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Abstract 
 

In the past years, there is increasing awareness and acceptance among forensic speech scientists 

of using Bayesian reasoning and likelihood ratio (LR) framework for forensic voice 

comparison (FVC) and expressing expert conclusions. Numerous studies have explored overall 

performance using numerical LRs. Given that the data used for validation is a sample coming 

from an unknown distribution, little attention has been paid to the effect of sampling variability 

or individuals’ behaviour. This thesis investigates these issues using linguistic-phonetic 

variables. First, it investigates how different configurations of training, test and reference 

speakers affect overall performance. The results show that variability in overall performance 

is mostly caused by varying the test speakers, while less variability is caused by sampling 

variability in the reference and training speakers. Second, this thesis explores the effect of 

sampling variability on overall performance and individuals’ behaviour in relation to the use 

of linguistic-phonetic features. Results show that sampling variability affects overall 

performance to different extents using different features, while combining more features does 

not always improve overall performance. Sampling variability has limited effects on 

individuals in same-speaker comparisons, and most speakers are less affected by sampling 

variability in different-speaker comparisons when four or more features are used. Third, this 

thesis explores the effect of sampling variability on overall performance in relation to score 

distributions. Results reveal that system validity and reliability are more affected by different-

speaker score skewness, and less affected by same-speaker score skewness. Using different 

calibration methods reduces the effect of sampling variability to different extents. The results 

in this thesis have implications for both FVC using numerical LRs and FVC in general, as 

experts need to make pragmatic decisions whether numerical LR is used or not, and every 

decision made has implication to final evaluation results. Further, the results on score skewness 

and different calibration methods have potential contribution for improving FVC performance 

using automatic systems.  
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Chapter 1 Introduction  
 

Forensic speech science (FSS) is the study and application of phonetics, acoustics, signal 

processing and logic to legal cases (Jessen, 2008; Nolan, 2001; Rose, 2002). Depending on the 

specific case conditions, experts are faced with different tasks when speech evidence is 

involved. For example, speaker profiling is requested when an offender’s speech sample is 

available, but no suspect has been found. The job of forensic speech scientists is then to 

ascertain information about the speaker’s regional, social and ethnic background based on the 

offender speech sample to narrow down the population of suspect(s)  (Foulkes & French, 2001). 

Voice line-ups/parades are conducted when the voice of the offender is heard by the victim or 

witness at the scene of a crime. The ear-witness is then asked to pick out the voice of the suspect 

from a set of foils with a similar accent. However, many factors can affect the validity of voice 

parade evidence, e.g., length of utterance (Blatchford & Foulkes, 2006), obstacles between the 

speaker and listener (Fecher & Watt, 2013), memory decay of the victim (McGehee, 1937) etc. 

Sometimes, forensic speech scientists are faced with recordings containing questioned 

utterances, where the speech samples could be mis-transcribed or an alternative interpretation 

can be suggested. Expert analysis is often sought under those circumstances (see French & 

Harrison, 2006 for a case example). However, by far the most common type of casework 

carried out by forensic speech scientists is forensic voice comparison (FVC), which accounts 

for ca. 70% of cases (Foulkes & French, 2012). Such cases involve a comparison of speech 

samples, one of an unknown offender, and the other of a known suspect typically recorded 

during the police interview, e.g., in the UK (Home Office, 2003), or through wiretaps, e.g., in 

Germany and China (Liu, 2006). The job of the expert is to examine the similarity and 

typicality between these speech samples to estimate the extent to which the evidence supports 

the competing propositions of the prosecution and defence, which in turn assists the trier-of-

fact in making a decision about the innocence or guilt of the accused.  

 

1.1 Analytic Methods in FVC   
 

Among forensic speech scientists, approaches used for FVC differ between different labs 

across different countries, and there is no universal consensus about how FVC analysis should 

be carried out. Two surveys were conducted by Gold & French (2011, 2019) reaching 36 

participants across 13 countries in 2011 and 39 participants across 23 countries in 2019, which 
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aimed to investigate current practices in FVC. The participants were professionals mainly from 

the European Network of Forensic Science Institutions (ENFSI), Forensic Speech and Audio 

Analysis Working Group (FSAAWG) and the International Association for Forensic Phonetics 

and Acoustics (IAFPA). Similarly, Morrison et al. (2016) conducted a survey that was 

circulated to law enforcement agencies in the 190 member countries of Interpol. 91 responses 

were received from 69 countries, and 44 out of 91 responses stated that they have the ability to 

carry out speech analysis. Although there is a mismatch between the targeting participants in 

the surveys conducted by Gold and French (2011, 2019) and Morrison et al. (2016), the 

methods employed in FVC across different individual practitioners, police labs or institutes 

can be classified into five categories, i.e., auditory phonetic analysis only (AuPA), acoustic 

phonetic analysis only (AcPA), auditory phonetic cum acoustic phonetic analysis (AuPA + 

AcPA), human-assisted automatic speaker recognition (HASR) and fully automatic speaker 

recognition (ASR).  

 

In the AuPA method, forensic speech scientists make qualitative judgements using categorical-

phonetic transcriptions and description following the conventions of International Phonetic 

Alphabet (IPA) (Jessen, 2008). Detailed analysis can be carried out upon segmental features 

(e.g., vowels and/or consonants) and/or suprasegment features (e.g., overall fundamental 

frequency, voice quality). According to Gold & French (2011), 94% of the respondents 

evaluate the auditory quality of vowels and 88% of the respondents evaluate the auditory 

quality of consonants when carrying out FVC tasks. Meanwhile, 94% of the respondents 

evaluate fundamental frequency and voice quality using AuPA analysis as part of the overall 

procedure. In Morrison et al. (2016), approximately 82% of the respondents reported that the 

AuPA method was employed in speech analysis; however, details about specific segmental or 

suprasegmental linguistic-phonetic features used in the analysis were not provided.  

 

In the AcPA method, the analysis is carried out making acoustic measurements of segmental 

and suprasegmental linguistic-phonetic features. For example, the value of the first three 

formants of the same vowel from different speech samples are often extracted and compared, 

which allows experts to make quantitative judgements about the speech samples under analysis. 

Furthermore, the mean fundamental frequency is also often measured. The AuPA and AcPA 

method is then the combination of auditory and acoustic analysis and this is generally the most 

widely used method across the world. According to Gold & French (2011), 77% of the 

respondents (10 out of 13 countries) carry out speech analysis using the combination of 
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auditory and acoustic analysis. The percentage is a little lower in Morrison et al. (2016), where 

57% respondents (25 out of 44 countries) reported that both auditory and acoustic analysis 

were involved.  

 

Both Gold & French (2011, 2019) and Morrison et al. (2016) surveyed the use of ASR and 

HASR in their questionnaires. In the ASR method, the speech signal is analysed holistically, 

i.e., speech is not as analysed with respect to specific linguistic-phonetic units. In ASR systems, 

typically the speech active portion is first identified and acoustic features (e.g., Mel-frequency 

cepstral coefficients, MFCCs) are extracted using a fixed-length window shifted at fixed 

intervals across the sample. By contrast, HASR differs in terms of the degree of human 

supervision in their operation. In both ASR and HASR, acoustic features are modelled to 

produce a speaker model, which in turn is used to generate a score capturing the similarity and 

typicality between a pair of recordings. State-of-the-art systems (xVectors; Snyder et al., 2018) 

now integrate machine learning at various stages within an ASR system’s processing. The ASR 

systems seem to have grown in acceptance among the community of forensic speech scientists 

in recent years. Gold & French (2019) have shown that only 17% of respondents reported using 

an ASR system in their survey in 2011, while 41% of respondents stated they used an ASR 

system in the 2019 survey. However, it was not indicated explicitly how they used ASR and 

how the use of ASR was in relation to AuPA and AcPA. Similarly, in Morrison et al. (2016), 

a total of 63% of the respondents reported that ASR (18%) and HASR (45%) were used in their 

analysis. The advantage of using an ASR system is that it is less labour intensive; however, the 

drawback is that the ASR system is often described as a black-box and still struggles with the 

range of conditions that might be faced in forensic cases in the UK.    

 

1.2 Conclusion frameworks in FVC  
 

There is also diversity in the conclusion frameworks used by labs and institutions across 

different countries. Different terms were used in the surveys in Gold & French (2011, 2019) 

and Morrison et al. (2016); however, these conclusion frameworks are grouped into four types 

for simplicity in the current thesis, i.e., binary decision, classical probability scales (numerical 

or verbal), UK Position Statement (UKPS; French & Harrison, 2007) and likelihood ratio 

framework (LR; numerical or verbal). As the name suggests, binary decision simply gives the 

conclusion in terms of the voices in the suspect sample and offender sample match or mismatch. 
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The binary decision is the least commonly employed conclusion framework among the 

practitioners surveyed as only 5% of the participants reported using this framework in Gold & 

French (2011, 2019); the use of binary decision is not surveyed in Morrison et al. (2016). 

 

Classical probability scales were introduced to allow practitioners to give conclusions in terms 

of the gradient probability scales. Table 1.1 shows an example of the classical probability scales. 

A comparison between Gold & French (2011, 2019) and Morrison et al. (2016) shows that this 

conclusion framework is gradually less preferred among forensic speech science communities. 

31% of the participants reported using the classical probability scales in Gold & French (2011), 

while the percentage dropped to 16% and 13% in Morrison et al. (2016) and Gold & French 

(2019) respectively. This is probably due to the fact that the classical probability scales put 

forensic speech scientists in a position to evaluate the probability of proposition given evidence 

(posterior probability; see Chapter 2.1), which is neither logical nor legal (Rose & Morrison, 

2009, p.8). The job of forensic speech scientists is to evaluate the strength of evidence (i.e., the 

probability of evidence given proposition), rather than making a decision about the innocence 

or guilt of the accused (i.e., the probability of proposition given evidence). 

 

Positive identification  Negative identification  

sure beyond reasonable doubt 

there can be very little doubt 

highly likely 

likely 

very probable 

probable 

quite possible 

possible 

…that they are the same person  

probable  

quite probable 

likely  

highly likely 

…that they are different people 

 Table 1.1 Classical probability verbal scales (adapted from Broeders, 1999, p.229). Left 

column shows verbal scales for positive identification and right column shows verbal scales 

for negative identification.  

 

Compared to the probability scales, the later developed UKPS (French & Harrison, 2007) 

allowed practitioners to give three conclusions, namely consistent (identification), inconsistent 
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(exclusion) and no decision (inconclusiveness). Figure 1.1 shows a schematic flow chart of 

UKPS conclusion framework. Using the UKPS conclusion framework, suspect and offender 

samples are compared and the exclusion decision (different speakers) is given if they are 

deemed inconsistent. An inconclusive decision is given if no decision can be made by the 

practitioners. If the suspect and offender samples are judged consistent, then five levels of 

distinctiveness can be given, ranking from the least distinctive to the most. According to Gold 

& French (2011, 2019), the UKPS framework was employed by 31% of the participants 

surveyed in 2011; however, the figure dropped to 13% in 2019. In Morrison et al. (2016), 57% 

(25 out of 44) of the participants reported using a conclusion framework (i.e., 

identification/exclusion/inconclusion) that is similar to the UKPS framework. It is noted that 

the UKPS and identification/ exclusion/inconclusion frameworks were treated as two different 

frameworks in Morrison et al. (2016); however, they are grouped into the same framework in 

current thesis due to their similarity. Although the UKPS framework acknowledged that the 

experts’ job should solely be examining the probability of evidence given the competing 

propositions, there are a few violations in the framework which in effect evaluates the 

probability of proposition given evidence. For example, Rose and Morrison (2009) pointed out 

that regarding to the not-consistent decision, the UKPS framework stated that “Where the 

samples are not consistent we see no logical flaw in making the statement that the samples are 

spoken by different speakers” (French & Harrison, 2007, p.141). A statement indicating the 

speech samples come from the same or different speakers due to consistency or inconsistency 

expresses the posterior probability, i.e., p(H|E); however, the ultimate role of forensic 

phoneticians is to evaluate the probability of evidence given proposition (p(E|H)), i.e., what is 

the probability that the two speech samples are consistent given they are produced by same 

speaker and what is the probability that the two speech samples are inconsistent given they are 

produced by different speakers? (see Rose & Morrison, 2009 for detailed discussion). 
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Figure 1.1 Flow chart representation of the UKPS (Figure 1 from; Rose & Morrison, 2009, p.3) 

 

By contrast, the LR conclusion framework has come to be employed by more forensic speech 

scientists over the past decades. According to Gold and French (2011, 2019), 20% of the 

respondents stated that they express their evaluation conclusion using the LR framework 

(verbal or numerical) in 2011, while the figure almost doubled (39.5%) in 2019. Meanwhile, 

43% of the participants from law enforcement agencies reported using the LR conclusion 

framework in Morrison et al. (2016).  Expressing conclusions using the LR framework means 

that the experts need to explicitly assess both the similarity and typicality between two speech 

samples. Figure 1.2 gives a conceptualised demonstration of similarity and typicality in FVC 

(or any type of biometric/forensic evidence evaluation). The x- and y-axes represent 

hypothesised feature dimensions, and “off”, “sus” and “ref” stand for the offender, suspect and 

reference speaker data. Both the left and right panels show a higher similarity between the 

suspect and offender samples; however, the left panel shows a lower typicality, while the right 

panel shows a higher typicality. As a result, the magnitude of the strength of evidence is higher 

in the left panel than that in the right panel (see Chapter 2 for more discussion in Bayesian 

reasoning and LR framework in FVC). It is important to note that the LR framework does not 

have to be numerical. The LR itself is a logical conceptual framework where the experts can 

assess the typicality and similarity between speech samples based on one’s expertise or 

literature and internal calibration can be conducted by the expert.  
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Figure 1.2 A demonstration of similarity and typicality. The left and right panels show different 

magnitude of the strength of evidence due to different degree of similarity and typicality.  

 

1.3 Validation and regulation  
 

Forensic experts and laboratories are now under increasing national and international 

regulatory pressure to empirically validate their methods (qualitative or quantitative) as well 

as demonstrate validity and reliability of the evaluation results to the trier of fact. The 

application of valid and reproducible methods is required for forensic evidence evaluation 

across many jurisdictions, e.g., the USA (Daubert ruling [1993]), the England & Wales 

Criminal Practice Directions 19A (CPD, 2015) and UK Crown Prosecution Service (CPS, 

2019). The Daubert ruling [1993] sets forth a non-exclusive checklist for the test of 

admissibility of experts’ testimony in courts: 

 

(1) whether the expert’s technique or theory can be or has been tested…;  

(2) whether the technique or theory has been subject to peer review and publication;   

(3) the known or potential rate of error of the technique or theory when applied;  

(4) the existence and maintenance of standards and controls;  

(5) whether the technique or theory has been generally accepted in the scientific   

                 community. 

 

Similar guidance is provided in CPD 19A (2015) that for expert evidence to be admitted the 

court is expected to consider: 
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(c)…whether the opinion takes proper account of matters, such as the degree of 

precision or margin of uncertainty, affecting the accuracy or reliability of those results; 

(d)…the extent to which any material upon which the expert’s opinion is based has been 

reviewed by others with relevant expertise (for instance, in peer-reviewed publications); 

(h)…whether the expert’s methods followed established practice in the field and, if they 

did not, whether the reason for the divergence has been properly explained. 

 

Based on the Daubert ruling and CPD 19A, validation is the process of testing how good or 

bad the expert and method achieve what they are claimed to achieve. Depending on the specific 

analytic methods used in FVC (Section 1.1), types of validation could be different. If AuPA 

and AcPA are employed, as individual expert plays the key role in AuPA and AcPA, the 

validation process in this context would centre around testing expert’s competency (Kirchhübel 

& Brown, 2021). Meanwhile, validation could also concern the issues of repeatability and 

reproducibility, i.e., whether same evaluation result can be achieved if the speech samples are 

analysed by the same expert again (repeatability) and whether same evaluation result can be 

achieved if the speech samples are analysed again by different experts (reproducibility)? The 

expert-centred validation would be very labour intensive; meanwhile, there are practical issues, 

e.g., do we have the data that is relevant to the case for validation and whether the data can be 

transferred between experts?  

 

On the other hand, there are established procedures to empirically validate methods using a 

data-driven LR-based framework. In doing so, normally three independent datasets (i.e., 

training, test and reference) and two stages are involved (see 2.2.1).  Note that four datasets 

might be required in automatic systems using a scoring method, i.e., suspected speaker control 

database and suspected speaker reference database are used to generate same-speaker (SS) 

similarity scores and questioned speaker data and reference data are used to generate 

difference-speaker (DS) similarity scores (Alexander & Drygajlo, 2004). From a statistical 

point of view, any observed data is a sample that comes from a population where its distribution 

is unknow. Because the datasets used for validation are sampled from a much larger population 

where the true distribution is unknown, this validation method is subject to sampling variability, 

i.e., will the system have the same performance if different sets of samples are used for 

validation? This is the question that forms the basis of the current thesis.    

 

 



 26 

1.4 Established procedures for validation  
 

Section 1.2 briefly outlined the conclusion frameworks used in FVC chronologically, showing 

the gradual shifting in employing the LR framework in FVC. The increasing acceptance of 

using the LR framework in FVC is in line with other areas of forensic evidence evaluation (e.g., 

fingerprint, bite marks, tire marks, handwriting) in what is described as part of the so called 

paradigm shift (Saks & Koehler, 2005). DNA typing employs population data to empirically 

evaluate “the matches between suspects and crime scene DNA evidence in terms of the 

probability of random matches across different reference populations” (Saks & Koehler, 2005, 

p. 893). In the FVC context, that is to demonstrate how good or bad the system is at separating 

SS and DS pairs in relation to the relevant population. Over the years, there are well-established 

procedures for method and system validation using numerical LRs, and they have been 

employed in numerous studies (see Section 2.2.2). In such work analysts validate their systems 

empirically via a two-stage process using data where the ground truth is known, to present the 

results of validation tests to the end user. In stage one (the feature-to-score stage), (typically 

acoustic) data extracted from pairs of SS and DS recordings taken from the test and training 

datasets are compared to produce training and test scores which indicate the similarity between 

the SS and DS samples and assessing typicality with respect to a reference data. In stage two 

(the score-to-LR stage or calibration), the training scores are used to generate calibration 

coefficients which are then applied to the test scores to convert them to interpretable LRs. 

System validity and reliability metrics are generated from the calibrated LRs for the test set.  

 

There are broadly two different contexts for validation, testing under specific case conditions 

(case-specific) and generic testing. Under both contexts, the training, test and reference 

speakers need to be sampled from the relevant population, i.e., “…a particular class of persons 

on the basis of age, sex, occupation…” (Coleman & Walls, 1974, p.276), based on assumptions 

about the speaker in the offender sample(s). Case-specific testing aims to test system validity 

and reliability by taking case specific conditions into consideration, e.g., speaking style, 

recording condition (see Enzinger & Morrison, 2017 for an example based on simulated 

conditions). Those tests should be conducted on a case-by-case basis as no two cases are 

identical and the system evaluation obtained from testing under conditions from one case might 

give little insight to another case. However, in practical terms there is a problem with this 

approach: as the identity of the offender is unknown under real case conditions, so too is the 
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relevant population drawn based on the assumption of the offender’s origin (Hughes & Foulkes, 

2015a). Thus, the forensic speech scientist must make pragmatic decisions about how to delimit 

that population, based on observations that can be made about the speech sample. Usually this 

amounts only to a broad statement about the sex of the speaker and their language or major 

regional accent (e.g., Australian English; Hughes, 2014; Rose, 2004) or other demographic 

factors. Given this paradox, generic testing is often conducted to investigate overall 

performance when assumptions do and do not match the ground truth. For example, using a 

nominal suspect and offender with an Australian English accent but reference speakers with a 

different accent enables forensic speech scientists to investigate the effect of accent mismatch 

in the reference speakers on overall performance. Due to the fact that we will never have data 

which are exactly the same as the case conditions, ultimately it is not a dichotomy between 

case-specific and generic testing, but a continuum of how closely the data we use for testing 

match the case data and whether the difference matters.  

 

It is worth noting that the fully data-driven LR approach is employed in the current thesis to 

demonstrate the effect of sampling variability only, it does not mean that this approach is the 

gold standard in FVC and employed by the majorities in the real world. It was also indicated 

in Gold and French (2011) and Morrison (2016) that over half of the practitioners carry out 

speech analysis using the combination of auditory and acoustic analysis.   The major limitations 

for practitioners to conduct fully data-driven LR approach are probably due to data limit and 

the selection of relevant population.   

 

1.5 Research aims and questions  
 

The ENFSI (2015) guidelines state that the LR framework “measures the strength of support 

the findings provide to discriminate between propositions of interest” (2.4, p. 6) which is 

scientifically accepted, and “this framework for evaluative reporting applies to all forensic 

science disciplines.” (2.4, p. 6). It has also been shown that one of the major differences among 

the three surveys (Gold & French 2011, 2019; Morrison et al., 2016) is the increasing 

awareness and acceptance of Bayesian reasoning and likelihood ratio (LR) framework among 

forensic speech scientists. The LR framework allows forensic speech scientists to focus on the 

evaluation of evidence given a proposition; meanwhile, experts are less likely to fall into the 
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prosecutor’s fallacy or attorney’s fallacy (see Sections 2.1 and 2.2) which could lead to 

misinterpretation of evidence and miscarriage of justice.  

 

As mentioned in Sections 1.3 and 1.4, there are now established procedures for method 

validation using numerical LRs, i.e., using data where the ground truth is known to test how 

good or bad the system performs the task that it is designed to do. Numerous studies have 

investigated the factors that might affect the results of LR-based FVC (e.g., sample size, accent 

mismatch, statistical models) (see Chapter 2 for detailed discussion) focusing on the evaluation 

of overall performance. However, a further question is how representative those samples are 

(i.e., training, test and reference data) in relation to the larger relevant population that is 

assumed based on the offender sample? Given that training, test and reference speakers are 

sampled from a relevant population with matching demographic factors to the offender, the 

real size of the relevant population, although it depends on the specific defence proposition, is 

likely much larger than the number of speakers sampled for validation. Then, one crucial 

question for forensic speech scientists is that whether overall performance is consistent if we 

use different samples of speakers from a single relevant population (e.g., speakers with similar 

social class, regional accent, education etc.) and replicate experiments multiple times. This 

thesis aims to explore the effect of sampling variability on overall performance and individual 

speakers’ behaviour at feature-to-score and score-to-LR levels. First, to investigate the effect 

of sampling variability on overall performance and individual speakers’ behaviour in relation 

to configurations of training, test and reference speakers as well as choice of linguistic-phonetic 

features. Second, to investigate the effect of sampling variability on overall performance in 

relation to score skewness, calibration methods and sample size. The specific research 

questions (RQ) are as follows: 

 

1. What is the effect of sampling variability on overall performance? 

 

a. To what extent does overall performance (validity and reliability) vary if different 

configurations of training, test and reference speakers (from the same relevant 

population) are used?  

b. Is the variability in the overall performance primarily caused by different 

configurations of training speakers, test speakers or reference speakers?  
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2. What is the effect of sampling variability on individual speakers’ behaviour?  

 

a. Do certain combinations of linguistic-phonetic features outperform the others 

and are they less susceptible to sampling variability? 

b. How is individual speakers’ LR output affected when different configurations 

of training and reference speakers are used? 

c. How is individual speaker’ LR output affected when different linguistic-

phonetic features are used?  

 

3. What is the effect of sampling variability on overall performance in relation to 

score skewness?  

 

a. To what extent is overall performance affected by skewed scores?  

b. Are certain calibration methods more susceptible to score skewness than others?  

c. Would overall performance be improved with larger sample sizes when scores 

are skewed? 

 

1.6 Thesis outline 
 

Chapter 2 introduces the research context starting with a brief introduction to Bayes’ Theorem 

and the LR framework. Established procedures for method and system validation using 

numerical LRs are explained. Following that, previous FVC studies using numerical LRs are 

discussed from the perspectives of system validity and reliability testing. Lastly, the rationale 

of the current study is explained.  

 

Chapter 3 gives the general methodology employed in the current thesis, i.e., corpora and 

linguistic-phonetic features used, methods for feature segmentation, data extraction and 

parameterisation, and statistical methods used for LR computation and system evaluation.  

 

Chapters 4, 5 and 6 are experimental chapters investigating the effect of sampling variability 

on LR-based FVC systems from different perspectives. Chapter 4 explores the effect of 

sampling variability on overall system validity and reliability focusing on the use of different 

configurations of training, test and reference speakers. RQs 1a. and 1b. are addressed in 
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Chapter 4. Chapter 5 looks at the effect of sampling variability with more focus on individual 

speakers and the use of different combinations linguistic-phonetic features. The possible range 

of individual speakers’ LR output under a real case scenario is also demonstrated and discussed, 

and RQs 2a., 2b. and 2c. are addressed in Chapter 5. Chapter 6 uses simulated scores to 

investigate the effect of sampling variability on the score level aiming to address RQs 3a., 3b. 

and 3c. Scores were simulated based on empirical data from Chapter 4. Score distribution 

skewness, sample sizes and calibration methods were varied, and the overall performance was 

tested under those different conditions. In each experimental chapter, the chapter-specific 

methodologies and results are explained and discussed. 

 

Finally, Chapter 7 discusses the effect of sampling variability at feature-to-score and score-to-

LR stages in relation to the findings of Chapters 4, 5, and 6. The implications of this thesis for 

casework and future research are also discussed in the conclusion (Chapter 7).  
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Chapter 2 Research Context  
 

Chapter 2 first gives a brief introduction to Bayes’ Theorem and likelihood ratio as well as the 

logic behind them in evidence evaluation (Chapter 2.1). Following that, the development and 

application of the likelihood ratio framework in FVC are discussed in relation to system 

validity testing (Chapter 2.2.1.1) and system reliability testing (Chapter 2.2.1.2) respectively. 

Further, factors that affect overall performance are reviewed in relation to previous studies 

(Chapter 2.2.2). The overall rationale of the current thesis is given at last (Chapter 2.2.3). 

 

2.1 Bayes’ Theorem and the likelihood ratio (LR) framework 
 

Bayes’ Theorem explains how to update one’s belief in a hypothesis when a new piece of 

evidence is incorporated can be expressed using a probability form in terms of hypothesis and 

evidence below,   

 

𝑝(𝐻|𝐸) = 𝑝(𝐻) × 𝑝(𝐸|𝐻)                                                     Equation (2.1) 
(Robertson et al., 2016) 

 

where 𝑝(𝐻)  is commonly known as the prior odds, i.e., our initial knowledge about the 

hypothesis (Robertson et al., 2016, p.15), before any evidence is taken into consideration. For 

example, if five suspects were arrested at a crime scene, and only one of them is the offender, 

then the prior probability of each suspect being the offender is 20% (the prior odds are 1: 4) 

before any evidence is considered. The prior probability needs to be multiplied by 𝑝(𝐸|𝐻), i.e., 

the likelihood ratio (LR), to give the posterior probability. The LR estimates the strength of 

evidence under the two competing propositions of the prosecution and defence (Robertson et 

al., 2016), i.e., what is the probability of observing the evidence had it come from the same 

person or different people? The LR equation is given in Equation 2.2: 

 

𝐿𝑅 =  𝑝(𝐸|𝐻𝑝,𝐼)
𝑝(𝐸|𝐻𝑑,𝐼)

                                                                      Equation (2.2) 
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where 𝑝(𝐸|𝐻𝑝) indicates the probability of observing the difference between the suspect and 

offender speech samples given the prosecution proposition, i.e., the speech sample comes from 

the suspect; 𝑝(𝐸|𝐻𝑑)  represents the probability of observing the difference between the 

suspect and offender speech samples given the defence proposition, i.e., the speech sample 

does not come from the suspect but someone else from the relevant population; 𝐼 stands for 

background information about the case. Essentially, the numerator of the LR is an estimation 

of the similarity between the suspect and offender speech samples, while the denominator is 

an estimation of their typicality compared to the relevant population, i.e., the probability of 

observing the offender sample had it not come from the suspect but some other randomly 

selected member of the relevant population. The 𝑝(𝐻|𝐸), the posterior odds, indicates the 

probability of the hypothesis given the evidence, i.e., the final estimate of the chance that a 

certain incidence happened. The posterior odds are governed and can be modified by both the 

prior odds (the “prior” assessment of the probability of certain incidence) and the LR (the 

statistical analysis of the strength of evidence given hypothesis) (Finkelstein & Fairley, 1970).  

 

The Bayesian approach started to gain favour in courtroom evidence evaluation after the US 

case of People v. Collins [1968], where an elderly woman was robbed and assaulted by two 

people in Los Angeles. The victim mentioned that she saw a young woman with dark blond 

hair and a ponytail running away after robbing her. Another witness mentioned that the young 

woman with dark blond hair and a ponytail ran into a yellow car driven by a black man with a 

beard and moustache. Later, a couple with similar appearance characteristics were arrested by 

the police, and an instructor of mathematics was called to establish the probability of the 

arrested defendants being the offenders who robbed the elderly woman based on the similar 

appearance characteristics. 

 

The witness was instructed by the mathematics instructor to give assumptions of individual 

probabilities of the relevant appearance characteristics (i.e., yellow car, male with moustache, 

female with ponytail, female with dark blond hair, black male with beard and interracial couple 

in car). The specific probabilities of each individual appearance characteristics are: 
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Individual appearance characteristics  Probability  

Yellow car 1/10 

Male with moustache 1/4 

Female with ponytail 1/10 

Female with blond hair 1/3 

Black man with beard 1/10 

Interracial couple in car  1/1000 

Table 2.1 Assumed probability of each individual appearance characteristics (Table from 

Finkelstein & Fairley, 1970, p. 491).  

 

Applying the “product rule”, i.e., the probability of the relevant appearance characteristics 

occurring jointly equals the product of the individual probabilities of each of the relevant 

appearance characteristics (Finkelstein & Fairley, 1970, p. 491), the mathematics instructor 

then concluded that a couple selected at random having the same incriminating characteristics 

would be one out of twelve million. The court rejected the instructor’s testimony based on 

several grounds. The two most important ones are as follows. First, the individual probabilities 

of each appearance characteristics (Table 2.1) assumed by the witness were not supported by 

any evidence. Second, there was no evidence to demonstrate the independence of the assumed 

individual probabilities of the appearance characteristics (Table 2.1). However, even if the 

individual probabilities were supported by evidence and they could be shown to be independent, 

the logic in calculating the probability in the People v. Collins [1968] case was flawed, also 

known as prosecutor’s fallacy (Thompson & Schumann, 1987), i.e., using the probability of 

proposition for the probability of evidence. In People v. Collins [1968], the mathematics 

instructor inappropriately reported the probability that was conditional on the evidence 

(appearance characteristics) rather than on the propositions (the interracial couple arrested is 

guilty). A more justifiable probability estimate could be established if the Bayesian approach 

were adapted, i.e., the experts should focus on the evaluation of evidence given proposition, 

rather than the other way round.   

 

2.2 The LR approach in FVC  
 

It has been shown in Section 2.1 that Bayes’ theorem and LR framework started to gain favour 

in forensic evidence evaluation after the case of People v. Collins [1968]. Researchers from 
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other areas of forensic evidence evaluation later on started to adapt to the LR framework (see 

examples of fibre and DNA in Aitken & Taroni, 2004), also known as the paradigm shift 

(Chapter 1.4) (Saks & Koehler, 2005). However, it was not introduced and discussed explicitly 

in FVC until the late 1990s by Champod & Meuwly (1998, 2000), where Bayes’ theorem was 

explained and the evaluation of speech evidence using the LR framework was proposed, as 

well as the discussion of the prosecutor’s fallacy (i.e. using posterior probability as the LR) 

and the attorney’s fallacy (i.e., using a larger number of possible suspects with no relation to 

the reality of the case) (Thompson & Schumann, 1987). Champod & Meuwly argued that 

forensic scientists should be “concerned solely with the LR” (2000, p. 201) not the posterior 

odds. This is because the posterior odds is the product of the prior odds and the LR, and the 

calculation of the posterior odds needs case-related background information (e.g., potential 

population of the suspects) where forensic experts normally do not have access to (Champod 

& Meuwly, 2000, p. 200). Meanwhile, Broeders (1999) also stated that “the question whether 

the suspect was the perpetrator is outside the province of the expert” (p.239), and reporting the 

probability of a proposition given the evidence is logically incorrect (p. 228). Further, he 

specified that forensic speech scientists should lay stress on two questions: 

 

1. How likely is the questioned speech sample to sound the way it does under the 

hypothesis that it was produced by the suspect?  

 

2. How likely is the questioned sample to sound like this on the hypothesis that it was 

produced by somebody other than the suspect? (Broeders, 1999, p. 238).  

 

Ultimately, Broeders (1999) and Champod & Meuwly (1998, 2000) have all explained the 

logic behind the conceptual LR framework and suggested that it is essential for forensic speech 

scientists to shift from evaluating the probability of proposition given evidence to evaluating 

the probability of evidence given proposition. However, they did not demonstrate the 

application of the quantitative LR-based approach using linguistic-phonetic features in FVC 

explicitly. Kinoshita (2001) was one of the first to investigate the feasibility of employing 

quantitative LR-based approach in FVC, where she tested the speaker-discriminatory power of 

linguistic-phonetic features. Specifically, midpoint F3 values of /o m s/ from the Japanese 

telephone opening phrase moshimoshi were used, as well as midpoint F2 values of /i/ and F2 

and F3 of /e/ from other target words. 10 male Japanese speakers were used for the testing. 

Aitken's formula (1995) was used for cross-validated comparisons to calculate the LRs, and 
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discrimination was then carried out based on the posterior odds. The overall classification rates 

achieved were 90% for same-speaker (SS) comparisons and 97% for different-speaker (DS) 

comparisons.  

 

Thereafter, numerous tests have been carried out using different linguistic-phonetic features. 

The majority of such studies focus on speaker discrimination performance. For example, Rose 

et al. (2004) explored the speaker-discriminatory power of three Japanese variables, /ŋ/, /ɕ/ and 

/ɔ:/ using the midpoint data of F1 to F5, and Zhang et al. (2008) looked into two Chinese vowels 

(i.e. /i/ and /y/) using mean formant frequencies of F1, F2 and F3. Further, Morrison (2009) 

explored the speaker-discriminatory power using dynamic vowel formant data. Meanwhile, 

some other studies examined the speaker-discriminatory power using suprasegmental features, 

e.g., long-term F0 distribution (Kinoshita et al., 2009), lexical tones (Rose & Wang, 2016), 

speech tempo (Lennon et al., 2019) and voice quality  (Enzinger et al., 2012; Hughes et al., 

2019). Apart from testing different linguistic-phonetic features, many other studies have 

investigated the effect of non-linguistic factors on LR-based FVC systems, e.g., sample size 

(Hughes, 2017; Ishihara & Kinoshita, 2008), statistical models (Kinoshita & Wagner, 2014; 

Morrison, 2011a), calibration methods (Morrison & Poh, 2018), sampling variability (Ali et 

al., 2015), channel mismatch (Hughes, Harrison, et al., 2019), reference population mismatch 

(Watt et al., 2020). Ultimately, previous studies used speech data where the ground truth is 

known to investigate two major questions, i.e., whether the system does what it is designed to 

do (validity) and whether the system would yield the same result if the analysis were repeated 

(reliability). Section 2.2.1 lays out details of previous studies where system validity and 

reliability were explored using linguistic-phonetic features, and following Section 2.2.2 

discusses factors that affect the overall performances of LR-based FVC. Lastly, Section 2.2.3 

gives the rationale of current study.  

 

2.2.1 System testing  

 

In order to generate a LR (be that numerical or verbal (see Section 3.4.3); or indeed any form 

of conclusion in a FVC case), the expert employs a system. This is defined broadly as the 

particular courses of action that are used to compare the suspect and offender samples 

(Morrison, 2013), e.g., the data used to represent the relevant population, the linguistic-

phonetic variables chosen for analysis, the methods of analysing those variables, the statistical 
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models used for score generation, and calibration methods used for score-to-LR conversion. 

For an end user (e.g., jury and/or the court) to be able to interpret the conclusion provided by 

the expert appropriately, it is essential to understand the validity and reliability of the system 

used to generate that conclusion. Validity measures how well the system performs the task that 

it is designed to do, while reliability answers the question of whether the system would yield 

the same result if the analysis were repeated (Hughes and Kinoshita, under revision).  

 

Figure 2.1 shows a simplified demonstration of the difference between validity and reliability. 

Systems with both good validity and reliability would have narrow clusters of arrows and 

gather around the centre of the target (bottom left), while systems with bad validity and 

reliability would have wide arrows off the target (top right).  

 

 
Figure 2.1 Conceptual demonstration of validity and reliability (Figure modified from 

Morrison, 2016, Figure 1, p.372).  

 

Numerous studies have attempted to test system validity and reliability in line with the 

procedures for data-driven LR analysis outlined in Morrison et al., (2021). Sections 2.2.1.1 and 

2.2.1.2 discuss previous studies into system validity and reliability testing.  

 

2.2.1.1  System Validity    

 

During early research in LR-based FVC studies, a major focus was placed on system validity, 

i.e., testing how well the system performs the task that it is designed to do using certain 

linguistic-phonetic variables and statistical models. Very often, overall performance is 
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evaluated using Log LR cost function (Cllr; Brümmer & du Preez, 2006) and/or equal error rate 

(EER).  Cllr evaluates overall performance based on the magnitude of evidence, i.e., what is the 

strength of the evidence given proposition, while EER makes categorial decisions where false 

hit equal to right miss. For both evaluation metrics, the lower the values the better the overall 

performance (see Section 3.4 for detailed discussion).  

 

Rose et al. (2004) explored the speaker-discriminatory power of three Japanese variables, 

namely syllable-coda nasal /ŋ/, voiceless alveopalatal fricative /ɕ/ and long back mid-rounded 

vowel /ɔ:/. Non-contemporaneous telephone recordings from 60 Japanese speakers were used. 

The mid-point data of F1 to F5 and 12th order LPC cepstral coefficients were extracted for each 

token and the extracted data was modelled using multivariate kernel density (MVKD; Aitken 

& Lucy, 2004) for LR computation. They showed that the system yielded EERs of ca. 7.5% 

and ca. 13.5% using cepstral coefficients and mid-point formant data respectively. The results 

indicated that using cepstral coefficients provide stronger speaker-discriminatory power than 

using mid-point format data. However, this might be due to the fact that cepstral coefficients 

have more dimensions than mid-point formant data, which could possibly lead to a better 

speaker-discriminatory performance. Moreover, it was not clear how Rose et al. (2004) 

allocated the 60 speakers (e.g., 20 speakers used for each of the training, test and reference sets) 

or if the system was calibrated using a different set of data. Similarly, Zhang et al. (2008) 

explored the speaker-discriminatory power using the mean formant frequencies of F1, F2 and 

F3 from two Chinese vowels (i.e. close front unrounded vowel /i/ and close front rounded 

vowel /y/). Non-contemporaneous telephone recordings from 64 male speakers were used. Raw 

formant data was entered into the MVKD (Aitken & Lucy, 2004) to produce LRs. The best 

system validity was achieved using F1, F2 and F3 of /y/ (EER = 25.1%) and F2 and F3 of /i/ 

(EER = 26.1%).  Later, Morrison (2009) explored the speaker-discriminatory power using 

dynamic vowel formant data (contrary to static formant data). Five diphthongs (i.e., /aɪ/, /eɪ/, 

/oʊ/, /aʊ/, /ɔɪ/) from Australian English were tested and non-contemporaneous speech samples 

from 27 male speakers were involved. The first to third formants of each diphthong were 

parametrised using polynomial curves and discrete cosine transform (DCT). Different degrees 

of polynomial curves and DCT were attempted, and each diphthong was tested under two 

conditions, i.e., use all three formants and only use F2 and F3. The coefficients were used as 

the input for MVKD (Aitken and Lucy, 2004) for LR computation and the system was 

calibrated using cross-validation. In terms of individual diphthongs, the lowest Cllr (0.095) was 

achieved using the 0th to 2nd DCT coefficients of F2 and F3 formant trajectories of /eɪ/. 
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However, the Cllr further lowered to 0.056 using all three formants fusing all five diphthongs. 

Morrison (2009b) showed that fusing multiple linguistic variables improves the system validity, 

i.e., lower Cllr; however, given the number of speakers (27 male speakers) used in his study, it 

is likely that the overall performance is overestimated. Similarly, Zhang et al. (2011) looked 

into the speaker-discriminatory power of formant trajectories using a Chinese triphthong /iau/. 

Several other studies have been carried out investigating the speaker-discriminatory power of 

vowel trajectories using Cantonese (Chen & Rose, 2012; Li & Rose, 2012; Pang & Rose, 2012; 

Rose & Wang, 2016). 

 

Apart from segmental variables, previous studies have also investigated system validity using 

suprasegmental variables (Kinoshita, 2005; Kinoshita & Ishihara, 2010). For example, 

Kinoshita et al. (2009) explored the potential discriminatory power using long-term F0 (LTF0) 

distribution parameters. Non-contemporaneous speech samples from 201 male Japanese 

speakers were used and the average duration of the speech samples varied between 10 and 25 

minutes. The raw F0 data was extracted at every 5 milliseconds from the entire duration of 

each speech sample. Six LTF0 distribution parameters (i.e. mean, standard deviation, kurtosis, 

skewness, modal F0, modal density) were calculated and used as the input of MVKD (Aitken 

& Lucy, 2004) for LR computation. An EER of 10.7% was obtained using all six LTF0 

distribution parameters. Kinoshita et al. (2009) further explored whether the system validity is 

affected by the amount of speech used. They varied the duration of input speech from 5 to 180 

seconds, showing that the EER lowers from 23% to 16% when the speech duration increased 

from 5 to 30 seconds. There were some improvements in EER using longer speech input; 

however, the rate was slower after the first 30 seconds. They emphasized that the focus of their 

study was to explore the system that produces the strongest LR, whether supporting prosecution 

or defence propositions; however, the use of EER as a metric for system evaluation in their 

study seems counter-intuitive. This is because EER only treats LRs categorially and it does not 

take the magnitude of evidence (i.e., how strong or weak the evidence is) into consideration.  

 

Further, the speaker-discriminatory power of other suprasegmental variables have also been 

studied, e.g., Lennon et al. (2019) on speech tempo, Rose & Wang (2016) on tonal F0,  

Enzinger et al. (2012) and Hughes et al. (2019) on voice quality.  

 

Beyond testing system validity using different segmental and suprasegmental variables, 

previous studies have also attempted to assess system validity as a function of using different 
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statistical models. For example, Morrison (2011) tested the MVKD (Aitken & Lucy, 2004) and 

Gaussian mixture model-universal background model (GMM-UBM; Reynolds et al., 2000) 

using the same set of acoustic-phonetic data from Morrison (2009), i.e. the formant trajectories 

of five Australian diphthongs /aɪ/, /eɪ/, /oʊ/, /aʊ/ and /ɔɪ/. However, only F2 was used in his 

study. This is because recording samples in real cases are often recorded or transmitted via 

telephone or mobiles, and F2 is less susceptible to the telephone or mobile effects. Specifically, 

F1 is likely to be affected by landline telephone bandpass, i.e. the estimates of F1 are artificially 

raised by telephone transmission, an average of 14% for landlines (Künzel, 2001) and 29% for 

mobiles (Byrne & Foulkes, 2004). Similarly, F3 is likely to be affected by the codecs of GSM 

mobile network (Guillemin & Watson, 2009). In Morrison (2011), non-contemporaneous 

speech samples from 27 Australian male speakers were used and the F2 trajectories were fitted 

using DCT and polynomial curves (see Morrison, 2009, 2011 for detailed parameterisation 

procedure). The DCT and polynomial coefficients were used as the input for LR computation. 

The results show that the systems yield similar validity uing MVKD and GMM-UBM models 

when only individual diphthongs are involved. However, the GMM-UBM outperforms MVKD 

fusing all five diphthongs, with the Cllr values equal to 0.218 and 0.035 for MVKD and GMM-

UBM respectively. Later, Kinoshita & Wagner (2014) showed a different pattern when testing 

system validity using MVKD and GMM-UBM but from a more case-realistic perspective. 

They used data from 27 male Australian English speakers, with a focus on the long 

monophthing /i:/. The midpoint measurements of the first three formants were used as the input 

data for LR computation. Due to the fact that speech samples available in real cases are often 

limited, they tested robustness of MVKD and GMM-UBM models using very small numbers 

of tokens (i.e. 2, 4 and 6 tokens per speaker). Meanwhile, different numbers of Gaussians used 

for GMM-UMB were also tested. They showed that, MVKD consistently outperformed GMM-

UBM with different numbers of tokens. For MVKD, the lowest Cllr  (0.451) was obtained using 

6 tokens per speaker, while for GMM-UBM, the lowest Cllr (0.5) was achieved uisng 6 tokens 

per speaker with 4 Gaussians.   

 

Apart from Morrison (2011a), the previous studies mentioned above mainly focused on system 

validity, i.e. aiming for lower Cllr or/and EER values. However, given what really matters in a 

real case is the voice of the speaker under analysis, the question is how representative or reliable 

is the specific LR in a given FVC case or would we get the same LR if the experiment were 

repeated? The next section (Section 2.2.1.2) discusses previous studies where system reliability 

is involved.  
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2.2.1.2 System reliability   

 

System validity testing accounts for only part of the evidence evaluation process. System 

reliability is equally or even more important because it answers the question of whether one 

will get the same result if the evaluation is repeated. Taking a real case scenario for example, 

if two speech samples (one suspect and one offender) need to be compared, and we have 

collected the test, training and reference data from the relevant population based on our 

assumptions of the offender sample. The system is well trained and tested and is ready for the 

comparison of the suspect and offender samples. However, the size of the training, test and 

reference data is likely to be smaller than the actual size of the relevant population, the question 

would be how representative is the sampled data to the relevant population? Would the system 

give consistent results if the comparison is repeated with different samples (from the same 

relevant population) or different numbers of speakers in each on the training, test and reference 

data? Ishihara & Kinoshita (2008) seems to be one of the first to measure system reliability in 

relation to sample size using empirical speech data. In particular, they investigated the sample 

size of reference speakers as a function of LR reliability, i.e., they addressed the question of 

how variable the LRs are if different numbers of reference speakers are used. Non-

contemporaneous speech samples (two sessions) from 241 male Japanese speakers were 

involved and the LTF0 data was used as the input for MVKD (Aitken & Lucy, 2004) and LR 

computation. They varied the sizes of the reference data from 10 to 120 with 10-speaker 

increments. Pairs of the 241 speakers were compared against each of the speakers in the 

reference data, resulting in 241 SS comparisons and 115,680 DS comparisons. The experiments 

were replicated three times, and 6 Log10 LRs (LLR) were produced for each comparison 

session (i.e. one LLR per comparison session per reference data * 2 reference data per 

comparison * 3 replications). The difference between LLRs was used as a measure for system 

reliability. Ideally, more reliable systems would yield smaller LLR ranges. The results from 

Ishihara and Kinoshita’s study suggested that, for SS comparisons, the number of reference 

speakers does have a substantial effect on the reliability of LR output (the difference between 

LLR varies from 0 to over 8) when the sample size is small (i.e., 10 and 20 speakers), and the 

LLR starts to stabilise when the sample size reaches 30 and onwards (LLR varies between ca. 

2.5 and ca. 1). For DS comparisons, the LR output is much more variable, and the difference 

varies between ca. LLR 0 and ca. LLR 8 even when the sample size reaches 120. Ishihara & 

Kinoshita (2008) thus show that the size of the reference speaker sample does indeed have an 

effect on the reliability of LR output.  
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Kinoshita & Ishihara (2014) later replicated Ishihara & Kinoshita (2008) using the same dataset 

and experimental procedures but with logistic regression calibration (Brümmer et al., 2007) 

applied. Instead of using the subtraction of two LLRs, variability scores were used for 

reliability testing. The variability score is calculated using the subtraction of two converted 

LRs using the function below,  

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝐿𝑅 = 𝑓(𝑥) = {
𝑥, 𝑥 ≥ 1

0 − 1
𝑥

, 0 < 𝑥 < 1}                                       (Equation 2.3) 

Kinoshita & Ishihara (2014, p.208) 

 

According to Kinoshita & Ishihara (2014), the variability scores in systems with equal numbers 

of reference speakers captures the fluctuation in LR outputs between different comparison 

sessions. Across different numbers of reference speakers (i.e., 10 and 120), the variability 

scores varied between ca. -0.4 and ca. 1 (SS comparisons) and ca. -2.5 and 6 (DS comparisons) 

using 10 reference speakers, while they varied between ca. -0.8 and 1.5 (SS comparisons) and 

ca. -2.8 and 8 (DS comparisons) using 120 reference speakers. Kinoshita & Ishihara (2014) 

claimed that, with calibration applied, varying the size of reference speakers does not have 

much effect on system reliability. However, Kinoshita & Ishihara (2014) were flawed as they 

did not give explanation for the interpretation of variability scores. Although they stated that 

lower variability score indicates more stable overall performance, variability scores were 

calculated from converted LRs, which made the variability score not as interpretable as LLRs. 

For example, the absolute differences of DS variability scores equal to 8.5 (|-2.5 - 6|) and 10.8 

(|-2.8 - 8|) when 10 and 120 reference speakers are used respectively. The difference between 

the absolute differences is then 5.6 (|10.8-5.2|), which is not interpretable and cannot directly 

be compared to LLRs.  

  

Further, Hughes (2017) used simulated data to explore the reliability of LR output to variation 

in the size of not only just reference data, but also training and test data. The mid-point values 

of the first three formants of the filled pause (FP) um were extracted from a sociolinguistically 

homogeneous set of 100 male speakers of Standard Southern British English (SSBE) from the 

DyViS corpus (Nolan et al., 2009). Then, the formant values were simulated for training, test 

and reference data respectively, and the sample size was varied from 10 to 100 speakers in each 
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of the three datasets. The formant data was modelled using MVKD (Aitken & Lucy, 2004), 

and logistic regression (Brümmer et al., 2007) was used to calibrate scores to LRs. The result 

showed that “relatively precise LR output” (Hughes, 2017, p.28) can be achieved when training 

and test data reach 30 to 40 speakers, and the reference data reaches 15 speakers.  

 

Apart from using the subtraction of LLRs and variability scores, Morrison (2011) and Morrison 

et al. (2010) adapted credible intervals (CI) from DNA evidence evaluation (Curran, 2005; 

Curran et al., 2002) to test the reliability of LR outputs in FVC. The CI is the Bayesian version 

of the confidence interval; however, unlike the confidence interval, the CI treats the boundaries 

(two intervals) as fixed variables while the estimated LR is treated as a random variable (note 

that under LR framework, any LR obtained is an estimate of the true unknown LR). A 95% CI 

is often used in FVC to measure the reliability of LR output (Morrison, 2011b; Morrison et al., 

2011), and the wider the CI the less reliable the LR estimate. The CI is normally averaged 

across speakers, and the measurement is an indication of overall system reliability (i.e., does 

not indicate how each individual speaker behave). In Morrison et al. (2011), 95% CI was 

calculated using empirical data to estimate the reliability of the LR output in a FVC system 

(see Morrison et al. 2011 for discussion of validity as it is not the focus of this section). Non-

contemporaneous recordings (two sessions) from 61 male Northern Mandarin speakers were 

involved. Three Mandarin monophthongs (/i/, /e/ and /a/), and the mean frequency of the first 

three formants of /e/ and /a/ and F2 and F3 of /i/ over the vocalic portion were used as the input 

for LR computation in MVKD (Aitken & Lucy, 2004). In LR computation, a cross-validation 

procedure was applied, i.e. all speakers were being used as the background data except for the 

speakers that were being compared. The calibration coefficients were then calculated 

separately for each of the monophthongs using logistic regression (Brümmer et al., 2007; 

Morrison, 2013) and cross-validated applied, i.e. all LRs obtained from MVKD were used to 

calculate the calibration coefficients except for the ones being calibrated. After that, logistic 

regression (Brümmer et al., 2007) was applied to fuse the three sets of calibrated LLRs that 

were obtained from three monophthongs into one single set. Due to the practical limitation on 

real-world data collection, the 95% CI was only calculated for each of the DS LLRs. To the 

best of the author’s knowledge, the only available statistics for real-world data collection is 

found in Rose (2013b) where he used 35 male speakers for a telephone fraud case in Australia; 

meanwhile in studies for research purposes, the number of speakers used varies from 60 to 90 

(which seems to be the reasonable limits of sample sizes in the real-world) across different 



 43 

studies (e.g., Morrison et al., 2011; Rose & Cuiling, 2018). For CI calculation, the within 

comparison DS LLR mean was first calculated using Equation 2.4: 

 

�̅�𝑖 =  1
𝑛𝑖

∑ 𝑥𝑖𝑗
𝑛𝑖
𝑗=1                                                                                        (Equation 2.4) 

Morrison et al (2010, p.65) 

where:  

𝑛𝑖 is the number of DS LLRs per pair 

𝑖 is the specific DS pair 

𝑥𝑖𝑗 is the 𝑗𝑡ℎ DS LLR for the comparison pair 𝑖 

The deviation-from-the-mean (𝑦𝑖𝑗) of each DS LLR was the calculated using: 

 

𝑦𝑖𝑗 = 𝑥𝑖𝑗 −  �̅�𝑖                                                                                                 (Equation 2.5) 

 

The 95% CI was then calculated using local linear regression with the k nearest neighbours 

based on the mean and deviation-from-the-mean values of each pair of DS LLRs (See Morrison 

et al., 2011 for detailed procedures). The overall system reliability can then be evaluated using 

the mean of the 95% CIs, i.e., the average positive and negative difference between the upper 

and lower intervals of the CI and the mean value for a given comparison. For example, if a DS 

LLR for a given comparison is -0.3 and the 95% CI is ±1, then the estimated 95% LLR CI 

would range between -1.3 and 0.7 (i.e., an LR of 19.95 (101.3) in favour of DS proposition and 

5.01 (100.7) in favour of SS proposition).  A generalised statement using 95% CI was given by 

Morrison et al. (2011, p.64),  

 

“…, I have calculated that one would be X times more likely to obtain the acoustic 

properties of the voice samples if the questioned-voice sample had been produced by 

someone other than the accused than if it had been produced by the accused. … I am 

95% certain that the true values will be within the range of intervallower and 

intervalhigher. ” 

 

In general, the lower the 95% CI, the better the system reliability; however, it was not stated 

explicitly in Morrison et al. (2011) how low is a reasonable 95% CI for FVC.  
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Meanwhile, Kinoshita & Ishihara (2014) further suggested some other obstacles for using 95% 

CI. First, given most triers of fact are not familiar with LRs, it would be extremely difficult to 

convey the complex concepts of 95% CI and leave triers of fact themselves to interpret the 

information appropriately in courts. Second, in order to estimate a valid 95% CI for SS 

comparisons, each speaker needs to be recorded on at least three separate occasions. Given the 

limitation on data collection in real-world FVC cases, it is often extremely difficult to have 

offender samples recorded on different occasions, especially when linguistic features are 

involved. Although one could use different portions of the offender sample to serve as samples 

recorded on different occasions (given the offender sample is long enough), the system 

reliability is likely to be overestimated given the effect of using contemporaneous data.   

 

Estimating the reliability of LR has been debated over the years. Some hold the position that 

reporting uncertainty in the LR is the best practice (Curran, 2016; Morrison & Enzinger, 2016). 

This is because LR is “the function of parameters which have a distribution” (Curran, 2016, 

p.381); LR should also have a distribution because LR is dependent on those parameters. It is 

true that CI is often used to measure the uncertainty in LR. However, others (Ommen, Saunders 

and Neumann, 2016) argue that since LR is our primary concern, nuisance parameters (i.e., 

parameters which are not of our immediate interest) should be integrated out using fully 

Bayesian approach which would give us Bayes Factor (BF). Since BF incorporates the 

uncertainty associated with the nuisance parameters, it would be “redundant to include an 

interval estimate for Bayes Factor” (p.386). Moreover, Ommen et al. points out that if CI is 

used for reporting uncertainty, it would not be clear to the decision makers (e.g., court, jury) 

about how to apply CI in the decision-making process. For example, should the decision 

makers use the entire interval, the lower endpoint or the upper endpoint of the CI? Different 

choices would lead to incoherent decision resulting in bias in favour of the prosecution or the 

defence. From the author’s point of view, whether reporting uncertainty in the LR or 

incorporating uncertainty into the LR itself remains open for discussion. Different calibration 

methods were used this thesis as an approach to test their susceptibility against sampling 

variability and sample size.  
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2.2.2 Factors affecting system validity and reliability   

 

There are many factors that might affect the LR output of a FVC system. These include 

linguistic factors (i.e., relating to the voice of the speaker(s) under analysis; e.g., regional accent, 

speech tempo, voice quality), non-linguistic factors (e.g., sample size, statistical model, 

channel mismatch). Moreover, researchers’ degrees of freedom, i.e., any methodological 

decisions that the researcher makes may affect the final outcome (e.g., which phonetic features 

to be analysed and which statistical model and calibration method to be used). For linguistic 

factors, Watt et al. (2020) investigated the effect of using accent-mismatched reference data on 

the overall performance. 100 male SSBE speakers from the DyViS corpus (Nolan et al., 2009) 

and 60 male Northern east English speakers from the The Use and Utility of Localised Speech 

Forms in Determining Identity (TUULS; Watt et al., 2018) corpus (20 speakers from 

Middlesbrough, Newcastle, and Sunderland respectively) were involved. The MFCCs of 120-

second speech material were extracted and divided into two halves to serve as the suspect and 

offender samples respectively. The Nuance Forensics v.11.1 (an iVector system) was used to 

generate comparison scores that are converted into LLRs using match and mismatch reference 

data using linear discriminant analysis. Not surprisingly, when using SS and DS comparison 

scores from the TUULs speakers, matched reference data yielded the best system validity (Cllr 

= 0.145; using TUULS as the reference data) and mismatched reference data yielded the worst 

(Cllr = 0.427, using DyViS as the reference data). Interestingly, using combined reference data 

(i.e. TUULS and DyViS) yielded different system validity depending on the number of DyViS 

speakers involved. A Cllr of 0.218 was obtained when using all TUULS (60) and DyViS (100) 

speakers as the reference data, while the Cllr reduced to 0.198 when the number of DyViS 

reduced to 60 (i.e., 60 TUULS and 60 DyViS speakers respectively).  

 

For non-linguistic factors, Hughes et al. (2019) investigated the effect of channel mismatch on 

vowel-based FVC systems. Note that this reference (i.e., Hughes et al.) is being used because 

they tested linguistic features. The first three formants of 60 seconds of vowel-only material 

were extracted from 97 SSBE speakers across four channels, i.e., studio quality, landline 

telephone, GSM mobile with high bit-rate (12.2kb/s) and GSM mobile with low bit-rate 

(4.75kb/s). The LRs were computed using GMM-UBM (Reynolds et al., 2000) (8 Gaussians) 

with maximum a posteriori (MAP) adaptation and calibrated using logistic regression 

(Brümmer et al., 2007). Overall, systems with matched conditions (e.g., studio quality vs. 

studio quality; landline telephone vs. landline telephone) outperform those with mismatched 
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conditions. However, the greatest variability (least reliable) was observed in the studio quality 

vs. studio quality system with EERs ranging from 7.9% to 32.8% and Cllrs ranging from 0.28 

to 0.84. As discussed in Section 2.2.1.2, Ishihara & Kinoshita (2008) showed that SS and DS 

LLRs both varied to a substantial degree when small number of reference speakers (i.e., 10 to 

20) were used, while SS and DS LLRs started to stabilise when more than 30 reference speakers 

were used. Hughes (2017) also showed that reliable LLRs can be achieved when 30 to 40 

speakers were used for training and test data, 15 speakers for reference data. However, these 

studies did not build a formal relationship between sample size and sampling variability, e.g., 

how does the system perform when different sets of training, test and reference speakers are 

sampled? It should be noted that, from a subjective Bayesian point of view, any observed data 

at hand is a sample that comes from an unknown distribution, and thus the calculated LR is an 

estimate of the true unknown LR (Morrison & Poh, 2018, p.200). In principle, the larger the 

sample size, the more reliable the output. Therefore, when the sampled data size is large, the 

sample distribution is likely to be a reasonable approximation of the true population 

distribution resulting in more probable estimate of the true LR. On the other hand, when the 

sampled data size is small, sampling variability may cause the shape of the sample distribution 

shifts away from that of the true distribution and resulting in the calculated LR a poor estimate 

of the true LR (Morrison & Poh, 2018). Therefore, sampling variability is another major factor 

that affects system validity and reliability. 

 

It can be seen from previous studies that sample size is a key component in using numerical 

LRs for validation. The LRs are generated using statistical or probabilistic models with 

different sample sizes, which lead to the fact that the value of the LR is a function of statistical 

or probabilistic models and sample sizes. While it is possible for researchers to use different 

models, the choice of sample size is likely to be outside researchers’ control in real world 

scenarios (although the researchers can decide the number of speakers assigned to each dataset 

given sample size). Some argue that the amount of uncertainty in relation to sample size should 

be embedded in the calculation of an LR, i.e., having conservative LRs (e.g., close to 1) when 

the uncertainty is high (i.e., small sample size) (Brümmer, 2013). Since analysts often deal 

with small sample sizes in linguistic casework, sampling variability can be introduced at not 

only the feature-to-score stage, but also the score-to-LR stage (calibration), i.e., when the 

sample size is small, and the theoretical density estimation is not well-supported by the data 

leading to extrapolation at the tails of the score distributions (see Section 3.4.2 for detailed 

discussion).  
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Many calibration methods have been developed for system improvement and optimisation and 

the performance has been compared, e.g., linear discriminant analysis, Morrison (2013); 

logistic regression, Brümmer et al. (2007); pool adjacent violators, Zadrozny & Elkan (2002); 

and Bayesian models, Brümmer & Swart (2014), although not all of them aimed at dealing 

with small sample size issues. Ali et al. (2015) investigated the sampling variability on overall 

performance at the score-to-LR stage. Different sample sizes and calibration methods, as well 

as different score distributions, were tested. They simulated 5000 sets of training scores with 

three different sample sizes, i.e., 20, 200, 2000 for SS training scores and 1000, 10000, 100000 

for DS training scores from different probability density functions (PDF), i.e., normal PDFs, 

reversed Weibull PDFs, Uniform PDFs and Beta PDFs. Meanwhile, three calibration methods, 

kernel density estimation (KDE) (Parzen, 1962), logistic regression (Brümmer et al., 2007), 

and pool adjacent violators (PAV) (Zadrozny & Elkan, 2002a) were tested. The results show 

that sampling variability has the least effect on system perform using logistic regression when 

the training sample size is large (2000 SS and 100000 DS scores). When the sample size is 

small (20 SS scores and 1000 DS scores), the sampling variability has the least effect on system 

reliability using KDE calibration. However, the size of the test data was not taken into 

consideration and only three sets of sample size of the training data were considered. Their 

study did not provide explicit knowledge about the relationship between sampling variability 

and sample size.  

 

Similarly, Morrison & Poh (2018) used simulated scores to explore the effectiveness of 

different calibration methods in shrinking LR output and tested the generalizability using data 

from real cases. SS and DS scores with different sample sizes (e.g., 10, 100) were generated 

from Gaussian distributions and the score generation was repeated 1000 times. Four calibration 

methods were tested, i.e., linear discriminant analysis (Morrison, 2013), regularised logistic 

regression (Morrison & Poh, 2018), Bayesian model (Brümmer & Swart, 2014) and empirical 

lower and upper bound (ELUB; Vergeer et al., 2016). The results show that the ELUB and 

regularised logistic regression are less affected by sampling variability across all sample sizes. 

However, they only compared the effectiveness of different calibration methods on simulated 

scores that follow Gaussian distributions with equal variance, while the score distributions 

might not follow Gaussian distributions with equal variance in reality.  

 

Researchers’ degrees of freedom seem to be a less studied factor that could affect overall 

performance in FVC and in linguistics in general. Whether a qualitative or quantitative 
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approach is employed, researchers have the degrees of freedom to conduct analysis and make 

decisions. For example, Roettger (2019) discussed possible stages where researchers’ degrees 

of freedom could be exploited. He used simulated data to demonstrate how researchers’ degrees 

of freedom affects experimental results in quantitative-based phonetic studies. Taking studies 

in word stress as an example, he pointed out that researchers have the degrees of freedom of 

choosing different phonetic features to be measured (e.g., measuring duration, intensity, or F0 

as the phonetic correlates of word stress); operationalizing the chosen features (e.g., using the 

mean or the onset or the maximum of F0); and taking different domains (e.g., over the entire 

syllable, the rhyme, or the coda) (Roettger, 2019, p. 5 - 7). All the decisions made at each stage 

have implications on the analysis, and could potentially affect the final evaluation results.  

 

Similarly, in employing numerical LR approach, as well as auditory and acoustic analysis, 

experts need to decide which acoustic features to extract, how to extract them, and how to 

analyse them. Figure 2.2 shows six steps where researchers’ degrees of freedom can be 

exploited in data-driven LR-based FVC using linguistic-phonetic features. It is acknowledged 

that Figure 2.2 is a simplification of the real-world scenario where the exploitation of 

researchers’ degrees of freedom could be much complex and diverse. In step 1, training, test 

and reference data are sampled from the relevant population. Given previous studies have 

shown that it requires no fewer than 30 to 40 training and test speakers and 15 reference 

speakers to generate reliable LRs, it is the researcher’s decision on how to assign speakers into 

each of the training, test and reference data. In step 2, different linguistic-phonetic features can 

be discarded or included for analysis (e.g., F0 and harmonics-to-noise ratios, Hughes et al., 

2019; parametric cepstral distance Kinoshita et al., 2018; LTF0, Rose & Zhang, 2018; formants, 

San Segundo & Yang, 2019). In step 3, the different features selected will result in different 

feature extraction methods, e.g., polynomial curves, MFCC and DCT.  In steps 4 and 5, 

different statistical methods (e.g., MVKD, Aitken & Lucy, 2004; GMM-UBM; Reynolds et al., 

2000) can be used to generate speaker models. In step 6, researchers can choose different 

calibration methods to compute LRs. 
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Figure 2.2 A schematic process of numerical LR computation and researchers’ degrees of 
freedom involved in each step. This is a simplification of the real-world scenario and the order 
of steps differ among individual researchers.   

In the current study, Chapters 4, 5 and 6 use numerical LRs to show how different 

configurations of training, test and reference speakers, different combination of linguistic-

phonetic features and different calibration methods would affect system validity and reliability 

and individual speakers’ behaviour.     

 

2.2.3 Current study  

 

Despite the fact that previous studies have explored potential factors that affect system validity 

and reliability, the validity and reliability have generally been evaluated on the basis of pooled 

LRs, i.e. the LR output across the overall system. What previous studies have not done is to 

explore factors such as sampling variability and accent and channel mismatch in relation to 

individual speakers. It has been shown, e.g., by Hughes (2017), that a set of 30 to 40 training 

and test speakers and 15 reference speakers sampled from the relevant population is sufficient 

to estimate relatively reliable LR output. However, given what really matters in a real case is 

the specific voice of the speaker(s) under analysis and the samples used for experiments are 
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likely to be smaller than that of the relevant population, this raises issues about how 

representative the testing is in respect of a specific a case, and whether overall performance 

provides adequate insight into the validity and reliability of an LR in a specific case of 

individual speakers.  

 

Therefore, it is important to investigate the representativeness of an LR output to different 

conditions. The current study therefore investigates the effect of sampling variability on both 

overall performance and individual behaviour. It further considers the issue of how 

representative the system is under different conditions from the perspectives of the 

configurations of training, test and reference speakers, choice of linguistic features, score 

distributions and choice of calibration methods. As discussed earlier, since the real size of the 

relevant population is likely to be much larger than the speakers sampled, Chapter 4 explores 

the questions about whether the system validity and reliability would be affected if different 

configurations of training, test and reference speakers (from a relevant population) are used. If 

so, is the variability in the overall performance primarily caused by different configurations of 

training speakers, test speakers or reference speakers? Chapter 5 then explores the relationship 

between sampling variability (i.e., the choice of speakers used for training and testing systems, 

rather than sample size) and the choice of linguistic features used with a focus on both overall 

performance and individual behaviour. While Chapters 4 and 5 focus more on the effect of 

sampling variability at the feature-to-score stage, Chapter 6 looks into the effect of sampling 

variability when score distributions do not follow normality and how different calibration 

methods can reduce the LR variability.  
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Chapter 3 General Methodology  
 

This chapter explains the methods employed throughout this thesis. It discusses the corpora 

and linguistic-phonetic segmental features, LR computation process and evaluation metrics for 

both overall performance and individual speakers’ behaviour. Meanwhile, chapter specific 

methods are given in each of the experimental Chapters (Chapter 4, Chapter 5, Chapter 6) as 

well.  

 

3.1 Corpora 
 

Two corpora were used in this thesis, namely the Intelligence Advanced Research Projects 

Activity (IARPA) Babel Cantonese Language Pack (Andrus et al., 2016) and the Dynamic 

Variability in Speech corpus (DyViS; Nolan et al., 2009). This Chapter outlines the general 

structure of the two corpora, while the specific features used are introduced in the 

corresponding experimental chapters.  

 

3.1.1 IARPA Babel Cantonese Language Pack 

 

The IARPA Babel Cantonese Language Pack (Andrus et al., 2016) is a Cantonese corpus 

designed by Appen for the Babel program for speech recognition purposes. Cantonese speakers 

recruited for the corpus were from Guangdong and Guangxi provinces across five dialectal 

groups in China (i.e., not including Hong Kong, Macau or overseas Cantonese speakers). A 

detailed breakdown of speaker number and their origin is given in Table 3.1 below:   

 

  Total Male Female 

Central Guangdong 262 138 124 

Northern Guangdong 190 99 91 

Northern Pearl River Delta group 221 102 119 

Southern Pearl River Delta group 212 77 135 

Guangxi and Western Guangdong 201 98 103 

Total number of recordings 1086 514 572 

Table 3.1 Numbers of recordings across five regions in Guangdong and Guangxi provinces. 
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The corpus contains 1086 recordings (approx. 215 hours) of natural Cantonese conversational 

speech, together with transcriptions in simplified Chinese characters and Romanised Chinese 

(Huang & Kok, 1999). Sociolinguistic factors are not controlled in this corpus, beyond 

language (Cantonese), regional accent, and biological sex (male/female). Age is the only social 

variable that is recorded, with participants aged between 16 and 67 years old at the time of the 

recording. All conversations were recorded through mobile phone calls in daily life 

environments with unexpected settings, such as in the office, street, karaoke bar, and inside 

vehicles. The conversations were recorded from the caller’s end and saved into two separate 

audio files which contains the caller and receiver speech respectively. All the audio files were 

sampled at a rate of 8000Hz, meaning that only information up to 4000Hz was available for 

analysis.  

 

Only recordings from male speakers were used. Recordings from Guangxi and Western 

Guangdong areas were excluded due to their distinctive accent from the rest of the groups, i.e., 

Central Guangdong, Northern Guangdong, Southern Pearl River Delta and Northern Pearl 

River Delta regions. This led to a total number of 416 recordings available. Further, 

approximately 27% of these recordings were excluded due to extreme background noise.  

 

A major limitation in using the IARPA corpus is that it only has one recording session per 

speaker, which is not an ideal corpus for research studies in FVC. As such it does not fit with 

typical forensic conditions involving two samples recorded with a certain time interval between 

them. Using contemporaneous speech data of this kind is expected to overestimate the validity 

and reliability of the overall FVC system relative to real casework (Enzinger & Morrison, 

2012). However, this corpus is forensically realistic in terms of recording channels since the 

conversations were recorded using telephones in different environments (e.g., indoor, outdoor, 

recording/transmission-channel mismatch) and large number of speakers. In principle, forensic 

recordings could be made in any situation by any recording device.  

 

3.1.2 Dynamic Variability in Speech (DyViS) corpus 

 

The DyViS corpus (Nolan et al., 2009), on the other hand, is a much more controlled corpus 

that was developed by the University of Cambridge and designed for forensic phonetic studies 

in British English. The corpus contains 100 male speakers of Standard Southern British English 

(SSBE) aged between 18 and 25. Each participant was recorded under both studio and 
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telephone conditions, and 20 of them participated in a second recording session for non-

contemporaneous variation analysis. Four tasks were involved in the DyViS corpus, namely, 

mock police interview, telephone conversation with an ‘accomplice’, reading passage and 

reading sentences. For the current thesis, only the first two tasks were used.  

 

In task 1, subjects were asked to attend a mock police interview. However, the subjects were 

instructed to answer questions based on the information given in a map (Figure 3.1). 

Meanwhile, the subjects were told they could only answer questions containing the information 

provided in black type on a prompt sheet, while avoiding mentioning information provided in 

red type. This process was designed to create “a situation of ‘cognitive conflict,’ where 

speakers were made to lie” (Nolan et al. 2009: 41). The task 1 recordings were digitised and 

sampled at 44.1 kHz and a 16-bit depth, and last approximately 20 to 30 minutes in duration.  

 

 
Figure 3.1  An example of the map used for task 1 containing information of the story told by 

mock suspect (Nolan et al. 2009:42). Participants should only answer questions containing the 

information provided in black type, while avoiding information provided in red type.  

 

In task 2, subjects were instructed to undertake a telephone conversation with a mock 

accomplice. This task aimed to create a relaxed atmosphere so the subjects could use “a 

reasonably relaxed speaking style…, such as they might use when talking to a friend” (Nolan 

et al., 2009:43). The telephone conversation involves discussing a situation that happened in 
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the police station. The conversation was structured via on-screen prompt cards containing 

required information. Task 2 was recorded both directly (high-quality; using 44.1 kHz 

sampling rate and 16-bit depth) and at the end of the telephone line for telephone effect 

(landline band-pass filter 300 to 3400 Hz; Byrne & Foulkes, 2004); however, only the high-

quality recordings (i.e. 44.1 kHz sample rate, 16-bit depth) were involved in the current thesis.  

 

3.2 Segmental features 
 

Two Cantonese and one English segmental features were extracted and analysed in the current 

thesis: (1) Cantonese sentence final particle (SFP) /a/ ‘啊’ (gloss: ah), (2) Cantonese disyllabic 

word /haia/ ‘係啊’ (gloss: yes/yeah), and (3) British English Filled Pause (FP) um.  

 

3.2.1 Cantonese segmental features 

 

Numerous previous FVC studies have focused on English, and only limited work has been 

done in Cantonese (e.g., Chen & Rose, 2012; Rose & Wang, 2016). Given the large population 

of native Cantonese speakers (over 80 million), the current study in general contributes to FVC 

in Cantonese for research and practical purposes. The Cantonese sentence final particle (SFP) 

/a/ ‘啊  ah’ and disyllabic word /haia/ ‘係啊  yes/yeah’ were chosen as target variables. 

Cantonese SFPs are bound forms attached at sentence final position (Law, 2002). Functionally, 

they are often said to be the equivalent of intonation in English (Wakefield, 2011). The SFPs 

are potentially good variables for FVC, because they have a high frequency of occurrence in 

daily use (Leung, 2009). However, there is no empirical study showing the exact frequency of 

occurrence of each SFPs, which is probably due to the high variability of different types of 

SFPs (e.g., “ah, lah, wor, ga”). The number of different types of SFPs in Cantonese ranges 

from 30 (Kwok, 1984) to 95 (Leung, 1992) depending on how one counts them. The reason for 

selecting SFP /a/ ‘啊 ah’ in the current experiment is that /a/ is one of the most common SFPs 

in Cantonese (Sybesma & Li, 2007) and occurred with high frequency in the current data set. 

Moreover, SFP /a/ occurs in sentence final positions, and thus it usually incurs syllable final 

lengthening which leads to longer duration and more canonical formant values than syllable 

onset /a/ (Lindblom, 1963). As a result, SFPs are easier to segment than syllable onset /a/.  
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The second variable /haia/ ‘係啊 yes/yeah’ is a disyllabic word consisting of two Chinese 

characters. The first part /hai/ ‘係’ means ‘yeah/yes’ by itself, and the second part is SFP /a/ 

which is attached to the end of the word for pragmatic purposes among Cantonese speakers. 

The words /hai/ and /haia/ have the same semantic meaning, but differ at morphemic level, i.e., 

whether the SFP /a/ is attached or not.  

 

3.2.2 English filled pause um 

 

Filled pauses (FP) are articulations between utterances used to ‘hold the floor’ while the 

speaker is thinking or hesitating (Clark, 2002).  In English, FPs are generally assumed to be 

produced as a central vowel with or without a final bilabial nasal, i.e. [әː] or [әːm]. The FP um 

is similar to the Cantonese SPFs in the following aspects. Firstly, FPs have a high frequency 

of occurrence among speakers in most styles of spontaneous speech (Tschäpe et al., 2005). It 

is therefore highly likely that FPs would be available in sufficient numbers in most questioned 

samples (QS) and known samples (KS) containing spontaneous speech that are at least a few 

minutes long (Hughes et al., 2016). Secondly, FPs usually also have longer duration than 

lexical vowels, which gives longer and more stable formant trajectories assuming a normal 

recording circumstance. This makes segmentation and acoustic measurement easier to conduct. 

Thirdly, neither FPs nor Cantonese SFPs have a semantic meaning by themselves. Apart from 

these similarities, FPs are normally somewhat isolated from other syllables, in that they are 

often flanked by a pause on at least one side, and are thus less influenced by coarticulation. 

Therefore, it can be hypothesized that FPs should show low intra-speaker variation, because 

there is no other vowel or consonants at the onset or coda of FPs (Hughes et al., 2016).  

Moreover, FPs have been shown to be useful FVC variables in previous studies (e.g., Foulkes 

et al., 2004; Jessen, 2008). Only um is used in the current study because it was found to 

outperform its counterpart uh and has shown promising performance in separating SS and DS 

speaker pairs using the same data as the experiments in this thesis (Hughes et al., 2016). 

 

3.2.3 Segmentation and feature extraction 

 

This section explains the detailed data segmentation procedures for Cantonese segments. The 

target Cantonese variables were manually segmented and labelled on the same interval tier 

using a TextGrid in Praat (Praat version 6.0.36; Boersma and Weenink, 2017).  
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Figure 3.2 shows an example of segmented tokens. The boundaries were placed at the onset 

and offset of the full vocalic portion of each token. The onset of SFP /a/ was marked by the 

start of regular periodicity of the full vocalic portion, and the offset was marked by the last 

periodic wave of the full vocalic portion. The onset of /haia/ was marked by the start of the 

voiceless glottal fricative and the offset was marked by the last periodicity of the vocalic 

portion of /a/. A stable portion of the SFP /a/ was segmented when there is no clear-cut between 

the offset of preceding vowel/consonant and the onset of target variables.  

 

 

 

 

Figure 3.2 Segmented Cantonese variable /a/ (top panel) and /haia/ (bottom panel).  
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Due to poor transmission, there were large numbers of tokens where the F3s were extremely 

difficult to measure. A similar pattern was also reported in Gold (2009), where F3 measurement 

was extremely difficult to make in cellular phone recordings because the acoustic information 

was removed by “the high frequency cut-off of the codec” leading to the reduction in acoustic 

energy in the high frequency range. Although recordings in Gold (2009) were made internally 

using a voice recorder application rather than them being transmitted. Figure 3.3 (top panel) is 

an example of weak/unanalysable F3 from Gold’s study (2009, p.39) and Figure 3.3 (bottom 

panel) is an example from the Cantonese IARPA corpus, and the F3 is not traceable at all. As 

a result, only the first two formants were extracted from the Cantonese corpus IARPA in the 

current study.  
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Figure 3.3 Top panel: unanalysable F3 of the word ‘bit’ from the voice recorder of the Nokia 
N73 (top) (Gold, 2009, Figure. 12, p.39). Bottom panel: unanalysable F3 of /a/ from IARPA, 
speaker_141335_outLine.  

Two Praat scripts (Lennes, 2002, 2003) were then used to extract the first two formants of all 

the segmented tokens. The first script trimmed all the segmented tokens into a separate sound 

file and saved it to a specified directory. The reason for the first stage was to avoid running 
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Praat scripts with large sound files; extracting the tokens to individual sound files makes the 

process much more efficient. The second script took all the individual sound files and extracted 

the first three formants at 10% steps across the full vocalic portion. The data was then exported 

to text file.  

 

The automatic formant extraction method makes experiments in acoustic-phonetic studies 

much more efficient. However, human-assisted examination is still an essential element. This 

is because Praat or any software might give inaccurate formant measurements under the default 

formant settings, and not all formants from all the speakers can be extracted accurately under 

the same format settings. Figure 3.4 (top panel) shows the default formant settings (this is the 

default settings used in current thesis, not Praat default settings) for formant extraction (i.e., 

maximum formant: 4000 Hz; number of formants: 4). Correspondingly, Figure 3.5 (top panel) 

shows the output of a linear predictive coding analysis (red dots) using the default formant 

settings. When the second script is being implemented, Praat takes measurements of formant 

values of those red points. However, there are several obvious errors in the top panel in Figure 

3.5. This is because Praat would treat the lowest red dots as F1, the second lowest as F2 and 

the third lowest as F3, leading to inaccurate overall measurements. The bottom panel (Figure 

3.5) shows the same token with a different formant setting, i.e., maximum formant: 4000 Hz, 

number of formants: 3, which would yield a more accurate measurement.  
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Figure 3.4: Praat formant setting window. Number of formants changed from 4 (top panel) to 
3 (bottom panel). 
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Figure 3.5 Formant extraction using different formant settings in Praat (Top panel: 4000 Hz, 4 
formants; bottom panel: 4000 Hz, 3 formants). The top panel shows errors, i.e., the lowest red 
dot at the beginning and a few around F3 towards the end of the segment.   

Therefore, the raw formant values were extracted twice under two different formant settings 

(Figure 3.4) and the measurements were saved in two separate text files. Formant values in two 
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excel files were compared and filtered using acceptable measurement ranges adapted from 

Hughes & Foulkes (2015b), i.e., 200 Hz to 900 Hz for F1, and 1000 Hz to 2000 Hz for F2. 

Where tokens had values outside the range for one configuration of settings in one excel file 

they were replaced by a more reasonable measurement from the other configuration of settings 

from another excel file. If not, the formant values were removed when they were outside the 

range in both files. It was presumed that measurements would cause data points to deviate from 

the group mean. In order to delete the most extreme outliers in the raw formant values, the 

pooled mean across all speakers was calculated and a z-score of +/- 3.29 was applied to each 

set of 10% formant measurements. Measurements that were 3.29 standard deviations 

greater/less than the mean were removed. In order to preserve as many tokens as possible, 

missing values were replaced by the mean of two adjacent measurements. However, the whole 

token was removed where the first and/or last measurements were missing.  

 

Hand-corrected acoustic data for the FPs was already available. The FP um data was an 

extension of that used by Hughes et al. (2016), containing the FP um data of 90 SSBE speakers. 

The data contained the raw values of the first three formants and F0 as well as nasal and vocalic 

duration (see Hughes et al. 2016 for detailed data extraction procedure). There were on average 

35 FP um tokens per speaker per task. The first three formants and F0 of each token were fitted 

using quadratic polynomial curves, as no single formant or F0 was expected or observed to 

have more than one turning point. Figure 3.6 shows an example of quadratic fitting to five 

tokens from speaker #114 in Task 1 (I refer throughout the thesis to DyViS speaker codes in 

the form #xxx, and those speaker numbers are the original DyViS speaker numbers). The 

quadratic coefficients of the first three formants and F0 as well as the vocalic and nasal duration 

were then used as the input features for computing LRs.  
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Figure 3.6 Quadratic curve fitting to F0, F1, F2 and F3 of five um tokens from #114 in DyViS 
Task 1. 

 

3.2.4 Feature parameterisation  

 

In FVC systems using linguistic-phonetic features, feature extraction is carried out over 

segmentals/suprasegmentals such as vowels or disyllabic words. In FVC studies, multiple 

measurements are often taken over the entire formant trajectories, and then trajectories are 

fitted with polynomial curves to capture the shapes. This process is known as the dynamic 

approach (McDougall, 2004). Numerous empirical studies have shown that using the dynamic 

approach gives promising speaker discrimination results and works better than static 

measurement  (Greisbach et al., 1995; McDougall, 2004; Morrison, 2009; Rodman et al., 2002).  

 

Figure 3.7 gives an example of the formant dynamic approach in extracting the first three 

formants over a diphthong /aɪ/. It shows that 9 measurements were taken throughout the 

duration of the segment, i.e., a 10% interval between each measurement.  
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Figure 3.7 Example of formant dynamic analysis. Figure 3.8 from Hughes (2014, p.82). 
Measurement is taken with a 10% interval of /aɪ/ in the word skype from DyViS sample 027-
01-060425.wav  

 

In the current thesis, quadratic and cubic polynomial curves were fitted over the nine 

measurements of F1 and F2 over the vocalic portion of /a/ and /haia/ respectively. The 

polynomial fitting was conducted in R (R Core Team, 2018). The polynomial coefficients 

model the whole trajectory of each formant, which reduces the dimensionality of the dataset 

and improves the discrimination performance (Hughes et al., 2016; McDougall, 2006). The 

quadratic and cubic polynomial formulas are shown below,  

 

Quadratic polynomial regression: 

y = f(x) = ax2 + bx + c                                                                              (Equation 3.1) 
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Cubic polynomial regression: 

y	=	f(x)	=	ax3	+	bx2	+	cx	+	d	                                                                (Equation 3.2)	

 

Figure 3.8 shows examples of quadratic and cubic fitting for /a/ (left panel) and /haia/ (right 

panel). The blue and red dots are the raw F1 and F2 values, while the lines are polynomial 

curves fitted to raw F1 and F2 values. The reason for using quadratic curves for SFP /a/ is 

because the trajectory of SFP /a/ is basically linear with no more than one turning point. 

Therefore, a quadratic curve seems to be enough to capture the trajectory information. By 

contrast, /haia/ has more complex trajectories. It is expected to have a rising-falling F2 and 

falling-rising F1 in general, as the vowel sequence contains an open vowel followed by a close 

front vowel, and then a second open vowel.  The formant trajectories are therefore expected to 

have two turning points. As a result, cubic polynomial curves should suffice to capture the 

formant complexity in /haia/.  

 

Figure 3.8 Quadratic and cubic curve fitting to /a/ (left panel) and /haia/ (right panel) 

respectively.  
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Each token was plotted and fitted with corresponding polynomial curves. Obvious errors in the 

raw formant data were again removed, and polynomial curves were re-fitted. There were cases 

where the raw data points had a large deviation from the polynomial curves. Figure 3.9 gives 

an example of the same seven /haia/ tokens fitted with cubic polynomial curves before (left 

panel) and after (right panel) hand-correction. Outliers (highest values of the second and third 

measures of F2) in the left panel in Figure 3.9 were located in the original recording, the data 

points were measured manually, and the tokens were fitted again by using cubic polynomial 

curves (Figure 3.9 right panel). The final dataset contains 155 speakers for SPF /a/ and 64 

speakers for /haia/, with on average 13 to 14 tokens per speaker.  

 

Figure 3.9 Plot of raw formant values of /haia/ fitted with cubic polynomial curves. An example 

of showing error measurements in the F2 (left panel) and hand-corrected version (right panel). 

The F1 values were sensible and did not need hand-correction.   

 

3.3  LR computation  
 

In LR-based FVC, two stages (i.e., feature-to-score and score-to-LR) and three datasets (i.e., 

training, test and reference data) are normally involved (Section 1.4). This section explains the 

methods involved in the two stages in relation to functions of training, test and reference data.  
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3.3.1 Feature-to-score  

 

After the speech features are extracted from the speech data, speaker models are built using 

mathematical models, i.e. feature-to-score conversion (Morrison, 2013). Suspect and offender 

models are built from training and test data respectively to assess the similarity between two 

speech samples; meanwhile, typicality between suspect and offender samples are evaluated 

using a model based on data from the reference speakers. Throughout this thesis, the 

multivariate kernel density model (MVKD; Aitken & Lucy, 2004) was used for the feature-to-

score stage. In the MVKD procedure, the within-speaker variation is modelled with a normal 

distribution, while the between-speaker variation is modelled using kernel density estimation 

(Aitken & Lucy, 2004 115:117; Rose, 2013a).  

 

The numerator of the MVKD formula is given in Equation 3.3, evaluating the probability of 

observing the difference between the suspect and the offender given they come from the same 

speaker,  

 

Numerator of MVKD: 

𝑓0(𝑦1, 𝑦2 |𝑈, 𝐶)  = (2𝜋)−𝑝|𝐷1|−1
2|𝐷2|−1

2 |𝐶|− 1
2     

 

× (𝑚ℎ𝑝)−1|𝐷1
−1 + 𝐷2

−1 + (ℎ2𝐶)−1 |−1
2  

 

×  exp { −
1
2

(𝑦1 − 𝑦2)𝑇(𝐷1 + 𝐷2)−1(𝑦1 − 𝑦2)} 

 

× ∑ exp  {−
1
2 (𝑦∗ − 𝑥𝑖)𝑇 ((𝐷1

−1  + 𝐷2
−1)−1  + (ℎ2𝐶))

−1(𝑦∗ − 𝑥𝑖)}
𝑚

𝑖=1

 

 

 where  𝑦∗ =  (𝐷1
−1 + 𝐷2

−1)−1 (𝐷1
−1𝑦1 + 𝐷2

−1𝑦2) 

 

(Equation 3.3) 
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The denominator of the MVKD formula (Equation 3.4) evaluates the probability of observing 

the difference between the suspect and offender samples given that those samples are produced 

by different speakers that are from the relevant population,  

 

Denominator of MVKD: 

𝑓1(𝑦1 + 𝑦2 |𝑈, 𝐶) = (2𝜋)−𝑃|𝐶|−1(𝑚ℎ𝑝)−2 

 

×  ∏[
2

𝑖=1

 |𝐷𝑙|
−1

2 |𝐷𝑙
−1 + (ℎ2𝐶)−1|−1

2 

 

×  ∑ 𝑒𝑥𝑝 {−
1
2 (𝑦𝑙 − 𝑥𝑖)

𝑇 (𝐷𝑙 + ℎ2𝐶)−1 (𝑦𝑙 − 𝑥𝑖)}
𝑚

𝑖=1

 ] 

(Equation 3.4) 

 

                     Aitken & Lucy (2004: 116-117) 

 

where U, C = intra-, inter-speaker variance/covariance matrices 

n1, n2 = number of replicates per speaker 

m = number of speakers in reference population 

p = number of assumed correlated variables per speaker 

D1=D1, D2 = offender, suspect variance/variance/covariance matrices = n1-1U, n2-1U 

h = optimal smoothing parameter for kernel density = (4/(2𝑝 + 1))1/(𝑝+4)𝑚−1/(𝑝+4) 

𝑦1 = 𝑦1, 𝑦2 = offender, suspect mean vectors 

𝑥i  = intra-speaker means of reference population.  

  

The results of the MVKD formula are LR-like scores taking both similarity and typicality into 

consideration. The higher the score, the greater the support for prosecution proposition, while 

a lower score gives more support to the defence proposition (Brümmer & du Preez, 2006). 

However, scores are purely non-negative values that cannot be interpreted directly; therefore, 

the score-to-LR stage is needed to transform scores into interpretable LRs and to optimise 

overall performance. 
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3.3.2 Score-to-LR 

In the second stage, calibration is conducted to convert test scores into LRs. This is done using 

calibration models trained on scores computed for a set of training data. Four calibration 

methods were used in the current thesis, namely logistic regression (Brümmer et al., 2007), 

regularised logistic regression (Morrison & Poh, 2018), Bayesian model (Brümmer & Swart, 

2014) and empirical lower and upper bound (ELUB; Vergeer et al., 2016). In Chapters 4 and 

5, only logistic regression was used, while all four calibration methods were used in Chapter 

6. The following sections give a brief introduction of the rationales behind these calibration 

methods. Apart from logistic regression, the other three calibration methods incorporate 

uncertainty into the LR itself, such that LRs will be closer to 1 when uncertainty is high (i.e., 

when sample size is low). In this thesis, the logistic regression calibration is carried out using 

an R package fvclrr (Lo, 2018) and the other three are implemented using a Matlab script 

(Morrison, 2018).  

 

3.3.2.1 Logistic regression  

 

Logistic regression (Brümmer et al., 2007) is one of the most widely used calibration methods 

in data-driven LR-based FVC. A set of training scores is normally required to train the logistic 

regression model where the coefficients from the model are then applied to the test scores to 

generate calibrated LRs. Logistic regression, and calibration methods in general, optimises 

overall performance, minimises Cllr and serves to “ameliorate what would otherwise be very 

misleading results” (Grigoras et al., 2013:620). A visualisation of logistic regression modelling 

using training scores is given in Figure 3.10,  
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Figure 3.10 Distributions of SS (red) and DS (blue) scores (upper panel), logistic regression 
fitted to SS and DS scores (middle panel) in probability space and linear relationship between 
SS and DS scores derived from the logistic regression modelling in log-odds space (bottom 
panel). (Morrison 2013: 182 Figure 4).   

 

Ramos-Castro (2007:120) and Morrison (2013:184) explain that zero and one are assigned to 

the distributions of SS and DS training scores (Figure 3.10, upper panel) and are modelled 

using logistic regression where the sigmoidal curve is fitted to SS and DS training scores using 

maximum likelihood function in probability space (Figure 3.10, middle panel). Logistic 

regression computes the best fit of the sigmoidal curve by making the probability of hypothesis 

given evidence (i.e., score) as close as possible to zero for DS comparisons and as close as 

possible to one for SS comparisons. The sigmoidal curve is then transformed from probability 

space to log-odds space to generate the linear relationship between SS and DS log scores 
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(Figure 3.10, bottom panel). Once the linear relationship is obtained, the conversion from 

scores to LLRs can be achieved using the form of linear regression (Equation 3.5),   

 

LLR = α + βs                                                                                                    (Equation 3.5) 

 

where α and β are the regression coefficients, s is the score from test data and LLR is the 

calibrated LR. The intercept α and coefficient β obtained using logistic regression and training 

scores are the shift and scale values. The shift and scale values are added and multiplied to the 

test scores respectively to generate calibrated LLRs.  

 

3.3.2.2 Regularised logistic regression 

The rationale behind regularised logistic regression is similar to logistic regression, where the 

shift and scale values are obtained by fitting a logistic regression model to the training data. 

The shift and scale values are then applied to test data to generate interpretable LRs. However, 

the regularisation process is implemented by adding sets of pseudodata (Menard, 2010; 

Morrison & Poh, 2018) with uninformative uniform distribution to avoid numerical problems 

or shrink extreme LR outputs. Note that pseudodata can have other distributions, but the one 

used in the current thesis is uninformative uniform distribution. The pseudodata is then 

weighted using wψ which is calculated using a κψ value divided by two times the sum of the 

number of SS and DS comparisons in the training data.  In this way, the effect of regularisation 

(i.e., the wψ value) decreases as the sample size in the training data increases (Morrison & Poh, 

2018). Once the pseudodata is weighted, a regularised logistic regression model can be fitted 

to the weighted pseudodata with reduced fitted slope to shrink the LR output. One disadvantage 

of regularised logistic regression is that the κψ value needs to be specified, and the choice of κψ 

values is arbitrary to some extent. Depending on the purpose of calibration, small prior values 

(κψ ≤ 0.1) deal with the complete separation issue (i.e., SS and DS speakers are completely 

separated and no overlap between SS and DS scores before calibration) and larger prior values 

(κψ ≥ 1) deal with extreme LR outputs (namely shrink the range of LR output) (Morrison & 

Poh, 2018).  

Figure 3.11 shows an example of applying different κψ values using regularised logistic 

regression (ibid). In Figure 3.11 (panel (a)), logistic regression was fitted to training data with 

complete separation between SS (circles coded as 1) and DS (triangles coded as 0) scores.  As 
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a result, the likelihood is maximised and extreme LRs are produced when the intercept lies 

between the highest DS training score and lowest SS training score. Figure 3.11 panel (b) and 

panel (c) shows an example of regularised logistic regression fitted with extra copy of SS and 

DS training data using κψ equals to 0.1 and 5 respectively. In the current thesis, the focus is 

placed on shrinking the range of LR output, and therefore I follow Morrison and Poh (2018) in 

adopting κψ equals to 5 in using regularised logistic regression for calibration.  

 
Figure 3.11 An example of regularised logistic regression using different κψ values (Figure 2 
in  Morrison & Poh, 2018, p. 205). Panel (a) shows an example of logistic regression fitted 
without regularisation. Panels (b) and (c) show logistic regression fitted with small and large 
regularisation to avoid complete separation and to induce shrinkage respectively. Large 
symbols are the sampled data, and the small symbols are the weighted pseudo data with an 
uninformative uniform distribution.  

 

3.3.2.3 Bayesian model 

 

The fully Bayesian approach involves the use of priors (i.e. hyperparameters) to reduce the 

magnitude of the LRs when uncertainty is high (Brümmer & Swart, 2014; Morrison & Poh, 
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2018). The fully Bayesian calibration models need to be estimated using SS and DS training 

scores respectively. The likelihood of the Bayesian models is then evaluated using test scores 

(Brümmer & Swart, 2014). Meanwhile, the prior belief and the strength of the belief for the 

mean and variance of the training scores need to be specified. However, due to the nature of 

FVC, the ground truth is impossible to know and it has been shown that uninformative priors 

yield more constrained Bayes factors (BF, the Bayesian counterpart of the frequentist LR) than 

informative priors (Morrison et al., 2014). In this thesis, following Morrison & Poh (2018), 

the Jeffreys reference uninformative priors were used. The formula for Bayesian model 

estimation can then be simplified as shown in Equation 3.6. 

Bayesian model using Jeffreys reference:  

𝜆𝐵 = 𝑡𝑛−1(𝑥|µ̂ , 𝑛+1
𝑛−1

𝜎 ̂2)                                                                                (Equation 3.6) 

Where t is a t distribution, n is the sample size, x is the test score, µ̂ and �̂�2 are the sample mean 

and variance of the training score. The calculation of BF is then the ratio between the likelihood 

of the Bayesian models evaluated using test scores is shown in [3.7]. 

 

log (BF) = log (𝑡𝑛𝑠𝑠−1 ((𝑥 | µ𝑠�̂� ,
𝑛𝑠𝑠 + 1
𝑛𝑠𝑠 − 1 �̂�𝑠𝑠

2 ))) − log (𝑡𝑛𝑑𝑠−1 ((𝑥 | µ𝑑�̂� ,
𝑛𝑑𝑠 + 1
𝑛𝑑𝑠 − 1 �̂�𝑑𝑠

2 )))

   

 

 

(Equation 3.7) 

However, Morrison and Poh (2018) explained that monotonicity is not guaranteed in [3.7] as t 

distribution is used for both numerator and denominator. Therefore, certain constraint needs to 

be imposed to reduce the extent of non-monotonicity. The BF is then calculated using Equation 

3.8 where the pooled sample variance ( �̂� 2) is used; meanwhile, the degrees of freedom 

(𝑛𝑠𝑠+𝑛𝑑𝑠 − 2) are adjusted to take the pooled variance calculation into consideration and the 

�̅� is the sum of SS and DS samples divided by 2.  
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log (BF) = log (𝑡𝑛𝑠𝑠+𝑛𝑑𝑠−2 ((𝑥 | µ𝑠�̂� ,
�̅� + 1
�̅� − 1  �̂�2)))

− log (𝑡𝑛𝑠𝑠+𝑛𝑑𝑠−2 ((𝑥 | µ𝑑�̂� ,
�̅� + 1
�̅� − 1 𝜎 ̂2)))

   

 

(Equation 3.8) 

Morrison and Poh (2018: 203) 

 

3.3.2.4 Empirical lower and upper bound (ELUB) 

 

The ELUB (Vergeer et al., 2016) method uses empirical data to set maximum and minimum 

values to the LRs that a given system can output based on the training set, then all other LRs 

produced by the test data are limited within that range. The advantage in using the ELUB 

calibration methods lies in that it avoids extreme LRs caused by data extrapolation at the 

distribution tails.  Figure 3.12 shows an example of data extrapolation using different density 

models. The right panel shows the SS (Hp) and DS (Hd) scores fitted with different density 

models and the left panel gives the enlarged figure at the distribution tails. The distribution 

estimation at the tail of SS scores (Hp) is not well supported by the observed data, and it is 

more likely to obtain extreme LRs using exponential density models than kernel density 

estimation. 
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Figure 3.12 SS (Hp) and DS (Hd) scores fitted with different density models (Figure 2 in 
Vergeer et al., 2016, p.483). The left panel shows enlarged plot at the distribution tail showing 
different degrees of extrapolation using KDE, Exponential and Lorentzian modelling for SS 
scores.  

As mentioned above, ELUB shrink extreme LR outputs by setting a maximum and minimum 

value to the LR output by the system based on the sizes of the training data, and the rationale 

behind the ELUB calibration method lies in a rule of thumb that the LRs should be smaller 

than the sample size of the training data for Hd, or smaller than 1 divided by the size of training 

data for Hp (Vergeer et al., 2016). For example, if there are one disputed speech and 4 suspects, 

and it is known that one of suspects produced that disputed speech. The probability of each 

suspect produced the disputed speech is 25% (1/4) before any evidence is taken into 

consideration. Therefore, a conservative estimate of the LR should be no larger than 1/4 when 

Hp is true or smaller than 4 when Hd is true.  

The implementation of ELUB is carried out using the expected utility (EU) ratio. Ultimately, 

the EU serves as a reference for decisions when the uncertainty is high. Vergeer et al. explained 

that the utility function, to be associated with the court decisions, consists of four possible 

binary decisions, i.e., Ucp (conviction of a perpetrator), Uci (conviction of an innocent), Uap 

(acquittal of a perpetrator), Uai (acquittal of an innocent). It is assumed that the trier of fact 
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should aim to maximize EU rather than decisions, and EU can be expressed using equation 

[3.9].  

EU = max{ Ucp × 𝑃(𝑝) + Uci × (1 − 𝑃(𝑝)) ; Uap × 𝑃(𝑝) + Uai × (1 − 𝑃(𝑝)) } 

Equation 3.9 

 Vergeer et al. (2016, p. 485) 

Where 𝑃(𝑝) stands for the probability that the suspect is the perpetrator, and maximizing EU 

leads to a Bayes decision rule (Brümmer, 2010), 

Decision “convict”: 

𝑃(𝑝)
(1 − 𝑃(𝑝)) >  

(𝑈𝑎𝑖 − 𝑈𝑐𝑖)
(𝑈𝑐𝑝 − 𝑈𝑎𝑝) 

Equation 3.10   

Decision “acquit”: 

 
𝑃(𝑝)

(1 − 𝑃(𝑝)) <  
(𝑈𝑎𝑖 − 𝑈𝑐𝑖)
(𝑈𝑐𝑝 − 𝑈𝑎𝑝) 

 Equation 3.11 

(Vergeer et al., 2016, p.486) 

The left-hand sides of Equations 3.10 and 3.11 are the posterior odds in a court decision, i.e., 
𝑃(𝑝) = 𝑃(𝐻𝑝) and 1 − 𝑃(𝑝) = 𝑃(𝐻𝑑). The (𝑈𝑎𝑖− 𝑈𝑐𝑖)

(𝑈𝑐𝑝− 𝑈𝑎𝑝)
 then can be regarded as a threshold 

odds (Oddsth) for the decision. Based on Bayes rule, the decision rule can be rearranged into: 

Decision “convict”:  

𝑃(𝐸|𝐻𝑝)
𝑃(𝐸|𝐻𝑑) >  𝑂𝑑𝑑𝑠𝑡ℎ  ×  

𝑃(𝐻𝑑)
𝑃(𝐻𝑝) 

Equation 3.12 
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Decision “acquit”: 

𝑃(𝐸|𝐻𝑝)
𝑃(𝐸|𝐻𝑑)  <  𝑂𝑑𝑑𝑠𝑡ℎ  ×  

𝑃(𝐻𝑑)
𝑃(𝐻𝑝) 

Equation 3.13 

Vergeer et al. (2016, p.486, Equations 3(a) and 3(b)) 

Because the left hand side of Equations 3.12 and 31.3 is in fact the LR,  the right hand side can 

then be used as a threshold LR (LRth). The LRth can then be used to calculate the empirical 

uppder and lower bounds using Equation [3.14].  

Calculating EUratio: 

EUratio(ELUB) = 
{1          𝑖𝑓 𝐿𝑅𝑡ℎ>1

𝐿𝑅𝑡ℎ 𝑖𝑓 𝐿𝑅𝑡ℎ ≤1
𝑛𝐿𝑅𝑠≤𝐿𝑅𝑡ℎ + 1

𝑛𝐿𝑅𝑠+1 +𝐿𝑅𝑡ℎ×𝑛𝐿𝑅𝑑 > 𝐿𝑅𝑡ℎ+1
𝑛𝐿𝑅𝑑+1

 

(Equation 3.14) 

                                                             (Morrison & Poh, 2018) 

The numerator is the neutral system LR that is no larger than 1 and the exact value depends on 

the 𝐿𝑅𝑡ℎ. For the denominator,  𝑛𝐿𝑅𝑠 and 𝑛𝐿𝑅𝑑 are the number of the SS and DS LRs in the 

training data respectively. The 𝑛𝐿𝑅𝑠 ≤ 𝐿𝑅𝑡ℎ  represents the number of SS LRs that is no larger 

than 𝐿𝑅𝑡ℎ and 𝑛𝐿𝑅𝑑  >  𝐿𝑅𝑡ℎ represents the number of DS LRs that is higher than 𝐿𝑅𝑡ℎ . The 

upper and lower boundaries obtained from EUratio can then be applied to the test data to shrink 

the LR output.  

 

3.4  Evaluation  
 

In the current thesis, evaluation was carried out for both overall performance and individual 

speakers’ behaviour. The main metrics used for overall performance were Log LR cost function 

(Cllr; Brümmer & du Preez, 2006) and Equal error rate (EER), while zoo plots (Doddington et 
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al., 1998; Dunstone & Yager, 2009) and root-mean-square-deviation (RMSD) were used for 

the evaluation of individual speakers.   

 

3.4.1 System validity and reliability  

 

3.4.1.1 Log LR cost function (Cllr) 

 

Cllr (Brümmer & du Preez, 2006) is used as the main metric for system validity evaluation in 

the current thesis. The Cllr function (Equation 3.9) evaluates overall performance based on the 

magnitude of evidence (i.e., LR), specifically the contrary-to-fact LRs. This means that not all 

errors are problematic, i.e., contrary-to-fact LRs with lower magnitude (e.g., closer to 0) are 

less problematic for overall performance than contrary-to-fact LRs with higher magnitude (e.g., 

100). 

 

Log LR cost function (Cllr): 

𝐶𝑙𝑙𝑟 =
1
2 [

1
𝑁𝑠𝑠

∑ 𝑙𝑜𝑔2
𝑁𝑠𝑠

𝑖=1

 (1 +  
1

𝐿𝑅𝑠𝑠𝑖

)  +  
1

𝑁𝑑𝑠 ∑ 𝑙𝑜𝑔2 
𝑁𝑑𝑠

𝑖=1

(1 + 𝐿𝑅𝑑𝑠𝑖) ] 

(Equation 3.15) 

Gonzalez-Rodriguez et al. (2007) 

 

where: 

Nss = the number of comparisons using speech samples produced by the same speaker  

LRss = LRs of speech samples produced by the same speaker  

Nds = the number of comparisons using speech samples produced by different speakers 

LRds = LRs of speech samples produced by different speakers  

 

The left and right part within the square brackets of the equation (either side of the + sign) is 

the mean of the output of a function applied to all the LRs obtained from same speaker (SS) 

and different speaker (DS) comparisons respectively (Morrison, 2011b), and Cllr is the sum of 

the mean divided by two. Therefore, each part of the equation contributes to the final value of 

Cllr. Since Cllr evaluates overall performance based on the magnitude of LRs (not based on 

system decisions directly), it is not easy to interpret per se. Therefore, Cllr is often used to 

compare performance between systems. A Cllr between 0 and 1 indicates that the system is 
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capturing some useful information, and the closer to 0 the better the system validity is. A Cllr 

of 1 is equivalent to a system that consistently produces LLRs of 0 (LRs = 1) irrespective of 

whether they came from SS or DS comparisons, and a LLR equals to 0 gives no useful 

information for FVC purpose. As such, a Cllr of higher than 1 indicates that the system is not 

capturing any useful information. Following the consensus on validation of FVC outlined in 

(Morrison et al., 2021), 1 is considered as the only relevant threshold for Cllr in the current 

thesis.   

 

In each of the experimental chapters (i.e., Chapters 4, 5 and 6), the experiments were replicated 

100 times and the system validity was assessed using mean Cllr values, i.e., the lower the mean 

Cllr the better the system validity. Chapter 2 has discussed system validity testing using mean 

Cllr as well as system reliability testing using different metrics, e.g., 95% credible interval, 

variability scores and Cllr range, in previous studies. Since there is no consensus about which 

measure should be used for system reliability testing in FVC, the range between Cllr values was 

used for assessing system reliability for the sake of simplicity (i.e., subtraction of the highest 

and lowest Cllr across replications). A system with good performance should have both low 

mean Cllr values and small Cllr ranges. Due to the limit of sample size, it is acknowledged that 

the training, test and reference speakers across 100 replications are not completely independent 

of each other. This is likely to underestimate the variability in system output, compared with 

using low quality recordings and truly independent samples of speakers. However, given the 

limitations on the availability of data in the real world, it is likely that any type of replication 

study of this sort would use samples which are not entirely independent. Therefore, the results 

should in some ways be treated as the ‘base case scenario’ for variability in system performance 

as a function of sampling, and that even wider variability in system performance would be 

expected where poor quality recordings are used and independent samples are drawn from a 

much larger database. Meanwhile, the 100 times replication, similar to previous studies (Ali et 

al., 2015; Morrison & Poh, 2018), is an arbitrary choice in the current thesis. 
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3.4.1.2 Equal error rate (EER) 

 

EER measures the system validity using the LLR as a discriminant function, which indicates 

the threshold values when the false rejection rate equals the false hit rate (Table 3.2). EER was 

calculated with an adaptation of Ketabdar’s (2004) MATLAB function in R (Lo, 2018). 5000 

thresholds were used across the entire range of LLRs. 

 

 SS comparison  DS comparison  

LLR > 0 Hit False hit 

LLR < 0 False rejection Correct rejection  

Table 3.2 Categorical calculation of EER using the LLR as a discriminant function. Hit and 
Correct rejection are when speaker pairs are classified correctly, and false rejection and false 
hit are when speaker pairs are wrongly classified.  

The major limitation in using EER for LR-based FVC system evaluation is that EER only treats 

LLRs categorially and it does not take the magnitude of evidence into consideration, i.e., what 

is considered an “error” is not being judged on a threshold of LLR = 0; therefore, a system that 

consistently yields high contrary-to-fact LLRs could have the same system validity to the one 

that produces low contrary-to-fact LLRs.  

 

3.4.2 Individual behaviour  

 

3.4.2.1 Root-mean-square-deviation (RMSD) 

 

The RMSD is frequently used to measure the differences between predicted values and 

observed values. However, RMSD is used here to capture the mean distance between a 

speaker’s individual LLR and mean LLR. A low RMSD value indicates that the specific 

speaker is more stable, while a high RMSD value indicates that the speaker is less stable. 

Essentially, the RMSD value captures the stability of each individual speaker’s behaviour 

throughout the experiments. The RMSD values of SS and DS comparisons were calculated for 

each speaker in each system, measuring how far each comparison LLR is from the mean for 

that speaker. The individual speakers’ RMSDs were calculated using LLRs. The formula of 

RMSD is defined below in [3.10]: 
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Root-mean-square-deviation: 

𝑅𝑀𝑆𝐷 =  √1
𝑛

∑ (𝑥𝑖  − 𝑦𝑖)2𝑛
𝑖=0                                                       (Equation 3.16)                                                                    

 

Where n is the total number of SS or DS comparisons,  

xi is the individual SS/DS LLR in each comparison,  

yi is the mean of SS/DS LLRs of each individual speaker in each system. 

 

3.4.2.2 Zoo plot 

 

The zoo plot uses animal names to categorise individuals (in this case, speakers) for identifying 

the trends of overall performance and problematic speakers. Initially, four animal names were 

included in the biometric menagerie (Doddington et al., 1998; Dunstone & Yager, 2009), i.e. 

sheep, goats, lambs and wolves (Figure 3.13), and these four animals are defined based on user 

scores in biometric systems (same-speaker (SS) or different-speaker (DS) scores in FVC). In 

the context of FVC and other biometric systems, sheep contains the majority of the speakers, 

who tend to match well against  themselves and well against others, having high SS and low 

DS scores; goats are difficult to match when they are compared against themselves but easy to 

match with other speakers, often characterised by low SS and low DS scores; lambs and wolves 

are speakers who are both likely to yield good performance when they are compared against 

themselves (high SS scores). However, the difference is that lambs are more likely to be 

impersonated by other speakers and wolves “are successful at impersonation” (Yager & 

Dunstone, p.161, 2010).  
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Figure 3.13 A Zoo plot with the relative location of the new and old classes of animals 

(Dunstone and Yager, 2009, p. 168, Figure 8.5). New class of animals: phantoms, doves, 

worms and chameleons; old class of animals: goats, sheep, lambs and wolves.  

 

Dunstone and Yager (2009) later proposed a new class of creatures, i.e., chameleons, phantoms, 

doves, and worms (Figure 3.13). Chameleons are speakers who are always obtaining high SS 

and low DS scores when being compared against themselves and other speakers, while 

phantoms are rarely similar to any other speakers and likely to yield low SS and DS scores. 

Doves are speakers who have especially good performance when being compared with 

themselves and can be easily separated from other speakers. Worms are speakers who always 

give bad performance when being compared against themselves and other speakers, and they 

are characterised by high DS and low SS comparison scores.  

 

By convention, lower and upper quartiles are applied to speakers’ SS and DS comparison 

scores to define the corresponding locations of each animal group, i.e. phantoms are speakers 

with the lowest 25% SS and DS comparison scores (top-left corner in Figure 3.13); doves are 

speakers with highest 25% SS and lowest 25% DS comparison scores (top-right corner in 

Figure 3.13); worms are speakers who are among the lowest 25% SS and highest 25% DS 

comparisons scores (bottom-left corner in Figure 3.13), and chameleons are speakers with the 

highest 25% SS and 25% DS comparison scores (bottom-right corner in Figure 3.13). However, 

it is worth noting that one speaker can be in different animal groups depending on the specific 

configurations of the system, e.g., speech feature, statistical models and calibration methods 

used, meaning that speakers’ animal groups are system specific.  
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In this thesis, the new class of animal labels (i.e., chameleon, phantom, dove, worm) are used 

because they are “defined in terms of a relationship” between SS and DS scores among a group 

of speakers, while the old animal labels are defined in terms of only score distributions 

(Dunstone & Yager, 2009, p.161). Further, instead of using upper and lower quartiles, the 

thresholds for defining different classes of animals are adjusted using LLRs. This is because 

LLRs are comparable between speakers and across systems, which are different from 

comparison scores used in ASR systems. The LLR thresholds for animal groups are given in 

Table 3.3 below, where LLR equals 0 indicates equal support for prosecution and defence 

proposition. The thresholds between 0 and 1 and 0 and -1, similar to the 25% threshold used in 

automatic systems, are rather arbitrary; meanwhile, different thresholds can be selected 

depending on the specific research aim and system configuration.  

 

Animal group  SS LLR DS LLR 

Phantoms  0  -1 

Worms  0  -1 

Doves  1  -1 

Chameleons   1  0 

Table 3.3.  LLR thresholds for animal groups in the current study. 

 

3.4.3 Verbal LR scale  

 

Although the LR itself serves as an indication of the strength of evidence, the extent to which 

end users (e.g., jury and courts) are capable of comprehending numerical LRs is very much a 

concern for the courts and forensic analysts (Kinoshita & Ishihara, 2014; Marquis et al., 2016). 

As a result, Champod & Evett (2000) proposed a conversion from numerical LRs to verbal 

expressions. Table 3.4 shows the conversion between LLRs and verbal expression.  

 

It is acknowledged that there are certain drawbacks in using the verbal scale, e.g., the subjective 

interpretation could vary between and within groups (Rose, 2002). Moreover, cliff edge effects 

that are imposed at categorical boundaries could also be problematic (Morrison & Enzinger, 

2016), e.g., the difference between two LRs of 99 and 100 is equivalent to the difference 

between moderate and moderately strong support for the prosecution. Nevertheless, both the 
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forensic scientists and the courts are still facing difficulties in assessing the weight of evidence 

in terms of numerical LRs (Marquis et al., 2016). The verbal scale is adopted as a reference for 

discussion and contextualising numerical LRs in the thesis. 

 

 

LLR Verbal Expression  

4 : 5 Very strong support for same-

origin 

3 : 4 Strong support for same-

origin 

2 : 3 Moderately strong support for 

same-origin 

1 : 2 Moderate support for same-

origin 

0 : 1 Limited support for same-

origin 

0 : -1 Limited support for different-

origin 

-1 : -2 Moderate support for different-

origin 

-2 : -3 Moderately strong support for 

different-origin 

-3 : -4 Strong support for different-

origin 

-4 : -5 Very strong support for 

different-origin 

Table 3.4 Numerical LRs in verbal expression Champod & Evett (2000).  

 

3.5 Chapter Summary  
 

This Chapter explained general methods, i.e., corpora, linguistic-phonetic variables, feature 

parameterisation method, statistical models for feature-to-score and score-to-LR, evaluation 

metrics, used in the current thesis. A summary using bullet points are given below.  
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Corpora used for this thesis:  

 

• Intelligence Advanced Research Projects Activity (IARPA) Babel Cantonese Language 

Pack (Andrus et al., 2016)  

• Dynamic Variability in Speech corpus (DyViS; Nolan et al., 2009). 

 

Linguistic-phonetic variables used in this thesis:  

 

• Cantonese SFP /a/ 

• Cantonese disyllabic word /haia/ 

• English FP um 

 

Feature parameterisation method:  

• Polynomial curves  

o quadratic curves for Cantonese SFP /a/ and English FP um 

o cubic curves Cantonese disyllabic word /haia/ 

 

Statistical models used for feature-to-score:  

• MVKD 

 

Calibration methods for score-to-LR: 

• Logistic regression 

• Regularised logistic regression  

• Bayesian model 

• Empirical lower and upper bound 

  

Evaluation metrics: 

• Cllr 

• EER 

• RMSD 
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Chapters 4, 5 and 6 outline a series of experiments investigating the effect of sampling 

variability in LR-based FVC, and the RQs listed in Section 1.3 are addressed. Detailed 

experimental procedures, specific linguistic-phonetic variables, input features as well as 

calibration methods used for speech comparison in Chapters 4, 5 and 6 are explained in each 

chapter accordingly.  
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Chapter 4  Overall performance as a function of sampling 

variability 
 

This chapter explores the effects of sampling variability on overall performance with regard to 

different configurations of training, test and reference speakers. The Cantonese SFP /a/ and 

/haia/ as well as English FP um were used for comparison. Overall performance was evaluated 

using Cllr and EER.  

 

4.1  Introduction  
 

In the evaluation of LR-based FVC, it is known that training, test and reference speakers need 

to be sampled from a relevant population that reflects the conditions of the voice(s) under 

analysis in a real case. Typically, a group of speakers, often around 60 (e.g., Zhang et al., 2013) 

to 90 (e.g., Rose & Cuiling, 2018) in total, is selected, split equally into training, test and 

reference speakers (e.g., 20-20-20/30-30-30) before running the analysis. As discussed in 

Section 1.3, the size of the relevant population is likely to be larger than the speakers sampled 

for the expriment. It is then essential to investigate whether a system yields stable performance 

when different groups of speakers (randomly sampled from the same relevant population) are 

used. The current chapter explores this issue in relation to the specific choice of speakers (rather 

than the size of the data set) in the training, test and reference data sets, and RQs 1a. and 1b. 

are addressed.  

 

RQs 1. 

a. To what extent does overall performance (validity and reliability) vary if different 

configurations of training, test and reference speakers (from the same relevant 

population) are used?  

b. Is the variability in the overall performance primarily caused by different 

configurations of training speakers, test speakers or reference speakers?  
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4.2  Method 
 

4.2.1 Input data and LR computation   

 

The Cantonese SFP /a/, disyllabic word /haia/ and English FP um were used as the linguistic 

variables. In total, 155 and 64 speakers were used for /a/ and /haia/ respectively, with an 

average of 14 tokens per speaker (Table 4.1). As mentioned in Section 3.2.4, only the F1 and 

F2 were used for /a/ and /haia/, and the polynomial coefficients (quadratic for /a/ and cubic for 

/haia/) were used for LR computation. As the Cantonese corpus only contains one recording 

session per speaker, data for each speaker was divided in half with the first half acting as the 

suspect sample and the second half acting as the offender sample. For FP um, 90 speakers were 

used with an average of 35 tokens per speaker per Task (i.e., the separate recording contexts in 

the DyViS corpus). The quadratic coefficients of the first three formants as well as nasal and 

vocalic duration were used for LR computation. Task 1 data was used as the suspect sample 

and Task 2 data as the offender sample. The training and test data were first computed using 

MVKD (Aitken & Lucy, 2004) to generate training and test scores, and calibration was carried 

out using logistic regression (Brümmer et al., 2007).  

 

Table 4.1 Average number of tokens and recording sessions of each linguistic-phonetic 

variable.  

 

4.3 Experiments  
 

Four experiments are described in this Chapter (see below Experiments 1 to 4). The number of 

speakers available for each linguistic-phonetic variable was different; thus, the number of 

speakers used in each data set (i.e., training, test and reference) was adjusted in four 

experiments accordingly to enable speaker sampling. Each experiment was replicated 100 

times and the procedure was explained below.  

Linguistic-
phonetic 
variable 

Average number of tokens 
per task 

Numbers of 
Speakers 

Recording 
session/Task 

/a/ 14 155 1 

/haia/ 14 64 1 

um 35 90 2 
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• Experiment 1: varying all speakers  

o Speakers were randomly sampled into each of the three data sets in each 

replication.  

 

Experiment 1 aimed to explore if the system would give consistent performance if the 

experiment was replicated multiple times by arranging speakers differently in the training, test 

and reference sets, and Table 4.2 shows the number of speakers used in each data set for each 

linguistic-phonetic variable. This is the equivalent of replicating validation studies for the same 

relevant population but using different speakers. Meanwhile, this is also where researchers 

have got the degrees of freedom on which speakers are assigned to which dataset. For example, 

if there are 90 speakers (numbered 1 to 90) available for system testing and 30 speakers are 

assigned to each of the training, test and reference data. The question is should speakers 1-31 

or speakers 31-60 be assigned to the training, test or reference data and will it make a difference 

to system validity and reliability?  

 

 Linguistic-phonetic variable 

 /a/ /haia/ um 

Number of training speakers 30 15 30 

Number of test speakers 30 15 30 

Number of reference speakers 30 15 30 

Table 4.2 Number of speakers used in each data set for each variable in Experiment 1.  

 

• Experiment 2: varying test speakers 

o Experiment 2 was replicated but only varying the configurations of test speakers. 

Training and reference speakers were fixed.  

 

Experiment 2 aimed to explore how overall performance is affected using different 

configurations of test speakers. The results can then be compared with Experiments 3 and 4 to 

investigate which dataset is more susceptible to sampling variability that leads to worse overall 

performance (i.e., validity and reliability). Table 4.3 shows the number of speakers used in 

each data set for each linguistic-phonetic variable. 

 



 90 

 Linguistic-phonetic variable 

 /a/ /haia/ um 

Number of training speakers 30 15 25 

Number of test speakers 30 15 25 

Number of reference speakers 30 15 25 

Table 4.3 Number of speakers used in each data set for each variable in Experiments 2 to 4.  

 

• Experiment 3: varying reference speakers 

o Experiment 3 was replicated but only varying the configurations of reference 

speakers. Test and training speakers were fixed.  

Experiment 3 aimed to explore whether a random selection of speakers from the relevant 

population (e.g., a matched dialectal group) adequately represents the population, and how 

sensitive the system reliability was to the reference data. Table 4.3 shows the number of 

speakers used in each data set for each linguistic-phonetic variable. 

 

• Experiment 4: varying training speakers  

o Experiment 4 was replicated but only varying the configurations of training 

speakers. Test and reference speakers were fixed.  

 

Experiment 4 aimed to assess the sensitivity of the overall performance to different sets of 

training data given that speakers are all chosen from the relevant population. The EER was not 

reported in detail in Experiment 4, because the calibration coefficients derived from the training 

data only affect the Cllr. Thus, the EER will be the same across all replications where the test 

and reference speakers are fixed. Table 4.3 shows the number of speakers used in each data set 

for each linguistic-phonetic variable. 

 

The implementation of the above four experiments were conducted in R (R Core Team, 2018) 

using the R package (fvclrr; Lo, 2018). The R script randomly samples speakers, runs the 

speech comparison and saves the results into a list (R Core Team, 2018). Each experiment was 

replicated 100 times with different configurations of training, test and reference speakers, as 

explained above. Details of the results are discussed below.  
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4.4 Results  
 

4.4.1 Experiment 1: varying all speakers.  

 

Figure 4.1 shows the overall performance sampling speakers in all three datasets. The boxplot 

shows the range of the Cllr values in the 100 replications. It is shown that varying test, training 

and reference speakers causes the overall performance to vary to different extents for different 

variables. Over the 100 replications, all the Cllr values of /a/ are lower than 1, which indicates 

that the system is giving some useful information in each replication. The Cllr of /a/ ranges from 

0.60 to 0.97, and the median and interquartile range (IQR) are 0.74 and 0.07. The variation in  

Cllr does not indicate a stable overall performance, given that the logical threshold of Cllr is 1 

(Morrison et al., 2021).   

 

Turning now to the overall results for /haia/, Figure 4.1 shows that /haia/ has a wider Cllr range 

than /a/. The Cllr range of /haia/ varies from 0.29 to 1.15 and the median and IQR are 0.46 and 

0.16. Despite this wide range, 75% of the Cllr values of /haia/ are lower than 0.55, and 50% of 

the Cllrs fall between 0.40 and 0.55. These results indicate that the system for /haia/ is giving a 

comparatively less stable performance than that for /a/. It is worth noting that the lowest Cllr 

for /haia/ is 0.29, which is fairly good given that only F1 and F2 were used.  However, a large 

range of Cllr from 0.29 to 1.15 indicates an unstable overall performance. 

 

As for the FP um, the Cllr values vary from 0.13 to 1.22 and the median and IQR are 0.31 and 

0.11. In this data set, 75% of the Cllrs are lower than 0.38, and 50% of the Cllrs fall between 

0.26 and 0.38, thus indicating a more stable performance than both /a/ and /haia/. However, 

there are nine outliers among the results from um and two of them are larger than 1, which 

means that the system is not giving any useful information in those two replications. Three out 

of the remaining seven outliers had a Cllr larger than 0.8, which also shows a fairly poor 

performance.  
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Figure 4.1 Boxplots show the Cllr ranges of /a/, /haia/ and um by varying speakers in all three 
datasets in each replication. Two whiskers are the first and third quartiles, and the central line 
represents the median value.  

Overall, /a/ had the best system reliability in terms of IQR (0.07) and Cllr range, and /haia/ and 

um yielded lower mean Cllr than /a/.  

 

Figure 4.2 shows the distributions of the EERs for /a/, /haia/ and um across the 100 replications, 

and Table 4.4 shows the statistics of Cllr and EER values across 100 replications. The EER of 

/a/ varies from 19.77% to 33.56% and the median and IQR are 26.26% and 3.50%. An IQR of 

3.50% indicates that half of the EERs are concentrated between 23.28% and 26.78%. The EER 

of /haia/ ranges from 5.24% to 30.00% and the median and IQR are 13.33% and 6.66%.  Half 

of the replications had an EER between 12.86% and 19.52%, indicating that /haia/ has better 

performance than /a/ in terms of EER, while /a/ seems to have a better reliability by having a 

lower IQR (3.50%). It is worth noting that 75% of the EERs from /haia/ are lower than all the 

EERs from /a/. However, a total EER range between 5.24% and 30.00% makes the system 

reliability of /haia/ no better than /a/. The FP um obtained an EER range varying from 2.70% 

to 13.33%, while the median and IQR are 6.70% and 2.66%. This indicates that um has a more 

stable performance than /a/ and /haia/ in terms of EER. All the EER values of FP um are lower 

than those of /a/. However, a total EER range between 2.70% and 13.33% is still considerably 

high.  
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Figure 4.2 Boxplots represent the EER ranges of /a/, /haia/ and um by varying speakers in all 
three datasets in each replication. Two whiskers cover the first and third quartiles, and the 
central line represents the median value.   

 

 Cllr EER(%) 

  /a/ /haia/ um /a/ /haia/ um 

Min 0.60 0.29 0.13 19.77 5.24 2.70 

1st qu. 0.70 0.40 0.26 23.28 12.86 6.49 

Median 0.74 0.46 0.31 26.26 13.33 6.70 

Mean 0.74 0.51 0.35 25.61 14.88 7.14 

3rd qu. 0.77 0.56 0.38 26.78 19.52 9.15 

Max. 0.97 1.15 1.22 33.56 30.00 13.33 

IQR 0.07 0.16 0.11 3.50 6.66 2.66 

Range 0.37 0.86 1.10 13.79 24.76 10.63 

Table 4.4. Summary statistics of Cllr and EER of /a/, /haia/ and um in Experiment 1 (varying 
all speakers).  
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4.4.2 Experiment 2: varying test speakers.  

 

In Experiment 2, training and reference speakers were fixed, while test speakers were varied 

in each replication. Figure 4.3 shows that using different test speakers in each replication causes 

the Cllrs to vary to different extents, and Table 4.5 shows the statistics of Cllr and EER values 

across 100 replications. However, the boxplots show that all the Cllr values are lower than 1 for 

all three linguistic-phonetic variables. The Cllr values of /a/ vary from 0.58 to 0.86 in the 100 

replications. The median and IQR are 0.74 and 0.08, which indicates that 50% of the Cllr values 

vary within a small range. Turning to /haia/, the Cllr varies from 0.31 to 0.64, and the median 

and IQR are 0.49 and 0.08. In general, /haia/ outperformed /a/ in terms of mean Cllr (0.49).  The 

overall Cllr range of /haia/ (0.33) is slightly higher than that of /a/ (0.28), but 75% of the Cllr 

values of /haia/ are lower than all the Cllr values of /a/. This indicates that using more acoustic 

input could potentially increase the system validity without increasing the variability.  For the 

FP um, the Cllr values vary from 0.24 to 0.48, which shows a lower overall range than those 

produced by /a/ and /haia/. Moreover, FP um has a lower median (0.37), IQR (0.06), and mean 

(0.37) than SFP /a/ and /haia/, indicating that FP um has a better overall performance in terms 

of both validity and reliability.  
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Figure 4.3 Boxplots represent the Cllr ranges of /a/, /haia/ and um by varying test speakers in 
each replication. Two whiskers cover the first and third quartiles, and the central line represents 
the median value. 

 

Figure 4.4 shows the boxplots of EER of SFP /a/, /haia/ and FP um in Experiment 2. Similar to 

Experiment 1, the EERs of the three linguistic-phonetic variables vary to different extents. 

However, due to the limited number of speakers used, the EERs have more consistent patterns 

than Cllr. The EER of /a/ ranges from 16.84% to 36.72%, and the median and IQR are 27.01% 

and 6.38%, which is thus the least stable system among the three linguistic-phonetic variables. 

/haia/ on average yielded a lower EER than /a/. However, the EER of /haia/ ranges from 5.71% 

to 25.71% and a 20.00% EER range in the 100 replications makes the overall reliability of 

/haia/ no better than /a/. On the other hand, the median and IQR of /haia/ are 13.33% and 4.88%, 

which are lower than those of /a/. For FP um, the EER values range from 4% to 12%, which 

are the lowest among the three variables. The EER IQR of um (0.67%) is also lower than those 

of SFP /a/ and disyllabic word /haia/, indicating a much more stable overall performance.  
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There are only a discrete number of EERs possible given the number of speakers used. The 

smaller the number of speakers used, the smaller the number of possible EERs. It might also 

be due to the small number of speakers that led to some overlap in the configurations of 

speakers in each data group. 

 

 
Figure 4.4 Boxplots represent the EER ranges of /a/, /haia/ and um by varying test speakers in 
each replication. Two whiskers cover the first and third quartiles, and the central line represents 
the median value.  
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  Cllr EER (%) 
 

/a/ /haia/ um /a/ /haia/ um 

Min 0.58 0.31 0.24 16.84 5.71 4.00 

1st qu. 0.70 0.44 0.34 23.68 13.33 7.92 

Median 0.73 0.49 0.37 27.01 13.33 8.00 

Mean 0.74 0.49 0.37 27.53 14.55 8.34 

3rd qu. 0.78 0.52 0.40 30.06 18.21 8.58 

Max. 0.86 0.64 0.48 36.72 25.71 12.00 

IQR 0.08 0.08 0.06 6.38 4.88 0.67 

Range 0.28 0.33 0.24 19.88 20.00 8.00 

Table 4.5. Summary statistics of Cllr and EER of /a/, /haia/ and um in Experiment 2 (varyting 
test speakers). 

 

4.4.3 Experiment 3: varying reference speakers 

 

In Experiment 3, only reference speakers were varied, while the training and test speakers were 

fixed throughout 100 replications. Figure 4.5 shows the boxplots of Cllr values of /a/, /haia/ and 

um in 100 replications, and Table 4.6 shows the statistics of Cllr and EER values across 100 

replications. /a/ yielded a very small Cllr range (0.11), varying between 0.66 and 0.77, and the 

IQR is as low as 0.03.  /haia/, on the other hand, is more variable in terms of Cllr values. The 

Cllr values of /haia/ range from 0.40 to 0.95. The Cllr IQR of /haia/ is low at 0.08, but this is 

nearly three times higher than /a/. However, over 75% of the replications in /haia/ achieved a 

better validity than that in /a/, as over 75% Cllr values of /haia/ are lower than all those of /a/. 

The FP um yielded a better overall performance than /a/ and /haia/ in terms of validity and 

reliability. The Cllr values vary from 0.18 to 0.25, and the Cllr IQR is 0.02, which is the lowest 

among the three variables.  
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Figure 4.5 Boxplots represent the Cllr ranges of /a/, /haia/ and um by varying reference speakers 
in each replication. Two whiskers cover the first and third quartiles, and the central line 
represents the median value.   
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Figure 4.6 Boxplots represent the EER ranges of /a/, /haia/ and um by varying reference 
speakers in each replication. Two whiskers are the first and third quartiles, and the central line 
represents the median value.   

 

Figure 4.6 shows the boxplots of EER values in the 100 replications using /a/, /haia/ and um. 

The EER values ranges from 23.16% to 30.52%, 7.62% to 26.67% and 3.92% to 8% for /a/, 

/haia/ and um respectively. FP um outperformed SFP /a/ and /haia/ in terms of the lowest EER 

value (3.92% vs 23.16% and 7.62%). Moreover, most EER values in FP um are lower than 

those in SFP /a/ and /haia/.  
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  Cllr EER (%) 

  /a/ /haia/ um /a/ /haia/ um 

Min 0.66 0.40 0.18 23.16 7.62 3.92 

1st qu. 0.69 0.50 0.21 26.06 13.33 4.00 

Median 0.70 0.54 0.23 26.67 18.81 4.17 

Mean 0.70 0.55 0.22 26.77 17.25 5.15 

3rd qu. 0.72 0.58 0.23 27.72 20.00 7.02 

Max. 0.77 0.95 0.25 30.52 26.67 8.00 

IQR 0.03 0.08 0.02 1.66 6.67 3.02 

Range 0.11 0.55 0.07 7.36 19.05 4.08 

Table 4.6. Summary statistics of Cllrs and EERs of /a/, /haia/ and um in Experiment 3 (varying 
reference speakers). 

Experiment 3 shows that using different reference speakers from a matched dialect group 

causes the system reliability to fluctuate to different extents. The FP um yields a better system 

reliability than SFP /a/, while /haia/ shows the importance of linguistically fine-grained 

relevant population as um is extracted from a much more controlled dataset than the Cantonese 

SFP. Moreover, the results from Experiment 3 also show that a narrower tailored relevant 

population not only contributes to system validity, but also reliability.  

 

4.4.4 Experiment 4: varying training speakers 

 

In Experiment 4, test and reference speakers were fixed throughout the 100 replications, while 

only training speakers were varied in each replication. Experiment 4 shows that sampling 

training speakers has a limited effect on system reliability for all three variables. Figure 4.7 

and Table 4.7 show the Cllr values of /a/, /haia/ and FP um in 100 replications. All three 

variables yielded a very stable overall performance in terms of Cllr IQR values, which are 0.01, 

0.03 and 0.005 for /a/, /haia/ and um respectively. The Cllr range of SFP /a/ is the lowest among 

the three variables, which is only 0.12. Meanwhile, /haia/ and the FP um yielded more outliers, 

making the Cllr range vary from 0.43 to 0.72 and from 0.27 to 0.53 respectively. Even /a/ yielded 

the best system reliability, all of the Cllr values from each replication of /haia/ and FP um are 
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lower than those of SFP /a/. The EER of the three variables are not presented here as calibration 

has no effect on EER values.  

 

 
Figure 4.7 Boxplots represent the Cllr ranges of /a/, /haia/ and um by varying training speakers 
in each replication. Two whiskers are the first and third quartiles, and the central line represents 
the median value.   
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  Cllr 

  /a/ /haia/ um 

Min 0.76 0.43 0.27 

1st qu. 0.76 0.43 0.27 

Median 0.77 0.44 0.27 

Mean 0.77 0.46 0.28 

3rd qu. 0.77 0.46 0.28 

Max. 0.88 0.72 0.53 

IQR 0.01 0.03 0.01 

Range 0.12 0.29 0.26 

Table 4.7. Summary statistics of Cllr of /a/, /haia/ and um in Experiment 4 (varying training 
speakers). 

 

4.5 Discussion  
 

There were some differences in the results for the variables examined in this chapter. Cantonese 

/a/ was less sensitive to speaker sampling than um, reflected in a narrower range of Cllr values 

across the four experiments. One reason for this may be the inherent speaker-discriminatory 

power of /a/ compared with um. The median Cllr value for um in Experiment 1 was 0.46, 

compared with 0.74 for Cantonese /a/. The lower end of the distribution of Cllr values for um 

also shows that it has the potential to produce very good performance with certain 

configurations of speakers. This shows that inherently better speaker discriminants will 

produce more variable overall performance because they have the potential to produce a wider 

range of results depending on which speakers are being used (principally, in the test set). 

However, poorer speaker discriminants, such as /a/, will produce poor overall performance 

irrespective of the speakers used. This relationship between speaker discriminatory power and 

sensitivity to speaker sampling replicates findings reported in Wang et al. (2019) based on 

simulated data.  

 

The following sections discuss the results from the four experiments with regard to the research 

questions and compared to previous studies. Figure 4.8 shows the boxplots of Cllr and EER of 

three variables from all four experiments.  
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Figure 4.8 Boxplots of Cllr and EER of /a/, /haia/ and um in four experiments. Two whiskers 
are the first and third quartiles, and the central line represents the median value. 
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F0 were fitted by using polynomial curves and the coefficients were used as the input of an 

MVKD model. A Cllr of 0.16 was achieved using the formant dynamics of /daijat/. The fusion 

of /daijat/ formant dynamics and tonal information reduced the Cllr to 0.1, and they fused 

/daijat/ with the Cantonese vowel /i/ which further reduced the Cllr to 0.03. Similarly, Zhang et 

al. (2011) compared the performance of the acoustic-phonetic system with the automatic 

system using a Mandarin triphthong /iau/. They used non-contemporaneous recordings of 60 

northeast male Mandarin speakers. The first, second and last sets of 20 speakers were used as 

background, training and test speakers respectively. In the acoustic-phonetic system, the 

discrete cosine transform (DCT) was fitted to the first three formants of each token and the 

zeroth to fourth DCT coefficients of F2 and F3 were used as the input of the MVKD model. In 

the automatic system, the 16 mel-frequency-cepstral-coefficient (MFCC) values were taken 

every 10-milliseconds over the entire speech-active portion of the recordings, and a 20-

millisecond wide Hamming window was used. A Gaussian mixture model-universal 

background model (GMM-UBM) was used for the background data and 1024 Gaussians were 

used for the training and test data. A Cllr of 0.349 and 0.029 was achieved by using the acoustic-

phonetic and automatic system respectively, and it was further reduced to 0.009 by fusing the 

two systems. In terms of English variables, the FPs (uh, um) are assumed to be useful FVC 

variables by previous studies (e.g., Jessen 2008, Foulkes et al 2004) and the speaker 

discrimination power of FPs has been explored in several studies (e.g., Hughes et al., 2016; 

King, 2012; Wood et al., 2014). All of these three previous studies used contemporaneous 

speech data from DyViS (Nolan et al., 2009), but with different numbers of speakers involved. 

The Cllr varied from 0.506 in King (2012) using 20 speakers and static formant measurements 

to 0.12 using 60 speakers and formant dynamics in Hughes et al..  

 

All previous studies mentioned in the previous paragraph aimed to obtain a lower Cllr; however, 

the current chapter shows that linguistic-phonetic variables yield promising system validity 

under one system setting might give poor validity under another system setting, i.e., depending 

on the configurations of speakers in training, test and reference data. Taking Experiment 1 for 

example, the best Cllr and EER achieved for /a/, /haia/ and um were 0.6 and 19.77%, 0.29 and 

5.24% and 0.13 and 2.7%, while the worst were 0.97 and 33.56%, 1.15 and 30% and 1.22 and 

13.33%. It is then questionable whether previous studies would achieve consistent or similar 

Cllr values were the experiments replicated. For example, would Rose and Wang (2016) obtain 

similar Cllr values were more speakers involved and the experiment replicated? Would Zhang 

et al. (2011) and Hughes et al. (2016) achieve consistent Cllr values if the speakers were 
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rearranged (e.g., use the first 20 speakers as training, second 20 speakers as test and the last 20 

speakers as reference speakers), and speaker sampling was carried out? Based on the variability 

in Cllr values reported in this chapter, it is suggested that researchers’ aim in system testing 

using linguistic-phonetic variables should not be driven by obtaining better validity, but better 

reliability or reducing the uncertainty, i.e., a system producing reliable performance under 

various conditions (e.g., different number or/and configurations of speakers) should be 

preferred, other than a system that has the potential of obtaining a very low Cllr under one 

condition but high Cllr values under other conditions.  

 

4.5.2 Test speakers vs. training speakers vs. reference speakers 

 

Experiments 2 (varying test speakers), 3 (varying reference speakers) and 4 (varying training 

speakers) aimed to investigate which dataset is more susceptible to different speaker 

configurations (sampling variability) that leads to fluctuating overall performance. The EERs 

of the three experiments are not discussed here, because test and reference speakers are fixed 

in Experiment 4 and changing the training speakers does not affect the EERs. The results show 

that varying only training or reference speakers both have less effect on overall performance 

than varying only test speakers. However, the overall performance fluctuates among the three 

linguistic variables. On one hand, all three variables have the lowest Cllr IQR when only 

training speakers are varied (Table 4.8), indicating that overall performance is less sensitive to 

different configurations of training speakers. On the other hand, for SFP /a/ and FP um, varying 

only reference speakers in general gives lower Cllr mean and range than varying only training 

or test speakers, while it is the opposite for /haia/. This pattern probably indicates that overall 

performance is more susceptible to reference speakers when more acoustic information is 

involved (i.e., /haia/ is a disyllabic word and /a/ and um are monophthongs) and when the 

number of reference speakers used is low (only 15 speakers were used for /haia/, while 30 and 

25 speakers were used for /a/ and um respectively). It is noted that FP um yields better 

performance than /a/ even though FP um has fewer reference speakers. This is probably due to 

the fact that the FP um reference data was extracted from a narrower tailored relevant 

population.   

It is worth noting that although the results show that varying only training or reference speakers 

have less effect on overall performance than varying only test speakers, the results from 

Experiments 2, 3 and 4 are to some extent dependent on the speakers that are fixed in the test, 
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reference, and training sets. That is to say, the results here should not be treated as any sort of 

generalisation, and different results could well be seen if different speakers were included in 

the fixed speaker groups or different number of speakers and different linguistic-phonetic 

features are used.  

 

 
/a/_Cllr 

  

 
Varying test Varying training Varying reference 

Mean 0.74 0.77 0.7 

IQR 0.08 0.01 0.03 

Range 0.28 0.12 0.11 

 
/haia/_ Cllr 

  

 
Varying test Varying training Varying reference 

Mean 0.49 0.46 0.55 

IQR 0.08 0.03 0.08 

Range 0.33 0.29 0.55 

 
um_Cllr 

  

 
Varying test Varying training Varying reference 

Mean 0.37 0.28 0.22 

IQR 0.06 0.01 0.02 

Range 0.24 0.26 0.07 

 

Table 4.8 Mean, IQR and range of Cllr values using /a/, /haia/ and um in Experiments 2 (varying 
test speakers), 3 (varying reference speakers) and 4 (varying training speakers).  

 

4.5.3 System vs individual  

 

The FP um yielded the lowest Cllr mean and range in Experiment 3 (only varying reference 

speakers); however, Cllr measures the overall performance and does not necessarily provide 

insights on the fluctuation in individual speakers’ LLRs. Figure 4.9 shows the SS (upper panel) 

and DS (lower panel) LLRs of test speakers involved in Experiment 3. The x- and y-axis 

represent speaker numbers and LLRs respectively, and each boxplot indicates the Cllr range of 

individual speakers across 100 replications. The verbal expression scale (Champod & Evett, 

2000, p.240) is used here for reference.  
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For SS comparisons, most of them generally vary within one LLR magnitude in terms of 

strength of evidence, i.e., SS LLR varies between 0 and 1 or 1 and 2. However, speaker 44 

shows a different pattern. Among the 100 SS comparison replications, only one replication 

yielded the expected factual result (i.e., a positive LLR, in this case LLR = 0.00131), while the 

rest of the replications all yielded contrary-to-fact results indicating that speaker 44 is 

susceptible to different configurations of reference speakers. For DS comparisons, speakers 

seem to be more variable. Most speakers yielded contrary-to-fact results with limited support 

for SS origin (e.g., speaker 1, 9, 10) while a few speakers (e.g., 35, 42) yielded contrary-to-fact 

results that reached moderate support for SS origin (i.e., LLR between 1 and 2) given that it is 

DS comparison. Meanwhile, most speakers have factual DS LLRs that vary from 0 to over -5, 

which is a difference between limited to strong support in terms of strength of evidence. The 

patterns of individual speakers’ LLRs show that individual speakers could be behaving 

differently in systems with different configurations of reference speakers.  
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Figure 4.9 SS and DS LLRs of test speakers using FP um in Experiment 3 (varying reference 
speakers).  
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4.6 Chapter summary  
 

Chapter 4 has investigated the effect of sampling variability on overall performance and which 

of the training, test and reference datasets is less susceptible to sampling variability.  The results 

show that sampling variability indeed has a marked effect on overall performance and key 

results and patterns from Chapter 4 are given below.  

 

• Overall performance is affected not only by the number of speakers, but also the 

specific choice of speakers used in each of the training, test and reference sets. 

Meanwhile, the overall performance also depends on the quality of the data extraction 

(i.e., no F3 for Cantonese variables) and the polynomial curve fitting, as well as the 

suitability of the statistical modelling in MVKD. 

• The variability in overall performance is mainly due to different configurations of 

speakers in the test set.  

• It is likely that different configurations of speakers in the training and reference sets 

have little effect on overall performance when 25 or more speakers are used; however, 

this pattern needs to be tested using a larger database.  

• The inherent speaker-discriminatory power of linguistic-phonetic variables might 

affect the stability of results, e.g., FP um with better speaker-discriminatory power (than 

SFP /a/) has more variable overall performance. However, more tests should be 

conducted by altering the number of speakers more systematically.  
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Chapter 5 Overall performance and individual speakers’ 

behaviour as functions of choice of linguistic-phonetic features 

and configurations of training and reference speakers 
 

The previous chapter investigated the validity and reliability of LR output of overall 

performance and individual speakers’ behaviour. Section 4.4 considers variation in the overall 

performance depending on who exactly is used in the training, test and reference data. 

Meanwhile, given a comparatively reliable system, the LR output of individual speakers can 

vary to different extents due to sampling variability. In the current Chapter, the effect of 

sampling variability on individual speakers’ behaviour is investigated in a more systematic 

manner as well as the overall performance. Only the English FP um is used in the current 

chapter as it allows greater control over other potentially confounding variables, such as 

regional accents, age and social class before the sampling variability is introduced, and DyViS 

is a more controlled corpus in terms of both social and linguistic factors than the IARPA Babel 

Cantonese corpus.  

 

5.1 Introduction 
 

As discussed in Section 2.2.1, numerous empirical studies have explored the validity and 

reliability of the LR output focusing more on the overall system validity and reliability (Hughes 

et al., 2016; Morrison et al., 2011; Morrison & Enzinger, 2016; Taylor et al., 2016). By contrast, 

few have explored the behaviour of individual speakers within these systems (but see e.g., Lo, 

2021). Given that what really matters in a real case is the specific voice of the speaker(s) under 

analysis, this raises issues about whether generic testing provides adequate insight into the 

validity and reliability of an LR system in a specific case, given the reasonable limits of sample 

size in the real world. The current chapter explores the relationship between overall 

performance and individual speaker behaviour in relation to sampling variability in the training 

and reference speakers and the choice of linguistic features.  

 

There are two principal aims. First, to explore the effect of sampling variability on overall 

performance when different features are used, e.g., single-feature systems using only F1, F2 or 

F3; multi- feature systems using the combination of F1 and F2 or F2 and F3. Second, to explore 
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the effect of sampling variability on individual speakers’ behaviour, i.e., how individual 

speakers’ LR output is affected when different configurations of training and reference 

speakers are used. The specific RQs addressed in this chapter are RQs 2a., 2b. and 2c.   

 

RQs 2.  

 

a. Do certain combinations of linguistic-phonetic features outperform the others 

and are they less susceptible to sampling variability? 

b. How is individual speakers’ LR output affected when different configurations 

of training and reference speakers are used? 

c. How is individual speaker’ LR output affected when different linguistic-

phonetic features are used?  

 

5.2 Method 
 

5.2.1 Data  

 

The FP um from 90 SSBE speakers was used as the variable for analysis in the current chapter. 

The quadratic coefficients of the first three formants and F0 as well as the duration of the 

vocalic and nasal portion were used as the input for LR computation (Section 3.2.3). In order 

to explore overall performance and individual speaker behaviour with respect to different 

conditions, experiments were carried out using all 31 possible combinations of features. i.e., 5 

single-feature systems, 10 two-feature systems, 10 three-feature systems, 5 four-feature 

systems and 1 five-feature system (Table 5.1). 
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SYSTEM  F0 F1 F2 F3 DUR. NUMBER OF FEATURES 

F0 X     1 

F1  X    1 

F2   X   1 

F3    X  1 

DUR     X 1 

F01 X X    2 

F02 X  X   2 

F03 X   X  2 

F0DUR X    X 2 

F12  X X   2 

F13  X  X  2 

F1DUR  X   X 2 

F23   X X  2 

F2DUR   X  X 2 

F3DUR    X X 2 

F012 X X X   3 

F013 X X  X  3 

F01DUR X X   X 3 

F023 X  X X  3 

F02DUR X  X  X 3 

F03DUR X   X X 3 

F13DUR  X  X X 3 

F123  X X X  3 

F12DUR  X X  X 3 

F23DUR   X X X 3 

F0123 X X X X  4 

F012DUR X X X  X 4 

F013DUR X X  X X 4 

F023DUR X  X X X 4 

F123DUR  X X X X 4 

F0123DUR X X X X X 5 

Table 5.1 31 systems tested and cross (X) indicates the feature(s) used. DUR stands for 
durations of the vocalic and nasal of the FP um.   
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5.2.2 Experimental procedure  

 

25 speakers were randomly sampled to act as the test, training and reference data respectively. 

Task 1 and Task 2 were used as the suspect and offender samples respectively. The SS and DS 

pairs of test and training data were compared using the MVKD formula (Aitken & Lucy, 2004) 

to produce test and training scores, and calibration was then carried out using logistic 

regression (Brümmer et al., 2007; Morrison, 2011). Experiments were again replicated 100 

times for each system using different configurations of training and reference speakers, but 

keeping the 25-speaker test set fixed. This gives access to assess the LR results for the same 

test speakers using different input features and different configurations of training and 

reference speakers. 50 out of the remaining 65 speakers were used in each replication to allow 

for different configurations of training and reference speakers. A schematic diagram of the 

experimental procedure is given in Figure 5.1. 

 

 

 

 

 

 

 

 

 

Figure 5.1 A schematic diagram of the experiment procedure for LR computation. Only 
training and reference speakers were sampled 100 times, while the 25 test speakers were 
sampled once. LR computation was conducted using different sets of training and reference 
speakers and the same set of test speakers.  

 

Overall performance was evaluated using Cllr (Brümmer & du Preez, 2006), and the mean and 

range (i.e., difference between the maximum and minimum Cllr values across 100 replications) 

of Cllr values were used to assess the system validity and reliability  respectively. The individual 

speakers’ behaviour was assessed using mean LLR and RMSD values with reference to the LR 

verbal scale (Champod & Evett, 2000). 
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5.3 Results  
 

The results of overall performance and individual speaker’s behaviour are presented in this 

section. The validity and reliability of overall performance with single and different 

combinations of features are presented first, followed by the variability of LR outputs for 

individual speakers.  

 

5.3.1 Overall performance 

 

The boxplots in Figure 5.2 show the variation of Cllr values across the 31 systems, and Table 

5.2 shows the statistical summary of Cllr in systems with one and two features. The x-axis 

shows the different systems. For example, ‘F0’ refers to the system where only F0 was used as 

input, while ‘F01’ indicates the combination of F0 and F1. The y-axis represents Cllr values. 

The top panel shows the Cllr range of systems with one and two features, and the bottom panel 

shows the Cllr range of systems with three, four and five features. For single feature systems, 

F2 yields the lowest Cllr mean (0.39) and range (0.04), which is consistent with previous studies 

(Hughes et al., 2016). The other four single feature systems yield similar overall performance, 

with the mean Cllr varying between 0.66 and 0.77. F1 yields the least stable overall performance 

with an overall Cllr range of 0.47, while F0, F3, and DUR systems yield a Cllr overall range 

between 0.12 and 0.18. The performance among single feature systems indicate that F2 is the 

least sensitive to different configurations of training and reference speakers. 
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Figure 5.2 Cllr variation across 31 systems (Top panel: systems with one or two features; bottom 
left: systems with three features; bottom middle: systems with four features; bottom right: 
system with five features). 

 

The Cllr patterns are more variable among systems with two features. The F23 system yields 

the lowest Cllr mean (0.27), while the F0DUR system gives the highest mean Cllr (0.64). In 

terms of system reliability, the F13 system yields the lowest Cllr range (0.11), and the F1DUR 

system yields the highest (0.35). A consistent pattern in two-feature systems is that systems 

with F2 involved outperform systems without F2 in terms of mean Cllr. In terms of the overall 

performance (i.e., lowest Cllr mean and range), the F23 system seems to be the best. It can be 

observed that the F13 system has a lower Cllr range than the F23 system; however, all of the 

Cllr values in the F23 system are lower than those in the F13 system and the Cllr range of the 

F23 system is only marginally higher than that of the F13 system.  
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System\Cllr mean Max. Min. IQR Range  

F0 0.69 0.83 0.65 0.02 0.18 

F1 0.75 1.16 0.69 0.03 0.47 

F2 0.39 0.41 0.37 0.01 0.04 

F3 0.66 0.72 0.60 0.06 0.12 

DUR 0.77 0.84 0.72 0.05 0.13 

F01 0.54 0.67 0.49 0.03 0.18 

F02 0.29 0.49 0.25 0.03 0.23 

F03 0.45 0.53 0.37 0.05 0.16 

F0DUR 0.58 0.67 0.52 0.05 0.15 

F12 0.31 0.43 0.24 0.04 0.20 

F13 0.53 0.59 0.48 0.03 0.11 

F1DUR 0.61 0.89 0.53 0.04 0.35 

F23 0.27 0.34 0.19 0.06 0.15 

F2DUR 0.34 0.47 0.27 0.06 0.20 

F3DUR 0.54 0.62 0.44 0.06 0.18 

Table 5.2 Summary statistics of Cllr in systems with one and two features. 

Table 5.3 summarises the results for systems with three, four and five features. Among systems 

with three features, the F023 system yields the lowest mean Cllr (0.20), while the F01DUR and 

F13DUR systems yield the highest (0.46). Similar to systems with single and two features, 

systems with F2 involved again outperform those without F2 in terms of mean Cllr, e.g., the 

F012, F123, and F023 systems have lower mean Cllr values than the F013 and F01DUR systems. 

In terms of Cllr range, the F013 and F123 systems yield the lowest Cllr range (0.13), while the 

F012 system yields the highest due to extreme outliers (0.53). The systems with the duration 

feature, i.e., F01DUR, F12DUR, F23DUR, F02DUR, F03DUR and F13DUR yield similar Cllr 

range varying from 0.16 to 0.24. Overall, the F023 system has a marginally lower mean Cllr 

and higher Cllr range than the F123 system, and these two systems seem to have similar overall 

performance and are less sensitive to different configurations of training and reference speakers 

than other systems.  

 

For systems with four and five features, the F013DUR system gives the highest mean Cllr (0.37), 

while other systems seem to have similar mean Cllr values. Combining all features does not 

improve the overall performance, as the mean Cllr (0.2) of the F0123DUR system is slightly 
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higher than that of the F0123 (0.18) system, and the Cllr range of the F0123DUR system (0.26) 

is higher than all other systems with four features. 

 

System\Cllr mean Max. Min. IQR Range  

F012 0.24 0.70 0.18 0.02 0.53 

F013 0.39 0.46 0.33 0.04 0.13 

F01DUR 0.46 0.55 0.40 0.05 0.16 

F123 0.23 0.32 0.18 0.03 0.13 

F12DUR 0.27 0.37 0.19 0.04 0.18 

F23DUR 0.25 0.36 0.14 0.05 0.21 

F023 0.20 0.29 0.13 0.05 0.16 

F02DUR 0.27 0.38 0.21 0.04 0.17 

F03DUR 0.41 0.53 0.29 0.06 0.24 

F13DUR 0.46 0.53 0.39 0.04 0.14 

F0123 0.18 0.27 0.12 0.04 0.15 

F012DUR 0.21 0.31 0.16 0.04 0.15 

F013DUR 0.37 0.48 0.28 0.06 0.20 

F023DUR 0.20 0.31 0.13 0.05 0.19 

F123DUR 0.23 0.32 0.16 0.04 0.16 

F0123DUR 0.20 0.38 0.11 0.06 0.26 

Table 5.3. Summary statistics of Cllr in systems with three, four and five features. 

Figure 5.3 shows the average system validity (Cllr mean; upper panel) and reliability (Cllr range; 

lower panel) across 31 systems. The x-axis shows the corresponding system and the y-axis 

indicates the Cllr mean and range. The systems were plotted from the highest (left end of the x-

axis) to lowest (right end of the x-axis) based on Cllr mean and range. Figure 5.3 (upper panel) 

shows that the system validity improves when more features are involved, and it starts to 

stabilise when four or more features are used. However, exceptions can be found, for example, 

the F2 system yield a lower mean Cllr than other two- and three-feature systems (e.g., F01, 

F13DUR). Meanwhile, systems with F2 have a better validity than systems without F2.  
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Figure 5.3 Cllr mean (upper panel) and range (lower panel) across 31 systems. X-axis shows 
different systems and y-axis shows Cllr range (i.e., the difference between maximum and 
minimum Cllr values across 100 replications in each system). 
 

For system reliability (Figure 5.3 lower panel), there does not appear to be any general 

relationship between the system reliability and number of features used, i.e., single or different 

combinations of features are affected by sampling variability to different extents and systems 

with more features are not necessarily more sensitive to sampling variabilities. For example, 

systems with four features, e.g., the F0123, F012DUR, F123DUR, have lower overall Cllr 

ranges than some of the systems with single, two- or three-feature systems such as the F1, 

F1DUR and F012 systems. On the other hand, some other systems with fewer features, e.g., 

the DUR, F3 and F2 systems, yield lower overall Cllr ranges than systems with more features 

such as the F012, F1DUR and F0123DUR systems.  

 

Figure 5.4 shows the relationship between Cllr mean (x-axis) and Cllr range (y-axis) of the 31 

systems. In general, systems with more features have a tendency to move further to the bottom 

left corner (i.e., have better overall performance). However, this is not always the case; for 

example, the system using F2 alone outperforms two-feature (e.g., F03, F13) and three-feature 
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systems (e.g., F03DUR, F13DUR) in terms of both validity and reliability; two-feature systems 

(F02, F12, F23) outperform three- and four-feature systems (e.g., F03DUR, F013DUR) in 

terms of validity (x-axis).  

 

 
 Figure 5.4 Cllr mean plotted against Cllr range of 31 systems.  
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5.3.2.1 Individual validity    
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#48 and #53 (Figure 5.5). Systems with four or five features do not seem to improve the mean 

validity of the LRs of speakers #48 and #53. Instead, #48 and #53 can be well separated using 

a two-feature system (i.e., F02, indicated by floating label F02 next to the triangle). The 

maximum magnitude of LLRs exceeds 2.3 for SS comparisons, equivalent to moderately 

strong support for Hp, while the DS LLR is over -20, equivalent to very strong support for Hd. 

Moreover, speaker #48 produced contrary-to-fact results in SS comparisons in the F013 (SS 

LLR = -0.38) and F13DUR (SS LLR = -0.02) systems and speaker #53 produced contrary-to-

fact results in the F13DUR system (SS LLR = -0.42).  

 

 
Figure 5.5 Mean SS and DS LLR of speakers #51, #48 and #53 across 31 systems. Two 
triangles marked by ‘F02’ in lower panels indicate that speakers #48 and #53 can be well 
separated using a two-feature system (F02). 
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Figure 5.6 Mean SS and DS LLR of all 25 test speakers across 31 systems (see Appendix C 
for full size).  
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Figures 5.7 to 5.10 give a more detailed portrait of individual speakers’ LLRs across different 

systems, showing the zoo plots of the 25 test speakers. Each black point represents the mean 

of SS and DS LLRs of each individual speaker in the 100 replications across different systems 

and the neighbouring numbers indicate speaker numbers. The animal group, i.e., phantom, 

worm, dove and chameleon, of individual test speakers is assigned on the basis of mean SS and 

DS LLRs, and the red dash lines indicate the adjusted thresholds for the zoo plots (Table 3.3). 

 

Figure 5.7 shows that most of the 25 test speakers yielded consistent-with-fact results using 

single-feature systems, and Table 5.4 shows animal groups of speaker numbers in single-

feature systems. In terms of speaker’s animal groups, there are only five speakers (i.e., speakers 

#30, #46, #48, #53, #118) who fall into the dove group (i.e., speakers who have especially good 

performance when being compared with themselves and can be easily separated from other 

speakers) in the F2 system, while no speakers fall into the dove group in the other four single-

feature systems. On the other hand, there are phantom speakers (i.e., speakers who are rarely 

similar to any other speakers and likely to yield low SS and DS scores) in all single-feature 

systems (Table 5.4), and there are no chameleon (i.e., speakers who are always obtaining high 

SS and low DS scores when being compared against themselves and other speakers) or worm 

(i.e., speakers who always have high DS and low SS comparison scores when being compared 

against themselves and other speakers) speakers. Figure 5.7 shows that individual speakers’ 

behaviour varies depending on which feature is being used, e.g., speaker 48 falls into the 

phantom group in the F1 and F3 systems, while speaker #48 is in the dove group in the F2 

system. Moreover, individuals seem to have more within- and between-speaker variation in the 

F2 system than others as the SS and DS LLRs are more spread out.  
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Figure 5.7 Zoo plot of SS and DS LLR of 25 test speakers in single-feature systems. Note that 

y-axes are different (see Appendix B for full size zoo plots). 
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Systems\Animal group Phantoms Doves Worms Chameleons 

DURATION 72 N.A. N.A. N.A. 

F0 8, 27, 120 N.A. N.A. N.A. 

F1 48, 53, 54, 114  N.A. N.A. N.A. 

F2 120 30, 46, 48, 53, 118 N.A. N.A. 

F3 48 N.A. N.A. N.A. 

Table 5.4 Animal groups of speakers in single-feature systems. N.A. indicates that there is no 
speaker occur in that group.  

 

In two-feature systems, as with single-feature systems, most speakers yielded consistent-with-

fact results in SS and DS comparisons and speakers seem to shift between animal groups 

depending on different combinations of features (Figure 5.8). Table 5.5 shows animal groups 

of speaker numbers in two-feature systems. Individual speakers are more likely to fall into the 

dove group and less likely to fall into the phantom group in systems with F2 than systems 

without F2 as most speakers (18 out of 25) fall into the dove group in the F02 system, and there 

is no dove speaker in the F3DUR system. Meanwhile, apart from the F23 and F2DUR systems, 

all other systems have phantom speakers. There is no speaker who consistently falls into the 

same animal group across all systems. The nearest such speakers are speaker #30, who falls 

into the dove group in all systems but the F1DUR and F3DUR systems, and speakers #36 and 

#118, who only appear in the dove group in systems with F2, i.e., the F02, F12, F23 and F2DUR 

systems. In terms of the phantoms, there seem to be no systematic pattern either. Speaker #48 

falls in the phantom group in the F03, F13 and F3DUR systems, but shifts to the dove group in 

the F02, F0DUR and F2DUR systems. Similarly, speakers #8, #17, #53 and #114 are in the 

phantoms in one system, but doves in another. However, speaker #120 seems to be the only 

speaker who occurs in the phantom group in the F02, F0DUR and F1DUR systems without 

shifting to other animal groups in other systems.  
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Figure 5.8 Zoo plot of SS and DS LLR of 25 test speakers in two-feature systems. Note that y-

axes are different (see Appendix B for full size zoo plots). 
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Systems\Animal group Phantoms Doves Worms Chameleons 

F01 8, 17, 53, 

114 

30, 46, 77, 94 N.A. N.A. 

F02 120 17, 20, 21, 30, 36, 40, 

46, 47, 48, 51, 53, 54, 

56, 77, 79, 90, 94, 118 

N.A. N.A. 

F03 48 30, 54, 56, 77 N.A. N.A. 

F0DUR 120 30, 46, 48, 53, 54 N.A. N.A. 

F12 53 20, 21, 30, 36, 46, 47, 

51, 56, 72, 77, 79, 94, 

118 

N.A. N.A. 

F13 48, 53 30, 51, 56, 77, 79 N.A. N.A. 

F1DUR 53, 120 94 N.A. N.A. 

F23 N.A. 8,17, 30, 36, 40, 46, 51, 

54, 56, 77, 79, 114, 118 

N.A. N.A. 

F2DUR N.A. 8, 30, 36, 40, 46, 47, 48, 

53, 54, 77, 79, 118 

N.A. N.A. 

F3DUR 48 N.A. N.A. N.A. 

Table 5.5 Animal groups of speakers in two-feature systems. N.A. indicates that there is no 
speaker occur in that group.   

 

Figure 5.9 shows individuals’ mean validity across systems with three features, and Table 5.6 

shows animal groups of speaker numbers in three-feature systems. Most speakers shift to the 

dove group (top right corner) in three-feature systems comparing with single and two-feature 

systems. Despite that, phantoms speakers are observed in the following systems: F013 (speaker 

#48), F01DUR (speaker #120) and F13DUR (speakers #48, #53). Furthermore, a chameleon 

speaker (speaker #20) is observed in the F03DUR system. All other systems, i.e., the F012, 

F023, F02DUR, F123, F12DUR, F23DUR, yield factual LLRs. Most speakers fall into the 

dove group in the F123 system (19 speakers). Meanwhile, three speakers – #30, #56, #77 – 

consistently fall into the dove group in all three-feature systems. Similar to two-feature systems, 

speaker #48 shifts between phantom and dove in different three-feature systems, while speaker 

#120 does not fall into the dove group in any three-feature systems.  
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Figure 5.9 Zoo plot of SS and DS LLR of 25 test speakers in three-feature systems. Note that 

y-axes are different (see Appendix B for full size zoo plots). 
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Systems\Animal group Phantoms Doves Worms Chameleons 

F012 N.A. 13, 20, 21, 30, 36, 46, 

47, 48, 51, 53, 56, 72, 

77, 79, 90, 94,118 

N.A. N.A. 

F013 48 13, 21, 30, 46, 47, 51, 

56, 77, 79, 94, 118 

N.A. N.A. 

F01DUR 120 30, 46, 47, 56, 77, 94 N.A. N.A. 

F023 N.A. 8, 17, 21, 26, 30, 36, 

40, 46, 47, 51, 53, 54, 

56, 77, 79, 90, 94, 114, 

118 

N.A. N.A. 

F02DUR N.A. 17, 21, 26, 30, 36, 40, 

46, 47, 48, 51, 53, 54, 

56, 77, 79, 90, 94, 118 

N.A. N.A. 

F03DUR N.A. 8, 21, 26, 30, 54, 56, 77 N.A. 20 

F13DUR 48, 53 8, 30, 56, 77, 79, 94 N.A. N.A. 

F123 N.A. 13, 20, 21, 27, 30, 36, 

46, 47, 51, 54, 56, 72, 

77, 79, 8, 90, 94, 114, 

118 

N.A. N.A. 

F12DUR N.A. 8, 13, 21, 30, 36, 46, 

47, 48, 51, 56, 77, 79, 

94, 118 

N.A. N.A. 

F23DUR N.A. 8, 17, 21, 26, 27, 30, 

40, 46, 47, 51, 53, 54, 

56, 77, 79, 114, 118 

N.A. N.A. 

Table 5.6 Animal groups of speakers in three-feature systems. N.A. indicates that there is no 
speaker occur in that group.   

 

Figure 5.10 shows individuals’ mean validity across systems with four or five features, and 

Table 5.7 shows animal groups of speaker numbers in four-/five-feature systems. All speakers 

yielded consistent-with-fact results in SS and DS comparisons in systems with four or more 

features, as no speaker falls into the phantom, worm or chameleon group. The F0123 and 
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F0123DUR systems yield the same number of dove speakers (21 speakers), indicating that 

adding the duration feature does not necessarily increase the mean magnitude of the strength 

of evidence in individual speakers. Moreover, the F0123 system outperforms the other four-

feature systems in terms of number of dove speakers, suggesting that individual speakers are 

in general more likely to yield stronger strength of evidence in systems without duration. 

However, exceptions can be found in speakers #48 and #120, as speaker #48 only falls into the 

dove group in the F012DUR system, and speaker #120 does not fall into the dove group in any 

systems. Despite the fact that some speakers, e.g., speakers #8, #17, #20, shift in and out of the 

dove group across different systems, 10 out of 25 speakers fall into the dove group consistently 

in all systems with four or more features, i.e., speakers #21, #30, #46, #47, #51, #54, #56, #77, 

#79 and #94. This shows that different combinations of features and configurations of training 

and reference speakers have less effect on an individual speaker’s mean validity when four or 

more features are used.  

 

 

Figure 5.10 Zoo plot of SS and DS LLR of 25 test speakers in four-/five-feature systems. Note 

that y-axes are different (see Appendix B for full size zoo plots). 
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Systems\Animal group Phantoms Doves Worms Chameleons 

F0123 N.A. 13, 17, 20, 21, 27, 30, 

36, 40, 46, 47, 51, 53, 

54, 56, 72, 77, 79, 90, 

94, 114, 118 

N.A. N.A. 

F012DUR N.A. 13, 21, 30, 36, 46, 47, 

48, 51, 53, 54, 56, 77, 

79, 90, 94, 118  

N.A. N.A. 

F013DUR N.A. 21, 30, 46, 47, 51, 54, 

56, 77, 79, 94  

N.A. N.A. 

F023DUR N.A. 8, 17, 21, 26, 30, 36, 

40, 46, 47, 51, 53, 54, 

56, 77, 79, 90, 94, 

114, 118  

N.A. N.A. 

F123DUR N.A. 8, 13, 21, 27, 30, 36, 

40, 46, 47, 51, 54, 56, 

72, 77, 79,94, 114, 

118  

N.A. N.A. 

F0123DUR N.A. 8, 13, 17, 21, 26, 27, 

30, 36, 40, 46, 47, 51, 

53, 54, 56, 72, 77, 79, 

94, 114, 118  

N.A. N.A. 

Table 5.7 Animal groups of speakers in four-/five-feature systems. N.A. indicates that there is 
no speaker occur in that group.   

 

Across the 31 systems, there is only one speaker who falls into the chameleon group in the 

F03DUR group, while there is no worm speaker in any system. Among systems with the same 

number of features, individual speakers’ mean validity varies depending on which feature, or 

features, are being used, i.e., the results are system specific. Across the 31 systems, the general 

trend shows that speakers are more likely to fall into the dove group (top-right, i.e., absolute 

LLR  1) when more features are used. Different combinations of features and configurations 
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of training and reference speakers seem to have less effect on individual speakers’ behaviour 

when four or more features are used.  

 

5.3.2.2 Individual reliability   

 

Figure 5.11 shows the RMSD values in SS (upper panel) and DS (lower panel) comparisons 

across the 31 systems based on different combinations of input features, indicating the 

reliability in individual speakers’ LLRs within systems. The black dots represent the RMSD 

values of each individual speaker, and the coloured triangles are the mean RMSD values of all 

speakers in each system. The RMSD values were plotted from the highest (left end of the x-

axis) to lowest (right end of the x-axis) in terms of the mean RMSD values. Higher RMSD 

values indicate that speakers have more fluctuating LLRs relative to their own mean LLR for 

that system, and are more sensitive to configurations of training and reference speakers. Overall, 

all speakers tend to be more fluctuating in DS comparisons than SS comparisons (note that the 

y-axis scales are different). This is likely due to the fact that speakers can only be so similar to 

themselves, but infinitely different from each other (Kinoshita et al., 2009). For SS 

comparisons, speakers fluctuate more when more features are included in the system. However, 

the fluctuation in individual speakers’ SS LLR is minor, with all SS RMSD values smaller than 

1 across the 31 systems. 

 

For DS comparisons, increasing the number of features does not necessarily lower the 

reliability in individual speakers’ mean LLR outputs, e.g., the mean DS RMSD value is higher 

in the F2 system (ca. 6.25) than that in the F0123DUR system (ca. 5). However, among systems 

with the same number of features, speakers fluctuate more when F2 is involved, i.e., speakers 

in systems at the left end of x-axis, e.g., the F012, F0123, F0123DUR systems, fluctuate more 

than those at the right end, e.g., the F1, F1DUR, F3DUR, F3 systems. It is also worth noting 

that most speakers have DS RMSD values fluctuating between 2.5 and 7.5 in most of the 

systems (e.g., F2, F12, F123, F0123), indicating that the LLRs of speakers in DS comparisons 

among 100 sampling replications could be 5 above or below the mean LLR. For example, if 

one speaker has a mean LLR of -2 in DS comparisons in the F2 system, the possible LLR 

outputs in the 100 replications could be between -7 and 3.  
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Figure 5.11 RMSD values of individual speakers across 31 systems. Black dots indicate the 

RMSD values of each individual speaker, and the coloured triangles are the mean RMSD 

values of all speakers in each system. 

 

Figure 5.12 shows the reliability of individual speakers’ LLR in systems with the same number 

of features (the five-feature system is not included as there is only one such system). Each dot 

represents the difference between the maximum and minimum RMSD values (i.e., the range) 

of each speaker across systems with equal number of features. In DS comparisons, the majority 

of speakers tend to be least stable in one- and two-feature systems and the most stable in 

systems with three and four features. Around half of the speakers yield DS RMSD values 
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comparisons. Some speakers start with low SS RMSD values (high reliability) in one-feature 

systems and end up with high SS RMSD values (low reliability) in four-feature systems, while 

some other speakers show an opposite pattern. The remaining speakers show similar patterns 

to those in DS comparisons where they yield the most fluctuating performance in systems with 

two or three features. All the speakers have SS RMSD values lower than 1, indicating that the 

fluctuation in SS comparisons caused by different combinations of features and configurations 

of training and reference speakers is lower than one LLR magnitude in terms of strength of 

evidence.  

 

 
 Figure 5.12 SS and DS RMSD ranges across systems with different numbers of features.
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Pearson’s r was calculated to explore the correlation between the LLR and RMSD values, i.e., 

the correlation between the validity and reliability of individual speakers’ LLRs. Table 5.8 

shows the correlation coefficients using individual speakers’ SS/DS LLR and RMSD values 

from systems with the same number of features. Among SS comparisons, the SS LLR shows a 

positive correlation with RMSD in the five-feature system (Pearson’s r = 0.41), indicating that 

speakers who yield high LLR (more likely to be separated in SS comparisons) are also more 

likely to yield unstable behaviour. In systems with one to four features, the SS LLR and RMSD 

values do not seem to have much correlation. For DS comparisons, the DS LLR and RMSD 

are negatively correlated in all systems, meaning that speakers who can be well separated from 

others in DS comparisons are also more likely to have unstable behaviour (DS LLR scale is 

reversed). The overall pattern in DS comparisons suggests that the validity and reliability of 

individual speakers’ LLR are likely to be negatively correlated (i.e., speakers that are easier to 

be separated from others are more likely to have unstable behaviour).   

 
 

SS LLR vs. SS RMSD DS LLR vs. DS RMSD 

Number of features Pearson’s r Pearson’s r 

1 0.16 -0.73 

2 0.14 -0.52 

3 0.14 -0.62 

4 0.13 -0.58 

5 0.41 -0.69 

Table 5.8 Correlation between the validity and reliability of individual speakers.  

 

Figures 5.13 to 5.20 give a more detailed portrait of the fluctuation in individual speakers’ 

LLRs across different systems. The x-axis indicates different systems, and the y-axis indicates 

RMSD values. A flat line would indicate that different combinations of features and 

configurations of training and reference speakers have limited effect on individual speaker’s 

LLR output.  
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5.3.2.2.1 Single-feature systems  

 

Figures 5.13 and 5.14 show the LLR fluctuations for each speaker for each single-feature 

system. In SS comparisons, most speakers do not show much fluctuation across five single-

feature systems, indicating that individual speakers’ behaviour are comparatively stable 

regardless of the choice of features and training and reference speakers. However, there are 

some exceptions, e.g., speakers #8 and #27 have more fluctuating SS LLRs in the F0 system 

and speaker #53 is more fluctuating in the F1 system.  

 

For DS comparisons, most speakers tend to have more fluctuating DS LLRs in the F2 system, 

e.g., speakers #17, #30, #48, #72, while other speakers, e.g., speakers #51 and #53, are 

fluctuating in the F1 and F0 systems respectively. Figures 5.13 and 5.14 also show high 

fluctuation in SS comparisons does not lead to high fluctuation in DS comparisons, e.g., 

speaker #53 is the most fluctuating in the F1 system for SS comparisons, but he is the most 

fluctuating in the F0 system for DS comparisons. 
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Figure 5.13 SS RMSD values of all 25 test speakers across single-feature systems. Numbers at 
the top of each panel indicate speaker numbers.  
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Figure 5.14 DS RMSD values of all 25 test speakers across single-feature systems. Numbers 
at the top of each panel indicate speaker numbers. 
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5.3.2.2.2 Two-feature systems 

 

Figures 5.15 and 5.16 show the fluctuation in individual speakers across two-feature systems. 

Similar to single-feature systems, most speakers show limited fluctuation across different two-

feature systems in SS comparisons. Some speakers, i.e., #20, #27, #30, #46, #48, #53, #114, 

#118 and #120, have a clear peak in the SS RMSD values in the F02 system, indicating that 

these speakers are more sensitive to different combinations of features and configurations of 

training and reference speakers in SS comparisons. In terms of DS comparisons, it seems that 

only a few speakers, i.e., #8, #13, #20, #36, #40, #90, are comparatively less affected by 

different combinations of features. Meanwhile, 19 out of 25 speakers, i.e., #13, #17, #20, #21, 

#26, #27, #30, #46, #47, #48, #53, #54, #56, #72, #77, #94, #114, #118, #120, have the most 

fluctuating DS LLRs in the F02 system.  
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Figure 5.15 SS RMSD values of all 25 test speakers across two-feature systems. Numbers at 
the top of each panel indicate speaker numbers. 
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Figure 5.16 DS RMSD values of all 25 test speakers across two-feature system. Numbers at 
the top of each panel indicate speaker numbers.
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5.3.2.2.3 Three-feature systems  

 

Figures 5.17 and 5.18 show the fluctuation in individual speakers across three-feature systems. 

Similar to the single- and two-feature systems, i.e., more than half of the speakers have a stable 

performance across different systems. However, there are some exceptions, i.e., speakers #30, 

#46, #48, #51, #53, #56, #94, #118 and #120, fluctuate across different systems. In DS 

comparisons, speakers seem to be less fluctuating across different systems with three features 

than with two features. Most speakers have a fairly flat line across three-feature systems, while 

a few speakers such as #17, #30, #48, #53, #72, #118 and #120 have comparatively larger 

fluctuations.  
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Figure 5.17 SS RMSD values of all 25 test speakers across three-feature systems. Numbers at 
the top of each panel indicate speaker numbers. 
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Figure 5.18 DS RMSD values of all 25 test speakers across three-feature systems. Numbers at 
the top of each panel indicate speaker numbers. 
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different four-/five-feature systems, which is similar to other systems with less than four 

features. Other speakers show some LLR fluctuation depending on which combinations of 

features are used, e.g., speaker #56 is the least fluctuating in the F012DUR system, while 

speaker #53 is the least fluctuating in the F123DUR system.  

 
Figure 5.19 SS RMSD values of all 25 test speakers across four-/five-feature systems. Numbers 
at the top of each panel indicate speaker numbers. 
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For DS comparisons, most speakers seem to have limited fluctuation across systems with four 
or five features, suggesting that the majority speakers can potentially be less fluctuating across 
different system when four or more features are used. However, there are still a few exceptions, 
e.g., speakers #72 and #118 show a clear dip in DS LLR in the F013DUR system.  
 

 
Figure 5.20 DS RMSD values of all 25 test speakers across four-/five-feature systems. 
Numbers at the top of each panel indicate speaker numbers. 
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Based on the patterns observed in the above sections (5.3.2.2.1 - 5.3.2.2.4), most speakers show 

limited variation in SS comparisons across systems with different combinations of features, 

indicating that speakers are less sensitive to different configurations of training and reference 

speakers regardless of whether a one-feature or five-feature system is used. However, there are 

always some speakers giving fluctuating behaviour depending on which features are being used, 

e.g., speakers #8 and #27 in the F0 system, speakers #27 and #118 in the F02 system. For DS 

comparisons, the majority of the speakers tend to have stable behaviour when three or more 

features are used; meanwhile, again some speakers (e.g., #53, #72, #118 and #120) have 

fluctuating behaviour depending on which features are being used in three-, four- and five-

feature systems. The patterns in SS and DS comparisons using different combinations and 

different numbers of features indicate that individual speakers’ behaviour is not only affected 

by sampling variability, but which exact features are being used. Comparatively, researchers 

and experts might have less control over the issue of sampling variability, while they have more 

control over which features included for analysis. It is then essential for researchers and experts 

to acknowledge that the same speaker might show different behaviour when different 

linguistic-phonetic features are used, especially in real case scenarios. The following section 

demonstrates potential LR ranges one might obtain in real case scenarios.  

 

5.3.3 What happens in a real case?  

 

The results above show that some speakers are more affected by the different combinations of 

features and configurations of training and reference speakers, while others are less affected. 

Under real case scenarios, 30 to 40 training and reference speakers are likely to be sampled 

from a relevant population (e.g., 35 speakers in Rose, 2013b), and the size of the relevant 

population itself is, in most cases, considerably larger than the number of training and reference 

speakers sampled. Although it is possible to sample more speakers from the relevant population, 

empirical studies (e.g., Ali et al., 2015; Morrison & Poh, 2018) and the current Chapter have 

shown that the effect of sampling variability on both overall performance and individual 

behaviour is inevitable. It is then a practical consideration for casework, i.e., would we obtain 

the same results for this particular pair of speakers if the experiment is replicated? It is then 

important to explore possible LLR ranges that one could obtain for a pair of speakers in a real 

case. The following section examines results from the best system in terms of Cllr mean and 

range, i.e., the F0123 system, to analyse in detail the speaker-specific effects, and thus consider 
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the potential outcomes of this variability in the context of a real case. Since the RMSD values 

indicate how stable one specific test speaker behaves when different configurations of training 

and reference speakers are used, the test speakers who have the highest (i.e., having fluctuating 

behaviour when different configurations of training and reference speakers are used) and 

lowest RMSD values (i.e., having stable behaviour when different configurations of training 

and reference speakers are used) in SS and DS comparisons are selected for the demonstration 

of possible LLR ranges. Table 5.9 shows the RMSD values of the selected speakers from the 

F0123 system,  

 

F0123 System 

Speaker SS RMSD Speaker  DS RMSD 

#40 0.22 #20 2.21 

#30 0.84 #51 15.17 

Table 5.9 SS and DS RMSD values of speakers with the least and most variable LLRs.  

Figure 5.21 shows the ranges of SS LLRs of speakers #30 (most fluctuating) and #40 (least 

fluctuating) across the 100 replications, i.e., #30 and #40 are compared with themselves 100 

times with different configurations of training and reference speakers using F0, F1, F2 and F3. 

X-axis is the SS LLR values and y-axis indicate speaker IDs.  

 

As Figure 5.21 shows, both speakers yielded positive SS LLRs, i.e., they all yielded consistent-

with-fact results, in all 100 replications. Speaker #40 yielded the least variable LLRs, varying 

from ca. 0.6 to 1.9, which is a difference between limited and moderate support for SS origin 

in terms of verbal LLR expression. However, the SS LLR of speaker #30 varies between 1.3 

and 6.6, which is a difference between moderate and very strong support for SS origin. 

Comparatively, speaker #40 seems to be less problematic, while speaker #30 would be more 

problematic to assess in a real case because the SS LLRs show a much wider variation 

depending on who is used in the training and reference data.  
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Figure 5.21 SS LLRs of speaker #30 and #40 using different training and reference speakers in 
the F0123 system.  

Figure 5.22 shows the DS LLRs of the most and least variable speakers, i.e., speaker #20 and 

#51, in DS comparisons. Note that the x-axis scales are different for the top and bottom panels. 

The x-axis indicates the DS LLR values, while the y-axis shows the rest of the test speakers 

that are being compared. Each boxplot represents the variation of DS LLRs, e.g., the first 

boxplot in the top panel indicates the DS LLR ranges of speaker #20 being compared with 

speaker #8 with different configurations of training and reference speakers across 100 

replications. The DS LLRs fluctuate much more markedly than SS LLRs, which is probably 

caused by the fact that the number of SS LLRs is much smaller than those of DS LLRs. For 

example, a sample of 30 speakers would only have 30 SS LLRs, but 870 DS LLRs. In terms 

of contrary-to-fact results, it can be seen that more reliable speakers tend to yield more 

counterfactual cases. For example, speaker #20 yields the most stable LLRs in DS comparisons 

across the 100 replications, but this speaker also gives the most contrary-to-fact results when 

compared with other test speakers. Contrary-to-fact DS LLRs are observed when speaker #20 

is being compared with 12 (out of 24) speakers (e.g., #17, #21, #26, #27, #30 etc). Among the 

12 speakers, speaker #20 yielded contrary-to-fact results when comparing with three other 

speakers in all of the 100 replications, i.e., speakers #27, #54, and #56. Clearly, the contrary-

to-fact results for speaker #20 would be misleading under a real case scenario. The highest DS 

LLR goes up to 2.12, which indicates a moderately strong support for SS origin (given the 
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speech samples are from different speakers). For consistent-with-fact results in speaker #20, 

the majority of DS LLRs vary between 0 and -5, which is a difference between limited and very 

strong support for DS origin. On the other hand, speaker #51 does not to have contrary-to-fact 

LLRs when compared with the remaining 24 speakers and the DS LLRs range between ca. -12 

and -50 for most of the DS comparisons of speaker #51.   

 

 
Figure 5.22 DS LLRs of speaker #20 and #51 using different training and reference speakers 
in the F0123 system.  
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5.4 Discussion   
 

In this Chapter, 31 systems based on different combinations of input features were evaluated 

and compared from the perspective of overall performance and individual speakers’ behaviour. 

The performance of all 31 systems suggests that systems with more features in general yield 

higher validity (i.e., lower mean Cllr; Figure 5.4), while some exceptions can be found in the 

F0123 and F0123DUR systems, i.e., the four-feature system outperforms the five-feature 

system. Meanwhile, no clear pattern is observed in Cllr range (Figure 5.4). Therefore, it is 

important to acknowledge that adding extra features does not always improve the overall 

system validity and reliability (and this is especially true when considering individuals).  

 

The overall performance shows a similar pattern to Hughes et al. (2016) in terms of system 

validity (and of course this is due to the similar data used), where F2 yielded the best 

discriminatory performance. However, the F2 system also yielded the best system reliability. 

A comparison between the F0123 and F2 systems shows that the F2 system has a lower Cllr 

range (0.04) than that of the F0123 system (0.15). However, all of the Cllr values in the F0123 

system across 100 replications are lower than those in the F2 system. Therefore, it is important 

to understand the trade-off between system validity and reliability, i.e., how much variation are 

we willing to accept given validity, or the other way round? The trade-off between system 

validity and reliability should be case-specific, as each case would have more or less different 

prerequisites, e.g., the amount of speech available in the suspect and offender samples, number 

of speakers available in training and reference data, and how narrowly or broadly defined is 

the relevant population. To the best of the author’s knowledge, there is no such framework to 

capture that trade-off in LR-based FVC studies for now. Further, experts have the freedom to 

make decisions (e.g., which speech feature/background population to be used) and conduct 

analyses under casework scenarios; therefore, it is important for experts to take researchers’ 

degrees of freedom into consideration as Chapter 5 has shown that different choices of 

linguistic-phonetic features yield different overall performance and the variability can be 

substantial in some situations (e.g., system F012 in Figure 5.2). 

 

For individual speakers’ behaviour, all speakers yielded consistent-with-fact results in systems 

with four and five features, while contrary-to-fact results were observed in systems with fewer 

than four features (Figure 5.6). Furthermore, speakers have different fluctuating patterns in SS 
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and DS comparisons (Figure 5.12). In SS comparisons, speakers are more likely to yield 

fluctuating performance in systems with more features, indicating that combining multiple 

features increases within-speaker variation, which makes speakers more sensitive to sampling 

variability. Moreover, Figure 5.12 shows that speakers have different fluctuating patterns 

across systems with different numbers of features, e.g., speaker #30 yielded the most 

fluctuating performance in systems with four features, while speaker #51 yielded the least 

fluctuating performance. This suggests that the effect of different combinations of features and 

configurations of training and reference speakers on the reliability of individual test speakers’ 

LLR output is speaker specific.  

 

In DS comparisons, there does not seem to be any general pattern between number of features 

and individual speaker’s reliability (Figure 5.11 bottom panel). However, when compared to 

systems with the same number of features (Figure 5.12 bottom panel), individual speakers 

became less fluctuating when four features were used, indicating that different combinations 

of features and configurations of training and reference speakers had less effect on the 

reliability of individual test speakers in DS comparisons. A comparison between the most 

(speaker #51) and least (#20) fluctuating speakers from the F0123 system in the DS 

comparisons shows that validity and reliability of individual speakers’ LLR are likely to be 

negatively correlated (Figure 5.22).  

 

The overall pattern indicates that both overall performance and individual speakers’ behaviour 

could be affected by specific case conditions, and there is no single rule that applies to all. The 

patterns observed in the current study are similar to other biometric systems (e.g., fingerprint, 

iris) for forensic evaluation, i.e., the individual speaker’s behaviour is system/case specific 

(Dunstone & Yager, 2009). It is noteworthy that the corpus used in the current experiments 

was recorded under well-controlled settings and the speech samples were contemporaneous. 

Moreover, experiments were conducted within datasets and speaker samples in training and 

reference sets are likely to be duplicated between each replication. Therefore, the results in this 

Chapter (and Chapter 4) are necessarily conservative, and more variability in results would be 

observed if speakers are randomly sampled from other datasets and truly independent samples 

are used.  
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5.5 Chapter summary  
 

Chapter 5 explored the effect of sampling variability on overall performance and individual 

speakers by taking different combinations of linguistic-phonetic features (e.g., only use F1 or 

use F1 and F2) and different configurations of training and reference speakers into 

consideration. Followings are the findings of Chapter 5 in bullet points.  

 

• Systems with more features do not necessarily outperform those with fewer features. 

• Individual speakers’ LRs fluctuate more when more features are included in same-

speaker comparisons, but not in different-speaker comparisons. 

• Individual speakers are more likely to yield contrary-to-fact results in DS comparisons 

than SS comparisons. 

• The LLR and RMSD are likely to be negatively correlated in DS comparisons 

regardless of the number of features used, while negative correlation is only observed 

in the five-feature system for SS comparisons. 

• Researchers’ degrees of freedom (i.e., different choices of linguistic-phonetic features 

in the current context) need to be considered as a factor affecting evidence evaluation 

results.  
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Chapter 6 Overall performance as a function of score skewness, 

sample sizes and calibration methods 
 

The previous chapter analysed the validity and reliability of LLR output placing more focus on 

the feature-to-score stage. However, the variability in LLR outputs can be introduced by 

different sources (e.g., variability in sampling the relevant population; variability due to 

modelling assumptions; Morrison, 2016) at different stages of LR computation (i.e., feature-

to-score and score-to-LR). This chapter looks into score distributions and overall performance 

as a function of score skewness, sample size and calibration methods. The following RQs are 

addressed in the current chapter.  

 

RQs 3.  

a. To what extent is overall performance affected by skewed scores?  

b. Are certain calibration methods more susceptible to score skewness than others?  

c. Would overall performance be improved with larger sample sizes when scores 

are skewed? 

 

6.1 Introduction 
 

Assuming that systematic variability in LLR output caused by sociolinguistic factors (e.g., 

regional accent, class, educational background) can be well-controlled at the feature-to-score 

stage, one might still obtain variable and extreme LLR outputs due to random sampling 

variability and data extrapolation at the tails of score distributions. This is especially true when 

the sample size is small, and the density estimation is not well-supported by the observed data. 

Therefore, the choice of calibration method can be extremely important for dealing with the 

issue of over- or underestimating the strength of evidence (Vergeer et al., 2020).  

 

Wang et al. (2019) investigated the effect of sampling variability on overall performance at the 

score-to-LR stage.  They simulated scores under an assumption of normality using the rnorm() 

function in R (R Core Team, 2020). The SS and DS scores were sampled from three sets of 

normal distributions with different EERs, i.e., where the distance between SS and DS 
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distributions were different. This was designed to mimic variables with different speaker-

discriminatory power. 20 SS and 380 DS training and test scores (i.e., 20 training speakers and 

20 test speakers) were simulated respectively to produce calibrated LLRs using logistic 

regression (Brümmer et al., 2007). For each set of distributions, the experiments were 

replicated 100 times by varying both training and test scores, training scores only, and test 

scores only. The results show that, under normal distributions with a sample size of 20 speakers, 

system validity is not necessarily positively correlated with system reliability, e.g., systems 

having lower mean Cllr does not lead to lower Cllr range and vice versa; meanwhile, overall 

performance is less susceptible to sampling variability when only training data is varied 

compare to when test data is varied. However, Wang et al. (2019) only looked at scores that 

follow an assumption of normality, while scores are less likely to be normally distributed under 

real case scenarios due to the reasonable limits of sample size in the real world. A polit study 

was conducted to investigate the score distributions using linguistic-phonetic features.  

 

6.1.1 Polit study  

 

A pilot study was carried out using six segmental linguistic-phonetic variables (i.e., GOOSE, 

NORTH, PRICE, TRAP vowels, and two FPs um and uh) based on 36 SSBE speakers from 

the DyViS corpus (Nolan et al., 2009). Raw formant data was readily available and retrieved 

from (Gold & Hughes, 2015). The raw F1, F2 and F3 values were fitted with quadratic curves. 

Data from each speaker was divided in half to create SS and DS pairs, and the quadratic 

coefficients were used as the input of MVKD (Aitken & Lucy, 2004) to generate cross-

validated scores. Calibration was not conducted given there were only 36 speakers available; 

meanwhile, the focus here was to investigate score distributions. Figure 6.1 shows the SS (red) 

and DS (blue) score distributions of the six segmental linguistic-phonetic variables. In general, 

both SS and DS scores are skewed to some extent, and DS scores are much flatter than SS 

scores. The SS score distributions seem to be more problematic given that there are fewer data 

points in SS scores than those in DS scores. As a result, extrapolation effects can be observed 

at both the tails and centre in SS score distributions, e.g., indicated by dashed circles at the 

right tail of the PRICE vowel and centre of the TRAP vowel. If scores were modelled following 

a normality assumption, the theoretical distributions would not be well-supported by the 

observed data (i.e., histograms in Figure 6.1), which could lead to invalid LR estimates. The 

question is how much does it matter if scores are not normally distributed? In this chapter, the 
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effect of sampling variability on overall performance is investigated in relation to score 

skewness; meanwhile, different calibration methods were explored to reduce the level of 

uncertainty (i.e., reliable overall performance), especially when sample size is small.  

 

 

 
Figure 6.1 Score distributions of six linguistic-phonetic variables (blue curve = DS scores, 
red curve = SS scores, black dotted circles = examples of extrapolation if normality is 
assumed). 
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6.2 Method 
 

The current chapter uses simulated scores to explore overall performance as a function of 

sample sizes, score distributions and calibration methods. Simulation was carried out based on 

scores obtained from the FP um, previously described in Section 4.4.1, where the test, training 

and reference speakers were varied across 100 replications. The reason for only using scores 

from FP um is because FP um is obtained from a more controlled corpus than Cantonese SFP 

/a/ and /haijat/. The distributions of SS and DS scores were first investigated, and simulation 

was carried out using the skew-t (ST) function in the sn() package (Arellano-Valle & 

Azzalini, 2013) in R (R Core team, 2020). Four calibration methods were used to test which 

calibration methods are more or less susceptible to sampling variability. Training and test data 

were simulated with different numbers of scores to take the effect of sample size into 

consideration. The following sections firstly give description of the score distributions of the 

FP um, followed by the simulation and calibration procedures. Results and discussion are given 

in Sections 6.3 and 6.4.  

 

6.2.1 Score distribution  

 

Figure 6.2 (upper panels) shows the distributions of SS and DS log scores of FP um by varying 

test, training and reference speakers. The SS scores are fairly well normally distributed with a 

cluster between ca. -25 and -50, while the DS scores are more negatively skewed. For the sake 

of simplicity for the simulation process, a z-score of 2 was applied to remove scores that are 

more than 2 standard deviations from the mean. Figure 6.2 (lower panels) shows the score 

distributions after the z-score was applied. Table 6.1 shows the distribution parameters (i.e., 

mean, standard deviation, skewness and kurtosis) after z-score application. The DS scores have 

higher skewness and standard deviation values than those of the SS scores, indicating that the 

DS scores are more skewed and variable than the SS scores. The kurtosis values of both SS 

and DS scores are slightly higher than 3, suggesting that most of the SS and DS scores are at 

the centre of the distribution and have a similar tail thickness. The means of the SS and DS 

scores are 2.6 and -78 respectively.  
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Figure 6.2 Histogram and density distribution of SS and DS Log scores from FP um by varying 
test, training and reference speakers. Upper and lower panels show the distributions of SS and 
DS scores before and after z-score was applied. 

 

um log score Mean SD Skewness Kurtosis 

SS 2.6 6.6 -0.5 3.5 

DS -78 56.6 -0.9 3.1 

Table 6.1 Distribution parameters of SS/DS log scores from the lower panels in Figure 6.2.  

 

6.2.2 Score simulation and LR computation 

 

The score simulation was carried out using parameters of log scores rather than the raw scores. 

This was done for two reasons. First, log scores rather than raw scores are normally used for 

score-to-LR computation, and thus it is more sensible to simulate log scores. Second, the raw 

scores are extremely skewed and less symmetrical. Raw scores only allow for non-negative 

values; therefore, both SS and DS raw scores are likely to be heavily tailed at the right. Further, 

the DS raw scores are likely to be stacked close to 0 at x-axis. Simulating the raw scores would 

further complicate the simulation process and introduce more uncertainty. However, for the 

sake of exploration, an attempt was also made to simulate raw scores, and the process is 

demonstrated in Appendix A.  
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Since the log scores are negatively skewed, it is sensible to simulate scores using skewed 

distributions. The Skew-t (ST) distribution (Arellano-Valle & Azzalini, 2013) was used for 

score simulation. The rst() function from the R (R Core Team, 2020) package sn (Azzalini, 

2020) was used. In ST distribution estimation, the mean, standard deviation and kurtosis of SS 

and DS log scores were adopted from Table 6.1, while the skewness was varied to explore the 

overall performance as a function of different score skewness. However, the choice and range 

of skewness relies on the ST distribution model, where four direct parameters (DP) are required, 

namely ξ (location), ω (scale), α (shape) and ν (thickness at tail). DPs are not as interpretable 

as ‘centred parameters’ (CP) and need to be converted from CPs (traditionally known moments 

such as mean, variance and skewness). Meanwhile, not all the choice of components in CP (i.e., 

mean, variance and skewness) are admissible to those in DP (i.e., location, scale, shape and 

thickness at tail), meaning that DP has certain limitations on the possible ranges of the 

components in CP (see Arellano-Valle & Azzalini, 2013 for detailed discussion). In the current 

chapter, given the mean, standard deviation and kurtosis (Table 6.1), the maximum absolute 

value of skewness can be admissible to DP is 1.4. Table 6.2 shows the skewness values used 

for ST distribution simulation. 

ST distribution Skewness Kurtosis Mean SD 

SS DS SS DS SS DS SS DS 

Set (a) 0 0  

 

 

3.5 

 

 

 

3.1 

 

 

 

2.6 

 

 

 

-78 

 

 

 

6.9 

 

 

 

56.6 

Set (b) -0.7 -0.7 

Set (c) -1.4 -1.4 

Set (d) 0 -0.7 

Set (e) 0 -1.4 

Set (f) -0.7 0 

Set (g) -1.4 0 

Table 6.2 Parameter values used for ST distribution simulation. For all the sets, kurtosis, mean 
and standard deviation were fixed across replications, while only skewness values were varied.  

 

Seven sets of SS and DS skewness values were used for simulation, and only the skewness 

values were varied for each set. In sets (a), (b) and (c), both SS and DS score skewness were 

varied, aiming to investigate if overall performance would be degraded when scores were 

skewed (comparing with normal distributions, i.e., set (a)) in relation to sample size as well as 

different calibration methods. In sets (d), (e), (f), (g), only the skewness of one of the SS/DS 
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scores was varied, aiming to explore the effect of score distribution mismatch on overall 

performance. This is because scores are modelled using normal distributions in most of the 

ASR systems. Figure 6.3 shows the simulated SS (top panel) and DS (bottom panel) log scores 

(1000 samples per set) by varying the skewness. The dashed vertical lines indicate the mean of 

the empirical SS and DS log scores, which are 2.6 and -78 respectively.  

 

 

Figure 6.3 Distributions of simulated SS and DS log scores by varying the skewness.  

 

For each set of parameters, the training and test SS and DS scores were sampled with increasing 

sample sizes, i.e., the number of training and test speakers was increased from 20 to 100 with 

a 10-speaker increase, i.e., the SS and DS log scores vary from 20 to 100 and 380 to 9900 for 

training and test data respectively. In order to explore the effect of sampling variability on 

overall performance when scores have different distributions, the experiment was replicated 
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100 times within each sample size using independent samples of scores. In this way, the 

experiments allow us to explore the relationship between sampling variability and sample size 

as well as which calibration methods are more or less resistant to sample size and sampling 

variability. A simplified simulation process is shown below in Figure 6.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Simplified process of score-to-LR computation. Test and training scores are sampled 
respectively for calibration to generate LRs and Cllr. The process was replicated 100 times using 
varying skewness, calibration methods and sample sizes.  

 

The simulated training scores were then used to train calibration models, which were applied 

to the test data from which system validity was evaluated. Four calibration methods are 

involved in current chapter, i.e., logistic regression (Brümmer et al., 2007; Morrison, 2013), 

regularised logistic regression (rLogistic regression) (Morrison & Poh, 2018), empirical lower 

and upper bound (ELUB, Vergeer et al., 2016) and Bayesian model (Brümmer & Swart, 2014) 

aiming to explore if certain calibration methods are more or less susceptible to the effect of 

sampling variability and sample size when the assumption of normality is violated (see Section 

3.3.2 for detailed rationale behind these four calibration methods). The overall performance 

was evaluated using the Cllr mean and range (i.e., the difference between the maximum and 

minimum Cllr values across 100 replications).  
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6.3 Results  
 

6.3.1 Varying the skewness of both SS and DS scores  

 

Figure 6.5 shows the variation in the mean and range of Cllrs varying the skewness of both SS 

and DS scores using different calibration methods. The x-axis indicates the number of speakers 

used in training and test data respectively and the y-axis represents the Cllr. The legends on top 

indicate the skewness of the score distributions. The dashed lines indicate the Cllr range and the 

circles, triangles and squares are the mean Cllr. The general patterns across the four calibration 

methods show that regardless of the score distribution skewness, the more speakers used, the 

lower the Cllr range is, indicating that including more training and test speakers reduces the 

sampling variability and improves the system reliability. However, the patterns of the Cllr range 

vary within each calibration method in relation to score skewness and sample size.  

 

Overall, the rLogistic regression yields the most reliable system in terms of Cllr range (dashed 

lines) followed by Bayesian model, logistic regression and ELUB. The Cllr range stays stable 

(ca. 0.1 or lower) regardless of sample size and score skewness for rLogistic regression, and 

the Cllr range for Bayesian model starts to stabilise when the sample size reaches 30 speakers 

per training and test sets (the Cllr range is as low as 0.1). On the other hand, the logistic 

regression and ELUB calibration methods are more sensitive to score skewness and sample 

size. For logistic regression, the Cllr range varies from ca. 0.25 to ca. 0.05 when sample size 

increases from 20 to 100 speakers and starts to stabilise when the sample size reaches 40 

speakers (per training and test set) when SS/DS score skewness is no higher than -0.7. However, 

the Cllr range shows a much higher fluctuation when the score skewness is -1.4, varying 

between ca. 0.5 and 0.15 (blue dashed lines) when sample size increases from 20 to 100 

speakers. Meanwhile, the ELUB calibration method seems to be the most sensitive to score 

skewness, sample size and sampling variability. All three dashed lines in ELUB calibration 

method show marked variability compared with the other three calibration methods.   

 

In terms of system validity, logistic regression consistently yields the lowest mean Cllr for each 

sample size condition given score skewness followed by rLogistic regression, Bayesian model 

and ELUB. However, logistic regression seems to be more sensitive to score skewness (i.e., 

not sample size). The mean Cllr varies from ca. 0.45 when SS/DS are normally distributed, to 
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ca. 0.39 when SS/DS score skewness equals -0.7 and to ca. 0.15 when the SS/DS score 

skewness equals -1.4. The similar pattern of mean Cllr values is also observed in the rLogistic 

regression and ELUB calibration methods, i.e., the more skewed the scores, the lower the mean 

Cllr. However, the mean Cllr stays comparatively consistent (ca. 0.55) using the Bayesian model 

regardless of the score skewness and sample size. For the four calibration methods, the mean 

Cllr also stays comparatively stable within each score skewness across different sample size; 

however, one exception is observed using rLogistic regression. The mean Cllr reduces with 

larger sample size and higher skewness for rLogistic regression, varying from ca. 0.5 to ca. 

0.25 when SS and DS skewness equals to -1.4 (blue squares).  

 
Figure 6.5 Mean (coloured circles, triangles and squares) and range (coloured dashed lines) of 
Cllr values varying the skewness in both SS and DS scores. Each panel shows the performance 
using different calibration methods across different sample sizes (x-axis). Different colours 
represent different score skewness values.  
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6.3.2 Varying only SS score skewness  

 

Figure 6.6 shows the Cllr variation when only varying the SS score skewness, while the DS 

score skewness is kept as 0. In terms of system reliability, rLogistic regression seems to yield 

the best reliability, followed by the Bayesian model, logistic regression and ELUB. The Cllr 

range starts to stabilise when sample sizes reach 50, 30 and 30 speakers for logistic regression, 

rLogistic regression and Bayesian model respectively regardless of SS score skewness, and the 

Cllr range is as low as 0.1. On the other hand, overall performance is much more fluctuating 

using ELUB calibration method. On average, the Cllr range varies from ca. 0.55 to ca. 0.25 

when sample size increases from 20 to 100 speakers (per training and test sets). In terms of 

system validity, logistic regression consistently yields the lowest mean Cllr (ca. 0.45) across 

different SS score skewness and sample size, followed by rLogistic regression (ca. 0.5), 

Bayesian model (ca. 0.55) and ELUB (ca. 0.68). A comparison between Figures 6.5 (i.e., 

varying both SS and DS score skewness) and 6.6 shows that SS score skewness and sample 

size do not have much effect on system validity using all four calibration methods as long as 

DS scores follow the normal distribution. Meanwhile, SS score skewness does not have much 

effect on system reliability when logistic regression, rLogistic regression and Bayesian model 

are used for calibration as the dashed lines overlap to a large extent in these three calibration 

methods. However, the ELUB method is much more susceptible to SS skewness than the other 

three calibration methods.  
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Figure 6.6 Mean (coloured circles, triangles and squares) and range (coloured dashed lines) of 
Cllr values only varying the SS score skewness. Each panel shows the performance using 
different calibration methods across different sample sizes (x-axis). Different colours represent 
different score skewness values.  

 

6.3.3 Varying only DS skewness  

 

Figure 6.7 shows the Cllr variation by only varying the DS score skewness, while the SS scores 
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yields the lowest mean Cllr given DS score skewness across different sample sizes, followed by 

rLogistic regression, Bayesian model and ELUB. Meanwhile, logistic regression is also the 

most sensitive to DS score distributions, where the mean Cllr varies between ca. 0.45 and ca. 

0.1 when DS score skewness increases from 0 to -1.4. In terms of system reliability, again, 

logistic regression and ELUB are more sensitive to sample size and DS score skewness than 

rLogistic regression and Bayesian model, indicated by the distance between dashed lines.  
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The patterns of Cllr mean and range in Figure 6.7 (i.e., only varying DS score skewness) using 

logistic regression, rLogistic regression and Bayesian model are similar to those in Figure 6.5 

(i.e., varying both SS and DS score skewness), reassuring us that the variability observed is 

mainly caused by skewness in DS scores. However, the Cllr range in Figure 6.7 using ELUB 

shows a different pattern from that in both Figures 6.5 and 6.6, indicating that the variability 

in Cllr range using ELUB is mainly caused by skewness in SS scores.   

 
Figure 6.7 Mean (coloured circles, triangles and squares) and range (coloured dashed lines) of 
Cllr values only varying the DS score skewness. Each panel shows the performance using 
different calibration methods across different sample sizes (x-axis). Different colours represent 
different score skewness values.  

  

6.4 Discussion  
 

The results of this chapter have shown that overall performance varies to different extents using 

different calibration methods with different score skewness and different sample sizes. In 

Bayesian ELUB

Logistic regression rLogistic regression

20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of speakers

Lo
g 

LR
 C

os
t (

C l
lr)

skewness ss.skw = 0, ds.skw = 0 ss.skw = 0, ds.skw = −0.7 ss.skw = 0, ds.skw = −1.4



 166 

general, the ELUB calibration method is least preferable as it produces systems that are more 

sensitive to sampling variability, sample sizes and score skewness than the other three methods. 

Moreover, Figures 6.5 to 6.7 show that the mean system validity (mean Cllr) is mainly affected 

by skewness in DS scores, while system reliability (Cllr range) is mainly affected by skewness 

in SS scores. Although the Cllr range using ELUB reduces when more training and test speakers 

are included, there remain high levels of Cllr variability even with large samples; the Cllr range 

with 100 speakers is equivalent to that produced by rLogistic regression and Bayesian model 

when using only 20 speakers.  

 

Using 1 as an appropriate threshold for judging Cllr (Morrison et al., 2021) (i.e., a good system 

should yield a Cllr as close as to 0, and Cllr higher than 1 indicates that the system is not giving 

any useful information), the wide Cllr range using ELUB calibration method suggests that it is 

the least effective of the four calibration methods. The ELUB calibration method produces Cllrs 

of over 1 across replications, even with 100 speakers in each set. The Bayesian model is less 

affected by sampling variability, sample sizes and score skewness and should generally be 

preferred, especially when sample size is small. The disadvantage, however, is that priors (see 

Section 3.3) need to be pre-specified when using the Bayesian model. The priors within the 

Bayesian model need to be specified based on the mean and variance of the training data, which 

could be different from case to case in the real world. Comparatively, the system reliability is 

less affected by sampling variability and sample size using rLogistic regression; however, the 

system mean validity (mean Cllr) is affected by sample size and score skewness, especially 

when DS scores are skewed. Higher DS score skewness and larger sample sizes lead to lower 

mean Cllr using rLogistic regression. Similar to the Bayesian model, a κψ value (see Section 3.3) 

needs to be specified using rLogistic regression, and different κψ values of the rLogistic 

regression method need to be specified depending on the purpose of calibration, i.e., lower κψ 

values deal with complete separation issues and higher κψ values deals with extreme LR output 

issues (Morrison & Poh, 2018).  For using logistic regression, system validity and reliability 

are more affected by score skewness, especially when DS scores are skewed, and should not 

be preferred when high skewness value is observed in DS score distributions.  

 

In real world FVC, we might be dealing with small sample sizes – especially when using 

linguistic features, given the significant challenges around data collection and analysis (Gold 

& Hughes, 2014). The results of the current chapter show that logistic regression consistently 

yielded lower Cllr mean but higher Cllr range than rLogistic regression and the Bayesian model 
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when using smaller numbers of training and test speakers. The Cllr mean becomes even lower 

and Cllr range becomes higher when score skewness is higher. It is therefore extremely 

important to understand the trade-off between Cllr mean and Cllr range, i.e., how much 

variability is allowed given validity (Cllr) and should we aim for lower Cllr mean (higher validity) 

as long as the system reliability (Cllr range) varies within a certain range? Ultimately, it is the 

author’s opinion that experts’ decisions should be driven by reducing uncertainty, rather than 

the absolute validity (i.e., the potential of a very low Cllr). Although it is difficult to set a 

generalised trade-off framework for all cases in the real world given the complexity and 

uniqueness of each individual case, results from the current thesis suggests that systems need 

to be tested multiple times with different sets or configurations of training and test data before 

applying it in real cases.  

 

6.5 Chapter summary  
 

The current chapter investigated the overall performance as a function of score skewness, 

sample sizes and calibration methods. The results suggest that score skewness has a marked 

effect on system performance (especially when sample size is small) and using regularised 

logistic regression and Bayesian model can shrink the LR output and reduce the degree of 

uncertainty when sample size is small. The key results are summarised using bullet point below, 

 

• Overall performance is least affected by score skewness and sample sizes using the 

Bayesian model. 

• Using rLogistic regression, the mean system validity is more affected by skewness in 

DS scores, while the mean system reliability is generally not affected.  

• Using logistic regression, the mean system validity and reliability are affected by 

skewness in DS scores, especially when the DS score skewness is high (i.e., -1.4 in 

current chapter).  

• Using ELUB, the mean system validity is more affected by skewness in DS scores, 

while the mean system reliability is more affected by skewness in SS scores.  
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Chapter 7 Discussion and Conclusion  
 

The results presented in Chapters 4 to 6 have shown that sampling variability can be introduced 

at both feature-to-score and score-to-LR stages and that both can affect overall system 

performance and LRs for individual comparisons substantially. Moreover, empirical results 

from this thesis have important implications for issues of uncertainty, decision-making 

throughout the evaluation process, and subjectivity and objectivity in data-driven LR-based 

FVC. Specifically, they provide new insights on how best to go about testing and validating 

data-driven LR-based FVC systems in casework in order for the results to be useful to both the 

expert, and more importantly, to the trier-of-fact. This chapter first discusses sampling 

variability introduced at both stages in relation to findings in Chapters 4 to 6. The implications 

for research, casework and future work are then discussed in Sections 7.3 and 7.4.  

 

7.1 Sampling variability at feature-to-score stage  
 

The results of Chapter 4 show that that considerable variation can be observed in overall 

performance if different configurations of training, test and reference speakers are used (RQ 

1a) and the overall performance is primarily caused by different configurations of test speakers. 

Chapter 4 shows that Cllr values vary from 0.6 to 0.97, 0.29 to 1.15 and 0.13 to 1.22 for /a/, 

/haijat/ and um respectively across 100 replications when varying the speakers in all three sets. 

The variability in overall performance is therefore as wide as the variability one would expect 

to see between variables and between populations; the difference between what would be 

considered very good performance versus very bad performance. Therefore, these results show 

that caution should be exercised when judging the speaker discriminatory power of a variable 

based on a single configuration of speakers in the training, test and reference sets. This is 

especially true since many data-driven LR-based studies use the same number of (or fewer) 

speakers than were used in Chapter 4. Using different, but still representative, speakers could 

affect overall performance substantially, depending on who exactly those speakers are. 

However, further examination of the results from the final three experiments in Chapter 4 show 

that variability in overall performance is almost exclusively due to the effects of varying the 

test speakers. It is noted that um produced a higher Cllr range in Experiment 4 (varying training 

speakers) than in Experiment 2 (varying test speakers) due to extreme outliers. By comparison, 

the variability in Cllr as a function of the configurations of the reference and training sets was 
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fairly small. Thus, as long as the sets are of a sufficient size (in these experiments, over 25 

speakers), the specific speakers used for the training and reference data have little effect on the 

overall performance of the system.  

 

Chapter 5 explored how overall performance (RQ 2a) and individual speakers’ LR (RQ 2b) are 

affected by different combinations of linguistic-phonetic features as well as how individual 

speakers are affected by different configurations of training and reference speakers (RQ 2c). 

The results show that given a sufficient sample size and the training and reference speakers are 

sampled from the relevant population, sampling variability affects overall performance to 

different extents using different combinations of features. Using FP um, systems which include 

F2 in general outperform systems without F2. Moreover, combining more features does not 

necessarily improve the overall performance. For individual speakers’ behaviour, sampling 

variability has a limited effect on individual test speakers in SS comparisons (within one LLR 

magnitude in terms of strength of evidence, indicated by RMSD values; Figure 5.11), while 

individual test speakers are more sensitive to sampling variability in DS comparisons. However, 

most of the individual test speakers tend to be less affected by sampling variability in DS 

comparisons when four or more features are used (Figure 5.12).  

 

The results of Chapters 4 and 5 suggest that sampling variability at the feature-to-score stage 

is multi-dimensional. First, overall performance depends on exactly which speaker is used in 

which set (especially for test speakers). Second, the effect of sampling variability on overall 

performance varies depending on which features or combinations of features are being used. 

For FP um, F2 and systems with F2 involved outperform those without. Third, sampling 

variability affects individual test speakers depending on the number of features being used, e.g., 

Chapter 5 shows that the LR outputs for individual speakers are more stable when four or more 

features are used.  

 

7.2 Sampling variability at score-to-LR stage  
 

Assuming that sampling variability can be controlled or predicted at the feature-to-score stage, 

Chapter 6 aims to investigate if overall performance is affected by score skewness (RQ 3a) and 

if the degree of uncertainty can be reduced using certain calibration methods when sample size 

is small (RQs 3b and 3c). The results show that sampling variability affects overall 
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performance to different extents in relation to different sample sizes and when score 

distributions violate normality assumption. Section 6.2.3 reveals that the mean system validity 

(Cllr mean) is more affected by DS score skewness, while the system reliability (Cllr range) is 

more affected by SS score skewness. However, using different calibration methods can 

potentially reduce the effect of sampling variability to different extents by shrinking the LRs, 

e.g., the Bayesian model calibration method is the most robust to sampling variability, as both 

Cllr mean and range stay stable across different sample size and score skewness. Meanwhile, 

the Cllr mean is more susceptible to sampling variability using rlogistic regression (while the 

Cllr range is not much affected) across different sample sizes, especially when DS scores are 

skewed. Using logistic regression for calibration, the Cllr mean is more affected by sampling 

variability across different score skewness (especially when DS scores are skewed), while the 

Cllr range is more sensitive to sampling variability across both score skewness and sample sizes. 

Similarly, the Cllr mean is more affected by sampling variability when DS scores are skewed 

(rather than SS score skewness or sample sizes) using ELUB, while the Cllr range is more 

affected by sampling variability across both different samples sizes and when SS scores are 

skewed.  

 

The patterns of Cllr mean and range across different sample sizes and score skewness suggest 

that it is important to acknowledge the trade-off between system validity and reliability. 

Moreover, score distribution skewness needs to be taken into consideration in system 

evaluation, as sampling variability does not have a fixed effect on the overall performance 

when scores are not normally distributed. The logistic regression yields the lowest and stable 

mean Cllr across different sample sizes given skewness; however, the Cllr mean and range varies 

to a large extent when DS scores are skewed. On the other hand, the Bayesian model yields 

higher Cllr mean across samples sizes and score skewness; nevertheless, the Cllr mean and range 

stay stable. Under a real case scenario, the mean Cllr obtained using logistic regression is likely 

to be misleading in system evaluation due to the variability in LR outputs when DS scores are 

skewed to different extents. Ultimately, the goal in system evaluation (for FVC and other 

forensic evidence) is to reduce the uncertainty under different case conditions, rather than 

aiming for the lowest Cllr.  
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7.3 Direct Implications  
 

This section discusses the direct implications of the current study for data-driven LR-based 

FVC. The general finding (of Chapter 4) relating to Cllr variability when using different sets of 

training and reference speakers seems to be positive for casework. The training and reference 

sets are the core elements of any system; the test data are intended to be ‘unseen’ representative 

speakers to assess how well the system performs, and are not part of the system per se. The 

fact that overall performance tested in the thesis are so insensitive to different speaker 

configurations in the training and reference sets means that the expert can be relatively 

confident about the transferability. However, in the real world we would expect more 

variability due to low-quality and non-contemporaneous forensic data, channel mismatch, 

different stylistic and situational contexts etc. Moreover, the data used in the current thesis was 

not fully independent across replications, and whether these results would extend to more real-

world conditions is an empirical question.    

 

However, the key source of uncertainty in overall performance derives from the configurations 

of the test set. Therefore, it is essential that the expert carefully considers the speakers that are 

used for testing, since this can have a substantial effect not only on the system that an expert 

decides to use in a case, but it may also lead to over- or under-estimation of the true validity to 

the court, potentially leading to incorrect decisions being made by the trier-of-fact. One 

potential way to deal with this issue is to use data that are more representative of the voices in 

the case. The issue here is not one of finding the best configuration of test speakers to produce 

the optimal performance, but rather to find a set of test speakers that produces a validity 

measure that is representative for the case. It has been argued that systems should be evaluated 

using recordings that reflect the conditions of the case at trial (Enzinger et al., 2016; Enzinger 

& Morrison, 2017). In terms of speaker characteristics, this is taken to mean that the speakers 

used are representative of the relevant population, often defined broadly by sex and language 

(Rose, 2004). Clearly, based on the variability reported in Chapters 4 and 5, this alone is 

insufficient, especially where the variable(s) can potentially provide good speaker 

discrimination and/or the number of speakers is small. Chapter 5 suggests that there is no single 

rule that applies to all, and there are always exceptions in individual speakers no matter what 

generalisations are drawn. Not only for speech evidence, but also for other biometric systems, 

individual behaviour is system specific. Using linguistic features, the variation in individual 
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test speakers’ LLR outputs observed in Chapter 5 is mainly due to sampling variability (or 

random effects) in the training and reference speakers from the relevant population. However, 

the role of random effects in individual speakers’ behaviour remains unknown. Identifying a 

subset of a database of speakers who are in some way ‘more similar’ to the offender (akin to 

the suggestion in Morrison et al., 2012, and procedures in some automatic systems) is likely to 

produce more representative results. However, this involves making pragmatic but subjective 

decisions: either based on narrower demographic properties of the offender (although, of 

course, we cannot know these properties for certain, since the identity of the offender is the 

very question at stake) or using some measure to define speaker similarity. This is not 

necessarily problematic. As highlighted by the court in R v T [2010] “the probability that is 

quoted (by the expert as a conclusion in a case) … will inevitably be a personal probability and 

the extent to which the data influence that probability will depend on expert judgement” (at 

para 80). Having tailored test data is, in the author’s view, the preferred approach to reducing 

the uncertainty in the performance of a system and LR outputs of individual test speakers. This 

allows the expert to have a better sense of how the system will perform in the specific case. 

However, as highlighted in Hughes and Foulkes (2015) and discussed in Section 1.4, there will 

always be some mismatch between the data used for building and evaluating a system and the 

case data. It is likely, therefore, to be fruitful to examine ways to further reduce uncertainty by 

incorporating it into the LR computation itself (e.g., Brümmer, 2013); examples based on 

sample size, score distribution and calibration methods are demonstrated in Chapter 6 showing 

that different calibration methods need to be considered when scores are skewed and sample 

sizes are small. Alternatively, a minimal requirement might be that both researchers and experts 

undertake speaker sampling of the kind described in this study (i.e., run replications) in order 

to understand the potential range within which a system performs. This may not provide case-

specific information, but will provide insights into how certain we can be about the 

performance of a system in general. For instance, the range of values produced for um in this 

study means that we would need to be extremely cautious about making generalisations about 

speaker discriminatory power or the usefulness of such a system in casework. Ultimately, 

researchers should aim to answer the question of the reliability of overall performance in the 

real world instead of the reliability of overall performance based on data samples at hand (i.e., 

training, test and reference data). 
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7.4 Wider Implications  
 

In all forms of FVC studies, experts have the degrees of freedom to make decisions in order to 

conduct an analysis, e.g., data-driven/non-data-driven LR-based or auditory acoustic based. 

Such decisions can affect the overall result in the same way as the data-driven methods used in 

this thesis. It is, therefore, crucial for experts to recognise and acknowledge where there is 

subjectivity and uncertainty within the process. On the basis of the variability in the current 

thesis, it is the author’s opinion that experts’ decisions should be driven by reducing uncertainty 

in evidence evaluation rather than trying to maximise discrimination or the potential of 

producing a high validity (i.e., a very low Cllr in current context; e.g., Rose, 2013a). Using data-

driven approaches allow us to explicitly measure/describe and possibly deal with uncertainty. 

For example, Chapter 4 demonstrated the variability in system output caused by different 

configurations of training, test and reference speakers, Chapter 5 showed how systems and 

individual speakers were affected using different linguistic-phonetic features, and Chapter 6 

explored possible calibration methods to reduce the degree of variability in system output by 

incorporating uncertainty into LR computation. However, the challenges in the data-driven 

approach lie in the fact that implementation requires complex mathematical models and data. 

Meanwhile, the data-driven approach also involves the issue of explaining and interpreting 

systems, a general challenge for machine learning (Molnar, 2019), and results to an end-user 

(e.g., the court). 

 

Uncertainty does not go away just because a data-driven approach isn’t employed. In auditory 

acoustic analysis, experts can assess the typicality based on one’s expertise or relevant 

literature of the regional accent involved. This would result in different degrees of uncertainty 

in typicality assessment depending on the experts’ knowledge/experience about that particular 

regional accent or how relevant the literature is (e.g., year of publication, journals or conference 

proceedings, whether peer-reviewed or not). When it comes to acoustic analysis of the 

similarity between suspect and offender samples, different choices of linguistic-phonetic 

features and methods for measurement would lead to different evaluation results. This has been 

shown by Roettger (2019) in quantitative-based phonetic studies and in the current study as 

well. It is then important to acknowledge uncertainty and subjectivity, and whether 

compensation is made for that in some way, e.g., the analyst attaches less weight to a variable 
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when the number of tokens is small. Future work is needed to deal with the issue of uncertainty 

more systematically.  

 

7.5 Future studies  
 

The current study has explored the effect of sampling variability in data-driven LR-based FVC 

at different stages, namely feature-to-score and score-to-LR. At the feature-to-score stage, it 

has shown the importance of acknowledging and reporting uncertainty, specifically in the test 

set, which can be established either by using a more tailored subset of test speakers or, 

minimally, reporting the range of values produced through speaker sampling of the sort 

described in Chapters 4 and 5. In this way, the analyst can provide an estimate of the range of 

validity values the system can produce, and thus provide a means to record the uncertainty in 

the LR calculations. Providing such information is critical for the trier-of-fact to evaluate the 

evidence provided by the expert. Chapter 5 also reveals that sampling variability affects both 

system and individual speakers to different extents using different combinations of linguistic-

phonetic features. Therefore, caution should be exercised when giving generalisations of 

overall performance and individual speakers’ behaviour based on a single set of features. More 

importantly, the experiment procedure in Chapter 5 can be used as a starting point for the 

analysis of individual speakers' behaviour. Taking automatic speaker recognition systems for 

example, same set of speakers can be firstly tested under different system settings (e.g., using 

different features, different statistical models). Then, individual speakers can be grouped (using 

zoo plot or any other kind) based on LRs which give insight into which speaker is more or less 

sensitive to different settings of the system. Specific speakers can then be located for further 

analysis/investigation, e.g., why does some speakers have stable behaviour under different 

system settings and others do not?  

 

Chapter 6 investigated the overall performance focusing on the score-to-LR stage, it has been 

shown that the overall performance is affected by sampling variability to different extents in 

relation to different score skewness and sample sizes. Using the Bayesian model and rlogistic 

regression can potentially reduce the variation in LR output; however, priors and κψ values need 

to be pre-specified arbitrarily using these two models. One solution for that is to empirically 

test a range of priors and κψ values that reflects different case conditions. Considerably more 

work is required reduce the degree of uncertainty as well as to incorporate uncertainty into LR 
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computation, and this could be implemented at both feature-to-score and score-to-LR stages. 

As demonstrated in the current thesis, different calibration methods can be used to reduce the 

degree of uncertainty at score-to-LR stage, and Bayesian model and regularised logistic 

regression can effectively shrink LRs when sample size is small. However, future studies 

should consider the underlying rational of using different priors for calculating LRs (note that 

one shall not confuse the prior used for calculating the LRs with the prior odds for calculating 

the posterior odds in the Bayes’ theorem.) Taking Bayesian model for example, only the Jeffrey 

prior was used in the current thesis; however, there are also the Haldane prior and Laplace prior 

and Brümmer (2011) has shown that using Haldane prior is appropriate for DNA evidence. 

While this is outside the scope of the current study, future studies should investigate the 

mechanism behind different priors and the suitability of using different priors for speech 

evidence. To incorporate uncertainty into LR computation at the feature-to-score stage, Ramos 

et al (2021) proposed two models, i.e., heavy-tailed with warped Gaussian mixtures model and 

heavy-tailed with variational autoencoder model, which incorporate uncertainty into LR 

computation at the feature space for glass comparisons. They have demonstrated that their 

proposed models outperform Aitken & Lucy’s (2004) MVKD model which does not 

incorporate uncertainty into LR computation. Future studies can potentially investigate the 

feasibility of applying models proposed by Ramos et al. for speech data.  

 

7.6 Conclusion 
 

The aim of this study is to investigate the effect of sampling variability on overall performance 

and individual speakers’ behaviour in data-driven LR-based FVC. Numerous studies (e.g., 

Gwo & Wei, 2016; Morrison, 2016; Morrison & Enzinger, 2016) have discussed the validity 

and reliability issues in forensic evidence evaluation; however, the variability in LR output 

observed in the current study has not previously been addressed in the field of FVC. 

Specifically, the performance of overall system is markedly affected by sampling variability as 

well as the use of different input features. The results have shown that LR output is dependent 

on how speakers are arranged in the training, test and reference samples and which linguistic-

phonetic features are used. Individual speakers’ behaviour also fluctuates depending on the 

specific linguistic-phonetic features and training and reference speakers used. However, this is 

not to suggest that similar patterns would be expected using other systems. It is possible that 

more stable overall performance and individual speakers’ behaviour could be observed if high 
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dimensionality features are used (e.g., MFCC). Given that all training, test and reference 

speakers are sampled from the relevant population following certain database selection 

guidelines (e.g., Morrison et al., 2012), the overall performance and individual speakers’ 

behaviour could still vary to different extents. On one hand, the variability observed in overall 

performance and individual speakers’ behaviour is partially due to statistical issues (e.g., 

sample size, data extrapolation). However, a bigger question for forensic phoneticians is 

whether there are any systematic linguistic patterns that can be observed to predict or reduce 

the variability in LR output, e.g., whether a more tailored subset of the relevant population can 

be selected based on systematic linguistic patterns that would reduce the variability in LR 

output. It is hoped that this thesis can provide some practical guide for FVC casework and help 

to improve the validation procedure, i.e., the overall performance should be tested multiple 

times under different conditions (e.g., using different sets/configurations of training and 

reference data) and the individual speakers’ behaviour should be investigated and reported as 

part of the system testing.  
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Appendix  

Appendix A - Simulating raw scores  

Attempts were made to simulate raw scores and this section demonstrates the simulation 

process. Table A.1 shows the mean, standard deviation, skewness and kurtosis of SS and DS 

raw scores. Probable theoretical distribution candidates were fitted to raw scores using 

Maximum likelihood estimation (MLE), where the estimated distribution parameters were 

evaluated using goodness-of-fit statistics and criteria.  

um  Mean SD Skewness Kurtosis 

SS 5.63e+05 3.09e+06 7.81 59.51 

DS 0.77 29.28 59.52 4121.94 

Table A.1 Summary statistics of SS and DS raw scores.  

 

MLE uses a likelihood function to estimate the distribution parameters given data, and MLE is 

when the likelihood function finds the parameter values that maximise the likelihood of 

obtaining the observed data. A generalised likelihood function is expressed in Equation (A1); 

 

   Λ(θ) =  ∏ 𝑓(𝑦𝑖; 𝜃)𝑁
𝑖=1                                                                               (Equation. A1) 

(Eliason, 1993) 

 

where 𝑦𝑖 is the observed data and 𝜃 stands for distribution parameters. It is worth noting that 

MLE aims to estimate the parameters of the ‘true’ distribution given data, rather than the 

distribution of the observed data. Before the distribution parameters can be estimated, possible 

theoretical distribution candidates need to be selected. Table A.1 shows that raw scores are 

both right skewed. Therefore, right skewed distributions seem to be good candidates for 

parameter estimation. However, gamma, Weibull, lognormal and exponential are all 

theoretically right-skewed distributions. In order to eliminate less probable distributions that 

the empirical data might come from, the Cullen and Frey (CF) graph is used here. The CF 

graph uses kurtosis and the square of skewness to describe the distributions from empirical 

data among a set of theoretical distributions. It is worth noting that the CF graph is used for 

indicative purposes only, not the selection of the most probable distribution. Figure A.1 shows 

the CF graph of SS and DS raw scores. The blue dots in the graph show the location of the 
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empirical data, and the yellow circles are bootstrapped values of kurtosis and square of 

skewness. Bootstrap sampling is applied to take uncertainty into consideration in the estimation 

of kurtosis and skewness from empirical data (Efron & Tibshirani, 1994), because kurtosis and 

skewness are not robust moments. The bootstrap sampling process is carried out by random 

sampling from empirical data with replacement (See Delignette-Muller and Dutang, 2015, p. 

5 for details). 

 

For both raw SS and DS scores, the normal distribution is at the top left corner, which is far 

away from the empirical data (raw SS and DS scores). This confirms that the normal 

distribution is one of the least probable theoretical distributions that the empirical data might 

come from. Similarly, the exponential distribution does not seem to be a close candidate for 

the empirical data either. On the basis of GF, gamma and Weibull distributions are the two 

most probable theoretical distributions of the empirical data that might be observed. Therefore, 

gamma and Weibull are selected for parameter estimation using MLE. It is noted that the 

empirical data does not lie exactly on any of the theoretical distributions. However, the aim 

here is to eliminate less probable theoretical distributions that the empirical data might come 

from, rather than selecting the ‘right’ theoretical distribution for the empirical data.  

 

 
Figure A.1 CF graph of SS and DS empirical scores (plot produced using fitdistrplus package 

(Delignette-Muller and Dutang, 2015) in R (RStudio Team 2020)).  
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Following the CF graph, the parameters of Weibull and gamma distributions are estimated 

using MLE given the empirical scores, and Table A.2 shows the parameters of fitted Weibull 

and gamma distributions.  

 

um Weibull gamma 
 

scale shape rate shape 

SS 0.02 0.18 0.016 0.09 

DS 0.002 0.16 0.009 0.074 

Table A.2 Parameter values of fitted Weibull and gamma distributions from MLE. 

 

The goodness-of-fit statistics and criteria are used for the evaluation of score fitting under two 

competing theoretical distributions, i.e., Weibull and gamma. The goodness-of-fit statistics 

measures the distance between the fitted theoretical distributions and the observed data 

(Delignette-Muller & Dutang, 2015, p.9). The lower the value, the closer the theoretical 

distributions fit the observed data (Vose, 2008, p. 284). For continuous distributions, three 

goodness-of-fit statistics are often considered, Kolmogorov-Smirnov (KS), Cramer-von Mises 

(CvM) and Anderson-Darling (AD) (Delignette-Muller and Dutang, 2015, p. 10). The formulas 

of these three goodness-of-fit measures are shown below:  

 

KS max[|𝐹𝑛(𝑥) − 𝐹(𝑥)|] 

CvM ∫ |𝐹𝑛(𝑥) − 𝐹(𝑥)|2𝜓(𝑥)𝑓(𝑥)𝑑𝑥∞
−∞ ;  𝜓(𝑥) = 1 

AD ∫ |𝐹𝑛(𝑥) − 𝐹(𝑥)|2𝜓(𝑥)𝑓(𝑥)𝑑𝑥∞
−∞ ; 𝜓(𝑥) = 𝑛

𝐹(𝑥){1−𝐹(𝑥)}
 

 

Where,  

n is the number of observed data points,  

𝐹(𝑥) is the distribution function of the fitted theoretical distribution,  

𝑓(𝑥) is the density function of the fitted theoretical distribution,  

𝐹𝑛(𝑥) = i/n and i is the cumulative rank in observed data points.     

(ibid) 
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Among the three goodness-of-fit statistics, AD is used to select the best fitted theoretical 

distribution. There are several justifications for the decision behind it. First, the value of KS 

relies on the largest vertical difference between the cumulative distribution function (CDF) of 

the fitted theoretical distribution and the observed data (Vose, 2008, p. 291), meaning that it 

does not consider the lack of fit across the rest of the distribution. Second, CvM seems to be a 

better option than KS, and both CvM and AD take the lack of fit across the rest of the 

distribution into consideration, because 𝑓(𝑥)  “weights the observed difference by the 

probability that a value will be generated at that x value” (Vose, 2008, p. 293). However, the 

difference in the suitable function 𝜓(𝑥) in CvM and AD means that when different theoretical 

distributions are fitted to observed data, AD gives compensations to different variances of the 

vertical distances between different fitted theoretical distributions (ibid), while CvM treats 

different fitted theoretical distributions equally (because the suitable function 𝜓(𝑥) = 1 in 

CvM). Moreover, it is claimed (Delignette-Muller and Dutang, 2015, p. 10; Vose, 2008) that 

AD places equal weight on fitting the central and tail of a distribution.   

 

As for the goodness-of-fit criteria, the Akaike’s Information Criterion (AIC; (Parzen et al., 

1998) and Bayesian Information Criterion (BIC; (Schwarz, 1978) are widely used for the 

evaluation of goodness-of-fit for statistical models. These two information criteria can be 

expressed using a unified log-likelihood function with different penalties attached (Dziak et al., 

2012). The formula of information criterion can be expressed as:  

 

−2ℓ + 𝐴𝑛𝑝                                                                                                     (Equation A2) 

 

(Atkinson, 1980) 

 

Where ℓ is the log-likelihood, 

𝐴𝑛 is either a constant or function of the sample size n,  

p is the number of parameters in the model.   

 

The formula A2 can be interpreted as finding the lowest value of −2ℓ plus a penalty, where 

𝐴𝑛 and p together serve as the penalty. Therefore, BIC and AIC differ in the selection of An, 

where the An of BIC is equal to the natural log of sample size n (Ln(n)), and the An of AIC is a 

constant number 2. For both BIC and AIC, the lower the value, the better the statistical model 
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fits to empirical data, but it is worth noting that BIC and AIC values are not interpretable when 

given alone. In the current simulation experiments, only BIC is considered. This is because 

BIC gives similar weight to both Type I (false positive) and Type II (false negative) errors 

(Schwarz, 1978), while AIC puts more weight on Type II errors than Type I (Dziak et al., 2012). 

In score simulation, both Type I and Type II errors are undesirable. High Type I error rate 

would lead to overfitting, which could possibly overestimate the system variability, i.e., the 

actual overall performance should be less variable; while high Type II error rate would lead to 

underfitting, which leads to the underestimation of system variability, i.e., the actual overall 

performance should be more variable.  

 

Apart from AD and BIC values, Figures A.2 and A.3 give visualisation of goodness-of-fit over 

the centre and tail of the empirical scores. Figure A.2 shows the probability density function 

(PDF) and cumulative distribution function (CDF) plots of Weibull and gamma (coloured 

dotted lines) fitted to empirical scores (histograms). The PDF and CDF plots give the overall 

goodness-of-fit to the empirical scores, and more overlap between empirical and estimated data 

indicates a better goodness-of-fit. The histograms show that most of the raw SS scores are 

stacked between 0 and ca. 25 with a few spreads out from 25 onwards, and the majority of the 

raw DS scores are packed between 0 and ca. 200 with a few distributed between 200 and 1000 

and even fewer spread out from 1000 onwards. The PDF and CDF plots show that gamma and 

Weibull perform equally well in terms of overall goodness-of-fit.  
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Figure A.2 PDFs (left panels) and CDFs (right panels) showing the goodness-of-fit of gamma 
and Weibull distributions fitted to FP um empirical raw SS and DS scores. Coloured dotted 
lines are theoretical distributions.  

 

Figure A.3 shows the P-P and Q-Q plots of theoretical gamma and Weibull distributions fitted 

to SS (upper panel) and DS (lower panel) empirical scores. In the P-P plot, each data point 

from the empirical distribution is plotted against the theoretical distribution function, which 

gives more emphasis to the lack-of-fit at the distribution centre. The Q-Q plot is a 

representation of the empirical quantiles plotted against the theoretical quantiles, which gives 

more emphasis to the lack-of-fit at the tails of the distributions. For SS scores, the P-P plot 

shows that Weibull is better for the centre of the empirical data, while the Q-Q plot shows that 

none of the theoretical distributions can fit the tail of the SS scores accurately, even gamma 

gives a slightly better description at the right end. For DS scores, Weibull also seems to have 

a better goodness-of-fit at the distribution centre. However, the tail of DS scores seems to be 

much more variable than SS scores, and none of the theoretical distributions seem to be close 

to the distribution tails of DS scores. 
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Figure A.3 P-P and Q-Q plots of gamma and Weibull distributions fitted to FP um empirical 
raw SS and DS scores. P-P plots indicate the lack-of-fit at the distribution centre and Q-Q plots 
show the lack-of-fit at the distribution tails.  

 

um SS DS 

gamma Weibull gamma Weibull 

AD 315.91 21.46 1281.09 215.65 

BIC -31790.51 -33615.10 -113740.1 -120906.3 

Table A.3 AD and BIC values of gamma and Weibull fitted to empirical SS and DS scores. 

 

Table A.3 shows the AD and BIC values for the gamma and Weibull distributions fitted to the 

SS and DS empirical scores.  The Weibull distribution function gives lower AD and BIC values 

for both SS and DS empirical scores, which is consistent with Figures A.2 and A.3, suggesting 

that the Weibull distribution function is a more probable candidate for the empirical scores. 

Since the empirical scores at the tails are extremely variable and cannot be fully fitted using 

the Weibull distribution or any of the theoretical distributions, the estimated Weibull 

parameters can be used as a reference for raw score simulation. Similar to the ST distribution 

simulation, different sets of Weibull parameters can be used to test the effects of sampling 

variability on overall performance when Weibull distribution has different degree of 
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variabilities at the tails. However, only the scale parameter would need to be varied. This is 

because the tail in the Weibull distribution is mostly affected by the scale parameter. If the 

scale parameter is increased, the Weibull distribution would be stretched to the right leading to 

a heavier tail, and if the scale parameter is decreased, the Weibull distribution would be pushed 

to the left close to 0 resulting in a lighter tail. Figure A.4 gives an example of using different 

scale parameters (the shape parameter is fixed), showing that larger scale parameter would 

stretch the Weibull distribution to the right and result in more variability at the tails (scale 

parameter increased from 0.02 to 2). 

 
Figure A.4 Simulated score distributions with different scale parameters.  

 

Table A.4 shows the three sets of Weibull scale and shape parameters that could be used for 

SS and DS raw score simulation. The scale and shape parameters in set (a) are the estimated 

ones using MLE from empirical scores. In set (b) and set (c), the scale parameters are increased 

to 0.2 and 2 and 0.02 and 0.2 for SS and DS scores respectively, while the shape parameters 

are fixed. 
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  (scale) k (shape)   (scale) k (shape) 

SS set (a) 0.02 0.18 DS set (a)  0.002 0.16 

SS set (b) 0.2 0.18 DS set (b) 0.02 0.16 

SS set (c) 2 0.18 DS set (c) 0.2 0.16 

Table A.4 Three sets of scale and shape parameters for SS and DS score simulation.  

 

Once the scale and shape values are specified, raw scores can be sampled from Weibull 

distributions and used for LR computation. However, score simulation in Chapter 6 was 

conducted using the log scores, rather than the raw scores demonstrated here. As stated in 

section 6.2, the process of simulating the raw scores demonstrated here (i.e., Appendix A) is 

for the sake of exploration.  
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Appendix B - Zoo plots of SS and DS LLRs of 25 test speakers in 31 systems, 

and strip texts on top of the plots indicate specific system.  

 

Figure B.1 Zoo plots of SS and DS LLRs of 25 test speakers in DURATION and F0 systems. 
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Figure B.2 Zoo plots of SS and DS LLRs of 25 test speakers in F1 and F2 systems. 
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Figure B.3 Zoo plot of SS and DS LLRs of 25 test speakers in F3 system. 
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Figure B.4 Zoo plots of SS and DS LLRs of 25 test speakers in F01 and F02 systems. 
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Figure B.5 Zoo plots of SS and DS LLRs of 25 test speakers in F03 and F0DUR systems. 
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Figure B.6 Zoo plots of SS and DS LLRs of 25 test speakers in F12 and F13 systems. 
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Figure B.7 Zoo plots of SS and DS LLRs of 25 test speakers in F1DUR and F23 systems. 
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Figure B.8 Zoo plots of SS and DS LLRs of 25 test speakers in F2DURand F3DUR systems. 
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Figure B.9 Zoo plots of SS and DS LLRs of 25 test speakers in F03DUR and F13DUR systems. 
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Figure B.10 Zoo plots of SS and DS LLRs of 25 test speakers in F023 and F02DUR systems. 
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Figure B.11 Zoo plots of SS and DS LLRs of 25 test speakers in F12DUR and F23DUR 

systems. 
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Figure B.12 Zoo plots of SS and DS LLRs of 25 test speakers in F01DUR and F123 systems. 

114

118

120

1317

20
21

26
27 30

3640

46
47

48

51

53

54

56

72

77

79

8

90

94

114 118120

13

17

20

21
26 27

30

3640

46

47

48

51

53

54
56

72

77

79

8

90

94

F123

F01DUR

−2 −1 0 1 2 3

−15

−10

−5

0

−15

−10

−5

0

SS Log10 LR

D
S 

Lo
g 1

0 L
R



 198 

  

Figure B.13 Zoo plots of SS and DS LLRs of 25 test speakers in F012 and F013 systems. 
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Figure B.14 Zoo plots of SS and DS LLRs of 25 test speakers in F0123 and F012DUR systems. 
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Figure B.15 Zoo plots of SS and DS LLRs of 25 test speakers in F123DUR and F013DUR 

systems. 
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Figure B.16 Zoo plots of SS and DS LLRs of 25 test speakers in F023DUR and F0123DUR 

systems. 
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Appendix C - Plots of mean SS and DS LLR of individual speakers across 31 

systems. Strip texts on top indicate speaker ID.  

 
Figure C.1 Mean SS and DS LLR of speakers 8, 13, 17 and 20 across 31 systems. 
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Figure C.2 Mean SS and DS LLR of speakers 21, 26, 27 and 30 across 31 systems. 
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Figure C.3 Mean SS and DS LLR of speakers 36, 40, 46 and 47 across 31 systems. 
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Figure C.4 Mean SS and DS LLR of speakers 48, 51, 53 and 54 systems. 
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Figure C.5 Mean SS and DS LLR of speakers 56, 72, 77 and 79 across 31 systems. 
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Figure C.6 Mean SS and DS LLR of speakers 90, 94, 114 and 118 across 31 systems. 
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Figure C.7 Mean SS and DS LLR of speaker 120 across 31 systems. 
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List of abbreviations 
| Given 

AcPA Acoustic phonetic analysis 

ASR Automatic speaker recognition 

AuPA Auditory phonetic analysis 

BF Bayes factor 

CI Credible interval 

Cllr Log likelihood ratio cost 

CP Centred parameter 

CPD Criminal Practice Directions 

CPS Crown Prosecution Service 

DCT Discrete cosine transform 

DP Direct parameter 

DS Different speaker 

DyViS Dynamic Variability in Speech  

E Evidence 

EER Equal error rate 

ELUB Empirical lower and upper bound 

ENFSI European Network of Forensic Science Institutions 

EU Expected utility 

F(1-5) Formant (1st to 5th) 

F0 Fundamental frequency  

FP Filled pause 

FSAAWG Forensic Speech and Audio Analysis Working Group 

FSS Forensic speech science  

FVC Forensic voice comparison 

GMM Gaussian mixture model 

GSM Global system for mobile communications 

H Hypothesis 

HASR Human-assisted automatic speaker recognition 

Hd Defence hypothesis 

Hp Prosecution hypothesis 

I Background information 
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IAFPA International Association for Forensic Phonetics and Acoustics 

IARPA Intelligence Advanced Research Projects Activity 

IPA International Phonetic Alphabet 

IQR Interquartile range 

KDE Kernel density estimation 

KS Known sample 

LLR Log10 LRs 

LR Likelihood ratio 

LTF0 Long-term fundamental frequency  

MAP Maximum a posteriori 

MFCC Mel-frequency cepstral coefficients 

MVKD Multivariate kernel density 

p Probability  

PAV Pool adjacent violator 

PDF Probability density function 

QS Questioned sample 

RMSD Root-mean-square-deviation 

RQ Research question 

SD Standard deviation  

SFP Sentence final particle 

SS Same speaker 

SSBE Standard Southern British English  

TUULS The Use and Utility of Localised Speech Forms 

UBM Universal background model  

UKPS UK Position Statement 
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Legal cases 
 

Daubert v Merrell Dow Pharmaceuticals [1993] 509 US 579 

 

People v Collions, 68 Cal. 2d 319 (Cal. 1968) 

 

R v T [2010]  EWCA Crim 2439. 
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