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Abstract

In this thesis, mathematical models are presented which are used to

study cellular signalling pathways, initiated by the interaction be-

tween receptor molecules, residing on the surface of a cell, and lig-

and molecules, diffusing in the extra-cellular medium. Cell signalling

pathways ultimately determine the fate of a cell, be it to divide, dif-

ferentiate, migrate or even die, and the eventuality with occurs can

be dependent on the receptor-ligand pairing. Different mathematical

and statistical techniques are employed in this thesis, to study specific

cell signalling pathways for which experimental data has been pro-

duced. Data collection has been carried out for such pathways due to

their involvement in human disease when dysregulated, where disease

progressions include autoimmune diseases and many types of cancer.

As well as analysing mathematical models for specific pathways, new

methodologies are developed in this thesis to analyse properties of a

general model of the competition between multiple receptor types for a

common ligand variety, which could be applicable to many cell types

and signalling pathways. Both deterministic and stochastic models

are used in this thesis, since the expression of different receptor and

ligand types can be hugely variable, ranging from low copy numbers

per cell, to very high copy numbers. This thesis aims to explore the

role of receptors and ligands in different healthy and disease scenarios.
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Chapter 1

Introduction

1.1 Biological introduction

The average human body is made up of approximately 1013 cells (Bianconi et al.,

2013). The vast majority of these cells do not survive for the lifetime of a human,

but are constantly being turned over, with a rate dependent on the cell type. For

example, some cells with the smallest turnover rate are gut epithelial cells, which

have an average lifespan of only 3 − 5 days, whereas cell types such as neurons,

can survive for many years (Sender & Milo, 2021). The decision of a cell to die,

known as apoptosis, is an example of a cellular fate, where other examples of

fates include cell division, differentiation, and migration. How a cell determines

its fate is dependent on signalling molecules in the extracellular environment and

receptor molecules on the surface of a cell, with which these signalling molecules

interact. Often, cells will present a diverse range of receptor types on their cell

surface, where each receptor type can initiate a different functional response by

interacting with the appropriate signalling molecules (Uings & Farrow, 2000).

Receptors can be classified into different families, based on how they respond to

signalling molecules, and two such families which will be discussed in this thesis

are the cytokine receptors and the receptor tyrosine kinases (RTKs). Both of

these receptor types are trans-membrane proteins, with an extracellular domain,

a trans-membrane domain and an intracellular domain (Grötzinger, 2002; Sch-

lessinger & Ullrich, 1992). The main difference between the receptor types is that

cytokine receptors lack tyrosine kinase activity (Haan et al., 2006), meaning that
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1. INTRODUCTION

they cannot initiate a cell signalling pathway, leading a cell to its fate, without

the help of other intracellular proteins which do posses tyrosine kinase activity.

As implied by their name, RTKs have a tyrosine kinase domain as part of their

intracellular region, which allows them to phosphorylate (transfer a phosphate

group to) other intracellular proteins. These phosphorylation events induce cell

signalling pathways which lead to a fate for the cell. Cytokine receptors how-

ever, require association of other intracellular proteins, known as Janus kinases

(JAKs) in order to initiate signalling. It is the JAK molecules which have the

kinase activity, and a cytokine receptor which is not bound to a JAK molecule

does not possess such activity (Haan et al., 2006). Both receptor types bind

to molecules, collectively known as ligands, in the extracellular medium, initi-

ating the intracellular signalling pathways, however another difference between

the receptor types is the ligands with which they bind. Cytokine receptors bind

predominantly with cytokine molecules, whereas RTKs bind predominantly with

other molecules, such as growth factors.

Cytokines are a class of ligand molecules, which are produced by, and utilised

by, cells of the immune system (Altan-Bonnet & Mukherjee, 2019). Cytokines can

be further sub-classified based on their functions, where some act as growth fac-

tors (initiating cell growth and division) and others act as pro- or anti-inflammatory

molecules (Dinarello, 2007). There are hundreds of different cytokines (Cameron

& Kelvin, 2013), and often different cytokines will have the ability to bind to

the same receptor, but the specific receptor-ligand pairing appears to be crucial

in determining the outcome of the initiated cell signalling (Grötzinger, 2002).

Of particular interest in this thesis are a class of cytokines known as the inter-

leukins, of which there are currently 40 known varieties, namely interleukin 1

(IL-1) to interleukin 40 (IL-40). Among the main functions of these cytokines

are modulating growth and differentiation during inflammatory responses (Vail-

lant & Qurie, 2019). Two particular interleukins, IL-6 and IL-27, can act as

both pro-inflammatory and anti-inflammatory cytokines, depending on the envi-

ronment, however IL-6 is predominantly pro-inflammatory and IL-27 is predom-

inantly anti-inflammatory (Hunter & Jones, 2015; Rose-John, 2018; Yoshida &

Hunter, 2015a). Interestingly, these two interleukins share a common receptor

subunit, namely glycoprotein 130 (GP130). In the case of IL-6 stimulation, a
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hexameric receptor complex is formed, comprised of two copies of each of, IL-6

receptor α (IL-6Rα, an IL-6 specific receptor), GP130 and IL-6 (Boulanger et al.,

2003). Under IL-27 stimulation, IL-27 binds to its receptor IL-27 receptor α (IL-

27Rα), which then forms a dimer with a single unbound GP130 unit (Yoshida

& Hunter, 2015a). Both of these signalling dimers are then capable of initiat-

ing a signalling pathway known as the JAK/signal transducer and activator of

transcription (STAT) pathway.

Figure 1.1: Diagram of the JAK/STAT signalling pathway, initiated by cytokine
molecules, taken from Haan et al. (2006). The red stars attached to a species
indicate that the species is phosphorylated.

The JAK/STAT signalling pathway is depicted in Figure 1.1 for a generic

receptor dimer induced by a cytokine molecule. This dimer could be, for ex-

ample, the IL-6 or IL-27 induced receptor dimer. As described by Haan et al.

(2006), when two receptors are brought together by a cytokine, the respective

JAK molecules which they are bound to, trans-autophosphorylate themselves.

The JAKs then phosphorylate tyrosine residues on the intracellular tails of the
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receptors they are bound to. These phosphorylated tyrosine residues on the

receptor tails then act as docking sites for other intracellular proteins such as

STATs, allowing the STAT molecules to bind the receptors, become phosphory-

lated themselves, and then dissociate. Two phosphorylated STAT molecules can

then form a dimer in the cell cytoplasm, and migrate to the nucleus of the cell.

Within the nucleus, the STAT molecules act as transcription factors, where they

bind to target genes, initiating the process of protein synthesis. It is this gene

transcription which regulates cellular fates such as differentiation and division.

Unlike the cytokine receptors, RTKs have their own tyrosine kinase activity

and thus do not depend on JAK molecules in order to initiate cell signalling. One

important subclass of RTKs is the ErbB class, which consists of four members,

namely the epidermal growth factor receptor (EGFR, also known as ErbB1 and

Her1) and ErbB2-ErbB4. There are 12 known growth factors (ligands) which can

each bind with at least one member of the ErbB family, inducing the formation

of receptor dimers (Tebbutt et al., 2013). These can be homodimers, if two

receptors of the same type are brought together, or heterodimers, if the two

receptors are of different types. Of the ErbB family, EGFR is the most studied

of the receptors, which binds with its ligand EGF, whose primary function is

to induce cell division, as well as differentiation, migration and growth. EGF

induces a homodimer, comprised of two molecules of EGFR and two of EGF,

where, upon dimerisation, the receptor molecules trans-autophosphorylate (Wee

& Wang, 2017). Similarly to the cytokine receptor dimers, a dimer of EGFR

is also capable of initiating a cell signalling pathway, due to the phosphorylated

tyrosine residues on the intracellular tails of EGFR acting as docking sites for

other proteins. In this case however, the primary pathway induced by EGF is not

the JAK/STAT pathway, but a pathway known as the mitogen activated protein

kinase (MAPK) pathway (Wee & Wang, 2017).

The MAPK signalling pathway is depicted in Figure 1.2 for a generic RTK

forming a dimer induced by a ligand molecule. As described by Liu et al. (2018)

and seen in Figure 1.2, there are many proteins involved in the MAPK pathway.

Firstly, growth factor receptor bound protein 2 (Grb2), binds to the docking sites

on the RTK dimer and is subsequently phosphorylated. Through protein-protein

interactions, each of the molecules, SOS, RAS, RAF, MEK and ERK then become
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phosphorylated. ERK can phosphorylate various cytoplasmic proteins, such as

RSK, or can migrate to the nucleus, where it activates transcription factors such

as ELK (Fang & Richardson, 2005). As in the case of the JAK/STAT pathway,

the MAPK pathway promotes gene transcription and hence regulates the cell

fate.

Figure 1.2: Diagram of the MAPK signalling pathway, initiated by a growth
factor, taken from Liu et al. (2018). A letter “P” in a circle attached to a species
indicates that this species is phosphorylated.

Another important subclass of RTKs which will be discussed in this thesis,

is the fibroblast growth factor receptors (FGFRs), of which there are four mem-

bers, namely FGFR1 - FGFR4, which possess tyrosine kinase activity and signal

through interaction with 18 known fibroblast growth factor (FGF) ligands (Turner

& Grose, 2010). The mechanism of FGFR activation and signal induction is very
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similar to that for the ErbB class, whereby ligands induce receptor homo- or het-

erodimerisation causing the receptor tails to come into close proximity with one

another, leading to trans-autophosphorylation (Sarabipour, 2017). Dependent

on the receptor-ligand pairing, FGFR dimers are capable of inducing both STAT

signalling pathways (similarly to the cytokine receptors) and the MAPK pathway

(similarly to the ErbB family), among others (Ornitz & Itoh, 2015). Both of the

cell signalling pathways discussed above are important processes in healthy cells,

allowing for cells to grow, divide and even die, when necessary. However, dysreg-

ulation of parts of each pathway, through mutation or up-regulation of specific

proteins, can have adverse effects on the cells and can cause disease in humans.

Systemic lupus erythematosus (SLE) is an autoimmune disease causing in-

flammation to tissues, and organ damage. Up-regulation of certain inflammatory

cytokines is known to contribute to this disease, whereby the JAK/STAT pathway

becomes overstimulated, leading to excessive inflammation and cell death (Ohl &

Tenbrock, 2011). Another condition which is linked to excessive concentrations

of pro-inflammatory cytokines is Crohn’s disease, which causes inflammation of

the bowels (Leon et al., 2009). Given the significance of cytokines in both of

these autoimmune conditions, it is important to better understand the JAK/S-

TAT pathway and specifically, how this pathway is dysregulated in patients with

these conditions.

Dysregulation of the MAPK pathway also has major implications in human

disease. Over recent years, EGFR has become an important therapeutic target

in many different types of cancer, particularly lung cancer, where increased levels

of EGFR correlate with poor patient prognosis (Normanno et al., 2006; Sharma

et al., 2007). As well as up-regulation of EGFR, there are now several well known

mutant varieties of the protein, some of which do not require binding of the ligand

extracellularly, to become activated and initiate the MAPK pathway (Bethune

et al., 2010). In both cases, the signalling pathway becomes highly activated,

resulting in abnormal cell division or anti-apoptosis, which yields tumour growth.

Although there are several marketed drugs to treat cancers caused by mutations

in EGFR, by inactivating the protein, a common occurrence in patients being

treated with such drugs, is the development of secondary mutations, meaning

that the drug no longer inhibits cell signalling by EGFR (Huang & Fu, 2015).
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There is therefore, still a huge importance in studying the EGFR induced MAPK

signalling pathway and particularly the response of proteins in the pathway to

novel drugs.

As explained by Turner & Grose (2010), the pathogenesis of multiple types

of cancer can also be correlated with alterations and up-regulations of members

of the FGFR family, where for example, approximately 50% of bladder cancers

have mutations in FGFR3. The same authors describe how FGFR2 is mutated

in approximately 12% of endometrial carcinomas, and how FGFR1 and FGFR2

have been found to be up-regulated in breast and gastric cancers, respectively.

Similarly to the ErbB family, the FGFR family represents a class of molecules

which are current targets for cancer therapies, where small molecule inhibitors

are used to target the tyrosine kinase domains of the receptors, yielding them

inactive. There are many such inhibitors already marketed and there is also

scope for further development in this field (Casadei et al., 2019; Ghedini et al.,

2018; Porta et al., 2017), hence an ongoing need to understand fully the signalling

initiated by FGFR family members.

1.2 Objectives of this thesis

It is clear that receptor-ligand mediated signalling pathways can be large, complex

systems involving many proteins, and can be highly dependent on the cellular en-

vironment. Deterministic and stochastic mathematical modelling are approaches

which have been used for many years in order to learn about specific parts of

such systems, and introductions to each type of modelling are given by Allen

(2010) and Allen (2007). Deterministic models are typically used to study bio-

logical processes in which there are large concentrations of the species (variables)

in the model, and random fluctuations are ignored. On the other hand, stochastic

modelling is useful if there is thought to be only a small quantity of at least one

species in the model. This is because stochastic models account for the random

fluctuations in copy numbers, seen in nature, and hence give more realistic out-

puts then deterministic models. The disadvantage of stochastic modelling is that

it is usually more analytically complicated and computationally expensive than

deterministic modelling (Simoni et al., 2020).
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Ligand concentrations, receptor densities and downstream signalling protein

concentrations can vary greatly depending on the cell type and location, with

some of these protein copy numbers becoming low enough that stochastic fluctu-

ations should be taken into account (Chen et al., 2009; Feinerman et al., 2008;

Fritsche-Guenther et al., 2011). In Chapter 3 of this thesis, a general receptor-

ligand binding model is considered and analysed stochastically, which could be

relevant to any of the receptor types discussed in Section 1.1. In particular, and

as discussed for both the cytokine receptors and the RTKs, often a single recep-

tor molecule is capable of binding with multiple ligand varieties, or vice versa.

This means that, on cells which express two or more receptor types which bind

a common ligand, there is an element of natural competition between the re-

ceptors for the ligand, where two different receptor-ligand complexes can form.

The activation, via ligand binding, of the different receptor types may ultimately,

through signalling pathways, lead to different cellular fates, and hence it is in-

teresting to study how different biological parameters may affect the fate of the

cell. The competition process is modelled as a continuous-time Markov chain,

as introduced in Section 2.2.1. Two stochastic descriptors are analysed for such

a competition process, namely the steady state distribution of the two receptor-

ligand complex types on the cell surface, and the time scales of formation of each

receptor-ligand complex type. Properties of stochastic processes can be com-

plex and computationally expensive to analyse exactly, and hence approximate

methods are proposed in Chapter 3.

In some cases, where a biological system is governed by many reactions and

involves many molecular species, the corresponding stochastic model can become

too complex to analyse, and hence deterministic approximations can be employed.

Many questions relating to signalling pathways are difficult to determine exper-

imentally, but can be deduced by analysing properties of a deterministic mathe-

matical model for the system. For example, one can use a mathematical model

to infer summary statistics relating to a process, determine rate constants of

reactions and even to decide between biological hypotheses about a process. In

Chapter 4 of this thesis, a deterministic mathematical modelling approach is used,

in combination with experimental data, to answer questions about the signalling

induced by the cytokines IL-6 and IL-27, in different cell types. The experimental
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datasets used in Chapter 4 have been provided by Dr. Ignacio Moraga and Dr.

Stephan Wilmes from the School of Life Sciences at the University of Dundee.

After formulation of the mathematical models of IL-6 and IL-27 induced sig-

nalling, Bayesian methods, namely those introduced in Section 2.5, are used to

parametrise the models and to choose between two proposed hypotheses relating

to internalisation of receptor molecules. The models are validated using addi-

tional experimental datasets and finally, predictions are made using the models,

relating to signalling under different cellular conditions, in particular those found

in patients with SLE and Crohn’s disease. In Chapter 4, the concentrations of

receptors, ligands, and other proteins in the signalling pathway, represented by

variables in the mathematical models, are large enough that stochastic fluctu-

ations need not be taken into account and hence the deterministic approach is

reasonable.

In Chapters 5 and 6, the biological focus is turned to the RTKs, where in

these chapters, FGFR2 and EGFR are the receptors of interest, respectively.

It is well known that receptors, and other downstream signalling proteins, are

capable of binding with other proteins to propagate a cellular signal, however

a lesser reported event is the formation of ternary complexes, i.e. complexes

comprised of three (potentially different) molecules, all bound together. This

ternary complex formation was of interest to the group of molecular and cellular

biology at the University of Leeds, and in particular, Dr. Chi-Chuan Lin has

collected experimental data to evidence the formation of ternary complexes of

FGFR2 with two other intracellular proteins known as Shp2 and Plcγ1. He has

been able to show, through imagining experiments, that these ternary complexes

come together to form high density droplets, and it is assumed that these droplets

with high concentrations of signalling proteins are responsible for an increase in

the signal produced by FGFR2. In Chapter 5 of this thesis, this ternary complex

formation is modelled deterministically and through analysis of the steady states

of the mathematical model, the experimental observation of the ternary complex

is verified. The model is also simulated to determine the effects of varying protein

concentrations on the formation of ternary complexes and the feasible parameter

space is explored with relation to the model outputs and the stability of the

steady state.
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In Chapter 6, the EGFR initiated MAPK signalling pathway is studied. In

particular, using data provided by AstraZeneca, the effect of eight different poten-

tial drug inhibitors of EGFR is analysed in terms of their effect on phosphorylated

and total EGFR and three downstream proteins in the MAPK pathway, MEK,

ERK and RSK. The inhibitors are third generation tyrosine kinase inhibitors

(TKIs), which are able to pass through the cell membrane where they then form

covalent bonds with residues on the tyrosine kinase domain of EGFR. The in-

hibitors compete with adenosine triphosphate (ATP), a molecule responsible for

phosphorylating receptors, for binding to the receptor tails, thus inactivating the

receptors by blocking further phosphorylation of downstream proteins in the sig-

nalling pathways. Statistical methods, introduced in Section 2.6, are used to

determine whether there are any differences in protein expression, depending on

the inhibitor type, the cell line (natural or mutant EGFR) and the concentration

of the inhibitor. Finally, a review is given of the current mathematical modelling

in the literature relating to the inhibition of EGFR by TKIs.

The broad aims of this thesis are to use methods from mathematical modelling,

Bayesian statistics and frequentist statistics in combination with experimental

data, to give useful insights into biological systems, which would be difficult to

determine experimentally. In Chapter 3, new mathematical methods for analysing

stochastic competition processes are developed, which can be useful in situations

with low protein copy numbers. In Chapters 4, 5 and 6, mathematical modelling

and statistical techniques are used to analyse properties of biological systems for

which experimental data has been collected. Finally, Chapter 7 is a conclusion

and discussion.
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Chapter 2

Mathematical background

This chapter provides a background in probability theory and stochastic pro-

cesses, as well as an overview of some of the mathematical methods and statistical

techniques which will be used in this thesis.

2.1 Probability theory

In Chapter 3 of this thesis, analysis of a type of stochastic process called a Markov

chain is carried out, and hence in this section the probability theory required to

understand such a process is introduced. The definitions and explanations given

here are based on the works by Allen (2010), Pinsky & Karlin (2010) and Casella

& Berger (2002).

2.1.1 Random variables

The sample space of a random experiment is a set, Ω, of all possible outcomes of

the experiment. For example, when a single coin is tossed, the sample space is

Ω = {H,T} where H and T stand for heads and tails, respectively. A random

variable X, is a real valued function that maps from the sample space to some

subset of the real numbers, R. This subset is known as the support (or range),

AX , of the random variable and is defined as

AX = {x ∈ R : X(ω) = x for some ω ∈ Ω}.
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A discrete random variable is a variable whose support is finite or countably infi-

nite, whereas a continuous random variable has an uncountably infinite support.

Definition 1. The cumulative distribution function, or cdf, of a random variable

X, denoted by FX(x), is defined by

FX(x) = P(X ≤ x), −∞ < x < +∞.

Definition 2. If X is a discrete random variable, then the function

fX(x) = P(X = x), for x ∈ AX ,

is the probability that X takes a particular value in its support, and is known as

the probability mass function (pmf) of X.

Definition 3. If X is a continuous random variable with cdf FX(x) and there

exists a nonnegative, integrable function f : R→ [0,∞), such that

FX(x) =

∫ x

−∞
fY (y)dy,

then the function fX(x) is called the probability density function, or pdf, of X.

2.1.2 Exponential distribution

A well known distribution which is important in the study of stochastic processes

is the exponential distribution.

Definition 4. A nonnegative continuous random variable X is said to follow an

exponential distribution with parameter λ > 0, X ∼ Exp(λ), if its probability

density function is

fX(x) =

λe−λx for x ≥ 0,

0 for x < 0.

2.1.3 Uniform distribution

Definition 5. A continuous random variable X is said to follow a continuous

uniform distribution with parameters −∞ < a < b < +∞, X ∼ Unif(a, b), if its

12
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probability density function is

fX(x) =

 1
b−a for x ∈ [a, b],

0 otherwise.

2.1.4 Multivariate distributions

When several random variables X1, X2, . . . , Xn are associated with the same sam-

ple space, one can define a multivariate probability density function if the variables

are continuous, or a multivariate probability mass function if the variables are dis-

crete. For a random vector of two random variables, (X1, X2), the support of this

vector is

AX1,X2 = {(X1(ω), X2(ω))|ω ∈ Ω} ⊆ R2,

where Ω is the common sample space of X1 and X2.

Definition 6. A function fX1,X2(x1, x2) from AX1,X2 to R is called a joint prob-

ability mass function, or joint pmf, of the discrete random vector (X1, X2), if∑
(x1,x2)∈AX1,X2

fX1,X2(x1, x2) = 1,

and for every B ⊂ AX1,X2 ,

P((X1, X2) ∈ B) =
∑

(x1,x2)∈B
fX1,X2(x1, x2).

The marginal probability mass function of X1 is defined as

fX1(x1) =
∑
x2

fX1,X2(x1, x2),

and the marginal pmf of X2 can be defined in a similar manner.

Definition 7. A function fX1,X2(x1, x2) from AX1,X2 to R is called a joint prob-

ability density function, or joint pdf, of the continuous random vector (X1, X2),

if ∫∫
AX1,X2

fX1,X2(x1, x2)dx1dx2 = 1,

13
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and for every B ⊂ AX1,X2 ,

P((X1, X2) ∈ B) =

∫∫
B

fX1,X2(x1, x2)dx1dx2.

The marginal probability density function of X1 is defined as

fX1(x1) =

∫
R
fX1,X2(x1, x2)dx2,

and the marginal pdf of X2 can be defined in a similar manner.

Definition 8. Two random variables, discrete or continuous, are said to be in-

dependent if and only if

fX1,X2(x1, x2) = fX1(x1)fX2(x2),

for all (x1, x2) ∈ AX1,X2 , otherwise they are said to be dependent.

2.1.5 Expectation, variance and covariance

In this section, the expectation, variance and covariance of random variables are

defined.

Definition 9. The expectation of a discrete random variable X with support

AX , denoted by E[X], is defined as

E[X] =
∑
x∈AX

xfX(x),

where fX(x) is the pmf of X.

The expectation of a continuous random variable X with support AX , is defined

as

E[X] =

∫
AX

xfX(x)dx,

where fX(x) is the pdf of X.

Definition 10. The variance of a random variable X, denoted by Var(X), is

Var(X) = E[(X − E[X])2].
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2.1 Probability theory

The standard deviation of X is σ =
√

Var(X).

Definition 11. The covariance of two jointly distributed random variables, X1

and X2, denoted by Cov(X1, X2), is defined as

Cov(X1, X2) = E[X1X2]− E[X1]E[X2].

If Cov(X1, X2) = 0 then X1 and X2 are said to be uncorrelated.

Definition 12. The correlation of two jointly distributed random variables, X1

and X2, is defined as

ρX1X2 =
Cov(X1, X2)√

Var(X1) Var(X2)
,

where ρX1X2 is known as the Pearson correlation coefficient. This coefficient can

also be defined for paired sample data {(x1, y1), . . . , (xn, yn)} (n pairs) and is

usually denoted rxy where

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

with x̄ and ȳ representing the sample means, i.e.

x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi.

2.1.6 Laplace-Stieltjes transform

Definition 13. The Laplace-Stieltjes transform of a continuous random variable

X with pdf fX(x), denoted by φX(z), is defined as

φX(z) = E[e−zX ] =

∫ ∞
0

e−zxfX(x)dx, Re(z) ≥ 0,

where z ∈ C. By taking derivatives of φX(z), the lth order moments of X,

denoted by E[X l], can be found, where

E[X l] = (−1)l
dl

dzl
φX(z)

∣∣∣∣
z=0

, l ≥ 1.
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2.2 Stochastic processes

In this section, stochastic processes are introduced, using definitions and explana-

tions from Allen (2010), Pinsky & Karlin (2010), Latouche et al. (1999), Kulkarni

(2016) and He (2014).

Definition 14. A stochastic process is a collection of random variables

X = {Xt(ω) : t ∈ T, ω ∈ Ω}

where T is some index set and Ω is the common sample space of the random

variables. For each fixed t, Xt(ω) denotes a single random variable defined on Ω.

For each fixed ω ∈ Ω, Xt(ω) corresponds to a function defined on T that is called

a stochastic realisation of the process.

The values of the random variables Xt(ω) are known as the states of the

process and the set of all possible values is known as the state space of the process

and is denoted by SX. For the stochastic processes considered in this thesis, the

index set T , will be a set of times, and hence the stochastic processes will track

how certain random variables evolve through time. If the index takes discrete

values, for example T = {0, 1, 2, . . . }, then the process is discrete-time, whereas

if the index takes continuous values, for example T = [0,∞), then the process

is continuous-time. A stochastic process can also incorporate multiple random

variables in a random vector. For example, a stochastic process with two random

variables, X1
t (ω) and X2

t (ω), may be denoted {(X1
t (ω), X2

t (ω)) : t ∈ T, ω ∈ Ω}.
Often, as will be the case for the remainder of this thesis, the variable ω is omitted

and the random variables are denoted X(t).

2.2.1 Continuous-time Markov chain

A certain type of stochastic process is one which obeys the Markov property and

is referred to as “memoryless”. In short, a Markovian process is a stochastic

process in which the next state which the process will move to, depends only on

the current state of the process and not on any previous states. In this thesis,

continuous-time Markov chains are considered, whereby the index set relates to

time and is continuous, t ∈ [0,∞). When the state space is discrete, as will be
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2.2 Stochastic processes

the case in this thesis, the stochastic process is referred to as a Markov chain,

whereas when the state space is continuous, it is known as a Markov process.

Definition 15. The stochastic process {X(t) : t ∈ [0,∞)}, defined on the state

space SX, is called a continuous-time Markov chain (CTMC) if it satisfies the

following condition:

For any sequence of real numbers satisfying 0 ≤ t0 < t1 < · · · < tn < tn+1,

P(X(tn+1) = xn+1|X(t0) = x0, X(t1) = x1, . . . , X(tn) = xn)

= P(X(tn+1) = xn+1|X(tn) = xn),

for any x0, x1, . . . , xn+1 ∈ SX. This condition is known as the Markov property.

2.2.2 Transition probabilities

For a CTMC X = {X(t) : t ∈ [0,∞)}, there is a probability associated with the

random variable X(t) being in each state i ∈ SX, where SX is the state space for

the chain. These probabilities are

pi(t) = P(X(t) = i), i ∈ SX.

Definition 16. A relation between random variables X(t) and X(s), s < t, is

defined by the corresponding transition probability,

pij(s, t) = P(X(t) = j|X(s) = i), s < t

for i, j ∈ SX.

If the transition probabilities do not depend explicitly on the times s and t

and instead depend only on the time interval t−s, then they are said to be homo-

geneous probabilities, and the resulting CTMC is known as a time-homogeneous

CTMC. This will be the case throughout this thesis, and one can write that

pij(t− s) = P(X(t) = j|X(s) = i) = P(X(t− s) = j|X(0) = i),
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2. MATHEMATICAL BACKGROUND

for s < t. The transition probabilities can be arranged into a square matrix,

P (t) = (pij(t))i,j∈SX

known as the transition matrix. The entries in each row of the transition matrix

should sum to 1, since from state i the process must travel to another state j ∈ SX

or stay in the same state, in the time interval [0, t].

2.2.3 Infinitesimal generator matrix

The transition probabilities pij(·) can be used to derive transition rates, qij.

Definition 17. The transition rates are defined as

qij =

 lim
∆t→0+

pij(∆t)−pij(0)

∆t
= lim

∆t→0+

pij(∆t)

∆t
, for i 6= j,

lim
∆t→0+

pii(∆t)−pii(0)
∆t

= lim
∆t→0+

pii(∆t)−1
∆t

, for i = j.

Using the fact that the transition probabilities sum to 1, it can be shown that

qii = −
∑

j∈SX,j 6=i
qij, ∀i ∈ SX.

The infinitesimal generator matrix, Q = (qij)i,j∈SX , is a square matrix containing

the transition rates where each row sum is 0 and the ith diagonal element is the

negative of the sum of the off-diagonal elements in that row.

2.2.4 Interevent times

In order to simulate a CTMC, it is necessary to know the distribution of the time

between successive events in the process, known as the interevent time. For a

CTMC X = {X(t) : t ∈ [0,∞)}, the random variable for the interevent time is

Ti = Wi+1−Wi, where Wi is the time at which the process makes the ith jump. It

can be shown (see Allen (2010); Pinsky & Karlin (2010)) that Ti is an exponential

random variable with parameter
∑

j∈SX,j 6=i qij, where qij are the transition rates

as defined in Section 2.2.3. The expectation of a random variable X ∼ Exp(λ)
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is given by E[X] = 1
λ

and hence the expected time that a CTMC spends in state

i is

E[Ti] =
1∑

k∈SX,k 6=i qik
.

Moreover, the probability that the process will move from state i to state j in

one step is given by

pij =
qij∑

k∈SX,k 6=i qik
.

The interevent times of a Markov chain being exponentially distributed can be

intuited by considering that the exponential distribution is the only continuous

probability distribution for which the memoryless property holds. This property

says that

P(Ti ≥ t+ ∆t|Ti ≥ t) = P(Ti ≥ ∆t).

2.2.5 Kolmogorov differential equations

Definition 18. The forward Kolmogorov differential equations are a system of

equations describing the rate of change of the transition probabilities. Formally,

dpij(t)

dt
=
∑
k∈SX

qkjpik(t), ∀i, j ∈ SX,

and the equations can be written in matrix form as

dP (t)

dt
= QP (t),

where P (·) is the transition matrix and Q is the infinitesimal generator for the

CTMC. This system of equations is also known as the chemical master equation

(CME) or just the master equation.

2.2.6 Linear noise approximation

The solution of the chemical master equation,

P (t) = P (0)eQt,
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gives the probability of being in each state of the state space at every time t.

This solution, however, is usually computationally intractable to obtain, since

the state space is typically large or even infinite (particularly in the case of multi-

dimensional Markov chains), and hence one would need to compute large matrix

exponentials. There are various methods of approximating the solution to the

CME such as generating function techniques (Ammar et al., 2016), and here the

linear noise approximation is introduced as one such method. The linear noise

approximation (LNA), also known as the system size expansion, was developed

by Van Kampen (1976).

The LNA is a method often used when considering stochastic processes in

chemistry, such as chemical reaction networks, whereby chemical reactions are

assumed to be occurring within a fixed volume, Ψ (Elf & Ehrenberg, 2003a;

Hayot & Jayaprakash, 2004). The method provides a second order approximation

to the CME via a large volume expansion around the steady state, with the

aim to obtain differential equations for different order moments of the random

variables in the process. As explained by Elf & Ehrenberg (2003a), the method

involves Taylor expanding the CME around the steady state of the system in

powers of
√

Ψ
−1

where Ψ is the volume of the system in which the chemical

reactions are occurring. Terms of first-order in
√

Ψ
−1

yield the deterministic

equations describing the concentrations of the species in the system (which are

participating in the chemical reactions) and terms of second order in
√

Ψ
−1

give

a linear Fokker-Planck equation for the fluctuations of the numbers of molecules.

2.2.7 Birth-and-death process

In this section, a continuous-time birth-and-death process is introduced, a type of

CTMC. The birth-and-death Markov chain X = {X(t) : t ≥ 0} may have either

a finite or infinite state space, SX = {0, 1, 2, . . . , N} or SX = {0, 1, 2, . . . }. There

are only two types of events in such a process, births with rate λn, moving the

process from state n to state n+ 1, and deaths with rate µn, moving the process

from state n to state n− 1, as depicted in Figure 2.1.
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0 1 2 3 3 n− 1 n n+ 1 3· · · · · ·

λ0 λ1 λ2 λn−2 λn−1 λn λn+1

µn+2µn+1µnµn−1µ3µ2µ1

Figure 2.1: A depiction of a birth-and-death process.

Denoting by ∆X(t) the change in the state of the process from t to t+ ∆t, i.e.

∆X(t) = X(t+ ∆t)−X(t),

the transition probabilities for this process are

pi,i+j(∆t) = P(∆X(t) = j|X(t) = i)

=


λi∆t+ o(∆t), j = 1,

µi∆t+ o(∆t), j = −1,

1− (λi + µi)∆t+ o(∆t), j = 0,

o(∆t), otherwise.

The infinitesimal generator matrix for the process X is given by

Q =



−λ0 λ0 0 0 . . .

µ1 −(λ1 + µ1) λ1 0 . . .

0 µ2 −(λ2 + µ2) λ2 . . .

0 0 µ3 −(λ3 + µ3) . . .

...
...

...
...

. . .


,

and it can be seen that Q is tridiagonal.
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2.2.8 Quasi-birth-and-death process

A generalisation in higher dimensions of the birth-and-death process is the quasi-

birth-and-death process. This process can be defined in n dimensions, but here

a two-dimensional quasi-birth-and-death process (i.e. a bivariate CTMC) is dis-

cussed.

Definition 19. A quasi-birth-and-death (QBD) process is a bivariate CTMC

X = {(X1(t), X2(t)) : t ≥ 0} with state space SX = {(i, j) : i = 0, 1, . . . , J(j), j ≥
0}, where in one step, the process can move from state (i, j) to state (i′, j′) only

if j′ = j, j+ 1, or j− 1. The coordinate j is called the level, while the coordinate

i is called the phase of the state (i, j). The number of states in level j, J(j) + 1,

can be finite or infinite.

In a QBD process the one-step transitions from a state can move freely in the

phase, but can move only within the same level or to one of the two adjacent

levels. The state space can be partitioned into levels,

SX =
⋃
k≥0

L(k), L(k) = {(i, j) ∈ SX : j = k}, k ≥ 0.

The states inside a level can also be ordered as

L(k) = {(0, k), (1, k), . . . , (J(k), k)}

and thus, with the states arranged into levels in this way, the infinitesimal gen-

erator matrix is block-tridiagonal and has the form

Q =



Q0,0 Q0,1 0 0 . . .

Q1,0 Q1,1 Q1,2 0 . . .

0 Q2,1 Q2,2 Q2,3 . . .

0 0 Q3,2 Q3,3 . . .

...
...

...
...

. . .


.

Sub-matrices Qk,k′ have dimensions (J(k) + 1) × (J(k′) + 1) and contain the

transition rates from states in level L(k) to states in level L(k′) where k′ ∈
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{k, k − 1, k + 1}.
A specific example of a QBD process is seen in Figure 2.2 where there are

infinitely many levels, represented by rows of the diagram (a example of a level

is circled in blue), and the number of states within each level k is J(k) + 1 = 5,

with the phase of a state represented by the column. In this example, from a

specific state (coloured in red), the process can move to any of four adjacent

states (coloured in green), two of which are in the same level and two of which

are in the adjacent levels.

0, n− 1

0, n

0, n+ 1

1, n− 1

1, n

1, n+ 1

2, n− 1

2, n

2, n+ 1

3, n− 1

3, n

3, n+ 1

4, n− 1

4, n

4, n+ 1

...
...

...
...

...

...
...

...
...

...

Figure 2.2: A depiction of a bivariate quasi-birth-and-death process. A level in
the process is represented by a row of the diagram and a specific example of a
level, level n, is circled in blue. From the state coloured in red, the process can
move in one step to any of the four adjacent states, coloured in green.

2.2.9 Gillespie algorithm

The Gillespie algorithm developed by Gillespie (1976a), is a stochastic simulation

algorithm which allows one to generate a single numerical realisation of a CTMC.

The Gillespie algorithm is outlined in Algorithm 1 for a CTMC X defined on the
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space of states SX and with infinitesimal generator matrix Q = (qij)i,j∈SX . The

state of the process is denoted by x and the time is represented by t.

Algorithm 1 Gillespie algorithm.

1: Set Tmax, the maximum time point until which to simulate the process X. Set

t = 0 and the state of the process equal to the initial state, x = x0.

2: while t < Tmax do:

3: Compute the sum of all transition rates to states which can be reached

from the current state in a single step, qx =
∑

j 6=x qxj.

4: If there are M states which can be reached from the current state,

assign each state an index i so that a particular state can be denoted

ji, where 1 ≤ i ≤M .

5: Sample u1 ∼ Unif(0, 1). The next state to which the process moves

is state jk, if
∑k−1

i=1

qxji
qx

< u1 <
∑k

i=1

qxji
qx

.

6: Sample u2 ∼ Unif(0, 1). Update the time as t→ t− log(u2)
qx

, since this

implies (through inverse transform sampling), adding to the current

time, a random variable sampled from an exponential distribution

with parameter qx.

7: Update the state of the process x→ jk, as determined using u1.

8: end while

2.3 Ordinary differential equations

As well as stochastic processes, in this thesis, ordinary differential equation (ODE)

mathematical models will be considered, a method known as deterministic mod-

elling. The word “deterministic” refers to the fact that, for given inputs to such

a model, the resulting output is always the same. This is dissimilar to a stochas-

tic model, where for given inputs, one can generate a collection of stochastic

realisations of the process. As explained by Hahl & Kremling (2016), determin-

istic models, such as ODE models, are therefore an approximation to stochastic
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models, since random fluctuations are not taken into account. ODE models

are commonly used in biological sciences to describe many types of systems, for

example, infectious disease modelling (Handel et al., 2020; Rock et al., 2014),

predator-prey interactions (Zhang et al., 2015a) and chemical reaction networks

(Feinberg, 2019; Higham, 2008). ODE models assume spatial homogeneity and

are often based upon the law of mass action kinetics, that the rate of a chemical

reaction depends on the concentrations of reactants and the stoichiometry of the

reaction (Ferner & Aronson, 2016). The information given in the remainder of

this section is based on the book by Allen (2007) who describes how ODEs can

be used to model systems in mathematical biology in general.

Differential equations are named by their order, where a differential equation

of order n is of the form

f

(
x,
dx

dt
,
d2x

dt2
, . . . ,

dnx

dtn
, t

)
= 0.

For the models considered in this thesis, x(t) will represent a molecular species,

for example the concentration of a population of receptors, where t will represent

time. Only first-order differential equations will be used in this thesis, such as

a1(t)
dx

dt
+ a0(t)x = g(t), (2.1)

so that the ODE describes the rate of change of the molecular species with respect

to time. If the coefficients a1(t) and a0(t) in Equation (2.1) are constants or

functions of t, but not of x or dx
dt

, then the equation is said to be linear, otherwise

it is nonlinear. If the equation does not depend explicitly on t then it is said to

be autonomous, otherwise it is nonautonomous. Equation (2.1) is homogeneous

if g(t) ≡ 0 and nonhomogeneous otherwise.

Often, instead of just a single ODE, one is concerned with a system of ODEs,

so that for example, the concentration of several molecular species can be tracked

in parallel over time. This is useful since often molecular species can interact with

one another to form new species, and such events can be formulated as a system
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of ODEs. A first-order system of differential equations can be written as

dX

dt
= F(X(t), t), (2.2)

where X = (x1(t), x2(t), . . . , xn(t))T , F = (f1, f2, . . . , fn)T and

fi ≡ fi(x1(t), x2(t), . . . , xn(t), t). Similarly to the one variable case, the system

of ODEs (2.2) is said to be autonomous if the right-hand side does not depend

explicitly on t, as will be the case in this thesis. If the system can be written in

the form

dxi
dt

=
n∑
j=1

aij(t)xj + gi(t),

for i = 1, . . . , n, then it is said to be linear. When using ODE models to describe

biological systems, the resulting equations are often nonlinear due to interactions

between species. For example if two species x1 and x2 bind to form x3, then the

ODEs for each of the three species will contain a term proportional to x1(t)x2(t)

under the law of mass action kinetics. Finally, if the system is linear and gi(t) ≡ 0

for i = 1, . . . , n, then the system is homogeneous, otherwise it is nonhomogeneous.

For given initial conditions, i.e. the value of each variable in the system at

time 0, ODE systems can be solved to find the functions xi(t) which tell us how

the species xi changes over time, for i = 1, . . . , n. In some cases, most commonly

for small linear systems of ODEs, the solution can be found analytically (Murphy,

2011), however for larger more complex nonlinear systems it is often impossible

to find the analytic solution. In this case, as will be the case throughout this

thesis, numerical methods (Kang & Cheek, 1972) are instead employed whereby

the system is evolved over time using a method of numerical integration such as

Euler’s method (Griffiths & Higham, 2010).

2.3.1 Steady states

One important type of solution for an ODE system is the constant solution, X∗,

known as the steady state solution, which satisfies

F(X∗) = 0.
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For a system of ODEs, this solution is found by setting the right hand of the ODEs

to zero and solving the resulting expressions simultaneously. For a biological

system, the ODE solution reaching steady state implies that the amount of each

species in the model is no longer changing with time. Some ODE systems may

have multiple solutions and therefore multiple steady states, however the only

biologically relevant steady states, when the variables of the model represent a

number of molecules (or people, animals etc.) or a concentration, are those where

the steady state value for each variable is greater than or equal to 0.

2.3.2 Stability analysis

Steady states of a system of ODEs can be classified as either locally stable, asymp-

totically stable or unstable. In loose terms, a steady state is locally stable if a

solution which starts close to the steady state solution remains close to this so-

lution as t→∞. The steady state is asymptotically stable if it is locally stable,

and solutions which start close to the steady state solution approach this solution

as t→∞. A steady state for which neither of these conditions is met is classified

as unstable. Formal definitions of local and asymptotic stability are as follows.

Definition 20. A steady state solution X∗ of a system of ODEs is locally stable

if for every ε > 0 there exists δ > 0 such that for every solution X(t) with initial

condition X(t0) = X0,

‖X0 −X∗‖ < δ =⇒ ‖X(t)−X∗‖ < ε,

for all t ≥ t0, where ‖.‖ denotes the Euclidean distance in Rn.

Definition 21. A steady state solution X∗ of a system of ODEs is locally asymp-

totically stable if it is locally stable and there exists δ > 0 such that

‖X0 −X∗‖ < δ =⇒ lim
t→∞
‖X(t)−X∗‖ = 0.

Whether or not a steady state is stable can be reasoned through linearisation

of the system around the steady state. For example, in the one variable case,

suppose that the ODE
dx

dt
= f(x)
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has a steady state at x∗. Then x∗ can be perturbed slightly by adding to it a

small positive number u(t), so that the perturbation from the steady state can

be written as u(t) = x(t) − x∗. It is then interesting to note how u(t) changes

with time, whereby if it grows with time, the solution is moving away from the

steady state and hence the steady state is unstable, and if it decreases with time,

the solution is moving towards the steady state and hence the steady state is

asymptotically stable. Given that x∗ is a constant, the time derivative of u(t) is

equal to the time derivative of x(t) and hence,

du

dt
=
dx

dt
= f(x) = f(u+ x∗).

One can then Taylor expand around the steady state and truncate the expansion

to the linear term since all higher order terms should be negligible. Hence,

du

dt
= f(x∗) + f ′(x∗)(u+ x∗ − x∗) +O[(u+ x∗ − x∗)2]

≈ f(x∗) + f ′(x∗)u

= f ′(x∗)u, (2.3)

since f(x∗) = 0. The solution to Equation (2.3) is

u(t) = u0e
f ′(x∗)t,

and hence if f ′(x∗) > 0, u(t) grows with time and the steady state is unstable

and if f ′(x∗) < 0 then u(t) decays with time and the steady state is stable. The

value f ′(x∗) is known as the eigenvalue of the linearised system.

For a system in two variables x and y,

dx

dt
= f(x, y)

dy

dt
= g(x, y)

steady states of the system are solutions (x∗, y∗) which satisfy f(x∗, y∗) = 0

and g(x∗, y∗) = 0. A similar type of linear stability analysis to that in the one

variable case can be carried out here, where f and g are Taylor expanded around
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the steady state, using the change of variables u = x−x∗ and v = y−y∗ to define

small perturbations from (x∗, y∗). In this case, it can be found that the system

linearised about the steady state (x∗, y∗) is

dZ

dt
= JZ,

where Z = (u, v)T and J is the Jacobian matrix for the system, evaluated at the

steady state, so that

J =

(
fx(x

∗, y∗) fy(x
∗, y∗)

gx(x
∗, y∗) gy(x

∗, y∗)

)
.

The elements of J are the partial derivatives of the functions f(x, y) and g(x, y)

with respect to the variables x and y, evaluated at the steady state, for example

fx(x
∗, y∗) =

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(x∗,y∗)

.

This result can easily be extended to n variables, and the stability of the steady

state then depends on the eigenvalues of the Jacobian matrix as follows. The

steady state is asymptotically stable if and only if all eigenvalues of the Jacobian

matrix evaluated at the steady state have negative real part. If one or more

eigenvalues of the Jacobian matrix evaluated at the steady state have positive

real part, then the steady state is unstable. If any eigenvalue has real part

equal to zero, then linear stability analysis is inconclusive and nonlinear theory

is required, which is not discussed in this thesis.

2.4 Global sensitivity analysis

In the following chapters of this thesis, mathematical models will be used to de-

scribe biological systems, with parameters such as rate constants of reactions,

and concentrations of molecules often unknown. Inferring such parameters using

Bayesian methods allows one to learn more about the underlying biological sys-

tem. Before carrying out Bayesian inference, it is useful to employ a sensitivity

analysis in order to determine which of the model parameters are most influential

to the model output. Sobol sensitivity analysis is one such method, whereby a
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“global” approach is taken, so that the parameters are varied simultaneously in

order to determine both the individual contribution of a parameter to the output

of the model, and the relative contribution of groups of parameters. In this sec-

tion, a brief description of the Sobol sensitivity analysis method is given (Homma

& Saltelli, 1996; Sobol, 1993; Zhang et al., 2015b).

Firstly, let the output of interest of a mathematical model be denoted by

Y = f(β), where β = (β1, β2, . . . , βs) is a vector of s model parameters, which

can vary within known ranges. For example, the mathematical model could be a

system of differential equations, and the output, some combination of the model

variables at a particular instance in time, t. When a sample of parameters is taken

from the known parameter ranges, and the model is simulated for this sample,

the model output then has an associated variance. The idea of the Sobol method

is to decompose the model variance, Var(Y ), into contributions known as Sobol

indices, from each individual parameter and combination of parameters, where

the higher the value of the Sobol index, the more influential the parameter, or

combination of parameters, is to the model output.

The contribution of a single parameter βi to the variance of the model output

is assessed via the computation of its corresponding first-order Sobol index. To

compute this quantity, one can compute Var(E[Y |βi]), where the variance is taken

over the s− 1 remaining parameters. This quantity tells us how much the model

output varies when the parameter βi is sampled from its known range. The first-

order Sobol index for the parameter βi, denoted Si, is then defined by how much

this variability contributes to the total variance of the model output, i.e.

Si =
Var(E[Y |βi])

Var(Y )
.

To compute higher-order Sobol indices, quantifying the contribution of inter-

actions between parameters to the model variance, it is noted that if the function

f(·) is integrable over [0, 1]s then it can be expanded as

Y = f(β) = f0 +
s∑
i=1

fi(βi) +
∑

1≤i<j≤s
fij(βi, βj) + · · ·+ f1...s(β1, . . . , βs),
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i.e. Y can be decomposed into terms which depend on only individual model

parameters or combinations of model parameters. Then, as proved by Sobol

(1993), provided that each of the functions f in the expansion have zero mean,

squaring both sides and integrating gives

Var(Y ) =
s∑
i=1

Vi +
∑

1≤i<j≤s
Vij + · · ·+ V1...s, (2.4)

where Vi, Vij, . . . , V1...s are the variances of the functions fi, fij, . . . , f1...s respec-

tively. Hence,

Vi = Var(E[Y |βi]),
Vij = Var(E[Y |βi, βj])− Vi − Vj,
Vijk = Var(E[Y |βi, βj, βk])− Vij − Vik − Vjk − Vi − Vj − Vk,

...

V1...s = Var(Y )−
s∑
i=1

Vi −
∑

1≤i<j≤s
Vij − · · · −

∑
1≤i1<···<is−1≤s

Vi1...is−1 .

The first s terms in Equation (2.4) can be used to compute the first-order Sobol

indices. Other terms in the expansion can be used to compute higher-order Sobol

indices, for example the second-order indices

Sij =
Vij

Var(Y )
,

which concern the variance of Y accounted for by the interaction between βi

and βj. Finally, an additional index, which will be considered in this thesis, was

introduced by Homma & Saltelli (1996), namely the total-order Sobol index for

parameter i, denoted ST i. This index is a sum of all contributions to the model

variance associated with βi, i.e.

ST i = Si + Sij + Sik + · · ·+ Sijk + · · ·+ Si...s.

In this thesis, total-order Sobol indices will be computed in Python, making use

of the package SALib.
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2.5 Bayesian methods

In this section, two Bayesian inference methods are introduced, which allow the

user to infer parameters of a mathematical model, given observed data. Both are

variations of a method known as Approximate Bayesian Computation (ABC),

which is based upon Bayes’ theorem. Bayes’ theorem is introduced by Blitzstein

& Hwang (2019) and in many other probability and statistics texts, as a way of

relating conditional probabilities of events A and B, and is given as

P(A|B) =
P(A)P(B|A)

P(B)
.

In statistical inference, Bayes’ theorem is instead formulated as

π(θ|D) =
π(θ)π(D|θ)∫

θ
π(D|θ)π(θ)dθ

, (2.5)

where θ is a model parameter, or vector of model parameters, and D is the

observed data. In this formulation, π(θ) is known as the prior distribution, and

encodes the users prior beliefs about the parameter(s). If the user has a strong

prior knowledge of a parameter value then an informative prior can be used, such

as a normal or beta distribution, giving more density to regions of the parameter

space in which the true value is thought to lie. If however, the user has very little

prior knowledge of a parameter value then a non-informative prior can be used,

such as a uniform distribution, which would only require an upper and lower

bound for the parameter value. π(D|θ) is the likelihood of observing the data

D, given the parameter(s) θ. Finally, π(θ|D) is the posterior distribution that

the user aims to evaluate. The integral on the denominator of Equation (2.5) is

just a normalisation constant, and hence a simpler form of Equation (2.5) is the

proportionality equation,

π(θ|D) ∝ π(θ)π(D|θ).

Two methods of estimating the posterior distribution are given in Sections 2.5.1

and 2.5.2 which do not require computing the likelihood function, something that

is often difficult to compute for mathematical models.
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Often when modelling biological systems, a situation can arise in which two or

more mathematical models could, in theory, describe the underlying system and

one needs to decide which model is the most viable. Bayesian methods, namely

Bayesian model selection, based upon approximate Bayesian computation, can be

used to solve this problem and two such methods are explained in Section 2.5.3.

The methods introduced in Sections 2.5.1, 2.5.2 and 2.5.3 are informed by Toni

et al. (2009), however many others have explained and applied such methods in

the literature (Beaumont et al., 2002; Filippi et al., 2013; Simola et al., 2020;

Sunn̊aker et al., 2013).

2.5.1 Approximate Bayesian computation - rejection al-

gorithm

Given observed data, D, and a mathematical model, M, parametrised by the

vector, θ, the aim of approximate Bayesian computation (ABC) is to use model

simulations to infer posterior distributions for the parameter values. The method

allows the user to combine their prior beliefs about the parameters, π(θ), with

comparisons between the data and model simulations to arrive at the posterior

distributions. From a sampled parameter set θ∗ ∼ π(θ), one can simulate data

from the model, D∗ ∼ π(D|θ∗) and compare this simulated data with the ob-

served data D. If the simulated data is sufficiently close to the observed data,

where sufficiently close is determined by some distance measure, δ(·, ·), then the

sample (θ∗,D∗) is accepted, otherwise it is rejected. The method continues by

repeating this process until an accepted sample of size N is reached. The ABC

rejection algorithm is summarised in Algorithm 2.

2.5.2 Approximate Bayesian computation - Sequential

Monte Carlo

A major downfall of the ABC rejection algorithm is its computational inefficiency.

In situations in which the parameter space is large, corresponding to a large

number of model parameters and/or prior distributions spanning a large interval,

the ABC rejection algorithm can be very slow to converge. This is because many

33



2. MATHEMATICAL BACKGROUND

Algorithm 2 ABC rejection algorithm (Toni et al., 2009).

1: Choose the posterior sample size N , the acceptance threshold ε, the distance

measure δ(·, ·) and set n = 0.

2: while n < N do:

3: Sample θ∗ from π(θ).

4: Simulate a dataset D∗ from π(D|θ∗).
5: If δ(D,D∗) ≤ ε, accept θ∗ and set n = n+ 1.

6: end while

simulations are required in order to scan the whole parameter space effectively,

and with a large number of parameters, the probability of sampling an acceptable

parameter set is low, for each iteration. On this basis, Toni et al. (2009) developed

the ABC - sequential Monte Carlo (ABC-SMC) method, an iterative method in

which the user applies ABC multiple times in order to converge to the posterior

distributions faster and more efficiently.

Using the same notation for the model, data and distance threshold as in

Section 2.5.1, here a decreasing sequence of threshold values ε1 > ε2 > · · · > εZ

is introduced, where Z is the number of iterations of the ABC to be run. Under

this notation, in each iteration of the ABC one generates an accepted sample of

size N , where each of the N elements, θ∗, is referred to as a particle. A whole

sample of particles of size N will be referred to as a population, and the method

iterates until there are Z populations, of accepted samples, where population Z

comprises the final posterior distributions with all particles resulting in a distance

measure δ(D,D∗) ≤ εZ .

In the first iteration, a rejection ABC is performed where the parameters

are sampled from π(θ) and are accepted if they result in a distance measure

δ(D,D∗) ≤ ε1. Each particle in the first posterior distribution is assigned an

equal weight, w
(n)
1 = 1/N for n = 1, . . . , N . In each of the following iterations of

the ABC, the parameters θ∗ are sampled from the posterior distributions of the

previous iteration with weights wz−1, where z is an index for the iteration of the

algorithm. The parameters are perturbed using a perturbation kernel Kz(θ|θ∗)
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and the model is simulated using the perturbed parameters and compared with

the observed data. The perturbed parameter set is accepted into population z, if

it results in a distance measure δ(D,D∗) ≤ εz. Each particle in the population

z (z ≥ 2) is assigned a weight based on the prior densities, the weights at the

previous iteration and the perturbation kernel. This procedure continues until

Z populations of size N are reached. The intuition for this method is that, in

each round of the ABC one samples from a smaller parameter space than in the

previous round, informed by the posterior distributions in the previous round.

The perturbation kernel can be chosen by the user, and some common examples

are the component wise uniform kernel and the multivariate normal kernel (Filippi

et al., 2013). The ABC-SMC algorithm is summarised in Algorithm 3.

2.5.3 Bayesian model selection

Bayesian model selection is a method of determining which of two or more math-

ematical models is most likely to describe the observed data, D. Let us assume

that there are two potential models, M1 and M2 which could describe the bio-

logical system from which the observed data is obtained. The aim of Bayesian

model selection is to determine the Bayes factor,

B12 =
π(M1|D)/π(M2|D)

π(M1)/π(M2)
,

where π(Mi|D) is the marginal posterior distribution of model Mi, i ∈ {1, 2} and

π(Mi) is the prior for model Mi, i ∈ {1, 2}. Assuming uniform priors, the Bayes

factor becomes

B12 =
π(M1|D)

π(M2|D)
,

and provides the odds in favour of M1 over M2. Algorithm 4 is based on the

ABC rejection algorithm and provides a method of estimating the Bayes factor,

B12, where the estimated value is denoted B̂12.

Similarly to the rejection ABC method for parameter estimation, this method

of model selection can be very inefficient for large and complex mathematical

models. Hence, Toni et al. (2009) introduced a model selection algorithm based on

the ABC-SMC method. The algorithm is very similar to the ABC-SMC method,
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Algorithm 3 ABC-SMC algorithm (Toni et al., 2009).

1: Choose the posterior sample size N , the sequence of threshold values ε1 >

· · · > εZ and the distance measure δ(·, ·). Set the population indicator z = 1

and the particle indicator n = 0.

2: while z < Z do:

3: while n < N do:

4: If z = 1, sample θ∗∗ from π(θ). Else sample θ∗ from the previous

populations posterior distributions, {θ(k)
z−1} for k = 1, . . . , N , with

weights wz−1 and perturb to obtain θ∗∗ ∼ Kz(θ|θ∗). If π(θ∗∗) = 0,

re-sample θ∗ until π(θ∗∗) 6= 0.

5: Simulate a dataset D∗ from π(D|θ∗∗).
6: If δ(D,D∗) ≤ εz, set θ(n)

z = θ∗∗ and set n = n + 1. Calculate the

weight for particle θ(n)
z as,

w(n)
z =


1 if z = 1,

π(θ
(n)
z )∑N

j=1 w
(j)
z−1Kz(θ

(n)
z |θ(j)z−1)

if z > 1.

7: end while

8: Normalise the weights and set z = z + 1.

9: end while

whereby the parameters are sampled iteratively from the posterior distributions

of the previous iteration, perturbed, and assigned weights if they are accepted.

As a step prior to sampling the parameters however, a model, Mi, i ∈ {1, 2},
is firstly sampled from a prior distribution, π(M). For example, if the user is

selecting between two models, Mi, i ∈ {1, 2}, with no prior information about

which model is the most likely, then a discrete uniform distribution can be used

as a prior distribution for the models with only two values 1 = M1 and 2 = M2,

where each model then has prior probability, 1
2
. The parameters are sampled
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Algorithm 4 Bayesian model selection algorithm (Toni et al., 2009).

1: Choose the posterior sample size N , the acceptance threshold ε and the dis-

tance measure δ(·, ·). Set i = 1 and r1 = r2 = 0.

2: while i < 2 do:

3: Set n = 0.

4: while n < N do:

5: Sample θ∗i from π(θi).

6: Simulate a dataset D∗i from π(D|θ∗i ).
7: If δ(D,D∗i ) ≤ ε, set ri = ri + 1.

8: Set n = n+ 1.

9: end while

10: Set i = i+ 1.

11: end while

12: Compute pi = ri
N

for i ∈ {1, 2}.
13: return B̂12 = p1

p2
.

for this particular model from either the prior distributions (first iteration) or

the previous iterations posteriors (iteration z = 2, . . . , Z, in which case they are

also perturbed), and again the particle is accepted if the model simulation has

distance δ(D,D∗i ) ≤ εz for iteration z. This procedure continues until a sample

of size N is reached consisting of parameters sets from any model. If the models

are initially given equal weight, then for a large enough sample size N , they will

each be sampled roughly the same number of times. However, as the iterations of

the algorithm proceed, one would expect that if one model results in simulations

that better resemble the data, this model will have more parameter sets accepted

per iteration as z approaches Z. The ABC-SMC model selection algorithm is

given in Algorithm 5. In this algorithm, for a specific model m∗, θ(m∗) denotes a

particle relating to the model m∗. Likewise, D(m∗)∗ denotes a simulated dataset

from model m∗, and w(m∗) denotes weights corresponding to particles accepted

into a sample for model m∗.
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Algorithm 5 ABC-SMC model selection algorithm (Toni et al., 2009).

1: Choose the posterior sample size N , the sequence of threshold values ε1 >

· · · > εZ and the distance measure δ(·, ·). Set the population indicator z = 1

and the particle indicator n = 0.

2: while z < Z do:

3: while n < N do:

4: Sample a model m∗ from π(M).

5: If z = 1, sample θ∗∗ from π(θ(m∗)). Else sample θ∗ from the previous

populations posterior distributions, {θ(m∗)(k)
z−1} for k = 1, . . . , N , with

weights w(m∗)z−1 and perturb to obtain θ∗∗ ∼ Kz(θ|θ∗). If π(θ∗∗) =

0, re-sample θ∗ until π(θ∗∗) 6= 0.

6: Simulate a dataset D(m∗)∗ from π(D|θ∗∗,m∗).
7: If δ(D,D(m∗)∗) ≤ εz, set θ(m∗)(n)

z = θ∗∗ and set n = n + 1. Set

m
(n)
z = m∗ and calculate the weight for particle θ(m∗)(n)

z as,

w(n)
z =


1 if z = 1,

π(θ
(n)
z )∑N

j=1 w
(j)
z−1Kz(θ

(n)
z |θ(j)z−1)

if z > 1.

8: end while

9: Normalise the weights and set z = z + 1.

10: end while

The output of Algorithm 5 is a series of N dimensional vectors mz, for z =

1, . . . , Z. When using the algorithm to select between two models Mi, i ∈ {1, 2},
each vector mz will contain the numbers 1 and 2, and one can compute,

f zi = frequency of the value i in vector mz, for i ∈ {1, 2} and z = 1, . . . , Z.

Using these frequencies, the relative probability of each model at each iteration
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can be computed as

pzi =
f zi
N
, for i ∈ {1, 2} and z = 1, . . . , Z.

Thus an approximation of the Bayes factor B12 can be found iteratively using

Algorithm 5 as

B̂z
12 =

pz1
pz2
, for z = 1, . . . , Z.

2.6 Statistical analysis

In this section, statistical tests are introduced, which will be used in Chapter 6.

In particular, analysis of variance (ANOVA) is a method used to find differences

between the means of two or more groups of data. When there are more than

two groups, the result of an ANOVA will conclude whether or not there is a

statistically significant difference between the means of at least one pair of the

groups, but it will not tell us which pairing was significantly different. To infer this

information, one can use a post-hoc analysis, such as Tukey’s honest significant

difference (HSD) test, as is introduced in Section 2.6.2.

2.6.1 Analysis of variance (ANOVA)

Here, ANOVA is described, based on the introduction given by Marques de Sá

(2003).

One-way ANOVA

Assuming that there are c independent samples, an ANOVA tests whether the

null hypothesis, that the means of the c groups are equal, is true, i.e.

H0 : µ1 = µ2 = · · · = µc,

against the alternative hypothesis, that the means of at least one pair are unequal,

H1 : µi 6= µj,
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for some pair i, j. The simplest form of this method is one-way ANOVA, which

is applied when there is only one categorical grouping level. The variable being

tested is known as the dependent variable, and the variable with the groupings is

known as the independent variable. Given that ANOVA tests only for differences

in the means of the groups of data, an assumption of the test is that the variance

in each group is equal and the data in each group is normally distributed. The

general principle of the method is to decompose the total variance of the data,

into contributions to the variance, within-groups, and between-groups.

Suppose one has a sample of size n, split into c groups with sizes n1, n2, . . . , nc,

and with sample means x̄1, x̄2, . . . , x̄c. Any value in the total sample can be

denoted xij, where i ∈ {1, . . . , c} is the group index and j ∈ {1, . . . , ni} is an

index for the value within the group, with ni being the number of observations

in group i. The total variance is then related to the total sum of squares (SST)

of deviations from the global sample mean x̄, where

SST =
c∑
i=1

ni∑
j=1

(xij − x̄)2.

Adding and subtracting x̄i to the deviations xij−x̄, one can arrive at the following

expression,

SST =
c∑
i=1

ni∑
j=1

(xij − x̄i)2 +
c∑
i=1

ni∑
j=1

(x̄i − x̄)2 + 2
c∑
i=1

ni∑
j=1

(xij − x̄i)(x̄i − x̄).

The last term in this expression can be shown to be equal to 0, and hence,

SST =
c∑
i=1

ni∑
j=1

(xij − x̄i)2 +
c∑
i=1

ni∑
j=1

(x̄i − x̄)2. (2.6)

The first term in Equation (2.6) is known as the within-group sum of squares

(SSW) or the error sum of squares (SSE), since it represents the deviations of

the values in a particular group from the sample mean of that group. The second

term in the equation is known as the between-group sum of squares (SSB), since

it is accounting for the deviations of the group means from the global mean.
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Therefore one can write Equation (2.6) as

SST = SSW + SSB,

i.e. the total sum of squares is contributed to by the within-group sum of squares

and the between-group sum of squares. Each sum of squares can then be expressed

in terms of variances as,

(n− 1)v = (n− c)vW + (c− 1)vB,

where vW is the within-group variance and vB is the between-group variance. The

total variance, v, has (n − 1) degrees of freedom (dof), whilst the within-group

and between-group variances have (n − c) and (c − 1) dof respectively. If the

null hypothesis, that the means of the c groups are equal, is not true, one would

expect the variation between means to be large relative to the variation within

samples. The within-group variance, or mean square error (MSE), can be written

as

vW = MSE =
SSW

n− c,

and the between-group variance, or mean square between (MSB), can be written

as

vB = MSB =
SSB

c− 1
.

Then if the null hypothesis is true, one would expect the ratio,

vB
vW

=
MSB

MSE
,

to be close to 1, and if there is evidence against the null hypothesis, then the

ratio should be significantly larger than 1. This ratio defines the test statistic,

and will be compared with the F distribution to test the validity of H0. Firstly,

the sum of squares of k independent random variables, with standard normal

distribution, follows the chi-square, χ2(k), distribution. The F distribution can

then be defined as the ratio of two independent χ2 random variables. If two
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independent random variablesQ1 andQ2 are χ2 distributed with d1 and d2 degrees

of freedom, respectively, then

Q1/d1

Q2/d2

,

follows an F (d1, d2) distribution. The test statistic for a one-way ANOVA is

F ∗ =
vB
vW

=
MSB

MSE
∼ F (c− 1, n− c),

under H0.

Two-way ANOVA

Whereas a one-way ANOVA only examines the effect of one categorical variable

(or grouping) on the dependent variable, a two-way ANOVA examines the effect of

two categorical variables. Two-way ANOVA follows the same assumptions as the

one-way case, where each sample is independent, there is equality in the variances

between samples, and each sample is normally distributed. Let us assume that

the first independent variable, R1, has r1 groupings and the second independent

variable, R2, has r2 groupings. There are now three pairs of null and alternative

hypotheses:

H01 : the means of all r1 samples defined by R1 groupings are equal, vs,

H11 : there is at least one of the r1 samples with unequal mean,

H02 : the means of all r2 samples defined by R2 groupings are equal, vs,

H12 : there is at least one of the r2 samples with unequal mean,

H03 : there is no interaction between R1 and R2, vs,

H13 : there is interaction between R1 and R2.

Similarly to the one-way case, here the total variance in the two-way case is

split into contributions from the factor R1, the factor R2, the interaction between

R1 and R2 and the within-group variance. Assuming that each grouping has the
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same size, n, the total sum of squares (SST) (with n− 1 dof) can be expressed as

SST = SSR1 + SSR2 + SSR12 + SSW,

where,

SSR1 = R1 main effect sum of squares with (r1 − 1) dof,

SSR2 = R2 main effect sum of squares with (r2 − 1) dof,

SSR12 = interaction effect sum of squares with (r1 − 1)(r2 − 1) dof, and

SSW = error sum of squares with n− r1r2 dof.

Two-way ANOVA then has three test statistics, F ∗1 , corresponding to the R1

main effect, F ∗2 , corresponding to the R2 main effect and F ∗12, corresponding to

the interaction effect. These test statistics can be defined by taking ratios of the

following mean squares corresponding to each effect in the model, where,

vR1 = MSR1 =
SSR1

(r1 − 1)
,

vR2 = MSR2 =
SSR2

(r2 − 1)
,

vR1R2 = MSR12 =
SSR12

(r1 − 1)(r2 − 1)
, and

vW = MSE =
SSW

n− r1r2

.

Then, the test statistics are defined as

F ∗1 =
vR1

vW
=

MSR1

MSE
∼ F (r1 − 1, n− r1r2),

F ∗2 =
vR2

vW
=

MSR2

MSE
∼ F (r2 − 1, n− r1r2), and

F ∗12 =
vR1R2

vW
=

MSR12

MSE
∼ F ((r1 − 1)(r2 − 1), n− r1r2).

As in the one-way case, a null hypothesis is rejected if the corresponding F

statistic is significantly larger than 1. An ANOVA allows one to determine if
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there is a significant difference between the means of groupings defined by a

categorical variable, or the interaction between two categorical variables in the

two-way case. In the case where a categorical variable has more than two levels,

the ANOVA does not however specify, for which of the groupings the significant

difference arose. To this end, one can use a post-hoc analysis as will be introduced

in the next section.

2.6.2 Tukey’s honest significant difference test

In this section, a post-hoc analysis to the ANOVA procedure is introduced, which

is a pairwise comparison technique to determine which levels of a categorical

variable are statistically significantly different from one another. The following

description of the method is based on the information given by Montgomery

(2017) and Abdi & Williams (2010). Tukey’s honest significant difference (HSD)

is the smallest amount by which means must differ from each other to be classed

as “truly” different. The test utilises the distribution of the studentised range

statistic,

q =
ȳmax − ȳmin√

MSE/n

where ȳmin and ȳmax are the smallest and largest of the sample means of k samples

of size n, from the same normal distribution. Tukey’s test statistic is defined as

Tα = qα(a, f)

√
MSE

n
,

for significance level α, where a is the number of observations in each group, n

is the total number of observations and f is the dof associated with the MSE.

The value qα(a, f) can be obtained from a studentised range distribution table.

Then, denoting by ḡ and ḡ′, the means of two groups of some factor G, there is

a significant difference between these means at the level α, if

|ḡ − ḡ′| ≥ Tα.
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This test can be conducted for each pair of groups defined by a factor in the

ANOVA procedure, to determine the cause of a significant effect.

2.6.3 Principal component analysis

In this section, another statistical technique is discussed, namely principal compo-

nent analysis (PCA). PCA is a method of summarising, visualising and reducing

the dimensionality of a multi-dimensional, highly correlated dataset. The aim

is to be able to recast a p-dimensional dataset into p so called principal compo-

nents (PCs), which are linear combinations of the original variables but where

some of these PCs hold more variability than a single original variable. In this

way one can more easily visualise, by plotting the data transformed to the PCs,

different groupings in the dataset. An intuitive explanation of the procedure for

finding the principal components is given here, based on the information given

by Chatfield & Collins (1981) and Kassambara (2017).

Let X = [X1, . . . , Xp] be a p-dimensional dataset with mean µ and covari-

ance matrix Σ. The aim is to transform this dataset to p principal components

Y1, . . . , Yp which are uncorrelated and where the variance decreases from Y1 to

Yp. Each Yj should be a linear combination of the X’s, where

Yj = a1jX1 + a2jX2 + · · ·+ apjXp

= aTj X,

and aTj = [a1j, . . . , apj] is a vector of constants. To find the first PC, Y1 = aT1 X,

one must find the constants aT1 such that Var(aT1 X) is maximal. A constraint,

aTj aj = 1 is used to ensure that the variance doesn’t become unbounded and a

similar constraint is used for each further PC. It turns out, by using the method of

Lagrange multipliers, that a1 should be the eigenvector of the sample covariance

matrix Σ, corresponding to the largest eigenvalue. Similarly, the kth PC is

defined by Yk = aTkX, where aTk is the eigenvector of the sample covariance

matrix corresponding to the kth largest eigenvalue.

By using this method to find the PCs, it is often the case that from the p

PCs, there are only a few which hold more variability than any single original
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variable, and hence these PCs become the focus when looking for further trends

in the data.
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Chapter 3

A stochastic model of

receptor-ligand competition

dynamics

Receptors, which often reside on the surface of a cell, play a significant role in

determining the fate of cells through the initiation of intracellular phosphoryla-

tion (signalling) cascades (Chen et al., 2015; Ernst & Jenkins, 2004; Hackel et al.,

1999; Katoh & Katoh, 2006; Santos et al., 2007). Many receptors span the cellu-

lar membrane and are comprised of an extracellular domain, a trans-membrane

domain and an intracellular domain (Lemmon & Schlessinger, 2010; Pierce et al.,

2002). For such receptors, signalling cascades can be initiated by the binding of a

ligand molecule, in the extracellular medium, to the extracellular domain of the

receptor, forming a receptor-ligand complex. Ligand binding can induce phos-

phorylation of tyrosine residues on the intracellular tail of the bound receptor, in

turn allowing the receptor to interact with downstream signalling proteins in the

cellular cytoplasm. The purpose of these signalling cascades can be to determine

the fate of the cell, for example cell division, growth, death or migration, and

the eventuality which occurs is determined by the specific receptor-ligand inter-

action. The formation of a single receptor-ligand complex is often not sufficient

to push a cell to its fate and in fact it is the strength of the signalling that de-

termines cellular fate, where in some systems this strength can be assumed to

be proportional to the number of receptor-ligand complexes formed (Starbuck &
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Lauffenburger, 1992). It is therefore important to quantify the number, and time

scales of formation, of different receptor-ligand complexes on the cell membrane.

Often, ligand molecules are capable of binding to more than one type of re-

ceptor (Chen et al., 2015; Weddell & Imoukhuede, 2017), resulting in an element

of natural competition for this shared resource. For example, a ligand which

is shared by two receptors is the vascular endothelial growth factor A (VEGF-

A), which can bind two different vascular endothelial growth factor receptors

(VEGFRs), namely VEGFR1 and VEGFR2 (Cross et al., 2003). Although both

receptors bind the same ligand, they have been shown to have different functions

in normal and tumour vasculature (Dikov et al., 2005; Shibuya, 2006). Shibuya

(2006) explains how, during embryogenesis, these receptors have opposing func-

tions upon VEGF-A stimulation; VEGFR1 is a negative regulator for angiogenesis

(the formation of new blood cells), whereas VEGFR2 is a positive regulator. In

the same reference, it is argued that the receptors have differing roles in pathol-

ogy and the author suggests that it may be useful, in the control of disease, to be

able to inhibit the receptors individually. In the development of such inhibitors

it is crucial to be able to quantify the number, and time scales to formation, of

receptor-ligand complexes.

In this chapter, a stochastic model for the competition between two receptors

for a common ligand is introduced, in terms of a continuous-time birth-and-death

Markov chain. Stochastic models can be relevant for some ligand molecules, such

as pharmaceuticals or naturally produced cytokines (for example, IL-2), which

can produce a cellular response at a very low dose (Gurevich et al., 2003). A

stochastic model for the competition dynamics between two species for a shared

resource was first introduced and analysed by Reuter (1961) in the area of Math-

ematical Ecology. Iglehart et al. (1964) further generalised this idea to a multi-

variate competition process with two or more variables (i.e. species). The reac-

tions between two receptors with a common ligand lead to a bi-variate stochastic

process of the kind considered by Reuter (1961), and the aim of this chapter is to

compute the steady state distribution of the number of receptor-ligand complexes

of each type, and to quantify the time scales of formation of a particular type of

receptor-ligand complex. Such properties of a Markov chain are here collectively

referred to as stochastic descriptors.
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3.1 A stochastic competition model

In Sections 3.4.1 and 3.5.1, previously developed methods, namely matrix-

analytic methods (Latouche et al., 1999; López-Garćıa et al., 2018), are intro-

duced and used to compute the stochastic descriptors of interest. The main limi-

tation of these methods however, is their practical computational implementation.

The state space of a bi-variate stochastic process increases with the number of

molecules in the system, where large numbers are typical in experimental and

physiological settings (Cross et al., 2003; Shibuya, 2006). When more than two

receptor species are present, or when the intracellular dynamics are also consid-

ered in the mathematical model, the dimensionality and number of states are

further increased. Thus, in Sections 3.4.2, 3.4.3, 3.5.2 and 3.5.3, analytical ap-

proximations for the stochastic descriptors are introduced. These approximations,

for the two-dimensional system of interest (i.e. two kinds of receptor competing

for a common ligand), are motivated by the fact that, under excess of ligand, the

processes representing receptor-ligand complex formation for the two different

receptors are approximately independent. The accuracy of these approximations

is assessed by means of numerical comparison to the matrix-analytic results, for

a wide range of biologically feasible parameter values and numbers of molecules.

3.1 A stochastic competition model

In this section, a stochastic mathematical model for the competition between two

receptors for a common ligand is introduced. There are two receptor types, R1

and R2, assumed to be residing across the cell membrane, and a shared ligand,

L, in the extracellular medium. Both receptors can associate with the ligand

to form a receptor-ligand complex, denoted by M1 or M2, depending on the

receptor type involved. For brevity, receptor-ligand complexes will be referred to

only as complexes for the remainder of this chapter. It is assumed that there is a

spatially homogeneous distribution of molecules on the cell membrane and mass

action kinetics apply (Steinfeld et al., 1989). The complex formation reactions

occur with forward association rates kf,1 and kf,2, respectively. The complexes,

M1 and M2, are allowed to dissociate into their constituent receptor and ligand,

with rates kr,1 and kr,2, respectively (see Figure 3.1).
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+
kf,1

kr,1

R1 L M1

+
kf,2

kr,2

R2 L M2

Figure 3.1: A depiction of the molecular reactions underlying the stochastic
mathematical model. Two different types of receptor molecule can bind, re-
versibly, with a shared ligand to form two different complex types.

The dimensionality of the process can be reduced, and hence the model

simplified, by considering the total number of receptors available in the sys-

tem, denoted by nR,1 and nR,2, and the total number of ligands available, de-

noted by nL. It is clear that nR,1 = R1(t) + M1(t) and nR,2 = R2(t) + M2(t),

for all t ≥ 0, where R1(t) and R2(t) represent the number of free receptors

of type 1 and 2, respectively, at time t, and M1(t) and M2(t) represent the

number of complexes of type 1 and 2, respectively, at time t. Then, the pro-

cess can be described as a bi-variate continuous-time Markov chain (CTMC)

(see Section 2.2.1 for details) X = {X(t) = (M1(t),M2(t)) : t ≥ 0}, with

M1(t),M2(t) ≥ 0 for all t ≥ 0, and the process X evolves over the state space

SX = {(m1,m2) ∈ (N ∪ {0})2 : m1 ≤ nR,1, m2 ≤ nR,2, m1 + m2 ≤ nL},
where m1 and m2 are the number of type 1 and type 2 complexes, respectively,

at any given time.

The dynamics of complex formation and dissociation are then represented

by jumps, or transitions, between states in SX, where the notation (m1,m2) →
(m′1,m

′
2) implies a transition in one step from state (m1,m2) to state (m′1,m

′
2).

The transition diagram is shown in Figure 3.2 and the infinitesimal transition rate

from state (m1,m2) to state (m′1,m
′
2), introduced in Definition 17, by assuming

mass action kinetics, is given by

q(m1,m2),(m′1,m
′
2) =



kf,1(nR,1 −m1)(nL −m1 −m2), if (m′1,m
′
2) = (m1 + 1,m2),

kr,1m1, if (m′1,m
′
2) = (m1 − 1,m2),

kf,2(nR,2 −m2)(nL −m1 −m2), if (m′1,m
′
2) = (m1,m2 + 1),

kr,2m2, if (m′1,m
′
2) = (m1,m2 − 1),

0, otherwise.
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3.1 A stochastic competition model

The number of states in SX is

#SX =

N2∑
k=0

(min(N1, nL − k) + 1)

=

N2∑
k=0

(min(nR,1, nL − k) + 1),

where N1 = min(nR,1, nL) and N2 = min(nR,2, nL). Explicit formulae for the

number of states in SX can be derived and depend on the values of nR,1, nR,2 and

nL, where

#SX =



(nR,1 + 1)(nR,2 + 1), if nR,1 + nR,2 ≤ nL,

2(nL−nR,1+1)(nR,1+1)+(nR,1+nR,2−nL)(nR,1+nL−nR,2+1)
2 , if nR,1 ≤ nR,2 ≤ nL

and nR,1 + nR,2 > nL,

2(nL−nR,2+1)(nR,2+1)+(nR,1+nR,2−nL)(nR,2+nL−nR,1+1)
2 , if nR,2 ≤ nR,1 ≤ nL

and nR,1 + nR,2 > nL,

(nR,2+1)(2nL−nR,2+2)
2 , if nR,1 > nL

and nR,2 < nL,

(nR,1+1)(2nL−nR,1+2)
2 , if nR,1 < nL

and nR,2 > nL,

(nL+1)(nL+2)
2 , if nR,1 ≥ nL

and nR,2 ≥ nL.

The model depicted in Figure 3.1 can be analysed by considering the prob-

abilities p(m1,m2)(t) (see Section 2.2.2) for the process X, where for initial state

(M1(0),M2(0)),

p(m1,m2)(t) = P(M1(t) = m1,M2(t) = m2) ∀(m1,m2) ∈ SX, t ≥ 0.

A differential equation with respect to t, for these probabilities can be written
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(m1,m2)
(m1 + 1,m2)

(m1 − 1,m2)

(m1,m2 + 1)

(m1,m2 − 1)

q(m1,m2),(m1+1,m2)

q(m1,m2),(m1−1,m2)

q(m1,m2),(m1,m2+1)

q(m1,m2),(m1,m2−1)

Figure 3.2: Transition diagram for the process X, showing the possible states
which the process can move to from a general state (m1,m2) and the transition
rates with which these state moves occur.

as

dp(m1,m2)

dt
= kf,1(nR,1 −m1 + 1)(nL −m1 −m2 + 1)p(m1−1,m2) + kr,1(m1 + 1)p(m1+1,m2)

+ kf,2(nR,2 −m2 + 1)(nL −m1 −m2 + 1)p(m1,m2−1) + kr,2(m2 + 1)p(m1,m2+1)

− [kf,1(nR,1 −m1)(nL −m1 −m2) + kr,1m1

+ kf,2(nR,2 −m1)(nL −m1 −m2) + kr,2m2]p(m1,m2) (3.1)

by considering the infinitesimal transition rates q(m1,m2),(m′1,m
′
2), where t has been

omitted from the notation for ease of reading. This equation is known as the

chemical master equation (CME) (see Gillespie (1992) and Section 2.2.5), and is

known to be challenging to solve analytically. Thus firstly, the model dynamics

are explored here by means of stochastic (Gillespie) simulations, as introduced in

Section 2.2.6, and the use of the linear noise approximation (also known as the

system size expansion); see Section 2.2.6 and Van Kampen (1976, 1992).
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3.2 Linear noise approximation

3.2 Linear noise approximation

The linear noise approximation (LNA), introduced by Van Kampen (1976), is

a method of approximately solving nonlinear CMEs such as Equation (3.1). It

provides a second order approximation to the CME via a large volume expansion

around the steady state. To begin, an operator E±1
i is introduced which, when

operating on an arbitrary function f of i, changes the number of i by ±1 (Hayot

& Jayaprakash, 2004):

E+1
i [f(i)] = f(i+ 1), E−1

i [f(i)] = f(i− 1).

Equation (3.2) shows the CME written in terms of E±1
i ,

dp(m1,m2)

dt
= kf,1(E−1

m1
− 1)[(nR,1 −m1)(nL −m1 −m2)p(m1,m2)]

+ kr,1(E+1
m1
− 1)[m1p(m1,m2)]

+ kf,2(E−1
m2
− 1)[(nR,2 −m2)(nL −m1 −m2)p(m1,m2)]

+ kr,2(E+1
m2
− 1)[m2p(m1,m2)]. (3.2)

In a specified volume, such as the volume inside a cell, the importance of studying

the mesoscopic dynamics of a species population is dependent on the number of

molecules of such a species. It is widely accepted that if the average size of a

population is n, then the size of the fluctuations around n is
√
n (Elf & Ehrenberg,

2003b). In order to study the stochastic fluctuations around the steady state, and

to convert from a macroscopic analysis to a mesoscopic one, the CME is Taylor

expanded in powers of
√

Ψ
−1

, where Ψ is a parameter chosen to be the volume

of the system. Firstly, the variables of the system are re-scaled so that they

are written as a sum of the macroscopic concentration values and the mesoscopic

fluctuations and in terms of the parameter Ψ. If m1, m2, nR,1, nR,2 and nL are the

numbers of molecules of complexes of type 1, complexes of type 2, total receptors

of type 1, total receptors of type 2 and total ligands, respectively, then φ1, φ2,

NR,1, NR,2 and NL, denote the concentrations of the same species. The variables

are then re-scaled as

m1 = Ψφ1 + Ψ
1
2 ξ1,
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m2 = Ψφ2 + Ψ
1
2 ξ2,

nR,1 = ΨNR,1,

nR,2 = ΨNR,2, and

nL = ΨNL,

where ξ1 and ξ2 represent the fluctuations in the number of type 1 and type 2 com-

plexes, respectively. The forward rate constants kf,1 and kf,2 are also dependent

on the volume of the system and hence are re-scaled as

kf,1 = Ψ−1k̂f,1, and

kf,2 = Ψ−1k̂f,2,

so that they represent true rate constants. Then, transforming from the variables

(m1,m2) to (ξ1, ξ2),

p(m1,m2) = p
(Ψφ1+Ψ

1
2 ξ1,Ψφ2+Ψ

1
2 ξ2)

= Π(ξ1,ξ2).

An equation can be found for the partial derivative of the transformed probability

function, Π(ξ1,ξ2), with respect to time. To do this one must take the total time

derivative of Π(ξ1,ξ2) since ξ1 and ξ2 depend on time, giving

d

dt
p(m1,m2) =

∂

∂t
Π(ξ1,ξ2) +

∂

∂ξ1

Π(ξ1,ξ2)
dξ1

dt
+

∂

∂ξ2

Π(ξ1,ξ2)
dξ2

dt
. (3.3)

Then, since the derivative d
dt
p(m1,m2) is taken with fixed m1 and m2, it can be

written that

0 =
dm1

dt
= Ψ

dφ1

dt
+ Ψ

1
2
dξ1

dt
, and

0 =
dm2

dt
= Ψ

dφ2

dt
+ Ψ

1
2
dξ2

dt
,

and hence,

dξ1

dt
= −Ψ

1
2
dφ1

dt
, and (3.4)

54



3.2 Linear noise approximation

dξ2

dt
= −Ψ

1
2
dφ2

dt
. (3.5)

Substituting expressions (3.4) and (3.5) into Equation (3.3), reformulates the left

hand side of Equation (3.2) in terms of the new variables ξ1 and ξ2 and the volume

Ψ, giving

d

dt
p(m1,m2) =

∂

∂t
Π(ξ1,ξ2) −Ψ

1
2
dφ1

dt

∂

∂ξ1

Π(ξ1,ξ2) −Ψ
1
2
dφ2

dt

∂

∂ξ2

Π(ξ1,ξ2).

In order to reformulate the right hand side of Equation (3.2), it is convenient to

approximate the step operator function E±1
i as a Taylor expansion, where

E±1
i = 1± ∂

∂i
+

1

2

∂2

∂i2
± · · · ,

and then by the chain rule and using the fact that ∂mi

∂ξi
= Ψ

1
2 for i ∈ {1, 2},

E±1
m1

= 1±Ψ−
1
2
∂

∂ξ1

+
1

2
Ψ−1 ∂

2

∂ξ2
1

+ · · · , and (3.6)

E±1
m2

= 1±Ψ−
1
2
∂

∂ξ2

+
1

2
Ψ−1 ∂

2

∂ξ2
2

+ · · · . (3.7)

Substituting Equations (3.6) and (3.7) into Equation (3.2) and rearranging gives,

∂

∂t
Π(ξ1,ξ2) −Ψ

1
2
dφ1

dt

∂

∂ξ1

Π(ξ1,ξ2) −Ψ
1
2
dφ2

dt

∂

∂ξ2

Π(ξ1,ξ2)

= ˆkf,1

(
−Ψ−

3
2
∂

∂ξ1

+
1

2
Ψ−2 ∂

2

∂ξ2
1

)(
ΨNR,1 −Ψφ1 −Ψ

1
2 ξ1

)
(

ΨNL −Ψφ1 −Ψ
1
2 ξ1 − φ2 −Ψ

1
2 ξ2

)
Π(ξ1,ξ2)

+kr,1

(
Ψ−

1
2
∂

∂ξ1

+
1

2
Ψ−1 ∂

2

∂ξ2
1

)(
Ψφ1 + Ψ

1
2 ξ1

)
Π(ξ1,ξ2)

+ ˆkf,2

(
−Ψ−

3
2
∂

∂ξ2

+
1

2
Ψ−2 ∂

2

∂ξ2
2

)(
ΨNR,2 −Ψφ2 −Ψ

1
2 ξ2

)
(

ΨNL −Ψφ1 −Ψ
1
2 ξ1 − φ2 −Ψ

1
2 ξ2

)
Π(ξ1,ξ2)

+kr,2

(
Ψ−

1
2
∂

∂ξ2

+
1

2
Ψ−1 ∂

2

∂ξ2
2

)(
Ψφ2 + Ψ

1
2 ξ2

)
Π(ξ1,ξ2). (3.8)
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Collecting terms of order Ψ
1
2 from Equation (3.8) and equating coefficients yields

the differential equations

dφ1

dt
= k̂f,1(NR,1 − φ1)(NL − φ1 − φ2)− kr,1φ1, and

dφ2

dt
= k̂f,2(NR,2 − φ2)(NL − φ1 − φ2)− kr,2φ2,

(3.9)

for the quantities φ1 and φ2 corresponding to the concentrations of complexes of

type 1 and type 2 respectively. These are the differential equations that would

be obtained by considering the system in Figure 3.1 deterministically, neglecting

fluctuations. Collecting terms of order Ψ0 from Equation (3.8), the linear Fokker-

Planck equation

∂Π(ξ1,ξ2)

∂t
= −

∑
i,j

Aij
∂

∂ξi
ξjΠ(ξ1,ξ2) +

1

2

∑
i,j

Bij

∂2Π(ξ1,ξ2)

∂ξi∂ξj
(3.10)

is obtained, where

A11 = −k̂f,1(NR,1 +NL − 2φ∗1 − φ∗2)− kr,1,
A12 = −k̂f,1(NR,1 − φ∗1),

A21 = −k̂f,2(NR,2 − φ∗2),

A22 = −k̂f,2(NR,2 +NL − 2φ∗2 − φ∗1)− kr,2,
B11 = −k̂f,1(NR,1 +NL − 2φ∗1 − φ∗2) + kr,1φ

∗
1,

B12 = B21 = 0, and

B22 = −k̂f,2(NR,2 +NL − 2φ∗2 − φ∗1) + kr,2φ
∗
2,

and (φ∗1, φ
∗
2) is the steady state of the system of Equations (3.9). ODEs for the first

and second moments of the fluctuations can be found by multiplying Equation

(3.10) by ξi for i ∈ {1, 2} and integrating. In particular,

d〈ξk〉
dt

=
∑
j

Akj〈ξj〉, and

d〈ξkξl〉
dt

=
∑
i

Aki〈ξiξl〉+
∑
j

Alj〈ξkξj〉+Bkl,

(3.11)
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where 〈·〉 = E[·] and k, l ∈ {1, 2}.

3.3 Model dynamics

In this section, the dynamics of the model for the system in Figure 3.1 are explored

for differing numbers of molecules and rate constants in order to see how these

parameters effect the competition for complex formation. The LNA is used here

by solving the system of Equations (3.11) with initial condition 〈ξ1〉 = 〈ξ2〉 =

〈ξ1ξ1〉 = 〈ξ1ξ2〉 = 〈ξ2ξ2〉 = 0. In Figure 3.3, the stochastic model is simulated

by means of the Gillespie algorithm (Section 2.2.9 and Gillespie (1976b)), for

different numbers of molecules and Kd values of the reactions, where Kd,i =
kr,i
kf,i

for i ∈ {1, 2}. As well as these parameter values, the number of available receptors

of type 2, nR,2, is varied, to see the effect on the competition dynamics. In all

plots in Figure 3.3, nL = 102, kr,1 = kr,2 = 10−3 s-1 and nR,1 = 102. The values

of the other parameters being varied are given as text at the side of a row of

plots in Figure 3.3, or in the grey box in each subplot. The value chosen for the

dissociation rate constants kr,1 and kr,2 is the common rate at which VEGFR1 and

VEGFR2 dissociate their shared ligand, VEGF-A (Weddell & Imoukhuede, 2014,

2017). In each subplot, the LNA for the fluctuations ξ1 and ξ2 is also plotted. In

particular, plotted as a dotted line are the deterministic solutions to the system

of Equations (3.9) and as a shaded area is the deterministic solution plus and

minus two standard deviations of ξ1 and ξ2. Plotted in this way, the LNA well

captures the variability of the corresponding single stochastic realisation for the

process.

In the first plots of each row in Figure 3.3, it can be seen that the process

favours the formation of M1 over M2. In this case, receptor type 1 out-competes

receptor type 2 for ligand binding. In the second plot of each row, the number of

molecules and rate constants governing the formation of M1 and M2 are identical

and hence the time courses for the two complexes are at a similar level, and

are sometimes overlapping. The LNAs for the fluctuations corresponding to M1

and M2 in the second subplots of each row are identical, which is expected since

the system is symmetric when the rate constants and numbers of molecules are
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identical. Finally in the third plots of each row, the receptors of type 2 are out-

competing the receptors of type 1, and hence the time courses for M2 are above

those of M1. It can also be observed from Figure 3.3 that in each of the subplots

the process appears to reach steady state by the end of the time course. Thus,

one of the aims of Section 3.4 is to examine the effect of the rate constants and

the number of molecules on the steady state distribution of the process.

Figure 3.3: Gillespie simulation (solid lines), LNA (shaded areas) and deter-
ministic solution (dotted lines) for the competition process showing the effect
of varying rate constants and number of molecules on the time evolution of the
complexes, M1(t) and M2(t). Top row: For equal Kd values, the number, nR,2,
of type 2 receptors is varied. Bottom row: For equal numbers of receptors, Kd,2

is varied.

3.4 Steady state distribution

In this section, the steady state distribution for the Markov chain defined in

Section 3.1 is introduced. The steady state distribution for the model in Figure

3.1 is described in terms of the following probabilities (Pinsky & Karlin, 2010)

π(m1,m2) = lim
t→+∞

P((M1(t),M2(t)) = (m1,m2)), (m1,m2) ∈ SX,
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which can be stored in a row vector π = (π(m1,m2), (m1,m2) ∈ SX) for any given

order of states in SX. These probabilities correspond to the number of complexes,

of type 1 and type 2, respectively, found on the cell surface at late times and do

not depend on the initial state of the Markov chain. They are known to satisfy

(Allen, 2010; Latouche et al., 1999) the system of equations

π ·Q = 0T#SX
,

π · 1#SX = 1,
(3.12)

where Q is the infinitesimal generator of the CTMC X (Section 2.2.3), #SX is the

number of states in the state space, 0a is a column vector of zeros with length

a, 1a is a column vector of ones with length a and superscript T denotes the

transpose of a vector.

In the following sections, several methods of computation of the steady state

distribution are considered and the scope and limitations of each method are

explored.

3.4.1 Exact matrix-analytic approach (EMA)

In this section, an exact analytic method of computing the steady state distribu-

tion is outlined which uses an algorithmic matrix approach. This method will be

referred to as the exact matrix-analytic approach (EMA), and provides an exact

solution based on solving efficiently Equation (3.12). The infinitesimal generator,

Q, introduced in the previous section, encodes the infinitesimal transition rates,

and it is possible to order the states in SX so that Q is tridiagonal by blocks. In

particular, the state space can be organised into levels, as follows,

SX =

N2⋃
k=0

L(k), L(k) = {(m1,m2) ∈ SX : m2 = k}, 0 ≤ k ≤ N2 .

Thus, level L(k) = {(0, k), (1, k), ..., (min(nR,1, nL − k), k)} contains the states

in which k type 2 complexes are present on the cell surface at any given time.

If, when constructing the matrix Q, one orders the states by levels with L(0) ≺
L(1) ≺ ... ≺ L(N2), and states within each level L(k) as (0, k) ≺ (1, k) ≺ · · · ≺
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(min(nR,1, nL − k), k), then it is clear that only transitions within a level or to

adjacent levels are allowed. This means that from any state (m1,m2) ∈ L(m2),

the next event in the Markov chain can take the process to either another state in

level L(m2), a state in level L(m2 + 1), or a state in level L(m2− 1), by means of

an association or dissociation reaction involving M1, an association to form M2 or

a dissociation of M2, respectively. Thus, since the process only moves up or down

by a maximum of one level after each transition, the CTMC X is a level-dependent

quasi-birth-and-death (LD-QBD) process (see Section 2.2.8 and Kulkarni (2016)),

and the infinitesimal generator matrix Q is tridiagonal by blocks. Q is given by

Q =



Q0,0 Q0,1 0 . . . 0 0

Q1,0 Q1,1 Q1,2 . . . 0 0

0 Q2,1 Q2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . QN2−1,N2−1 QN2−1,N2

0 0 0 . . . QN2,N2−1 QN2,N2


.

Each level L(k) contains J(k) = #L(k) = min(nR,1, nL − k) + 1 states, so that

each sub-matrix Qk,k′ has dimensions J(k)×J(k′). Dimensions are omitted from

the sub-matrices containing only zeros, 0, for ease of notation, however these

matrices have dimensions corresponding to the number of states in each level,

similarly to the matrices Qk,k′ . Sub-matrices Qk,k′ are given as follows:

• For 1 ≤ k ≤ N2,

(Qk,k−1)i,j =

{
kr,2k, if j = i,

0, otherwise,

for 0 ≤ i ≤ J(k) and 0 ≤ j ≤ J(k − 1).

• For 0 ≤ k ≤ N2 − 1,

(Qk,k+1)i,j =

{
kf,2(nR,2 − k)(nL − i− k), if j = i,

0, otherwise,

for 0 ≤ i ≤ J(k) and 0 ≤ j ≤ J(k + 1).
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• For 0 ≤ k ≤ N2,

(Qk,k)i,j =



kf,1(nR,1 − i)(nL − i− k), if j = i+ 1,

kr,1i, if j = i− 1,

−(kf,1(nR,1 − i)(nL − i− k) + kr,1i

+kf,2(nR,2 − k)(nL − i− k) + kr,2k), if j = i,

0, otherwise,

for 0 ≤ i ≤ J(k) and 0 ≤ j ≤ J(k).

With the infinitesimal generator in the tridiagonal by blocks form, one can solve

the steady state matrix equations, Equations (3.12), with Algorithm 6, where π is

comprised of row vectors π0,π1, . . . ,πN2 which contain the ordered probabilities

π(m1,m2) for the states in the corresponding level,

πk =
(
π(0,k), π(1,k), . . . , π(min(nR,1,nL−k),k)

)
,

0 ≤ k ≤ N2. Algorithm 6 is an adapted version of the linear level reduction

algorithm (Gaver et al., 1984), and the steady state distribution computed via

the EMA using this algorithm will be denoted πEMA
(m1,m2).

Once these probabilities are in hand, one can compute the mean number of com-

plexes at steady state as

EEMA[M∗
1 ] =

N1∑
m1=0

m1

min(nR,2,nL−m1)∑
m2=0

πEMA
(m1,m2)

 ,

EEMA[M∗
2 ] =

N2∑
m2=0

m2

min(nR,1,nL−m2)∑
m1=0

πEMA
(m1,m2)

 .

The advantage of using this method to compute the steady state distribution

is that it is an exact method. There are however, considerable limitations to

this method, whereby although Algorithm 6 is computationally efficient for a

relatively small state space, as the number of molecules in the system, and hence

the state space, increases, the computational time and memory also increase.

It is also possible to use this EMA when considering a larger system in which
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Algorithm 6 Computation of (πEMA
(m1,m2), (m1,m2) ∈ SX) (Gaver et al., 1984;

Gómez-Corral & López-Garćıa, 2018).

1: H0 = Q0,0.

2: for k = 1, . . . , N2 do:

3: Hk = Qk,k −Qk,k−1H
−1
k−1Qk−1,k.

4: end for

5: Evaluate π∗N2
by solving π∗N2

HN2 = 0TJ(N2) with π∗N2
1J(N2) = 1.

6: for k = N2 − 1, . . . , 0 do:

7: π∗k = −π∗k+1Qk+1,kH
−1
k .

8: end for

9: for k = 0, . . . , N2 do:

10: πk = 1∑N2
i=0 π

∗
i 1J(i)

π∗k.

11: end for

12: return π = (π0, . . . ,πN2). . EMA steady state distribution

three receptor types (as opposed to the two considered here) are competing for a

common ligand. In this scenario, the matrix forms comprising the infinitesimal

generator become more complex and, since the state space is again larger, the

computational expense increases. For any situation with more than three receptor

types it would be challenging to write down the form of the infinitesimal generator

and the computational expense may become infeasible. Given these drawbacks

to the EMA, in the following sections, approximate methods are proposed to

compute the steady state distribution which are considerably faster than the EMA

and can also be extended easily to a system with N receptor types competing for

a common ligand, where N ≥ 2.

3.4.2 No competition approximation (NCA)

In this section, an approximate method of computing the steady state distribu-

tion is introduced which can be used when nL → +∞, i.e. when there is no

competition between the receptor types for the common ligand because the lig-
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and is in huge excess. In the limit nL → +∞, given that the time dynamics

of the complexes are linked only by the number of ligands present, the steady

state probabilities for the two-dimensional process will be precisely equal to the

product of the steady state probabilities for the one-dimensional processes mod-

elling M1(t) and M2(t). This product, in the limit nL → +∞, comprises the

no competition approximation (NCA). In particular, two independent Markov

chains

X1 = {M1(t) : t ≥ 0}, and X2 = {M2(t) : t ≥ 0},

can be defined for the complexes M1 and M2, respectively, with state spaces

SX1 = {m1 ∈ N0 = N ∪ {0} : m1 ≤ N1}, and SX2 = {m2 ∈ N0 : m2 ≤ N2}.

Since the number of complexes in each CTMC can only increase or decrease by

one unit in every transition (by means of complex formation or dissociation),

each CTMC Xj, for j ∈ {1, 2}, is a birth-and-death process (see Section 2.2.7) as

depicted in Figure 3.4, with λn = kf,j(nR,j − n)(nL − n) and µn = kr,jn.

0 1 mj − 1 mj mj + 1 Nj − 1 Nj· · · · · ·

λ0 λmj−1 λmj
λNj−1

µNj
µmj+1µmj

µ1

Figure 3.4: Diagram of the birth-and-death processes Xj, j ∈ {1, 2}.

In the limit nL → +∞, ligand depletion can be neglected, and then the binding

rates become λn = kf,jnL(nR,j−n). For these rates, Equation (3.12) can be easily

solved (Allen, 2010), giving

πm1 = lim
t→+∞

P(M1(t) = m1) =

(
nR,1
m1

)(
kf,1nL

kr,1 + kf,1nL

)m1
(

kr,1
kr,1 + kf,1nL

)nR,1−m1

,

(3.13)
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πm2 = lim
t→+∞

P(M2(t) = m2) =

(
nR,2
m2

)(
kf,2nL

kr,2 + kf,2nL

)m2
(

kr,2
kr,2 + kf,2nL

)nR,2−m2

,

(3.14)

for 0 ≤ m1 ≤ N1 and 0 ≤ m2 ≤ N2, which can be identified as binomial distribu-

tions. For these one-dimensional birth-and-death processes, X1 and X2, one can

determine the expected values of complexes in steady state as

ENCA[M∗
1 ] =

N1∑
m1=0

m1 πm1 =
kf,1nR,1nL
kr,1 + kf,1nL

, and

ENCA[M∗
2 ] =

N2∑
m2=0

m2 πm2 =
kf,2nR,2nL
kr,2 + kf,2nL

.

(3.15)

In the limit nL → +∞, the steady state distribution of the process X is given by

πNCA(m1,m2) = πm1 × πm2 , (m1,m2) ∈ SX. (3.16)

Note that when nL → +∞, one gets N1 = nR,1, N2 = nR,2 and SX = {(m1,m2) ∈
N2

0 : 0 ≤ m1 ≤ N1, 0 ≤ m2 ≤ N2} = SX1 × SX2 , so that Equations (3.13)-(3.16)

are consistent.

Encouragingly, one can compare the expression found in Equation (3.15) for

the expected number of complexes in steady state with the deterministic analogue

and find that the resulting expressions have the same meaning in the large nL

limit. In particular, since the NCA assumes that nL → ∞, and hence there

is no competition between the receptor types for the ligand, one can study the

deterministic model of a single receptor type (R) binding the ligand. This model

can be written as

R + L
kf−⇀↽−
kr
M.

The deterministic system of ODEs for this model, assuming mass action kinetics

can be written as

dR

dt
= −kfRL+ krM,

dL

dt
= −kfRL+ krM, (3.17)
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dM

dt
= kfRL− krM.

The ODEs are valid for any time t, with t ≥ 0, but time has been omitted in the

species notation for ease of notation, where for example R = R(t) for all t ≥ 0.

At steady state, one can set the right hand side of any of the three ODEs to 0 to

obtain

kfR
∗L∗ = krM

∗, (3.18)

where x∗ denotes the steady state number of molecules of species x. Rearranging

Equation (3.18) yields

R∗ =
KdM

∗

L∗
, (3.19)

where Kd = kr
kf

. In this receptor ligand binding model, there is no synthesis or

degradation of any species and hence one can write the total number of molecules

of receptor, RT , as

RT = R +M, (3.20)

for any time t. At steady state therefore, substituting the expression for R∗ from

Equation (3.19) into Equation (3.20) gives

RT =
KdM

∗

L∗
+M∗,

and rearranging results in

M∗

RT
=

L∗

Kd + L∗
, (3.21)

which is an expression in terms of L∗ and Kd for the fraction of ligand-bound re-

ceptors at steady state. One can obtain a similar fraction in the stochastic model

by rearranging the expressions in Equation (3.15). For example, considering the
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expression for ENCA[M∗
1 ], it can be seen that

ENCA[M∗
1 ]

nR,1
=

nL
Kd,1 + nL

, (3.22)

which is exactly equivalent in the stochastic sense to Equation (3.21) from the

deterministic treatment when nL → ∞ and hence L∗ = nL. Clearly, in the

deterministic model when an initial number of ligands, nL, is considered which is

relatively small, and so L∗ < nL,

M∗

RT
=

L∗

Kd + L∗
<

nL
Kd,1 + nL

=
ENCA[M∗

1 ]

nR,1
. (3.23)

Given that RT and nR,1 have exactly the same meaning (just different notation

for the deterministic and stochastic models), Equation (3.23) implies that in the

steady state, M∗ < ENCA[M∗
1 ]. From Equation (3.21) (or Equation (3.22) in

the stochastic sense), one can derive the well-known (Hulme & Trevethick, 2010)

number of ligand molecules required for the number of ligand-bound receptors to

be half maximal. In this case, when M∗
RT = 1

2
it can be easily shown that L∗ = Kd,

i.e. the number of ligands should be equal to the dissociation constant. In the

stochastic model this would imply that nL should be equal to Kd for half of the

total number of receptors to be bound by ligand in steady state.

In order to see how the approximate distribution computed via the NCA

compares with the exact distribution computed via the EMA, the distributions are

plotted in Figure 3.5, in columns 1 and 2, respectively, where each state is coloured

according to its steady state probability. The third column of the figure shows the

absolute difference |πEMA
(m1,m2)−πNCA(m1,m2)|, between the distributions. Each row in the

figure uses a different number of ligands, nL, as stated in the text on the left hand

side of the row, and the other parameter values and numbers of molecules used are

stated in the figure caption. In the second column of the figure, the steady state

number of complexes M∗ is plotted as a green star, found by numerically solving

the ODE system (3.17) to steady state. It can be seen that, as expected (by

analysis of Equation (3.23)), the green stars underestimate the expected numbers

of complexes found under the stochastic model, since the number of ligands used

for each row of the figure is not infinite and hence L∗ < nL. For example, for
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the largest number of ligands, nL = 2500, in the top row of the figure, from

Equation (3.21) it is found that M∗ = 70.8, whereas from Equation (3.22) one

finds ENCA[M∗
1 ] = 71.4. For the association and dissociation rate constants used

in Figure 3.5, one can compute the Kd values as Kd,i =
kr,i
kf,i

= 10−3

10−6 = 1000,

for i ∈ {1, 2}. By the analysis of Equation (3.22), when nL = Kd,i = 1000

for i ∈ {1, 2}, the expected number of complexes of each type should be half

maximal under the NCA. Indeed, from the second row of subplots in Figure

3.5 where nL = 1000, it can be seen that ENCA[M∗
1 ] = ENCA[M∗

2 ] = 50 which

is expected since nR,1 = nR,2 = 102 and 50
100

= 1
2
. In general, Figure 3.5 also

provides some justification for the choice to study a stochastic model instead of

a deterministic. It can be seen that the steady state distributions in the first two

columns are rather spread out from their centres and this information is lacking

from a deterministic model. A general rule of thumb (as mentioned in Section 3.2)

is that if the average size of a population is n, then the size of the fluctuations

around n is
√
n. One can then compute the percentage deviations from n as

√
n
n
× 100 and hence for large values such as n = 104 the percentage deviations

from n will be only 1%, whereas for n = 102 the percentage deviations will be

10%. For values as large as 10% it is certainly worthwhile to use a stochastic

model in order to see the range of feasible model outputs.

It can also be seen from Figure 3.5 that when nL is large, and hence the

competition is low, the NCA well approximates the EMA distribution where the

absolute difference between the distributions is very small for all states in the

state space. The expected number of complexes of each type is also reasonably

well captured here. As the number of ligands decreases however, and in particular

when nL = 102 < nR,1 + nR,2, the distributions become less similar, where the

NCA overestimates the probabilities of states with larger values of m1 and m2 in

the state space. This is because, when using the NCA, the assumption is that

the Markov chains X1 and X2 are independent, which is clearly not the case when

nL = 102.

Given that the NCA works well only in scenarios when nL � nR,1 + nR,2,

an alternative method is required for scenarios in which nL is comparable to

nR,1 + nR,2. Thus, in the next section, an extension to the NCA method is

proposed which can be used in such moderate competition scenarios.
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Figure 3.5: Comparison between the EMA and NCA steady state distributions,
where the colour of a pixel in the first two columns indicates the steady state
probability of that state, given by the colour bar. In the third column, the
colour of a pixel indicates the absolute difference between the EMA and NCA
derived steady state probability. For all distribution subplots, nR,1 = nR,2 = 102,
kr,1 = kr,2 = 10−3 s-1 and kf,1 = kf,2 = 10−6 s-1. Since the distributions are
symmetric, EEMA[M∗

1 ] = EEMA[M∗
2 ] and ENCA[M∗

1 ] = ENCA[M∗
2 ]. In the second

column, a green star represents the value M∗ as found by numerically solving the
ODE system (3.17) to steady state.

3.4.3 Moderate competition approximation (MCA)

In this section, the moderate competition approximation (MCA) is introduced,

whereby Equation (3.16) is again ultimately used to compute the two-dimensional
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steady state distribution, but where the one-dimensional steady state probabil-

ities (3.13) and (3.14) are computed using an effective number of ligands n∗L.

The idea is that, in each independent Markov chain, the competition from the

other receptor type is accounted for by considering n∗L < nL, so that some of

the available ligands are “used up” by the competing process. Using this smaller

number of ligands in Equations (3.13) and (3.14) will yield smaller probabilities

for the states with larger numbers of complexes, and hence when the product is

taken in Equation (3.16) the probabilities will also be smaller for the states with

larger numbers of m1 and m2. It is clear that the extent to which the distribution

computed using n∗L will differ from that using nL depends on how small n∗L is in

comparison to nL. Here, Algorithm 7 is proposed which uses an iterative scheme

to reduce nL to an appropriate value.

In Algorithm 7, the total number of ligands available in each independent

birth-and-death process X1 and X2 is iteratively reduced, by subtracting from nL

the expected number of each complex type in steady state computed from the

previous iteration. In each iteration i, the mean number of complexes in steady

state under the NCA approximation, ENCA,(i)[M∗
1 ] and ENCA,(i)[M∗

2 ], are com-

puted, and they are used to compute an effective number of free ligands available

n
(i+1)
L , at iteration i + 1. The iterative scheme stops once these mean values are

close enough for two consecutive iterations, as determined by a threshold value

ε. The final number of ligands considered, n∗L = n
(i)
L , in the last iteration, can be

seen as the effective number of ligands that reflects the competition for shared

resources.

The parameter α (α ∈ [0, 1]) is a tuning parameter required in situations

where nL < nR,1 + nR,2, to modulate the convergence speed of the algorithm.

More specifically, from line 5 of Algorithm 7 and where i = 0, it can be seen that

nL −ENCA,(0)[M∗
1 ]−ENCA,(0)[M∗

2 ] will be negative or equal to zero (and hence α

required) when

nL −
kf,1nR,1nL
kr,1 + kf,1nL

− kf,2nR,2nL
kr,2 + kf,2nL

≤ 0,

from Equations (3.15). Rearranging this expression and dividing by nL gives that

69



3. A STOCHASTIC MODEL OF RECEPTOR-LIGAND
COMPETITION DYNAMICS

Algorithm 7 Iterative approximation for the steady state distribution,
(πMCA

(m1,m2), (m1,m2) ∈ SX).

1: i = 0, n
(i)
L = nL.

2: Compute ENCA,(i)[M∗
1 ] and ENCA,(i)[M∗

2 ] from Equation (3.15), using n
(i)
L as

the number of ligands in the system, instead of nL.

3: while | ENCA,(i)[M∗
1 ]− ENCA,(i−1)[M∗

1 ] |> ε or

| ENCA,(i)[M∗
2 ]− ENCA,(i−1)[M∗

2 ] |> ε or i < 1 do:

4: i = i+ 1.

5: n
(i)
L = (nL − ENCA,(i−1)[M∗

1 ]− ENCA,(i−1)[M∗
2 ])α + n

(i−1)
L (1− α).

6: Compute ENCA,(i)[M∗
1 ] and ENCA,(i)[M∗

2 ] from Equation (3.15), using

n
(i)
L instead of nL.

7: end while

8: Compute π
NCA,(i)
m1 , for 0 ≤ m1 ≤ N1, and π

NCA,(i)
m2 , for 0 ≤ m2 ≤ N2, from

Equations (3.13)-(3.14) using n
(i)
L instead of nL.

9: Compute πMCA
(m1,m2) = π

NCA,(i)
m1 × πNCA,(i)m2 , for all (m1,m2) ∈ SX.

10: return πMCA
(m1,m2) =

πMCA
(m1,m2)∑

(m′1,m
′
2)∈SX

πMCA
(m′1,m

′
2)

, for all (m1,m2) ∈ SX.

11: return EMCA[M∗
1 ] =

N1∑
m1=0

m1

(
min(nR,2,nL−m1)∑

m2=0

πMCA
(m1,m2)

)
.

12: return EMCA[M∗
2 ] =

N2∑
m2=0

m2

(
min(nR,1,nL−m2)∑

m1=0

πMCA
(m1,m2)

)
.

the parameter α will be required when

1 ≤ nR,1
Kd,1 + nL

+
nR,2

Kd,2 + nL
.

One can set α = 1 when

1 >
nR,1

Kd,1 + nL
+

nR,2
Kd,2 + nL

,
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since in this case it is impossible for nL − ENCA,(i−1)[M∗
1 ]− ENCA,(i−1)[M∗

2 ] to be

negative at any iteration. Otherwise, the parameter α is chosen between 0 and

1 such that the effective number of ligands at every iteration in the algorithm

is positive. Numerical exploration indicates that the the choice of α does not

affect the resulting steady state probabilities πMCA
(m1,m2). When α = 1, the expected

number of complexes and ligands in steady state exhibit damped oscillations as

they converge. An example of this can be found in the top left plot of Figure 3.6.

When α < 1, for values of α for which the algorithm converges (smaller values of

α), the expected number of complexes and ligands in steady state either exhibit

damped oscillations as they converge (for larger values of α, see top right plot of

Figure 3.6), or they decrease monotonically in convergence (for smaller values of

α). Examples of monotonic convergence can be seen in the bottom row of Figure

3.6. For values of α for which there is monotonic convergence, the smaller the

value of α, the more iterations the algorithm requires to converge. This effect

can be seen when comparing the left hand plot of the bottom row of Figure 3.6

in which α = 0.3, with the right hand plot of the same figure where α = 0.1. In

Figure 3.6, the mean number of free ligands in steady state, as predicted by the

EMA, is given by EEMA[L∗] = nL − EEMA[M∗
1 ] − EEMA[M∗

2 ]. Interestingly, the

values of n
(i)
L tend, in the limit i → +∞, to this mean number of free ligands in

steady state.

In Algorithm 7, a natural choice is for α to vary between 0 and 1, and this

is implemented in a linear fashion whereby α multiplies the first summand on

the right hand side of the expression on line 5 and (1− α) multiplies the second

summand. Other non-linear choices have also been explored such as quadratic,

cubic and quartic methods, whereby the first summand would be multiplied by

αn and the second by (1 − αn) for n ∈ {2, 3, 4}. It was found that, in general,

the larger the value of n, the greater the value of α could be in order for the

algorithm still to converge. The trade-off for this widened range of feasible α

values however, was that the algorithm took many more iterations to converge.

For all values of α, and all linear and non-linear methods used, the accuracy of

the algorithm was very similar. The accuracy was determined by computing

accuracy = |EMCA[M∗
1 ]− EEMA[M∗

1 ]|+ |EMCA[M∗
2 ]− EEMA[M∗

2 ]|. (3.24)
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An example of this trade-off behaviour for α can be seen in Figure 3.7. Figure 3.7

uses the same parameter values and numbers of molecules as Figure 3.6 and each

subplot shows a different linear or non-linear method for α as given in the subplot

title. Each subplot shows a scatter plot with values of α between 0.1 and 1 on

the x-axis and the number of iterations required for the algorithm to converge

on the y-axis. The colour of a marker represents how accurate the algorithm was

according to the definition given by Equation (3.24), where larger values in the

colour bar therefore represent lesser accuracy. Finally, in each subplot there are

two marker types, one for each of two ligand values, nL = 40 and nL = 50. In the

case where nL = 50, the parameter α is not required and hence it is seen that the

algorithm converges in each subplot for all α values. As expected, the outcome

of the MCA is more accurate for a larger number of ligands, however within each

ligand number case, there is no noticeable difference in the accuracy depending

on the value of α. When nL = 40, for some larger values of α, the algorithm does

not converge (or the values n∗L still become negative at some iterations) and it can

be seen from Figure 3.7 that this non-convergence happens more so for smaller

values of n in αn, i.e. the more non-linear the method, the larger α can be for

convergence. Within an individual subplot one can note that as α increases the

number of required iterations decreases up to a certain value of α at which the

number of required iterations begins to rise again. It is also the case that the more

non-linear the method chosen, the more iterations of the algorithm are required

for convergence in general. Therefore, in order to keep the number of iterations

to a minimum, the linear method was chosen in Algorithm 7. Since the algorithm

using the linear method converges for only smaller values of α, it is recommended

that a small value such as α = 0.05 is used. This choice seems appropriate since,

even for a rather high competition scenario whereby the parameter values are

kr,i = 10−3, Kd,i = 101, nR,i = 100 and nL = 10 for i ∈ {1, 2}, the algorithm

still converges with good accuracy under α = 0.05. Upon non-convergence of

the algorithm with the linear α method however, one could easily modify the

algorithm to a non-linear method and obtain the MCA steady state distribution.

In Section 3.4.4 a thorough comparison between the EMA and MCA methods

to compute the steady state distribution is carried out in order to validate the

goodness of the approximate method and to find areas of the parameter space
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Figure 3.6: Examples of how Algorithm 7 converges when nL ≥ nR,1 + nR,2
(top left subplot, nL = 50) and when nL < nR,1 + nR,2 (all other subplots,

nL = 40). Iterative mean values ENCA,(i)[M∗
1 ], ENCA,(i)[M∗

2 ] and n
(i)
L converge to

the exact values EEMA[M∗
1 ], EEMA[M∗

2 ] and EEMA[L∗]. In all subplots, ε = 10−5,
nR,1 = 20, nR,2 = 30, kr,1 = kr,2 = kf,1 = kf,2 = 1 s-1.

for which the MCA is particularly reliable. As a starting point, in Figure 3.8

the EMA is compared with both the NCA and MCA using the same parameter

values as in Figure 3.5. It can be seen, from the third and fifth columns of the

figure that the MCA performs much better than the NCA for the smaller values

of nL, where the MCA only decreases in accuracy very slightly as nL decreases.
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Figure 3.7: Scatter plots of the number of iterations required by, and accuracy
of, Algorithm 7 for different linear and non-linear methods and varying values
of α ∈ [0.1, 1]. The accuracy of the algorithm is represented by the colour of a
point and is computed via Equation (3.24). In all subplots, ε = 10−5, nR,1 = 20,
nR,2 = 30, kr,1 = kr,2 = kf,1 = kf,2 = 1 s-1 and two values of nL are used (given in
the figure legend). The parameter values and numbers of molecules used are the
same as those in Figure 3.6.

It is also notable that for all four values of nL, the MCA is able to predict to 1

decimal place, the expected number of type 1 and 2 complexes in steady state.

In the following section therefore, as well as comparing the whole distributions

as computed via the EMA and MCA, the expected numbers of complexes of each

type in steady state will also be compared.

3.4.4 Numerical validation

In this section, a thorough numerical comparison is carried out between the EMA

and MCA steady state distributions. Given that the NCA is a first step in propos-

ing the MCA approximation, and that the MCA is expected to always perform
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Figure 3.8: Comparison between the EMA, NCA and MCA steady state dis-
tributions, where the colour of a pixel in the first three columns indicates the
steady state probability of that state, given by the colour bar. In the fourth and
fifth columns, the colour of a pixel indicates the absolute difference between the
EMA and NCA, and the EMA and MCA, derived steady state probabilities, re-
spectively. For all distribution subplots, nR,1 = nR,2 = 102, kr,1 = kr,2 = 10−3 s-1

and kf,1 = kf,2 = 10−6 s-1. Since the distributions are symmetric, EEMA[M∗
1 ] =

EEMA[M∗
2 ], ENCA[M∗

1 ] = ENCA[M∗
2 ] and EMCA[M∗

1 ] = EMCA[M∗
2 ].

better than the NCA, the goodness of the NCA compared to the EMA is not

considered here. It is important to explore different areas of the parameter space

which are biologically feasible, in order to see where the approximation performs

best and is a viable alternative to the EMA. Different metrics are considered so

that the accuracy of the MCA can be quantified when considering both the whole

distribution and the expected number of complexes of each type in steady state.

In order to reduce the complexity of the numerical exploration, only the Kd

value for each reaction in Figure 3.1, is considered, where Kd,i = kr,i/kf,i for
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i ∈ {1, 2}, and not the individual forward and backward rate constants, by fixing

kr,1 = kr,2 = 10−3 s-1 (Weddell & Imoukhuede, 2014, 2017) as in Figure 3.3.

The Kd values and numbers of each receptor type are varied within the ranges

given in Table 3.1, inspired from López-Garćıa et al. (2016) (Table 3), and which

correspond to VEGFR1, VEGFR2 and VEGF-A. Finally, the number of ligands,

nL, is varied to consider different competition regimes between the receptors,

where if nL ≈ nR,1 + nR,2 the competition is reasonably high, whereas if nL �
nR,1 + nR,2 then the competition is low.

Parameter Range Unit

Kd,1, Kd,2 [1× 101 − 1× 104] molecules
nR,1, nR,2 [2× 101 − 2× 102] molecules

Table 3.1: Ranges for the parameter values and numbers of molecules in the
receptor-ligand competition model.

In order to compare the EMA with the MCA steady state distribution, the

Hellinger distance

H({πEMA
(m1,m2)}(m1,m2)∈SX , {πMCA

(m1,m2)}(m1,m2)∈SX) =

1√
2

√√√√ ∑
(m1,m2)∈SX

(√
πEMA

(m1,m2) −
√
πMCA

(m1,m2)

)2

,

is used, which is a way to measure the similarity between two discrete probability

distributions. The Hellinger distance (HD) can take values between 0 and 1,

where lower values indicate that the probability distributions are more similar.

Using the HD, one can identify regions of the parameter space for which the MCA

performs well (HD closer to 0) and regions where the MCA is not so accurate (HD

closer to 1). Thus in Figure 3.9, the HD is plotted as the colour on the heatmap,

for each pair of parameters, where the parameters are varied within the ranges

given in Table 3.1 and nL is varied between 102 and 103 molecules. The default

values of the parameters when they are not being varied (i.e. do not appear on

either axis of the subplot) are nR,1 = 102, nR,2 = 102, Kd,1 = 103, Kd,2 = 103 and

nL = 250, so as to represent moderate competition.
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It can be seen that the HD is lower than 0.16 for all of the scenarios considered,

even though in some of them, the number of ligands is significantly smaller than

the total number of receptors (e.g. nL = 250 < 400 = 200 + 200 = nR,1 +

nR,2). The number of molecules in the system does not, by itself, explain the

goodness of the MCA; the dissociation constants Kd,1 and Kd,2 need also to be

taken into account. Settings where both Kd,1 and Kd,2 are large (indicating the

lowest affinity for ligand) correspond to low competition, since a small number

of complexes of each type is formed, and then the baseline number of ligands

considered, nL = 250, is sufficient for the competition to be negligible. On the

other hand, scenarios where for example, Kd,1 is small, can still lead to low

competition if nL is sufficiently increased, or alternatively if nR,1 is decreased.

Figure 3.9: HD between the steady state distributions {πEMA
(m1,m2)}(m1,m2)∈SX and

{πMCA
(m1,m2)}(m1,m2)∈SX . Baseline parameter values (that is, the value chosen in each

plot for any parameter that has been fixed) are nR,1 = 102, nR,2 = 102, Kd,1 = 103,
Kd,2 = 103 and nL = 250. The threshold parameter ε = 10−5 is used for the MCA.

Although Figure 3.9 seems to indicate that the MCA is a good alternative

to the EMA for almost all parameter regimes considered, this is not a thorough

exploration since the baseline parameter values are fixed in each subplot. Hence,

in order to summarise competition in fewer parameters, competing strength pa-
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rameters are now introduced, in particular these parameters are nR,j/Kd,j for

j ∈ {1, 2}. The summary parameter nR,j/Kd,j is an indicator of the competing

strength of receptor type j, which will be large whenever there are many of these

receptors in the system and/or they have high affinity for the common ligand.

Hence larger values of nR,j/Kd,j indicate high competition for the ligand from

receptor j and smaller values indicate low competition. To use these compet-

ing strength parameters, 103 parameter sets (Kd,1, Kd,2, nR,1, nR,2) were sampled

within the ranges of Table 3.1, from uniform distributions nR,j ∼ Unif(20, 200)

and Kd,j = 10x with x ∼ Unif(1, 4), for j ∈ {1, 2}. The HD between the EMA

and MCA steady state distributions was then calculated for each sampled pa-

rameter set and each of three values of nL ∈ {100, 250, 500}, and the results are

plotted as scatter plots in Figure 3.10.

It can be observed from Figure 3.10 that, as expected, the HD decreases with

increasing nL, so that in the third plot where nL = 500, the HD is relatively small,

even for the largest sampled values of nR,1/Kd,1 and nR,2/Kd,2. From the first

plot in which nL = 100, representing a high competition scenario, larger values

of the HD are observed, especially when nR,1/Kd,1 and nR,2/Kd,2 are large. On

the other hand, in the nL = 250 plot, smaller values of the competition strength

parameters still lead to relatively small distances, indicating that even when nL is

small comparable to nR,1 +nR,2, the approximation can still be good if nR,1/Kd,1

and nR,2/Kd,2 are relatively small.

Although it is clear that there is some disparity between the probability dis-

tributions, especially when the competition is the highest, interestingly, the ex-

pected numbers of complexes in steady state are almost identical between the two

methods of computation. In particular, for all the sets (Kd,1, Kd,2, nR,1, nR,2, nL)

of parameter values considered in Figure 3.10, the percentage error 100 · |1 −
EEMA[M∗

j ]/EMCA[M∗
j ]|, j ∈ {1, 2}, when computing the mean values through

the MCA, instead of the EMA, is less than 5% in all 103 cases. In fact, the

overwhelming majority of parameter choices (991 out of 103) lead to the same

mean values to integer precision, when choosing ε = 10−5 in Algorithm 7, even if

the resulting HD is relatively large.

Finally, it is of interest to compare the EMA and MCA derived steady state

distributions for example parameter sets where the HD is both high and low. Fig-
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Figure 3.10: HD between the steady state distributions {πEMA
(m1,m2)}(m1,m2)∈SX

and {πMCA
(m1,m2)}(m1,m2)∈SX plotted for sampled values nR,j ∼ Unif(20, 200) and

Kd,j = 10x with x ∼ Unif(1, 4), for j ∈ {1, 2}, and for different numbers of
ligand, nL ∈ {100, 250, 500}. The threshold parameter ε = 10−5 is used for the
MCA.

ure 3.11 shows the distributions computed via the two methods for one specific set

of parameter values, (Kd,1, Kd,2, nR,1, nR,2), and for two values of nL. The colour

of a state represents its steady state probability as indicated by the colour bar.

For the smaller value, nL = 100, the HD is 0.24 and for the larger value, nL = 500,

the HD is 0.02, indicating that the distributions are very similar. The expected

number of type 1 complexes in steady state is stated in each subplot, and since

here the numbers of molecules and parameter values are identical for each recep-

tor, EEMA[M∗
1 ] = EEMA[M∗

2 ] and EMCA[M∗
1 ] = EMCA[M∗

2 ]. Although the HD is

relatively large for the smaller value of nL it is worth noting that the expected

number of each complex type in steady state is still very well approximated by the

MCA. Also plotted on top of the EMA steady state distributions in this figure are

confidence ellipses (Schelp, 2018; Tucker, 2014) generated via the LNA. In par-

ticular, by integrating numerically the system of Equations (3.11), the variance

and covariance of the fluctuations can be found, i.e. Var(ξi) = 〈ξ2
i 〉 − 〈ξi〉2 for

i ∈ {1, 2} and Cov(ξ1, ξ2) = 〈ξ1ξ2〉 − 〈ξ1〉〈ξ2〉. Using these quantities as elements

in the covariance matrix for the fluctuations, the confidence ellipses in Figure 3.11

can be drawn, where the dot-dashed line represents a 1 standard deviation ellipse,

the dashed line a 2 standard deviation ellipse and the dotted line a 3 standard

deviation ellipse. This approximation appears to capture the distribution very

well and is useful as a method of visualisation of the distribution, however it does
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not give approximate probabilities for each individual state and hence it is still

useful to have the MCA approximation.

3.5 Time scales of complex formation

Figure 3.11: Comparison between the steady state distributions computed using
the EMA, MCA and LNA, where the colour of a pixel indicates the steady state
probability of that state, given by the colour bar. For all subplots the numbers
of receptors are nR,1 = nR,2 = 100, and Kd,1 = Kd,2 = 50.

In this section, the time scales of complex formation are analysed, in particu-

lar, the time taken to reach a state in the process in which there are N complexes

of one type. For the bi-variate process X, T(m1,m2)(N) is defined as the time

to reach N complexes of type 2 (without loss of generality, since the arguments

presented here would similarly apply to type 1 complexes) given the initial state

(m1,m2) ∈ SX, i.e.

T(m1,m2)(N) = inf{t ≥ 0 : M2(t) = N | (M1(0),M2(0)) = (m1,m2)},
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for (m1,m2) ∈ SX. Here N can be any arbitrary value M2(0) < N ≤ N2, since

T(M1(0),M2(0))(M2(0)) ≡ 0. Similarly to Section 3.4, this stochastic descriptor

is first analysed in Section 3.5.1 via an exact, but computationally expensive,

matrix-analytic approach. In Sections 3.5.2 and 3.5.3, alternative, computation-

ally feasible methods of computation are presented, again based on the use of

one-dimensional Markov chains to approximate the two-dimensional process X.

3.5.1 Exact matrix-analytic approach (EMA)

In this section, it is shown how one can efficiently analyse T(m1,m2)(N), for

(m1,m2) ∈ SX with m2 ≤ N , by means of first-step arguments. In particu-

lar, the moment of order l of the time to reach N complexes of type 2 can be

computed, starting from any initial state (m1,m2) ∈ SX. These moments can be

obtained from the Laplace-Stieltjes transform of T(m1,m2)(N) (see Section 2.1.6),

given by

φN(m1,m2)(z) = E[e−zT(m1,m2)
(N)] , Re(z) ≥ 0 .

The index N will be omitted from now on to simplify notation. Using a first-step

argument (i.e. considering only the first step that the process can take given that

it starts in state (m1,m2), see Pinsky & Karlin (2010)), it can be written that

φ(m1,m2)(z) = E[e−zT(m1,m2) ]

=
∑

(m′1,m
′
2)

E[e−zT(m1,m2)|(m1,m2)→ (m′1,m
′
2)]·

P ((m1,m2)→ (m′1,m
′
2)) ,

where (m′1,m
′
2) is any state that can be possibly reached in one jump of the

process, as seen in the transition diagram in Figure 3.2. The random variable

T(m1,m2) can be split into two parts, T(m1,m2) = t(m1,m2)→(m′1,m
′
2) + T(m′1,m

′
2), where

t(m1,m2)→(m′1,m
′
2) denotes the time taken for the process to move from state (m1,m2)

to state (m′1,m
′
2) in one step, and hence,

φ(m1,m2)(z) =
∑

(m′1,m
′
2)

E[e
−zt(m1,m2)→(m′1,m

′
2) |(m1,m2)→ (m′1,m

′
2)]·
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E[e
−zT(m′1,m′2) ] · P ((m1,m2)→ (m′1,m

′
2)) ,

where the expectation of the product becomes the product of the expectations due

to the Markov property implying that these two random times are independent.

The second expectation in the sum is no longer conditional which is also due to

the Markov property. Then given that

P ((m1,m2)→ (m′1,m
′
2)) =

q(m1,m2),(m′1,m
′
2)

∆(m1,m2)

,

where ∆(m1,m2) = kf,1(nR,1−m1)(nL−m1−m2) + kr,1m1 + kf,2(nR,2−m2)(nL−
m1 −m2) + kr,2m2 and that

E[e
−zt(m1,m2)→(m′1,m

′
2) |(m1,m2)→ (m′1,m

′
2)] =

∆(m1,m2)

∆(m1,m2) + z
,

since t(m1,m2)→(m′1,m
′
2)|(m1,m2)→ (m′1,m

′
2) is exponentially distributed with rate

∆(m1,m2) and E[e−zX ] = a
a+z

if X ∼ Exp(a), one arrives at the system of linear

equations

φ(m1,m2)(z) =
kf,1(nR,1 −m1)(nL −m1 −m2)

z + ∆(m1,m2)
φ(m1+1,m2)(z) +

kr,1m1

z + ∆(m1,m2)
φ(m1−1,m2)(z)

+
kf,2(nR,2 −m2)(nL −m1 −m2)

z + ∆(m1,m2)
φ(m1,m2+1)(z)

kr,2m2

z + ∆(m1,m2)
φ(m1,m2−1)(z).

Boundary conditions are given by φ(m1,m2)(z) ≡ 1 if m2 = N , since T(m1,m2)(m2) ≡
0. The lth order moment of T(m1,m2) can then be found by differentiating φ(m1,m2)(z)

l times and multiplying by (−1)l, i.e.

E[T l(m1,m2)] = (−1)l
dl

dzl
φ(m1,m2)(z)

∣∣∣∣
z=0

, l ≥ 1.

One can then compute the lth order moment of T(m1,m2), E[T l(m1,m2)], by solving

the system of linear equations:

∆(m1,m2)E[T l(m1,m2)] = kf,1(nR,1 −m1)(nL −m1 −m2)E[T l(m1+1,m2)]

+ kr,1m1E[T l(m1−1,m2)]
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+ kf,2(nR,2 −m2)(nL −m1 −m2)E[T l(m1,m2+1)]

+ kr,2m2E[T l(m1,m2−1)]

+ l E[T l−1
(m1,m2)]. (3.25)

Moreover, by arranging the states in SX into levels as in Section 3.4.1, each equa-

tion in the system (3.25) corresponds to an initial state (m1,m2) ∈ ∪N−1
k=0 L(k), so

that one can rewrite Equation (3.25) in matrix form as follows:

m(l) = Am(l) + b(l) (3.26)

where

m(l) =


m

(l)
0

m
(l)
1
...

m
(l)
N−1

 , m
(l)
k =


E[T l(0,k)]

E[T l(1,k)]
...

E[T l(min(nR,1,nL−k),k)]

 , 0 ≤ k ≤ N − 1.

Vector b(l) is also organised in sub-vectors as

b(l) =


b

(l)
0

b
(l)
1
...

b
(l)
N−1


which are obtained from the (l − 1)th order moments, as

(b
(l)
k )(m1,m2) =

l

∆(m1,m2)

(m
(l−1)
k )(m1,m2),

for all (m1,m2) ∈ L(k); note that sub-vectors m
(0)
k are just column vectors of

ones. The matrix A does not depend on l and is given by
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A =



A0,0 A0,1 0 . . . 0 0

A1,0 A1,1 A1,2 . . . 0 0

0 A2,1 A2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . AN−2,N−2 AN−2,N−1

0 0 0 . . . AN−1,N−2 AN−1,N−1


.

The sub-matrices Ak,k′ are defined as follows:

• For 1 ≤ k ≤ N − 1,

(Ak,k−1)i,j =

{
kr,2k

∆(i,k)
, if j = i,

0, otherwise,

where 0 ≤ i ≤ J(k) and 0 ≤ j ≤ J(k − 1).

• For 0 ≤ k ≤ N − 2,

(Ak,k+1)i,j =

{
kf,2(nR,2−k)(nL−i−k)

∆(i,k)
, if j = i,

0, otherwise,

where 0 ≤ i ≤ J(k) and 0 ≤ j ≤ J(k + 1).

• For 0 ≤ k ≤ N − 1,

(Ak,k)i,j =


kf,1(nR,1−i)(nL−i−k)

∆(i,k)
, if j = i+ 1,

kr,1i

∆(i,k)
, if j = i− 1,

0, otherwise,

where 0 ≤ i ≤ J(k) and 0 ≤ j ≤ J(k).

Equation (3.26) can then be solved efficiently using Algorithm 8 to obtain the

lth order moments of the random variable T(m1,m2). In this algorithm, Ia denotes

the a× a identity matrix.
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Algorithm 8 Moments of the random variable T(m1,m2).

1: (b
(1)
k )(m1,m2) = 1

∆(m1,m2)
for all (m1,m2) ∈ L(k), for k = 0, . . . , N − 1.

2: R0 = IJ(0) −A0,0.

3: for p = 1, . . . , l do:

4: S0 = R−1
0 · b(p)

0 .

5: for k = 1, . . . N − 1 do:

6: Rk = IJ(k) −Ak,k −Ak,k−1R
−1
k−1Ak−1,k.

7: Sk = R−1
k Ak,k−1Sk−1 +R−1

k b
(p)
k .

8: end for

9: m
(p)
N−1 = SN−1.

10: for k = N − 2, . . . , 0 do:

11: m
(p)
k = Sk +R−1

k Ak,k+1m
(p)
k+1.

12: end for

13: (b
(p+1)
k )(m1,m2) = p+1

∆(m1,m2)
(m

(p)
k )(m1,m2), for all (m1,m2) ∈ L(k),

for k = 0, . . . , N − 1.

14: end for

15: return m(l) = (mT
0 , . . . ,m

T
N−1)T . . lth order moment of T(m1,m2)

With Algorithm 8 and l = 1, one can then compute the mean time to reach N

type 2 complexes in an exact way, which is denoted by EEMA[T(m1,m2)(N)], making

use of the exact matrix-analytic methodology. As in the case of the steady state

distribution, the drawback of this method is that it is computationally expensive

as it involves the inversion of matrices, which increase in size as the state space

increases. Thus an alternative method is required which is feasible for larger

numbers of molecules nR,1, nR,2 and nL. Such methods are proposed in the

following sections, drawing again from the theory of one-dimensional Markov

birth-and-death processes.
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3.5.2 No competition approximation (NCA)

In this section, an approximation to the mean time to reach N type 2 complexes

is presented, which is a good alternative in the large nL limit. Specifically, one

can analyse this mean time for the independent one-dimensional birth-and-death

process X2, i.e. Tm2(N) = inf{t ≥ 0 : M2(t) = N | M2(0) = m2}. Since, in an

experimental setting, it is often the starting point of the experiment to stimulate

cells with ligand, it is reasonable to focus on the mean value E[Tm2(N)] for m2 = 0

(that is, no type 2 complexes initially in the system), although the arguments

presented here can be easily modified for different initial states 0 < m2 < N , or

for higher order moments of Tm2(N). It is clear that, for N = 1, E[T0(1)] = 1
λ0

,

where λm2 = kf,2(nR,2 −m2)(nL −m2) and µm2 = kr,2m2.

Then, using a first-step argument, one can compute E[Ti(i+1)] (Allen, 2010).

Firstly, given that from state i, the process can move only to either state i+ 1 or

state i− 1,

E[Ti(i+ 1)] = P(i→ i+ 1) · E[Ti(i+ 1)|i→ i+ 1]

+ P(i→ i− 1) · E[Ti−1(i+ 1)|i→ i− 1].

Then, since the interevent times in a Markov chain are exponentially distributed,

E[Ti(j)|i→ j] = 1
λi+µi

for j ∈ {i− 1, i+ 1}, and hence,

E[Ti(i+ 1)] = P(i→ i+ 1) · E[Ti(i+ 1)|i→ i+ 1]

+ P(i→ i− 1) · E[Ti−1(i+ 1)|i→ i− 1]

=
λi

λi + µi

(
1

λi + µi

)
+

µi
λi + µi

(
1

λi + µi
+ E[Ti−1(i)] + E[Ti(i+ 1)]

)

=
1

λi + µi
+

µi
λi + µi

(E[Ti−1(i)] + E[Ti(i+ 1)]) ,
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and then rearranging yields,

E[Ti(i+ 1)] =
1

λi
+
µi
λi
E[Ti−1(i)].

This allows one to recursively obtain

E[T0(N)] =
1

λ0

+
N−1∑
j=1

[
µ1 . . . µj
λ0 . . . λj

(
j∑
i=1

λ0 . . . λi−1

µ1 . . . µi
+ 1

)]
,

which is similar to the well-known extinction time expressions for a one-dimensional

birth-and-death process (Allen, 2010). Thus, the following approximation is pro-

posed,

ENCA[T(0,0)(N)] =
1

λ0

+
N−1∑
j=1

[
µ1 . . . µj
λ0 . . . λj

(
j∑
i=1

λ0 . . . λi−1

µ1 . . . µi
+ 1

)]
, (3.27)

for situations in which nL � nR,1 + nR,2.

When nL is comparable to nR,1 + nR,2, it is clear that ENCA[T(0,0)(N)] will

underestimate the exact mean time to reachN type 2 complexes, EEMA[T(0,0)(N)],

since it does not take into account the ligands being depleted by the formation of

complexes in the competing Markov chain. Thus, in Section 3.5.3 an alternative

method is introduced (MCA) to calculate E[T(0,0)(N)], which can be used under

low-to-moderate competition scenarios (i.e. when nL ≈ nR,1 + nR,2).

3.5.3 Moderate competition approximation (MCA)

Since the NCA underestimates the time to reachN type 2 complexes, in particular

in situations in which there is high competition from the receptors of type 1, in this

section the MCA is defined, in order to approximately account for the depletion

of ligand. In the MCA, one should compute EMCA[T(0,0)(N)] by implementing

Equation (3.27), but with an effective number of free ligands

n∗L = nL − E[M∗
1 ], (3.28)
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where E[M∗
1 ] is the mean number of type 1 complexes in steady state. Ideally,

one would use EEMA[M∗
1 ] in Equation (3.28). Alternatively, if this is computa-

tionally not feasible, one can use its approximation EMCA[M∗
1 ] instead. From a

practical perspective this does not seem crucial, since as stated in Section 3.4.4,

EEMA[M∗
1 ] and EMCA[M∗

1 ] are almost equal (to integer value) in most of the sce-

narios considered. The idea behind this effective number of free ligands is that by

subtracting from nL, the expected number of type 1 complexes in steady state,

one removes from the beginning of the calculation, the expected number of lig-

ands which will be occupied by the competing receptors in the long run. It is

clear that this approximation will work best when the complexes of type 1 form

rapidly, in which case it is reasonable to remove the ligands from the beginning

of the calculation for EMCA[T(0,0)(N)]. This corresponds to situations in which

kf,1 is large, in comparison to kf,2 and kr,1. In the case where the complexes of

type 1 form more slowly, it is expected that this approximation may not perform

as well. Unlike in the case of the steady state (Sections 3.4.1 - 3.4.3), where the

NCA was just a necessary step to propose the MCA, which always behaved better

than the NCA for the steady state computation, it is expected that for the mean

times, the EMA will be approximated best by the NCA or the MCA depending

on the number of molecules nR,1, nR,2 and nL and the parameter values kf,1, kf,2,

kr,1 and kr,2.

To give a first insight into how each of the approximations compare with the

exact result, in Figure 3.12 the mean time to reach N complexes of type 2 is

plotted, where N is represented as a percentage P of the steady state number of

type 2 complexes, N = P
100

EEMA[M∗
2 ], by means of the EMA, NCA and MCA.

In low competition scenarios (e.g. large nL or when Kd,1 � Kd,2 so that the

dynamics of formation of type 1 complexes does not significantly affect the time

scales of formation of type 2 complexes), the three approaches lead to almost

indistinguishable results. For low-to-moderate competition settings, the MCA

leads to a reasonable approximation. It is worth noting that the MCA and NCA

seem to lead to lower and upper bounds for the mean time under analysis: the

NCA always underestimates the time scales of type 2 complex formation, by

considering that there are nL ligands available, neglecting ligand depletion due to

type 1 complex formation competition; while the MCA tends to overestimate the

88



3.5 Time scales of complex formation

time scales of type 2 complex formation because one considers only nL − E[M∗
1 ]

ligands available (that is, all the ligands occupied by steady state type 1 complexes

are removed from the beginning, even if these complexes may take some time to

form). Since this steady state amount of type 1 complexes takes some time to

form, some of these ligands might still be able to contribute to the formation

of type 2 complexes during early times, leading to the observed overestimation.

Still, it is striking how well both approximations work when Kd,1 � Kd,2, even

when the number of ligands is less than the total number of receptors available in

the system (nL = 100 < 200 = nR,1 + nR,2). The relationship between the EMA,

NCA and MCA is explored more thoroughly in terms of the parameter values

and numbers of molecules in Section 3.5.4.

Plotted also in the insets of the subplots in Figure 3.12 are again the EMA

mean times (green lines) and also the times that are predicted from the determin-

istic (ODE) competition model derived via the LNA in Equations (3.9) (black

dashed lines). In this case the deterministic model was numerically solved (for

numbers of molecules rather than concentrations) and the first time at which the

number of complexes of type 2 exceeded N = P
100

EEMA[M∗
2 ] was recorded and is

plotted. In general, it can be seen that the deterministic time is always greater

than or equal to the stochastic EMA mean time, especially for larger values of P .

In order to further compare the deterministic result with the stochastic result,

one could also compute higher order moments of the times, such as the variance

of the times, using Algorithm 8 with l = 2.

3.5.4 Numerical validation

In this section, the accuracy of the NCA and MCA for analysing the expected time

to reach N complexes of type 2 is assessed, by means of numerical comparison

with the EMA. Similarly to the analysis carried out in Figure 3.9 for the steady

state distributions, in Figure 3.13 the parameters (Kd,1, Kd,2, nL, nR,1, nR,2) are

varied in pairs, and heatmaps of the relative differences,

1− ENCA[T(0,0)(N)]

EEMA[T(0,0)(N)]
and 1− EMCA[T(0,0)(N)]

EEMA[T(0,0)(N)]
,
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Figure 3.12: Comparison between the expected times to reach N complexes of
type 2, computed using the EMA, NCA and the MCA, for Kd,2 = 103, different
values of nL ∈ {100, 500, 2500} and Kd,1 ∈ {102, 103, 104} (i.e. Kd,1 � Kd,2,
Kd,1 = Kd,2 or Kd,1 � Kd,2). For all subplots the number of receptors are nR,1 =
nR,2 = 102, and the initial state is (m1,m2) = (0, 0). P represents a percentage
of the mean steady state value, so that N = P

100
EEMA[M∗

2 ]. The insets of each
subplot show the EMA mean times (green lines) as well as the corresponding times
found from solving the deterministic competition model (dashed black lines).

are plotted, for N = EEMA[M∗
2 ], so that T(0,0)(N) encodes the time scales for

type 2 complexes to reach steady state. It can be seen that the MCA seems to

better approximate the exact mean time in almost all parameter regimes explored,

but it is expected, that the NCA might perform better in some scenarios, for

example, when N is small. Still, it can be seen from Figure 3.13 (left) that
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the NCA performs relatively well in parameter regimes representing low natural

competition from R1, for example when Kd,1 is relatively large (indicative of low

affinity of R1 for L) and/or nR,1 is small. In Figure 3.13 (right), this effect of

competition from receptors of type 1 is reduced, and the MCA in general performs

much better thanks to the effective number of ligands considered in Equation

(3.28), which takes into account ligand depletion due to receptor competition.

The MCA and the NCA lead to very similar, and almost exact, results under

very low competition scenarios, since when E[M∗
1 ] ≈ 0, n∗L ≈ nL in Equation

(3.28) and thus, the two approximations are effectively the same.

As the analysis in Figure 3.13 uses fixed baseline parameters and hence does

not explore the whole parameter space, the EMA and NCA/MCA can be com-

pared by looking again at the competition strength parameters nR,1/Kd,1 and

nR,2/Kd,2 as introduced in Section 3.4.4. Similar scatter plots to those in Figure

3.10 are plotted in Figure 3.14, where now the relative differences between the

mean times are plotted instead of the HD. From the left hand subplot in the top

row of Figure 3.14 (where the top row corresponds to the comparison between the

EMA and the NCA), it can be seen that the relative difference increases with the

competing strength parameter
nR,1

Kd,1
. However, similarly to the case of the steady

state distributions, as nL increases, the competition from R1 decreases and the

NCA improves. For the sampled parameter sets, in general it seems that the

MCA outperforms once again the NCA. Similarly to the NCA, the performance

of the MCA tends to improve with large enough values of nL, where in the right

hand plot of the bottom row of Figure 3.14 (where the bottom row corresponds

to the comparison between the EMA and the MCA) in which nL = 500, more

than half of the sampled parameter sets lead to an approximation with a relative

error smaller than 5%. It is clear that the MCA will behave well in situations

where nL is large enough and, in particular, of a different order of magnitude to

nR,1 +nR,2; for example, for nL = 2000 (data not shown here; note that nR,1 +nR,2

ranges from 40 to 400), an overwhelming majority of scenarios (more than 90%)

in the bottom row of Figure 3.14 lead to MCA predictions with relative errors

smaller than 5%. Encouragingly also, in the top row of Figure 3.14, all of the

sampled points have relative differences greater than 0, which implies that the

NCA always underestimates the EMA. This is expected given that the formation
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Figure 3.13: Left: Relative difference 1− ENCA[T(0,0)(N)]

EEMA[T(0,0)(N)]
between the EMA and

NCA derived expected times to reach N complexes of type 2. Right: Relative

difference 1− EMCA[T(0,0)(N)]

EEMA[T(0,0)(N)]
between the EMA and MCA derived expected times to

reach N complexes of type 2. The colour of a pixel indicates the relative difference
for this combination of parameters, as given by the colour bar. Baseline parameter
values are nR,1 = 102, nR,2 = 102, Kd,1 = 103, Kd,2 = 103 and nL = 250.

of complexes of type 2 will happen faster if there is no competition from another

receptor, as assumed in the NCA. A similar pattern can be seen in the bottom

row of Figure 3.14, in which the MCA tends to overestimate the EMA, leading

to negative values of the relative difference. This is true for the majority of the
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points sampled. However, it is not always true as 6 of the 103 points sampled lead

to very slightly positive relative differences (for nL = 100 and nL = 250 only).

Figure 3.14: Top row: Relative difference 1− ENCA[T(0,0)(N)]

EEMA[T(0,0)(N)]
between the EMA

and NCA mean times to reach N complexes of type 2. Bottom row: Relative

difference 1 − EMCA[T(0,0)(N)]

EEMA[T(0,0)(N)]
between the EMA and MCA mean times to reach

N complexes of type 2. Both rows of the figure are plotted for the 103 sampled
parameter values in Figure 3.10, and for nL ∈ {100, 250, 500}.

Finally, it is to be expected that the NCA may behave better than the MCA

in situations where the mean steady state number of type 1 complexes is perhaps

non-negligible, but the time scales of type 1 complex formation are significantly

slower than the time scales of type 2 complex formation. In these situations,

considering an effective number of ligands nL − E[M∗
1 ] in Equation (3.28) might

lead to worse predictions, since this ligand depletion might take a long time

to occur, and should, thus, be neglected, so that the NCA would prevail. For

example, the NCA seems to lead to better predictions than the MCA in Figure

3.15 (left), where the formation of type 2 complexes occurs more rapidly than that

of type 1 complexes. In this figure, by carrying out a single stochastic (Gillespie)

simulation of the process, a particular realisation of the time T(0,0)(N) to reach

N = P
100

EEMA[M∗
2 ] type 2 complexes is produced, for different values of P ; in
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particular, for P = 20, 40, 60, 80 and 100% of the average number of complexes

in steady state, one can produce the dots plotted in Figure 3.15 (top). On the

other hand, in situations where the type 1 receptor is a strong competitor, such

as in Figure 3.15 (right), the MCA outperforms the NCA.

Figure 3.15: Top row: Comparison between the mean times computed using
the EMA, NCA and MCA. P represents a percentage of the mean steady state
value, as in Figure 3.12, so that N = P

100
EEMA[M∗

2 ]. Bottom row: Stochastic
realisations of the processes analysed in the top scenarios, leading to stochastic
realisations (plotted as black dots in top plots) of random variable T(0,0)(N) for
N = P

100
EEMA[M∗

2 ] and different values of P . Left: nR,1 = nR,2 = 102, Kd,1 = 102

and Kd,2 = 10. Right: nR,1 = 50, nR,2 = 102, Kd,1 = 10 and Kd,2 = 103. The
number of ligands is nL = 250 in each subplot.

3.5.5 Time scales of productive complex formation

Thus far, two stochastic descriptors have been analysed for the receptor competi-

tion system in Figure 3.1, the steady state distribution and the expected time to

reach N complexes of type 2. In this section, an extension of the approximation
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methodology is presented, for a third descriptor of interest. This descriptor is

linked to signal initiation for some receptor tyrosine kinases (RTKs): the time to

reach a threshold number N of productive complexes on the cell surface. Currie

et al. (2012) and Castro et al. (2014), hypothesise that signal initiation of T cells

through the T cell receptor (TCR) is determined by the time a threshold num-

ber, N , of productive complexes is reached. A productive complex is considered

to be a receptor that remains bound to the ligand, for at least a dwell time τ .

The authors compute the mean time, T (N, τ) to reach N productive complexes.

Note that T(0,0)(N) represents the time to reach a threshold number N of simul-

taneously bound complexes in the system, while T (N, τ) does not require these

events to be simultaneous, but instead requires the corresponding complexes to be

productive, based on the hypothesis that “counting devices are at work to allow

signal accumulation, decoding and translation into biological responses” (Currie

et al., 2012).

The model in Figure 3.1 is proposed by Currie et al. (2012) and when analysing

T (N, τ) with a single receptor type (the TCR), under the approximation of ligand

excess they find,

T (N, τ) = τ +
1

kfnL

(
N ′

nR
+

1

2!

(
N ′

nR

)2

+ . . .

)
, (3.29)

where kf is the forward binding rate of the receptor, nR is the number of receptors

available in the system, and N ′ = exp(krτ)N represents the average number

of binding events required for N productive ones to be reached. Recall that

dissociation of a complex occurs after an exponentially distributed random time

Exp(kr), where kr is the dissociation rate of the receptor. Equation (3.29) is found

by considering that T (N, τ) = τ +E[tN ′ ], where ti is defined as the time that the

ith complex is formed. Then, under excess of ligand, and considering that the

number of bound receptors is much less than the total number of receptors in

the system, E[tN ′ ] = N ′
kfnLnR

, since tN ′ is a sum of N ′ exponentially distributed

random variables with mean (kfnLnR)−1. Hence,

T (N, τ) = τ +
N ′

kfnLnR
. (3.30)

95



3. A STOCHASTIC MODEL OF RECEPTOR-LIGAND
COMPETITION DYNAMICS

One can then consider a differential equation for M(t), the number of bound

receptors at time t, under the same assumptions (excess of ligand and mass

action kinetics). Then the mean number of binding events up to time t can be

found by the solution of the integral

C(t) =

∫ t

0

kfnL(nR −M(s))ds.

Finally, one can set C(T − τ) = N ′, since both expressions correspond to the

mean number of binding events before the Nth productive one, and rearranging

and substituting the expression found for T (N, τ) (Equation (3.30)), one arrives

at Equation (3.29).

Currie et al. (2012) make use of experimental data to test two different hy-

potheses: that (a) the time scale of a T cell response correlates with the time

it takes to have had N receptor-ligand complexes bound for at least a threshold

dwell time, τ , each; or that (b) the time scale of a T cell response correlates with

the time a threshold number, N , of TCRs must be occupied at equilibrium. Their

conclusion is that experimental data supports hypotheses (a), but not (b). The

descriptor T (N, τ) has been proposed by Currie et al. (2012) and Castro et al.

(2014) for the T cell receptor, and a similar hypothesis has been considered for

other RTKs (Alarcón & Page, 2006; López-Garćıa et al., 2018). Here, similar

methods as those presented for the previous descriptors, are used to compute

T (N, τ) for a model as described in Figure 3.1, where the receptor of interest for

signal initiation (receptor 1) has a competitor (receptor 2) for binding the ligand.

By following similar arguments to those for the other descriptors, the NCA

approximation for T (N, τ) consists of applying Equation (3.29) with the total

number of ligands in the system nL, thus neglecting competition from receptor

2. On the other hand, as described in the MCA approximation, one may use

Equation (3.29) with nL replaced by the effective number of ligands n∗L = nL −
E[M∗

2 ].

Figure 3.16 shows a comparison between the mean time T (N, τ), computed

making use of the NCA and MCA approximations, and numerical simulations

(T SIM(N, τ)). The matrix-analytic approach for this descriptor is not applicable

since τ is a deterministic (i.e. fixed) dwell time. It is seen that the time T (N, τ)
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to reach N productive type 1 complexes is not well estimated by the NCA (using

Equation (3.29) with nL ligands) in situations where nL is not large enough (e.g.

nL = 100 in Figure 3.16). The worst estimates are obtained in scenarios where

the competing strength of receptor 1 is low, and that of receptor 2 is high, as one

would expect. On the other hand, the MCA approach, using an effective number

of ligands n∗L, is better, even for a small number of ligands. In general, it can

be observed that the MCA approximation gives good estimates of T (N, τ) over

a wide range of parameter values: N and τ .

Figure 3.16: Relative difference 1− T j(N,τ)
TSIM (N,τ)

, j ∈ {NCA,MCA}, between the

mean time T (N, τ) computed through the NCA and MCA approaches, and the
time computed through stochastic simulations, for nL ∈ {102, 103}. In these sce-
narios, 103 parameter sets have been sampled by varying the number of receptors
nR1 and nR2 between 100 and 400, Kd,1 and Kd,2 rates vary between 101 and 104,
and setting kr,1 = kr,2 = 10−3 s-1. In these examples, N = 10 and τ = k−1

r,1 , so
that a complex is considered to be productive if it lasts for longer than its average
lifetime.

This analysis of a third stochastic descriptor is an example of how the method-

ology in this chapter can be extended to other situations. It is expected that vari-

97



3. A STOCHASTIC MODEL OF RECEPTOR-LIGAND
COMPETITION DYNAMICS

ations of the NCA and MCA approaches could be used to compute even further

descriptors, or to compute similar descriptors in a higher dimensional scenario

(for example with more than 2 receptor types competing for the common ligand).

To this end, in the following sections, the EMA, NCA and MCA are defined and

compared for a 3 receptor system.

3.6 Higher dimensional systems

In this section, a competition process in three variables is introduced, where the

system in Figure 3.1 is extended by adding a third competing receptor type,

R3 as seen in Figure 3.17. For this larger system it is still possible to use the

exact matrix methodology as described in Sections 3.4.1 and 3.5.1 to compute

the two stochastic descriptors of interest in this chapter. The matrix forms and

algorithms required for the EMA for the three dimensional system are defined in

Sections 3.6.1 and 3.6.2. Due to the increased size of the state space caused by

adding a third receptor type, the EMA becomes more computationally expensive

for this three dimensional system and hence there is a greater requirement for

the NCA and MCA, which are trivial to expand to a system of three receptors,

and even to a system of N receptors. On the other hand, to expand the EMA

to a system of more than three receptors would be complex, both in terms of the

computational requirements and even to write down the forms of the matrices

required in the algorithms used to compute the descriptors.

For the system depicted in Figure 3.17, the dimensionality can once again

be reduced by considering the total number of receptors available in the system,

nR,1, nR,2 and nR,3 and the total number of ligands, nL. As well as the conser-

vation equations defined in Section 3.1, here the equation nR,3 = R3(t) + M3(t)

also applies and hence R3(t) can also be implicitly tracked, since R3(t) = nR,3 −
M3(t). Then, the process can be described as a multi-variate continuous-time

Markov chain (CTMC) Y = {Y(t) = (M1(t),M2(t),M3(t)) : t ≥ 0}, with

M1(t),M2(t),M3(t) ≥ 0 for all t ≥ 0, and the process Y evolves over the state

space SY = {(m1,m2,m3) ∈ (N ∪ {0})3 : m1 ≤ nR,1, m2 ≤ nR,2, m3 ≤
nR,3, m1 +m2 +m3 ≤ nL}, where m1, m2 and m3 are the number of type 1, 2

and 3 complexes, respectively, at any given time.
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+
kf,1

kr,1

R1 L M1

+
kf,2

kr,2

R2 L M2

+
kf,3

kr,3

R3 L M3

Figure 3.17: A depiction of the molecular reactions underlying the stochas-
tic mathematical model for the formation of three different complexes with one
shared ligand. Three different types of receptor molecule can bind, reversibly,
with a shared ligand to form three different complex types.

(m1,m2,m3)
(m1 + 1,m2,m3)

(m1 − 1,m2,m3)

(m1,m2,m3 − 1)

(m1,m2,m3 + 1)

(m1,m2 − 1,m3)

(m1,m2 + 1,m3)

q′(m1,m2,m3),(m1+1,m2,m3)

q′(m1,m2,m3),(m1−1,m2,m3)

q′(m1,m2,m3),(m1,m2,m3+1)

q′(m1,m2,m3),(m1,m2,m3−1)q′(m1,m2,m3),(m1,m2−1,m3)

q′(m1,m2,m3),(m1,m2+1,m3)

Figure 3.18: Transition diagram for the process Y, showing the possible states
which the process can move to from a general state (m1,m2,m3) and the transition
rates with which these state moves occur.
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The dynamics of complex formation and dissociation are then represented by

jumps, or transitions, between states in SY, (m1,m2,m3) → (m′1,m
′
2,m

′
3). The

transition diagram is shown in Figure 3.18 and the infinitesimal transition rate

from state (m1,m2,m3) to state (m′1,m
′
2,m

′
2), by assuming mass action kinetics,

is given by q′(m1,m2,m3),(m′1,m
′
2,m
′
3) =

kf,1(nR,1 −m1)(nL −m1 −m2 −m3), if (m′1,m
′
2,m

′
3) = (m1 + 1,m2,m3),

kr,1m1, if (m′1,m
′
2,m

′
3) = (m1 − 1,m2,m3),

kf,2(nR,2 −m2)(nL −m1 −m2 −m3), if (m′1,m
′
2,m

′
3) = (m1,m2 + 1,m3),

kr,2m2, if (m′1,m
′
2,m

′
3) = (m1,m2 − 1,m3),

kf,3(nR,3 −m3)(nL −m1 −m2 −m3), if (m′1,m
′
2,m

′
3) = (m1,m2,m3 + 1),

kr,3m3, if (m′1,m
′
2,m

′
3) = (m1,m2,m3 − 1),

0, otherwise.

3.6.1 Steady state distribution

In this section, the steady state distribution for the process depicted in Figure

3.17 is analysed using an extension of the EMA introduced in Section 3.4.1. It is

also shown how the NCA and MCA methods can be extended to a system of three

dimensions, and again the methods are numerically compared. The steady state

distribution for the model in Figure 3.17 is described in terms of the following

probabilities

πEMA
(m1,m2,m3) = lim

t→+∞
P((M1(t),M2(t),M3(t)) = (m1,m2,m3)), (m1,m2,m3) ∈ SY,

which can be stored in a row vector π′ = (π(m1,m2,m3), (m1,m2,m3) ∈ SY) for

any given order of states in SY. These probabilities correspond to the number of

complexes, of type 1, 2 and 3 respectively, found on the cellular surface at late

times. To begin, the state space for the CTMC Y can be organised into levels as

for the two-dimensional process X. The state space is organised into levels L′(k)

where now L′(k) = {(m1,m2,m3) : m3 = k} for 0 ≤ k ≤ N3 = min(nR,3, nL)

and L′(0) ≺ L′(1) ≺ ... ≺ L′(N3). Then, one can define two further minimums,

h1(k, r) = min(N1, nL−r−k) = min(nR,1, nL−r−k) and h2(k) = min(N2, nL−
k) = min(nR,2, nL − k), where k and r will be omitted from the notation for h1
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and h2 for simplicity. Having done this, the states within each level L′(k) can be

split into sub-levels l(k; r) where l(k; r) = {(m1,m2,m3) : m2 = r,m3 = k} for

0 ≤ r ≤ h2 and 0 ≤ k ≤ N3. The states within a sub-level l(k; r) can be ordered

as l(k; r) = {(0, r, k), (1, r, k), . . . , (h1, r, k)}, and the state space contains,

#SY =

N3∑
k=0

h2∑
r=0

(h1 + 1)

states, and can be expressed in terms of the levels L′(k) as

SY =

N3⋃
k=0

L′(k),

where

L′(k) =

h2⋃
r=0

l(k; r).

Having ordered the states in this way, the infinitesimal generator Q′ is once

again tridiagonal by blocks where now each block Q′k,k′ has also a block tridi-

agonal or block diagonal structure. Matrices Q′k,k′ contain transition rates for

transitions between states in level L′(k) and level L′(k′). The sub-blocks within

each block contain the transition rates for the transitions between sub-level l(k; r)

and l(k′; r′). The infinitesimal generator Q′ is given by,

Q′ =



Q′0,0 Q′0,1 0 . . . 0 0

Q′1,0 Q′1,1 Q′1,2 . . . 0 0

0 Q′2,1 Q′2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Q′N3−1,N3−1 Q′N3−1,N3

0 0 0 . . . Q′N3,N3−1 Q′N3,N3


.

Each level L′(k) contains J ′(k) = #L′(k) = h2 +1 states, so that each sub-matrix

Q′k,k′ has dimensions J ′(k)× J ′(k′). Sub-matrices Q′k,k′ are given as follows:
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• For 0 ≤ k ≤ N3,

Q′k,k =



Bk,k
0,0 Bk,k

0,1 0 . . . 0 0

Bk,k
1,0 Bk,k

1,1 Bk,k
1,2 . . . 0 0

0 Bk,k
2,1 Bk,k

2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Bk,k
h2−1,h2−1 Bk,k

h2−1,h2

0 0 0 . . . Bk,k
h2,h2−1 Bk,k

h2,h2


.

• For 0 ≤ k ≤ N3 − 1,

Q′k,k+1 =



Bk,k+1
0,0 0 0 . . . 0 0

0 Bk,k+1
1,1 0 . . . 0 0

0 0 Bk,k+1
2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Bk,k+1
h2−1,h2−1 0

0 0 0 . . . 0 Bk,k+1
h2,h2


.

• For 1 ≤ k ≤ N3,

Q′k,k−1 =



Bk,k−1
0,0 0 0 . . . 0 0

0 Bk,k−1
1,1 0 . . . 0 0

0 0 Bk,k−1
2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Bk,k−1
h2−1,h2−1 0

0 0 0 . . . 0 Bk,k−1
h2,h2


.
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The sub-levels l(k; r) each contain j(k; r) = #l(k; r) = h1 + 1 states, so that each

sub-matrix Bk,k′

r,r′ has dimensions j(k; r) × j(k′; r′). Sub-matrices Bk,k′

r,r′ are given

as follows:

• For 0 ≤ r ≤ h2 and 0 ≤ k ≤ N3,

(Bk,k
r,r )i,j =


kf,1(nR,1 − i)(nL − i− r − k), if j = i+ 1,

kr,1i, if j = i− 1,

−∆(i,r,k) if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r), 0 ≤ j ≤ j(k; r) and ∆(i,r,k) = kf,1(nR,1 − i)(nL − i−
r − k) + kr,1i + kf,2(nR,2 − r)(nL − i− r − k) + kr,2r + kf,3(nR,3 − k)(nL −
i− r − k) + kr,3k.

• For 0 ≤ r ≤ h2 − 1 and 0 ≤ k ≤ N3,

(Bk,k
r,r+1)i,j =

{
kf,2(nR,2 − r)(nL − i− r − k), if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r) and 0 ≤ j ≤ j(k; r + 1).

• For 1 ≤ r ≤ h2 and 0 ≤ k ≤ N3,

(Bk,k
r,r−1)i,j =

{
kr,2r, if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r) and 0 ≤ j ≤ j(k; r − 1).

• For 0 ≤ r ≤ h2 and 0 ≤ k ≤ N3 − 1,

(Bk,k+1
r,r )i,j =

{
kf,3(nR,3 − k)(nL − i− r − k), if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r) and 0 ≤ j ≤ j(k + 1; r).
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• For 0 ≤ r ≤ h2 and 1 ≤ k ≤ N3,

(Bk,k−1
r,r )i,j =

{
kr,3k, if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r) and 0 ≤ j ≤ j(k − 1; r).

With the infinitesimal generator Q′ in the tridiagonal by blocks form, the steady

state distribution for this three-dimensional process can be computed using an

algorithm similar to Algorithm 6. The matrices Qk,k would be replaced by Q′k,k,

π by π′ and N2 by N3 in the algorithm. Having obtained the steady state

probabilities, the mean number of complexes in steady state can be computed as

EEMA′ [M∗
1 ] =

N3∑
m3=0

min(nR,2,nL−m3)∑
m2=0

min(nR,1,nL−m2−m3)∑
m1=0

m1 · πEMA
(m1,m2,m3),

EEMA′ [M∗
2 ] =

N3∑
m3=0

min(nR,2,nL−m3)∑
m2=0

min(nR,1,nL−m2−m3)∑
m1=0

m2 · πEMA
(m1,m2,m3),

EEMA′ [M∗
3 ] =

N3∑
m3=0

min(nR,2,nL−m3)∑
m2=0

min(nR,1,nL−m2−m3)∑
m1=0

m3 · πEMA
(m1,m2,m3).

From the matrix forms presented in this section, one can easily see the increase

in complexity between the two receptor system and the three receptor system. In

order to extend the method to even higher dimensions, the EMA would become

infeasible since it would involve matrices with several sub-blocks and the compu-

tational expense would be too great. On the other hand, to extend the MCA to

a system of three receptors is trivial as it only involves analysing a third CTMC

X3 = {M3(t) : t ≥ 0} defined over the state space SX3 = {m3 ∈ N0 : m3 ≤ N3},
which is identical in form to X1 and X2 as introduced in Section 3.4.2. The steady

state probabilities for this third birth-and-death process are

πm3 = lim
t→+∞

P(M3(t) = m3) =

(
nR,3
m3

)(
kf,3nL

kr,3 + kf,3nL

)m3
(

kr,3
kr,3 + kf,3nL

)nR,3−m3

,

for 0 ≤ m3 ≤ N3, which again follow a binomial distribution. The expected
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values of complexes in steady state can also be determined as

ENCA[M∗
3 ] =

N3∑
m3=0

m3 πm3 =
kf,3nR,3nL
kr,3 + kf,3nL

.

In the limit nL → +∞, the NCA steady state distribution of the process Y is

given by

πNCA(m1,m2,m3) = πm1 × πm2 × πm3 , (m1,m2,m3) ∈ SY . (3.31)

Finally, in order to compute the MCA steady state distribution for the three

receptor process, one would use an adapted version of Algorithm 7, where the

probabilities π(m1,m2) would be replaced throughout with π(m1,m2,m3), SX replaced

with SY and the equation on line 9 of the algorithm would be replaced with

Equation (3.31). Computation of the steady state probabilities and expected

numbers of complexes in steady state for the one-dimensional process X3 would

also feature in all the obvious places, for example, the while condition would also

have the term |ENCA,(i)[M∗
3 ] − ENCA,(i−1)[M∗

3 ]| > ε and the computation of n
(i)
L

would become n
(i)
L = (nL−ENCA,(i−1)[M∗

1 ]−ENCA,(i−1)[M∗
2 ]−ENCA,(i−1)[M∗

3 ])α+

n
(i−1)
L (1−α). It is clear that this algorithm could be easily generalised to analyse

the steady state of a system of N receptors, and this generalisation will not come

with any notable increase in the computational cost.

In order to verify that the MCA is still a good alternative to the EMA for

the computation of the steady state distribution for a three receptor system,

in Figure 3.19, a similar scatter plot of the HD is seen to that in Figure 3.10.

Here a third competition strength parameter,
nR,3

Kd,3
, is introduced and each of

the three competition strength parameters are plotted against each other in each

row of the figure. The ranges for the receptor numbers are lower here than in

the 2D case since, even by increasing the system by only one receptor type, the

number of states in the state space becomes much larger and the EMA becomes

computationally expensive. In the top row, nL = 30 and in the bottom row

nL = 100 so that one can observe once again, that with increasing ligand numbers

(and hence less competition), the approximation improves. The same pattern is
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also seen within each subplot as in Figure 3.10, where for higher values of each

of the competition parameters, the HD is greater.

Figure 3.19: HD between the steady state distributions
{πEMA

(m1,m2,m3)}(m1,m2,m3)∈SY and {πMCA
(m1,m2,m3)}(m1,m2,m3)∈SY plotted for sampled val-

ues nR,j ∼ Unif(2, 20) and Kd,j = 10x with x ∼ Unif(0, 3), for j ∈ {1, 2, 3}, and
for different numbers of ligand nL ∈ {30, 100}. The threshold parameter ε = 10−5

is used for the MCA.

Here it is feasible to compare once again the EMA with the MCA via the

HD, however if the system were to increase further (say adding a fourth receptor

type), the EMA would become intractable. In this situation one could verify the

accuracy of the MCA by comparing the expected number of complexes of each

type in steady state with those obtained via stochastic simulations. An example

of such a comparison is seen in Figure 3.20 where the MCA is compared with

Gillespie simulations for a process with four receptor types. Here the HD is not

considered as, in order to accurately capture the whole steady state distribution

using Gillespie simulations, one would need to simulate the process a very large

number of times. Instead the accuracy of the MCA is assessed by considering the

absolute difference between the expected values of each receptor type in steady

state as computed via the MCA and via an average of 106 Gillespie simulations.

As expected, it is again seen that with increasing ligand numbers, the accuracy

of the MCA increases. Strikingly however, even for the lower value of nL = 102,
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the maximal value of the absolute difference is approximately 4, i.e. the expected

values are captured by the MCA roughly to integer value.

Figure 3.20: Absolute difference
∑4

i=1 |EMCA[M∗
i ] − ESIM [M∗

i ]| between the
mean number of complexes in steady state computed through Gillespie simula-
tions and the MCA approach, for nL ∈ {102, 103}. 103 parameter sets are sampled
by considering the number of receptors nR,j ∼ Unif(20, 200) and Kd,j = 10x with
x ∼ Unif(1, 4), j ∈ {1, 2, 3, 4}. The unbinding rates are fixed at kr,j = 10−3 s-1

for j ∈ {1, 2, 3, 4}.

It has been shown in this section that the MCA for the steady state distribu-

tion can be easily extended to a higher dimensional system, where it is still an

accurate approximation. In the next section, the NCA and MCA for the time
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scales of complex formation are also extended to a higher dimensional system.

3.6.2 Time scales of complex formation

In this section, it is shown how the time scales of complex formation for the

process depicted in Figure 3.17 can be analysed using an extension of the EMA

introduced in Section 3.5.1. It is also shown how the NCA and MCA methods

can be extended to a system of three dimensions for this descriptor, and again the

methods are numerically compared. For the three receptor system, the expected

time to reach N complexes of type 3 is now computed. For the multi-variate

process Y, T(m1,m2,m3)(N) is defined as the time to reach N complexes of type 3

given the initial state (m1,m2,m3) ∈ SY, i.e.

T(m1,m2,m3)(N) = inf{t ≥ 0 : M3(t) = N | (M1(0),M2(0),M3(0)) = (m1,m2,m3)},

for (m1,m2,m3) ∈ SY. Here N can be any arbitrary value M3(0) < N ≤ N3,

since T(M1(0),M2(0),M3(0))(M3(0)) ≡ 0. As in Section 3.5.1, moments of order l of

the time to reach N complexes of type 3 can be computed, using the Laplace-

Stieltjes transform of T(m1,m2,m3)(N), given by

φN(m1,m2,m3)(z) = E[e−zT(m1,m2,m3)
(N)] , R(z) ≥ 0 .

Using a first-step argument, one arrives at the system of linear equations

φ(m1,m2,m3)(z) =
kf,1(nR,1 −m1)(nL −m1 −m2 −m3)

z + ∆(m1,m2,m3)
φ(m1+1,m2,m3)(z)

+
kr,1m1

z + ∆(m1,m2,m3)
φ(m1−1,m2,m3)(z)

+
kf,2(nR,2 −m2)(nL −m1 −m2 −m3)

z + ∆(m1,m2,m3)
φ(m1,m2+1,m3)(z)

+
kr,2m2

z + ∆(m1,m2,m3)
φ(m1,m2−1,m3)(z)

+
kf,3(nR,3 −m3)(nL −m1 −m2 −m3)

z + ∆(m1,m2,m3)
φ(m1,m2,m3+1)(z)
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+
kr,3m3

z + ∆(m1,m2,m3)
φ(m1,m2,m3−1)(z),

where now ∆(m1,m2,m3) = kf,1(nR,1−m1)(nL−m1−m2−m3)+kr,1m1 +kf,2(nR,2−

m2)(nL−m1−m2−m3) +kr,2m2 +kf,3(nR,3−m3)(nL−m1−m2−m3) +kr,3m3.

Following the same methodology as in Section 3.5.1, The lth order moment of

T(m1,m2,m3) can then be found by differentiating φ(m1,m2,m3)(z) l times and multi-

plying by (−1)l, resulting in the system of equations,

∆(m1,m2,m3)E[T l(m1,m2,m3)] = kf,1(nR,1 −m1)(nL −m1 −m2 −m3)E[T l(m1+1,m2,m3)]

+ kr,1m1E[T l(m1−1,m2,m3)]

+ kf,2(nR,2 −m2)(nL −m1 −m2 −m3)E[T l(m1,m2+1,m3)]

+ kr,2m2E[T l(m1,m2−1,m3)]

+ kf,3(nR,3 −m3)(nL −m1 −m2 −m3)E[T l(m1,m2,m3+1)]

+ kr,3m3E[T l(m1,m2,m3−1)]

+ l E[T l−1
(m1,m2,m3)]. (3.32)

Moreover, by arranging the states in SY into levels as in Section 3.6.1, each equa-

tion in the system (3.32) corresponds to an initial state (m1,m2,m3) ∈ ∪N−1
k=0 L

′(k),

so that one can rewrite Equation (3.32) in matrix form as follows

n(l) = A′n(l) + c(l) (3.33)

where

n(l) =


n

(l)
0

n
(l)
1
...

n
(l)
N−1

 , n
(l)
k =


n

(l)
0,k

n
(l)
1,k
...

n
(l)
h2,k

 , n
(l)
r,k =


E[T l(0,r,k)]

E[T l(1,r,k)]
...

E[T l(h1,r,k)]

 ,
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for 0 ≤ k ≤ N − 1 and 0 ≤ r ≤ h2. Vector c(l) is also organised in sub-vectors as

c(l) =


c

(l)
0

c
(l)
1
...

c
(l)
N−1

 , c
(l)
k =


c

(l)
0,k

c
(l)
1,k
...

c
(l)
h2,k

 ,

which are obtained from the (l − 1)th order moments, as

(c
(l)
r,k)(m1,m2,m3) =

l

∆(m1,m2,m3)

(n
(l−1)
r,k )(m1,m2,m3),

for all (m1,m2,m3) ∈ l(k; r) and 0 ≤ r ≤ h1. The matrix A′ is given by

A′ =



A′0,0 A′0,1 0 . . . 0 0

A′1,0 A′1,1 A′1,2 . . . 0 0

0 A′2,1 A′2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . A′N−2,N−2 A′N−2,N−1

0 0 0 . . . A′N−1,N−2 A′N−1,N−1


.

Each level L′(k) contains J ′(k) = #L′(k) = h2 +1 states, so that each sub-matrix

A′k,k′ has dimensions J ′(k)× J ′(k′). Sub-matrices A′k,k′ are given as follows:

• For 0 ≤ k ≤ N − 1,

A′k,k =



Dk,k
0,0 Dk,k

0,1 0 . . . 0 0

Dk,k
1,0 Dk,k

1,1 Dk,k
1,2 . . . 0 0

0 Dk,k
2,1 Dk,k

2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Dk,k
h2−1,h2−1 Dk,k

h2−1,h2

0 0 0 . . . Dk,k
h2,h2−1 Dk,k

h2,h2


.
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• For 0 ≤ k ≤ N − 2,

A′k,k+1 =



Dk,k+1
0,0 0 0 . . . 0 0

0 Dk,k+1
1,1 0 . . . 0 0

0 0 Dk,k+1
2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Dk,k+1
h2−1,h2−1 0

0 0 0 . . . 0 Dk,k+1
h2,h2


.

• For 1 ≤ k ≤ N − 1,

A′k,k−1 =



Dk,k−1
0,0 0 0 . . . 0 0

0 Dk,k−1
1,1 0 . . . 0 0

0 0 Dk,k−1
2,2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Dk,k−1
h2−1,h2−1 0

0 0 0 . . . 0 Dk,k−1
h2,h2


.

The sub-levels l(k; r) each contain j(k; r) = #l(k; r) = h1 + 1 states, so that each

sub-matrix Dk,k′

r,r′ has dimensions j(k; r)× j(k′; r′). Sub-matrices Dk,k′

r,r′ are given

as follows:

• For 0 ≤ r ≤ h2 and 0 ≤ k ≤ N − 1,

(Dk,k
r,r )i,j =


kf,1(nR,1−i)(nL−i−r−k)

∆(i,r,k)
, if j = i+ 1,

kr,1i

∆(i,r,k)
, if j = i− 1,

0, otherwise,
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where 0 ≤ i ≤ j(k; r), 0 ≤ j ≤ j(k; r).

• For 0 ≤ r ≤ h2 − 1 and 0 ≤ k ≤ N − 1,

(Dk,k
r,r+1)i,j =

{
kf,2(nR,2−r)(nL−i−r−k)

∆(i,r,k)
, if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r) and 0 ≤ j ≤ j(k; r + 1).

• For 1 ≤ r ≤ h2 and 0 ≤ k ≤ N − 1,

(Dk,k
r,r−1)i,j =

{
kr,2r

∆(i,r,k)
, if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r) and 0 ≤ j ≤ j(k; r − 1).

• For 0 ≤ r ≤ h2 and 0 ≤ k ≤ N − 2,

(Dk,k+1
r,r )i,j =

{
kf,3(nR,3−k)(nL−i−r−k)

∆(i,r,k)
, if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r) and 0 ≤ j ≤ j(k + 1; r).

• For 0 ≤ r ≤ h2 and 1 ≤ k ≤ N − 1,

(Dk,k−1
r,r )i,j =

{
kr,3k

∆(i,r,k)
, if j = i,

0, otherwise,

where 0 ≤ i ≤ j(k; r) and 0 ≤ j ≤ j(k − 1; r).

With the matrices in Equation (3.33) arranged in this way, the equation can

then be solved efficiently using a similiar algorithm to Algorithm 8 to obtain

the lth order moments of the random variable T(m1,m2,m3). In the algorithm, the

matrix blocks A would be replaced by A′, m by n and b by c. Similarly to

the computation of the steady state distribution for the three receptor system,

the computation for the time scales of complex formation has also increased
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in complexity with the added receptor. To utilise the NCA for this stochastic

descriptor however, one could use the same methodology as in Section 3.5.2, where

now the expected time to reach N complexes of type 3, i.e. Tm3(N) = inf{t ≥ 0 :

M3(t) = N |M3(0) = m3} is computed. Clearly the only change here is to replace

λm2 and µm2 with λm3 = kf,3(nR,3−m3)(nL−m3) and µm3 = kr,3m3 in Equation

(3.27) where now the notation for the expected time is ENCA[T(0,0,0)(N)], since a

third receptor type has been added, and initially it is assumed that no complexes

of this type are present. Finally, to extend the MCA to this system, one would

replace Equation (3.28) with

n∗∗L = nL − E[M∗
1 ]− E[M∗

2 ] , (3.34)

i.e. subtracting from the initial number of ligands the expected number of type

1 and type 2 complexes in steady state. Equation (3.27) would then be used

to compute EMCA[T(0,0,0)(N)] but using n∗∗L in the calculation of the birth rates

instead of nL and with the alterations as described for the NCA in the paragraph

above.

Extending the system from two receptor types to three receptor types will

clearly have no effect on the computation time of the NCA for the expected time

to reach N complexes of type 3. The only potential increase in computation time

for the MCA is due to the increase in computation time when evaluating E[M∗
1 ]

and E[M∗
2 ] to use in Equation (3.34). However, one could use the MCA for the

steady state distribution to compute these expected values and then the increase

in the computation time would not be significant.

The time saved when using either the NCA or MCA to compute this descrip-

tor, as opposed to the EMA is even greater than for the two receptor system,

but it remains to validate the accuracy of the approximations for this system.

Hence in Figures 3.21 and 3.22 the relative difference between the times com-

puted via the EMA and NCA and the EMA and MCA are plotted, respectively.

Here the value of N is chosen as the expected number of complexes of type 3 in

steady state, i.e. N = E[M∗
3 ] computed via the EMA. It can be seen that these

two figures are very similar in trend to Figure 3.14, i.e. the approximations are

best for low competition areas of the parameter space and when nL is greatest.
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Again it is seen that in general, the NCA underestimates the time and the MCA

overestimates the time, as expected.

Figure 3.21: Relative difference 1− ENCA[T(0,0,0)(N)]

EEMA[T(0,0,0)(N)]
between the EMA and NCA

mean times to reach N complexes of type 3, plotted for the 103 sampled parameter
values in Figure 3.19, and for nL ∈ {30, 100}.

Figure 3.22: Relative difference 1− EMCA[T(0,0,0)(N)]

EEMA[T(0,0,0)(N)]
between the EMA and MCA

mean times to reach N complexes of type 3, plotted for the 103 sampled parameter
values in Figure 3.19, and for nL ∈ {30, 100}.

As in the case of the steady state distribution, it is interesting to see how

the approximations fare for a higher dimensional system, for example for the
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four receptor system as discussed in Section 3.6.1. Again, the EMA would be

too complex and computationally challenging to use to compute this stochastic

descriptor in four dimensions and hence, stochastic simulations are again used

to compare to the NCA and MCA methods. In Figures 3.23 and 3.24 the NCA

and MCA (respectively) approaches to compute the expected times to reach N

complexes of type 4 are compared with the same times computed via an average

of 103 Gillespie simulations. Similarly to the three receptor case, the value of N

here is chosen as the expected number of complexes of type 4 in steady state,

i.e. N = E[M∗
4 ] computed now via the MCA, since the EMA is analytically

intractable in this case.

In Figures 3.23 and 3.24 it can be seen that there are fairly large relative

differences in the times for the lower number of ligands nL = 100. In this four

receptor case nL < nR,1 + nR,2 + nR,3 + nR,4 in almost all of the parameter

sets sampled given that nR,j ∼ Unif(20, 200) for j ∈ {1, 2, 3, 4} and hence the

competition here is very high so this result is expected. For nL = 1000, many

more of the relative differences are closer to zero for both the NCA and MCA. It is

expected however, that as the size of the system increases (i.e. with adding more

competing receptors), both approximations for the expected times to reach N

complexes of a single type, will worsen. In the case of the NCA, this is because

more receptor types means more competition and hence the assumption of no

competition becomes less and less valid. In the case of the MCA, the reduction

in accuracy is caused by the computation of the effective number of ligands,

where this value is computed by subtracting from nL, the expected number of

complexes of each type (other than the type that the expected time to reach N

of, is being computed) in steady state. It is likely that, when there are multiple

receptor varieties, potentially all with different rates of binding and unbinding

the ligand, the dynamics of formation of at least one receptor type may be slow

enough that it is not reasonable to consider subtracting from the beginning of the

calculation, the expected number of this complex type in steady state. Although

the approximations generally decrease in accuracy with an increasing number

of receptor types, for a large enough number of ligands nL, both the NCA and

MCA are still very accurate. For example, for the four receptor system, using

nL = 104 and the receptor numbers as varied in Figures 3.23 and 3.24, 85% of
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Figure 3.23: Relative difference 1 − ENCA[T(0,0,0,0)(N)]

EEMA[T(0,0,0,0)(N)]
between the NCA and

average of Gillespie simulations mean times to reach N complexes of type 4 for
nL ∈ {102, 103}. 103 parameter sets are sampled by considering the number
of receptors nR,j ∼ Unif(20, 200) and Kd,j = 10x with x ∼ Unif(1, 4), j ∈
{1, 2, 3, 4}. The unbinding rates are fixed at kr,j = 10−3 s-1 for j ∈ {1, 2, 3, 4}.

the percentage errors between the Gillespie derived time and the NCA derived

time were less than 5% and this figure was 95% when comparing with the MCA.

Finally it is also to be noted that the accuracy of the NCA and MCA as presented

for the four receptor system is likely to increase in accuracy with a larger number

of Gillespie simulations, and hence a better approximation of the expected time

from simulation.
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Figure 3.24: Relative difference 1 − EMCA[T(0,0,0,0)(N)]

EEMA[T(0,0,0,0)(N)]
between the MCA and

average of Gillespie simulations mean times to reach N complexes of type 4 for
nL ∈ {102, 103}. 103 parameter sets are sampled by considering the number
of receptors nR,j ∼ Unif(20, 200) and Kd,j = 10x with x ∼ Unif(1, 4), j ∈
{1, 2, 3, 4}. The unbinding rates are fixed at kr,j = 10−3 s-1 for j ∈ {1, 2, 3, 4}.

3.7 Discussion

In this chapter, mathematical models of receptor competition for a shared lig-

and have been introduced, expressed as multi-variate competition processes, as

defined by Reuter (1961) and Iglehart et al. (1964) in the area of Mathematical

Ecology. For any number of competing receptor types, this leads to the study
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of a structured continuous-time Markov chain; in particular, a LD-QBD process.

For these processes, the interest was in analysing two stochastic descriptors; the

steady state distribution and the expected time to reach N complexes of a certain

type, by implementing first-step arguments, leading to the study of systems of

linear equations. Since the processes are LD-QBD processes, there are matrix-

oriented algorithms available in the literature (Latouche et al., 1999), which can

be exploited in order to efficiently solve these systems of linear equations.

The main limitation of this matrix-oriented approach is that the number of

equations increases with the number of states, which turns out to increase with

the number of molecules in the system, typically large in in vivo and in vitro

settings (López-Garćıa et al., 2016). Thus, in this chapter, several approximations

have been proposed based on the analysis of the process under low-to-moderate

competition scenarios (e.g. when the number of competing receptors is small,

there is excess of ligand, or the competing receptor has a relatively low affinity

compared to the other receptor). These approximations lead to the analysis

of independent one-dimensional birth-and-death processes, for which analogous

computations can be carried out much more efficiently. Numerical comparison

between the approximations and exact results, suggest that these approximations

could be exploited in a wide range of parameter regimes, which have been explored

inspired from values corresponding to the VEGF1 and VEGF2 receptors, which

can both bind the shared ligand, VEGF-A.

A striking advantage of using the approximate methods to compute the stochas-

tic descriptors presented in this chapter is that the computational cost is much

less than the cost of computing the same descriptors in an exact fashion (EMA). In

Figures 3.25 and 3.26, a simple computational comparison between the NCA/MCA

and the EMA is presented for the two receptor system in Figure 3.1 (although

similar comparisons could be carried out for higher dimensional systems). In par-

ticular, heatmaps of the central processing unit (CPU) times to run each method

are plotted, for a range of numbers of the molecules nR,1 and nR,2. In both fig-

ures, nL = 104 and Kd,1 = Kd,2 = 103, since for a large number of ligands such

as nL = 104, the computational cost of the EMA just depends on the values

of nR,1 and nR,2, and is independent of Kd,1 and Kd,2. The colour bar on each

figure represents the CPU time for the computation of the stochastic descriptor,
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with units minutes. As expected, the EMA requires the largest amount of time

to compute both descriptors since, especially when nR,1 and nR,2 are large, the

method involves the computation of relatively large matrix inverses. There is

a similar trend for both the NCA and MCA approaches to compute the steady

state distribution, i.e. the larger nR,1 and nR,2, the greater the CPU time. It can

be seen that, whereas the CPU time under the EMA takes up to a maximum of

approximately 45 minutes, the NCA and MCA take less than 1 minute for all

numbers of molecules considered. For the second descriptor, from Figure 3.26 it

can be observed that the EMA takes roughly half the CPU time as the EMA for

the steady state distribution in Figure 3.25. This is since the value of N has been

set as N =
nR,2

2
, for the expected times and hence only half of the matrix inverses

are required compared to Figure 3.25. Again in Figure 3.26, the NCA and MCA

are strikingly faster to compute than the EMA. As expected, the NCA in this

case does not depend on the value of nR,1 since this quantity does not feature

in the calculation. For the MCA however, one must first compute EMCA[M∗
1 ]

using the MCA for the steady state distribution and hence the CPU times here

do depend on nR,1.

In Figure 3.27, specific pixels from Figures 3.25 and 3.26 are explored in more

detail. In particular, 3 values of nR,2 were chosen, corresponding to the 3 columns

in Figure 3.27 and on the x-axis of each plot, the value of nR,1 is varied. The top

row of Figure 3.27 relates to the steady state distribution descriptor and hence

the y-axis of the plots in this row is the HD. The second row in the figure relates

to the expected times to reach N complexes of type 2 descriptor and hence the

y-axis of the plots in this row is the relative difference as plotted in Figure 3.14.

Finally the colour bar represents the CPU time saved with units minutes, by

computing the descriptors using the approximations (NCA and MCA) instead of

the analytic method (EMA). For the steady state descriptor in the first row it

is seen that, as expected, the HD between the EMA and the NCA increases as

nR,1 increases, whereas the HD between the EMA and the MCA remains almost

constant, indicating that this approximation works very well for these numbers of

molecules. As nR,1 and nR,2 are increased, one finds that the time saved by using

the NCA or MCA increases. In the second row, both the NCA and MCA worsen

as approximations as nR,1 is increased, but this worsening is only very slight (the
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relative differences are always � 1). Again, as nR,1 and nR,2 are increased, the

time saved by using the NCA or MCA increases. From this figure one can see

that there is a trade-off between the HD or relative difference and the CPU time

saved, but for the numbers of molecules and parameter values considered here,

the time saved clearly outweighs the slight deviation from the EMA result caused

by using the MCA for the steady state distribution and both the NCA and MCA

for the expected times descriptor.

Figure 3.25: Comparison of the CPU time (in minutes) required to compute
the steady state distribution for the EMA, NCA and MCA for different receptor
numbers.

Figure 3.26: Comparison of the CPU time (in minutes) required to compute
the mean time to reach N =

nR,2

2
complexes of type 2 for the EMA, NCA and

MCA for different receptor numbers.

In this chapter, firstly a system was introduced in which there were two re-

ceptor types competing for a common ligand type, and then it was shown how

the system could be extended to more receptor types. Both the analytic and ap-

proximate methods of computation of the stochastic descriptors analysed in this
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Figure 3.27: Top row: Trade-off between the HD, the value of nR,1 and the
CPU time saved by considering either the NCA or MCA instead of the EMA
when computing the steady state distribution. Bottom row: Trade-off between
the relative difference, the value of nR,1 and the CPU time saved by considering
either the NCA or MCA instead of the EMA when computing the expected time
to reach N complexes of type 2. In all plots, nL = 104 and Kd,1 = Kd,2 = 103.

chapter can be extended to these larger systems, however the approximations are

much more efficient and computationally feasible for larger numbers of receptor

types. To illustrate the need for a larger system, Roepstorff et al. (2009), describe

how there are six different ligands which bind to EGFR (the epidermal growth

factor receptor, discussed in Chapter 1). Hence one could imagine modelling

this as a system of six variables (different ligand varieties), all competing for a

common receptor (note that the system has been reversed here so that it is now

ligands competing for a common receptor). To analyse a stochastic descriptor,

such as the steady state distribution, for this system, it would be necessary to

use the approximations presented in this chapter, as obtaining analytic results

via the EMA would be intractable. As well as utilising the approximations for

higher dimensional systems, one could also seek to use the ideas presented in

this chapter to analyse further stochastic descriptors, similarly to as is done in

Section 3.5.5 when considering productive complex formation. Moreover, since

the methods presented here have been framed within processes originally devised

121



3. A STOCHASTIC MODEL OF RECEPTOR-LIGAND
COMPETITION DYNAMICS

in Mathematical Ecology, it is to be expected that they could be extended to

more general competition processes in this area (Gómez-Corral & López-Garćıa,

2012a,b, 2015), and are not restricted to molecular dynamics.

Finally, a clear limitation of the approaches in this chapter is that the model

has focused on receptor-ligand binding dynamics without taking into account ad-

ditional reactions such as receptor synthesis, degradation or internalisation. The

analysis however, can be generalised to include those scenarios; for example, when

modelling the surface and intracellular dynamics of two receptor types competing

(on the surface) for a common ligand, one could use the techniques presented here

to disentangle this competition, by the consideration of an effective number of

ligands, so that the two intracellular processes can be separately studied.
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Chapter 4

Mathematical modelling of

cytokine receptor signalling

Cytokines are a class of small proteins, released by cells, which diffuse in the

extracellular medium. A subclass of the cytokines are the interleukins, which are

secreted by, and act upon, leukocytes, white blood cells of the immune system

(Zhang & An, 2007). There are numerous (at least 40) interleukins which, in

general, act as messenger molecules between cells and play a significant role in

both the innate and the adaptive immune responses. They interact with cells by

associating with membrane bound receptor molecules, and this interaction leads

to cell signalling, for example, promoting differentiation, division or maturation

of cells (Yuzhalin & Kutikhin, 2015). In this chapter, two specific interleukins are

considered, interleukin 6 (IL-6) and interleukin 27 (IL-27). IL-6 acts primarily

on B lymphocytes and hepatocytes and one of its main functions is to initiate,

through binding with a receptor, the differentiation of B cells. IL-27 is a pro-

inflammatory molecule and is produced by T cells (Petes et al., 2018). A feature

shared by these two interleukins is their ability to activate STAT proteins, specif-

ically STAT1 and STAT3, which are part of the JAK/STAT pathway (Gordziel

et al., 2013; Hibbert et al., 2003). Certain receptor molecules, such as glycopro-

tein 130 (GP130) and IL-27 receptor α (IL-27Rα), have phosphotyrosine residues

which act as docking sites for STAT1 and STAT3 (Heinrich et al., 1998). Such ty-

rosine residues become phosphorylated when the receptor forms a ligand-induced

dimer with another receptor. Note that since cytokines can bind their associated
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receptors, they behave as ligand molecules. Both IL-6 and IL-27 are capable of

inducing such a dimer, where IL-6 induces the formation of a GP130 homodimer

and IL-27 induces the formation of a GP130 - IL-27Rα heterodimer (Akdis et al.,

2011). Both such dimers are seen in Figure 4.1. As described in Chapter 1, dys-

regulation of the JAK/STAT pathway, for example through up-regulation of the

cytokines IL-6 and IL-27, can have an impact on cell signalling, and the fate of

a cell (for example, division, migration or death, see Chapter 1). In particular,

this dysregulation can lead to autoimmune disorders such as SLE and Crohn’s

disease, and hence it is important to study the effects of up-regulation of these

cytokines on different proteins in the JAK/STAT signalling pathway.

Cell membrane GP130 IL-27Rα

IL-6 IL-27

IL-6 induced dimer IL-27 induced dimer

Figure 4.1: Diagram of the cytokine induced dimers formed under IL-6 and
IL-27.

In this chapter, experimental data provided by Dr. Ignacio Moraga Gonzalez

and Dr. Stephan Wilmes from the School of Life Sciences at the University of

Dundee is used, which explores STAT1 and STAT3 activation by IL-6 and IL-27.

They experimentally observed that, although these two cytokines can stimulate

the same intracellular signalling pathway (JAK/STAT), they lead to differential

signalling by STAT1. In particular, when the system is stimulated with IL-27,

a greater and more sustained STAT1 signal is observed than when the system

is stimulated with IL-6, whereas the STAT3 response is the same under both

cytokines. Here, the aim is to understand the molecular mechanisms behind

this differential STAT signalling induced by cytokine stimulation. Deterministic

mathematical modelling and Bayesian model selection and inference are here used

to learn about these potential molecular mechanisms. In Section 4.1, molecular
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reactions which will inform mathematical models for both IL-6 and IL-27 stimu-

lation are defined. Ordinary differential equation mathematical models are then

developed based on these reactions. The experimental data used to compare with

the mathematical model outputs is introduced in Section 4.2 and in Section 4.3,

Bayesian model selection and Bayesian inference are used to inform hypotheses

relating to the model reactions and to infer posterior distributions for the rate

constants and initial concentrations in the models. In Section 4.4, the mathe-

matical models are validated using additional experimental data and in Section

4.5, the models are used to predict changes in STAT signalling upon varying the

concentrations of STATs and receptor molecules. Section 4.6 provides justifica-

tion for choices made when developing the structure of the mathematical models

with relation to other modelling work from the literature, specifically relating to

negative feedback mechanisms. Finally, Section 4.7 is a discussion.

4.1 The IL-6 and IL-27 signalling mechanisms

The cytokines IL-6 and IL-27 both stimulate the JAK/STAT pathway, an im-

portant intracellular signal induction pathway. A summary of the JAK/STAT

pathway is as follows (Dodington et al., 2018). At the head of the pathway,

spanning the cell surface membrane, is a ligand-induced receptor dimer, which

is activated through autophosphorylation upon dimerisation. JAK proteins are

then recruited to the intracellular tails of the receptors in the dimer and these

molecules can, in turn, phosphorylate STAT proteins which also bind to the re-

ceptor tails. Phosphorylated STAT molecules then dissociate the receptor dimers

and form dimers themselves before migrating to the nucleus to regulate gene

transcription. The IL-6 and IL-27 JAK/STAT pathways differ due to the reac-

tions involved in the formation of the signalling dimer under each cytokine. The

signalling receptor complex formed under stimulation with IL-6 is a hexameric

complex consisting of two molecules of IL-6, two molecules of IL-6 receptor α

(IL-6Rα) and two molecules of GP130. In the experiments which produced the

data used in this chapter however, a protein called hyper IL-6 (HypIL-6) was

used, which is a molecular complex formed of IL-6 and IL-6Rα. This fusion pro-

tein was used in order to diminish signalling variability due to changes in IL-6Rα
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expression. HypIL-6 then acts as the cytokine in the system and hence the sig-

nalling dimer is formed through two molecules of HypIL-6 and two of GP130.

Under stimulation with IL-27, a heterodimer is formed consisting of one molecule

of IL-27, one of IL-27Rα and one of GP130. Given that IL-27 has very weak

affinity for GP130, it is assumed in the mathematical model that IL-27 binds

firstly to IL-27Rα and then this complex forms a dimer with a GP130 unit.

In the mathematical models, it is assumed that the receptors in both dimer

types phosphorylate immediately upon formation of the dimer and hence phos-

phorylation reactions are not included in the model. The JAK molecules do not

feature as species in the mathematical models and hence it is assumed that they

are constitutively bound to the corresponding receptors and that they phosphory-

late immediately upon receptor phosphorylation (dimer formation) (Morris et al.,

2018). After the formation of the dimer, which will be denoted by either D6 or

D27, formed by HypIL-6 or IL-27 respectively, the reactions for each mathematical

model are similar, and are summarised as follows. A free cytoplasmic unphos-

phorylated STAT1 or STAT3 molecule can associate with either receptor in the

dimer, provided that the intracellular tyrosine residue of the receptor in the dimer

is free. The STAT1 or STAT3 molecule can subsequently unbind the receptor in

the dimer or can become phosphorylated whilst bound to the dimer. Phosphory-

lated STAT1 (pSTAT1) and STAT3 (pSTAT3) molecules can also dissociate from

the dimer where, once free in the cytoplasm, they can then become dephospho-

rylated. It is assumed that the rate of pSTAT dephosphorylation depends only

on the concentration of the respective STAT type. No allostery is considered in

the model and hence, phosphorylated and unphosphorylated (p)STAT molecules

dissociate the receptor at the same rate. Given that STAT phosphorylation is

independent of the receptor which the STAT molecule is bound to, and of the

STAT type, there is only one rate of STAT phosphorylation in the model. Fi-

nally, species containing receptor molecules are removed from the system, due to

receptor internalisation or degradation, via one of two hypothesised mechanisms,

• hypothesis 1 (H1): receptors (free or bound, phosphorylated or unphospho-

rylated) are internalised/degraded with rate proportional to the concentra-

tion of the species in which they are contained, and
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• hypothesis 2 (H2): receptors (free or bound, phosphorylated or unphospho-

rylated) are internalised/degraded with rate proportional to the product of

the concentration of the species in which they are contained and the sum of

the concentrations of free cytoplasmic phosphorylated STAT1 and STAT3.

Hypothesis 1 assumes that receptor molecules (free or bound, phosphorylated or

unphosphorylated) are being internalised/degraded as part of the natural cellular

trafficking cycle. Hypothesis 2 is consistent with a potential negative feedback

mechanism, whereby the free cytoplasmic pSTAT molecules would migrate to the

nucleus and increase the translation of negative feedback proteins such as SOCS3,

which down-regulate cytokine signalling (Brender et al., 2007; Croker et al., 2003).

Thus, the internalization/degradation rate of receptor molecules (free or bound,

phosphorylated or unphosphorylated) under hypothesis 2 increases with the to-

tal amount of free cytoplasmic phosphorylated STAT1 and STAT3, to account

for this negative feedback on surface receptor expression. Although in cytokine

systems, such as those considered here, there may be many other feedback mech-

anisms in place, such as positive feedback mechanisms (Arbouzova & Zeidler,

2006; Shuai & Liu, 2003), given the duration of the kinetic experiments (three

hours), they would not be relevant here and hence only the two aforementioned

hypotheses relating to internalisation/degradation of receptors are considered. A

diagram which describes the molecular reactions in each model (HypIL-6 and

IL-27) is shown in Figure 4.2 and the complete model reaction scheme is given in

Figure 4.3, where a), c), e) and g) comprise the HypIL-6 model and b), d), f) and

g) comprise the IL-27 model. In the figure, i ∈ {1, 3} so that the reactions shown

can either involve STAT1 or STAT3. Each reaction arrow has been shown with its

rate (above or below the arrow). The notation for the rate constants and initial

concentrations in the model, along with their descriptions and units, are given in

Table 4.1. The initial concentrations of all model variables not included in Table

4.1 are fixed at 0 nM when integrating the mathematical models. Further steps in

the pathway such as pSTAT dimerisation and gene transcription are not included

in the mathematical models for simplicity, and since it is the initial steps in the

JAK/STAT pathway that are of interest here. In Sections 4.1.1 and 4.1.2, ODE

models are formulated for the HypIL-6 and IL-27 pathways, respectively, based

on the reactions described here.
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= GP130 = HypIL-6 = IL-27Rα = IL-27

= Docking site = STATi = pSTATi

Figure 4.2: Diagram of the reactions for the HypIL-6 and IL-27 mathematical
models. From left to right in a single model panel: cytokines can bind to unbound
receptors, dimerisation of receptor complexes can occur and STAT molecules can
bind to the dimers, where they can then phosphorylate and dissociate. Each
panel is one such example of the model but in general STAT molecules can bind
to either receptor in the dimer until two STATs are bound to a given receptor-
ligand dimer. The reverse reactions are also included in the models, but have not
been included in the diagram for simplicity. Finally, in each model (HypIL-6 or
IL-27), any molecular species involving a receptor molecule of either type can be
internalised/degraded.
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Figure 4.3: Depiction of the reactions defining the HypIL-6 and IL-27 math-
ematical models. a) Reactions involving ligand binding and dimerisation in the
HypIL-6 model. b) Reactions involving ligand binding and dimerisation in the
IL-27 model. c) Reactions involving STATi molecules, for i ∈ {1, 3}, in the
HypIL-6 model. d) Reactions involving STATi molecules, for i ∈ {1, 3}, in the
IL-27 model. e) Reactions involving receptor internalisation/degradation in the
HypIL-6 model. Here H1 = β6 and H2 = γ6([pSTAT1] + [pSTAT3]) where square
brackets around a species denote the concentration of the species. f) Reactions
involving receptor internalisation/degradation in the IL-27 model. Here H1 = β27

and H2 = γ27([pSTAT1]+[pSTAT3]). g) Dephosphorylation of pSi, for i ∈ {1, 3},
in the cytoplasm. This reaction occurs in both models. h) Key for the molecules
in the reactions.
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Parameter/IC Description Unit

r+
1,6, r+

1,27 Rate of receptor-ligand binding nM-1s-1

r−1,6, r−1,27 Rate of receptor-ligand unbinding s-1

r+
2,6, r+

2,27 Rate of dimer association nM-1s-1

r−2,6, r−2,27 Rate of dimer dissociation s-1

k+
ia Rate of STATi binding to GP130 nM-1s-1

k+
ib Rate of STATi binding to IL-27Rα nM-1s-1

k−ia Rate of STATi unbinding from GP130 s-1

k−ib Rate of STATi unbinding from IL-27Rα s-1

q Rate of STAT phosphorylation on the dimer s-1

di Rate of pSTATi dephosphorylation s-1

β6, β27 Rate of D internalisation/degradation s-1

γ6, γ27 Rate of D loss due to feedback nM-1s-1

[R1](0) Initial concentration of GP130 nM

[R2](0) Initial concentration of IL-27Rα nM

[Si(0)] Initial concentration of STATi nM

[L6](0) Initial concentration of HypIL-6 nM

[L27](0) Initial concentration of IL-27 nM

Table 4.1: Definitions and units for the rate constants and initial concentrations
in the mathematical models, where i ∈ {1, 3} so that STATi corresponds to
STAT1 or STAT3. A parameter with “6” in its notation is found only in the
HypIL-6 model and likewise a parameter with “27” in its notation is found only
in the IL-27 model.

4.1.1 HypIL-6 mathematical model

The HypIL-6 mathematical model was formulated based on biochemical reactions

involving the following species:

• L6 = HypIL-6,

• R1 = GP130,
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• C1 = GP130 - HypIL-6 complex,

• D6 = phosphorylated GP130 - HypIL-6 - HypIL-6 - GP130 homodimer,

• S1 = unbound cytoplasmic unphosphorylated STAT1,

• S3 = unbound cytoplasmic unphosphorylated STAT3,

• D6 · S1 = dimer bound to STAT1,

• D6 · S3 = dimer bound to STAT3,

• D6 · pS1 = dimer bound to pSTAT1,

• D6 · pS3 = dimer bound to pSTAT3,

• S1 ·D6 · S1 = dimer bound to two molecules of STAT1,

• pS1 · D6 · S1 = dimer bound to two molecules of STAT1, one of which is

phosphorylated,

• pS1 ·D6 · pS1 = dimer bound to two molecules of pSTAT1,

• S3 ·D6 · S3 = dimer bound to two molecules of STAT3,

• pS3 · D6 · S3 = dimer bound to two molecules of STAT3, one of which is

phosphorylated,

• pS3 ·D6 · pS3 = dimer bound to two molecules of pSTAT3,

• S1 ·D6 · S3 = dimer bound to one molecule of STAT1 and one of STAT3,

• pS1 ·D6 ·S3 = dimer bound to one molecule of pSTAT1 and one of STAT3,

• S1 ·D6 · pS3 = dimer bound to one molecule of STAT1 and one of pSTAT3,

• pS1 ·D6 ·pS3 = dimer bound to one molecule of pSTAT1 and one of pSTAT3,

• pS1 = unbound cytoplasmic phosphorylated STAT1,

• pS3 = unbound cytoplasmic phosphorylated STAT3.

The initial reactions in the HypIL-6 signalling pathway as described in Section

4.1 then inform the ODEs (4.1) - (4.22), under the law of mass action kinetics,

where the terms involving the parameter β6 apply only to the model under hy-

pothesis 1 and the terms involving the parameter γ6 apply only to the model
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under hypothesis 2. Square brackets around a species denote the concentra-

tion of this species with units nM, and “·” implies a reaction bond between two

molecules/species. The ODEs are valid for any time t, with t ≥ 0, but time has

been omitted in the species concentration notation for ease of notation, where for

example [R1] = [R1](t) for all t ≥ 0.

d[R1]

dt
= −r+

1,6[R1][L6] + r−1,6[C1]− β6[R1]− γ6([pS1] + [pS3])[R1] (4.1)

d[L6]

dt
= −r+

1,6[R1][L6] + r−1,6[C1] (4.2)

d[C1]

dt
= r+

1,6[R1][L6]− r−1,6[C1]− 2r+
2,6[C1]2 + 2r−2,6[D6]− β6[C1]

− γ6([pS1] + [pS3])[C1] (4.3)

d[D6]

dt
= r+

2,6[C1]2 − r−2,6[D6]− 2k+
1a[D6][S1] + k−1a([D6 · S1] + [D6 · pS1])

− 2k+
3a[D6][S3] + k−3a([D6 · S3] + [D6 · pS3])− β6[D6]

− γ6([pS1] + [pS3])[D6] (4.4)

d[S1]

dt
= −k+

1a[S1](2[D6] + [D6 · S1] + [D6 · S3] + [D6 · pS1] + [D6 · pS3])

+ k−1a([D6 · S1] + 2[S1 ·D6 · S1] + [S1 ·D6 · S3] + [S1 ·D6 · pS1]

+ [S1 ·D6 · pS3]) + d1[pS1] (4.5)

d[S3]

dt
= −k+

3a[S3](2[D6] + [D6 · S3] + [D6 · S1] + [D6 · pS3] + [D6 · pS1])

+ k−3a([D6 · S3] + 2[S3 ·D6 · S3] + [S1 ·D6 · S3] + [S3 ·D6 · pS3]

+ [S3 ·D6 · pS1]) + d3[pS3] (4.6)

d[D6 · S1]

dt
= 2k+

1a[S1][D6]− k−1a[D6 · S1]− k+
1a[D6 · S1][S1] + 2k−1a[S1 ·D6 · S1]

− k+
3a[D6 · S1][S3] + k−3a[S3 ·D6 · S1]− q[D6 · S1] + k−1a[S1 ·D6 · pS1]

+ k−3a[S1 ·D6 · pS3]− β6[D6 · S1]− γ6([pS1] + [pS3])[D6 · S1] (4.7)

d[D6 · S3]

dt
= 2k+

3a[S3][D6]− k−3a[D6 · S3]− k+
3a[D6 · S3][S3] + 2k−3a[S3 ·D6 · S3]
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− k+
1a[D6 · S3][S1] + k−1a[S1 ·D6 · S3]− q[D6 · S3] + k−1a[S3 ·D6 · pS1]

+ k−3a[S3 ·D6 · pS3]− β6[D6 · S3]− γ6([pS1] + [pS3])[D6 · S3] (4.8)

d[D6 · pS1]

dt
= −k+

1a[S1][D6 · pS1] + k−1a[S1 ·D6 · pS1]− k+
3a[S3][D6 · pS1]

+ k−3a[S3 ·D6 · pS1] + q[D6 · S1]− k−1a[D6 · pS1] + 2k−1a[pS1 ·D6 · pS1]

+ k−3a[pS1 ·D6 · pS3]− β6[D6 · pS1]

− γ6([pS1] + [pS3])[D6 · pS1] (4.9)

d[D6 · pS3]

dt
= −k+

3a[S3][D6 · pS3] + k−3a[S3 ·D6 · pS3]− k+
1a[S1][D6 · pS3]

+ k−1a[S1 ·D6 · pS3] + q[D6 · S3]− k−3a[D6 · pS3] + 2k−3a[pS3 ·D6 · pS3]

+ k−1a[pS1 ·D6 · pS3]− β6[D6 · pS3]

− γ6([pS1] + [pS3])[D6 · pS3] (4.10)

d[S1 ·D6 · S1]

dt
= k+

1a[S1][D6 · S1]− 2k−1a[S1 ·D6 · S1]− 2q[S1 ·D6 · S1]

− β6[S1 ·D6 · S1]− γ6([pS1] + [pS3])[S1 ·D6 · S1] (4.11)

d[S3 ·D6 · S3]

dt
= k+

3a[S3][D6 · S3]− 2k−3a[S3 ·D6 · S3]− 2q[S3 ·D6 · S3]

− β6[S3 ·D6 · S3]− γ6([pS1] + [pS3])[S3 ·D6 · S3] (4.12)

d[pS1 ·D6 · S1]

dt
= k+

1a[pS1 ·D6][S1]− 2k−1a[pS1 ·D6 · S1] + 2q[S1 ·D6 · S1]

− q[pS1 ·D6 · S1]− β6[pS1 ·D6 · S1]

− γ6([pS1] + [pS3])[pS1 ·D6 · S1] (4.13)

d[pS3 ·D6 · S3]

dt
= k+

3a[pS3 ·D6][S3]− 2k−3a[pS3 ·D6 · S3] + 2q[S3 ·D6 · S3]

− q[pS3 ·D6 · S3]− β6[pS3 ·D6 · S3]

− γ6([pS1] + [pS3])[pS3 ·D6 · S3] (4.14)

d[pS1 ·D6 · pS1]

dt
= q[pS1 ·D6 · S1]− 2k−1a[pS1 ·D6 · pS1]− β6[pS1 ·D6 · pS1]

− γ6([pS1] + [pS3])[pS1 ·D6 · pS1] (4.15)
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d[pS3 ·D6 · pS3]

dt
= q[pS3 ·D6 · S3]− 2k−3a[pS3 ·D6 · pS3]− β6[pS3 ·D6 · pS3]

− γ6([pS1] + [pS3])[pS3 ·D6 · pS3] (4.16)

d[S1 ·D6 · S3]

dt
= k+

1a[S1][D6 · S3]− k−1a[S1 ·D6 · S3] + k+
3a[S1 ·D6][S3]

− k−3a[S1 ·D6 · S3]− 2q[S1 ·D6 · S3]− β6[S1 ·D6 · S3]

− γ6([pS1] + [pS3])[S1 ·D6 · S3] (4.17)

d[pS1 ·D6 · S3]

dt
= q[S1 ·D6 · S3] + k+

3a[pS1 ·D6][S3]− k−3a[pS1 ·D6 · S3]

− q[pS1 ·D6 · S3]− k−1a[pS1 ·D6 · S3]− β6[pS1 ·D6 · S3]

− γ6([pS1] + [pS3])[pS1 ·D6 · S3] (4.18)

d[S1 ·D6 · pS3]

dt
= q[S1 ·D6 · S3] + k+

1a[S1][D6 · pS3]− k−1a[S1 ·D6 · pS3]

− q[S1 ·D6 · pS3]− k−3a[S1 ·D6 · pS3]− β6[S1 ·D6 · pS3]

− γ6([pS1] + [pS3])[S1 ·D6 · pS3] (4.19)

d[pS1 ·D6 · pS3]

dt
= q([S1 ·D6 · pS3] + [pS1 ·D6 · S3])− [pS1 ·D6 · pS3](k−1a + k−3a)

− β6[pS1 ·D6 · pS3]− γ6([pS1] + [pS3])[pS1 ·D6 · pS3] (4.20)

d[pS1]

dt
= k−1a([D6 · pS1] + [S1 ·D6 · pS1] + [S3 ·D6 · pS1] + [pS3 ·D6 · pS1]

+ 2[pS1 ·D6 · pS1])− d1[pS1] (4.21)

d[pS3]

dt
= k−3a([D6 · pS3] + [S3 ·D6 · pS3] + [S1 ·D6 · pS3] + [pS1 ·D6 · pS3]

+ 2[pS3 ·D6 · pS3])− d3[pS3] (4.22)

4.1.2 IL-27 mathematical model

With some species in common with the HypIL-6 model, the IL-27 model has been

formulated based on biochemical reactions involving the following species:

• L27 = IL-27,
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• R1 = GP130,

• R2 = IL-27Rα,

• C2 = IL-27Rα - IL-27 complex,

• D27 = phosphorylated IL-27Rα - IL-27 - GP130 heterodimer,

• S1 = unbound cytoplasmic unphosphorylated STAT1,

• S3 = unbound cytoplasmic unphosphorylated STAT3,

• S1 ·D27 = dimer bound to STAT1 via R1,

• S3 ·D27 = dimer bound to STAT3 via R1,

• pS1 ·D27 = dimer bound to pSTAT1 via R1,

• pS3 ·D27 = dimer bound to pSTAT3 via R1,

• D27 · S1 = dimer bound to STAT1 via R2,

• D27 · S3 = dimer bound to STAT3 via R2,

• D27 · pS1 = dimer bound to pSTAT1 via R2,

• D27 · pS3 = dimer bound to pSTAT3 via R2,

• S1 ·D27 · S1 = dimer bound to two molecules of STAT1,

• pS1 · D27 · S1 = dimer bound to two molecules of STAT1, phosphorylated

on R1,

• S1 · D27 · pS1 = dimer bound to two molecules of STAT1, phosphorylated

on R2,

• pS1 ·D27 · pS1 = dimer bound to two molecules of pSTAT1,

• S3 ·D27 · S3 = dimer bound to two molecules of STAT3,

• pS3 · D27 · S3 = dimer bound to two molecules of STAT3, phosphorylated

on R1,

• S3 · D27 · pS3 = dimer bound to two molecules of STAT3, phosphorylated

on R2,

• pS3 ·D27 · pS3 = dimer bound to two molecules of pSTAT3,

• S1 ·D27 · S3 = dimer bound to STAT1 via R1 and STAT3 via R2,
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• S3 ·D27 · S1 = dimer bound to STAT1 via R2 and STAT3 via R1,

• pS1 ·D27 · S3 = dimer bound to pSTAT1 via R1 and STAT3 via R2,

• S3 ·D27 · pS1 = dimer bound to pSTAT1 via R2 and STAT3 via R1,

• S1 ·D27 · pS3 = dimer bound to STAT1 via R1 and pSTAT3 via R2,

• pS3 ·D27 · S1 = dimer bound to STAT1 via R2 and pSTAT3 via R1,

• pS1 ·D27 · pS3 = dimer bound pSTAT1 via R1 and pSTAT3 via R2,

• pS3 ·D27 · pS1 = dimer bound pSTAT3 via R1 and pSTAT3 via R1,

• pS1 = unbound cytoplasmic phosphorylated STAT1,

• pS3 = unbound cytoplasmic phosphorylated STAT3.

Again under the law of mass action kinetics, the initial reactions in the IL-27

signalling pathway can be described by the ODEs (4.23) - (4.55).

d[R1]

dt
= −r+

2,27[C2][R1] + r−2,27[D27]− β27[R1]

− γ27([pS1] + [pS3])[R1] (4.23)

d[R2]

dt
= −r+

1,27[R2][L27] + r−1,27[C2]− β27[R2]

− γ27([pS1] + [pS3])[R2] (4.24)

d[L27]

dt
= −r+

1,27[R2][L27] + r−1,27[C2] (4.25)

d[C2]

dt
= r+

1,27[R2][L27]− r−1,27[C2]− r+
2,27[C2][R1] + r−2,27[D27]− β27[C2]

− γ27([pS1] + [pS3])[C2] (4.26)

d[D27]

dt
= r+

2,27[C2][R1]− r−2,27[D27]− (k+
1a + k+

1b)[D27][S1]

+ k−1a([S1 ·D27] + [pS1 ·D27]) + k−1b([D27 · S1] + [D27 · pS1])

− (k+
3a + k+

3b)[D27][S3] + k−3a([S3 ·D27] + [pS3 ·D27])

+ k−3b([D27 · S3] + [D27 · pS3])− β27[D27]

− γ27([pS1] + [pS3])[D27] (4.27)
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d[S1]

dt
= −k+

1a[S1]([D27] + [D27 · S1] + [D27 · pS1] + [D27 · S3] + [D27 · pS3])

+ k−1a([S1 ·D27] + [S1 ·D27 · S1] + [S1 ·D27 · pS1] + [S1 ·D27 · S3]

+ [S1 ·D27 · pS3])− k+
1b[S1]([D27] + [S1 ·D27] + [pS1 ·D27] + [S3 ·D27]

+ [pS3 ·D27]) + k−1b([D27 · S1] + [S1 ·D27 · S1] + [pS1 ·D27 · S1]

+ [S3 ·D27 · S1] + [pS3 ·D27 · S1]) + d1[pS1] (4.28)

d[S3]

dt
= −k+

3a[S3]([D27] + [D27 · S1] + [D27 · pS1] + [D27 · S3] + [D27 · pS3])

+ k−3a([S3 ·D27] + [S3 ·D27 · S1] + [S3 ·D27 · pS1] + [S3 ·D27 · S3]

+ [S3 ·D27 · pS3])− k+
3b[S3]([D27] + [S1 ·D27] + [pS1 ·D27] + [S3 ·D27]

+ [pS3 ·D27]) + k−3b([D27 · S3] + [S1 ·D27 · S3] + [pS1 ·D27 · S3]

+ [S3 ·D27 · S3] + [pS3 ·D27 · S3]) + d3[pS3] (4.29)

d[S1 ·D27]

dt
= k+

1a[S1][D27]− k−1a[S1 ·D27]− q[S1 ·D27]− k+
1b[S1][S1 ·D27]

+ k−1b[S1 ·D27 · S1]− k+
3b[S3][S1 ·D27] + k−3b[S1 ·D27 · S3]

+ k−1b[S1 ·D27 · pS1] + k−3b[S1 ·D27 · pS3]− β27[S1 ·D27]

− γ27([pS1] + [pS3])[S1 ·D27] (4.30)

d[D27 · S1]

dt
= k+

1b[S1][D27]− k−1b[D27 · S1]− q[D27 · S1]− k+
1a[S1][D27 · S1]

+ k−1a[S1 ·D27 · S1]− k+
3a[S3][D27 · S1] + k−3a[S3 ·D27 · S1]

+ k−1a[pS1 ·D27 · S1] + k−3a[pS3 ·D27 · S1]− β27[D27 · S1]

− γ27([pS1] + [pS3])[D27 · S1] (4.31)

d[S3 ·D27]

dt
= k+

3a[S3][D27]− k−3a[S3 ·D27]− q[S3 ·D27]− k+
3b[S3][S3 ·D27]

+ k−3b[S3 ·D27 · S3]− k+
1b[S1][S3 ·D27] + k−1b[S3 ·D27 · S1]

+ k−3b[S3 ·D27 · pS3] + k−1b[S3 ·D27 · pS1]− β27[S3 ·D27]

− γ27([pS1] + [pS3])[S3 ·D27] (4.32)

d[D27 · S3]

dt
= k+

3b[S3][D27]− k−3b[D27 · S3]− q[D27 · S3]− k+
3a[S3][D27 · S3]

+ k−3a[S3 ·D27 · S3]− k+
1a[S1][D27 · S3] + k−1a[S1 ·D27 · S3]

+ k−3a[pS3 ·D27 · S3] + k−1a[pS1 ·D27 · S3]− β27[D27 · S3]
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− γ27([pS1] + [pS3])[D27 · S3] (4.33)

d[pS1 ·D27]

dt
= −k+

1b[pS1 ·D27][S1] + k−1b[pS1 ·D27 · S1]− k+
3b[pS1 ·D27][S3]

+ k−3b[pS1 ·D27 · S3] + q[S1 ·D27]− k−1a[pS1 ·D27]

+ k−1b[pS1 ·D27 · pS1] + k−3b[pS1 ·D27 · pS3]− β27[pS1 ·D27]

− γ27([pS1] + [pS3])[pS1 ·D27] (4.34)

d[D27 · pS1]

dt
= −k+

1a[D27 · pS1][S1] + k−1a[S1 ·D27 · pS1]− k+
3a[D27 · pS1][S3]

+ k−3a[S3 ·D27 · pS1] + q[D27 · S1]− k−1b[D27 · pS1]

+ k−1a[pS1 ·D27 · pS1] + k−3a[pS3 ·D27 · pS1]− β27[D27 · pS1]

− γ27([pS1] + [pS3])[D27 · pS1] (4.35)

d[pS3 ·D27]

dt
= −k+

3b[pS3 ·D27][S3] + k−3b[pS3 ·D27 · S3]− k+
1b[pS3 ·D27][S1]

+ k−1b[pS3 ·D27 · S1] + q[S3 ·D27]− k−3a[pS3 ·D27]

+ k−3b[pS3 ·D27 · pS3] + k−1b[pS3 ·D27 · pS1]− β27[pS3 ·D27]

− γ27([pS1] + [pS3])[pS3 ·D27] (4.36)

d[D27 · pS3]

dt
= −k+

3a[D27 · pS3][S3] + k−3a[S3 ·D27 · pS3]− k+
1a[D27 · pS3][S1]

+ k−1a[S1 ·D27 · pS3] + q[D27 · S3]− k−3b[D27 · pS3]

+ k−3a[pS3 ·D27 · pS3] + k−1a[pS1 ·D27 · pS3]− β27[D27 · pS3]

− γ27([pS1] + [pS3])[D27 · pS3] (4.37)

d[S1 ·D27 · S1]

dt
= k+

1a[S1][D27 · S1]− k−1a[S1 ·D27 · S1] + k+
1b[S1 ·D27][S1]

− k−1b[S1 ·D27 · S1]− 2q[S1 ·D27 · S1]− β27[S1 ·D27 · S1]

− γ27([pS1] + [pS3])[S1 ·D27 · S1] (4.38)

d[pS1 ·D27 · S1]

dt
= k+

1b[pS1 ·D27][S1]− k−1b[pS1 ·D27 · S1] + q[S1 ·D27 · S1]

− q[pS1 ·D27 · S1]− k−1a[pS1 ·D27 · S1]− β27[pS1 ·D27 · S1]

− γ27([pS1] + [pS3])[pS1 ·D27 · S1] (4.39)

d[S1 ·D27 · pS1]

dt
= k+

1a[S1][D27 · pS1]− k−1a[S1 ·D27 · pS1] + q[S1 ·D27 · S1]
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− q[S1 ·D27 · pS1]− k−1b[S1 ·D27 · pS1]− β27[S1 ·D27 · pS1]

− γ27([pS1] + [pS3])[S1 ·D27 · pS1] (4.40)

d[pS1 ·D27 · pS1]

dt
= q([S1 ·D27 · pS1] + [pS1 ·D27 · S1])− [pS1 ·D27 · pS1](k−1a + k−1b)

− β27[pS1 ·D27 · pS1]− γ27([pS1] + [pS3])[pS1 ·D27 · pS1] (4.41)

d[S3 ·D27 · S3]

dt
= k+

3a[S3][D27 · S3]− k−3a[S3 ·D27 · S3] + k+
3b[S3 ·D27][S3]

− k−3b[S3 ·D27 · S3]− 2q[S3 ·D27 · S3]− β27[S3 ·D27 · S3]

− γ27([pS1] + [pS3])[S3 ·D27 · S3] (4.42)

d[pS3 ·D27 · S3]

dt
= k+

3b[pS3 ·D27][S3]− k−3b[pS3 ·D27 · S3] + q[S3 ·D27 · S3]

− q[pS3 ·D27 · S3]− k−3a[pS3 ·D27 · S3]− β27[pS3 ·D27 · S3]

− γ27([pS1] + [pS3])[pS3 ·D27 · S3] (4.43)

d[S3 ·D27 · pS3]

dt
= k+

3a[S3][D27 · pS3]− k−3a[S3 ·D27 · pS3] + q[S3 ·D27 · S3]

− q[S3 ·D27 · pS3]− k−3b[S3 ·D27 · pS3]− β27[S3 ·D27 · pS3]

− γ27([pS1] + [pS3])[S3 ·D27 · pS3] (4.44)

d[pS3 ·D27 · pS3]

dt
= q([S3 ·D27 · pS3] + [pS3 ·D27 · S3])− [pS3 ·D27 · pS3](k−3a + k−3b)

− β27[pS3 ·D27 · pS3]− γ27([pS1] + [pS3])[pS3 ·D27 · pS3] (4.45)

d[S1 ·D27 · S3]

dt
= k+

1a[S1][D27 · S3]− k−1a[S1 ·D27 · S3] + k+
3b[S1 ·D27][S3]

− k−3b[S1 ·D27 · S3]− 2q[S1 ·D27 · S3]− β27[S1 ·D27 · S3]

− γ27([pS1] + [pS3])[S1 ·D27 · S3] (4.46)

d[S3 ·D27 · S1]

dt
= k+

3a[S3][D27 · S1]− k−3a[S3 ·D27 · S1] + k+
1b[S3 ·D27][S1]

− k−1b[S3 ·D27 · S1]− 2q[S3 ·D27 · S1]− β27[S3 ·D27 · S1]

− γ27([pS1] + [pS3])[S3 ·D27 · S1] (4.47)

d[pS1 ·D27 · S3]

dt
= k+

3b[pS1 ·D27][S3]− k−3b[pS1 ·D27 · S3] + q[S1 ·D27 · S3]

139



4. MATHEMATICAL MODELLING OF CYTOKINE RECEPTOR
SIGNALLING

− q[pS1 ·D27 · S3]− k−1a[pS1 ·D27 · S3]− β27[pS1 ·D27 · S3]

− γ27([pS1] + [pS3])[pS1 ·D27 · S3] (4.48)

d[pS3 ·D27 · S1]

dt
= k+

1b[pS3 ·D27][S1]− k−1b[pS3 ·D27 · S1] + q[S3 ·D27 · S1]

− q[pS3 ·D27 · S1]− k−3a[pS3 ·D27 · S1]− β27[pS3 ·D27 · S1]

− γ27([pS1] + [pS3])[pS3 ·D27 · S1] (4.49)

d[S1 ·D27 · pS3]

dt
= k+

1a[S1][D27 · pS3]− k−1a[S1 ·D27 · pS3] + q[S1 ·D27 · S3]

− q[S1 ·D27 · pS3]− k−3b[S1 ·D27 · pS3]− β27[S1 ·D27 · pS3]

− γ27([pS1] + [pS3])[S1 ·D27 · pS3] (4.50)

d[S3 ·D27 · pS1]

dt
= k+

3a[S3][D27 · pS1]− k−3a[S3 ·D27 · pS1] + q[S3 ·D27 · S1]

− q[S3 ·D27 · pS1]− k−1b[S3 ·D27 · pS1]− β27[S3 ·D27 · pS1]

− γ27([pS1] + [pS3])[S3 ·D27 · pS1] (4.51)

d[pS1 ·D27 · pS3]

dt
= q([S1 ·D27 · pS3] + [pS1 ·D27 · S3])− [pS1 ·D27 · pS3](k−1a + k−3b)

− β27[pS1 ·D27 · pS3]− γ27([pS1] + [pS3])[pS1 ·D27 · pS3] (4.52)

d[pS3 ·D27 · pS1]

dt
= q([S3 ·D27 · pS1] + [pS3 ·D27 · S1])− [pS3 ·D27 · pS1](k−3a + k−1b)

− β27[pS3 ·D27 · pS1]− γ27([pS1] + [pS3])[pS3 ·D27 · pS1] (4.53)

d[pS1]

dt
= k−1a([pS1 ·D27] + [pS1 ·D27 · S1] + [pS1 ·D27 · pS1]

+ [pS1 ·D27 · S3] + [pS1 ·D27 · pS3]) + k−1b([D27 · pS1]

+ [S1 ·D27 · pS1] + [pS1 ·D27 · pS1] + [S3 ·D27 · pS1]

+ [pS3 ·D27 · pS1])− d1[pS1] (4.54)

d[pS3]

dt
= k−3a([pS3 ·D27] + [pS3 ·D27 · S3] + [pS3 ·D27 · pS3]

+ [pS3 ·D27 · S1] + [pS3 ·D27 · pS1]) + k−3b([D27 · pS3]

+ [S3 ·D27 · pS3] + [pS3 ·D27 · pS3] + [S1 ·D27 · pS3]

+ [pS1 ·D27 · pS3])− d3[pS3] (4.55)
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Similarly to the HypIL-6 model, the terms in Equations (4.23) - (4.55) involv-

ing the parameter β27 apply only to the model under hypothesis 1 and the terms

involving the parameter γ27 apply only to the model under hypothesis 2.

4.2 Experimental data

In this section, the experimental data which will be compared with the mathe-

matical model outputs is presented and discussed. The experiments involved two

types of cell, namely, retinal pigment epithelium 1 (RPE1) cells and T helper

type 1 (Th-1) cells. For each cell type, the fluorescence intensity (FI) of antibod-

ies for pSTAT1 and pSTAT3 were measured under three different experimental

conditions: unstimulated, stimulated with 2 nM IL-27, and stimulated with 10

nM HypIL-6, and at 8 time points up to 180 minutes. Four replicates of each

experiment were carried out for each cell type and stimulation condition and the

raw data can be seen in Figure 4.4 for RPE1 cells and in Figure 4.5 for Th-1 cells.

4.2.1 Data normalisation

Given that the data have units of fluorescence intensity and the variables in the

mathematical models have units of concentration (nM), both the data and model

outputs must be normalised in order to be compared. Firstly it can be seen from

the top row of Figures 4.4 and 4.5 that there is some FI detected for antibodies for

pSTAT1 and pSTAT3 even when the cells are unstimulated. To account for this

background fluorescence, a linear model was fitted to the data from unstimulated

cells individually per cell type and STAT type. The value of this linear model

at each time point was then subtracted from each of the four data points at

each time point for the HypIL-6 and IL-27 data. Finally, the HypIL-6 and IL-

27 data was normalised to the IL-27 data for each cell type and STAT type

in the following way. Denoting by fl the experimental fluorescence intensity,

fl(r, i, tp, j, d) corresponds to the FI for the rth repeat, r ∈ R = {1, 2, 3, 4} with
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Figure 4.4: Raw FI data in unstimulated (top row), HypIL-6 stimulated
(middle row), and IL-27 stimulated (bottom row) RPE1 cells. Each colour
represents a different experimental replicate.

antibody for STATi, i ∈ I = {1, 3} at time point

tp ∈ TP = {0 min, 5 min, 15 min, 30 min, 60 min, 90 min, 120 min, 180 min}

under stimulation by cytokine IL-j (HypIL-j when j = 6), with j ∈ J = {6, 27}
and in cell type d ∈ D = {RPE1,Th-1}. Each data point, data(r, i, tp, j, d), to be

used in the Bayesian inference and Bayesian model selection was then obtained
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Figure 4.5: Raw FI data in unstimulated (top row), HypIL-6 stimulated
(middle row), and IL-27 stimulated (bottom row) Th-1 cells. Each colour
represents a different experimental replicate.

from fl(r, i, tp, j, d) with the following normalisation,

data(r, i, tp, j, d) =
fl(r, i, tp, j, d)

fl(r, i, tp = 30 min, j = 27, d)
. (4.56)

That is, the normalisation has been chosen to be the time point 30 minutes with

IL-27 stimulation. The data points for IL-27 stimulation at time 30 minutes

were chosen as normalisation in Equation (4.56), since they correspond to the
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maximal experimental value, and thus the data, when normalised in this way,

were transformed to a scale in the interval [0, 1]. The mean of the four repeats of

the normalised data is then given by

MFI = µdata(i, tp, j, d) =
1

4

4∑
r=1

data(r, i, tp, j, d), (4.57)

and the standard deviation (SD) by,

σdata(i, tp, j, d) =

√√√√1

4

4∑
r=1

(data(r, i, tp, j, d)− µdata(i, tp, j, d))2.

The mean and SD of the FI data can be seen in Figure 4.6 for the RPE1 cells (top

row) and Th-1 cells (bottom row). From this figure, it can clearly be observed that

there is a significant difference between HypIL-6 stimulated pSTAT1 signalling

and IL-27 stimulated pSTAT1 signalling, but there is no significant difference in

pSTAT3 signalling between the two cytokines.

4.2.2 Model output and normalisation

Since the experimental outputs are levels of pSTAT1 and pSTAT3 as a func-

tion of time under HypIL-6 and IL-27 stimulation (Figures 4.4 and 4.5), two

model outputs of interest are considered for the HypIL-6 and IL-27 mathematical

models, which are proportional to the experimental data in Figures 4.4 and 4.5.

These outputs are, the sum of all molecular species (variables) containing phos-

phorylated STAT1 (free or bound) ([pS1]T,j, for j ∈ {6, 27}) and the sum of all

species (variables) containing phosphorylated STAT3 (free or bound) ([pS3]T,j,

for j ∈ {6, 27}). The total concentrations of the two model outputs of interest

at any time t are defined by the following equations, where T denotes the total

concentration of the given molecular species:

[pS1]T,6(t) = [D6 · pS1](t) + [pS1 ·D6 · S1](t) + 2[pS1 ·D6 · pS1](t)

+ [pS1 ·D6 · S3](t) + [pS1 ·D6 · pS3](t) + [pS1](t), (4.58)

[pS3]T,6(t) = [D6 · pS3](t) + [pS3 ·D6 · S3](t) + 2[pS3 ·D6 · pS3](t)
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Figure 4.6: Top row: Mean and SD of the normalised FI data from RPE1
cells. Bottom row: Mean and SD of the normalised FI data from Th-1 cells.
For both rows, the MFI is computed using Equation 4.57.

+ [pS3 ·D6 · S1](t) + [pS3 ·D6 · pS1](t) + [pS3](t), (4.59)

for the HypIL-6 model, and

[pS1]T,27(t) = [pS1 ·D27](t) + [D27 · pS1](t) + [pS1 ·D27 · S1](t) + [S1 ·D27 · pS1](t)

+ 2[pS1 ·D27 · pS1](t) + [pS1 ·D27 · S3](t) + [S3 ·D27 · pS1](t)

+ [pS1 ·D6 · pS3](t) + [pS3 ·D6 · pS1](t) + [pS1](t), (4.60)

[pS3]T,27(t) = [pS3 ·D27](t) + [D27 · pS3](t) + [pS3 ·D27 · S3](t) + [S3 ·D27 · pS3](t)

+ 2[pS3 ·D27 · pS3](t) + [pS3 ·D27 · S1](t) + [S1 ·D27 · pS3](t)

+ [pS1 ·D6 · pS3](t) + [pS3 ·D6 · pS1](t) + [pS3](t), (4.61)
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for the IL-27 model. Denoting by sim the mathematical model output, sim(i, tp, j, d)

corresponds to the model output for STATi, i ∈ I = {1, 3} at time point

tp ∈ TP = {0 min, 5 min, 15 min, 30 min, 60 min, 90 min, 120 min, 180 min}

in the IL-j (HypIL-j when j = 6) mathematical model, with j ∈ J = {6, 27},
when considering cell type d ∈ D = {RPE1,Th-1}. In order to compare the

model output, sim(i, tp, j, d), with the data, the output was normalised in the

same way as the data, that is,

sim(i, tp, j, d) =
[pSi]

T,j(tp, d)

[pSi]T,27(30 min, d)
,

where [pSi]
T,j(tp, d) denotes the total, T , concentration of phosphorylated STATi

at time point tp (see Equations (4.58) - (4.61)) when considering cell type d and

cytokine stimulation j ∈ J = {6, 27}. Once datasets and mathematical outputs

have been normalised and can be compared, there is a need to quantify how close

(or not) they are. To this end, one can make use of a quantitative measure,

called a distance, and denoted by δ(sim, data). In this case, a generalisation of

the Euclidean distance has been chosen, where

[δd(sim, data)]2 =
∑
i∈I

∑
tp∈TP

∑
j∈J

[sim(i, tp, j, d)− µdata(i, tp, j, d)]2 , (4.62)

d ∈ D = {RPE1,Th-1}.

4.3 Modelling of the HypIL-6 and IL-27 path-

ways

With a choice of distance measure in hand, the primary aims of the modelling

effort were as follows.

1. To determine, via a Bayesian model selection, which of the hypotheses

relating to receptor internalisation/degradation, was most likely, given the

data.
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2. To use Bayesian parameter inference to obtain posterior distributions for

the parameters in the mathematical models under the most likely hypoth-

esis, in order to learn about which specific rate constants, and therefore

reactions, were causing the differential signalling by pSTAT1 under the dif-

ferent cytokines.

3. To use the parametrised mathematical models to make predictions about

pSTAT signalling under changes in receptor and STAT concentrations, rel-

evant to different disease scenarios.

In this section, points 1 and 2 are addressed.

4.3.1 Prior distributions

Bayesian methods, such as Bayesian model selection and parameter inference,

take into account prior beliefs about the parameter values in the models. In this

section, a prior distribution is defined for each of the model parameters in Table

4.1, based either on information from the literature or independent experimental

data.

Receptor-ligand kinetic parameters

From Biacore affinity measurements (Murphy et al., 2006), the group at the

University of Dundee obtained the following rates for the binding and unbinding

of the cytokines to and from GP130 and IL-27Rα,

• HypIL-6 binding to GP130: r+
1,6 = 9.86× 10−4 nM-1s-1,

• HypIL-6 unbinding from GP130: r−1,6 = 1.26× 10−4 s-1,

• IL-27 binding to IL-27Rα: r+
1,27 = 4.55× 10−3 nM-1s-1, and

• IL-27 unbinding from IL-27Rα: r−1,27 = 1.50× 10−3 s-1.

Given that there is some uncertainty in the experimental data, the prior dis-

tributions used for these parameters were 10r where r was sampled from a normal

distribution with mean equal to the logarithm base 10 of the experimental values

and standard deviation equal to 50% of the logarithm base 10 of the experimental
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value. Using logarithms and sampling the exponent from a normal distribution,

allows for equal prior sampling over several orders of magnitude. The prior dis-

tributions for these parameters were therefore,

• r+
1,6 prior = 10r, where r ∼ N(−3, 1.5),

• r−1,6 prior = 10r, where r ∼ N(−3.9, 1.96),

• r+
1,27 prior = 10r, where r ∼ N(−2.34, 1.17), and

• r−1,27 prior = 10r, where r ∼ N(−2.82, 1.41).

Dimerisation parameters

The rate of dimerisation (r+
2,j) and dissociation of the dimer (r−2,j), for j ∈ {6, 27},

are difficult parameters to measure experimentally and hence the priors for these

rates were based on values from the literature relating to a different receptor,

EGFR, which has been extensively studied. Rate constants for the dimerisation

and dissociation of two molecules of ligand-bound EGFR, are given by Kozer

et al. (2013a). Since these values are not specific to either GP130 or IL-27Rα,

there is considerable uncertainty in these parameter values, and thus uniform

distributions were used for the priors, centred around the EGFR values. The

prior distribution for r+
2,j was therefore 10r, where r ∼ Unif(−2, 3) and the prior

distribution for r−2,j was 10r, where r ∼ Unif(−3, 1) for j ∈ {6, 27}.

STAT-dimer interaction parameters

Here, the rates of STAT binding and unbinding to the receptors in the dimers,

k+
ia, k

−
ia, k

+
ib and k−ib for i ∈ {1, 3}, are assigned a prior distribution. These rates

are difficult to determine experimentally and so again, the priors were informed

using values from the literature. In particular, there are references in the lit-

erature of the dissociation constant, Kd, for the interaction between STAT1/3

and GP130 (as well as another receptor, namely the Interferon-gamma receptor

1) (Wiederkehr-Adam et al., 2003), where the Kd value is defined as the ratio

between the rate at which the STAT dissociates the receptor and the rate at

which the STAT associates the receptor. One can then estimate that the Kd

value should lie within the range [101, 105] nM. A prior distribution was defined
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for the dissociation rates k−ia and k−ib for i ∈ {1, 3} of 10r, where r ∼ Unif(−2, 1)

based on discussion with experimentalists. A uniform distribution can then be

found for the association constants k+
ia and k+

ib for i ∈ {1, 3}, by taking the ratio

of the dissociation rates range and the Kd value range. The prior distributions

for the STAT-dimer interaction parameters were then defined as,

• k+
ia, k

+
ib for i ∈ {1, 3} prior = 10r, where r ∼ Unif(−7, 1), and

• k−ia, k−ib for i ∈ {1, 3} prior = 10r, where r ∼ Unif(−2, 1).

STAT phosphorylation parameter

The rate of STAT phosphorylation, q, is uncertain and cannot be estimated ex-

perimentally but is assumed to be relatively fast, based on experimental observa-

tions. Hence, a large range was defined for this rate of [10−3, 102] s-1. The prior

distribution for this parameter was therefore 10r, where r ∼ Unif(−3, 2).

pSTAT dephosphorylation parameters

Estimates of the pSTAT dephosphorylation parameters d1 and d3, can be made

using experimental data from kinetic experiments, which again measured a FI

corresponding to total pSTAT1 and total pSTAT3, but where after 15 minutes a

JAK inhibitor, Tofacitinib, was added to the cells. Tofacitinib is a small molecule

reversible inhibitor which competes with ATP for the binding to JAK molecules.

Tofacitinib lacks a triphosphate group and hence, once bound to a JAK molecule,

inhibits phosphorylation and activation of the the JAK (Hodge et al., 2016). Upon

JAK inhibition, the receptor dimers can no longer recruit and phosphorylate the

STAT molecules and hence in the fluorescence readout, after 15 minutes, only

dephosphorylation of the STAT molecules is measured. The raw data from these

experiments can be seen in the top row of subplots in Figure 4.7.

Given that after 15 minutes in these experiments, any molecules comprised of

a receptor dimer bound to a phosphorylated STAT molecule cannot be formed,

it can be assumed that the concentration of all such molecules is 0 nM. The

differential equations for [pS1] and [pS3] after 15 minutes in both the HypIL-6
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Figure 4.7: Top row: Raw FI of antibodies for pSTAT1 and pSTAT3 under
stimulation with HypIL-6 and IL-27, where a JAK inhibitor, Tofacitinib, was
added after 15 minutes. Bottom row: Linear model fitted to the logarithm of
the mean raw data, from 15 to 180 minutes.

and IL-27 mathematical models then become

d[pS1](t)

dt
= −d1[pS1](t) and,

d[pS3](t)

dt
= −d3[pS3](t),

for which the solutions are

[pS1](t) = [pS1](15)e−d1t and,

[pS3](t) = [pS3](15)e−d3t,

where [pS1](15) and [pS3](15) are the concentrations of pS1 and pS3 at time 15
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minutes. Taking logarithms, one can write that

log([pS1](t)) = log([pS1](15))− d1t and,

log([pS3](t)) = log([pS3](15))− d3t,

and hence one can estimate the parameters d1 and d3 as the slope of a linear

model fitted to the logarithm of the mean data points after 15 minutes. Such

linear models are shown, plotted with the logarithm of the mean data points, in

the bottom row of subplots in Figure 4.7. From the linear models, the parameters

for HypIL-6 stimulation can be estimated as

d1 = 5.2× 10−4 s-1 and,

d3 = 4.6× 10−4 s-1,

and for IL-27 stimulation as

d1 = 3.5× 10−4 s-1 and,

d3 = 4.4× 10−4 s-1.

It can be seen that the estimates for these parameters are very similar for both

cytokines, justifying the use of only one rate of pSTATi desphosphorylation, for

i ∈ {1, 3}. Given the rates derived here and that there is some variation in

the data around the linear model, the prior distribution for both d1 and d3 was

defined as 10r, where r ∼ Unif(−5,−2).

Receptor internalisation/degradation parameters

In the model, βj or γj for j ∈ {6, 27} (depending on the hypothesis), represents

a rate of internalisation or degradation of any species involving a molecule of ei-

ther receptor type. Some information about such rates can be gained using data

from western blot experiments in which cells were treated with cycloheximide

treatment. Cycloheximide blocks protein neosynthesis and gives an idea of basal

protein turnover. In combination with HypIL-6 stimulation, it gives an estimate

of the ligand-induced effect on GP130 degradation. It is assumed that in this

151



4. MATHEMATICAL MODELLING OF CYTOKINE RECEPTOR
SIGNALLING

experimental set-up, protein degradation is the only process occurring and hence

one can estimate the rate of degradation in the same way as the dephosphory-

lation rates were estimated. The logarithm of the mean turnover data from the

cycloheximide experiments is taken, and a linear model fitted to this data. The

rate constant for degradation of GP130, denoted kdeg, can then be read off as the

slope of this linear model. The raw data can be seen in the left hand subplot of

Figure 4.8 and the linear model fit to the log mean turnover data can be seen in

the right hand subplot of the same figure. The linear fit allows one to conclude

that kdeg = 1.1× 10−4 s−1.

Figure 4.8: Left: Raw degradation data of GP130 under stimulation with
HypIL-6 and treatment with cycloheximide. Right: A linear model fitted to
the logarithm of the mean of the data.

Given that this parameter accounts for degradation of GP130 only (and not

internalisation) and that similar data for IL-27Rα is not available, there is a lot

of uncertainty in using this value as an estimate for βj or γj (j ∈ {6, 27}) and

hence a wide uniform distribution is used for the prior for both parameters. The

prior distribution for βj and γj was therefore 10r, where r ∼ Unif(−5,−1) and

j ∈ {6, 27}.

Receptor initial concentrations

Through total internal reflection fluorescence (TIRF) microscopy experiments,

it was estimated that the numbers of each receptor type per square µm (micro-

metre) were,
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• GP130 = 1.5 µm-2, and

• IL-27Rα = 4 µm-2.

Based on a cell surface area of 1600 µm2 (Puck et al., 1956), the per cell copy

number for each receptor was given by

• GP130 = 2400 cell-1, and

• IL-27Rα = 6400 cell-1.

Given that the variables in the mathematical model have units of nM concen-

tration, these values must be converted to a concentration by considering the

volume in which the receptors are diffusing. It was assumed that the receptors

were diffusing on the cell membrane and hence a depth 0.2 µm (approximately

the length of a receptor molecule) into the cell from the surface was considered.

Using the surface area of a cell, one can compute the radius of the cell, assuming

that cells are spherical, as

r =

√
1600

4π
= 11.28 µm.

The volume of the whole cell is therefore,

V1 =
4

3
π11.283 = 6012 µm3.

One can then compute the volume of a smaller sphere, with radius 11.28− 0.2 =

11.08 µm as,

V2 =
4

3
π11.083 = 5698 µm3.

Finally the volume of the cell in which the receptors can diffuse is the difference

between the two computed volumes, i.e. V3 = V1−V2 = 314 µm3. A depiction of

a cell, showing the area in which receptor molecules are assumed to be diffusing

can be seen in Figure 4.9.

In order to compute a concentration of receptors with units nM, firstly V3 is

converted to have units of L (litres), where V3 = 3.14× 10−13 L. Then, denoting
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0.2 µm

11.08 µm

11.28 µm

Receptor

Cell membrane

Figure 4.9: A depiction of a cell showing a receptor molecule whose tail
crosses the cell membrane and protrudes into the cell to a depth of 0.2 µm. The
dashed area is then the volume in which it is assumed that receptor molecules
can diffuse. Figure not to scale.

by [R1](0) and [R2](0) the concentrations of GP130 and IL-27Rα, respectively,

one can find that

[R1](0) =
2400

3.14× 10−13 × 6.022× 1023
= 1.27× 10−8 M = 12.7 nM, and

[R2](0) =
6400

3.14× 10−13 × 6.022× 1023
= 3.38× 10−8 M = 33.8 nM,

where 6.022× 1023 is Avogadro’s number with units mol-1. Normal distributions

were then used as the priors for these concentrations, where the mean for each

distribution was the value computed above and the standard deviation was 50%

of this value, and hence [R1](0) ∼ N(12.7, 6.35) and [R2](0) ∼ N(33.8, 16.9).

These distributions were truncated so that the value of either receptor initial

concentration must be positive.
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STAT initial concentrations

The STAT initial concentrations were taken from the literature (Itzhak et al.,

2016) as [S1](0) ≈ 300 nM and [S3](0) ≈ 400 nM, and hence normal distributions

were used as the priors for these parameters where, [S1](0) ∼ N(300, 100) and

[S3](0) ∼ N(400, 100).

Summary of prior distributions

In summary, the prior distribution for each parameter is given in Table 4.2 and is

plotted in Figure 4.10. In all of the modelling in this chapter, the cytokine initial

concentrations are kept fixed at their experimental concentrations, [L6](0) = 10

nM and [L27](0) = 2 nM.

Figure 4.10: Prior distributions for the parameters in the mathematical model
where j ∈ {6, 27} and i ∈ {1, 3}.
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Parameter/IC Prior

r+
1,6 10r, where r ∼ N(−3, 1.5)

r−1,6 10r, where r ∼ N(−3.9, 1.96)

r+
1,27 10r, where r ∼ N(−2.34, 1.17)

r−1,27 10r, where r ∼ N(−2.82, 1.41)

r+
2,j for j ∈ {6, 27} 10r, where r ∼ Unif(−2, 3)

r−2,j for j ∈ {6, 27} 10r, where r ∼ Unif(−3, 1)

k+
ia, k

+
ib for i ∈ {1, 3} 10r, where r ∼ Unif(−7, 1)

k−ia, k
−
ib for i ∈ {1, 3} 10r, where r ∼ Unif(−2, 1)

q 10r, where r ∼ Unif(−3, 2)

di for i ∈ {1, 3} 10r, where r ∼ Unif(−5,−2)

βj for j ∈ {6, 27} 10r, where r ∼ Unif(−5,−1)

γj for j ∈ {6, 27} 10r, where r ∼ Unif(−5,−1)

[R1](0) N(12.7, 6.35)

[R2](0) N(33.8, 16.9)

[S1](0) N(300, 100)

[S3](0) N(400, 100)

Table 4.2: Summary of the prior distributions for each of the parameters in the
mathematical models.

4.3.2 Structural identifiability analysis

Before any parameter inference is carried out for the mathematical models, one

should ensure that all parameters are structurally identifiable, meaning that they

can be independently inferred (given the data available and any known initial

conditions). To this end, a structural identifiability analysis was carried out

using the method proposed by Castro & de Boer (2020) which is based on scale

invariance of the equations. Structural identifiability is limited by the model as

opposed to the quality of the data, and hence should be carried out in order to test

the applicability of the model before parameter estimation. The method involves

writing each ODE in the system as functionally independent terms, where for
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example the terms ax1x2 and bx1x2 are not functionally independent (for variables

x1, x2 and parameters a, b), whereas the terms ax1x2 and bx1x3 are independent.

Consider a general model with λi parameters for i = 1, . . . ,m and xj variables,

where the first r variables are observed and the remaining j = r+1, . . . , n variables

are unobserved. The ODE model can then be written as

dxj
dt

= fj(x1, . . . , xr, xr+1, . . . , xn;λ1, . . . , λm), for j = 1, . . . , n.

The first step in the method is to decompose each fj into M functionally inde-

pendent summands, fjk, where

fj(x1, . . . , xr, xr+1, . . . , xn;λ1, . . . , λm) =
M∑
k=1

fjk(x̃k, λ̃k), (4.63)

with fjk functionally independent of fjl for every k 6= l. In Equation (4.63),

x̃k and λ̃k denote the subset of variables and parameters in the function fjk.

All parameters and all unobserved variables are then scaled by unknown scaling

factors, u, so that

λi → uλiλi i = 1, . . . ,m

xj → uxjxj j = r + 1, . . . , n.

Having done this, each functionally independent term fjk in each of the j ODEs

can be equated to its scaled version via the formula

fjk(x̃, λ̃) =
1

uxj
fjk(ux̃x̃, uλ̃λ̃), (4.64)

where uxj = 1 for 1 ≤ j ≤ r. Finally, the identifiability equations given by (4.64)

are solved simultaneously, and only parameters with uλi = 1 are structurally

identifiable. Likewise, the variables with uxj = 1 are observable. Full details of the

method, including a proof are given by Castro & de Boer (2020). The structural

identifiability method was applied to both the HypIL-6 and IL-27 mathematical

models under each hypothesis and it was found that all parameters and initial

conditions in all four models were structurally identifiable. Details of the method
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applied to the HypIL-6 model under hypothesis 1 are given in Appendix A and

details for the other three models are not presented in this thesis but follow very

similar analysis to that of the HypIL-6 hypothesis 1 model.

4.3.3 Bayesian model selection

Having defined the mathematical models to describe the experimental systems

under stimulation with HypIL-6 and IL-27, and determined that all parameters

are structurally identifiable, in this section a Bayesian model selection is applied,

as introduced in Section 2.5.3, Algorithm 5, to determine which of the model

hypotheses relating to the internalisation/degradation of receptor molecules is

most likely given the data. The RPE1 cell MFI data (top row of Figure 4.6 and

defined by Equation 4.57) were used for the model selection, since the estimates

of receptor and STAT numbers were more reliable in this cell type. The distance

measure used to compare the model and the data was that given by Equation

(4.62). At the first iteration of the model selection algorithm, the parameters were

sampled from the prior distributions given in Table 4.2. The model (hypothesis)

selection algorithm was run for a sample of size N = 104 and Z = 15 iterations.

The following sequence of distance threshold values, εz for z = 1, . . . , Z was used,

{100, 10, 5, 3, 2.5, 2.25, 2, 1.75, 1.5, 1.25, 1.1, 1, 0.9, 0.8, 0.7},

where a particle (parameter set) at iteration z was accepted if it resulted in a

value of the distance measure, δd(sim, data), less than the corresponding thresh-

old value εz. A uniform perturbation kernel (Filippi et al., 2013) was used to

perturb the parameters sampled at each iteration z, for z = 1, . . . , 15. The rel-

ative probability of each model hypothesis was computed for each iteration and

the results are given in Figure 4.11. From the figure, it can be seen that, as ε

decreases, i.e. with increasing z, the relative probability of hypothesis 1 tends

to 1 and the relative probability of hypothesis 2 tends to 0. One can conclude

that hypothesis 1 is the most likely hypothesis given the data, and hence the

remaining modelling in this chapter is carried out considering the mathematical

models under hypothesis 1 only.
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Figure 4.11: Result of the model selection to determine which hypothesis
regarding internalisation/degradation of receptor molecules was most likely
given the data.

The Bayesian model selection algorithm, Algorithm 5, incorporates the ABC-

SMC parameter estimation algorithm, and hence at each iteration, posterior dis-

tributions for each model hypothesis can also be obtained. By taking the posterior

distributions for hypothesis 1 at iteration Z = 15, one could learn about the pa-

rameters in the model, for the most likely hypothesis. However, although hypoth-

esis 1 was predominantly selected at iteration 15, there were still some parameter

sets accepted into hypothesis 2, and hence a full posterior of size N = 104 was

not gained for a single hypothesis using the model selection algorithm. There-

fore, the parameter estimation is carried out separately, using Algorithm 3, in

Section 4.3.5. Firstly however, the sensitivity of each of the model parameters to

the mathematical model output under hypothesis 1, is assessed in the following

section.

4.3.4 Global sensitivity analysis

Before carrying out the Bayesian parameter inference to find posterior distribu-

tions for the model parameters, it is of interest to determine which of the model

parameters in Table 4.1 are most influential to the output of the models. The

Sobol method, described in Section 2.4, is used here to generate a time course of
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the total order Sobol index for each parameter in the HypIL-6 and IL-27 mathe-

matical models, where for each model there are two outputs of interest, [pS1]T,j

and [pS3]T,j for j ∈ {6, 27}. A feasible range must be assigned to each parameter

in the model, and these ranges are chosen here to reflect the prior distributions

in Table 4.2 and are stated in Table 4.3. A time course of 0 to 180 minutes was

used, similar to the time course of the experiments. The results of this analysis

are plotted in Figure 4.12, where the top row corresponds to the HypIL-6 model

outputs and the bottom row to the IL-27 model outputs, with [pS1]T,j in the

left hand column and [pS3]T,j in the right hand column, for j ∈ {6, 27}. In each

subplot, the time courses for the parameters with mean total order Sobol index

greater than 0.15 for the output of interest, are plotted. One can assume that a

parameter with mean total order Sobol index less than 0.15 is of little influence

to the outputs of interest of the model.

From Figure 4.12, it can be seen that there are three rates which are particu-

larly influential for both models and both outputs, βj, r
+
1,j for j ∈ {6, 27} and q,

i.e. the rate of receptor internalisation/degradation, the rate of receptor-ligand

binding and the rate of STAT phosphorylation. There is a slight decrease in the

total order Sobol index of r+
1,j for j ∈ {6, 27} over time which can be explained

since ligand stimulation occurs at time 0 and hence receptor-ligand binding is

a reaction which one would expect to occur most towards the start of the time

course of the experiments. Similarly, there is a slight decrease in the total order

Sobol index for q over time. In contrast, the time course of the total order Sobol

index for βj (j ∈ {6, 27}) increases over time, indicating that receptor internal-

isation/degradation reactions happen more frequently in later times. For both

the HypIL-6 and IL-27 models, the initial concentration of STATi is relatively

important for the output [pSi]
T,j, which is expected, since the concentration of

STATi determines, ultimately, the maximal possible concentration of [pSi]
T,j with

i ∈ {1, 3} and j ∈ {6, 27}. Likewise, for both the HypIL-6 and IL-27 models, the

rate of STATi dephosphorylation (di) becomes increasingly important for the out-

put [pSi]
T,j over the time course with i ∈ {1, 3} and j ∈ {6, 27}, indicating that

STAT dephosphorylation happens most at later times, which is intuitive given

that the pSTATi molecules are not present at the beginning of the time course

and must first form before they can dephosphorylate. Finally, the remaining time
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Parameter/IC Range

r+
1,6 10r, where r ∈ [−10, 5]

r−1,6 10r, where r ∈ [−15, 5]

r+
1,27 10r, where r ∈ [−10, 5]

r−1,27 10r, where r ∈ [−15, 5]

r+
2,j for j ∈ {6, 27} 10r, where r ∈ [−2, 3]

r−2,j for j ∈ {6, 27} 10r, where r ∈ [−3, 1]

k+
ia, k

+
ib for i ∈ {1, 3} 10r, where r ∈ [−7, 1]

k−ia, k
−
ib for i ∈ {1, 3} 10r, where r ∈ [−2, 1]

q 10r, where r ∈ [−3, 2]

di for i ∈ {1, 3} 10r, where r ∈ [−5,−2]

βj for j ∈ {6, 27} 10r, where r ∈ [−5,−1]

[R1](0) [0, 40]

[R2](0) [0, 100]

[S1](0) [0, 800]

[S3](0) [0, 1000]

Table 4.3: Feasible ranges for each of the parameters in the mathematical mod-
els, used in the Sobol sensitivity analysis.

courses which can be seen in Figure 4.12 are those for the rates at which the STAT

molecules bind to GP130 and IL-27Rα (k+
ia and k+

ib , respectively, for i ∈ {1, 3}),
where only the time courses for the rates k+

ia are seen in the top row of subplots

corresponding to the HypIL-6 model outputs, since the HypIL-6 homodimer is

formed of GP130 receptors only. The rates for STAT1 binding to a receptor (k+
1a

and k+
1b) are influential to the model outputs for total phosphorylated STAT1

(left hand column), whereas the rates for STAT3 binding to a receptor (k+
3a and

k+
3b) are influential to the model outputs for total phosphorylated STAT3 (right

hand column). It can be seen from the HypIL-6 model output subplots, that

the parameters k+
1a and k+

3a have an average total order Sobol index across the

time course of approximately 0.5. Given that there are two receptors which the
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Figure 4.12: Top row: Means and 95% confidence intervals of the total order
Sobol indices for the parameters of the HypIL-6 model. Bottom row: Means
and 95% confidence intervals of the total order Sobol indices for the parameters
of the IL-27 model. For each model and each output, the time courses of total
order Sobol indices are plotted for parameters where the mean total order Sobol
index across the whole time course is greater than 0.15.

STAT molecules can bind to in the IL-27 model, the average total order Sobol

indices for the binding parameters k+
1a, k

+
1b, k

+
3a and k+

3b in the IL-27 model out-

put subplots, are approximately half the value of the average for k+
1a and k+

3a in

the HypIL-6 model output subplots, at around 0.25. Interestingly, for the IL-27

model outputs, it can be seen that the rate at which STAT1 binds to IL-27Rα

is consistently more important than the rate at which STAT1 binds to GP130,

whereas the opposite is true for STAT3.

There are a number of parameters which do not appear in any subplot of
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Figure 4.12 and thus are deemed to be of the lowest influence to each model

output. These parameters include the rate of receptor-ligand unbinding, the rate

of dimerisation and dissociation of the dimer, the rate at which the STAT and

pSTAT molecules dissociate from the dimer, and the initial concentrations of each

receptor type.

4.3.5 Bayesian parameter inference

In this Section, predictions are made about the values of the parameters in terms

of posterior distributions derived via ABC-SMC, as discussed in Section 2.5.2.

The aim of this inference is both to narrow down the beliefs about the parameter

values from the prior distributions, and to determine which reactions are influ-

encing the differential signalling by pSTAT1 under different cytokine stimulation.

The model output is compared with the MFI data in Figure 4.6 from both the

RPE1 cells and Th-1 cells (defined by Equation 4.57). The ABC-SMC is car-

ried out firstly using the RPE1 data, to estimate all of the model parameters

and initial concentrations listed in Table 4.2. There are a number of parame-

ters which one might expect to vary due to the cell type, in particular, q, d1,

d3, β6, β27, [R1](0), [R2](0), [S1](0) and [S3](0), and hence these parameters are

estimated separately for the Th-1 data. In the ABC-SMC using the Th-1 data,

the remaining parameters which should not vary due to cell type, are drawn from

the posterior distributions from the same analysis using the RPE1 data. The

sequence of distance threshold values, ε, used for the ABC-SMC was

{100, 10, 5, 3, 2.5, 2.25, 2, 1.75, 1.5, 1.25, 1.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5},

i.e. the same sequence as was used in the model selection (Section 4.3.3) but

with two additional smaller values appended to the end. For each cell type,

the ABC-SMC was run for 48 hours, and for the RPE1 cell type, the analysis

reached iteration 16 (ε16 = 0.6), whereas for the Th-1 cell type, the analysis

reached iteration 17 (ε17 = 0.5). In both cell types, a sample size of N = 104

was used. Kernel density estimates (KDEs) of the posterior distributions for each

parameter in the mathematical models can be seen in Figure 4.13.
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The top row of subplots in Figure 4.13 shows the posterior parameter estimates

for the ligand binding/unbinding and dimerisation/dissociation rates, where the

distributions in red are the posteriors under HypIL-6 stimulation and those in

blue are under IL-27 stimulation. Although the Bayesian learning is only very

slight for these parameters when compared to the prior distributions, it is worth

noting that the parameter distributions for each cytokine are very similar. It

is unlikely, therefore, that a difference in the rate of ligand binding/unbinding

or dimerisation/dissociation is causing the difference in pSTAT1 signalling upon

stimulation with the different cytokines. In the second row of subplots however,

there are large differences in the posterior distributions for the different cytokines.

In particular, the results indicate that STAT1 binds to IL-27Rα with a faster rate

than it does to GP130 (k+
1b > k+

1a), and the opposite is true for STAT3, where

it binds faster to GP130 than to IL-27Rα (k+
3a > k+

3b). The unbinding rates in

this row (k−ia and k−ib for i ∈ {1, 3}) incorporate the rate of STATi and pSTATi

(i.e. unphosphorylated and phosphoryalted STATi) dissociating the receptors,

for i ∈ {1, 3} and it can be observed that STAT1 is predicted to dissociate faster

from IL-27Rα than GP130 and again the opposite is true for STAT3. From the

fourth subplot in the third row of parameters, one can see that the rate of receptor

internalisation/degradation (βj for j ∈ {6, 27}) is likely to be very similar for both

cytokines and both cell types. This rate is therefore not expected to account for

the differential signalling by pSTAT1 under stimulation with HypIL-6 and IL-27.

The remaining subplots in Figure 4.13 show posterior distributions for pa-

rameters which do not depend on the cytokine, but may depend on the cell type.

Firstly, the posterior distribution for q (the rate of STAT phosphorylation when

bound to a receptor in either dimer type) is notably higher from the ABC-SMC

using the RPE1 data, than the Th-1 data. The rate of phosphorylation of STATs

is dependent on the number of JAK molecules present (and bound to the re-

ceptors) and the models presented in this chapter do not account for this. The

observed difference in the parameter q, between the two cell types, may therefore

be a result of differing copy numbers of JAK molecules in each cell type. The sec-

ond and third subplots on the third row show the posterior distributions for the

rates of pSTAT1 and pSTAT3 dephosphorylation in the cytoplasm, respectively.

The modelling result here agrees with the experimental data used to inform the
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prior distributions for these parameters in Section 4.3.1, whereby although uni-

form priors over three orders of magnitude were used for the rates d1 and d3,

the Bayesian inference indicates that these rates should be very similar in RPE1

cells. The same is true for Th-1 cells, where the rate of pSTAT1 dephosphoryla-

tion is inferred to be slightly larger than the rate of pSTAT3 dephosphorylation,

in line with the experimental result with Tofacitinib in Th-1 cells. The bottom

row of Figure 4.13 shows the posterior distributions for the initial concentrations

of both receptor types and both STAT types in RPE1 and Th-1 cells. The results

indicate that there is a lower concentration of GP130 in Th-1 cells than in RPE1

cells, and that there is a slightly higher concentration of STAT1 than STAT3 in

Th-1 cells.

As well as quantifying the individual parameter values in the model by in-

ferring their posterior distribution, one can also evaluate the correlation between

the posterior distributions of pairs of parameters in the models. For the RPE1

and Th-1 posteriors seen in Figure 4.13, the Pearson correlation coefficient (see

Definition 12 of Chapter 2 and Peck et al. (2015)) between each pair of parame-

ters was computed and for those pairs with an absolute value of the correlation

coefficient greater than 0.5, indicative of a strong correlation, scatter plots of the

posterior distributions are plotted in Figure 4.14. The top two rows show the

posterior pairs with strong correlation from the RPE1 cells and the bottom two

rows show the same pairs of parameters for the Th-1 cells. Also plotted is a

linear model fitted to the accepted parameter value points for each subplot, and

the Pearson correlation coefficient for each pair is stated in the legend of each

subplot. There are four parameters which, when paired with each other, result

in the highest values of the Pearson correlation coefficient. They are d1, d3, β6

and β27, i.e. the rates of STAT1/3 desphosphorylation and the rates of receptor

internalisation/degradation under HypIL-6 and IL-27 stimulation.

From the first subplot in Figure 4.14 for each cell type, it can be seen that

d1 has a strong positive correlation with d3. Likewise, the last subplot for each

cell type shows a strong positive correlation between β6 and β27, i.e. when re-

ceptors are internalised/degraded rapidly under stimulation with HypIL-6, this

is likely also to be the case under stimulation with IL-27. These two positive

correlations further support the modelling result that it is the STAT binding
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Figure 4.13: Kernel density estimates of the posterior distributions for each of
the parameters in the mathematical models, as a result of the ABC-SMC, where
p represents the parameter(s) stated in the legend of each subplot. In the figure
legends, “R” stands for RPE1 and “T” stands for Th-1.

and unbinding to the receptor rates which are responsible for the differential sig-

nalling by pSTAT1 under different cytokines, and not any of the other rates, such

as pSTAT dephosphorylation or receptor internalisation/degradation. The other

four subplots for each cell type in Figure 4.13 show scatter plots of the posterior

distributions for the parameter pair di versus βj for i ∈ {1, 3} and j ∈ {6, 27},
and for each pair there is a strong negative correlation. Both the di (i ∈ {1, 3})
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Figure 4.14: Scatter plots of the posterior distributions for pairs of parameters
in the mathematical models whose Pearson correlation coefficient was greater
than 0.5 or less than −0.5. The colour of each point represents the distance
δ(sim, data) between the model simulation and the data points. The first two
rows correspond to pairs of parameters inferred using the RPE1 cell data and the
last two rows correspond to pairs of parameters inferred using the Th-1 cell data.

and βj (j ∈ {6, 27}) parameters are rates for reactions which account for a de-

crease in [pS1]T,j and/or [pS3]T,j, with j ∈ {6, 27}. To give the closest fit to the

experimental data, the modelling result here indicates that if pSTAT dephospho-

rylation is relatively slow, then receptor internalisation/degradation should be

relatively fast, and vice versa. Overall it is not surprising that these four param-
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eters constituted pairs of parameters with the strongest correlations, given that

they were highly influential to the model outputs in the Sobol sensitivity anal-

ysis. Also note that these parameters resulted in relatively narrow ABC-SMC

posterior distributions.

Finally, In Figure 4.15, the pointwise median and 95% credible intervals of the

model simulations using the parameter sets comprising the posterior distributions

in Figure 4.13 are plotted, along with the normalised experimental data. It can

be seen that the credible intervals capture the majority of the data points and

the pointwise median of the simulations is a good representation of the data for

each cell type and cytokine. The model therefore captures the prolonged pSTAT1

signalling under stimulation with IL-27 and together with the Bayesian learning

one can conclude that this prolonged signalling is due to differences in the rates

of STAT binding and unbinding to the two receptor types.

4.4 Model validation

The third objective as stated in Section 4.3 was to use the mathematical models

to make predictions about pSTAT signalling in different concentration regimes

of receptors and STATs. In order to trust the model predictions, in this section,

further experimental datasets are used to validate the models. In particular, the

mathematical models and posterior distributions inferred in Section 4.3.5 are used

to simulate two experimental set-ups.

4.4.1 Chimera experiments

Firstly, to further corroborate the fact that it is interactions between the intra-

cellular tail of the receptors and the STAT molecules that are responsible for

the differential signalling by pSTAT1, experiments were carried out using an IL-

27 GP130 chimera molecule. This is a receptor molecule with the extracellular

head of IL-27Rα and the intracellular tail of GP130, and hence ligand binding

and dimerisation occurs as in Figure 4.3 (b) but the STAT interaction reactions

happen as in Figure 4.3 (c). The IL-27 model must therefore be modified to

resemble the chimera system and this was done as follows. The IL-27 chimera
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Figure 4.15: Pointwise median and 95% credible intervals of the model simu-
lations using the parameters sets comprising the posterior distributions from the
ABC-SMC.

model included the ODEs of the original IL-27 mathematical model involved in

the formation of the dimer, Equations (4.23) - (4.26), and the ODEs of the HypIL-

6 mathematical model post-dimer formation, Equations (4.5) – (4.22), in which

D6 was replaced by D27. The ODE of the IL-27 induced dimer in the chimera

model was modified as

d [D27]

dt
= r+

2,27 [C2] [R1]− r−2,27 [D27]− 2k+
1a [D27] [S1] + k−1a ([S1 ·D27] + [pS1 ·D27])

− 2k+
3a [D27] [S3] + k−3a ([S3 ·D27] + [pS3 ·D27])− β27 [D27] . (4.65)

The HypIL-6 model remained the same as in Equations (4.1) - (4.22) for the

chimera system, since the HypIL-6 system does not involve IL-27Rα. A depiction

of the IL-27 chimera model reactions is given in Figure 4.16, and in line with the
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model selection result in Section 4.3.3, the IL-27 chimera model was also based

on hypothesis 1.
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Figure 4.16: Depiction of the reactions comprising the IL-27 chimera mathemat-
ical model. a) Reactions involving ligand binding and dimerisation. b) Reactions
involving STATi molecules, for i ∈ {1, 3}. c) Reactions involving receptor in-
ternalisation/degradation. d) Dephosphorylation of pSi, for i ∈ {1, 3}, in the
cytoplasm. h) Key for the molecules in the reactions.

The data from the chimera experiments resulted in a very similar time course

for HypIL-6 and IL-27 induced pSTAT1 signalling, i.e. the prolonged signalling

by pSTAT1 under IL-27 was no longer observed. This behaviour was expected,

since removing the intracellular tail of IL-27Rα means that STAT1 no longer

has a binding advantage over STAT3 when the system is stimulated with IL-27,

and thus, pSTAT1 and pSTAT3 show similar behaviour. In agreement with the

original experiments, the time course for pSTAT3 is also very similar between

HypIL-6 and IL-27, and these data points can be seen in the top row of Figure
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4.17. The data have been normalised in the same way as the original data (see

Section 4.2.1).

Figure 4.17: Top row: Normalised chimera data for pSTAT1 (left) and
pSTAT3 (right) under stimulation with HypIL-6 and IL-27. Bottom row:
Pointwise median and 95% credible intervals of the chimera mathematical model
simulations.

To test the accuracy of the mathematical models in this situation, the HypIL-

6 and IL-27 chimera models were simulated using the parameter sets comprising

the RPE1 posterior distributions shown in Figure 4.13. The pointwise median

and 95% credible intervals of the chimera model simulations are shown in the

bottom row of Figure 4.17. The model simulations are not expected to overlay

the data points perfectly in this case due to a difference in the experimental

set-up, whereby “reverse order kinetics” were used in the chimera experiments

as opposed to “correct order kinetics” which were used to generate the original

data. The main difference between the methods is that in reverse order kinetics

the experiments are started at different times and ended together in order to
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gather data for each of the time points, whereas in correct order kinetics the

experiments are started at the same time and ended at different time points.

Correct order kinetics is a more accurate method but is also more time consuming

and experimentally challenging and hence reverse order kinetics was used for some

of the experiments. Under reverse order kinetics, one can expect the signalling to

appear faster than in correct order kinetics, i.e. the data points are shifted to the

left. Since the posteriors used for this analysis were obtained using data generated

via correct order kinetics but the chimera data was generated using reverse order

kinetics, it is expected that the data will appear to be shifted to earlier time

points than the model simulations. As well as this difference in method, slightly

differing concentrations of the cytokines were used in the chimera experiments

and in the original experiments. The general trend from the data can however

be compared with the trend of the model simulations, and firstly it can be seen

that the pSTAT3 credible interval is a good representation of the pSTAT3 data

points. The pointwise median of the IL-27 pSTAT1 model simulations appears

to underestimate the peak of the IL-27 pSTAT1 data, however the 95% credible

interval is relatively wide and, promisingly, the maximal value of the 95% credible

interval almost reaches the maximal value of the HypIL-6 95% credible interval,

representative of the data. It is clear from both the data and the mathematical

model results that by removing the IL-27Rα tail and replacing this with the

GP130 tail, the greater and more sustained signalling by pSTAT1 no longer occurs

and hence one can be certain that this signalling difference is caused by STAT1

interactions with the intracellular tail of IL-27Rα.

4.4.2 Mutant experiments

As a second test of the accuracy of the mathematical models, another dataset can

be used, with similar time course data as the original experiments but here using

a mutant version of IL-27Rα. In particular, a specific tyrosine residue (Y613) on

the intracellular tail of IL-27Rα was identified as being the high affinity tyrosine

for STAT1 binding. A mutant variety of the receptor, known as the Y613F

mutant, was generated with this specific tyrosine residue removed. Given that

IL-27Rα only forms dimers and becomes activated when stimulated with IL-27,

172



4.4 Model validation

only the IL-27 data and mathematical model are used in this section as one would

not expect the mutation of IL-27Rα to have any effect on the HypIL-6 stimulated

system. The wild type (WT) data, i.e. data from experiments in which IL-27Rα

is not mutated, and the Y613F mutant data, upon stimulation with IL-27 are

shown in the top row of Figure 4.18. From the data, it can be seen that there is a

large decrease in pSTAT1 signalling from the mutant system compared with the

WT. This observation is in line with the experimental hypothesis, that pSTAT1

signals mostly through the high affinity tyrosine residue (Y613) on IL-27Rα which

has been removed in the mutant. STAT1 is therefore competing with STAT3 for

binding to GP130 in order to signal, however from the posterior distributions

in Figure 4.13 (comparing k+
1a with k+

3a) one can infer that STAT3 has a higher

binding rate to GP130 than STAT1 and hence out-competes STAT1. From the

right-hand subplot of the top row of Figure 4.18, the effect of mutating IL-27Rα

on pSTAT3 can be seen, whereby the pSTAT3 signal is also slightly reduced in

the mutant data, but only by 26% as opposed to 83% in the case of pSTAT1.

There are two possible explanations for this slight decrease in pSTAT3 signalling.

Firstly, similarly to STAT1, STAT3 could be doing a small amount of signalling

through the tyrosine on IL-27Rα which is removed in the mutant version of the

receptor, and secondly, in the mutant system there is more competition from

STAT1 for binding to GP130.

Given the experimental hypothesis, that STAT1 binding to IL-27Rα is greatly

reduced in the mutant system, to simulate the mathematical model under this

scenario, the parameter k+
1b representing this rate of binding, was fixed at a much

lower value than is suggested by the posterior distribution of this parameter. The

unbinding rate k−1b was also fixed in the simulations in order to keep a consistent

binding affinity (Kd,1b) where Kd,1b = k−1b/k
+
1b. The values chosen for these pa-

rameters were k−1b = 100 s-1 (reflecting the median of the posterior distribution

for this parameter) and k+
1b = 10−5 nM-1s-1, resulting in a binding affinity of

Kd = 100 µM. These values reflect the assumptions from the experimentalists on

this parameter value. In the simulations of the mutant mathematical model, all

other parameters were sampled from their posterior distributions in Figure 4.13,

as in the WT simulations. The pointwise medians and 95% credible intervals

of the simulations for the WT and mutant mathematical models are seen in the
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Figure 4.18: Top row: Normalised WT and mutant data for pSTAT1 (left)
and pSTAT3 (right) under stimulation with IL-27. Bottom row: Pointwise
median and 95% credible intervals of the WT and mutant mathematical model
simulations.

bottom row of Figure 4.18, normalised to the WT model for each of pSTAT1 and

pSTAT3. Similarly to the chimera experiments, the mutant experiments were

carried out using reverse order kinetics and slightly different concentrations of

cytokines compared with the original (WT) experiments and hence the model

simulations will not overlay the data points exactly. The trend in the model sim-

ulations however, are in good agreement with the experimental data, where the

pSTAT1 response is greatly reduced in the mutant simulations compared with the

WT and the pSTAT3 response is also marginally reduced. This result, along with

the chimera result gives confidence to the mathematical model and validates its

use to make predictions about pSTAT signalling, as is discussed in the following

section.
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4.5 Model predictions

So far in this chapter, the focus has been to develop mathematical models of

HypIL-6 and IL-27 induced STAT signalling and to use Bayesian methods to

parameterise these models in order to infer specific reactions responsible for the

prolonged activation of STAT1 under stimulation with IL-27. Having validated

such models in the previous section, the focus here is on using the mathemati-

cal models to make predictions about pSTAT1/3 signalling in different biological

regimes, specifically, looking at different concentration regimes of receptors and

STATs. The interest in different concentration regimes stems from biological

observations by Dr. Moraga Gonzalez and Dr. Wilmes, whereby patients with

certain diseases, such as Crohn’s disease and SLE, exhibited highly up-regulated

levels of STAT1 and, in some cases, GP130. In the context of disease, it is inter-

esting to see how these up-regulated protein levels affect the cytokine signalling

response, given that IL-6 and IL-27 are known to be very important in the regula-

tion of the adaptive immune system (O’Shea & Plenge, 2012; Yoshida & Hunter,

2015b). For a thorough analysis of the effect of concentrations on the HypIL-6

and IL-27 signalling responses, in this section model predictions are made with

both up- and down-regulation of STAT1/3, GP130 and IL-27Rα.

The HypIL-6 and IL-27 mathematical models were simulated using the poste-

rior distributions from the ABC-SMC with RPE1 cell data, but where the initial

concentrations [S1](0), [S3](0), [R1](0) and [R2](0) were individually altered. A

first observation was that the up-regulation of either receptor type had no effect

on the signalling of pSTAT1 or pSTAT3 (data not shown here). This result can

be explained by considering the initial concentrations of each cytokine used in

the experiments and model simulations, [L6](0) = 10 nM and [L27](0) = 2 nM.

From Figure 4.13, it can be seen that the posterior distributions for [R1](0) and

[R2](0) are predicting that these concentrations should be, for the most part,

greater than 10 nM, in particular in the case of [R2](0). It is therefore not sur-

prising that increasing the receptor concentrations has no effect on the signalling

of pSTAT1/3, since the receptor concentrations from the posterior distributions

are already saturating, i.e. no more complexes or dimers could form even if the

receptor concentrations were increased, since each ligand is already bound to a
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receptor. Therefore, to examine the effect of altering receptor concentrations, 10

and 100 fold decreases from the median values of the posterior distributions for

[R1](0) and [R2](0) were considered, where the median values are approximately

25 nM and 50 nM, respectively. These model simulations, showing the pointwise

median and 95% credible intervals, can be seen in Figure 4.19. The top row shows

the model predictions using the median values from the posteriors for [R1](0) and

[R2](0), the second and third rows show predictions upon decreasing [R2](0) and

the fourth and fifth rows show predictions upon decreasing [R1](0).

There is no difference between the first and second row of subplots in Figure

4.19, which can be explained since [R2](0) = 5 nM is still a saturating concen-

tration of receptor compared with the concentration of IL-27 at 2 nM. However,

when the concentration of IL-27Rα is reduced further, to 0.5 nM, there is a re-

duction in both pSTAT1 and pSTAT3 signalling under stimulation with IL-27.

The largest reduction is in pSTAT3 signalling, presumably because, since there is

very little IL-27Rα in the system, there is much greater competition from STAT1

for GP130. The signalling from the HypIL-6 model is not affected since IL-27Rα

does not feature as a variable in this model. When the concentration of GP130 is

reduced 10 fold, from the fourth row of Figure 4.19 it can be observed that there

is no effect on either pSTAT1 or pSTAT3 signalling in the IL-27 model. One can

assume that this is because STAT1 signals mostly through IL-27Rα and 2.5 nM

GP130 is still sufficient for STAT3 to reach maximal signalling. On the other

hand, when the GP130 concentration is reduced 100 fold (fifth row of subplots),

there is a dramatic effect on pSTAT1/3 signalling under both HypIL-6 and IL-27

stimulation. In the case of the HypIL-6 model, there is virtually no pSTAT1 sig-

nalling and a small amount of pSTAT3 signalling, roughly one tenth of the signal

in the first row of subplots. In the IL-27 model there is slightly more signalling

from both pSTAT1 and pSTAT3 compared with the HypIL-6 model, since GP130

forms only one half of the signalling dimer in this case.

Also of interest is to see the effect of varying STAT concentrations on pSTAT

signalling, in particular increasing the STAT1 concentration since this scenario

has been observed in Crohn’s disease. To this end, in Figure 4.20 the initial

concentrations of STAT1 and STAT3 are individually increased or decreased by

10 fold from their median posterior values, where the top row of subplots shows
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the model simulations using these median values. In the second and third rows

of subplots, the STAT3 concentration is varied, and in the fourth and fifth rows

of subplots, the STAT1 concentration is varied.

From the second and fourth rows of Figure 4.20 it is noted that decreasing

the STAT3 or STAT1 concentration by a factor of ten affects only the signalling

output for the respective STAT type, i.e. only the pSTAT3 signal is reduced

upon reduction of [S3](0) and only the pSTAT1 signal is reduced upon reduction

of [S1](0). It is found that reducing STAT1/3 by a factor of ten, causes a ten fold

reduction in the signalling output for pSTAT1/3. In the third row of subplots,

the STAT3 initial concentration is increased to 5000 nM. In the HypIL-6 model,

STAT3 therefore hugely out competes STAT1 for GP130 binding and there is a

large increase in pSTAT3 signalling, correlating with a large decrease in pSTAT1

signalling. In the IL-27 model, the pSTAT1 signal decrease is only very slight,

since STAT1 signals mostly through IL-27Rα, and although STAT3 is in great

excess of STAT1, it has a very slow rate of binding to IL-27Rα. The pSTAT3

signal again increases, although not as greatly as in the HypIL-6 model, since

there is only one GP130 receptor in each dimer in the IL-27 model. Finally, in

the fifth row of subplots in Figure 4.20, the STAT1 concentration is increased

while the STAT3 concentration remains at the median value of its posterior. As

expected, this increase in STAT1 causes an increase in the pSTAT1 signal from

both the HypIL-6 and IL-27 mathematical models, where the increase is greater in

the IL-27 model since STAT1 has preferential binding to IL-27Rα. The pSTAT3

signal decreases in both models, interestingly more so in the IL-27 model than the

HypIL-6. This can be explained by considering that STAT3 binds only to GP130

(since binding to IL-27Rα is seen to be very weak in the posterior distribution)

and hence, due to the large amount of competition from STAT1 in the IL-27

system, there are very few receptors that STAT3 can bind with. In the HypIL-

6 system however, since the dimer is formed of two GP130 molecules, there is

double the binding opportunity for STAT3.

From simulations of the mathematical model, calibrated with the experimental

data, one can predict changes in pSTAT signalling in different disease settings

which can be useful in understanding how disease-induced dysregulation alters

cellular signalling mechanisms.
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Figure 4.19: Model predictions for varying receptor initial concentrations. Top
row: GP130 and IL-27Rα concentrations fixed at median values from posteriors.
Second and third rows: Reduction in IL-27Rα. Fourth and fifth rows:
Reduction in GP130.
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Figure 4.20: Model predictions for varying STAT1/3 initial concentrations.
Top row: STAT1 and STAT3 concentrations fixed at median values from pos-
teriors. Second row: Decrease in STAT3. Third row: Increase in STAT3.
Fourth row: Decrease in STAT1. Fifth row: Increase in STAT1.

179



4. MATHEMATICAL MODELLING OF CYTOKINE RECEPTOR
SIGNALLING

4.6 Model justification and limitations

In this section, the structure of the mathematical models presented in this chapter

is justified with relation to other published mathematical models of the JAK/S-

TAT pathway and further experimental data. The main point of discussion here

will be the two model hypotheses relating to the internalisation and degradation

of receptor molecules. In the HypIL-6 and IL-27 mathematical models, it is as-

sumed (under either hypothesis) that receptor molecules (and therefore cytokine

molecules) are internalised from the membrane and potentially then degraded.

Indeed, upon stimulation with a cytokine, the internalisation and degradation

pathway for the receptor molecules is greatly up-regulated. A good example of

this is given by Tanaka et al. (2008) where the authors treat HeLa cells expressing

GP130 with IL-6 and measure the GP130 level. They find that, after 120 min-

utes, GP130 has been completely depleted from the cell (see Figure 4.21). The

cells were however, treated with cyclohexamide to prevent new protein synthesis

and hence a total depletion of GP130 is unlikely to occur in reality. In a sim-

ilar study (Marijanovic et al., 2007), the authors look at the IFNα2 and IFNβ

induced degradation of IFNAR1 and IFNAR2 (where IFN stands for interferon).

They find that the ligands induce approximately a 60% reduction in IFNAR1

over three hours, again under cyclohexamide treatment (data not shown here,

Figure 7 in Marijanovic et al. (2007)).

Although internalisation of receptor species is therefore certainly a process

which occurs in cells, it is unlikely that a cell would completely deplete itself of

surface receptor molecules through internalisation and degradation, since recep-

tor recycling and synthesis can also occur. In fact, one study (Flynn et al., 2021)

found that internalisation of GP130 is a constitutive clathrin-mediated process

independent of IL-6, and that upon stimulation with IL-6 the internalised re-

ceptors are directed predominantly to the recycling pathway as opposed to the

degradation pathway. Recycling of receptors was therefore shown to be important

in maintaining the signal from the JAK/STAT pathway. Given that recycling and

synthesis reactions were not included in the mathematical models, it was of in-

terest to see the effect of internalisation and degradation of receptors over time.
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Figure 4.21: A figure showing the total cellular level of GP130 over time in
the absence (left) or presence (right) of IL-6 stimulation, taken from Tanaka
et al. (2008). When cells are pre-treated in DMSO alone (i.e. no lysosomal or
proteosomal inhibitors) and stimulated with IL-6, GP130 is largely depleted.

To this end, in Figures 4.22 and 4.23, the total surface GP130, IL-27Rα, HypIL-

6 and IL-27 concentrations (sum of all species containing these molecules) are

plotted over time using the parameter values comprising the posterior distribu-

tions found via ABC-SMC in RPE1 cells (Figure 4.22) and Th-1 cells (Figure

4.23). Subplots are shown for both the IL-27 model parameters (top rows) and

the HypIL-6 model parameters (bottom rows).

It can be seen that in both Figures 4.22 and 4.23, aside from the IL-6 concen-

tration in the Th-1 cells, all other concentrations of surface receptors or cytokines

approach 0 after approximately 1 hour for the majority of the simulations. This

does not necessarily imply that the total receptor populations have been degraded,

since the rates βj and γj for j ∈ {6, 27} are of internalisation/degradation and so

it could be that the receptor molecules are residing in intracellular compartments.

To address the fate of the internalised receptors, one could model an intracellu-

lar compartment along with recycling of receptors back to the membrane as is

done in other receptor-ligand mathematical models (Lauffenburger & Linderman,

1996; Nazari et al., 2018). This was not included in the models in this chapter
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Figure 4.22: Pointwise median and 95% credible intervals of the model simu-
lations for receptor and cytokine concentrations using the parameters sets of the
posterior distributions from the ABC-SMC in RPE1 cells. The top row of sub-
plots shows model outputs from the IL-27 mathematical model and the bottom
row shows model outputs from the HypIL-6 mathematical model.

however, due to the relatively short time scale of the data, as well as the fact that

the internal molecules could not be imaged, and hence any rates relating to these

internal species could not be calibrated in the Bayesian inference. Additionally,

adding more compartments and species to the mathematical models would in-

crease the complexity of such models and therefore the simulation time. One way

in which hypothesis 1 of the models presented here could be improved to give a

more realistic representation of receptor internalisation and recycling processes

could be to add a term for receptor synthesis to the differential equations for the

unbound surface receptor species. Upon appropriate measuring or calibration of

this synthesis rate, this may allow for the surface species to decrease to a concen-

tration greater than zero that does not represent total surface receptor depletion.

If it were necessary to simulate the model for a longer period of time than the

experimental time course of the data set used in this chapter, one may need to

consider also recycling of receptors.
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Figure 4.23: Pointwise median and 95% credible intervals of the model simu-
lations for receptor and cytokine concentrations using the parameters sets of the
posterior distributions from the ABC-SMC in Th-1 cells. The top row of subplots
shows model outputs from the IL-27 mathematical model and the bottom row
shows model outputs from the HypIL-6 mathematical model.

In many mathematical models of the JAK/STAT pathway from the litera-

ture (Blätke et al., 2013; Reeh et al., 2019; Sobotta et al., 2017; Vera et al.,

2011), instead of modelling receptor internalisation/degradation as a means of

pSTAT down-regulation, receptor deactivation by negative feedback molecules is

modelled. This is what is implied by hypothesis 2 of the mathematical models

presented in this chapter, whereby the species containing receptor molecules are

down-regulated with a rate proportional to the concentration of pSTAT molecules.

Although the pSTAT molecules themselves are not negative feedback molecules,

once phosphorylated and dimerised, they can migrate to the nucleus and initiate

the synthesis of negative feedback molecules such as SOCS3, via activation of

the relevant transcription factors. SOCS3 can bind to either the receptors com-

prising the phosphorylated dimer (through different binding sites to the STAT

molecules), or the JAK molecules bound to the dimer, inactivating the signalling

complex (Babon et al., 2012; Kershaw et al., 2013; Rottenberg & Carow, 2014).
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The dimer becomes unphosphorylated and therefore cannot recruit or phospho-

rylate STAT molecules, hence down-regulating STAT signalling. Given that the

process of SOCS3 synthesis takes some time to occur, the way in which hypothesis

2 is implemented in the mathematical models in this chapter is not wholly real-

istic since the delay in production of the SOCS3 molecules is not accounted for.

Indeed, one study found that after stimulation with 0.08 nM of IL-6 or HypIL-6,

cells started to produce SOCS3 after approximately 30 minutes, around the same

time at which pSTAT3 levels peaked (Reeh et al., 2019).

In most of the JAK/STAT mathematical models from the literature which

incorporate SOCS3 molecules, the dimer is modelled as a single, active, or in-

active entity. STAT binding, phosphorylation and subsequent dissociation are

then modelled as a single reaction, hence simplifying the model by neglecting in-

termediate complexes (Dittrich et al., 2012; Reeh et al., 2019). In these models,

SOCS3 binding to the dimer causes it to become inactivated and hence no further

STAT phosphorylation reactions can occur. In particular, in the model presented

by Reeh et al. (2019), the authors consider two species for the dimeric receptor

complex, one inactive and one active. The positive term in the ODE for the

active dimer, which implies its production, is proportional to the concentration

of inactive dimer divided by the concentration of SOCS3, so that with increasing

SOCS3, the production rate of active dimer decreases. In the models developed in

this chapter however, one of the main goals was to determine the binding rates of

STAT molecules to the individual receptors in the dimer and hence a more com-

plex mathematical description of the dimer and the STAT phosphorylation events

was required. As well as this, it is assumed in the HypIL-6 and IL-27 models that

the dimers become activated (phosphorylated) immediately upon formation and

hence there is not a term in the ODEs for dimer activation. Incorporating SOCS3

molecules into the models would therefore add great complexity to the models,

as is described in Section 4.6.1.

4.6.1 Mathematical modelling of SOCS3

Since there is no inactive dimer species in either of the mathematical models in

this chapter, one cannot model SOCS3 negative feedback in the same way as

184



4.6 Model justification and limitations

carried out by Reeh et al. (2019). Instead of this, the feedback could be modelled

by adding SOCS3 as a species, which is then able to bind to and inactive the

receptors in the dimer. This would mean adding reactions to the model whereby

SOCS3, denoted here by X3, can bind to either receptor in either dimer with rate

α. Immediately upon binding, it is assumed that the receptor molecule which the

SOCS3 is bound to becomes inactivated. For example in the HypIL-6 model, one

would have the reaction

D6 +X3 
 D6 ·X3,

where D6 · X3 is a new species to be added to the mathematical model which

is inactive and therefore cannot recruit or phosphorylate STATs. Similarly, X3

could bind to either receptor in either dimer, where the receptor is unbound,

bound to STATi, or bound to phosphorylated STATi for i ∈ {1, 3}, resulting in

multiple additional species in the models. The following assumptions could be

made:

• If a SOCS3 molecule binds to a STAT-unbound receptor, this receptor is

then inactivated meaning that STAT molecules can no longer bind to it.

• If a SOCS3 molecule binds to a STAT-bound receptor, this receptor is then

inactivated, meaning that the bound STAT molecule can no longer become

phosphorylated and can only dissociate the receptor. No further STAT

molecules can be recruited to the receptor.

• If a SOCS3 molecule binds to a pSTAT-bound receptor, this pSTAT molecule

does not dephosphorylate and can dissociate from the receptor. No further

STAT molecules can be recruited to the receptor.

In all three cases, the other receptor in the dimer is still free to recruit and

phosphorylate STAT molecules unless also bound by SOCS3.

The delay in the production of SOCS3 molecules could be represented in a

similar fashion to that used by Reeh et al. (2019). In the model presented in this

work the authors account for the delay in SOCS3 production (starting after 30

minutes) by introducing “dummy” SOCS3 variables. For example SOCS3 dummy

1 has no effect on any other species in the model (it cannot inactivate the dimer)
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and can only transform into SOCS3 dummy 2. One can introduce a chain of

dummy molecules until eventually one of the dummy molecules transforms with

some rate into active SOCS3. This SOCS3 variable is then capable of inactivating

the receptor molecules. Here, three dummy SOCS3 molecules are introduced,

namely Xa
3 , Xb

3 and Xc
3 where the active form of SOCS3 is denoted by X3. The

following pathway of reactions can occur,

Xa
3

δ1−→ Xb
3
δ2−→ Xc

3
δ3−→ X3,

where then X3, once formed, can bind to and inactivate the receptor molecules

in an active dimer. It is assumed here that there is an initial concentration of

Xa
3 present in the cells at time 0 which then transforms into the other dummy

SOCS3 molecules and eventually the active form, via the chain described above.

In reality, theXa
3 would be produced by transcription and translation as a result of

pSTAT dimers migrating to the nucleus, however a constant initial concentration

is assumed here for simplicity in the models. Although introducing this pathway

of dummy reactions allows for a delay in the production of SOCS3 in the model

simulations, it is of course not biologically realistic and hence one issue with this

method is that the rates cannot be measured and must be fixed to values which

result in the required delay in SOCS3 production. Given that SOCS3 is not

measured in the experiments which produced the data used in this chapter, the

delay in production is here assumed to be 30 minutes, taken from Reeh et al.

(2019). All other reactions in the HypIL-6 and IL-27 models remain the same,

except for the removal of the receptor internalisation/degradation reactions (i.e.

any reactions involving the parameter βj or γj for j ∈ {6, 27}).
Owing to the number of additional variables and reactions that are included

in the models after explicitly describing SOCS3 negative feedback, writing down

and numerically solving the ODE system for the models would be highly complex

and error-prone. To overcome this need to write down the ODEs for the systems,

a rule-based modelling approach can be used (Danos et al., 2007). Examples of

rule-based modelling software include BioNetGen (Faeder et al., 2009), Simmune

(Meier-Schellersheim & Mack, 1999) and Copasi (Mendes et al., 2009). Each

software has its own advantages, where Copasi comes with a user friendly GUI
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interface involving many inbuilt stochastic simulation algorithms, model analy-

ses (such as sensitivity analysis and the linear noise approximation) and data

visualisation methods. Simmune is also a model simulation software and comes

with the additional advantages of being able to define molecule types graphically

(for example specifying where there are binding sites for other molecules) and

importantly, being able to define a 3D space for the model simulation to take

place. Models can be simulated in both space and time and the model simu-

lations displayed graphically. BioNetGen comes with a user interface known as

RuleBender and several example codes for well-known signalling pathways. The

RuleBender interface of BioNetGen is used here, whereby the user inputs a list

of reaction rules, along with initial molecular concentrations and parameter val-

ues. One can specify for example, that X3 can bind to any receptor with a free

SOCS3 binding site with rate α, and that these receptors are then no longer capa-

ble to phosphorylating STATs. Each of the mathematical models in this chapter

have been formulated in BioNetGen with the additional SOCS3 reactions. An

example BioNetGen code for the SOCS3 HypIL-6 mathematical model is given

in Appendix B. Upon writing of the models in the BioNetGen language, the pro-

gram then generates the ODEs in the background of the simulation and solves

them numerically. With the addition of negative feedback by SOCS3, the HypIL-

6 model increases from 22 variables to 66 and the IL-27 model from 33 variables

to 112. Given the increased dimensionality of the models as well as the increase in

the number of parameters, carrying out parameter estimation or model selection

using the Bayesian methods used in this chapter would be highly inefficient. The

models can however be simulated using parameter values reflective of the poste-

rior distributions generated from the ABC-SMC of the original models. To this

end, the models are simulated using four randomly sampled parameter sets from

each of the RPE1 posteriors and the Th-1 posteriors, and the outputs [pSi]
T,j

for i ∈ {1, 3} and j ∈ {6, 27} (after normalisation) are plotted in Figure 4.24

for both cell types. The parameters δk for k ∈ {1, 2, 3} are chosen as 5 × 10−4

such that SOCS3 production begins at around 30 minutes (representative of the

peak in pSTAT levels seen in the data) as can be seen in Figure 4.25. The ini-

tial concentration of Xa
3 , which represents the carrying capacity concentration of

SOCS3 that can be produced, is set to 20 nM. The rate at which SOCS3 binds
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either receptor in the dimer is set to α = 5 × 10−3 nM-1s-1, a rate slower than

the average rate of STAT binding to the receptors based on the binding affinities

given by Dittrich et al. (2012).

Figure 4.24: Outputs of total phosphorylated STATs from four simulations of
the SOCS3 HypIL-6 and IL-27 mathematical models using BioNetGen in both
RPE1 and Th-1 cells. The four parameter sets used were randomly sampled from
the posterior distributions generated via ABC-SMC.

From Figure 4.24 it can be observed that the model outputs in the RPE1 cells

(top row) are not at all reflective of the experimental data, but that the model

outputs in the Th-1 cells (bottom row) do, in general, capture the trend of the

data. It should be noted that the parameters α and [Xa
3 ](0) have been fixed in the

simulations and hence a better fit to the data might be found if these parameters

were able to be calibrated. Calibration of these parameters however, would only

be possible if additional data were collected for the MFI of SOCS3, which was

not collected in the original experiments. The parameters δk for k ∈ {1, 2, 3}, are
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Figure 4.25: Output of SOCS3 ([X3]) from four simulations of the SOCS3
HypIL-6 and IL-27 mathematical models using BioNetGen in both RPE1 and Th-
1 cells. The four parameter sets used were randomly sampled from the posterior
distributions generated via ABC-SMC.

also fixed at assumed values and hence further exploration of these parameter

values may also result in a better model fit.

Given the analysis in the section, in particular the simulations for the Th-1

cells in Figure 4.24, it may be possible that negative feedback is indeed con-

tributing to the down-regulation of receptor containing species in the experi-

ments. However it is believed that for this particular experimental set-up, the

down-regulation is mostly due to receptor internalisation. Indeed, an experiment

was carried out whereby the cells were treated with cyclohexamide, meaning that

SOCS3 molecules could no longer be produced. The STAT phosphorylation pro-

files were measured in these cells and compared with the profiles from cells in

which SOCS3 molecules were able to be produced and this data can be found

in Figure 3 supplement 2 of Wilmes et al. (2021). It was found that pSTAT1 is

minimally affected by cyclohexamide treatment in both cell types under HypIL-6

stimulation, as is pSTAT3 in the Th-1 cells. This implies that SOCS3 molecules

are not having a great effect on the deactivation of HypIL-6 induced dimers. Un-

der stimulation with IL-27, when the cells are treated with cyclohexamide, the

pSTAT profiles are slightly more sustained, although the experimentalists did

not think this was very significant. Even upon treatment with cyclohexamide,

there is still a general decrease in pSTAT over time, implying that the receptor
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molecules are being internalised from the surface. If it were of particular interest

to learn about whether a negative feedback mechanism is indeed in place in the

cells which produced the data, one could use simpler models similar to those pre-

sented by Reeh et al. (2019) to test this hypothesis. In such models, there could

be an active and inactive dimer form and therefore SOCS3 negative feedback

could be added less explicitly than has been done in this section. This analysis

however is out of the scope of this chapter, where the main aim was to identify

the cause of the differential signalling by pSTAT1 under HypIL-6 and IL-27.

4.7 Discussion

In this chapter, deterministic mathematical models have been developed to de-

scribe the initial steps of intracellular signalling when cells are stimulated with

one of two cytokine molecules, HypIL-6 or IL-27. Both cytokines are known to

initiate the same intracellular signalling pathway, known as the JAK/STAT path-

way, however it has been experimentally observed that IL-27 induces a stronger

and more sustained pSTAT1 signal than HypIL-6, whereas the pSTAT3 response

is similar between cytokines. ABC-SMC has been used here to calibrate the

mathematical models by means of parameter inference in order to determine the

cause of the differential pSTAT1 signalling, using experimental data from two cell

types. Two hypotheses relating to the way in which receptor molecules are in-

ternalised/degraded were also considered and Bayesian model selection was used

to infer the most likely mechanism. After further validation of the models, using

different experimental datasets, the models were used to make predictions about

pSTAT signalling in different receptor and STAT concentration regimes, some of

which have been observed in human diseases.

The main result of this chapter is the identification of the specific reactions

responsible for the stronger and more sustained pSTAT1 signal upon stimulation

of the cells with IL-27. Through differences in the posterior distributions for some

parameters obtained using ABC-SMC, one can conclude that pSTAT1 signalling

is greater in IL-27 stimulated cells. This is due to the fast rate of binding of

STAT1 to IL-27Rα, a receptor which forms one half of the IL-27 induced dimer,

but is not part of the HypIL-6 dimer, which is instead formed of two molecules
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of GP130. In particular, it was found that STAT1 binds faster to IL-27Rα than

to GP130 (k+
1b > k+

1a), whereas STAT3 binds faster to GP130 than to IL-27Rα

(k+
3a > k+

3b). A secondary result of the mathematical modelling is the Bayesian

model selection. In particular, it was found that, for the data available in this

chapter, the receptor molecules are more likely to be internalised/degraded with

a constant rate proportional to their concentrations (hypothesis 1) rather than

a rate proportional also to the sum of free cytoplasmic phosphorylated STAT1

and STAT3 (hypothesis 2). The aim of this model selection was to determine

whether a negative feedback mechanism was in place, whereby the free pSTAT

molecules were migrating to the nucleus and promoting the production of negative

feedback proteins which would down-regulate the JAK/STAT pathway. Model

selection together with the experimental data indicate that such a negative feed-

back mechanism is unlikely to have contributed to the loss of receptor molecules

from the system, and that the receptors were more likely being internalised as

part of natural trafficking mechanisms. A limitation of the method used here is

that the experimental data used in this chapter only have a time course of up

to 180 minutes and this time scale may not be long enough for a negative feed-

back mechanism to be induced. Therefore in order to test if negative feedback

ever occurs for such cytokine induced JAK/STAT signalling pathways, one would

require data with a significantly longer time course. In Section 4.6, the model

hypotheses are further discussed and analysed with relation to other published

modelling works which explicitly model negative feedback by including SOCS3

molecules in the model. Implicitly including the negative feedback mechanism

in the model, as has been done in this chapter, is less realistic and therefore the

result of the model selection is perhaps less trustworthy than it would have been

had SOCS3 molecules been included in the model. It is discussed however, that

including SOCS3 molecules in the models would hugely increase the complexity

of the models and mean that Bayesian model selection would be very difficult

and time consuming to conduct. As well as this, further experimental data shows

that for this particular model set-up, knocking out SOCS3 molecules from the

cells did not have a great effect on pSTAT signalling, and hence negative feedback

is not expected to be very important.
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Using the parameterised mathematical models, one can simulate pSTAT sig-

nalling dynamics under different concentrations of receptors and STATs. This is

useful since it has been observed in some diseases such as Crohn’s disease and

SLE, that STAT1 is highly up-regulated and therefore pSTAT signalling which ul-

timately controls the fate of the cell, is dysregulated. In this particular situation,

corresponding to the fifth row of Figure 4.20, the mathematical models predict

that the pSTAT1 response will approximately double in the IL-27 stimulated sys-

tem and will be up-regulated by a factor of 1.5 under stimulation with HypIL-6.

On the other hand, the pSTAT3 response will decrease by approximately 75%

in the IL-27 system and by approximately 30% in the HypIL-6 system. With

observations from the mathematical model such as these, and knowledge about

the specific cellular mechanisms induced by pSTAT1/3 signalling, one may be

able to predict the fate of such cells in certain disease scenarios. As well as simu-

lating pSTAT signalling outcomes for different concentration regimes, one could,

as an extension of the work in this chapter, simulate the model varying some of

the rate constants which may be biologically adjustable if the cells were treated

with small molecule therapies. As an example of this, Nishimoto & Kishimoto

(2004) discuss an anti IL-6Rα monoclonal antibody as a treatment for inflamma-

tory diseases, which competes with IL-6 for the binding to IL-6Rα. An IL-6Rα

bound to the IL-6Rα monoclonal antibody is not able to induce the formation of

a GP130 homodimer and hence IL-6 signalling is suppressed. Such small molecule

therapies could be included explicitly into the mathematical models developed in

this chapter by adding them as extra variables, or implicitly, by reducing the rate

at which HypIL-6 binds with GP130. The effect of these type of therapies on

the JAK/STAT pathway could then be explored by simulating the mathematical

models, similarly to Section 4.5.

The work in this chapter uses deterministic mathematical models and hence

an assumption is being made that the concentrations of the reactant species are

large enough that random fluctuations in species copy numbers are not important.

For the concentrations used here, this assumption is valid, however if there were to

be a large down-regulation in any of the species, for example in another disease

scenario, then one may need to use a stochastic approach to characterise the

system. Finally, a limitation of this work is that there are a large number of
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variables and parameters in each of the mathematical models, and hence, in

the Bayesian inference, for some of the parameters there is very little learning.

For example, the KDEs of the posterior distributions for the ligand binding and

dimerisation parameters (top row of Figure 4.13) span several orders of magnitude

and hence are not informative. To overcome this problem, one could fix some of

the model parameters at experimentally derived values. For example, if there was

a lot of confidence in the receptor-ligand binding rates found from the Biacore

affinity experiments (discussed in Section 4.3.1), then these rates could be fixed

in the modelling. Likewise, if it were possible to experimentally derive any of

the other rate constants in the mathematical models, these too could be fixed,

resulting in a model with fewer parameters to estimate, yielding less uncertainty

in the model predictions.
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Chapter 5

Mathematical modelling of

FGFR2 ternary complex

formation

The fibroblast growth factor receptors are a class of receptor tyrosine kinases, of

which there are four members, namely FGFR1-FGFR4, which bind to a family

of 18 FGF ligands (Turner & Grose, 2010). Upon ligand binding to the ex-

tracellular region, the FGFRs form signalling dimers in which tyrosine sites on

the intracellular tails of the receptors become phosphorylated and act as dock-

ing sites for various cytoplasmic proteins. This binding of cytoplasmic proteins

to activated FGFR homo- or heterodimers induces one of four possible signalling

cascades, known as the MAPK, JAK-STAT, PI3K-AKT and Plcγ pathways (Hal-

linan et al., 2016). These diverse and complex signalling pathways ultimately lead

to a cellular response which is regulated by FGFR trafficking, where receptors

can be synthesised, internalised into the cell, recycled to the cell membrane and

degraded. The cellular response is also controlled by the receptor-ligand bind-

ing pair, where it has been observed that different pairings can lead to different

outcomes for the cell (Ornitz & Itoh, 2015). The FGFRs have been extensively

studied over recent years due to their involvement in many different types of

cancer. Aberrant FGFR signalling has been noted in some malignant cell types,

which can be a result of over-expression of receptors on the cell surface, or mu-

tations in the receptors leading to ligand-independent activation (Hallinan et al.,
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2016).

Two cytoplasmic proteins which are involved in some of the aforementioned

signalling pathways, and which can both bind to FGFRs are Src homology-2

domain-containing protein tyrosine phosphatase-2 (Shp2) and phospholipase C

gamma 1 (Plcγ1). Shp2 is involved in many signalling pathways, including the

MAPK, JAK-STAT and PI3K pathways, where it has multiple functionalities,

with the ultimate effect of enhancing signal transduction (Qu, 2000). To date,

however, Shp2 has not been reported to have an involvement in the Plcγ signalling

pathway. In this pathway, Plcγ1 itself binds directly to the intracellular tails of

the RTKs and becomes phosphorylated and activated. Activation of Plcγ1 leads

to other intracellular events (such as the hydrolysis of a membrane bound protein

known as PIP2) and the pathway induced can lead to a range of cellular outcomes,

including cell division, migration, survival and death (Emmanouilidi et al., 2017).

In this chapter, a possible mechanism of increased signal transduction involving

both Shp2 and Plcγ1 will be discussed.

In order to maintain a strong signal through any of the signalling pathways,

cytoplasmic proteins must constantly be being recruited to the phosphorylated

sites of the membrane bound receptor molecules to form complexes of two or more

proteins. The interior of a cell is a crowded environment containing numerous

organelles and proteins, and hence free diffusion of molecules is limited, meaning

that the probability of an interaction between a receptor molecule and the cyto-

plasmic protein required for signalling, is low, especially when there are relatively

low numbers of one or both molecule types (Cebecauer et al., 2010). An interest-

ing phenomenon that has been observed in the regulation of signalling pathways

is the formation of liquid-liquid phase separated (LLPS) droplets containing sig-

nalling proteins (Cebecauer et al., 2010). These regions of high concentrations of

the proteins required for signalling, could be responsible for the maintenance of

many cellular signals. One example of this phase separation involves the T cell

receptor, where it has been found that the activation of this receptor leads to the

formation of micrometer sized clusters of T cell receptors and other intracellular

proteins (Su et al., 2016). Interestingly, the clusters contained many kinases (en-

zymes which attach a phosphate group to another protein and therefore promote

signalling), and few phosphatases (enzymes which remove a phosphate group from
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another protein and therefore down-regulate signalling). There are many other

examples of the formation of LLPS droplets enhancing cell signalling (Case et al.,

2019; Huang et al., 2019; Li et al., 2012; Zhang et al., 2018), however, to date, it

has not been investigated whether this phenomenon extends to RTK signalling.

Dr. Chi-Chuan Lin and other members of the group of molecular and cellular

biology at the University of Leeds have been interested in exploring whether or

not LLPS droplets occur involving RTKs. Through imaging experiments, they

observed some level of phase separation involving many types of phosphorylated

RTKs such as pEGFR, pFGFR1, pFGFR2 and pVEGFR1 (where an RTK pre-

fixed with the letter “p” implies that it is phosphorylated), with Shp2. As a spe-

cific example, they decided to further investigate pFGFR2-Shp2 phase separation

where they noticed that Plcγ1 was also able to phase separate with pFGFR2 and

Shp2 in the droplets. They theorised, therefore, that these three proteins are

capable of forming a ternary complex, in which pFGFR2 binds to Shp2, which

subsequently binds with pPlcγ1 (phosphorylated Plcγ1), and that these ternary

complexes are weakly bound together, to maintain the LLPS droplets. It is known

however, that both Shp2 and Plcγ1 are capable of binding to pFGFR2, and in

different states of phosphorylation, and hence it was unclear if this ternary com-

plex was certainly the only one in the LLPS state. In this chapter, the formation

of the pFGFR2 induced ternary complex is explored using a deterministic math-

ematical model. Through analysis of the steady state of the model, it is shown

that the only possible ternary complex that prevails in the long time dynamics,

is the one which was theorised and observed experimentally. The model is solved

under different cellular conditions to determine the impact of the concentration

of each of the molecular species in the ternary complex, on the level of formation

of the ternary complex as a whole.

5.1 Experimental results

In this section, an explanation of the experimental work is given, and some of

the experimental results are presented. Firstly, florescently tagged intracellular

domains of several RTKs were imaged upon the addition of Shp2, which is known
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to bind with each of the RTKs in order to initiate cell signalling pathways. A mu-

tant variety of Shp2, known as the Shp2C459S phosphatase dead trapping mutant,

was used in the experiments. As the name suggests, this mutant lacks phos-

phatase activity and was used so that Shp2 did not dephosphorylate the RTKs

in the experiment, where the RTKs are required to be phosphorylated in order

to bind with Shp2 or Plcγ1. For brevity, Shp2C459S will be referred to as Shp2C

throughout this chapter. The experiment was set up by purifying the RTKs

(separating them from other proteins) and subsequently phosphorylating them

with ATP. With the phosphorylated RTKs then in solution, Shp2C was added to

the solution and the mixture incubated at room temperature for 1 minute before

imaging. Confocal imaging was used in order to produce a two-dimensional image

of the cross section of protein droplets. This experiment was carried out in order

to determine whether any of the RTKs were able to phase separate with this

protein. The RTKs used in the experiment were three members of the ErbB fam-

ily of receptors (pEGFR, pHer2 and pHer4), two members of the FGFR family

(pFGFR1 and pFGFR2) and two members of the VEGFR family (pVEGFR1 and

pVEGFR2). The whole protein was not used, and instead either the cytoplasmic

domain (cyto) or the kinase-tail of the RTK was used (hence the proteins are

“recombinant”, i.e. modified or manipulated), and the results are seen in Figure

5.1. There are clearly visible droplets in the presence of pErbB family receptors

(top row) and pFGFRs, however the pVEGF receptor family either do not form

droplets with Shp2C or they are very small in relation to those formed with the

other receptor types. Given the abundance of droplets formed upon the addition

of Shp2C to pFGFR2, this pairing was chosen to study further in order to explore

the possibility of other proteins being involved in the droplets, and the purpose

of the formation of such droplets.

Plcγ1 is another cytoplasmic protein, important in the regulation of cell sig-

nalling, which binds with RTKs in order to initiate its own signalling pathway.

It has not previously been reported to interact with Shp2, but given the impor-

tance of Shp2 in many other signalling pathways, this interaction was therefore

explored. It was found, again through imaging experiments, that Shp2C and

Plcγ1, although they are able to bind each other, do not phase separate in the

absence of the receptor. It can be concluded therefore, that a pFGFR2-Shp2C
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Figure 5.1: Droplet formation of recombinant pEGFR, pFGFR, and pVEGFR
(6 µM each) upon adding 30 µM of Shp2C (Lin et al., 2019). Scale bar = 10 µm.

interaction is essential for phase separation. In order to confirm that at least

one other protein is required for phase separation, pFGFR2 was imaged in the

absence of any other intracellular proteins and no phase separation was observed.

Given that both Shp2C and Plcγ1 are able to bind with pFGFR2, it was then

theorised that they may be able to bind concurrently with the receptor to form

a signalling ternary complex. When the two proteins were added to pFGFR2

containing medium (with the experimental set up similar to that used to produce

Figure 5.1), phase separation was again observed, as can be seen in Figure 5.2.

In this Figure, each of the first three panels shows the location, via confocal

fluorescence imaging, of the proteins pFGFR2, Shp2C and Plcγ1, separately, and

the fourth panel shows the overlay of the images, revealing that all of the proteins

are located in the droplets.

Although Figure 5.2 confirms that the proteins co-locate, it does not explicitly

confirm the formation of a ternary complex, where it may be possible that the

proteins are binding only through binary interactions. To this end, pairwise

interactions between the proteins were then characterised in order to test, for

example, that two of the proteins do not compete for the same binding site on the

third, making a ternary complex impossible. It was demonstrated that pFGFR2

and Shp2C engage with one another via interactions between the C-terminal tail
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Figure 5.2: In vitro phase separation assay using Atto-labelled pFGFR2Cyto

(280 µM), truncated Shp22SH2 (700 µM) and pPlcγ12SH2 (250 µM) (Lin et al.,
2019). Scale bar = 10 µm.

of the receptor, specifically tyrosine Y769, and the C-terminal Src homology 2

(CSH2) domain of Shp2C (see Figure 5.3, panel B). The binding between Shp2C

and Plcγ1 is mediated between interactions within the tandem SH2 domains of

the two proteins (see Figure 5.3, panel C). Plcγ1 can also be recruited to the

pY769 site on the C-terminal tail of the receptor, through its NSH2 domain (see

Figure 5.3, panel D). This interaction results in the phosphorylation of Plcγ1

on Y783. Clearly, since Plcγ1 and Shp2C bind the receptor tail at the same

tyrosine residue, both proteins cannot be bound to the receptor at the same

time. Therefore, a ternary complex must be comprised of the receptor bound to

one of the proteins and the third protein bound to another site on the second

protein. It was hypothesised that this ternary complex should be pFGFR2 bound

to Shp2C, which in turn is bound to Plcγ1, since this complex can form through

non-exclusive surfaces (see Figure 5.3, panel E), although other formulations of

the ternary complex are possible. Given that Plcγ1 can become phosphorylated

by the receptor, the ternary complex may involve either unphosphorylated or

phosphorylated Plcγ1. The binary complexes as well as the hypothesised ternary

complex are depicted in Figure 5.3, where the domains are labelled as follows,

1: tyrosine kinase domain, 2: NSH2 domain, 3: CSH2 domain, 4: Phosphatase,

and 5: SH3 domain. Dissociation constants (ratios of the backward are forward

rate constants for binding) for some of the binary reactions were measured and

are given in Table 5.1. It can be seen that, when the receptor is present with

only one other species, the binding to the receptor is tighter from Plcγ1 than

Shp2C. Also Shp2C binds with higher affinity to the phosphorylated form of
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Plcγ1, and therefore it was postulated that if a ternary complex exists it should

involve phosphorylated Plcγ1, and thus the ternary complex of pFGFR2 bound

to Shp2C which is in turn bound to pPlcγ1 is the suspected ternary complex

being formed in the LLPS droplets.
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Figure 5.3: Diagrams of the interactions between pFGFR2, Shp2C and Plcγ1.
A: The individual molecules in the system, where a black circle represents a
phospho-tyrosine residue, 1: tyrosine kinase domain, 2: NSH2 domain, 3: CSH2
domain, 4: Phosphatase, and 5: SH3 domain. B: The binary reaction between
pFGFR2 and Shp2C. C: The binary reaction between Shp2C and Plcγ1. D:
The binary reaction between pFGFR2 and Plcγ1. E: The hypothesised ternary
complex formation between pFGFR2, Shp2C and Plcγ1.

In order to explore the possibility of ternary complex formation between the

species pFGFR2, Shp2C and Plcγ1, in Section 5.2 a mathematical model is de-
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Reaction Kd value Unit

Phosphorylated FGFR2 binding Shp2C 25.1 µM

Phosphorylated FGFR2 binding Plcγ1 0.223 µM

Shp2C binding Plcγ1 1.16 µM

Shp2C binding phosphorylated Plcγ1 0.48 µM

Table 5.1: Experimentally derived dissociation constants (Kd values) for binary
reactions involving the species pFGFR2, Shp2C and Plcγ1.

veloped to describe the reactions occurring in the experimental system. Then, in

Section 5.3, the steady state of the mathematical model is analysed to determine

which of the ternary complexes which could form, prevail in the long run.

5.2 Mathematical model

In this section, an ordinary differential equation mathematical model for the for-

mation of ternary complexes involving pFGFR2, Shp2C and Plcγ1 is introduced.

The model was formulated based on reactions involving the following species,

• F = unbound unphosphorylated FGFR2,

• pF = unbound phosphorylated FGFR2,

• S = unbound Shp2C,

• pF · S = phosphorylated FGFR2 - Shp2C complex,

• P = unbound unphosphorylated Plcγ1,

• pF · P = phosphorylated FGFR2 - Plcγ1 complex,

• pF · pP = phosphorylated FGFR2 - phosphorylated Plcγ1 complex,

• pP = unbound phosphorylated Plcγ1,

• S · P = Shp2C - unphosphorylated Plcγ1 complex,

• S · pP = Shp2C - phosphorylated Plcγ1 complex,

• pF · S · P = phosphorylated FGFR2 - Shp2C - unphosphorylated Plcγ1

complex,
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• pF · P · S = phosphorylated FGFR2 - unphosphorylated Plcγ1 - Shp2C

complex,

• pF ·S · pP = phosphorylated FGFR2 - Shp2C - phosphorylated Plcγ1 com-

plex,

• pF · pP ·S = phosphorylated FGFR2 - phosphorylated Plcγ1 - Shp2C com-

plex.

Given that only one of either Shp2C and Plcγ1 can bind the receptor at any

one time, and that Plcγ1 can be either phosphorylated or unphosphorylated, there

are four possible ternary complexes which could form. The reactions of the model

are depicted in Figure 5.4, where the ternary complex coloured in red, is the one

which is experimentally hypothesised to exist in the LLPS droplets. The first

reaction, at the top of the figure, illustrates the phosphorylation of FGFR2 with

rate constant k1. Although this is in reality a process involving ligand binding

and dimerisation, here it is modelled as a spontaneous linear reaction in order

to minimise complexity in the model. The second row of the figure shows the

reversible binding of Shp2C to the phosphorylated tail of the receptor, where this

reaction is known to occur with dissociation constant

Kd,2 =
k−2

k+2

= 25.1 µM.

The third row of Figure 5.4 indicates the reversible binding of Plcγ1 to pFGFR2,

where

Kd,3 =
k−3

k+3

= 0.223 µM.

There are two further reactions on this row, whereby instead of dissociating the

receptor unphosphorylated (with rate k−3), Plcγ1 could become phosphorylated

by the receptor with rate k4 and then dissociate with rate k5. These two reactions

are irreversible, so that phosphorylated Plcγ1 cannot bind the receptor, and Plcγ1

cannot dephosphorylate whilst bound to the receptor. The phosphorylation and

dissociation of Plcγ1 are thought to occur extremely quickly (Wahl et al., 1992),

so the rates k4 and k5 should be high. The fourth and fifth rows of Figure

5.4 depict the binding of Shp2C and Plcγ1, where in the fourth row Plcγ1 is
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unphosphorylated and the reaction occurs with dissociation constant

Kd,6 =
k−6

k+6

= 1.16 µM,

and in the fifth row, Plcγ1 is phosphorylated and the reaction occurs with disso-

ciation constant

Kd,7 =
k−7

k+7

= 0.48 µM.

Finally, the bottom two rows of Figure 5.4 show a circuit of reactions in which

binary complexes bind with single molecules to form ternary complexes. The

phosphorylated receptor can reversibly bind with either of the binary complexes

S · P or S · pP through the Shp2C molecule, where the rates of these reactions

are k+2 and k−2. Hence, there is no allostery considered in the model, so that

the binding of a binary complex through Shp2C occurs with the same rate as

the binding of a single molecule of Shp2C. pFGFR2 can also bind the complex

S ·P through Plcγ1, again assuming no allostery so that these reversible reactions

occur with rate constants k+3 and k−3. Since phosphorylated Plcγ1 cannot bind

to pFGFR2, the only reaction in the model involving the binding of the binary

complex S·pP , is through Shp2C. Upon formation of the ternary complex pF ·P ·S,

since Plcγ1 is directly bound to the receptor, it can become phosphorylated by

the receptor and can subsequently dissociate, whilst still bound to Shp2C. Again,

since no allostery is considered in the model, these reactions are assumed to occur

with rates k4 and k5, respectively. The last set of reversible reactions in the model

is the binding of the binary complex pF · S to phosphorylated Plcγ1 (pP ), with

rates k+7 and k−7. Given that the phosphorylation of Plcγ1 on the receptor and

subsequent dissociation of pPlcγ1 are reactions supposed to occur very quickly,

the complex pF · P will not exist for long enough periods of time such that the

reactions pF ·P +S 
 pF ·P ·S would become relevant, and hence they are not

included in the model.

Based on the reactions in Figure 5.4, and under the assumption of mass action

kinetics, the system can be described by the ODEs (5.1) - (5.14). Square brackets

around a species notation denote the concentration of this species with units µM.

The ODEs are valid for any time t, with t ≥ 0, but time has been omitted in the
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F pF
k1

pF + S pF · S
k+2

k−2

pF + P pF · P
k+3

k−3

pF · pP pF + pP
k4 k5

S + P S · P
k+6

k−6

S + pP S · pP
k+7

k−7

pF · S + pP pF · S · pP
k+7

k−7

pF + S · pP
k−2

k+2

pF · S · P pF + S · P
k−2

k+2

pF · P · S
k+3

k−3

pF · pP · S

↑

↑

k5

k4

Figure 5.4: A depiction of the molecular reactions which define the mathemat-
ical model. In the figure a “·” indicates that the species are bound. The values
k associated with the reaction arrows are the rates at which the reaction takes
place. The species in red is the experimentally hypothesised ternary complex.

species concentration notation for ease of reading, where for example [F ] = [F ](t)

for all t ≥ 0.

d[F ]

dt
= −k1[F ] (5.1)

d[pF ]

dt
= k1[F ]− k+2[pF ]([S] + [S · P ] + [S · pP ])

+ k−2([pF · S] + [pF · S · P ] + [pF · S · pP ])− k+3[pF ]([P ] + [S · P ])

+ k−3([pF · P ] + [pF · P · S]) + k5[pF · pP ] + k5[pF · pP · S] (5.2)

d[S]

dt
= −k+2[pF ][S] + k−2[pF · S]− k+6[S][P ] + k−6[S · P ]
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Parameter/IC Description Unit

[F ]T Total FGFR2 concentration µM

[P ]T Total Plcγ1 concentration µM

[S]T Total Shp2C concentration µM

k1 Rate of FGFR2 phosphorylation s-1

k+2 Rate of pFGFR2 binding to Shp2C µM-1s-1

k−2 Rate of pFGFR2 unbinding from Shp2C s-1

k+3 Rate of pFGFR2 binding to Plcγ1 µM-1s-1

k−3 Rate of pFGFR2 unbinding from Plcγ1 s-1

k4 Rate of Plcγ1 phosphorylation s-1

k5 Rate of pFGFR2 unbinding from pPlcγ1 s-1

k+6 Rate of Shp2C binding to Plcγ1 µM-1s-1

k−6 Rate of Shp2C unbinding from Plcγ1 s-1

k+7 Rate of Shp2C binding to pPlcγ1 µM-1s-1

k−7 Rate of Shp2C unbinding from pPlcγ1 s-1

Table 5.2: Definitions and units for the rate constants and initial concentrations
in the FGFR2 mathematical model. A superscript T denotes the “total” (or
initial) concentration of a molecule.

− k+7[S][pP ] + k−7[S · pP ] (5.3)

d[pF · S]

dt
= k+2[pF ][S]− k−2[pF · S]− k+7[pF · S][pP ] + k−7[pF · S · pP ] (5.4)

d[P ]

dt
= −k+3[pF ][P ] + k−3[pF · P ]− k+6[S][P ] + k−6[S · P ] (5.5)

d[pF · P ]

dt
= k+3[pF ][P ]− k−3[pF · P ]− k4[pF · P ] (5.6)

d[pF · pP ]

dt
= k4[pF · P ]− k5[pF · pP ] (5.7)

d[pP ]

dt
= k5[pF · pP ]− k+7[pP ]([S] + [pF · S])
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+ k−7([S · pP ] + [pF · S · pP ]) (5.8)

d[S · P ]

dt
= k+6[S][P ]− k−6[S · P ]− k+2[pF ][S · P ] + k−2[pF · S · P ]

− k+3[pF ][S · P ] + k−3[pF · P · S] (5.9)

d[S · pP ]

dt
= k+7[pP ][S]− k−7[S · pP ]− k+2[pF ][S · pP ] + k−2[pF · S · pP ]

+ k5[pF · pP · S] (5.10)

d[pF · S · P ]

dt
= k+2[pF ][S · P ]− k−2[pF · S · P ] (5.11)

d[pF · P · S]

dt
= k+3[pF ][S · P ]− k−3[pF · P · S]− k4[pF · P · S] (5.12)

d[pF · S · pP ]

dt
= k+7[pF · S][pP ]− k−7[pF · S · pP ] + k+2[pF ][S · pP ]

− k−2[pF · S · pP ] (5.13)

d[pF · pP · S]

dt
= −k5[pF · pP · S] + k4[pF · P · S] (5.14)

Conservation expressions can be written for the total concentration of F

([F ]T ), S ([S]T ) and P ([P ]T ), since it is assumed that the experimental vol-

ume of the system does not change with time. Therefore, one can write that

[F ]T = [F ] + [pF ] + [pF · S] + [pF · P ] + [pF · pP ] + [pF · S · P ]

+ [pF · P · S] + [pF · S · pP ] + [pF · pP · S], (5.15)

[S]T = [S] + [pF · S] + [S · P ] + [S · pP ] + [pF · S · P ] + [pF · P · S]

+ [pF · S · pP ] + [pF · pP · S], and, (5.16)

[P ]T = [P ] + [pF · P ] + [pF · pP ] + [pP ] + [S · P ] + [S · pP ] + [pF · S · P ]

+ [pF · P · S] + [pF · S · pP ] + [pF · pP · S]. (5.17)

The above equations hold since the total concentration of a molecule at any time

t is the sum of the concentrations of all species containing this molecule at that
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time point. To explore the model dynamics, the model was numerically solved

to reflect a further experimental setup of the same type as generated Figure 5.2,

where, initially, Shp2C and Plcγ1 were added to medium containing pFGFR2.

Since in an in vivo scenario however, FGFR2 would exist in an unphosphorylated

and a phosphorylated state, the model includes the phosphorylation of FGFR2

as a reaction and hence the model initial conditions for the receptor states are

[F ](0) 6= 0 and [pF ](0) = 0. The initial concentrations of the species F , S and P

were therefore non-zero and all other initial concentrations were zero. Specifically,

in this experiment, the initial concentration of FGFR2 was, [F ](0) = 0.3 µM, the

initial concentration of Shp2C was, [S](0) = 147 µM, and the initial concentration

of Plcγ1 was [P ](0) = 140 µM. These values are reported in Table 5.3.

Initial concentration Value Unit

[F ](0) = [F ]T 0.3 µM

[P ](0) = [P ]T 140 µM

[S](0) = [S]T 147 µM

Table 5.3: Initial concentrations of FGFR2, Plcγ1 and Shp2C, used in the
experiment which the mathematical model is solved to reflect.

Figure 5.5 shows this model solution, where the dissociation rate constants

were set as k−2 = k−3 = k−6 = k−7 = k5 = 10−1 s-1, the phosphorylation rate

constants were set as k1 = k4 = 100 s-1 and the association rate constants were

fixed using the Kd values in Table 5.1. The figure is split into three panels where

the left panel shows the concentration of monomeric species, the middle panel

shows the dimeric species and the right panel shows the trimeric species (ternary

complexes). The insets in the first two subplots are to show the dynamics of

species at low concentrations.

From each panel of Figure 5.5 it can be seen that the phosphorylated form of

Plcγ1 prevails in the long term dynamics. This behaviour can be expected when

looking at the model diagram in Figure 5.4, since Plcγ1 can become phosphory-

lated on the receptor, but no dephosphorylation reaction is included in the model

(for simplicity so as not to include further species in the model). From the inset in
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Figure 5.5: A numerical solution to the FGFR2 mathematical model using
the experimental initial concentrations, [F ](0) = 0.3 µM, [S](0) = 147 µM and
[P ](0) = 140 µM. The rate constants were set as k−2 = k−3 = k−6 = k−7 = k5 =
10−1 s-1, k1 = k4 = 100 s-1 and the association rate constants were fixed using the
Kd values in Table 5.1.

the first subplot, one can note that although [F ] goes rapidly to zero, due to the

fast irreversible phosphorylation of this species, [pF ] appears to reach a steady

state by the end of the time course considered. As indicated by the inset in the

second subplot, pF · P and pF · pP are intermediary species in the formation of

pP , where the concentration of pP also appears to reach steady state by the end

of the time course (first subplot). S ·P is a species which initially forms but is re-

placed by S · pP in later times, when more pP has been produced. Finally, from

the last subplot, showing the ternary complexes, it can be seen that although

pF · pP ·S and pF ·P ·S form in relatively large concentrations at the beginning

of the time course, by the end of the time course the only non-zero concentration

of a ternary complex is that for the complex pF ·S ·pP . The concentration of this

species also appears to have reached steady state, thus giving some verification

for the hypothesis that this ternary complex may form experimentally. Figure

5.5 is an example of a model solution for specific rate constants and initial con-

centrations, and so in Section 5.3 the steady state of the system will be explored

in more detail for general model parameters.
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5.3 Steady states

For a system of differential equations

dX

dt
= F(X),

with X = (x1, . . . , xn)T and F(X) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))T , a steady

state of such a system is a constant solution X∗ such that F(X∗) = 0 (Allen (2007)

and Section 2.3). For a biological system, such as the FGFR2 system modelled

by Equations (5.1) - (5.14), if the system is in steady state, then the concentra-

tions of each of the species are no longer changing with time. From Figure 5.5

it can be seen that after approximately 2 hours, the concentrations of each of

the species remain constant. This indicates that the system of ODEs may have

a steady state in which some species take positive values and others are zero.

Steady states of a system of ODEs can be found by setting the right hand side of

each of the ODEs to zero and solving the resulting equations simultaneously. For

some ODE systems, usually with few variables and few underlying reactions, it is

possible to solve for the steady state by hand, however for larger more complex

systems this can become infeasible. In this case, symbolic mathematical software

can be used to solve the system. Here, Wolfram Mathematica, was used to find

steady state solutions for the system of Equations (5.1) - (5.14). In total, 8 sets

of implicit solutions were found, whereby explicit steady state expressions were

not given for every variable, but the solution for some variables could be written

in terms of other variables and parameters. In each of the 8 solution sets, many

of the variables go to zero in the steady state. For example, [F ]∗ = 0 in all sets of

solutions, which is expected since the only reaction in the system involving F , is

the phosphorylation of the species to form pF and so in the long term dynamics,

this species is exhausted.

Of the 8 sets of steady state solutions, only 3 are biologically feasible, where

all of the variables in these 3 sets are either equal to zero or are capable of taking

positive values. Given that the variables represent concentrations of molecular

species, a negative value is meaningless here. The first biologically relevant im-

plicit steady state solution set is,
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[F ]∗ = [pF ]∗ = [pF · S]∗ = [pF · P ]∗ = [pF · pP ]∗ = [pF · S · P ]∗

= [pF · P · S]∗ = [pF · S · pP ]∗ = [pF · pP · S]∗ = 0,

[P ]∗ =
k−6[S · P ]∗

k+6[S]∗
,

[S · pP ]∗ =
k+7[S]∗[pP ]∗

k−7

.

(5.18)

The second set is,

[F ]∗ = [pF ]∗ = [S]∗ = [pF · S]∗ = [pF · P ]∗ = [pF · pP ]∗

= [S · P ]∗ = [S · pP ]∗ = [pF · S · P ]∗ = [pF · P · S]∗

= [pF · S · pP ]∗ = [pF · pP · S]∗ = 0,

[P ]∗ 6= 0,

[pP ]∗ 6= 0.

(5.19)

Finally the third solution set for which all variables may take zero or positive

values is,

[F ]∗ = [P ]∗ = [pF · P ]∗ = [pF · pP ]∗ = [S · P ]∗ = [pF · S · P ]∗

= [pF · P · S]∗ = [pF · pP · S]∗ = 0,

[pF · S]∗ =
k+2[pF ]∗[S]∗

k−2

,

[S · pP ]∗ =
k+7[S]∗[pP ]∗

k−7

,

[pF · S · pP ]∗ =
k+2k+7[pF ]∗[S]∗[pP ]∗

k−2k−7

.

(5.20)

In solution set (5.18), all of the variables for species involving FGFR2 are equal

to zero. Clearly, since there is no synthesis or degradation of any species in the

model, this steady state can only be reached when the concentration of all FGFR2

containing species is zero initially. In this situation, the only species which can

exist are S, P , S ·P , pP and S ·pP . Since pP is formed through phosphorylation
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of P on the receptor, the only way in which the species containing pP can be

non-zero in this steady state is if either [pP ] or [S · pP ] were non-zero initially.

When considering the formation of a ternary complex, this steady state is not

relevant as one can assume that each of S, P and F should be present initially.

The implicit steady state described by Equation (5.19) is similar to that de-

scribed by Equation (5.18), in that again all species containing FGFR2 are equal

to zero. Here however, all species containing Shp2C are also equal to zero, and

for the same reasoning as above, one can conclude that this steady state can only

be reached if all species containing either F or S are zero initially. The only

species which prevail in this steady state are P and pP and clearly, due to the

lack of receptor in the system, the concentration of both of these species can only

be positive if they take positive values initially. Given that there are no other

species present, there would be no reactions occurring, and hence the steady state

values for these species would be equal to their respective initial concentrations.

This steady state therefore, can be thought of not only as a point but as a whole

plane in the two dimensions, [P ] and [pP ]. Again, this steady state is not relevant

for the exploration of ternary complex formation.

Solution set (5.20) is the only implicit steady state which can result in zero

or positive values for all species, where there can be positive values for species

involving each of FGFR2, Shp2C and Plcγ1. Crucially, there is a non-zero value

for one of the four possible ternary complexes in the steady state, and moreover, it

is the ternary complex which was hypothesised to form through the experimental

work, namely pF · S · pP . Thus, through analysis of the steady state, even

when only implicit solutions are available, it can be shown that there is only one

steady state in which all species can take either the value zero or positive values,

which can be reached when each of F , S and P are initially non-zero, as in the

experimental set-up. The six species which prevail in this steady state are pF , S,

pF · S, pP , S · pP and pF · S · pP . Although the steady state (5.20) is implicit,

and there are only 3 expressions in the 6 prevailing variables, the conservation

equations (5.15) - (5.17) can be used as additional expressions. In particular, in

the steady state, since many of the variables go to zero, the conservation equations

become
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[F ]T = [pF ]∗ + [pF · S]∗ + [pF · S · pP ]∗, (5.21)

[S]T = [S]∗ + [pF · S]∗ + [S · pP ]∗ + [pF · S · pP ]∗, and, (5.22)

[P ]T = [pP ]∗ + [S · pP ]∗ + [pF · S · pP ]∗. (5.23)

Therefore, combining of Equations (5.21) - (5.23) with the steady state Equa-

tions (5.20) results in six equations in six variables, which can be solved to give

analytic expressions for each variable in steady state. These equations can be

solved using Wolfram Mathematica, however the solutions are complex and un-

wieldy and thus difficult to analyse. In the following section therefore, an efficient

method of numerically solving polynomial systems is discussed and applied to the

steady state equations.

5.3.1 Numerical homotopy continuation

Numerical algebraic geometry is an area of mathematics which has been in devel-

opment since the late 1990s (Sommese et al., 2005) with the aim to find solutions

of systems of polynomial equations, usually for which symbolic solutions are dif-

ficult to compute. A numerical continuation method, known as homotopy contin-

uation is applied which is described briefly here based on the works by Sommese

et al. (2005) and Li (1997) as well as the user manuals and associated publica-

tions for the programs Bertini (Bates, 2012; Bates et al., 2013) and Paramotopy

(Bates et al., 2018). These two programs will be used in this chapter to conduct

homotopy continuation and subsequently parameter homotopy continuation in

order to study the steady states of the FGFR2 system. The aim of homotopy

continuation is to find the isolated solutions of a system of n polynomial equa-

tions P(x) = 0 in n unknowns, known as a square polynomial system. Denoting

P = (p1, . . . , pn) and x = (x1, . . . , xn), the aim is to find the solutions of the

system of equations

p1(x1, . . . , xn) = 0
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... (5.24)

pn(x1, . . . , xn) = 0.

Homotopy continuation is a method proven (by Garcia & Zangwill (1979) and

Drexler (1977), proof not discussed here) to be able to numerically find all so-

lutions of (5.24). The general idea is to firstly define a separate system of poly-

nomials, known as the start system, Q(x) = (q1(x), . . . , qn(x)) = 0 for which the

solutions are trivially known. A homotopy H(x, t) is defined such that

H(x, t) = γtQ(x) + (1− t)P(x), (5.25)

where γ ∈ C is randomly chosen and t ∈ [0, 1] is known as the continuation

parameter, which deforms the system from the start system Q(x) to the target

system P(x) as it varies from 1 to 0. If Q(x) = 0 is chosen to satisfy the following

three conditions, then the solution paths can be traced from the start system to

the target system, and the solutions of P(x) = 0 are hence found.

1. Triviality: The solutions of Q(x) = 0 are known.

2. Smoothness: There are a finite number of smooth solution paths defined

by H(x, t) = 0 and parametrised by t ∈ (0, 1].

3. Accessibility: Every isolated solution of H(x, 0) = P(x) = 0 can be

reached by a path which starts at a solution of H(x, 1) = Q(x) = 0.

It is possible for Q(x) = 0 to have more solutions than P(x) = 0 in which case

some of the solution paths tend to infinity as t→ 0. A key point of the method is

that with probability 1, the solution paths will not collide in the interval t ∈ (0, 1].

Strikingly, almost any value of γ ∈ C will allow for the continuation method to

work, and hence in the software which will be used here, γ is chosen at random.

There are several examples of homotopies which can be used, but the most simple

example is known as the total-degree homotopy. Denoting by di the degree of the

polynomial pi for i = 1, . . . , n, a system Q(x) = 0 which is easy to solve and has

D = d1 · · · dn solutions is the system

qi(x) = xdii − 1 for i = 1, . . . , n.
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This choice of start system used with the homotopy (5.25) is the default method

used by the software Bertini.

Given a start system, such as the total-degree homotopy, predictor-corrector

methods are then used to track the solutions from Q(x) = 0 to P(x) = 0.

Although there are many different predictor-corrector methods, one of the most

simple methods, used by Bertini, is the Euler-Newton method. The method

begins with t0 = 1 and r0 a known initial value solving H(r0, t0) = Q(x) = 0 and

then successive values r1, r2, . . . are computed at t1 > t2 > · · · > 0. The predictor

part of the continuation is the Euler method, commonly used for numerically

solving ordinary differential equations (Butcher & Goodwin, 2008). Here it is

formulated as follows

ri+1 = ri − JH(ri, ti)
−1∂H(ri, ti)

∂t
∆ti,

where JH(x, t) is the Jacobian matrix with respect to the variables x, ∂H
∂x

and

∆ti = ti+1 − ti. Once a new value ri+1 has been predicted, it is then corrected

using Newton’s method for H(x, ti) starting with x0 = ri+1, where

xi+1 = xi − JH(xi, ti+1)−1H(xi, ti+1).

The value ri+1 is then replaced with the corrected value after a small number of

iterations of Newton’s method and the whole procedure is continued for decreasing

values of t. A geometric interpretation of the Euler-Newton path tracking method

is given in Figure 5.6. Each line represents a solution path tracked from the

start system at t = 1 to the target system at t = 0, where green lines represent

convergent paths and red dashed lines represent divergent paths, i.e. paths which

start at a solution for Q(x) = 0 but for which there is no corresponding solution

in P(x) = 0. The Euler prediction step corresponds to a move along the line

tangent to the current point on the solution curve and the Newton correction

brings the new point closer to the true solution. More details on the homotopy

continuation method, specifically with relation to the program Bertini are given

by Bates et al. (2013).

Bertini can be used to find all solutions to the set of polynomials defined
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Figure 5.6: A figure illustrating the Euler-Newton homotopy continuation
method used by Bertini where the lines represent solutions paths from the start
system at t = 1 to the target system at t = 0. The blue arrow represents the Eu-
ler prediction step in the method and the magenta arrow represents the Newton
correction. Figure inspired by similar figures by Bates et al. (2013) and Bates
et al. (2018).

by Equations (5.20) and Equations (5.15) - (5.17). The homotopy continuation

method can be applied by the program for this system of equations using the

experimental initial concentrations (Table 5.3) and experimentally derived Kd

values (Table 5.1) for Kd,2 and Kd,7. In total, four sets of real non-singular

solutions were found, meaning that four of the paths from the start system did

not diverge to infinity. The values of the variables for these four solution sets are

given in Table 5.4 and it can be seen that there is only one solution set (set 2)

for which all of the variables take a positive value. Therefore set 2 is the only

biologically feasible numerical steady state of the FGFR2 model and, as expected,

the values of the variables from the table match with those seen in Figure 5.5

towards the end of the time course.

The steady state defined by set 2 in Table 5.4 is the numerical steady state
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Variable Set 1 Set 2 Set 3 Set 4

[pF ]∗ −1.72 × 102 4.28 × 10−2 −1.72 × 102 4.28 × 10−2

[S]∗ 9.84 × 10−1 1.22 × 101 −2.10 × 100 −5.74 × 100

[pF · S]∗ −6.73 × 100 2.14 × 10−2 1.44 × 101 −1.00 × 10−2

[pP ]∗ −1.28 × 101 5.27 × 100 5.27 × 100 −1.28 × 101

[S · pP ]∗ −2.61 × 101 1.34 × 102 −2.30 × 101 1.52 × 102

[pF · S · pP ]∗ 1.79 × 102 2.35 × 10−1 1.58 × 102 2.66 × 10−1

Table 5.4: Solution sets (with units µM) to Equations (5.20) and (5.15) - (5.17)
found by numerical homotopy continuation in Bertini using the experimental
initial concentrations (Table 5.3) and experimentally derived Kd values (Table
5.1) for Kd,2 and Kd,7.

reached by the system under the specific experimental conditions. In reality how-

ever, the concentrations of each of the species, FGFR2, Shp2 and Plcγ1 will vary

based on the cell type and the rates of production and degradation of each species.

Likewise, the experimentally derived Kd values may differ in different conditions,

and therefore it is important to consider the steady state of the system not only

for the experimental conditions but also for more general conditions. For this

type of problem, where the same polynomial system is to be solved for differing

values of the coefficients, an efficient method can be used, known as parameter

homotopy continuation. For a system of polynomials, P(x,y), parametrised by

some parameters y ∈ Y, where Y may be a very large number of sets of parame-

ter values, parameter homotopy continuation occurs in two steps. The first step

is to draw random parameter values y0 ∈ C and with these parameters, carry

out a general homotopy continuation as described above (this can be done using

Bertini or using Paramotopy, with which the second step can also be carried out).

Theory then guarantees that, for any randomly chosen starting parameter set,

the number of finite, isolated solutions of P(x,y) is the same for all y ∈ Y (Bates

et al., 2018). The second step of the method therefore, is to follow the solutions

from y0 to each yi ∈ Y using the homotopy

H(x, t) = tP(x,y0) + (1− t)P(x,yi).
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The major benefit of this method is that one must only run step 1 (the general

homotopy continuation) once, before running step 2 (the parameter homotopies)

for each parameter set and it is guaranteed that all solutions will be found. Since

all paths in step 2 start from the same parameter set y0, in theory, all of the

parameter homotopies in step 2 can be carried out in parallel, greatly reducing

the computational cost and time required to solve such a parametrised polynomial

system. Paramotopy is a program which can carry out both steps, after being

given an input system of polynomials and a grid of parameter values with which

to solve the system.

To this end, the amplitudes of each variable in steady state were computed

using Paramotopy where the parameters were varied within the ranges given in

Table 5.5. Given that experimentally it is often only possible to measure Kd

values of reactions, and that the expressions (5.20) can be written in terms of

the Kd values, Kd,2 and Kd,7, these parameters are considered here instead of

the individual association and dissociation rate constants. The parameters were

varied in pairs around the experimental values (see Table 5.3 and Table 5.1), and

the steady state computed, where the parameters not being varied were fixed at

[F ]T = 10−1, [P ]T = 102, [S]T = 102, Kd,2 = 25.1 and Kd,7 = 0.48 (such that they

are reflective of the experimental values), all with units µM. 50 points, r, were

uniformly sampled within the range given for each parameter being varied and

the parameter used to compute the steady state concentrations was then 10r. The

results are seen in Figures 5.7 and 5.8 for the variable pF ·S ·pP , since this is the

complex of interest here (the ternary complex). Figure 5.7 shows the parameter

pairings involving [F ]T and Figure 5.8 shows all other parameter pairings, where

the results are separated into two figures due to the different scales on the colour

bar. In each individual heatmap, the colour represents the concentration of the

ternary complex, as indicated by the colour bar, with units µM. The x and y-axes

show the logarithm base 10 of the µM value of the parameter labelled.

Figure 5.7 shows the concentration of the ternary complex when the initial

concentration of FGFR2 is varied with the other initial concentrations and the

two Kd values. From all four subplots it can be seen that for most initial con-

centrations of FGFR2, there is a low production of the ternary complex, however

towards the higher end of the range for [F ]T , the concentration of the ternary
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Parameter/IC Range Unit

[F ]T 10r, where r ∈ [−2, 0] µM

[P ]T 10r, where r ∈ [1, 3] µM

[S]T 10r, where r ∈ [1, 3] µM

Kd,2 10r, where r ∈ [0, 2] µM

Kd,7 10r, where r ∈ [−2, 0] µM

Table 5.5: Ranges for each of the parameters in the steady state of the FGFR2
mathematical model in which the ternary complex pF · S · pP is present.

Figure 5.7: Amplitude of the steady state concentration of pF ·S ·pP with units
µM as indicated by the colour bar for different pairings of the parameters present
in the steady state, in particular those pairings involving [F ]T . The x and y axes
show the logarithm base 10 of the µM value of the parameter labelled.

complex rapidly increases. From the top left subplot, it can be observed that

the concentration of the ternary complex is greatest when both [F ]T and [P ]T

take their highest values, however the same is not true when [F ]T is varied with
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Figure 5.8: Amplitude of the steady state concentration of pF ·S ·pP with units
µM as indicated by the colour bar for different pairings of the parameters present
in the steady state, in particular those pairings not involving [F ]T . The x and y
axes show the logarithm base 10 of the µM value of the parameter labelled.

[S]T , where there is an optimal concentration of Shp2C of approximately 102 µM

which yields the highest concentration of pF · S · pP . Ternary complex produc-

tion appears to be greatest when [F ]T and [P ]T take the maximal values in their

ranges and [S]T takes values in the middle of its range. The bottom row of the

same figure implies that Kd,2 should take lower values in order for more ternary

complex to form, which is unsurprising since this condition means a higher affin-
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ity between the receptor and Shp2C. The constant Kd,7, however, seems to have

very little effect on [pF ·S · pP ]∗, which is likely due to the much lower µM range

for this constant, seen in Table 5.5.

The lack of variation in the concentration of the ternary complex caused by

Kd,7 remains in place when this constant is varied with the other parameters and

initial concentrations, seen in Figure 5.8. In each subplot with Kd,7 on the x-axis,

there is little noticeable change in the concentration of the ternary complex as one

moves along the x-axis. [S]T again optimally takes the value 102 µM when varied

with Kd,7 in terms of generating the maximal concentration of pF · S · pP , and

Kd,2 again takes its lowest values for the same condition. Similarly to when [P ]T

is varied with [F ]T , when it is varied with Kd,7, the maximal concentrations of

the ternary complex appear when [P ]T ≥ 102 µM, as can be seen in the left hand

subplot of the middle row of Figure 5.8. When [S]T and [P ]T are varied together

and [F ]T is kept constant, the concentration of ternary complex in steady state

is greatest when [S]T and [P ]T are both maximal. This is seen in the top left

subplot of the figure, and it can also be noted that there is a large region of

parameter space where [S]T is large but [P ]T is small, where the ternary complex

concentration is minimal. However when the opposite is true, that [P ]T is large

but [S]T is small, there are many combinations of these two concentrations which

still yield a relatively large concentration of pF · S · pP . The remaining subplots

in Figure 5.8 show Kd,2 on the x-axis and one of the initial concentrations, [S]T or

[P ]T on the y-axis. The dynamics for Kd,2 versus [P ]T are as would be expected,

where [pF · S · pP ]∗ is greatest when Kd,2 is lowest and [P ]T is highest. However,

interestingly, the dynamics are different when Kd,2 is varied with [S]T , where Kd,2

should take its lowest values and [S]T should also take its lowest values in order

to generate the highest concentration of ternary complex.

The colour bar associated with Figure 5.7 has a much larger scale, reaching

concentrations of at least 0.8 µM of the ternary complex whereas the concentra-

tion in Figure 5.8 only reaches values of around 0.08 µM. In Figure 5.8, [F ]T is

fixed at 10−1 µM and hence it can be concluded that, as expected, the steady state

concentration of the ternary complex is greatest when [F ]T is largest. Another

way in which the importance of the parameters to the output [pF ·S ·pP ]∗ (along

with the steady state concentration of the other variables) can be quantified, is
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by conducting a Sobol sensitivity analysis, which is presented in the following

section.

5.3.2 Global sensitivity analysis

It is of interest to further explore how the steady state concentrations of the

variables present in steady state (5.20) depend on the parameters present in the

same steady state. These parameters are [F ]T , [S]T , [P ]T , Kd,2 and Kd,7, as in the

previous section. The ranges considered for each parameter when constructing the

Saltelli sample (Zhang et al., 2015b) to be used in the Sobol sensitivity analysis

are given in Table 5.5 and are the same ranges as those used to plot Figures 5.7

and 5.8.

Having constructed a sample of the parameter values in Table 5.5, the steady

state expressions (5.20) and (5.21) - (5.23) were then solved numerically using

Paramotopy for each set of parameter values. The Sobol sensitivity analysis (see

Section 2.4) was then carried out using the SALib package in Python in order to

find the total-order Sobol indices for each of the parameters listed in Table 5.5

with respect to each of the steady state concentrations for the variables pF , S,

pF · S, pP , S · pP and pF · S · pP . The results of this analysis are plotted in

Figure 5.9, which shows the total-order Sobol index for each parameter (different

coloured bars) with respect to each steady state variable (groupings on the x-

axis).

The grouping on the far right of the x-axis of Figure 5.9 shows the total-order

Sobol indices for each of the five parameters with respect to the steady state

concentration of the ternary complex. In line with the results in the previous

section, the bar for the total-order Sobol index for the parameterKd,7 is not visible

for the ternary complex output, or the outputs for any of the other variables,

indicating that this parameter is unimportant in the amplitude of the steady

state concentrations. Kd,2 is also relatively unimportant, where the Sobol index

for this parameter comprises only approximately 5% of the total variation in

[pF · S · pP ]∗. The three initial concentrations are all reasonably important in

determining the concentration of the ternary complex in steady state, where,

[F ]T is the most important, corroborating the result of the previous section. The
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Figure 5.9: Bar charts of the total-order Sobol indices for each parameter (rep-
resented by different coloured bars as given in the legend) with respect to each
steady state variable (groupings on the x-axis) in the steady state involving the
ternary complex pF · S · pP from the FGFR2 mathematical model.

initial concentration of Plcγ1 appears to be slightly more important than the

initial concentration of Shp2C with regards to the steady state concentration of

the ternary complex, given the ranges considered here for the parameter values.

The importance of the parameters with relation to the steady state concen-

trations of the other variables are all intuitive, where for example [P ]T and [S]T

are the most important parameters for the outputs [pP ]∗ and [S]∗ in steady state.

These parameters are almost equally as important as one another when consid-

ering the output [S · pP ]∗, as expected. [F ]T is an important parameter for both

of the steady state outputs in which FGFR2 is present, [pF ]∗ and [pF · S]∗. In-

terestingly [P ]T is also important for the output [pF · S]∗, presumably because

both pFGFR2 and Shp2C can also bind with Plcγ1.

Clearly for certain combinations of parameter values, in particular when the

initial concentrations of the three species are high, a reasonably high concentra-

tion of ternary complex can be produced and maintained in the late time dynamics

of the system. It is then of interest to determine the stability of the steady state
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involving the ternary complex, and hence a stability analysis is carried out in

Section 5.3.3.

5.3.3 Stability analysis

In this section, the stability (see Section 2.3.2) of steady state (5.20) is explored for

different combinations of parameter values in the model. Due to the complexity

of the solutions found by solving Equations (5.20) together with Equations (5.21)

- (5.23), analytic stability tests, such as computing symbolically the eigenvalues

of the Jacobian matrix, or using the Routh-Hurwitz criteria (Niu & Wang, 2008),

are not employed here. Instead, the stability was assessed numerically, for varying

rate constants and initial concentrations, by finding numeric values for the steady

state concentration of each species, using the method introduced in Section 5.3.1.

These numeric values were then substituted into the Jacobian matrix for the

system and the eigenvalues computed. In order to simplify the analysis, it was

firstly noted that the original system of 14 variables could be reduced to a system

of 11 variables by considering the three conservation equations, Equations (5.15)

- (5.17). In particular, these equations could be rearranged so that [F ], [S] and

[P ] could be written in terms of the fixed initial concentrations [F ]T , [S]T and

[P ]T , and the other variables in the system as,

[F ] = [F ]T − [pF ]− [pF · S]− [pF · P ]− [pF · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S], (5.26)

[S] = [S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S], and, (5.27)

[P ] = [P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · P ]− [S · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S]. (5.28)

The variables [F ], [S] and [P ] could then be implicitly tracked by solving the

ODEs for the remaining variables only, where [F ], [S] and [P ] in the remaining

equations were substituted by the right hand side of Equations (5.26) - (5.28).

This resulted in the system of equations given by (5.29) - (5.39).
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d[pF ]

dt
= k1([F ]T − [pF ]− [pF · S]− [pF · P ]− [pF · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S]) + k−2([pF · S]

+ [pF · S · P ] + [pF · S · pP ])− k+2[pF ]([S]T − [pF · S]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S]) + k−3([pF · P ]

+ [pF · P · S])− k+3[pF ]([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

+ k5([pF · pP ] + [pF · pP · S]) (5.29)

d[pF · S]

dt
= k+2[pF ]([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S])− k−2[pF · S]− k+7[pF · S][pP ]

+ k−7[pF · S · pP ] (5.30)

d[pF · P ]

dt
= k+3[pF ]([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · P ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

− k−3[pF · P ]− k4[pF · P ] (5.31)

d[pF · pP ]

dt
= k4[pF · P ]− k5[pF · pP ] (5.32)

d[pP ]

dt
= k5[pF · pP ]− k+7[pP ]([S]T − [S · P ]− [S · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S]) + k−7([S · pP ]

+ [pF · S · pP ]) (5.33)

d[S · P ]

dt
= k+6([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S])([P ]T − [pF · P ]− [pF · pP ]− [pP ]

− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]

− [pF · pP · S])− k−6[S · P ]− k+2[pF ][S · P ] + k−2[pF · S · P ]

− k+3[pF ][S · P ] + k−3[pF · P · S] (5.34)

d[S · pP ]

dt
= k+7[pP ]([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

225



5. MATHEMATICAL MODELLING OF FGFR2 TERNARY
COMPLEX FORMATION

− [pF · S · pP ]− [pF · pP · S])− k−7[S · pP ]− k+2[pF ][S · pP ]

+ k−2[pF · S · pP ] + k5[pF · pP · S] (5.35)

d[pF · S · P ]

dt
= k+2[pF ][S · P ]− k−2[pF · S · P ] (5.36)

d[pF · P · S]

dt
= k+3[pF ][S · P ]− k−3[pF · P · S]− k4[pF · P · S] (5.37)

d[pF · S · pP ]

dt
= k+7[pF · S][pP ]− k−7[pF · S · pP ] + k+2[pF ][S · pP ]

− k−2[pF · S · pP ] (5.38)

d[pF · pP · S]

dt
= −k5[pF · pP · S] + k4[pF · P · S] (5.39)

Denoting by f1 to f11 the right hand sides of Equations (5.29) - (5.39), re-

spectively, the Jacobian matrix for the system of ODEs is given by

J =



∂f1
∂[pF ]

∂f1
∂[pF ·S]

. . . ∂f1
∂[pF ·S·pP ]

∂f1
∂[pF ·pP ·S]

∂f2
∂[pF ]

∂f2
∂[pF ·S]

. . . ∂f2
∂[pF ·S·pP ]

∂f2
∂[pF ·pP ·S]

...
...

. . .
...

...

∂f11
∂[pF ]

∂f11
∂[pF ·S]

. . . ∂f11
∂[pF ·S·pP ]

∂f11
∂[pF ·pP ·S]


.

The partial derivatives comprising the Jacobian matrix are listed in Appendix C.

The stability of a numerical steady state of the system could then be assessed by

computing the eigenvalues of J, evaluated at the steady state. In the case where

the real parts of each of the 11 eigenvalues are negative, the steady state is stable,

and otherwise, the steady state is unstable.

Firstly, the stability of the steady state given in Table 5.4, set 2 (see also

Figure 5.5), obtained using the experimental initial conditions and Kd values

(Tables 5.3 and 5.1) was assessed, where the parameters not used to generate the

steady state were sampled from the feasible distributions given in Table 5.6. In

particular, for 104 sampled parameter sets, where the parameters were sampled
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as specified in Table 5.6, the eigenvalues of the Jacobian matrix were computed,

using the steady state values for the variables as in Set 2 of Table 5.4. Of the 104

parameter sets, 68% yielded stable steady states, whereby all of the real parts

of the eigenvalues of the Jacobian matrix were negative, and the remaining 32%

yielded unstable steady states, with at least one positive real part of an eigenvalue.

This is a positive result as it implies that for a large range of biologically feasible

parameter values, the steady state involving the ternary complex pF · S · pP
is stable and hence is likely to be observed experimentally. Figure 5.10 shows

histograms of the sampled parameter values for each parameter, coloured by the

stability of the steady state found when using such parameter values. From

Figure 5.10 it can be seen that several of the parameters appear to have very

little effect on the stability of the steady state, namely Kd,6, k1, k−2, k−6 and k5.

The affinity between pF and P should in general be low in order for the steady

state to be stable, as indicated by the parameters Kd,3 and k−3. The steady state

is often unstable for very low values of k4, further confirming the notion that the

phosphorylation of Plcγ1 whilst bound to phosphorylated FGFR2 should be a

very fast reaction. Finally, in general k−7 should take low values in order for the

steady state to be stable.

Parameter Range Unit

Kd,3 10r, where r ∼ Unif(−2, 0) µM

Kd,6 10r, where r ∼ Unif(−1, 1) µM

k1, k4 10r, where r ∼ Unif(−3, 2) µM

k−2, k−3, k−6, k−7, k5 10r, where r ∼ Unif(−2, 1) µM

Table 5.6: Distributions used to sample each of the parameters not used to
obtain the steady state of the FGFR2 mathematical model in which the ternary
complex pF ·S ·pP is present. These distributions were used to numerically assess
the stability of the steady state.

In Figure 5.5, the mathematical model was solved under the conditions k−2 =

k−3 = k−6 = k−7 = k5 = 10−1 s-1 and k1 = k4 = 100 s-1 (unlike in this section

so far whereby each parameter has been sampled independently of the other

parameters, as stated in Table 5.6), with the association rate constants fixed using
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Figure 5.10: Histograms of the sampled parameter values for each parameter
not used to generate the experimental steady state solution, coloured by the
stability of the steady state when using such parameter values.

theKd values in Table 5.1. Although this scenario may not be biologically realistic

(i.e. rate constants for different reactions being equal), it is still an interesting

case to study as it allows for the mathematical model given by Equations (5.29)

- (5.39) to be written in terms of only one parameter. Specifically, setting k−2 =

k−3 = k−6 = k−7 = k5 = km and k1 = k4 = kp and writing k+i = km
Kd,i

for
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i ∈ {2, 3, 6, 7} everywhere in the model equations would recast the model in

terms of the two unknown parameters km and kp with units s-1, since the Kd

values for each reaction, and the initial concentrations for each species, can be

fixed at the experimentally derived/used values. Then, dividing through by km

results in a system of ODEs with only one unknown parameter, namely kp
km

, where

time has been rescaled so that the derivatives are with respect to τ = kmt. This

system of ODEs is given in Appendix D.

In this specific case, one can assess the stability of the biologically feasible and

relevant steady state in terms of the unitless parameter kp
km

only. This assessment

was carried out using the same numeric eigenvalue method and for 104 sampled

values of kp
km

, where kp
km

= 10r, with r ∼ Unif(−4, 4). The 104 sampled parameter

values are plotted as a histogram in Figure 5.11, coloured by the stability of the

steady state found when using such parameter values. As in Figure 5.10, the

colours representing stable and unstable parameter values in Figure 5.11 are semi-

transparent so that one could see if there was any overlap between the histograms

of each colour. Interestingly here, there is no such overlap, and hence there is a

value of the parameter kp
km

for which the steady state switches from unstable to

stable, and this value is approximately kp
km

= 10−1 (the maximum sampled value

resulting in an unstable steady state is 0.0970 and the minimum sampled value

resulting in a stable steady state is 0.0978). In the theory of dynamical systems,

this switch in stability of a steady state upon varying a parameter value is known

as a bifurcation and the parameter value at which the switch occurs is known as

the bifurcation point (Trefethen et al., 2017). This bifurcation point implies that

the steady state seen in Figure 5.5 will be stable for all parameter values where
kp
km

> 10−1 =⇒ kp > 10−1km (approximately), i.e. kp should be greater than a

tenth of km for stability.

Returning to the more biologically likely scenario in which the unbinding rates

are not forced to be equal to each other, and neither the phosphorylation rates,

more numerical values of the steady state given by Equations (5.20) together with

Equations (5.21) - (5.23) are now considered. Although it is encouraging that the

steady state seen in Figure 5.5 is stable for a wide range of parameter values,

given that there may be some experimental error in determining the Kd values

and initial concentrations of molecules, it is also of interest to test the stability
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Figure 5.11: Histogram of the sampled values of kp
km

, coloured by the stability
of the steady state when using such parameter values.

of further steady states, using slight variations of the parameters present in the

steady state equations. To this end, 103 numeric steady states were computed

using Paramotopy, for sampled parameters [F ]T , [P ]T , [S]T , Kd,2 and Kd,7, where

the parameters were sampled uniformly across the 5-dimensional space, as speci-

fied in Table 5.5. For each of these steady states, the stability was assessed using

the numerical eigenvalue method, where again 104 sets of the parameters given

in Table 5.6 were used per steady state and were sampled from the distributions

given in the same table. For each of the 103 steady states, the percentage of

stable steady states was computed (out of the 104 sampled parameter sets) and

a histogram of these percentages is given in Figure 5.12. It can be seen that, for

all of the 103 steady states computed, using values in the region of the experi-

mentally determined/used values, the steady state is always stable for at least

some of the parameter sets tested. In fact, the minimum value of the percentage

of stable steady states is 7.29% however most steady states are stable for a much

greater percentage of sampled parameters. The median value of the percentages

is 66.3% for example, and a quarter of the percentages take value larger than

89% implying that the steady state is more often stable than unstable for the

parameter ranges considered here.
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Figure 5.12: Histogram of the percentage of stable steady states for the 103

numerical steady states where the stability for each steady state was assessed
using 104 sampled parameter sets from the distributions given in Table 5.6.

Having computed the stability of 103 steady states in the region of the experi-

mental steady state, the dependence on the parameters in the model for stability

can be further clarified. To this end, similar histograms to those in Figure 5.10

are plotted in Figure 5.13, where the histograms are now the parameter values

sampled for each of the 103 steady states combined, again coloured by stability

as in the figure legend. This figure confirms the fact that k1, k−2 and k5 do not

influence the stability of the steady state, however Kd,6 and k−6 are seen to have

a moderate effect on stability. In general, the steady state is found to be stable

most often when Kd,6 takes larger values, indicating that the affinity between S

and P is low.

5.4 Discussion

In this chapter, a deterministic mathematical model of the theoretical formation

of a ternary complex between the proteins pFGFR2, Shp2C and pPlcγ1 has been

developed. Each of these proteins contribute to cell signalling through different

pathways such as the MAPK, JAK-STAT, PI3K-AKT and Plcγ pathways, where

FGFR2 can be the receptor at the head of such pathways. Shp2 is well known
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Figure 5.13: Histograms of the combined sampled parameter values for each
parameter not used to generate the steady state solution, for each of the 103

numeric steady states, coloured by the stability of the steady state when using
such parameter values.

as a signal enhancing protein in signalling cascades, however, to date, it has not

been known to engage with Plcγ1 and play a role in the Plcγ pathway. Dr. Chi-

Chuan Lin and other members of the group of molecular and cellular biology at

the University of Leeds however, have observed, through experimental work, that

pFGFR2, Shp2C and pPlcγ1 co-locate within LLPS droplets. It was postulated
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therefore, that the three proteins form a ternary complex, and the aim of this

chapter was to confirm, through a mechanistic mathematical analysis, that this

ternary complex formation is indeed possible. Such ternary complex and LLPS

droplet formation between the three proteins is important biologically, as it revels

a way in which signalling is maintained in a crowded cellular environment.

Given that the LLPS droplets were observed in an in vitro experimental setup,

the mathematical model was developed based on the underlying reactions thought

to occur in the experiments. The ODE model therefore was built using mass

action kinetics and considering binding and unbinding of the three proteins with

one another, as well as phosphorylation reactions for the receptor and Plcγ1.

Given that both Shp2C and Plcγ1 can bind with pFGFR2 and that Plcγ1 can exist

in a phosphorylated or unphosphorylated state, there were four ternary complexes

which could form via the reactions underlying the mathematical model. Through

analysis of the steady states of the model however, it was found that there was

only one biologically relevant steady state in which all three of pFGFR2, Shp2C

and Plcγ1 were present and in this steady state, only one of the four ternary

complexes prevailed, namely pF ·S·pP . Encouragingly, this is the ternary complex

which the experimentalists had hypothesised would form in the LLPS droplets.

The steady state was found implicitly using Mathematica, however considering

also the conservation equations for the system in steady state, one could write

six equations in six variables to be solved for the steady state.

The steady state concentration of the ternary complex, as well as the other

complexes present in the steady state, was then explored for varying parame-

ter values and initial conditions, where these values were varied around those

found/used experimentally. A method known as parameter homotopy continu-

ation, carried out using Paramotopy, was used in order to solve efficiently and

numerically, the system of implicit steady state equations. It was found through

solving of the steady state equations as well as through Sobol sensitivity analy-

sis, that the initial concentrations of FGFR2, Shp2C and Plcγ1 were particularly

important to the concentration of the ternary complex at steady state. The pa-

rameter Kd,2 (indicating the strength of binding between pF and S) had little

importance to the concentration of any species in steady state, and the param-
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eter Kd,7 (indicating the strength of binding between S and pP ) had almost no

importance to the same outputs, for the ranges considered here.

Finally, although it is encouraging that a steady state was found in which the

theorised ternary complex existed, it is only meaningful if the steady state were

to be stable for at least some biologically relevant parameter values. Hence, in

Section 5.3.3 (see also Appendices C and D) a numerical stability analysis of the

steady state is carried out. The stability of the experimentally defined steady

state, as well as other numerical steady states in the region of the experimental,

was analysed for varying parameter values, for parameters present in the Jacobian

matrix for the system. Specifically, the steady states were found numerically

using the parameter homotopy continuation method in Paramotopy, and then

the eigenvalues of the Jacobian matrix were computed numerically in Python.

A steady state is considered stable if the real parts of all of the eigenvalues are

negative, and it was found through the stability analysis that the biologically

relevant steady state of the system is indeed stable for a large range of parameter

values.

The work carried out in this chapter gives confirmation of a biological hypothe-

sis which would be difficult to prove experimentally. Currently, the mathematical

model extends only up to the point of ternary complex formation, and hence a

continuation of this work could be to include also the aggregation of such ternary

complexes to simulate the formation of the LLPS droplets. Given appropriate

quantitative data, the model could even be parameterised, using for example the

ABC-SMC method used in Chapter 4, and could then be used to predict droplet

formation in different concentration regimes.
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Chapter 6

Statistical analysis of EGFR

inhibition

The epidermal growth factor receptor is a transmembrane receptor tyrosine ki-

nase and is a member of the ErbB family of receptors. The ErbB family has four

protein members in human cells, where EGFR, also known as HER-1, was the

first to be discovered (Carpenter & Cohen, 1976). As the name suggests, growth

factor receptors play a role in the growth, survival, differentiation and division of

cells (Herbst, 2004). The EGFR is comprised of an extracellular ligand-binding

domain, a transmembrane domain, and an intracellular tyrosine kinase domain.

Ligands, small proteins which diffuse in the extracellular medium, can bind to the

extracellular domain of EGFR and this process initiates the classical EGFR sig-

nalling mechanism. There are at least seven different ligands known to bind with

EGFR, including EGF, which is specific to EGFR, whereas some of the other

known ligands can also bind other members of the ErbB family (Harris et al.,

2003). Upon ligand binding, EGFR undergoes a conformational change in the

extracellular domain, which allows two ligand-bound receptors to form a dimer

when they diffuse through the cell membrane into close proximity with one an-

other. This ligand-induced dimerisation is followed by trans-autophosphorylation

of particular residues on the intracellular domains of each receptor in the dimer

(Lemmon et al., 2014; Schlessinger, 2002). Ligand binding and dimerisation are

the first steps of classical EGFR signalling which induce a cascade of intracellular
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phosphorylation events, ultimately promoting cell growth, survival, differentia-

tion or division.

One such intracellular signalling cascade is the MAPK pathway (see Chap-

ter 1), which can be induced by EGFR-EGF binding and subsequent receptor

dimerisation. There are many proteins involved in this pathway, as well as differ-

ent branches initiating different cellular outcomes and complex negative feedback

mechanisms (McKay & Morrison, 2007). Lake et al. (2016) however, give a brief

description of the key events in the MAPK pathway which is summarised here.

The phosphorylated residues on the intracellular domains of EGF receptors in

a ligand-induced dimer act as docking sites for other intracellular proteins, in

particular, those with a certain domain known as the Src homology 2 (SH2) do-

main, one example of which is Grb2. Grb2 can then recruit a protein known

as SOS, which in turn recruits Ras-GTP proteins and catalyses their activation.

Upon activation of Ras-GTP, Raf proteins are also recruited and activated. In

the same fashion, Raf proteins are capable of activating MEK which can then

activate ERK, where all of the activating events are achieved by phosphorylation

of protein kinase domains. The end result of these signalling events is dependent

on the intracellular conditions and the availability of ERK targets. ERK has

multiple phosphorylation targets some of which are transcription factors which

promote the production of other proteins and some are other cytoplasmic pro-

teins such as RSK. A depiction of the MAPK pathway is shown in Figure 6.1.

The proteins produced by gene transcription as a result of the activation of the

MAPK pathway are important in regulation of the cell cycle.

Given its importance in the cell cycle, dysregulation of the MAPK pathway

can have implications in human disease. In particular, and of interest here, is

the role of EGFR and the MAPK signalling pathway in different types of can-

cer. Since one of the predominant roles of EGFR is to promote the division of

cells, it is easy to see how aberrant amplification of EGFR could lead to tu-

mour growth. In fact, many authors (Nicholson et al., 2001; Normanno et al.,

2006) have reported a strong correlation between the amplification level of EGFR

and prognosis for patients with with many types of cancer including head and

neck, ovarian, cervical, bladder and oesophageal. Increased expression of EGFR

was the initial discovery which caused EGFR to become a major clinical target
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Figure 6.1: A diagram of the receptor-ligand initiated RAS-RAF-MEK-ERK
signalling pathway, known as the traditional, or classical MAPK pathway, based
on Pratilas & Solit (2010) and Lake et al. (2016). The arrows indicate the direc-
tion of the phosphorylation cascade, where the protein ERK can either phospho-
rylate other cytoplasmic proteins or can move to the nucleus to initiate protein
synthesis.

in oncology. More recently however, EGFR has been discovered in different mu-

tated forms, whereby even without the amplification of the protein, the mutations

can cause EGFR to become constitutively active (da Cunha Santos et al., 2011;

Roberts & Der, 2007). This means that ligand binding is no longer required for

activation of the MAPK pathway and hence ligand concentration in the extra-

cellular medium, a factor which can control the level of MAPK signalling, is no

longer relevant. The MAPK pathway therefore is constantly stimulated in cells
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with mutant copies of EGFR, hence resulting again in increased cell division and

potentially tumour growth.

The focus here will be on EGFR mutations in a specific type of lung cancer

known as non-small cell lung cancer (NSCLC) which comprises approximately

80% of lung cancers, where lung cancer is the leading cause of cancer death

worldwide (Bade & Cruz, 2020; Sharma et al., 2007). The mutations come in

different forms and are commonly found in exons (sections) of the tyrosine kinase

domain of EGFR. One of the most common EGFR mutations found in NSCLC,

is the L858R amino acid exchange mutation, in which a Leucine amino acid is

replaced by Arginine at codon 858 in exon 21 of EGFR. This mutation can be

treated with tyrosine kinase inhibitors (TKIs) such as Gefitinib and Erlotinib,

known as first-generation EGFR inhibitors, which bind reversibly to the ATP

binding pocket of EGFR, thus blocking the binding of ATP which is required for

receptor autophosphorylation and further downstream signalling (Cataldo et al.,

2011). Often however, after an initially promising course of treatment with Gefi-

tinib or Erlotinib, acquired drug resistance occurs, which in approximately 50% of

cases is due to the development of a secondary EGFR mutation known as T790M

(Günther et al., 2016). Another type of EGFR mutation is the exon 20 insertion

mutation, in which 1 to 7 amino acids are inserted into the exon 20 of the tyrosine

kinase domain of EGFR (Vyse & Huang, 2019). The response to first-generation

and second-generation (used to treat the T790M mutation) inhibitors is poor in

patients with exon 20 insertion mutants and there are currently no recommended

therapies specific for this type of mutation, although a review of current clini-

cal data surrounding exon 20 insertion mutant treatment is given by Baraibar

et al. (2020). It is therefore of huge clinical importance to understand better the

mechanisms of inhibition of the exon 20 insertion mutations.

Mathematical modelling has been applied by many authors to study processes

involving EGFR, ranging from ligand binding and dimerisation dynamics (Blinov

et al., 2006; Klein et al., 2004; Kozer et al., 2013b) to reactions of the MAPK path-

way (Asthagiri & Lauffenburger, 2001; Tian & Song, 2012) and, more recently,

interactions between EGFR and TKIs (Huang et al., 2017; Zhai et al., 2020).

Claas et al. (2018a) used a compartmental mathematical model, calibrated via

Bayesian inference to identify changes in receptor trafficking parameter values
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upon cell treatment with different inhibitors but where here the inhibitors were

targeting MEK and ERK rather than EGFR. Here, statistical analysis is em-

ployed to elucidate differences between eight potential EGFR TKIs being used in

preclinical studies at AstraZeneca, using imaging data in wild type and mutant

EGFR cell lines, where WT EGFR is the unmutated (natural) form of EGFR.

To conclude the chapter, a review of the current literature surrounding mathe-

matical modelling approaches with TKIs is given. The experimental data used

in this chapter is explained in detail in Section 6.1.

6.1 Experimental data

A summary of the experiments is as follows. Two cell lines were used in the

dose response and kinetic experiments: an isogenic H2073 cell line (WT EGFR)

and an SVD H2073 cell line (exon 20 insertion mutant EGFR). For each of eight

different EGFR tyrosine kinase inhibitor compounds (D1 - D8), each cell line

was treated with the compound dissolved in dimethyl sulfoxide (DMSO) solvent

and, separately, the DMSO solvent alone, as a control. Ten different inhibitor

concentrations in the range 10−2 µM to 101 µM were used, and five different time

points (2, 4, 6, 24 and 48 hours post dose) were considered. The interest was

in quantifying the abundance of four different proteins: total EGFR (tEGFR),

phosphorylated EGFR (pEGFR), phosphorylated MAPK (pMAPK) (equal to the

sum of phosphorylated ERK (pERK) and phosphorylated MEK (pMEK)) and

phosphorylated RSK (pRSK) in each of three different cellular compartments: the

plasma membrane (PM), the cytoplasm and the nucleus, in order to see the effect

of the inhibitors on these proteins in the MAPK pathway. Each experimental well

contained a number of cells (an equivalent number per well at the beginning of the

experiments), and the abundance of a specific protein was quantified in terms of

the fluorescence intensity corresponding to this protein (where different proteins

were observed using different fluorescent tags which are visible in different colour

channels) using fluorescence microscopy (imaging). For each cell line, inhibitor,

inhibitor concentration, time point, protein and cellular compartment, the raw

data is then the FI averaged over all cells in the well (i.e. a mean per cell FI).

Two repeats were carried out for each individual experiment.
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6.1.1 Data normalisation

The data is firstly normalised to the control (DMSO) data, so that background

effects caused by the control are neglected in the inhibitor data. In particular,

denoting the FI by fl, fl(c, i, e, p, d, t, r) corresponds to the FI in cell line

c ∈ C = {WT, SVD},

stimulated with inhibitor

i ∈ I = {D1, D2, D3, D4, D5, D6, D7, D8, DMSO},

for protein

e ∈ E = {pEGFR, tEGFR, pMAPK, pRSK},

in cellular compartment

p ∈ P = {PM, Cytoplasm, Nucleus},

at inhibitor concentration (with units µM)

d ∈ D = {9.98, 4.64, 2.16, 1.00, 0.48, 0.22, 0.10, 0.05, 0.02, 0.01},

at time point (with units hours post dose)

t ∈ T = {2, 4, 6, 24, 48},

and repeat

r ∈ R = {1, 2}.

Each data point data(c, i, e, p, d, t, r), was then computed as

data(c, i, e, p, d, t, r) =
fl(c, i, e, p, d, t, r)

fl(c,DMSO, e, p, d, t, r)
. (6.1)
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6.1.2 Identification of outliers

Through examination of the normalised experimental data, it was clear that there

were some outliers in the data, which might skew any statistical analyses. An

example of such a case is given in Figure 6.2, for the protein cytoplasmic pRSK,

in the WT cell line treated with the inhibitor D4. It is clear from the scatter plot

in the left hand subplot of this figure that the data point at time 2 hours, for

the inhibitor concentration of 0.48 µM is an outlier. Although there is a range

of concentrations, and it is expected that the higher concentrations will have a

greater affect from baseline (plotted as a dashed line), one would still expect that

the change from baseline would be gradual as the inhibitor concentration changes.

Therefore the data point for the concentration 0.48 µM, a concentration in the

middle of the range, is certainly unusual, particularly since it indicates a large

increase from baseline, whereas biologically, a decrease from baseline would be

expected at this time point. In order to remove such extreme data points from

further analysis, the inter-quartile range (IQR) of the data at each time point was

considered. A standard technique for identifying outliers is to multiply the IQR by

1.5 and add this value to the third quartile and subtract the same value from the

first quartile. This gives two bounds for the data, and if a data point lies outside

this range, it can be considered an outlier (Walfish, 2006). In the identification

of outliers for this dataset however, a factor of 5 is chosen to multiply by the

IQR, instead of the commonly used 1.5, so that fewer data points are removed,

since there is an expected concentration effect. When considering the data for

the proteins pEGFR, pMAPK and pRSK, a data point is only removed if it

lies above the upper bound Q3 + (5 × IQR), and not if it lies below the lower

bound Q1 − (5 × IQR). This is because it is expected biologically that the

inhibitors should have the effect of reducing the amount of pEGFR, pMAPK

and pRSK in the cells and hence, in order to be cautious when removing data

points, data points are only removed if they indicate an increase in the amount

of these proteins (i.e. are above the upper bound). Similarly, for tEGFR, since it

is seen in the data that the inhibitors in general increase the amount of tEGFR

in the cells, data points corresponding to this protein are only removed if they
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are below the lower bound Q1− (5× IQR) and not if they are above the upper

bound Q3 + (5× IQR).

Figure 6.2: Left: Scatter plot of the normalised experimental data given by
Equation (6.1), for cytoplasmic pRSK in the WT cell line treated with the in-
hibitor D4. The colour of the points represents the concentration of inhibitor with
units µM as given in the legend and there are 20 data points at each time point
corresponding to the 10 concentrations multiplied by 2 repeats of the experiment.
Right: Box plots of the data at each time point, where individual data points
are shown if they are computed as an outlier by the method explained in the text.

If a data point, data(c, i, e, p, d, t, r) has been identified as an outlier, then the

data points for the other proteins at each cellular compartment are also removed

from further analyses, since these data points come from the same experiment

which produced an outlier. For example, since the data point

data(WT,D4, pRSK,Cytoplasm, 0.48 µM, 2 hours post dose, 1),

was identified as an outlier in replicate 1, each of the data points

data(WT,D4, e, p, 0.48 µM, 2 hours post dose, 1),

for e ∈ E and p ∈ P were also removed for this experimental replicate. Different

time points in the data correspond to different experimental wells, which explains

why an outlier does not usually prevail over time. Altogether a total of 180 data

points out of a total of 19140 were removed, corresponding to roughly 1% of the
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data. Figure 6.3 shows histograms of the absolute difference between each pair

of experimental replicates in the normalised data (given by Equation (6.1)) for

the full dataset (i.e. for both cell lines, all inhibitor types and concentrations,

all proteins at all cellular compartments and for all time points) with outliers

included (left hand subplot) and with outliers removed (right hand subplot). In

the right hand subplot of the figure, corresponding to the data with outliers

removed, the absolute difference is only plotted for replicate pairs where both

experimental replicates remain. It can be seen that when the outliers are removed

from the data, every absolute difference is less than 1 and in fact over 95% of the

differences are smaller than 0.2 and over 75% of the differences are smaller than

0.1.

Figure 6.3: Histograms of the absolute differences between pairs of experimental
replicates in the normalised data for the full dataset (left) and the data with
outliers removed, where two experimental replicates remain (right).

Where there are still two repeats of the data, the mean of these replicates can

be computed as,

MFI = µdata(c, i, e, p, d, t, r) =
1

2

2∑
r=1

data(c, i, e, p, d, t, r), (6.2)

and this MFI will be used in the statistical analysis in Section 6.2. Where there

is only one replicate remaining (due to removal of outliers), the MFI is equal to

the data point for this replicate.
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6.1.3 Data visualisation

Given that the data has many dimensions, it cannot be displayed in a single

plot and hence an example is given in Figure 6.4 for the SVD cell line under

inhibition with the inhibitor D3. Figures of the remaining data for each cell

line and inhibitor type can be found in Appendix E. Each subplot in Figure 6.4

shows the MFI (as defined by Equation (6.2)) for a single protein and cellular

compartment and for the 10 different inhibitor concentrations, plotted as different

colours as indicated by the figure legend. From the figure it can be seen that the

inhibitor causes a decrease in pEGFR, pMAPK and pRSK at the earliest time

points and in all three cellular compartments, corresponding with an increase in

tEGFR. This is generally the expected behaviour since the inhibitors are designed

to down-regulate the MAPK pathway and hence a decrease in the abundance

of pEGFR, pMAPK and pRSK is promising. An increase in tEGFR however

could imply that a feedback mechanism has come into place, whereby the cells

are trying to account for the down-regulation in MAPK signalling by increasing

the synthesis of EGFR and hence returning the signalling to the pre-dose level.

Indeed, by the later time points, and for all inhibitor concentrations, most of

these initial trends (down-regulation of pEGFR and pMAPK in particular) start

to trend in the opposite direction as initially seen, even returning to baseline in

some cases. This is a common theme in the data for several inhibitor types and

both cell lines, where good examples can be seen in Figures E.3 (for the inhibitor

D3 in the WT cell line) and E.15 (for the inhibitor D7 in the SVD cell line). In

Figure E.3 for example, the same trend in pEGFR and pMAPK can be seen as in

Figure 6.4, but also in this figure after an initial up-regulation, tEGFR returns to

baseline and after an initial down-regulation, pRSK can be seen to be increasing.

From comparing figures of the data alone it is difficult to determine any other

trends in the data, such as differences between cell lines or inhibitor types, for the

effect of the inhibitors on protein abundance, and hence in Section 6.2, statistical

techniques are used to look for differences between groupings of the data.
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Figure 6.4: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D3. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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6.2 Statistical analysis

In this section, statistical analysis is carried out using the MFI data defined in

Section 6.1.2 in order to find statistically significant differences between group-

ings. In particular, it was of interest to determine whether the different inhibitors

(D1-D8) had differential effects on the levels of the proteins of interest. Further-

more, ideally, a TKI will inhibit only mutant EGFR, and have no effect on WT

EGFR, since only the cancerous cells should be affected by the drug. Therefore

it was also of interest to determine whether there were differences in the changes

in protein levels caused by the inhibitors, between cell lines (WT and SVD).

6.2.1 Analysis of variance

Two-way analysis of variance (ANOVA) is a statistical method used to determine

how the mean of a variable is affected by two categorical variables. A description

of the method is given in Section 2.6.1. In this case, the two categorical variables

(also known as independent variables) are cell line, with two levels (WT and

SVD), and inhibitor, with eight levels (D1-D8). The dependent variable is the

MFI for a particular protein at a particular cellular compartment, time point and

inhibitor concentration. Although it is also possible to carry out higher order

ANOVA, such as three- and four-way ANOVA, here only two-way ANOVA is

employed since it is already expected that there should be some differences in the

data points as a result of time point, and inhibitor concentration. An assumption

of ANOVA is that the dependent variable is normally distributed, which can be

tested using, for example, the Shapiro-Wilk test (Marques de Sá, 2003). However,

here there are only, at most, two repeats of each individual experiment, and hence

one cannot test for normality. Given that the dependent variable is repeats of

exactly the same experiment, any variation in the data is due to experimental

noise and hence, although it cannot be formally statistically tested, it is still

assumed here that the data is normally distributed and ANOVA is used.

In the ANOVA, the effects of the two independent variables (cell line and in-

hibitor type) individually, on the dependent variable (MFI for a particular protein

at a particular cellular compartment, time point and inhibitor concentration), are

called the main effects. It can also be tested whether one independent variable
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affects the dependent variable in the same way across all levels of the other in-

dependent variable. For example, one can ask questions such as: does the effect

on the MFI of pEGFR in the cytoplasm at time 2 hours post dose with 1 µM

inhibitor, caused by the inhibitor D1, depend on the cell line? By asking such

questions, it is assumed in the ANOVA that an interaction effect between the

two independent variables may be present. The results of the ANOVA identify

which of the effects (main or interaction) are statistically significant to the values

of the dependent variable. There are three null hypotheses which are tested for

by using two-way ANOVA,

H01 : the means of both groups defined by cell line are equal,

H02 : the means of the 8 groups defined by inhibitor are equal, and

H03 : there is no interaction between inhibitor type and cell line,

where H01 and H02 correspond to the main effects and H03 corresponds to the

interaction effect. An effect (main or interaction) is considered statistically sig-

nificant (i.e. the corresponding null hypothesis is rejected) if the ANOVA results

in a p-value for this effect less than a threshold α, where here α = 0.05.

In order to reduce the total number of ANOVA runs required to analyse the

data, only four of the ten inhibitor concentrations are considered, chosen to be

representative of the whole range of concentrations. Thus, for the statistical

analysis, d ∈ D = {9.98, 1.00, 0.10, 0.01}. There are five time points, and for each

time point and inhibitor concentration, the four proteins, E, at the three cellular

compartments, P , are considered. Thus in total 4 × 5 × 4 × 3 = 240 individual

two-way ANOVA tests are run. The results of these analyses are visualised in

Figure 6.5 where in each column of the figure there are 240 individual pixels,

one for each protein and cellular compartment (y-axis of a subplot), time point

(x-axis of a subplot) and inhibitor concentration (row of the figure). The columns

represent the effects, where the first column is the cell line main effect, the second

column is the inhibitor main effect and the third column is the interaction effect.

A blue, asterisk-annotated pixel indicates that the null hypothesis for the effect

in the column title was rejected (at the 5% level) whereas a black pixel indicates

that it was accepted. A blue, asterisk-annotated pixel in the inhibitor column
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for example, indicates that there is a significant difference between the mean

values of the MFI (for that particular protein, cellular compartment, time point

and inhibitor concentration) for at least two of the eight groupings defined by

inhibitor type. This is important as it implies that at least one inhibitor type

is acting differently from the others in its ability to down-regulate the MAPK

pathway.

From Figure 6.5 it can firstly be noted that both the cell line and inhibitor

main effects are statistically significant for many different pixels (i.e. they are

asterisk-annotated and coloured in blue). The interaction effect is less significant

overall, however there are some interesting groupings. For example, the interac-

tion effect is often significant for the latest time points for the protein tEGFR.

Figure 6.6 shows the disparity between cell lines for this protein at the PM after

treatment with 1 µM of the different inhibitors. It is clear that tEGFR is up-

regulated to a much greater extent in SVD cells than WT cells, after treatment

with the inhibitors D4, D5 and D6. This could indicate that these three inhibitor

types are inducing a stronger feedback effect in the SVD cell line than in the

WT cell line. For the greatest two concentrations of inhibitor, the interaction

effect is often also significant for pRSK across several time points and cellular

compartments. Figure 6.7 shows the MFI data for pRSK in the cytoplasm at

an inhibitor concentration of 1 µM in the WT and SVD cell lines, for each in-

hibitor type. From this figure (and other similar figures not presented here), it

can be concluded that the significance of the interaction effect for pRSK is com-

ing from the fact that the inhibitors D4, D5 and D6 have a lesser effect on the

down-regulation of pRSK in the WT cell line than they do in the SVD cell line,

whereas all other inhibitor types have a similar effect on pRSK in both cell lines.

In general therefore, it appears than when the interaction effect is significant it

is due to the inhibitors D4, D5 and D6 acting differently on the proteins pRSK

and tEGFR between the two cell lines.

In the case of the cell line main effect (first column of Figure 6.5), it can

be seen that the number of statistically significant differences between the mean

of the two groups defined by cell line generally increases with both time and

inhibitor concentration. In fact, for the latest two time points, and the highest

two inhibitor concentrations, the cell line is a significant main effect for almost
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Figure 6.5: Results of the two-way ANOVA for each combination of protein,
cellular compartment, time point and inhibitor concentration. A blue, asterisk-
annotated pixel indicates that the null hypothesis corresponding to the effect in
the column title was rejected (at the 5% level) whereas a black pixel indicates
that it was accepted.

all proteins and cellular compartments, at the 5% level. As with the interaction

effect, the difference in the data between cell lines (as the main effect) is most

noticeable for the proteins tEGFR and pRSK. For example, by comparing Figures

E.6 and E.14 which show the MFI data for inhibitor D6 in the WT and SVD

cell lines respectively, one can see that tEGFR (in all cellular compartments) is
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Figure 6.6: Scatter plots of the MFI data for tEGFR at the PM, under inhibition
at a concentration of 1 µM of the TKI, in WT cells (left) and SVD cells (right).
The colour of a point indicates the inhibitor type used, as given in the figure
legend.

Figure 6.7: Scatter plots of the MFI data for pRSK at the cytoplasm, under
inhibition at a concentration of 1 µM of the TKI, in WT cells (left) and SVD
cells (right). The colour of a point indicates the inhibitor type used, as given in
the figure legend.

much greater increased from baseline in the SVD cell line than in the WT cell

line (note the different scales on the y-axis). As indicated by Figure 6.5, this is
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particularly noticeable for the latest two time points whereby the MFI data for

tEGFR in the SVD cell line reaches levels of around 3.5 and the corresponding

data in the WT cell line only reaches levels of around 1.6. For both cell lines

and all inhibitors, pMAPK is initially down-regulated in all three compartments,

but by time 48 hours, the level has in most cases returned to baseline or even

above baseline where this trend is seen more so in the SVD cells (for example

compare the pMAPK rows of Figures E.1 and E.9, which correspond to inhibitor

D1, particularly the subplots corresponding to the cytoplasm and the nucleus).

It is difficult to see a trend in the MFI data for pEGFR in terms of a cell line or

inhibitor effect by examining figures of the data alone.

Also interesting is the effect of inhibitor type on the MFI for each protein and

cellular compartment. It can be seen from Figure 6.5 that there are a number

of proteins, cellular compartments, time points and inhibitor concentrations for

which the inhibitor type has a significant effect, indicating that for at least two

inhibitor types there is a significant difference between the means of the data.

The ANOVA result can only determine if there is a significant difference between

groups, i.e. whether or not to reject the null hypothesis, but it cannot tell us

which groups are statistically significantly different, in the case where an effect

has more than two levels (which is the case for the inhibitor type since there

are 8 levels). For this, one can use a post-hoc analysis, as is carried out for the

inhibitor types in Section 6.2.2.

6.2.2 Post-hoc analysis

Tukey’s honest significant difference (HSD) test is a post-hoc analysis to simulta-

neously compare the means of pairwise groupings and the method is described in

Section 2.6.2. When a significant difference is identified by the ANOVA for the

inhibitor effect, Tukey’s HSD test can then be used to find which of the means

of the data for the
(

8
2

)
= 28 possible pairs of inhibitors have a significant dif-

ference. At first glance it may seem that one could just perform 28 individual

t-tests here, however, as explained by Barnette & McLean (2005), the drawback

of this method is the accumulation of type 1 errors, where a type 1 error (or

“false positive”) is the rejection of a null hypothesis when it is actually true. For
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a t-test with significance level α (i.e. the p-value is α), the probability of a type

1 error is α, and when carrying out n t-tests simultaneously, the probability of a

type 1 error is 1− (1− α)n (Lee & Lee, 2018). Hence for the 28 possible pairs of

inhibitors here, if individual t-tests were used to compare the means of the data

for each pair at a significance level of α = 0.05, the probability of at least one

type 1 error would be 1 − (1 − 0.05)28 = 0.76, as opposed to the desired 0.05.

Tukey’s HSD test overcomes this problem by adjusting the p-value for multiple

testing, and hence is used here to compare the data for the different pairs of

inhibitors. In Figure 6.5, one can observe 38, 44, 39 and 30 statistically signifi-

cant results (blue pixels) for the inhibitor effect for the concentrations 0.01, 0.10,

1.00 and 9.98 µM, respectively, meaning one must carry out Tukey’s HSD test,

38+44+39+30 = 151 times in total. The results of this analysis are summarised

in Figure 6.8, where each column (and colour) represents a different concentra-

tion of inhibitor. All possible pairs of the eight inhibitors are listed on the y-axis,

and a bar indicates the frequency of statistically significant differences between

the mean of the data for the two inhibitors in the pairing, across all 4 proteins,

3 cellular compartments and 5 time points. As indicated by the ANOVA results

in the previous section, the maximal frequencies for the bar charts are 38, 44, 39

and 30 for the concentrations 0.01, 0.10, 1.00 and 9.98 µM, respectively.

From Figure 6.8, the inhibitors which are most frequently different from other

inhibitors can be identified. For example, the inhibitor D3 has a high frequency of

significant differences from most of the other inhibitors, particularly at the lowest

concentrations. In general, as the concentration of inhibitor increases (moving

from left to right in Figure 6.8), the frequency of significant differences between

inhibitor types decreases, indicating that the inhibitors have a very similar effect

on the protein levels at high concentrations.

The results of Tukey’s HSD test can also be represented as a network, as

in Figures 6.9 - 6.12 where each of the four figures shows the results for one of

the four inhibitor concentrations studied here. There are 12 subplots in each

figure, one for each protein and time point, and within each subplot there are

8 nodes, where node 1 represents inhibitor type D1 and so on. Two nodes are

connected if, for that concentration, protein and time point, the means of the data

groups defined by the two inhibitor types (labelled on the nodes) are statistically
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Figure 6.8: Bar plots of the results of Tukey’s HSD test for each of the four
inhibitor concentrations considered, from 0.01 µM (far left) to 9.98 µM (far
right). Each bar chart shows the frequency of a significant difference between
the inhibitor pairs on the y-axis over all time points, proteins and cellular com-
partments.

significantly different. Finally, the nodes are connected in up to three different

colours, where the colours represent the different cellular compartments, listed in

the figure legend.

Starting by looking at the bar chart for the lowest concentration of inhibitor,

0.01 µM (Figure 6.8, left hand panel), it is obvious that D3 is frequently statis-

tically significantly different from the other inhibitor types. From the network

figure for this concentration, Figure 6.9, one can identify that the differences be-

tween D3 and the other inhibitors are very common for the protein pRSK, across

all cellular compartments and time points, as well as for the protein pMAPK
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Figure 6.9: Network representation of significant differences between means
of data groupings defined by inhibitor type, elucidated by Tukey’s HSD test at
inhibitor concentration 0.01 µM for each combination of protein and time point.
The nodes 1 to 8 represent the inhibitor types D1 - D8, respectively, and they
are connected if there is a significant difference between the means of the data
groupings defined by this pair of inhibitors. The colour of the connecting line
represents the cellular compartment as indicated by the legend.

at time 2 hours post dose in all cellular compartments. In particular, it can be

observed from Figure 6.13, that pRSK is down-regulated much more so by D3

than all other inhibitor types in both WT and SVD cells, for this concentration

of inhibitor. This disparity between inhibitor types is most pronounced at earlier
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Figure 6.10: Network representation of significant differences between means
of data groupings defined by inhibitor type, elucidated by Tukey’s HSD test at
inhibitor concentration 0.10 µM for each combination of protein and time point.
The nodes 1 to 8 represent the inhibitor types D1 - D8, respectively, and they
are connected if there is a significant difference between the means of the data
groupings defined by this pair of inhibitors. The colour of the connecting line
represents the cellular compartment as indicated by the legend.

time points, and in the WT cell line.

There is also a greater up-regulation of tEGFR by D3 than most other in-

hibitors in SVD cells and there is some evidence of the same trend at early time

points in WT cells, as seen in Figure 6.14. This result can also be identified
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Figure 6.11: Network representation of significant differences between means
of data groupings defined by inhibitor type, elucidated by Tukey’s HSD test at
inhibitor concentration 1.00 µM for each combination of protein and time point.
The nodes 1 to 8 represent the inhibitor types D1 - D8, respectively, and they
are connected if there is a significant difference between the means of the data
groupings defined by this pair of inhibitors. The colour of the connecting line
represents the cellular compartment as indicated by the legend.

from Figure 6.9, where in the second row it is clear that D3 has significant differ-

ences with almost all other inhibitors at most time points. For later time points

this is true for all cellular compartments, however at the earliest time point (2

hours) this is mostly true only at the PM. Biologically, this is intuitive since,
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Figure 6.12: Network representation of significant differences between means
of data groupings defined by inhibitor type, elucidated by Tukey’s HSD test at
inhibitor concentration 9.98 µM for each combination of protein and time point.
The nodes 1 to 8 represent the inhibitor types D1 - D8, respectively, and they
are connected if there is a significant difference between the means of the data
groupings defined by this pair of inhibitors. The colour of the connecting line
represents the cellular compartment as indicated by the legend.

when new receptors are synthesised, they are delivered to the PM. From Figure

6.14 it can be seen that D7 and D8 are also having a relatively large effect on the

up-regulation of tEGFR in SVD cells. This explains the significant differences

between D7/8 and the other inhibitors seen in the first subplot of Figure 6.8.
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Figure 6.13: Scatter plots of the MFI data for pRSK in the WT cell line
(top row) and SVD cell line (bottom row), and for each cellular compartment
(columns of the figure). The colour of a point represents the inhibitor type as
given in the legend, at a concentration of 0.01 µM.

There is also a relatively high frequency associated with the pairings involving

D1 in Figure 6.8, first subplot. It appears that D1 acts similarly to D3 at the

lowest inhibitor concentration, down-regulating pRSK and up-regulating tEGFR

more than the other inhibitors, but to a lesser extent than D3, hence the lesser

frequency for these pairs than pairs involving D3. This can be observed in Figures

6.13 and 6.14. From Figure 6.9, there is little difference between the inhibitor

types on the down-regulation of pEGFR or pMAPK at the lowest inhibitor con-

centration, other than the inhibitor D3 being statistically significantly different

from the other inhibitors at select time points (2 hours post dose for pEGFR and

pMAPK and also 48 hours post dose for pEGFR). In all cases, this is because

the inhibitor D3 is having a significantly greater effect than the other inhibitors.

From the second subplot in Figure 6.8 for the concentration 0.10 µM a similar

trend can be seen as for the lower concentration, where D3 is still frequently
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Figure 6.14: Scatter plots of the MFI data for tEGFR in the WT cell line
(top row) and SVD cell line (bottom row), and for each cellular compartment
(columns of the figure). The colour of a point represents the inhibitor type as
given in the legend, at a concentration of 0.01 µM.

significantly different from all other inhibitors, but now less frequently for the

inhibitors D1, D7 and D8. This is particularly evident in the pRSK row of Figure

6.10. In fact it can be seen that D1, D7 and D8 also have relatively frequent

differences with the inhibitors D2, D4, D5 and D6. From the data it can be

observed that this is because D1, D7 and D8 are beginning to equalise with D3

in their ability to down-regulate pRSK (see Figure 6.15) and to some extent to

up-regulate tEGFR (data not shown), at this concentration of inhibitor.

It is also found that pEGFR and pMAPK are more significantly down-regulated

at early time points than by the lower concentration of inhibitor, and this down-

regulation is most pronounced for the inhibitors D1, D3, D7 and D8. This is

shown in Figure 6.16 for pEGFR (data not shown for pMAPK). By time 48 hours

however, there is an up-regulation of these proteins as compared to the DMSO

control, again more significantly for the inhibitors D1, D3, D7 and D8. The other
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Figure 6.15: Scatter plots of the MFI data for pRSK in the WT cell line
(top row) and SVD cell line (bottom row), and for each cellular compartment
(columns of the figure). The colour of a point represents the inhibitor type as
given in the legend, at a concentration of 0.10 µM.

inhibitors follow a similar trend to these four, but all data values remain closer

to baseline (DMSO control).

At an inhibitor concentration of 1.00 µM, from Figure 6.8, one can see that

there are almost no significant differences between any pairings of the inhibitors

D1, D3, D7 and D8 across all proteins, compartments and time points. Simi-

larly there are very few significant differences between D2 and any of D1, D3,

D7 and D8. All five of these inhibitors have frequent differences with the in-

hibitors D4, D5 and D6, allowing to separate the inhibitor types into two distinct

groups at this concentration. This grouping is coming mostly from differences in

down-regulation of pRSK, where D1, D2, D3, D7 and D8 all down-regulate pRSK

significantly more so than D4, D5 and D6 and where this is more noticeable in

the WT cells than the SVD cells. This can be confirmed by analysis of Figure

6.11 where almost all of the significant differences (connections between nodes)
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Figure 6.16: Scatter plots of the MFI data for pEGFR in the WT cell line
(top row) and SVD cell line (bottom row), and for each cellular compartment
(columns of the figure). The colour of a point represents the inhibitor type as
given in the legend, at a concentration of 0.10 µM.

are occurring in the row corresponding to pRSK. Almost all other significant dif-

ferences seen in Figure 6.11 are occurring at the plasma membrane, and most

frequently for the protein pEGFR. Interestingly, at this concentration, D4, D5

and D6 are having the largest effect on up-regulating tEGFR by the latest time

points, in both WT and SVD. It is difficult to see trends in the inhibitors for the

proteins pEGFR and pMAPK, although at early time points there is evidence

from the figures to suggest that pMAPK is down-regulated more so by D1, D3,

D7 and D8. This is evident from Figure 6.11 where, similarly to the lower in-

hibitor concentrations, a relatively large number of significant differences is seen

for pMAPK at time 2 hours.

Finally, at an inhibitor concentration of 9.98 µM, from Figures 6.8 and 6.12,

D5 is found to be most frequently significantly different from the other inhibitors.

From inspection of the data, this is predominantly due to the fact that D5 has
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a lesser effect on down-regulation of pRSK than the other inhibitors in the WT

cell line (see Figure 6.17, top row). From Figures 6.12 and 6.17 one can note that

this is the case in particular for the time points 2, 4 and 6 hours and less so at

later time points. D5 also appears to have a large effect on the up-regulation of

tEGFR by the latest time point (see second row of Figure 6.12).

Figure 6.17: Scatter plots of the MFI data for pRSK in the WT cell line
(top row) and SVD cell line (bottom row), and for each cellular compartment
(columns of the figure). The colour of a point represents the inhibitor type as
given in the legend, at a concentration of 9.98 µM.

From the bar chart, it can be noted that D2 also has some significant differ-

ences with all other inhibitors. Looking at the data figures, one can conclude that

this is since D2 causes a large up-regulation of pEGFR in the cytoplasm in both

WT and SVD cells which is not seen when the cells are treated with the other

inhibitors (see Figures E.2 and E.10, top row, middle subplots). D2 also has less

of an effect on the down-regulation of pRSK in the cytoplasm in the SVD cell

line at the later time points (see Figure 6.17, bottom row).

In general, from the pairwise analysis of the inhibitor types performed here,
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it is found that D3 has a large effect on altering protein levels in the MAPK

pathway even at the lowest concentrations, and with increasing concentration,

the other inhibitor types begin to act in the same way. D1, D2, D7 and D8 have

the next largest effects for lower concentrations and only at high concentrations

do D4, D5 and D6 have a similar effect. From examining the data figures and the

network figures, one can conclude that most of the significant differences between

inhibitor types are due to changes in the level of pRSK and tEGFR, where these

proteins are down-regulated and up-regulated, respectively, by the inhibitors.

Overall, there are very few significant differences between the inhibitor types for

the protein pMAPK at any time point other than 2 hours.

To better visualise the differences between inhibitor types on pRSK and

tEGFR, the data can be plotted as a violin plot. An example of this is seen

in Figure 6.18 for pRSK in the cytoplasm at time 2 hours. For this particu-

lar protein, time point and cellular compartment, the data for all 8 inhibitors

(columns in each subplot), and 10 concentrations is plotted as violin plots (top

subplot) and scatter plots coloured by concentration (bottom subplots). The cen-

tre subplots show the correlations between the data points for all concentrations

between each inhibitor type. From the top subplot, it is clear that the inhibitor

D3 is significantly different from the others, where D3 has a large effect on pRSK

for all concentrations, but the other inhibitors only have the same effect at higher

concentrations. One can also see how the data distributions vary between cell

line, where the WT data distribution is plotted on the left hand side of a violin

plot, and the SVD data on the right. There is a statistically significant difference

between the means of the WT and SVD data, by the result of a Student’s t-test

at the 5% level, for the inhibitor D3 only (annotated by an asterisk below the

violin plot). Also of interest in this figure, is the negative correlation between

the D3 data and the data for all other inhibitors (for all concentrations). One

would expect that the correlations would almost always be positive, indicating

that larger concentrations of any inhibitor type lead to greater effects on the

proteins. However there are some reasonably large negative correlations for pairs

involving D3, particularly in the WT cells, which suggests that D3 has the largest

effect on the proteins at lower concentrations, rather than higher. In fact this
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Figure 6.18: Violin plots (top row), correlation plots (middle row), and
scatter plots (bottom row) of the data distributions of pRSK in the cytoplasm
at time 2 hours. In the violin plots, an asterisk beneath an individual inhibitor
plot indicates that the means of the WT and SVD data for this inhibitor type
are statistically significantly different (Student’s t-test, 5% level). In the scatter
plots, the colour of a point represents the inhibitor concentration as given in the
legend.
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trend in the D3 concentrations is apparent for all time points and cellular com-

partments for pRSK, as can be seen in Figure 6.19. A similar pattern is found

for pMAPK under inhibition with D3, but the reverse (expected) behaviour is

found for pEGFR. It is difficult to see any real concentration effect for tEGFR.

This negative correlation between inhibitor concentrations is also found in some

isolated cases for other pairs of inhibitors, but is most noticeable for pairings

involving the inhibitor D3. It is noted however, from Figures such as the violin

plot on the top row of Figure 6.18, that the data points for the full range of con-

centrations for D3 are much more clustered than the corresponding data points

for the other inhibitors. This implies that D3 has a very similar effect on the cells

at every concentration in the range.

Figure 6.19: Scatter plots of the MFI data for pRSK in the WT cell line
(top row) and SVD cell line (bottom row), and for each cellular compartment
(columns of the figure), when treated with the inhibitor D3. The colour of a point
represents the inhibitor concentration with units µM as given in the legend.
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6.2.3 Principal component analysis

The statistical methods used in this chapter so far have been univariate, where

each protein, at each cellular compartment, is treated as a single variable and the

analysis is carried out for each of the 12 (4 proteins at 3 cellular compartments)

variables separately. In order to get an overall picture of the data and to explore

further the correlations and potential redundancies in the data, in this section,

PCA is carried out with the full dataset. As introduced by Chatfield & Collins

(1981) and explained in Section 2.6.3, PCA is a method used to transform a set of

variables into a new set of uncorrelated variables, which are linear combinations

of the original variables. The new uncorrelated variables are known as principal

components (PC), where the first PC is the direction in the data along which the

samples show the most variation (Kassambara, 2017). The second PC is then

the second most important direction in the data in terms of the variance, and so

on. Mathematically, the PCs describing the dataset are the eigenvectors of the

standardised sample covariance matrix, and the sum of the corresponding eigen-

values will be equal to the number of variables in the original dataset (here 12).

It is generally accepted that if a PC has a corresponding eigenvalue greater than

1, meaning that this PC accounts for more variance than any of the original vari-

ables, it is retained for further analysis, where the retained PCs should account

for most of the variation in the data (Kassambara, 2017). Where the number of

retained PCs is significantly less than the number of original variables, one can

conclude that there is redundancy in the original data, since each data point can

be well represented by fewer variables.

Here, PCA is used to get an overall picture of the data. The original variables

are each of the 12 combinations of protein and cellular compartment, and the data

for each cell line, inhibitor, inhibitor concentration and time point is considered

together. In particular, the dataset is firstly transposed such that each of the

variables becomes a column and there is a row for each combination of cell line,

inhibitor, concentration and time point. A row with a missing value for any of the

variables, due to the removal of outliers in Section 6.1.2, was removed, resulting

in a dataset with 12 variables and 1575 samples (rows). The correlation between

each of the original variables is plotted in Figure 6.20, where it can be seen that
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there is a strong positive correlation between the three cellular compartments

for all four proteins. There are some other reasonably large positive correlations

between pairs of variables involving pEGFR, pMAPK and pRSK, where tEGFR is

the least correlated with the other variables. One might assume that there should

be negative correlations present between the tEGFR variables and the variables

relating to the other proteins, since in general there is an increase of tEGFR from

baseline and a decrease in the other proteins from baseline. The lack of negative

correlations can be explained since, in many of the data figures (see Appendix

E), the decrease in pEGFR, pMAPK and pRSK is maximal at time point 2 hours

and then there is a gradual increase back to baseline or above baseline, whereas

the increase in tEGFR is more gradual, starting from 2 hours up to around

6 or 24 hours. Therefore, for the earlier time points these variables would be

positively correlated as the data is increasing together, until the tEGFR begins

to decrease back to baseline, causing a negative correlation at later time points,

hence resulting in an “overall” correlation of approximately zero. To explore

further the data, PCA was then carried out using the FactoMineR package in R.

Figure 6.21 shows a scree plot of the percentage contributions of each of the

12 determined PCs to the overall variance in the data. It can be seen that the

first four PCs account for a total of over 95% of the variability, and from the

results of the PCA, each of these PCs have an eigenvalue greater than 1, whereas

the eigenvalues associated with all other PCs are less than 1. This indicates that

the data can be represented well by only four variables as opposed to the original

12, and hence there is a lot of redundancy in the data. Interestingly, the first PC

accounts for almost 50% of the variability alone, and approximately 70% of the

data can be represented well by the first two PCs.

To see how each of the original variables correlates with the first two PCs,

and how well each variable is represented by these PCs, one can plot a correlation

circle, as in Figure 6.22. The length of a vector (arrow) on the plot indicates how

well this variable is represented by the first two PCs. This quality of representa-

tion is also given by the colour of a vector, where the colour shows the cos2 value

as given by the colour bar. The cos2 stands for the “squared cosine” which is an

index such that values closer to 1 indicate that the variable is better represented

by the PC and values closer to 0 indicate lower quality representation.
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Figure 6.20: Visualisation of the correlation matrix as a heatmap of the Pearson
correlation coefficients (see Definition 12 of Chapter 2) between each pair of
variables in the data, for both cell lines, all inhibitor types, all concentrations
and all time points combined.

From the correlation circle, some clear groupings between the variables can

be seen, where the three cellular compartments for each protein tend to be close

together, indicating some redundancy in the data between cellular compartments.

tEGFR and pRSK are the best represented variables by the PCs 1 and 2, which is

unsurprising since these are the proteins on which the inhibitors seem to have the

largest effect. This is confirmed by Figure 6.23 which shows pairwise scatter plots

of the data for each protein, combined for cell line, inhibitor type, concentration

of inhibitor, time point and cellular compartment. Particularly for tEGFR, the

range of the normalised data is much larger than the range of the data for the other

proteins. Figure 6.22 also indicates a difference, along PC 2, between tEGFR and

the other proteins. Also interesting to note is how much each original variable

contributes to each of the PCs. The contribution is given as a percentage, such

that each PC is fully explained by the sum of the contributions from each original

variable. A heatmap of the percentage contribution to each of the first four PCs
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Figure 6.21: Scree plot of the percentage contribution of each of the 12 principal
components, computed through the PCA, to the total variance in the data.

by the original variables is given in Figure 6.24. One can see that all of the

pEGFR, pMAPK and pRSK variables contribute roughly equally to the first PC,

and the tEGFR variables contribute less. On the other hand, the tEGFR variables

contribute the most to the second PC with some contribution coming also from

pRSK. The lower quality of representation seen in Figure 6.22 for pEGFR and

pMAPK can be explained since these variables contribute more to the third and

fourth PCs, respectively.

As well as plotting the variables on the correlation circle, one can also plot

the individual data points as mapped to the first two PCs. In such a plot, the

data points can be coloured according to any groupings in the data, and hence

here the points are coloured, in separate plots, to show the cell line, the time

point, the inhibitor type and the concentration of inhibitor. Figure 6.25 shows

the variables and data points grouped by cell line (left hand side) and time point

(right hand side), in terms of the first two PCs. From this figure, clear differences

can be seen between the two cell lines, and the 5 time points. Figure 6.26 is a

similar figure but where the groupings are the inhibitor type (left hand side) and

the inhibitor concentration (right hand side). Here, any differences between these

groups are much less defined. It should be noted that, according to the quality of
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Figure 6.22: Correlation circle between the original variables and the first two
principal components identified by the PCA. The colour of a coordinate arrow
represents the quality of representation of that variable in terms of the cos2. The
higher the cos2, the better that variable is represented by the PCs.

representation in Figure 6.22, the groupings in Figures 6.25 and 6.26 are defined

mostly by the original variables tEGFR and pRSK and less so by pEGFR and

pMAPK. These figures give an overall picture of where the variability in the whole

dataset is the greatest, and one can conclude that, in line with the ANOVA results

from Section 6.2.1, the inhibitors have differing effects on the proteins depending

on the cell line. From Figure 6.26 however, it can be seen that as an overall effect,

the inhibitor type is not very significant.

6.2.4 Analysis of concentration and cellular compartment

In the analysis so far in this chapter, the inhibitor concentration and cellular com-

partment of the proteins of interest have not been explicitly discussed. In the PCA

it was found that there appeared to be some redundancy in the data between the

cellular compartments, i.e. the cellular compartment of a protein does not seem

270



6.2 Statistical analysis

Figure 6.23: Scatter plots of the MFI data for each pair of proteins. The data
here is combined for both cell lines, all inhibitor types and concentrations, all
time points and all cellular compartments. The points are coloured by inhibitor
concentration as indicated by the legend.

to have a great effect on the abundance of the protein. Here one-way ANOVA is

used to assess this hypothesis further. In particular, a one-way ANOVA is car-

ried out for each combination of cell line, inhibitor type, inhibitor concentration,

time point and protein, with cellular compartment as the independent variable

and MFI as the dependent variable, giving a total of 2 × 8 × 10 × 5 × 4 = 3200

analyses, where now all 10 inhibitor concentrations are considered. As a specific

example, one of the 3200 analyses would use the MFI data for pEGFR in the

WT cell line, for inhibitor D1 at a concentration of 0.01 µM and at time point

2 hours. The ANOVA would then test whether there are any statistically signif-

icant differences between the means of the groups of the data (where the mean

is taken over the experimental replicates) defined by cellular compartment. Sim-

ilarly to in Section 6.2.2, if cellular compartment is found to be significant at the
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Figure 6.24: Visualisation of the percentage contributions from each original
variable in the dataset (columns) to each of the first four PCs (rows), plotted as
a heatmap where the colour of a pixel indicates the percentage as given by the
colour bar.

Figure 6.25: Correlation circles between the original variables and the first two
principal components (on the x-axis and y-axis, respectively) identified by the
PCA. Scatter plots of the data points are overlayed, coloured by cell line (left
hand side) and time point (right hand side).

5% level (i.e. there is a statistically significant difference between the means of

the data for at least one pair of cellular compartments), Tukey’s HSD test is used

to determine which pairs of cellular compartments are statistically significantly
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Figure 6.26: Correlation circles between the original variables and the first two
principal components (on the x-axis and y-axis, respectively) identified by the
PCA. Scatter plots of the data points are overlayed, coloured by inhibitor type
(left hand side) and inhibitor concentration (right hand side).

different from one another. In total, out of the 3200 ANOVA tests, cellular com-

partment was only a significant effect for 699 combinations of the other variables,

which is roughly 22% of the time. This result agrees with the PCA result, that

the abundance of each protein is often approximately equally distributed between

the three cellular compartments. Figure 6.27 (left hand side) shows a heatmap

of the frequency of statistically significant differences between pairs of cellular

compartments as a result of Tukey’s HSD test at the 5% level. From the figure

one can determine that when cellular compartment is a significant effect, this is

due, most often, to differences between the protein abundances at the PM and the

nucleus. Protein abundances in the cytoplasm and nucleus are rarely significantly

different from one another. There could be some experimental error contributing

to this apparent homogeneity between cellular compartments, for example it may

be difficult to determine, from the FI, if a protein is in the cytoplasm or in the

nucleus.

A similar analysis can be employed to study the effect of inhibitor concen-

tration and to determine which concentrations are most often statistically sig-

nificantly different from one another. Here the one-way ANOVA is carried out

for each combination of cell line, inhibitor type, time point, protein and cellu-
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Figure 6.27: Heatmaps of the frequency of statistically significant differences
between cellular compartment pairings (left hand side) and inhibitor concentra-
tions (right hand side) as a result of Tukey’s HSD test at the 5% level, applied
after a one-way ANOVA with cellular compartment or inhibitor concentration as
the independent variable (main effect).

lar compartment, with inhibitor concentration as the independent variable and

MFI as the dependent variable, giving a total of 2 × 8 × 5 × 4 × 3 = 960 anal-

yses. Again, Tukey’s HSD test is then used at the 5% level to determine pairs

of inhibitor concentrations which are statistically significantly different from one

another. Out of the 960 ANOVA tests, inhibitor concentration was a significant

effect 56% of the time. This is a relatively low value, considering that one would

expect that with a higher concentration of inhibitor there should be a greater

effect on the protein levels. However in 44% of cases, there is no significant dif-

ference between even the highest and lowest concentrations, which are 102 µM

and 10−2 µM, respectively. It can be observed from figures such as Figure 6.18,

that all concentrations of inhibitor D3 have a very similar effect on the proteins,

however this concentration clustering must also be present in the effect of other

inhibitor types on the proteins. In the 56% of cases where there is a statistically

significant difference between at least one pair of concentrations, the frequency

of these differences for each pair is plotted as a heatmap in Figure 6.27 (right

hand side), summed over all combinations of the other variables. The result is as

would be expected, whereby the largest number of statistically significant differ-
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ences occur between the concentrations with the largest difference, for example,

102 µM and 10−2 µM. There are very few statistically significant differences be-

tween consecutive pairs of inhibitor concentrations. This result validates the use

of only four inhibitor concentrations, equally spaced across the logarithmic range

of concentration values, for the two-way ANOVA used in Section 6.2.1.

6.2.5 Summary of the statistical analysis

In summary, from the statistical analysis carried out in this chapter, the cell

line appears to be significant on the effect of the TKIs on the abundance of the

proteins of interest. In general, the TKIs have a larger effect on the SVD cell

line, in particular on the up-regulation of EGFR (tEGFR increase with respect to

baseline). In terms of the efficacy of the TKIs, this is not a desirable result, since

the aim of the TKIs is to inhibit the MAPK pathway, and an up-regulation of the

EGFR would serve to further initiate the pathway. There are some differences

in the response to the TKI depending on the inhibitor type also, particularly at

low concentrations, where D3 seems to have a much larger effect than the other

inhibitors. The other inhibitors reach similar levels of inhibition as D3 for higher

concentrations. A general trend in both cell lines for most inhibitor types and

concentrations, is that initially they have the expected effect on the proteins, in

terms of up- or down-regulation with respect to the control, but by the latest time

points, the protein abundances are returning to the level of the control, or in some

cases even moving in the opposite direction as would be expected. This implies

that upon treatment of the cells with the TKIs, some feedback mechanisms are

coming into place, for example, up-regulating the EGFR levels, which is seen in

the data. Given that the TKIs bind irreversibly to EGFR, the MAPK pathway

can be re-initiated by the cells increasing EGFR synthesis so much that all of the

TKI is depleted. This is presumably what is happening in the data by time 48

hours. This problem could potentially be overcome by dosing with the inhibitors

at a high enough concentration that any newly synthesised EGFR is also rapidly

inhibited, or by dosing at regular time intervals, such as once per day.

In order to determine, mechanistically, why there are some differences in the

effect of the inhibitors between cell lines and inhibitor types, particularly at low
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concentrations, one could use a mathematical modelling approach, similar to

those employed in Chapters 4 and 5 of this thesis. In particular, some distinct

groupings of data could be used, in conjunction with a mathematical model to de-

termine, for example, how the parameters of such a model differ when the model

is calibrated using the different datasets. This approach was taken by Claas et al.

(2018b) who used a mathematical model of RTK trafficking to determine how the

trafficking was “reprogrammed” upon inhibition of the MAPK pathway. In this

paper, the authors do not explicitly include the inhibitors in the model, how-

ever this approach could also be taken and one could aim to identify parameters

such as the binding rate of the inhibitor to the receptor, which might elucidate

mechanistically how the inhibitor types and cell lines differ from one another.

In order to use such calibration methods with the data presented in this

chapter, it would be necessary to firstly understand, and be able to model, the

control (DMSO) data. This is since the data is normalised, in Section 6.1.1, by

dividing the inhibitor dosed data by the DMSO data, and so the model should

be normalised in the same way in order to be comparable to the data. However,

when examining the DMSO data, there were some clear trends which could not

be explained. For example, the DMSO data for the SVD cell line is plotted in

Figure 6.28 and it can be seen that for the proteins, pEGFR, tEGFR and pRSK,

there is an initial rise in fluorescence (proportional to copy number), followed by a

peak and then a decline. These dynamics are typical of growth factor stimulated

cells (Kholodenko et al., 1999; Schoeberl et al., 2002; Shankaran et al., 2008),

however for the data here, the cells are not treated explicitly with growth factor.

Even though it is likely that there is some growth factor present in the serum

that the cells were grown in, the dynamics of the protein phosphorylation seen in

the data do not match with other examples from the literature, where the peak

here is of the order hours, and in several examples from the literature, it is of

order minutes or even seconds (Kholodenko et al., 1999; Shankaran et al., 2008).

The DMSO profile for pMAPK also does not match with the theory of growth

factor stimulation, since here the trend in the data is a decline followed by an

incline, which would not be expected. For these reasons, as well as the overall

lack of significant differences in the effect of the inhibitor types on the proteins

of interest, no further mathematical modelling was carried out using the data
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here. Instead, in Section 6.3, a short review of the current literature surrounding

mathematical modelling of the interaction between RTKs and TKIs is given.

Figure 6.28: Plots of the control (DMSO) MFI data in the SVD cell line, for
each of the four proteins and three cellular compartments.

6.3 Review of RTK inhibition modelling

First generation, reversible binding EGFR inhibitors such as Gefitinib and Er-

lotinib have been in use to treat patients with NSCLC worldwide since the mid

to late 2000s. More recently, third generation, irreversible EGFR inhibitors have

been developed, and there is an ongoing focus to develop new, more effective

versions of such inhibitors. Osimertinib is one such example of a third genera-

tion TKI, developed by AstraZeneca, which was approved for use by the FDA in

2015 (Al-Quteimat & Amer, 2020). Given that all of these inhibitors have been

developed relatively recently, there is not an extensive amount of mathematical

modelling of the interaction between inhibitors and receptors in the literature.

Here however, two general classes of mathematical modelling from the literature

will be discussed, enzyme kinetic modelling and combination therapy modelling.

Enzyme kinetics, which is the study of enzyme catalysed reactions, focussing

on the rate of product formation is commonly used in the development of new

drugs. A mathematical formalism known as Michaelis-Menten kinetics was first

introduced by Michaelis and Menten in their 1913 paper, “Michaelis, L., and

Menten, M. L. (1913) Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369”,

which has been translated from German to English by Johnson & Goody (2011).
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An overview of Michaelis-Menten kinetics is as follows, based on Johnson &

Goody (2011) and Rogers & Gibon (2009). When an enzyme and a substrate

come together, the enzyme catalyses the reaction, where the substrate becomes

the product and traditionally the enzyme is unchanged by the reaction, however

the kinetics can also be used where the substrate and enzyme together form a

product. The reactions underlying the traditional approach are,

E + S
kf−⇀↽−
kr
ES

kcat−−→ E + P,

where E denotes the enzyme, S the substrate and P the product. There is an

initial reversible binding of the substrate to the enzyme, followed by an irreversible

formation of the product, with rate kcat. The aim of Michaelis-Menten kinetics

is to find an equation for the rate of formation of the product P . Under the

assumption of mass action kinetics, one can write the following four ODEs,

d[E]

dt
= −kf [E][S] + kr[ES] + kcat[ES],

d[S]

dt
= −kf [E][S] + kr[ES],

d[ES]

dt
= kf [E][S]− kr[ES]− kcat[ES], and

d[P ]

dt
= kcat[ES], (6.3)

to describe the time dynamics of the concentrations of each of the four species.

Given that the system is closed, and there is no degradation or synthesis of any

species, the total concentration of enzyme is conserved, and hence [E] + [ES] =

[E]0, where [E]0 is the initial concentration of enzyme. An approximation known

as the “Quasi-steady-state approximation” is then made, which says that the

concentration of the intermediate complex, ES, remains constant for a consid-

erable period of time. This approximation is valid under the assumption that

S is large relative to E and that kcat is small relative to kf and kr, and hence

the intermediate complex ES is formed rapidly and remains at an approximately

constant value for a long period of time. It is within this quasi-steady-state pe-

riod of time that Michaelis-Menten kinetics applies. Under the quasi-steady-state
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approximation, one can write that

d[ES]

dt
= 0,

and hence

kf [E][S] = kr[ES] + kcat[ES]

= (kr + kcat)[ES]. (6.4)

Combining Equation (6.4) with the expression for total enzyme, gives

kf ([E]0 − [ES])[S] = (kr + kcat)[ES].

Rearranging and simplifying yields

[ES] =
[E]0[S]

kM + [S]
,

where

kM =
kr + kcat

kf
,

and is known as the Michaelis constant. Finally, a formula for the rate of product

formation, v, can be obtained by substituting the expression for [ES] into the

differential Equation (6.3), where

d[P ]

dt
= v = kcat[ES]

=
kcat[E]0[S]

kM + [S]

=
Vmax[S]

kM + [S]
, (6.5)

with Vmax = kcat[E]0, i.e. the fastest rate of product formation which happens

at a saturating substrate concentration. Equation (6.5) is useful when compared

to data from enzyme assays in which the initial rate of reaction is measured for

varying substrate concentration (see Figure 6.29). Methods such as nonlinear
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regression can then be used to fit the kinetic parameters kcat, Vmax and kM with

the data. Provided that kcat is small relative to kr and kf , the Michaelis constant

kM can be thought of as a proxy to the dissociation constant for a given enzyme,

where lower kM values indicate higher affinity of the enzyme for the substrate.

Equation (6.5) is widely used, and in particular, Zhai et al. (2020), Schwartz et al.

(2014) and Yates et al. (2016) have all used this equation and variations of the

equation to compare inhibitors for EGFR.

Figure 6.29: A plot of substrate concentration, [S], against the product forma-
tion rate, v, under Michaelis-Menten kinetics, where the parameters of Equation
(6.5) are annotated (inspired by a similar figure from Rogers & Gibon (2009)).

A recent paper by Zhai et al. (2020) from AstraZeneca, combines experimen-

tal fluorescence imaging with mathematical modelling to examine the therapeutic

selectivity of Osimertinib. The paper employs a Michaelis-Menten enzyme kinetic

mathematical model and calibrates the mathematical model for different EGFR

constructs; WT, L858R mutant and L858R/T790M mutant. The kinetic mech-

anism of action of Osimertinib is explored in relation to the parameters of the

mathematical model, since it is seen in the data that Osimertinib inhibits the

double mutant and single mutant to a greater extent than the WT. The au-

thors determine values for the binding and inactivation parameters in a two step

binding model, and show that Osimertinib both binds faster to, and inactivates

faster, the mutant proteins than the WT. Both initial binding rates and steady
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state kinetic parameters are identified by combining the model and data. A sim-

ilar approach was taken by Schwartz et al. (2014), in an earlier paper, in which

an ODE model is used to define inhibitor potency in terms of the contributions

from reversible binding and unbinding reactions and the irreversible inactivation

reaction. The authors here consider third-generation EGFR inhibitors such as

Dacomitinib and Afatinib, developed prior to Osimertinib.

Another recent paper from AstraZeneca, by Yates et al. (2016) explores both

the pharmacokinetic (PK) and pharmacodynamic (PD) properties of Osimertinib

and how they relate to a reduction in tumour growth, using a mouse xenograft

model. The PK model is necessary in the mouse model since Osimertinib has

been found to be metabolised into an active metabolite in mice. The PD model

involved the reversible binding of the drug to pEGFR and the further irreversible

inactivation of the protein. The model was calibrated using pEGFR data over

a time course of several days. A further step of tumour growth was added to

the model, where the volume of a tumour was modelled, such that the tumour

grows with a rate proportional to the concentration of pEGFR. The modelling

explored different dosing regimes, such as daily dosing and intermittent dosing.

Experimentally it was found that pEGFR returns to baseline in about 72 hours

following a single oral dose of Osimertinib. After dosing once daily for 14 days

however, tumour growth did not restart for 2 weeks. This was captured in the

mathematical model by considering a pEGFR “pool” where after 1 dose only some

of the pEGFR is inhibited but after 2 weeks of dosing much more inhibition occurs

and the pEGFR is regenerated slowly. The model fitted well to experimental

data and again, biologically relevant parameters were determined. Studies such

as those described here allow for insights into how well certain drugs inhibit the

desired proteins, and how different drugs, and different cell lines, can be compared

with one another.

A second class of mathematical models, prevalent in the literature for EGFR

inhibition, concern “combination therapy”. This is a term used to describe the

treatment of a patient with more than one type of drug, simultaneously. The

approach has been shown to be effective since it targets multiple pathways syn-

ergistically or additively, and has the added benefit of preventing drug resistance

(Mokhtari et al., 2017). An early paper on the topic of combination therapy comes
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from Araujo et al. (2005) and is a mathematical modelling study which extends

the well known EGFR signalling model developed by Kholodenko et al. (1999).

The model by Kholodenko et al. (1999) involves all of the early steps in EGFR

signalling, such as ligand binding and dimerisation of the receptor, and some

intracellular protein phosphorylation reactions. Araujo et al. (2005) build upon

this model by including the inhibition of EGFR alone, as well as the combined in-

hibition of EGFR and further downstream proteins, Shc and Plcγ. The inhibition

is modelled implicitly, by involving a pre-multiplier in each of the forward phos-

phorylation reactions for the receptor, Shc and Plcγ, such that the pre-multiplier

takes a positive value less than 1. The lower the value of the pre-multiplier, the

greater the effect of the inhibitor. Through simulation of the mathematical model

at varying values of each of the three pre-multipliers, the authors firstly find that

although inhibition of the receptor alone has a large effect on the down-regulation

of the phosphorylated receptor, it is only when the pre-multiplier takes values less

than 0.5 that a significant effect on the down-regulation of downstream proteins

in the pathway is observed. When multiple proteins in the pathway are inhib-

ited (the receptor and at least one downstream protein), the signal attenuation

is much greater. The authors also discuss “additive” and “synergistic” effects of

inhibition when using multiple inhibitors simultaneously. An additive effect cor-

responds to the effect which would be expected if one added together the effects of

using the multiple inhibitors independently, and a synergistic effect implies that

the effect caused by using multiple inhibitors simultaneously is greater than the

additive effect. They compare this hypothetical simulation with the simulation

upon inhibiting both proteins simultaneously and find that the effect is actually

synergistic (super-additive), i.e. the signal attenuation is greater than the effect

of the sum of the individual attenuations. This theoretical mathematical work

clearly indicates that combination therapy could be useful in the inhibition of

EGFR initiated signalling, however further experimental work would be required

to develop such downstream inhibitors and then to check the levels of toxicity

when such inhibitors are used in combination.

A similar, more recent paper on the mathematical modelling of combination

therapies comes from Huang et al. (2017) who, similarly to Araujo et al. (2005),

extend upon a mathematical model taken from the literature, where here they
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choose the mathematical model by Hornberg et al. (2005). This model is again

a large network model involving close to 150 reactions, but Huang et al. (2017)

choose to study only a subset of the reactions, yielding the pathway seen in Figure

6.30. This work extends the ODE model presented by Hornberg et al. (2005)

to include three potential inhibitors, for each of EGFR, BRaf and MEK. The

inhibitors are this time included explicitly in the model, where they bind to, and

inactivate, the target proteins, indicated by a “D” in a coloured box in Figure 6.30.

The model is validated by comparing simulations with previous experimental data

from the literature. The authors use a value known as the “combination index” to

determine the efficacy of different combinations of inhibitors. The authors state

that the combination index (CI) can be computed as follows,

CI =
(D)1

(Dx)1

+
(D)2

(Dx)2

,

where (D)1 and (D)2 are the combination doses of the two drugs (1 and 2) which

yield 50% efficacy and (Dx)1 and (Dx)2 are the single doses for each drug that

yield the same effect. The value of the combination index then implies how

effective the drug pairing is, where CI < 1 implies the combination is synergistic,

CI = 1 implies additivity and CI > 1 implies antagonism. Huang et al. (2017) are

also able to validate their model by comparing the calculated CIs with reported

CIs from the literature and thus propose that the model could be used to predict

CIs for new drug combinations.

Another paper which focuses on combination therapy and this time includes

both mathematical and experimental results, is by Misale et al. (2015). The au-

thors use a colorectal cancer (CRC) patient derived cell line to study the effects of

different drug combinations, specifically those for EGFR and MEK. Unlike in the

previous papers, and in the data used in this chapter, the EGFR inhibitors here

are not TKIs. Instead they are EGFR antibodies, such as Cetuximab and Pan-

itumumab, which, rather than inhibiting EGFR phosphorylation, work further

upstream and compete with EGF for binding to the ligand-binding domain of

EGFR. When the receptor is bound to an inhibitor, dimerisation and subsequent

activation of the receptor does not occur. Misale et al. (2015) tested the time to

progression (TTP) of the disease (usually a clinical parameter) in vitro by defining
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Figure 6.30: A figure of the reactions underlying the mathematical model by
Huang et al. (2017), where letter “D” in a coloured box indicates a reaction which
is targeted with an inhibitor in the model. Figure taken from Huang et al. (2017).

it as the time until cells treated with an inhibitor begin to divide exponentially,

and hence have become resistant to the drug. Upon treatment with Cetuximab

(an EGFR antibody) alone, it was found that the resistance defined by the TTP

occurred within 80 to 120 days post treatment initiation. However, when the

cells were treated with a combination of inhibitors for EGFR and MEK, no drug

resistance occurred up to 6 months post treatment initiation. The authors of the

paper assume that drug resistance may occur due to a population of cells which

are drug resistant pre treatment initiation. A mathematical model is used to test

this hypothesis, where the output of the model is the volume of a tumour over

time and is denoted V (t). The model assumes independent exponential growth

of two populations of cells, sensitive cells with initial volume a and resistant cells

with initial volume c. The sensitive cells have decline rate b < 0 and the resistant

cells have growth rate d > 0, so that the model is

V (t) = a exp(bt) + c exp(dt).
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The model was fitted to experimental data in which CRC cells were treated with

Cetuximab and the parameters were estimated such that the model gave a good

fit to the data. It was estimated that around 2% of the cells in the experiment

were resistant to Cetuximab at the start of treatment. The authors then went

on to fit a more complex exponential growth model to data in which there were

phases of treatment and absence of treatment, and the parameters were again

estimated. To model the combination therapy, since no resistance was observed

in the data over a time period of 6 months, the model included only the sensitive

cells, hence

V (t) = a exp(bt),

and again the model was able to fit the data well.

A fourth paper relating to combination therapies for treating signalling path-

ways is by Klinger et al. (2013), and the authors here come to a similar conclusion

as others, that a combination therapy of EGFR and MEK inhibitors could be a

good candidate for blocking cell signalling. Similarly to the work by Misale et al.

(2015), this paper combines both experimental and mathematical results in CRC

cell lines, here using a network based model. Six CRC cell lines were treated

with combinations of inhibitors and growth factors and the phosphorylation of

signalling molecules was quantified. This data was used to calibrate parameters

of mathematical models which were then simulated under different theoretical

scenarios to predict effects of drug combinations.

The papers reviewed here describe two main classes of EGFR inhibition mod-

elling; enzyme kinetics modelling and combination therapy modelling. Given that

EGFR TKIs and other MAPK inhibitors are relatively new and promising cancer

therapies, there is still scope for more mathematical modelling in this area.

6.4 Discussion

In this chapter, EGFR inhibition has been explored, specifically tyrosine kinase

inhibition, which is a current treatment for many different types of cancer. The

role of the inhibitors is to inactivate the signalling receptor, by blocking the
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phosphorylation of downstream proteins in the MAPK pathway (amongst others),

which leads to less protein translation and ultimately less cell division, hence

a reduction in tumour growth. Ideally, such an inhibitor would preferentially

inhibit mutant varieties of EGFR, so that only the cancerous cells are treated, and

healthy cells are left to function normally. Given the emergence of drug resistance

when patients are treated with first-generation reversible EGFR inhibitors, in

this chapter, third-generation irreversible inhibitors are discussed and analysed.

There is still an ongoing need for the development of more inhibitors for EGFR,

other RTKs and further downstream proteins.

The data used in this chapter are the fluorescence intensity of antibodies for

four proteins of interest in the MAPK pathway, pEGFR, tEGFR, pMAPK and

pRSK, when the cells are treated with one of eight different EGFR TKIs, being

used in preclinical studies at AstraZeneca. The experiments were carried out in

both a WT EGFR cell line and a mutant (SVD) EGFR cell line. In Section

6.1, the experimental data is introduced, presented and normalised, and any data

points considered outliers are removed prior to further analysis. Then in Section

6.2, a thorough statistical analysis of the data is employed, whereby ANOVA

and post-hoc analyses are used to find statistically significant differences between

groupings of the data, be it by cell line, or inhibitor type. In Section 6.2.3,

a principal component analysis is carried out to give a more general overview

of the data, identify any redundancies in the data and confirm any groupings

identified in the previous analyses.

The results of the ANOVA indicated that for several combinations of protein,

cellular compartment and time point, the MFI was affected differentially depend-

ing on the cell line. In particular, from analysis of the data, it can be seen that

upon treatment with the inhibitors, there is a general increase in tEGFR over the

first 24 hours, where this up-regulation is more pronounced in the SVD cell line.

This is indicative of a feedback effect coming into place, whereby the cells try to

return to their levels of signalling prior to inhibitor addition by up-regulating the

signalling protein. There is not a very noticeable difference in the phosphoryla-

tion levels of the other three proteins, between the two cell lines however. This

is not an encouraging result given that an inhibitor to be used to treat patients

should preferentially bind mutant EGFR over the WT. In general however, from
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the experimental data, the effects of the inhibitors on both cell lines and all pro-

teins are relatively small. The largest effect is an approximately 3.5 fold increase

in tEGFR at the PM in the SVD cell line under some concentrations of some

inhibitors, however most effects are less than a 2 fold change from baseline (see

Appendix E). The inhibitor type was also often significant in the change in the

levels of the proteins of interest, and the pairs of inhibitors which contributed

to this significance were found using Tukey’s HSD test. It was found that there

were some differences between inhibitors at the lowest inhibitor concentrations,

where D3 had a noticeably larger effect on the up-regulation of tEGFR and down-

regulation of pRSK than the other inhibitor types. Other inhibitors then begin to

have a similar effect to D3 as the concentration increases, and, by the largest con-

centration of inhibitor, all inhibitor types have a very similar effect. It should be

noted that the inhibitors had the largest effect on the proteins tEGFR and pRSK

and that significantly different groupings in the data for pEGFR and pMAPK

were less common.

It is clear from plots of the data, as well as the results of the ANOVA that there

is some level of redundancy in the data. This is since, data for a single protein

is very similar across cellular compartments. From the ANOVA (see Figure 6.5)

it can be seen that if there is a significant main effect for a protein and time

point at a specific cellular compartment, it is often also significant for the other

two cellular compartments. From figures of the data (comparing columns of the

figures in Appendix E) this can also be seen, where the data for one protein and

cellular compartment looks very similar, in terms of trend and value, to the data

for the same protein in different cellular compartments. This redundancy was

further confirmed in Section 6.2.3, where a correlation matrix of the data for both

cell lines, all inhibitor types, concentrations and time points is plotted in Figure

6.20. There is a very strong positive correlation between each pair of the three

cellular compartments for each of the four proteins individually. The results of the

principal component analysis for the whole dataset also showed this result, where

the coordinates of the original variables on the first two principal components

are grouped by protein type in Figure 6.22, i.e. the cellular compartments are

clustered together for a single protein. The PCA also corroborates the ANOVA

result, that cell line is reasonably significant within the data, since in Figure 6.25
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it can be seen that the data mapped to the first two PCs forms well defined

groups per cell line. The inhibitor type, however, does not appear so significant

when the data is pooled, seen in Figure 6.26.

Had the statistical analysis have revealed specific inhibitor types which had

a significantly different effect from other types on all proteins, and cellular com-

partments, then it would have been interesting to study these differences further

using a mechanistic mathematical model. Given that the data does not show

many very large effects due to the inhibitors, and that the inhibitor data is very

similar between different types, further modelling has not been carried out in this

chapter. In order to use the data for modelling it would be beneficial to see larger

effects and have data with less redundancy between cellular compartments. The

control data, where the cells were treated with DMSO alone, also shows trends

which are currently unexplained, which also limits the data for further analysis.

Using this type of data, one can imagine constructing an ODE based trafficking

model, where each of the proteins are trafficked with some rate between the cellu-

lar compartments upon addition of inhibitor. Inhibitor binding and inactivation

of the proteins could be added as reactions in the model and different feedback

loops could be explored. The model parameters could then be calibrated using

experimental data of the type discussed in this chapter, with the aim of revealing

specific reactions which differ in rate between inhibitor types. This sort of mathe-

matical analysis could help to select inhibitor types for further development. The

statistical analysis carried out in this chapter is an example of an exploratory

analysis to find initial differences between groupings and to test for the efficacy

of inhibitors in terms of their effect on different EGFR constructs. The work

done here can also pick out any redundancies in the data so that only the most

relevant and different groupings are carried through to a mathematical model.

Finally, in Section 6.3 of this chapter, a review of the current literature sur-

rounding mathematical modelling of EGFR inhibition is given. Two main topics

are discussed; enzyme kinetics and combination therapy. Enzyme kinetics, under

the Michaelis-Menten formulation, is often used to compare different inhibitors

for the same protein, by estimating parameters of the model using experimental

data. The parameters indicate how well an inhibitor binds to a protein and to

what extent the inhibitor inactivates the protein. Combination therapy is an
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6.4 Discussion

emerging method of treatment in which EGFR (or another RTK) is inhibited

simultaneously with another protein, further downstream in the signalling path-

way. Some of these combination therapies have been shown, mostly in vitro or

theoretically through the use of a mathematical model, to have a greater effect

on signal attenuation and to minimise the chance of drug resistance. There is

still a lot of clinical work to be done in this area. In general, this chapter has

shown how statistical analyses and mathematical modelling can be used to aid

decisions in the field of small molecule therapies for RTKs.
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Chapter 7

Concluding remarks

In this thesis, mathematical and statistical techniques have been used to study

intracellular biological processes, specifically signalling pathways at the head of

which is a receptor molecule. Stimulation of signalling pathways, by other extra-

cellular proteins, can push a cell to a fate such as division, death or migration,

which are vital processes in the maintenance of a healthy population of cells.

These pathways are also important to understand from the perspective of treat-

ment of human disease, since it is often found in diseases such as cancer and

autoimmune disorders, that the signalling is dysregulated. In the context of can-

cer for example, this dysregulation can mean that cells are dividing faster and

more often than is necessary, causing the formation of tumours. In Chapters 4 -

6 of this thesis therefore, different signalling pathways are analysed mathemati-

cally in order to better understand their role in human disease and to give insight

into how signalling dysregulation can be controlled. Firstly, in Chapter 3 a more

general stochastic model of the competition between multiple receptor types for

a common ligand type is introduced, which can be applicable to many cell types

and signalling pathways.

In Chapter 3, the primary reactions at the head of a general signalling path-

way are explored in terms of a stochastic mathematical model. In particular,

the reversible reactions between two receptor types which can bind with a com-

mon ligand type are modelled as a continuous-time Markov quasi-birth-and-death

process. This model is purely theoretical and is not compared with experimental

data, however a stochastic approach is used here in order to simulate biological
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scenarios in which there are a low number of receptors and/or ligands per cell

and hence random fluctuations in copy numbers are important. Two stochastic

descriptors are analysed, both of which can be important in the eventual cellular

fate which the signalling initiates, namely the steady state distribution of the

process, and the time-scales of receptor-ligand complex formation of each type.

A matrix analytic approach is firstly used to compute these statistics, however

this method is limited by its computational time, which is related to the state

space of the process, which increases with increasing number of molecules of each

type. Approximate methods of computation of the two descriptors are therefore

developed in order to save on computational time, which are based on the inde-

pendence of the processes for each receptor type, when there is a large number of

ligands in the system, compared with the numbers of receptors. This approach

was found, through numerical comparison with the analytic method, to be very

accurate in many biologically relevant parameter regimes. A limitation of the

method however, is that the accuracy decreases when the competition between

the two receptor types is very high, such as when there are few ligands compared

with the number of each receptor type or when the affinity of one receptor to the

ligand is great. Further work could be carried out based on the ideas discussed

in this chapter, such as extending the methods to more stochastic descriptors,

or employing the methods developed here to other scenarios outside of molecular

biology.

After a general introduction to the first steps in a signalling pathway is given

in Chapter 3, in the remaining chapters of this thesis, mathematical and statisti-

cal techniques are used in corroboration with experimental datasets focussed on

specific receptor initiated processes. In Chapter 4, deterministic mathematical

models are used to simulate the first steps in the JAK/STAT signalling path-

way, which is initiated by the interaction between cytokine receptors, and their

respective ligands, IL-6 and IL-27. In this situation a deterministic approach is

reasonable given that there are large numbers of each receptor and ligand type

per cell. Hypothesis testing is firstly carried out in this chapter, using Bayesian

methodology, in order to decide between two possible ways in which receptor

molecules could be internalised into the cell. The models are parametrised using

Bayesian parameter inference, specifically ABC-SMC, along with experimental
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data provided by Dr. Stephan Wilmes and Dr. Ignacio Moraga from the Uni-

versity of Dundee, in order to elucidate differences between the two pathways in

terms of the underlying reactions and reaction rate constants. This parametrisa-

tion allowed to identify specific differences in the affinities of two types of STAT

molecule to the different receptor types, providing an explanation for patterns

seen in the experimental data. The parametrised model was validated using fur-

ther datasets and could then be used to make predictions about the signalling

responses in different biological regimes, specifically those seen in diseases such

as Crohn’s disease.

Chapter 5 is also centred around experimental data, here provided by Dr. Chi-

Chuan Lin from the group of cellular and molecular biology at the University of

Leeds. The data reveals an interesting assembly of proteins into liquid-liquid

phase separated droplets, potentially comprised of ternary complexes, never be-

fore reported in the literature for the molecules used in these experiments. Three

proteins, FGFR2, a receptor tyrosine kinase, Shp2 and Plcγ1 are seen to be co-

expressed in the same areas of the cell and hence it was hypothesised that they

form a ternary complex with one another. Phase separated droplet formation

within a cell could lead to high density regions of signalling proteins, which may

provide a mechanism for increased cell signalling. A mathematical model of the

system was developed in order to explore this hypothesis, whereby four different

ternary complexes were allowed to form, with different orderings of the proteins

and different states of protein phosphorylation. By examination of the steady

states of the system under different parameter values, it was found that, of the

four ternary complexes which could form in the model, only the experimentally

hypothesised ternary complex existed in the late time dynamics. Given the rea-

sonably large number of variables in the model and underlying reactions, the

explicit steady state solutions for each variable were very complex and difficult to

analyse analytically, hence numerical techniques were employed. The stability of

the steady state reached when using the experimental initial conditions and dis-

sociation constants was assessed for varying parameter values, and it was found

to be stable for many biologically relevant parameter regimes. Additionally, the

stability of the steady state reached when the initial conditions and dissociation

constants were allowed to vary slightly from the experimental values was also
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assessed, again for varying parameter values, and in the majority of cases the

steady state was found to be stable. This chapter provides an example of how

mathematical modelling can be used to test biological hypotheses which would

be difficult, or even impossible, to test experimentally. As an extension to this

work, if quantitative data were to be produced, the model could be calibrated

using the data to determine more accurate parameter values. With these param-

eter values in hand, the model could be extended to include aggregation of the

ternary complexes to form droplets, as is observed experimentally.

Finally, Chapter 6 is based around an experimental dataset from AstraZeneca,

in which the abundance of different proteins in the MAPK signalling pathway is

measured upon treatment of the cells with various EGFR inhibitors. Given the

large size of the dataset, the aim here was to use statistical techniques to identify

differences in the data, for example which inhibitors were having the greatest

effect on which proteins, and whether these effects were dependent on the cell

line (WT or mutant EGFR). A thorough analysis of the dataset was carried out

using two-way ANOVA, Tukey’s honest significant difference test, and principal

component analysis. Some differences between inhibitor types were identified,

such as the inhibitor D3 having the greatest effect at the lowest concentration.

The original aim for this project was to identify statistically significantly different

groupings of data using the aforementioned statistical methods and then to use a

mechanistic mathematical model to explain these differences in terms of reactions

and rate constants with the use of Bayesian inference, as in Chapter 4. However,

given some unexplained trends in the control data and the general lack of signif-

icant trends in the inhibitor treated data, the mathematical modelling was not

conducted. Instead, a review of the current literature surrounding mathematical

modelling of the interactions between EGFR and inhibitors is given, focussing on

two clear themes in the literature: enzyme kinetics and combination therapies.

The work in this chapter could be extended if further datasets were available,

which showed greater and more consistent changes from baseline when the cells

are treated with the inhibitors, and if the control data could be mechanistically

explained.

Understanding signalling pathways at the level of the individual reactions

can be crucial in appreciating the role of specific molecules in different healthy
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and disease scenarios. Mathematical and statistical methods, such as those used

and developed in this thesis, can allow for insights into cell signalling and its

dysregulation, which may be difficult or costly to find experimentally. In this

thesis, general receptor-ligand interactions have been modelled, as well as more

specific parts of signalling pathways initiated by either a receptor tyrosine kinase,

or a cytokine receptor, where the general theme linking all data driven chapters

is that these pathways have some relevance in human diseases and disorders.

The analysis carried out for the biological systems in this thesis has confirmed

experimental hypotheses, elucidated important reactions and rates and allowed

for predictions to be made relating to specific cell signalling pathways. As well

as this, new methodologies have been developed to analyse a general stochastic

model of receptor competition for a common ligand type.

295



7. CONCLUDING REMARKS

296



Appendix A

Identifiability analysis for the

HypIL-6 mathematical model

In this appendix, the working for the structural identifiability analysis for the

HypIL-6 mathematical model under hypothesis 1 is presented based on the method

by Castro & de Boer (2020), described in Section 4.3.2. Firstly, Equations (4.1)

- (4.22), defining the HypIL-6 mathematical model are rewritten in simpler nota-

tion, given in Table A.1, as in Equations (A.1) - (A.22), to aid readability in this

section. Each functionally independent term in each of the ODEs is then equated

to its scaled form where, for example,

r+
1,6x1x2 =

1

ux1
ur+1,6r

+
1,6ux1x1ux2x2,

from Equation (A.1). Given that the initial concentration of ligand, [L6] ≡ x2, is

known and fixed in the experiments, it is given by the method that ux2 = 1. All

other scaling constants u must be derived by solving the system of identifiability

equations, which is demonstrated here.

dx1

dt
= −r+

1,6x1x2 + r−1,6x3 − β6x1 (A.1)

dx2

dt
= −r+

1,6x1x2 + r−1,6x3 (A.2)
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Notation Notation
Original Simplified Original Simplified

[R1] x1 [S3 ·D6 · S3] x12

[L6] x2 [pS1 ·D6 · S1] x13

[C1] x3 [pS3 ·D6 · S3] x14

[D6] x4 [pS1 ·D6 · pS1] x15

[S1] x5 [pS3 ·D6 · pS3] x16

[S3] x6 [S1 ·D6 · S3] x17

[D6 · S1] x7 [pS1 ·D6 · S3] x18

[D6 · S3] x8 [S1 ·D6 · pS3] x19

[D6 · pS1] x9 [pS3 ·D6 · pS3] x20

[D6 · pS3] x10 [pS1] x21

[S1 ·D6 · S1] x11 [pS3] x22

Table A.1: Simplified notation for the variables of the HypIL-6 mathematical
model under hypothesis 1, to be used in the structural identifiability analysis.

dx3

dt
= r+

1,6x1x2 − 2r+
2,6x

2
3 + 2r−2,6x4 − (β6 + r−1,6)x3 (A.3)

dx4

dt
= r+

2,6x
2
3 − 2k+

1ax4x5 + k−1a(x7 + x9)− 2k+
3ax4x6 + k−3a(x8 + x10)

− (β6 + r−2,6)x4 (A.4)

dx5

dt
= −k+

1ax5(2x4 + x7 + x8 + x9 + x10) + k−1a(x7 + 2x11 + x17 + x13 + x19)

+ d1x21 (A.5)

dx6

dt
= −k+

3ax6(2x4 + x8 + x7 + x10 + x9) + k−3a(x8 + 2x12 + x17 + x14 + x18)

+ d3x22 (A.6)

dx7

dt
= 2k+

1ax5x4 − k+
1ax7x5 + 2k−1ax11 − k+

3ax7x6 + k−3ax17 + k−1ax13 + k−3ax19

− (β6 + k−1a + q)x7 (A.7)

dx8

dt
= 2k+

3ax6x4 − k+
3ax8x6 + 2k−3ax12 − k+

1ax8x5 + k−1ax17 + k−1ax18 + k−3ax14

298



− (β6 + k−3a + q)x8 (A.8)

dx9

dt
= −k+

1ax5x9 + k−1ax13 − k+
3ax6x9 + k−3ax18 + qx7 + 2k−1ax15 + k−3ax20

− (β6 + k−1a)x9 (A.9)

dx10

dt
= −k+

3ax6x10 + k−3ax14 − k+
1ax5x10 + k−1ax19 + qx8 + 2k−3ax16 + k−1ax20

− (β6 + k−3a)x10 (A.10)

dx11

dt
= k+

1ax5x7 − (2k−1a + 2q + β6)x11 (A.11)

dx12

dt
= k+

3ax6x8 − (2k−3a + 2q + β6)x12 (A.12)

dx13

dt
= k+

1ax9x5 + 2qx11 − (q + β6 + 2k−1a)x13 (A.13)

dx14

dt
= k+

3ax10x6 + 2qx12 − (q + β6 + 2k−3a)x14 (A.14)

dx15

dt
= qx13 − (2k−1a + β6)x15 (A.15)

dx16

dt
= qx14 − (2k−3a + β6)x16 (A.16)

dx17

dt
= k+

1ax5x8 + k+
3ax7x6 − (k−3a + 2q + β6 + k−1a)x17 (A.17)

dx18

dt
= qx17 + k+

3ax9x6 − (k−3a + q + k−1a + β6)x18 (A.18)

dx19

dt
= qx17 + k+

1ax5x10 − (k−1a + q + k−3a + β6)x19 (A.19)

dx20

dt
= q(x19 + x18)− (k−1a + k−3a + β6)x20 (A.20)

dx21

dt
= k−1a(x9 + x13 + x18 + x20 + 2x15)− d1x21 (A.21)

dx22

dt
= k−3a(x10 + x14 + x19 + x20 + 2x16)− d3x22 (A.22)
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Firstly, from Equation (A.1),

β6x1 =
1

ux1
ux1x1uβ6β6 =⇒ uβ6 = 1,

since the other terms cancel. Similar linear terms in Equations (A.21) and (A.22)

suffice to show that ud1 = ud3 = 1. Given that β6 is identifiable, the identifiability

equation

(β6 + r−1,6)x3 =
1

ux3
(uβ6β6 + ur−1,6r

−
1,6)ux3x3,

derived from Equation (A.3) implies that ur−1,6 = 1 and a similar equation derived

from Equation (A.4) implies that ur−2,6 = 1. In a similar fashion, the terms

(β6+k−1a)x9 and (β6+k−3a)x10 from Equations (A.9) and (A.10) respectively, result

in identifiability equations which can be simplified to show that uk−1a = uk−3a = 1.

Now that it is known that uβ6 = uk−1a = 1, the identifiability equation

(2k−1a + 2q + β6)x11 =
1

ux11
(2uk−1ak

−
1a + 2uqq + uβ6β6)ux11x11,

where the term is taken from Equation (A.11), can be used to show that uq = 1.

Then, from Equation (A.1), given that ux2 = 1, the term r+
1,6x1x2 allows to prove

that ur+1,6 = 1 and with this, the identifiability equation derived from the same

term but taken from Equation (A.2) can be used to show that ux1 = 1. It can be

found by equating the terms r−1,6x3 and 2r−2,6x4 from Equations (A.1) and (A.3)

respectively, to their scaled counterparts, that ux3 = ux4 = 1. The rate of dimer

formation, r+
2,6, is found to be identifiable when considering the identifiability

equation for the term r+
2,6x

2
3 from Equation (A.4). The remaining two rate con-

stants, k+
1a and k+

3a are also both identifiable as can be seen by examining the

terms 2k+
1ax4x5 and 2k+

3ax4x6 from Equations (A.5) and (A.6).

It then remains to determine whether the remaining variables are observable.

From Equation (A.4), the identifiability equation for the term 2k+
1ax4x5 can be

used to show that ux5 = 1 and the term 2k+
3ax4x6, can be used to show that ux6 =

1. Five functionally independent terms are given by k−1a(x7+2x11+x17+x13+x19)

in Equation (A.5), and, given that ux5 = 1 and uk−1a = 1, it can be seen that
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ux7 = ux11 = ux13 = ux17 = ux19 = 1. The last term in the same equation can be

used to prove that ux21 = 1. Equation (A.6) contains very similar terms involving

the coefficients relating to STAT3 instead of STAT1, and hence from this equation

one can find that ux8 = ux12 = ux14 = ux18 = ux22 = 1. The variable x20 is found

to be observable through solving the identifiability equation relating to the term

qx19 in Equation (A.20). The variables x9 and x10 are also observable which can

be derived from Equation (A.5), specifically looking at the terms k+
1ax5x9 and

k+
1ax5x10. Finally, the two remaining variables x15 and x16 appear in the terms

2k−1ax15 and 2k−3ax16 in Equations (A.21) and (A.22) respectively, and thus again,

these variables are observable.

The HypIL-6 mathematical model under hypothesis 1, with known initial

concentration [L6](0) is therefore fully structurally identifiable. Although not

presented here, the same is true for the HypIL-6 mathematical model under

hypothesis 2 as well as both of the IL-27 mathematical models. It is therefore

appropriate to attempt to estimate each parameter in the mathematical models

individually as is carried out in Section 4.3.5.
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Appendix B

BioNetGen code for the HypIL-6

SOCS3 mathematical model

In this appendix, an example BioNetGen code is given for the HypIL-6 mathemat-

ical model with the additional reactions describing negative feedback by SOCS3.

The parameter values are a random set sampled from the Th-1 cell posterior

distributions.

begin parameters

r16p 0.00363718138359308 #GP130 IL−6 b ind ing

r16m 0.006528167482425672 #GP130 IL−6 unbinding

r26p 2.4057717991321548 #GP130 d imer i sa t i on

r26m 0.02633952268026585 #GP130 dimer d i s s o c i a t i o n

k1ap 0.020010330131956595 #STAT1 b ind ing to GP130

k1am 0.07470043883835913 #STAT1 unbinding GP130

k3ap 0.12041002616902625 #STAT3 b ind ing GP130

k3am 0.16601839306976587 #STAT3 unbinding GP130

q 0.004642309832977627 #STAT phosphory l a t i on

d1 0.0011089072518100501 #STAT1 dephosphory la t i on

d3 0.0004716010068422507 #STAT3 dephosphory la t i on

R10 2.8382589199305848 #I n i t i a l concen t ra t ion o f GP130

S10 589.1642864948094 #I n i t i a l concen t ra t ion o f STAT1

S30 90.66846449691016 #I n i t i a l concen t ra t ion o f STAT3

L0 10 #I n i t i a l concen t ra t ion o f IL−6
X3a0 20 #I n i t i a l concen t ra t ion o f SOCS3 dummy 1

de l ta1 0 .0005 #Rate o f SOCS3 dummy 1 to dummy 2
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de l ta2 0 .0005 #Rate o f SOCS3 dummy 2 to dummy 3

de l ta3 0 .0005 #Rate o f SOCS3 dummy 3 to SOCS3

alpha 0 .005 #Rate o f SOCS3 b ind ing to r e c ep t o r s

end parameters

begin molecule types

R( l , r , s , x ,T˜U˜P) #GP130

L( r ) #IL−6
S1 ( r ,T˜U˜P) #STAT1

S3 ( r ,T˜U˜P) #STAT3

X3a ( ) #SOCS3 dummy 1

X3b ( ) #SOCS3 dummy 2

X3c ( ) #SOCS3 dummy 3

X3( r ) #SOCS3

end molecule types

begin seed s p e c i e s

R( l , r , s , x ,T˜U) R10 #GP130

L( r ) L0 #IL−6
S1 ( r ,T˜U) S10 #STAT1

S3 ( r ,T˜U) S30 #STAT3

X3a ( ) X3a0 #SOCS3 dummy

end seed s p e c i e s

begin r e a c t i o n r u l e s

#GP130 IL−6 b ind ing and unbinding

R( l , r , s , x ,T˜U) + L( r ) <−> R( l ! 1 , r , s , x ,T˜U) . L( r ! 1 ) r16p , r16m

#Dimerisat ion and d i s s o c i a t i o n o f the dimer

R( l !+ , r , s , x ,T˜U) + R( l !+ , r , s , x ,T˜U) <−>
R( l !+ , r ! 1 , s , x ,T˜P) .R( l !+ , r ! 1 , s , x ,T˜P) 2∗ r26p , r26m

#STAT1 b ind ing the GP130 dimer

S1 ( r ,T˜U) + R( l !+ , r ! 1 , s , x ! ? ,T˜P) .R( l !+ , r ! 1 , s , x ! ? ) −>
S1 ( r ! 2 ,T˜U) .R( l !+ , r ! 1 , s ! 2 , x ! ? ,T˜P) .R( l !+ , r ! 1 , s , x ! ? ) k1ap

S1 ( r ,T˜U) + S1 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s , x ! ? ,T˜P) −>
S1 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s ! 3 , x ! ? ,T˜P) . S1 ( r ! 3 ,T˜U)

k1ap

S1 ( r ,T˜U) + S3 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s , x ! ? ,T˜P) −>
S3 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s ! 3 , x ! ? ,T˜P) . S1 ( r ! 3 ,T˜U)

k1ap

#STAT3 b ind ing the GP130 dimer

S3 ( r ,T˜U) + R( l !+ , r ! 1 , s , x ! ? ,T˜P) .R( l !+ , r ! 1 , s , x ! ? ) −>
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S3 ( r ! 2 ,T˜U) .R( l !+ , r ! 1 , s ! 2 , x ! ? ,T˜P) .R( l !+ , r ! 1 , s , x ! ? ) k3ap

S3 ( r ,T˜U) + S1 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s , x ! ? ,T˜P) −>
S1 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s ! 3 , x ! ? ,T˜P) . S3 ( r ! 3 ,T˜U)

k3ap

S3 ( r ,T˜U) + S3 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s , x ! ? ,T˜P) −>
S3 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s ! 3 , x ! ? ,T˜P) . S3 ( r ! 3 ,T˜U)

k3ap

#STAT1 phosphory l a t i on on the dimer

S1 ( r ! 2 ,T˜U) .R( l !+ , r ! 1 , s ! 2 , x ! ? ,T˜P) .R( l !+ , r ! 1 , s ! ? , x ! ? ) −>
S1 ( r ! 2 ,T˜P) .R( l !+ , r ! 1 , s ! 2 , x ! ? ,T˜P) .R( l !+ , r ! 1 , s ! ? , x ! ? ) q

#STAT3 phosphory l a t i on on the dimer

S3 ( r ! 2 ,T˜U) .R( l !+ , r ! 1 , s ! 2 , x ! ? ,T˜P) .R( l !+ , r ! 1 , s ! ? , x ! ? ) −>
S3 ( r ! 2 ,T˜P) .R( l !+ , r ! 1 , s ! 2 , x ! ? ,T˜P) .R( l !+ , r ! 1 , s ! ? , x ! ? ) q

#(p)STAT1 d i s s o c i a t i o n from the dimer

S1 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s ! ? , x ! ? ) −>
S1 ( r ) + R( l !+ , r ! 1 , s , x ! ? ) .R( l !+ , r ! 1 , s ! ? , x ! ? ) k1am

#(p)STAT3 d i s s o c i a t i o n from the dimer (8)

S3 ( r ! 2 ) .R( l !+ , r ! 1 , s ! 2 , x ! ? ) .R( l !+ , r ! 1 , s ! ? , x ! ? ) −>
S3 ( r ) + R( l !+ , r ! 1 , s , x ! ? ) .R( l !+ , r ! 1 , s ! ? , x ! ? ) k3am

#pSTAT1 dephosphory la t i on in the cytop lasm

S1 ( r ,T˜P) −> S1 ( r ,T˜U) d1

#pSTAT3 dephosphory la t i on in the cytop lasm

S3 ( r ,T˜P) −> S3 ( r ,T˜U) d3

#SOCS3 dummy 1 becoming SOCS3 dummy 2

X3a ( ) −> X3b ( ) de l t a1

#SOCS3 dummy 2 becoming SOCS3 dummy 3

X3b ( ) −> X3c ( ) de l t a2

#SOCS3 dummy 3 becoming a c t i v e SOCS3

X3c ( ) −> X3( r ) de l t a3

#SOCS3 dea c t i v a t i on o f r e cep to r

X3( r ) + R( l !+ , r !+ , s ! ? , x ,T˜P) −>
X3( r ! 1 ) .R( l !+ , r !+ , s ! ? , x ! 1 ,T˜U) alpha

end r e a c t i o n r u l e s

begin obse rvab l e s

#pSTAT1

Molecules pS1 S1 ( r ! ? ,T˜P)

#pSTAT3

Molecules pS3 S3 ( r ! ? ,T˜P)

end obse rvab l e s
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B. BIONETGEN CODE FOR THE HYPIL-6 SOCS3
MATHEMATICAL MODEL

generate network ( ) ;

s imu la te ode ({ t end =>10800, n s t ep s =>10800});
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Appendix C

Partial derivatives within the

FGFR2 model Jacobian

In this appendix, the partial derivatives comprising the Jacobian matrix for the

FGFR2 model, defined in Section 5.3.3, are given. Where a partial derivative of

a function fi for i = 1, . . . , 11 with respect to a model variable is not given, it

can be assumed to be equal to 0.

Partial derivatives of f1:

∂f1

∂[pF ]
= −k1 − k+2([S]T − [pF · S]− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]

− [pF · pP · S])− k+3([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

∂f1

∂[pF · S]
= −k1 + k−2 + k+2[pF ]

∂f1

∂[pF · P ]
= −k1 + k−3 + k+3[pF ]

∂f1

∂[pF · pP ]
= −k1 + k+3[pF ] + k5

∂f1

∂[pP ]
=

∂f1

∂[S · pP ]
= k+3[pF ]

∂f1

∂[pF · S · P ]
=

∂f1

∂[pF · S · pP ]
= −k1 + k−2 + k+2[pF ] + k+3[pF ]
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∂f1

∂[pF · P · S]
= −k1 + k+2[pF ] + k−3 + k+3[pF ]

∂f1

∂[pF · pP · S]
= −k1 + k+2[pF ] + k+3[pF ] + k5

Partial derivatives of f2:

∂f2

∂[pF ]
= k+2([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S])

∂f2

∂[pF · S]
= −k+2[pF ]− k−2 − k+7[pP ]

∂f2

∂[pP ]
= −k+7[pF · S]

∂f2

∂[S · P ]
=

∂f2

∂[S · pP ]
=

∂f2

∂[pF · S · P ]
=

∂f2

∂[pF · P · S]
=

∂f2

∂[pF · pP · S]
= −k+2[pF ]

∂f2

∂[pF · S · pP ]
= −k+2[pF ] + k−7

Partial derivatives of f3:

∂f3

∂[pF ]
= k+3([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · P ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

∂f3

∂[pF · P ]
= −k+3[pF ]− k−3 − k4

∂f3

∂[pF · pP ]
=

∂f3

∂[pP ]
=

∂f3

∂[S · P ]
=

∂f3

∂[S · pP ]
=

∂f3

∂[pF · S · P ]
=

∂f3

∂[pF · P · S]

=
∂f3

∂[pF · S · pP ]
=

∂f3

∂[pF · pP · S]
= −k+3[pF ]

Partial derivatives of f4:

∂f4

∂[pF · P ]
= k4

∂f4

∂[pF · pP ]
= −k5
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Partial derivatives of f5:

∂f5

∂[pF ]
= 0

∂f5

∂[pF · pP ]
= k5

∂f5

∂[pP ]
= −k+7([S]T − [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S])

∂f5

∂[S · P ]
=

∂f5

∂[pF · S · P ]
=

∂f5

∂[pF · P · S]
=

∂f5

∂[pF · pP · S]
= k+7[pP ]

∂f5

∂[S · pP ]
=

∂f5

∂[pF · S · pP ]
= k+7[pP ] + k−7

Partial derivatives of f6:

∂f6

∂[pF ]
= −k+2[S · P ]− k+3[S · P ]

∂f6

∂[pF · S]
= −k+6([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · P ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

∂f6

∂[pF · P ]
=

∂f6

∂[pF · pP ]
=

∂f6

∂[pP ]
= −k+6([S]T − [pF · S]− [S · P ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

∂f6

∂[S · P ]
= −k−6 − k+2[pF ]− k+3[pF ]− k+6([P ]T − [pF · P ]− [pF · pP ]

− [pP ]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]

− [pF · pP · S])− k+6([S]T − [pF · S]− [S · P ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

∂f6

∂[S · pP ]
=

∂f6

∂[pF · S · pP ]
=

∂f6

∂[pF · pP · S]
= −k+6([P ]T − [pF · P ]− [pF · pP ]

− [pP ]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]

− [pF · pP · S])− k+6([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])
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∂f6

∂[pF · S · P ]
= k−2 − k+6([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · P ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

− k+6([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S])

∂f6

∂[pF · P · S]
= k−3 − k+6([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · P ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

− k+6([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S])

Partial derivatives of f7:

∂f7

∂[pF ]
= −k+2[S · pP ]

∂f7

∂[pF · S]
=

∂f7

∂[S · P ]
=

∂f7

∂[pF · S · P ]
=

∂f7

∂[pF · P · S]
= −k+7[pP ]

∂f7

∂[pP ]
= k+7([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S])

∂f7

∂[S · pP ]
= −k+7[pP ]− k−7 − k+2[pF ]

∂f7

∂[pF · S · pP ]
= −k+7[pP ] + k−2

∂f7

∂[pF · pP · S]
= −k+7[pP ] + k5

Partial derivatives of f8:

∂f8

∂[pF ]
= k+2[S · P ]

∂f8

∂[S · P ]
= k+2[pF ]

∂f8

∂[pF · S · P ]
= −k−2
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Partial derivatives of f9:

∂f9

∂[pF ]
= k+3[S · P ]

∂f9

∂[S · P ]
= k+3[pF ]

∂f9

∂[pF · P · S]
= −k−3 − k4

Partial derivatives of f10:

∂f10

∂[pF ]
= k+2[S · pP ]

∂f10

∂[pF · S]
= k+7[pP ]

∂f10

∂[pP ]
= k+7[pF · S]

∂f10

∂[S · pP ]
= k+2[pF ]

∂f10

∂[pF · S · pP ]
= −k−7 − k−2

Partial derivatives of f11:

∂f11

∂[pF · P · S]
= k4

∂f11

∂[pF · pP · S]
= −k5
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Appendix D

One parameter rescaled FGFR2

mathematical model

In this appendix, the FGFR2 mathematical model defined by Equations (5.29)

- (5.39) is rescaled in terms of only the parameter kp
km

and the known Kd values

where, k−2 = k−3 = k−6 = k−7 = k5 = km, k1 = k4 = kp and k+i = km
Kd,i

for i ∈ {2, 3, 6, 7}. Dividing by km throughout results in the Equations (D.1) -

(D.11) with τ = kmt.

d[pF ]

dτ
=

kp
km

([F ]T − [pF ]− [pF · S]− [pF · P ]− [pF · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S]) + ([pF · S]

+ [pF · S · P ] + [pF · S · pP ])− 1

Kd,2
[pF ]([S]T − [pF · S]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S]) + ([pF · P ]

+ [pF · P · S])− 1

Kd,3
[pF ]([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

+ ([pF · pP ] + [pF · pP · S]) (D.1)

d[pF · S]

dτ
=

1

Kd,2
[pF ]([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])
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− [pF · S]− 1

Kd,7
[pF · S][pP ] + [pF · S · pP ] (D.2)

d[pF · P ]

dτ
=

1

Kd,3
[pF ]([P ]T − [pF · P ]− [pF · pP ]− [pP ]− [S · P ]− [S · pP ]

− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])

− [pF · P ]− kp
km

[pF · P ] (D.3)

d[pF · pP ]

dτ
=

kp
km

[pF · P ]− [pF · pP ] (D.4)

d[pP ]

dτ
= [pF · pP ]− 1

Kd,7
[pP ]([S]T − [S · P ]− [S · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S]) + ([S · pP ]

+ [pF · S · pP ]) (D.5)

d[S · P ]

dτ
=

1

Kd,6
([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]

− [pF · S · pP ]− [pF · pP · S])([P ]T − [pF · P ]− [pF · pP ]− [pP ]

− [S · P ]− [S · pP ]− [pF · S · P ]− [pF · P · S]− [pF · S · pP ]

− [pF · pP · S])− [S · P ]− 1

Kd,2
[pF ][S · P ] + [pF · S · P ]

− 1

Kd,3
[pF ][S · P ] + [pF · P · S] (D.6)

d[S · pP ]

dτ
=

1

Kd,7
[pP ]([S]T − [pF · S]− [S · P ]− [S · pP ]− [pF · S · P ]

− [pF · P · S]− [pF · S · pP ]− [pF · pP · S])− [S · pP ]

− 1

Kd,2
[pF ][S · pP ] + [pF · S · pP ] + [pF · pP · S] (D.7)

d[pF · S · P ]

dτ
=

1

Kd,2
[pF ][S · P ]− [pF · S · P ] (D.8)

d[pF · P · S]

dτ
=

1

Kd,3
[pF ][S · P ]− [pF · P · S]− kp

km
[pF · P · S] (D.9)

d[pF · S · pP ]

dτ
=

1

Kd,7
[pF · S][pP ]− [pF · S · pP ] +

1

Kd,2
[pF ][S · pP ]
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− [pF · S · pP ] (D.10)

d[pF · pP · S]

dτ
= −[pF · pP · S] +

kp
km

[pF · P · S] (D.11)
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Appendix E

EGFR inhibition data

Figures of the data used in Chapter 6 are presented in this appendix, for each

cell type and inhibitor type. Figures E.1 to E.8 show the data in the WT cell

line for the inhibitors D1-D8 and figures E.9 to E.16 show the data in the SVD

cell line. Each subplot of a figure shows the MFI data for a specific protein in a

specific cellular compartment, where “PM” stands for “plasma membrane”.
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Figure E.1: Figure of the MFI data in the WT cell line under inhibition with
inhibitor type D1. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.2: Figure of the MFI data in the WT cell line under inhibition with
inhibitor type D2. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.3: Figure of the MFI data in the WT cell line under inhibition with
inhibitor type D3. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.4: Figure of the MFI data in the WT cell line under inhibition with
inhibitor type D4. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.5: Figure of the MFI data in the WT cell line under inhibition with
inhibitor type D5. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.6: Figure of the MFI data in the WT cell line under inhibition with
inhibitor type D6. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.7: Figure of the MFI data in the WT cell line under inhibition with
inhibitor type D7. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.8: Figure of the MFI data in the WT cell line under inhibition with
inhibitor type D8. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.9: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D1. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.

326



Figure E.10: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D2. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.11: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D3. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.12: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D4. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.13: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D5. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.14: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D6. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.15: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D7. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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Figure E.16: Figure of the MFI data in the SVD cell line under inhibition with
inhibitor type D8. The dashed line on each subplot represents the normalisation
to the DMSO control and the colour of a point refers to the concentration of
inhibitor with units µM as given in the legend.
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& Molina-Paŕıs, C. (2014). Receptor pre-clustering and T cell responses:

insights into molecular mechanisms. Frontiers in immunology , 5, 132. 95, 96
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Gómez-Corral, A. & López-Garćıa, M. (2012b). On the number of births

and deaths during an extinction cycle, and the survival of a certain individual

in a competition process. Computers & Mathematics with Applications , 64,

236–259. 122
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