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i 

Executive Summary 

Many-objective optimisation analysis is frequently carried out today on 

problems of ever-increasing complexity. Metaheuristic evolutionary algorithms 

represent effective and practical tools in solving such issues. The current PhD 

thesis describes four contributions to the field of study. 

A new method for the creation of reference points and an indexing system of 

reference vectors are proposed, generating more evenly distributed reference 

points than the popular uniform design method.  

A new quality metric/indicator for diversity evaluation on MaOP 

approximations is proposed. The numerical studies show that the new indicator 

varies more systematically with the diversity change of PF approximations 

compared to how frequently applied existing diversity indicators behave. 

A new visualisation method for revealing high dimensional MaOP 

approximations is proposed.  The new method satisfies all the desired 

requirements of a visualisation method in a balanced manner. 

A real-life application case study is performed on an additive manufacturing 

problem: optimisation analysis on process parameters of a selective laser 

melting manufacturing process. The three proposed methods and related 

algorithms are utilised to enhance, contrast, and visualise the Pareto Front 

approximations. The outcome shows that the proposed methods are readily 

used to enhance the quality of the Pareto front and the Pareto optimal process 

parameters of the manufacturing operation.  
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Chapter 1  Introduction 

1.1  General Remarks 

Optimisation analysis is continuously performed everywhere, on occasions, 

so long as different alternatives can be chosen. When we move from A to B, 

we usually want to get to position B in the shortest time and the shortest walk 

distance possible. But the goal of reaching position B could be hindered or 

influenced by physical barriers in between, like fences, buildings, etc. The time 

spent and length to be covered are our objective functions which are functions 

of the walking route we choose [1].  Here, all possible walking paths are 

described as the decision variables, while those hinders are constraints of the 

problem, forcing us to choose certain route combinations.  

Summarised, optimisation is a process of finding the best inputs (Decision 

Variables), out of their feasible domain, to the outcome function (Objective 

Functions) to obtain the optimal output from the outcome function. The process 

of searching input values that lead to a maximum of an objective function is 

called maximisation. On the contrary, it is called minimisation when it leads to 

a minimum. An optimisation process is often changeable to minimisation and 

vice versa [1]. Therefore, research focuses on either of the two, often 

concentrating on minimisation problems. 

The optimisation methodologies can be deployed in mechanical design and 

production, manufacturing, electrical engineering, civil engineering, process 

control, economics and finance, etc. Significant savings can be obtained 

through the analyses of such operations. 
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It is often the case that optimisation of more than one objective must be 

carried out simultaneously. When used in design work, critical design 

parameters for reliability and economy are optimised so that the system's 

availability is maximised while the costs are minimised. Most commonly, the 

system’s reliability and the cost of realisation are two conflicting objectives. 

Compromises or trade-offs of the conflicting factors need to be found. In 

aerospace engineering problems, the strength and weight of components are 

often two conflicting factors. The clue is to maximise the former and at the same 

time to minimise the latter. In business life, profit, output, performance, and 

efficiency are desired to be maximised, while resources, time, and money to be 

spent are always limited and are minimised.  

The optimisation of only one objective function is called Single Objective 

optimisation (SOO). When two or more objective functions are optimised 

simultaneously, the process is called multi-objective optimisation problems 

(MOP) or many-objective optimisation problems (MaOP) if the objectives 

exceed three. In such cases, a single solution leading to the optimum of all 

objective functions is non-existent if the objectives are conflicting, which means 

that none of the objective functions can be improved in value without worsening 

one or more of the other objective functions [1]–[3]. Instead, trade-off solutions 

must be found [1]. Such Trade-offs are called  Pareto Optimal Solutions or Non-

dominated Pareto Optimal. Such solutions form an (𝑚-1) dimensional surface 

in an objective function space called Pareto Front (PF). PF reveals different 

Pareto optimal solutions representing other possibilities for a Decision Maker 

(DM) in decision making in operation. Without other choices made by a human 

DM, all Pareto optimal solutions are incomparable since they represent different 

operational options, all under optimised states [1].  
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Scientists and researchers have been working with the optimisation theory 

for a very long time. The French mathematicians Fermat and Lagrange worked 

to find optima of functions as early as the 14th and 15th centuries. Newton and 

Gauss invented the finding of optimum by iteration [1]. Before the age of 

electronic computers, optimisation analysis was done analytically. Rapid 

development within optimisation theory and practice have taken place after 

computers have been widely accepted into use. Most of the methods in the 

early stages are, although numerically based, deterministic. Heuristic and 

metaheuristic solution techniques emerged around the mid-20th century and 

rapidly developed. The prefix “meta” means “change” while “heuristic” means 

to find the solutions by trial and fail through using constantly improved solutions. 

The methods are iterative, stochastic, and formulated so that the optima are 

searched and reached self-guided by algorithms. Heuristic methods used for 

solving optimisation problems may search for solutions more quickly than other 

classical methods do and cases where classic methods cannot find any 

satisfactory solution due to the problems' size and complication. But heuristic 

methods cannot mathematically guarantee that optimised results can be 

attained. Researchers today tend to call all stochastic techniques metaheuristic 

ones.  

Two objective and three-objective problems are often considered a group of 

problems of their own because solutions on PF may be readily visualised by 

traditional figures and charts and thus easier to be found and evaluate. Also, 

effective and efficient solution techniques exist. When the number of objectives 

increases, new challenges emerge that are often inadequately dealt with using 

existing MOP methodologies (computational efficiency, visualisation, 

optimisation effectiveness etc.). For example, researchers argue that the most 

exciting MaOPs can have up to 15 objectives [2]. Moreover, it is incredibly 
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difficult or almost impossible to develop a single method that can solve all kinds 

of optimisation problems due to the diverse nature of challenges. Wolpert, D. 

H. and W. G., Macready formulate the famous No Free Lunch Theorem for 

optimisation [4], which roughly says that "no algorithm performs well on all 

possible functions, but only on a subset that arises from the constraints of real-

world problems". New solution methodologies must be constantly invented to 

deal with ever-increasing real-life challenges. One of the major groups of 

solution techniques of MOPs utilises Reference vectors-based algorithms 

[5]. The MOP is divided into a set of sub-problems using a set of aggregation 

functions or references vectors or points to guide the search towards the true 

PF, and these sub-problems are solved simultaneously.  
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1.2  Aims and Objectives  

The work presented in this thesis focuses on studying the issues of many-

objective optimisation problems based on metaheuristic solution techniques 

solved by decomposition-based algorithms. The motivation arises from the fact 

that while metaheuristic decomposition-based methods are prevalent and 

effective in a variety of cases [2], [6], [7], moving to a higher number of 

objectives (MaOP) still poses several challenges; these are briefly summarised 

as follows [3]:  

Evaluating the convergence and diversity and selecting the next generation 

of candidate solutions targeting having the best combination of convergence 

and diversity possible is computationally expensive and challenging when using 

existing methodologies. 

Maintaining the solutions' diversity is difficult in high dimensional objective 

space. It requires that the reference points utilised to guide the decomposition-

based search for PF must be placed so that the solutions are distributed most 

possibly equal-distantly on the true PF. 

Difficulty in representing the PF: many discrete Pareto Optimal 

approximations represent the PF surface. The needed number increases 

almost exponentially with the number of objectives, requiring a large population 

size in Evolutionary Algorithms. It slows down and eventually jeopardise the 

solution process and make it challenging for a decision-maker in his/her 

decision making based on final solution sets. 

Difficulty in visualising the solution sets: approximated PF landscape of 

many-objective optimisation problems (MaOP) consists of vectors in high 

dimensional objective space. It is nontrivial to reveal these quantities mainly 

because the number of axes in such a visualisation exceeds three. A large 

amount of data is needed to be displayed simultaneously on the other. 



1.2  Aims and Objectives 

6 

The thesis focuses on finding new methodologies to solve the first, second, 

and fourth challenges outlined above. 

The scope of this PhD research work is twofold: 

• To develop new computational and mathematical methods for enhancing 

the performance of MaOP methodologies and underpinning algorithms 

that lead to qualitative and quantitative improvements, focusing on the 

more effective creation of reference vectors, performance indicators and 

high dimensional Pareto Front visualisation methods. 

• To utilise the new methodologies towards demonstrating the utility and 

creating new knowledge in real-life applications in the advanced 

manufacturing industry. 

Specific research objectives are: 

• Develop new and more efficient reference point generation methods for 

better diversified PF solutions used for Decomposition-based MaOP 

solution methodology. 

• Create more applicative diversity indicators for the evaluation of high 

dimensional PF approximations.  

• Develop an appropriate visualisation method for displaying features of 

high dimensional PF approximations. 

• Apply the new methods and algorithms to optimisation analysis of Laser 

Selective Manufacturing processes. 
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1.3  Main Findings 

Several interesting findings have been obtained through this PhD work, and 

the main achievements are: 

Introduction of a generalisation of Das and Dennis method to create more 

equidistant reference points, which can be implemented into any existing 

decomposition-based evolutionary algorithms for MaOPs for improving the 

diversity of Pareto Front approximations. The work was published in 2020 IEEE 

Congress on Evolutionary Computation (CEC) 

A new performance indicator is launched for diversity to assess the 

performance of PF approximations for high dimensional MaOPs. The work has 

been published in the 2021 IEEE Congress on Evolutionary Computation (CEC). 

A new visualisation method is proposed to depict PF and its approximation 

sets in high dimensional space, where high dimensional vectors are mapped 

onto a 2-D space plot. The work was published in the 2021 IEEE Congress on 

Evolutionary Computation (CEC). The paper was nominated as the best student 

paper and attained Runner Up score among the nominated ones. 

The proposed methodologies are implemented in a real-life additive 

manufacturing case study -- Optimisation of Process Parameters in Selective 

Laser Melting (SLM) operation. New insights and knowledge were revealed for 

the manufacturing process as part of the optimisation application. The work is 

prepared for publication as a journal paper in an international journal in the field 

of study.  

https://ieeexplore.ieee.org/xpl/conhome/9178820/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9178820/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9178820/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9178820/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9178820/proceeding
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1.4  Impact of the Work on the Scientific Community 

and the Society 

The current study's achievements contribute significantly to the theory of 

MaOP and positively affect the practical usage of MaOP methodology in real-

life studies. 

First, a new method for creating reference points is proposed for reference 

point-based Many objective Optimisation Problems. Reference points in 

objective space are widely used in MaOP algorithms in assisting the searching 

process towards optimality. Das and Dennis's current standard practice of 

generating reference points on a unit simplex plane often leads to uneven 

distribution on the actual Pareto Front (PF). The generated reference points are 

projected onto it. The new reference points are more evenly generated on an 

m dimensional B-norm surface created adaptively by tracking the true PF. The 

method is thus named as B-norm based PF tracking method (Bn-PFt). An 

indexing system of reference points is also proposed to ease the work of 

algorithmic development. Systematic numerical studies performed on B-norm 

surfaces of various B values show that the proposed Bn-PFt method's 

reference points are more evenly distributed on the PF surfaces than those 

projected onto the same surfaces generated using Das and Dennis.  

Second, approximation sets of MaOP need to be evaluated for performance 

regarding their convergence and diversity properties. Developing consistent 

performance indicators for accessing quality approximations from many-

objective optimisation algorithms is still challenging, particularly as the number 

of objectives increases. We introduce a new pure unary diversity indicator, 

Inverse Ratio of Net Avertence angle (IRNA). IRNA is formulated using 

reference vectors by minimising the included angles between approximated 

solution set and reference vectors. It is achieved by rotating the system of 
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reference vectors in all dimensions with an optimised spatial angle. Any 

eventual systematic bias in included angles is removed, and the highest 

possible diversity score of a solution set is obtained. Candidates of an 

approximation set are first identified for diversity evaluation, and the chosen 

ones are then used for convergence assessment. Based on numerical results 

from testing synthetic solutions on a unit simplex plane and benchmark 

functions up to 10 objectives, the proposed performance indicator IRNA is more 

sensitive to capturing diversity changes than other state-of-the-art performance 

indicators as the number of objectives increases. Thus, it is deemed particularly 

suitable for many-objective optimisation problems. 

Third, a new visualisation method is introduced for a graphical depiction of 

PF and its approximation sets in high dimensional space, where high 

dimensional vectors are mapped onto 2D space. Visualisation of Pareto Front 

(PF) approximations of many-objective optimisation problems (MaOP) is critical 

in understanding and solving a MaOP. Research is ongoing on developing 

effective visualisation methods with desired properties, such as simultaneously 

revealing dominance relation, PF shape and distribution, etc. State-of-the-art 

visualisation methods in the literature only retain some of the required 

properties. A new visualisation method is proposed in this paper, which 

possesses all the visualisation method's preferred properties. The new method 

(ProD) is based on displaying the projection of solution vectors against their 

distances to a reference vector, and a vector would link Ideal point and Nadia 

point. MaF benchmark problems are used to demonstrate the effectiveness of 

ProD. Results show that ProD exhibits a more balanced performance than the 

state-of-the-art in capturing desired visualisation properties. In particular, good 

performance is observed in portraying dominance relations, PF shape and 

distribution. 
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Further, part of the newly developed theories in the current work and its 

derived algorithms are applied in solving a real case manufacturing problem of 

MOP in Selective Laser Melting (SLM). The results from the analysis are 

useable for the finding of optimal process parameters of the operation. New 

insights and knowledge were revealed for the manufacturing process as part of 

the optimisation application. 
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1.5  The Organisation of the PhD Thesis 

Chapter 1. The thesis starts with a brief introduction on computational 

optimisation topics in general and on evolutionary SOP, MOP and MaOP in 

particular, and their usage and importance in today's research field. Some 

significant challenges in the field of research are concisely explained. The aims 

and objectives and the main findings of the thesis work are also highlighted. 

The significance of the present study on the impact on the scientific community 

and society is briefly described.  

Chapter 2 highlights the topics and challenges of data-driven optimisation 

where knowledge in data science and machine learning applied in evolutionary 

optimisation are highlighted. Further, it covers a more detailed summary and 

state of the art description on knowledge of evolutionary computational 

methods for single-, multi- and many-objective optimisation problems and 

related topics, such as performance metrics, benchmark problems and 

visualisation of high dimensional PFs for purposes in the testing of new 

algorithmic developments. These are utilised to evaluate the quality of obtained 

PF approximation sets. Also covered are real-world applications using meta-

heuristic optimisation methodology, showing the subject's importance and 

significance.  

Chapters 3-5 present the main results from this author's research work 

under the supervisor's guidance. Chapter 3 explains a new and generalised 

method for creating equally spaced reference points for decomposition-based 

Many objective Optimisation Problems. A convenient indexing system of 

reference points is also proposed to ease programming work. Chapter 4 

introduces a new performance metric for pure diversity, contributing to 

assessing the performance of high dimensional PF approximations. Chapter 5 

is dedicated to proposing a new visualisation method for PF's graphical 
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depiction and its approximation sets in high dimensional space. High 

dimensional vectors are mapped onto 2D space.  

Chapter 6 demonstrates utilising the newly developed theories and 

methodologies to analyse a real-life manufacturing problem: optimisation on 

reducing cracks of various types formed on products manufactured using 

Selective Laser Melting (SLM) technique.  

Chapter 7 gives the main conclusions of the thesis and a brief description 

of the future work. 
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Chapter 2  Data-driven Evolutionary 

Optimisation  

Chapter Outline 

Data-driven evolutionary optimization is widely used in our daily lives to 

improve the efficiencies of operations people perform and enhance human 

activities' achievements. The objective functions and constraints are often 

formulated with surrogate models (also called meta-models) based on carefully 

performed experiments or numerical simulations. The optimisation problems 

are regularly solved exercising evolutionary and swarm algorithms; both are 

nature-inspired. The first one emulates natural evolution, while the other mimics 

the swarm behaviours of social animals. 

This chapter gives an overview of data-driven evolutionary optimisation and 

a literature study on major achievements and remaining challenges of 

revolutionary and swarm optimisation, focusing on decomposition-based MaOP 

solution techniques. These algorithms are regularly implemented to solve 

complicated optimisation problems. Tools of data-driven evolutionary 

optimization are utilised, especially in problems where no analytical 

mathematical functions are available for the objectives or constraints. The topic 

is multi-disciplinary, consisting of evolutionary computation, machine learning 

and deep learning, and data science. Moreover, issues related to benchmark 

testing applied for the development and verification of new algorithms and 

performance indicators or metrics for measuring the quality of Pareto front 

approximations are presented. Some most frequently used statistical test 
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methods are also discussed. In addition, some commonly employed 

visualisation methodologies are presented. Further, an overview of the 

metaheuristic optimisation case studies in advanced design, engineering, and 

manufacturing are presented. In the end, a summary of the chapter and the 

conclusions are made. 
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2.1  Introduction 

Optimisation of objective functions with respect to their independent 

variables, often called decision variables, is widely performed to improve 

operations' efficiencies and enhance the achievements of human activities. The 

objective functions and constraints can be formulated using physical laws 

governing the process, or numerical simulations, such as finite element method 

(FEM) and computational fluid dynamics (CDF) methods or surrogate models 

(also called meta-models) based on carefully performed experiments or 

numerical simulations. Evolutionary and swarm algorithms are frequently used 

to solve complicated problems of optimisation. The field of research is often 

called data-driven evolutionary optimization. The tools are utilised primarily in 

problems with no analytical mathematical functions for the objectives or 

constraints. The topic is multi-disciplinary, consisting of evolutionary 

computation, machine learning and deep learning, and data science.  

This chapter gives an overview of data-driven evolutionary optimisation and 

a literature study on significant achievements and remaining challenges of 

metaheuristic optimisation, focusing on decomposition-based MaOP solution 

techniques. 

2.1.1  Main process flow of data-driven evolutionary 

optimization 

Jing et al. [8] have illustrated the main process flow of data-driven 

evolutionary optimization. See Fig. 2.1. 
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Figure 2.1 - Process of data-driven evolutionary optimization [8]. 

The data quality in the form of a big or small amount of collected data, data’s 

heterogeneity, noise, embedded errors, incompleteness, distribution, etc., may 

influence the quality of the modelling result. Knowledge of data science is 

adopted to pre-process the data to become more suited for modelling objectives 

and constraint functions. Further, tools from machine learning are exercised in 

modelling work, while evolutionary computation techniques are used to solve 

the optimization problem.  

2.1.2  Definition of optimization problems 

Optimisation problems can be formulated as: 

Optimise {𝑓𝑖(𝒙)},  𝑖 = 1, 2, … ,𝑚 Eq. 2.1 

with respect to 𝑥𝑗,  𝑗 = 1, 2, … , 𝑛 

subject to: 

ℎ𝑘(𝑥) = 0, 𝑘 = 1, 2, … , 𝐾 Eq. 2.2 

𝑔𝑙(𝑥) ≤ 0, 𝑙 = 1, 2, … , 𝐿 Eq. 2.3 

where: 

• 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 : is the decision variable vector, which can be 

continuous, discrete,  or mixed in 𝑛-dimensional decision space. 

• 𝑓𝑖(𝒙): objective function 𝑖 and is nonlinear in general. 

• ℎ𝑘(𝒙): equality constraints function 𝑘 and is nonlinear in general.  



Chapter 2 Data-driven Evolutionary Optimisation 

17 

• 𝑔𝑙(𝒙): inequality constraints function 𝑙 and is nonlinear in general.  

• 𝑚: number of objective functions of the problem to be optimised. 

• 𝐾: number of equality constraints. 

• 𝐿: number of inequality constraints. 

A single-objective optimisation problem (SOP) is a problem if only one 

objective function is optimised. A multi-objective optimisation problem (MOP) is 

formed when the number of objective functions is less or equals 3, and a many-

objective optimisation problem (MaOP) is shaped when the number of objective 

functions is more than 3 (𝑚 ≥4). In MOP and MaOP, a solution that leads to 

the optimum of all objective functions does not exist if the optimisation system 

is nontrivial. A trade-off solution must be found [9].  

The problem is unconstrained if there is neither equality nor inequality 

constraints and is an equality-constrained optimisation problem if there are only 

equality constraints. The problem is a nonlinearly constrained optimisation 

problem if either the objective functions or some of the constraint functions are 

nonlinear, or both. Similarly, the problem is a linear constrained optimisation 

problem if both objective and constraint functions are linear. Further, it is a 

combinatorial optimization problem when optimality is found from a finite set of 

objects, where the set of feasible solutions is discrete. Likewise, it is a discrete 

optimisation problem if all decision variables can only take discrete values. If all 

decision variables can only take binary values, it is a binary optimisation 

problem. Moreover, the problem is a convex optimisation if the objective 

functions are of a convex type [10] and is an optimal control problem when 

some of the objective functions contain integrals. At the same time, some of the 

equality constraints are formulated in differential equations [10]. 

A minimisation problem of 𝑓𝑖(𝒙) can be written as a maximisation problem 

of -𝑓𝑖(𝒙) or 1/𝑓𝑖(𝒙). 

https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Discrete_set
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Unlike SOP, many more solutions exist in MOP, called Pareto optimal set 

(PS). The objective function values in the objective space are called the Pareto 

front (PF). Different Pareto optimal solutions represent other possibilities or 

options in decision making in operation. Without other choices made by a 

human decision-maker (DM), all Pareto optimal solutions are equally good 

since they indicate different operational targets [3], [11]. A decision space is 

also called a search space. A vector of objective functions relates one-to-one 

or one-to-many to decision vectors in decision space. The inverse mapping 

from the search space to the fitness space/objective space creates the fitness 

landscape. Pareto optimality is reached when all objective vectors 𝑭 on PF 

dominate all other vectors 𝑨 outside PF if and only if 𝑭 is at least as good as 𝑨 

in all objectives and better in at least one. A non-dominated objective vector is 

Pareto optimal, which has the property that improving the value of any objective 

function results in worsening the value of at least one other objective. 

Dominance relationship between 2 output values of a system of objective 

functions 𝑓(𝒙1) and 𝑓(𝒙2) can be expressed as: [9] 

𝒇(𝒙1)  =  [𝑓1(𝒙1), 𝑓2(𝒙1),… , 𝑓𝑚(𝒙1)]
𝑇  

and 

𝒇(𝒙2) =  [𝑓1(𝒙2), 𝑓2(𝒙2),… , 𝑓𝑚(𝒙2)]
𝑇 

Eq. 2.4 

where 𝒙1 and 𝒙2 are two decision variable vectors. For a minimisation process, 

𝒇(𝒙2) is said to be dominated by 𝒇(𝒙1)  if 𝒇(𝒙1)  ≤ 𝒇(𝒙2), for all 𝑓𝑖(𝒙1), where 

𝑖 = 1, 2, … , 𝑖 ≠ 𝑗, … ,𝑚, and at least for one of the objectives functions in 𝒇(𝒙), 

𝑓𝑗(𝒙), there 𝑓𝑗(𝒙1) < 𝑓𝑗(𝒙2) . If any other objective function vectors do not 

dominate 𝒇(𝒙1), 𝒇(𝒙1) is called a non-dominated solution of objective functions 

or a global Pareto optimal solution. 

Other general relationships between two vectors 𝒂 and 𝒃 are defined as: 
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1) Equivalence: 𝒂 is equivalent to 𝒃 when the corresponding objectives in 𝒂 

and 𝒃 are equal.  

2) Coverage: 𝒂 covers 𝒃 If 𝒂 either dominates 𝒃 or 𝒂 is equivalent to b.  

3) Incomparability: 𝒂 and 𝒃 are incomparable if both are neither equivalent 

nor mutually dominate one another.  

4) Non-dominated set of vectors: a set of vectors is a non-dominated set if 

all vectors in the set are mutually non-dominating.  

The process of searching for a non-dominated solution or Pareto optimal set 

out of many possible solutions is called Pareto-based ranking or Pareto Filtering 

[3], [11]. PF usually has a dimension (m-1). Occasionally, PF has a lower 

dimension than (m-1), and in such a case, it is referred to as degenerate Pareto 

front. 

A PF is, in general, approximated in discrete points, which have the 

closeness to the Pareto front and the coverage in the objective space. The 

searched approximated Pareto front provides the decision-makers with the 

quality of their decision-making performance for a criterion at the expense of 

one or other criteria. A high quality approximated Pareto front has the 

characteristics of [14]:  

1) The distance between the Pareto front and the approximation is 

minimised.  

2) The solutions in the approximated Pareto front are uniformly distributed, 

which can be mathematically expressed as  

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 (𝑋) = 𝑉𝑎𝑟𝑠∈𝑋(𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠, 𝑋 − 𝑠)) 

in which 𝑋  is the solution set, 𝑠  is an element of the solution set and 

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠, 𝑋 − 𝑠)  measures the variance of 𝑠  compared to other 

solutions in the set 𝑋. 
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3) The extent of the approximated front is maximized, which can be 

described mathematically as 

𝐸𝑥𝑡𝑒𝑛𝑡 (𝑋) = ∑𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠, 𝑋 − 𝑠)

𝑠∈𝑋

 

The last two combined characteristics are often termed the diversity of PF 

approximation. 

2.1.3  The organisation of the chapter  

The rest of the chapter is organized as follows. Section 2.2 presents an 

overview of Data-Driven Evolutionary Optimisation and its main challenges. 

Section 2.3 highlights features and main algorithms in Evolutionary and Swarm 

optimisation. Section 2.4 covers issues related to Benchmark testing applied 

for development and verification on new algorithms. Section 2.5 is devoted to 

discussing performance indicators or metrics for measuring the quality of 

Pareto Front approximations. Section 2.6 discusses some most frequently 

used statistical test methods. Section 2.7 presents some commonly used 

visualisation methodologies. Section 2.8 provides an overview of the 

metaheuristic optimisation methodology used in advanced design, engineering, 

and manufacturing. Section 2.9 provides a summary of the chapter and 

conclusions. 

 



Chapter 2 Data-driven Evolutionary Optimisation 

21 

2.2  Overview of Data Science and Machine Learning 

applied in Data-driven Optimisation 

Data science is an interdisciplinary subject that targets knowledge extraction 

from noisy and unstructured data. The obtained insights are applied in various 

applications, such as modelling for machine learning inference. Machine 

learning methodologies may be used to construct and verify surrogate models 

by utilising the cleansed, aggregated and manipulated data after treatments 

based on data science methodologies. 

2.2.1  Data Science in Data-driven Optimisation 

Data science consists of five major parts of data treatment: capture, 

maintenance, processing, analysis and communication. 

1) Capture: data acquisition, data entry, signal reception, data extraction. It 

handles the issues such as where the data are received, e.g., from neatly 

performed experiments, computational expensive numerical simulations, 

historical data, etc. It also deals with data import and formatting design, 

how data signals are received, and how the targeted or core data are 

recorded when received.  

2) Maintenance: data warehousing, data cleansing, data staging, data 

processing, data architecture design. It deals with how data are stored, 

cleared for discrepancies, how data are immediately stored for data 

processing, how data should be purposefully prepared for their usage, and 

the design of standards according to specific policies, rules, and models. 

3) Processing: data mining, clustering/classification, modelling, and 

summarization. It covers tasks of extracting and discovering patterns in 

large data sets, grouping similar data instances together and labelling 
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data, creating a data model for system use and  presenting the summary 

of data for ease of informative perception. 

4) Analysis: exploratory/confirmatory, predictive analysis, regression, 

qualitative analysis. Exploratory data analysis consists of methods to 

explore the big data set that leads to conclusions. Confirmatory data 

analysis utilises statistical tools such as significance, inference, and 

confidence to evaluate the findings. Predictive analysis extracts 

information from data and finds trends and behaviour patterns. 

Regression analysis estimates the relationships between a dependent 

variable and independent variables. Qualitative data analysis targets 

identifying, examining, and interpreting characteristics in textual data. 

5) Communication: data reporting, data visualization, business intelligence, 

decision-making. Data reporting deals with collecting and formatting raw 

data and applying them to assess the performance of operations. The 

data visualisation reveals data properties in a chart, diagram, picture, etc. 

The working area of Business intelligence and decision-making is to 

process data to form the basis for business decision-making by employing 

proper software.  

Some of the main subjects in data science, which are relevant to this thesis 

work, are described further in specific detail.  

Features or decision variable data are either quantitative or qualitative. 

Quantitative data have numerical quantity and can be continuous or discrete, 

e.g., probability density, number of tests, etc. In contrast, qualitative data have 

qualitative categories of a fixed number, e.g. {M, F} for gender, which is also 

called categorical features or factors [13].  

Data acquisition from performed experiments requires knowledge in the 

design of experiments (DOE) which adopt knowledge of applied statistics for 

https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variable
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planning, conducting, analysing, and interpreting test results. Data obtained 

from correctly performed experiments form the basis for establishing surrogate 

models. A key element in the experiment design is making a sampling plan for 

design variables. Data are often expensive to be generated by physical 

experiments, and there is always a limit for how much data can be made 

available for data collection. The choice among data points in decision space 

based on the uniformity principle is ensured by maximising the minimum 

distances among design or sampling points or minimising correlation measures 

among the sample data [14]. Standard methods are developed based on these 

principles. The most representative of the approaches are factorial design [15],  

Latin Hypercube sampling (LHS, e. g., [14]), and orthogonal arrays (OA, e. g., 

[16]), and hybrids of the fundamental methodologies, e.g., OA-based LHS [17] 

and other optimal LHS schemes [15]. LHS is a sampling-based stratified 

approach where the range of decision variables is divided into several strata, 

and a sampling point is identified on each stratum randomly. The sampling with 

the best uniformity and spreading should be used.  

Summary statistics of a data set are purposely calculated when data are 

obtained. These can be the sample mean, p-sample quantile (0 < p < 1), sample 

median, sample range, sample variance or the sample standard deviation, 

empirical probability density function and cumulative distribution function.  p-

sample quantile is a percentage p of the sample data which is less than or equal 

to a given value. The sample median is the sample 0.5-quantile or 50 sample 

percentile. 

Data sets are studied through visualisation. Bar plots, box plots, histograms, 

and scatter plots are frequently used. A bar plot is often used to visualise 

categorical features. A boxplot shows a data set with its minimum, maximum, 

and the first (25% percentile), second (50% percentile), and third quartiles (25% 
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percentile). It may identify outliers in the data set [13]. A histogram reveals the 

distribution of a quantitative feature. The data set range is divided into several 

bins, and the counts of the values falling in each bin are shown as functions of 

the feature. The data set's variability is observed, its central tendency, i.e., how 

the data are gathered around, and its location, spread, and shape. 

2.2.2  Machine Learning in Data-driven Optimisation 

Machine learning (or data mining) techniques make predictions through 

modelling data. Interpretation of a model and assessment of its uncertainty is 

achieved by adopting statistical learning methodologies. Three major tasks are 

carried out. First, construct approximate mathematical models for data based 

on previous experiences. Second, select the best possible model by fitting or 

calibrating a function to observed data. Third, quantify the uncertainty in the 

model using probability theory and statistical inference. 

Major algorithms in machine learning are supervised learning, unsupervised 

learning, reinforcement learning, and their combined variants. Models are 

learned or trained in supervised learning using training data sets, such as 

regression and classification operations. In unsupervised learning, patterns in 

data sets are identified, and the data sets are neither classified nor labelled, 

such as dimension reduction and data clustering manoeuvres. In reinforcement 

learning, models are trained to make a sequence of decisions based on 

rewarding desired behaviours and punishing undesired ones, such as control 

of robotics of various kinds.   

Some primary data preparation techniques 

Commonly used basic techniques in machine learning are clustering, 

dimension reduction, regression and classification. 

Clustering is used to split data into groups based on similarity principles of 

connectivity, distance, distribution or density. Subspace clustering or bi-
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clustering is used to find the data structure high dimensional space. K-means 

Clustering partitions the data into K groups, where K < the total number of data 

and is a user-defined parameter. The data need to be normal-distributed in 

terms of the Euclidean distance in each cluster. Hierarchical clustering 

establishes a hierarchy of clusters by merging and splitting sub-clusters 

according to their similarity. It can use any form of similarity to do the clustering. 

No user-defined number of clusters is necessary. But it suffers high 

computational complexity (O(N3), N is the number of data) and requires (O(N2)) 

memory. Two major versions exist, agglomerative hierarchical clustering and 

divisive hierarchical clustering. The first is a bottom-up approach, starting with 

each data point as a cluster and then merging similar clusters pairwise. The 

second approach is top-down, beginning with all data in one cluster and 

recursively splitting the clusters hierarchy by hierarchy. 

Dimension reduction reduces the number of problem features by removing 

those redundant or less influential ones. It contributes to noise reduction, 

feature selection or extraction, modelling, data visualization, and data analysis. 

The primary technique is principal component analysis (PCA). It can be either 

done by a linear transform the n-dimensional data to a lower-dimensional 

coordinate system by maximizing the variance of the data [8] or by singular 

value decomposition. Classical PCA methods suffer the limitation that only 

effects of linear correlation between independent variables are accessed. Thus, 

nonlinear PCA methodologies are invented, such as principal curve, manifolds 

kernel PCA and neural networks based PCA. 

Regression is the general term for establishing a functional relationship 

between a dependent variable as output (objective function) and the input of 

independent variables (decision variables). Several alternative models can be 

created. The best selection among the models is based on the bias-variance 
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trade-off in model evaluations. Higher-order models usually give smaller 

sample bias created using training data but may show more significant 

variances based on test data sets. The choice can be accessed and made 

using statistical methods, such as cross-validation, Akaike’s information 

criterion, Bayesian information criterion, minimum description length, etc. The 

law of parsimony or Occam’s razor says that the simplest model that can 

describe the data is the best. 

Classification groups new observations to given known categories, which 

can be considered a supervised form of clustering. Extra challenges emerge 

when the data are class-imbalanced, i.e., some classes have much more data 

than others.  The number of examples in the training dataset for each class 

label is heavily imbalanced. It can be mitigated by over-sampling the minority 

class and under-sampling the majority class. 

Some major machine learning models 

Some popular and frequently used data-driven surrogate models are 

polynomial regression (PR), multi-layer perceptron (MLP), radial-basis-function 

neural networks (RBFNN), support vector machines (SVMs), Gaussian process 

regression model (GPR), decision trees (DT), fuzzy rule systems (FRS), and 

ensembles. 

Polynomial Response Surface (PRS) models a dependent variable as nth 

degree polynomial of independent variables [15]. Training data determine 

coefficients of various terms in the polynomial. The computational complexity 

increases with the increasing order and the amount of training data required. 

The multi-layer perceptron (MLP) [18] uses feedforward neural networks. An 

MLP has an input layer, one or several hidden layers, activation functions and 

output layers. The outputs are expressed as a linear combination (weightings) 

of function values of activation function, which again are expressed as a linear 
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combination of function values of the previous hidden layer, and so on until it is 

done with the input layer. The activation function is a nonlinear function to tackle 

the model's nonlinearity. Examples of these functions are the sigmoid, tanh, 

softmax, rectified linear unit (ReLU), and variants. A linear activation function 

results in a higher learning speed than a nonlinear one.  

Radial-basis-function neural networks (RBFNN) [19] also use artificial neural 

networks but typically have three layers (input, hidden, and output layers). 

RBFNN uses radial basis functions as activation functions, which are local 

functions, such as Gaussian function, reflected sigmoid, and multiquadric 

functions, strongly dependent on the distance between the places in the 

decision space where function values are estimated and the chosen centres of 

radial basis functions. Two alternative methods are used to train an RBFNN. 

One is to find parameters in the chosen RBF function and weights using 

supervised learning on training data. The other is to determine RBF function 

parameters by using the cluster centres and their spread through clustering the 

training data first.  Afterwards, the weights are trained using the training data 

and the least square method. 

Support vector machines (SVMs) are primarily used as machine learning 

models for classifications [20] and surrogate models. Data of n-dimensions are 

classified by an n-1 hyperplane which divides data with the most significant 

margin. SVM can be extended to classify inseparable data using loss functions 

like hinge loss, logistic loss, and exponential loss. It can also classify nonlinear 

data clusters by adopting kernel functions [21]. 

Gaussian process regression model (GP) [22], also called the kriging model, 

is an interpolation method that considers the statistical relationships 

(correlations) between the data. The effects of distance and direction between 

sample points to the predictions at a given point are considered through spatial 
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correlations, contributing to the prediction variation. A mathematical function is 

fitted to all points within a specified radius to determine the prediction at a 

location. Kriging is particularly useful when the data are spatially correlated and 

have a directional bias, and it can both predict the functional relationship and 

measure the uncertainty of the approximations [22].  

Decision trees (DT) [23] consist of three nodes: root, decision, and leaf 

nodes. Root or higher up leaf nodes and decision nodes divide data into several 

classes. The decision-making process or classification or regression tasks are 

visualised and made. Specific criteria regulate the depth of a decision tree. 

Fuzzy rule systems (FRS) [24] use fuzzy sets to mimic expert knowledge. A 

fuzzy set describes the “truth” of a statement in terms of a degree from 0 to 1 

specified by a membership function. Multiple fuzzy sets can be combined to 

form fuzzy subsets, each defined by a fuzzy membership function. The 

parameters of membership functions can be determined using training data. 

One significant advantage of fuzzy systems is their good interpretability, and 

they can be used for regression and classification. 

Ensembles [25] combine several accurate and diverse base models to 

predict function value so that both bias and variance are simultaneously 

minimised. A decision-making procedure determines the final model selection.  

Sensitivity Analysis 

Sensitivity analysis is used to determine the contribution of a decision 

variable to the total change of objective function value. It gives answers as the 

relative importance of decision variables of the problem. A decision variable 

may be kept to a constant value if its variation contributes limitedly to the overall 

change of an objective function (e.g., less than 5% of the total). Such an 

analysis may also provide a priority list of decision variables if input variables' 

uncertainty is reduced concerning Maximum Uncertainty Reduction. It can also 
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be used to find out interactions among parameters or decision variables in the 

model. Moreover, it provides valuable insights for generating new samples by 

identifying the main region of interest in decision space. 

Several methods are established with differences in whether an approach 

is local or global, qualitative or quantitative, parametric or non-parametric and 

model-based or not. Typical examples mentioned are the Morris method [26] 

and the Sobol’s method [27].  

Verification Methods for Surrogate Models 

Modelling errors [28] are analysed based on either metrics relying on testing 

methods or metrics relying on sampling methods. The former group contains 

main methods such as Jackknife error, Bootstrap error, Cross-validation, 

Predictive Estimation of Model Fidelity (PEMF) error, etc. The performance of 

the metrics depends on the type of surrogate model used and the functional 

relationship the surrogate model simulates. The latter includes Coefficient of 

Determination, Mean Square Error (MSE), Root Mean Square Error (RMSE), 

Maximum Absolute Error (MaxAE), Relative Maximum Absolute Error (RMAE), 

Mean Absolute Error (MeanAE), Relative Average Absolute Error (RAAE), etc. 

The efficacy of these metrics relies on the number and the quality of test data 

adopted in the calculations. 

Surrogate Model Management 

Surrogate model management is related to enhance the modelling accuracy 

and the solution efficiency. Surrogate model management in data-driven 

evolutionary optimisation is categorized into offline and online methods, 

depending on whether new data are attained and utilised in the ongoing 

optimisation process.  

It is of an offline type when no extra data are sampled and added to the 

optimisation process. The accuracy of surrogate models in such a case is hard 
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to be validated. The key issue is how to as far as possible improve the quality 

and enlarge the amount of data, and efficiently use the limited data to build 

robust and accurate surrogate models. Several major techniques are available 

[8]: data pre-processing by local regression smoothing method for noisy data; 

data mining where synthetic data are generated; semi-supervised learning 

in which implicit information is also used in the modelling work; model 

selection where the most efficient surrogate models are chosen based on 

validation error analysis; ensemble learning where a number of different 

models are combined in a model ensemble; multi-form optimisation in which 

the problem is formulated using multi-fidelity models with unequal 

computational costs in fitness evaluations; transfer learning in which common 

knowledge from similar problems are utilised to save computational costs. 

A data-driven evolutionary optimisation is of an online type when new data 

are added into the search during the optimisation process so that the global 

and local accuracy of surrogate models are improved, and the optimization 

performance is enhanced in that false optimum is detected and removed by 

recursively checking the validity of solutions either through performing 

numerical simulations or physical experiments. Methods for online surrogate 

management are grouped into population based, generation based, and 

individual based ones [8]. In a population based method, multiple populations 

generated based on disparate models of different fidelity co-evolve at the same 

time. The population of low fidelity carries out a preliminary search, and the 

optimality obtained is checked and verified using the population of high fidelity, 

i.e., of expensive models. In a generation based method, the surrogates are 

enhanced generation-wise, for instance, by training and optimising the 

surrogates using the attained data and the converged solutions are evaluated 

using a model of high fidelity. The surrogates are then updated, and a new 



Chapter 2 Data-driven Evolutionary Optimisation 

31 

round of search is performed based on the updated surrogates. In an individual 

based method, individual data are chosen, and their quality is evaluated using 

models of high fidelity, which is done to reduce randomness and speed up the 

evolution. The representative techniques are pre-selection, random strategy, 

best strategy, clustering method and uncertainty based strategy [8]. In pre-

selection, a larger population than targeted is first created in the optimisation 

process and the best targeted number of solutions are sifted out. In random 

strategy, a specified number of individuals from the offspring population is 

randomly selected and evaluated using the model of high fidelity. In best 

strategy, the best N’ individuals from N offspring are evaluated using the high 

fidelity fitness function. In a clustering method, the number of individuals to be 

evaluated using the expensive real fitness function is reduced by grouping the 

population into a number of clusters and only the individuals closest to each 

cluster centre is evaluated using the real fitness function. In an uncertainty 

based strategy, individuals that are far from the existing training samples are 

selected for model updating to enhance the model quality and to promote the 

exploration type of search.  
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2.3  Evolutionary and Swarm Optimization 

2.3.1  Evolutionary and Swarm optimization versus classical 

optimisation methods  

Classical optimisation methods may be categorised into gradient-based 

methods, such as Newton’s method, Quasi-Newton Method, and gradient-free 

methods, such as Line Search, Pattern Search [10], [19], [29]. Gradient-based 

methods are often preferred when the objective function is differentiable since 

the optimal search direction can be found precisely. Derivative-free search 

methods find their usage when derivatives of the objective function are difficult 

to determine. The main advantage of the classical methods is the quick 

convergence to optimum and thus the limited consumption of computational 

power. But the solution may quickly get stuck in a local optimum and may 

converge slowly due to a low or a negative gradient. In addition, complicated 

black-box optimisation problems are nontrivial to be solved by classical 

methods. 

Evolutionary and Swarm optimisation methodologies are also gradient-free 

methods. The optimisation is searched stochastically by functional evaluations 

and by applying random modifications on best candidate solutions obtained so 

far, and new best candidates are found based on environmental selection. New 

rounds of iteration continue until the optimality is hopefully found after a certain 

number of iterations. However, no guarantee is given to find the global optimum 

of the problem. Compared to classical methods, evolutionary and swarm 

optimisation algorithms can deal with complex optimisation problems that are 

otherwise difficult to solve optimally. Also, they may efficiently avoid being 

trapped in local optima while searching for the global optimum. The major 

weakness of the methods is that they often have high computational complexity. 
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2.3.2  Evolutionary and swarm algorithms  

Metaheuristic optimisation algorithms are roughly divided into two major 

groups. One is developed based on the principles that emulate natural evolution 

for new creatures: mutation, crossover and environmental selection, which 

result in evolutionary algorithms. The other mimics swarm behaviours of social 

animals such as bird flocks and ant colonies, which lead to swarm algorithms.  

All evolutionary algorithms utilise a set of randomly initialized starting points 

for search. The best candidate solutions are evaluated and selected using the 

fitness function and other criteria, resulting in the parent population. Crossover 

and mutation operations are performed on the parent population to generate a 

new offspring population. The best candidates are again chosen as the new 

parent population for the next round of iterations, and the process is repeated 

until a termination condition is reached. It differs between non-elitist and elitist 

environmental selection. The former selection is based on the offspring only, 

while the latter is based on parent and offspring populations together.  

The swarm optimization algorithms use different swarm behaviours or 

solution principles. For instance, the optimality can be searched by guiding a 

population of candidate solutions called particles, moving around in the search 

space and working cooperatively in search for optimality; the intensity of 

pheromones of natural ants is utilised as the preference of optimised solutions 

in the ant colony algorithm, where the level of pheromone intensity increases 

with the number of ants who visit the specific route (solution). 

A balance in exploration and exploitation should be baked into a 

metaheuristic optimisation algorithm and its parameter settings to avoid locking 

the solution to a local optimum. At the same time, a reasonable rate 

of convergence to the global optimum is secured. The exploration is the 

https://en.wikipedia.org/wiki/Point_particle
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terminology for searching over a broader region for optimum, while exploitation 

is for a local search to optimum [30]–[32].  

Representative evolutionary algorithms are genetic algorithms (GA), 

evolution strategies (ES), genetic programming (GP), differential evolution 

(DE), memetic algorithms (MA), estimation of distribution algorithms (EDA). In 

contrast, swarm algorithms are ant colony optimization (ACO), particle swarm 

optimization (PSO), etc.  

Genetic algorithms (GA) [33] mimic natural evolution: genetic mutations on 

the individual decision variables, a crossover between decision variables, and 

environmental selection on the population based on the fitness evaluation [33]. 

A candidate solution is a phenotype with a set of properties; each called a 

chromosome or a genotype. The genomes can be randomly recombined 

(crossover) and mutated to form new phenotypes or candidate solutions, 

subject to new selection based on their fitness evaluation. A new parent 

population is thus formed, ready for the next round of iteration [34]–[36]. 

Although GA is a popular metaheuristic algorithm, it suffers high computational 

power consumption due to its repeated fitness function evaluation for complex 

problems and exponentially increased mutation operations when the number of 

decision variables is large. 

Evolution strategies (ES) [37] have some similarities with GA but differ in 

several aspects. For instance, ES uses a normally distributed random vector to 

mutate genomes, and the mutation strength (the standard deviation of the 

normal distribution) can be determined by self-adaptation. Moreover, the 

correlations of mutation strengths for decision variables are expressed by a 

self-adapted covariance matrix or updated using covariance matrix adaptation 

(CMA-ES) [38]–[40]. Another difference is that environmental selection of ES is 

https://en.wikipedia.org/wiki/Fitness_function
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made based on the fitness rankings while it is performed randomly in a pool of 

parent candidates in GA [37].  

Genetic programming (GP) [41] is also an evolutionary algorithm similar to 

GA. Still, it differs in using other presentations of objective functions or the 

search space, such as a decision tree structure, resulting in different 

initialization and variation operators. Crossover and mutation are performed 

using sub-trees from parents forming a new tree as offspring. The fitness 

evaluations can be done in many ways, and the alternatives available are more 

than the case in GA. 

Ant colony optimization (ACO) [42] utilises the preference of optimised 

solutions by natural ants based on the intensity of pheromones. N artificial ants 

(N candidate solutions) are engaged to find the best route for access to food, 

and the problem is to find the shortest path. When an ant passes a specific 

path, it lays down pheromones. The search initialised using an equal number 

of ants in each route alternative and an equal amount of pheromones that fades 

out as the iterations continue. Over time, the route covered with the most 

significant amount of pheromones is the optimal one.  

Differential evolution (DE) [32]–[37] searches for global optimum also by 

iteratively performing operations such as mutation, crossover, and 

environmental selection. The mutation on decision variables is done by 

perturbation using the difference vector of two or more randomly chosen 

solutions in the current population multiplied by a user-defined ratio factor F, 

which results in a donor vector for each individual in the population. The solution 

vector of the population best is often used. The crossover is performed using 

either binomial or exponential methods, creating a trial vector. The jth 

component of offspring is taken either from its parent or the donor vectors 

according to the crossover rate (Cr), a user-defined parameter. Fitness 
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evaluations make the environmental selection of both the parent and the trial 

vectors. DEs have been further improved using different crossover and 

mutation operations [43], by adapting the main parameters to different iteration 

stages [44], [46]–[48] and by combining with other solution techniques to form 

a hybrid optimisation method [49]–[51]. DE is flexible in use. Its main limitation 

is that its parameters are sensitive to the nonlinearity of the objective function 

[43]. 

Particle swarm optimization (PSO) [52] searches for optimality by guiding a 

population of candidate solutions called particles, moving around in the search 

space. The start-up positions of particles are generated randomly. Starting from 

the current location with the individuals' current velocity, the particles move 

towards their individual best position and the population’s common best 

position. After each iteration, the individual and the population best are updated 

[29]–[31]. The swarms can be formed as one or sub-groups, called topology 

considerations [53]. The efficiency of PSO is very much dependent on the 

choice of its parameter [31].  

Memetic algorithms (MA) [54] is a hybrid search method. The evolutionary 

algorithm is embedded with local greedy search algorithms, performed before 

the offspring are evaluated for environmental selection to reduce the likelihood 

of premature convergence. Such a local search method can be taken from 

gradient-based methods. MA benefits from the explorative search ability of 

evolutionary algorithms while profits the exploitative power of a greedy local 

search. 

Estimation of distribution algorithms (EDA) [55], also called probabilistic 

model-building genetic algorithms (PMBGAs), are population-based search 

algorithms. Compared to other similar methods, EDAs, instead of applying 

https://en.wikipedia.org/wiki/Point_particle
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genetic operators, create offspring using explicit probabilistic models built and 

sampled based on promising parent solutions. 

2.3.3  Evolutionary Multi-objective Optimization 

Multiple solutions of MOPs usually exist and form a solution set, known as 

Pareto optimal solution set. The corresponding objective function values in the 

objective space shape the Pareto front. The Pareto front and the Pareto optimal 

solutions are expressed in discrete solution points, i.e., representative data 

subsets. The quality of the solutions is measured in convergence and diversity, 

i.e., how well the solutions are converged to optimality and the uniformity and 

the extent of the coverage over the whole Pareto front. 

Another issue is handling objective functions of different scales in multi-

objective optimisation problems. Many alternatives have been tried to 

normalise the objective functions to avoid having objective functions in mostly 

different scales in the analysis. The most commonly used method of 

normalisation [9]: the objective functions are normalised by the differences in 

optimal function values in the Nadir and Ideal (or Utopia) points. The Ideal point 

is an auxiliary point with the least values of each objective function as 

coordinates. In contrast, Nadir point, on the contrary, consists of coordinates of 

the largest of each objective. The variational part of objective functions then 

varies between 0 and 1.   

The coordinate values at Nadir Point [9]:   

𝑍𝑖
𝑁𝑎𝑑 = 𝑚𝑎𝑥

𝑓(𝒙)𝜖𝑃𝑎𝑟𝑒𝑡𝑜 𝐹𝑟𝑜𝑛𝑡
𝑓𝑖(𝒙) Eq. 2.4 

The coordinate values at Utopia Point: 

𝑍𝑖
∗ = 𝑚𝑖𝑛

𝑓(𝒙)𝜖𝑃𝑎𝑟𝑒𝑡𝑜 𝐹𝑟𝑜𝑛𝑡
𝑓𝑖(𝒙) Eq. 2.5 

In practice, the attaining of exact Nadir point and Ideal point for problems of 

more than two objectives is nontrivial because it requires knowledge of the 
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whole Pareto-optimal surface and the acquisition of extreme Pareto optimal 

solutions, which are both problematic and computationally costly to be realized. 

The paradox is that obtaining the whole Pareto-optimal surface using most 

existing MOP algorithms demands some prior information about the location of 

Nadir point. 

Normalised objective functions: 

𝑓𝑖,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
(𝑓𝑖 − 𝑍𝑖

∗)

𝑍𝑖
𝑁𝑎𝑑 − 𝑍𝑖

∗
, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, … ,𝑚  Eq. 2.6 

Analysis of multi-objective optimisation of objective functions of different 

scales might be done by transformation according to Eq. 2.4 to Eq. 2.6. 

The methods of solving MOP can be roughly divided into three main 

categories: A priori, Posterior and Interactive methods [9], [10], [57]. 

A priori methods: extra preference information about the system to optimise 

is provided before the solution process starts. Some scalarization methods 

belong to this group, which are discussed in some detail in a later section. 

A posteriori methods: solution of whole Pareto Front is obtained without 

preference information on solution requirements. Most of the evolutionary 

algorithms belong to this category of techniques. 

Interactive methods: decision-makers act interactively by continually 

providing preference opinions and information to analysers during the solution 

process. 

MOPs cannot be solved directly by classical optimization algorithms such as 

gradient-based methods. Instead, the problems need to be converted into one 

or several single-objective optimization problems. It can be done by weighted 

aggregation methods or 𝜀-constraint method. 

The weighted aggregation methods can, in more general form, be commonly 

expressed as [9]: 

https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Evolutionary_algorithm
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𝐹(𝒙) = (∑ 𝑤𝑖[𝑓𝑖(𝒙) − 𝑧𝑖
∗]𝑝

𝑚

𝑖=1
)

1
𝑝⁄

 Eq. 2.7 

in which p ∈ (0,∞), 𝒛∗ is the ideal point, composed of the minimum values of 

each objective, 𝑤𝑖  is the weight for the 𝑖𝑡ℎ  objective function and 0 ≤ 𝑤𝑖≤ 1, 

∑ 𝑤𝑖 = 1𝑚
1 , and 𝑚 is the number of objective functions. 

𝜀-constraint method is expressed as: 

𝑚𝑖𝑛𝑓𝑗(𝒙),    𝑠. 𝑡.  𝑓𝑖(𝒙) ≤ 𝜀𝑖, 𝑖 ≠ 𝑗 Eq. 2.8 

where 𝜀𝑖 is a user-chosen constraint value for the 𝑖𝑡ℎ objective function, and 

the 𝑗𝑡ℎ  function is to be minimised. By altering 𝜀𝑖 , various Pareto optimal 

solutions can be attained. 

Both methods suffer from the fact that it is nontrivial to determine the 

parameter of a weight vector or constraints. Moreover, the optimisation must 

be repeated each time a given weight vector or set of constraints is provided, 

leading to low computational efficiency. 

Mitigating the above challenges can be done using Decomposition 

Approaches, Dominance Based Approaches and Performance Indicator-Based 

Approaches.  

Decomposition Approaches utilise specific scalarising functions to transform 

the MOP into single-objective optimisation subproblems, which are solved 

simultaneously in a single run [58]. The choice of parent candidates here is 

based on aggregated fitness value of solutions. These approaches have low 

computational complexity, enjoy the advantage of an explicit neighbourhood 

relationship, and possess natural diversity maintenance. The methods are the 

main subject of this thesis and are further discussed in section 2.3.5. 

Dominance Based Approaches [59] utilise the dominance relationship and 

crowding distance to select the better ones among different solutions. The 

individuals in the population are sorted into several non-dominated fronts or 
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layers according to their dominance ranks. The crowding distance of a solution 

is calculated on the same front or layer-wise according to its two neighbours to 

enhance the solution's diversity. The environmental selection is made based on 

the size of the crowding distance. The extreme solutions of each front are 

assigned a large crowding distance always to be selected. The elitist non-

dominated sorting genetic algorithm (NSGA-II) [60]  is the most frequently used 

algorithm of this kind. The offspring and parent populations are combined, 

sorted, and the crowding distance is determined for all the individuals. Ranking 

in descending order according to the crowding distance, the better half of the 

combined population are selected as the parent population of the next 

generation. 

Performance Indicator-Based Approaches [31], [32], [43], [44], [61] apply 

specific performance indicators that measure the convergence and diversity 

properties of candidate solutions and determine the fitness of solutions by 

judging their influence on the performance indicators and selecting parent 

candidates for generations of new candidates for the subsequent round 

iterations. A representative algorithm is the indicator-based evolutionary 

algorithm (IBEA) [61]. IBEA exploits a binary performance indicator (see section 

2.8 for its definition) to compare solutions pairwise and then assigns a fitness 

value to each individual for environmental selection. Other indicator based 

algorithms can be mentioned: the S-metric selection based evolutionary multi-

objective algorithm (SMS-EMOA) [62] and the fast hypervolume based 

evolutionary algorithm (HypE) [63]. Performance Indicator-Based Approaches 

have an advantage over the dominance-based method, where the diversity 

aspect is considered by performance indicator and thus is absent in the 

algorithmic formulation. 

2.3.4  Evolutionary Many-Objective Evolutionary Optimization 
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New challenges emerge as the number of objectives increases to beyond 

three. The environmental selection pressure falls radically as the number of 

objectives increases when using non-dominance based MOEAs. The 

increasing portion of solutions becomes non-dominated so that the selection 

operation gradually turns out to be impossible to continue, and the convergence 

process ceases completely. Further, the computational complexity for 

indicators, such as hypervolume indicator, escalates drastically as the number 

of objectives increases, causing the use of indicators as selection criteria 

unpractical. Moreover, the search efficiency of Decomposition-based 

approaches is also severely worsened for partial, discontinuous or discrete 

problems and degenerated Pareto fronts because a large portion of pre-defined 

uniformly distributed reference vectors remains unexploited. At the same time, 

they still consume computational power to be created and explored. Another 

difficulty in handling many-objective optimisation problems is “the curse of 

dimensionality”. The number of data that sufficiently represent the Pareto front 

increases nearly exponentially as the number of objectives raises. Moreover, 

the Pareto front for most optimization problems is irregular. It is nontrivial to 

evaluate the diversity of PF from many-objective optimisation problems. 

Several measures have been suggested to mitigate the challenges, such as 

reducing the number of objectives, modifying Pareto dominance, introducing 

additional criteria, etc. Additional criteria can be introduced in dominance 

enhancement-based algorithms to strengthen the dominance relationship in 

selecting new parent solutions among generated candidate solutions, thus 

increasing selection pressure towards convergence. User preferences are 

suggested to be used as a quality metric for PF of MaOP solutions and as 

guidance for the search process. When user preferences are not available, PF's 

knee points and knee regions can be searched [64]. 
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Several classification works have been done to categorise types of MaOP 

algorithms [12]. One alternative is to group the methods into eight different 

classes [12]: 

1) Relaxed dominance-based approach: The relaxed dominance-based 

approaches enhance the selection pressure in non-dominated sorting 

operation [8], [9]. The methods' common feature is that new candidates 

are selected by jumping over some non-dominated solutions in the vicinity 

of the previous iteration to enhance the selection pressure towards 

convergence.  

2) Diversity-based approach [65]: the environmental selection is 

strengthened by maintaining the diversity to mitigate dominance 

resistance due to the high number of objectives in the optimisation 

problem.  

3) Decomposition-based approach [65]: the MaOP is transformed into a set 

of single-objective optimisation subproblems, which are solved 

simultaneously. Here, the convergence and diversity are balanced for 

regular PF shapes, but sufficient diversified solutions are challenging for 

irregular PFs. 

4) Reference set-based approach: A reference set of points or vectors is 

utilised and adapted to guide the search toward solutions of good 

diversity. Non-dominate Sorting Genetic Algorithm III (NSGA-III) [2] and 

Reference Vector-guided Evolutionary Algorithm (RVEA) [7] are typical 

algorithms of this kind. The significant challenges with this approach are 

the obstacles in creating and adapting the reference points and evaluating 

the solutions in a high dimensional objective space. 

5) Preference-based approach [66]–[69]: instead of PF search in the entire 

objective space, decision makers' preferences are used in the search, 
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which is also called the region of interest (ROI). Determining the user 

preference is a tedious task in practice and needs repeated feedback from 

the decision-makers.  

6) Dimensionality reduction approach [70]: redundant or less influential 

objectives are eliminated in the optimisation process. The methods 

usually increase the computational cost, reduce search efficiencies and 

escalate complexity in decision-making. 

7) Indicator-based approach [78-80]: use indicator values of a temporary 

solution set to select better candidates for the next round of iterations. A 

decent indicator value results in a solution set close to PF. The fast hyper-

volume approximation method [71] is a representative algorithm of this 

kind. Other examples are the shift-based density estimation indicator 

MaOP [78], stochastic-ranking-based multi-indicator algorithm [79]. The 

methods are often computationally expensive and provide solutions that 

are weaker in diversity than those from reference set-based approaches. 

8) Hybridization method [72]: combine the methodologies from different 

algorithm classes to guide the search towards optimality.  

Representative evolutionary many-objective optimization algorithms are 

Non-dominate sorting genetic algorithm III (NSGA-III), reference vector-based 

evolutionary algorithm (RVEA), knee-driven evolutionary algorithm (KnEA), 

two-archive evolutionary algorithm (Two_Arch), preference-based algorithms, 

grid-based evolutionary algorithm (GrEA), corner sort algorithm. 

Non-dominate sorting genetic algorithm III (NSGA-III) [2] uses the same 

framework of the evolutionary cycle of NSGA-II: initialisation, crossover and 

mutation to create an offspring population from the current population. 

However, it differs from NSGA II in the environmental selection, where a set of 

widely and uniformly distributed reference points in the objective space is 
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utilised in the selection process to maintain diversity among solutions. The 

candidate solutions associated with each of these reference points are selected 

to attain a set of diverse and well-distributed nondominated solutions as a new 

parent population. NSGA-III often has a slower convergence speed than the 

indicator-based method IBEA and grid-based method GrEA but gives PF 

approximations of better diversity. See discussions in Chapters 5 and 6. 

Reference vector guided evolution algorithm (RVEA) [7] exploits a system 

of reference vectors in the objective space to specify the preferred directions of 

locations of the solutions in contrast to other decomposition-based algorithms 

in which a scalarizing function is adopted to tuning MOP or MaOP into a set of 

SOP problems. The uniformly distributed reference vectors are first generated 

on a unit hyperplane using the canonical simplex-lattice design method [73]. 

Further, RVEA uses the angle between a reference vector and the vector of the 

candidate solution as a diversity indicator, which is more scalable to 

optimisation problems of a high number of objectives. The population is 

partitioned into N (population size) subspaces divided by the reference vectors. 

A metric called as Angle-Penalized Distance of candidates found so far is used 

to perform the Environmental Selection for offspring, which is proportional to 

the norm of the translated vector of candidate solution and the amount of 

penalty function that increases with the number of iterations and the acute angle 

between the vector of candidate solution and the reference vector. The 

translated vector is the difference vector between the candidate solution and 

the minimal objective values calculated from the combined population in that 

subspace. Moreover, adaptation mechanisms for adjusting the reference 

vectors can be conveniently implemented to improve the diversity of solutions 

of irregulated PFs [74]. 
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Knee-driven evolutionary algorithm (KnEA) [75] takes a second criterion for 

environmental selection to replace the dominance-based one. Based on a 

similar framework of genetic algorithms such as NSGA II, the environmental 

selection in KnEA is made on candidates of current knee points, which are the 

solutions that are farther away from the hyperplane constructed by the 

boundary solutions of the current population. 

The two-archive algorithm uses two archives to store temporarily sorted 

candidate solutions separately, one is convergence based, and the other is 

diversity based [76]. Interactions between and inside CA and DA play essential 

roles in environmental selection. The method is further developed to an 

improved version Two_Arch2 [77], in which the selection methodologies in CA 

and DA are changed. CA applies the Iε+ indicator [77], and DA utilises the 

Pareto dominance, calculated in L1/m norm-based distance as the similarity 

measure, where m is the number of objective functions. It combines the 

strength of indicator- and Pareto-based MOEAs. The mutation operation occurs 

only in CA, and the crossover operation is applied between candidates in CA 

and DA. 

Preference-based MaOPs use DM's preference to narrow down the critical 

search area of PF to reduce the number of solutions to a manageable level. 

PICEA-g [78] is the most frequently used algorithm of this type.  

In a grid-based evolutionary algorithm (GrEA), the objective space is divided 

into hypercubes, and the selection of candidates for the next generation 

(iteration) undergoes according to grid dominance. The selection pressure 

towards convergent and diversified solutions is increased. Grid-based 

evolutionary algorithm (GrEA) [79] can be mentioned as a representative 

algorithm of this kind.  
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Corner sort algorithm [80] utilises the corner solutions, which are always 

non-dominated and easy to find by only comparing one objective, to carry out 

the non-dominated sorting operation with the advantage that a large number of 

objective comparisons under the dominance sorting is omitted with saved 

computational time. 

2.3.5  Decomposition-Based Strategies for Many-objective 

Evolutionary Optimisation 

The decomposition-based MOP methods are extendable to solve MaOPs 

[81]–[83]. The performance of decomposition-based MaOP methods relies 

heavily on scalarising functions [84] and the generation of a proper set of 

reference vectors [85], where each subproblem is formed using a different 

reference vector which may also change over the iterations. The points of 

intersections between the true PF and the reference vectors should be located 

equidistantly. It is often challenging for the methods to attain solutions with good 

diversity because of the high dimensionality of MaOPs, although the 

convergence and the diversity of solutions are well balanced during the solution 

process. 

The scalarization functions of Eq. 2.8 provides a general form of scalarization 

functions. The linear weighted aggregation function rises if p = 1 and  𝒛∗= [𝑧1
∗, 

𝑧2
∗, … , 𝑧𝑚

∗ ] is set to the origin. Although simplicity is conserved, the linear model 

can only give Pareto optimal solutions on the convex part of the Pareto front. 

When used on the concave part, only extremal solutions can be approximated 

independently on how the weight vector is altered. 

The Chebyshev scalarizing function is attained when 𝑝 → ∞, 

𝐹(𝒙) = 𝑚𝑎𝑥𝑖[𝑤𝑖|𝑓𝑖(𝒙) − 𝑧𝑖
∗|] Eq. 2.9 

As Eq.2.8 indicates, when p → ∞, all terms in Eq. 2.8 diminish compared with 

the maximal one: 𝑤𝑖[𝑓𝑖(𝒙) − 𝑧𝑖
∗]𝑝. It leads to Eq. 2.10. 
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Another frequently utilised scalarization method is Penalty Boundary 

Intersection (PBI) [58]: 

𝑚𝑖𝑛𝒙∈𝛺 𝑔𝑝𝑏𝑖(𝒙|𝒘, 𝒛∗) = 𝑑1 + 𝜃 × 𝑑2 Eq. 2.10 

𝑠. 𝑡.  𝑑1 =
𝒘𝑇[𝑭(𝒙)−𝒛∗]

‖𝒘‖2
,  𝑑2 = ‖𝑭(𝒙) − 𝒛∗ − 𝑑1 × 𝒘‖2 Eq. 2.11 

in which 𝜃 is a penalty parameter to be tuned.a 

Other scalarization functions exist, such as Weighted Exponential Sum, 

Weighted Product, Quadratic Mean, Exponential Mean and more are explained 

in [86]–[88]. More recently, the Multiplicative Scalarizing Function (MSF) and 

Penalty based SF (PSF) are suggested in [89]. 

The weighted sum method (WSM) is efficient computationally compared to 

other methods. However, it cannot solve problems with non-convex shapes 

because only solutions of the extremal ones are found in such cases. A 

Decomposition Evolutionary Multi-Objective based on Local Weight Sum 

algorithm (MOEA/D-LWS) proposed in [90] may overcome the shortcoming. In 

[81], the decomposition-based MaOP algorithm uses two adjustments on the 

direction vectors (MaOEA/D-2ADV) to ensure convergence and diversity.  

The standard decomposition-based methods often adopt Das and Dennis 

method to create uniformly distributed reference vectors on the simplex plane. 

The reference vectors generated are insufficient when used to solve 

optimisation problems of irregular PFs because a set of evenly distributed 

reference vectors are applied, which cannot cover the PFs uniformly in a 

satisfactory manner. In such cases, the adaptation of reference vectors or 

reference points and clustering methods can be taken into use [91]. Hua et al. 

[92] suggest a hierarchical clustering algorithm to group the non-dominated 

solutions, upon which the environmental selection is carried out. Multiple 

reference vector sets can be used to find Pareto optimal solutions of a 

degenerate Pareto front [93]. Liu et al. [94] propose an adaptive reference 
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vector-based algorithm inspired by the idea of an improved growing neural gas 

network. 

2.3.6  Handling of Constraints 

Constraints are additional conditions of an optimisation problem that the 

feasible solution must satisfy. In general, two main types constraints exist [9], 

[95], [96]: equality constraints and inequality constraints. Also, it differs 

between hard constraints and soft constraints. Hard constraints are those which 

must be satisfied by the feasible set of candidate solutions. Soft constraints are 

those that are preferred but not required to be satisfied. 

In general, three cases of constraints are handled individually: [9] 

• An inequality constraint is of a binding type when an equality constraint 

coincides with the inequality constraint at its boundary at the optimal point. 

The word “binding” means that the optimal point cannot be moved along 

the equality constraint. 

• An inequality constraint is a non-binding type when an equality constraint 

is located inside the feasible areas described by the inequality constraint 

at the optimal point. For a non-binding inequality constraint, the 

optimisation problem can be solved by ignoring the inequality constraints. 

• A candidate solution is infeasible when the answer violates the constraint 

of the problem. 

Handling constraints is a significant task in finding solutions to the 

optimisation problem. Four main approaches are frequently used for SOP: 

• Method of Lagrange multipliers: can be used for finding the optimum of a 

function subject to equality constraints [9], [10], [97].  

• Karush–Kuhn–Tucker (KKT) conditions: can be used to formulate 

optimisation problems with inequality constraints, which can be solved 

numerically [10], [11]. 

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Equality_(mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Constraint_(mathematics)
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• Penalty functions: Both equality and inequality constraints can be dealt 

with by using penalty functions. For a minimisation process, the areas in 

the solution space bounded by constraints set too much higher function 

values, such as infinity. A solution in these areas is never attractive and is 

never chosen. For a maximisation process, on the contrary, the function 

values are set to zeros in those areas [10], [95], [97]. 

• Decision variable substitution: an equality constraint can also be 

considered an equation that must be satisfied under the optimisation 

process. It can be done by expressing a decision variable by the other 

input variables and taking away the variable from the optimisation process 

[9], [10].  

Moreover, constraints in constrained multi-objective optimisation problems 

(CMOP) are mainly dealt with by simultaneously balancing convergence, 

diversity, and feasibility. These three factors are fundamental issues for 

CMOPs. The feasibility of the solution is described by the constraint violation 

function (𝐶𝑉 = 0) value is zero, which is expressed as: 

𝐶𝑉(𝒙) = ∑ 𝑐𝑗(𝒙)
𝐽

𝑗=1
+ ∑ 𝑐𝑘(𝒙)

𝐾

𝑘=1
 Eq. 2.12 

in which 𝑐𝑗(𝒙) and 𝑐𝑘(𝒙) are the degree of constraint violations of 𝑗𝑡ℎ inequality 

constraint 𝑔𝑗(𝒙) and 𝑘𝑡ℎ  equality constraints of ℎ𝑘(𝒙), respectively, and are 

formulated as:  

𝑐𝑗(𝑥) = 𝑚𝑎𝑥{𝑔𝑗(𝒙), 0} , 𝑗 = 1, 2, … , 𝐽 Eq. 2.13 

𝑐𝑘(𝑥) = 𝑚𝑎𝑥{ℎ𝑗(𝒙) − 𝜖, 0} , 𝑘 = 1, 2, … , 𝐾 Eq. 2.14 

 

in which 𝜖 is a sufficiently small tolerance term and is often sat as 𝜖 = 10−6. 𝐽 

and 𝐾 are the total inequality and equality constraints, respectively. 
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Many constraint handling techniques are based on the principle that the 

searching population are first pushed into the feasible region. Then iteration 

towards true PF in convergence and diversity starts accordingly. Such a 

strategy's weakness is that the solution might be captured in local optima or 

feasible local regions [98]. Li et al. [98] have categorised the existing constraint 

handling techniques into three groups. The first one is based on the principle 

that feasible solutions dominate non-feasible ones. Infeasible solutions have 

been ignored entirely in some formulations; this approach is called a naïve 

constraint handling method [99].  

Deb et al. [100] introduced a constrained dominance relation for constrained 

multi-objective optimisation (CMOP), which is formulated as: 

Approximation 𝑭(1) constraint-dominates approximation 𝑭(2) if: 

1) 𝑭(1) is feasible while 𝑭(2) is not. 

2) Both of them are infeasible, while 𝐶𝑉(𝑭(1)) < 𝐶𝑉(𝑭(2)), where 𝐶𝑉(𝑭)  is 

the constraint violation function. 

3) Both are feasible and 𝑭(1) ≺ 𝑭(2). 

Here, infeasible solutions are made use of in further iteration processes. 

Feasible solutions can evolve toward optimality, while infeasible solutions can 

iterate toward feasibility.  

Montes and Coello [101] summarise and group the constraint handling 

techniques for MOP into 7 categories: feasibility rules, stochastic ranking, ε-

constrained method, novel penalty functions, novel special operators, multi-

objective concepts and ensemble of constraint-handling techniques. 
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2.3.7  Evaluation of Uncertainties and Robust Optimisation 

Uncertainties in the optimisation problem are evaluated through the problem 

formulation is subject to variations related to the input vector, objective function, 

constraints, and how these uncertainties influence the finding of the Pareto 

optimal set. Decision-makers in practice prefer to search for the robust Pareto 

optimal set, which is less sensitive to uncertainties in variables. The issue can 

be tackled by finding the most robust PF instead of the global Pareto-optimal 

one [102]. 

Uncertainties of additive noise are often grouped into three categories [103]. 

The first one is related to perturbations imposed on decision variables depart 

from Pareto optimality. The second one is associated with noise in the fitness 

evaluations, which generates errors on PF. The third one is connected to 

changes in model parameters due to shifting environmental and operational 

conditions, which causes vagueness in objective function evaluations. The 

Multi-or Many-objective Optimization Problem under the above three categories 

of uncertainties can be formulated by adding perturbations to the respective 

terms [103]: 

Optimise {𝑓𝑖(𝒙
′, 𝒄′)},  𝑖 = 1, 2, … ,𝑚 Eq. 2.15 

with 𝑓1:𝑚(𝒙′, 𝐜′) = 𝑓1̅:𝑚(𝒙′, 𝐜′) + 𝑒1:𝑚 

with respect to 𝑥𝑗
′ ∈ Ω,  𝑗 = 1, 2, … , 𝑛 

subject to: 

ℎ𝑘(𝒙
′) = 0, 𝑘 = 1, 2, … , 𝐾 Eq. 2.16 

𝑔𝑙(𝒙
′) ≤ 0, 𝑙 = 1, 2, … , 𝐿 Eq. 2.17 

where: 

• 𝒙′ = [𝑥1 + 𝛿1,  𝑥2 + 𝛿2, … ,  𝑥𝑛 + 𝛿𝑛]
𝑇 is the decision variable vector under 

perturbation vector 𝜹 = [𝛿1, 𝛿2, … , 𝛿𝑛]
𝑇. 
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• 𝐜′ = [𝑐1 + ν1,  𝑐2 + ν2, … ,  𝑐𝐽 + ν𝐽]
𝑇
, where 𝒄 = [𝑐1, 𝑐2, … , 𝑐𝐽]

𝑇
 and 𝛎 = [ν1,

ν2, … , ν𝐽]
𝑇
 are the parameter vector 𝒄  and their perturbation vector 𝛎  in 

the objective functions. 𝐽 is the total number of model parameters. 

• 𝒆 = [𝑒1, 𝑒2, … , 𝑒𝑚]𝑇 is the noise vector on objective functions. 

• 𝑓1̅:𝑚(𝒙′, 𝐜′) are the averaged fitness evaluations. 

Additional uncertainty is linked to multiplicative noise, where the objective 

function is perturbed by multiplying a noise term: 

𝑓𝑖(𝒙
′, 𝒄′) = 𝑓𝑖(𝒙

′, 𝒄′)(1 + 𝜀𝑖), 𝑖 = 1, 2, … ,𝑚 Eq. 2.18 

where 𝜺 is the vector of random noise. 

In [104], the fourth class of uncertainty is proposed, called feasibility 

uncertainties, which comes from errors in satisfying the constraints of decision 

variables.  

Uncertainties have been treated as the interval optimization problem, where 

intervals in PF are quantified. The result is reflected in the variations in the 

decision variables and model parameters, which display a solution's 

insensitivity to variable perturbations. A robust Pareto optimal solution is 

insensitive to perturbations on decision variables and the model parameters 

[103].  

Robust Solutions can also be searched based on the Robust counterpart 

approach, Expectation-Based Search and Variance-Based Search [103], all 

utilising response function values when subject to perturbations caused by 

decision variables and model parameters. In such an analysis, the degree of 

optimality is inevitably weakened, which means that a robust optimization 

searches for the best trade-off between optimality and robustness [103]. 

The Robust counterpart approach is made by optimising: 

𝐹(𝒙, 𝜺𝒙, 𝒂, 𝜺𝒂 ) = 𝑠𝑢𝑝𝝃∈𝑅(𝒙,𝜺𝒙),𝜼∈𝐴(𝒂,𝜺𝒂)𝑓(𝝃, 𝜼) Eq. 2.19 
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in which 𝑠𝑢𝑝 means, in this case, the largest. 𝑅(𝒙, 𝜺) is a neighbourhood of 𝒙 of 

size 𝜺𝒙, i.e., 𝝃 = 𝒙 ± 𝜺𝒙. 𝐴(𝒂, 𝜺𝒂) is a neighbourhood of 𝒂 of size 𝜺𝒂, 𝜼 = 𝒂 ± 𝜺𝒂. 

In expectation-based search, the expected objective function due to 

perturbations is optimised: 

𝜇(𝒙) = ∫𝑓(𝒙 + 𝜹 , 𝒂 + 𝝂)𝑝(𝜹, 𝝂)𝑑𝜹𝑑𝝂 Eq. 2.20 

in which 𝑝(𝜹, 𝛎)  is the joint probability density function of perturbation of 

decision variable 𝒙 and model parameter 𝒂. Using a population-based search 

algorithm, Eq. 2.20 can be approximated as: 

𝑓(̅𝒙) =
1

𝑁
∑𝑓(𝒙 + 𝜹, 𝒂 + 𝝂)

𝑁

𝑖=1

 Eq. 2.21 

in which 𝑁  is the sample size, 𝛿𝑖 ∼ Ɲ(0, σ𝛿𝑖

2 ) , ν𝑖 ∼ Ɲ(0, σν𝑖

2 ) ,  𝑖 = 1,… ,𝑁,  are 

Gaussian noises.   

In dispersion based robustness search, the variance of the objective function 

due to perturbations is optimised:  

𝑉𝑎𝑟(𝒙) = ∫(𝑓(𝒙 + 𝜹, 𝒂 + 𝝂) − 𝑓(𝒙, 𝒂))2 𝑝(𝜹, 𝝂)𝑑𝜹𝑑𝝂 Eq. 2.22 

and using a population-based search algorithm, Eq. 2.22 can be approximated 

as: 

𝑆(𝒙) =
1

𝑁
∑(𝑓(𝒙 + 𝜹, 𝒂 + 𝝂) − 𝑓(𝒙, 𝒂))2

𝑁

𝑖=1

 Eq. 2.23 

Optimality and Robustness are two objectives that are usually in conflict, and 

a trade-off between the objectives and the degree of robustness must be 

searched [105]. It can be done through multi-objective optimisation by 

combining Eq. 2.21 or 2.23 with the normal objective functions of the 

optimisation problem. 
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2.4  Benchmark Testing  

Benchmark problems are a large set of easily implemented, artificially 

constructed, multi-objective test problems. They are easy to describe, 

understand and visualise, easy and fast to implement, and optima are often 

known in advance. Benchmark testing is vital for developing new and better 

EAs by understanding evolutionary algorithms' strengths and weaknesses. 

2.4.1  Essential Properties of Benchmark Functions 

Huband et al. [106] provide a comprehensive review of the topic of 

benchmarking. In the contest of this work, benchmarks for MOP and MaOP are 

focused. The major properties of such benchmark functions are summarised as 

below: 

Scalability: A problem is scalable in terms of decision variables when for any 

problem of 𝑛0 variables, it can be created for 𝑛1 variables and 𝑛1 > 𝑛0. A similar 

definition is valid for problems of scalable objective functions. 

Fitness landscape: The relationship between the Pareto optimal set and the 

Pareto optimal front can be one-to-one or many-to-one. Many-to-one is more 

challenging to an algorithm because it has to choose among multiple sets of 

decision variable vectors that result in the same objective vector.  

Flat regions: are a subset of decision variable vectors that map a single point 

in objective space. In such areas, changes of decision variables lead to no 

alteration in the objective values. No helpful gradient information is available for 

further searching, and the problem is thus harder to be solved.  

Unimodality/Multimodality: An objective function with only a single optimum 

has unimodality. In contrast, it contains multimodality when it has multiple local 

optima. The later optimisation problem is multimodal and is more difficult to 

solve as it can be stuck in local optima.  
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A deceptive objective function is an objective function with a true optimum 

and a deceptive optimum, and the search space favours the search towards 

the deceptive optimum.  

The bias of the fitness landscape: evenly distributed samples of decision 

variables lead to unevenly distributed PF. Problems with solid bias may require 

analysis in both objective and decision spaces. 

Separable/non-separable decision variable to objective function: when no 

effect of interaction between decision variable 𝑥𝑖  and others on the global 

optimum of an objective function, 𝑥𝑖 is said to be separable on the objective 

function. Otherwise, it is non-separable. When every objective of a problem is 

separable, it is a separable problem. Otherwise, it is a non-separable problem. 

Separable objectives can be solved more easily by estimating each decision 

variable independently. The final PF optimal set can be found as a cross-

product of the optimal sets for each individually optimised decision variable. A 

particular case of separable objective functions is that objective functions are 

separable to a distance variable that only influences the convergence process. 

A position variable only affects the diversity of PF approximations. Decision 

variables that cannot be characterised as distance or position variables are 

mixed. 

Extremal/medial decision variable: when a Pareto optimal set consists of a 

single value at the edge of its domain, the decision variable is an extreme one. 

If, on the contrary, it is located scattered in the central area of the domain, it is 

called a medial one. Extremal/medial decision variables influence the speed of 

convergence towards true PF. 

Convex/concave/linear PF: A PF is convex when it covers its convex hull 

and is concave when it covers its concave hull and is linear when it is both 
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concave and convex. A mixed PF has parts of convex, concave, and linear 

shape.  

The degenerate front is a PF front of dimension two lower than the problem's 

objective space dimension. Degenerate PFs are more challenging to find for 

algorithms searching for even spread of solutions across the Pareto optimal 

front.  

Discontinuous PF: a disconnected PF, which often requires more iterations 

and is solved less efficiently using decomposition-based solution principles. 

2.4.2  Major Benchmark Suites 

A common weakness with the existing benchmarks is that they often share 

common characteristics and are formulated with decision variables of either 

position or distance types, i.e., none with mixed ones [106]. 

Deb, K. [107] suggests a two objective test problem toolkit for constructing 

two objective benchmark problems by combining three primary functions: 

position, distance, and shape. The benchmarks are used to test an algorithm’s 

ability to diversify along with PF, converge to the true PF, and determine PF's 

shape, respectively. It should be noted that some choice of the shape functions 

may affect the optimisation problem of having mixed parameters. When the 

chosen functions are multimodal, disconnected, or biased, an optimisation 

problem of mixed decision variables can be formed [106].  

Zitzler et al. [108] propose a ZDT test suite, all of which can almost be 

created using Deb’s toolkit. The ZDT problems include multimodal problem PF 

of many-to-one problems (ZDT6), disconnected PF problems (ZDT3), 

multifrontal problem (ZDT4). The ZDT test suite's advantages are two-fold: PFs 

are well defined, and test results from different sources are available, making 

easy comparisons. But it only has problems with two objectives, no flat regions 

in decision space, no degenerate PF, and no problem is non-separable. 



Chapter 2 Data-driven Evolutionary Optimisation 

57 

Deb et al. [109] recommend a DTLZ test suite by which the nine benchmarks 

are formed scalable to any number of objectives adopted in investigations 

MaOPs. Tests on MaOP algorithms can be performed concerning the effects 

of decision variable dependencies, multimodality, discontinuity, mixed 

convexity/concavity, degenerate, mixed parameters, and constraints. The 

characteristics absent are fitness landscapes with flat regions, deceptive 

optima, and non-separable problems [106]. 

Van Veldhuizen [110] introduces seven multi-objective test problems, 

MOP1–MOP7, based on the literature's available information. These 

benchmarks are less methodically constructed and are more challenging to 

solve. Effects of non-separability and multimodality, discontinuity, mixed 

parameters, degeneration have been considered. But most of the benchmarks 

have only two or three parameters and unscalable decision variables or 

objective functions of non-separable problems [106].  

Huband et al. [106] suggest the WFG Toolkit, which can be used to construct 

nine scalable, multi-objective test problems (WFG1–WFG9). A benchmark 

problem is defined by a vector of parameters related to a targeted problem in 

objective space. The vector is established using a series of transition vectors 

from a vector of decision variables. Starting with several shape functions that 

determine the fitness space's geometry, each transition vector manipulates and 

regulates the benchmark function characteristics via a series of composable 

transformations. The WFG Toolkit provides a variety of predefined shape and 

transformation functions.  

Cheng et al. [111] introduce a test suite of 15 benchmark functions, MaF1-

MaF15, for evolutionary many-objective optimisation. The purposes of this 

introduction have been to eliminate shortcomings of existing test suites and to 

introduce more realistic benchmark cases as problems in real-world 



2.4  Benchmark Testing 

58 

applications. They claim that PFs of most DTLZ and WFG functions have a 

standard form and are similar to simplex shape, none with a convex pattern, 

which favour decomposition-based algorithms. Moreover, PF of degenerate 

type in higher dimensions (higher than 4) is absent. The MaF benchmark 

problems cover PF properties of being multimodal, disconnected, degenerate, 

non-separable, and an irregularly shaped complex Pareto set or with a large 

number of decision variables. 

MaF benchmark problems have been adopted as test functions in 

CEC’2018 Competition on Many-Objective Optimisation [112]. 
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2.5  Performance Indicators/Metrics for Testing of 

MaOP Algorithms 

2.5.1  General Remarks 

The qualitative and quantitative quality of an algorithm can be evaluated 

based on testing on Benchmark functions developed up to date and various 

performance metrics invented for evaluations. Many researchers have 

formulated the requirements for benchmark testing on new MOO solution 

methodologies and specific test metrics. [109], [113]–[121]  

The main criteria for comparisons of different MOO algorithms are their 

abilities: [113]  

1) to find the best-converged estimates to the right Pareto front (i.e., 

convergence).  

2) to find the most diverse solutions to right Pareto front (i.e., diversity), 

3) to calculate with the highest speed of convergence (i.e., computational 

efficiency),  

4) to have mostly repeatable results from several runs (i.e., search 

robustness). 

The comparisons on the performance of the algorithms of existing MOP 

solution techniques are complex and complicated. It is especially the case if the 

algorithm differs fundamentally in solution principles to its comparing 

algorithms. It is hard to find suitable standard metrics to be used in the 

comparison. Secondly, EMOs are stochastic, and the contrast must be based 

on statistical principles. Thirdly, MOP problems are diverse and complex, and 

no single solution technique is equally valid for all issues [116]. Some ideas are 

transformed into metrics for comparison, often used to measure MOP solution 

techniques' performance with the challenges in mind. 
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A MOP algorithm's performance is usually measured by determining how 

close the calculated Pareto front is to the actual optimal Pareto Front [116]. 

A MOP algorithm's efficiency: can partially be measured regarding the total 

number of objective function evaluations required to find the Pareto optimal. 

This needed number of objective function evaluations should be kept to a 

minimum since MOO solution techniques of EA are more dependent on 

functional assessment than traditional optimisation methods. Functional 

evaluations take the most significant computer power [116]. 

Robustness of a MOP algorithm: reflects the algorithm's ability to give 

similar results regarding mean value and variance from several runs. EA 

algorithms are stochastic, which means that the starting conditions are 

generated randomly, and comparable runs give different results and consume 

changed computational time. The robustness can be indicated by the width of 

the “band” around the Pareto front created by several algorithms runs, and the 

narrower a band suggests a more robust algorithm [116]. 

Parameters under comparison of different algorithms:  

1) The number of independent runs: the number of times the algorithms are 

run independently. The robustness of the algorithm is tested through the 

variation of the results.  

2) Population sizes for each run: number of candidates in a population. The 

population sizes influence the number of solutions used in the further 

search. Increasing population size generally reduces the efficiency and 

robustness of optimisation calculation [116]. 

3)  It is equivalent to the maximum number of nondominated objective 

vectors and should be kept equal for all algorithms tested against each 

other [119]. 
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4) A maximum number of function evaluations: the number of times a 

calculation of the objective functions during the solution process shall be 

kept equal under comparisons of algorithms being tested [119].  

5) Parameter settings: parameters used in the algorithms being compared 

shall be tuned to their optimal values [116].  

Black-box problems: [119] objective functions are considered black-boxes, 

i.e. putting values of decision variables into the black-boxes, objective function 

values come out as outputs, and the analytic forms of these problems cannot 

be utilised in the analysis. 

Pareto compliance: [119] the metric used for MOO comparison should be 

compliant with the Pareto front location, i.e., the improved metric value indicates 

a more accurate approximation of Pareto Front.  

In this work, the classical and most commonly used test functions of two and 

three objective functions and various decision variables are tested to validate 

the suggested method SOFO. 

2.5.2  Taxonomy of Performance Metrics 

Performance metrics are used to evaluate MaOP algorithms' performance 

and help decision-makers judge optimisation algorithms' efficiency. 

Performance indicators lead to information loss by summarising information to 

assess candidate solutions [122]. Nevertheless, the aim of PIs on an 

approximation set is to capture the core information searched robustly and 

accurately [122]; this is particularly important to be achieved for MaOP 

problems, for example, to maintain accuracy as the number of objectives 

increase. 

While the definition of convergence of a solution set is well understood 

within MaOP research [19],  the definition of good uniformity for a solution set 

is less clear. Inspired by the definition of biodiversity, Wang et al. [123] suggest 



2.5  Performance Indicators/Metrics for Testing of MaOP Algorithms 

62 

a definition of good uniformity that states that a solution set should have the 

same dissimilarity with their neighbours. A superior diversity should provide 

decision-makers with the maximum amount of information.  

Zitzler et al. [124] have formulated a set of fundamental requirements on 

performance indicators. Ideally, a performance indicator should be both 

compatible (𝐴 < 𝐵  leads to statement 𝐶 is true) and complete (if 𝐶 is true, then 

𝐴 < 𝐵 ), which are often two challenging requirements to be satisfied 

simultaneously in the development of PIs. It must be compatible in practical use 

if it is meaningful in comparing two approximation sets. 

Performance indicators can be classified as unary, binary and 𝑘-nary [125]. 

Unary PIs are those with which the evaluation function takes only one 

approximation set, which is assessed by assigning a score [126]. The majority 

of performance indicators are of unary types, such as Hypervolume indicator 

(HV) [127], Inverted Generational Distance indicator (IGD) [128], and newly 

developed PI of Coverage over Pareto Front (CPF) [129]. 

Several unary PIs may be combined to evaluate several qualities of 

approximations [127]. But challenges may exist related to determining the 

sequence of their usage or finding proper utility functions for their combined 

application [126].  

Binary performance indicators are also developed to simultaneously take 

two approximation sets, A and B, in their evaluation. Typical examples of binary 

PIs: epsilon (𝜀) family [125], Two set coverage (C) [130], R-metric [131]. 

Further on, 𝑘-nary quality indicators have also been studied, in which 𝑘 

independent approximation sets are adopted in the evaluation function of a 

performance indicator [123]. It is a great challenge to establish proper utility 

functions in formulations of 𝑘-nary PIs, and their usage is so far limited. 
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Performance indicators in MaOP have also been roughly grouped into three 

categories: those which essentially evaluate convergence [126], those mainly 

assessing diversity [132], and those measuring both convergence and diversity 

[133]. 

Numerous performance indicators have been designed for the assessment 

of MaOP solution sets. Earlier comprehensive surveys on quality indicators and 

their properties can be found in the literature [123], [134].  

The idea of using reference vectors to create a diversity score for 

contrasting two competing solution sets has been implemented successfully in 

the past [124], [129], [134].   

Mostaghim and Teich [133] introduced SDM as the percentage of non-

dominated solutions distributed along with a standard set of reference lines in 

objective space. The higher the SDM of an approximation set, the better the 

diversity of the solutions. Although possible, the method has not been extended 

to MaOP analysis.  

Using reference vectors, Cai et al. [124] define a diversity indicator (DIR) by 

identifying the systematic deviations of candidate solutions' locations in terms 

of the mean values and variances called coverage vector. It stores the number 

of reference vectors linked to each candidate solution. But the formulation may 

not be adequate to deal with situations in which small clusters of candidate 

solutions exist. Equally, a high diversity score may result in each solution 

covering only one reference vector as a case of perfectly distributed solutions. 

Still, the former distribution is not uniform compared to the latter one. It is 

illustrated in Fig. 1 in a two objective optimisation case.  
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2.5.3  Some Frequently Used Performance Metrics 

Error Ratio 

Error Ratio (ER): [110] is the percentage of dominated solutions in a 

population of size 𝑁: 

𝐸𝑅 =
∑ 𝑒𝑖

𝑁
𝑖=1

𝑁
 Eq. 2.24 

In which 

• 𝑁: the population size. 

• 𝑒𝑖 = 0 if  𝑖𝑡ℎ candidate solution is a Non-dominated solution. 

• 𝑒𝑖 = 1 if 𝑖𝑡ℎ candidate solution is a Dominated solution. 

Error Ratio reflects the success rate of candidates in the population, so the 

lower the value of ER, the better the MOO algorithm. 

Generational Distance (GD) 

Generational Distance (GD): [110] is the Euclidean distance between the 

nearest of an algorithm calculated Pareto optimal point and the actual Pareto 

optimal point. 

𝐺𝐷 =
√∑ (𝑚𝑖𝑛 (𝑑𝑖))2𝑀

𝑖=1

𝑀
 

Eq. 2.25 

in which: 

• 𝑀: is the number of Pareto optimal points calculated by the algorithm 

• 𝑚𝑖𝑛 (𝑑𝑖): is the shortest distance between algorithm simulated Pareto 

optimal point 𝑖 to the corresponding nearest true Pareto optimal point 

GD indicates the accuracy of the calculation of the MOP algorithm. If  

GD ≈ 0 means that the algorithm finds the right Pareto Front. The weakness is 

that GD is not Pareto compliant, which means that a smaller GD value does not 

always indicate a more accurate approximated Pareto Front.  
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Another modified metric is created to overcome the weakness of the Non-

Pareto Compliance of GD metric. 

Inverted Generational Distance (IGD) 

Inverted Generational Distance (IGD) [128] is used to evaluate the 

performance of an algorithm. IGD is given as: 

𝐼𝐺𝐷(𝑄, 𝑃∗) =
1

|𝑃∗| √
∑(𝑚𝑖𝑛

𝑦∈𝐴
𝑑(𝑥, 𝑦))2

𝑥∈𝑃∗

 Eq. 2.26 

in which:  

• 𝑄 : are nondominated objective vectors (points on objective space) 

calculated by the algorithm. 𝑄 is normalised. 

• 𝑃∗: are uniformly distributed actual objective vectors over the Pareto Front 

of the MOP problem. 

• 𝑑(𝑥, 𝑦): is the Euclidean distance between 𝑥 (calculated Pareto optimal  

point) and 𝑦 (true Pareto optimal point) in the normalised objective space.  

• 𝑄  and 𝑃∗  are first normalised component-wise using the respective  

maximum and minimum components of objective values among 𝑃∗. 

IGD is an indicator of how close a calculated Pareto optimal front is to the 

true one. The smaller the value of IGD is, the more accurate the solutions are. 

IGD is Pareto compliant. 

The mean and standard deviation can be obtained from the test on a single 

test function, i.e., average value 𝜇 and standard deviation 𝜎 of IGD of several 

similar runs of the MOO algorithm. 

Spacing Metric (SP) 

Spacing metric (SP) [135] indicates the spread of and spacing between 

Pareto front approximations calculated by an algorithm. 

𝑆𝑃 = √
1

𝑀 − 1
∑ (𝑑𝑛𝑛̅̅ ̅̅ ̅ − 𝑑𝑛𝑛𝑖)2

𝑚

𝑖=1
 Eq. 2.27 
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where: 

𝑑𝑛𝑛𝑖 = 𝑚𝑖𝑛
∀𝑗∈[1,…,𝑀],𝑗≠𝑖

(∑ |𝑓𝑖
𝑘 − 𝑓𝑗

𝑘|
𝑚

𝑘=1
) Eq. 2.28 

• 𝑀: number of points in Non-dominated solutions. 

• 𝑚: number of objective functions. 

• 𝑑𝑛𝑛̅̅ ̅̅ ̅ =  
1

𝑀
∑ 𝑑𝑛𝑛𝑖

𝑀
𝑖=1 , i.e., the average value of 𝑑𝑛𝑛𝑖. 

• (𝑓𝑖
1, 𝑓𝑖

2, … , 𝑓𝑖
𝑚): are components of objective function value of calculated 

Pareto optimal point 𝑖. 

SP reflects the distribution of calculated Pareto front approximations, and 

SP goes towards 0 means that the solutions are nearly equidistant. SP's 

weakness is that it cannot be used as a metric for MOP problems of higher 

dimensions since consecutive solutions in higher dimensions do not exist. 

Diversity Performance Metric 

A Diversity Performance Metric: [134] averaged accumulated difference of 

successive distances of the calculated Pareto points and a corresponding 

average distance of right Pareto points. 

∆= ∑
|𝑑𝑖 − �̅�|

𝑀 − 1

𝑀−1

𝑖=1

 Eq. 2.29 

in which: 

• 𝑀: the total number of Pareto Points in the solution. 

• 𝑑𝑖: successive distance of the calculated Pareto points 𝑖. 

• �̅�: average successive distance of actual Pareto points. 

An algorithm with a smaller ∆ value is preferred. 

Mean Standard Score (MSS) 

The mean standard score (MSS) [134]: the average and standard deviation 

of the IGD values obtained from testing on many test functions, and each is 

done several times with similar runs of the MOP algorithm. MSS is given as: 
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𝑀𝑆𝑆 =
1

𝐾
∑

∑ (𝐼𝑖𝑗 − 𝜇𝑖)
𝐿
𝑗=1

𝜎𝑖

𝐾

𝑖=1

 Eq. 2.30 

in which: 

•  𝐾 is the number of test problems the MOO algorithm is tested on. 

•  𝐿 is the number of test runs on each test problem.  

•  𝐼𝑖𝑗 is the IGD value obtained by the MOO algorithm in a run 𝑗 for 𝑖𝑡ℎ test 

problem, 𝑖 =1, …, 𝐾. 

•  𝜇𝑖 is the average value of the 𝑖𝑡ℎ test problem, 𝑖 =1, …, 𝐾. 

•  𝜎𝑖 is the standard deviation of the 𝑖𝑡ℎ test problem, 𝑖 =1, …, 𝐾. 

The mean standard score (MSS) of the obtained IGD values for a group of 

test problems can rank MOP algorithms. It can be considered a comprehensive 

criterion to evaluate the overall performance of a MOP algorithm. 

Set Coverage Metric 

The Set Coverage Metric: [134] the ratio of some calculated Pareto optimal 

𝑄 solutions dominated by true Pareto optimal 𝑃∗ and number of 𝑃∗ solutions. 

The metric may be used in the comparison of MOP problems in higher 

dimensions than 2D.  

Chi-Square-like Deviation Metric 

The Chi-Square-like Deviation Metric [134]: the number of calculated Pareto 

optimal 𝑄 points within a hypervolume formed around each correct Pareto point 

𝑃∗ solution and a user-defined neighbourhood distance 𝜎, are counted. The 

number is compared with the number corresponding to a 𝑃′s  uniform 

distribution and the deviation is calculated. 

 𝜺-Performance Metric 

The 𝜀-Performance Metric: [134] is a measure of diversity by registering the 

proportion of how many estimated Pareto points which located inside a user-

specified 𝜀 hypercube (𝜀 = [𝜀1, 𝜀2, … , 𝜀𝑚], in which 𝑚 is the number of objective 
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functions) around reference Pareto points. See Figure 2.2. If a calculated 

Pareto point falls inside such a hypercube, the score is increased by one. 

Otherwise, the score is not changed. Only the nearest calculated point 

regarding the Euclidean distance to the reference point is counted. If there are 

other points in the same hypercube, they can be analysed in neighbouring 

hypercubes. The metric is given by the ratio of the final score and the number 

of reference Pareto points used. The metric provides a measure of both 

convergence and diversity, and it may vary between 0 and 1, with the value 1 

indicating full convergence. The metric can be used for problems of any number 

of dimensions in objective space. 

 

Figure 2.2 - Calculation of the ϵ-performance metric. [134] 

Hyper-Volume Metric 

The Hyper-Volume Metric: [127] calculates the volume of the objective 

space formed by a calculated set. A larger metric value is preferred. A detailed 

discussion of the metric is given in Chapter 4. 

Shannon's Entropy 

Shannon's Entropy H(S): [134] is also a metric for calculating Pareto Front's 

diversity. It is defined as: 

𝐻(𝑠) = −∑𝑝𝑖𝑙𝑛 (𝑝𝑖)

𝑁

𝑖=1

 Eq. 2.31 

in which: 

• 𝑁: number of calculated Pareto points. 
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• 𝑝𝑖: density of 𝑖𝑡ℎ calculated Pareto point. 

𝑝𝑖 = 
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑞𝑖⃗⃗⃗  )

∑ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑞𝑗⃗⃗  ⃗)
𝑁
𝑗=1

 Eq. 2.32 

where: 

• 𝑞𝑖 and 𝑞j are calculated Pareto Point 𝑖 and 𝑗, respectively. 

• Density (𝑞i⃗⃗⃗  )= ∑𝑗=1
𝑁  influence (𝑞𝑗⃗⃗  ⃗, 𝑞𝑖⃗⃗⃗  ),   and 

• Influence (𝑞𝑗⃗⃗  ⃗, 𝑞𝑖⃗⃗⃗  ) =
1

|𝑞𝑖⃗⃗  ⃗− 𝑞𝑗⃗⃗⃗⃗ |
2, i.e., the influence of 𝑞𝑗 on 𝑞𝑖 is proportional to 

the inverse of distance squared. 

If all solutions are equally spaced, i.e., diversity is at its maximum, influence 

of 𝑞𝑗 on 𝑞𝑖 is the same for all points, and all 𝑝𝑖 is equal, and each equals 1 𝑁⁄ . 

The Shannon's Entropy H(S) becomes 𝑙𝑛(𝑁), the maximum value it can take. 

On the other hand, when all solutions are gathered together, i.e., diversity is 0, 

the influence of 𝑞𝑗  on 𝑞𝑖  is infinity, and all 𝑝𝑖  goes towards 0 if 𝑁  is large. 

Shannon's Entropy H(S) goes towards 0, the minimum value it can take. 

Algorithm Complexity 

Algorithm Complexity: [112] The complexity of an algorithm can be 

measured indirectly by the ratio of computational time, which is not used for 

objective function evaluation to the time of objective function evaluation, by:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  (𝑇2 − 𝑇1) 𝑇1⁄   Eq. 2.33 

in which:  

• T1  = ∑ 𝑡1𝑖
𝑁
𝑖=1 /𝑁 , where 𝑡1𝑖  is the computing time of 10000 objective 

function evaluations for the problem 𝑖. 𝑁 is the total number of the test 

functions. 

• T2  = ∑ 𝑡2𝑖
𝑁
𝑖=1 /𝑁, where 𝑡2𝑖 is the total computing time for the algorithm 

with 10000 function evaluations for the problem 𝑖. 
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2.6  Statistical Test Methods  

Approximations of metaheuristic optimisation algorithms have random 

characteristics. When two or more sets of solutions are compared, statistical 

approaches have to be adopted. Frequently used statistical methods are 

Wilcoxon rank-sum test [136], Student's t-test and Z-test.  

Wilcoxon rank-sum test [136] is a nonparametric test of the null 

hypothesis that, for two populations, 𝑋 and 𝑌, the probability of 𝑋 being more 

significant than 𝑌  equals the probability of 𝑌  being higher than 𝑋 . The 

alternative hypothesis H1 is that the distributions are not equal, and either 

𝑋 being higher than 𝑌 or 𝑌 being higher than 𝑋 with a given confidence interval. 

Two assumptions are made about the population members. First, they are 

independent of each other. Second, any two observations in the populations 

can be compared for higher or lower probability than the other (the so-called 

ordinal property). 

The Student’s t-test is also a statistical hypothesis test. The null hypothesis 

that the means of two sets of data are not significantly different follows 

a Student's t-distribution. For a sample of normal distributed  𝑛 observations, 

the t-distribution is the distribution of the location of the sample mean relative 

to the true mean, divided by the sample standard deviation, and multiplied by 

the standardising term √𝑛. It is why that the t-distribution can be used to form 

a confidence interval for the true mean [137]. 

Z-test is similar to the Student’s t-test but is used when the standard 

deviation is known. 

These methods are used to check the outcome of PF approximations: [117]  

• Confidence intervals are calculated based on a certain level of the 

confidence factor, for example, 95%. The results are presented in the 

range around the mean value. 

https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_test
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Statistical_significance
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Confidence_interval
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• The Student’s t-test is used to check the hypnosis related to comparing 

mean values of various calculated amounts. It is used for pairwise, 

parametric testing for whether two data sets are statistically different. The 

T-test is applied for normally distributed data with a known population 

standard deviation of the difference.  

• Wilcoxon rank-sum test is utilised to check for data set 𝑋 being higher 

than data set 𝑌  or vice versa or the sets are equal within a specific 

confidence interval. Wilcoxon rank-sum test is used if the difference is not 

normally distributed. The distribution of difference of the solution sets 

obtained by non-deterministic optimization algorithms may not be normal. 

The Bonferroni correction is adopted in case of multiple comparisons in 

hypothesis testing. It tests for the case that the null hypothesis is valid for all 

comparisons simultaneously or is false for at least one test. The method is 

stricter than the other methods because it ignores the effects of pdf distribution 

of all factors in the comparisons. The Bonferroni correction reduces the targeted 

overall significance level of the test 𝛼 by testing each individual hypothesis at a 

significance level of  𝛼 𝑘⁄ , where 𝑘 is the number of null hypotheses or the 

number of test instances involved. 

 

https://en.wikipedia.org/wiki/Multiple_comparisons_problem


2.7  Visualisation of High Dimensional PF Approximations 

72 

2.7  Visualisation of High Dimensional PF 

Approximations  

Visualisation of the PF approximations may greatly help the decision-

makers in their process, and it can also assist their work of interactively 

searching for optimised solutions. Moreover, efficiencies of optimisation 

algorithms can be compared and contrasted visually in terms of the dominance 

relationships, the convergence and diversity of approximations from the 

algorithms, etc. [2], [138]. 

Approximated Pareto Front (PF) of many-objective optimisation problems 

(MaOP) is an (𝑚 − 1) dimensional surface in 𝑚 dimensional objective space 

where m is the number of objective functions involved in the optimisation 

process. Therefore, it is difficult to visualise it mainly because the number of 

axes exceeds three, so the human cognitive ability is surpassed. In addition, a 

large amount of data needs to be displayed simultaneously.  

Filipič and Tušar [138] have summarised nine desired properties for an 

effective high dimensional visualisation method. The method should show 

dominance relations between PF approximation sets, PF shape, objective 

range, PF distribution, to maintain robustness, scalability, simplicity, 

uniqueness, and handle large and multiple data sets. See a more detailed 

description of these properties and the discussion on previous visualisation 

methods in Chapter 5 of the thesis. In general, visualisation methods as of 

today may be effective concerning some of the desired properties but fail in 

possessing other wanted capabilities [138]–[141]. A new visualisation method 

covering all the properties above is highly needed.  
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2.8  Metaheuristic Optimisation Methodology Applied 

in Advanced Design and Manufacturing  

2.8.1  General Remarks 

As engineers, we are eager to implement any new theory, methods and 

algorithms into practical usage. The current section provides an overview of the 

applications of data-driven evolutionary and swarm optimisation methods in the 

manufacturing industry, which partially provides the literature review for the 

application chapter of the thesis, Chapter 6, Minimising Crack Formation in 

Selective Laser Melting operations. 

Design optimisation is finding the proper set of parameters that give the 

system's best possible performance. It is a process of iterative activities of an 

analytical stage and a synthesis stage [142]. The system's interrelationships, 

performance metrics, and design constraints are analysed and established 

during the analytical phase. Under the system's limitations, the best possible 

performances are found in the subsequent synthesis stage for specific 

parameters chosen. Optimisation techniques make it possible to attain the most 

efficient designs under the circumstances, especially for complex system 

design and optimal complex systems design under uncertainty. Machine parts 

are traditionally fabricated by first forming work blank by, for instance, forging 

or casting and are further machined to their final forms, where excess material 

is removed. It is, in general, characterised as a subtractive production method. 

Additive Manufacturing (AM) produces the final product directly by building one 

layer of time starting from its bottom [143]. AM has distinct advantages in 

making complex-shaped and customised parts, often in one go. Materials of 

plastics, as well as metals, can nowadays be used in an AM process. Laser-

Based Additive Manufacturing (LBAM) is used to work with metal parts. The 
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selective laser melting (SLM) technique utilises a high power-density laser to 

melt and fuse metallic powders. 

Achieving good quality, high reliability and good repeatability are significant 

challenges in using this technology. The process parameters highly influence 

the final product quality, the production system’s consistency, the process’s 

repeatability, and the production setups and procedures [143]. Consequently, 

the product's final quality, microstructure and mechanical properties are 

determined mainly by choosing such process parameters [143]. 

It has also been reported that laser power, layer thickness, and hatch space 

between adjacent laser paths within the same layer are the most dominating 

controllable process parameters for the Selective Laser Melting (SLM) process 

[144]. The most suitable process parameters settings can be found by 

simultaneously optimising target values: specific qualities, mechanical 

properties, and geometric characteristics, such as acceptable density level, 

yield strength, ductility, stiffness, elongation to failure, etc. 

Sometimes, these target values are conflicting and cannot be optimised 

individually in the same production process. For instance, high cooling rates of 

LBAM may lead to an increase in yield strength of the material and a reduction 

in ductility or elongation to failure of the final product [143]. 

A compromise among them must be searched. That’s why finding optimised 

process parameters is a challenging job, and it requires multi-objective process 

optimisation. [144]  

2.8.2  MOO Applications in Product Design 

The design process starts with designers' creative ideas, often improved in 

an iterative process. Optimisation techniques can speed up the process and 

create new ideas, or inventions designers will otherwise not come over. 

Controlled by prespecified conditions (constraints), the design is made to the 

https://en.wikipedia.org/wiki/Laser
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best ones regarding the crucial parameters determined by the environment in 

which the model is created. For instance, weight in a machine component 

design, emissions to air, water, and soil in creating a machining process or 

workshop, time and cost of production of a machine and its parts, etc., are 

crucial parameters to be considered. 

In Optimal Design of Multilevel Systems [145], analytical target cascading 

(ATC) is a methodology for optimal system design. The system is subdivided 

into many hierarchical multilevel systems. Outputs from lower-level subsystems 

or elements are inputs to higher-level subsystems or the total system. An 

optimisation problem for each component or subsystem is solved for parameter 

settings, resulting in the best possible system response. If design parameters 

are shared among some components or subsystems simultaneously, their final 

optimal settings are attained through the multi-objective optimisation of 

subsystems at the level above. 

2.8.3  Reliability-Based Design Optimisation 

Due to the nature of uncertainty of information and data, a reliability-based 

approach to design optimisation can be used. In such an analysis, the objective 

functions are optimised. In contrast, the influence of stochastic variations of 

some parameters and objective functions are accounted for by using 

stochastically different variables and objective functions. The robustness of the 

system solution is tested [146]. When this randomness is introduced in the 

value of objective functions, it is called a robust design. And when it satisfies 

the constraints, it is called a reliable design. Probability distributions of Pareto 

optimal solutions and decision variables can be obtained by using: 

• Monte Carlo simulation, but it may be an expensive method [142]  
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• The mean-value first-order second-moment approach (first-order Taylor 

expansion about the current design) calculates the mean and standard 

deviation of the objective functions. [147] 

 

2.8.4  MOO Applications in Machining Operations of Turning, 

Milling, Drilling, Grinding 

MOO methodology is frequently used in determining the parameters of 

machining operations, where the process parameters are treated as decision 

variables. Simultaneously, some crucial targets of the production activity are 

taken as objective functions and are optimised simultaneously concerning 

these decision variables. 

Reducing energy consumption is one of the main tasks in manufacturing 

industries, which has great significance for ecological, economic, and technical 

reasons. According to the International Energy Agency, the energy 

consumption in manufacturing industries is about 30% of the world’s total. Most 

of the energy used today is generated using fossil fuels, and the generation 

process owes to about 2/3 of the world’s greenhouse gas emissions. The 

energy consumption should be kept to a minimum. It is why the energy 

consumption in one form or other in simulation and analysis of a machining 

process is often taken as one of the objective functions to be minimised. 

Another target for machining operation is the production time which is desirable 

to be kept to its minimum so that the production throughput is held to its 

maximum. The third objective often to be minimised is the production cost, for 

obvious reasons. The fourth objective to be minimised is usually the machining 

operation's quality, for instance, the surface finish of finished goods. However, 

in a roughing process, the machining quality, i.e. the surface finish, is of minor 

importance [148].  
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In a machining operation, the cutting parameters are decision variables. It 

is desirable to set these parameters to values so that the energy consumption, 

the production time spent on the operation, the production cost and the 

machining quality on the workpiece are simultaneously optimised under the 

constraints caused by the limitations of equipment capacities and other factors 

influenced by the circumstances of the operation.  

In turning, typical cutting parameters are cutting speed, feed rate and cutting 

depth. Usual constraints valid in such a machining operation could be [148]:  

• The cutting power cannot exceed the maximum power available on the 

machine's spindle. 

• The maximum torque can be applied to the machine spindle: the actual 

torque exerted on the machine spindle cannot exceed a maximum value. 

• The requirement of the tool is obtaining the most fragmented chips. 

• The requirement on the workpiece: the boom is limited. 

• The requirement on surface finish: specified surface quality is wanted. 

In milling operations, depth of cut, feed rate and cutting speed are the main 

parameters taken as decision variables. The best suitable cutting parameters 

can be found by simultaneously minimising the machining cost and the 

machining time [149]. The settings can also be settled by simultaneously 

minimising the surface roughness and cutting force [150]. 

Spindle speed, drill diameter, material thickness, and feed rate are process 

parameters taken as decision variables in a drilling process. These process 

parameters influence the thrust force and torque generated to the jig on the 

worktable created during the drilling, which can be considered objective 

functions. Multiple regression models can find the relationship between power, 

torque, and the drilling process parameters [151]. The sensitivity of objectives 
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versus process parameters can be analysed by minor variations of these 

parameters in optimisation calculations [151]. 

2.8.5  MOO Application in Additive Manufacturing  

Machine parts are traditionally fabricated by first forming work blank by, for 

instance, forging or casting and are further machined to their final forms, where 

excess material is removed. It is, in general, characterised as a subtractive 

production method. Additive Manufacturing (AM) produces the final product 

directly by building one layer of time starting from its bottom [143]. AM has 

distinct advantages in making complex-shaped and customised parts, often in 

one go. Materials of plastics, as well as metals, can nowadays be used in an 

AM process. Laser-Based Additive Manufacturing (LBAM) is used to work with 

metal parts. The selective laser melting (SLM) technique utilises a high power-

density laser to melt and fuse metallic powders. 

Achieving good quality, high reliability and good repeatability are significant 

challenges in using this technology. The process parameters highly influence 

the final product quality, the production system’s consistency, the process’s 

repeatability, and the production setups and procedures [143]. Consequently, 

the product's final quality, microstructure and mechanical properties are 

determined mainly by choosing such process parameters [143]. 

It has also been reported that laser power, layer thickness, and hatch space 

between adjacent laser paths within the same layer are the most dominating 

controllable process parameters for the Selective Laser Melting (SLM) process 

[144]. The most suitable process parameters can be found by simultaneously 

optimising target values that are specific qualities, mechanical properties, and 

geometric characteristics, such as acceptable density, yield strength, ductility, 

stiffness, elongation to failure, etc. 

https://en.wikipedia.org/wiki/Laser
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Sometimes, these target values are conflicting and cannot be optimised 

individually in the same production process. For instance, high cooling rates of 

LBAM may lead to an increase in yield strength of the material and a reduction 

in ductility or elongation to failure of the final product [143]. 

A compromise among them must be searched. That’s why finding suitable 

process parameters is a challenging job, and it requires multi-objective process 

optimisation [152]. 

A complete study of analysis on the operative parameters of an SLM 

manufacturing case can be found in Chapter 6. The edge density, bulk density, 

and pore number are chosen as objective functions and modelled as functions 

of four process parameters: laser power, point distance, hatch offset, and 

exposure time. Three different products are manufactured. The aim is to 

determine the best combination of the process parameters at which the targets 

are simultaneously optimised: edge density, bulk density, and the number of 

pores. 

The analytical model is formed using the Radial Basis Function Neural 

Network (RBFNN). 

2.8.6  MOO Application in the Squeeze Casting Process 

Squeeze casting is casting with melt metals under pressure. It produces 

near net-shaped casted products, i.e., no, or minimal further processing is 

needed before the products can be used. The products often have excellent 

properties like conventional casting under atmospheric pressure and forgings. 

These include refined structure, minimum porosity, weldability, heat-treatability, 

improved mechanical properties, good surface quality, and better dimensional 

accuracy. No runners and feeders are used in processing, which reduces 

energy consumption. The post solidification of the products can be monitored, 

and the data can be used to improve the production process [153]. 
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Properties such as aesthetic appearance, internal soundness of the cast 

parts, surface roughness, yield strength, and the ultimate tensile strength of 

finished products are influenced by the process parameter as squeeze 

pressure, pressure duration, pouring temperature, die temperature, etc. These 

dependent properties can be formed as objective functions of the process 

parameters, which are decision variables. The best process parameters can be 

found by simultaneously optimising the objective functions [153]. 

2.8.7  MOO Application in Maintenance and Planning 

The bottleneck in a production system must be removed to enhance the 

production throughput. A bottleneck of a production line can be defined as the 

place where a small change can lead to the most significant improvement of 

the average performance [154]. A MOP analysis of a problem can adequately 

identify the production line's gains by formulating the system throughput as the 

objective function. The total number of changes necessary to improve is 

expressed as the second objective function [155]. Searching for Pareto Front, 

the improvement level as a function of several changes is shown, and a 

decision can be made based on the result and the available resources [155]. 

A production line can be analysed for multiple resource constraints, and 

these constraints determine the production capability or the throughput of the 

line. A job sequencing plan is established, in which individual jobs are elements 

of it and are used as decision variables. The lead times, throughput and 

inventory holding costs are influenced by the tasks in the job sequencing plan 

and are considered objective functions. The best job sequencing plan can be 

found by simultaneously optimising the objective functions [156]. 
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2.9  Summary and Conclusions  

Evolutionary and swarm optimisation methodologies can be used to solve 

MaOPs. However, the following vital aspects still need to be studied further, 

and new efficient methods/algorithms are highly desired, which can: 

• Ensure that the solutions converge rapidly towards optimality and cover 

most possibly diversified the whole PF range. 

• Effectively measure the diversity of a high dimensional PF approximation 

set. 

• Visually display the pattern and characteristics of PF and the dominance 

relations among several PF approximations simultaneously. 

One of the most efficient solution methods for solving MaOPs is 

decomposition-based algorithms. The search for optimality is done along with 

a system of predefined reference vectors or guided by a set of pre-created 

reference points adapted progressively under the iteration process to cover the 

PF of arbitrary form, most possibly in uniformity and spread.  

The even distribution of these reference vectors or points dramatically 

influences the resulting diversity of the PF approximations. The clue is to 

generate these reference vectors so that the points of intersections of the 

vectors and the true PF or its approximated surface become most possibly 

equidistant. It then leads to obtaining the most diversified PF approximations. 

The pre-generated reference vectors are most commonly created by the Das 

and Dennis method. But it can only make equidistant reference points on a 

simplex plane, while a real-life PF shape could be arbitrary. There is a strong 

need to develop a generalised method that can create most possibly equidistant 

reference points on or in the vicinity of the true PF. It is the first of the major 

tasks of this thesis work. See Chapter 3. 
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The diversity of PF approximations determines the completeness of a MaOP 

solution. But measuring the diversity of a high dimensional PF approximation 

set is challenging mainly due to the Curse of Dimensionality. Several diversity 

metrics or indicators have been developed, but all have severe flaws in one 

way or another. Diversity indicators should be sensitive to the change of 

diversity and behave monotonically for ever-increasing diversity, which is 

properties nontrivial to possess. Evaluating diversity by using pre-defined 

reference vectors is a common technique to formulate a diversity indicator. 

Unfortunately, the method suffers potential systematic bias in diversity measure, 

and the bias must be effectively removed. In addition, it is also challenging 

when different diversity indicators are compared and evaluated for their efficacy 

and efficiency. An alternative solution to these challenges forms the second 

task of the thesis work. See Chapter 4. 

Visualisation of high dimensional PF is nontrivial, but the desire has always 

been in MaOP research to develop a more effective visualisation method. It 

leads to the third task to be carried out in the thesis work. See Chapter 5. 

MaOP methodologies are widely used in the analysis of real-life challenges. 

As engineers, we are eager to implement the new theory, methods and 

algorithms into practical usage. The theoretical achievements of the thesis work 

have been utilised to analyse an experimental study in the optimisation of 

process parameters of a Laser Selective Melting operation. See Chapter 6. 
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Chapter 3  A New Method for 

Generating and Indexing Reference 

Points in Many-Objective Optimisation 

Chapter Outline 

A new method for creating reference points is proposed, for instance, in the 

reference point-based Many-objective Optimisation Problem (MaOP). The 

current standard practice of generating reference points on a unit simplex plane 

uses the Das and Dennis method [157]. But when the generated reference 

points are projected onto the actual Pareto Front (PF), it creates uneven 

distribution. This challenge is particularly prominent in a higher number of 

objectives when considering solutions’ diversity. Via the proposed, the 

reference points are more evenly generated on an m dimensional B-norm 

surface in the vicinity of the actual PF and subsequently projected onto it. The 

B-norm surface is created adaptively by tracking the true PF. The method is 

thus named as B-norm based PF tracking method (Bn-PFt). A new indexing 

system of reference points is also proposed to ease the work of algorithmic 

development. Systematic numerical studies performed on B-norm surfaces of 

various B values show that reference points created by the proposed Bn-PFt 

method are more evenly distributed on the surfaces than those projected onto 

the same surfaces generated using the Das and Dennis method. The method 

can be readily implemented on a variety of many-objective optimisation 

algorithms. Using MaOP algorithms on MaF benchmark problems with 3, 5, and 

7 objective functions shows that the candidate solution sets obtained have 
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better diversity by adopting the proposed method's reference points. The above 

work resulted in the following publication:  

 

K. E. Wu and G. Panoutsos, "A New Method for Generating and Indexing 

Reference Points in Many-objective Optimisation," 2020 IEEE Congress 

on Evolutionary Computation (CEC), Glasgow, UK, 2020, pp. 1-8. 
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3.1  Introduction 

The approximated sets to PF of a MOP or a MaOP solution shall ideally be 

fully converged to a PF, uniformly distributed along the surface of PF, and 

spread to all peripheries of the front. Uniformity and spread properties of the PF 

is often referred to as its diversity property. MOP problems have been 

successfully solved based on Pareto-based or dominance-based strategy, 

where non-dominated solutions are chosen as parents to generate new 

offspring candidates in further iterations in evolutionary algorithms. It is often 

combined with a secondary diversity-related strategy, such as crowding 

distance-based diversity maintenance, distributing and spreading the solutions 

to the whole PF. Non-dominated solutions that are more distant from their 

neighbours are preferred as parent solutions for the following iteration process. 

This strategy is frequently used in many evolutionary multi-objective 

optimisation algorithms (EMO), such as NSGA-II [100] and SPEA2 [158]. 

However, this strategy is less efficient on MaOP problems because the number 

of non-dominated solutions increases dramatically as the number of objectives 

increases. Hence the number of non-dominated solutions overflows the pre-set 

storage space of the archive, which makes the algorithm unable to identify new 

candidates for further iterations efficiently. 

Several other solution strategies have been implemented in the literature to 

deal with the challenge,  often in combinations, in solving MaOP problems, such 

as dominance enhancement-based, grid-based, knee point-based, DM's 

preference-based, indicator-based, two archive-based, objective function 

space reduction-based, decomposition-based, reference vector-based or 

reference points-based approaches [159]. 

Algorithms as ε-dominance [160], [161], L-optimality [162], and fuzzy 

dominance [163] are some representatives of dominance enhancement-based 
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methods. The Grid-based Evolutionary Algorithm [79] is a typical grid-based 

one. Knee Point-driven Evolutionary Algorithm [75] is a knee points-based 

method. Preference-Inspired Coevolutionary Algorithms [164] is the most 

frequently used algorithm of DM's preference-based approach [159]. When the 

indicator-based methodology is concerned, the Indicator-Based Evolutionary 

Algorithm [61], the S-metric selection based evolutionary multi-objective 

algorithm [165], and the fast hypervolume based evolutionary algorithm [71] 

can be mentioned. Two-Archive Algorithm [166] and Two-Archive Algorithm II 

[77] use two separate archives in the MaOP algorithm, one for convergence 

criterion and one for diversity criterion. In algorithms based on objective function 

space reduction, the number of objective functions is reduced. Less essential 

objective functions are removed from the optimisation process, based on 

eigenvalue analysis or correlation analysis of objective functions [158].  

Decomposition-based algorithms transform MaOP into single objective 

functions by using aggregation function with the help of the weight vectors, 

optimised simultaneously. Multi-Objective Evolutionary Algorithm based on 

Decomposition (MOEA/D) [6] is the first algorithm of this kind. Pareto Sampling 

(MSOPS) [167], later improved version MSOPS-II [168], and MOEA/D-M2M 

[169], MOEA/DD [170] are some of the representative algorithms of the 

category. The weight vectors are established with the aid of reference points. 

In reference vector-based or reference points-based algorithms, the 

objective space is covered by a given number of reference vectors or reference 

points which guide the iteration process towards the final goal, both in terms of 

diversity and convergence. Non-dominate Sorting Genetic Algorithm III (NSGA-

III) [2], Reference Vector-guided Evolutionary Algorithm [7] are typical 

algorithms of the kind [61], [164]. Reference vectors or points are formed a priori 

to algorithm start-up.  
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Li et al. [159] have performed a comprehensive and systematic comparative 

study among 13 MaOP algorithms, formed based on different strategies of 

MaOPs, by using them to analyse three main groups of test functions. The 

conclusion is that none of the algorithms outperforms the others on all types of 

problems. However, the decomposition-based and reference vector/reference 

or points-based algorithms are competitive on many test problems. The 

methodology of generating equidistant reference points is essential in these 

MaOP algorithms. 

Reference vectors are also frequently used as primary tools in forming pure 

diversity indicators in MaOP research. The included angles between candidate 

solutions and reference vectors are adopted to measure diversity [61], [100]. 

Ideally, reference points should be created equidistantly on the searched 

true PF, but this is impossible since PF is not known a priori. A feasible way out 

of the dilemma is to adapt reference points as the search for the true PF 

progresses. 

Reference points are most commonly created using Das and Dennis's [157] 

boundary intersection approach, where uniformly spaced reference points are 

generated on a unit simplex plane. Since the reference points generated in this 

way are equidistant on the unit simplex plane only, it is most efficient for 

searching for PFs with a unit simplex plane as Pareto Front or in its vicinity. It 

is common to vector-wise project the obtained reference points to PF surfaces 

of other forms [71]. The major drawback of the practice is that when projected 

onto the PF surface, the formed reference points are not equidistant. 

Depending on whether the surface of PF is in convex or concave form, the 

distributions of the points vary differently. With more considerable distances in 

mid-area in PF of concave type and decreases towards the peripheral. On the 
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contrary, for PF of convex shape, the reference points are closer to each other 

in the mid-area and farther away near the edges. 

The proposed research work introduces a new method for creating 

reference points. The proposed methodology aims to generate more evenly 

distributed reference points on the surface in the vicinity of the true PF. It is 

shown that Das and Dennis's reference point creation method is a particular 

case of the proposed method – hence the proposed is the general case. The 

main contributions of this chapter to the field of study are: 

• Establish an indexing system for reference points so that each reference 

point can be readily identified in m dimensional space. 

• Introduce a new creation method for more equally spaced reference 

points on curved surfaces based on equidistant points along each two-

dimensional edge of the approximated PF. An initial candidate solution set 

is first obtained by using reference points created using Das and Dennis 

method. The candidate solutions are then used to determine the 

parameter B in the B-norm curve. Equidistant reference points are first 

generated on an edge line of approximated PF. The coordinate values of 

all intermediate points sat to be equal to their respective amounts on edge 

based on an equal index. 

• Propose an adaptation procedure to create reference points in the MaOP 

algorithm. 

This chapter is organised as follows. Section 4.2 gives an overview of 

existing methods of creating reference points. Section 4.3 covers the reasoning 

and formulation of an indexing system for reference points. Section 4.4 provides 

a detailed description of the formulation of the proposed reference point system. 

Section 4.5 is devoted to comparative studies of the proposed reference points 

with the existing ones, where improvements of the introduced new reference 
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point creation method compared with the others are highlighted. Finally, 

conclusions are drawn, and future research directions are discussed in Section 

4.6.  
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3.2  Creation Methods of Reference Vectors 

The Das and Dennis method is the dominating method for generating 

reference points [165]. The reference points generated are widely used both as 

a tool in measuring diversity and as guidance for candidate selection for the 

next iteration in multi-objective evolutionary algorithms [79], [159].  

The method of Das and Dennis creates uniformly spaced reference points 

on a normalised hyper-plane – an (𝑚 − 1)-dimensional unit simplex plane to all 

objective axes, which have an intercept of one on each axis. Reference points 

are generated as [165] 

𝜆𝑖 = (𝜆1
𝑖 , 𝜆2

𝑖 , … , 𝜆𝑚
𝑖 ) Eq. 3.1 

in which 

𝜆𝑗
𝑖 ∈ {

0

𝑝
,
1

𝑝
,… ,

𝑝

𝑝
}  𝑎𝑛𝑑 ∑𝜆𝑗

𝑖

𝑚

𝑗=1

= 1  

where 𝑝  is the number of divisions along each objective axis and 𝜆𝑗
𝑖  is 

normalised coordinate value, where 𝑖 is the 𝑖𝑡ℎ reference point and 𝑗 is the 𝑗𝑡ℎ 

objective functions. 

The number of reference points generated, 𝐻, is given by: 

𝐻 = (
𝑚 + 𝑝 − 1

𝑝
) Eq. 3.2 

where 𝑝 is the number of divisions along each axis, and m is the number of 

axes or objective functions. 

The number of reference points to be created may be determined by the 

resolution requirement on PF, which a DM should decide. Typically, this number 

is closer to and slightly bigger than the number of candidate solutions [79]. 

The reference points on the unit simplex are equidistant. But when they are 

projected to surface an arbitrary form of a true PF, the distances between the 

points are not equal. See Figure 3.2 for an illustration. As any of the equidistant 
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points on the simplex plane are projected onto a convex curve along the line 

linking the point and the origin, the projected points become closer to the centre 

than at the edge creating unevenly distributed points along the convex curve. It 

means that the reference points used in a MaOP algorithm to start with are not 

uniformly distributed. When used to find candidate solutions, the approximation 

sets cannot be evenly distributed, resulting in a deterioration of uniformity.  

The number of reference points increases exponentially with increasing p 

and m. Already for 𝑝=𝑚=8, it generates 6,435 reference points which consume 

a considerable amount of computational power. To address this challenge, Deb 

and Jain [79] suggest using two layers of reference points with each of smaller 

value of 𝑝, 𝑝1 for boundary layer and 𝑝2 for inside layer so that the total number 

of reference lines are dramatically reduced to a manageable level. See an 

illustrative drawing depicted in Figure 3.1. But the consequence of this is a 

further reduction of even distribution of reference points on the unit simplex 

plane, and gaps of non-existing reference points are created between the two 

layers. 

 

Figure 3.1 - A schematic view on the principle of Deb and Jain's multi-layer 
method, where 𝑝1=2, 𝑝2=1 [159]. 

He et al. [171] proposed a novel sampling method of generating reference 

points by considering PF's actual shape and location, described by the equation 
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of B-norm. A point 𝑭′ = [𝑓1
′, 𝑓2

′, … , 𝑓𝑖
′, … , 𝑓𝑚

′ ] is on a regular surface in 𝑚 

dimensional space if it satisfies Eq. 3.3. 

(∑ 𝑓𝑖
′𝐵

𝑚

𝑖=1
)
1 𝐵⁄

= 1 Eq. 3.3 

in which the value of parameter B determines the shape of the surface:  

• 𝐵 < 1, convex surface 

• 𝐵 = 1, simplex plane 

• 𝐵 > 1, concave surface 

Any point 𝑭= [𝑓1, 𝑓2, … , 𝑓𝑖 , … 𝑓𝑚] that is not lying on this surface can be 

projected onto it by using normalisation strategy with B-norm: 

𝑭′ = (
𝑓1

‖𝑭‖𝐵
,

𝑓2
‖𝑭‖𝐵

, … ,
𝑓𝑚

‖𝑭‖𝐵
 ) Eq. 3.4 

in which 

‖𝑭‖𝐵 = (∑|𝑓𝑖|
𝐵

𝑚

𝑖=1

)

1 𝐵⁄

 Eq. 3.5 

Figure 3.2 shows the principle of the sampling method. Starting with the 

centroid of the unit simplex plane, reference points are successively sampled 

through subdivisions. Reference points are sampled both as vertices of 

subregions and as the centroid of the subregions. 

Using the B-norm of 2.0, the sampling method can generate uniformly 

distributed reference points on the reference surface of a hypersphere in the 1st 

octant.  

A weakness of the method is that it cannot create equidistant points on 

surfaces of B-norm except on the surface of B-norm of B=2.0. It fails, especially 

on creating evenly distributed reference points on surfaces of convex form. See 

Figure 3.2 for further explanation. Point D is created as the mid-point of B and 

C'. As it is projected to D' onto the convex curve BD'C' along with OD, the point 

D' is closer to C' than point B, resulting in unevenly distributed points of B, D' 
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and C' along the convex curve of BD'C'. When the parameter B of the B-norm 

surface equals 2.0, the surface becomes a perfect hypercube. The method can 

create equidistant points on the concave curve of B=2.0. 

 

Figure 3.2 - The principle of sampling method [77], where a point C on the unit 
simplex plane is projected on the surface of B norm C' after the first division 
and point D' is sampled after further division. 

Tian et al. [71] suggest generating reference points on known true PFs 

starting with the points created by the Das and Dennis method on a unit simplex 

plane and projecting them to the actual Pareto fronts. Unfortunately, the final 

distribution of the reference points generated in this way is not uniform. As any 

of the equidistant points on the unit simplex plane are projected onto a convex 

curve along the line linking the point and the origin, the projected point becomes 

closer to the centre than the outskirt resulting in unevenly distributed points 

along the convex curve. Contrarily, when the point is projected onto a concave 

curve along the line linking the point and the origin, the projected point turns out 

to be farther away from the centre than it is to a point on edge, resulting in 

unevenly distributed points along with the concave curve as well. 

PFs of real-world optimisation problems usually have irregular PF, i.e., a PF 

can be disconnected, degenerated, inverted and badly scaled. Due to the 

mismatch between the reference vectors' distribution and the PF shape, 

algorithms using predefined uniformly designed reference vectors fail to obtain 

sufficiently good diversity solutions. The challenge is dealt with by adopting 
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adaptively adjusted reference vectors periodically to fit the PF shape as the 

evolution process undergoes. Ma et al. [172] have recently given a 

comprehensive review on the reference vector adaptation for handling irregular 

Pareto fronts. 

Reference vectors can be recreated based on the predefined-then-random 

scheme, where predefined weight vectors in the initialization are utilised in the 

initiation while further adjustments are made randomly to substitute the 

obsolete reference vectors as the evolution process continues [7]. The method 

is straightforward, but the quality of solutions in convergence and uniformity 

may be limited. In [173], different  reference vectors creation strategies are used 

for exploration and exploitation. In the former, reference vectors linked to most 

solutions are replaced with randomly generated ones, while in the latter, those 

with no solutions linked to are replaced by randomly created reference vectors. 

PICEA-w [174] adopt an adaptation strategy where the population and the 

weight vectors are co-evolved periodically, and new weight vectors are 

randomly added. 

Reference vectors can be adapted based on fitting-based adjustment. The 

form of temporarily attained PF is approximated, and new uniform reference 

vectors are regenerated, matching the actual PF. For example, the reference 

vector adaptation method used in paλ-MOEA/D [175] is representative. The PF 

is approximated as [𝑓1(𝑥)]𝑝 + ⋯+ [𝑓𝑚(𝑥)]𝑝 = 1 , where p is the model 

parameter. Reference vectors are regenerated by maximizing the hyper-

volume (HV) metric. In DEA-GNG [176], the PF form is learned using a growing 

neural gas network, and both the reference vectors and the scalarizing 

functions are adapted neighbour information. DBEA-DS [177] applies two sets 

of reference vectors to guide the search. The optimal set is chosen in terms of 

the s-energy metric calculated using the obtained population at each 
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generation. Fitting-based adjustments can be misguided by attained candidate 

solution of poor convergence and diversity and may suffer instability problems 

during estimating parameters of the approximation model for degenerated PFs. 

Reference vectors have been adapted using local-population-guided or 

local-archive guided adjustment principles that exploit local individual density 

information. SDEA [185] divides the objective space into multiple subregions by 

the uniform design method. New reference vectors are created in subregions 

with few nondominated solutions by adding additional ones. MOEA/D-AM2M 

[178] periodically creates new reference vectors in a subregion by maximising 

their minimal included angles. VaEA [179] also generates new reference 

vectors between candidates of the key layer of nondominated sorting based on 

the principle of maximising the included angles. 

OD-RVEA/AR [180] removes reference vector with no candidate linked to them 

and generate new ones between individuals with the largest included angles. 

The biggest challenge with angle based adaptation is its difficulty in handling 

long-tailed/peaked PFs. A-NSGA-III [2] periodically deletes not used reference 

points, identifies reference points with crowded solutions and adds a simplex 

with m neighbour reference points to each of them. In PSA [181], each weight 

vector with an individual solution is adapted slightly to push the candidate away 

from its nearest nondominated neighbour. The success of local-population-

guided adjustment methods in searching for irregular PFs relies on PF 

approximation realising using the current population. But there is always danger 

for misguidance to poor convergence and diversity by the current population. 

In local-archive guided adjustment methods, an external archive is used for 

weight vector adjustment. MOEA/D-URAW [74] targets many-objective 

optimization problems (MaOPs) by generating initial reference vectors using a 

uniformly random method and periodically checking the external archive of 
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reference vectors and deleting those in the overcrowded area, and adding new 

ones in the sparse area. Current PF is better approximated when using the 

external archive than relying merely on the current population, which forms the 

foundation of reference vector adaption of the methods. 

Reference vectors can be recreated based on the neighbour-weight-vector-

guided adjustment principle. In EMOSA [182], reference vectors are first 

generated using a uniform design method and are adapted by keeping them 

away from their nearest nondominated neighbours. MOEA/D-AWVAM [183] 

creates extra reference vectors in subregions with few nondominated solutions. 

In MOEA/HD [184], reference vectors are grouped into different hierarchies and 

regenerated using the perpendicular bisector between the superior 

neighbouring individuals. Neighbour-weight-vector-based adjustment is a local 

improvement procedure and may contribute limitedly to the overall uniformity of 

PF. 

Reference vectors can be created based on preference-based adjustment 

principles. The methods are particularly beneficial for solving MaOPs since only 

the region of interest (ROI) is searched with the consequence of reduced 

requirement on population size. In NUMS-MOEA/DSTM [185], reference 

vectors are contracted to DM’s preference reference vector. In PICEA-g [164], 

the population and a set of preference points are co-evolved by constantly 

adding randomly generated preference points. The individual that dominates 

the largest number of preference points are chosen, and the preference point 

that is dominated by the largest number of selected individuals is maintained. 

In a-PICEA-g [186], the diversity maintenance in PICEA-g is further 

strengthened by introducing the crowding distance concept. In PICEA-w [174], 

the weights and candidates are co-evolved, and no prior defined weights are 

needed, making the algorithm robust to the problem geometries. However, 
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although feasible and practical, the biggest concern with the preference-based 

adjustment is related to the situations where only local optima are found 

because the search is guided towards preference directions.   

Handling various reference vectors can be challenging. An efficient indexing 

system to reference points can enhance the clarity of algorithms, save 

computer power when searching for a specific reference point, and ease 

algorithmic development of new methods. Finding neighbouring points to a 

given reference point are made more accessible. A reference point can be 

easily turned on/off when needed, and new reference points can be generated 

between existing ones if required. An arbitrary number of reference points can 

thus be created on the boundary layer and inside layers. 

Another feature is that instead of handling the coordinate value of reference 

points in real numbers, one can identify the reference points with indexes of 

integers, speeding up computation and saving data storage space. 

 

Figure 3.3 - Indexing reference points created using the Das and Dennis 
method. Numbers in parentheses are indexes, while numbers in brackets are 
coordinate values of a reference point. 

The description of the indexing system is first done with an example in 

creating reference points on the unit simplex plane. Figure 3.3 displays 

reference points on the unit simplex plane of 3 objectives and five equal 

divisions along each objective axis. 

All reference points in Figure 3.3 can be created by: 
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[𝑠1  𝑠2  𝑠3] = [
𝑖1
𝑝

  
𝑖2
𝑝

  
𝑖3
𝑝
] Eq. 3.6 

where 𝑠1, 𝑠2, and 𝑠3 are coordinate values of a reference point. (𝑖1, 𝑖2, 𝑖3) are 

their indexes along 𝑓1, 𝑓2, and 𝑓3 axis, respectively. We have: 

𝑠1 + 𝑠2 + 𝑠3 = 1 Eq. 3.7 

𝑖1 + 𝑖2 + 𝑖3 = 𝑝 Eq. 3.8 

in which p is the number of divisions on each objective axis. 

All reference points are readily found by systematically varying  

𝑖𝑗 , 𝑗 ∈ {1, 2, … ,𝑚}  under the assumption that Eq. 3.8 is satisfied. Another 

exciting feature is that an index and its corresponding coordinate value are 

causally linked. For two arbitrary reference points, indexes from each are equal, 

resulting in the same coordinate value. For example, see Figure 3.3, for points 

A, B, C and D: 

𝑖1
𝐴 = 𝑖1

𝐶 = 𝑖3
𝐷 = 1 → 𝑓1

𝐴 = 𝑓1
𝐶 = 𝑓3

𝐷 = 0.2 

𝑖2
𝐴 = 𝑖2

𝐵 = 3 → 𝑓2
𝐴 = 𝑓2

𝐵 = 0.6 

𝑖3
𝐴 = 𝑖3

𝐷 = 𝑖1
𝐶 = 1 → 𝑓3

𝐴 = 𝑓3
𝐷 = 𝑓1

𝐶 = 0.2 

Eq. 3.9 

Eq. 3.9 indicates that coordinates are the same for points with the same 

index. It can be interpreted as that coordinates of an arbitrary point can be found 

by comparing its indexes with points along a line of edge (2D hyper-line) and 

are put equal to the coordinate values of the same index.  

In general, the coordinates of a reference point in m objective space are 

given as: 

(𝑠1   𝑠2   … 𝑠𝑚) = (
𝑖1
𝑝

  
𝑖2
𝑝

  …   
𝑖𝑚
𝑝

) Eq. 3.10 

and  

𝑠1 + 𝑠2 + ⋯+ 𝑠𝑚 = 1 Eq. 3.11 

𝑖1 + 𝑖2 + ⋯+ 𝑖𝑚 = 𝑝 Eq. 3.12 
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The principle illustrated in Eq. 3.9 can be expanded for the determination of 

coordinates of an arbitrary reference point in 𝑚 objective function space by 

equating the value to the corresponding values to a two-dimensional line with 

the same index: 

𝑖𝑗 = 𝑖1
𝑘,2𝐷 = 𝑘 → 𝑓𝑗 = 𝑓1

𝑘,2𝐷 , 𝑗 ∈ (1, 2, … ,𝑚) Eq. 3.13 

where 𝑚 is the number of objective functions. 𝑖𝑗, 𝑗 ∈(1, …, 𝑚) is the index of the 

𝑗𝑡ℎ component of the searched reference point. 𝑓𝑗, 𝑗 ∈(1, …, 𝑚) is the value of 

the  𝑗𝑡ℎ  component of the searched reference point. 𝑖1
𝑘,2𝐷

 and 𝑓1
𝑘,2𝐷

 are the 

index and the value of the first coordinate of the reference point with 𝑖1
𝑘,2𝐷 = 𝑘 

along a two-dimensional edge line on the simplex plane, respectively.  

Eq. 3.13 implies that the coordinate values of an arbitrary reference point in 

m dimensional space can be put equal to corresponding coordinate values of 

points on a two-dimensional line of edge on the simplex plane by contrasting 

indexes of them. This property of Eq. 3.13 can be utilised to develop a new 

system of reference points. See Section 3.4 for details. 
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3.3  Proposed Method for Generating Reference 

Points 

The proposed method for creating reference points is based on an (𝑚 − 1) 

dimensional B-norm surface generated based on the curve fitting of an 

approximation set of PF. The method turns out to be applicable for generating 

uniform reference vectors on irregular PFs of discontinuity and inverted types 

but fails when used on PF of degenerated shape because it suffers instability 

problem when B-norm surface is adopted to describe such PF patterns. See 

discussions in Section 3.5.3 for more details. In the start-up phase, an 

approximation is created using the existing MaOP algorithm and with reference 

points made by, for instance, Das and Dennis method. The candidate solution 

set obtained is then used to determine the parameter B in the B-norm curve. A 

new set of reference points is created, and a new round of approximation is 

started with refined reference points. Projection of B-norm curve on a 2D plane, 

for instance 𝑓1 − 𝑓2 plane can be attained, which is a 2D edge or boundary of 

the estimate of PF. Equidistant reference points are first generated on edge. 

The coordinate values of all internal points are put to be equal to their respective 

amounts on edge, which have the same index. 

 



Chapter 3 A New Method for Generating and Indexing Reference Points in Many-Objective Optimisation 

101 

The reference point creation method is done on the B-norm surface, which 

adaptively traces the true PF, named B-norm-based PF tracing (Bn-PFt). The 

pseudo-code for Bn-PFt is shown in Algorithm 1. 

3.3.1  Approximate PF with B-norm Equation 

After the first converged solution set has been obtained using Das and 

Dennis's reference point generating method, the solution set is curve-fitted to 

take a B-norm equation. The solution set can be used to estimate parameter B 

as: 

 

Figure 3.4 - Determination of part's length for p=7 

𝐹(𝑓1, 𝑓2, … , 𝑓𝑚) = (𝑓1
𝐵 + 𝑓2

𝐵 + ⋯+ 𝑓𝑚
𝐵)

1
𝐵 = 1 Eq. 3.14 

ℎ(𝐵) = 1 − (𝑓1
𝐵 + 𝑓2

𝐵 + ⋯+ 𝑓𝑚
𝐵)

1
𝐵 Eq. 3.15 

𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐵 (∑ ℎ𝑘

𝑁

𝑘=1
(𝐵)) Eq. 3.16 

where 𝑁 is the number of obtained candidate solutions. 

 

 

 



3.3  Proposed Method for Generating Reference Points 

102 

3.3.2  Division of B-norm Edge in a Plane  

Due to symmetry, the curve fitted B-norm surface has the same projection 

on planes formed by any pairwise objective functions. Equidistant reference 

points need first to be generated on such a projection. See Figure 3.4, 

illustration of a division of 𝑝=7 equal parts. 

Due to symmetry, only the locations of reference points on one half of the 

𝑓1~𝑓2 curve need to be first determined.  

Midpoint M's coordinates:  

𝑓1
∗ = 𝑓2

∗  and  ((𝑓1
∗)𝐵 + (𝑓2

∗)𝐵)
1

𝐵 = 1 Eq. 3.17 

which leads to 𝑓1
∗ = 𝑓2

∗=2−
1

𝐵 

The arc length 𝑙𝑎𝑀: 

𝑙𝑎𝑀 = ∑√(∆𝑓1)2 + (∆𝑓2)2

𝑛

𝑗=1

 Eq. 3.18 

where 𝑛 is the number of divisions between point 𝑓1
𝑎 and that of the midpoint 

2−
1

𝐵. 

∆𝑓1 =
1 − 2−

1
𝐵

𝑛
 

 

Eq. 3.19 

𝑓1,𝑗 = 2−
1
𝐵 + ∆𝑓1 ∙ 𝑗 Eq. 3.20 

and 

𝑓1,0 = 2−
1

𝐵,𝑓1,𝑛 = 1, 𝑗 ∈ (0, 1, 2, … , 𝑛) 

By Eq. 3.18: 

𝑓2,𝑗 = (1 − (𝑓1,𝑗)
𝐵
)

1
𝐵

 Eq. 3.21 

𝑓2 = 𝑓2,𝑗 − 𝑓2,𝑗−1, 𝑤ℎ𝑒𝑟𝑒  𝑗 ∈ (0, 1, 2, … , 𝑛) Eq. 3.22 

The number of divisions 𝑛 determines the accuracy of the calculated arc 

length laM and a large number is chosen since the calculation is done only once 

per tracking operation on the PF (in this work, it is 𝑛=1000). 
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The arch length: 

𝑙𝑎𝑏 = 2𝑙𝑎𝑀 Eq. 3.23 

The length per division: 

𝑙𝑝𝑑 = ∑√(∆𝑓1)2 + (∆𝑓2)2

𝑛1

𝑗=1

=
𝑙𝑎𝑏

𝑝
 Eq. 3.24 

where 𝑛1 is the number of  summation points  from 𝑓1
𝑏 to 𝑓1

𝑎 to obtain the 

length per division 𝑙𝑑. Eq. 3.25 gives 𝑛1. 

The coordinate values of point b: 

𝑓1
𝑏 = 𝑓1

𝑎 − 𝑛1 ∙ ∆𝑓1 Eq. 3.25 

𝑓2
𝑏 = (1 − (𝑓1

𝑏)
𝐵
)

1
𝐵

 Eq. 3.26 

The coordinate of next point c: 

∑√(∆𝑓1)2 + (∆𝑓2)2

𝑛2

𝑗=1

=
𝑙𝑎𝑏

𝑝
 Eq. 3.27 

where 𝑛2 is the number of  summation points from 𝑓1
𝑐 to 𝑓1

𝑏. 

Eq. 3.26 and Eq. 3.27 are again used to determine (𝑓1
𝑐, 𝑓2

𝑐): 

𝑓1
𝑐 = 𝑓1

𝑏−𝑛2 ∙ ∆𝑓1 Eq. 3.28 

𝑓2
𝑐 = (1 − (𝑓1

𝑐)𝐵)
1
𝐵 Eq. 3.29 

The procedure is repeated until coordinates of all points of divisions are 

obtained. 

3.3.3  Determination of Coordinate Values of Reference Points  

For an arbitrary reference point, 𝑆[𝑓1 𝑓2   … 𝑓𝑚] with indexes (𝑖1   𝑖2   …  𝑖𝑚), 

its coordinate values can be found directly by picking up corresponding values 

on the 2D boundary of the attained  B-norm curve, where the parameter B is 

estimated using Eq. 3.18, i.e., through minimising the difference between 

objective values and their approximated amounts of a B-norm curve. 
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[(𝑓1
1, 𝑓2

1 ), (𝑓1
2, 𝑓2

2 ), … , (𝑓1
𝑘, 𝑓2

𝑘 ), … (𝑓1
𝑝+1, 𝑓2

𝑝+1 )] Eq. 3.30 

𝑘 ∈ {1, 2, … , 𝑝 + 1} 

which are organised as given by Eq. 3.13:  

𝑖𝑗 = 𝑖1
𝑘,2𝐷 = 𝑘 → 𝑓𝑗 = 𝑓1

𝑘,2𝐷 , 𝑗 ∈ {1, 2, … ,𝑚} Eq. 3.31 

The obtained reference point is afterwards projected to the B-norm surface by 

using Eq. 3.5. See Fig. 3.3 for an illustrative example with three objectives case. 
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3.4  Numerical Studies   

This section deals with discussions on improving the proposed method on 

the quality of PF approximations in diversity.  

The first part of testing is of the visual kind, done in displaying reference 

points created by Das and Dennis and Bn-PFt methods onto the surface of B-

norm with various B values with three objective functions, which differences are 

revealed visually. Eq. 4 is used to project reference points generated by the 

Das and Dennis method on the actual B-norm surface as the standard practice. 

The reference points created in this way are contrasted with those produced by 

the Bn-PFt method. 

In the second part of testing, Reference Vector-guided Evolutionary 

Algorithm (RVEA) [7] is used to analyse the Benchmark problem of MaF 1-7 

and MaF10-13 [112] with 3 and 5 objective functions, with the use of reference 

point creation of Das and Dennis method and Bn-PFt method. Diversity of 

approximations is accessed using various quality metrics. 

RVEA is chosen in this study because it is a reference vector/point-based 

evolutionary algorithm. Reference vectors that do not have PF approximations 

are dropped, unlike other algorithms, e.g., NSGA III, where these reference 

vectors are regenerated, pointing to different feasible directions. RVEA is more 

suitable for studying the uniformness of reference points for decomposition-

based algorithms. 

The bn-PFt method improves the uniformity of distribution of reference 

points adaptively by tracing the temporarily obtained PF surface. Thus, its 

usage is based on the current available PF shape and Bn-PFt targets to 

improve it. MaF Benchmark 8 and 9 are omitted because their PF shapes are 

readily visualised with chosen two decision variables [79]. MaF 12 and 13 are 

left out in this study because their PF shapes are identical in 3D, both of perfect 
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sphere, the same as PF of MaF 5. The benchmarks are designed to consider 

the effect of non-separable decision variables (MaF 12) and nonlinearly linked 

with the first and second decision variables (MaF 13) and the impact of high 

multimodality [79], which are not subject of this work. MaF 14 and 15 are also 

excluded, mainly because their PF shapes are the same as MaF 1 and 4. Also, 

the purpose of their primary use is on studying large-scale problems [79], which 

is not the subject of this study. 

The testing is performed on the chosen benchmark problems in 3 and 5 

objective functions only because the number of reference points based on the 

Das and Dennis method increases exponentially with the increasing number of 

objective functions, resulting in an unpractical number for the MaOP algorithm 

when handling MaOP with a higher number of objectives. It is also challenging 

to maintain a precise evaluation when uncertainty is introduced using fewer but 

incomplete or unsystematic reference points, e.g., those created by the Deb 

and Jain method [2]. Systematically generating a manageable number of 

reference points is studied and reported in a separate work. 

3.4.1  Parameters and Performance Metrics  

A list of parameters used in the study is given in Table 3.1. The outcomes 

are compared to highlight the efficacy and efficiency of the proposed creation 

method of reference points. Other algorithmic parameters used in RVEA are 

based on default values given in [187]. 

Thirty independent algorithmic executions have been carried out for each 

test case, and the mean and standard deviation of approximations are 

determined. The superior ones are identified statistically based on the Wilcoxon 

Rank Sum Test with a 5% significance level. The Bonferroni correction is also 

adopted in comparison testing with multiple hypotheses. The method is stricter 

than the other methods because it ignores the effects of probability density 

https://en.wikipedia.org/wiki/Multiple_comparisons_problem
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function distribution of all factors in the comparisons. The Bonferroni correction 

reduces the desired overall significance level of the test 𝛼 = 0.05 by testing 

each individual hypothesis at a significance level of  𝛼 𝑘⁄ , where 𝑘 is the number 

of problem instances determined by the number of null hypotheses, disparate 

algorithms involved and the number of cases in the comparisons, i.e., the total 

number of problem instances in the comparisons is 2𝑥5 − 1 = 9. It means that 

in this case, 𝑘 = 9 , and the corrected significance level of the test  𝛼𝑐 =

0.05
9⁄ = 0.0056. 

Table 3.1 - Parameter used in RVEA calculations 
Benchmark 

problem 
Number of 
objectives 

Number of decision 
variables  

Number of 
evaluations 

MaF 1-7 and  3 12 500000 

MaF 10-12 5 14 1000000 

Hypervolume [127], Inverted Generational Distance (IGD) [128], Spread (∆) 

[188], Coverage over Pareto Front (CPF) [129], and Spacing metrics [135] are 

used to check quantitively the evenness of reference points created by Bn-PFt 

method compared with that of Das and Dennis. 

Hypervolume (HV) metric calculates the space enclosed by the candidate 

solutions and a reference point (Nadir point is often chosen). HV is a Pareto 

compliant metric which means that as long as a solution set A dominates a 

solution set B, the HV of A becomes greater than that of B.  

IGD is expressed as the averaged distance of nearest Euclidean distances 

from actual Pareto optimal points to approximated ones calculated by a MaOP 

algorithm. The smaller the value of IGD is, the more accurate the solution set 

in terms of convergence and diversity. But IGD is primarily a convergence 

metric, although a lower value may indicate better diversity simultaneously. 

Spread (∆ ) measures the distribution and the extent of obtained non-

dominated solutions. It is expressed as: 
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∆=
𝑑𝑓 + 𝑑𝑙 + ∑ |𝑑𝑖 − �̅�|𝑁−1

𝑖=1

𝑑𝑓 + 𝑑𝑙 + (𝑁 − 1)�̅�
 Eq. 3.32 

where: 

• 𝑁: number of non-dominated solutions. 

• 𝑑𝑖 : Euclidean distances between neighbouring solutions among the 

obtained non-dominated solutions set, which have a mean value �̅�. 

• �̅�: mean value of all 𝑑𝑖.  

• 𝑑𝑓: Euclidean distances between the extreme solutions of the obtained 

non-dominated set. 

• 𝑑𝑙: Euclidean distances between boundary solutions of the obtained non-

dominated set.  

A zero Spread value means that the obtained Pareto optimal set is uniformly 

distributed. Lower Spread (∆) value is therefore preferred for PF approximation 

sets. 

CPF is formulated first by projecting a solution set to the (m-1)-dimensional 

unit simplex plane and then to a unit hypercube. Its score for diversity is 

obtained by calculating the hypervolume of the projected solution set. The 

higher value of CPF indicates a better diversity score.  

The spacing metric is defined as: 

𝑆𝑃(𝑆) = √
1

|𝑆| − 1
∑(𝑑𝑖 − �̅�)

2

|𝑆|

𝑖=1

 Eq. 3.33 

in which 𝑑𝑖 = 𝑚𝑖𝑛(𝑠𝑖,𝑠𝑗)∈𝑆,𝑠𝑖≠𝑠𝑗
‖𝐹(𝑠𝑖) − 𝐹(𝑠𝑗)‖1

, which is the 𝑙1distance between 

point 𝑠𝑖 ∈ 𝑆 and its closest point in 𝑆 other than 𝑠𝑖, and �̅� is the mean value of 

𝑑𝑖. The spacing metric is expressed in the averaged distance variance between 

a point and its closest neighbour. It is improper to evaluate an approximation 

set with holes or strong local clusters in its domain [167]. The solution sets 

being studied here do not have holes and regional clusters in their data sets, 
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so the Spacing metric is used in this study—the lower the value of the Spacing 

metric, the better the distribution of a solution set. 

3.4.2  Reference Points Created on Various B-norm Surfaces 

Figure 3.5-3.10 shows comparisons between reference points created by 

Das and Dennis method and the proposed Bn-PFt method for various B values. 

As can be observed from the figures, reference points generated by the Bn-PFt 

method have more even distributions than Das and Dennis's. On surfaces of a 

convex form, the reference points of the Bn-PFt method spread out and cover 

the whole surface, while those of the Das and Dennis method gather more in 

the central areas. On surfaces of concave form, the opposite occurs; the 

reference points of the Bn-PFt method gather slightly more densely in the 

central area of the surface while those of Das and Dennis spread more towards 

peripherals.  

  

Figure 3.5 - Comparisons between 
reference points created by Das and 
Dennis method and the proposed Bn-
PFt method for PF of B = 0.3 

Figure 3.6 - Comparisons between 
reference points created by Das and 
Dennis method and the proposed Bn-
PFt method for PF of B = 0.6 
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Figure 3.7 - Comparisons between 
reference points created by Das and 
Dennis method and the proposed Bn-
PFt method for PF of B = 0.8. 

Figure 3.8 - Comparisons between 
reference points created by Das and 
Dennis method and the proposed Bn-
PFt method for PF of B = 1.5. 

  

Figure 3.9 - Comparisons between 
reference points created by Das and 
Dennis method and the proposed Bn-
PFt method for PF of B = 2.0. 

Figure 3.10 - Comparisons between 
reference points created by Das and 
Dennis method and the proposed Bn-
PFt method for PF of B = 5.0 

 

3.4.3  The Bn-PFt Method Applied in Benchmark Testing 

Benchmark problems of MaF 1-7 and 10-11 are analysed using a standard 

version of the RVEA algorithm [7] with reference points generated by Das and 

Dennis and Bn-PFt. MaF Benchmark 8 and 9 are omitted because their shapes 

are readily visualised with the chosen two decision variables [79]. MaF 12 and 

13 are excluded because their PF is identical to MaF 5 since the Bn-PFt method 

is only sensitive to PF shape. MaF 14 and 15 are also left out, mainly because 

their PF shapes are the same as MaF 1 and 4, respectively. In addition, the 

primary purpose of their use is on studying large-scale problems [79], which is 

not the subject of this work. 
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MaF1 M3  MaF2 M3 

Figure 3.11 - Distribution of 
approximations of MaF1 created 
using RVEA based on reference 
points of Das and Dennis method and 
of Bn-PFt method. m=3 and p=15  

 Figure 3.12 - Distribution of 
approximations of MaF2 created 
using RVEA based on reference 
points of Das and Dennis method and 
of Bn-PFt method. m=3 and p=15  

Results of Cases with Three Objective Functions 

Figure 3.13-Figure 3.19 visually shows the results of approximations based 

on the two reference vector generation methods in 3 objective cases with the 

number of divisions along with each objective, 𝑝=15. Table 3.2 - Table 3.6 

depicts values of the chosen metrics quantitatively on PF approximations with 

3 and 5 objective functions, which are averaged after 30 independent 

algorithmic executions. 

 

 

 

MaF3 M3  MaF4 M3 

Figure 3.13 - Distribution of 
approximations of MaF3 created 
using RVEA based on reference 
points of Das and Dennis method and 
of Bn-PFt method. 𝑚 =3 and 𝑝 =15  

 Figure 3.14 - Distribution of 
approximations of MaF4 created 
using RVEA based on reference 
points of Das and Dennis method and 
of Bn-PFt method. 𝑚 =3 and 𝑝 =15   
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MaF5 M3  MaF6 M3 

Figure 3.15 - Distribution of 
approximations of MaF5 created 
using RVEA based on reference 
points of Das and Dennis method and 
of Bn-PFt method. 𝑚 =3 and 𝑝 =15 

 Figure 3.16 - Distribution of 
approximations of MaF6 created 
using RVEA based on reference 
points of Das and Dennis method and 
of Bn-PFt method. 𝑚 =3 and 𝑝 =15 

 

 

 

 

 

 

 

MaF7 M3  MaF10 M3 

Figure 3.17 - Distribution of 
approximations of MaF7 created 
using RVEA based on reference 
points of Das and Dennis method and 
of Bn-PFt method. 𝑚 =3 and 𝑝 =15 

 Figure 3.18 - Distribution of 
approximations of MaF10 created 
using RVEA based on reference 
points of Das and Dennis method and 
of Bn-PFt method. 𝑚 =3 and 𝑝 =15 
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MaF11 M3 

Figure 3.19 - Distribution of approximations of MaF11 created using RVEA 
based on reference points of Das and Dennis method and of Bn-PFt method. 
𝑚 =3 and 𝑝 =15 

As can be seen in Figure 3.13-Figure 3.19, reference points generated by 

the Bn-PFt method in most of these cases are better distributed and spread out 

over the whole PF than those created by Das and Dennis. It is self-evident for 

cases where the PFs are convex and fully cover the entire objective space. 

See, e.g., Figure 3.13. As stated above in the discussion of PF shape of B-norm 

kind (Section 4.5.3), the Bn-PFt method gives PF approximations spreading 

outwards to peripherals from the centre region and distribute more evenly in 

cases of PF shape of convex type, while creating solutions shrinking towards 

the centre region in cases of PF shape of concave type. The approximations 

are also analysed in HV, IGD, ∆, CPF and SP metrics to make the comparisons 

quantitively. See Table 3.2 - Table 3.6. The exact objective values on PF in IGD 

calculations are obtained by densely sampling the data on the theoretical PF. 

The candidate solution sets obtained using reference points of the Bn-PFt 

method generally have better diversity, as evaluated using HV, IGD, ∆, CPF 

and SP metrics, than those of adopting reference points of using the standard 

Das and Dennis. The Bonferroni corrected significance level of the test  𝛼𝑐 =

0.0056. 
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When evaluated in HV, the PF approximations show that solutions based 

on the Bn-PFt method are superior to the Das and Dennis method, with one 

exception. No statistical evidence differentiates the two methods when used on 

MaF3 and MaF4. At the same time, the results of MaF6 reveal that the Das and 

Dennis method performs better than the Bn-PFt method does on average 

based on 30 independent runs. PF of MaF6 is of degenerate type and consists 

of a pure arc. The Bn-PFt method, as it is programmed, has challenges in 

finding a stable parameter B when used with RVEA in this case, as there are 

about 1/3 of runs that results in better metrics values based on Bn-PFt while 

the rest are worse. The author has problems understanding why not Bn-PFt as 

a method should also be superior when analysing benchmark cases like MaF6. 

In future work shortly, the B-norm parameter estimation's instability problem is 

further studied when used in analysing degenerate problems. 

The more diversified result has been shown in the IGD metric, which is 

primarily an indicator for measuring convergence. However, to a certain degree, 

it also reflects the diversity of a PF approximation set. A score of 6:6 is obtained, 

indicating that the two methods are equal in efficacy. See Table 3.3. 

Table 3.2 - Approximations of MaF benchmarks in 3D based on the two 
competing reference point generation methods measured in Hypervolume 

(HV), 𝛼𝑐 = 0.0056. (Numbers in bold font show the best metric value) 
3D HV 

 RVEA RVEA-Bn-PFt 

MaF1 2.0261e-01 (3.29e-03) - 2.0984e-01 (1.61e-03) 

MaF2 2.4163e-01 (1.22e-03) - 2.4262e-01 (8.75e-04) 

MaF3 9.5440e-01 (5.14e-02) = 9.6785e-01 (5.08e-05) 

MaF4 5.2167e-01 (4.08e-02) = 5.0461e-01 (5.08e-02) 

MaF5 5.7634e-01 (1.49e-05) - 5.7793e-01 (1.24e-05) 

MaF6 1.8832e-01 (7.45e-04) + 1.8574e-01 (2.56e-03) 

MaF7 2.6882e-01 (2.47e-03) - 2.7162e-01 (1.78e-03) 

MaF10 9.5057e-01 (5.93e-04) - 9.5154e-01 (6.85e-04) 

MaF11 9.3617e-01 (3.47e-04) - 9.3816e-01 (3.62e-04) 

B or E 3  8 

Note: B or E stand for the number of cases with better or equal performance. 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 
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Table 3.3 - Approximations of MaF benchmarks in 3D based on the two 
competing reference point generation methods valued in IGD, 𝛼𝑐 = 0.0056. 

(Numbers in bold font show the best metric value) 
3D IGD 

 RVEA RVEA-Bn-PFt 

MaF1 5.3721e-02 (2.12e-03) - 4.9570e-02 (9.31e-04) 

MaF2 2.7947e-02 (1.21e-03) - 2.6299e-02 (7.69e-04) 

MaF3 4.2989e-02 (6.13e-02) = 2.1217e-02 (1.12e-04) 

MaF4 3.4007e-01 (2.66e-01) = 3.9989e-01 (2.69e-01) 

MaF5 1.6450e-01 (4.86e-06) + 1.7007e-01 (8.59e-05) 

MaF6 2.1611e-02 (1.19e-03) + 2.7126e-02 (3.39e-03) 

MaF7 7.3631e-02 (2.24e-03) - 7.0967e-02 (2.06e-03) 

MaF10 1.0459e-01 (3.42e-03) + 1.0933e-01 (3.44e-03) 

MaF11 1.2086e-01 (2.82e-03) = 1.2000e-01 (3.40e-03) 

B or E 6 6 

Note: B or E stand for the number of cases with better or equal performance 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 

The results in CPF metric value are also diversified, similar to cases 

measured in IGD metric values. A score of 6:5 in favour of the Bn-PFt method 

has been attained. See Table 3.4. 

Table 3.4 - Approximations of MaF benchmarks in 3D based on the two 
competing reference point generation methods valued in CPF, 𝛼𝑐 = 0.0056. 

(Numbers in bold font show the best metric value) 
3D CPF 

 RVEA RVEA-Bn-PFt 

MaF1 7.9030e-01 (6.06e-02) = 7.8824e-01 (2.53e-02) 

MaF2 6.3746e-01 (1.25e-02) - 6.6970e-01 (1.00e-02) 

MaF3 7.2046e-01 (1.75e-01) - 8.1642e-01 (6.22e-03) 

MaF4 6.5760e-01 (1.62e-01) + 5.4362e-01 (1.56e-01) 

MaF5 7.0776e-01 (3.07e-04) - 7.4234e-01 (7.31e-04) 

MaF6 8.0088e-01 (7.45e-02) = 8.3116e-01 (9.27e-02) 

MaF7 7.5820e-01 (2.89e-02) - 7.8916e-01 (2.10e-02) 

MaF10 8.0661e-01 (1.49e-02) + 7.6498e-01 (1.70e-02) 

MaF11 8.2809e-01 (1.57e-02) + 7.9161e-01 (1.67e-02) 

B or E 5 6 

Note: B or E stand for the number of cases with better or equal performance 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 

In line with HV metric values, Spread (∆) and Spacing's metric values reveal 

that better diversity is obtained for PF approximations when using the Bn-PFt 

method. See Table 3.5 and Table 3.6. Except for the MaF6 benchmark case, 

better and equal results with the Bn-PFt method have been reached.  
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Table 3.5 - Approximations of MaF benchmarks in 3D based on the two 
competing reference point generation methods valued in Spread (∆), 𝛼𝑐 =

0.0056. (Numbers in bold font show the best metric value) 
3D Spread (∆) 

 RVEA RVEA-Bn-PFt 

MaF1 1.7290e-01 (3.89e-02) = 1.6305e-01 (2.03e-02) 

MaF2 1.2044e-01 (4.71e-03) - 9.5089e-02 (2.48e-03) 

MaF3 2.7442e-01 (3.17e-01) = 2.5100e-01 (5.07e-03) 

MaF4 3.4309e-01 (1.46e-01) = 4.0311e-01 (1.73e-01) 

MaF5 2.6988e-01 (7.44e-05) - 2.2992e-01 (3.45e-04) 

MaF6 4.1989e-01 (1.71e-01) = 5.5087e-01 (2.56e-01) 

MaF7 3.2933e-01 (1.69e-02) - 2.5017e-01 (1.66e-02) 

MaF10 3.4384e-01 (1.38e-02) - 2.7071e-01 (1.56e-02) 

MaF11 3.4004e-01 (2.01e-02) - 2.8064e-01 (1.41e-02) 

B or E 4 9 

Note: B or E stand for the number of cases with better or equal performance 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 

Table 3.6 - Approximations of MaF benchmarks in 3D based on the two 
competing reference point generation methods valued in Spacing, 𝛼𝑐 =

0.0056. (Numbers in bold font show the best metric value) 
3D Spacing 

 RVEA RVEA-Bn-PFt 

MaF1 3.0012e-02 (5.89e-03) = 2.9419e-02 (2.94e-03) 

MaF2 1.4623e-02 (5.05e-04) = 1.4429e-02 (4.89e-04) 

MaF3 4.1829e+02 (2.50e+03) = 2.1117e-02 (3.00e-04) 

MaF4 2.3932e-01 (1.19e-01) = 2.9735e-01 (1.83e-01) 

MaF5 1.4666e-01 (3.97e-05) - 1.1170e-01 (8.51e-05) 

MaF6 5.0014e-02 (9.39e-03) + 6.8967e-02 (2.20e-02) 

MaF7 6.7084e-02 (5.00e-03) - 5.6936e-02 (4.23e-03) 

MaF10 1.7064e-01 (2.11e-02) - 1.5955e-01 (2.22e-02) 

MaF11 1.1770e-01 (1.39e-02) - 1.0420e-01 (8.04e-03) 

B or E 6 8 

Note: B or E stand for the number of cases with better or equal performance 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 

On Five Objectives 

Generally speaking, a similar conclusion as the case for three objectives 

can be drawn when analysing the benchmark problems in 5 objectives. Bn-PFt 

method provides better solutions in diversity than the method of Das and 

Dennis does. 

Higher and better or equal HV metric values are obtained for all cases 

studied except MaF2, where the Das and Dennis method gives a higher HV 

value. See Table 3.7. 



Chapter 3 A New Method for Generating and Indexing Reference Points in Many-Objective Optimisation 

117 

Table 3.7 - Approximations of MaF benchmarks in 5D based on the two 
competing reference point generation methods, 𝛼𝑐 = 0.0056. (Numbers in 

bold font show the best metric value) 
5D HV 

 RVEA RVEA-Bn-PFt 

MaF1 1.8769e-03 (4.36e-05) = 1.8691e-03 (4.77e-05) 

MaF2 1.9033e-01 (6.90e-04) + 1.8932e-01 (8.55e-04) 

MaF3 9.8900e-01 (4.76e-02) = 9.9960e-01 (1.38e-04) 

MaF4 7.0106e-02 (1.57e-02) = 7.2167e-02 (1.14e-02) 

MaF5 8.3463e-01 (3.54e-04) - 8.3713e-01 (3.26e-04) 

MaF6 1.1678e-01 (7.38e-04) = 1.1653e-01 (1.45e-03) 

MaF7 2.5523e-01 (9.18e-04) - 2.5894e-01 (3.11e-03) 

MaF10 9.9915e-01 (3.78e-05) - 9.9931e-01 (5.00e-05) 

MaF11 9.9853e-01 (1.36e-04) - 9.9871e-01 (1.53e-04) 

B or E 5 8 

Note: B or E stand for the number of cases with better or equal performance. 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 

IGD values are much diversified and indicate that the Das and Dennis 

method is better (score 7:5). See Table 3.8. 

Table 3.8 - Approximations of MaF benchmarks in 5D based on the two 
competing reference point generation methods, 𝛼𝑐 = 0.0056. (Numbers in 

bold font show the best metric value) 
5D IGD 

 RVEA RVEA-Bn-PFt 

MaF1 3.1317e-01 (2.84e-04) = 3.1320e-01 (1.16e-04) 

MaF2 1.0054e-01 (5.47e-04) - 9.4594e-02 (5.29e-04) 

MaF3 6.4221e-02 (7.05e-02) - 4.0738e-02 (7.46e-04) 

MaF4 2.8255e+00 (9.14e-01) - 2.7412e+00 (6.51e-01) 

MaF5 1.5359e+00 (1.25e-04) + 1.6067e+00 (2.33e-04) 

MaF6 5.1344e-02 (9.60e-04) + 5.5338e-02 (2.40e-03) 

MaF7 3.6793e-01 (2.13e-03) - 3.5607e-01 (6.46e-03) 

MaF10 2.7433e-01 (1.98e-03) + 2.9050e-01 (2.58e-03) 

MaF11 2.9557e-01 (1.52e-03) + 3.0426e-01 (3.13e-03) 

B or E 7 5 

Note: B or E stand for the number of cases with better or equal performance. 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 

 

 

CPF reveals the superiority of the Bn-PFt method versus that of Das and 

Dennis, in which the results show better (5 cases) or equal (4 cases) for all 

cases studied. See Table 3.9. 
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Table 3.9 - Approximations of MaF benchmarks in 5D based on the two 
competing reference point generation methods, 𝛼𝑐 = 0.0056. (Numbers in 

bold font show the best metric value) 
5D CPF 

 RVEA RVEA-Bn-PFt 

MaF1 8.3334e-01 (0.00e+00) = 8.3334e-01 (0.00e+00) 

MaF2 2.0116e-01 (1.05e-02) = 2.0885e-01 (1.41e-02) 

MaF3 6.5358e-01 (1.67e-01) = 7.2521e-01 (8.82e-02) 

MaF4 3.9460e-01 (9.48e-02) = 4.0663e-01 (8.62e-02) 

MaF5 5.6506e-01 (4.62e-03) - 5.7348e-01 (7.57e-03) 

MaF6 6.4292e-01 (4.93e-02) - 6.9388e-01 (6.64e-02) 

MaF7 7.4931e-01 (2.02e-02) - 7.7630e-01 (3.04e-02) 

MaF10 6.0953e-01 (1.29e-02) - 6.7182e-01 (1.86e-02) 

MaF11 5.8511e-01 (1.83e-02) - 6.6369e-01 (2.04e-02) 

B or E 4 9 

Note: B or E stand for the number of cases with better or equal performance 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 

 

When accessed in Spread (∆), better or equal diversity of approximations 

adopting the Bn-PFt method than the Das and Dennis is attained for all 

benchmark cases except for MaF 6. See Table 3.10. 

 

Table 3.10 - Approximations of MaF benchmarks in 5D based on the two 
competing reference point generation methods, 𝛼𝑐 = 0.0056. (Numbers in 

bold font show the best metric value) 
5D Spread (∆) 

 RVEA RVEA-Bn-PFt 

MaF1 1.0458e-04 (4.05e-04) = 9.1685e-05 (2.19e-04) 

MaF2 2.1231e-01 (4.00e-03) - 1.9062e-01 (5.83e-03) 

MaF3 3.6841e-01 (4.07e-01) = 2.5731e-01 (5.61e-02) 

MaF4 4.6857e-01 (9.83e-02) = 4.2658e-01 (9.03e-02) 

MaF5 3.0297e-01 (2.54e-04) - 2.7973e-01 (5.35e-04) 

MaF6 5.3581e-01 (3.49e-01) + 8.5964e-01 (1.52e-01) 

MaF7 3.9315e-01 (8.32e-03) - 3.1341e-01 (1.43e-02) 

MaF10 4.1826e-01 (8.41e-03) - 3.8291e-01 (9.12e-03) 

MaF11 3.3814e-01 (9.06e-03) - 2.8579e-01 (1.25e-02) 

B or E 4 8 

Note: B or E stand for the number of cases with better or equal performance. 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better;  
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Table 3.11 - Approximations of MaF benchmarks in 3D based on the two competing 

reference point generation methods, 𝛼𝑐 = 0.0056. (Numbers in bold font show the 

best metric value) 

3D Spacing 

 RVEA RVEA-Bn-PFt 

MaF1 7.0670e-05 (2.85e-04) = 5.4685e-05 (1.55e-04) 

MaF2 5.7306e-02 (1.28e-03) - 4.9119e-02 (1.28e-03) 

MaF3 2.0926e+07 (1.25e+08) = 2.7877e-02 (2.04e-03) 

MaF4 1.5158e+00 (5.61e-01) = 1.3979e+00 (2.25e-01) 

MaF5 7.6836e-01 (5.37e-04) - 6.9661e-01 (8.49e-04) 

MaF6 1.7331e+00 (9.84e+00) = 1.3093e-01 (2.19e-02) 

MaF7 3.3936e-01 (5.12e-03) - 3.0522e-01 (7.01e-03) 

MaF10 3.6377e-01 (7.13e-03) - 3.3320e-01 (1.06e-02) 

MaF11 2.5587e-01 (1.23e-02) - 2.1755e-01 (1.87e-02) 

B or E 4 9 

Note: B or E stand for the number of cases with better or equal performance 
RVEA compared to RVEA-Bn-PFt: “-”: worse; “=”: equal;“+”: better; 

Valued in the Spacing metric, the Bn-PFt method leads to a diversity of 

approximations either better than or equal to what the Das and Dennis method 

can generate for all benchmark cases tested. See Table 3.11. 
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3.5  Discussions 

The performance of RVEA-Bn-PFt and RVEA have been tested on nine 

benchmarks of MaF, in which different PF shapes of regular (MaF3, MaF5 and 

MaF10), partial coverage (MaF2), discontinuous (MaF7 and maF11), inverted 

(MaF1 and MaF4) and degenerated (MaF6) are present. Five different diversity 

indicators are used for evaluations and comparisons, i.e., HV, IGD, CPF, 

Spread, and Spacing. The effect of the Bn-PFt reference generator on diversity 

improvement varies depending on the PF shapes of the optimisation problem. 

First, Bn-PFt improves the diversity for PFs of regular type compared with the 

uniform design method. Second, Bn-PFt seems to have certain positive but 

limited effects on PFs of partial, inverted and discontinuous sorts. Third, the 

effect of Bn-PFt on degenerate type of PFs is questionable, which is due to 

instability problem when determining the model parameter where the B-norm 

curve is used to estimate the approximation of PFs. Moreover, the effect of Bn-

PFt on asymmetric PFs is not properly evaluated in this thesis, thus needs to 

be explored in further research work. 

Computational complexity and thus the evaluation budget is increased for 

algorithms with Bn-PFt applied. This is because the reference vectors first need 

to be created using the uniform design method to identify the basic shape of 

PFs. Then the Bn-PFt mechanism is needed to regenerate reference points. 
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3.6  Summary and Conclusions 

A new method of generating reference points is proposed, B-norm based 

PF tracking method (Bn-PFt). The reference points are more evenly created on 

an m dimensional B-norm surface created adaptively by tracking the actual PF. 

Numerical studies performed on B-norm surfaces of various B values show that 

reference points created by the Bn-PFt method are more evenly distributed on 

PF than those projected onto the same surfaces generated using Das and 

Dennis method. Simulation results, using RVEA to the Benchmark problems of 

MaF1-7 and 10-11 with 3 and 5 objective functions, show that measured in HV, 

IGD, ∆, CPF and SP metrics, the approximation sets obtained using reference 

points of Bn-PFt method have better diversity than those of using the famous 

Das and Dennis method. Crucially, the proposed method generates better 

results in terms of diversity. 

Reference points created by the Bn-PFt method with 𝐵=1 (unit simplex 

plane) have the exact location and distribution as those of the Das and Dennis 

method. In other words, the Das and Dennis method is a particular case of the 

proposed Bn-PFt method, which is the general case. 

A new indexing system of reference points is also proposed to ease 

algorithmic development in decomposition-based evolutionary computation. 

The indexing system can enhance the formulation of the Das and Dennis 

method, save computing resources when searching for a specific reference 

point, define neighbouring reference points to a particular point in high 

dimensional objective space, and help facilitate work on algorithmic 

development of new methods.  

The B-norm surface curve used in this study is symmetric in m dimensional 

objective space, which is most suitable for tracing PF of approximately 

symmetric forms. For strong non-symmetric or degenerated PFs, the reference 
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points created by the Bn-PFt method are out of the surface of the true PF. Their 

projections on the true PF are hampered somewhat when these are projected 

on the true PF. However, they are still more suitable to guide the search for PF 

than the Das and Dennis method because they are much nearer to the true PF 

than the latter.  

In the future, more studies can focus upon the following aspects: 

• The Bn-PFt method should be expanded to create the most possibly 

equidistant reference points on non-symmetric PF surfaces. 

• Further, formulation using the proposed indexing system to identify 

neighbouring direct points to a given reference point in high dimensional 

space shall be studied. The number of neighbours determined by the 

indexing system can replace the user input parameter – the number of 

adjacent points in decomposition-based algorithms.
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Chapter 4  A New Performance Indicator 

for Diversity in Many-Objective 

Optimisation Problems 

Chapter Outline 

Developing consistent performance indicators for many-objective 

optimisation algorithms is still challenging, particularly as the number of 

objectives increases. The challenges are due to the “curse of dimensionality”, 

such as the formulation complicacy of the problem, its computational complexity 

and power required, etc. All increase rapidly with the increase of the number of 

objectives. We introduce a new pure unary diversity indicator, Inverse Ratio of 

Net Avertence angle (IRNA). A pure diversity indicator is formulated using 

reference vectors by minimising the sum of the included angles between 

approximated solution set and reference vectors. It is achieved by rotating the 

system of reference vectors in all dimensions with an optimised spatial angle. 

The highest possible diversity score of a solution set is obtained. Performed 

empirical studies via testing on synthetic solutions on the unit simplex plane as 

well as on benchmark functions up to 10 objectives show that the proposed 

performance indicator IRNA is more sensitive to capturing diversity changes 

compared to other state-of-the-art performance indicators, in particular when 

the number of objectives increases, thus deeming it highly suitable for many-

objective optimisation problems. Resulting publication: 
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4.1  Introduction 

Various metaheuristic methodologies have been developed to deal with 

many-objective optimisation problems (MaOP) [159]. There is no single 

methodology superior to all the rest in solving the plethora of MaOPs [159]. 

Performance Indicators (PIs) are crucial for assessment on approximations of 

MaOP algorithms. The mathematical guarantees for diversity and convergence 

properties and global optima are incredibly challenging to derive [123]. Besides 

assessing the quality of solutions, PIs may also play a central role in actively 

guiding the evolution of a solution set toward the best solutions. It is most 

commonly accepted that the quality of the Pareto Front (PF) approximation is 

determined by its three major characteristics: convergence, distribution (or 

evenness) and extent (or spread); the last two jointly describe the diversity 

property [123], [129], [189]. Convergence indicators are formulated, for 

instance, by non-dominant sorting of solutions or by measuring and comparing 

the distance between individuals and the ideal point. However, a diversity 

indicator is more challenging to develop since a PF's actual shape, and 

distribution is unknown a priori and challenging to be described due to the 

limited number of discrete points (e.g., in a high dimensional objective space 

due to the "curse of dimensionality"). 

Several design principles are utilised to develop PIs, such as cardinality, 

distance, hypervolume, dominance, and included angles [189]. PIs based on 

included angles are formulated by measuring the included angles between the 

vectors of candidate solutions and the reference vectors adopted as indicative 

values of diversity [124], [129]. Pure diversity indicators have been developed 

in this way [124], [129], [190]. Two significant challenges remain to be resolved: 

One is associated with the distribution of PFs – which can be arbitrary; no 

existing reference system of vectors can create intersections on PF with 
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equidistant neighbouring points. Hence uniformity measured by such a system 

of reference vectors would not be very accurate. The second challenge is that 

candidate solutions may have a systematic bias in included angles with 

reference vectors, which may cause inconsistent indicators and hinder the 

derivation of meaningful metrics for solution sets. A systematic bias often 

occurs because the reference vector system is created independently to the 

locations of PF approximations while the latter could locate at different places 

other than on the reference vectors due to the stochastic nature of 

metaheuristic optimisation.  See Figure 4.1 for details. As the number of 

objectives increases, a robust calculation of a PI is becoming even more 

challenging due to the significantly increased formulation complicacy and 

computational complexity of the problem. 

The first challenge (PF distribution) can be relieved by tracing the PF with a 

B-norm surface and creating more evenly distributed reference points on the B-

norm surface [134]. This thesis proposes that the second challenge (systematic 

bias) can be mitigated by minimising included angles between reference 

vectors and candidates through rotation of the reference vector system to 

remove eventual systematic bias in data. The underpinning idea of the 

proposed PI is to search for an optimised diversity score for each of the 

individual competing approximation sets by rotating the reference vector 

system with an optimal angle so that any systematic bias in both data sets is 

removed. Hence, a new unary diversity indicator is proposed. A reference 

vector-based pure diversity indicator is expressed with the help of the Inverse 

Ratio of Net Avertence angles (IRNA) similar to the definitions adopted in [124], 

[129] but inverted and varies within 0 and 1 where higher values for better 

diversity scores, as detailed in Section 4.3. Besides, alternative assessment 

methods for comparing and contrasting efficacy and efficiency among several 
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performance indicators in terms of monotonicity and sensitivity are suggested 

and demonstrated numerically through MaF benchmark functions in 3, 5, 7 and 

10 objectives. 

The rest of the chapter is organised as follows: Section 4.2 gives an 

overview of state of the art in performance indicators and the creation of 

reference vectors in MaOP problems, focusing on PIs using reference vectors. 

Section 4.3 provides a detailed description of the proposed IRNA to evaluate 

the diversity of MaOP problems. Section 4.4 includes numerical studies, where 

the effectiveness of IRNA is assessed against two well-established indicators 

on synthetic and benchmark problems. Finally, Section 4.5 summarises and 

concludes the chapter. 
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4.2  Existing Quality Indicators 

4.2.1  Quality Indicator In Many-Objective Optimisation 

Numerous performance indicators have been designed for the assessment 

of MaOP approximation sets. Earlier comprehensive surveys on PIs and their 

properties can be found in the literature [123], [126], [191]. PIs in MaOP have 

been roughly grouped into three main categories: those which essentially 

evaluate convergence [132], those mainly assessing diversity [133], and those 

measuring both convergence and diversity simultaneously [192]. 

Representative PIs for measurement of convergence only are Generational 

distance (GD) [193] and GD+ [194], which are distance-based PIs. GD 

calculates the averaged nearest distance between each candidate of an 

approximation to the PF. GD+ modifies GD to become Pareto compliant, which 

means that as long as a solution set 𝐴 dominates a solution set 𝐵, GD+ of 𝐴 is 

greater than 𝐵. 

The diversity of approximations consists of two parts: the candidate 

solutions' spread and uniformity. When diversity is concerned, PIs are further 

divided into subgroups for primarily evaluating spread, those for measuring 

uniformity, and those for assessing both aspects simultaneously. An example 

of commonly adopted PIs of this kind is Spread (∆) [188] and Spacing metric 

(SP)  [135]. Some are newly developed, e.g. PD [123] and Coverage over 

Pareto Front (CPF) [129]. The Spread (∆) expresses the diversity by using the 

distribution and the nearest distance between obtained non-dominated 

solutions. The spacing metric is defined in the averaged sum of the distance 

variance between a point and its closest neighbour. PD is inspired by 

biodiversity measurement and puts the diversity score proportional to the 

number of disparate distances between candidate solutions. CPF measures the 

diversity first by projecting a solution set to the (𝑚 − 1) -dimensional unit 
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simplex plane and then to a unit hypercube. Its score for diversity is obtained 

by calculating the hypervolume of the projected solution set.  

PIs for measuring the combined performance of convergence and diversity 

that are most commonly used in research are Epsilon indicator (ϵ-indicator) 

[127], Inverted generational distance (IGD) [128], IGD+ [194], Hypervolume 

(HV) [127], and R-metric [195]. ϵ-indicator is a binary indicator, i.e., two 

approximation sets A and B are contrasted. It is done by that the indicator value 

is set to equal the minimum factor such that for any solution in B, there is at 

least one solution in A that is not worse by the factor. IGD is expressed as the 

minimum Euclidean distance of nearest Euclidean distances from actual Pareto 

optimal points to approximated ones. IGD+ is formulated similarly to IGD but is 

made Pareto compliant. Hypervolume (HV) metric calculates the space 

enclosed by the candidate solutions and a reference point (Nadir point is often 

chosen). R-metric consists of three binary indicators and puts scores using a 

set of utility functions, where the indicator is determined by the expected 

number of cases the set 𝐴 are better than the set 𝐵. IGD and HV have long 

been the most popular indicators used in evaluation of approximations of MaOP. 

IGD differs from GD in three aspects: i) it is based on the minimum Euclidean 

distance while GD uses the average distance ii) IGD uses the distance 

calculation starting from the solutions in true PF while GD does it oppositely iii) 

given sufficient number of well-diversified PF points, IGD would provide a score 

of combined evaluation of both the diversity and the convergence of a PF 

approximation set [196]. 

Deb et al.[100] suggested a ∆ metric measuring the extent of spread and 

distribution achieved by the approximations. The main demerit of the indicator 

is its difficulty computationally when used in analysing solutions of MaOPs 

because the indicator is primarily designed for diversity evaluation of bi-
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objective problems. Although It can be extended to access approximation of 

MaOPs using the so-called Voronoi diagram approach, it is difficult to determine 

the Voronoi diagram for MaOP cases [197]. 

Mostaghim and Teich [192] propose Sigma Diversity Metric (SDM) to 

evaluate the diversity of approximations by calculating angular positions of 

solutions in the objective space. A major demerit of the method is a systematic 

bias in angular positions of the solution relative to σ reference lines.  

Deb and Jain [2] suggest a diversity measure (DM), which measures the 

diversity against a reference set. Here, solutions are projected on an 

 (𝑚 − 1) dimensional hyperplane with hyper-boxes. The indicator value is 

proportional to the number of hyper-boxes containing both a reference solution 

and a candidate solution. Several challenges exist [198], including its 

dependence on a reference set, computationally high cost in creating hyper-

boxes, and the determination of neighbouring hyper-boxes in high dimensional 

objective space.  

Li et al. [197] propose a pure diversity comparison indicator (DCI) to assess 

the relative diversity of two or more Pareto front approximations in many-

objective optimisation by counting the number of solutions in a grid covering the 

objective space. No reference set is required for DCI calculation. But the 

method is sensitive to the number of divisions chosen in the grid. Li et al. [197] 

suggest a parameter-less performance comparison indicator (PCI) to assess 

convergence and diversity of approximations using a reference set constructed 

by dividing the approximation set into clusters and calculating the minimum 

moves of solutions that weakly dominate these clusters. The merit of PCI is that 

it does not require any prior reference set. A demerit is that PCI depends on 

determining the number of clusters utilised in the evaluation, which leads to a 

variation of indicator value.  
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The idea of using reference vectors to create a diversity score for 

contrasting two competing approximation sets has been implemented 

successfully in the past [124], [129], [191].  

Cai et al. [190] define a diversity indicator using reference vectors (DIR) by 

identifying the systematic deviations of locations of candidate solutions away 

from the reference vectors and finding the mean values and variances of the 

so-called coverage vector that stores the number of reference vectors linked to 

each candidate solution. A major demerit of the method is its inability to deal 

with local clusters of candidate solutions, which cannot be solved by increasing 

the number of reference vectors since the regional clusters are not easily 

detectable in high dimensional space; this largely influences the indicator value. 

Moreover, the local clusters of data are not easily detected in high dimensional 

MaOPs a priori.  

Tian, Y. et al. [129] proposed most recently a pure diversity PI named CPF 

by first parallel projecting a solution set to the (𝑚 − 1)-dimensional unit simplex 

plane and then to a unit hypercube along the reference vectors, and calculating 

the hypervolume of the projected solution set as the score for its diversity. A 

significant disadvantage of the method is that the coverage of partially PF is 

enlarged if it locates higher than the unit simplex plane when parallelly projected 

onto it because the projection occupies a more significant portion of the unit 

simplex plane than it should. The enlarged projection is then reprojected to a 

unit hypercube and creates a too large image of PF approximations. In the 

opposite case, the coverage is shrunk when projected onto the unit simplex 

plane. See section 4.4 for details. 
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4.2.2  Creation of System Reference Vectors 

The universally used method for generating a system of reference vectors 

is the one introduced by Das and Dennis [79], in which a uniformly spaced 

reference of vectors is created only on a normalised hyper-plane, an (𝑚 − 1)-

dimensional unit simplex plane to all objective axes which have an intercept of 

one on each axis.  

Deb and Jain [2] suggest using two layers of reference points, each with a 

smaller 𝑝, 𝑝1 is adopted for the boundary layer and 𝑝2 for the inside layer. The 

total number of reference lines is significantly reduced to a manageable level.  

Tian et al. [187] suggest generating reference points on known true PFs 

starting with the points created by Das and Dennis method on the unit simplex 

plane and projecting them to the actual Pareto fronts. Unfortunately, the final 

distribution of the reference points generated in this way is not uniform.  

Wu and Panoutsos [199] propose a B-norm-based Pareto Front tracing 

method (Bn-PFt) that generates more evenly distributed reference points on the 

approximated PF. It is done by a B-norm regression based on the approximated 

PF and creating equally spaced reference points on all of its two-dimensional 

boundaries; these are used to generate all other internal reference points. 
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4.3  Formulation of the Proposed Diversity Indicator 

In this section, the establishment of the proposed IRNA for evaluating MaOP 

problems' diversity is described in detail. 

4.3.1  Inverted Ratio of Net Avertence Angles (IRNA) 

Definition of diversity indicator – IRNA 

Barely using included angles to a predefined set of reference vectors to 

formulate PI for diversity may fail to account for possible systematic bias in 

diversity measurement (see Figure 4.1(a)). As can be seen, each candidate 

solution has a similar angle difference from its closest reference vector. A 

diversity score based on these angles is inevitably kept incorrectly low 

(suboptimal). It is even so when assessing approximations of high dimensional 

MaOPs since the number of solutions is usually very scarce compared to the 

need to sufficiently cover the high dimensional space. One way to improve the 

formulation is by introducing a rotating reference vector system to remove 

eventual systematic bias in avertence angles between approximation sets and 

reference vectors. By rotating the reference plane with an optimised angle β, 

the sum of angle difference is decreased, and an optimal diversity score can be 

obtained. See Figure 4.1(b). The minimised Inverted Ratio of Net Avertence 

angles (IRNA) is formulated as a pure diversity indicator defined as the sum of 

unity minus the ratio of the included angle to the maximum possible included 

angle between individual candidate solutions and the reference vector, See Eq. 

4.1. 

𝐼𝑅𝑁𝐴 =
1

𝑁
∑(1 −

1

𝛾𝑘

𝑁

𝑘=1

𝜃𝑎
(𝑘,𝑚𝑖𝑛)

) Eq. 4.1 

in which 𝜃𝑎
(𝑘,𝑚𝑖𝑛)

 is the minimised avertence angle between candidate solution 

𝑘 and its nearest reference vector. It is illustrated in a 3D situation, as shown in 
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Figure 4.2. 𝛾𝑘  is 1/2 of the included angle between two adjacent reference 

vectors for candidate 𝑘. 𝑁 is the number of candidate solutions.  

IRNA value varies between 0 and 1, and the higher the score of an 

approximation set indicates better diversity. 

Relationship between the Included Angle and Their Projections 

in 𝒎 Dimensional Space 

The optimised spatial included angle 𝜃𝑎
(𝑘,𝑚𝑖𝑛)

 is nontrivial to be calculated 

directly. See Figure 4.2. One way to find the angle is by decomposing all 

involved angles onto respective 2D planes where arithmetic operations can be 

done. The resultant angle is found based on the net components.  

The included angle formed by two arbitrarily located spatial vectors in high 

dimensional space can be expressed by their rotational projections on 

respective 2D planes. 

  
(a) Locations of candidate solutions 
and reference vectors at the start.  

(b) Rotated system of reference vectors with 

angle 𝛽.  

Figure 4.1 - A 2D schematic view of the rotation of reference vectors by 𝛽, 
where the sum of included angles is minimised to attain the minimal sum of 
net avertence angles. 
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Figure 4.2 - A 2D schematic view of the rotation of reference vectors by 𝛽, 
where the sum of included angles is minimised to attain the minimal sum of 
net avertence angles. 

The included angle can be proven numerically to be given as: 

𝜃𝑎 = √(𝜃12)2 + (𝜃23)2 …+ (𝜃𝑖𝑗)
2
…+ (𝜃𝑚1)2 Eq. 4.2 

in which θa  is the avertence angle between two spatial vectors in an 𝑚 

dimensional space and can be expressed by 𝜃12 , 𝜃23 , ..., 𝜃(𝑚−1)𝑚  and 𝜃𝑚1 , 

where 𝜃𝑖𝑗 , 𝑖 ∈ {1,m}, 𝑗 = 𝑖 + 1 𝑎𝑛𝑑 𝑗 = 1 𝑤ℎ𝑒𝑛 𝑖 = 𝑚 , are the angles of the 

rotational projections of the vectors about the axis of 2, 3, …, 𝑚  and 1 

respectively onto planes formed on 1-2, 2-3, …, 𝑚 − 1 axes, and there are 𝑚 

components in total. Figure 4.3(b) illustrates as an example a 3D case of finding 

𝜃12, 𝜃23 and 𝜃31. 

See Figure 4.3 (b). Assuming:  

αR ≈
R2

|R|
,       αF ≈

F2

|F|
 Eq. 4.3 

𝜃12 = arccos (
[|𝑅| ∙ cos αR    |𝑅| ∙ sin αR    0] [|𝐹| ∙ cos α𝐹   |𝐹| ∙ sinαF   0]

|𝑅||𝐹|
) Eq. 4.4 

Eq. 4.3 is only an approximate formulation of αR and αF angles. The exact 

expressions are 𝑠𝑖𝑛αR = R2 |R|⁄  and sinαF = F2 |F|⁄ . But when these are 

inserted into Eq. 4.4 and later in Eq. 4.2, incorrect resultant included angle 𝜃𝑎 

is obtained. Only when Eq. 4.3 is used, Eq. 4.2 gives the nearly accurate angle 

𝜃𝑎 . This author has not succeeded in explaining this mathematically and 
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considering Eq. 4.2 as an empirical expression for the resultant included angle 

between two vectors in m-dimensional space after one of them is rotated with 

an arbitrary angle 𝛽. 

 
(a) Rotational projection about 𝑓1 axis 

 
(b) Rotational projection about 𝑓2 axis 

 
(c) Rotational projection about 𝑓3 axis 

Figure 4.3 - Rotational projection of a spatial included angle 𝜃 onto the 
surfaces of pairwise coordinate axes. 

Similarly, all other 𝜃𝑖𝑗  are found by rotating 𝑅  and 𝐹  about 𝑓𝑗  axis 

accordingly. Included angles in high dimensional space can be added or 
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subtracted by first projecting them onto the same respective planes, and the 

arithmetic operations are done on the projected components. After component-

wise addition or subtraction, the partial results are enumerated back to the 

resultant spatial angle searched. 

Eq. 4.2 is considered an empirical relationship between a spatial angle and 

its rotational projections in 𝑚  dimensional space due to the approximation 

performed as expressed in Eq. 4.3. Its validity is proven numerically in this 

study, as shown below.  

Correction on the Approximated Included Angle 𝜽𝒂𝒑𝒑 

Expressions of relationships, such as αR and αF in Eq. 4.3, are approximate 

formula, which creates a minor mismatch between the approximated angle 𝜃𝑎𝑝𝑝 

and the true 𝜃 , as expressed in Eq. 4.2, which is considered an empirical 

relationship. The deviation is found by randomly generating a large amount of 

avertence angles (105) in any dimensional space. The approximated avertence 

angles are compared with the exact ones. Eq. 4.4. shows the results. 

 
Figure 4.4 - Ratio of the approximated and the actual avertence angle are shown 
versus the precise avertence angle. 

As shown in Figure 4.4, the deviation is not affected by the number of 

objectives or the dimension of the MaOP problem. 
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Usually, such a deviation is negligible in 3-objective space since the 

maximum angle between reference vectors is less than 10 degrees, giving an 

estimated error of less than 0.13%. However, the number of workable reference 

vectors in higher-dimensional objective space is limited compared with the 

space that needs to be covered. The maximum avertence angle could be as 

high as 45o. (A significantly large number of reference vectors is required to 

achieve a similar maximum avertence angle as it is the case in a 3D case, which 

would have required an unpractical amount of reference vectors.). A proposed 

solution is to utilise a correction function after the approximated avertence angle 

is obtained to acquire a sufficiently accurate actual avertence angle. 

Based on the simulated data, a polynomial correction function can be 

created to remove the deviation, where the coefficients in the equation are 

found by using a simple single-objective optimisation: 

𝜃 = 7.753 × 10−9 ∙ 𝜃𝑎𝑝𝑝
3 − 1.306 × 10−5 ∙ 𝜃𝑎𝑝𝑝

2  

+5.153 × 10−6 ∙ 𝜃𝑎𝑝𝑝 + 1.000 
Eq. 4.5 

It should be noted that Eq. 4.5 is a generic equation for correction on the 

deviation of approximated avertence angle from the true one. As shown in 

Figure 4.4, the deviation is the same for cases of any number of objective 

functions and only depends on the amount of actual avertence angle. 

Determination of IRNA 

The proposed IRNA is computed in steps as follows: 

Find the components 𝛽𝑖𝑗  of rotation angle 𝛽  in the various pairwise 

coordinate planes by minimisation of the expression: 

𝛽𝑖𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝑖𝑗, 𝑖=1,…,𝑚     
𝑗=𝑖+1,…,𝑚−𝑖+1

∑ ∑ ∑ |𝜃𝑖𝑗
(𝑘)

− 𝛽𝑖𝑗|

𝑚−𝑖+1

𝑗=𝑖+1

𝑚

𝑖=1

𝑁

𝑘=1

 Eq. 4.6 

in which 𝑁 is the number of candidate solutions. 

Find the components of net avertence angle 𝜃𝑖𝑗
𝑘,𝑛𝑒𝑡
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𝜃𝑖𝑗
(𝑘,𝑚𝑖𝑛)

= 𝜃𝑖𝑗
(𝑘)

− 𝛽𝑖𝑗, Eq. 4.7 

The vector sum of avertence angle 𝜃𝑎
(𝑘,𝑚𝑖𝑛)

 is given by Eq. 4.2. The diversity 

indicator IRNA is finally computed using Eq. 4.1. 

Algorithm 1 depicts the pseudo-code for the calculation of IRNA. It starts 

with importing population (𝑋 ) of 𝑛  candidate solutions. The algorithm first 

eliminates dominant solutions (line 1) and then normalises the remaining 

approximates (line 2). The upper and lower limit of the normalisation range can 

either be decided by the decision-maker or found using the maximum and the 

minimum value from the data sets. Systematic reference vectors are created 

based on the method of reference point generation proposed by Das and 

Dennis's (line 3) approach. The minimal angles between the reference vectors 

are calculated and stored as variables 𝛾 (line 4). Each candidate solution is 

assigned to its closest reference line based on the included angles (Line 5), 

and IRNA is calculated using the obtained included angles (Line 6).  

The reference vectors can also be created using the Bn-PFt method [199] 

to generate more evenly distributed reference vectors than those based on the 

Das and Dennis method.  
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4.4  Numerical Studies on IRNA 

Reference vector-based diversity indicators for contrasting two competing 

approximation sets have also been proposed earlier [133], [138], [201]. But 

these methods are not considered mainstream in evaluating the diversity of PF 

approximations of a MaOP [12]. IRNA is therefore compared with the most 

frequently used one, the hypervolume, and the most recently proposed one, 

CPF. The comparison methodologies applied in the thesis can be used for 

contrasting with other reference vector-based diversity indicators, which is part 

of the future work. The efficacy of IRNA is assessed through four groups of 

numerical tests where comparisons are performed between IRNA and the most 

frequently used PI of HV [127] and a recently developed CPF [129]. The 

reference point for HV evaluation is set to the point 1.1 times of the estimated 

Nadir point. All objective function values have been normalised before the 

assessments using the chosen PIs. First, IRNA is applied on a set of synthetic 

PF of uniformly spaced candidate solutions on a unit simplex plane. The 

outcome is compared with the HV and the CPF. The comparisons are 

performed on four different synthetic candidate solution sets. The number of 

candidate solutions is randomly removed from the complete solution set.  

The consistency of the indicators is evaluated as diversity decreases and as 

the number of objective functions increases. (Section 4.4.1). Second, HV, CPF, 

and IRNA are tested to assess actual Pareto Front of Benchmarks of MaF [112] 

in three objective functions. (Section 4.4.2). Third, the comparison is made 

among HV, CPF and IRNA on PF in 3, 5, 7 and 10 objectives of MaF 

Benchmark problems with a fixed number of candidate solutions. When the 

number of candidate solutions is set, the diversity of an approximation is 

expected to go down as the number of objective functions increases. It tests 

the sensitivity and monotonicity of the newly proposed diversity measure in 
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contrast to the existing ones. (Section 4.4.3). Fourth, HV, CPF, and IRNA are 

used to assess results from the test on convergence process or iteration over 

MaF Benchmarks. (Section 4.4.4). Finally, IRNA is used in contrasting the 

performance of PF approximations of MaF benchmarks obtained using three 

representative and dissimilar MaOP algorithms: NSGA III, GrEA and IBEA 

(Section 4.4.5).  

  
(a) Fully systematically constructed 

HV: 0.8417 CPF: 0.7176  IRNA: 1.000  
 

b) 10% randomly chosen and discarded. 
HV: 0.8374 CPF: 0.7031 IRNA: 0.9011 

  
c) 25% randomly chosen and discarded. 
HV: 0.8297 CPF: 0.7175 IRNA: 0.7473 

d) 50% randomly chosen and discarded. 
HV: 0.8104 CPF: 0.5357 IRNA: 0.5055 

Figure 4.5 - A typical set of constructed candidate solutions on the normalised 
unit simplex plane where a specific portion of randomly chosen solutions is 
discarded. 

The purpose of the tests is to determine the monotonicity and sensitivity of 

IRNA to known proportional changes of diversity. This test method has been 

used successfully in earlier studies, e.g. in [123]. Four different cases are 

studied, a) fully systematically constructed candidate solutions on the unit 

simplex plane, b) 100% systematically constructed candidate solutions, then 

10% of them are randomly discarded, c) 75% systematically constructed and 
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25% randomly discarded, and d) 50% systematically constructed and 50% 

randomly discarded. Figure 4.5 displays a typical set of candidate solutions 

created on the unit simplex plane with 100% systematic creation while 0%, 10%, 

25% and 50% are randomly discarded. The competing indicators are calculated 

and shown in Figure 4.5. The calculation has been repeated up to 20 times to 

consider the eventual stochastic nature of the problem. 

  
(a) Analysis done on the normalised 

unit simplex plane of 3 obj. 
(b) Analysis is done on the normalised unit 

simplex plane of 5 obj. 

 
(c) Analysis done on the normalised unit simplex plane of 10 obj. 

Figure 4.6 - The values of quality indicator versus percentage of discarded 
solutions on the normalised unit simplex plane. 

As can be seen on values of PIs, HV and CPF start with non-unity value for 

although 100% perfect diversity and reduces unproportionate with the further 

reduction of diversity. On the other hand, IRNA begins with unity, reduces 

proportionately, and effectively captures diversity. The results are also listed in 

Table 4.1 for 3 objective functions, Table 4.2 for 5 objective functions, and Table 

4.3 for 10 objective functions. The indicator values have been depicted versus 

the percentage of discarded solutions shown in Figure 4.6. 
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Table 4.1 - Quality indicators of HV, IGD, and IRNA 3 obj. function 

 

% discarded solution 
(number of solutions are discarded) 

0% (0) 10% (9) 25% (22) 50% (45) 

HV (↑) 0.8417(±0.00) 0.8374(±0.00) 0.8297(±0.00) 0.8104(±0.00) 

CPF (↑) 0.7176(±0.00) 0.7058(±0.01) 0.6823(±0.03) 0.5899(±0.04) 

IRNA (↑) 1.0000(±0.00) 0.9011(±0.00) 0.7473(±0.00) 0.5055(±0.00) 

Table 4.2 - Quality indicators of HV, CPF, and IRNA 5 obj. function 
 % discarded solution (number of solutions are discarded) 

0% (0) 10% (21) 25% (52) 50% (105) 

HV (↑) 0.9799(±0.00) 0.9781(±0.00) 0.9752(±0.00) 0.9675(±0.00) 

CPF (↑) 0.2542(±0.00) 0.2519(±0.00) 0.2531(±0.00) 0.2502(±0.01) 

IRNA (↑) 1.0000(±0.00) 0.9000(±0.00) 0.7524(±0.00) 0.5000(±0.00) 

Table 4.3 - Quality indicators of HV, CPF, and IRNA 10 obj. function 
 % discarded solution(number of solutions are discarded) 

0% (0) 10% (22) 25% (55) 50% (110) 

HV (↑) 0.9996(±0.00) 0.9994(±0.00) 0.9991(±0.00) 0.9982(±0.00) 

CPF (↑) 0.0115(±0.00) 0.0124(±0.00) 0.0133(±0.00) 0.0173(±0.00) 

IRNA (↑) 1.0000(±0.00) 0.9000(±0.00) 0.7500(±0.00) 0.5000(±0.00) 

Similar conclusions can be observed from Table 4.1, Table 4.2, and Table 

4.3: when the percentage of discarded solutions goes up and the diversity 

worsens, HV is not sensitive to the change. See Figure 4.6. CPF starts with the 

value of non-unity and varies nonlinearly. IRNA behaves proportionately with 

the variation of percentage of randomly discarded approximations. HV values 

approach one as the dimension of the problem increases. HV measures the 

hypervolume. The ratio of hypervolume to the volume of whole objective space 

increases dramatically with the increasing dimension of the MaOP problem, 

contributing to the non-sensitivity of HV selected candidate solutions' location 

in many-objective space problems. As the number of objectives increases, 

IRNA exhibits good sensitivity in capturing the changes in discarded solutions, 

unlike HV and CPF. 

4.4.1  Evaluation on True PF of Benchmark MaF 

HV, CPF, and IRNA are tested on actual Pareto Front of Benchmarks of 

MaF, showing consistency of IRNA in reflecting the diversity of accurate PF 
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solutions compared with HV and CPF. It is done by that IRNA, HV and CPF are 

adopted to analyse actual PF solutions of MaF 1-7 and 10-11 to show their 

capability in measuring the coverage of the PFs in the objective space. 

MaF 1-7 and 10-11 are used in the analysis. MaF 8, 9, 12 and 13, 14 and 

15 are not taken in this study because MaF 8 and 9 are specially designed to 

display their PF readily using the two chosen decision variables. MaF 12 and 

13 are designed to study nonlinear linkages of decision variables and multi-

modality issues that are not subject to this work. Besides, both MaF12 and 

MaF13 with 3 objectives have the PF shape of a sphere similar to MaF 5. MaF 

14 and 15 are designed to study large-scale problems, and their PF shapes are 

identical to MaF 1 and MaF 4, respectively.  

Figure 4.7 depicts the indicator values to various true PF of MaF 

Benchmarks chosen.  

Figure 4.7(a) shows the PF of MaF1, which consists of a partial simplex 

plane of non-unity. Its coverage on objective space is reflected in HV and IRNA 

values. CPF is proportional to the coverage of projected PF on a unit simplex 

plane. The partial PF locates higher up than the unit simplex plane. When 

projected onto the unit simplex plane, the projection covers a falsely larger 

portion of the unit simplex plane, resulting in a considerable CPF value. 

It should be noted that the maximal achievable value of diversity in IRNA is, 

in this case, limited to a value much lower than 1.0 no matter how uniform the 

approximations are distributed within the feasible area of PF because IRNA 

expresses the coverage of an approximation set in the objective space. The PF 

only partially covers the space. When several approximation sets obtained 

using different algorithms are contrasted, the competition targets an IRNA value 

nearest to this maximum achievable value. 
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(a) MaF1 

HV= 0.24521 CPF= 0.91035 
IRNA= 0.27419 

(b) MaF2 
HV= 0.21542 CPF= 0.8148 

IRNA= 0.3946 

(c) MaF3 
HV= 0.97024 CPF= 0.70751 

IRNA= 0.41757  
 

   
(d) MaF5 

HV= 0.58721 CPF= 0.74412 
IRNA= 0.99998 

(e) MaF6 
HV= 0.20212 CPF= 0.63619 

IRNA= 0.050262  
 

(f) MaF7 
HV= 0.28874, CPF= 

0.81041 
IRNA= 0.26204 

  
(g) MaF10 

HV= 0.95671 CPF= 0.82621 
IRNA= 0.9874 

(h) MaF11 
HV= 0.94159 CPF= 0.83999 

IRNA= 0.50425 

Figure 4.7 - True PF of Benchmark of MaF evaluated by HV, CPF and IRNA. 

Figure 4.7 (b) displays the PF of MaF2, which is a partial sphere. HV and 

IRNA have reasonable low values since PF covers only partially the objective 

space, while the CPF value is too high for the same reason as it is explained 

for MaF1. 

Figure 4.7(c) displays the PF of MaF3, which is in a convex shape. The PF 

is calculated based on a mathematical formula that creates unevenly distributed 

candidate solutions. But this gives high HV values since many solutions are 

concentrated along boundaries favoured by HV [127]. The value of CPF is 

relatively lower than HV because it fails to cover the simplex plane completely 
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when it is parallelly projected to the plane. In other words, CPF shows lower 

diversity estimation on PF of convex shapes, which are located lower than the 

simplex plane. IRNA accesses the averaged uniformity of an approximation set. 

The PF solutions shown in Figure 4.7(c) are found using a mathematical 

expression valid for the benchmark [112], and the result is unevenly distributed 

although seemingly densely populated. Hence, the sum of inclusion angles in 

IRNA calculation is averaged over; by dividing with the total number of 

solutions, IRNA's resulting value is relatively low. Subsequently, the same 

benchmark is used with NSGA III; the IRNA value is much higher, as in Fig. 4.8 

(c).  It is because a uniformly distributed set of reference points is utilised in the 

search for solutions. 

Figure 4.7(d) shows the PF of MaF5, which is a sphere. PF covers the 

objective space fully, reflected in the high IRNA value. When projected on a unit 

simplex plane, the solutions have uneven distribution, which results in lower 

CPF values. HV favours candidates located on the boundaries, where such 

solutions are not overwhelmingly present, as is the case for MaF3. That is why 

a limited HV value is reached. 

Figure 4.7(e) shows PF of MaF6, which consists of a degenerated PF shape 

of an arc, with low coverage of the objective space, which is in IRNA values 

since IRNA expresses the coverage and distribution of solutions on the PF in 

the objective space simultaneously. HV value is also low since only two 

extremal solutions and otherwise only intermediate solutions of a concave type, 

resulting in low HV. CPF has too high of a value in this case.  

Figure 4.7(f) shows the PF of MaF7 that partially covers the objective space, 

reflecting HV and IRNA values. For the similar reason stated above, CPF 

covers a falsely large portion of the unit simplex plane, which results in a 

considerable CPF value. 
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Fig. 4.7(g) shows the PF of MaF10 that fully covers the objective space, 

which is reflected in HV, CPF and IRNA values. 

Fig. 4.7(h) shows the PF of MaF11 that covers only partially the objective 

space, but HV and CPF have relatively high values, while the partial coverage 

is reflected only on IRNA value. When PF is projected onto the unit simplex 

plane, it covers falsely a large portion of it, which results in a considerable CPF 

value. Solutions at knee point and boundary areas contribute more to HV value 

in the case of a PF of convex shape, and there are plenty of such points in the 

solution, which lead to high HV value. 

4.4.2  HV, CPF and IRNA in Analysing PF Approximations  

Comparisons among HV, CPF and IRNA on approximations in 3, 5, 7 and 

10 objectives of MaF1-7 and 10-11 applied on PF approximations calculated 

with NSGA III [2] are performed. See Figure 4.8. The purpose of the tests is to 

examine the indicators' monotonicity further. With almost the same number of 

candidate solutions in analysis, it is expected that the diversity of solutions shall 

go down with the increasing number of objective functions.  

Table 4.4 - Number of iterations and candidate solutions 
Number of objectives Number of evaluations Number of solutions 

3 200,000 210 

5 500,000 210 

7 500,000 210 

10 500,000 275 

The algorithmic parameters adopted in NSGA III are based on default 

values acquired from PlatEMO version 2.7 [187]. The number of iterations and 

number of candidate solutions is listed in Table 4.4. Reference vectors are 

generated using the Das and Dennis method for the number of objective 

functions less than or equal to 5, while they are created by the Deb and Jain 

approach in cases of 7 and 10 objectives. Each Benchmark problem with a 
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specific number of objectives is calculated 30 times. Approximation sets are 

evaluated by PIs and shown in their mean values and standard deviations. 

Figure 4.8 (a) displays the change of HV, CPF, and IRNA indicator values 

applied on approximations of MaF1 for the increasing number of objectives. All 

three indicators behave as expected, i.e., values decrease monotonically with 

the number of objectives. Still, the values of HV are extremely low on that of 7 

and 10 objectives, which is because the volume above PF, which locates higher 

than unit simplex, decreases drastically with the increasing number of 

objectives. It can be reasoned as follows. Simplex planes can be in general 

expressed as: 

in which 𝑎𝑚 is the value of an objective function at which the simplex plane 

coincides with 𝑓i  axis. (𝑓i = 𝑎𝑚  while 𝑓j=0, for all 𝑗 ≠ 𝑖). For midpoint on PF: 

𝑓1=𝑓2=…=𝑓m, we have: 

𝑓1=𝑓2=…=𝑓𝑚=
𝑎𝑚

𝑚⁄  Eq. 4.9 

Its distance to the Ideal point 𝑟𝑚 is: 

𝑟𝑚 = √(𝑓1)2 + (𝑓2)2 + ⋯+ (𝑓𝑚)2 =
𝑎𝑚

√𝑚
⁄  Eq. 4.10 

𝑎𝑚  in MaF1 increases more rapidly than √𝑚  with increasing m causing 𝑟𝑚 

increases rapidly, and HV reduces drastically.  

In MaF2, HV breaks the trend of monotonicity, which value increases from 

5 objectives to 7 and 10 objectives. Hypercube is governed by: 

(𝑓1)
2 + (𝑓2)

2 + ⋯+ (𝑓𝑚)2 = 𝑟2 Eq. 4.11 

in which 𝑟 is the radius of the hypercube, and in this case, 𝑟 < 1.0. See Figure 

4.8(b). The volume of the hypercube is proportional to 𝑟𝑚  and HV is 

proportional to 1 𝑟𝑚⁄ , and thus increases with the increasing number of 

objectives. 

𝑓1 + 𝑓2 + ⋯+ 𝑓𝑚 = 𝑎𝑚 Eq. 4.8 
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When MaF3 is concerned, see Figure 4.8(c), HV value keeps high for all 

cases of the number of objectives, which is caused by the fact that HV value 

favours boundary points and knee points on PF of convex shape, which gives 

high HV in all cases of the number of objectives. CPF has too low a value in 7 

and 10 objectives, while IRNA changes monotonically with the number of 

objectives. 

Monotonic change of HV and IRNA with the number of objectives are also 

observed in results of MaF4, see Figure 4.8(d). It is of partial convex hypercube 

or partial inverse hypercube. Still, CPF, in this case, has an extremely low level 

of the reason stated earlier that its projection om simplex plane is shrunk, which 

covers a falsely small portion of the plane. 

   
(a) MaF1 (b) MaF2 (c) MaF3 

   
(d) MaF4 (e) MaF5 (f) MaF6 

   
(g) MaF7 (h) MaF10 (i) MaF11 

Figure 4.8 - HV, CPF and IRNA evaluate NSGA III analyses benchmark of 
MaF1-7 and 10-11 with mean value and standard deviation after 30 
independent runs and solutions. 
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In the case of MaF5, see Figure 4.8(e), IRNA has a full score in diversity in 

3 and 5 objective cases. Its values decrease as the number of objectives 

increases because PF is under-represented by the available number of 

candidate solutions. The values of CPF and HV are too low as a score of such 

a classical PF. 

Non-monotonic behaviour is observed in HV for MaF6, which has a 

degenerated PF shape, with an increasing number of objectives. See Figure 

4.8(f). 

PF of MaF7 is of partial type and consists of several flakes in the objective 

space. Only HV shows a monotonic change from 3 to 5 objectives, while all 3 

indicators have near-zero values for 7 and 10 objectives cases. See Figure 

4.8(g). 

When MaF10 and MaF11 are concerned, only IRNA displays nearly 

monotonic behaviour. See Figure 4.8 (h) and (i). 

 Summarised, IRNA shows an overall satisfactory monotonicity feature in all 

benchmark functions tested. Both HV and CPF may behave either well in some 

cases or worse in others. 

4.4.3  HV, CPF and IRNA in Analysing PF Approximations Over 

Time 

Convergence and diversity of PF approximations are deficient in the early 

stages of an iteration (low number of iterations) and are gradually improved. 

Capturing and tracking the improvement accurately is crucial for understanding 

(and guiding via feedback) the performance of the selected optimisation 

algorithm. Consistent and sensitive performance indicators should be able to 

reveal the change. 

Benchmarks of MaF 5, 6 and 7 are investigated using NSGA III, where 

approximations over various iterations are evaluated by the indicators HV, CPF 
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and IRNA so that the performance of each PI is examined. A total of 30 

independent runs have been carried out, and the mean value and standard 

deviation are calculated to take the stochastic effect on the approximations into 

account. PF of MaF5 consists of a hypercube, i.e., a PF covers the objective 

space fully. MaF6 comprises a PF of a pure arc, which is of degenerate type. 

MaF7 is made of several flakes in objective space and is a typical PF of the 

partial sort. These benchmarks are selected to represent three main PF 

categories, i.e., full coverage, degenerative, partial. The resulting numerical 

simulations demonstrate the indicators' consistency, sensitivity, and 

monotonicity differences.  

Each PI gives its nominal number of iterations at convergence (NIC). When 

analysing approximation sets at various iteration stages using the same 

algorithm, the diversity indicator that results in the largest NIC (with the best 

 
(a) NSGAIII M3 MaF5 

converge 25%  
HV: 0.56478 CPF: 0.60497 

IRNA: 0.56138 

(b) NSGAIII M3 MaF5 
converge 50%  

HV: 0.57224 CPF: 0.73351 
IRNA: 0.88431 

(c) NSGAIII M3 MaF5 
converge 95%  

HV: 0.57509 CPF: 0.73410 
IRNA: 0.96261 

 

Figure 4.9 - Visually comparing the diversity of solutions at a different nominal 
number of iterations at convergence (NIC) of the comparing PIs. The result is 
based on 30 independent runs, and the mean and the standard deviation are 
shown. 
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diversity displayed) is most sensitive to detect diversity changes of solutions. It 

is explained and demonstrated visually in Figure 4.9 via monitoring the 

convergence process of MaF5 with 3 objective functions. At the NIC of HV, the 

diversity is still poor. See Figure 4.9 (a). At NIC of CPF, the diversity is much 

improved but still can be perfected further. See Figure 4.9 (b). Only when the 

NIC of IRNA is reached, the diversity becomes superior. See Figure 4.9(c). It is 

valid for all three cases tested, i.e., MaF5, MaF6 and MaF7. But for keeping 

clarity of the text, only the result of MaF5 is shown here in the thesis. 

   
(a) MaF5, 3 objectives (b)  MaF5, 5 objectives (c)  MaF5, 10 objectives 

   
(d)  MaF6, 3 objectives (e)  MaF6, 5 objectives (f)  MaF6, 10 objectives 

   
(d)  MaF7, 3 objectives (e)  MaF7, 5 objectives (f)  MaF7, 10 objectives 

Figure 4.10 - Iterations over time of Benchmark of MaF5-7 analysed by NSGA 
III after 30 independent runs with mean value and standard deviation and 
solutions are evaluated by HV, CPF and IRNA in mean value and standard 
deviation. 

Figure 4.10(a) shows the results of approximations of MaF5 in three 

objectives analysed using NSGA III and evaluated by HV, CPF and IRNA. CPF 

and IRNA increase gradually and monotonically as the number of evaluations 

increases, while HV decreases gradually and monotonically to a stable level. 
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Besides, HV has the lowest NIC followed by CPF while IRNA obtains the 

highest NIC, which means that IRNA is most sensitive to capture the change of 

diversity, followed by the CPF indicator. The same trend is observed in 

approximations of MaF5 of 5 objectives. See Figure 4.10 (b), CPF and IRNA 

increase gradually and monotonically as the number of evaluations increases. 

The HV decreases gradually and monotonically to a stable level, and the IRNA 

value has the largest NIC value. Similar is the case in 10 objectives, except 

CPF value decreases with the increasing number of iterations and has the 

same NIC value as IRNA. See Figure 4.10 (c). 

IRNA can also describe the diversity of the degenerated type of PF of MaF6. 

Figure 4.10 (d) depicts the approximation process over time of MaF6 with 3 

objective functions. Once again, the IRNA value increases monotonically until 

a stable level is reached, indicating the end of the approximation process. IRNA 

has the largest NIC value among the three indicators, and it is also true for 

MaF6 in 5 and 10 objectives. See Figure 4.10 (e) and 10 (f). The high standard 

deviation of CPF and IRNA values in these cases should be noted, indicating 

strong variations in the results. 

IRNA's better sensitivity is also demonstrated using approximations of PF 

of partial types, like MaF7. See Figure 4.10 (g) for 3 objectives, Figure 4.10(h) 

for 5 objectives and Figure 4.10 (i) for 10 objectives, respectively. In 3 and 5 

objective cases, the amount of IRNA displays monotonic increasing behaviour 

and maintains the largest NIC value among the three indicators. But the 

situation is changed in the case of 10 objectives; IRNA still varies almost 

monotonically with the increasing number of iterations but decreasing toward a 

stable level. It is caused by the more extensive spread of non-converged 

solutions in the early stage of the approximation process with PF of partial 

coverage. 
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We conclude that IRNA exhibits a balanced sensitivity and monotonicity 

performance and yields arguably a more robust indicator than HV and CPF in 

all benchmark functions tested.  

4.4.4  HV, CPF and IRNA in analysing PF approximations of 

dissimilar algorithms  

This section presents IRNA results in two subsections: Benchmark 

problems of 3 and 5 objectives, respectively, and are compared against HV and 

CPF. The adopted algorithms for testing are acquired from PlatEMO [187]. 

NSGA III is a reference-point based generic algorithm for MaOP. GrEA adopts 

grids drawn in high dimensional objective space to strengthen the selection 

pressure towards optimal direction while maintaining an extensive and uniform 

distribution among solutions. IBEA may adopt several binary performance 

indicators to select offspring as parents for the next round of iteration. The 

number of candidate solutions is 210 for all cases. 

The number of evaluations used is 2e+5 for 3 objectives cases and 5e+5 

for 5 objectives. The parameters adopted in the three algorithms are based on 

default values acquired from PlatEMO version 2.7 [187]. Thirty algorithmic runs 

are carried out for each Benchmark problem, and average values and standard 

deviations of PIs are found. The Wilcoxon rank-sum test with a significance 

level of 0.05 is also used to analyse the results further and provide each PI's 

rankings. 

Test Results on MaF of three objective functions.  

Figure 4.11 shows 3D scatter plots on one typical approximation set from 

each algorithm for each benchmark problem. Table 4.5 contains scores of PIs 

on the approximation sets calculated on 11 commonly used Benchmark 

problems.  
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In general, HV reveals a similar ranking in diversity as IRNA does for MaF2, 

MaF3, MaF4, MaF6, MaF10, MaF11 and MaF13, but with much less 

proportionate values corresponding to the actual level of diversity. At the same 

time, CPF often fails in giving consistent values. Take MaF13 as an example. 

See Table 4.5. HV scores limited value changes when evaluating the 

approximations from the three different MaOP algorithms, while the variation of 

CPF is unbefitting.  

 
  

(a) MaF1 (b) MaF2 (c) MaF3 

 
  

(d) MaF4 (e) MaF5 (f) MaF6 

 
  

(g) MaF7 (h) MaF10 (i) MaF11 

  
(j) MaF12 (k) MaF13 

Figure 4.11 - PF approximation of chosen algorithms for a typical run out of 
thirty solutions. 
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The solutions observed in Figure 4.11 (l) depict that GrEA only gives some 

local clustered solutions while IBEA does not converge, but their HV amounts 

are considerable. The CPF values are not consistent with the observations of 

diversity, and IRNA values are more proportionately and reflect the actual 

situation. The similar is with the results of MaF3, and significant differences in 

diversity can be observed. See Figure 4.11 (c). Solutions of NSGA III covers 

the whole PF. GrEA does not extend to all boundaries and shows a tendency 

of solutions in local clusters, while those of IBEA are only located at the f1-f2 

boundary. While this observation is clear to capture visually, numerically, this is 

not reflected in HV and CPF (See Table 4.5). 

Table 4.5 - Values of PIs for specific Benchmark problem, 3 objectives 
 NSGAIII GrEA IBEA 

MaF1 HV 2.245E-01 (7.313E-04) 3 2.277E-01 (6.160E-04) 2 2.314E-01 (3.074E-04) 1 

 IRNA 2.633E-01 (1.097E-02) 1 2.155E-01 (5.598E-03) 3 2.260E-01 (3.633E-03) 2 

 CPF 2.645E-01 (3.438E-02) 2 2.490E-01 (2.999E-02) 2 4.323E-01 (3.030E-02) 1 

MaF2 HV 4.616E-01 (1.607E-03) 2 4.583E-01 (3.598E-04) 3 4.683E-01 (4.989E-04) 1 

 IRNA 3.620E-01 (1.239E-02) 1 2.580E-01 (4.452E-03) 3 3.656E-01 (1.339E-02) 1 

 CPF 3.692E-02 (7.909E-03) 1 2.879E-02 (5.218E-03) 2 2.228E-02 (9.290E-03) 3 

MaF3 HV 9.648E-01 (1.825E-04) 1 9.405E-01 (2.151E-02) 2 8.589E-01 (2.189E-03) 3 

 IRNA 9.899E-01 (6.777E-03) 1 2.630E-01 (4.455E-02) 2 8.907E-02 (3.453E-03) 3 

 CPF 3.109E-01 (1.088E-02) 1 9.629E-02 (2.612E-02) 2 1.598E-02 (8.960E-03) 3 

MaF4 HV 5.472E-01 (1.425E-03) 1 5.297E-01 (2.468E-02) 2 3.599E-01 (1.955E-02) 3 

 IRNA 3.509E-01 (2.109E-02) 1 2.597E-01 (3.456E-02) 2 1.009E-01 (8.423E-03) 3 

 CPF 1.032E-03 (2.044E-03) 2 5.586E-04 (1.497E-03) 2 2.948E-03 (3.751E-03) 1 

MaF5 HV 5.686E-01 (4.198E-02) 2 5.664E-01 (4.825E-04) 3 5.745E-01 (4.004E-04) 1 

 IRNA 9.655E-01 (1.645E-01) 1 3.856E-01 (8.078E-03) 2 3.618E-01 (1.074E-02) 3 

 CPF 3.219E-01 (6.082E-02) 1 1.101E-01 (1.724E-02) 3 1.324E-01 (1.301E-02) 2 

MaF6 HV 1.984E-01 (4.064E-04) 1 1.881E-01 (3.478E-04) 2 1.811E-01 (9.795E-03) 3 

 IRNA 8.598E-02 (1.098E-03) 1 5.936E-02 (2.100E-03) 2 3.600E-02 (7.111E-03) 3 

 CPF 1.777E-01 (2.269E-02) 2 1.755E-02 (1.013E-02) 3 4.203E-01 (8.516E-02) 1 

MaF7 HV 4.284E-01 (9.477E-04) 2 4.198E-01 (3.559E-03) 3 4.326E-01 (8.292E-04) 1 

 IRNA 2.516E-01 (9.479E-03) 1 1.623E-01 (8.422E-03) 3 2.186E-01 (6.841E-03) 2 

 CPF 1.122E-02 (5.928E-03) 1 1.434E-03 (2.847E-03) 3 1.024E-02 (3.948E-03) 1 

MaF10 HV 9.505E-01 (6.533E-04) 1 9.299E-01 (3.548E-03) 3 9.419E-01 (1.969E-03) 2 

 IRNA 8.824E-01 (1.859E-02) 1 1.981E-01 (1.353E-02) 3 3.431E-01 (1.302E-02) 2 

 CPF 2.211E-02 (4.627E-03) 1 1.836E-02 (5.207E-03) 2 1.393E-02 (5.042E-03) 3 

MaF11 HV 9.397E-01 (2.742E-04) 1 9.338E-01 (2.351E-03) 3 9.375E-01 (5.659E-04) 2 

 IRNA 8.999E-01 (6.471E-03) 1 2.704E-01 (1.365E-02) 2 2.702E-01 (7.139E-03) 2 

 CPF 5.081E-03 (1.739E-03) 2 5.677E-03 (3.761E-03) 1 6.627E-03 (2.967E-03) 1 

MaF12 HV 5.578E-01 (1.915E-03) 2 5.570E-01 (1.071E-03) 3 5.661E-01 (1.249E-03) 1 

 IRNA 8.993E-01 (2.527E-02) 1 3.760E-01 (7.005E-03) 2 3.546E-01 (1.070E-02) 3 

 CPF 4.175E-01 (1.471E-02) 1 1.540E-01 (1.865E-02) 3 1.759E-01 (2.595E-02) 2 

MaF13 HV 5.620E-01 (4.105E-03) 1 4.797E-01 (2.739E-02) 2 2.531E-01 (1.063E-02) 3 

 IRNA 8.047E-01 (4.961E-02) 1 2.081E-01 (3.834E-02) 2 1.541E-02 (2.402E-03) 3 

 CPF 6.090E-01 (4.560E-02) 1 8.697E-02 (2.209E-02) 3 2.543E-01 (2.109E-01) 2 
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Similar conclusions can be derived from other Benchmarks. For example, 

for Benchmarks MaF1, MaF5, MaF7 and MaF12, one would expect significant 

changes captured by a performance indicator (just by visually observing the 

plots of solutions). However, only IRNA captures such differences in 

performance reasonably well. In MaF5 in particular, where solutions of NSGA 

III exhibit (see Figure 4.11 (e)) the best diversity. 

Test Results of Five Objective Functions 

Table 4.6 summarises values of PIs on PF approximations of 5 objectives 

for the chosen Benchmark problems and their rankings. Like the 3 objectives, 

Table 4.6 - Values of PIs for specific Benchmark problem, 5 objectives 
 NSGAIII GrEA IBEA 

MaF1 

HV 6.408E-03 (5.232E-04) 3 1.118E-02 (1.860E-04) 2 1.154E-02 (1.624E-04) 1 

IRNA 4.608E-02 (1.923E-03) 1 4.359E-02 (1.328E-03) 2 3.232E-02 (2.344E-03) 3 

CPF 1.037E-01 (2.195E-02) 3 2.601E-01 (2.639E-02) 2 3.263E-01 (2.542E-02) 1 

MaF2 

HV 2.332E-01 (4.950E-03) 3 2.494E-01 (3.749E-03) 1 2.438E-01 (3.100E-03) 2 

IRNA 4.046E-02 (3.960E-03) 3 4.472E-02 (5.293E-03) 2 7.655E-02 (9.516E-03) 1 

CPF 4.262E-02 (7.733E-03) 2 4.070E-02 (5.396E-03) 2 5.413E-02 (6.339E-03) 1 

MaF3 

HV 9.993E-01 (2.003E-04) 1 9.157E-01 (1.273E-01) 2 8.133E-01 (1.927E-01) 3 

IRNA 9.855E-01 (6.059E-02) 1 1.248E-01 (6.488E-02) 2 3.242E-02 (1.165E-02) 3 

CPF 2.933E-01 (3.848E-02) 1 3.650E-02 (2.006E-02) 2 1.034E-03 (2.322E-03) 3 

MaF4 

HV 7.943E-02 (1.054E-02) 2 1.294E-01 (1.547E-03) 1 7.160E-03 (1.134E-03) 3 

IRNA 1.133E-01 (1.671E-02) 1 9.442E-02 (4.086E-03) 2 4.554E-02 (1.509E-03) 3 

CPF 2.141E-03 (3.203E-03) 1 9.524E-04 (1.937E-03) 1 3.350E-04 (1.275E-03) 2 

MaF5 

HV 8.125E-01 (4.466E-04) 1 8.098E-01 (1.127E-03) 2 8.100E-01 (9.878E-04) 2 

IRNA 9.988E-01 (4.720E-04) 1 4.396E-01 (1.927E-02) 2 3.180E-01 (1.019E-02) 3 

CPF 9.576E-02 (6.316E-03) 1 8.863E-02 (1.630E-02) 2 6.774E-02 (1.165E-02) 3 

MaF6 

HV 1.226E-01 (1.185E-03) 1 1.185E-01 (3.372E-04) 2 1.145E-01 (3.773E-03) 3 

IRNA 2.380E-02 (4.271E-04) 1 1.198E-02 (2.157E-04) 3 1.407E-02 (1.310E-03) 2 

CPF 5.414E-02 (1.612E-02) 2 1.670E-01 (1.750E-01) 2 4.265E-01 (1.091E-01) 1 

MaF7 

HV 3.369E-01 (4.895E-03) 3 3.489E-01 (3.051E-03) 1 3.527E-01 (1.399E-02) 1 

IRNA 3.388E-01 (2.719E-02) 1 1.767E-01 (7.233E-03) 2 1.653E-01 (2.910E-02) 2 

CPF 5.945E-02 (1.826E-02) 1 8.017E-03 (7.009E-03) 3 1.423E-02 (8.415E-03) 2 

MaF10 

HV 9.987E-01 (3.773E-05) 1 9.755E-01 (4.263E-03) 3 9.876E-01 (1.790E-03) 2 

IRNA 9.657E-01 (5.639E-03) 1 1.092E-01 (9.690E-03) 3 2.121E-01 (1.368E-02) 2 

CPF 1.911E-02 (3.267E-03) 1 8.161E-03 (4.771E-03) 2 1.183E-02 (6.130E-03) 2 

MaF11 

HV 9.980E-01 (1.143E-04) 1 9.719E-01 (4.513E-03) 3 9.832E-01 (2.685E-03) 2 

IRNA 9.894E-01 (1.583E-03) 1 1.617E-01 (1.435E-02) 3 2.334E-01 (1.312E-02) 2 

CPF 1.794E-02 (6.213E-03) 1 7.392E-03 (3.925E-03) 2 8.472E-03 (4.195E-03) 2 

MaF12 

HV 7.770E-01 (2.907E-03) 1 7.759E-01 (2.763E-03) 1 7.774E-01 (6.144E-03) 1 

IRNA 9.228E-01 (1.007E-02) 1 4.249E-01 (1.145E-02) 2 2.910E-01 (1.001E-02) 3 

CPF 2.311E-01 (1.793E-02) 1 2.183E-01 (2.079E-02) 2 1.596E-01 (2.039E-02) 3 

MaF13 

HV 2.264E-01 (2.213E-02) 1 1.660E-01 (9.237E-02) 1 3.649E-03 (4.046E-03) 3 

IRNA 5.864E-02 (4.769E-03) 1 3.719E-02 (9.489E-03) 2 1.434E-02 (3.194E-04) 3 

CPF 1.174E-01 (2.256E-02) 1 4.786E-02 (2.335E-02) 3 1.494E-01 (1.376E-01) 1 

Note -  The upper index shows the ranking based on Wilcoxon Rank Sum Test, where 1 
represents the highest ranking. 
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HV, CPF and IRNA yield similar scores in MaF2, MaF3, MaF4, MaF6, MaF10, 

MaF11 and MaF13, but IRNA is more proportionate relative to different diversity 

scores. For example, CPF yields, in general, incredibly low values of diversity, 

which may be caused by increased dimensions (objectives). Low PI values for 

MaF2 and MaF13 are observed, which indicate nonconvergent solutions of all 

three algorithms. HV and CPF provide a different ranking than IRNA in the 

Benchmark of MaF1, MaF5, MaF7 and MaF12. See Table 4.6. 

One would expect significant changes captured by a performance indicator 

for benchmark cases of MaF1, MaF5, MaF7 and MaF12 (just by visually 

observing the solutions plots). However, only IRNA captures such changes in 

performance reasonably well. In MaF5 in particular, where solutions of NSGA 

III exhibit (see Figure 4.11(e)) the best diversity. 

Based on the above analysis, we conclude that IRNA exhibits a balanced 

sensitivity and monotonicity performance and yields arguably a more robust 

indicator than HV and CPF in all benchmark functions tested. 
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4.5  Conclusion  

A new pure diversity indicator, Inverted Ratio of Net Avertence angles 

(IRNA), has been introduced. The proposed performance indicator is tested for 

their efficacy on solutions of known diversity (synthetic data) constructed on the 

unit simplex plane and approximations of 3, 5, 7 and 10 objectives of 

Benchmark problems MaF1-7 and 10-13. MOEA algorithm NSGA III is used to 

reach approximations that the proposed indicator IRNA assessed against the 

commonly used HV and newly proposed CPF. The novelty of the proposed 

diversity score is obtained by rotating the reference vector system with an 

optimal spatial angle. This rotation removes any potential systemic bias in 

included angles in data of approximations so that impartial scores of a diversity 

of approximation sets are obtained. Numerical results and analysis show that 

IRNA yields an overall more balanced performance. IRNA is more sensitive and 

monotonically proportionate in capturing diversity changes than HV and CPF 

indicators in the synthetic data problem and in true PF data of MaF benchmark 

problems and cases when the number of objectives increases above three (for 

many-objective problems). Moreover, this robust performance is also observed 

in tracking the convergence process over various iterations, reflecting in 

maintaining sensitivity and monotonicity as the number of iterations increases 

before final convergence. 

Two methods for assessing sensitivity and monotonicity of performance 

indicators are proposed; one is studying their variations when evaluating 

approximations of an increasing number of objectives while keeping the number 

of candidate solutions constant; the other examines their value changes at 

various iterations up to final convergence. 

The proposed IRNA is assessed against popular performance indicators to 

provide the first insight. Towards further research, comparisons need to be 
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made against a broader range of state-of-the-art performance indicators, 

including additional coverage of types of benchmark problems in terms of 

dimensionality and complexity. 
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Chapter 5  Visualisation and Quality 

Evaluation of Pareto Front 

Approximations 

Chapter Outline 

Studying visualisation methods and developing more effective 

methodologies for MaOP analysis is one of the main objectives of this thesis. 

Visualisation of Pareto Front (PF) approximations of MaOP is crucial in 

understanding and solving a MaOP. Research is ongoing on developing 

effective visualisation methods with desired properties, such as simultaneously 

revealing dominance relations, PF shape, objective range, distribution, etc. 

State-of-the-art visualisation methods in the literature only retain some of the 

desired properties. A new visualisation method is proposed in this chapter, 

which possesses the preferred properties of a visualisation method, i.e., display 

dominance relation, PF shape, objective range, PF distribution, robustness, 

handling large sets, handling multiple sets, scalability, simplicity and 

uniqueness. The method named ProD is based on displaying PF 

approximations via projections (Pro) on the reference vector versus distances 

(D) to the same reference vector; a vector would link a nominal Ideal point and 

a nominal Nadir point based on available nondominated PF approximation data. 

MaF benchmark problems are used to demonstrate the effectiveness of ProD. 

Results show that ProD exhibits a more balanced performance, compared to 

the state-of-the-art, in terms of capturing desired visualisation properties. In 

particular good performance is observed in portraying dominance relations, PF 
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shape and distribution of non-dominated solutions. Part of the work of this 

chapter has been published in:  

K. E. Wu and G. Panoutsos, "A Visualisation Method for Pareto Front 

Approximations in Many-objective Optimisation," 2021 IEEE Congress on 

Evolutionary Computation (CEC), Krakow, Poland, 2021, pp. 1929-1937. 

(The paper attained The Best Student Paper, Runner up Award). 
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5.1  Introduction 

Approximation sets and approximated Pareto Front (PF) landscape of 

many-objective optimisation problems (MaOP) consist of vectors in m 

dimensional objective space where m is the number of objective functions 

involved in the optimisation process. It is nontrivial to visualise these quantities 

mainly because the number of axes in such a visualisation exceeds three. A 

large amount of data is required to be displayed simultaneously on the other. 

However, visualisation of the approximations is crucial in optimisation research 

[2]. An effective way of graphically showing the approximations may assist the 

decision-making process and support interactively searching for optimised 

solutions. It can also be used to examine and improve the performance of 

optimisation algorithms as visual comparisons may reveal the dominance 

relationships to different approximations and display the process of 

convergence towards PF and diversity of MaOP solutions. Graphical display of 

approximated PF landscape is also helpful in finding characteristics and 

challenges of the optimisation problem, such as distance of approximations to 

the constraint boundaries, local minima embedded in the optimisation problem 

etc. [2], [138]. 

Visualisation of high dimensional data sets is usually a process of 

compressing and mapping data into a two- or three-dimensional space that can 

be displayed readily with traditional means of figures or charts. Properties of 

points are easier to analyse and understand. However, although such a 

mapping aims to maintain the high dimensional properties of the data sets as 

much as possible, some information is inevitably lost during the mapping 

process. Therefore, the resulting visualisation process compresses knowledge 

and extracts fundamental properties from the high-dimensional data set while 

omitting less essential features [2]. 
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Effective visualisation methods should have the following desired 

properties, as outlined in [138]:  

1) Dominance relation: shall preserve dominance relation between solutions 

by visualisation,  

2) PF shape: should display the PF shape, i.e., its convexity and concavity.  

3) Objective range: should reveal the ranges of objectives 

4) PF distribution: should exhibit the distribution of solutions 

5) Robustness: is a property addressing from the perspective of visualisation 

only in terms of consistently projecting multiple dimensional solutions in 

2D and 3D,  i.e., no ambiguity exists. For instance, a method such as 

RadViz, see Section 5.2 for details, may suffer a robustness challenge 

since multiple unspecified solutions could be located in the same position 

after data compression into 2D under visualisation. 

6) Handling large sets: it may present large approximation sets 

7) Handling multiple sets: it may simultaneously visualise multiple 

approximation sets 

8) Scalability: it should be scalable to any number of objectives 

9) Simplicity: it should be simple to construct.  

This author proposes an additional desired property:  

10) Uniqueness: the visualised image should be unique independent of the 

sequence of objective functions utilised in the display. For instance, the 

image of Parallel coordinates changes with the alterations of the objective 

function sequence. 

While effective in their respective targeted desired properties, current 

visualisation methods possess only some of the above-desired capabilities 

[138]–[141]. Parallel coordinates, for instance, may identify different types of 

"patterns", but it has challenges in visualising large and multiple sets of Pareto 
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fronts. He and Yen [200] sort existing visualisation methodologies into five 

major groups. Out of each group, one representative method is chosen and 

tested for representing three commonly accepted PF patterns for visualisation 

approaches, i.e., simplex plane, sphere, and knee shape. Numerical results 

reveal that none of the five methods adequately display the basic patterns [200]. 

Specifically, the major weakness of the current state of the art methods is that 

they only retain some of the above-mentioned desired properties. Parallel 

Coordinates [201], for example, fulfils the demands for displaying Dominance 

Relation, Robustness, Scalability and Simplicity, but is not addressing the rest 

of the properties. Hence, research is needed to expand the capability of 

methods that simultaneously possess as many preferred properties as 

possible.  

This chapter proposes a new visualisation method, which exhibits the most 

desired properties for visualising MaOP approximations. The main unique 

contribution of this work is the following: 

A new visualisation method for high dimensional MaOP approximations is 

proposed by displaying PF approximations via projections (Pro) on the 

reference vector versus distances (D) to the same reference vector, ProD. The 

reference vector is a vector that would link nominal Ideal point and nominal 

Nadir point calculated based on the available data of PF approximations.  

The B-Norm based Pareto Front Tracing method (Bn-PFt) covered in 

Chapter 3 is utilised to create more evenly spaced reference points in the 

vicinity of PF and its approximations. It is used to create evenly distributed high 

dimensional solutions visualised in a two-dimensional space. 

The rest of the work is organised as follows. Section 5.2 describes a 

literature survey on up-to-date visualisation methods in MaOP analysis. Section 

5.3 covers the formulation and reasoning of ProD. Section 5.4 includes testing 



5.1  Introduction 

166 

and simulation results showing the efficacy of ProD. Finally, conclusions are 

drawn, and future research directions are discussed in section 5.5.  
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5.2  Existing Visualisation Methods 

It is nontrivial to develop a visualisation method for MaOP, which 

simultaneously satisfies all the requirements listed in Section 5.1. Various 

visualisation methods in displaying domination relations of approximations of 

MaOPs exist with varying success and focus on what the methods aim to 

reveal. A comprehensive review of the topic can be found in [141], [201].  

Filipič and Tušar [138] suggest a taxonomy of visualisation methodologies 

consisting of two major categories: to display simple PF approximation sets and 

to show repeated approximation sets. 

  
(a) Parallel coordinate (b) RadViz. 

 

 

 

(c) Polar coordinates (d) Level diagram 

Figure 5.1 - Different visualisation methods used to visualise the actual 
Pareto front of 5-D DTLZ2. (a) Parallel coordinates. (b) RadViz. (c) Polar 
coordinates (f) level diagram. 

Figure 5.1 shows the results of PF of a unit hypersphere using different 

visualisation methods. Scatter plot [138] is a straightforward visualisation 

method frequently adopted. All vectors of approximations of non-dominated 

data points are projected to a 2D plot by omitting higher dimensions of the 

vectors other than the two displayed. Similar plots are generated for all 

combinations of two objective functions, and as a result, a scatter plot matrix is 

formed. Although the method is simple, robust, and able to reveal the objective 
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range and handle multiple sets, it is not scalable to high dimensional MaOPs 

[138]. Neither can it depict dominance relations of approximation sets. PF 

shape and its distribution are only shown to a limited degree [138]. 

Parallel coordinates [201]: see Figure 5.1(a). This method maps high 

dimensional vectors onto a 2D figure using m equally spaced parallel axes. The 

vectors are drawn as polylines through position on each axis corresponding to 

each vector component. Parallel coordinates are simple to construct and 

scalable to any dimensions of MaOP, and no information is lost in the mapping 

process. The main weaknesses are three-fold: the method fails to display the 

shape of the PF approximation and possesses limited capability in handling a 

large amount of approximation data and simultaneous visualisation of several 

approximations [138]. Radar Chart [202] can be considered a further developed 

version of parallel coordinates with similar strengths and weaknesses, in which 

axes are placed radially instead of in parallel.  

Radial Coordinate Visualisation (RadViz) [203]: see Figure 5.1(b). The m-

dimensional vectors of approximations are mapped onto a two-dimensional 

plane by uniformly placing the origin of each m-dimensional vector along a 

circle with various anchor points. Each approximation set is expressed by 

assuming that each anchor 𝑖 is connected to a spring of force proportional to 

the objective function 𝑓𝑖. An 𝑚-dimensional vector is identified inside the circle. 

The positions of the vectors are found and displayed on the two-dimensional 

plot. The method is robust and straightforward, may handle several 

approximations simultaneously, and can be readily extended to any dimension. 

However, RadViz fails to reveal the PF front pattern and the dominance 

relations between solution sets [138]. Multiple disparate vectors may share the 

same equilibrium position in the plot creating chaotic and unforeseeable 

patterns or data distribution. 
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In contrast, the two vectors are neither neighbours nor belonging to any 

natural groups of vectors. RadViz has been further developed into a 3D version 

called 3DRadViz [204]. The above-stated shortcoming is also inherited in the 

3D version of the method. 

PaletteViz: [139] High-dimensional and non-dominated objective vectors 

are mapped onto multiple two-dimensional Radviz plots. The vectors are sorted 

after their boundary to the core location in their original high-dimensional space. 

As is the case for RadViz, the main weakness is that multiple disparate vectors 

may share the same equilibrium position, causing difficulties in interpreting data 

distribution.  

2D Polar coordinates [122]: see Figure 5.1(c). The objective space is divided 

into subregions using reference vectors, evenly mapped to a 2D plane following 

the sequence of generated reference vectors. The best approximation from 

each subregion is chosen and plotted on the reference vector in a 2D map. The 

method can reveal the basic patterns of PF of linear and hypercubes while it 

displays more complex PF shapes with much-reduced success. Moreover, 

neighbour points on PF are disparately located in the display. In addition, the 

outcome is nonunique and changes with the sequence of objective functions 

used. In other words, it violates the desired visualisation property no. 10. See 

Section 5.1. 

Level diagrams [205]: see Figure 5.1(d). Euclidean distance of 

approximations to the ideal point is displayed as functional values of each 

objective. The main drawback here is that the method has to utilise an equal 

number of separate plots like the number of objective functions. The number of 

plots for visualising MaOP approximations can be overwhelming.  

Pryke et al. [206] use a Heatmap visualisation where a tabulation of colour 

chart is formed. Objectives are taken in columns, and high dimensional vectors 
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are taken as rows. Although the method is robust and scalable, it fails in 

showing PF shape, objective range, and distribution. Large or multiple data sets 

can hardly be displayed, as discussed in [138]. 

Yamamoto et al. [207] suggest Principal Component Analysis to reduce the 

number of objectives necessary to be visualised. The challenge is that the 

number of objectives after reduction may still exceed three, making 

visualisation difficult. 

Other visualisation methods are also available. Freitas et al. [208] propose 

a method of Aggregation Trees where positively correlated objective functions 

are merged, and the total number of objective functions is thus reduced. Chiu 

and Bloebaum [209] introduce the Hyper-radial visualisation (HRV) method in 

which mapping from high dimensions to 2D is done by expressing 2D vectors 

in terms of Hyper-radial distance of the original vector to the ideal point. 

Koochaksaraei et al. [210] suggest a Chord diagram, where objective functions 

with their respective equal arc length on which scales are indicated and arcs 

are placed along the peripheral of a circle. Agrawal et al. [211] suggest a 

Hyperspace Diagonal Counting method to compress and group high 

dimensional vectors into 3D space mapping. S. Obayashi and D. Sasaki  [212] 

utilise Self-Organised Maps to visualise solutions with many objectives, using 

trained neural networks to find nearby solutions adopting a unified distance 

matrix. Yoshimi et al. [213] have further developed the methodology to present 

the result in a spherical form, improving the display of boundary points. Hence, 

the above methods target specific desired properties only, therefore not 

covering all the desired properties described in Section 5.1. 
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5.3  Proposed Visualisation Method – ProD 

In this section, a new visualisation method, ProD, is proposed to identify the 

pattern of PF and reveal dominance relations among PF approximation sets 

which can also be utilised to monitor the convergence process and evaluate 

diversity on approximations from a MaOP algorithm. Its main structure is 

explained in Section 5.3.1, and its principal characteristics are summarised in 

Section 5.3.2. 

5.3.1  Establishment of ProD 

  
Figure 5.2 - A schematic view: 
Projection on (𝑟∥) and Distance to (𝑟⊥) 

reference vector of a data point in 2D 
space.  

 

Figure 5.3 - A schematic view: 
Compression of data in ProD in 3D 
space. 

ProD is proposed to visualise high dimensional vectors of PF 

approximations of a MaOP in objective function space. It is done with their 

projections on and distances to a reference vector in the objective space. The 

reference vector is created by linking nominal Ideal point and Nadir point 

calculated based on the existing nondominated data set(s) of PF 

approximations. Figure 5.2 shows a schematic view in 2D space on how 

projections on and distance to the reference vector of a PF approximation 

vector are defined.  

The projection 𝑟∥ is given as: 
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𝑟∥ = [𝑓1 𝑓2  … 𝑓𝑚] ∗  
𝑹𝑽

|𝑹𝑽|
 

Eq. 5.1 

 

in which 𝑚 is the number of objective functions, and 𝐑𝐕 is the reference vector 

that is defined as: 

𝑹𝑽 = 𝑭𝑁 − 𝑭𝐼 Eq. 5.2 

in which 𝐅N is the vector of Nadir point and 𝐅𝐼 is the vector of the Ideal point. 

The distance to the reference vector is expressed as: 

𝑟⊥ = 𝑠𝑖𝑛 (𝜃) ∗ √𝑓1
2 + 𝑓2

2 + ⋯+ 𝑓𝑚2 Eq. 5.3 

where angle 𝜃 between the vector of candidate solution and reference vector is 

calculated by  

𝜃 = 𝑐𝑜𝑠−1 (
[𝑓1 𝑓2  … 𝑓𝑚] ∗ 𝑹𝑽

√𝑓1
2 + 𝑓2

2 + ⋯+ 𝑓𝑚2 ∗ |𝑹𝑽|
) Eq. 5.4 

The principle of data compression in ProD in 3D space is illustrated in Figure 

5.3, in which all data located on the ring (with equal 𝑟∥ and 𝑟⊥) are compressed 

to a single data point in ProD. The results are displayed in a two-dimensional 

plot named ProD (Projection versus Distance to reference vector).  

The nominal Ideal point is an auxiliary point with the least values of each 

objective function as coordinates. In contrast, the nominal Nadir point, on the 

contrary, consists of coordinates of the largest of each objective. Both points 

are defined based on current available PF approximation data, so the term 

"nominal" is used. It is assumed that the origin is moved to the nominal Ideal 

Point.  

ProD may be utilised to display decision variables and their relationships in 

decision space in a similar manner by defining a reference vector linking the 

ideal minimum point (the point with components taken from each of the minimal 

coordinates of all decision variables) and theoretical maximum point (the point 
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with components equal to each of the maximal coordinates of all decision 

variables). 𝑟∥ and r⊥ are determined using Eqs. 5.1-5.4. 

ProD has the capacity for showing points and regions of interest (ROI) for a 

decision-maker when the Pareto approximations in the ROIs in the objective 

space are sorted using the surrounding reference points or vectors of the ROIs. 

The PF of the ROIs can then be visualised in ProD. The corresponding Pareto 

optimal set in the decision space can also be found, collected, and drawn in 

ProD using equations like Eqs. 5.1-5.4. The reference vectors can be found 

utilizing the nominal ideal and Nadir points based on the data sets. 

As mentioned in the Introduction section, visualisation in high dimensional 

space is a process of compression of information and extraction on specific 

fundamental properties out of data set while omitting certain less critical details. 

The core idea of ProD is to compress all data of the same 𝑟∥ and 𝑟⊥ values into 

a single data point. The compressed data point represents all raw data points 

in the original solution set, which form a ring on the PF surface because all 

points share the same 𝑟∥ and 𝑟⊥ values in the 3D case, and it is illustrated in 

Figure 5.3. In high dimensions, the data points are located on a hyper ring. 

5.3.2  Characteristics of ProD 

Taxonomy of ProD 

Compared with definitions from the taxonomy of visualisation 

methodologies [138], ProD is classified into the visualisation method of 

repeated approximation sets. It is a visualisation method for PF pattern 

recognition, convergence, and diversity monitoring at a given time and over 

time under iteration.  

Principle of Data Compression in ProD 

It should be noted that the idea of expressing candidate solutions in the form 

of projections and distances to a reference vector in objective space is 
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frequently used in the formulation of MaOP algorithms, such as MOEA/D [6]. 

However, this has never been used for compressing high dimensional data for 

visualisation purposes. 

Convergence and Diversity Evaluation in Light of 𝒓∥  and 𝒓⊥ 

Values 

It is well accepted that a point with the best convergence is the one that has 

the shortest distance to the Ideal point, while a solution set with the best 

diversity is the one that has candidate solutions of equal distance apart [2]. See 

Figure 5.4. Point 𝐴 is a point on PF with the closest distance among all points 

on line 𝐴 to 𝐵 to the Ideal point. Similarly, point 𝐴 has the shortest distance to 

the Ideal point among the points from 𝐴 to 𝐶. Point 𝐴 is thus a measure of the 

convergence with the smallest distance to Ideal Plane, a term proposed by this 

author, which is expressed as 𝑟∥. The diversity may be expressed as candidate 

solutions of equal distance to the reference vector, which is related to 𝑟⊥, i.e.  

good diversity can be approximated by points with equal distance in 𝑟⊥. The 

above means that 𝑟∥  and 𝑟⊥  values of candidate solutions can reflect the 

convergence and diversity of an approximation set and thus the dominance 

relations between individual approximations. 

 

 

Figure 5.4 - Convergence and diversity evaluation in light of 𝑟∥ and 𝑟⊥ values 
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Normalisation Versus Non-Normalisation in ProD 

Objective functions are commonly normalised under the execution of MaOP 

algorithms employing the coordinate values of nominal Nadir and nominal Ideal 

points to avoid impacts from poorly scaled optimisation problems on the 

solution process. Normalisation on objective functions has also been performed 

when making ProD plots so that the scale of each objective's same order is 

guaranteed. But normalisation can also change the final PF shape patterns, 

and it sometimes creates more complicated ProD images. See more detailed 

discussions in Section 5.4. In practice, ProD should be prepared based on both 

normalised and unnormalised data, and the one with the most straightforward 

PF shape or most minor "clouds" in ProD should be chosen. 

Data Compression and Organization in ProD 

Since discrete data points represent PF, the whole PF in the objective space 

can be considered as consisting of a finite number of regions of candidate 

solutions of different distances 𝑟⊥  to Reference Vector. See schematic view 

displayed in Figure 5.5, where different grouped regions are displayed in 

distinctive colours. And approximations in each region form a subgroup. Each 

subgroup can be analysed by quality metrics, which measure convergence and 

diversity based on data in that region. Data points from all regions form pseudo-

PF, which can be utilised in contrasts and comparisons between two competing 

approximations. The optimal number of regions would be linked to the 

resolution of PF approximations, which is proportional to the number of 

divisions along with each objective function, p. Therefore, it is suggested that 

the number of regions is set to be equal to number p. The maximal extent of 

𝑟⊥,𝑚𝑎𝑥 is obtained through sorting all 𝑟⊥ values. This will be studied further as 

future work.  
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Figure 5.5 - Regions of PF and its approximation. 

ProD Provides a Necessary but Insufficient Condition in 

Diversity Evaluation 

In ProD, a necessary condition for an approximation set with the best 

convergence and diversity must simultaneously possess properties of that it 

has the lowest 𝑟∥ values (the best convergence) while it has 𝑟⊥ values starting 

from zero and spread out to the most extensive possible range (the best 

diversity). But this is, unfortunately, an insufficient condition for good diversity. 

Although 𝑟⊥ values cover the complete range, each of them may have different 

coverage of candidate solutions, see Figure 5.4, and ProD cannot differentiate 

the number of data, nor can it determine the diversity of data in each and same 

region. Multiple solutions may occur for given 𝑟∥ or 𝑟⊥ values in ProD, resulting 

in "cloud" like shapes on PF images are formed. These occur when PFs are 

asymmetric about the reference vector and data with the same 𝑟⊥ may have 

different projections on the reference vector resulting in several data points 

lying vertically at the same 𝑟⊥ . The folded shape of PF in ProD makes it 

challenging to determine dominance relations of two approximation sets having 

approximately equal performances. In addition, as is discussed further in 

Section 5.4, most real-life MaOP has PFs with highly irregular patterns. It forms 
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"clouds" in PROD, which cause a 'folded' PF front that again creates uncertainty 

when used to assess dominance relations between approximations. 

Performance metrics can evaluate the diversity of candidate solutions in 

each region that provide regional diversity information. The distribution of 

diversity of PF may also be revealed in this way, a topic that is studied further. 

ProD Reveals an Objective Range 

Range of an individual objective function 𝑓𝑖 can be displayed via marked 

𝑟∥(𝑓𝑖,𝑚𝑎𝑥)  and 𝑟⊥(𝑓𝑖,𝑚𝑎𝑥)  indicating 𝑓𝑖,𝑚𝑎𝑥  value in ProD if it is needed. The 

objective range is proportional to 𝑟∥ and 𝑟⊥values through relation: √𝑟∥
2 + 𝑟⊥

2. 

The Major Benefits of ProD  

The primary benefit of the new visualisation approach is that it possesses in 

a balanced manner all the desired properties of a visualisation method 

highlighted in Chapter 5.1. These are, among other properties, visualisation of 

PF shape and distribution, dominance relations among multiple approximation 

sets. The results section shows these properties qualitatively and quantitatively 
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5.4  Numerical testing 

This section is organised as follows. The first subsection provides 

information about selected algorithms adopted in the testing and the related 

parameters and MaF Benchmarks (Subsection 5.4.1). Then it follows with the 

presentation of results of testing on properties and performance of ProD as a 

visualisation tool in revealing PF shape and its distributions (Subsection 5.4.2). 

Further, in the subsection that follows, the ability of ProD in displaying 

Dominance Relations among multiple approximation sets is demonstrated 

(Subsection 5.4.3). In the last subsection, properties of ProD in the content of 

satisfying other requirements as a visualisation tool are highlighted and 

discussed (Subsection 5.4.4). 
 

Figure 5.6 - Numerical testing main structure 
 

Three commonly used MaOP algorithms, NSGA III [2], GrEA [79] and IBEA 

[61], are adopted in this testing section. MaF benchmarks are analysed under 

various given amounts of iterations. Solutions are displayed in ProD for 

comparisons. 3D scatter plots are also drawn to assist in the understanding of 

the basic PF pattern in the actual benchmark problem.  
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5.4.1  Optimisation Algorithms and Benchmark Problems 

The adopted algorithms are acquired from PlatEMO [187]. NSGA III is a 

reference-point and nondominated sorting based genetic algorithm for MaOP. 

GrEA adopts grids drawn in high dimensional objective space to strengthen the 

selection pressure towards optimality while maintaining an extensive and 

uniform distribution among solutions. IBEA may adopt several binary 

performance indicators to select offspring as parents for the next round of 

iteration. 

Table 5.1 - Number of solutions generated 
Number of 
objectives 

Number of solutions for 
algorithms 

Number of solutions used to 
generate actual Pareto Front 

3 210 496 

5 210 10626 

10 220 92376 

Eleven scalable MaF Benchmarks used for CEC'2017 Competition on 

Evolutionary many-objective optimisation [112] are selected to demonstrate the 

properties of PROD and evaluate the performance of the algorithms. Tested 

Benchmarks are MaF 1-7 and MaF 10-13 [187]. MaF 8 and 9, 14 and 15 are 

not taken in this study. MaF 8 and 9 are specially designed to display their PF 

readily. In contrast, MaF 14 and 15 are designed to study large-scale problems 

that are difficult to handle by the chosen MaOPs, and the PF shape of MaF 14 

is similar to MaF 1, and MaF 15 is identical to MaF 4.  

All the results shown in this section are obtained using MATLAB 2017b. The 

numbers of candidate solutions used are listed in Table 5.1. The parameters 

adopted in the three algorithms are based on default values acquired from 

PlatEMO version 2.7 [187].  

5.4.2  ProD Revealing PF Shape and its Distributions 

In this subsection, properties and performance of ProD as a visualisation 

tool in uncovering PF shape and its distributions in high dimensional objective 
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space are presented. Here, the functioning of ProD is shown in two parts. First, 

ProD is used to visualise and recognise PF shapes of B-norm type in 3, 5 and 

10 dimensions corresponding to the plane, sphere and imitated knee point 

shapes, which is a fundamental capability of a visualisation method. Second, 

the accurate PF surfaces of MaF Benchmarks are presented in ProD, showing 

the visualisation method can convert authentic Benchmark PFs in high 

dimensional objective spaces to simple shapes in two-dimensional space, 

where basic shapes of PFs are preserved and visualised. 

Visualising PF Shapes and Their Distribution of B-norm Type  

A prerequisite to the capability of a visualisation method is that it can display 

PF of 3 basic surfaces of any dimensions, i.e., plane, sphere and knee [138], 

[139], which in current work are expressed as B-norm surfaces with different B 

parameter values. B-norm functions usually are named F-norm functions in 

mathematics. The functions are termed as B-norm functions in this thesis to 

avoid confusion with the objective function vector 𝐹 in the objective space. B-

norm type of surfaces is a family of symmetric surfaces in high dimensional 

space. The B-norm surface of unity with a small 𝐵 value (0.3 or 0.5) is used to 

imitate a PF shape of knee point. In general, B-norm surfaces are governed by 

Eq. 5.5, where B is the parameter determining the curvature.  

(𝑓1
𝐵 + 𝑓2

𝐵 + ⋯+ 𝑓𝑚
𝐵)

1
𝐵⁄ = 1 Eq. 5.5 

In Chapter 3, Bn-PFt applied to generate more equally spaced reference 

points on B-norm surfaces in high dimensions is introduced. See Figure 5.7(a), 

(b), (c), (g), (h), and (i). 
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a) 3D Scatter plot, 𝐵 = 0.3 b) 3D Scatter plot, 𝐵 = 0.5 c) 3D Scatter plot, 𝐵 = 1.0 

   

d) ProD plot, 𝐵 = 0.3 e) ProD plot, 𝐵 = 0.5 f) ProD plot, 𝐵 = 1.0 

   
g) 3D Scatter plot, 𝐵 = 1.5 h) 3D Scatter plot, 𝐵 = 2.0 i) 3D Scatter lot, 𝐵 = 3.0 

   

j) ProD plot, 𝐵 = 1.5 k) ProD plot, 𝐵 = 2.0 m) ProD plot, 𝐵 = 3.0 

Figure 5.7 - ProD plots of B-norm surfaces with 𝐵 values of 0.3, 0.5, 1.0, 1.5, 
2.0, and 3.0 in 3D, 5D and 10D. The three basic surfaces: 1) linear (𝐵 = 1.0), 

and 2) sphere (𝐵 = 2.0) and 3) knee point surface represented by 𝐵 = 0.3. 

Figure 5.7(d), (e), (f), (j), (k), and (m) display visually these basic types of 

PF surfaces of various B parameter values in 3D, 5D and 10D problems, which 

demonstrate the capability and consistency of ProD in presenting three basic 

shapes: linear, sphere and knee point. Parameters used to generate Figure 5.7 

are listed in Table 5.1. 
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In ProD, unit simplex planes in objective space in any dimensional problems 

appear as distinct horizontal line segments with distances to 𝑟⊥ axis decreasing 

as the number of objective functions increases. See Figure 5.7(c), (g). 

Hyper spheres appear in ProD as distinct circular arc segments falling 

together in all dimensions and bending downwards. See Figure 5.7 (h), (k). 

PF of knee point shape is imitated by B-norm surface with 𝐵 < 1.0. See 

Figure 5.7(a) and (b). Their images in ProD with some folded patterns bend 

upward, indicating the shapes are in convex form. See Figure 5.7(d) and (e). 

Results of PFs in 10D show a limited number of data points for low 𝑟⊥ 

values, due to the limited number of available reference points adopted in these 

areas (intermediate area) [2]. Moreover, many of the data have the same 𝑟∥ or 

𝑟⊥ values and thus fall onto a single data point in ProD.  

A comparable visualisation method to ProD is the 2D Polar coordinates 

method which displays PF shape of convex type as a rhombus with bent edges 

inward and concave type as ellipses [200]. Since real-life PF may have several 

primary forms, e.g., PF of MaF7, Polar coordinates may visually create an 

unclear and indistinct pattern. 

ProD shows that the curve starts with some folded area near the origin at a 

low 𝐵 value for surfaces of other 𝐵 values. The "clouded" area gradually moves 

up along the curve as the 𝐵  value increases until it disappears at 𝐵  value 

reaching 1.0, at which a distinct horizontal line segment forms. Then, it bends 

downward with a further increase of 𝐵 as thicker or indistinct line segments until 

𝐵  at 2.0, when all lines of any dimensional problem fall together and form 

circular arc segments. See Figure 5.7. With a further increase in 𝐵 value, the 

curves depart with the phenomenon that the higher dimension, the more 

volume is encircled by the curves. The curves also bend more strongly 

downward as the 𝐵 value increases further. 
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The above implies that ProD is efficient in indicating basic PF shape of 

convexity, plane and concavity, and their degree of crook. 

Visualising PF Shape and Distribution of MaF Benchmark 

Functions  

Accurate PF surfaces of MaF Benchmarks are presented in ProD, showing 

that the visualisation method can identify the shapes and distribution of true PF 

of Benchmark functions in high dimensional objective spaces. Only results of 

the most representative benchmarks are displayed here for enhanced 

readability. See Table 5.2. 

Table 5.2 - Results of benchmarks presented in this chapter 
Benchmark MaF1 MaF3 MaF5 MaF6 MaF7 

PF Characteristic Plane  Convex  Concave  Degenerated Discontinuous 

 

  
(a) MaF1 in 3D (b) ProD for 3D, 5D and 10D 

Figure 5.8 - Scatter plot for PF of 3D and ProD for PF of MaF1 in 3D, 5D and 
10D are displayed in the same plot, showing the differences and minimising 
the number of plots. 

Figure 5.8 shows scatter plot for PF of 3D MaF1 (Figure 5.8 (a)) and the 

results of ProD of true PF of 3D (red), 5D (blue) and 10D (green) (see Figure 

5.8 (b)). (The 3D, 5D and 10D results are plotted in the same figure to save 

space in the presentation. But they actually represent solutions from different 

dimensional space projected to 2D.). Here, four major issues are worth 

notifying. First, all three PFs consist of distinct horizontal lines, indicating that 

MaF1 has PF patterns of simplex planes in all dimensions studied and has data 
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symmetrically distributed about the reference vector. Second, all three PF 

solutions cover only partially the objective space. Third, as the number of 

objectives increases, maximum 𝑟⊥  for each PF solution case increases, 

indicating objective space enclosed by PF in higher dimensional problem 

increases. It implies that via ProD, it is possible to reveal the range of objectives. 

Fourth, curves locate higher up as the number of objective functions increases, 

indicating distances of solutions to ideal points increase in higher dimensions 

for this benchmark problem.  

 

  

(a) 3D scatter plot, MaF3 (b) ProD, MaF3 

Figure 5.9 - Scatter plot for PF of 3D and ProD for PF of MaF3 in 3D, 
5D and 10D. 

Accurate PF solutions of MaF3 in 3D, 5D and 10D are unsymmetrical about 

reference vector, although they are symmetric about 𝑓3 axis, see Figure 5.9(a), 

but all three solutions cover their respective whole objective space. Folded 

images of PF occur in ProD due to this asymmetry. The images in ProD implies 

that a good approximation set of convergence and diversity must cover the 

whole shaded areas, as shown in the figure. 

As shown in Figure 5.10 (a), PF of MaF5 in 3D has a sphere that 

transformed into ProD, a distinct arc is exhibited and is stretched to the maximal 

extent, indicating that PF covers the whole objective space. The diameter or 

curvature of the arcs corresponds to the sphere's diameter. PF of MaF5 in 5D 

and 10D are of hyperspheres which are also revealed in ProD. See Figure 5.10. 
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Pure arcs in ProD mean that all the PF solutions are equidistant to the nominal 

Ideal Point. 

  
(a) 3D scatter plot, MaF5 (b) ProD, MaF5 

Figure 5.10 - Scatter plot for PF of 3D and ProD for PF of MaF5 in 3D, 5D and 
10D. 

 

 
(a) 3D scatter plot, MaF6 

  
b) PROD without normalisation (c) PROD with normalisation 

Figure 5.11 - Scatter plot for PF of 3D and ProD for PF of MaF6 in 3D, 5D and 
10D 

PF of MaF 6 is a degenerated type (a single curve in objective space) and 

consists of a circular arc that can be considered part of a cube or a hypercube. 

See Figure 5.11(a). When unnormalised, its shapes of 3D, 5D and 10D in ProD 

exbibit as pure circular arcs indicating PF shapes of sphere or hypersphere, but 

there are only two PF solutions per ProD point, belonging to PF solutions on 

each side of reference vector only. See Figure 5.11(a) and Figure 5.11(b). 
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When MaF6 is normalised, the circular arcs are split, and patterns of swallows 

appear in the ProD plot, see Figure 5.11(c). It is caused by the fact that 

normalisation has stretched patterns at diverse places differently, resulting in 

the original pairs of points which had the same 𝑟∥ and 𝑟⊥ values now depart. 

Based on the above analysis, one can come to conclusion that ProD alone will 

have challenges in detecting PFs of degenerated type with certainty. ProD 

should be performed both on PF solutions with and without normalisation to 

reveal different features of PFs. By normalisation, in this case, the PF shape of 

hyperarc is detected, while without normalisation, the PF shape can form either 

a circular arc or hypersphere. An alternative and more reliable method in 

detecting PF of degenerated type is using a proper diversity metric, e.g., IRNA 

covered in Chapter 4. Due to the scarcity of PF solutions in objective space, 

degenerated PFs have extremely low IRNA values. (IRNA≅ 0.05, see Chapter 

4, Section 4.4). 

  
(a) Scatter plot of PF solution of MaF7 (b) ProD for 3D case only 

  
(c) 3D scatter plot, MaF7 (d) PROD Plot, MaF7 

Figure 5.12 - Scatter plot for PF of 3D and ProD for PF of MaF7 in 3D, 5D and 
10D 

PF of MaF7 is discontinuous and has four flakes in 3D scatter plot, but its 

image in ProD reveals three groups of piecewise surfaces. See Figure 

5.12(a)(b). The first piece locates closest to 𝑓1 − 𝑓2 plane, the third one with the 

highest 𝑓3 values while the second one has two flakes situated between the 
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lower and the upper. ProD of Figure 5.12(b) also discloses that each data group 

appears as a thicker line indicating near symmetry about the reference vector, 

but not perfect. It is worth noticing that ProD of 5 and 10 objectives unveil 5 and 

10 clusters of solutions, respectively, which means that PF patterns in higher 

objective space might have more clusters than what is observed in 3D space. 

Based on the above discussions, ProD can reveal the basic PF shape of 

benchmark problems of MaFs of any dimensions, i.e., whether it is in convex, 

planar, concave, degenerated, or discontinuous form. But ProD cannot 

distinguish degenerated PF of pure arc from a sphere, see Figure 5.11 and 

Figure 5.12, except that sphere shows a more significant extent in 𝑟⊥ values. 

The two highly dissimilar cases may further be distinguished by using some 

proper diversity metrics, e.g., IRNA. Discontinuous PF may be treated as 

consisting of several individual PFs, which can be analysed separately. In all 

cases shown above, PF distributions are displayed in ProD, another critical 

property. 

5.4.3  ProD in Displaying Dominance Relations  

This section focuses on the capability of ProD in visualising dominance 

relations between approximation sets. The results are also presented in two 

parts. In the first part, using the MaOP algorithm, NSGA III, approximations on 

chosen Benchmark problems at several time intervals (at several given iteration 

numbers) are visualised. The solutions are compared and contrasted in 

convergence and diversity and displayed in ProD. In the other part, ProD is 

utilised to compare approximations of different MaOP algorithms at equal 

numbers of iterations, in which convergence and diversity are contrasted, 

where the capability of ProD in revealing dominance relations are further 

documented. Only the benchmark cases listed in Table 5.2 are shown and 

discussed here for better readability reasons. 
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ProD in Visualising Dominance Relations  

In this section, the ability of ProD to visualise dominance relations among 

PF approximation sets is demonstrated by displaying the convergence process 

of a MaOP algorithm at a given time and over time. NSGA III is used to obtain 

approximations of ongoing convergence as the evaluation progresses. Other 

MaOP algorithms could be chosen as well.  

 

  
(a) 3D scatter plot, MaF1 (b) ProD for 3D MaF1 

  
(c) ProD for 5D MaF1 (d) ProD for 10D MaF1 

Figure 5.13 - Capability of ProD in showing dominance relations between PF 
approximation sets and revealing convergence process of Benchmark MaF1. 
The exact PF is shown in black dots. The figures reveal the converging 
process of the optimisation towards the final PF and the quality of 
approximations in diversity, the better spread along 𝑟⊥axis, the better the 
diversity. The approximations in 3 objectives are satisfactory in convergence 
and diversity (red dots), while the diversity is poor for 5 and 10 objective 
cases. 

Figure 5.13 displays PF approximations on MaF1 after various iterations, 

which are displayed in different colours. The black dots represent the actual PF. 

It clearly shows the convergence process during the algorithm execution. In 

Figure 5.13(c), a notable feature is the absence of data points at small 𝑟⊥ 

values, a common phenomenon occurred more or less in most test cases, 
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which is due to the limited amount of reference points created in these areas 

and are used in NSGA III. In Figure 5.13(d), the absence of data points in the 

10D case is observed both for small and large 𝑟⊥ values, which indicates that 

NSGA-III based on small number of reference points is only capable of finding 

solutions in part of PF in high dimensions. 

  
(a) 3D scatter plot, MaF3 (b) ProD for 3D MaF3, data with 

normalisation 

 
 

(c) ProD for 5D MaF3, data with 
normalisation 

(d) ProD for 10D MaF3, data with 
normalisation 

Figure 5.14 - Capability of ProD in showing dominance relations between PF 
approximation sets and revealing convergence process of Benchmark MaF3, 
data with normalisation. 

PF of MaF 3 is of convex type covering the whole objective space. Its 

convexity is revealed by ProD since all curves of various dimensional problems 

bend upwards. See Figure 5.14. That reveals that the solutions' convergence 

process is being improved (lowered) with the increasing number of iterations. 

The best convergence and diversity of solutions are reached when solutions 

are achieved with approximations that cover the whole PF areas (black dots). 
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But 10D solutions have limited diversity due to the insufficient number of 

candidate solutions used in the algorithm's execution. See Figure 5.14(d). 

The PF shape of MaF 5 is in concave form as a symmetrical sphere about 

the reference vector (see Figure 5.15(a)). It can be observed that solutions of 

NSGA III starting from areas of large𝑟 𝑟∥  and 𝑟⊥  values and converges and 

spreads out to the whole PF as iterations continue. But this spread-out process 

is reduced in 5D cases and ceased entirely in 10D cases. See Figure 5.15(c) 

and (d). 

  
(a) 3D scatter plot, MaF5 (b) ProD for 3D MaF5, data with 

normalisation 

  
(c) ProD for 5D MaF5, data with 

normalisation 
(d) ProD for 10D MaF5, data with 

normalisation 

Figure 5.15 - Capability of ProD in showing dominance relations between PF 
approximation sets and revealing convergence process of Benchmark MaF5, 
data with normalisation. 
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(a) 3D scatter plot, MaF6 (b) ProD for 3D MaF6, data with 

normalisation 

  
(c) ProD for 5D MaF6, data with 

normalisation 
(d) ProD for 10D MaF6, data with 

normalisation 

Figure 5.16 - Capability of ProD in showing dominance relations between PF 
approximation sets and revealing convergence process of Benchmark MaF6, 
data with normalisation. 

PF of MaF 6 is an arc in 3D, and data in Figure 5.16 have been normalised 

while those in Figure 5.17 are unnormalized. ProD shows satisfactory 

convergence and diversity properties of solutions in 3D and 5D cases. Still, 

NGSA III fails to iterate toward true PF in 10D (see Figure 5.16(d) and Figure 

5.17(d)) for the majority of candidate solutions. The results may indicate that 

NSGA III has challenges to solve degraded cases as the type of MaF6 in high 

dimensions. 
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(a) 3D scatter plot, MaF6 (b) ProD for 3D MaF6, data with 

normalisation 

  
(c) ProD for 5D MaF6, data with 

normalisation 
(d) ProD for 10D MaF6, data without 

normalisation 

Figure 5.17 - Capability of ProD in showing dominance relations between PF 
approximation sets and revealing convergence process of Benchmark MaF6, 
data with normalisation. 

 

Figure 5.18 shows roughly the convergence process of approximations of 

MaF7. Again, the most striking thing observed here is the limited diversity of 

solutions in cases of high dimensionality. See Figure 5.18(d). 
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(a) 3D scatter plot, MaF7 (b) ProD for 3D MaF7, data without 

normalisation 

  
(c) ProD for 5D MaF7, data without 

normalisation 
(d) ProD for 10D MaF7, data without 

normalisation 

Figure 5.18 - Capability of ProD in showing dominance relations between PF 
approximation sets and revealing convergence process of Benchmark MaF6, 
data without normalisation. 

As can be concluded, based on the above discussions, ProD can visualise 

Dominance Relations among multiple PF approximation sets, thus can display 

a converging process of optimisation. Domination Relations are harder to be 

detected in ProD when the contrasting approximation sets are close in 

performance. A performance metric can be used in such cases, e.g., 

Hypervolume or IRNA. 

ProD in visualising dominance relations  

In this section, the ability of ProD in revealing dominance relations is further 

demonstrated by visualising approximation sets of three algorithms: NSGA III, 

IBEA and GrEA, after the same and the large number of iterations 

corresponding to the final stage of completed approximation. Solution sets from 

the chosen algorithms after a various specific number of iterations are displayed 
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in ProD. A necessary requirement on good diversity performance of an 

approximation set is that it has 𝑟⊥  values distribute uniformly and from the 

lowest possible value spreads out to the most extensive possible range. When 

its convergence property is concerned, it has the best convergence when the 

value of 𝑟∥ is the lowest, covering the whole shaded area of true PF in ProD. As 

stated in Section 5.3, the diversity requirement stated above is necessary but 

insufficient. No guarantee for satisfactory diversity of an approximation set is 

assured, although candidate solutions are uniformly distributed within the whole 

range of 𝑟⊥ because each data point in ProD may have better or worse diversity 

within the region it represents. But, on the other hand, an approximation set 

with data distribution without having full coverage of 𝑟⊥ axis in ProD is weak in 

diversity. An evaluation metric must check the diversity of an approximation set 

before a conclusion is made, e.g., Hypervolume metric or IRNA. 

Figure 5.19 displays PF approximations from the three chosen algorithms 

on MaF1 after various iterations. Figure 5.19(b) shows the diversity and 

convergence of 3D MaF1 after 2520 functional evaluations. Visually, the 

approximation set from IBEA has the best convergence and diversity for this 

3D case after this number of evaluations. GrEA ranks second-best, while NSGA 

III suffers relatively slower convergence speed. Still, the quality in diversity is 

roughly the same as those obtained using the other two algorithms. That is also 

the case for 5D after 6720 function evaluations. But for the 10D case, after 

154000 evaluations, the situation is much changed. Many approximations of 

NSGA III are nearly converged to PF, but solutions concentrate in a narrower 

region, meaning some reduced or weakened diversity. See Figure 5.19(d). For 

IBEA, most solutions are converged, but there are some outliers of not fully 

converged candidates, while its diversity is better than is the case for NSGA III. 

For GrEA, many candidates are not converged to PF, but those already 
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converged show better spread stretching far to areas away from the reference 

line or central region. But solutions are scarce in the central region near the 

reference vector. 

 

 

 
 

(a) Approximations in 3D scatter plot, 
MaF1 

(b) Approximations in ProD after 31500 
iterations, 3D MaF1 

 
 

(c) Approximations in ProD after 6720 
iterations, 5D MaF1 

(d) Approximations in ProD after 42000 
iterations, 10D MaF1 

Figure 5.19 - ProD, showing comparisons on the convergence and diversity of 
Benchmark MaF1 among three chosen algorithms. 
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(a) Approximations in 3D scatter plot, 

MaF3 
(b) Approximations in ProD, 3D MaF3 

 
 

(c) Approximations in ProD, 5D MaF3 (d) Approximations in ProD, 10D MaF3 

Figure 5.20 - ProD, showing comparisons on the convergence and diversity of 
Benchmark MaF3 among three chosen algorithms. 

Figure 5.20 shows 3D scatter plot and the convergence in ProD of MaF3 for 

3D, 5D and 10D cases. It is interesting to note that PF approximations of IBEA 

and GrEA, although converged, almost all solutions located only in 𝑓1-𝑓2 plane, 

indicating insufficient diversity. In ProD, both approximations are in the bottom 

of clouded areas instead of covering the whole range of true PF (black dots). 

Solutions from NSGA III have the best diversity and cover almost all of the true 

PF. Similar is the case with instances of 5D as well as 10D. IBEA finds PF 

solutions along with a narrow band only, while GrEA considers only a small PF 

area and almost fails in finding converged solutions. 
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(a) Approximations in 3D scatter plot, 

MaF5 
(b) Approximations in ProD, 3D MaF5 

  
(c) Approximations in ProD, 5D MaF5 (d) Approximations in ProD, 10D MaF5 

Figure 5.21 - ProD, showing comparisons on the convergence and diversity of 
Benchmark MaF5 among three chosen algorithms. 

 

PF of MaF 5 consists of a sphere. See Figure 5.21(a). Roughly speaking, 

all three algorithms give satisfactory results in convergence and diversity in 3D 

cases. See Figure 5.21(b). But the diversity property is weaker for GrEA and 

NSGA III solutions than IBEA in the 5D case. See Figure 5.21(c). All three 

algorithms give unsatisfactory results in diversity in 10D instances due to the 

insufficient number of candidate solutions used. 
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(a) Approximations in 3D scatter plot, 

MaF6 
(b) Approximations in ProD, 3D MaF6 

  
(c) Approximations in ProD, 5D MaF6 (d) Approximations in ProD, 10D MaF6 

Figure 5.22 - ProD, showing comparisons on the convergence and diversity of 
Benchmark MaF6 among three chosen algorithms. 
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(a) Approximations in 3D scatter plot, 

MaF6 
(b) Approximations in ProD, 3D MaF6， 

without normalisation. 

  
(c) Approximations in ProD, 5D MaF6， 

without normalisation. 

(d) Approximations in ProD, 10D 
MaF6， without normalisation. 

Figure 5.23 - ProD, showing comparisons on the convergence and 
diversity of Benchmark MaF6 among three chosen algorithms. No data 
normalisation. 

PF of MaF 6 is an arc in 3D, which shape is degenerated. See Figure 5.22(a). 

ProD shows satisfactory convergence and diversity properties of solutions in 

3D and 5D cases for all three algorithms. Still, all three algorithms reveal their 

inability to iterate toward true PF (see the large scale of the vertical axis in 

Figure 5.22(d) and Figure 5.23(d)). The results indicate that the three chosen 

algorithms have difficulties solving degraded cases as the type of MaF6 in high 

dimensions. 
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(a) Approximations in 3D scatter plot, 

MaF7 
(b) Approximations in ProD, 3D MaF7 

  
(c) Approximations in ProD, 5D MaF7 (d) Approximations in ProD, 10D MaF7 

Figure 5.24 - ProD, showing comparisons on the convergence and diversity of 
Benchmark MaF7 among three chosen algorithms. 

Approximations from the 3D case of MaF7 after 16800 functional 

evaluations show almost equally good results from all three chosen algorithms 

(see Figure) (b). However, the convergence of NSGA III results is somewhat 

weaker than for the other two algorithms. See Figure 5.24(b). For the 5D case, 

after 16,800 evaluations, the situation becomes unclear. But one can still see 

that IBEA gives the best results in convergence and diversity while NSGA III 

generates the least converged approximations. See Figure 5.24(c). For the 10D 

case, uncertainty dominates the picture. See Figure 5.24(d). IBEA seems to 

give the best results in diversity compared to the other two algorithms. But none 

of the three algorithms generates satisfactory approximations in diversity 

because only a limited number of intermediate points exist in the solutions. 

Results and discussions provided above further confirm the ability of ProD 

in visualising Dominance Relations among multiple PF approximation sets, 
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where it is used to contrast approximation sets from different MaOP algorithms 

in optimisation analysis. Dominance relations may be harder to be detected in 

ProD when the contrasting approximation sets are close in performance. A 

performance metric can be used in such cases, e.g., Hypervolume or IRNA. 

5.4.4  ProD as a Visualisation Tool in Satisfying Other 

Requirements  

Properties of ProD in meeting other requirements as a visualisation tool, 

described in Chapter 1, are highlighted and discussed. 

• Distribution of PF of candidate solutions is depicted in ProD as functions 

of their projections (𝑟∥) on and distance (𝑟⊥) to reference vector.  

• Display in ProD remains robust and meaningful when data of high 

dimensions are mapped to 2D. The robustness of a visualisation method 

means that the addition or removal of data should not significantly impact 

the visualisation image. The robustness of visualised image of 

approximated PF is essential for our perception of the searched PF. ProD 

satisfies the requirement because that 𝑟∥ and 𝑟⊥of data are well defined 

and remain so with the increase or decrease of data visualised.  

• ProD is capable of visualising large data sets and multiple sets 

simultaneously. Large data sets are often created for approximated PF, 

especially for high dimensional MaOPs, and a visualisation method must 

handle them. In addition, concurrent visualisation of several data sets is 

needed when multiple PF data sets are contrasted. There is, in principle, 

no limit for ProD in this aspect in contrast to the method of Parallel 

Coordinates, which lead to the unrecognisable image when a large 

number of data have to be displayed. 

• ProD is scalable to any number of objectives and is simple to construct.  
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• Pareto front representations in ProD are unique, independent of the 

sequence of existing objective functions. 𝑟∥ and 𝑟⊥ values are invariant to 

the change of order of objective functions. 
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5.5  Conclusion and Future Research Directions 

In ProD, better convergence of an approximation set is indicated by its 

shorter projection on the reference vector (𝑟∥), while better diversity of it is 

revealed by its more extensive spread and more uniform distributed solutions 

along the axis of distance 𝑟⊥ to reference vector. The latter is a necessary but 

insufficient requirement on diversity; hence, the diversity performance of 

approximation sets should be judged using appropriate diversity metrics. 

ProD exhibits a more balanced performance than the state-of-the-art in 

capturing desired visualisation properties. In particular good performance is 

observed in portraying dominance relations, PF shape and distribution. The 

main properties of ProD are reflected upon the desired properties of 

visualisation methods described in Introduction section 5.1.1, which are 

achieved in a more balanced manner than existing visualisation methods can 

fulfil. 

• ProD may visually depict the distribution of high dimensional PF 

approximations as functions of their projections (𝑟∥) on and distance (𝑟⊥) 

to reference vector.  

• ProD may roughly reveal the overall dominance relationships between two 

approximation sets in convergence and diversity but not sufficiently 

precisely between two individual approximations. 

• ProD remains robust and meaningful when data of high dimensions are 

mapped to 2D. 

• ProD is capable of visualising large data sets and multiple sets 

simultaneously. 

• ProD is scalable to any number of objectives and is simple to construct.  

• ProD creates a unique image of high dimensional PF approximations, 

independent of the sequence of existing objective functions. 
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As future research directions, several topics deserve further study: 

• First, using performance metrics on regional data in ProD would be an 

exciting topic to explore further, as well as researching the optimal 

definition and allocation of the data regions, which should be able to be 

related to the resolution of PF surface in general and the number of 

divisions along with each objective function, for decomposition-based 

algorithms in particular.  

• Second, the ProD visualisation mechanism could also potentially be used 

as a binary performance indicator, where the distribution of two 

approximation sets in metric value of some kind along 𝑟⊥  axis of 

approximations of different iteration numbers or dissimilar algorithms can 

be compared and contrasted. The sum of regional metric values can be 

used as a final quality indicator.
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Chapter 6  Minimising Crack Formation 

in Selective Laser Melting operations 

Chapter Outline 

While accounting for different part designs, optimising multiple process 

parameters is a common but nontrivial task in additive manufacturing. Process 

expertise and knowledge are often used in the manufacturing industry and 

prototyping laboratory settings, combined with available numerical and 

analytical models to set process parameters for a given part design. It usually 

involves experimental trials before settling for a final set of parameters that 

satisfy some performance metrics, generally relevant to the part quality. This 

chapter demonstrates a systematic Machine Learning framework for optimising 

process conditions in Laser-Powder Bed Fusion or Selective Laser Melting 

(SLM) while accounting for part design for the first time, using a conservative 

amount of experimental data. We exploit the capability of a class of universal 

approximation data-driven models to capture the process-part behaviour, and 

we then optimise `concurrently process parameters for various part designs. 

The proposed framework is demonstrated and experimentally validated on a 

Selective Laser Melting process for material CM247L. It’s a nickel super alloyed 

compound commonly used in critical aerospace applications due to its 

mechanical properties. Being able to 3D print this material would be of 

enormous importance to the aerospace industry. The obtained PF 

approximations are made most evenly distributed in the objective space 

adopting the B-norm based Pareto Front tracking method (Bn-PFt) developed 
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in this thesis work. The final approximations have been checked for the diversity 

property utilising the performance indicator, the Inverse Ratio of Net Avertence 

angles (IRNA) also proposed in this thesis. The outcomes have been effectively 

visualised in the high dimensional space of both objective and decision one, 

applying the technique of Projection on and Distance to a centre vector (ProD) 

elaborated in this study. Results show that the proposed framework can be 

utilised to achieve improved performance in minimising part micro-cracking, 

and crucially this is achieved with ranges of discovered process parameter set 

that yields the best results in all part designs. Due to the data-driven nature of 

the proposed framework, this work can be extended to other material/process 

combinations and expand the number of optimisation objectives, for example, 

to address part density, build time, or mechanical performance of resulting 

parts. 
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6.1  Introduction 

Machine parts are traditionally fabricated by first forming work blank or 

ingots through, for instance, forging or casting and are further machined to their 

final forms, where excess material is removed. It is, in general, characterised 

as a subtractive production method. Additive Manufacturing (AM) is a group of 

production methods that makes the final product directly by building one layer 

of time starting from its bottom [214]. The manufacturing process is also 

referred to as 3D printing. Materials of plastics, as well as metals, can 

nowadays be used in an AM process. AM revolutionises the world of 

manufacturing. It has distinct advantages in making complex-shaped and 

customised parts, often in one go. Prototypes of specialised components can 

be produced quickly and at a relatively low cost. Production is speeded up, and 

downtime is much reduced when replacement parts are manufactured on-site 

if components break down.  

Moreover, AM can manufacture a final product as a whole or a few parts, 

rather than producing many individual components and assembling them. 

Thus, products can be designed more optimised and compact; without excess 

arrangements for assembling, such as welds and spaces for fasteners, are 

removed. In addition, AM manufactured objects often elude the need for post-

production treatment, such as heat treatments and specialised machining for 

metal products. 

Laser-Based Additive Manufacturing (LBAM) is a popular area of AM 

technology and is dedicated to working with metal parts. LBAM techniques are 

categorised into two major subgroups, Direct Metal Laser Sintering (DMLS) and 

Selective Laser Melting (SLM). DMLS can build objects out of almost any metal 

alloy because the coherence of the metal powder mixture is based on sintering, 

where hard and high melting temperature metal is sintered with other metals 
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with lower melting temperatures. SLM technique utilises a high power-density 

laser to melt and fuse metallic powders. A skinny layer of metal powder covers 

across the work surface is slowly and steadily heated up by a laser beam 

moving across the surface being manufactured in both processes. New layers 

of powder are then rolled on in place and fused on the object one cross-section 

at a time. 

A significant additional advantage of LBAM, beyond the benefits of an AM 

method in general, is that metal products can be manufactured with less 

residual stresses and internal defects than traditionally produced ones using 

subtractive production methods. DMLS can be utilised to build products with 

internal channels and detailed shapes that could not be cast or subsequently 

machined. SLM utilises a high-powered laser to melt each layer of metal 

powder fully. The objects created are denser and more robust than those using 

DMLS based on sintering, where metal powders are only partially melted. SLM 

is beneficial when producing metal components of high melting point and high 

ductile-brittle transition temperature, like tungsten.  

Traditional subtractive production methods have a relatively high setup cost 

since many auxiliary equipment and tools might be needed, for instance, 

moulds for generating raw castings or ingots. These different arrangements are 

spared when using SLM. But, in general, SLM has a high cost per part, and it 

is most feasible when used in situations where only very few pieces are needed 

to be made. For instance, spare parts of machines, implants, and components 

for the aerospace industry. SLM is nowadays frequently used to make 

orthopaedic implants in medical science and manufacture complicated and 

lightweight parts for aerospace. The products are nontrivial to be made by 

traditional manufacturing due to their compact design and no physical access 

of tooling to surfaces for machining.  
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Today, one major demerit of SLM is that the method can only be used on 

metals that have suitable flow characteristics when melted, such as stainless 

steel, tool steel, titanium, cobalt chrome, and aluminium parts. Expansion 

toward the usage of most metals is still an ongoing research subject. Moreover, 

SLM uses a high-energy laser and hits up a layer of metal powder locally to 

surpass the melting point of the metals. It creates high-temperature gradients 

locally around the working spot, which leads to stress concentrations and 

dislocations in the material structure inside the final product. It has considerable 

impacts on the resulting mechanical properties of the object due to the 

formation of cracks and pores. Several process parameters exist that determine 

the quality of an SLM operation in terms of production time, surface roughness, 

crack, and pore formulation internally and along with the edges, such as laser 

power, point distance, hatch offset and exposure time, etc. [215]. The most 

suitable process parameters can be found by simultaneously optimising target 

values that are specific qualities, mechanical properties, and geometric 

characteristics, such as acceptable density, yield strength, ductility, stiffness, 

elongation to failure, etc. But in most cases, these target values are conflicting 

and cannot be optimised individually in the same production process. For 

instance, high cooling rates of SLM may lead to an increase in yield strength of 

the material and a reduction in ductility or elongation to failure of the final 

product [214]. A compromise among them must be searched. That's why 

finding suitable process parameters is a challenging job, and it requires multi-

objective process optimisation. The most desired properties can be attained by 

optimising these outcomes or objectives to the dominating process parameters. 

The operation analysis requires that the mathematical relationships between 

the objectives and the process parameters or decision variables are 

established, i.e., the manufacturing process is modelled. Next, well-planned 
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experiments and simulations are performed, and the obtained data are 

subsequently analysed so that the process model is established and verified. 

Further, the well tested mathematical model is optimised to the targeted 

process parameters or design variables so that decision-makers can utilise the 

results to improve their operations. 

The main focus of this study is to identify the optimal process parameters in 

an SLM process subject to minimising Crack Formation using evolutionary 

many-objective optimisation (MaOP) methodologies. In this author's 

knowledge, such a work is still essential to be carried out in the field of research, 

possibly due to the complexity and high uncertainty in measuring, modelling, 

and analysing cracking from an SLM manufacturing process. 

A method for finding the ranges of optimised process parameters is 

proposed using the ProD visualisation method covered in Chapter 5 and 

Parallel Coordinates (see Chapter 5). The decision-makers can choose the 

optimal process parameters or decision variables to guide their SLM 

operations. 

Due to significant variations in the validation data, i.e., high uncertainties 

when analysed with the developed surrogate models, the procedure of a robust 

optimisation analysis is presented and recommended to be done as part of the 

future work of this study. 

The chapter is organised as follows. Section 6.2 describes the principles of 

the working process of SLM and the primary defect formations. Section 6.3 

summarises some previous major studies in analysing AM/SLM process using 

ML and EMO methodologies. Modelling the Selective Laser Melting process is 

covered in Section 6.4. Section 6.5 explains the experimental setup and the 

related process modelling. The modelling results are summarised and 

discussed in Section 6.6. The optimisation analysis and the results are 
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presented and discussed in Section 6.7. Section 6.8 discusses the necessity of 

robust optimisation in the study and the data required accordingly. Discussions 

on various issues are taken in Section 6.9. Finally, a summary and the future 

work discussions are taken in Section 6.10. 
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6.2  Principles of the Working Process of SLM and 

Main Defect Formations 

A significant challenge in achieving good quality in the Selective Laser 

Melting (SLM) process is achieving high reliability and good repeatability on the 

manufactured product. It has been reported that the quality of the final product, 

the consistency of the production system, the repeatability of the process and 

the production setups and procedures are highly influenced by the process 

parameters [214]. Consequently, the product's final quality, microstructure and 

mechanical properties are determined by selecting such process parameters 

[214]. This chapter provides a short overview of the working principle of an SLM 

process and how the various defects are formed. 

6.2.1  The Working Process and the Main Components 

An SLM operation starts by slicing the data from a 3D CAD file into layers 

to a 20 to 100 micrometres thickness. The making of a product undergoes 

inside a chamber containing either argon or nitrogen at oxygen levels below 

500 parts per million [216]. Thin layers of fine metal powder are first evenly 

spread out using a coater blade or a roller onto a metal substrate plate placed 

on the top of an indexing table that may move vertically in a tightly controlled 

manner. These metal powders are spherical and produced by gas atomisation 

using pre-alloys. The metal particles in such a shape ensure a high flowability 

and packing density, which help spread and homogenise the powder layers. A 

low percentage of much finer metal particles (15 - 63 µm) are added to the 

powder to enhance the flowability further. The thin layer of metal powder is then 

fused by a high-power laser beam, usually a ytterbium fibre, with an effect of 

typically about 200 watts. The laser beam scans the product layer, controlled 

by two high-frequency scanning mirrors. The operation is repeated layer after 
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layer until the object is constructed [216]. The process is illustrated in Figure 

6.1. Before the laser irradiates, the metal powder is preheated to a temperature 

right below the melting temperature of the metal. 

 
Figure 6.1 - The process is shown by the principle sketch of an SLM process 
(Taken from [216]). 

The process parameters are often categorised into three main groups: pre-

process, in-process, and post-process parameters. The pre-process 

parameters include preheating temperature of the metal powder, etc. The in-

process parameters include laser power, point distance, hatch offset, exposure 

time, etc. In contrast, the post-process parameters encompass stress relief 

measures through heat or thermomechanical treatments that reduce residual 

stresses, close pores and transform the hard and brittle microstructures to 

softer ones to improve the mechanical properties. The choice of process 

parameters leads to a big difference in the final quality of the SLM built. This 

study focuses on the effects of the in-process parameters on the cracking 

formation and its length density in the created objects. Specifically, these 

parameters are laser power, point distance, hatch offset, exposure time, and 

volume energy density. These parameters are illustrated in Figure 6.2. The 

point distance is the focal offset distance between the focus of the F- theta lens 
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and the surface of the metal powder. The hatch offset or hatch spacing is the 

distance between the centre lines of two adjacent paths of the laser within the 

same layer and is a factor that impacts the results on the overlapped areas 

[215]. The exposure time is causally related to the scan velocity of the laser 

beam. The volume energy density is defined as:  

𝐸𝑣 = 𝑃
(𝑣 ∙ ℎ ∙ 𝑡)⁄   Eq. 6.1 

where  

• 𝑃 is the laser power 

• 𝑣 is the scanning velocity 

• ℎ is the hatch distance  

• 𝑡 is the powder layer thickness. 

 
Figure 6.2 - Illustration of operating parameters studied for SLM processing 
(taken from [215]). 
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6.2.2  Defect Formation 

The concentrated laser power results in a high-temperature gradient in and 

around the building area. It generates several types of defects, which directly 

impacts the mechanical properties of the manufactured part. Combined with the 

scanning movement of the laser beam, a complicated picture of solid-state 

transformations, thermal fluid dynamics, particle dynamics, etc., are created 

locally. A schematic display of the circumstances is shown in Figure 6.3. 

 
Figure 6.3 - Schematic display on local conditions around the building spot in 
an SLM operation (taken from [217]). 

Two significant defects commonly occur. One is the lack of fusion (LOF) that 

results in the formation of pores in the solidified regions. The other is cracking 

that forms during the solidification of the built material.  

LOF is caused by gases dissolved first in the melt and entrapped in the 

object after the melt is solidified. Inadequate powered laser source or too high 

of a scanning speed of the laser source across the built area may lead to the 

lack of fusion. The metal particles' strong thermal fluid dynamical movement 

causes the metal grains to melt incompletely, resulting in incoherent 

solidification. In addition, the flow of melt under thermal tension makes 

inhomogeneous compositions gather at certain areas forming pores. The 

convection currents induced by the laser beam can be the driving force for 
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irregular melt flow. The overall composition of the semi-molten metal is 

changed, and weaker or porous regions may occur [218]. 

Moreover, weaker material microstructures like dendrites may occur and 

progress along temperature gradients at different speeds. The built material in 

such areas has weakened mechanical properties in strength and fatigue life. 

Further, pores may also form when the laser scan velocity changes when the 

formed holes close, and gases are trapped in the solidifying metal [219].  

Cracking occurs inevitably when the built metal alloys have low thermal 

conductivity and high thermal expansion coefficients, causing high-level 

internal stresses and stress concentrations, leading to material fractures [218]. 

Another reason for crack formation is the microstructure wise precipitates within 

the bulk structure caused by the repetitive heating on solidified lower layers 

under the laser beam scanning. Moreover, the convection currents cast oxides 

in the melt to different locations. These oxides are non-wetting to the base 

material and function as local cracks [217], [218].  

Specifically, the material quality used in this study is a nickel superalloy - 

CM247L. It is an alloy with good mechanical strength in high temperature 

working environments characterised by excellent mechanical strength, 

resistance to thermal creep, good surface stability, and corrosion resistance. Its 

basic structure is face-centred cubic (FCC) austenitic. The material's 

mechanical strength is enhanced by solid solution 

strengthening and precipitation strengthening. The Solid solution 

strengthening is done by adding alloys to the crystalline lattice of the base metal 

and forming a solid solution, which hinders the plastic deformation in the 

material. In the precipitation strengthening, alloying beyond the solubility limit 

makes a second phase precipitates such as gamma prime and carbides along 

grain boundaries, inhibiting grain boundary motion and thus further 



Chapter 6 Minimising Crack Formation in Selective Laser Melting operations 

 

217 

strengthening the material against yielding [220]. Additionally, the material's 

corrosion resistance is made possible using alloys such as chromium. But 

carbide formation could be harmful because microcracks are often formed 

around them under repeated local melting and solidification process in an SLM 

process, leading to stress concentrations when the material is loaded and 

causing the reduction of yield strength and fatigue strength of the alloy [221]. 
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6.3  Previous Studies in Analysing AM/SLM Process 

using ML and EMO Methodologies 

Evolutionary Multi-objective Optimisation (EMO) methodology is frequently 

applied to analyse an optimised AM process. The first group where such 

optimisation targets are called topology optimisation, where stress distributions, 

concentrations and material deformations are analysed using Finite Element 

Analysis (FEA). A surrogate model is established describing the relationship 

between the product's topology and its design objectives as stress distributions, 

stress concentrations and material deformations, etc., subject to various 

loading conditions. EMO is applied to obtain optimal topology parameters under 

the assumption that the product would ideally and optimally have the same 

performance after the material is removed [222]–[225]. The second group 

optimises machining tool paths using neural networks [226]. Using an 

evolutionary algorithm, Xiang Lu has applied Particle Swarm Optimisation 

(PSO) and tried to improve and optimise the melt-decomposition moulding 

(FDM/MDM) process by optimising its controlling parameters. Bingbing Hu 

[227] use Simulated Annealing (SA) based algorithm to optimise parameters in 

an adaptive slicing approach. In Laser Powder Bed Fusion (L-PBF/SLM), the 

parameter setting is an operation of vital importance, affecting the final 

product's performance, quality, and cost. 

Conventionally, the setting is based upon the intuition and experience of the 

operators, which usually are not the optimal choices. Several studies have been 

carried out to alleviate this problem. Byun and Lee (2006) [228] created an 

algorithm based on the weighted sum approach to determine the optimal build 

direction for many AM processes [228]. Brika et al. (2017) [229] applied a 

weighted-sum method for laser powder bed fusion to attain balanced and 

optimal manufacturing parameters by optimising the objectives for reaching the 
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best possible mechanical properties in the roughness of supporting structures 

and time cost. Padhye and Deb [230] applied an Evolutionary algorithm of Multi-

objective PSO (MOPSO) and Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) to minimise surface roughness and build time in a Selective Laser 

Sintering (SLS) process. Mezzetta et al. [231] analysed the relationship 

between static mechanical properties and heat treatment as a post-processing 

measure and established an optimal setting for SLM using EMO [231]. In this 

author's knowledge, none of the previous work targets optimising process 

parameters subject to microcracking in the field of research, possibly due to the 

complexity and high uncertainty in measuring, modelling, and analysing 

microcracking in an SLM manufacturing process. 
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6.4  Modelling the Selective Laser Melting Process 

The exact physical functional relationship governing the objective function 

and the design variables is often unknown. A surrogate model or an 

approximation model is usually developed to replace the physical functional 

relationship and mimic the behaviour of the physical model as closely as 

possible while being computationally cheap(er) to evaluate. (These are also 

called response surface models, metamodels or emulators.) The elaboration of 

surrogate models for design objective and constraint functions requires 

experiments and simulations to evaluate as a function of design variables. Such 

a model's development is based on a data-driven, bottom-up approach, where 

the functional relationship is found solely based on the input-output behaviour.  

6.4.1  Data-Driven Surrogate Model 

Several approaches can be used to develop a surrogate model. Each is 

suitable for the characteristics of data available, such as polynomial regression, 

kriging, support vector machines, space mapping, artificial neural networks and 

Bayesian networks, Fourier surrogate modelling, random forests [232] and 

radial basis function. 

This study's modelling of the Selective Laser Melting process uses data-

driven modelling - Radial Basis Function Neural Network (RBFNN) [233], [234]. 

It has been proven that the basic RBFNN formulation can be viewed as a Type-

1 Fuzzy Logic System (FLS) of either Mamdani or Takagi-Sugeno-Kang type 

(TSK) [235], [236]. This functional equivalence has been further extended in 

[237], [238] to design high-order fuzzy systems that can better deal with noisy 

signals and improve the trade-off between accuracy, model transparency, and 

model simplicity. As pointed out in [235], [236], an RBFNN can be viewed as a 

FLS whose main inference engine is interpreted as an adaptive filter [237]. It 
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resembles an additive weighted combination of the Membership Functions 

(MFs) of the fired-rule output sets in the hidden layer of the RBFNN (See Figure 

6.4). Thereby, every hidden receptive unit in the RBFNN is functionally 

equivalent to a fuzzy rule 𝑅𝑖 described by a multi-variable Gaussian MF, 

𝜇𝑅𝑖(𝑥 𝑝, 𝑦) = 𝜇𝑅𝑖[𝑥1, … , 𝑥𝑛, 𝑦] Eq. 6.2 

where the input vector 𝑥 𝑝∈ {𝑋1, 𝑋2, … , 𝑋𝑛} and the implication engine is defined 

as [239]:  

𝜇𝑅𝑖(𝑥 𝑝, 𝑦) = 𝜇𝐴𝑖→𝐺𝑖[𝑇𝑘1

𝑛 𝜇
𝐹𝑘

𝑖(𝑥𝑘) ∗ 𝜇𝐺𝑖(𝑦)] Eq. 6.3 

where * is the minimum 𝑡-norm (triangular norm) that represents the shortest 

Euclidean distance to the input vector 𝑥 𝑝. And each receptive unit is the 𝑖𝑡ℎ 

fuzzy rule: 𝑅𝑖, where 𝑖 = 1,… ,𝑀, and 𝑀 is the number of 𝑀𝐹𝑠. T-norm fuzzy 

logics are based on membership functions that take the actual unit interval [0, 

1] for the system of truth values and use functions called 𝑡 -norms for 

permissible interpretations of approximate reasoning. Therefore, the firing 

strength of each receptive unit is as follows: 

𝜇𝐴𝑖→𝐺𝑖(𝑥 𝑝, 𝑦) = ∏𝜇
𝐹𝑘

𝑖(𝑥𝑘)

𝑛

𝑘=1

= 𝑓𝑖 (𝑒𝑥𝑝 [−
∑ (𝑥𝑘 − 𝑚𝑘𝑖)

2𝑛
𝑘=1

𝜎𝑖
2 ]) Eq. 6.4 

where 𝐴𝑖 = 𝐹1
𝑖x𝐹2

𝑖x…x𝐹𝑛
𝑖, 𝐺𝑖 = 𝐺1

𝑖x𝐺2
𝑖x…x𝐺𝑛

𝑖  and 𝑚𝑘𝑖 and 𝜎𝑖 are the centre and 

width of a multi-variable Gaussian MF, respectively. 𝑛 is the number of input 

parameters or decision variables. By combining all the rules in the output layer, 

the output y𝑝 is given as: see Figure 6.4 

 

𝑦𝑝 =
∑ 𝜇𝐴𝑖→𝐺𝑖(𝑥 𝑝, 𝑦)𝜔𝑖 

𝑀
𝑖=1

∑ 𝜇𝐴𝑖→𝐺𝑖(𝑥 𝑝, 𝑦) 𝑀
𝑖=1

 Eq. 6.5 
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Figure 6.4 - Parameter identification applied to the GT2 RBFNN ((RBFNN, 
Taken from [235]). 

6.4.2  Determination of Model Parameters 

The centre 𝑚𝑘𝑖 and the width 𝜎𝑖 of the multi-variable Gaussian 𝑀𝐹𝑖 in Eq. 

6.5 must be determined using experimental or simulated data before the 

weights 𝜔𝑖 are trained in the RBF Neural Network. It is done first by grouping 

the input data or decision variable data into clusters, and from which the centre 

𝑚𝑘𝑖 and the width 𝜎𝑖 are found for the cluster 𝑖: 

 𝑖 ∈ {1, …, the number of clusters}. The number of clusters is put equal to the 

number of membership functions 𝑀 or the number of radial base functions, 

𝑓𝑖 , 𝑖 ∈ {1, … ,𝑀}. 

The data set is analysed by a cluster analysis and arranged in groups 

(clusters), where more similar data are organised in the same assembly. It can 

be achieved in many different ways with dissimilar outcomes depending on the 

definition of data similarity, such as distances between cluster members, 

density, particular statistical distributions, etc. In this study, clustering is done 

by granular computing, and their compatibility defines the data similarity.  

The surrogate model has been parametrically optimised as [233], [234]. 

https://en.wikipedia.org/wiki/Statistical_distribution
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6.5  Experimental Setup and the Process Modelling 

This section provides an overview of the CM245L data set and the 

determination of model parameters required to develop the numerical model. 

CM245 Data Set is an Additive Manufacturing Data Set. The data set in this 

study has been obtained with the help of HiETA technologies, UK. 

6.5.1  Experimental Setup 

As shown in Figure 6.5, CM245L trials involved building simultaneously a 

batch of three different Nickel superalloy builds, 30 pieces of each type, using 

Selective Laser Melting (SLM), i.e., a solid cube (sample 1), a slotted box with 

thin flaps (sample 2) and 5 millimetres (sample 3) thick flaps, respectively. 

 

 
Figure 6.5 - Three different types of products, 30 pieces each,  are 
manufactured simultaneously by SLM technology.  

As detailed in Table 6.1, the experimental setup involves four input 

parameters and two different sets of outputs. The microcracking for each 

sample was measured at each experiment, and the associated density average 

was also calculated. The edge and bulk crack length densities are used to study 

the build quality of each sample. Three objective functions are modelled in each 

output set, which describe the functional relationship valid for each build. In 

general, in metal-based additive manufacturing, some process parameters 
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such as built orientation, laser power, hatch spacing, point distance, and 

volume energy density are sensitive to environmental variations and influence 

each other, regardless of the powder bed quality. These parameters affect 

especially the fabrication quality, including residual porosity and edge density. 

Table 6.1 lists the attribute information of the SLM data set.  

Table 6.1 - Attribute information of the SLM data set 
Input/output Unit Minimum Maximum 

Laser power Watts 80 200 

Point distance µm 50 130 

Hatch offset µm 10 50 

Exposure time µs 20 80 

Bulk Crack length Density (Output) mm/mm²   

Edge Crack Length Density (Output) mm/mm²   

There are in total 28 data samples (decision variables and objective function 

values) that have been collected from the experiment. 

6.5.2  Model management 

This study aims to determine under which operational conditions defined by 

the four decision variables or the process parameters like laser power, point 

distance, hatch offset, and exposure time, the outcome in terms of the edge 

crack length density, the bulk crack length density on the three disparate 

products manufactured are at their minimum. Specifically, the study 

investigates the best combination of the process parameters at which the 

targets: the edge crack length density and the bulk crack length density on each 

of the three built are either per crack type or simultaneously optimised [240]. 

The definition of the decision variables and the objective functions are listed in 

Tables 6.2 and 6.3. 

Table 6.2 - Definition of the decision variables 
Process parameter Laser power Point distance Hatch offset Exposure time 

Decision variable 𝑥1 𝑥2 𝑥3 𝑥4 
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Table 6.3 - Definition of the objective functions  

Output 

The bulk 
crack length 

density, 
sample 1 

The bulk 
crack length 

density, 
sample 2 

The bulk 
crack length 

density, 
sample 3 

The edge 
crack length 

density, 
sample 1 

The edge 
crack length 

density, 
sample 2 

The edge 
crack length 

density, 
sample 3 

Objective 
function 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 

The decision variables and the objective functions are subject to the box 

constraints defined in Table 6.1.  

The decision variable and the values of the objective function are 

normalised prior to the modelling work so that both types of variables vary within 

the range of [0.0, 1.0]. The maximal and minimal values of decision variables 

are listed in Table 6.1, while those amounts of objective functions are obtained 

by sorting based on experimental data. The extremal data of bulk crack lengths 

and edge crack lengths are listed in Table 6.4. 

Table 6.4 - The ranges of objective function values 
Objective 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 

Maximum 1.9380 4.5950 3.9300 8.3750 7.3500 5.2850 

Minimum 0.2170 0.7740 0.3670 0.7920 0.7480 0.5820 

The uncertainty comes from the numerical simulations. The total number of 

data samples (objective function and decision variables) is 26. 70% of the total, 

i.e., 18 are randomly selected and used in model creation, while the rest are 

used in error estimation. The selection is made ten times for each surrogate 

model construction to attain statistical information. The final surrogate model of 

each objective function is based on the average one of all ten surrogate models. 

The separation of data for modelling and testing is made as a trade-off in 

balancing estimation on model variance and the number of surrogate models 

handled. An alternative is to use Leave-One Out (LOO) selection technique. 

Still, it would lead to too many surrogate models. The function values must be 

repeatedly found in the latter optimisation process since the averaged surrogate 

model is used as each objective function.  
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A surrogate model is formed using the Generalised type 2 Radial Basis 

Neural Network (GT2 RBFNN) based on 18 data samples each time. Figure 6.6 

shows the main procedure applied in creating a GT2 RBFNN model.  

 
Figure 6.6 - The main procedures of modelling - GT2 RBFNN. 

The Adaptive Gradient Descent (AGD) approach is utilised to optimise the 

parameters 𝜎𝑖
2  and 𝑚𝑖𝑘  and to determine the optimal number of fuzzy rules 

according to cross-validation results [239]. 

For each objective function, min surface, average surface and maximum 

surface models are estimated by contrasting and averaging these ten individual 

surrogate models. See the results section, Section 6.6. The average surface 

models of all the objective functions are used in the optimisation analysis. 
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6.6  The Surrogate Models 

6.6.1  Various surrogate models 

Some typical scatter plots of the model outputs in the three levels as 

functions of the laser power, the point distance, the hatch offset, and the 

exposure time are shown in Figure 6.7-Figure 6.12. 

Modelling the crack length density is a nontrivial task, as indicated in Figure 

6.7-Figure 6.12, where the predicted and the laboratory tested amounts differ 

considerably in many cases studied. 

  
(a) Scatter plot as the functions of Laser 

power and Point distance. 
(b) Scatter plot as the functions of Hatch 

offset and Exposure time. 

 
(c) Comparison between the predicted and measured quantity. 

Figure 6.7 - Modelling Bulk Crack Length Density, sample 1.  
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(a) Scatter plot as the functions of Laser 

power and Point distance. 
(b) Scatter plot as the functions of Hatch 

offset and Exposure time. 

 
(c) Comparison between the predicted and measured quantity. 

Figure 6.8 - Modelling Bulk Crack Length Density, sample 2. 

  
(a) Scatter plot as the functions of Laser 

power and Point distance. 
(b) Scatter plot as the functions of Hatch 

offset and Exposure time. 

 
(c) Comparison between the predicted and measured quantity. 

Figure 6.9 - Modelling Bulk Crack Length Density, sample 3.  
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(a) Scatter plot as the functions of Laser 

power and Point distance. 
(b) Scatter plot as the functions of Hatch 

offset and Exposure time. 

 
(c) Comparison between the predicted and measured quantity. 

Figure 6.10 - Modelling Edge Crack Length Density, sample 1.  

 

  
(a) Scatter plot as the functions of Laser 

power and Point distance. 
(b) Scatter plot as the functions of Hatch 

offset and Exposure time. 

 
(c) Comparison between the predicted and measured quantity. 

Figure 6.11 - Modelling Edge Crack Length Density, sample 2.  
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(a) Scatter plot as the functions of Laser 

power and Point distance. 
(b) Scatter plot as the functions of Hatch 

offset and Exposure time. 

 
(c) Comparison between the predicted and measured quantity. 

Figure 6.12 - Modelling Edge Crack Length Density, sample 3.  

The figures reveal in a general manner that the minimised crack density 

varies over the ranges of process variables, which is indicated by the cavities 

in the figures. Interestingly, there are seemingly two such cavities for the edge 

crack length density. See Figure 6.12. It is verified in the optimisation analysis 

using metaheuristic methods shown in the latter sections. 

6.6.2  The error estimates of surrogate models 

The modelling errors of the surrogate models are measured using the 

frequently used error metrics: the root mean square error ( 𝑅𝑀𝑆𝐸) , the 

maximum absolute error (MaxAE) and the coefficient of determination (𝑅2). 

𝑅𝑀𝑆𝐸 provides a global error estimation, while MaxAE is a local error metric 

that measures the maximum approximation error of the surrogate model. 𝑅2 

indicates a quantity for variance present in the experimental data [28]. 

Root Mean square error is defined as: 
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𝑅𝑀𝑆𝐸 = √
1

𝑁𝑡𝑒𝑠𝑡
∑ (𝑦𝑖(𝒙𝑖) − �̂�𝑖(𝒙𝑖))2

𝑁𝑡𝑒𝑠𝑡

𝑖=1
 Eq. 6.6 

where 𝑦𝑖(𝑥𝑖)  is the actual response, �̂�𝑖(𝑥𝑖) is the prediction for 𝑦𝑖(𝑥𝑖) 

obtained with the constructed surrogate models. 𝑁𝑡𝑒𝑠𝑡 is the number of collected  

samples. 

The maximum absolute error is expressed as: 

MaxAE = 𝑚𝑎𝑥|𝑦𝑖(𝒙𝑖) − �̂�𝑖(𝒙𝑖)|,     𝑖 = 1,… ,  𝑁𝑡𝑒𝑠𝑡  Eq. 6.7 

The coefficient of determination  

𝑅2 = 1 −
∑ (𝑦𝑖(𝒙𝑖) − �̂�𝑖(𝒙𝑖))

2𝑁𝑡𝑒𝑠𝑡
𝑖=1

∑ (𝑦𝑖(𝒙𝑖) − �̅�𝑖(𝒙𝑖))2
𝑁𝑡𝑒𝑠𝑡

𝑖=1

 Eq. 6.8 

where �̅�𝑖(𝑥𝑖)  is the mean of the actual responses and 𝑁𝑡𝑒𝑠𝑡  is the total 

number of verification samples. When this metric is used as an indicator of the 

goodness-of-fit of a surrogate model, its values are distributed in the interval [0, 

1]. In general, R2 < 0.5 suggests that the relation between the predicted and 

actual values is weak; 0.5 < R2 < 0.8 indicates that substantial error variation 

exists in the surrogate, possibly due to a large measurement spread [28]. The 

error metric values of various objective functions are listed in Table 6.5. 

Table 6.5 The error metric values for the various surrogates  
metric 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 

𝑅𝑀𝑆𝐸 0.0809 0.4661 0.1169 0.1643 0.2566 0.1519 

MaxAE 0.2609 1.0597 0.2857 0.4154 0.4953 0.2892 

𝑅2 0.9746 0.7957 0.9779 0.9934 0.9739 0.9837 

As shown in Table 6.5, 𝑅𝑀𝑆𝐸 metric varies between about 15% to 25% of 

a maximum of around 1.0 for the objectives, while MaxAE  value shows 

individual spikes of 29% to 100%, especially uncertain test data are obtained 

with the bulk crack length density of the built 2, where 𝑅𝑀𝑆𝐸 is as high as 

0.4661, and MaxAE value exceeds 100% while 𝑅2 turns out to be less than 0.8, 

indicating large errors in the data. High 𝑅2 metric values have been obtained 

for all the other objective functions, which indicates a strong relationship 
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between the predictions and the observations, i.e., satisfactory quality 

surrogates are created. 
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6.7  Optimisation Analysis and the Results 

6.7.1  The Chosen MaOP Methodology and Parameter Settings 

Three commonly used but dissimilar MaOP algorithms, NSGA III [2], GrEA 

[79] and IBEA [61], are adopted in this analysis section to examine the final 

approximated PF. It is done to strengthen the reliability of the analysis since no 

guarantee can be given for correct answers when using evolutionary algorithms 

since the methodologies are heuristic and stochastic. And no free lunch 

theorem tells us that no single algorithm is superior to others for all situations. 

The adopted algorithms are acquired from PlatEMO [187]. These algorithms 

utilise disparate solution principles. NSGA III is a reference-point and 

nondominated sorting based genetic algorithm for MaOP. GrEA adopts grids 

drawn in high dimensional objective space to strengthen the selection pressure 

towards optimality while maintaining an extensive and uniform distribution 

among solutions. IBEA may adopt several binary performance indicators to 

select offspring as parents for the next round of iteration. The above three 

dissimilar algorithms are chosen for comparing and contrasting the efficacy of 

the three disparate methods in solving the specific optimisation problem. The 

newly proposed methods described in Chapters 3, 4 and 5 are utilised in the 

comparisons. 

All the results shown in this section are obtained using MATLAB 2018a. The 

number of candidate solutions adopted in the analysis is listed in Table 6.5. The 

parameters applied in the three algorithms are based on default values 

acquired from PlatEMO version 2.7 [187].  

Table 6.5 - Number of solutions generated 

Number of 
objectives 

Number of solutions for 
algorithms 

Max. number of iterations used 
to generate authentic Pareto 

Front 

3 210 300,000 

6 210 3,000,000 
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The three objective optimisation analyses cover the cases where the three 

bulk crack density objectives and the three edge crack density objectives are 

studied separately, while the optimisation case with 6 objectives investigates 

the optimal operating conditions when all the six objective functions are 

optimised simultaneously.  

The B-norm based Pareto Front tracing method (Bn-PFt) discussed in 

Chapter 3 has been implemented into NSGA III to enhance the diversity of the 

final PF. The performance indicator IRNA described in Chapter 4 has been 

utilised to assess the quality of the PFs obtained using the three MaOP 

algorithms. Further, the newly proposed high dimensional visualisation method 

ProD covered in Chapter 5 is applied to visualise the high dimensional PF data 

in the objective and decision spaces. 

6.7.2  The Cases Studied 

The analysis on three SLM manufactured products of different designs have 

been performed. The crack length densities at both the bulk and edges regions 

are measured and modelled, i.e., six objective functions in total are obtained. 

MOP and MaOP are performed on diverse combinations of the objective 

functions, resulting in the cases analysed as listed in Table 6.6. 

Table 6.6 - The cases analysed by MOP/MaOP 
Objective function Sample MOP analysis MaOP analysis 

The bulk crack length 
densities, 𝑓1   

 
1 MOP- Bulk crack analysis 

(MOP-EC), dimension: 3 
objectives (𝑓1, 𝑓2, 𝑓3)  x 4 

decision variables: 
𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4 

MaOP-BEC: Combined 
Bulk crack and edge 

crack analysis. 
Dimension: 6 

objectives (𝑓1, 𝑓2, … , 𝑓6) 
x 4 decision variables: 

Laser power, Point 
distance, Hatch offset 
and Exposure time. 

(𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4) 

The bulk crack length 
densities, 𝑓2 

2 

The bulk crack length 
densities, 𝑓3 

3 

The edge crack 
length densities, 𝑓4 1 

MOP- edge cracks 
analysis (MOP-BC), 

dimension: 3 objectives 
(𝑓4, 𝑓5, 𝑓6)   x 4 decision 
variables: Laser power, 
Point distance, Hatch 

offset and Exposure time 
(𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4) 

The edge crack 
length densities, 𝑓5 2 

The edge crack 
length densities, 𝑓6 3 



Chapter 6 Minimising Crack Formation in Selective Laser Melting operations 

 

235 

6.7.3  The Analysis Results 

The presentation of the results of optimisation analysis is divided into three 

major parts, MOP-Bulk Crack Length analysis (MOP-BC), MOP-Edge Crack 

Length analysis (MOP-EC), and Bulk Crack and Edge Crack Length combined 

analysis (MaOP-BEC). See Table 6.3 for details. 

MOP-Bulk Crack Length Analysis (MOP-BC) 

 

 
 

(a) The convergence process, NSGA III (b) The final PF approximation, NSGA III 

 

 

(c) The convergence process, IBEA. (d) The final PF approximation, IBEA. 

  
(e) The convergence process, GrEA (f) The final PF approximation, GrEA 

Figure 6.13 - The iteration process and the final PF approximation of MOP-
BC, based on NSGA III ((a) and (b)), IBEA ((c) and (d)) and GrEA ((e) and (f)). 
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Figure 6.13 shows the iteration process (visualised in different colours) of 

optimising the three objective functions of Bulk Crack Length Density for the 

three different SLM built, using the three different evolutionary algorithms, 

NSGA III, IBEA, GrEA, where a convergence process is revealed. The other 

two algorithms, IBEA and GrEA, give much faster convergence than NSGA III 

so that the convergence process is less easily seen (see Figure 6.13(c) and 

(e), no data points in red emerged). What is remarkable in all cases is that the 

final PF converges to a single point. It means that the objective functions 

(𝑓1, 𝑓2, 𝑓3) of Bulk Crack Length density of the three different products are not 

conflicting, and the optimised solution of the three functions is reached 

simultaneously. The final Pareto Front consists of one single value. See Figure 

6.13(b), (d) and (f). Please note that there are around 210 non-dominated 

solutions in the decision space. See Section 6.7.4.1 for details. The indicator 

value Inverted Ratio of Net Avertence angle (IRNA) covered in Chapter 4 

becomes 1.0 since only one data point of PF approximation exists. 

1) Pareto front in ProD 

As displayed in Figure 6.14, the final PF in ProD also shows the 

convergence to a single point. But the Pareto optimal solution set is spread to 

a larger area in decision space. 

2) Decision Variables in ProD 

   
NSGA III IBEA GrEA 

Figure 6.14 - The convergence process of multi-objective optimisation of Bulk 
Crack Length Densities of the three manufactured products is shown in  ProD. 
NSGA III, IBEA and GrEA are used in the analysis. 
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The corresponding Pareto optimal solution set can also be rearranged in 

amounts of 𝑟⊥  and 𝑟∥  as similarly as it is done with objective functions in 

Chapter 5 and visualised in ProD: 

𝑟∥ = 𝒙𝑖 ∗  
𝑹𝑭

|𝑹𝑭|
 Eq. 6.9 

in which 𝒙𝑖 is the Pareto optimal solution number 𝑖 and 𝑖 = 1, 2, … ,𝑁, and 𝑁 is 

the number of data in the Pareto optimal set. 𝑹𝑭 is the reference vector which 

is defined as: 

𝑹𝑭 = 𝒙𝑛𝑜𝑚,𝑚𝑎𝑥 − 𝒙𝑛𝑜𝑚,𝑚𝑖𝑛 Eq. 6.10 

where 𝒙𝑛𝑜𝑚,𝑚𝑎𝑥  is the nominal maximum decision vector, a fictive vector 

consisting of the maximal components of all data in the Pareto optimal set and 

𝒙𝑛𝑜𝑚,𝑚𝑖𝑛  is a similar fictive vector, the nominal minimum decision vector, 

comprising the minimal components of the whole Pareto optimal set, 

respectively. The distance of a solution to the reference vector is expressed as: 

𝑟⊥ = |𝒙𝑖| ∙ 𝑠𝑖𝑛 (𝑐𝑜𝑠−1 (
𝒙𝑖 ∗ 𝑹𝑭

|𝒙𝑖| ∗ |𝑹𝑭|
)) Eq. 6.11 

The ProD visualising the decision variables is displayed in Figure 6.15. As 

can be seen, although the optimised PF solution is a single point, its 

corresponding decision variable values spread to a larger area, which is 

illustrated in blue colour. It means that many different combinations of the 

decision variable values can lead to the minimised Bulk Crack Length Density. 

The Pareto optimal solutions found using the three disparate algorithms are the 

same in the objective space. Suppose only the range of Pareto optimal 

solutions in decision space is considered. In that case, the algorithm that gives 

the broadest range of Pareto optimal set in the decision space is the best one, 

which shows a broader range of solutions. As shown in Fig. 6.15, IBEA provides 

more optimal solutions because they cover a larger area in the decision space. 
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 A conclusion is made that it is relatively easy to obtain the optimised decision 

variable values for attaining Bulk Crack Length Density optimality, and the 

solution becomes stable and robust. The experimental data from the laboratory 

have confirmed the conclusion. 

   
NSGA III IBEA GrEA 

Figure 6.15 - The optimised decision variables are shown in Prod from the 
approximations using NSGA III, IBEA and GrEA for the MOP-BC case. 

 

MOP-Edge Crack Length Density Analysis (MOP-EC) 

1) Check on the effect of using the Bn-PFt method in diversity enhancement 

The Bn-PFt method proposed in Chapter 3 is utilised to enhance the 

diversity of PF approximations found in NSGA III, a reference point based 

algorithm. Fig. 6.16 shows the PF approximation sets found by NSGA III with 

and without using the Bn-PFt method. 

  

（a）NSGA III without Bn-PFt  

HV=0.9421 

（b）NSGA III with Bn-PFt  

HV=0.9437 

Figure 6.16 - The diversity of PF approximation sets found by NSGA III 
with/without Bn-PFt method implemented evaluated with HV metric. 

As shown in Fig. 6.16, the PF approximation set with Bn-PFt implemented 

has a somewhat more uniform distribution based on visual observations. 
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Measured in hypervolume metric, the PF approximation set with Bn-PFt 

implemented is slightly better than its counterpart. 

2) Pareto Front Approximation 

The outcome of MOP analysis of the three edge crack length objectives from 

each of the three products is displayed in Figure 6.17. The result shows clearly 

the convergence process and a final PF that indicates the three objective 

functions are conflicting. 

Each of all three algorithms reveals a PF in two clusters. Hence, a 

discontinuous PF is formed. NSGA III has shown a slower convergence speed 

because the approximations after 9670 iterations are far from the final PF (the 

brown dots in Fig. 6.17) compared with IBEA and GrEA. But NSGA III provides 

an approximation result with the best diversity, where the candidate solutions 

are spread more evenly over the entire PF. It is hard to judge which solution 

  

 

 
(a) The convergence 

process of NSGA III in a 
scatter plot. 

(b) The convergence 
process of IBEA is 
displayed in ProD. 

 (e) The convergence 
process of GrEA in a 

scatter plot. 

  

 

 
(b) The convergence 

process of NSGA III is 
displayed in ProD. 

(d) The convergence 
process of IBEA is 
displayed in ProD. 

 (f) The convergence 
process of GrEA is 
displayed in ProD. 

Figure 6.17 -   The iteration process and the final PF approximation of MOP-
EC are displayed based on NSGA III, IBEA and GrEA. 



6.7  Optimisation Analysis and the Results 

240 

diversity is better between IBEA and GrEA, but it can be done utilising IRNA 

and HV. See Table 6.7. 

 

3) The Diversity Measurement  

The diversity of PF approximations from the three MaOP algorithms is 

measured by the diversity indicator IRNA and HV. The result is listed in Table 

6.7. 

Table 6.7 - The IRNA scores on the PF approximations of NSGA III, IBEA 
and GrEA (MOP-EC) 

Analysis case Algorithm IRNA HV 

The Edge Crack 
Length (MOP-EC) 

optimisation 

NSGAIII 0.8290 0.9421 

IBEA 0.1929 0.9238 

GrEA 0.1841 0.9568 

As revealed in Table 6.7, the approximation set attained in diversity using 

NSGA III is far superior to the other two algorithms in diversity in IRNA values. 

At the same time, HV favours too much the extremal solutions and provides the 

metric values that rank the PF of GrEA as the best algorithm delivering the PF 

in the best diversity. This conclusion is not in line with the visual observations. 

Hence, the results obtained by adopting NSGA III are studied in more detail. 

Figure 6.18 shows the final converged PF from NSGA III calculation, consisting 

of two clusters. A larger one at the higher 𝑓1 and the lower 𝑓2 function ranges 

(𝑓1 is the test piece no. 1, a solid cube and 𝑓2 is the test piece no. 2, a slotted 

box with thin flaps of 2 mm thickness), and a smaller one at a higher 𝑓2 function 

values and lower 𝑓1  and 𝑓3  function values (𝑓3  is the objective function of 

sample 3 - thick flaps in 5 millimetres thickness). It is also reflected on the ProD 

figure, see Figure 6.18 (b). 
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(a) The final PF approximation  (b) The corresponding PF in ProD 

Figure 6.18 - The final PF displayed in NSGA III 

4) The results for decision variables 

Figure 6.19 reveals the pairwise scatter plots of the decision variables at 

optimality. Two small regions of the optimised solutions in decision variables 

are evident. The same conclusion can be made when observing the results of 

decision variables in ProD, see Figure 6.19. Two small regions also emerge, 

representing the optimised operational conditions of the process parameters. It 

coincides with what is observed in the scatter plots of the objective functions 

shown in Figure 6.12 for objective 3, in which two pits appear in the landscape 

of the function and the scatter plots in Figure 6.18. It is interesting to note the 

narrow regions of optimal solutions.  

 

  
(a) Laser power and point distance at the 

optimum. 
   (b) Hatch offset and exposure time at 

the optimum. 

Figure 6.19 – The scatter plots showing the values of process 
parameters/decision variables at the optimum after 10,0170 iterations. 
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Figure 6.20 shows the contraction of the areas representing the optimised 

conditions for decision variables as the iteration number increases. It reveals 

that the area is conjoint in the early stages of the approximations. It contracts 

further as the number of iterations increases, and then the solution separates, 

and the previously joined area is split into two distinct regions, see Figure 

6.20(a). The two regions further contract as the number of iterations go up. See 

Figure 6.20(b). All three applied algorithms lead to the same conclusion. The 

good news is that the location of the contracting area of optimality in decision 

space is in the same area, not spreading out to a large part of decision space, 

indicating qualitatively better robustness of the solution, i.e., the reduction in 

optimality is limited when deviations occur on the decision variables. 

   
(a)  NSGA III (c)  IBEA (e)  GrEA 

   
(b)  NSGA III (d)  IBEA (f)  GrEA 

Figure 6.20 - The contraction of the area of optimality in decision space as 

convergence progresses. Figure 6.19 (a),(c),(e) show the contraction of the 

area of optimality in decision space as the convergence undergoes. Figures 

(b),(d),(f) show the area of optimality in decision space after 100170 iterations. 
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Bulk Crack and Edge Crack Length Density in the combined 

analysis (MaOP-BEC) 

We now combine the six objective functions and optimise them 

simultaneously. These are Bulk Crack Length density (𝑓1, 𝑓2, 𝑓3) and Edge Crack 

Length density (𝑓4, 𝑓5, 𝑓6) valid for the three products constructed, respectively, 

forming a total of six objectives to be optimised subject to the four decision 

variables: the laser power (𝑥1), the point distance (𝑥2),  the hatch offset (𝑥3),  

and the exposure time (𝑥4). 

1) Pareto front approximation and corresponding decision space solutions 

No significant change in convergence or diversity of the approximations is 

observed from an iteration number of 270,000 to 2,700,000, indicating the 

convergence process is completed, see Figure 6.21, where small changes take 

place from the yellow to purple dots. 

   
(a)  NSGA III (c)  IBEA (e)  GrEA 

   
(b)  NSGA III (d)  IBEA (f)  GrEA 

Figure 6.21 - The convergence process of 6 objective MaOP-BEC, where 

objectives of bulk crack length and edge crack length are combined. Figure 

(a),(c),(e)  show the convergence process of MaOP-BEC. Figure (b),(d),(f)  

show the decision variables in ProD. 
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The Pareto optimal set from NSGA III is more densely populated and 

concentrated in a small area than the case of the other two algorithms. See 

Figure 6.21(b), (d) and (f). Hence, it is proposed to choose a set of decision 

variables originating from the central and most densely populated areas in ProD 

of decision variables if the optimised operating conditions are to be found. The 

reasoning for this choice is that the values of the decision variables are still 

inside the areas of near-optimal and is more stable subject to eventual 

uncertainty that would occur on these decision variables. 

2) Diversity Assessment  

The diversities of PF approximations are measured by the IRNA and HV 

indicators. See Table 6.8. 

Table 6.8 - The IRNA and HV scores on the PF approximations of NSGA III, 
IBEA and GrEA (MOP-BEC) 

Analysis case Algorithm IRNA HV 

The Edge Crack 
Length (MaOP-BEC) 

optimisation (6 
objective functions.) 

NSGAIII 0.1765 0.9307 

IBEA 0.0733 0.9186 

GrEA 
0.0669 0.8941 

As shown in Table 6.8, the PF approximation set of NSGA III has the best 

diversity in IRNA and HV. Still, the IRNA value is more distinct than the HV 

metric quantity in judging the diversity property. Therefore further analysis of 

the optimisation problem is based on the results from NSGA III. 

6.7.4  The Choice of Optimised Decision Variables 

It is nontrivial to give the optimised value ranges of the decision variables, 

especially for high dimensional cases. In the current study, the number of 

decision variables is four, and the optimised combination of the decision 

variables is difficult to be displayed in a scatter plot. One mitigation could be 

that the optimised decision variable sets are plotted in Parallel Coordinates. 

The range of each decision variable and its combinations can be revealed. 
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The Bulk Crack Length Optimisation Case (MOP-BC) 

Figure 6.22 shows the optimised process parameters when the objective 

functions of the Bulk Crack Length of the three products are optimised. As can 

be seen, the upper limit of the range of laser power is somewhat uncertain. 

More candidate solutions are needed in this area before a firm conclusion can 

be made. 

 
Figure 6.22 - The decision variables displayed in Parallel Coordinates show 
their ranges of optimised values, MOP-BC case based on NSGA III results. 

Table 6.9 - The range of optimised process parameters, MOP-BC 
 

Laser power Point Distance Hatch offset Exposure Time 

max 122 118.4 50 80 

min 80 97.2 38.3 67.1 

The Edge Crack Length Optimisation Case (MOP-EC) 

The optimised process parameters in the MOP-EC case consist of two 

ranges except for the range of Hatch Offset, which emerges as one range. See 

Figure 6.23. 
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Figure 6.23 - The decision variables displayed in Parallel Coordinates show 

their ranges of optimised values, MOP-EC case based on NSGA III results. 

The areas in blue and red colours: Pareto optimal solutions corresponding to 

the larger and the smaller clusters of PF, respectively.  

The figure also reveals that the combinations of values of process 

parameters are essential to ensure the trade-off optimality of the objective 

functions. The two ranges of Pareto optimal solution, indicated by the red and 

blue colours, corresponding to the larger and the smaller clusters of PF, 

respectively, are listed in Table 6.10 and Table 6.11. As a verification, the mid-

level process parameter values of range 1 (blue line in Figure 6.24) are chosen. 

The values of the corresponding objective functions are found and plotted in 

the PF. It shows that the candidate solution is located on the PF (the red spot 

shown in Figure 6.24(b)). 

Table 6.10 - The range of optimised process parameters, MOP-EC,  

Redline Laser power Point Distance Hatch offset Exposure Time 

max 116.9 107.8 38.9 77.2 

min 114.5 105.7 38.4 74.3 
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Table 6.11 - The range of optimised process parameters, MOP-BC 

Blueline Laser power Point Distance Hatch offset Exposure Time 

max 143.5 122.8 38.9 20.03 

min 136 117.8 36.6 20 

 

  
(a) The mid-level process parameters in the 

first range are chosen. 
(b) The red spot represents the 

constructed solution 

Figure 6.24 - The decision variables displayed in Parallel Coordinates show 

their ranges of optimised values, MOP-EC case. 

The Bulk and the Edge Crack Length Optimisation Case (MaOP-

BEC) 

Figure 6.25 shows the process parameters of the combined Bulk and Edge 

Crack Length optimisation case. 

As can be observed, the upper limit of the laser power range is somewhat 

uncertain. More solutions on the optimised objective functions are needed, and 

also the related decision variables. The ranges of process parameters are listed 

in Table 6.12.  
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Figure 6.25 - The decision variables displayed in Parallel Coordinates show 

their ranges of optimised values, MaOP-BEC case. 

Table 6.12 - The range of optimised process parameters, MaOP-BEC 
 

Laser power Point Distance Hatch offset Exposure Time 

max 136.8 112.3 48.4 78.2 

min 99.7 88.7 34.1 66.3 
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6.8  Validation Tests and Veracity of the MOP Analysis 

New tests are conducted to examine the variances in the edge crack length 

density measurements. Validation tests have been performed using the same 

experimental layout as previously but achieved in a separate round. Two 

additional test groups have been conducted. One test set resulting in 6 data 

samples is executed employing the same process parameters as some of those 

chosen previously to identify the amount of the deviations in the results. It is 

done because the crack formation mechanism is highly complicated, especially 

on the edges of objects where large temperature gradients occur and the cyclic 

thermal stresses reach their maximum. The outcomes of the experiments are 

thus complicated to be modelled with high certainty. The other set of tests, also 

providing 6 data samples, are carried out to verify the efficacy of the MOP 

analysis. These tests are accomplished using optimised machine settings 

identified using the PF solutions of the MOP analysis in the decision space 

(parameter space). Despite the significant variances in the test data, the MOP 

analysis may still help the decision-makers choose optimised machine settings 

(process parameters).  

6.8.1  Results of Duplicated Tests for Edge Crack Length 

Density 

Six new data samples of edge crack length density are obtained using the 

same machine settings as those of the corresponding previous tests. The 

chosen machine settings are listed in Table 6.13, and the corresponding 

measured objective function values (the edge crack length densities) are shown 

in Table 6.14. 
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Table 6.13 - The chosen machine settings (decision 
variables) for tests of edge crack length density 

Sample ID 
Laser Power, 

𝑥1 
Point Distance, 

𝑥2 
Hatch Offset, 

𝑥3 
Exposure Time, 

𝑥4 

30 110 70 40 35 

37 170 110 20 65 

42 80 90 30 50 

44 140 50 30 50 

46 140 90 10 50 

50 140 90 30 50 

 

 

Table 6.14 - Comparisons of edge crack lengths from the previous and 
duplicated experiment tests 

 

Measured Border Length Density (mm/mm²) 
(Data set 1) Difference between the 

two experiment  
Previous Test Duplicated Test 

Sample 
ID 

Objective No. Objective No. Objective No. 

1 2 3 1 2 3 1 2 3 

50 1.332 1.37 1.719 0.646 1.328 1.214 0.686 0.042 0.505 

37 4.502 3.737 3.782 1.524 2.899 3.018 2.978 0.838 0.764 

44 1.469 1.675 1.636 0.729 1.114 1.515 0.740 0.561 0.121 

42 2.322 3.927 2.519 1.443 2.45 1.894 0.879 1.477 0.625 

46 1.702 1.949 1.542 0.422 0.778 0.752 1.280 1.171 0.790 

30 3.181 2.416 1.598 2.216 2.78 2.653 0.965 0.364 1.055 

 

As can be observed from Table 6.11, large deviations in the edge crack 

length density data between the two rounds of tests exist, confirming the 

complexity of the problem studied. It is visually displayed in Fig. 6.25.  
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Fig. 6.25 Comparisons between the original test data (blue dots) and the 
validation data (red dots), where the comparable data points are linked with 
straight lines. 

Interestingly, the duplicated test of No. 46 gives extremely low edge crack 

length densities (marked in yellow). 

Table 6.15 lists a set of six machine parameter settings selected based on 

the Pareto optimal solutions from the MOP analysis, which are collected based 

on six chosen points on the approximated PF and the corresponding Pareto 

optimal solutions in the decision space are identified. A comparison between 

the experimentally achieved and the predicted edge crack length densities are 

shown in Table 6.16. 

Table 6.15 - Data of decision variables chosen based on the 
suggestion from MOP analysis 

Sample ID Laser Power Point Distance Hatch Offset Exposure Time 

108 135.8 117 36 20 

109 122.7 93 35 70 

110 118.3 106 39 70 

111 127.9 113 35 20 

112 152.9 106 14 20 

113 116.5 107 39 80 
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Table 6.16 - Comparisons of data between the predicted and the 
experiment results 

 Predicted border crack 
length (mm/mm²) 

Measured border 
length (mm/mm²) 

Difference between 
the two experiments 

Sample 
ID 

Objective No. Objective No. Objective No. 

1 2 3 1 2 3 1 2 3 

108 0.232 0.774 0.371 1.251 2.234 1.242 1.019 1.46 0.871 

109 0.218 0.841 0.659 2.182 3.071 2.913 1.964 2.23 2.254 

110 0.218 1.044 0.405 1.77 2.58 3.398 1.552 1.536 2.993 

111 0.249 0.781 0.367 0.438 0.719 0.906 0.189 0.062 0.539 

112 0.217 0.802 1.185 0.58 0.848 0.781 0.363 0.046 0.404 

113 0.219 1.137 0.371 0.814 1.93 1.488 0.595 0.793 1.117 

Extreme variations in the experimental data and large deviations exist 

between the predicted values and the experimental data. Remarkably, the test 

sets of No. 111 and 112  provide the results (marked in yellow) that surpass all 

other values on the three manufactured objects. It is verified by applying a non-

dominated sorting operation on these data, and most of the solutions are 

inferior to the two data sets.  

6.8.2  The error estimates of surrogate models using the 

validation data 

The modelling errors are analysed using the validation data and expressed 

in error metrics: the root mean square error (𝑅𝑀𝑆𝐸), the maximum absolute 

error (MaxAE) and the coefficient of determination (𝑅2), which are formulated 

in Eqs. 6.6 – 6.8. The results are listed in Table 6.16. 

Table 6.17 The error metric values for the various surrogates based on the 
validation data 

Error metric 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 

𝑅𝑀𝑆𝐸 0.5060 1.0251 0.9941 1.2065 1.1829 1.0991 

MaxAE 1.1241 1.9416 1.8083 1.3533 2.2131 2.5573 

𝑅2 -1.4191 -0.2238 -1.4997 -2.6981 -0.9244 -0.4824 

As the error metric values reveal, extreme variations exist in the validation 

data. 𝑅𝑀𝑆𝐸 values show more than 100% deviation, while MaxAE quantities 
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display values from more than 100% to more than 250%. The worst of all, the 

𝑅2 results turn to be negative for all objectives. All these imply no functional 

relationship between these data and the surrogate models. A conclusion is thus 

made that it is not viable to compare the test results from disparate rounds of 

the experiment. And there might be other governing process parameters that 

are not fully understood and influence the SLM operations. 
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6.9  Discussions 

As discussed in Section 6.6, the surrogate models created based on the 

primary experimental data work satisfactorily, although considerable 

uncertainty exists. But the validation test reveals that the existing surrogate 

models cannot describe the new results accurately. See section 6.8. Data from 

different trials of experiments are inconsistent, and the experiment is difficult to 

be repeated. Other factors may influence the outcome, such as ambient 

temperature, humidity, under what testing instants the data are gathered, 

uncertainty in the measurements, raw material quality variations, etc. Further 

studies should be conducted to identify these unknown conditions by 

conducting various test runs under the same experimental setting. The 

optimisation analysis on the SLM process is still practical when the outcome 

guides the parameter selection online within the same experimental setting and 

operation. 

The optimisation analysis should be conducted multiple times to assess the 

uncertainties related to the optimisation operation since the methodologies 

adopted are stochastic. This could be done in future work so that the 

conclusions of this thesis can be confirmed further. On the other hand, the 

uncertainty in the actual process may be too large for conclusive analysis on 

the performance of the optimisation; one can therefore look into estimating and 

using uncertainty to enhance the optimisation performance. Moreover, the lack 

of sufficiently large experimental data makes developing better surrogate 

models difficult. More experimental testing should therefore be needed in the 

future. Further, the surrogate model management should be enhanced using 

techniques discussed in Section 2.2.2.5. 

The surrogate model may result in non-optimal operational conditions 

without considering the prediction uncertainty. Hence, a necessary analytical 
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step is quantifying the combined effect of uncertainties in the design variables, 

model parameters, and surrogate models on optimality. The uncertainties in the 

surrogate model could be handled by the optimization process using robust 

optimization (RO) methods, where the Pareto optimal solutions are obtained 

that are both optimal and relatively insensitive to input, parametric and model 

uncertainties [29]. This is  beyond the scope of the thesis, hence not addressed.  

Two types of RO methods are available: deterministic approaches and 

probabilistic approaches. In deterministic approaches, the robustness of the 

optimality is analysed by inserting the prescribed non-statistical variation 

ranges of various variables and gradient information into the original 

optimization problem. The analysis is done based on extreme variations of all 

variables, which might be improper when finding the true robust optimality. In 

probabilistic approaches, RO is performed based on optimisations such as the 

expectations and the variances of the original objective functions expressed 

utilising the probability distributions of the variations of the decision variables, 

process parameters and variance of the surrogate model itself. The main 

procedure of a representative probabilistic approach is discussed as follows. 

1) The optimisation problem formulation: 

 

𝑀𝑖𝑛 𝑭(𝑿) = {𝜇𝑖(𝑓𝑖(𝑿, 𝑽)) + 𝑐𝜎𝑖(𝑓𝑖(𝑿, 𝑽))},   𝑖 = 1,2, … ,𝑚 

Subject to 𝐺𝑗(𝑿, 𝑽) = 𝜇𝑗 (𝑔𝑗(𝑿, 𝑽)) + 𝑐𝜎𝑗 (𝑔𝑗(𝑿, 𝑽)) ≤ 0, 

 𝑗 = 1,2, … , 𝑗    𝒙 ∈ (𝛺, 𝛵, 𝛲) ⊂ 𝑅𝑛 

Eq. 6.12 

 

where 𝑭(𝒙) is the objective function vector; 𝑿 is the stochastic decision variable 

vector (plus eventual stochastic model parameter vector which can be treated 

similarly as it is done with the stochastic decision variables, if it needs to be 

taken into consideration); 𝑽 represents the uncertainty of the MF surrogate 
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model itself; 𝜇𝑖(𝑓𝑖(𝑿, 𝑽)) is the expectation and 𝜎𝑖(𝑓𝑖(𝑿, 𝑽)) is the deviation of 

the objective function 𝑖, respectively; the parameter 𝑐 is a customer chosen 

constant that relates to the significance level of the analysis (for instance, 𝑐 = 3 

corresponds to a significance level of 0.9987); (𝛺, 𝛵, 𝛲) is the probability space, 

described with such as expected value, deviation and probability density, etc.; 

𝜇𝑗 (𝑔𝑗(𝑿, 𝑽))  is the expectation and 𝜎𝑗 (𝑔𝑗(𝑿, 𝑽))  is the deviation of 𝑗𝑡ℎ 

constraint, respectively;  𝑘,𝑚, 𝑛 𝑎𝑛𝑑 𝐽 are the number of model parameters, 

objective functions, decision variables and constraints, respectively. 

2) Random analysis of the design variables: 

𝑋𝑖 is expressed as:  

𝑋𝑖 = 𝑥𝑖 + 𝑊𝑖 ,  𝑖 = 1, 2, … , 𝑛 Eq. 6.13 

where 𝑥𝑖 is the deterministic part of 𝑋𝑖 and 𝑊𝑖 is the stochastic part. It assumes 

the stochastic independence of the decision variables and 𝑊  is normally 

distributed 𝑁(0, 𝜎𝑥𝑖
), which means: 

𝐸(𝑊𝑖) = 0, 𝑉𝑎𝑟(𝑊𝑖) = 𝜎𝑥𝑖
, and 𝐶𝑜𝑣(𝑊𝑖, 𝑊𝑗) = 0, for 𝑗 ≠ 𝑖 Eq. 6.14 

𝑋𝑖 follows a multivariate normal distribution 𝑁(𝑥𝑖, 𝜎𝑥𝑖
).  

Based on the three-sigma quality principle, 

𝜎𝑥𝑖
=

𝑥�̅� + ∆𝑥𝑖 − (𝑥�̅� − ∆𝑥𝑖)

6
=

∆𝑥𝑖

3
 Eq. 6.15 

in which ∆𝑥𝑖  is the tolerance of decision variable 𝑋𝑖 , which is determined 

experimentally. 

3) Random analysis of the uncertainty process parameters 

The randomness of process parameters such as the physical and mechanical 

properties of materials is described by the parameters’ probability density 

functions, based on which a simulated sample of the corresponding random 
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process parameter can be estimated. The randomness of process parameters 

can be treated similarly to the random decision variables. 

4) Generation a random decision variable 

The random values of a decision variable 𝑥𝑖  can be found by the acceptance-

rejection sampling method; randomly chosen two numbers 𝑟𝑖1 and 𝑟𝑖2 from a 

uniform distribution on the interval [0, 1]: 

𝑥𝑖 = 𝑟𝑖1(𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛) + 𝑥𝑖,𝑚𝑖𝑛 Eq. 6.16 

If 𝑟𝑖2 ≤
𝑝(𝑥𝑖)

𝑝𝑥𝑖,𝑚𝑎𝑥
, then 𝑥𝑖 is accepted as the chosen random decision variable. If 

not, reselect 𝑟𝑖1 and 𝑟𝑖2, and repeat the random selection of 𝑟𝑖1 and 𝑟𝑖2.  

5) Expectation and deviation of objective functions 

The expectation 𝜇𝑖(𝑓𝑖(𝑿, 𝑽)) and the standard deviation 𝜎𝑖(𝑓𝑖(𝑿, 𝑽)) of the 

objective function 𝑓𝑖(𝑿, 𝑽) are given as [7]: 

𝜇𝑖(𝑓𝑖(𝑿, 𝑽)) = 𝐸[𝑌𝑖(𝑿, 𝑽)] = ∫ �̂�𝑖(𝒙 + 𝒘) ∙
𝑤

𝑝(𝒘)𝑑𝒘 Eq. 6.17 

where 𝑌𝑖(𝑿, 𝑽) is the stochastic response function 𝑖; �̂�𝑖(𝑥 + 𝑤) is the surrogate 

model 𝑖; 𝑝(𝒘) is the cumulative probability density function. When the random 

parameters 𝑤𝑖, 𝑖 = 1, 2, … , 𝑛 are independent: 

𝑝(𝒘) = ∏𝑝(𝑤𝑖)

𝑛

𝑖=1

 Eq. 6.18 

in which 𝑝(𝑤𝑖) is the marginal probability density function of 𝑤𝑖.  
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𝜎𝑖
2(𝑓𝑖(𝑿, 𝑽)) 

= 𝑉𝑎𝑟[𝑌𝑖(𝑿, 𝑽)] 

= 𝐸[𝑉𝑎𝑟[𝑌𝑖(𝒙 + 𝒘, 𝑽)|𝑽]] + 𝐸[𝐸[𝑌𝑖(𝒙 + 𝒘,𝑽)|𝑽]2] − 𝐸[𝐸[𝑌𝑖(𝒙 + 𝒘,𝑽)|𝑽]]
2

 

= ∫ 𝑠2(�̂�𝑖(𝒙 + 𝒘)) ∙
𝑤

𝑝(𝒘)𝑑𝒘 + ∫ �̂�𝑖
2(𝑥 + 𝒘) ∙

𝑤

𝑝(𝒘)𝑑𝒘 

−[∫ (�̂�𝑖(𝒙 + 𝒘)) ∙
𝑤

𝑝(𝒘)𝑑𝒘]2 

Eq. 6.19 

where 𝑠2(�̂�𝑖(𝒙 + 𝒘)) is the mean square error (𝑀𝑆𝐸𝑖) of the surrogate model 𝑖. 

Eqs. 6.17 and 6.19 can be solved numerically using the Monte Carlo 

integration method. 
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6.10  Summary and Conclusions 

The modelling and analysis of crack formation in the SLM process on those 

formed along or around edges of objects made of the nickel superalloy CM247L 

are intricate. CM247L is a material with high strength, thermal stability, good 

corrosion resistance, etc., and is commonly used in critical aerospace 

applications. The material is sensitive for microcrack formation in 

manufacturing using the SLM process, although it possesses exceptional 

properties. Mastered the behaviour of this material after 3D printing would be 

essential to the aerospace industry. The analysis has been done in this chapter 

using  multi- and many-objective optimisations on data-driven crack formation 

models to the four chosen main process parameters: laser power, point 

distance, hatch offset, and exposure time, targeting on finding the optimal 

process condition. The analysis results reveal that it is relatively easy to achieve 

optimised operational conditions with minimised bulk crack formation because 

the range of the optimal process parameters is extensive. But it is much harder 

to identify such optimised operational parameters for minimising the edge 

cracks since their corresponding ranges are narrow. 

The obtained Pareto Front approximations have been enhanced in diversity 

by adopting the newly developed methodology, Bn-PFt (see Chapter 3 of the 

thesis). Analysed by IRNA (see Chapter 4), the algorithm NSGA III turns out to 

provide the best quality of solution set in diversity among the three chosen 

algorithms: NSGA III, IBEA and GrEA in handling the current optimisation 

problems. 

ProD has been used to visualise PF approximations in objective space and 

reveal clusters of the optimised solutions of the process variables in the 

decision space. 
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The PF of MOP bulk crack length density optimisation consists of a single 

point, which means the objective functions are not conflicting. Interestingly, the 

optimised range in decision space covers a wide area, indicating many 

combinations of process parameters may result in optimality – the minimised 

bulk crack length density. It also means that finding proper process parameters 

by which the minimised formation of bulk cracks is a relatively easy task.  

The PF of MOP edge crack length density optimisation forms a convex front 

and indicates conflicting objective functions. The corresponding optimised 

process parameters are located in two narrow regions, visualised in 2D scatter 

plots and ProD. It is more challenging to find optimised process parameters 

than minimising bulk cracks. A choice might be less reliable due to the narrow 

range for optimality and the current uncertainty in the process parameters. On 

the other hand, the optimal and less optimal Pareto solutions are clustered in 

and around a similar location in the decision space, indicating a limited 

reduction in optimality when decision variables deviate from their optimal 

values. It means that the solutions can be robust in a qualitative sense. 

The ProD reveals that the PF from the simultaneous optimisation of all three 

bulk crack and edge crack objective functions has an unsymmetric convex type 

in the objective space. The corresponding area of optimised process 

parameters in decision space is clustered but spread to a larger region than the 

separate MOP crack cases analysed, indicating a compromise in minimising 

crack length in bulk and at edges simultaneously. 

By plotting the optimised process parameters in Parallel coordinates, the 

estimates of ranges of optimised process parameters have been attained. 

The results from validation tests are disappointing. The values of error 

metrics confirm no functional relationship between the surrogate models and 

the data from the validation test. It means that the experiments are hard to be 
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repeated in disparate rounds of tests, although the settings are seemingly the 

same. Other governing parameters regulate the relationship. 

The application chapter, Chapter 6, has demonstrated an optimisation study 

on real case problems targeting finding the optimised process parameters of an 

operation, from experimental testing, modelling to process optimisation, and 

identifying the optimised governing process parameters. 

As future work, some more experimental work should be performed to 

identify and clarify additional governing process parameters which may explain 

the extreme variation of test data from disparate rounds of experiments. 

Moreover, a stochastic robust optimisation analysis is performed to verify the 

influence of uncertainty on the setting of the optimal operational conditions. 
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Chapter 7  Conclusion and Future Work 

The difficulty of solving MaOP increases drastically with the rise of the 

number of objectives to be optimised beyond three, where several challenges 

emerge affecting the design of optimisation algorithms:  

1) The number of Pareto optimal solutions needed to describe the PF grows 

nearly exponentially.  

2) The dominance relation used in environmental selection becomes less 

discriminative, i.e., two arbitrary solutions are more likely to be mutually 

non-dominated.  

3) The possible search directions to obtain an approximation of the Pareto 

front increase, complicating the search towards the optimality.  

4) The visualisation of an optimiser’s search performance becomes difficult 

and inevitably leads to a loss of Pareto dominance relation information 

between solutions since mapping a higher-dimensional space to a 2, or 

3-dimensional space takes place.  

5) The number of preference parameters grows quadratically when 

expressed to each pair of objectives in preference-based algorithms.  

6) Evaluation of the performance of PF solutions becomes more 

challenging. Some often used indicators are also costly to calculate 

computationally, such as the hypervolume, and it complies with 

comparing sets of points based on the dominance relation.  

javascript:;
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7) Distances between weight vectors in decomposition-based MOEAs 

increase so that the assumption that the neighbouring sub-problems 

share similar information becomes less prominent, which reduces the 

performance of decomposition-based MOEAs for many-objective 

problems.  

8) The distance between neighbouring solutions on PF turns out to be so 

large that it becomes more challenging to identify high-quality Pareto 

optimal solutions. 

Uncertainty analysis in applications of many-objective optimization is an 

important issue and is handled by robust optimization (RO) methods. The 

surrogate model may result in non-optimal operational conditions without 

considering the prediction uncertainty. Hence, a necessary analytical step is 

quantifying the combined effect of uncertainties in the design variables, model 

parameters, and the surrogate models on optimality. The Pareto optimal 

solutions obtained should be both optimal and relatively insensitive to input, 

parametric and model uncertainties. Two types of RO methods are available: 

deterministic approaches and probabilistic approaches. In deterministic 

approaches, the robustness of the optimality is analysed by inserting the 

prescribed non-statistical variation ranges of various variables and gradient 

information into the original optimization problem. The analysis is done based 

on extreme variations of all variables, which might be improper when finding 

the true robust optimality. In probabilistic approaches, RO is performed based 

on optimisations such as the expectations and the variances of the original 

objective functions expressed utilising the probability distributions of the 

variations of the decision variables, process parameters and variance of the 

surrogate model itself. 
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The current thesis deals with three significant challenges in a MaOP 

analysis. First, equidistant reference points on the searched Pareto Front of 

arbitrary form are required but nontrivial to be created as the number of 

objectives rises. Second, evaluation of the quality of Pareto front 

approximations in a high number of objectives is nontrivial. Third, visualisation 

of the high dimensional solutions is problematic. Mitigation of the above 

difficulties is part of the main tasks of the thesis work. Three new methods are 

proposed. Comprehensive numerical studies have been performed to validate 

the new methodologies. In addition, all new methods and their related 

algorithms have been used in a real-life application: optimisation analysis on a 

selective laser melting operation. The outcomes show that the proposed 

methods can enhance MaOP study in diversity, solution evaluation and 

visualisation.
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7.1  Generating and Indexing Reference Points in 

MaOP Analysis   

The decomposition-based MaOP algorithms belong to an influential group 

of solution techniques in optimisation problems of a high number of objective 

functions. The convergence toward Pareto Front occurs along with a set of 

systematically generated and most possibly evenly distributed reference 

vectors or reference points in the feasible high dimensional objective space. 

The evenness of the reference vectors created is vital for achieving PF 

approximations in superior diversity. As it is of the current version, the method 

is restricted to fully covered PF shapes in objective space, although it improves 

the diversity of discontinuous PFs. Its effect is questionable when used to 

handle degenerated PF types. 

A new method of generating reference points is proposed, B-norm based 

PF tracking method (Bn-PFt). The reference points are more evenly created on 

an m dimensional B-norm surface created adaptively by tracking the actual PF. 

Numerical studies performed on B-norm surfaces of various 𝐵 values show that 

reference points created by the Bn-PFt method are more evenly distributed on 

PF than those projected onto the same surfaces generated using Das and 

Dennis method. Simulation results, using RVEA to the Benchmark problems of 

MaF1-7 and 10-11 with 3 and 5 objective functions, show that measured in HV, 

IGD, ∆, CPF and SP metrics, the approximation sets obtained using reference 

points of Bn-PFt method have better diversity than those of using the famous 

Das and Dennis method. Crucially, the proposed method generates better 

results in terms of diversity. Reference points created by the Bn-PFt method 

with 𝐵=1 (unit simplex plane) have the exact location and distribution as those 
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of the Das and Dennis method. In other words, the Das and Dennis method is 

a particular case of the proposed Bn-PFt method, which is the general case.  

A new indexing system of reference points is also proposed to ease 

algorithmic development in decomposition-based evolutionary computation. 

The indexing system can enhance the formulation of the Das and Dennis 

method, save computing resources when searching for a specific reference 

point, define neighbouring reference points to a particular point in high 

dimensional objective space, and help facilitate the work on algorithmic 

development of new methods.  

The B-norm surface curve used in this study is symmetric in m dimensional 

objective space, which is most suitable for tracing PF of approximately 

symmetric forms. For strong non-symmetric or degenerated PFs, the reference 

points created by the Bn-PFt method are out of the surface of the true PF. Their 

projections on the true PF are hampered somewhat when these are projected 

on the true PF. However, they are still more suitable to guide the search for PF 

than the Das and Dennis method because they locate much nearer to the true 

PF than the latter.  

In the future, more studies can focus upon the following aspects: 

• The bn-PFt method should be expanded to create the most possibly 

equidistant reference points on non-symmetric PF surfaces. 

• Further, formulation using the proposed indexing system to identify 

neighbouring direct points to a given reference point in high dimensional 

space shall be studied. It can replace the user input parameter – the 

number of adjacent points in the MOEA/D algorithm. 
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7.2  A New Pure Diversity Indicator-IRNA 

Well converged and evenly distributed Pareto Front approximations provide 

the utmost information to decision-makers in the decision-making process. PF 

solutions in high dimensions (more than three objective functions involved in 

the optimisation process) are often intricate to be accessed quality-wise in 

forms of their convergence and diversity properties. It is because of the limited 

cognitive capability of humans for the recognition of features visually in high 

dimensional space. A new diversity indicator is proposed in this work, the 

Inverse Ratio of Normalised Avertence angles (IRNA). It is a pure diversity 

indicator for evaluating high dimensional PF approximations and is formulated 

using reference vectors by minimising the sum of the included angles between 

approximated solution set and reference vectors. It is achieved by rotating the 

system of reference vectors in all dimensions with an optimised spatial angle. 

The highest possible diversity score of a solution set is obtained. Any potential 

systematic bias in the avertence angles is thus removed. Through various 

numerical testing, it is proven that IRNA is more sensitive to capturing diversity 

changes than other state-of-the-art performance indicators, also as the number 

of objectives increases, thus deeming it particularly suitable for many-objective 

optimisation problems. In addition, as suggested in this work, is two new 

methods in contrasting the efficacy and efficiency of diversity indicators in 

general. One is to test the indicators by analysing the PF approximations when 

increasing the number of objectives of the benchmark problem while keeping 

the number of candidate solutions constant. It is then expected that the diversity 

indicator value declines monotonically, and the indicators, which behave more 

accordingly, are better. The other is to test the indicators on measuring the 

diversity change during the convergence process. It is known that the diversity 

is lacking in the early iterations and is continuously being improved as the 
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iterations endure. The histogram of the diversity indicators should display a 

monotonic and, typically, an ever-increasing characteristic. The ever-increasing 

trends are often altered when the PF of the solutions degenerate. The values 

of diversity indicators may oscillate and show decreasing trend as the iteration 

continues. Both differentiation methods have been utilised to test the feasibility 

of IRNA versus other frequently used or newly proposed diversity indicators. 

The methodology of Bn-PFt can be incorporated into the concept of IRNA, 

making the reference vectors most evenly distributed in the objective space 

after considering the actual shape of the PF approximation. The accuracy of 

the IRNA score is thus considerably enhanced. A major weakness is that the 

method relies heavily on the evenness of intersections between reference 

vectors and the actual Pareto front. These intersections usually are not 

precisely uniformly distributed on the true PF, which reduces the veracity of the 

method. 

As future work, more existing diversity indicators shall be analysed, 

compared, and contrasted using the methodologies proposed in this work. 
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7.3  Visualisation and Evaluation of Pareto Front 

Approximations 

Visualisation of high dimensional data is arduous due to the limitation of our 

cognitive capability. PF data attained using MaOP are high dimensional. It is 

hard to know the pattern of such a PF approximation, such as convex, plane, 

or concave form, or a combination of several primary forms distributed spatially. 

PF shapes often cover the objective space partially or turn out to have 

degenerated as a line segment in the objective space. In addition, no single 

MaOP algorithm is superior to all others in various categories of optimisation 

problems. Commonly, several algorithms are adopted in the optimisation 

analysis. There is a need to find the domination relations between PF 

approximations sets and identify the PF solution of the highest quality. All the 

detailed knowledge of the above may assist decision-makers in choosing the 

most suitable decision variables to control better the process studied. The 

proposed visualisation methodology, ProD, attempts to deal with the challenge. 

High dimensional data are rearranged into two amounts: the projection and the 

distance to a reference vector. Various numerical testing reveals that ProD 

possesses the properties a suitable visualisation method should have 

balanced, which means the desired properties are mainly satisfied. 

As significant future work, dominance relations among nearly equally good 

approximations must be found, and the performances are differentiated. The 

current version of ProD has difficulties doing so in a reliable manner. Using 

good quality indicators locally at various distance values to the reference vector 

might be an appropriate way to go. But organising and regional clustering data 

that can be analysed by the indicators utilised is an unsolved issue and further 

studied. 



7.4  Minimising Crack Formation in Selective Laser Melting 

270 

7.4  Minimising Crack Formation in Selective Laser 

Melting  

The data from comprehensive experiments on the edge and bulk crack 

length density formed in Selective Laser Melting manufacturing of three 

different products performed using a nickel superalloy - CM247L by HiETA were 

studied. The material CM247L is a nickel super alloyed compound commonly 

used in critical aerospace applications due to its mechanical properties. Being 

able to 3D print this material would be of enormous importance to the 

aerospace industry. The modelled objective functions combine, and two MOP 

cases and one MaOP case are created, subsequently optimised. The first MOP 

case optimises the bulk crack length density on the three products subject to 

the process parameters: the laser power, the point distance, the hatch offset 

and the exposure time. The other MOP case studied minimises the edge crack 

length density on the three artefacts. Both cases have a dimension of 3 

objective functions and 4 decision variables. Then, the 6 objective functions are 

optimised simultaneously in the last case, forming a MaOP analysis. 

Three well-known and dissimilar MaOP algorithms are adopted to perform 

the optimisation analysis, NSGA III, IBEA and GrEA. The Bn-PFt methodology 

has been incorporated in NSGA III to enhance the diversity of the PF 

approximations. The IRNA diversity indicator has been used to check the 

diversity properties of the three sets of PF approximations from each of the 

chosen MaOP algorithms. The results are visualised using ProD. It was found 

that NSGA III provided the best PF approximations in diversity. The solutions 

from NSGA III are taken for further analysis – finding the optimised 

process/decision variables.  

The main conclusions are as follows.  
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The error of the developed surrogate models is analysed by adopting error 

metrics of the root mean square error (𝑅𝑀𝑆𝐸), the maximum absolute error 

(MaxAE) and the coefficient of determination (𝑅2). The results indicate that the 

accuracy of the surrogate models is acceptable, although considerable 

significant variations between the test data and modelled data exist.  

The PF of MOP bulk crack length density optimisation consists of a single 

point, which means the objective functions are not conflicting. Interestingly, the 

optimised range in decision space covers a wide area, indicating many 

combinations of process parameters resulting in optimality – the minimised bulk 

crack length density. It also means that finding proper process parameters by 

which the minimised formation of bulk cracks is a relatively easy task. The 

observation from the experimental testing has confirmed the conclusion. 

The PF of edge crack length density forms a convex front, meaning that the 

objective functions are conflicting. The corresponding optimised process 

parameters are located in two narrow regions, visualised in 2D scatter plots and 

ProD. It is more challenging to find optimised process parameters than 

minimising bulk cracks. A choice might be less reliable due to the narrow range 

for optimality and the current uncertainty in the process parameters. The 

conclusion has also been verified from the observations made during the 

experimental testing. 

The ProD reveals that the PF from the simultaneous optimisation of all three 

bulk crack and edge crack objective functions has an unsymmetric convex type 

in the objective space. The corresponding area of optimised process 

parameters in decision space is clustered but spread to a larger region than the 

separate MOP crack cases analysed, indicating a compromise in minimising 

crack length in bulk and at edges simultaneously. 
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By plotting the optimised process parameters in Parallel coordinates, the 

estimates of ranges of optimised process parameters have been attained. 

Validation tests have been carried out later. The results are disappointing, 

and the error metric values reveal no functional relations between the validation 

test data and the surrogate models. It implies that the experiment is nontrivial 

to be repeated since other unknown influencing factors must be considered 

when we go from one actual experimental setting to another, despite the same 

test procedures being followed. 

The application chapter, Chapter 6, has demonstrated the effectiveness of 

Bn-PFt, IRNA, and ProD to enhance an optimisation study on a real case 

problem targeting finding the optimised process parameters of an SLM 

operation. 

Two major future works are suggested. One is to perform several more 

disparate tests, where possible influencing factors, such as ambient 

temperature, moisture, the temperature at various experimental equipment and 

parts, etc., are monitored so that the hidden causes can be identified, which 

contribute to the deviations between different experimental runs. The other is 

executing a robust optimisation analysis to detect the robust PF of the study.
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