Eq.(5.14).
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(b) Average transmission delay plotted on semi-log
scale
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(c) Average process delay plotted on semi-log scale

Figure 5.6: Average number of served users, transmission delay and process delay,
are plotted against the weightage parameter, w1 of the transmission delay

5.3 Numerical Results

As mentioned earlier that the IRS elements are introduced to enhance spectral

efficiency which would yield an improvement in downlink capacity offered by BS1.

For the 1st set of results, we studied the impact of varying the weightage of the

transmission delay in the objective function, as the service provider is more interested

in minimising the transmission delay, as they don’t have direct or minimal control

over the IRS elements or the MEC server. In Fig.5.6, the weightage parameter,

w1 of the transmission delay in Eq.(5.13), is varied from 10 to 10000, by fixing

weightage parameter for process delay, w2 = 100000 and making w3=1. The average
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number of users served by BS1 and BS2, along with the average transmission and

process delays are plotted for 100 simulations while guaranteeing that all the users

demands are satisfied. In each simulation, users are distributed randomly with

random demands and requests. It can be inferred from Fig.5.6 (a), that with an

increase in w1, users which were initially served by BS2 are now served by BS1,

due to the enhanced capacity offered by BS1, by making use of more IRS sections.

The increase in overall capacity also results in less transmission delay as shown in

Fig.5.6 (b). In Fig.5.6 (c) with higher, w1 the model focuses more on reducing the

average transmission delay thus an increase in average process delay is observed.

These results can be expanded to large number of BSs, but we restrict our analysis

to two BSs, as the model becomes tractable and still representative of the overall

system.

From the Fig.5.6, it has been found that the change in w1 switched users from BS2

to BS1, but as each MEC server follows the M/M/1 queuing model, it will impact

the process delay at each BS. Therefore, by fixing the weightage parameter for

transmission delay, w1 = 1 and varying the weightage parameter, w2 of the process

delay in Eq.(5.13), from 1 to 5000, impact on the average number of served users

by both the BSs and transmission and process delays are investigated, w3 is equal

to 1 . In Fig.5.7, the average number of users served by BS1 and BS2 along with

total delays are plotted for 100 simulations, while guaranteeing that demands of all

the users are satisfied. It is evident that with increase in w2, those users which BS1

initially served are now served by BS2 because more the users served by a single

BS, the more would be the process delay as shown in Fig.5.7,(a). Hence, the model

minimised the process delay by balancing the number of users served by each BS

as shown in Fig.5.7(b). In Fig.5.6(c) with higher w2 the model pays more attention

on minimising the average process delay, thus an increase in average transmission
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(b) Average transmission delay plotted on semi-log
scale
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(c) Average process delay plotted on semi-log scale

Figure 5.7: Average number of served users, transmission delay and process delay,
are plotted against the weightage parameter, w2 of the process delay

delay is observed.

From the previous result it can be inferred that by the introducing IRS helped

the BS1 to increase the capacity to its served users. In Fig.5.8, impact on the

average number of served users and transmission delay by varying the total number

of IRS elements NT is investigated. In this setting, the weightage parameters are

as w1 = 1000, w2 = 50000 and w3 = 1. From Fig.5.8(a), it can be inferred that

initially when NT =1500, those users which are served by BS1 are using IRS sections

having less number of active elements, hence, offering less capacity to the users. But

with the increase in value of NT , BS1 served the users with enhanced capacity and
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scale

Figure 5.8: Impact of total number of IRS elements on average number of served
users and transmission delay

less transmission delay as shown in Fig.5.8(b) by allocating IRS sections with more

elements. When Nt reaches 5500, BS1 allocated highest section of IRS elements(i.e.,

Xn=150) to all of its served users and, moreover, at this point, maximum users are

served.

As introducing the IRS element not only provided better gain but also reduces

the transmission delay, but it will have a burden on power consumed by active

IRS elements. In Fig. 5.9, average number of served users by BS1 and average

transmission delay are plotted against different values of weightage parameter of

the power consumed by IRS elements (w3) in the objective function (Eq.(5.13)). By

fixing the other two weightage parameters for transmission and process delays as

w1 = 1000, w2 = 50000 with N=3000. It is noted that initially for smaller values

of w3, BS1 served its users with IRS sections having more number of elements,

thus, enhancing the capacity offered to its users resulting in less transmission delay

as shown in 5.9(a) and Fig.5.9(b) respectively. But, with an increase in w3, BS1

served most of its users with IRS sections having a few elements or without IRS

(having zero element) offering less capacity and hence, an increase in transmission
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Figure 5.9: Impact of weightage parameter w3 on average number of served users
and transmission delay and transmission delay

delay is observed.

5.4 Conclusions

We have examined the problem of computational offloading in 5G/6G wireless net-

works using IRS to minimise latency components such as transmission and process

delays. In addition, we have examined the power consumed by IRS wireless net-

works to meet the maximum demands of end users. As a result, the introduction

of IRS elements into wireless networks minimised latency by increasing the capa-

city available to subscribers. Additionally, the optimal number of IRS elements is

determined in order to serve as many users as possible.

114



Chapter 6

Genetic Algorithm Implementation

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Genetic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 GA SETUP AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

The goal of this chapter is to design a heuristic based on a genetic algorithm in

order to validate the results obtained from the optimisation problems. Our decision

variables were represented by binary chromosomes. We also describes a unique se-

lection and mutation process for the population generated from those chromosomes.

Furthermore, we developed a repair function that was used to verify the validity of

generated chromosomes and repair according to some constraints. Various fitness

functions were evaluated based on the optimization problems. We obtain similar

results from heuristics as we did from the MILP model.

6.1 Introduction

In this section, an alternative method of validating the results of the MILP model

is presented using a binary genetic algorithm (GA). Using a genetic algorithm, a
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Figure 6.1: Chromosome structure.

population of candidates, or individuals, can evolve over several generations in order

to identify the individuals with the greatest fitness. In this study, optimal fitness

is defined as the weighted minimum of transmission delay, process delay, and power

consumption of IRS elements, while candidates represent the distribution of users,

BSs and IRSs in a network. As part of the first step of every GA, chromosomes are

defined for each problem under consideration.

6.2 Genetic Model

We define a chromosome composed of 280 genes that corresponds to the values

of Vbs,d,n, introduced in the last chapter. Each chromosome is divided into two

sections, where the first sub-section corresponds to the BS-user association and the

second sub-section corresponds to the user-IRS association. For the first 80 genes,

each pair of gene corresponds to a single user where first and the second gene in

each pair represents the user served by BS1 and BS2 respectively as shown in

Fig6.1. In order to hold the user association constraint(5.19), a constraint function

is formulated ensuring that only one of the gene in each pair will be equal to 1. For

the last 200 genes, indexing from 81 to 280, each (quintuplets) of 5 genes represents

the sections of IRS, so if a BS allocated a specific configuration of IRS (including

IRS section without any elements) to a user d,the specific gene will be equal to 1
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Algorithm 6.1 Genetic algorithm for minimizing Cost Function

Input: Input Parameters

Output: Cost function

1. Create the initial parent population

2. Check the constraint functions on the population

3. Repair the population where necessary

4. Evaluate the fitness function of population

5. Set a counter i = 1, for the number of generation

6. Select the parents

7. Perform Crossover

8. Perform Mutation

9. Get the children population

10. Check again the constraints on the population

11. Repair the population where necessary

12. Evaluate the fitness function of population

13. Merge and sort the parent and children populations

14. Create new parent population by removing extra individuals

15. if the termination criteria is not satisfied

16. i = i + 1

17. go to 6

18. else

19. Optimal Cost

20. EXIT

21. end if
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Figure 6.2: GA Objective Function is plotted over total number of iterations.

for that user. Again the constraint function for last 200 genes is formulated which

ensures that only one gene in each quintuplet will be 1 to hold the constraint(5.20).

The objective of problem under consideration is to jointly minimize the transmission

delay, process delay and power consumed by IRS elements (Eq.4.21), resulting in a

multiple-objective optimization problem . So by assigning weights to each individual

objective function and combining them into a single composite function[110], a fit-

ness function is formulated. The crossover and mutation operations are performed

after each selection operation, as exhibited in Algorithm 6.1.

6.3 GA SETUP AND RESULTS

A total of 1000 chromosomes are believed to evolve through 100 generations, with

crossovers and mutations having probabilities of 99% and 0.001%, respectively.

With the use of the double point crossover function, the first crossover point is
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Figure 6.3: Transmission delay and process delay of GA are compared to the MILP
model, plotted over different number of reflective elements NT

randomly selected from 1-80 genes, whereas the second crossover point is randomly

selected between 81-280 genes. Thus allowing only the BS-user genes of parent#1

to be crossed over with BS-user genes of parent#2 and user-IRS genes of parent#1

to be crossed over with user-IRS genes of parent#2. Children were able to preserve

the same genetic information as their parents under this scheme, as illustrated in

Fig.6.1.

In Fig. 6.2, the objective function of GA is plotted against number of iterations

with same wights and NT = 3000, and it can be inferred that the solution has been
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Figure 6.4: IRS power consumption and overall cost function of GA are compared
to the MILP model, plotted over different number of reflective elements NT

found beyond 68 generations, as no further change is observed after that point. In

Fig.6.3 and Fig. 6.4 transmission delay, process delay, IRS power consumption and

objective function of MILP is compared with the average transmission delay, average

process delay, average IRS power consumption and average objective function of

GA (each average is taken over 5 simulations), which are plotted against number of

elements, NT in IRS, with w1 = 500, w2 = 10000,and w3 = 1 for the same setting

of users distributions, demands and request rates, and it can be inferred that they

are comparable.
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6.4 Conclusions

In this chapter, we designed a heuristic based on a genetic algorithm to validate

the results obtained from the optimisation problems. We represented our decision

variables as binary chromosomes. The population generated from those chromo-

somes was also subjected to a unique selection and mutation process. Moreover, we

have developed a repair function that can be used to verify the validity of generated

chromosomes and to perform repairs in accordance with some constraints. Numer-

ous fitness functions were examined based on optimization problems. The heuristics

derived from the MILP model resulted in similar results.
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In this chapter, a review of the main results of this thesis is presented and important

conclusions are highlighted. Moreover, the possible extension and future directions

of this work are also presented here.

7.1 Conclusion

7.1.1 Optimisation of Intelligent Reflecting Surfaces in 5G and

Beyond Backhaul Networks

In this part of the thesis, we discussed the idea of incorporating IRS into the back-

haul links for future wireless networks to reduce the backhaul power consumption

of wireless networks in the event of blockage or to maximize the number of users

served. A MILP optimisation model was developed to minimize backhaul power

while ensuring that a maximum number of users are served. We found that introdu-
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cing IRS along mmWave channels in a situation where specific mmWave channels are

blocked simultaneously can save static and dynamic backhaul power compared with

re-routing through only mmWave backhaul links. A further benefit of deploying the

optimal number of IRS along mmWave channels is that the number of users served

can be maximized. In addition, it is necessary to decrease the power consumed by an

IRS element to make the power of each IRS block (which contains several elements)

comparable to that of backhaul connections.

7.1.2 Joint Power and Latency Minimization of Mobile Edge

Computing in Future Access Networks Assisted by

Intelligent Reflecting Surfaces

This part of the thesis focuses on the computational offloading problem of utilizing

IRS techniques in future 5G/6G wireless networks to minimize latency components

such as transmission and process delays, as well as the power consumed by IRS

wireless networks to satisfy the maximum demands from end-users. Accordingly,

introducing IRS elements into a wireless network minimized the latency by enhan-

cing the capacity offered to subscribers. The optimal value of the number of IRS

elements is also evaluated in order to serve as many users as possible. In order to

validate the results obtained from the MILP model, a genetic algorithm has been

introduced. It can be concluded that both models yield similar outcomes.

7.2 Future Work

Future work will include for the optimisation of the backhaul network, an optimal

multi-antenna scenario will be developed. Moreover a heuristic that will aid in the
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analysis of possible savings in BH power will be developed. Analyse of mmWave

channels to determine the location of blockages can be another interesting work.

In order to optimize both the access network and the backhaul network, a mul-

tichannel optimization model will be developed.
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