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Abstract

Since its conception, Quantum mechanics has provided description for the behaviour of

the smallest parts of the universe, but has also introduced new, paradoxical, and unin-

tuitive features to the scheme of physics. While quantum wave mechanics is well un-

derstood descriptively, the actual physical nature behind it has long been debated, and

numerous different interpretations exist. In this thesis, we argue the merits of a contextual

realist design over the traditional Copenhagen interpretation and demonstrate with a novel

numerical model that the assumptions of the Copenhagen interpretation are unnecessary

when quantum effects can be modelled through deterministic ensembles.

This model uses the general-purpose programming language Python to simulate a collec-

tion of particles which act deterministically while demonstrating a characteristic quantum

interference effect. This is achieved by allowing deterministic interaction between each

particle and the ‘apparatus’ of the virtual experiment. In this way, it is demonstrated that

deterministic contextual behaviour is sufficient to explain certain quantum effects, and

that it is unnecessary to assign indeterminacy or a dual-nature to individual objects.

Chapters 1 and 2 review some of the history and existing interpretations of quantum me-

chanics, and highlight which stems of thought can be adapted into a modern contextual

quantum theory. Chapter 3 explores a novel numerical result related to Bell-test exper-

iments, which are a cornerstone in examinations of quantum foundations. Chapters 4

and 5 more explicitly connect existing contextual ideas to those used in this thesis’ new

model, which is described in chapter 6. Finally chapter 7 compares the new model with
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the known ‘Feynman Little Arrow’ notation.
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Chapter 1

The Theory of Quantum Mechanics

1.1 Introduction: The History and Problems of

Quantum Mechanics

For decades now quantum mechanics has been considered a successful theory. The appli-

cation of its methods has been put to use in experimental description and prediction, tech-

nologies have emerged and continue to be developed [2–10] that make fundamental use

of quantum mechanical ideas only made possible by the introduction of codified quantum

physics in the early 20th century. Moreover, difficult ideas such as ‘wave-particle dual-

ity’ even begin to make their way into the realms of popular science common vocabulary

[11, 12].

While the succesful application of quantum mechanics has achieved much, what shall

be of interest to this thesis are the fundamental concepts and beliefs that underpin its

formulation. There are many ways in which quantum mechanics can be taught, theorised,

and applied [10, 13–22]. Each manages to describe experimental reality to good degrees

of accuracy. However, the guiding ideas behind each method can vary significantly. As

such there are many papers discussing the choice and theory of the foundations applied
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1. THE THEORY OF QUANTUM MECHANICS

[23–26], and still great discussion occurs over these ideas [27–31]. Chapter 2 contains an

overview of the main branches of differing interpretations.

Every current working theory of quantum mechanics gives only probabilistic results; there

is no fully deterministic theory that captures all the features of quantum mechanics that

we observe by experiment. This probabilistic nature is taken axiomatically in most teach-

ings [32, 33], and is sufficient for the description of experiments on large ensembles of

particles. However, the non-deterministic, non-classical, and unintuitive results have been

used as grounds to question the validity of quantum theory since the earliest publications

in the field. In their famous 1935 paper [23], Albert Einstein, Boris Podolsky, and Nathan

Rosen put forward their reasonable expectation:

A sufficient condition for the reality of a physical quantity is the possibility

of predicting it with certainty, without disturbing the system. [23, p. 1]

And went on to show that even simple quantum-entangled systems fall short of fulfilling

this description of “objective reality” — concluding that existing quantum theory, includ-

ing its wavefunctions and probabilities, must be an incomplete description of reality.

Their arguments lead to further theories which question whether any traditional-style the-

ory involving determinism and some hidden variables could be possible in regards to

quantum mechanics. John Bell’s work produced statistical inequalities which evaluate the

feasibility of hidden-variable theories [34,35], and recent years have shown experimental

testing of such theorems [36, 37]. However, such works still leave open possibilities of

non-local, or non-real-valued hidden variable theories. Additionally, works upon which

this thesis will draw open further questions as to what can be a suitable definition for ‘ele-

ment of physical reality’ as Einstein and company desired, and whether the metaphysical

foundations upon which we begin must be adjusted in light of the emergence of quantum

mechanics in modern physics [14, 38]. Chapter 4 discusses the details of the ideas of

Contextual Objectivity.
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1.1. INTRODUCTION: THE HISTORY AND PROBLEMS OF QUANTUM MECHANICS

Furthermore, the apparent faster-than-light transfer of information observed as the phe-

nomenon of ‘entanglement’ is another facet of quantum theory that defies our intuition.

We take it as true that information cannot be transferred faster than light — a concept

dating back to Einstein’s famous work on relativity [39], yet quantum interactions seem

to violate this law. We may ask whether it is the axioms of special relativity or those of

quantum mechanics that need questioning under these circumstances — both have exper-

imental backing. One way in which relativity holds firmer is that it is based upon a simple

physical understanding — that c is an absolute speed limit for the physical universe, and

upon this a mathematical theory forms. What existing foundations of quantum mechanics

lack is some similar physical truism that naturally describes its observed consequences.

This absence of an intuitive core idea may be a distasteful but non-fatal flaw of quantum

mechanics; practicalists may point to the accurate descriptions of physical events and the

existing developments and technologies that have been achieved as evidence of quantum

theory’s validity and value. However, as David Deutsch’s text [40] elaborates, under-

standing, more than mere description, is key to a structure of knowledge. The ability of

quantum mechanics to describe the universe accurately, but not intuitively, may be par-

alleled with an astronomical example: Ptolemaic epicycles can accurately describe the

motion of planets in the solar system — but with great complexity and lacking a sim-

ple physical intuition; introducing the core idea of the force of gravity between massive

objects leads to the now favoured Copernican heliocentric model — which provides a

better understanding and deeper grasp of the physical universe involved, and such deeper

comprehension lead to much further and greater developments.

Finally, we must highlight the emergence of commercial quantum technologies. For

decades practical applications of quantum computing technology has been promised

[41, 42], yet now we finally step upon the threshold of such technology seeing real use

[5–9]. With such applications being put to such important uses as modern cyber-security,

we must re-examine our grounding to be sure of the validity of claims such as ‘secure
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1. THE THEORY OF QUANTUM MECHANICS

key distribution’. In particular, this thesis will highlight how quantum effects necessarily

emerge from large collections of particles acting in an ensemble, in contrast to the existing

quantum technologies using only a small number of qubits.

1.2 Key Ideas: Mutuality, Contextuality, and

Stochasticity

This thesis hopes to tackle some of the problems of the interpretations of quantum me-

chanics by holding to some basic premises, and adapting some of the methods found in

early, more forgotten, literature, along with some modern viewpoints.

The scheme of the modern scientific method is to apply laws which are homogeneous

and isotropic — that identical experimental actions produce identical results at any other

time or place; that is to say, that physics can be applied in a universal sense. The first

difficulty of quantum mechanics is that of the quantum-classical division. The separation

between the totality of objects for which we must consider wavefunction collapse and

measurements operators (in usual quantum theory), compared to those for which we may

use classical models, remains ill-defined. The division of areas where ~ is ‘significant’

is an unclear one, and apparently depends on a subjective observer. Hugh Everett’s well-

known Many Worlds Interpretation (MWI) [19, 20] began exploring ideas of a ‘universal

wavefunction’ as a continuous universal application of quantum laws; details can be see

in section 2.3.

Furthermore, it should be remembered that when measuring or experimenting with quan-

tum objects, the operator cannot be excluded from the model. The wavefunction collapse

of the usual Copenhagen Interpretation is often taught as axiomatic, and while it can

be ‘understood’ to the degree that the student may calculate (probabilistic) experimental

results, the concept is central to the unintuitive and anti-classical elements of quantum
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1.2. KEY IDEAS: MUTUALITY, CONTEXTUALITY, AND STOCHASTICITY

theory. This collapse occurs when a disparate hand-of-God measurement operator instan-

taneously affects the state of some quantum matter before returning to the aether. How-

ever we must remember that these measurement actions are in fact physical interactions

— it is only by the means of multiple physical systems affecting each other that we may

learn of or change these systems. And if quantum theory is to be a universal one, then

these observer/apparatus/environment objects must also follow some quantum dynamics

in their action.

This idea of a mutually effective action between observed and observer is carried through

this work in examples wherein both quantum objects, and the apparatus with which they

interact, are modelled with methods including wavefunctions and complex phases.

The continuation of this reasoning leads to the inclusion of contextuality — quantum

models where any state or result must be given as in relation to other systems; that is to

say, context is an essential part. Chapter 4 contains further discussion on contextuality.

Finally, the nature of the wavefunction must be tackled. It is the wavelike nature of cer-

tain quantum results that leads to the tricky ideas of instantaneous collapse, and duality,

and even superposition of mutually exclusive states. However, it must be remembered that

while some interpretations view the wavefunction as a complete description of an individ-

ual object, it is fact only in ensembles that we see wavelike properties such as interference.

Even in a demonstration of ‘single-photon’ interference it is the conglomeration of many

collected test runs that shows periodic (wavelike) results — the wave-character is only

begat by statistical ensembles. The necessity to view ensembles of particles for wave-

like properties to emerge is related to the idea of context being a crucial part of quantum

effects.

The appearances of the ideas of mutual interaction, necessary context, and stochastic

waveforms shall be explored in subsequent chapters; and a new novel model built upon a
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1. THE THEORY OF QUANTUM MECHANICS

selection of those methods from the literature is demonstrated in chapter 6.

1.3 Goals: A Deterministic Contextual Stochastic Model

The major result of this thesis shall be a demonstration of a toy-model which uses de-

terministic stochastic rules and shows a quantum-like result. The demonstration (seen in

chapter 6) uses the Python 3.6 programming language to simulate a single-photon inter-

ference experiment, as would be as seen in, for example, [33]. The results shall be as if

like the detectors of a physical apparatus measured such an experiment, but the simulated

action of the photons will obey a set of deterministic rules. The idea is to show that it is

possible to have a model of deterministic corpuscular photons which still shows quantum

(wavelike) results by the inclusion of mutuality, contextuality, and stochasticity.

The specific ideas amalgamated include Louis de Broglie’s early notion of an internal

periodic phenomenon in quantum objects [13], Richard Feynman’s ‘little arrow’ notation

[18], and David Bohm and Jeffrey Bub’s ‘double solution’ work [43]. Chapter 5 expands

on these ideas.

The given model is not intended to be a total description of the processes of physical

reality, it holds only the modest goals:

1. To present an explicit implementation of a mutual two-wavefunction contextual

model.

2. To demonstrate that the new model successfully replicates quantum behaviour

through deterministic particles.

Similar theoretical models can be seen in [44, 45], and by physical experiment [46].
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1.4. SUMMARY

1.4 Summary

The established goal of this work is to present a model based upon mutuality, contextual-

ity, and stochasticity, which shows deterministic particles exhibiting quantum (wavelike)

behaviour in chapter 6.

Leading up to that, detail of the ideas included are discussed in chapter 5; including the

foundational notion of contextuality in chapter 4.

Details on a selection of current quantum foundational approaches are provided in chapter

2, followed by some original examination of Bell-test experiments, which crucially link

to hidden-variable interpretations of quantum mechanics, in chapter 3.

Appendix A includes the Python script used.
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Chapter 2

Foundations and Interpretations

2.1 On the Reinterpretation of Quantum Foundations

Quantum mechanics has for more than a century provided us with adequate descriptions of

physical phenomena. We have a set of postulates and Schrödinger’s celebrated equation.

Yet there is still discussion as to how this branch of physics relates to the real world, or

rather what the quantum phenomena that we observe can tell us about what it means to

have ‘reality’.

The probabilistic nature of quantum mechanics was an initial concern for the founding

fathers of the theory — famously causing Einstein to question God’s gambling habits

[47, p. 91]. Furthermore, Einstein and his contemporaries even went so far as to criticise

quantum mechanics as an ‘incomplete’ theory [23], arguing that any reasonable descrip-

tion of reality must satisfy some assumptions on repeatability and predictability. Bell’s

theorem [34] threw more fuel onto this fire when he apparently denied the possibility of

any description of reality as Einstein desired. However with the recent [36, 37] exper-

imental verification of Bell’s theorem, we have not given up on finding some complete

description of reality, we have instead begun asking more careful questions of what it

9



2. FOUNDATIONS AND INTERPRETATIONS

means to ‘describe reality’. See for example Philippe Grangier’s papers on contextualisa-

tion of quantum mechanics [21] which assert that ‘reality’ (something with what we can

call ‘physical realness’) can only exist as a conjunction of a ‘thing’ and its ‘context’.

2.2 A Description of Reality

As previously discussed, the problems of whether quantum mechanics is, or can be, a

successful description of reality dates back to the founding fathers of the theory; Ein-

stein’s primary definition of reality in the physical sciences (page 2) being known to be

incompatible with the results of quantum experiments [23]. Much is discussed about what

may constitute ‘objective reality’ in quantum mechanics [21, 48]. The usual Copenhagen

interpretation asserts that a particle’s wavefunction is a complete descriptor of its physical

state, and a straightforward definition of reality would be of some property that persists

unchanged (or evolving in a known way) until read-out by a measurement; in which case

any particle in a superposition or un-measured state must not have any physical reality

until a measurement operation occurs and it collapses to a single defined result. This

problem of reality not existing until some ill-defined ‘observer’ has recorded it is another

concern on which Einstein is known to have spoken1.

The theories which hope to assign objective measurable reality to physical objects are

known as Hidden Variable (HV) theories; developed on the idea that the uncertainty and

probabilisticness of quantum mechanics is due to some unknown underlying governing

properties yet to be discovered — a methodology carried over from classical mechanics.

The works of John von Neuman and John Bell explored the fundamental possibility of

such a solution for quantum mechanics and developed experimentally testable statistical

1‘We often discussed his notions on objective reality. I recall that during one walk Einstein suddenly
stopped, turned to me and asked whether I really believed that the moon exists only when I look at it. The
rest of this walk was devoted to a discussion of what a physicist should mean by the term “to exist.” ’
[49, p. 907]
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2.3. A SELECTION OF FOUNDATIONAL APPROACHES

values which may verify or contradict the possibilty of a classical local hidden variable

being responsible for certain quantum behaviours. These experiments are discussed more

fully in chapter 3.

Aside from the search for a hidden variable solution, many other works have proposed

alternatives to the Copenhagen approach — reinterpretations of the fundamental ideas

behind wavefunctions and quantum behaviour which hope to better explain reality and

provide further understanding of quantum physics, while still matching the verifiable ex-

perimental predictions recorded by lab-work. A selection of some of the main camps of

interpretations are described below.

2.3 A Selection of Foundational Approaches

Here we will summarise some key branches of foundational theories and highlight which

ideas might be useful to us in this thesis.

While every author takes their own personal perspective on quantum interpretations, sev-

eral distinct branches stand out and are outlined here. We also highlight where their ideas

link to those of this thesis.

1. Bohmians Ultimately favouring a hidden variable solution, Louis de Broglie and

David Bohm introduce a pilot-wave and a ‘guiding equation’ [13, 14, 50, 51]. It

asserts that the Schrödinger equation, along with one other guiding equation, fully

describes quantum systems of multiple particles without recourse to introduce fur-

ther axioms on observers or measurement — apparent ‘collapse’ and probabilities

as the squares of amplitudes emerge as consequences.

Bohm’s 1952 method wrote the wavefunction as ψ = R exp(iS/~) and arrived

at a continuity equation along with a modified Hamilton-Jacobi equation which

11



2. FOUNDATIONS AND INTERPRETATIONS

included a term of quantum potential. The two equations are accurate as a descrip-

tion and are similar enough to classical mechanics (with a quantum addendum) to

be comfortable, but the quantum potential term, even to Bohm himself, seemed a

useful and necessary but ungrounded addition.

The earliest attempts by de Broglie at this method were largely ignored by the newly

emerging quantum physics community in favour of the Copenhagen interpretation;

it wasn’t until Bohm’s expansion in 1952 [14, 50] that neatened up the ideas that

‘pilot wave theory’ began to reach recognition.

The de Broglie-Bohm pilot-wave interpretation of quantum mechanics restores de-

terminism to the calculations and behaviour of quantum objects, without denying

the probabilistic results seen. That is, there is no need for an axiomatic spontaneous

probabilistic change. Each physical interaction in the pilot wave model is determin-

istic and continuous, yet still produces the random and discrete results verified by

experiment.

2. Consistent Historians The Consistent Histories approach aims to tackle problems

of the Copenhagen interpretation such as Schrödinger’s cat and the claim that prop-

erties do not exist until measured.

First published through a series of papers from 1984 by Robert Griffiths, Roland

Omnès and others [52–54]. It proposes that while solving a Hamiltonian represents

the deterministic time evolution of a physical system in classical mechanics, the

same cannot be said of the Schrödinger equation and quantum mechanics, though it

is treated as such in the orthodox interpretation, and it was Schrödinger’s intention.

Treating the Schrödinger equation as such is what leads to untenable macroscopic

superpositions such as the famous cat.

Conversely, the consistent historians’ approach is that quantum mechanics is fun-

damentally probabilistic — it is unnecessary to introduce hidden variables or to

suppose that probabilistic interpretations imply that we have an incomplete the-

12



2.3. A SELECTION OF FOUNDATIONAL APPROACHES

ory. In this view the Schrödinger equation is not tasked with producing deter-

ministic predictions of quantum objects’ trajectories, but to assign probabilities to

‘quantum histories’ — sequences of quantum events at a succession of times. In

this way deterministic histories are only a special case where a given sequence of

events has probability 1. With this approach a 50/50 beamsplitter experiment would

no longer predict (as in the Copenhagen interpretation) a superposition of states

(|0〉 + |1〉)/
√

2 but merely a prediction of either state |0〉 or |1〉 with probability

each 1/2.

This approach ascribes its ‘element of reality’ to consistent quantum histories (se-

quences of events). A quantum event can be any wavefunction.

Consistent histories forbids states (or histories) such as the pair (Sx = −1/2) and

(Sz = −1/2) as meaningless to physical theories since they can never be exper-

imentally tested. The combinations by {and, or} of quantum states is carefully

restricted by an idea of ‘quantum incompatibility’.

This method of exclusions applied to a two beamsplitter experiments gives that the

history “a photon travels one definite path between beamsplitters and emerges at

a given definite detector” is not a consistent one — i.e. is not a valid description

of physical reality. However it is valid to say that “the photon travels one definite

path between beamsplitters and emerges in a superposition state of the two detector

outcomes”.

The key idea is that sets of mutually-exclusive consistent histories with assigned

probabilities are the element of physical reality; and that the Born rule of absolute

squares defines the probabilities as in familiar quantum mechanics methods.

Classical mechanics, in this interpretation can be recovered by ‘coarse graining’

restriction on families of histories.

3. Transactionalists John Cramer’s 1986 and 1988 works [55,56] apply the ‘transac-

tional’ title to work building on Wheeler-Feynman “absorber theory”. This posits
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2. FOUNDATIONS AND INTERPRETATIONS

that exp(+iωt) and exp(−iωt) are valid both mathematically and physically in de-

scribing quantum systems [57, 58]. The positive part being an ‘advanced wave’,

and the negative a ‘retarded wave’; the two interacting through a medium of appa-

ratus (absorbers), in which the advanced wave has a causal effect but is post hoc

cancelled or erased, leaving the observer with the usual experimental results.

The advanced and retarded waves can be thought of as complements of a single

event propagating simultaneously forwards and backwards through spacetime, their

‘handshake’ transaction being the element wherein physical reality exists and gives

experimental observables. The idea that the single quantum wavefunction is not the

unilateral dictator that creates for us an observable element of reality is common

among hidden variable interpretations and is used in a way in this thesis, in a form

like the second wavefunction proposed in [43].

4. Spontaneous Collapseans In examining the position of the statevector in quan-

tum mechanics, GianCarlo Ghirardi and Philip Pearle developed ideas that a wave-

function collapse — the measurement of definite outcomes — is a consequence of

strong localisation of a wavefunction. In [59] they argue that an equal superposition

of states is inherently unphysical:

If we take the point of view that what we see around us is real, what

occurs in reality is one of the two following evolutions:

cat alive → cat alive OR cat alive → cat dead (1.1a, b)

[. . .]

According to Schrödinger’s equation, the evolution of the statevector de-

scribing this situation is

|cat alive〉 → 1√
2
|cat alive〉+

1√
2
|cat dead〉 (1.2)

14



2.3. A SELECTION OF FOUNDATIONAL APPROACHES

The right hand side of Eq. (1.2) does not correspond to either the reality

on the right side of (1.1a) nor to the reality on the right hand side of

(1.1b). [59, p. 2]

Instead, Ghirardi and Pearle’s Continuous Spontaneous Localization (CSL) theory

modifies the Schrödinger equation so that such uncertain states instead evolve into

one of :

|cat alive〉 → 0.99 . . . |cat alive〉+ 0.00 . . . |cat dead〉

|cat alive〉 → 0.00 . . . |cat alive〉+ 0.99 . . . |cat dead〉 .

Non-zero but small ‘tails’ are included in a way the exhibits the strong localisation

needed to define distinct experimental results.

In this model, physical interactions favour the collapse of superpositions to the

more clearly defined almost-one/almost-zero end states, and larger, more complex,

physical systems (that can be considered macroscopic) favour collapse so strongly

that they appear as the entirely localised points of classical mechanics.

The modified Schrödinger equation describes wavefunction evolution including

these tails, while fulfilling other desirable properties such as agreeing with exper-

iment, denying superluminal communication, and naturally deriving the Born rule

of probabilities. A random background fluctuation fits in the model as a kind of

non-local hidden variable which leads to the random but continuous evolution of

superpositions to eigenstates.

The idea of spontaneous quantum collapse being replaced with a rapid but continu-

ous evolution, governed by a kind of randomised hidden variable, is similar to that

explored by Bohm and Bub [43].

5. Einselectionists ‘Environment-induced superselection’ aims to describe quantum

systems and their environments in relation to decoherence converting quantum en-
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2. FOUNDATIONS AND INTERPRETATIONS

tanglement into classical correlations. The relation between states (such as observer

memory and quantum state) is co-related to relations with environment which allow

prediction of quantum states without disturbance.

Wojciech Zurek [60] favours a view that experimental measurement of physical

properties is no more than induced correlations between one physical system (the

observed/measured object) and another (the measurement read-out). Through such

actions, environments are made to correlate (or rather, become entangled) with the

observables of a system in a way which monitors them. This correlation between

states and monitors is a part of “reality”, similar to the ideas of contextual objectiv-

ity properly detailed later (Ch. 4, §4.2).

This approach argues that the criteria of ‘reality’ are to be some state or property

that can be both (i) correctly identified, and (ii) unchanged by the action of learning.

Consequent to this, quantum states cannot be said to have ‘objective reality’, as

condition (ii) cannot necessarily be satisfied. Zurek goes on to favour the definition

‘relatively objective existence’, to emphasise that the greatest degree of certainty

of physical states is in relation to those other systems (environments) that act as

witness. These ideas that the influence of environment and context are not just

experimentally immanent, but conceptually essential, are followed through in this

thesis.

6. Contextual Objectivists Philippe Grangier’s examinations of quantum foundations

[21, 48] argue in favour of objective reality, but with a caveat similar to the Einse-

lectionists’ approach — that an objective existence is still only in relation to some

context.

Contextual Objectivity argues that the conceptual problems of quantum theory: the

EPR paradox and Bell’s results on local realism, arise from an a priori assumption

that an isolated system or physical property is enough to define an element of reality.

Grangier’s series of publications [21, 48, 61, 62] (latterly in collaboration with
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Alexia Auffèves) continue the argument that experimental results in fact only de-

scribe a property in relation to a greater context, and develop a formulation which

recovers the familiar predictions of quantum mechanics without need of any mea-

surement/collapse postulate. The key principles of this formulation being the re-

lation between context, system, and modalities, this scheme is abbreviated CSM.

Further details are explored in chapter 4, §4.2.

The assumptions of the contextually objective view: that objectively real results ex-

ist only in relation to measurement and environment, underpins this thesis’s work.

We model disjoint but interacting hidden phenomena to govern the outcome of ex-

perimental results; and appropriate the idea that individual objective reality does

not exist (may be predicted) from within only one system.

7. Everettics Commonly known as the Many Worlds Interpretation (MWI). Hugh Ev-

erett’s 1957 thesis [20] identified two ideas within existing quantum theory that

lead to the main paradoxes and problems faced by physicists. Firstly, the assump-

tion that the observer has some special place in the formulation, independent and

objective from an observed system; secondly, that we have a continuous evolu-

tion given by the Schrödinger equation for isolated systems, but an instantaneous

discrete collapse of the wavefunction in the moment of a measurement operation.

Everett hoped that a theory with fewer unintuitive or paradoxical problems could be

arrived at by paring down these assumptions to merely ‘quantum mechanics evolves

according to unitary evolutions’.

It was Bryce DeWitt’s later work [63, 64] that properly developed the ideas and

popularised it as the ‘many-worlds’ understanding. DeWitt argues that when sys-

tem and observer are treated in equal measure subject to unitary evolutions, then

any quantum observation is in fact a pairing of the system-observer states, which

evolves into a superposition of the discrete quantum outcomes, paired with states in
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which the observer has recorded such an outcome. For example:

|ψ1〉 = |s1〉 |M1〉+ |s2〉 |M2〉+ |s3〉 |M3〉+ . . .

where si are the possible quantum states of the system, and Mi are the states of

an observer (or apparatus) which has recorded state si. In this view, rather than

an evolution in which the quantum state collapses to a single eigenvector result,

each and every result remains. Since the observer themself is necessarily described

by one of the Mi states, which is paired with only a single one of the si states,

the observer’s experience is that of a single definitive outcome, and the others that

remain in the equation are of an equally real nature, but in an un-interactable ‘other

world’. The idea that both object and observer be treated as equals in the physical

system is similar to others discussed in this section, and forms a part of the model

presented later in this thesis.

David Deutsch’s later text [40] holds the optimistic goal of unifying the theories

of evolution, computability, quantum mechanics, and epistemology into a master

universal theory. He follows the viewpoint of DeWitt that the multitude of outcomes

of a quantum measurement are all equally real though separate, and goes further

to propose that quantum interference effects are the result of interactions between

objects of separate universes.

This thesis does not explore the philosophical or physical possibilities of many

worlds; however, Everett’s removal of the observer as a special-operator is incorpo-

rated. Furthermore, DeWitt’s formulation [63] assigns a kind of apparatus memory

to the paired system-observer state, we do not here use his language but the use of

apparatus memory is key to the demonstration in chapter 6.

18



2.4. THE HOPES OF REINTERPRETATIONS

2.4 The Hopes of Reinterpretations

The proliferation of competing interpretational ideas suggests that progress is still to

be made in achieving a total understanding of quantum mechanics. As has been high-

lighted, while current quantum theories provide sufficient mechanics to accurately de-

scribe experiments, we still face unintuitive or seemingly paradoxical results. It could

be hoped that there is some formulation of quantum mechanics which assuages some

of these difficulties, without contradicting the certified mathematical results already es-

tablished. Christopher Fuchs compared modern difficulties with quantum mechanics to

Einstein’s breakthrough in special relativity [65, 66]: the Lorentz transformations were

known pre-Einstein and were mathematically sound and empirically adequate, but of-

fered no conceptual piece of mind; Einstein supplied “simple, crisp physical statements”

[66, p. 2]:

• The speed of light is constant, and

• Physics is the same in all reference frames,

which naturally derive the Lorentz transformations. This more fundamental understand-

ing lead to the greater insights of general relativity, and became accepted as a ‘true’ de-

scription of the universe thanks to its simplicity and beauty, in addition to agreement with

existing empirical formulation.

As Fuchs highlights, we currently we have the quantum mechanical axioms:

• Hilbert space.

• Projection operators.

• Somehow collapse to eigenvectors.

• Schrödinger equation.
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In attempting to re-interpret or re-formalise the bases of quantum theory, it is hoped that

some easily grasped grounding concepts can build to quantum theory as we know it, as

Einstein’s physically-grounded insight did in the twentieth century.

It would be a necessary criterion for acceptance that any re-formulation of quantum me-

chanics must agree with current experiments (and the mathematics behind them). The

ideas developed in this thesis and detailed primarily in chapter 5 are mainly adjustments

of thought and association of existing ideas from the literature, such as the rôle of con-

text, non-local elements of reality, and the removal of the observer as a special object.

The model described in chapter 6 demonstrates a way in which known quantum effects

can emerge from application of a simple physical interaction rule. Through this, we hope

to present evidence that models of quantum mechanics which maintain a deterministic

intuition while still matching experimental results are possible.
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Chapter 3

Local-Realist Theories and Tests of Bell

Inequalities

Early hopes for quantum theory included a desire for it to be explicable by some local-

realist theory. Einstein, Podolsky, and Rosen famously used the fact that quantum me-

chanics had no local-realist explanation to argue that the theory was incomplete [23].

3.1 Hidden Variables and Bell Tests

The testing of Bell inequalities is the favoured method of investigating the relationship

between local-realism and quantum mechanics. Significant results have been achieved in

this area, but further work is still ongoing.

Realism is the assumption that the physical universe exists (has some ‘element of reality’)

independent of any measurement or observation. Locality is the assumption that physical

influences cannot travel faster than the speed of light — the cornerstone of special rela-

tivity. In their 1935 paper [23], Einstein, Podolsky, and Rosen noted the disparity arising

between the assumptions of local-realism and the behaviour of entangled quantum ob-
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jects. John Bell’s later work on that idea [34] lead to experimentally testable results, now

known as Bell-inequalities, that can test whether certain quantum mechanical systems

obey the ideas of local-realism.

A commonly examined type of Bell-test experiment involves two entangled qubits being

measured under space-like separation sufficient to exclude relativistic interaction and not-

ing the correlation of the two sets of results. The correlations become a test value which,

under the assumption of local-realism, has a theoretical bound. Hence such experiments

can verify or contradict any local-realist theory for the behaviour of quantum objects.

The testable theoretical bound arises from consideration of a ‘correlation coefficient’. If

a is a measurement setting examining the state of the first qubit, and likewise b for the

second, then the correlation coefficient for the joint outcome ab is

Eab = probability of correlation− probability of anti-correlation

realised experimentally as:
n(corr)ab − n(anti-corr)ab

n(ab trials)
,

where n((anti-)corr)ab denotes the number of (anti-)correlated results of tests performed

with settings ab, and n(ab trials) is the total number of tests performed.

Bell’s work showed that if there exists some local hidden variable which acts as the ele-

ment of reality behind these results, then the inequality:

Eac − Eba − Ebc 6 1 (3.1.1)

should hold (in a set-up with perfect anti-correlation).

Bell’s original inequalities were formulated for measurements with perfect anti-

correlation — the case where result a at detector 1 guarantees result ¬a at detector 2.

However, more workable data can be acquired from experiments where result a at detec-
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tor 1 implies result a or ¬a with some known probabilities at detector 2. It was the later

work of Clauser, Horne, Shimony, and Holt [35] that generalised Bell’s method to allow

for non-perfect anti-correlation in what is now known as the CHSH inequality. With two

measurements prepared for each qubit, labelled 0 and 1, chosen such that measurement

1 is precisely the complement of measurement 0 (e.g. measures of spin in perpendicular

directions); if there is some local hidden variable, then

E00 + E01 + E10 − E11 6 2. (3.1.2)

Recent work by Hensen et al. [36, 37] have shown statistically significant violation of

the CHSH-inequality, suggesting to us that there is no local-realist theory that completely

describes quantum mechanics.

3.2 A Bell-Test Experiment using CHSH

Practical Bell-test experiments must be measured by two criteria: (i) violation of the

CHSH inequality must be statistically significant, and (ii) the set-up must guarantee that

no subluminal communication could be responsible for the correlation or results. Some

results on ways in which these criteria may be examined are presented in the following

sections.

A general Bell-test experiment produces results with eight independent variables: N the

total number of trials; a, b, c the number of trials with setting configurations 00, 01, 10,

respectively; and the number of correlated results under each setting (n00, n01, n10, n11)

(See Table 3.1).

Giving test value S, defined to be:

S = E00 + E01 + E10 − E11 = 2
(n00

a
+
n01

b
+
n10

c
− n11

d
− 1
)
. (3.2.3)
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Table 3.1: General results from a CHSH experiment.
Setting 00 01 10 11

No. of Trials a b c d = N − a− b− c

No. of Correlated results n00 n01 n10 n11

No. of Anti-correlated results a− n00 b− n01 c− n10 d− n11

p(corr) n00/a n01/b n10/c n11/d

p(anti-corr) 1− n00/a 1− n01/b 1− n10/c 1− n11/d

E = p(corr)− p(anti-corr) (2n00/a)− 1 (2n01/b)− 1 (2n10/c)− 1 (2n11/d)− 1

Local-realism predicts S 6 2, so an experiment disproving local-realist explanations of

quantum entanglement will violate the CHSH-inequality — showing S > 2.

3.3 The Significance of These Probabilities’ Skew

Suppose that the probabilities of correlation under each experimental setting are equal (to

P say), then S = 2 (2P − 1); in which case S > 2 ⇔ P > 1. This means that it is not

possible to observe the quantum result S > 2 for four equal probabilities — the behaviour

of the quantum system is dependent on these probabilities being somewhat skewed away

from equality.

Similarly, we may examine Bell’s original inequality (3.1.1). Let nac denote the number of

correlated results under setting ac; Nac the total number of trials under setting ac; nba the

number of correlated results under measurement setting ba etc. Then correlation values

take the form Eac = (nac − (Nac − nac)) /Nac = 2nac/Nac − 1 and Bell’s inequality

asserts that a local-realist theory implies the following inequality:

nac
Nac

− nba
Nba

− nbc
Nbc

6 0 . (3.3.4)

Again, if these three fractions (each equal to the probability of correlation under a given

setting) are all equal, then the inequality will always be satisfied.
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3.4 Approximating this Experiment for Large Numbers

of Particles

Since the experimental settings are determined randomly, we would expect that the num-

ber of trials under each setting would tend to a uniform distribution for suitably large N .

Supposing this is the case, let a = b = c = N/4, then we get

S =
8

N

(
n00 + n01 + n10 − n11 −

N

4

)
. (3.4.5)

Let us denote the range of correlation counts κ.

κ := range {n00, n01, n10, n11} = nmax − nmin (3.4.6)

Where nmax = max {n00, n01, n10, n11} and nmin = min {n00, n01, n10, n11}. Let us only

consider κ > 1 (for if nmax−nmin = 0, then we will always get S < 2). Additionally, we

must have that n00 + n01 + n10 + n11 6 N ; consequently, it is clear that we must have

nmin 6 N/4. (3.4.7)

Let us denote (n00 +n01 +n10−n11) by S ′. Then we will observe violation of the CHSH

inequality (S > 2) if and only if S ′ > N/2. Note also that S ′ is bounded above and below

by S ′max = 3nmax − nmin = 2nmin + 3κ and S ′min = 3nmin − nmax = 2nmin − κ.

Violation of the CHSH inequality is only possible if S ′max > N/2, that is to say: 2nmin +

3κ > N/2 is necessary (but not sufficient) for violation. If we desire, for some level of
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experimental certainty, violation of a certain magnitude δ, then we may say that

S ′max >
N

2
+ δ (3.4.8)

⇔ 2nmin + 3κ >
N

2
+ δ (3.4.9)

is necessary. From this (3.4.7, 3.4.9) we may see that for a violation of magnitude δ, the

skewness of the probabilities (range of correlation counts) κ must be strictly greater than

δ/3:

nmin 6 N
4

}
⇒ κ >

δ

3
.

κ > N
6

+ δ
3
− 2

3
nmin

(3.4.10)

If we desire S > 2 + ∆, then we are in fact asking that S ′ > N/2 + (N∆) /8, so

δ = (N∆) /8; hence κ > (N∆) /24 is necessary.

3.5 The No-Signalling Problem

Bell-tests of this type try to establish whether two spatially separated systems are capable

of showing physically correlated properties (measurement results) without a priori local

hidden variables (elements of reality) or by some means of classical communication. It is

assumed that any communication must occur slower than the speed of light (in accordance

with special relativity), so the spatially separated systems are measured rapidly in small

time windows — getting as close to simultaneous measurement events as possible. If the

two events are (very close to) simultaneous, and are sufficiently far apart (the aforemen-

tioned Hensen experiments achieved a separation of 1.3 kilometres) then no signal slower

than light may pass between the two measurement events.
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While the experimental procedure including large distances and small measurement time

windows is arranged so as to preclude the possibility of signals, their exclusion can be ver-

ified by careful analysis of the experimental data, as has been done by Andrei Khrennikov

on the first Hensen experiments [38], and similarly by Adam Bednorz [67].

The method involves looking at the marginal probabilities of results. That is to say, with

a fixed measurement setting for the first qubit s1, if all correlation probabilities are equal

regardless of the measurement setting on the second qubit s2, then we certainly have

independent results.

For example, with s1 = 0, independent results would show:

p(corr|s1 = 0) = p(corr|s1 = 0 ∧ s2 = 0) (3.5.11)

= p(corr|s1 = 0 ∧ s2 = 1) , (3.5.12)

and similarly for other settings. Experimentally we are unlikely to observe equality of

these probabilities, so instead consider the differences p(corr|s1 = 0) − p(corr|s1 =

0 ∧ s2 = 0). Here small (nearly zero) differences suggest to us independence.

Using the variables established in table 3.1 all such probability differences look like

p(corr|0sb)− p(corr|00) =
n00+n01

a+b
− n00

a
=
an01−bn00

a(a+b)
. (3.5.13)

The family of all these equations can be described by
(
αnβ̄ − βnᾱ

)
/ (α(α + β)) for ex-

perimental settings ᾱ, β̄ ∈ {00, 10, 10, 11} and numbers of tests α, β ∈ {a, b, c, d}.

Experiments will show a good no-signalling accuracy if all these probability differences

are small. All such probabilities will be ‘small’ (to some ε), if

|αnβ − βnα|
α (α + β)

< ε. (3.5.14)
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In the case of uniform experimental test settings considered above (a = b = c = N/4),

this condition becomes: |nα − nβ| < (εN) /2 ∀α, β. This is satisfied if

nmax − nmin <
εN

2
. (3.5.15)

So κ < (εN) /2 is necessary to achieve results with a good no-signalling accuracy. Know-

ing also that κ > 1 is necessary for a CHSH-inequality violation, we see a useful result

that provides a guideline for all experiments of this type:

N > 2/ε trials must be performed if an experiment violating the CHSH-

inequality is to achieve no-signalling tolerance of accuracy ε.

For example, to see a no-signalling accuracy of order ε ∼ 10−3 implies the need for the

total number of measurements N to be ∼ 103.

Combining this with our knowledge that κ > (N∆) /24 is necessary for violation of the

CHSH inequality to magnitude ∆, we conclude that

ε >
∆

12
(3.5.16)

is a limit on our no-signalling tolerance — independent of the number of trials we per-

form.

Consequently, any further experiments that aim to reduce the no-signalling problem will

be limited by this bound. Practically, we must have ∆ ∼ 10−1, so this bound will be

∼ 10−2. In fact, if we recorded the S = 2
√

2 predicted by quantum theory, then we

would record a smallest possible no-signalling check of
(
2
√

2 − 2
)
/12 ≈ 0.07.

While the ongoing experimental improvements of practical Bell-tests may gather further

results which suggest that quantum mechanics is not governed by some as-yet unknown

local hidden variable theory, the results here show that the statistical significance of such
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experiments may always be limited by the skew of probabilities that is necessary for the

effect being tested to emerge at all.
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Chapter 4

Contextual Approaches

As has been discussed in earlier chapters, several modern viewpoints on quantum me-

chanics believe that the greater context of an experiment or system should be considered

a significant part of the physical theory at work. Here we wish to highlight some of the

ideas of the contextual viewpoints. In the following chapters we then explore how con-

textuality fits with the other ideas we developed to produce the novel model in chapter 6.

4.1 Khrennikov and the Växjö Interpretation

The ongoing work of Andrei Khrennikov and the Växjö conferences on quantum founda-

tions [22,28,29,31,44,68,69] have continued to re-examine the assumptions of quantum

mechanics and to publish work including contextual models that hope to improve upon

the current understanding of quantum theory.

The earliest iterations of the ideas that would become the Växjö interpretation began with

an approach to quantum mechanics from a statistical perspective. Khrennikov’s commen-

tary on existing quantum theories was that attempts were made to explain the observation

of non-classical probabilities by introducing special quantum probabilities — and conse-
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quently the ideas of wave-like particles and superposition. Khrennikov’s approach was

to begin with a statistical framework that naturally gives rise to the interference terms

characteristic of quantum behaviour. Papers in 2001 [44, 70] demonstrate the character-

istic sum of probabilities with interference, P12 = P1 + P2 + 2
√
P1P2 cos(t), first from

statistical methods where the context of events is intrinsically a part of its probability; and

secondly from a numerical gedankenexperiment. Similar numerical approaches are seen

in [45, 71] and in this thesis.

The expansion of these ideas developed the idea of prespace in quantum probabilities as

a consequence of the context-immanent probabilistic approach. A prespace of what could

be called physical attributes of objects, but which can not be interacted with directly,

provides a framework for a kind of hidden variable theory.

Khrennikov’s results, namely: (1) it is possible for interference-like effects to arise from

only classical statistics, and (2) such a model can be linked to a kind of contextual hidden

variable, are used as a basis for the attempts in this thesis to describe quantum interactions

through a deterministic stochastic model.

Through a series of papers, Khrennikov provided justification for the inclusion of context

as a crucial part of quantum probabilities. In [70] the assumptions of Kolmogovarian

statistics is examined and the importance of context highlighted. Khrennikov supposes

two contexts, S and S ′, (‘context’ here defined to mean a complex of physical conditions),

which both partition into subcomplexes:

S = S1 ∪ S2, and S1 ∩ S2 = ∅,

S ′ = S ′1 ∪ S ′2, and S ′1 ∩ S ′2 = ∅;

where there is some transition or correspondence between contexts:

S1 ∼ S ′1, S2 ∼ S ′2
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(such as different slits being opened or closed). Standard probability theory for some

eventB gives us P (B|S) = P (B|S1)+P (B|S2), but we must not assume that P (B|S) =

P (B|S ′1) + P (B|S ′2). In fact,

P (B|S) = P (B|S ′1) + P (B|S ′2) + δ(S, S ′),

where

δ(S, S ′) = [P (B|S1)− P (B|S ′1)] + [P (B|S2)− P (B|S ′2)] .

The δ term, under some assumptions, can be given a form like

2
√
P (B|S ′1)P (B|S ′2) cos θ(S, S ′).

Hence giving rise to the characteristic periodic interference term of quantum probabilities,

without having to introduce any new or axiomatic quantum probability rules. The differ-

ence between quantum and classical effects is simply the state of being ‘context stable’

— wherein δ(S, S ′) = 0 and we recover classical statistics.

Similarly, in [44], Khrennikov produced a numerical model of a typical double-slit ex-

periment, using only the familiar equations of moving charged particles with a careful

consideration of context. Using a digital simulation quantum-like behaviour was again

seen from a contextual application of classical methods. Similar methods are seen in

[45, 71], and this thesis.

In this way it is demonstrated that the experimental results of quantum mechanics can be

described within the purview of classical statistics, provided that context is remembered

and included with care.
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Prespace

In successive papers [70, 72, 73] Khrennikov establishes contextual probabilities show-

ing interference effects can be related to a preimage space (prespace) wherein every real

vector corresponding to physical space can be mapped from many prespace points. This

approach is similar to Willem De Muynck et al.’s examination of hidden variable theo-

ries [74] wherein the preparation of apparatus and environment was in correspondence to

some hidden variable λ in a phase space Λ.

Khrennikov suggests a prespace Ω of all possible contexts which maps to both classical

spaceXcl = R3 and quantum spaceXq (a Hilbert space). Since such maps are (or may be)

many-to-one, a ‘compression of information’ is observed. A superposition of positions

(of physical particles) can be understood as two points x1, x2 inXq which have preimages

Bx1 , Bx2 ∈ Ω which overlap (Bx1 ∩Bx2 6= ∅).

This approach is both in comparison and contrast to other hidden variable theories. Khren-

nikov takes time to address how previous no-go theorems forbidding hidden variable

quantum theories must be carefully considered in the context of their own expectations.

Rather: realist theories that include a kind of hidden information are permissible.

Växjö Interpretation

Formalised and updated in [22, 68], the Växjö interpretation is a Statistical Contextual

Realist Interpretation. It argues that the key quantum feature of complementarity is being

misused when supposed to relate to individual particles — it is fundamentally a property

of statistical ensembles, which are only understood through interaction with measurement

apparatus (context), which does not imply the behaviour of individual particles cannot

have objective properties, hence realist.

The interpretation describes the rôle of the wavefunction in quantum theory. In con-
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trast to the orthodox (Copenhagen) interpretation wherein the wavefunction is a complete

descriptor of an individual quantum system, or the ensemble (statistical) interpretation

wherein the wavefunction describes the statistics of groups of similarly prepared quan-

tum systems; the Växjö stance is that the wavefunction is a descriptor of correlations in

the quantum prespace discussed above.

4.2 Grangier and Contextual Objectivity

It was the early days of quantum mechanical theory when the problem of independent

objective reality was highlighted by Einstein, Podolsky, and Rosen [23] with their famed

thought experiment. They supposed that individual quantum objects possessed indepen-

dent and objective properties which could be read out by measurement, and found para-

doxical results. This result was assimilated into the literature as a rejection of determinism

in quantum mechanics, and lead to other well known difficult ideas such as Schrödinger’s

simultaneously live-and-dead feline. We take for this thesis instead ideas like that of

Philippe Grangier [21,48,61] that the assumption of individual objective reality is flawed,

and that instead a state of reality is only sensible when it exists within a given context —

there can be no greater level of objective reality than contextual objectivity.

Grangier’s first papers [21, 48] begin by arguing that observer independent predictions of

experimental results can only exist in a conditional sense. For example, once a photon

has been observed to have a given polarisation in a 0◦-aligned filter, we cannot with cer-

tainty predict its polarisation from a 45◦-aligned filter, only a conditional probability like

P (transmission, 45◦ | transmission, 0◦). In general we see these as P (ai, E|bj, E ′), where

ai, bj are elements of finite sets of discrete outcomes (‘modalities’ in Grangier’s terminol-

ogy), and E,E ′ are the contexts under which those modalities may be recorded. Since

our predictions, and any certainty of physical properties must intrinsically be in relation

to some context, Grangier argues that it would be incorrect to presume any greater level
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of objective reality than that which is context-dependent.

Continuing in [48, 61, 62], Grangier (latterly in collaboration with Alexia Auffèves), as-

cribes operators and a Hilbert space structure to this interpretation, recovering the extant

quantum theory.
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Chapter 5

A Synthesis of Ideas

5.1 Contextuality

The model put forward in this thesis is contextual in nature — the effects of environment

on the quantum systems is fundamental and crucial. The inclusion of context in quantum

theory throughout the decades has been sporadic. David Bohm and Jeffrey Bub’s 1966

method [43] explicitly proposed a hidden variable related to environment or apparatus,

but with the proliferation of the Copenhagen interpretation attempts to include context

were pushed to the sides.

In this thesis we wish to stress the relevance of context within a physical model when

dealing with quantum scale problems. All experimental physical measurements at some

level are a result of physical processes. For example a potential difference may charge

some circuits which lifts a needle on a voltmeter, the mass of some object may compress

a piezoelectric sensor which lights a digital display to read weight, or a photon strikes a

detector which passes signals to some microprocessor that eventually displays pixels on a

screen for us to read. At many levels, these sequences of physical effects may be ignored

or thought of as simplified to some instantaneous event which produces information read
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out by the experimenter. However, at the quantum scale, where our objects under scrutiny

are similar or identical to the physically responsive ‘detector’ parts, we must consider that

the electrons which move one way to trigger our computer readouts may also significantly

push back on the ‘measured’ objects. In this way the apparatus which physically consti-

tutes the measurement act as to become a part of the result which we read out — the

‘objective reality’ is created from both object and measurement apparatus. Indeed, it has

long been acknowledged that the act of measurement changes the properties of quantum

objects; the small change of interpretation here is to say that the ‘property’ exists only

as a result of the interaction of object and measurement action, rather than the ‘property’

exists objectively and independently and that the entirely separate ‘measurement’ changes

it.

We may consider a macro-scale analogy: if we were only able to measure the position

of a football by throwing (similarly scaled) tennis balls at it, then it would seem natural

that both football and tennis balls react in some way to the operation and that it would be

insensible to consider the reality of the football independent of the rest of the system.

Furthermore, the statistical element of quantum mechanics must be remembered as a core

point. While it is possible to prepare and execute experiments with individual quantum

objects, the random and discrete nature of the results mean that all meaningful laws or

properties must be read from experiments performed over ensembles of many particles.

That is, the properties and probabilities which we take as physically meaningful come

from proportions of a set of particles giving certain results. Quantisation and random-

ness shall be taken as intrinsic, but not axiomatic in this thesis. The following chapters

shall describe a model by which random quantised results are gleaned from a basic set of

deterministic interaction rules on quantum objects.
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5.2 A Deterministic Internal Periodic Phenomenon

Louis de Broglie’s 1923 note “Ondes et quanta” [13] first introduced the idea of an ‘inter-

nal periodic phenomenon’ to quantum mechanics, which set the ground for later work in

quantum wave ideas, and it was the later work of Bohm that fully developed this into the

pilot-wave theory [14,50]. While Bohm developed the internal periodic phenomenon into

a more external guiding wave, we shall instead interpret the idea of an internal periodic

phenomenon as a kind of complex hidden variable. We develop the idea that the wave-

like nature of quantum experiments is a consequence of the interaction of these periodic

variables acting on each other through a large ensemble of similar objects.

The initial publication by de Broglie took the simple and familiar equations for the energy

of a particle: m0c
2 from relativity, and hv0 from quantum principles, where v0 is some

periodic frequency; and showed that by their juxtaposition, and including relativistic prin-

ciples, one may derive a sinusoidal wavefunction that agrees with the internal periodic

phenomenon over all of the particle’s trajectory.

While Bohm’s later work on these ideas developed the pilot-wave as an external ‘guide’

to the dynamics of the particle, here we instead focus on the idea of the wavelike nature

as an internal periodic property.

The idea to take an internal property and allow it its own deterministic continuous evolu-

tion was seen in Bohm and Bub’s work.

5.3 Bohm and Bub’s ‘Double Solution’

Proposed in a 1966 paper [43], the joint work of Bohm and Bub proposed a hidden vari-

able interpretation of quantum mechanics that utilised the mutual interaction between two

wavefunctions to explain quantum measurement effects without any axiomatic waveform
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collapse.

Bohm and Bub postulate that in addition to the familiar wavefunction of a quantum object

given in Hilbert space:

|Ψ〉 = ψ1 |S1〉+ ψ2 |S2〉 (5.3.1)

(as a two-dimensional example); there exists a dual Hilbert space containing dual vector:

〈Ξ| = ξ1 〈S1|+ ξ2 〈S2| . (5.3.2)

This second vector is associated with an apparatus or external environment and affects the

evolution of the |Ψ〉 wavefunction during interaction events.

In addition to the usual continuous evolution under the Schrödinger equation, Bohm and

Bub postulate that during measurement (interaction with an apparatus), the |Ψ〉 vector

changes according to another continuous evolution dependent on 〈Ξ|:

dψ1

dt
= γ(R1 −R2)ψ1J2 (5.3.3)

dψ2

dt
= γ(R2 −R1)ψ2J1 (5.3.4)

(5.3.5)

where

R1 =
|ψ1|2

|ξ1|2
=

J1

|ξ1|2
, and R2 =

|ψ2|2

|ξ2|2
=

J2

|ξ2|2
. (5.3.6)

More generally, The entire quantum evolution can be neatly described for an N dimen-
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sional system by

ψi = γψi
∑
j

Jj(Ri −Rj)−
i

~
∑
j

Hijψj (5.3.7)

where the γ variable does the job of being almost zero in free-space (recovering the usual

Schrödinger equation), and being large enough to be far more significant than the Hamil-

tonian in the vicinity of an interacting measurement apparatus.

The continuous deterministic interaction of these two wavefunctions satisfy the desires

of mutuality and contextuality as discussed in chapter 1. This formulation does not have

a separate and immutable measurement operator causing wavefunction collapse, and the

context of the environment and arrangement of interacting elements is crucial. As dis-

cussed in §5.1, we are seeing here simply physical interactions which result in some

recorded information or property acting as de facto measurements. The probabilisticness

is still retained however, thanks to the ‘hidden’ 〈Ξ| component.

We see that this set of interaction rules naturally results in |Ψ〉 = ψ1 |S1〉+ψ2 |S2〉 evolv-

ing to one of |S1〉 or |S2〉: if R1 > R2 then dJ1/dt > 0 and dJ2/dt < 0, since J1 +J2 = 1

and d(J1 + J2)/dt = 0; this means that ψ1 → 1 and ψ2 → 0, i.e. |Ψ〉 → |S1〉.

Similarly, R1 < R2 gives the result |Ψ〉 → |S2〉, and we see that after a measurement in-

teraction the |Ψ〉 system has ‘collapsed’ to a single eigenstate, though within this scheme

the collapse is neither axiomatic nor instantaneous.

The probabilistic nature of quantum results emerges as a consequence of 〈Ξ| being a

hidden variable — its exact state is unknown prior to measurement. By assuming that over

an ensemble of tests the value of 〈Ξ| is uniformly distributed on the sphere |ξ1|2 + |ξ2|2 =

1, it can be demonstrated that the probability of |Ψ〉 showing result |Si〉 is equal to |ψi|2

— the expected Born rule.

We see that while a focus on contextuality in quantum foundations is a relatively recent
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emergence [21, 22, 28, 29, 31, 44, 48, 61, 68–70, 72, 73], these early authors were in fact

skirting similar ideas. Furthermore, these methods of assigning a complex hidden variable

sidestep various no-go theorems.

The key idea of assigning a realist but unknown wavefunction to describe environmental

effects and a deterministic evolution during measurement are utilised in the new model

presented in this thesis.

5.4 Feynman’s Path Integral Formulation

In physics, Richard Feynman is remembered as a singularly talented communicator and

teacher. So it was when he simplified the Hilbert spaces, phase differences, and complex

probability amplitudes of quantum mechanics into a ‘little arrow’ formulation [17, 18].

Taking de Broglie’s conceptualisation of the wave-like nature of quantum mechanics as

an internal periodic phenomenon, Feynman neatly provided an intuitive view of complex

phases as a rapidly rotating single-handed clock associated with each quantum object; the

hands of these clocks being simply described as ‘little arrows’.

The description of certain phenomena related to the reflection of light, the effects of inter-

ference can be conceptualised as simply adding together these ‘little arrows’. That is to

say, calculating the complex probability amplitudes of the situation can be seen as taking

a vector sum of little arrows from each contributing element, the resultant of which is

squared to give a positive real-valued of probability. The problem of calculating proba-

bility amplitudes is reduced to finding little arrows whose square represents a probability.

The simplest example of such a method, given in Feynman’s light text QED [18], is the

partial reflection of light on glass. We begin with some simplifications: given a single-

photon source and detector arranged near a flat sheet of glass, 4% of emitted photons will

be reflected and picked up by the detector, which is positioned so as to receive photons
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reflected off of the top surface of the glass only.

The quantum effect which makes this experiment notable occurs when we factor in the

reflection of photons from the bottom surface of the glass - correctly positioning the de-

tector so as to pick up these photons also. It can be assumed that the bottom surface also

has a 4% reflection rate, and that then the detector will register in total eight out of every

one-hundred photons emitted. In fact, the detection rate varies periodically between 0%

and 16% as the thickness of the glass is altered. Introduced to a neophyte of quantum me-

chanics, it should seem quite peculiar that the inclusion of more photon reflection (from

the bottom surface) somehow cancels out the reflection of photons from the top surface.

Of course, thinking of light in waves poses no conceptual problems — waves can con-

structively or destructively interfere. However, when such an experiment is performed

with very low energy photon sources it does not show weaker detections (as waves would

be reduced), instead it registers fewer full-strength clicks — confirming that there must in

fact be individual particles reflected or not reflected at each interaction.

In exploring this, Feynman stuck to a practicalist’s approach of explaining how to cal-

culate the probability of reflection (proportion of photons detected). This was done by

the introduction of the ‘little arrows’. The situation of 4% photon reflection on one sur-

face corresponds to a ‘little arrow’ of length 0.2. Squaring the length of the arrow gives

the probability of detection as in fig. 5.1. In the case where we include top-surface and

bottom-surface reflection, we draw one arrow for each possibility — that is, a 0.2 length

arrow representing top reflection, and a 0.2 length arrow representing bottom reflection.

As we ‘draw’ these arrows their orientation is significant.

Feynman imagined having a rapidly rotating single-armed stopwatch, which spins at a

rate proportional to the frequency of light used, and which starts and stops as the photon

leaves the sources and arrives at the detector. The orientation of our little arrows cor-

responds to the arm of this stopwatch. Obviously the bottom-reflected photons travel a

longer period, and hence bottom-reflected arrows show a different orientation after de-
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Figure 5.1: probability squares
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tection. The only additional caveat being that top-reflected arrows are in the matching

direction to the stopwatch arm, bottom-reflected arrows are in the opposite. In calculat-

ing the probabilities for the two-surface arrangement, we combine the two little arrows

in a vector sum. Taking the square of the length of the resultant vector shall give the

probability of detection for top and bottom reflection from glass of that given thickness.

One should begin to see that if the bottom-reflected photons have time to rotate a further

half-turn than the top-reflected photons, then the resultant vector-summed arrow will be

zero (or very small), whereas a bottom-reflected photon that completes any number of

full rotations will add its little arrow constructively to the top-reflected arrow — giving a

square (probability) up to quadruple that of a single photon/arrow. See figs. 5.2, 5.3.

Figure 5.2: little arrows summed destructively
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A slight modification we make to Feynman’s concepts is to imagine the rapidly rotat-
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Figure 5.3: little arrows summed constructively
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ing stopwatches as moving with each individual photon. This is more representative of

de Broglie’s idea of quantum objects possessing an ‘internal periodic phenomenon’, and

more easily allows us to conceptualise each individual photon interacting with its envi-

ronment or apparatus.
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Chapter 6

A Deterministic Stochastic Model of

Single-Photon Interference

6.1 Single-Photon Interference

The well-known double-slit experiment has long been used to demonstrate the wave-

like interference of photons. Indeed, when modelling light as a wave, such a demon-

stration poses no conceptual problems — amplitudes sum constructively or destructively

and the intensity (received energy) at the detector screen shows peaks and troughs where

the waves reach maxima and minima. However, with the advent of finely tuned photon

sources which can be calibrated to emit only single quanta of light at a time, and detec-

tors precise enough to register such energy readings, it became possible to simultaneously

observe the corpuscular and wavelike properties of light. This type of single-photon in-

terference experiment is typical in physics texts [33, §2.A.1] and will be used here to

demonstrate a new framework emerging from the combination of ideas previously dis-

cussed in this thesis.

Toy models describing contextual deterministic models of double-slit experiments have
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already been published [44, 75]. Here we shall describe a two-beamsplitter experiment,

which similarly demonstrates a wavelike interference pattern from an ensemble of discrete

photon paths.

Typically, a single-photon source is aligned with a beamsplitter which is known to split

light in a fifty-fifty distribution, creating two mutually exclusive paths. Both paths are

later recombined by a second beamsplitter, with one of the paths modified so that the

light passing along it has an altered phase compared to the alternative path. A detector or

detectors are set up so as to read the intensity of the light (photon count) from the recom-

bined paths. Lower intensities are read when the phase alteration produces destructive

interference, and higher intensities when the two paths’ phases complement each other.

Recording the set phase-alteration and the measured intensities it is possible to graph the

results to clearly see the wavelike periodicity. Figure 6.1 represents a typical arrangement.

In a wavelike framework of light, it is simple to consider that the incoming wave is halved

by the first beamsplitter, and it is the two halved-waves simultaneously travelling the two

paths and recombining at the second beamsplitter, with the emergent wave created from

their sum reaching the detector. However, with a single-photon emitter, and only one

quantum of light travelling the apparatus at a time, it is harder to consider that single

corpuscle is split, or that the single object travels the two paths simultaneously. These

thoughts make it necessary to introduce a wave-particle duality to the model of light.

|ψ〉 BS1

BS2

eiδ

D1

D2

Figure 6.1: The standard two beam splitters arrangement in Mach-Zehnder interferometer.
[1]
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With the mind of the statistical and contextual schools previously discussed (Ch. 5), it

must be highlighted that while single photons do travel the apparatus individually, it is

the collective count of them at the final detector(s) which shows a wavelike nature —

an individual photon and its single detector trigger is merely a discrete count, it is only

through the ensemble of many repeated photons that anything wavelike is seen. This

is a major idea from the quantum theory orthodoxy that we wish to challenge — the

emergence of wavelike behaviour from an ensemble of objects does not necessarily imply

that each object must be wavelike.

Furthermore, photons being emitted and detected individually does not guarantee that they

act independently — they each pass through the same physical objects making up the ap-

paratus, and may by some means leave evidence of their passage which affects subsequent

photons, a kind of ‘apparatus memory’. While in experiments such as those discussed in

chapter 3 it is easy to ensure the space-like separation needed to ensure no-signalling;

the time-like separation that ensures only single photon events are tracked in this type of

experiment necessarily means that particles may ‘signal’ each other through the ensemble

or environment. Shan-Liang Liu [71] has explored a similar kind of apparatus memory

demonstrating interference patterns.

We seek here to describe a deterministic particle model showing interference effects with-

out the introduction of any dual nature. We do this by considering the internal periodic

phenomenon which formed the beginnings of de Broglie’s work on waves and quanta, dis-

cussed in detail in chapter 5. We model the internal periodic phenomenon as a complex

phase with some given frequency ν and initial value φ0:

exp (i(νt+ φ0)) .

This is a unit complex vector — a physical property carried with the particle, which we

think of as rotating as the time variable t increases. We highlight that de Broglie intro-

duced this periodic property simply by appealing to the quantum principle for a particle’s
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rest energy: E0 = hν0 [13]. For this model however we will not include de Broglie’s

inclusion of relativistic factors. In the experiment we lay out here, we assume that our

source produces particles in phase with each other, in which case the φ0 can be ignored;

and that they are emitted at random time intervals, but the same distance from the rest of

the apparatus, in which case the specifics of ν and tmay be ignored in favour of the single

random instantaneous phase detailed in section 6.2.

In this two-beamsplitter arrangement, the wave model tells us that two waves meet and

interact at the second beam splitter; we wish to instead describe each photon as having

travelled a single definite path. To do this we allow for the interaction between the phases

of each particle. While the particles do not directly physically interact with each other,

they may still affect the rest of the ensemble via the medium of the apparatus — we

are here introducing the contextualists’ idea that the physical environment plays a part

in the realisation of particles’ properties. We consider that the apparatus has its own

internal periodic phenomenon — as argued in chapter 1, the quantum formulation must

be applicable to even the parts which we consider macroscopic. Rather to any individual

molecule or atom, we will assign a complex phase to a beamsplitter as whole. The internal

phenomena of both particle and apparatus shall interact by some deterministic rule.

Effectively the wave phenomenon of the apparatus serves as some ‘memory’ of the phase

of particles with which it interacted before. Then, subsequent particles passing the appa-

ratus are affected by their predecessors. Also, the interaction of particles with subsequent

emissions clearly falls within the realms of locality, giving hope that such models may

help to explain more adequately the effects typically attributed to instantaneous wave-

function collapse.

In the following sections, the general-purpose programming language Python is used to

run a numerical simulation of single-photon interference within the contextual determin-

istic framework discussed. It is based on the following assumptions:
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• Individual photons are emitted from a coherent source at random time intervals.

• The parts of the apparatus (beamsplitters) with which the photons interact have their

own phase and frequency, comparable to the 〈ξ| vector of Bohm and Bub’s ‘double

solution’.

• The corpuscular photons have an instantaneous interaction effect with beam split-

ters.

• At the instant of interaction, the beamsplitter reflects (sending the photon down

path 1) if and only if the phase difference between the particle and beam splitter is

greater than π. Otherwise, the particle is transmitted (taking path 2).

• If a reflection occurs, the phases of both photon and beamsplitter take new values,

proportional to the phases at the moment of interaction. If a particle passed through

without reflections then both phases are unchanged.

In other words, the post-interaction phase change acts as the ‘apparatus memory’. Note

that if the two paths available are of different lengths, and a particle has taken a path

different to its predecessor, then there will be a difference between particles’ phases and

the cumulative ‘memory’ phase of the second beam splitter. Note that the given reflection

rule follows the guide of being a simple, crisp, and physical statement, as discussed in

section 2.4.

As described in chapter 1, this model does not claim to be a full descriptor of physical

reality, its goals are to:

1. Present an explicit implementation of the proposed two wavefunctions contextual

model.

2. Demonstrate that the new model successfully replicates quantum behaviour through

deterministic particles, similarly to early theoretical models [44, 45] and physical

experiments with droplets [46].
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In a sense, this numerical model is a contemporary version of a typical ‘thought experi-

ment’ familiar to many physicists.

6.2 Details of this Model

Appendix A contains the full code used here, and it is also available from

https://github.com/DaleRHodgson/simulated_wavelike_behaviour .

The Python model begins (lines 13–24) by assigning random float (real decimal) values

to variables xi 1 and xi 2 representing the phases assigned to the two beamsplitters.

These can be labelled 〈ξ1|, 〈ξ2| to follow a notation similar to the previously discussed

‘double solution’ [43]. While these would typically represent a complex wavefunction

like exp(iπθ), it is sufficient here to record only the θ ∈ R element. For simplicity, this

experiment will neglect the factor of π and record phases in the range (0, 2) ⊂ R. A final

float variable ratio is also introduced to be used in later functions.

Continuing (lines 26–81), the script defines methods (functions) which transform given

variables (here representing phases) according to simple deterministic rules. The first

method (beamsplitter) describes the effect of a photon interacting with a single

beamsplitter, returning the transformed phases of the photon and the apparatus, as well as

a boolean result reflection recording whether that interaction event showed a reflec-

tion (1) or transmission (0) of the photon. The method photon in one bs can be run

repeatedly with randomly generated phases to simulate many photons passing through a

single beamplitter, while photon in two bs is similarly used to simulate many pho-

tons passing through a two-beamsplitter arrangement.
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6.3 Verifying a Single Beamsplitter Result

Lines 87–102 verify that the previously defined operations act as expected. The

beamsplitter method is defined to take two (float) variables representing the phase

of an incoming photon and that of the first beamsplitter, and begins by calculating their

phase difference ∆ = (ϕ− ξ) mod 2 (line 31). Here ϕ represents phase of the pho-

ton, and ξ the Xi phase of the beamsplitter; the mod 2 is used to keep to the (0, 2) ⊂ R

scale used. It then applies the rule that reflection occurs if and only if the angle between

the two phases is obtuse (line 32). If we have a reflection event, then the two phases of

the photon and beamsplitter are mutually transformed by the interaction (lines 36–42):

ϕ 7→ ϕ+ 1
2
−∆r

1 + r
mod 2,

ξ 7→ ξ + ∆

1 + r
mod 2.

Where r is the ratio variable defined earlier, representing a weight factor of how much

a photon phase is altered compared to the apparatus phase. The essential conclusions of

this model hold true for weight factors of orders ∼ 10−1 to 105.

The photon in one bs method is defined to take as input some phase (of an in-

cident photon) and apply the beamsplitter action for that photon and the per-

sistent global xi 1 variable. This method is used (lines 87–102) in a loop of

N = 100000 to simulate 105 photons, each with a new randomly assigned phase

2.0*random()∈ (0, 2) ⊂ R interacting with a single beamsplitter, and increment-

ing the count reflection count1 whenever a reflection event occurs. It then prints

out a reading of the percentage reflection of single photons:

Percentage of reflections in one beam splitter 0.50267

This test consistently shows a result very close to fifty percent — demonstrating that this
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model accurately simulates a single fifty-fifty beamsplitter. The script continues to use

the same structure to model two beamsplitters as in the described experiment.

6.4 Simulating Two Beamsplitters

With the behaviour of the beamsplitter method verified, the script goes on

to run another N = 100000 simulation with the photon in two bs method.

photon in two bs is defined (lines 58–81) to again take a randomly generated pho-

ton phase, and to interact it with the persistent global xi 1 and global xi 2 vari-

ables, returning a boolean value 1 if a photon is reflected out of the second beamsplitter,

and 0 otherwise. In the case that the photon reflects from the first beamsplitter, its phase

is altered by some amount optical difference (lines 70–72) as was discussed in

section 6.1.

The script sets up variables steps = 50, to allow the test to run across a range

of offsets for optical difference; and reflection percentages = [],

an empty list to be populated with the percentage reflections for each given

optical difference (lines 107–111). For j taking the values 0 to 50 set by

steps = 50, the script resets the reflection count to zero, and reinitialises the ξ vari-

ables for the beamsplitter phases to some random values (lines 113–123). It then runs

N = 100000 tests of photon in two bs of randomly assigned photon phases and an

optical difference equal to 2.0*j/steps, so that optical difference

runs through values 0.0 to 1.96 in steps of 0.04 (lines 125–130). The list

reflection percentages records the percentage of reflections out of the final

beamsplitter for that optical difference, and an immediate readout of the value

is printed to the screen (lines 133–135). The loop then continues until complete, and

a graph of the percentage reflection (as reflection count2 / N) for each given

optical difference is shown (lines 137–140).
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6.5 A Wavelike Result from Deterministic Stochastic

Processes

This proposed model demonstrates the following features:

1. The fifty-fifty distribution of reflection/transmission seen for a stream of photons

interacting with a single beamsplitter.

2. A variation from even distribution for two beam splitters, as per constructive and

destructive interference. The achieved maximal deviation is around 50%–75%.

3. The final reflection rate varying periodically with the variation of path length be-

tween paths 1 and 2.

A sample graph of results from this script is show in Fig. 6.2.

This numerical simulation shows that single-photon interference is compatible with a de-

terministic particle model of light — we do not need to say that photons travel two paths

at once, or that they are simultaneously particle-like and wavelike. This is achieved by

an ensemble of particles self-interacting through the medium of the surrounding context.

This picture is a blend of the de Broglie–Bohm pilot wave theory [14, 15, 76, 77] with

the contextual interpretation of quantum mechanics [21, 22, 68]. The realisation of dis-

crete particles showing wavelike effects in contextual ensembles is supported by physical

evidence [46, 78].
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Figure 6.2: Results of the numerical experiment: there is sine-like dependence of percent-
age of reflections from the optical paths difference.
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Chapter 7

A Notation of our Python Model

Feynman’s ‘little arrow’ formulation outlined in [18], and here in chapter 5 is similar

enough to be suitable to describe the model used in the previous chapter.

7.1 A Basic ‘Little Arrow’ Formulation of this

Experiment

We associate with the beam of photons a complex phase |ψ〉 = R exp(iϕ), which repre-

sents a probability amplitude — meaning that placing a detector at any point along the

path of the photons, we may take the absolute square of the complex phase to obtain a

real positive value (less than 1) which represents the probability of detection at that point,

i.e. the proportion of photons out of the entire ensemble which will be detected there. For

example, a detector placed directly in front of the photon source would see probability of

detection P = |exp(iϕ)|2 = 1, as all photons are detected. Such a complex phase may

of course be represented by a vector on the complex plane, so may be thought of as ‘little

arrows’.

Furthermore, these complex amplitudes may be modified in two ways: when some event
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along the path affects the photon beam, the little arrow may ‘turn and shrink’ [18, p. 57];

or when photons may be detected from two different paths (with different complex am-

plitudes), the vectors will be summed.

‘Turn and Shrink’ Events

Demonstrated by partial reflection on mirrored surfaces in [18], the ‘event’ for which we

must account here is the partial reflection by beamsplitter. The shrinking and turning

of a complex vector is modelled mathematically by multiplication with another complex

vector. For example, amplitude exp(iϕ) shrunk by |a| < 1 and turned by θ is seen as:

exp(iϕ) · a exp(iθ) = a exp(i(ϕ+ θ)).

Figure 7.1: Turn and shrink
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In this beamsplitter experiment, interaction with a beamsplitter demonstrates shrinking

by a factor of 1/
√

2 , and in the event of reflection, a turn of π/2. That is, for amplitude

exp(iϕ):

in transmission exp(iϕ) 7→ 1√
2

exp(iϕ), and

in reflection exp(iϕ) 7→ 1√
2

exp(iϕ) exp
(
i
π

2

)
=

1√
2

exp
(
i
(
ϕ+

π

2

))
.

The values 1/
√

2 and π/2 are found empirically. With this, we see that a detector col-
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7.1. A BASIC ‘LITTLE ARROW’ FORMULATION OF THIS EXPERIMENT

lecting either transmitted (|T 〉) or reflected (|R〉) photons sees a 50% detection rate, since∣∣exp(iϕ)/
√

2
∣∣2 =

∣∣exp(i(ϕ+ θ))/
√

2
∣∣2 = 1/2.

Following this, a photon which is transmitted by the first beamsplitter, and reflected by

the second (|TR〉) is shrunk twice, and turned once, leaving:

|TR〉 =
1√
2

(
1√
2

exp(iϕ)

)
exp

(
i
π

2

)
=

1

2
exp

(
i
(
ϕ+

π

2

))
.

Similarly, for reflected-then-transmitted photons, we have

|RT 〉 =
1√
2

(
1√
2

exp
(
i
(
ϕ+

π

2

))
exp(iδ)

)
=

1

2
exp

(
i
(
ϕ+

π

2
+ δ
))

.

Where the additional exp(iδ) term represents the addition path optical difference intro-

duced to photons reflected out of the first beamsplitter.

Logical Conjunction

As mentioned, the other action to be applied to these ‘little arrows’ is the case when we

seek probabilities including a logical ‘OR’, for example, detection from path 1 or from

path 2. Within Feynman’s scheme what we must do is sum the two (or more) complex

amplitudes, and then take the absolute square. It is this case which gives rise to the

distinctively non-classical probabilities of quantum mechanics.

We have within classical probability that for two events A and B, the probability of their

union (either event or both events)

P (A ∨B) = P (A) + P (B).
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This is not the case for quantum probabilities, where instead we see

P (A ∨B) = P (A) + P (B) + I(A,B),

where I(A,B) is a (positive or negative) interference term. When using the Feynman

scheme of probability amplitudes, and sum of complex phases for conjunction, this inter-

ference term arises naturally from the mathematics. For two events A,B with probability

amplitudes a exp(it), and b exp(is), we have:

P (A ∨B) = |a exp(it) + a exp(is)|2

= a2 + b2 + 2ab cos(t− s)

= |a exp(it)|2 + |b exp(is)|2 + 2ab cos(t− s)

= P (A) + P (B) + I(A,B).

This is the case of constructive and destructive interference by little arrows seen in section

5.4.

Final probabilities by Feynman’s scheme

With these two ideas we can formalise the detection probabilities for detector D1 of our

arrangement (see fig. 6.1); we must sum the amplitudes of photons that took paths either

Transmitted-Reflected by the two beamsplitters, or Reflected-Transmitted:

P (detection at D1) = ||TR〉+ |RT 〉|2 ,

where |TR〉 =
1

2
exp

(
i
(
ϕ+

π

2

))
,

and |RT 〉 =
1

2
exp

(
i
(
ϕ+

π

2
+ δ
))

.
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Giving

P (detection at D1) =

∣∣∣∣12 (exp
(
i
(
ϕ+

π

2

))
+ exp

(
i
(
ϕ+

π

2
+ δ
)))∣∣∣∣2

=

∣∣∣∣12
∣∣∣∣2 ∣∣∣exp

(
i
(
ϕ+

π

2

))∣∣∣2 |1 + exp (iδ)|2

=
1

4
|1 + exp(iδ)|2

=
1

2
+

1

2
cos δ.

And a matching

P (detection at D2) = ||TT 〉+ |RR〉|2

=
1

2
− 1

2
cos δ.

7.2 Comparison With Our Model

Consideration of de Broglie’s Internal Periodic Phenomena as a kind-of internal clock or

arrow was a key idea in making the model presented in this thesis (see chapter 5). Feyn-

man’s model ascribing a complex vector to the beam of photons to represent a probability

amplitude, where a detector placed at any point will record a probability equal to the

absolute square of the complex vector, translates well to our model.

Feynman’s ‘turn and shrink’ action which, as described above, can be seen as like a mul-

tiplication by another complex vector, is much like where we transform photon phases

ϕ by interaction with apparatus phase ξ (see section 6.3). Whereas Feynman’s model

uses a simple multiplication of complex vectors, we have written a kind-of ‘weighted

phase average’ to the interaction event, and added a mutual change to the apparatus phase

ξ. It is through this mutual change that a kind-of ‘apparatus memory’ evolves to allow

self-interaction of the ensemble through time.

61



7. A NOTATION OF OUR PYTHON MODEL

We compare:

1. Feynman’s ‘turn and shrink’ action at one beamsplitter:

Photons’ amplitude exp(iϕ) 7→ exp(iϕ) · 1√
2

exp
(
iR̂
π

2

)
=

1√
2

exp
(
i
(
ϕ+ R̂

π

2

))
.

Where R̂ = 1 for reflected photons, and 0 for those transmitted. As modulus-phase,

this is:

(1, ϕ) 7→
(

1√
2
, ϕ+ R̂

π

2

)
.

2. Our Python ‘weighted phase average’:

Photon and apparatus phases

ϕ 7→ r

1 + r
ϕ+

1

1 + r
ξ +

π

2

ξ 7→ r

1 + r
ξ +

1

1 + r
ϕ

when reflected,

ϕ 7→ ϕ

ξ 7→ ξ

when transmitted.

In the Python model, it is only the real-valued phase which is altered (as if a ‘turn-only’

action). However, Feynman’s application of a second complex vector to alter the photon

beam’s amplitude ties to both Bohm and Bub’s double solution [43] (discussed in section

5.3), and the mutual interaction written in this Python model.

As Feynman’s model shows its final detection probability to depend periodically on the
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optical path difference, δ, applied to one photon path,

P (detection at D1) =
1

2
+

1

2
cos δ,

so to does our numerical simulation demonstrate such a periodic dependency (figure 6.2).
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Chapter 8

Conclusion

Through this thesis we have highlighted how the common Copenhagen Interpretation

of quantum mechanics may be suitable to describe quantum mechanics, but falls short

of adequately explaining the theory. Various authors have proposed alternative schemes

over the years, and we have collected together viewpoints which tackle the problems by

careful consideration of context.

We have presented arguments as to why it is desirable to reconsider the foundations of

quantum mechanics; and we have discussed why contextuality is both a suitable and nec-

essary inclusion. The model presented in chapter 6 shows that it is possible to record

interference-like effects characteristic of quantum mechanics using deterministic actions

acting in a contextual way on a stochastic ensemble of particles. With this we have shown

that it is not necessary to describe individual particles as waves with non-deterministic

behaviour in order to model quantum mechanics.
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Appendix A

Python Model

Available at

https://github.com/DaleRHodgson/simulated_wavelike_behaviour .

1 from math import *

2 from cmath import *

3 import matplotlib.pyplot as plt

4 from random import *

5

6 # Initialise the random number generator

7 seed()

8

9 ##################################################

10 # Functions and preliminaries

11 ##################################################

12

13 # Phases are normalised to the interval [0,2]

14 # for simplicity. Variable phase for first

15 # beamsplitter, xi_1, starts from a random value.
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A. PYTHON MODEL

16 xi_1 = 2.0 * random()

17

18 # Variable phase for second beamsplitter, xi_2,

19 # starts from a random value.

20 xi_2 = 2.0 * random()

21

22 # Measure of how beamsplitter atom is heavier

23 # than photon.

24 ratio = 20.0

25

26 # Function describing the effect of a beamsplitter.

27 def beamsplitter(phase, xi):

28

29 # Difference between photon phase (phase), and

30 # beamsplitter phase (xi).

31 delta = (phase - xi) % 2

32 reflection = ( abs(delta - 1.0) < 0.5)

33

34 if reflection: # Reflection condition.

35

36 # Both phases are transformed by the interaction:

37

38 # Beamsplitter phase is changed.

39 xi = (xi + delta / (1.0 + ratio)) % 2

40

41 # Photon phase is changed, with a 0.5 offset.

42 phase = (phase + 0.5 - delta * ratio / (1.0 + ratio)) %2

43

44 return phase, xi, reflection
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45

46 # Function to check the distribution in a single beamsplitter.

47 def photon_in_one_bs(phase):

48

49 global xi_1

50

51 _, xi_1, reflection = beamsplitter(phase, xi_1)

52

53 if reflection:

54 return 1

55 else:

56 return 0

57

58 # Function to simulate two consecutive beamsplitters by

59 # running the beamsplitter() procedure twice, introducing

60 # an optical difference if the simulated photon is

61 # reflected by the first beamsplitter.

62 def photon_in_two_bs(phase, optical_difference):

63

64 global xi_1

65 global xi_2

66

67 # First beamsplitter.

68 phase, xi_1, reflection = beamsplitter(phase, xi_1)

69

70 # Add the optical path difference for reflected photon.

71 if reflection:

72 phase = (phase + optical_difference) % 2

73
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74 # The same rules are applied to the second beamsplitter

75 # but the outgoing phase is not needed.

76 _, xi_2, reflection = beamsplitter(phase, xi_2)

77

78 if reflection:

79 return 1

80 else:

81 return 0

82

83 ##################################################

84 # Simulated experiment

85 ##################################################

86

87 # Number of photons in each experiment.

88 N = 100000

89

90 # Count of reflections.

91 reflection_count1 = 0.0

92

93 # Using photon_in_one_bs() to check the distribution of

94 # single photons under these rules. Simulate a sequence

95 # of N photons interacting with a single beamsplitter:

96 for i in range(N):

97

98 # Count of photons leaving ’reflected’ output

99 # of beamsplitter.

100 reflection_count1 = reflection_count1 +

photon_in_one_bs(2.0 * random())

101
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102 print(’Percentage of reflections in one beamsplitter’,

reflection_count1 / N)

103

104 # Using photon_in_two_bs() to simulate the two beamsplitter

105 # experiment for a range of optical path differences.

106

107 # Subdivisions of the optical path difference.

108 steps = 50

109

110 # Array of results.

111 reflection_percentages = []

112

113 # Run through all possible optical path differences:

114 for j in range(steps):

115

116 # Count of reflections.

117 reflection_count2 = 0.0

118

119 # Randomly re-initialise phase xi_1 for first beamsplitter.

120 xi_1 = 2.0 * random()

121

122 # Randomly re-initialise phase xi_2 for second beamsplitter.

123 xi_2 = 2.0 * random()

124

125 # Simulate a sequence of N photons:

126 for i in range(N):

127

128 # Count of photons leaving given output of

129 # second beamsplitter.
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130 reflection_count2 = reflection_count2 +

photon_in_two_bs(2.0 * random(), 2.0 * j / steps)

131

132 # Log reflection rate for given optical path difference

133 reflection_percentages.append(reflection_count2 / N)

134

135 print(j, reflection_count2 / N)

136

137 # Plotting the results of two beamsplitter simulation.

138 plt.plot(reflection_percentages)

139 plt.ylabel(’% of reflections’)

140 plt.show()
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York: American Institute of Physics, 2009.

[31] D’Ariano, M., Fei, S.M., Haven, E., Hiesmayr, B., Jaeger, G., Khrennikov, A., and Larsson, J.Å., eds.
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