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Abstract 

Many theories of schema-based processing implicitly assume that information irrelevant to a 

schema will be unaffected by its presence. However, this notion has yet to be formally 

examined. In the present work, the precision paradigm was used to explore memory-based 

generalisation as a means of assessing schematic influence for both relevant and irrelevant 

information. Here, participants learned word-location associations, with one group of words 

having locations grouped in one area of the circle (clustered condition) and the other having 

locations distributed uniformly (non-clustered condition). Using a series of approaches (i.e., 

behavioural, computational modelling, and neuroimaging), the present thesis explored how 

schematic information influenced behaviour. It was found that the presence of a pattern does 

impact information that could be considered irrelevant to the pattern itself. This result 

suggests that the use of schema-irrelevant controls, or theories ignoring possible biases 

produced by schematic information, may need to be updated. However, alternative 

explanations for these effects were proposed and examined (e.g., interference) using 

computational modelling. Here it was found that proximity- (i.e., items close together will 

have a reduced probability of retrieval) and semantic-based (i.e., spreading of activation for 

similar items in memory) interference could produce these patterns of effects. This opens up 

further questions regarding whether other studies implementing the same paradigm have 

studied schema or another process entirely. Finally, the neural underpinnings of memory-

based generalisation were explored via a preliminary analysis of pilot data. These results 

suggested that the ventromedial prefrontal cortex and dorsal striatum may play important 

roles in memory. However, some design and analysis considerations were proposed to assess 

these effects more closely. Overall, the present thesis provides clear evidence that the 

presence of a pattern can affect both memory and generalisation for both relevant and 

irrelevant information. 
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Chapter 1:  
Literature Review – Memory, Schema and Generalisation 

 
 
 
 
 
 
 
 
 

 
Part of the present literature review's content was previously published as a preprint: 

Cockcroft, J. P., Berens, S., Gaskell, M., & Horner, A. J. (2021, August 24). Schematic 

information influences memory and generalisation behaviour for schema-relevant and -

irrelevant information. https://doi.org/10.31234/osf.io/nzurq. Some content was moved to 

the present Literature Review from the Introduction of the preprint in order to give more 

context to the thesis. 

https://doi.org/10.31234/osf.io/nzurq
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 Evidence shows that predictions about future events are often based on past 

experience (Preston et al., 2004; Zeithamova et al., 2012). Such predictions require the 

generalisation of existing knowledge to novel instances. The present review aims to provide 

an overview of the processes involved in memory-based generalisation and how questions 

surrounding schema and generalisation are to be explored within the present thesis. To do 

this, the review considers the episodic-semantic distinction, how memories change over time, 

schema influence on memory and generalisation and the neural processes involved when 

generalising to novel instances. The Chapter ends with an overview of the thesis procedures 

and individual chapter aims.  

1.1. Declarative Memory: An Episodic-Semantic Continuum 

 Memory systems allow us to encode, store and retrieve information (Tulving, 1972, 

1986). Several memory systems are hypothesised to exist, with evidence indicating that each 

system is functionally distinct (Graham et al., 2000; Takashima et al., 2009; Tulving, 2002). The 

long-term store, the primary focus of the present thesis, has two distinct memory types: 

declarative (explicit) and non-declarative (implicit). Declarative memories can be brought to 

conscious awareness, whilst non-declarative influences behaviour without conscious 

awareness (Squire, 2004). Further distinctions exist, but the focus of the present discussion 

will be on the declarative system and its stores: episodic and semantic memory (though see 

McKoon & Ratcliff, 1986 and Toth & Hunt, 1999 for critiques regarding these proposed 

dissociations).  

 Tulving (1972) provided a conceptual framework for episodic and semantic memory. 

Episodic memory refers to the capacity to re-experience a past episode by re-activating the 

spatio-temporal context and individual elements of an event. In contrast, semantic memory 

refers to memory for general knowledge about the world. Knowing that Leonardo da Vinci’s 
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“The Last Supper” is in the Santa Maria delle Grazie in Milan would require semantic memory. 

In contrast, remembering when you visited Santa Maria delle Grazie and saw the painting 

yourself would require episodic memory.  

 Evidence supports the view of an episodic-semantic distinction (Greenberg & 

Verfaellie, 2010). For instance, Vargha-Khadem et al. (1997) found that early bilateral 

hippocampal atrophy resulted in episodic memory deficits but relatively intact semantic 

memory. Despite episodic memory loss, the children studied in Vargha-Khadem et al. (1997) 

developed similar levels of written and verbal comprehension to their peers. In a similar vein, 

patients with semantic dementia show relatively intact episodic memory, at least in the early 

stages of the disease (Graham et al., 2000).  

 Despite evidence suggesting a dissociation, more recent views speculate that the 

episodic-semantic distinction may be better represented as a continuum (e.g., Greenberg & 

Verfaellie, 2010; Irish & Vatansever, 2020). Irish and Vatansever (2020) proposed that the 

episodic-semantic network can be viewed as a gradient from detail-rich (i.e., episodic 

memory) to abstract, less detailed (i.e., semantic memory) representations. From this 

perspective, the current goal or context will influence the memory representations that are 

relied upon. Support for this view of an interplay, or spectrum, can be shown in the Vargha-

Khadem et al. (1997) study addressed above. Despite the preserved semantic memory of 

patients in Vargha-Khadem et al. (1997), there were still some impairments, albeit less 

pronounced than the episodic deficit. Further, patients with hippocampal lesions, leading to 

episodic memory impairments, also show slower learning of new information that is often less 

well integrated with existing knowledge (Greenberg & Verfaellie, 2010).  

 Similarly, work has shown how semantic memory can influence the recall of episodic 

information. Bartlett (1932) had participants recall a Native American ghost story at different 
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intervals: within a few hours, days, weeks or even years. During recall, participants often 

altered aspects of the story to fit with their semantic knowledge (e.g., seal hunting became 

fishing) and rationalised elements (e.g., removal of spiritual elements). According to Bartlett 

(1932), the reason for these changes was schema – abstract representations of knowledge 

that bias the encoding and retrieval of episodic memory. Overall, this demonstrates an 

interplay between the two systems supporting the view that they may not be entirely distinct 

but instead interact.  

1.1.1. Memory Consolidation: How Memory Representations Change 

 Schemas represent commonalities across multiple experiences (this is discussed in 

more detail below, see: Schema) and are believed to develop via systems consolidation 

(McClelland et al., 1995). Memory consolidation is defined as a post-encoding process of 

reorganisation, stabilisation, and qualitative changes in memory representation, from 

concrete (i.e., episodic) to abstract (i.e., semantic; McClelland et al., 1995; Winocur et al., 

2010). These more semantic representations are often referred to as schema (Ghosh & Gilboa, 

2014).  

 Memory consolidation has been shown to occur during offline periods, such as sleep 

or rest (Gais et al., 2006; Hu et al., 2006; Mograss et al., 2009; Wagner et al., 2007), but has 

also been observed during online (wake) periods, driven by processes such as retrieval 

practice (Antony et al., 2017; Ferreira et al., 2019). Through consolidation, regularities across 

experiences are thought to be extracted and utilised for future behaviour (Batterink & Paller, 

2017; Mirković et al., 2019; Sweegers & Talamini, 2014). Though sleep-based consolidation is 

not pertinent to the present thesis, understanding how memory representations change is. 

Some prominent theories of system-based consolidation are Complementary Learning 
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Systems (CLS; McClelland et al., 1995), Multiple Trace Theory (MTT; Nadel & Moscovitch, 

1997) and Trace Transformation Theory (TTT; Winocur et al., 2007). 

1.1.1.1. Complementary Learning Systems (McClelland et al., 1995) 

 The CLS (McClelland et al., 1995) model argues there are two systems in memory – one 

is a fast-encoding system (i.e., episodic memory) within the hippocampus, the other is a slower 

neocortically based system (i.e., semantic memory). The hippocampal system will quickly learn 

the pattern of neocortical activity present at the time of the event and reinstate this pattern 

during recall. The neocortical system will slowly learn this pattern of cortical reinstatement, 

meaning the event can be recalled independently of the hippocampus. According to this 

model, the hippocampus will facilitate the reinstatement of overlapping memories, which will 

result in regularities across events being extracted and arbitrary contextual information being 

forgotten. In other words, episodic memories become semanticised over time.   

 Support for this view has come from many studies (see McClelland et al., 1995, for 

review). One compelling area of work comes from evidence of a temporal gradient following 

hippocampal lesions. A temporal gradient occurs when memories immediately preceding the 

amnesia onset are not well remembered, whilst those further from this event are better 

remembered. Research has shown that amnesic patients who experienced bilateral 

hippocampal damage show a temporal gradient when remembering experiences (Albert et 

al., 1979; Beatty et al., 1988; Reed & Squire, 1998; Scoville & Milner, 1957; Tulving et al., 1988). 

In other words, their memory is often better for events further back in time post-amnesia 

onset. These findings are also supported by work in non-human animals (Maren et al., 1997; 

Winocur, 1990; Zola-Morgan & Squire, 1990; but see Frankland & Bontempi, 2005, for review). 

This demonstration of a temporal gradient shows how memories change over time and 
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become independent of the hippocampus, shifting from episodic to semantic and thus 

supporting the CLS proposals.  

1.1.1.2. Multiple Trace Theory (Nadel & Moscovitch, 1997) 

 Nevertheless, one of the problems with the CLS model is that it cannot account for 

some of the findings reported within the literature. For instance, some patients have 

restricted damage to the hippocampus but do not show temporally graded amnesia (Cipolotti 

et al., 2001; Rosenbaum et al., 2009; Spiers et al., 2001), suggesting that these individuals’ 

memories did not become hippocampally independent. If it is the case that memories always 

become hippocampally independent, then why is it that some patients show no evidence of a 

temporal gradient following hippocampal lesions? To address this, MTT (Nadel & Moscovitch, 

1997) was developed. MTT argues that instead of episodic memories becoming hippocampally 

independent, two memory traces co-exist – an episodic (within the hippocampus) and 

semantic (within the neocortex). When the task requires the contextual and spatial 

information of the event, then the hippocampus will still be required. However, when such 

information is not required, the neocortical (more abstract) representation can be activated 

without the need for the hippocampus. This model fits closely with the arguments made by 

Irish and Vatansever (2020) that episodic and semantic memory systems can be viewed as 

part of a continuum, with the task itself determining which type of memory representation is 

relied upon. 

 More specifically, MTT proposes that when an event is encoded, information within an 

event that shares commonalities to other experiences will also be re-activated and undergo 

further encoding (Moscovitch & Gilboa, 2021). Therefore, each new experience will reactive 

similar experiences from memory so that the newly encoded context can be associated with 

these past events. For instance, if a fox terrier was observed being walked in the park as part 
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of the encoded event, then the trace would become associated with other memory traces 

associated with this breed of dog. Whilst this sole event will be distinguishable from the other 

events, it will feed into the semantic trace of a fox terrier. As a result, independent episodic 

traces can exist (e.g., the fox terrier being walked through the park), whilst also being 

associated with semantic traces (e.g., what a fox terrier looks like). This would fit with findings 

of complete episodic memory loss following hippocampal damage, but the retention of 

semantic traces (which are independent of the hippocampus). For instance, the ability to 

retrieve coarser information related to a spatial layout despite a lack of memory for individual 

experiences within that layout (Rosenbaum et al., 2000).   

1.1.1.3. Trace Transformation Theory (Winocur et al., 2007) 

 Building on MTT, TTT (Winocur et al., 2007) proposed that whilst episodic memories 

would rely on the hippocampus when context-specific information was required, it did not 

mean that the experiences themselves did not change. Specifically, over time, episodic 

memories would be transformed such that some aspects were emphasised (i.e., those that 

shared common properties across events) and others de-emphasised (i.e., contextual details 

that may not be useful for future behaviour). This transformation would be based on existing 

knowledge and subsequent experience (Robin & Moscovitch, 2017). In other words, the 

episodic trace would become increasingly gist-like (i.e., lose contextual information, whilst 

retaining some specifics about the episode) and even schematic (i.e., a loss of any specific 

episode-unique details, but extracting commonalities across a series of related experiences) 

in most instances. This does not mean the episodic trace would be completely lost. Similar to 

MTT, TTT argued that these representations could co-exist and even interact depending on 

the requirements of a particular task. However, unlike MTT, TTT argues that as episodic 
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memories become less necessary, there will be a gradual loss of these representations over 

time. Both MTT and TTT are discussed in more detail in Moscovitch and Gilboa (2021). 

1.1.2. Summary 

 Historically, a division between episodic and semantic memory was proposed. Though 

evidence supports a dissociation between these two systems, it is clear that they interact. 

According to the CLS (and TTT) model, memories become semanticised over time through 

consolidation; specific episodic details are lost as the more abstract components of related 

episodes are extracted. However, evidence does suggest that memories may not always 

become hippocampally independent. As described by MTT, both an episodic and semantic 

trace may be present simultaneously, with episodic experiences being continually reliant on 

the hippocampus. Building on this proposal, TTT suggests that episodic and semantic traces 

may co-exist, as argued by MTT, but also acknowledges how episodic traces may be forgotten 

over time as they become less useful.  

1.2. Schema 

1.2.1. What is (and is not) a Schema? 

 Schemas are a form of memory representation associated with semantic memory 

(Radvansky & Tamplin, 2012) and represent the abstraction of commonalities across multiple 

experiences (Ghosh & Gilboa, 2014; van Kesteren et al., 2012; Webb et al., 2016). Ghosh and 

Gilboa (2014) recently proposed specific features that define a schema: (1) an associative 

network structure that represents units of information and their interrelations, (2) are based 

on multiple episodic events, (3) lack specificity in unit details, and (4) have a degree of 

adaptability. Due to the way schema has been applied throughout research, it has a broad 

definition and has been used to refer to other types of memory representation (e.g., gist and 



21 

concepts). Therefore, despite the definition provided by Ghosh and Gilboa (2014), it is 

necessary to clarify what the present thesis considers “schema”.  

 Gist-based representations are also an abstract representation, but only of a single 

episode (Nadel et al., 2000; Winocur & Moscovitch, 2011). An example of the difference 

between gist and schema can be demonstrated based on how both would represent a “party”. 

For a gist, the representation will be isolated to one instance, such as your 18th birthday party. 

Here, more specific details about the event itself (e.g., there were balloons around the house) 

will be available, but without the need for explicit details (e.g., the balloons were red, yellow, 

and blue). In contrast, a schema will be based on several instances of attending a “party”; this 

will lead someone to anticipate what will be present in a future instance (e.g., cake, friends, 

cards, gifts), but without being based on a unique episode. Therefore, there are qualitative 

differences between schema and gist. However, both may co-exist and be used based on task 

demands (Robin & Moscovitch, 2017).  

 Concepts are another type of mental representation that capture the shared 

properties between similar items and experiences. There is an ongoing debate within the 

literature about the distinguishing features between concepts and schemas (Ghosh & Gilboa, 

2014; Preston et al., 2017). The present work does not set out to clarify this debate but 

understands it would be challenging to disentangle schema and concepts given they share 

common features and underlying processes. For instance, behavioural work has shown that 

information congruent with schematic knowledge enhances recall (e.g., Brewer & Treyens, 

1981), with similar error-driven enhancement shown for concepts (e.g., Sakamoto & Love, 

2004). Further, in the neuroimaging literature, the hippocampus and medial prefrontal cortex 

(mPFC) have been implicated as key neural areas that are involved in schema and concept 
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formation and use (Davis et al., 2012; Mack et al., 2016; Zeithamova et al., 2016). Therefore, 

there is a great degree of overlap between schema and concepts.  

 The present thesis does not aim to address whether schema, gist and concepts are 

distinct. Instead, by presenting this information, it should be apparent how contentious an 

issue it is to define the term “schema”. For the present work, many schema features, as 

discussed by Ghosh and Gilboa (2014), are present (this is discussed in more detail in Defining 

Schema in the Precision Paradigm). However, research tied to concepts may also be relevant 

to the present work, with the global term “schema” used throughout the thesis to encapsulate 

both forms of representation.  

1.2.2. Schema and Memory  

1.2.2.1. The Advantages of Schema Presence  

 Schemas have been shown to benefit memory when information is either congruent 

(Aizpurua et al., 2009; Atienza et al., 2011; Bower et al., 1979; Brewer & Treyens, 1981; 

Mandler & Johnson, 1977; Nakamura et al., 1985; van Kesteren et al., 2010; Yamada & 

Itsukushima, 2013) or incongruent (Frank et al., 2018; Greve et al., 2019; Hunt & Worthen, 

2006; Tulving & Kroll, 1995) with schematic information. Brewer and Treyens (1981) had 

participants recall items present in an office they were asked to wait in for 35 seconds. Items 

in the office were either congruent (i.e., items expected given the context), such as a desk, or 

incongruent (i.e., items that would be unusual given the context), such as a picnic basket. In 

the study, schema-congruent items were found to be better remembered than incongruent 

items. Such a congruency benefit has been shown across several paradigms, such as: item-

colour pairings (Cycowicz et al., 2008), item-location pairs (Atienza et al., 2011; Tompary & 

Thompson-Schill, 2021), word lists (Packard et al., 2017), stories (Mandler & Johnson, 1977) 
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and films (van Kesteren et al., 2010). Therefore, the congruency benefit is a robust 

phenomenon.   

 Nevertheless, despite memory performance for schema-congruent information being 

typically greater than for schema-incongruent information, research also suggests that 

schemas can boost memory for schema-incongruent information relative to unrelated 

information. Frank et al. (2018) had participants learn a set of events that produce a coherent 

representation (e.g., A-B, B-C, C-D, D-A). The first pairing (i.e., A-B) providing schema context, 

the second (i.e., B-C) included schema-congruent or -incongruent information, whilst the final 

element (i.e., D) was always schema-congruent with the overall event. For example, the A-B 

pairing could be Farm-Tractor, with C then being either congruent (e.g., Farmer) or 

incongruent (e.g., Lawyer). These two conditions were compared to a control condition where 

all item pairings were unrelated (e.g., Torch-Professor, Professor-Lego). Consistent with 

Brewer and Treyens (1981), memory performance was greater in the schema-congruent 

relative to -incongruent condition. However, they also saw (in some circumstances) greater 

memory performance in the schema-incongruent relative to the unrelated control condition. 

Consequently, schemas may benefit the encoding and retention of congruent and incongruent 

information under specific conditions. 

 The schema-linked interactions between medial prefrontal and medial temporal 

regions (SLIMMs) model (van Kesteren et al., 2012) proposes that the mPFC and hippocampus 

play important roles in schemas, affecting both memory encoding and retrieval. According to 

SLIMMs, when an event is congruent with present schematic representations, mPFC activation 

occurs to ensure the new event is rapidly integrated with existing neocortical schemas. The 

mPFC does this by inhibiting hippocampal processing for that event, thus suppressing the 

encoding of schema-irrelevant information (e.g., perceptual details). In contrast, when 
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information is incongruent with schematic representations, the mPFC does not suppress 

hippocampal encoding. As such, the entire experience is encoded, including contextual details 

that may be irrelevant to the schema it is incongruent to. Allowing all details to be encoded 

allows for identifying what factors resulted in the prediction error, allowing for schema 

updating. Therefore, this model proposes that schema congruence enhances recall due to the 

new event being embedded with neocortical representations. In contrast, incongruent events 

are recalled with greater precision due to the prediction error caused, leading to better 

encoding of the material.   

 In their study, Greve et al. (2019) set out to test the proposals of the SLIMMs model. 

Here, participants learned the value of a set of objects via trial-and-error learning. Two objects 

would appear on screen, with particular objects (e.g., umbrella) having higher values than 

others (e.g., shoes). Across learning, the value of an item may have remained the same 

(congruent trials), changed on the final trial (incongruent) or had no fixed value and changed 

on every trial (unrelated). At test, participants were asked to identify whether an object 

display was old or new and which object had the higher value. Across four experiments, it was 

found that recognition was better for congruent and incongruent information compared to 

unrelated information; this supports the findings of Frank et al, (2018) above. However, these 

findings then extend the Frank et al. (2018) findings. Specifically, Greve et al. (2019) found an 

advantage to recognising first-encountered items in the congruent trials despite having no 

distinguishing characteristics at this point; this suggests the congruency benefit of these trials 

enhanced memory post-encoding. For the incongruent trials, where the final trial changed the 

object's value from previous learning, recognition was greater than in the unrelated 

information condition. This finding supports the predictions of the SLIMMs model (van 

Kesteren et al., 2012). Specifically, the presence of incongruent information may result in 
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prediction error, thus enhancing encoding for those items and leading to better memory at 

test as items violate expectations.  

 An important consideration is the time it may take for a schema to develop before 

violations to patterns affect memory processing. Richter et al. (2019) had participants learn 

associations between locations and objects around a circle. Object-locations were associated 

with a particular area of the circle (e.g., clothing with the top left-quadrant). However, the 

schema changed for one group of items such that locations were rotated by 90° (e.g., clothing 

was now associated with the top right quadrant), though this happened at different learning 

points. For the consolidation group, participants did not encounter the new schema 

information until the subsequent day of training. In contrast, for the no-consolidation group, 

this schema change occurred on the same day. It was found that those in the consolidation 

group showed a greater ability to update their existing schema to fit with the new object-

location pattern. In contrast, those in the no-consolidation group showed difficulty shifting 

from the old (e.g., top left quadrant) to the new (e.g., top right quadrant) pattern. This result 

suggests that schema updating requires the initial stabilisation of the newly learned 

information before schema-inconsistent information can be identified. Applying the SLIMMs 

model to the no-consolidation group, as the schema had not yet undergone consolidation, the 

presence of schema-inconsistent information did not violate expectations. However, once the 

schema was developed, it relied on the initially learned experiences where most attention 

would have been devoted. In contrast, when the schema had time to develop (i.e., the 

consolidation group), the schema could identify schema-inconsistent information and update 

appropriately via prediction error mechanisms.  
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1.2.2.2. The Disadvantages of Schema Presence 

 All the studies presented above suggest that schemas can benefit memory. However, 

there are disadvantages present when memories are affected by schema presence, leading to 

false recall or inaccuracies in the reported events (Aizpurua et al., 2009; Bartlett, 1932; Berens 

et al., 2020; Bower et al., 1979; Brewer & Treyens, 1981; Garcia-Bajos et al., 2009; Lampinen 

et al., 2001; Lew & Howe, 2017; Nakamura et al., 1985; Yamada & Itsukushima, 2013). In the 

classic example described earlier, Bartlett (1932) found that participants often changed story 

elements to fit their understanding of the world. In their study, Brewer and Treyens (1981) 

found that some items were reported to be present (e.g., stationary) that were not in the 

room simply due to schema-expectancy. A classic paradigm to illustrate false memories 

resulting from schema is the Deese-Roediger-McDermott paradigm (Deese, 1959; Roediger & 

McDermott, 1995). In this task, participants are asked to learn a list of words that share a 

semantic relationship (e.g., sleep, tired, bedroom). Subsequently, when asked to remember 

the items learned, participants will often remember items that were semantically associated 

(e.g., pillow) but not present in the lists. Evidently, the interrelation among stimuli may have 

influenced schematic processes, leading to false memories for words that were not studied.  

 These behaviours are also observed in other types of task, such as eyewitness 

reporting (Loftus et al., 1978), and word- or object-location associations (Berens et al., 2020; 

Lew & Howe, 2017; Richter et al., 2019). In their study, Brady et al. (2018) investigated how 

schema may bias the reporting of events. Here, participants learned to associate objects with 

a particular colour. Objects came from four different categories, with each category having a 

specific colour. For instance, backpacks were associated with red(ish) colours. The colours 

selected were based on a von Mises distribution (i.e., circular Gaussian), meaning the primary 

colour (e.g., red) was more likely than colours further away (e.g., purple). They found that 
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participants were more likely to report the colours of objects as closer to the mean of their 

given category; this shows how the presence of a pattern may bias memory for events.  

 The presence of a schematic pattern has also been shown to affect forgetting 

differentially (Berens et al., 2020). In their study, Berens et al. (2020) had participants learn 

word-location associations around a circle. Words belonged to two semantic categories: 

human-made (e.g., chair, table) and natural (e.g., apple, giraffe). Unbeknownst to participants, 

one group of words had locations clustered in one area of the circle (the clustered condition). 

The other had no pattern underlying the locations associated with the words (the non-

clustered condition). Using this method, Berens et al. (2020) were able to investigate memory 

accessibility (i.e., the proportion of items remembered) and precision (i.e., the degree of error 

from the location presented at study to the one selected at test). Interestingly, the presence 

of a pattern (or schema) differentially influenced these metrics of memory performance. 

While memory accessibility was greater in the clustered than the non-clustered condition, the 

opposite was true for memory precision, whereby the non-clustered items were more 

precisely remembered than the clustered. These differences were found to remain over a 96-

hour delay period. This study demonstrates both the positive and negative influence that 

schematic information may have on memory. While more information may be accessible, the 

items themselves are likely to be reported with a greater degree of error than items with no 

schematic information.  

1.2.3. Summary 

 Schemas represent the abstracted regularities across experiences and share features 

with other forms of memory representation (e.g., gist and concept). Previous work has shown 

that schemas can positively affect memory, with better memory when items are congruent or 

incongruent with schema than schema-irrelevant material. However, there are also 
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disadvantages to schema presence. Specifically, schemas can distort memory, leading to 

increased false alarms and reduced memory accuracy.  

1.3. Memory-based Generalisation 

 Though the review’s focus has been on remembering past events, memories are 

formed to guide future behaviour. Memory-based generalisation is central to the present 

thesis and has been studied using several methodologies: inductive reasoning (Rips, 1975), 

associative inference (Carpenter & Schacter, 2017; Kumaran, 2013; Preston et al., 2004; 

Zeithamova et al., 2012), affix generalisation (Tamminen et al., 2012), word-picture matching 

(Mirković & Gaskell, 2016), weather prediction (Kumaran et al., 2009), face-location 

paradigms (Sweegers & Talamini, 2014), and object-location tasks (Tompary et al., 2020).  

1.3.1. Studies of Memory-based Generalisation 

 Using relational reasoning paradigms, Rips (1975) demonstrated how participants rely 

on existing knowledge to generalise to a novel instance. In their study, Rips (1975) asked 

participants to identify the likelihood that animals on an isolated island would develop a 

pathogen. It was found that participants grouped the animals based on their perceived 

similarity (e.g., eagle and hawk). When this occurred, they were more likely to give birds a 

greater likelihood of possessing the pathogen, the greater the perceived similarity to the first 

carrier species. For example, if hawk were disclosed as the original carriers of the pathogen, 

eagles would have a higher likelihood of also being a carrier than geese or ducks. Here, 

individuals rely on both the presented information and their semantic knowledge regarding 

the relatedness of each animal to make estimates of pathogen likelihood. 

 In their study, Sweegers and Talamini (2014) required participants to learn face-

location associations, with certain facial feature combinations predictive of locations. During 

study, participants observed a face moving to one of six possible locations organised 
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hexagonally around the centre of the screen. They were then asked to retrieve these locations 

after each block of trials, acting as a form of retrieval practice. For the study, there were three 

groups: immediate, no-nap and nap, with the latter two groups having a 4-hour period 

between study and test. During test, participants were presented with both old and novel 

faces. It was found that participants were capable of generalising above chance levels, with 

the no-nap group showing significantly better performance than the immediate group, with 

no differences between the nap and no-nap groups nor the nap and immediate. During a one-

month follow-up, the rates of forgetting were found to significantly differ, with most 

forgetting occurring for faces that did not have a rule for their location based on facial 

features. However, despite evidence of forgetting, the ability to generalise did not significantly 

change. These results reiterate the earlier proposals about schema and forgetting – 

specifically, maintaining more accessible information when a schema is present than when it 

is not (Berens et al., 2020).  

 More recently, Tompary et al. (2020) investigated memory-based generalisation to 

assess schema use over time. This study followed a similar procedure to what was described 

in Berens et al. (2020), but with some notable differences. First, in the Tompary et al. (2020) 

study, participants were presented with object-location pairings and not word-location 

pairings. Second, there were two clusters present in the Tompary et al. (2020) study, with the 

means of these clusters being 180° apart. In contrast, the Berens et al. (2020) study only 

implemented a cluster in one of the conditions. The other condition (the non-clustered) did 

not have an underlying pattern associated with the word locations. Finally, in Tompary et al. 

(2020), participants were made to generalise their learning to novel instances; this occurred 

either 24-hrs or 1-week after encoding. No generalisation trials were explicitly used in the 

Berens et al. (2020) study. Using this paradigm, Tompary et al. (2020) found that participants 
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were biased towards the mean representation of events, similar to the Brady et al. (2018) 

result. Additionally, participants could generalise the patterns presented at study during test, 

both at 24-hrs and 1-week later. However, adherence to the pattern presented declined over 

time. In their study, Tompary et al. (2020) noted that schema use increased with time (as 

evidenced by an increased tendency to report items as closer to their mean). However, these 

schematic representations did decay as memories for the individual events themselves 

decayed. More specifically, using the generalisation trials, it was found that participants were 

increasingly less likely to remap the pattern presented at study after a week  compared to 24-

hours post-encoding. Further, memory for older items tended to be better when items were 

more schema consistent (i.e., closer to the centre of the cluster) than inconsistent (i.e., further 

from the centre of the cluster). These contrasting findings suggest that over time there is a 

loss of information for the underlying distribution for a given group, despite less error 

occurring in the reporting of items that were more schema-congruent than incongruent. 

These results suggest participants can generalise after a period of consolidation (24-hrs 

between study and test), with this ability declining over time.  

 However, the discrepancy in outcomes for the Sweegers and Talamini (2014) and 

Tompary et al. (2020) studies are worth noting. Specifically, whilst Sweegers and Talamini 

(2014) found that generalisation remained stable over a month’s delay, Tompary et al. (2020) 

found that over a 1-week delay, generalisation declined. One explanation for this discrepancy 

may relate to the sensitivity of the paradigms. Whilst Sweegers and Talamini (2014) used a 

binary measure of “correct” and “incorrect” generalisation, the paradigm used by Tompary et 

al. (2020) allowed for a more detailed examination of the patterns used by participants based 

on the locations selected around the entirety of the circle. As a result, the greater specificity 

provided by the Tompary et al. (2020) method may have meant that changes in generalisation 
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were easier to identify. An alternative explanation for these discrepancies may relate to the 

approach used by participants in order to generalise. More specifically, whether an encoding- 

or retrieval-based form of generalisation was used; these models are discussed in more detail 

below.  

1.3.2. Theories of Generalisation: Encoding vs Retrieval-Based Processes 

 Within the literature, there are two predominant theories for explaining memory-

based generalisation: encoding-based (also referred to as prototype models, e.g., McClelland 

et al., 1995; Posner & Keele, 1968; Smith & Minda, 2000) and retrieval-based (also referred to 

as exemplar models, e.g., Kumaran & McClelland, 2012; Nosofsky, 1988; Shohamy & Wagner, 

2008). Most encoding-based models propose that as experiences are encoded, the 

overlapping patterns of information form a schematic representation of the central 

tendencies (e.g., “average”) of these items (Rosch, 1973). In contrast, retrieval-based models 

propose that the individual experiences (or exemplars) are used “on the fly” to make an 

inference (Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky, 1986). For example, recalling 

three related experiences and using them to generalise to a novel instance. The critical 

difference between encoding- and retrieval-based models is how memories are used. For 

encoding-based models, schematic representations are formed during or after encoding as a 

function of systems consolidation, meaning there is less reliance on individual experiences. In 

contrast, retrieval-based models argue that individual experiences are sampled from memory 

and used to make an inference.  

 Though evidence supports both encoding-based and retrieval-based models (see 

Nosofsky, 1988 and Smith & Minda, 2000 for meta-analytic reviews), they are not necessarily 

mutually exclusive (Medin et al., 1984). Instead, arguments have been made that different 

generalisation mechanisms may be used under different task conditions. For instance, the 
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more variability there is among items, the more need for retrieval-based mechanisms to 

discriminate among items within a category (Konkle et al., 2010; Winograd, 1981). However, 

the more overlap across events, the less need for individual episodes, meaning encoding-

based generalisation may be sufficient (Hampton, 1979; Rosch & Mervis, 1975).  

 As a result of this shift in perspective, more recent neurocognitive models have 

proposed how both encoding- and retrieval-based mechanisms may develop. For example, 

the recurrency and episodic memory results in generalisation (REMERGE; Kumaran & 

McClelland, 2012) model, which builds on the CLS model (discussed earlier), proposes that the 

hippocampus initially supports generalisation before systems consolidation. Specifically, the 

hippocampus will use big-loop recurrence to use its output as input. This “new” input will 

activate related experiences, which can be recombined into a generalised representation of 

related events. These generalised representations can then be used to generalise to novel 

instances. However, throughout consolidation, there may be a shift from retrieval-based to 

encoding-based generalisation, as argued by the CLS model. This hybrid model could 

accommodate findings that show schema effects immediately, or soon after, learning (e.g., 

Antony et al., 2021; Sweegers & Talamini, 2014; Tompary & Thompson-Schill, 2021) and the 

slow maturation of neocortical schematic representations, which can take days, weeks, 

months, or years (McClelland et al., 1995; Zola-Morgan & Squire, 1990). Based on the evidence 

reviewed so far, it is clear that both encoding- and retrieval-based mechanisms may operate 

at different time scales and under different conditions. 

 Going back to the earlier Tompary et al. (2020) and Sweegers and Talamini (2014) 

discrepancy, different generalisation mechanisms may have been at play. Specifically, during 

the Tompary et al. (2020) investigation, retrieval-based generalisation may have been used; 

this is in line with their finding that “schema” use (operationalised as greater reliance on the 
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mean of each cluster) declined as the memory for items themselves declined. Therefore, 

generalisation appears to have resulted from reliance on the individual experiences instead of 

a schematic representation. This is particularly evident when considering that schema are 

meant to be long-lasting mental representations independent of the memories they are based 

upon (Ghosh & Gilboa, 2014; van Kesteren et al., 2012). In contrast, for the Sweegers and 

Talamini (2014) study, the relative stability of generalisation following a one-month delay 

despite declines in memory suggests the presence of a schematic (encoding-based) 

representation. The development of a schematic representation may have occurred as a result 

of the retrieval practice trials during learning that may have encouraged online consolidation 

(see Antony et al., 2017, for a discussion on consolidation via retrieval practice).  

1.3.3. Summary 

 Throughout this section, it has been shown how memories can be used to make 

inferences about novel stimuli. Many paradigms have been used to test this, often requiring a 

binary output (e.g., associative inference and face-location task). However, there has been a 

move towards measures that allow for greater insight into the pattern extracted by 

participants, resulting in a continuous output of locations around a circle (i.e., Tompary et al., 

2020). Both encoding and retrieval-based models were discussed, showing that either 

mechanism may influence behaviour based on task demands or the influence of time.  

1.4. Neural Mechanisms 

 The review now turns to the neural mechanisms of memory-based generalisation. In 

the final experimental chapter of the thesis (Chapter 4), these neural mechanisms were 

explored in a pilot investigation. As mentioned above, many studies and theories have 

highlighted the importance of the ventral mPFC (vmPFC) and hippocampus in memory-based 

generalisation, particularly in their interaction (Andrews-Hanna et al., 2010; Kumaran & 
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McClelland, 2012; McClelland et al., 1995; Schlichting & Preston, 2015; van Kesteren et al., 

2012; Zeithamova et al., 2008). For example, the SLIMMs model proposes that schema-

congruent information becomes rapidly consolidated into neocortical structures through 

mPFC suppression of hippocampal encoding. In contrast, schema incongruent events will 

result in no such suppression of hippocampal activation, allowing for encoding of the unique 

experience to take place.  

 The hippocampus is regarded as serving a role in the rapid learning of events 

(McClelland et al., 1995), with recent evidence also demonstrating its role in generalisation 

(Bowman & Zeithamova, 2018; Preston et al., 2004; Shohamy & Wagner, 2008; Zeithamova et 

al., 2012). In contrast, the vmPFC has been shown to be involved in several schema related 

processes such as schema updating (Richards et al., 2014; Zeithamova et al., 2012), enhancing 

memory for schema-congruent information (Tse et al., 2007; van Kesteren et al., 2010) and 

generalisation (DeVito et al., 2010; Kumaran et al., 2009; Schlichting et al., 2015).  

1.4.1. The Hippocampus and vmPFC 

 Historically, studies have suggested that the hippocampal and vmPFC activity can serve 

as ways of dissociating the form of generalisation process utilised by participants (Bowman & 

Zeithamova, 2018). Specifically, hippocampal activation was associated with retrieval-based 

generalisation, whilst the vmPFC was associated with more encoding-based processes. This 

dissociation is partly due to the hippocampus’ role in episodic memory, meaning the region 

can access recently encoded experiences and generalise based on the individual episodes; this 

is central to the REMERGE model (Kumaran & McClelland, 2012). In contrast, schema are 

developed and maintained via the vmPFC, with inferences about novel situations being 

possible via encoding-based processes using these schematic representations (Zeithamova et 

al., 2012).  
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 However, recent proposals have been made that the hippocampus represents events 

differently across the long axis, with posterior regions more involved in memory and anterior 

regions more involved in generalisation (Frank et al., 2019; Kumaran & McClelland, 2012; 

Poppenk et al., 2013). One area of support for this proposal comes from animal work. The 

receptive fields of place cells in the rodent hippocampus have been shown to change across 

the hippocampus, with smaller place fields in posterior and larger place fields in anterior 

portions (Kjelstrup et al., 2008). Thus, more anterior portions of the hippocampus may 

represent information on a larger spatial scale, potentially allowing for generalisation. In the 

human literature, fMRI studies have corroborated this notion by showing that the 

hippocampus can be differentially active for memory compared to generalisation trials 

(Bowman & Zeithamova, 2018; Collin et al., 2015; Schlichting et al., 2015).  

 Schlichting et al. (2015) had participants learn associations among objects (e.g., A-B, B-

C). Before and after learning, participants were exposed to each object individually; this took 

place within an fMRI setting. The reason for collecting neural data on the response to singular 

objects was to allow for a representational similarity analysis (RSA) to be conducted. 

Specifically, RSA was used to test specific hypotheses about memory separation and 

integration. For instance, to identify differences in hippocampal activation based on the 

integration of conditions (i.e., A-B-C) and separation of learning (A-B, B-C). Post-scanning, 

participants took part in an associative inference task where they would have to infer the 

relationship across unexposed images (e.g., A-C) along with remembering the original pairs 

(e.g., A-B, B-C). It was found that the posterior region of the hippocampus was associated with 

learned pairs (e.g., A-B, B-C), whilst unlearned novel pairs that shared an associative 

relationship (e.g., A-C) were shown to activate anterior regions of the hippocampus. This was 

demonstrated as posterior hippocampal regions showed less similarity for A and C items post-
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learning. In contrast, anterior regions of the hippocampus showed greater pairing post-

learning.   

 The notion of hippocampal representations that allow for generalisation was briefly 

touched upon when discussing the REMERGE (Kumaran & McClelland, 2012) model. Using the 

associative inference paradigm as an example, REMERGE proposes that the hippocampus will 

code for each unique experience (e.g., A-B, B-C, C-D) via pattern separation mechanisms. 

Subsequently, as the hippocampus uses recurrence to transfer information to the neocortex, 

some information will feedback into the hippocampus proper via the entorhinal cortex. This 

feedback loop is termed “big-loop recurrence”. The feedback received will act as a new input 

into the hippocampus and activate related experiences. For instance, if the B-C association 

acted as the new input, it would activate other conjunctive experiences with both B and C 

present (i.e., A-B, B-C, C-D). This subsequent re-activation will allow the hippocampus to 

identify higher-order relationships across events that may not have been directly experienced 

(e.g., A-C, B-D). The hippocampus can then store these generalised representations that 

represent higher-order relationships across events. During generalisation, the hippocampus 

can then use these generalised representations to infer the relationship across events. At 

times, new input from a novel experience will also activate associated information, thus 

leading to an “on the fly” inference to be made at the time of generalisation if a generalised 

representation were not present.   

 In their study, Bowman and Zeithamova (2018) trained participants to distinguish 

between two categories of stimuli based on specific features present in exemplars (e.g., head 

direction, tail appearance). At test, participants had to classify both old and novel stimuli into 

one of the two categories. Models were then fit to participant data to identify whether an 

encoding- or retrieval-based approach was used when generalising to novel instances. It was 
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found that the encoding-based model provided the best fit for the behaviour of participants 

in around 72.4% of cases, compared to 10.3% for retrieval-based processes. The models could 

not distinguish the remaining 17.2% of participants. Interestingly, when comparing the model 

fit for each participant to the neural activation found, the encoding-based model fits 

correlated with vmPFC and anterior hippocampus activation, suggesting the regions 

contributed to encoding-based generalisation. However, no regions were found to track 

retrieval-based mechanisms unless the statistical threshold was reduced. When this occurred, 

retrieval-based processes were associated with bilateral occipital cortex, precuneus, and 

inferior partial cortex. These findings may also be in line with the expectations of the 

REMERGE model, potentially highlighting the generation of generalised representations 

within the anterior hippocampus and schema-related processes in the vmPFC.  

 Further support for the interaction between the hippocampus and vmPFC during 

generalisation was found in Frank et al. (2019). In their study, Frank et al. (2019) found 

connectivity differences between the posterior and anterior regions of the hippocampus. 

Specifically, the posterior region showed greater connectivity to regions previously implicated 

in memory specificity (e.g., angular gyrus and inferior frontal gyrus), whilst anterior regions 

showed greater connectivity with the vmPFC. The interaction between the hippocampus and 

vmPFC was also predictive of individual differences in generalisation ability. This result further 

demonstrates the importance of both the vmPFC and hippocampus in memory-based 

generalisation. It also provides further weight to the notion that sub-regions of the 

hippocampus may serve dissociable processes.  

 However, it should be noted that not all studies find model-based differences 

favouring encoding-based models (see Mack et al., 2013). In their study, Mack et al. (2013) 

applied multivoxel pattern analysis to fMRI data collected during a categorisation task; this 
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was done to determine whether an encoding or retrieval-based model provided the best fit 

for the data. In this study, participants were trained to classify objects as belonging to one of 

two categories based on binary differences (e.g., when red, it is category A, when green, it is 

category B). During scanning, participants classified both old and novel objects. Using 

multivoxel pattern analysis and support vector regression, it was found that a retrieval-based 

model provided the best fit for the neural data, with 65% of participants fitting the retrieval-

based model, 5% fitting the encoding-based model, and the remaining sample not being 

dissociable based on brain activation (30%). This finding seems at odds with the Bowman and 

Zeithamova (2018) study. However, Mack et al. (2013) found that the regions associated with 

retrieval-based processes differed from the encoding-based regions found in Bowman and 

Zeithamova (2018). Specifically, Mack et al. (2013) found that the lateral occipital, inferior 

parietal cortex, inferior frontal gyrus, and insular cortex were key in retrieval-based 

generalisation. This result does indicate there may be neural dissociations between encoding- 

and retrieval-based generalisation. Along with this, the findings give merit to earlier 

behavioural discussions that different tasks may use either encoding or retrieval-based 

processes. Though both tasks required categorisation of stimuli, the stimuli used were more 

complex in the Bowman and Zeithamova (2018) study and may have driven more encoding-

based generalisation processes to be required. In contrast, the simpler stimuli of Mack et al. 

(2013) may have required the use of retrieval-based processes where examples of the stimuli 

can be retrieved and used to infer a category.    

1.4.2. Beyond the hippocampus and vmPFC 

 Other regions outside the hippocampus and vmPFC have also been implicated in both 

memory and generalisation. For instance, the middle temporal gyrus has been found to 

support generalisation (Bowman & Zeithamova, 2018; Davis & Poldrack, 2014; Dennis et al., 
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2008; Turney & Dennis, 2017). Previously, work had also implicated the striatum as a critical 

region for non-declarative memory-based generalisation (Knowlton et al., 1996). Studies have 

also shown how different memory processes may be dissociable on a neural level. In their 

study, Richter et al. (2016) found that hippocampal activation predicted memory accessibility, 

angular gyrus activation predicted memory precision and precuneus activation predicted 

vividness. Consequently, studies have previously demonstrated that regions outside of the 

vmPFC and hippocampus may play important roles in both memory and generalisation.   

1.4.3. Summary 

 The predominant focus of the literature on memory-based generalisation has been on 

the vmPFC and hippocampus. Both have been shown repeatedly to be integral regions to this 

cognitive domain, both separately and in their interaction. More recently, there has been a 

shift to looking at the division of labour along the long axis of the hippocampus, finding that 

the anterior portion may be more involved in generalisation whilst the posterior is involved in 

memory. The coupling between these portions of the hippocampus and other regions also 

supports this notion. Other areas have also been implicated in memory and generalisation but 

have been given less attention (e.g., middle temporal gyrus).   

1.5. Thesis Overview 

 The present review has demonstrated that the presence of a schema affects the 

encoding and retention of related events. Typically, schemas improve memory performance 

for congruent and incongruent information, relative to schema-irrelevant information (Frank 

et al., 2018; Greve et al., 2019). However, less is known about the effects of a schema on 

information that is irrelevant. If we experience multiple related events that are intermixed 

with unrelated events, does the extraction of a schema for the related events affect 

performance for these unrelated, irrelevant, events? Current theories do not make clear 
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predictions about schema-irrelevant information (Henson & Gagnepain, 2010; McClelland et 

al., 1995; van Kesteren et al., 2012), though most would assume that such events should be 

unaffected by the presence of a schema. If information is unrelated to a schema, then the 

schema should not modulate its encoding or retention.  

 Schemas can relate to the locations of items in the real world. When entering 

someone’s home, semantically related items are typically grouped spatially. If you know 

where the soap and toilet paper is located, you can use this information to predict where a 

towel will be located. However, this schematic information will be of little use when predicting 

the location of items from an unrelated category. For example, house plants can be placed 

anywhere in a home, and as such, the presence of a “bathroom” schema should be irrelevant 

to where a house plant is located or where you predict one might be. 

 The present thesis had three primary aims: (1) explore memory-based generalisation 

with a method that allowed closer inspection of the patterns extracted and used by 

participants, (2) investigate whether schematic information influences behaviour for both 

relevant and -irrelevant information and (3) assess the neural mechanisms of memory-based 

generalisation through fMRI. Therefore, this next section provides specific details regarding 

the remainder of the thesis. First, there is a discussion on the precision paradigm used 

throughout the thesis to understand memory-based generalisation and why this was chosen. 

Subsequently, individual overviews of each Chapter are given to provide further insight into 

the thesis overall.  

1.5.1. The Precision Paradigm 

 Precision (or continuous) measures of memory provide a non-binary output that 

allows us to look at patterns of responses across trials. This paradigm has been mentioned in 

passing throughout the present review and has been used extensively to study working (Bays 
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et al., 2009; Luck & Vogel, 2013; Peich et al., 2013; Sun et al., 2017; Zhang & Luck, 2008) and 

long-term (Berens et al., 2020; Harlow & Donaldson, 2013; Korkki et al., 2020; Nilakantan et 

al., 2018; Richter et al., 2019; Tompary et al., 2020) memory. Precision memory experiments 

associate a stimulus (e.g., a word or object) with a continuous property (e.g., colour or location 

around a circle). At test, participants are required to retrieve the associated property of the 

stimulus. In the case of a location around a circle, performance is measured as the degree of 

error (real location vs. retrieved location). With a continuous measure like this, we can assess 

the distribution of retrieved locations across trials. For example, we can compare the 

distribution of memory trials for a set of stimuli whose locations were dictated by an 

underlying pattern to see if the retrieved distribution matches the encoded distribution. 

 The present thesis adapted the method used by Berens et al. (2020). As a recap, Berens 

et al. (2020) examined forgetting using the precision paradigm. Two semantic word groups 

were used: human-made and natural. One set of words had locations that were more likely to 

appear in one area of the circle than elsewhere (the clustered condition). The other had 

locations that were equally likely anywhere around the circle (the non-clustered condition). 

One adaption was made for the present work to investigate memory and generalisation using 

this paradigm, specifically the inclusion of novel words at test. These words came from the 

same semantic groupings but were not associated with a location around the circle. Instead, 

participants are required to determine their location based on previous experience. 

Therefore, the present thesis could test whether participants could recreate the pattern of 

locations observed at study for novel items. Using an approach that assesses the pattern of 

responses across trials also allows us to identify biases more clearly in behaviour; this is 

particularly relevant for addressing the second aim of the present thesis (i.e., identify whether 

schematic information may bias behaviour for schema-relevant and -irrelevant information). 
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 Much of the previous literature on memory-based generalisation has used tasks 

requiring binary decisions (e.g., Knowlton et al., 1996; Kumaran et al., 2009; Preston et al., 

2004; Sweegers & Talamini, 2014; c.f. Tompary et al., 2020) that address whether memory-

based generalisation is possible. However, the precision paradigm provides insight into the 

patterns extracted and used during the recall of events and generalisation to novel instances. 

Therefore, it provides a more sensitive measure into memory-based generalisation than is 

typically offered by these binary measures. For instance, in Tompary et al. (2020) it was 

possible to track the development and use of a schema through the precision paradigm as 

demonstrated by decreases in the use of the underlying pattern associated with a particular 

cluster. In contrast, for studies such as Sweegers and Talamini (2014), it can be difficult to 

discern subtle changes in behaviour as items are either correctly or incorrectly located without 

examination of the precise patterns being used by participants.  

 An additional benefit of this paradigm is that it does offer the opportunity to construct 

a schema (this is discussed in more detail below). Unlike other methods which rely on pre-

existing schema (e.g., semantic association between objects), the precision paradigm can 

construct a schema by associating particular spatial locations with a category of words or 

objects. Though there will be use of pre-existing knowledge (e.g., semantic association among 

stimuli) they will not possess information related to a spatial distribution. As such, associating 

both word and locations together provides a useful way of examining schema development 

and use.   

 The present work will also extend previous work conducted by Tompary et al. (2020) 

due to the inclusion of a control (non-clustered) condition. In their study, Tompary et al. (2020) 

had two clusters on opposite sides of the circle. Though this was beneficial for examining 

schema development and use over time, it did not allow for analysis of how a pattern (or 
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schema) in one condition influenced both itself and other conditions. Therefore, the presence 

of a non-clustered condition within the present paradigm would allow for the extension of 

Tompary et al. (2020)’s findings and address how schema presence influences behaviour for 

relevant and irrelevant items.  

1.5.1.1. Defining Schema in the Precision Paradigm 

 Critical to the present thesis is the use of an underlying pattern across a set of word-

location associations to provide insight into schematic processing. As discussed earlier, Ghosh 

and Gilboa (2014) recently proposed specific features for a schema: (1) an associative network 

structure, (2) based on multiple episodes, (3) lack specificity, and (4) have a degree of 

adaptability. Concerning the present paradigm, a participant may rely on a schema that maps 

the associations between words and locations (related semantically and by location), thus 

conforming to the first criterion of an associative network structure. Further, participants are 

encoding multiple events, conforming to the second criteria. If a pattern is extracted (e.g., the 

average word-location association for a given semantic category), this conforms to the third 

criteria. Finally, though “adaptability” is not assessed per se (i.e., the extent to which existing 

schema can be flexibly updated), the work does assess behaviour shortly after encoding. 

Therefore, if behaviour is consistent with schema processing, schematic representations must 

have been developed rapidly. Consequently, the work presented within the thesis does 

conform to the stringent criteria outlined by Ghosh and Gilboa (2014) and readily fits with less 

stringent definitions of schemas (see Preston & Eichenbaum, 2013 and van Kesteren et al., 

2012).  
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1.5.2. Thesis Chapters 

1.5.2.1. Chapter 2 

 Previous work has often focused on how schematic information influences recall for 

congruent and incongruent information. However, little is known about how these schematic 

representations influence behaviour for irrelevant information. This is particularly evident in 

many theories that discuss schema development (e.g., SLIMMs), where no explicit 

assumptions are made regarding the effects of schema on schema-irrelevant information. 

Notably, this may be due to the implicit assumption that information irrelevant to the 

schematic representation should be unaffected by its presence. However, Chapter 2 sought 

to test this assumption by explicitly examining the pattern extracted in both the schema-

relevant (clustered) and irrelevant (non-clustered) conditions through the scope of 

generalisation trials. Returning to the bathroom schema example, the towel could be in the 

bathroom with other bathroom-related items (schema-congruent) or in the living room 

(schema-incongruent). Whereas the location of the towel could either be schema-congruent 

or -incongruent, the location of a specific house plant is schema-irrelevant, as it should not be 

included as part of the “bathroom” schema. For the present paradigm, you have both schema-

relevant (clustered) and schema-irrelevant (non-clustered) items. Therefore, it is possible to 

assess how schema presence affects behaviour towards relevant- and irrelevant information.  

 Four experiments were conducted. In Experiment 1, an assessment of whether 

generalisation could occur immediately post-encoding took place. Experiment 2 extended the 

findings from Experiment 1 by introducing a delay between study and test to assess whether 

there were changes in generalisation behaviour as a function of time. Subsequently, 

Experiments 3 and 4 (which were conducted online) aimed to replicate the effects observed 
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in the first two experiments to assess the robustness of the effects presented. All experiments 

were pre-registered before data collection.  

1.5.2.2. Chapter 3 

 Chapter 3 aimed to better understand the pattern of behavioural effects observed in 

Chapter 2. Computational modelling was used to address whether: (1) an encoding- or 

retrieval-based model predicted the pattern of behaviour observed in Chapter 2, (2) 

modulating retrieval probabilities produces the patterns of behaviour from Chapter 2, and (3) 

alternative mechanisms (e.g., interference) could produce the same pattern of effects found 

in Chapter 2. These models provided the opportunity to explore the fit of encoding and 

retrieval-based models to the data obtained in Chapter 2 and explore alternative 

interpretations for the effects present in Chapter 2 and other related studies (e.g., Berens et 

al., 2020; Tompary et al., 2020).   

1.5.2.3. Chapter 4 

 The final experimental chapter (Chapter 4) initially aimed to assess the neural 

correlates of memory-based generalisation via fMRI. However, due to the COVID-19 

pandemic, data collection was halted and left incomplete. As such, the chapter now provides 

an analysis of two pilot investigations. The first was a behavioural pilot that assessed how the 

inclusion of a semantic categorisation task (SCT), aimed at reducing item-novelty effects 

present during generalisation trials, impacted the behaviour observed in the precision 

paradigm. The second was the preliminary analysis of the fMRI data to identify possible design 

and analysis changes and open questions that could be explored in an independent 

investigation.  
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1.6. Concluding Remarks 

 Schema have been shown to benefit memory when items are congruent and 

incongruent with expectations. However, an underlying assumption of many theories is that 

schema-irrelevant information is unaffected by schema presence. However, this notion has 

not been formally tested. Using generalisation trials, it is possible to ascertain how schema 

affect behaviour for information relevant and irrelevant to themselves. Specifically, these 

trials are not associated with an individual experience. Therefore, they provide an 

opportunity to examine schema-influence. However, many existing methods of testing 

memory-based generalisation rely on binary outcomes, meaning they are limited in what 

information can be provided about the patterns extracted and used by participants. 

Implementing the precision paradigm provides a novel opportunity to examine how the 

presence of a pattern (or schema) influences behaviour for both relevant and irrelevant 

information and the ability to examine the precise patterns used by participants over time. 

Therefore, the present thesis sought to assess how schematic information influenced 

behaviour, alternative explanations for the behaviour observed and gather preliminary 

evidence of the neural activations associated with memory-based generalisation.  
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Chapter 2: 
Influence of schematic information on generalisation 
behaviour for both schema-relevant and -irrelevant 

information 
 

 

All experimental pre-registrations, materials, data, and analyses are 

available on the Open Science Framework: https://osf.io/bxru4/. 

 

 

 

 

The experiments presented within this chapter have been previously published as a preprint: 

Cockcroft, J. P., Berens, S., Gaskell, M., & Horner, A. J. (2021, August 24). Schematic 

information influences memory and generalisation behaviour for schema-relevant and -

irrelevant information. https://doi.org/10.31234/osf.io/nzurq. Minor edits were made to 

ensure greater continuity between thesis chapters. However, the content is predominately 

the same as in the listed publication.

https://osf.io/bxru4/
https://doi.org/10.31234/osf.io/nzurq
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2.1. Abstract 

It is typically assumed schema do not influence behaviour for information irrelevant to 

themselves. However, this has yet to be formally tested. Here, we assessed generalisation 

behaviour for information related to an underlying pattern, where a schema could be 

extracted (schema-relevant) and information that was unrelated and therefore irrelevant to 

the extracted schema (schema-irrelevant). To investigate this, the precision paradigm was 

used where participants learnt associations between words and locations around a circle. 

Words belonged to two semantic categories: human-made and natural. For one category, 

word-locations were clustered around one point on the circle (clustered condition), while the 

other category had word-locations randomly distributed (non-clustered condition). At test, 

participants were presented with old (memory) and new (generalisation) words, requiring 

them to identify a remembered location or make a best guess. The presence of the clustered 

pattern modulated memory and generalisation. In the clustered condition, participants placed 

old and new words in locations consistent with the underlying pattern. For non-clustered 

novel items, participants were less likely to place these items in locations consistent with the 

clustered condition. Therefore, we provide evidence that the presence of schematic 

information modulates memory and generalisation behaviour. In the case of schema-

irrelevant information, the schema modulated generalisation behaviour. Our results highlight 

the need to carefully construct appropriate schema-irrelevant control conditions such that the 

presence of a schema does not modulate behaviour in these conditions.  

Keywords: schema, memory, generalisation 
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2.2. Introduction 

Schemas are mental representations that allow us to generalise across experiences, 

altering our memory of the past, perception of the present, and future predictions. Schemas 

are thought to be formed when we experience multiple related events that have a common 

structure (Anderson, 1984; Bartlett, 1932; Head & Holmes, 1911; Piaget, 1926; Posner & 

Keele, 1968). In this way, schemas may capture the general structure of events that have 

occurred, abstracting away from the specific content of individual events.  

 Schemas are thought to be critical to our ability to generalise to novel but related 

events. Sweegers and Talamini (2014) examined how the presence of an association between 

specific facial characteristics (e.g., wearing a hat, face shape) and a location in hexagonal space 

could be learned and used to make inferences for novel faces. Along with benefiting later 

recall of old items, the presence of face-location associations could also be used to make novel 

inferences about the location for unseen face stimuli. This was observed immediately after 

studying the material. In another domain, Mirković and Gaskell (2016) had participants learn 

new vocabulary using a word-picture matching task. When tested on their ability to generalise 

suffixes, participants showed they had extracted the suffix rules and were able to use these 

rules to generalise to novel word-picture pairs. Across these studies, it has been shown that 

schematic representations based on relational information can be used to make 

generalisations about novel stimuli. In this way, schemas do not simply function to benefit 

memory encoding and recall but also help guide our behaviour for future instances.  

Models of schema processing can be broadly divided into: encoding-based or retrieval-

based models. These groupings predominantly come from research into category and 

discrimination learning (Kumaran & McClelland, 2012; Mack et al., 2018; Murphy, 2016) but 

are relevant to schema processing. These are discussed in detail in Chapter 1. In brief, 
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encoding-based models propose that at the point of encoding, extraction of regularities across 

events form schema that represent the central tendencies (e.g., average) across events 

(Rosch, 1973). In contrast, retrieval-based models propose that individual experiences are 

sampled at the point of generalising to guide novel inferences.  

 Precision memory measures have been used extensively to study working memory and 

long-term memory (see Chapter 1 for more details). Here, participants associate a stimulus 

(e.g., word or object) with a continuous property (e.g., colour or location around a circle). 

Participants then need to retrieve these locations, and their degree of error (i.e., difference 

from presented to selected location) can be used to assess memory accuracy. Precision 

measures have been used to assess schema processing. The idea here is that an underlying 

pattern can dictate the associated properties of a set of stimuli. For example, when learning 

word-location associations, the locations can conform to a von Mises distribution (circular 

Gaussian), such that they are clustered in a specific area of the circle; this was the approach 

taken in Berens et al. (2020). Here, participants were required to learn word-location 

associations around a circle. Words came from one of two semantic categories (i.e., human-

made and natural), with one category having locations clustered (i.e., locations were more 

likely to appear in one area of the circle) while the other was non-clustered (i.e., no 

relationship between word meanings and locations). Using this paradigm, measures of 

memory accessibility (i.e., proportion of word-locations retrieved) and precision (i.e., degree 

of location accuracy given successful word-location retrieval) were assessed. They found that 

the presence of a pattern differentially influenced memory accessibility and precision. 

Specifically, accessibility was higher, but precision was lower, in the clustered relative to non-

clustered condition. Consequently, schematic information affects distinct memory 

components differently – benefiting overall accessibility at the cost of precision.  
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 Using both previously presented and novel (semantically related) stimuli, Tompary et 

al. (2020) investigated how these underlying patterns modulate both memory (old stimuli) 

and generalisation (novel stimuli) behaviour. Participants learned to associate objects with 

locations around a circle. The locations of images were drawn from two cosine distributions 

around the circle, with the means of these distributions being on opposite sides (separated by 

180o). They found that schema use, relative to the use of episodic memory, increased with 

time, but interestingly, schema memory also showed evidence of decay. This is in line with 

evidence elsewhere showing that schema benefits on memory performance can decrease 

with time (Antony et al., 2021; Berens et al., 2020). Precision measures have therefore been 

used to assess memory and generalisation behaviour in the presence of a schema. However, 

they have not been used to assess behaviour for schema-irrelevant information.  

 Many studies that investigate schema processing consider its effects on schema-

congruent and incongruent information, ignoring any potential influence on schema-

irrelevant information. Irrelevant here relates to information that is not in the same semantic 

category as the schematic items. In our earlier example (see Chapter 1), the presence of a 

“bathroom” schema should have little impact on where you predict the house plant will be 

located (unless a mutual exclusivity rule is present; see General Discussion, below). Whereas 

a schema-incongruent item (e.g., a towel in the living room) conflicts with an existing schema 

and therefore can change or update the schema, a schema-irrelevant item (e.g., a house plant) 

is neither congruent nor incongruent with the schema. Therefore, our ability to remember 

where a house plant is located or predict where a house plant would be located should be 

unaffected by the presence or absence of schematic information related to bathroom items. 

In the case of the Berens et al., (2020) study, one semantic category (e.g., human-made – the 

experimental equivalent to bathroom items in our example) was associated with an 



52 

underlying pattern (the clustered condition), whereas the other semantic category (i.e., 

natural – the experimental equivalent to house plants in our example) was not (the non-

clustered condition). The location of words in the non-clustered condition are not relevant to 

the “human-made” pattern in this case, so we define these items as “schema-irrelevant”.  

Though evidence suggests that schemas can bias memory by increasing false alarms 

(Neuschatz et al., 2002) and increasing the number of false memories (Kleider et al., 2008), it 

is not often considered how schemas influence information that is not relevant to themselves. 

Though some studies have included irrelevant information in their paradigm (e.g., Frank et al., 

2018; Greve et al., 2019), this was used as a control condition to compare performance 

relative to congruent and incongruent information, as opposed to examining how the 

presence of schematic information could bias behaviour for this irrelevant information. 

Indeed, our schema-irrelevant (non-clustered) condition was first created as a control 

condition before we focussed our attention subsequently on behavioural biases specifically in 

this condition. 

Returning to precision measures of memory and generalisation, Tompary et al. (2020) 

did not include a control condition where locations for one semantic group were randomly 

distributed. Instead, they used two clustered distributions separated by 180o, so it is difficult 

to disentangle the effects of one cluster against another. In the present experiments, we used 

the clustered and non-clustered conditions introduced in Berens et al. (2020) and introduced 

novel semantically related items (as in Tompary et al., 2020). This allowed us to focus on 

behaviour in the non-clustered condition, where the words are from a separate semantic 

category to the clustered condition, and the locations of these words are randomly 

distributed. As such, word-locations in the non-clustered condition are technically irrelevant 

to extracting the underlying pattern (or schema) in the clustered condition.  
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2.2.1. Overview of Experiments 

 We explored how the presence of a pattern influences memory and generalisation 

when one condition possesses a pattern and the other does not. We used an experimental 

design similar to Berens et al. (2020), but with the inclusion of novel items at test. Participants 

learned word-location associations around a circle. Word stimuli came from two semantic 

categories: human-made (e.g., chair, computer) and natural (e.g., leaf, giraffe). The locations 

associated with these words were either clustered or non-clustered. By including the non-

clustered condition, we could explore how the presence of a pattern affected behaviour for 

information semantically related to the pattern (i.e., words belonging to the clustered 

category) and semantically unrelated to the pattern (i.e., words belonging to the non-

clustered category). Using the generalisation trials, we can assess the impact of schematic 

information on behaviour directly without the noise added by memory trials. Whilst memory 

trials can rely on both memory for the individual item and the schematic information; 

generalisation trials may only rely on the schematic information or random guessing. 

Therefore, it provided an opportunity to establish schematic influence on irrelevant 

information. Specifically, participants may form a ‘schematic’ representation for the semantic 

category associated with the clustered condition, allowing them to make predictions about 

the possible locations of novel words belonging to the same category. In contrast, for the 

semantic category associated with the non-clustered condition, there was no underlying 

pattern. This allowed us to observe how a pattern in the clustered condition influences 

generalisation behaviour for ‘schema-irrelevant’ words. Across four experiments, we 

manipulated delay between Study and Test, and whether we collected data in person (in the 

lab) or online, providing evidence that schemas bias memory and generalisation behaviour in 

the schema-irrelevant (non-clustered) condition.  
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2.3. Experiment 1 

 In Experiment 1, we asked two questions: (1) does the presence of a pattern increase 

memory performance in the clustered relative to non-clustered condition, and (2) can 

participants generalise, such that they place novel words in locations similar to the pattern in 

the clustered relative to the non-clustered condition? To answer these questions, we had two 

pre-registered hypotheses: (1) participants’ overall memory performance will be greater in 

the clustered relative to non-clustered condition (as measured by ‘Total Information’, see 

Methods), and (2) the distribution of locations for novel words will be more similar to the 

underlying pattern (von Mises distribution) in the clustered relative to non-clustered condition 

(whereas the distribution in non-clustered condition will be more uniform; as measured by 

Kullback-Leibler divergence). The preregistration for Experiment 1 is available at: 

https://osf.io/h6wba/. 

2.3.1. Methods 

2.3.1.1. Participants 

2.3.1.1.1. Power Analysis 

 Two power calculations were conducted to estimate the required sample size to 

examine the pre-registered hypotheses. First, to estimate the required sample size for the 

effect of clustering on total information, G*Power (3.1.9.2; Faul et al., 2007) was used to 

perform an a priori power analysis. A power analysis was computed for a paired samples t-

test comparing total information in the clustered and non-clustered conditions. The effect size 

for the analysis was estimated from a pilot investigation reported in Berens et al. (2020). This 

pilot study estimated an effect of d = 0.33, with the clustered condition showing significantly 

greater total information than the non-clustered. This effect size estimate, along with an α 

https://osf.io/h6wba/
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(one-tailed) = .05 and power = .80 were used. A suggested sample size of N = 59 usable 

datasets was estimated.  

 Second, data simulations were conducted to estimate the required sample size to 

compare the distribution of locations for clustered and non-clustered novel words to the 

underlying experimental distribution of clustered items (i.e., von Mises distribution). Data 

simulations were run to identify: (1) the minimum number of responses required to get a 

reliable estimate of Kullback-Leibler divergence (DKL), and (2) to determine the required 

sample size to gain 80% power. The number of participants and words varied on each iteration 

of 100 simulations. The simulation assumed that each participant reproduced the spatial 

distribution of clustered and non-clustered locations with varying accuracy. Specifically, the 

reproduced distributions took the form of a von Mises probability density with a mean 

parameter drawn from a von Mises (µ = 0, κ = 5.5). The concentration parameter for each 

distribution was then sampled independently from a gamma distribution with a mean of 2 

(i.e., the true concentration) and a standard deviation of 2. These parameters were estimated 

from a previous pilot study by Berens et al. (2020). Non-parametric density functions were 

then estimated from the simulated responses in both conditions separately. The probability 

density across circular locations was then compared to the experimentally imposed von Mises 

distribution (µ = 0 and κ = 2) using DKL. A generalised linear mixed-effects (GLME) model, using 

the same parameters as described below (see Data Handling), was fit to the DKL measures of 

both clustered and non-clustered responses with varying intercepts based on each 

‘participant’. No random slopes were computed for these simulations. It was found that a 

minimum of 11 words and 9 participants were required. The code used to generate these 

simulations can be found on the OSF page (https://osf.io/bxru4/). Given the above, a final 

sample of 60 usable datasets was pre-registered.  

https://osf.io/bxru4/
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2.3.1.1.2. Final Sample 

Sixty-nine participants (63 female) were recruited for the study. The mean age was 

19.59 years (SD = 2.22 years). The mixture model failed to converge for 6 participants, meaning 

the final sample consisted of 63 participants (58 female) with a mean age of 19.63 years (SD = 

2.30 years). The over-recruitment resulted from a minor coding error resulting in the incorrect 

rejection of valid model fits for three participants. Participants were fluent English-speakers 

with normal or corrected-to-normal vision and were recruited from the University of York 

student population and took part in exchange for course credit. Ethical approval for all 

experiments was granted by the Department of Psychology Ethics Committee at the University 

of York. Exclusion criteria for the data are detailed below (see Exclusion Criteria). 

2.3.2. Materials: Word Lists 

 To develop the word lists, semantic representations of 324 words were extracted from 

a pre-trained word2vec model (Mikolov et al., 2013). This pre-trained model of numerical 

word representations contained over 3 million English words based on the Google News 

dataset. The semantic similarity between word representations was then computed via 

Euclidean distance. Simulations were run to ensure a small semantic distance between words 

of the same category (e.g., natural) whilst ensuring a large semantic distance between cross-

category pairs. To meet these criteria, simulations were run using 10,000 iterations to identify 

a word list containing a total of 240 (120 human-made and 120 natural) words. The final list 

had a mean semantic distance of 4.24 (SD = 0.47) within and 4.44 (SD = 0.42) between 

categories, suggesting the two lists were sufficiently distinct in terms of semantic grouping. 

The distributions of semantic distances within each group were comparable as compared 

using the Kolmogorov-Smirnov test (D = 0.01). After generating the lists, we ensured word 

length and frequency of use in natural language, as quantified using the Zipf-scale of the 
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SUBTLEX-UK database (van Heuven et al., 2014), were comparable across lists. Finally, to split 

the two lists into eight sets of 30, a further 10,000 iterations were run. Sub-lists were 

generated by controlling for the mean and variance in Euclidean distance, the distribution 

difference using the Kolmogorov–Smirnov test, word frequency and word length. The code 

and word lists used can be found here: https://osf.io/bxru4/. 

2.3.3. Procedure 

2.3.3.1. Study Phase 

 Participants learned associations between different locations around a circle and a 

specific word displayed on each trial. During the study phase, 180 words were presented. One 

of the semantic categories was assigned to the clustered condition (counterbalanced across 

participants). Word-locations in this condition were clustered by sampling from a von Mises 

distribution with a fixed width (κ = 2.0) and a fixed mean (randomly selected for each 

participant). The other semantic category was assigned to the non-clustered condition. Word-

locations in this condition were randomly distributed around the circle by sampling from a 

uniform distribution. Participants were not informed about the presence of the semantic 

categories or the clustering manipulation. They were only told that they would need to 

remember each individual word-location association.  

 All stimuli were presented using MATLAB and the COGENT 2000 toolbox 

(www.vislab.ucl.ac.uk/cogent/index.html) on a desktop PC.  Participants sat approximately 

50cm away from the screen so that the circle subtended ~16 visual degrees. Each study trial 

(shown in Figure 2.1) started with a fixation cross for 1s, followed by a location marker, which 

was present for 2s. The location marker and circle were then removed and the study word 

displayed for 4s. Subsequently, with the word still present, the circle and marker, the latter of 

which was redrawn at a random location around the circle, were presented. Participants were 

https://osf.io/bxru4/
http://www.vislab.ucl.ac.uk/cogent/index.html
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asked to use a mouse to reposition the cursor back to the cued location; this response window 

lasted 6s. Repositioning the marker during study ensured participants deliberately attended 

to the word-location association as opposed to passively viewing. If participants did not 

respond within the 6s time window or selected an area greater than 10° from the presented 

location, the trial was repeated, with a red fixation cross at the beginning of the trial to alert 

them to this repetition. The average number of repetitions across all experiments reported in 

this Chapter was 0.17 trials (SD = 0.45, Proportion = 0.002) and 0.15 trials (SD = 0.43, 

Proportion = 0.002) for the non-clustered and clustered conditions, respectively.  

 
 
Figure 2.1. Precision Paradigm: Experimental Design. (A) Clustering: The polar plot shows an 
example of distributed locations for one participant. The clustered and non-clustered conditions 
were associated with either the human-made or natural word category (counterbalanced across 
participants) and the centre of the clustered distribution was randomised for each participant. 
Numbers on the polar plot show the number of words located in that area of the circle. (B) Study 
Phase: Participants were presented with a fixation cross (1s), followed by the location (2s), then the 
word alone (4s), and then presented with the word, the circle, and a randomly placed marker to 
make a response (6s). Participants moved the marker from the start location back to the location 
just presented. (C) Test Phase: Participants were first present with a fixation cross (1s), the word 
alone (2s) and then asked to replace the marker from the randomly generated start position back 
to the remembered location (memory trials) or make an inference based on experience 
(generalisation trials, 10s). In the example above, natural words were assigned to the clustered 
condition. The blue shading in the generalisation trial shows the area of the circle they are likely to 
generalise to in the clustered condition. 

 
 Before starting the study phase, participants were given practise trials to ensure they 

understood the task and knew how to make responses. The practise trials used similar 

parameters as described above, but with abstract nouns (e.g., beauty, jealousy, integrity) that 
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held no semantic clustering and no relation to words within the study lists. There was a total 

of 10 practise trials. Following the Study phase, participants took part in an immediate Test 

phase. 

2.3.3.2. Test Phase 

At Test, participants were required to recall the 180 previously presented word-

location associations and select locations for novel words (60 words). These novel words came 

from the same semantic groupings as above. The old and new words were intermixed, and 

presentation order was randomised. On each test trial (Figure 2.1), a fixation cross appeared 

for 1s, followed by the presentation of the word for 2s before the circle and marker appeared, 

with the marker being presented at a random location around the circle. Using a mouse, 

participants had 10s to reposition the marker back to the remembered location, or to make a 

best guess if they had forgotten. Participants were not told about the presence of novel words 

at Test, with the trial structure being identical. Participants were told to make a best guess for 

any words where they had forgotten the location.  

2.3.3.3. Introspection Questionnaire 

Following Test, participants completed an Introspection Questionnaire. The 

questionnaire addressed their perceptions on task difficulty, asked them to report their 

strategies for words they had forgotten, whether they noticed any words presented at Test 

that were not presented at Study, their strategies for these words, and whether they felt a 

pattern was present in the presentation of word-location associations. The questionnaire is 

located here: https://osf.io/7fgzm/. 

https://osf.io/7fgzm/


60 

2.3.4. Data Handling 

2.3.4.1. Mixture Model Estimation 

 Using mixture modelling, we estimated accessibility (i.e., word-location retrieval 

probability) and precision (i.e., how precisely are locations remembered given they are 

accessible) for individual participants. We calculated the replacement error for each response 

(i.e., the angular difference between the correct location and remembered location). These 

angular errors are assumed to come from one of two distributions: (1) a circular uniform 

distribution representing guesses, and (2) a von Mises distribution representing accessible 

word-location associations, whose variance represents the degree of ‘precision’ that locations 

were remembered. These two distributions have associated prior probabilities, which reflect 

the overall proportion of responses belonging to either distribution. For the von Mises 

distribution, the prior (p) represents retrieval probability (i.e., accessibility). This distribution 

also has two other parameters: mean (μ) and concentration (κ). The value of μ was fixed at 

zero, assuming the average error of responses was zero. The κ represents the variance, or 

precision, in responses. Higher κ values indicate a narrower distribution (higher precision), 

lower κ values indicate a wider distribution (lower precision). 

 Mixture modelling was conducted using the HoopStats toolbox developed in Berens et 

al. (2020), found here: https://osf.io/8mzyc/. First, an Expectation Maximisation (EM) 

algorithm was used to estimate p and κ for each participant, and clustered and non-clustered 

items, separately. The overall fit of this model was then compared to a reduced model where 

all angular errors are assumed to be from a uniform distribution (i.e., no mnemonic 

information is present). This comparison was conducted using the Bayesian Information 

Criterion (BIC). If the BIC was less than -10 (i.e., evidence in favour of the two-distribution 

model), the parameters returned from the EM were accepted. If, however, the BIC was greater 

https://osf.io/8mzyc/


61 

than -10, representing a poorly fit model, an alternative fitting procedure was implemented. 

This failure to meet criterion often occurs when low accessibility is present in the data (p ≾ 

.2). For the alternative fitting procedure, the p value was systematically varied over several 

steps for this alternative model, with κ being estimated from the corresponding responses 

with the smallest angular error. Using this method, valid model fits could be found that were 

otherwise missed by the EM algorithm. If this alternate model produces a better fit than the 

single uniform distribution, again using the BIC < -10 criterion, these parameters were 

accepted. If BIC > -10, or the estimates of κ were modelled on fewer than eight trials, the 

participant’s entire dataset was excluded. 

2.3.4.1.1. Conversion to Entropy Measures 

 Once both the p and κ parameters were estimated for clustered and non-clustered 

trials (as in Berens et al., 2020), both p and κ were converted into information entropy 

measures Ip and Iκ. Small values of Ip indicate lower levels of accessibility. Similarly, small values 

of Iκ indicate poor precision. Conversion of p and κ to Ip and Iκ allows for a more direct 

comparison, as they describe performance using the same metric: information gain (in nats) 

relative to random responses. Additionally, we computed a combined measure of memory 

performance, “Total Information” (It), which is directly proportional to both Ip and Iκ (𝐼𝑡 =

𝐼𝑝∗𝐼𝑘

log(2𝜋)
). It reflects the total amount of mnemonic information present at the point of retrieval, 

which is a function of both the proportion of word-location pairs that were accessible and the 

precision of these accessible word locations. Hypothesis 1 uses this measure of Total 

Information to assess overall memory performance between the clustered and non-clustered 

conditions.  
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2.3.4.2. Kernel Density Estimation 

 Kernel density estimates were computed to characterise the distribution of location 

responses; this was identical to Berens et al. (2020). The primary purpose of the kernel density 

estimates was to compute the Kullback-Leibler divergence (DKL) between participants’ 

responses and the pattern of studied locations. They were also used: (1) to plot the 

distribution of angular errors for memory trials, and (2) to plot the distribution of responses 

relative to the experimentally imposed von Mises distribution for memory and generalisation 

trials. To do this, a von Mises probability density function, with a concentration of κ = 2, was 

centred on each response. This distribution acted as a smoothing kernel that spread a small 

portion of the overall density around the local area. As such, the density estimates at a given 

angle were taken as the mean probability density value across all these distributions. The 

responses were either angular errors for each condition (for memory trials) or angular 

differences between the responses and the centre of the experimentally imposed cluster (for 

generalisation trials). 

2.3.4.3. Kullback-Leibler Divergence  

 Once the spatial distribution of responses was estimated through the kernel density 

function, DKL was computed to assess the similarity between specific distributions. DKL 

measures divergence between two distributions, with higher values representing greater 

divergence (i.e., less similarity) between the two; this was computed via numerical 

integration, as in Berens et al. (2020), rather than using a discrete approximation. First, we 

assessed how divergent the distributions for clustered and non-clustered novel words (i.e., 

generalisation trials) were to the reference distribution (i.e., the experimentally imposed von 

Mises distribution associated with the clustered condition). The distribution of clustered novel 

words was predicted to be less divergent to the underlying von Mises pattern relative to the 
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non-clustered condition (Hypothesis 2). Second, we assessed how divergent the distributions 

for clustered and non-clustered novel words were to a uniform distribution (i.e., no pattern). 

The distribution of non-clustered novel words was predicted to be less divergent from a 

uniform distribution relative to the clustered condition (Hypothesis 2).  

2.3.4.4. Exclusion Criteria 

 All exclusion criteria were pre-registered. If an additional exclusion was included that 

was not pre-registered, this is explicitly identified throughout the chapter. 

 At the trial level, individual trials would be excluded for two reasons. First, if 

participants repeated trials during the Study Phase five times or more due to a lack of 

responding or being outside the 10° limit, it was removed from later statistical analyses to 

ensure that the extra encoding of these word-location pairs did not impact retrieval. This cut-

off was selected based on an observation made during the in-lab piloting for Berens et al. 

(2020), where very few participants needed to repeat a trial on more than five occasions, with 

only ~10% of participants requiring greater than five repetitions to replace the marker within 

5° of the presented location. For all four experiments in this chapter, only 13 trials across 

participants and experiments were repeated more than five times showing few trials were 

removed for this reason. Trials were also removed if no response was given at Test to ensure 

only trials where participants gave an explicit response were included. Across all experiments 

reported, on average, participants did not respond to 1.75 trials (SD = 4.23).  

Datasets would only be included for analysis when the following criteria were met: (1) 

both the study and test trials were complete, (2) the number of old words with no response 

did not exceed 20 trials for the clustered and non-clustered conditions separately, (3) the 

number of novel words not responded to did not exceed 15 trials for the clustered and non-
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clustered conditions separately, (4) the dataset was not corrupted, and (5) the mixture model 

could be fit adequately to the data (see: Mixture Model Estimation, above).  

2.3.5. Statistical Analysis 

 All statistical analyses reported in the main results sections of all experiments were 

pre-registered. Where exploratory analyses were run, these are clearly labelled as such. We 

performed three separate GLME models. The models were used to predict (1) Total 

Information (It), (2) DKL in comparison to the experimentally imposed von Mises distribution, 

and (3) DKL in comparison to a uniform distribution. The first model relates to Hypothesis 1, 

assessing whether overall memory performance differs between the clustered and non-

clustered conditions. The second and third models relate to Hypothesis 2, testing whether 

participants can position novel words from the same semantic category according to the 

underlying pattern.  

For each model, we compared the clustered and non-clustered conditions for each 

measure of interest. All models were fit to the data using a log link function and gamma 

distribution to model the spread of the data. The model was estimated using the maximum 

likelihood fitting procedure in the MATLAB Statistics and Machine Learning Toolbox. The 

models included the independent variable of Clustering (0 = Non-Clustered; 1 = Clustered). In 

addition to this fixed effect, a set of random effect parameters (two per participant) were 

included. One random effect allowed the intercepts to vary based on participant, and the 

other allowed the effect of clustering to vary by participant. All elements of the associated 

random effects covariance matrix were estimated from the data. The model did not converge 

for the DKL model that compared clustered and non-clustered novel locations to the uniform 

distribution. As a result, the random slopes for clustering were removed for this comparison 

across experiments where this analysis is reported. 
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All mean values represent the mean estimate of the population derived from the 

GLME. Further, the Cohen’s d and Bayes Factors (BF01) reported were calculated as reported 

in Berens et al. (2020) and estimated only on the fixed factors. In brief, the model parameters 

were used to generate effect size estimates, which were then used to calculate BF01 evidence 

in favour of the null model.  We pre-registered that Bayes Factors would only be reported for 

non-significant results to aid in interpreting the outcome of these tests by assessing whether 

there was greater support for the null relative to the alternative hypothesis. However, we feel 

these can be informative for both significant and non-significant results. A further deviation 

from the pre-registration was how Bayes Factors were computed. Previously we specified 

Bayes Factors would be computed in JASP. However, to increase reproducibility, the 

computation used in Berens et al. (2020) was used for all Bayes Factors reported. For these 

analyses, a prior Cauchy distribution of r = .707 centred at 0 was used; this was identical to 

the pre-registration. All analyses use two-tailed tests unless otherwise specified. 

2.3.6. Results 

2.3.6.1. Memory 

 Figure 2.2 shows the Total Information metric for Experiments 1-4 and the probability 

density estimates for angular error. The angular error plots demonstrate differences, across 

the delay periods, in the degrees of error around the circle. These plots demonstrate possible 

differences between conditions based on accessibility and precision. Specifically, the higher 

peaks in the clustered condition suggest greater accessibility, whilst the narrower distributions 

for the non-clustered condition suggest greater precision. These metrics are analysed in the 

Across Experimental Analysis section towards the end of the Chapter.  
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Figure 2.2. Overall Memory performance across experiments. A-D: Mean Total Information (It) 
across Experiments 1-4 as a function of clustering (clustered and non-clustered). Individual data 
points represent participant scores. E-G: Spatial distribution of angular errors across experiments, 
0 here represents 0° of error. Error bars represent 95% confidence intervals around the mean for 
all plots. * = p < .05. CL = Clustered. NC = Non-Clustered. 

 
 Hypothesis 1 related to whether clustering benefits overall memory performance. 

Consistent with this, in Experiment 1, total information was significantly greater in the 

clustered relative to the non-clustered condition, t(124) = 1.99, p = .049, d = 0.35, BF01 = 0.87. 

Though significant, the Bayes Factor was inconclusive.  

2.3.6.2. Generalisation 

 Figure 2.3 shows generalisation behaviour for the novel words for Experiments 1-4. 

Hypothesis 2 was that the distribution of selected locations for clustered generalisation trials 

would be more similar to (i.e., less divergent from) the experimentally imposed von Mises 

distribution than the distribution of locations for non-clustered generalisation trials. This was 

corroborated statistically, where the clustered responses were found to be significantly less 

divergent from the von Mises distribution than the non-clustered responses, t(124) = 4.26, p 

< .001, d = 0.76, BF01 = 0.001. This suggests participants could make reasonable guesses or 
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predictions about where novel words would be located based on the learnt locations from the 

same semantic category. Specifically, participants placed novel words in the clustered 

category in similar locations to the old clustered items relative to novel words in the non-

clustered category.  

 We also predicted that the distribution of locations for non-clustered novel words 

would be more similar to (less divergent from) a uniform distribution relative to the 

distribution for clustered words. In other words, we expected greater uniformity (or ‘entropy’) 

of responses in the non-clustered relative to the clustered condition. Inconsistent with this 

prediction, no difference in DKL was observed, t(124) = 0.08, p = .933, d = 0.02, BF01 = 5.24. 

Indeed, Bayes Factors indicated there was five times more evidence in favour of the null, 

suggesting the clustered and non-clustered conditions diverged equally from the uniform 

distribution. Interestingly, the kernel density estimates at the centre of the experimentally 

imposed distribution (θ = 0) show an increase for clustered responses but a decrease for non-

clustered responses (Figure 2.3E). Thus, despite the two conditions having equally diverged 

from the uniform distribution, they may have diverged in a qualitatively distinct manner. We 

return to this finding following Experiment 2.  
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Figure 2.3. Generalisation behaviour across experiments. A-D: Mean divergence (DKL) from the 
experimentally imposed von Mises distribution across Experiments 1-4 as a function of clustering 
(clustered and non-clustered). Individual data points represent participant scores. E-G: Spatial 
distribution of locations selected for novel words, centred to the experimentally imposed von Mises 
distribution. Error bars represent 95% confidence intervals around the mean for all plots. *** = p ≤ 
.001. CL = Clustered. NC = Non-Clustered. 

 

2.3.7. Discussion 

 Experiment 1 assessed how the presence of an underlying pattern (or schema) 

modulated memory and generalisation behaviour. Memory performance was greater for the 

clustered relative to the non-clustered condition (Hypothesis 1). Additionally, when presented 

with novel words, participants reproduced the pattern of locations presented for the clustered 

items, meaning they showed an ability to generalise their mnemonic information to novel, 

semantically related, words (Hypothesis 2). However, both conditions were equally divergent 

from the uniform distribution, which was not in line with expectations. 

 The finding that memory was benefited by the presence of a pattern is consistent with 

previous studies (Atienza et al., 2011; Brewer & Treyens, 1981; Greve et al., 2019). However, 

we note that Berens et al. (2020) did not find a difference in total information between the 
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clustered and non-clustered conditions. They did see differences in accessibility and precision, 

a finding we will return to later.  

 Generalisation of the clustered items was found to be more similar to the 

experimentally imposed pattern than for the non-clustered items. These findings are 

consistent with recent evidence showing generalisation to novel instances can occur rapidly 

without the need for an extended period of consolidation (e.g., Sweegers & Talamini, 2014; 

Zeithamova et al., 2012).  

 Interestingly, the distribution of locations for clustered and non-clustered novel words 

diverged equally from a uniform distribution. Inspection of Figure 2.3E suggests participants 

may have been less likely to place novel words in the non-clustered condition near the centre 

of the clustered distribution; a possible “avoidance” effect. This may suggest that the presence 

of a pattern (i.e., schema) in one condition influences schema-irrelevant information in the 

non-clustered condition. We return to this following Experiment 2.  

 An open question was whether generalisation behaviour was modulated by delay. 

Theories of systems consolidation suggest that the extraction of schemas across a set of 

related experiences may take time to emerge (Kumaran & McClelland, 2012; McClelland et 

al., 1995), and sleep may play a critical role in this process (Inostroza & Born, 2013). 

Behavioural (Tompary et al., 2020) and neuroimaging (Kroes & Fernández, 2012; Wagner et 

al., 2015) work also suggests a time-dependent effect either in terms of the use or 

establishment of a schema. As such, a delay between Study and Test may allow us to see more 

evidence of generalisation compared to an immediate Test phase. Therefore, Experiment 2 

sought to replicate Experiment 1 with one change – adding a delay between Study and Test.  



70 

2.4. Experiment 2 

 Experiment 2 was identical to Experiment 1 with one exception – we increased the 

delay between Study and Test to approximately 24-hours. The same preregistered hypotheses 

from Experiment 1 were tested. The preregistration for Experiment 2 is available here: 

https://osf.io/nbtm3/. 

2.4.1. Methods 

2.4.1.1. Participants 

2.4.1.1.1. Power Analysis 

 To determine the required sample size, the smallest effect size of interest for the pre-

registered hypotheses was used; this was derived from the Berens et al. (2020) pilot 

investigation and concerned the effect of clustering on total information following a 24-hour 

delay between Study and Test. As before, G*Power (3.1.9.2; Faul et al., 2007) was used to 

perform an a priori power analysis for a paired samples t-test comparing total information in 

the clustered and non-clustered conditions. The effect size for the analysis was estimated from 

the pilot investigation by Berens et al. (2020), which derived an effect size of d = 0.31. This 

effect size estimate, along with an α (one-tailed) = .05 and power = .80 were used. A suggested 

sample size of N = 66 was required.  

2.4.1.1.2. Final Sample 

 Eighty-six participants (77 female) were recruited for the study. The mean age was 

20.63 years (SD = 2.01 years). Three participants did not return for the second session, and 

eight datasets did not converge using the Mixture Model and so were excluded. The final 

sample consisted of 75 participants (67 female) with a mean age of 20.55 years (SD = 1.99 

years). Similar to Experiment 1, when first analysed, a lower number (66 participants) of 

usable datasets were present. However, when a coding issue was fixed, a sample of 75 usable 

https://osf.io/nbtm3/
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datasets was obtained (hence the over-recruitment). Participants were fluent English-

speakers with normal or corrected-to-normal vision and were recruited from the University of 

York student population and took part in exchange for course credit or cash payment.  

2.4.2. Materials and Procedure 

 The same materials and procedure were followed from Experiment 1; however, 

participants completed the Test phase approximately 24-hours post Study, with the average 

delay between study and test being 23.93 hours (SD = 0.39 hours).  

2.4.3. Data Handling and Statistical Analysis 

 The same exclusion criteria and statistical analyses were used as in Experiment 1.  

2.4.4. Results 

2.4.4.1. Memory 

 When assessing memory performance, unlike Experiment 1, total information did not 

significantly differ between the two conditions, t(148) = 0.67, p = .502, d = 0.11, BF01 = 4.63 

(Figure 2.2B; Hypothesis 1). The Bayes Factor indicates four times more support favouring the 

null model, suggesting no difference between conditions was present.   

2.4.4.2. Generalisation 

 Figure 2.3 suggests a similar pattern of results to Experiment 1. The clustered condition 

was significantly less divergent from the von Mises distribution than the non-clustered 

condition, t(148) = 3.29, p = .001, d = 0.54, BF01 = 0.04. In comparison to the uniform 

distribution, neither condition was significantly more divergent than the other, t(148) = 0.44, 

p = .663, d = 0.07, BF01 = 5.22. These results replicate Experiment 1.  
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2.4.4.3. Exploratory Comparison of Experiments 1 and 2 

2.4.4.3.1. Change in Generalisation 

 Previous work suggests that schema may take time to develop, with a period of sleep 

being an important contributor to this development (Inostroza & Born, 2013). As such, we 

wished to assess whether generalisation behaviour for the clustered novel items changed 

following a delay period. We predicted that generalisation would be greater (represented by 

lower DKL values) following a delay. Figures 2.3A and 2.3B show the mean divergence for both 

conditions across experiments.  

 To assess a change over time, we computed a GLME using the same parameters for 

the previous GLME’s reported above. However, instead of the effect of clustering, we assessed 

the effect of Delay (0 = Immediate Test, 1 = Delayed Test) on the divergence between the 

experimentally imposed von Mises distribution and responses for clustered novel words. 

Further, no random slopes were included in the model, with only random intercepts for each 

participant. It was found that there was no significant evidence of a change over time (t(136) 

= 1.08, p = .280, d = 0.19, BF01 = 3.20). This suggests that following a period of consolidation, 

participants’ adherence to the von Mises distribution for clustered novel items did not change.   

2.4.4.3.2. Avoidance Behaviour 

 In Figures 2.3E and 2.3F, there was possible evidence for a lack of uniformity in the 

distribution of locations for novel words in the non-clustered condition. Participants appear 

to avoid the centre of the cluster for novel non-clustered words (though visual inspection 

suggests this effect is perhaps greater in Experiment 1 than 2). To assess this possible 

avoidance more formally, we compared non-clustered kernel density estimates at the centre 

of the cluster to the density expected if the responses were uniformly distributed (2𝜋−1). If 

participants were actively avoiding the centre of the cluster, their kernel density for non-
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clustered items at this location would be significantly lower than the uniform value. A GLME 

was computed using the same parameters described for the model change in generalisation 

model above.   

 

Figure 2.4. Avoidance in generalisation across experiments. Experiments 1, 3 and 4 all show 
evidence of an avoidance effect, with significantly lower kernel density at the centre of the cluster. 
Error bars are 95% confidence intervals around the mean estimate. Individual data points represent 
participant scores. The dashed line represents the uniform probability value (0.159). * = p < .050, 
*** = p < .001. 

 
 The kernel density plots for all experiments are shown in Figure 2.4. For the analysis, 

we first compared Immediate Test and Delayed Test to the uniform value, separately. At 

immediate test, there was significantly reduced probability density compared to the uniform 

value, t(136) = 4.06, p < .001, d = 0.35, BF01 = 0.003; this suggests participants actively avoided 

locations at the centre of the cluster for novel non-clustered items. In contrast, there was no 

significant reduction in probability density during Delayed Test, t(136) = 1.38, p = .169, d = 

0.10, BF01 = 4.65. Along with this, a significant effect of delay was observed, t(136) = 2.06, p = 

.041, d = 0.35, BF01 = 0.78. Here, there was a decrease in the avoidance effect in Experiment 2 
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relative to Experiment 1 (i.e., distributions of novel words were more uniform following a 

delay). However, the Bayes Factor was anecdotal.   

2.4.5. Discussion 

 Experiment 2 replicated the key generalisation finding from Experiment 1 – 

participants’ distributions of locations were more similar to the underlying pattern in the 

clustered condition than the non-clustered condition (Hypothesis 2). However, we did not 

replicate the difference in overall memory performance (Hypothesis 1). The lack of difference 

in total information instead agrees with the results of Berens et al. (2020). Additionally, we 

found that, following a delay period, participants’ adherence to the underlying pattern did not 

change for clustered items. This is contrary to some lines of evidence suggesting schematic 

extraction may take time to develop (e.g., Inostroza & Born, 2013; Kumaran & McClelland, 

2012; McClelland et al., 1995), though other studies report that generalisation based on an 

underlying pattern remains relatively stable over extended periods (e.g., 1-month post-

learning, Sweegers & Talamini, 2014).  

 We also saw an “avoidance effect” in the non-clustered condition, where participants 

avoided placing novel words in the non-clustered condition at the centre of the cluster. 

Despite old non-clustered words being drawn from a uniform distribution and being from a 

separate semantic category to the clustered words, participants were biased away from the 

clustered location. This avoidance effect was present in Experiment 1 and decreased in 

Experiment 2, where it was no longer present. Thus, this avoidance effect appears 

immediately but possibly decreases over a 24-hour delay (though see results of Experiments 

3 and 4). Given that this avoidance effect was not predicted, we performed two further 

experiments with pre-registered analyses to replicate this effect.  
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2.5. Experiment 3 

 Two further experiments were conducted. Experiment 3 aimed to replicate 

Experiment 1 with the Test phase immediately following the Study phase. Experiment 4 aimed 

to replicate Experiment 2, with a 24-hour delay between Study and Test. Both experiments 

were run online due to coronavirus restrictions. The hypotheses from Experiments 1 and 2 

were repeated in Experiments 3 and 4. However, the comparison of the generalisation trials 

distributions to a uniform distribution was excluded as this comparison was not informative 

in Experiments 1 and 2. Critically an additional preregistered analysis was included concerning 

the avoidance effect in the non-clustered generalisation condition; this was the same as the 

exploratory analysis of Experiments 1 and 2 (see Statistical Analysis, below). We predicted that 

participants would show a significant reduction in probability density for non-clustered novel 

words at the centre of the cluster (relative to a uniform distribution, as in Experiment 1). The 

preregistration for Experiment 3 is available here: https://osf.io/2wsn8/. 

2.5.1. Methods 

2.5.1.1. Participants 

2.5.1.1.1. Power Analysis 

 To determine the required sample, we assessed the range of effect sizes from 

Experiment 1 (d = 0.35 – 0.77) and set a minimum effect size of theoretical interest (i.e., 

Hypothesis 3, d = 0.35). A power analysis of a one-sample t-test with the effect size of interest, 

α = .05 (one-tailed) and power = .80 was conducted using G*Power (3.1.9, Faul et al., 2007). 

A sample size of 52 usable datasets was needed. However, given this estimate, and the power 

analysis previously conducted for Experiment 1, a final sample size of 60 usable datasets was 

set.  

https://osf.io/2wsn8/
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2.5.1.1.2. Final Sample 

 Eighty-nine participants (35 female) with a mean age of 24.91 years (SD = 4.99 years) 

were recruited for the experiment. Three participants left before the study phase, ten were 

excluded during Study, one left before completing the Test phase, three were excluded at Test 

due to inattention, and two attempted the study phase twice and so were excluded. This left 

70 participants that passed the initial checks. Of those, four did not respond to 20 or more 

memory trials, and three datasets did not converge during the mixture model. Therefore, the 

final sample was 63 participants (25 female) with a mean age of 25.27 years (SD = 4.99 years). 

All participants were fluent English-speakers with normal or corrected-to-normal vision and 

were recruited through Prolific.co and received monetary compensation for their time.  

2.5.1.2. Materials 

 The same word lists and Introspection Questionnaire were used from Experiments 1 

and 2. However, rather than using four sub-lists for each category (i.e., human-made and 

natural) as in Experiments 1 and 2, 30 words from each category were randomly selected for 

each participant and assigned to the generalisation condition. The remaining 90 words were 

assigned to the memory condition. This was done due to practical constraints when coding 

the online experiment.  

2.5.1.3. Procedure 

 The same general procedure was followed as in Experiment 1, but through the online 

platform Prolific. Participants recruited from Prolific were directed to a secure website hosting 

the online experiment. Participants could only use a laptop or desktop computer to run the 

task, with handheld devices (e.g., smartphone, tablet) being excluded. Before starting the 

Study Phase, participants watched a short introductory video about how the session 

progressed and how to respond. A PDF document of written instructions was also provided 
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(https://osf.io/qxfuj/). The instructions emphasised the need to visualise the object related to 

the cue word appearing at the cued location before responding on each study trial and how 

participants were to be asked to recall these locations at test. The video instructions replaced 

the practise trials used in-lab, as using instructions in this format online produced similar 

results for memory trials in the Berens et al. (2020) study.  

2.5.1.3.1. Study Phase 

 The Study Phase was identical to Experiments 1 and 2. Once completed, participants 

moved immediately onto the Test Phase. 

2.5.1.3.2. Test Phase 

 One minor change was made to the Test phase. In Experiments 1 and 2, participants 

were presented with a fixation cross (1s) followed by the word alone (2s) and then the 

opportunity to reposition the marker to the remembered or generalised location (10s). In 

Experiments 3-4, the word was not shown alone for 2s. In-lab, participants provided a 

response on average within 2.38s of being able to replace the marker, with almost all 

responses collected within 7.23s. As such, the additional 2s of the word alone was removed 

given the 10s-time window for responding. Following Test, participants were asked to 

complete the Introspection Questionnaire.  

2.5.1.3.3. Introspection Questionnaire 

 The same questions as Experiments 1 and 2 were used online. We also included an 

additional question about whether the participant had help completing the task; this was to 

be used as an exclusion criterion (though not pre-registered) had participants reported they 

did have help completing the task. No such report was given.  

https://osf.io/qxfuj/


78 

2.5.1.4. Data Handling and Statistical Analysis 

2.5.1.4.1. Exclusion Criteria 

 All exclusions from Experiments 1 and 2 were used in Experiments 3 and 4. However, 

participants could also be excluded during Study or Test for not following task instructions; 

this was quantified as having reaction times of less than 2s across a total of 70 trials. 

Specifically, participants would receive a warning message through their browser should the 

number of trials with reaction times less than 2s hit 10, 30, 45 and 60 trials. This message 

asked participants to either: slow down and ensure they imagined the object appearing at 

each location (Study Phase) or encouraged them to remember the location for each word (Test 

Phase). This was an exclusion that was not pre-registered but used previously (see Berens et 

al., 2020) as a way of maximising participant performance when experimenting online. 

2.5.1.4.2. Statistical Analysis 

 The same statistical analyses were used for Hypotheses 1 (Total Information) and 2 

(DKL von Mises) as described previously. For Hypothesis 3, we compared the probability 

density estimates at the centre of participants experimentally imposed cluster for non-

clustered novel words to the density for a uniform distribution. If participants were actively 

avoiding the centre of the cluster, then they will not be distributing locations randomly (or 

uniformly), so their kernel density at this location should be significantly below that of a 

uniform value. To test this, a GLME was fit using a log link function and a gamma distribution 

to model the spread of the data, estimated using the maximum likelihood estimate fitting 

method within the MATLAB Statistics and Machine Learning Toolbox. This was an intercept 

only model with random intercepts for each participant. The derived model was then used to 

conduct a one-sample t-test comparing the beta of the intercept model to the log of the 

uniform kernel density value. A one-tailed test was used for this analysis as a directional effect 
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was predicted. Note, this analysis was almost identical to the exploratory analysis performed 

across Experiments 1 and 2 but without the inclusion of any fixed effects. Cohen’s d and Bayes 

Factors are reported and use the same parameters as described previously.  

2.5.2. Results 

2.5.2.1. Memory 

 Total Information was not significantly different between the clustered and non-

clustered conditions, t(124) = 0.73, p = .466, d = 0.13, BF01 = 4.13 (Figure 2.2C). There was four 

times more evidence favouring the null model, suggesting that an underlying pattern does not 

benefit overall memory performance. This result is consistent with Experiment 2 and Berens 

et al. (2020), but contrary to Experiment 1.  

2.5.2.2. Generalisation 

 As in Experiment 1, participants showed an ability to generalise, with the distribution 

of novel clustered locations being significantly less divergent from the von Mises distribution 

than non-clustered novel locations, t(124) = 5.00, p < .001, d = 0.89, BF01 = 4.66 × 10-5 (Figure 

2.3C). These results replicate Experiments 1 and 2, showing participants can generalise from 

old to novel words in the same semantic category.  

2.5.2.3. Avoidance 

 The next analysis tested whether the avoidance effect observed in Experiment 1 would 

replicate. As shown in Figure 2.3G, participants do show evidence of avoidance behaviour in 

their location selection. This was confirmed by a significant reduction in the probability density 

for non-clustered items at the centre of the cluster, t(62) = 3.35, p = .001 (one-tailed), d = 0.42, 

BF01 = 0.03 (Figure 2.4C). This replicates the avoidance effect found in Experiment 1. 

Specifically, participants actively avoid placing the locations of novel non-clustered words at 

the centre of the cluster.  
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2.5.3. Discussion 

 The aim of Experiment 3 was to replicate the findings of Experiment 1, particularly the 

evidence of an avoidance effect. We found there was no significant benefit to overall 

mnemonic information available in the clustered compared to the non-clustered condition (as 

in Experiment 2, but not 1). Second, we replicated the generalisation behaviour seen in 

Experiment 1. The distribution of locations for novel clustered words was more similar to the 

underlying von Mises distribution than for novel non-clustered words (Hypothesis 2). Finally, 

we replicated the exploratory analysis of Experiment 1, showing that participants were less 

likely to position novel non-clustered words in the centre of the cluster (Hypothesis 3). 

Experiment 4 aimed to replicate the lack of avoidance following a delay period, as in 

Experiment 2.    

2.6. Experiment 4 

 Experiment 4 was identical to Experiment 3, apart from the inclusion of a 24-hour delay 

between Study and Test (as in Experiment 2). We had the same three hypotheses as in 

Experiment 3. The preregistration for Experiment 4 is available here: https://osf.io/fjze8/. 

2.6.1. Methods 

2.6.1.1. Participants 

2.6.1.1.1. Power Analysis 

 As before, the required sample size was determined based on the smallest effect size 

of interest. The minimum effect size of interest (taken across all previous experiments) was d 

= 0.43 for the total information effect. G*Power (3.1.9, Faul et al., 2007) was used to estimate 

the required sample size for a paired-samples t-test. Inputting the minimum effect size of 

interest, α = .05 (two-tailed) and power = .80, suggested a sample size of 45 usable datasets 

https://osf.io/fjze8/
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was required. However, a final sample size of 60 usable datasets was set to ensure similar 

power to previous experiments. 

2.6.1.1.2. Final Sample 

 A total of 79 participants (32 female) with a mean age of 24.15 years (SD = 4.54 years) 

were recruited for the study. Of those, three participants failed attentional checks during 

Study, three failed to return for the Test phase, five did not provide enough responses, and 

eight datasets failed to converge during mixture modelling. The final sample was 60 

participants (25 female) with a mean age of 24.07 years (SD = 4.43 years). All participants were 

fluent English-speakers with normal or corrected-to-normal vision, were recruited through 

Prolific.co, and received monetary compensation for their time.  

2.6.1.2. Materials and Procedure 

 The experiment was identical to Experiment 3, except for two features. First, a delay 

between Study and Test was introduced, similar to Experiment 2. Participants completed the 

Study Phase and then 24-hours later completed the Test Phase. The average delay was 23.74 

hours (SD = 0.25 hours). Additionally, participants watched two separate instruction videos, 

one at the beginning of the Study Phase and another at the beginning of the Test Phase. 

Written instructions were also provided (https://osf.io/bxru4/).  

2.6.1.3. Data Handling and Statistical Analysis 

 Data handling, exclusion, and statistical analyses were identical to Experiment 3.  

2.6.2. Results 

2.6.2.1. Memory 

 There was no difference between the clustered and non-clustered conditions in terms 

of total information, t(118) = 1.04, p = .299, d = 0.19, BF01 = 3.15 (Figure 2.2D). As in 

Experiments 2 and 3, support for the null hypothesis was found.  

https://osf.io/bxru4/
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2.6.2.2. Generalisation 

 Figure 2.3H shows the pattern of locations selected by participants for novel items in 

this experiment. It was found that clustered items were significantly less divergent from the 

von Mises distribution than the non-clustered items, t(118) = 3.85, p < .001, d = 0.70, BF01 = 

0.01. These results replicate all previous experiments.  

2.6.2.3. Avoidance 

 Participants’ non-clustered kernel density estimates at the centre of the cluster were 

compared to a uniform distribution. We found significant evidence of an avoidance effect, 

t(59) = 2.00, p = .025 (one-tailed), d = 0.26, BF01 = 1.07. This replicates the findings of 

Experiments 1 and 3, but not Experiment 2 (where no avoidance effect was present following 

a 24-hour delay). We return to the possible effect of delay on this avoidance effect in the 

across-experiment exploratory analyses below. 

2.6.3. Discussion 

 Experiment 4 replicated previous experiments. We found no evidence for a difference 

in total information between the clustered and non-clustered conditions (as seen in 

Experiments 2 and 3, but not 1). We showed that the distribution of novel clustered words 

was more similar to the underlying distribution than for novel non-clustered words (as in 

Experiments 1-3). We also found evidence that participants were less likely to place novel 

words in the non-clustered condition near the centre of the cluster (as in Experiments 1 and 

3). This was contrary to predictions given the finding of Experiment 2, which found the 

avoidance effect was no longer apparent following a delay period. To assess this further, we 

performed an exploratory analysis of the change in avoidance behaviour as a function of time.  
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2.7. Across-Experiment Exploratory Analyses: All Experiments 

 Across four experiments, we provide evidence for (1) no difference in overall memory 

performance (total information) for old words in the clustered relative to the non-clustered 

condition, (2) less divergence between the experimentally imposed pattern (von Mises 

distribution) and the novel word responses in the clustered condition relative to the non-

clustered condition, and (3) avoidance of the centre of the clustered pattern for non-clustered 

novel words. We next carried out a set of across-experiment analyses to compare these effects 

across (1) delay and (2) setting, to ensure the effects are robust to these changes. Further, the 

individual memory metrics that made up total information (i.e., accessibility and precision) 

were examined.  

Each analysis used a similar GLME structure, assessing whether the metric of interest 

was affected by Clustering (0 = Non-Clustered, 1 = Clustered), Delay (0 = Immediate Test or 1 

= Delay Test) or Setting (0 = In-lab, 1 = Online) along with their interactions. All models, unless 

otherwise specified, had two random effects per participant. The first was random intercepts 

per subject, and the other was random slopes for the effect of clustering (if the effect of 

clustering was included). When no effect of clustering was included, no random slopes were 

present in the model. Appendix A shows the contrast matrices used for computing the main 

effects and interactions for these models.  

For old words (memory trials), we assessed (1) total information, (2) accessibility and 

(3) precision, for the clustered condition compared to the non-clustered condition. For new 

words (generalisation trials), we assessed (1) DKL (relative to the experimentally imposed von 

Mises distribution) for clustered relative to non-clustered new words, and (2) probability 

density estimates at the centre of the von Mises distribution for non-clustered new words. 

When assessing the avoidance effect, no Clustering fixed effect was present in the model.  
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2.7.1. Memory 

2.7.1.1. Total Information 

 For total information, there was a main effect of delay, F(1,514) = 48.63, p < .001, d = 

0.39, BF01 = 5.66 × 10-10, with total information decreasing across time. All other main effects 

and interactions were non-significant (p ≥ .114, d ≤ 0.12, BF01 ≥  . 0). To disentangle this 

effect, we conducted exploratory analyses of accessibility and precision, the two metrics that 

make up total information.  

2.7.1.2. Accessibility 

 Figure 2.5, below, shows the effect of clustering, delay and setting on accessibility and 

precision. For accessibility, there was a significant main effect of clustering, F(1,514) = 14.24, 

p < .001, d = 0.16, BF01 = 0.02. Participants showed greater accessibility in the clustered relative 

to the non-clustered condition. There was also a main effect of delay (F(1,514) = 32.50, p < 

.001, d = 0.39, BF01 = 1.63 × 10-6), with accessibility decreasing from immediate to delayed 

test. However, no other significant effects were observed (p ≥ .217, d ≤ 0.07, BF01 ≥ 6. 4).  

2.7.1.3. Precision 

 For the effect of precision, Figure 2.5 shows evidence of clustering having a differential 

effect compared to accessibility. Specifically, precision appears to be greater in the non-

clustered compared to the clustered condition, though only when looking at the online 

setting. This was corroborated through the analyses performed. There was a main effect of 

clustering, F(1,514) = 6.76, p = .009, d = 0.11, BF01 = 0.73. Similar to both total information and 

accessibility, there was also a main effect of delay, F(1,514) = 34.20, p < .001, d = 0.27, BF01 = 

8.28 × 10-7, with precision decreasing from immediate to delayed test. A significant interaction 

between clustering and setting was observed, F(1,514) = 7.35, p = .007, d = 0.20, BF01 = 0.33. 

Post-hoc comparisons revealed that the clustering effect was more apparent when the study 



85 

was conducted online compared to in-lab. To control for familywise error, the Bonferroni-

Holm correction was applied and reported as pBH. There was significantly greater precision in 

the non-clustered condition when tested online compared to the clustered conditions both 

in-lab (pBH = .031, d = 0.13, BF01 = 0.52) and online (pBH = .002, d = 0.17, BF01 = 0.03). 

Additionally, the non-clustered condition showed significantly greater precision when 

performed online than in-lab (pBH = .024, d = 0.18, BF01 = 0.28). All other post-hoc tests were 

not significant (p ≥ . 62, d ≤ 0.04, BF01 ≥ 12. 2) and no other main effects or interactions were 

significant (p ≥ .217, d ≤ 0.07, BF01 ≥ 6. 4). 

 

Figure 2.5. Assessment of accessibility and precision memory measures. (A) Mean Accessibility (Ip) 
as a function of clustering, delay and setting. (B) Mean Precision (Ik) as a function of clustering, delay 
and setting. Individual data points represent participant scores. Error bars represent 95% 
confidence intervals around the mean for all plots. 
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2.7.2. Generalisation 

2.7.2.1. DKL von Mises 

 Next, we wished to assess whether the effects of clustering, delay or setting influenced 

DKL values for the distribution of locations for new words relative to the experimentally 

imposed von Mises distribution. For this model, we found that only clustering was significant, 

F(1,514) = 65.20, p < .001, d = 0.34, BF01 = 1.80 × 10-13. Specifically, the distribution of clustered 

new words was less divergent from the von Mises than the distribution for non-clustered new 

words. All other main effects and interactions were non-significant (p ≥ .0 1, d ≤ 0.09, BF01 ≥ 

2.88). Generalisation behaviour was therefore consistent over delay and setting.  

2.7.2.2. Kernel Density 

 For the non-clustered generalisation trials, there was significant evidence of avoidance 

with reduced kernel density at the cluster centre, F(1,257) = 28.94, p < .001, d = 0.17, BF01 = 

1.53 × 10-5. No main effects of delay, setting, or an interaction were observed (p ≥ .066, d ≤ 

0.17, BF01 ≥ 1.87). Therefore, the avoidance effect was consistent across delay and setting.  

2.8. General Discussion 

Using the precision paradigm, we assessed whether participants use patterns 

(schematic information) to guide memory and generalisation behaviour. Across four 

experiments, we found that schematic information modulated both memory and 

generalisation behaviour. Critically, we found schematic information in one condition (the 

clustered condition) modulated generalisation behaviour for an unrelated condition (the non-

clustered condition). Participants were less likely to place new (generalisation) words in the 

non-clustered condition near the centre of the clustered pattern. Using the generalisation 

trials as a proxy, it was possible to assess how schema affect behaviour without the additional 

noise present for memory trials. Specifically, memory trials can rely on memory for individual 
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items or generalisation based on the underlying pattern. In contrast, generalisation trials are 

isolated to being influenced by the schematic pattern. Across both exploratory and 

confirmatory analyses, we found consistent evidence that schematic information influences 

behaviour for schema-irrelevant information.  

2.8.1. Schema-irrelevant Information and Avoidance 

 The presence of a pattern influenced generalisation behaviour in the non-clustered 

condition. Participants avoided placing non-clustered items at the location of the cluster for 

generalisation trials. The presence of schematic information therefore biases generalisation 

behaviour for schema-irrelevant information.  

 Previous work has shown that schemas can negatively bias recall of information (Lew 

& Howe, 2017; Roediger & McDermott, 1995; Warren et al., 2014). For example, Bartlett 

(1932) demonstrated that retrieval for events in a narrative were biased by a participant’s 

existing knowledge of the world. Warren et al. (2014) showed that, while healthy controls 

display relatively high levels of false recall in the presence of a schema, patients with vmPFC 

damage show relatively fewer errors. The Deese-Roediger-McDermott (DRM) false memory 

effect can also be interpreted as a memory bias (increase in false alarms) in the presence of a 

schema (Cann et al., 2011). These studies have predominantly focussed on binary measures, 

demonstrating increased false alarms or errors in the presence of a schema. Here our focus 

was on information irrelevant to the schematic information being learnt, rather than false 

memory or biases for schema-related information. 

 In relation to precision studies, results such as those from Tompary et al. (2020) may 

have masked this avoidance effect. Tompary et al. (2020) used two clustered conditions on 

opposite sides of a circle (180o apart), meaning the effects on schema-relevant information 

will have overshadowed any effects of schema-irrelevant information. It was only with the 
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inclusion of a non-clustered condition, where word-locations were drawn from a uniform 

distribution that we revealed an effect of the clustered pattern on the semantically distinct 

non-clustered words. 

 What produces the avoidance behaviour we observed? One possibility is that the 

avoidance effect is driven by a “mutual exclusivity” bias (Clark, 1988; Golinkoff et al., 1992). 

This bias is often studied in language learning and refers to the tendency to only assign one 

label to an object. For example, suppose children are presented with two objects, one familiar 

and one novel, and asked to identify what object is being referred to when a novel word is 

presented. In that case, they typically select the novel object (Markman & Wachtel, 1988); this 

suggests a reluctance to assign more than one label to a given object, even though several 

labels may encompass the same object (e.g., a cat is both a mammal and an animal). Though 

much of the work on mutual exclusivity has focused on children, recent work examining adult 

word learning has also suggested that the bias helps with generalising to novel words (Lake et 

al., 2019).  

Though this bias is often thought to help guide language development, a similar bias 

could drive our avoidance effect in the present experiments. As participants identified that 

semantically related words (e.g., natural words) were associated with a general location (e.g., 

top-right quadrant), they might have been more inclined to group words from the other 

category (e.g., human-made) on the opposite side of the circle when generalising. In short, 

they attributed the top-right quadrant of the circle as “natural only”, despite human-made 

words also appearing in this area. This explanation is discussed in more detail in Chapter 5.  

Another possible explanation for the avoidance effect is a base-rate neglect effect 

(Hawkins et al., 2015; Welsh & Navarro, 2012; Wolfe, 2007). Specifically, in the non-clustered 

condition participants’ behaviour may be guided by relative probabilities representing the 
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likelihood of having studied a particular type of word at each location. This contrasts with 

making location responses based on absolute probabilities representing the overall ‘density’ 

of different types of words at each location. Non-clustered word locations were drawn from 

a uniform distribution, such that the absolute probability of encountering a non-clustered 

word was close to uniform around the circle. However, the relative probability of encountering 

a non-clustered relative to clustered word differed around the circle – the relative probability 

was lower in the clustered area of the circle relative to the other side of the circle. If 

participants’ location responses were influenced by assessing the relative probability of having 

studied a word-location association from a given semantic category, we would expect to 

observe an avoidance effect in the non-clustered condition. Therefore, when generalising, 

participants would place non-clustered locations on the opposite side of the circle as non-

clustered items are more likely to appear there relative to clustered words. 

A third possibility is that the avoidance effect is driven by proactive or retroactive 

interference between word-location associations (Anderson & Neely, 1996; Baddeley & Hitch, 

1977; Barnes & Underwood, 1959; Jenkins & Dallenbach, 1924; Kliegl et al., 2015; Sadeh et al., 

2016; Underwood, 1957; Wixted, 2004). Specifically, dense clustering of word-location 

associations in one part of the circle may result in interference for those specific associations. 

This interference would apply irrespective of semantic category, resulting in better memory 

for word-location associations on the opposite side of the circle from the cluster. As these 

experiences may be more easily retrieved,  an apparent avoidance effect for non-clustered 

generalisation is observed. Specifically, participants during generalisation used more 

accessible experiences (i.e., those on the opposite side of the circle for non-clustered items), 

resulting in generalised trials showing an avoidance effect. Under this proposal,  the clustered 

condition would also experience interference. However, the greater number of words located 
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in that area would lead to participants still being more likely to place locations in the clustered 

area of the circle. This would have the effect of masking the interference in the clustered 

condition, such that an “avoidance” effect is not seen.  

 Notably, all three alternative proposals above predict that the avoidance behaviour 

observed in generalisation should also be present in memory. The mutual exclusivity bias 

would expect both memory and generalisation trials to be treated similarly, with a lack of 

assigning non-clustered items to the clustered area. Therefore, non-clustered avoidance 

should be observed in both conditions. For the base-rate neglect proposal, when an item is 

forgotten, it assumes that generalisation will occur based on the relative probability of items 

appearing in a given area of the circle. Therefore, we should observe avoidance in memory, 

assuming enough items are forgotten. Finally, avoidance in memory should be observed for 

the interference mechanism because word-location associations within the clustered area 

are less likely to be retrieved. Consequently, when recalling a location, there may be a 

tendency to report the item further from the clustered area for non-clustered trials. A formal 

assessment of memory-based avoidance is presented in more detail in Chapter 3. 

2.8.2. Generalisation 

 Across experiments, participants could use the underlying pattern to make informed 

decisions about where to locate novel semantically-related words. Distributions across new 

words in the clustered condition were more similar to the underlying pattern (von Mises 

distribution) than new words in the non-clustered condition (as measured by DKL).  

 The evidence for generalisation presented here, both immediately and following a 

delay, is in line with previous research (Berens & Bird, 2021; Djonlagic et al., 2009; Durrant et 

al., 2011; Ellenbogen et al., 2007; Graves et al., 2020; Mirković et al., 2019; Sweegers & 

Talamini, 2014; Tompary et al., 2020). There is conflicting evidence concerning whether 
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generalisation performance increases, decreases, or remains constant over longer delays 

(Sweegers & Talamini, 2014; Tompary et al., 2020). We saw no clear evidence for a change in 

generalisation behaviour over a 24-hour delay, suggesting relative stability over one day 

(which included one night of sleep). Longer delays using a similar experimental approach 

would be needed to draw definitive conclusions about generalisation behaviour over 

extended timescales. 

 The finding of immediate generalisation performance, if such behaviour is based on a 

schematic representation, is at odds with standard models of systems consolidation (e.g., 

McClelland et al., 1995). Here, new schematic representations are thought to be formed as a 

function of hippocampal to neocortical transfer over (at a minimum) several hours, and sleep 

is thought to play a crucial role in this systems consolidation process (see Rasch & Born, 2013). 

Although novel information can be rapidly integrated into an existing schema (Fernández & 

Morris, 2018; Kumaran et al., 2016; van Buuren et al., 2014), this rapid transfer is not thought 

to occur when establishing new schemas as is the case here, where no location-based schema 

for a semantic grouping of words should exist before the experiment.  

Updated models that incorporate a retrieval-based generalisation mechanism, such as 

the REMERGE model (Kumaran & McClelland, 2012), more readily accommodate our findings 

of immediate generalisation. During immediate generalisation, where systems consolidation 

would not have had chance to take place, participants will rely more on retrieval-based 

generalisation mechanisms. Over time, as systems consolidation occurs, there will be a move 

to more encoding-based mechanisms supported by a generalised neocortical-based schema.  

 It is plausible that there is a shift from retrieval-based to encoding-based 

generalisation over time in our experiments, but that both mechanisms support similar 

generalisation behaviour. However, recent research suggests generalisation behaviour might 



92 

decrease over time, which would be inconsistent with the extraction of a stable schematic 

representation. Using a similar paradigm, Tompary et al. (2020) showed that schematic 

representations may decline over time alongside memory for individual word-location 

associations. Antony et al. (2021) found a similar pattern of results using a spatial navigation 

object-location task. As participants’ memory performance declined for individual object-

location associations over time, so did their adherence to the pattern of locations. Finally, 

although they did not assess generalisation to new words, Berens et al. (2020) showed that 

the distribution of remembered word locations decreased in similarity to the underlying 

pattern over four days and this decrease correlated with memory accessibility (i.e., the 

proportion of word-location associations retrieved). These results are more in line with 

retrieval-based generalisation and may suggest the generalisation observed in the present 

work uses this same approach.  

2.8.3. Memory 

 The schematic information in the clustered condition modulated memory-guided 

behaviour in both the clustered and non-clustered conditions. First, in an exploratory analysis, 

we replicated the results of Berens et al. (2020), showing the presence of a pattern increased 

accessibility (proportion remembered) but decreased precision (the angle of error for word-

location associations that were remembered). Our pre-registered analyses comparing Total 

Information (the product of accessibility and precision, divided by a constant) in the clustered 

relative to non-clustered condition showed no overall boost in memory performance between 

conditions (though a small but significant difference was seen in Experiment 1). This lack of an 

increase in overall memory performance again replicates the results of Berens et al. (2020).  

 Previous studies have shown an overall benefit to memory for schematic vs non-

schematic information (Atienza et al., 2011; Brewer & Treyens, 1981; Frank et al., 2018; Greve 
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et al., 2019). The present findings might appear to contradict these studies. However, most 

previous analyses have used binary measures of memory (correct vs incorrect) that are 

conceptually similar to the accessibility measure used in the present studies. Thus, our 

increase in accessibility in the clustered relative to non-clustered condition is consistent with 

previous findings.  

 Importantly, our ability to assess accessibility and precision suggests this increase in 

accessibility comes at a cost – a corresponding decrease in precision. This reduced precision 

is similar to previous findings suggesting that the presence of a schema leads to the loss of 

more fine-grained detail information, but enhanced memory for face-location associations 

that had a schematic element (Sweegers et al., 2015). Other studies have reported similar 

memory biases as a consequence of schematic information (Berens et al., 2020; Mäntylä & 

Bäckman, 1992; Pezdek et al., 1989; Richter et al., 2019; Tompary et al., 2020; Tompary & 

Thompson-Schill, 2021). Therefore, our results are consistent with previous studies that 

schematic information can increase performance on certain measures of memory, but 

decrease performance on others.  

 Further, our findings concerning accessibility and precision suggest that the increase 

in “information” in terms of accessibility is equivalent to the decrease in precision (hence the 

lack of difference in Total Information), such that schematic information in this paradigm does 

not increase overall memory performance. Although we cannot yet generalise beyond the 

present experimental approach, one possibility is that this accessibility versus precision trade-

off (or the trade-off between hits and false-alarms in other experiments) might result in no 

net memory benefit in the presence of a schema. In short, schematic information alters 

memory behaviour, but our results question whether they benefit overall memory 

performance.  
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2.8.4. Conclusion 

 Across four experiments, we provide evidence for memory and generalisation effects 

for both schema-relevant and -irrelevant information. Critically, we have shown that 

generalisation behaviour is biased away from a schematic location for schema-irrelevant 

information. These effects appear immediately after encoding and appear to be relatively 

stable over a 24-hour period. We have outlined three broad explanations for this behaviour 

outside of schema-based processes: (1) a mutual exclusivity bias account, (2) a base-rate 

neglect account and (3) an interference account.  

Given these effects emerge immediately after encoding, with evidence of decline over 

longer delays in other experiments (e.g., Antony et al., 2021; Tompary et al., 2020), the 

generalisation behaviour is likely driven by a retrieval-based mechanism that infers a location 

based on a “on the fly”  retrieval of word-location associations that are semantic neighbours 

to the novel item. Formal modelling is likely to provide further theoretical insight (see Chapter 

3). For example, accessibility and precision measures have recently been suggested to emerge 

from a single d-prime measure in a signal detection framework (Schurgin et al., 2020). 

Incorporating both location-based interference and semantic relatedness in such a framework 

may be able to accommodate our findings without the need for schematic representations or 

semantic categorisation. 
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Chapter 3: 
Exploring the Avoidance Effect: Using computational 

modelling to investigate the avoidance effect 
 
 

A secondary data analysis using the data collected in Berens et al. (2020) is 

reported in this chapter. The data for this analysis can be found on the 

Open Science Framework: https://osf.io/6mx3s/. The pre-registration, data 

and analyses scripts used for the analyses reported can also be found on 

the Open Science Framework: https://osf.io/bxru4/. 

 

 

The exploratory and confirmatory analyses reported in this chapter are published as part of a 

preprint: Cockcroft, J. P., Berens, S., Gaskell, M., & Horner, A. J. (2021, August 24). Schematic 

information influences memory and generalisation behaviour for schema-relevant and -

irrelevant information. https://doi.org/10.31234/osf.io/nzurq. The content was moved to the 

present Chapter to increase continuity across chapters.  

https://osf.io/6mx3s/
https://osf.io/bxru4/
https://doi.org/10.31234/osf.io/nzurq
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3.1. Abstract 

The present Chapter aimed to explore why the avoidance effect was present during the 

behavioural experiments reported in Chapter 2 using computational modelling. The first 

family of models assessed whether simple encoding- or retrieval-based models could predict 

the presence of the avoidance effect. However, neither model produced this effect, 

demonstrating that in their basic form, neither encoding- nor retrieval-based models are 

sufficient to explain the avoidance behaviour. Subsequently, the second family of models 

examined how modulating retrieval probability, whereby items in the clustered condition 

were better remembered within the cluster and non-clustered items were better 

remembered further away, would predict the avoidance effect. This model did generate an 

avoidance behaviour during generalisation, similar to the behavioural experiments in Chapter 

2. However, it also generated the same avoidance behaviour in memory; this was something 

that had not been formally explored. Exploration of the data from Chapter 2, and analysis of 

an independent dataset, supported the model's prediction that avoidance was also present 

during memory. The final model explored how location- and semantic-based interference 

influenced behaviour. It was found that this model provided a good fit for the data, providing 

a more parsimonious solution than the previous models. Consequently, results consistent with 

the presence of schemas (e.g., Chapter 2) may be explained by a non-schematic model of 

memory.  

Keywords: encoding-based, retrieval-based, interference, avoidance 
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3.2. Introduction 

 In Chapter 2, we observed an unexpected effect when it came to generalisation. 

Specifically, participants showed an active avoidance of placing non-clustered novel locations 

within the clustered area of the circle. This surprising result was found in both exploratory 

(i.e., Experiment 1) and confirmatory (i.e., Experiments 3 and 4) analyses. The present Chapter 

aimed to better understand this avoidance effect by examining different mechanisms 

explaining its presence. 

3.2.1. Encoding- vs Retrieval-Based Models 

 As discussed in the Literature Review (see Chapter 1), generalisation could occur 

through encoding- or retrieval-based mechanisms (Hintzman, 1986; McClelland et al., 1995; 

Nosofsky, 1988; Rosch, 1973). Typically, encoding models propose that at the point of 

encoding, overlapping events create abstract representations (or schema) that are used when 

generalising. In contrast, retrieval-based models argue that the individual events are sampled 

to generalise “on the fly”. In this way, the two models differ in how memories of the events 

are relied upon during generalisation. Encoding models propose that individual experiences 

are not relied upon but instead a generalised representation (e.g., the average of experiences) 

is. In contrast, retrieval models propose that the individual experiences are relied upon 

without needing a schematic representation.  

 In their basic forms, neither an encoding nor retrieval-based model seemingly predicts 

the avoidance behaviour observed in Chapter 2. An encoding-based model would predict that 

the central tendencies across events should be extracted and used to generalise. As such, the 

clustered condition should remap the von Mises distribution (i.e., the pattern underlying the 

cluster), whilst the non-clustered should remap the uniform distribution. Though clustered 

generalised items did remap onto the von Mises distribution, the non-clustered did not remap 
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the uniform. For the retrieval-based model, sampling from experiences should mean the 

individual also remaps the presented pattern. Therefore, like the encoding-based approach, 

the retrieval-based model would predict a cluster in the clustered condition and a uniform 

density in the non-clustered. The first family of models (see Model Family 1, below) confirms 

this prediction, showing that neither a “simple” encoding- nor retrieval-based model predicts 

the avoidance effect in the non-clustered condition.  

3.2.2. Mechanisms of Avoidance 

3.2.2.1. Schema and False Memory 

 As discussed in Chapter 1, schema presence may distort memory for events (Aizpurua 

et al., 2009; Bower et al., 1979; Brewer & Treyens, 1981; Nakamura et al., 1985; Yamada & 

Itsukushima, 2013). Therefore, we may observe the avoidance behaviour in the non-clustered 

condition as any schema formed within the clustered condition subsequently influenced 

retrieval for schema-relevant (clustered) and -irrelevant (non-clustered) information. Within 

the clustered condition, there was the possibility of a schema developing due to the 

overlapping patterns across events (Ghosh & Gilboa, 2014; van Kesteren et al., 2012). 

Subsequently, any schema developed for the clustered condition may have biased memory 

for non-clustered items by reducing the probability of retrieving non-clustered items when 

they appear within the clustered area. This decrease in probability may relate to these items 

being incongruent with expectations (i.e., the idea that a given area of the circle is devoted to 

one set of object nouns). People may then generalise based on memories with a higher 

retrieval probability (i.e., those congruent with the schematic representation). The 

consequence of relying on those experiences when generalising is the formation of an 

avoidance effect for non-clustered items, as sampled experiences for that condition are more 

likely to appear outside the clustered region. The second family of models (see Model Family 
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2, below) demonstrates how modulating the retrieval probability of clustered and non-

clustered words according to their location around the circle can produce an avoidance effect 

in the non-clustered condition.  

3.2.2.2. Interference 

 An alternative mechanism is interference (Anderson & Neely, 1996; Baddeley & Hitch, 

1977; Barnes & Underwood, 1959; Kliegl et al., 2015; Underwood, 1957). Interference can 

occur both retroactively and proactively. Retroactive interference occurs when newly 

encoded items decrease the probability of retrieving older information, whilst proactive 

interference occurs when existing memories decrease the probability of retrieving newly 

learned information. In their study, Baddeley and Hitch (1977) had rugby players recall the 

names of teams they played against throughout the rugby season. It was found that as the 

number of games increased, the recall of team names decreased; this was irrespective of the 

time that elapsed. Therefore, as more games were played, the probability of recalling the 

names of teams previously played against decreased; this is an example of retroactive 

interference. An example of proactive interference is shown in Underwood (1957). In their 

study, Underwood (1957) asked participants to learn nonsense syllables. Participants were 

either in the interference or control condition. In the interference condition, participants had 

previously learned a list of nonsense syllables. For the control condition, no previous learning 

had taken place. Those in the interference condition showed only 20% recall of the new list 

items after a 24-hour delay, compared to 80% recall for the control condition. Consequently, 

the learning of the first list reduced the probability of retrieving the new list of syllables. 

 There is an ongoing debate about whether interference occurs at the point of encoding 

or retrieval (see Kliegl et al., 2015). Some authors attribute interference to be a process at 

encoding, whereby as attention decreases and memory load increases, interference takes 
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place (e.g., Crowder, 1976). In this way, earlier memories will be better remembered due to 

better encoding, whilst later memories will not. In contrast, retrieval accounts, such as 

temporal discrimination theory (Wixted & Rohrer, 1993), propose that interference results 

from being unable to disentangle contexts across learning, leading to memory searches that 

retrieve nontarget experiences. More recent accounts and evidence have tried to support the 

view of a hybrid encoding-and-retrieval based account of interference (Kliegl et al., 2015). 

Kliegl et al. (2015) argue that interference builds at both encoding and retrieval. At encoding, 

both attentional disengagement and heightened memory load result in encoding-based 

interference. Subsequently, at retrieval, during memory search, both target and other related 

information will be retrieved, leading to further interference.  

 One account of interference that may explain the avoidance effect observed in Chapter 

2 is the cue-overload principle (Watkins & Watkins, 1975). The cue-overload principle refers 

to the idea that retrieval probability decreases as the number of items associated with a cue 

increase. According to this principle, competing information associated with the target area 

will be activated during a memory search resulting in interference. This account acts similarly 

to notions of spreading activation (e.g., Anderson & Pirolli, 1984). Applying this to the 

avoidance effect, the probability of retrieving an item within the clustered area may decrease 

the more items that appear there, irrespective of condition. Therefore, when retrieving 

locations from memory, an individual may be more able to access memories away from the 

clustered area due to the reduced competition. Under this assumption, there may be an 

avoidance in the clustered condition. However, given the sheer number of clustered items 

that appear there, in contrast to the non-clustered items, an avoidance is not observed. 

However, for the non-clustered condition, retrieval probabilities will be much lower in the 

circle's clustered area than the other side of the circle, leading to an apparent avoidance 
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effect. Of course, this proposal would also predict avoidance in memory (this is assessed later 

in the chapter).  

 One of the benefits of the interference-based proposal is that it can occur either 

explicitly or implicitly. During the debrief of Chapter 2, very few (10/261, 3.83%) participants 

explicitly mentioned using a strategy where one group of words were placed in one area and 

the other group on the opposite side of the circle. Further, few (4/261, 1.53%) participants 

explicitly labelled items at the superordinate level (i.e., human-made vs natural). Instead, 

participants focused on the basic categories (e.g., animals, office furniture). As such, given that 

the interference mechanism would modulate retrieval probability irrespective of condition, 

there is no need for an explicit strategy of: “If natural, place here. If not, place on the opposite 

side”. The final model (see Model 3, below) demonstrates how a location- and semantic-based 

interference mechanism can explain the avoidance effect in the non-clustered condition.   

3.3. Overview of Models 

 This Chapter aimed to assess how different mechanisms may explain the avoidance 

effect. Across models, different approaches to derive location judgements for both “memory” 

and “generalisation” trials were applied. These models generated responses by acting as 

“participants” encoding and retrieving locations when completing the precision task. 

Throughout the chapter, the generated responses from the model are referred to as 

“participants”. Each model generated responses in the task using a different mechanism. The 

first family of models investigated the locations selected using basic forms of encoding and 

retrieval-based generalisation models as means of assessing  whether they predicted an 

avoidance behaviour during generalisation. The second family of models implemented a 

retrieval probability mechanism, where clustered items had a higher probability of being 

remembered closer to the cluster, whilst non-clustered items were less likely to be 
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remembered in that area. Finally, the third model used both location- and semantic-based 

interference to affect location judgements.  

 All models presented throughout this Chapter were developed in MATLAB (2019b) 

using in-built functions along with the HoopStats toolbox (v. 2.00; Berens et al., 2020) and 

Circular Statistics toolbox (v. 1.21; Berens, 2009). All models generated data for 1,000 

simulated “participants”.  

3.3.1. Model Input and Output 

 All models received target locations to use as a basis for generating “remembered” 

and “generalised” locations. Target locations were generated in the same way as the 

behavioural experiments described in Chapter 2 by creating a random sample of locations 

based on von Mises parameters (μ and κ). The von Mises distribution is a continuous 

probability distribution within a circular space analogous to the Gaussian distribution (Best & 

Fisher, 1979). The probability density function is shown below (1), with I0 representing the 

modified Bessel function of order 0. The μ parameter represents the mean location and κ the 

distribution's concentration (i.e., width). As with the behavioural experiments, the clustered 

condition used the parameters: μ = 0 and κ = 2, whilst the non-clustered condition had 

parameters: μ = 0 and κ = 0. Setting the concentration to 0 ensured the sampled locations 

were from a uniform distribution. A total of 180 target locations were generated, 90 for each 

condition.  

𝑓( 𝜃 ∣∣ 𝜇, 𝜅 ) =
𝑒𝜅cos(𝜃−𝜇)

2𝜋𝐼0(𝜅)
(1) 

 The output from the models were locations selected for both memory and 

generalisation trials. Across models, items were identified as remembered or forgotten, 

though, this was done differently across models. For example, the second family of models  
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determined remembered and non-remembered items based on a retrieval probability. 

Further, the location chosen when an item was “remembered” varied based on the model. 

For instance, in the interference model (i.e., Model 3), item locations were selected by 

weighting a location judgement by the probability of retrieving that item and its semantic 

similarity to other items. In this way, the remembered location would not be an exact 

replacement of the target but based on “noise” created from other associated items and its 

retrieval probability. Across models, generalised locations were generated using either an 

encoding- or retrieval-based approach. For instance, taking the remembered items and fitting 

a von Mises distribution (i.e., a “schema” of events) or selecting a sample of remembered 

items and taking an average.  

3.3.2. Model Assessment 

 Model assessment used similar measures from the behavioural data. Specifically, for 

the memory trials, I𝑝 and I𝑘 parameters were computed to assess memory accessibility and 

precision. The values are expected to replicate the pattern of findings from Chapter 2, 

meaning accessibility should be greater in the clustered compared to the non-clustered 

condition. However, precision should be greater in the non-clustered compared to the 

clustered condition. The mixture model procedure described in Chapter 2 was applied to the 

model responses to generate the I𝑝 and I𝑘 parameters. Briefly, the mixture model applied an 

expectation maximisation algorithm to estimate retrieval probability (𝑝) and precision (𝑘) 

from the angular error (i.e., the difference from the target location to the selected location). 

These measures were then converted into entropy measures of I𝑝 and I𝑘.  

 Kernel density estimates were used to assess for evidence of generalisation (in the 

clustered condition) and avoidance (in the non-clustered condition). These were estimated 

similarly to Chapter 2. Briefly, the kernel density estimates represent a smoothed probability 
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density function for the locations selected by the model. A von Mises density function, with 

parameters μ = 0 and κ = 2, acted as a smoothing kernel for each response around the circle. 

These densities provide estimates of the average probability that “participants” selected a 

specific location around the circle. The kernel density values are expected to differ from the 

uniform density value (2π-1 = 0.159). For clustered items, the values should be greater than 

the uniform, whilst the non-clustered items will either be close to (if locations are uniformly 

distributed) or less than (if an avoidance effect is present) the uniform. Along with being used 

for model assessment, these density estimates were used to plot the average locations 

selected by the model for both memory and generalisation trials, similar to Chapter 2.  

 It is worth noting that no statistical models were generated to examine the effects of 

interest. Given that it was possible to control the amount of variance present in the generated 

data by changing the number of trials or “participants”, applying statistical models was 

deemed inappropriate. In other words, if an “effect” is present, it can trivially be made 

“significant” by increasing the number of iterations. Therefore, when producing results for the 

models, only the mean values are reported. However, examining whether the mean values 

produced by the model mapped onto the data from Chapter 2 was undertaken. The models 

did not necessarily aim to  remap the mean values from Chapter 2, but instead adhere to the 

general pattern of behaviour (e.g., increased accessibility in the clustered compared to non-

clustered condition). The descriptive statistics for Chapter 2 data are shown in Table 3.1 

below. Note that these are not values derived from the GLME’s reported in Chapter 2 but from 

the data itself.  
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Table 3.1.  

Descriptive statistics for Chapter 2 isolated to the dependent variables of interest.   

Variable Group M SD SE 
95% CI 

Diff 
Lower Upper 

Accessibility (Ip) 
NC 0.542 0.262 0.016 0.511 0.573 

-0.061 
CL 0.603 0.292 0.017 0.569 0.637 

Precision (Ik) 
NC 1.365 0.499 0.030 1.306 1.423 

0.098 
CL 1.267 0.486 0.029 1.210 1.324 

Kernel Density: Memory NC 0.155 0.040 0.002 0.151 0.160 NA 

Kernel Density: Generalisation 
NC 0.148 0.055 0.003 0.142 0.155 

NA 
CL 0.184 0.060 0.004 0.177 0.191 

Note. 9 % Confidence Intervals were computed using the Student’s t-Distribution. NC = Non-

Clustered, CL = Clustered. Diff = Difference between mean values, subtracting CL from NC. NA = Not 

applicable.  

 
3.3.3. Controlling Behavioural Performance 

 Behaviour was modulated in the models based on the behaviour observed in Chapter 

2 using the 𝑝 and 𝑘 variables (as opposed to I𝑝 and I𝑘). Beta and gamma parameter estimates 

were generated for the 𝑝 and 𝑘 variables using maximum likelihood estimation. The use of 𝑝 

and 𝑘 occurred as this provided us estimates of proportion remembered (𝑝) and levels of 

precision (𝑘), which could be used when generating responses. Though I𝑝 and I𝑘 are the same 

metrics on a different scale, they cannot be easily used within existing functions to generate 

proportion remembered and concentration without converting them back to their original 

metric space.  

 A beta (𝑝) and gamma (𝑘) distribution were fit to each measure separately for 

clustered and non-clustered conditions (see Table 3.2, below) using all 261 participants data 

described in the previous chapter. As 𝑝 was bounded between 0 and 1, a beta distribution was 

the most appropriate, whilst 𝑘 could take on values from 0 to positive infinity, meaning a 
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gamma distribution was the best fit. These values were used in the first two models to control 

the performance of “participants” in the task.  

Table 3.2.  

Maximum likelihood estimates for both the 𝑝 and 𝑘 parameters.  

Variable 

Distribution 

Beta Gamma 

α β k θ 

𝑝 
NC 3.09 [2.56, 3.72] 7.11 [6.23, 8.12] - - 

CL 2.66 [2.23, 3.16] 5.21 [4.59, 5.91] - - 

𝑘 
NC - - 1.37 [1.18, 1.60] 8.22 [6.82, 9.01] 

CL - - 1.45 [1.24, 1.70] 6.45 [5.36, 7.76] 

Note. Values included in square brackets represent the 95% CI of the parameter estimate. 

NC = Non-Clustered, CL = Clustered. 

 
3.4. Model Family 1: Basic Encoding vs Retrieval-Based Generalisation 

3.4.1. Methods 

3.4.1.1. Memory 

 The first family of models examined what encoding and retrieval-based models 

predicted for the locations selected during generalisation. Each “participant” had a random 𝑝 

and 𝑘 value selected, which would form the basis of that “participant’s” performance on the 

task, ensuring they only remembered a proportion (𝑝) of events at a certain degree of 

precision (𝑘). The 𝑝 values sampled did not go below 8, as per the requirements of the mixture 

model algorithm to ensure the mixture model would fit the output data (see Chapter 2).  

 Using the selected 𝑘 parameter, a new set of “remembered” locations were generated 

via a von Mises distribution with a mean of 0 and the participant’s selected level of precision. 

These randomly generated angles were added to the target values; this provided participants' 

responses that adhered to their selected level of precision. These responses were categorised 

as either “remembered” or “non-remembered”; this was done for two reasons: (1) the non-
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remembered values would be changed to random guesses, and (2) for the encoding and 

retrieval-based models during generalisation. Trials were classified as either remembered or 

non-remembered so that the proportion of remembered trials was equal to the participant-

specific 𝑝 parameter. For the responses categorised as non-remembered, a set of random 

angular locations were generated using the von Mises parameters: μ = 0 and κ = 0. These 

values would then replace the responses categorised as “non-remembered” to act as “random 

guesses” and have no relation to the previously generated target locations. In this way, each 

target location was associated with a “remembered” or “non-remembered” response. If it is 

not remembered, the retrieved location is a random circular location. If it is remembered, the 

retrieved location is the target location with the addition of “noise”.  

3.4.1.2. Generalisation 

 Once all memory responses had been generated, generalised responses were 

computed adhering to either an encoding or retrieval-based protocol. 

3.4.1.2.1. Encoding Model 

 Encoding models generally predict that, at the point of encoding, regularities across 

events are extracted to form long-term schematic representations. These representations are 

then used when making novel inferences. For the present models, a schema was generated 

by fitting a von Mises distribution to a set of angular responses. Three versions of an encoding 

model were developed, with the critical difference related to the responses used. For the first 

model (Figure 3.1, E.1), all memory responses within a given condition were used regardless 

of whether they were classified as “remembered” or “non-remembered”. The second model 

(Figure 3.1, E.2) used a perfect encoding strategy, whereby all targets for a condition were 

input to generate the parameters. Finally, the third model (Figure 3.1, E.3) used only the 

memory responses categorised as remembered. The parameters derived from these 
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responses were then used to generate a random sample of angles based on the fitted μ and κ 

values; these acted as the generalised responses for a given participant. 

3.4.1.2.2. Retrieval Model 

 In contrast to encoding models, retrieval models generally argue that generalisation 

relies on a sample of individual memories to generate a response; this occurs “on the fly”. For 

the present modelling work, three types of retrieval-based models were generated similar to 

the encoding models described above. However, all models used only trials identified as 

“remembered”. For all models, three experiences were sampled; this was chosen as changing 

the number of sampled experiences between 2 and 10 did not appear to affect model output. 

The first model (Figure 3.1, R.1) used the mean location from the sampled experiences. The 

second model (Figure 3.1, R.2) selected one of the sampled experiences and used that as the 

response. Like the encoding model, the final model (Figure 3.1, R.3) estimated the von Mises 

parameters based on the sampled experiences; this would be a noisy estimate as few 

responses were retrieved. The generated parameter estimates were then used to make a 

generalised response.  

3.4.2. Results 

 Figure 3.1 below shows the spatial distribution of locations selected for memory and 

generalisation trials, centred to the von Mises distribution. As shown, all models produced the 

output matching their respective distribution. For the clustered items, there was an increased 

density of locations towards the centre of the cluster. In contrast, for non-clustered items, 

responses were uniformly distributed across the circle. However, there was no apparent 

evidence of avoidance in the non-clustered condition.  
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Figure 3.1. Model Family 1: Density of Locations. Plots show the distribution of locations selected 
by the model for both memory and generalisation items, centred to the experimentally imposed 
von Mises distribution. On the far left are the memory trials. To the right of that are generalisation 
trials. The top row shows the encoding-based models E.1: All Locations Model. E.2: Target 
Locations Model. E.3: Remembered Locations Model. The bottom row shows retrieval-based 
models. R.1: Mean Location Model. R.2: Pick Sampled Experience Model. R.3: Fit Distribution 
Model. The dashed line on all plots represents the uniform probability density value (0.159). 

 

3.4.2.1. Memory 

 Table 3.3 below shows the mean estimates for the variables of interest. For 

accessibility (Ip), the mean estimates from the model follow a similar pattern to the behaviour 

observed in Chapter 2, whereby the clustered condition had greater levels of accessibility than 

the non-clustered. Similarly, levels of precision (Ik) followed the pattern of behaviour from 

Chapter 2, with greater precision in the non-clustered than the clustered condition. However, 

the difference between conditions for precision was much smaller using the model than was 

found in the actual data. These models were provided with separate 𝑝 and 𝑘 values for the 

clustered and non-clustered conditions according to the values determined from Chapter 2. 

Therefore, this difference in accessibility and precision is not a result of the mechanics of the 

model but the input to it (c.f. Model 3).  
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Table 3.3. 

Descriptives for memory variables from Model Family 1, including whether the 

value was within the 95% CI of the Chapter 2 data and the differences between 

conditions.   

Variable Condition M Within 95% CI? Group Difference 

Ip 
NC 0.572 Y 

-0.053 
CL 0.637 Y 

Ik 
NC 1.420 Y 

0.019 
CL 1.401 N 

PKD: Memory NC 0.159 Y NA 

Note. Ip = Accessibility, Ik = Precision. PKD: Memory = Kernel density at cluster 

centre for memory trials. NC = Non-Clustered, CL = Clustered. Y = Yes, N = No. Group 

difference was calculated by subtracting the CL mean from the NC mean. NA = Not 

applicable.  

 

3.4.2.2. Generalisation 

 As shown in Figure 3.1 above, there was evidence of the model being able to generalise 

from “memory” to “generalisation” trials, adhering to the patterns presented at encoding. 

Specifically, the model correctly placed clustered items within the cluster whilst treating the 

non-clustered as having an equal likelihood of appearing throughout the circle (i.e., uniformly 

distributed). Table 3.4, below, provides the mean values from the model. When comparing to 

the output from Chapter 2, it is clear the model over-predicted the number of responses at 

the cluster centre for both non-clustered and clustered trials, with all values being outside the 

9 % CI’s. Further, the non-clustered condition showed essentially no difference from the 

uniform density (0.159); this suggests the models lacked evidence of an avoidance behaviour.  
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Table 3.4.  

Descriptives of generalisation variables from Model Family 1, including whether the 

value was within the 95% of the Chapter 2 data. 

Model Condition M Within 95% CI? 

Encoding Model 1: All Responses 
NC 0.159 N 

CL 0.209 N 

Encoding Model 2: All Targets 
NC 0.158 N 

CL 0.347 N 

Encoding Model 3: Remembered Only 
NC 0.159 N 

CL 0.348 N 

Retrieval Model 1: Circular Mean 
NC 0.159 N 

CL 0.401 N 

Retrieval Model 2: Choose One 
NC 0.160 N 

CL 0.313 N 

Retrieval Model 3: von Mises Fit 
NC 0.159 N 

CL 0.319 N 

Note. NC = Non-Clustered, CL = Clustered. Within 95% CI = Whether the value was 

within the 95% CI of Chapter 2. Y = Yes, N = No.  

  
 An analysis was undertaken to assess whether altering the number of samples used 

for the retrieval-based models resulted in the presentation of avoidance. No evidence of 

change was identified based on the number of samples, with the mean values being identical 

to the output described above.  

3.4.3. Discussion 

 This family of models assessed whether variants of the encoding or retrieval-based 

model would predict the behaviour observed in Chapter 2, particularly the avoidance effect. 

The model generated memory responses with greater accessibility in the clustered compared 

to the non-clustered condition. Similarly, there was evidence of greater precision in the non-

clustered condition compared to the clustered. However, as these parameters were within 

the model itself, these results are not too surprising. Nevertheless, the model generated 



112 

clustered generalised responses that showed greater density at the cluster centre, evidencing 

adherence to the von Mises distribution. Therefore, both an encoding- and retrieval-based 

model could explain generalisation performance in the clustered condition. However, there 

was no evidence of avoidance for non-clustered generalised items, with the mean values being 

identical or in proximity to the uniform value; this is further supported by examining the 

distribution of locations selected for generalisation trials (see Figure 3.1).   

 From this family of models, it was clear neither encoding- nor retrieval-based models 

alone would predict an avoidance behaviour during generalisation. This was not a surprising 

result but further corroborates arguments mentioned during the Introduction. Specifically, 

given either an encoding- or retrieval-based process, the pattern of responses should follow 

the underlying distribution presented during encoding, with some amount of noise. This noise 

would not result in an average bias in the locations selected for generalised non-clustered 

trials, which themselves are based on a sample of uniform angles. Therefore, this set of models 

provides formal evidence that simple encoding- or retrieval-based approaches cannot predict 

the avoidance effect for non-clustered generalised responses.  

 One caveat with the present family of models is how items are categorised as 

remembered or non-remembered. Currently, the models  ignore the target proximity to the 

underlying cluster. Research has shown that retrieval is modulated by the extent to which 

items map onto the underlying pattern (e.g., Tompary et al., 2020; Tompary & Thompson-

Schill, 2021). For example, in their categorisation study, Tompary and Thompson-Schill (2021) 

found that recall of locations for items was biased towards the mean location a target item 

belonged to. Therefore, not accounting for the target locations proximity to the cluster may 

misrepresent the data.  
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 Further, the model assumes that participants differentiate between old and new items 

with 100% accuracy. Specifically, generalisation would only be present for generalised trials. 

In contrast, memory trials regarded as “non-remembered” would be randomly guessed. This 

seems counterintuitive and goes against previous work demonstrating that recognition for 

old-new items is not always accurate, particularly when items are semantically related (Deese, 

1959; Montefinese et al., 2015; Roediger & McDermott, 1995; Shiffrin et al., 1995). As such, it 

is possible that when participants have a low probability of remembering an individual item, 

they rely on the same generalisation processes for memory trials as they do when generalising 

to novel instances.  

3.5. Model Family 2: Modulating Retrieval Probability 

 The primary aim of this model was to assess how modulating retrieval probability 

based on proximity to the cluster could result in the presence of an avoidance effect. 

Specifically, using a retrieval probability function, the probability of retrieving an item was 

modulated so that clustered items were better remembered closer to the cluster, whilst non-

clustered items were better remembered further away. By modulating retrieval probabilities 

in this way, an avoidance during generalisation may be observed as more accessible non-

clustered memories (i.e., those with higher retrieval probabilities) are further from the 

clustered location. Along with implementing the retrieval probability function, the model used 

generalisation mechanisms when memory responses were classified as “non-remembered” 

instead of randomly guessing (contrary to Model Family 1).  

3.5.1. Method 

 The model worked similarly to Model Family 1, with some exceptions as outlined 

below.  
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3.5.1.1. Memory 

 The model determined remembered and non-remembered items based on a retrieval 

probability function developed by S. C. Berens (personal communication, 20 August 2020). 

These probabilities were estimated so that items closer to a specified mean value (e.g., 0) 

were better remembered than those further from this value. For the clustered condition, this 

would be the mean value of the von Mises distribution. For the non-clustered condition, the 

retrieval probability mean was set 180° away from the clustered mean (i.e., on the opposite 

side of the circle). The retrieval probability function used the individual “participant’s” 𝑝 value 

to determine the number of items that should have higher retrieval probabilities. More 

specifically, probabilities were estimated such that they were sigmoidal to the probability 

density function of a von Mises distribution, with parameters μ and κ. The integral of these 

values was exactly equal to the expected 𝑝 value. Therefore, if the von Mises distribution had 

a μ of 0 and κ of 2, then items closer to 0 were given higher retrieval probabilities than those 

further away, with the individual 𝑝 value for each “participant” being used to estimate how 

many items were to be remembered. An infographic of the function is shown below (see 

Figure 3.2). The formula for this function are provided in Appendix B.  

 

Figure 3.2. Infographic of the Retrieval Probability Function. This illustrates how the retrieval 
probability function would work, whereby filled dots represent items classified as having a greater 
probability of being remembered, whilst unfilled dots represent a lower probability of being 
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remembered. Non-clustered items (yellow) were more likely to be remembered further from the 
cluster. In contrast, clustered items were more likely to be remembered if they appeared within the 
clustered area.  

 
 Once the retrieval probabilities for each trial were determined, items were explicitly 

classified as “remembered” or “non-remembered” based on whether the assigned probability 

value differed from a randomly generated number between 0 and 1. If the retrieval probability 

value was greater than or equal to the random value, the item was categorised as 

“remembered”; otherwise, it was “non-remembered”. For those items classified as “non-

remembered”, the model did not generate random responses as was done in the first family 

of models, but instead determined locations via generalisation (i.e., treating them as “novel” 

items). The generalisation mechanisms are described in more detail below. 

3.5.1.2. Generalisation 

 Unlike the previous model, which used three types of encoding- and retrieval-based 

generalisation, the present family of models only used one type; this was due to all versions 

in the previous model producing similar behaviour. For the encoding-based model, a von 

Mises probability density function was fit to items classified as “remembered” in order to 

estimate the µ and κ values. These parameters were then used to generate generalised 

responses. For the retrieval-based model, a sample of remembered responses was taken, with 

their retrieval probability estimates providing a weighting as to which items would be 

sampled. Therefore, items with higher retrieval probabilities were more likely to be sampled 

when a location judgement for novel (or non-remembered) items occurred. A total of three 

items per participant were sampled. The mean of these sampled locations was then calculated 

and used as a response.   
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3.5.2. Results 

 Figure 3.3 below shows the distribution of locations selected for memory and 

generalisation trials centred to the experimentally imposed von Mises distribution. As shown, 

the model appears to have produced an avoidance effect during generalisation for both 

encoding and retrieval-based models. However, an avoidance behaviour was also present 

during memory trials; the presence of an avoidance behaviour in memory has not been 

formally explored in our behavioural data.  

 

Figure 3.3. Model Family 2: Density of Locations. Plots show the distribution of locations selected 
by the models for memory (left), encoding-based generalisation (middle) and retrieval-based 
generalisation (right) when centred to the experimentally imposed von Mises distribution. The 
density of locations towards the cluster centre is greater in the clustered condition, with a decreased 
density for non-clustered items (i.e., an avoidance effect). The dashed line represents the uniform 
probability density value (0.159). 

3.5.2.1. Memory 

 Table 3.5 below shows the mean estimates produced for the memory metrics. The 

model accurately reproduced the pattern of effects observed in Chapter 2, showing greater 

accessibility in the clustered compared to the non-clustered condition but greater precision in 

the non-clustered compared to the clustered condition. The estimates derived are much larger 

than found in our experiments, with most measures being outside of the 95% CIs derived. 
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Similarly, the size of the differences in conditions is much larger than found in the behavioural 

experiments.   

Table 3.5.  

Descriptives for memory variables from Model Family 2, including identification of 

whether the value was within the 95% CI of the Chapter 2 data and the differences 

between conditions.   

Variable Condition M Within 95% CI? Group Difference 

Ip 
NC 0.506 N 

-0.638 
CL 1.144 N 

Ik 
NC 1.495 N 

0.275 
CL 1.220 Y 

PKD: Memory NC 0.045 N NA 

Note. Ip = Accessibility, Ik = Precision. PKD = Kernel density at the cluster centre. NC = Non-

Clustered, CL = Clustered. Y = Yes, N = No. Group difference was calculated by subtracting 

the CL mean from the NC mean. NA = Not applicable.  

 

3.5.2.2. Generalisation 

 The mean estimates derived for generalisation trials are shown in Table 3.6 below. For 

all estimates, the mean values were outside the 95% CI derived for Chapter 2 (see Table 3.1 

above). Both models generally produced the same behaviour, though the encoding-based 

model produced lower overall estimates compared to the retrieval-based model; this is also 

illustrated in Figure 3.3 above.  

Table 3.6.  

Descriptives for generalisation variables from Model Family 2, 

including identification of whether the value was within the 95% CI 

of the Chapter 2 data 

Model Condition M Within 95% CI? 

Encoding 
NC 0.085 N 

CL 0.382 N 

Retrieval 
NC 0.028 N 

CL 0.473 N 
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Note. NC = Non-Clustered, CL = Clustered. Y = Yes, N = No.  

 
3.5.3. Discussion 

 The second family of models aimed at examining whether modulating retrieval 

probability produced an avoidance effect during generalisation. Specifically, making items in 

the non-clustered condition have a higher probability of retrieval  the further from the cluster 

they appear. Unlike the first family of models, the current set of models  produced an 

avoidance effect during generalisation. However, an avoidance was also present for non-

clustered memory trials.  

 Along with producing an avoidance behaviour, this second family of models 

reproduced the other pattern of results observed in Chapter 2. Specifically, greater 

accessibility in the clustered compared to the non-clustered condition but reduced precision 

in the clustered condition compared to the non-clustered. As in Model Family 1, this was a 

function of the independent 𝑝 and 𝑘 inputs for the clustered and non-clustered conditions. 

Therefore, it was not a product of the underlying mechanisms of the model itself. 

Nevertheless, there was clear evidence of generalisation occurring for the clustered condition. 

Unlike the accessibility and precision differences, the generalisation behaviour observed was 

a product of the model. Notably, however, these effects were larger than in Chapter 2 (this is 

discussed in more detail in the General Discussion, below). Therefore, Model Family 2 

recreated the general pattern of results observed in our behavioural data and predicted that 

the avoidance effect should be present during memory and generalisation.  

3.6. Memory and the Avoidance Effect 

 Model Family 2 predicted that the avoidance behaviour presented in generalisation 

trials was driven by an avoidance in the non-clustered old (memory) trials. To test this 

prediction, an analysis of the memory data from Chapter 2 and an independent secondary 
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dataset (Berens et al., 2020) was conducted to identify whether there was evidence of 

avoidance in non-clustered old items. The analyses were undertaken to falsify the previous 

model, which relied on memory showing evidence of avoidance for it to be present during 

generalisation. Therefore, if there is no evidence of avoidance in memory, this model can be 

falsified. However, if there is evidence of avoidance in memory, the model correctly predicted 

the need for non-clustered old items to show an avoidance for novel items to show this 

behaviour too.  

3.6.1. Exploratory Analysis: Chapter 2 

 To conduct this analysis, a GLME was computed. The GLME was fit similarly to those 

described in Chapter 2, with a gamma distribution to model data spread, a log-link function 

and estimated using the maximum likelihood fitting method within the MATLAB Statistics and 

Machine Learning Toolbox. The dependent variable was the probability density of non-

clustered items at the centre of the experimental imposed von Mises. These were compared 

to a circular uniform density value (2𝜋−1). An assessment of whether the effect in memory 

and generalisation differed in magnitude was also undertaken. Therefore, both memory and 

generalisation non-clustered trials were included in the analysis. The model included three 

fixed effects: Trial Type (0 = Memory, 1 = Generalisation), Delay (0 = No Delay, 1 = Delay) and 

Setting (0 = In-Lab, 1 = Online), along with their interactions. For the model, random intercepts 

for subject were included along with random slopes for the effect of Trial Type. Both Cohen’s 

d and Bayes Factors were computed as described in Chapter 2, only examining the fixed 

effects. Mean estimates were derived from the model. Though generalisation data was 

included, this was only used to assess whether the effect in generalisation was larger than 

memory. All other effects only considered the memory data. Appendix A shows the contrast 

matrices used to examine the effects of interest.  
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 One consideration to be made is how the 95% confidence intervals discussed in Table 

3.1 (above) suggested non-clustered memory items could be larger than the uniform density 

value (0.159), meaning there was a lack of evidence for avoidance. However, the estimates 

reported in Table  .1 were derived based on the Student’s t-distribution. Though these 

estimates are generally acceptable to use, we do need to be careful before making formal 

conclusions about whether an effect is present or not. Specifically, the data collected in 

Chapter 2 are not normally distributed but instead adhere to a gamma distribution (i.e., 

cannot go below a value of 0). Consequently, it may not be appropriate to conclude that there 

was no evidence of avoidance in memory without analysing the data appropriately. Instead, 

applying a GLME that models the data spread on a gamma distribution will provide a more 

accurate estimate of whether avoidance is present in memory.  

 Figure 3.4 shows the mean density and distribution of locations selected by 

participants for memory trials. It was found that the probability density for non-clustered old 

words was lower than predicted by a uniform density, t(514) = 3.01, p = .003, d = 0.07, BF01 = 

0.43, suggesting a similar avoidance behaviour for non-clustered old words as was present in 

non-clustered novel words. Of note, the Bayes Factor remains inconclusive despite the 

significant effect. No effect of delay (F(1,514) = 0.01, p = .941, d < 0.01, BF01 = 13.71) or setting 

(F(1,514) = 0.29, p = .592, d = 0.03, BF01 = 12.23) were observed when examining only memory 

data. However, there was an interaction between the two, F(1,514) = 3.99, p = .046, d = 0.21, 

BF01 = 1.27. Notably, the Bayes Factor for the interaction effect was inconclusive. Exploration 

of the post-hoc effects found no significant effects even before correction (p ≥ .078, d ≤ 0.16, 

BF01 ≥ 2.2 ). Finally, an examination of differences in the non-clustered densities of memory 

and generalisation items occurred. For this comparison, memory (M = 0.151, SE = 0.02) 
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showed significantly less avoidance than generalisation (M = 0.136, SE = 0.03), F(1,514) = 

28.62, p < .001, d = 0.23, BF01 = 1.41 x 10-5.  

 

Figure 3.4. Locations selected for memory trials. A-B: Mean Probability Density for Memory trials 
for (A) Chapter 2 data, or (B) the secondary analysis. Individual data points represent participant 
scores. The dashed line represents the uniform probability value (0.159). C-D: Spatial distribution 
of locations selected for old words centred to the experimentally imposed von Mises distribution 
for (C) Chapter 2 data, and (D) secondary data. Data are collapsed across all delays. Error bars 
represent 95% confidence intervals around the mean for all plots. ** = p < .01, *** = p < .001. 

 
 The above suggests the presence of a similar avoidance effect in memory, as was 

shown in generalisation. Specifically, participants show a reduced probability density at the 

centre of the cluster for non-clustered items. However, the effect in memory is significantly 

smaller than what was observed in generalisation. Nevertheless, these results suggest a bias 

in memory and supports the prediction of Model Family 2 (above), which indicated that a 
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global non-clustered avoidance behaviour should be present. Still, caution should be taken 

before firm conclusions are drawn from the present analysis as it was exploratory and the 

Bayes Factor remained anecdotal. To overcome this, analysis on an independent secondary 

dataset occurred; this was pre-registered before any analysis took place. This secondary 

dataset used a similar methodology but did not include generalisation trials. The avoidance 

effect could be viewed as a robust phenomenon if the same avoidance behaviour was 

observed in the independent dataset.  

3.6.2. Confirmatory Analysis 

 The data collected for the Berens et al. (2020) registered report was explored. Briefly, 

in Berens et al. (2020), they used the precision paradigm to explore how forgetting 

differentially impacted accessibility (i.e., proportion remembered) and precision (i.e., degree 

of error from target location to response location). It was found that the presence of a schema 

(or pattern) benefited levels of accessibility positively but to the detriment of precision. As 

this experiment was conducted using a similar paradigm, an exploration of whether there was 

evidence of an avoidance effect was undertaken; this would act as a confirmatory analysis of 

our previous exploratory analysis. Consequently, if evidence of an avoidance effect was found, 

firmer conclusions can be drawn related to this effect. The pre-registration for this secondary 

analysis can be found here: https://osf.io/pwy5t/.  

3.6.2.1. Hypotheses 

 It was predicted that participants’ non-clustered responses would show evidence of 

avoidance, which would not be affected by delay. Specifically, participants would show a 

reduced probability density at the centre of the experimentally imposed cluster for non-

clustered items. This was to be evidenced by a significant reduction from the uniform 

probability density value. 

https://osf.io/pwy5t/
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3.6.2.2. Exclusion Criteria 

 The only data that were explicitly excluded were study-test delays greater than 24 

hours. Beyond that, the same exclusion criteria were applied to the data as was reported in 

the previous experimental Chapter (see Chapter 2: Exclusion Criteria). Briefly, individual trial 

exclusions were applied when: (1) study trials were repeated five or more times, and (2) no 

responses were given on a test trial. Datasets were excluded when: (1) the number of test 

trials timed out more than 20 times for clustered or non-clustered items, and (2) the data did 

not converge using mixture modelling. 

3.6.2.3. Participants 

 The dataset contained 431 participants (63% female), with a mean age of 27.23 years 

(SD = 5.07). There were 401 usable datasets (64% female) following data cleaning with a mean 

age of 27.25 years (SD = 5.06). Thirty participants were excluded because: 17 had incomplete 

datasets at Test due to inattention, eight did not respond to 20 or more trials, and five datasets 

did not converge using the mixture model. Notably, these 401 participants included all delay 

conditions (0 hours up to 96 hours). Once both 48-hour and 96-hour delays were removed, 

the final sample consisted of 294 participants (62% female, MAge = 27.12 years, SDAge = 5.05), 

with generally equal numbers across delays (0hrs = 57, 3hrs = 63, 6hrs = 60, 12hrs = 58, 24hrs 

= 56).  

3.6.2.4. Analyses 

 The GLME for these analyses was fit using the same parameters as described for the 

exploratory analysis above. However, the model only included a main effect of Delay; this was 

dummy coded such that 0hrs delay was the reference variable, and all other delays (3, 6, 12, 

and 24hrs) explicitly included in the model. The contrast matrices used for these analyses are 

shown in Appendix A. As there was a directional hypothesis, a one-tailed test was used when 
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exploring the avoidance effect. Further, as has been done previously, Bayes Factors were 

computed using the same method reported in Chapter 2. However, due to the presence of 

multiple groups in some instances, an approximation of omega squared (see 2, below) using 

the F-statistic and corresponding degrees of freedom (Albers & Lakens, 2018) was used as a 

measure of effect size in some instances. When only one numerator degree of freedom 

existed, the Cohen’s d was reported and calculated as described in Chapter 2.  

𝜔2 =
𝐹 − 1

𝐹 +
𝑑𝑓𝐸𝑟𝑟𝑜𝑟 + 1
𝑑𝑓𝐵𝑒𝑡𝑤𝑒𝑒𝑛

(2)
 

 The distribution of locations selected by participants collapsed across delay is shown 

in Figure 3.4 (above). As can be seen, there appears to be some evidence of avoidance 

behaviour present in the locations selected by participants. First, differences in the probability 

density estimates resulting from the effect of delay were examined. No significant main effect 

of delay was found, F(4,289) = 0.15, p = .963, ω2 = -.01, BF01 = 364.51. Consequently, the 

probability densities do not appear to change as a function of time; this is similar to the 

exploratory analysis of the Chapter 2 data. Next, evidence of avoidance was explored. It was 

found that, irrespective of delay, participants showed significant avoidance of placing 

locations at the centre of the cluster for non-clustered items, t(289) = 4.71, p < .001, d = 0.13, 

BF01 = 5.03 × 10-4.  Again, this replicates the previous exploratory analysis and shows that the 

avoidance effect is present in memory. However, the evidence in favour of this conclusion was 

more substantial than found in the exploratory analysis.  

3.6.3. Discussion 

 These analyses aimed to determine whether the second set of models reported in this 

chapter (i.e., Model Family 2) had correctly predicted the presence of an avoidance behaviour 

in non-clustered memory (old) trials. In line with this prediction, the exploratory and 
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confirmatory analyses found evidence of avoidance during memory. This finding supports the 

predictions of the second set of models, showing that for an avoidance effect to be present 

during generalisation, there needs to be avoidance in memory. Along with this finding, no 

evidence of a change over time was identified, suggesting the avoidance effect remained even 

after a 24-hr period; this is identical to generalisation trials. Additionally, the avoidance 

observed during memory was significantly less than observed during generalisation.  

 In Model 2, retrieval-based generalisation was found to produce greater avoidance 

behaviour compared to memory avoidance. In support of this prediction, the present analysis 

found that the avoidance behaviour in memory was smaller than found in generalisation. One 

reason for this may relate to items with higher retrieval probabilities (i.e., those on the 

opposite side of the circle) being more easily accessible when attempting to generalise. Whilst 

old items can rely on either remembering the old item or generalising, novel items can only 

rely on generalisation processes. As a result, given that items further from the cluster may be 

more accessible, the avoidance effect may be exacerbated during generalisation.  

 In contrast, the encoding-based model found the avoidance behaviour was smaller 

during the non-clustered novel trials than old (memory) trials. One reason for this may be that 

the encoding-based model used all remembered items, irrespective of their retrieval 

probability, when generating parameter estimates for the von Mises distribution. The 

estimated parameters were then used to generate a series of “random” locations (adhering 

to the parameters specified). As such, using all remembered responses as opposed to a subset 

produced lower levels of avoidance in the non-clustered condition for this model type.    

 In conclusion, Model Family 2 provided an accurate account for the behaviour 

observed in Chapter 2 and generated a novel prediction related to non-clustered memory 

trials. Specifically, it was predicted that memory trials would show a similar avoidance 
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behaviour to generalisation. In line with this prediction, both the exploratory and confirmatory 

analyses found that non-clustered memory items showed a reduced density in the number of 

locations selected by participants at the cluster centre. These results support the second 

family of models by demonstrating that avoidance was present in both memory and 

generalisation. 

3.7. Model 3: Interference 

 Many studies have used the precision paradigm as a means of investigating schema 

use in memory (Antony et al., 2021; Berens et al., 2020; Harlow & Donaldson, 2013; Richter 

et al., 2019) and generalisation (Tompary et al., 2020). However, in many of these studies (e.g., 

Antony et al., 2021; Berens et al., 2020; Tompary et al., 2020), the presence of a “schema” 

appears to decline as memory itself declines. These findings raise an important consideration 

for the conclusions made: Is what is being investigated a function of schema development or 

some other phenomenon? Schemas are believed to be long-lasting and should not decay as 

memories for individual events do (Ghosh & Gilboa, 2014; van Kesteren et al., 2012). 

Therefore, findings of decay over time may suggest an alternative mechanism is involved. One 

mechanism proposed here is the influence of interference.  

 The present model aimed to assess whether an interference mechanism could explain 

the behaviours observed in Chapter 2. Whereas the second family of models modulated 

retrieval probability based on the target location (something the present model will also 

implement), it did not propose a specific mechanism that led to this effect (i.e., it resulted 

from a retrieval probability function). In contrast, the present model proposes a mechanism 

for explaining these changes in retrieval probability (i.e., proximity-based interference). 

Developing this model may shed light on the mechanisms driving the avoidance effect, thus 

extending  the second family of models.  
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 For the present model, no 𝑝 or 𝑘 parameters were explicitly included, no 

differentiation between clustered and non-clustered items was made, and both memory and 

generalisation trials were treated similarly. Further, interference occurred at both encoding 

(proximity-based interference) and retrieval (semantic-based interference). This hybrid-based 

approach was achieved by affecting retrieval probability at encoding based on the proximity 

of previously presented items. Then, a sample of items would be selected at retrieval based 

on semantic proximity to the target word. The retrieval probability and semantic distance 

were used as weights to affect the mean location selected for a given trial.  

3.7.1. Method 

 Semantic distance was incorporated into the model using the 240 words from Chapter 

2. As a reminder, there were two-word groups: human-made (e.g., calculator, hammer) and 

natural (e.g., apple, desert). The semantic distance between words was estimated via 

Euclidian distance and derived from the pre-trained word2vec model (Mikolov et al., 2013). 

Words were selected to optimise semantic similarity within a category and distance between 

categories. In other words, the distance between words of the same category (e.g., human-

made) was small, whilst the distance between categories, in this case, the distance between 

human-made and natural, was large. For the model, these distances were rescaled to between 

0 and 1, with larger values indicating greater similarity between words. The rescaling was done 

so both retrieval probability and semantic distance were on the same scale (i.e., bounded 

between 0 and 1). In this way, they could be used as weights during location selection (see 

Retrieval, below).  

3.7.1.1. Experimental Parameters 

 Similar to the previous models, the present model was provided with target locations 

for items. However, the input also provided information about the order of presentation and 
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which word was presented on each trial. Knowledge of the order in which encoding took place 

and which item was presented were essential for introducing interference at both encoding 

and retrieval, respectively. The order of presentation and stimuli used were randomised for 

each “participant”, similar to the experiments described in Chapter 2.  

3.7.1.1.1. Encoding 

 During encoding, the model modulated the probability that an item would be later 

retrieved based on its proximity to previously encoded items (irrespective of the clustering 

condition). Each “participant” had a maximum retrieval probability; this was a random value 

between 0 and 1. The maximum retrieval probability initially varied across participants. 

However, varying the initial value had little to no impact on the final weighting (i.e., combining 

proximity- and semantic-based interference) as the relative difference between weightings 

remained the same regardless of initial probability. This is discussed in more detail in the 

Retrieval section, below. Nevertheless, during encoding, this retrieval probability value was 

affected when an item was proximal to other previously encoded items. The present model's 

proximity value was set to 90° (i.e., 45° on either side of the newly encoded item); this was 

selected as the degree of proximity did not drastically affect model behaviour. An example of 

the proximity function is shown in Figure 3.5 below. If the new item was proximal to any 

previously encoded items, the initial probability of remembering was divided by the number 

of proximal items (regardless of condition). If no items or only one item were proximal, the 

probability value would be unchanged. Once all items had been encoded, the model then 

moved to the retrieval phase.  
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Figure 3.5. Illustration of the proximity function. A maximum retrieval probability value was set for 
each participant; this value determined the probability that an item would be retrieved from 
memory. During encoding, if an item were located within 90° of any previously encoded items (grey 
crosses), this new item (white cross) would have a reduced probability of retrieval. The red region 
represents the “proximity” function illustrating the region where an item would need to appear to 
affect retrieval probability. This new probability value was determined by dividing the maximum 
retrieval probability by the number of proximal items. For example, if the initial proximity value was 
60% and the new item was at a location with two other items, its retrieval probability would be 
30%. However, if the new item was not proximal to any previously encoded item, the probability of 
retrieval would be unchanged.    

 
3.7.1.1.2. Retrieval 

 During retrieval, locations were selected for both memory and generalisation trials. 

Here semantic-based interference was introduced; this occurred as the target item would also 

activate memory for locations of close semantic neighbours (i.e., there was a spreading of 

activation). On each trial, the model selected semantically similar items to the present trial; 

these items would have previously been associated with a location (i.e., presented during 

encoding). For memory trials, the selected items included the target itself and two other 

semantically related items. For example, if the target item were “calculator”, locations for 

“smartphone” and “robot” would be retrieved alongside “calculator”, given they were close 

semantically to the target item. For generalisation, three semantically related items were 

retrieved. For instance, had the word been “desert”, items such as “sand”, “snow”, and 

“cactus” were retrieved as there would be no location associated with the word “desert”. 

Apart from this selection of words, the memory and generalisation trials were identical.  
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 The retrieval of these other locations acted as a form of semantic-based interference 

as they influenced the location judgement made by the model. The mean location was 

computed from the retrieved locations but weighted by retrieval probability (proximity-based 

interference) and semantic distance (semantic-based interference). Specifically, the retrieval 

probability value for each item and their corresponding semantic distances were multiplied to 

form a weighting for each item when computing the mean location. In the case of memory 

items, the semantic distance weighting would favour the original word such that “calculator” 

was scored 1, whilst all other items varied from 0 to 1 based on semantic similarity. Using this 

weighting allowed the model to account for how biases in reporting may arise due to 

interference on the location and semantic level. Note, this model does not distinguish 

between “remembered” and “non-remembered”, and no additional precision “noise” is 

added to the target locations (c.f. Model Family 1 and 2). 

 Returning to the initial retrieval probability value, it is clear that the relative differences 

would remain the same regardless of the initial value. For instance, if the retrieved angles 

were 150°, 180° and 210°, with retrieval probabilities of 0.7, 0.7 and 0.35, and semantic 

distances of 0.5, 1.0 and 0.2, the weighted mean angle would be 172.50°. However, had the 

initial probability value been 0.5 rather than 0.7, the weighting function would still produce 

the same weight mean angle of 172.50°. Therefore, the initial value itself had little influence 

on the model, but (as discussed below) the retrieval probability was necessary.  

3.7.2. Results 

 Figure 3.6, below, shows the average locations selected by the model for both memory 

and generalisation trials. As shown, the model appeared to have generated an avoidance 

behaviour in both memory and generalisation, along with showing a clustering behaviour for 

the clustered condition across memory and generalisation.  
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Figure 3.6. Model 3: Density of Locations. Plots show the distribution of locations selected by the 
model for both memory and generalisation items, centred to the experimentally imposed von Mises 
distribution. The dashed line represents the uniform probability density value (0.159). 

 
 Examination of the mean estimates (see Table 3.7, below) shows that the model 

correctly mapped the broad pattern of results present in Chapter 2. First, the model was able 

to show an accessibility benefit in the clustered condition compared to the non-clustered. 

Additionally, the non-clustered benefit in precision was also found. Unlike the previous 

models where 𝑝 and 𝑘 parameters were used to control behaviour, these differences were a 

consequence of the workings of the model. Along with this, the model produced a 

generalisation behaviour for clustered items showing greater kernel density for clustered 

items compared to the uniform value. Finally, the model correctly generated an avoidance 

behaviour for both memory and generalisation.  

Table 3.7. 

Model 3 descriptives for all variables, including whether the value was within the 95% CI 

of the Chapter 2 data and the differences between conditions.   

Variable Condition M Within 95% CI? Group Difference 

Ip 
NC 1.091 N 

-0.115 
CL 1.206 N 

Ik NC 1.641 N 0.037 
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CL 1.604 N 

PKD: Memory NC 0.116 N NA 

PKD: Generalisation 
NC 0.125 N NA 

CL 0.286 N NA 

Note. Ip = Accessibility, Ik = Precision. PKD: Memory = Kernel density at cluster centre for 

memory trials. NC = Non-Clustered, CL = Clustered. Y = Yes, N = No. Group difference was 

calculated by subtracting the CL mean from the NC mean. NA = Not applicable.  

 
 The size of the effects reported differ from those in Chapter 2, with all values being 

outside the 95% confidence intervals described (see Table 3.1 above). In this instance, the 

accessibility effect was larger, and the precision effect was smaller than in Chapter 2. Further, 

the density of locations for clustered generalised items and non-clustered memory and 

generalisation items was larger than in Chapter 2. For the avoidance behaviour, memory 

showed greater avoidance compared to generalisation, contrary to the earlier exploratory 

analyses. However, the difference between memory and generalisation from the model 

output was small (0.009). Therefore, the models' slight inconsistency may not be too 

problematic. However, further analysis may be required. Despite these apparent differences, 

the model correctly maps many of the patterns observed in Chapter 2 and the analyses 

reported in this Chapter. 

3.7.2.1. Importance of Proximity and Semantic Distance 

 An open question was whether both proximity-based interference and semantic-based 

interference were required to produce the effects reported above. To explore this question, 

two analyses were conducted. The first analysis removed proximity-based interference at 

encoding, with retrieval probabilities not influenced by the proximity of items. Instead, 

retrieval probabilities remained the same for all items. However, semantic-based interference 

remained, with semantic neighbours to the target still being retrieved and used when making 
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a location judgement. The second analysis removed semantic-based interference. Specifically, 

three randomly selected items would be retrieved rather than close semantic neighbours, 

meaning semantic proximity did not affect location judgements. However, retrieval 

probabilities were still manipulated at encoding via proximity-based interference. These 

retrieval probabilities were calculated based on proximity-based interference and used as 

weights when sampling from memory, such that items with higher retrieval probabilities were 

more likely to be used when deciding the location of an item (similar to Model Family 2). Figure 

3.7, below, shows the effects of removing proximity-based and semantic-based interference 

from the models. 

 

Figure 3.7. Removal of different forms of interference from the model. The plots show the 
distribution of locations selected for memory and generalisation items, centred to the 
experimentally imposed von Mises distribution. The top row shows how the presence of only 
semantic-based interference affects the model output. The bottom row shows how the presence 
of only proximity-based interference affects the model output. The dashed line represents the 
uniform probability density value (0.159).  
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3.7.2.1.1. Removal of Proximity-based Interference (Encoding) 

 As shown in Figure 3.7, when locations are derived based only on semantic-based 

interference, the clustered condition showed increased density towards the cluster centre, 

with some evidence of non-clustered items being treated more uniformly. The results suggest 

that removing proximity-based interference still produced the pattern of effects in 

accessibility, with greater accessibility in the clustered (M = 1.693) compared to the non-

clustered (M = 1.578) condition. However, contrary to the findings of Chapter 2, precision was 

greater in the clustered (M = 1.524) compared to the non-clustered (M = 1.409) condition. All 

values were larger than reported in Chapter 2 and outside of the 95% confidence intervals. 

Further, the lack of proximity-based interference resulted in both non-clustered conditions 

showing evidence of peaks within the cluster centre, with non-clustered memory (M = 0.163), 

generalisation (M = 0.182) and clustered generalisation (M = 0.363), all possessing values 

larger than a uniform density (0.159). However, non-clustered memory is within proximity to 

the uniform value. Therefore, semantic-based interference alone is not sufficient to produce 

the pattern of behaviour from Chapter 2.  

3.7.2.1.2. Removal of Semantic-based Interference (Retrieval) 

 When semantic-based interference was removed from the model (i.e., random words 

were selected), greater accessibility in the clustered (M = 0.454) than in the non-clustered (M 

= 0.428) condition remained. Similarly, precision was greater in the non-clustered (M = 1.292) 

compared to the clustered (M = 0.999) condition. These two results are in line with the pattern 

of behaviour observed in Chapter 2. However, the values are outside of the 95% confidence 

interval range, being lower than expected. Interestingly, as shown in Figure 3.7, the model 

treated both the clustered and non-clustered conditions similarly. Specifically, the two 

conditions showed similar density at the cluster centre for memory and generalisation. 
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Examination of the mean estimates found non-clustered memory (M = 0.194), non-clustered 

generalisation (M = 0.205) and clustered generalisation (M = 0.201) were all greater than the 

uniform density value (0.159) and were similar in magnitude. Again, this supports the notion 

that both proximity- and semantic-based interference need to work together to produce the 

pattern of effects observed in Chapter 2.  

3.7.3. Discussion 

 The present model aimed to assess whether an interference mechanism could predict 

the pattern of results observed in Chapter 2. As demonstrated, the present model could remap 

the behaviour patterns for accessibility, precision, generalisation, and avoidance. However, 

the effect of avoidance was larger in memory than generalisation, contrary to the exploratory 

analysis reported earlier. Nevertheless, it appears that interference at both encoding (i.e., 

proximity-based interference) and retrieval (i.e., semantic-based interference) was sufficient 

to produce the effects of interest without explicit separation of clustered and non-clustered 

conditions or inclusion of 𝑝 and 𝑘 parameters.  

 In two exploratory analyses, it was shown that both forms of interference were 

necessary to produce the effects of interest. Specifically, removal of proximity-based 

interference resulted in precision showing the opposite pattern of effects along with a lack of 

evidence for avoidance. In contrast, removing semantic-based interference resulted in a lack 

of differentiation between clustered and non-clustered items.  

 One criticism that could be raised with the interference model is that it only considers 

proactive interference without considering the effects of retroactive interference (e.g., Kliegl 

et al., 2015). Though true, it is unlikely that implementing a retroactive interference 

mechanism would necessarily change the model output. If interference during encoding were 

to favour items towards the end of the encoding session, it would still lead to reduced retrieval 
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probability for items closer together. Consequently, interference would continue as more 

items appear within the clustered area. Thus, a similar set of behaviour may be observed given 

that there would still be a large proportion of clustered, compared to non-clustered trials 

appearing within one area of the circle. Consequently, recall of these items would be 

suppressed by the abundance of clustered items, thus resulting in an avoidance behaviour. 

However, this is speculative, and it would be worth examining whether these two forms of 

interference have differential influences on behaviour. This could be explored using the model 

itself or examination of the behavioural data obtained in Chapter 2. An analysis controlling for 

encoding order could potentially suggest the presence of an interference-effect. If proactive 

interference occurred, items first encoded should be more accurately reported (i.e., show less 

angular error) than those encoded later. In contrast, for retroactive interference, items 

encountered at the end of learning should be more accurately recalled than those that 

appeared earlier.   

 In summary, the interference model appears to provide a more parsimonious 

explanation for the behaviour observed in Chapter 2. Unlike the previous models, which 

required an explicit dichotomy between clustered conditions and the use of 𝑝 and 𝑘 

parameters to model differences in accessibility and precision, the interference model 

produced these effects based on proximity- and semantic-based interference alone. Further, 

it was able to show the ability to generalise to novel instances and produce an avoidance effect 

for non-clustered items.  

3.8. General Discussion 

 This Chapter aimed to explore mechanisms for the avoidance behaviour observed in 

Chapter 2. The first family of models assessed whether basic forms of encoding- and retrieval-

based models would predict the presence of the avoidance behaviour. Neither model 
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produced the avoidance effect. In Model Family 2, where memory was modulated based on 

the proximity of items to the cluster, an avoidance effect was predicted in generalisation. 

However, the model also made a novel prediction – for avoidance to be present during 

generalisation, it should also be present during memory. Examination of this hypothesis 

through exploratory (using Chapter 2 data) and confirmatory (using Berens et al., 2020 data) 

analyses supported the model’s prediction. A final model was then developed to provide a 

more mechanistic view on why the avoidance effect may occur. Specifically, whether an 

interference mechanism alone could predict the avoidance effect. This final model predicted 

the avoidance behaviour, matched the broad behavioural patterns reported in Chapter 2 and 

provided a more parsimonious solution than the previous two models as to why the avoidance 

behaviour was present.  

 Finding that neither an encoding- nor retrieval-based model could predict avoidance 

was not surprising. As discussed in the Introduction, both model types would reproduce the 

pattern presented during encoding at retrieval. For clustered items, participants should be 

more likely to place locations within the clustered area. In contrast, for non-clustered items, 

locations should be placed without bias across the entirety of the circle. This is what was 

shown by Model Family 1, where there was evidence of a peak in probability density for 

clustered items towards the centre of the cluster, with non-clustered items showing little to 

no difference from the uniform density.  

 Model Family 2 examined how modulating retrieval probability as a function of 

proximity to the cluster affected generalisation. This modulation process was similar to how 

schema may modulate memory. Specifically, a schema may increase the probability of 

remembering an item when it is congruent with expectations but decrease probability when 

items are not congruent with those expectations (Brewer & Treyens, 1981; though see Greve 
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et al., 2019 for evidence of incongruency leading to similar levels of memory as schema-

congruent). Non-clustered items appearing within the clustered area of the circle may act as 

incongruent items, given that they may violate expectations. This model demonstrated an 

avoidance behaviour during generalisation but required the presence of the same behaviour 

during memory. This novel prediction was supported by both an exploratory and confirmatory 

analysis. Discussion of what this may mean for the broader literature are covered in Chapter 

5.  

 The final model expanded on the second family of models by exploring possible 

mechanisms (i.e., interference) that could explain the presence of the avoidance effect. During 

encoding, items were given lower retrieval probabilities when they were close to previously 

encoded items. At retrieval, target  items were retrieved, along with semantic neighbours, and 

their average was taken to generate a location estimate on all trials. These mechanisms are 

similar to other interference-based proposals (e.g., spreading activation; Anderson & Pirolli, 

1984, or cue overload; Watkins & Watkins, 1975). The model produced greater accessibility in 

the clustered condition compared to the non-clustered, but reduced precision in the former 

compared to the latter condition. There was evidence of generalisation for clustered items 

and avoidance behaviour for non-clustered items during memory and generalisation. Unlike 

the previous models, this final model only required input related to the target locations, 

without the need for explicit coding of conditions (i.e., clustered vs non-clustered) or the use 

of parameters (i.e., 𝑝 and 𝑘) to modulate behaviour in memory. As a result, this model 

provided a parsimonious explanation for why avoidance was present within the behavioural 

data. How this model may also apply to other literature  (e.g., Tompary et al., 2020) is 

discussed in Chapter 5. Nonetheless, given the lack of statistical comparisons conducted 
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between the model and real-world data, some caution should be taken with interpreting the 

results reported.  

 The inclusion of this type of spreading activation (activation of competing memories) 

is comparable to the Target Confusability Competition (TCC) model developed by Schurgin et 

al. (2020). Their model uses psychophysical scaling of similarity and signal detection to derive 

behavioural responses for working and long-term memory precision tasks. If you consider the 

example of learning about colours in a circular environment, when asked to report the colour 

you were presented with, this may result in the activation of other related colours. This 

spreading of activation relates to the model’s psychophysical proximity parameter, which 

identifies closely related colours and activates those representations during recall. For 

instance, if you were presented with green, activation of near neighbours such as blue and 

yellow may occur, which introduces noise to the system. It is then up to the participant to 

determine the correct signal. This signal strength is based on d’ (i.e., how strong is the 

familiarity-based signal). On average, the colour observed will be the colour chosen, but the 

noise introduced via familiar psychophysical signals may mean an unseen colour (e.g., yellow) 

is selected in some instances. This model has parallels to the interference mechanism 

proposed here. Specifically, using semantic-based interference to modulate location 

judgements is similar to their psychophysical scaling mechanism. Future work should explore 

which model better fits the plethora of findings across working and long-term memory 

paradigms or whether the inclusion of location- and semantic-based interference in the signal 

detection framework of the TCC model can explain the present results.  

 Though three models were produced for the present chapter, it is worth noting that 

these are not the only possible explanations for the avoidance effect. As discussed in Chapter 

2, both a mutual exclusivity bias (Clark, 1988) or base rate neglect (Hawkins et al., 2015) may 
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explain the avoidance effect. For instance, base rate neglect proposes that participants use 

relative rather than absolute probabilities when making location judgements. If location 

judgements were based on absolute probabilities, participants would remap the distributions 

accurately (i.e., select locations uniformly for non-clustered items but follow a von Mises for 

clustered items). However, as non-clustered items differed in density compared to clustered 

items in one area of the circle, the relative probability of non-clustered items was lower in 

that region compared to the other side of the circle. Therefore, location responses would 

show the avoidance behaviour presented in Chapter 2. In future, it may be useful to discern 

which of the proposed mechanisms (interference, mutual exclusivity, or base rate neglect) 

provide the best fit for the behaviour observed in Chapter 2. This is discussed further in the 

final chapter of the thesis. 

 Another point of consideration is how the models often overestimated the size of the 

effects; this was particularly evident for the second and third models. Speculatively, the 

reason for this overestimation may relate to underlying assumptions made within the models. 

At present, the models produce behaviour based on the assumption that participants 

extracted the pattern and used this at retrieval without any random guessing. The debrief data 

from Chapter 2 suggests that around 42% (109/261) of participants did not perceive a pattern. 

The lack of knowledge about the pattern may have resulted in worse performance as 

participants turned to “random guessing” for forgotten or novel trials (though this is 

speculative). Ignoring this possibility in the models may have resulted in an overestimation of 

behavioural performance. Therefore, the addition of random guessing on some trials may be 

required to produce more representative behaviour. Future work may wish to consider 

analysing the effects of interest, isolated to whether the participant reported extracting the 

underlying pattern.   
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 Overall, the present Chapter aimed to assess possible explanations for the avoidance 

effect in generalisation. All three models were able to remap a similar pattern of behaviour 

observed for measures of accessibility and precision. For the first two models, this was 

produced by directly controlling these metrics within the model. For the interference model, 

these differences in accessibility and precision occurred without explicit coding. Though the 

first set of models did not predict an avoidance effect, the final two models did. For the second 

model, a novel prediction about the avoidance behaviour was made. Specifically, the presence 

of avoidance behaviour in memory was proposed; this was subsequently found via exploratory 

and confirmatory analyses. This behaviour was also observed in the final (interference) model. 

The interference model produced the behaviours of interest with fewer free parameters and 

provided a parsimonious explanation for why an avoidance behaviour may have been present 

in the data.   
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Chapter 4: 

Preliminary Results: fMRI-based investigation of Memory 
and Generalisation 
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4.1. Abstract 

The present work aimed to examine the neural correlates of memory-based generalisation 

using the precision task developed in Chapter 2. Due to the COVID-19 pandemic, a preliminary 

analysis of an incomplete dataset and experimental plan are presented. First, a behavioural 

pilot was conducted to investigate whether completing a semantic categorisation task (SCT) 

before the precision paradigm impacted the behaviour observed by comparing the results to 

those found in Chapter 2. The SCT was implemented to minimise item novelty effects present 

during generalisation trials. During the SCT, participants were presented with all 240 words 

and categorised them as either human-made or natural. Following this, they completed the 

study and test phase of the precision paradigm. No evidence of significant changes resulting 

from the SCT's inclusion were found, with the same pattern of effects present as described in 

Chapter 2. Therefore, the SCT was implemented into the fMRI investigation. In the fMRI pilot, 

participants completed the SCT and study phase of the precision paradigm outside the 

scanner. In the scanner, participants completed the test phase. The results showed 

significantly greater BOLD activity within the vmPFC during memory compared to 

generalisation trials. Further, for the same contrast, there was marginally significant activation 

within the dorsal striatum. Speculations as to why the vmPFC and dorsal striatum were active 

are discussed. The chapter ends considering possible design (e.g., including subjective 

judgements) and analysis (e.g., functional connectivity analysis) changes along with open 

questions that may be useful for an independent investigation. 

Keywords: hippocampus, ventromedial prefrontal cortex, generalisation 
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4.2. Introduction 

 The medial temporal lobe (MTL) and prefrontal cortex (PFC) are said to have critical 

roles in memory-based generalisation, particularly in how they interact (Kumaran et al., 2009; 

Liu et al., 2016; Preston et al., 2004; Raykov et al., 2020; Shohamy & Wagner, 2008; van 

Kesteren et al., 2012; Zeithamova et al., 2008). Whilst the MTL allows for rapid binding of 

memory representations, the PFC plays a role in extracting regularities across experiences to 

form schema. These schema represent the central tendencies across events (e.g., the average) 

lacking any unique episodic details (Kroes & Fernández, 2012; Preston & Eichenbaum, 2013).  

 Studies have shown that participants can generalise their episodic experiences almost 

immediately post-encoding (Preston et al., 2004; Shohamy & Wagner, 2008; Sweegers & 

Talamini, 2014; Zeithamova et al., 2012; Zeithamova & Preston, 2010). According to the 

REMERGE (Kumaran & McClelland, 2012) model, the hippocampus can generalise through 

retrieval-based means. To achieve this, the hippocampus will act as its own input during 

learning via big-loop recurrence allowing for any output to become a new input, then 

reactivating related experiences. Therefore, as an experience is encoded, other related 

information will become active; this mnemonic information is then sent as an output to 

neocortical areas and acts as a new input for the hippocampus. Consequently, when 

generalising, the presence of a partial cue can reactivate all associated items and allow for 

inferences to be made about a novel, though related, item. Through such a mechanism, the 

hippocampus can allow for retrieval-based generalisation. Therefore, during the present 

work, hippocampal activation may be observed during both memory and generalisation.  

 According to the SLIMMs (van Kesteren et al., 2012) framework,  the mPFC and MTL 

serve different, though complementary, roles during learning. According to this model, 

activity within the mPFC and MTL is dependent on the congruency of incoming information 
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with pre-existing knowledge (or schema). If incoming information is congruent with a pre-

existing schema, this will result in activation of the mPFC. The mPFC will then inhibit activity 

within the hippocampus as it merges the current experience with pre-existing knowledge. This 

inhibitory mechanism prevents the MTL from creating an independent experience with no 

connections to other related events. Instead, the mPFC can integrate this information with 

existing schematic representations. In contrast, as information becomes increasingly 

incongruent, the mPFC will have a less inhibitory influence on the MTL and allow the 

information to be encoded as an individual experience. In this way, the mPFC allows the brain 

to integrate new information rapidly, in line with more recent work (e.g., Sharon et al., 2011) 

and theories (e.g., Antony et al., 2017), without the need for MTL encoding processes based 

on information congruency.  

 In support of the SLIMMs proposal of congruency influencing vmPFC and hippocampal 

involvement during learning, van Kesteren et al. (2013) had participants identify whether an 

object and scene pairing were congruent with expectations (e.g., umbrella and tennis court) 

by providing subjective ratings of congruency during scanning. These subjective ratings were 

used to classify object-scene associations as either incongruent, congruent or neither for a 

given participant. Twenty-four hours post-scanning, participants were presented with both 

old and new objects and asked to identify if they were old, and if so, what scene it was paired 

with. It was found that as subjective ratings of congruency increased, so did levels of mPFC 

activity during encoding, whilst hippocampal activity was greater the more incongruent the 

stimulus was. As such, the study provides support for the proposals of SLIMMs that 

hippocampal and vmPFC activation during learning is related to perceived semantic 

congruency. This may also suggest that differences in activation within the vmPFC and 

hippocampus may be observed in the present paradigm. For the clustered condition, greater 
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vmPFC activation may be observed due to the potential for a schema to develop. In contrast, 

the non-clustered condition may show more hippocampal activation as no schema was 

developed.   

 The present study investigated the neural correlates of memory-based generalisation 

using the precision paradigm developed in Chapter 2. In brief, participants learned word-

location associations around a circle, with words belonging to two semantic groups. One set 

of words had a pattern underlying the locations associated with them, whilst the other did 

not. Using this paradigm, both memory and generalisation can be investigated simultaneously 

by assessing the patterns extracted by participants moving beyond typical binary outcome 

measures of correct and incorrect typically used to investigate memory (e.g., Preston et al., 

2004) and generalisation (e.g., Bowman & Zeithamova, 2018).  

 To date, studies that have implemented the precision paradigm within an fMRI setting 

have focused on memory (Cooper & Ritchey, 2020; Korkki et al., 2021; Richter et al., 2016). 

For instance, Richter et al. (2016) investigated differences in activation as a function of 

retrieval success (accessibility), precision and subjective judgements of vividness. Participants 

encoded and recalled three features (colour, orientation and location) of objects within 

circular space. All three metrics (accessibility, precision and vividness) could be dissociated 

when assessing neural activation: accessibility with hippocampal, precision with angular gyrus 

and vividness with precuneus activation. Therefore, the present work will extend previous 

research and assess both memory and generalisation under the same conditions. Doing this 

provides a basis for revealing the neural correlates of memory-based generalisation and may 

allude to whether encoding or retrieval-based mechanisms are involved in the behaviour 

observed previously. By examining the preliminary results of this study, any design flaws or 

open questions  for an independent investigation can be identified.  
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 Before presenting the fMRI pilot, a behavioural pilot is presented; this was conducted 

to assess how the inclusion of a semantic categorisation task (SCT) before learning influenced 

behaviour in the precision paradigm. The SCT was implemented to address issues related to 

hippocampal activation associated with item novelty (described in more detail below). As 

described in Chapter 3, participants rarely acknowledged the superordinate semantic 

categories (i.e., human-made and natural). Therefore, a pilot experiment was conducted to 

ensure that explicit awareness of these categories prior to learning did not influence 

behaviour on the precision task.  

4.3. Behavioural Pilot 

4.3.1. Introduction 

 Research has implicated the medial temporal lobe not only in long-term memory but 

also novelty detection (e.g., Barbeau et al., 2017; Brown & Aggleton, 2001; Grill-Spector et al., 

2006; Halgren et al., 1995; Hasselmo & Stern, 2006; Kafkas & Montaldi, 2014; Knight, 1996; 

Ranganath & Rainer, 2003; Strange et al., 2005). In their study, Strange et al. (2005) had 

participants categorise items as belonging to one of two groups. This was done through 

repeated exposure to an object, where participants were given feedback as to whether they 

classified the object correctly or incorrectly. During test, participants were presented with old 

and new stimuli and asked to classify them. It was found that novel stimuli (relative to old 

stimuli) engaged right perirhinal cortex, with anterior hippocampal areas active during 

learning and decreasing in activity as performance improved due to repeated presentation of 

a stimulus (i.e., a loss of novelty).  

 Given that the hippocampus is a region of interest for the fMRI study, any potential 

novelty effects during generalisation trials (given these words are not seen during encoding) 

needed to be reduced. Therefore, a SCT was implemented. Here, participants classified all 240 
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words used within the precision task as either human-made or natural before taking part in 

the precision task itself. Having participants be exposed to all the items used in the precision 

task should reduce item (though not associative) novelty effects and allow for firmer 

conclusions to be drawn about any activity differences in the hippocampus. 

 A new behavioural task that requires participants to categorise at the superordinate 

(human-made vs natural) level may influence memory and generalisation behaviour to differ 

from those observed in Chapter 2. During the behavioural work conducted in Chapter 2, only 

4 (of 261 or 1.53%) participants explicitly mentioned the two superordinate categories: 

human-made and natural. Instead, most participants mentioned lower-level categories (e.g., 

animal, scenery, stationary). A concern was how participants using these superordinate 

categories more explicitly might change the previously observed behaviour. As such, the 

present pilot experiment was conducted to ensure the inclusion of the SCT did not alter the 

pattern of behaviour previously observed.  

 The pilot followed a similar structure to Experiment 2 in Chapter 2, but with the 

inclusion of the SCT and a 3-hour delay between Study and Test to account for possible 

logistical issues when booking the scanner for the fMRI investigation. Presuming the SCT task 

does not change memory or generalisation behaviour, the following behavioural effects 

should be observed: (1) greater memory accessibility but reduced memory precision in the 

clustered compared to the non-clustered condition (2) less divergence from the 

experimentally imposed cluster (i.e., von Mises distribution) for clustered novel items 

compared to the non-clustered novel items, and (3) non-clustered responses should show 

reduced kernel density at the centre of the experimentally imposed cluster indicating an 

avoidance behaviour.   
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4.3.2. Methods 

4.3.2.1. Participants 

 Twenty-four participants (21 female) with a mean age of 19.42 years (SD = 0.76) took 

part. One participant did not return for the test phase, one was excluded due to an insufficient 

number of novel items being responded to, and the other due to their data not converging 

during the mixture model procedure. As such, the final sample consisted of 21 participants (19 

female) with a mean age of 19.48 years (SD = 0.79). All participants were fluent English 

speakers with normal or corrected to normal vision and no known neurological condition. 

Participants took part in exchange for course credit or cash payment. Ethical approval was 

granted by the Department of Psychology Ethics Committee at the University of York.  

4.3.2.2. Materials 

 The same 240 words from Chapter 2 were used. There were two semantic categories 

(120 words per category): human-made (e.g., chair, table) and natural (e.g., bee, mountain). 

Words were selected by assessing the semantic similarity (estimated via Euclidian distance) 

between vectors, obtained via a pre-trained word2vec model (Mikolov et al., 2013). Semantic 

distances within a category list were small, whilst the distance between lists was large. Sub-

lists of 30 items were then generated, again controlling for semantic distance.  

4.3.2.3. Procedure 

4.3.2.3.1. Semantic Categorisation Task 

 Participants first completed the semantic categorisation task (see Figure 4.1). 

Participants were sequentially presented with all 240 words and asked to categorise each as 

either human-made or natural. The order of presentation was randomised for each 

participant. Each trial began with a fixation cross (1s) followed by the word to be categorised 

(< 2s). When the word was presented, participants had 2s to categorise the word using a 
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keypress of 0 or 1. The key associated with a given category was counterbalanced across 

participants. Feedback was given to participants as to whether they provided a correct or 

incorrect categorisation on each trial; this was given via the word “Correct” or “Incorrect” 

appearing on screen for 0.5s in either green or red font, respectively. If no response was 

provided, the trial was deemed incorrect, feedback was given, and the subsequent trial began. 

Participants were given up to 1-minute breaks after every 60 trials, though they could skip 

these breaks if they wished to and continue with the task. Once completed, the Study Phase 

began. Participants were given 10 practise trials to complete prior to the SCT in order to 

familiarise them with the task; these trials used abstract nouns.  

 

Figure 4.1. Semantic Categorisation Task. Demonstration of the trial structure for the semantic 
categorisation task. Participants would be presented with a fixation cross (1s) followed by a word 
that they needed to categorise (< 2s) and then feedback (0.5s) before moving on to the subsequent 
trial.   

 
4.3.2.3.2. Precision Memory Task 

4.3.2.3.2.1. Study Phase 

 The study phase was identical to that reported for Chapter 2: Experiment 2. 

Participants were asked to learn associations between words and locations around a circle. A 

total of 180 words were presented with one category of words belonging to the clustered and 

the other the non-clustered condition. The clustered condition had locations sampled from a 

von Mises distribution with a fixed width (κ = 2) and fixed, though participant-unique, mean. 

In the non-clustered condition, locations were sampled from a uniform distribution meaning 

there was no underlying pattern. The order of presentation was randomised across 
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participants. During each trial, a fixation cross would appear (1s), followed by a location (2s), 

the word alone (4s) and then participants were asked to reposition a randomly located marker 

back to the location that had just been presented (< 6s). The trial was repeated if participants 

did not respond within the 6s time window or selected an area greater than 10° from the 

presented location. Practise trials took place before the Study Phase to ensure participants 

were familiar with the task. The practise words were abstract nouns to ensure they could not 

be confused with any study items. Participants were then instructed to return to the lab ~3 

hours after completion to commence the Test Phase. 

4.3.2.3.2.2. Test Phase 

 As the fMRI study would likely have some logistical constraints meaning participants 

could not complete the Test Phase immediately, the behavioural pilot implemented an 

approximate 3-hour gap between Study and Test. This gap was used to estimate the possible 

behavioural patterns present during the fMRI experiment. The average time between Study 

and Test was 2.87 hours (SD = 0.55).  

 Upon returning, participants were asked to recall the previously presented word-

location associations (180 old words) and give a location to 60 novel words they had not 

previously associated with a location. Novel words still belonged to the same semantic 

groupings described above and were presented during the semantic categorisation task. Old 

and new words were intermixed with presentation order randomised. On each trial, 

participants were presented with a fixation cross (1s), the word alone (2s) and then asked to 

reposition a randomly located marker back to a remembered location or to make a best guess 

(< 10s). Participants were not told about the novel words at test, with the trial structure being 

identical.  
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4.3.2.3.3. Introspection Questionnaire 

 Finally, participants were asked to complete the Introspection Questionnaire; this was 

identical to Chapter 2 and probed participants’ perceptions of the task (e.g., whether they 

perceived a pattern or the presence of novel items).  

4.3.3. Data Handling  

4.3.3.1. Mixture Model Estimation 

 Mixture modelling was applied to the memory data to estimate accessibility (i.e., 

retrieval probability) and precision (i.e., how precisely are locations remembered for retrieved 

items) for each participant in each condition, separately. The mixture model is described in 

Chapter 2. In brief, the algorithm used the replacement error for each response to estimate 

each metric using an expectation maximisation algorithm. Two models could be fit to the data 

to obtain the accessibility and precision metrics. If the first model provided a good fit, the 

parameter estimates were used. However, if the fit was not adequate, an alternative fitting 

procedure was used. If neither model provided a good fit, the dataset was excluded. Once 

both p and κ parameters were derived, they were converted to entropy measures: Ip and Iκ. 

These metrics were then used to compute an overall metric of performance: total information 

(It). 

4.3.3.2. Kernel Density Estimation 

 Kernel density estimates were computed as in Chapter 2. These are nonparametric 

representations of the locations selected by participants. To compute these, individual von 

Mises probability density functions, with a concentration of κ = 2, were centred on each 

location. These acted as a smoothing kernel to get probability density estimates at any angle 

around the circle and were used to plot the distribution of locations centred to the imposed 

cluster and estimate the Kullback-Leibler diverge values (see below).  
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4.3.3.3. Kullback-Leibler Divergence 

 The kernel density estimates were used to assess the similarity between the 

distribution of locations of generalisation trials and the experimentally imposed von Mises 

distribution using Kullback-Leibler Divergence (DKL). DKL measures divergence between two 

distributions, with higher values representing greater divergence (i.e., less similarity) between 

distributions.  

4.3.3.4. Exclusion Criteria 

 The same exclusion criteria from Chapter 2 were used. Briefly, individual trials from a 

dataset were excluded when participants did not provide a response during that trial or when 

the trial had been repeated five times or more during study. Datasets would only be included 

for analysis when the following criteria were met: (1) both the study and test trials were 

complete, (2) the memory trials (for clustered and non-clustered separately) did not have 

fewer than 70 responses, (3) the generalisation trials (for clustered and non-clustered 

separately) did not have fewer than 15 responses, (4) the dataset was not corrupted, and (5) 

the mixture model could be fit adequately to the data. 

4.3.4. Statistical Analysis 

 GLME models were used to analyse the data. To assess whether changes in behaviour 

were present, the data from Chapter 2 was input into all models. Six models were generated, 

four of which used the same fixed effect and random effect structure, with the other two using 

an alternative fixed and random effect structure. All models were fit to the data using a log 

link function, a gamma distribution to model data spread and estimated using the maximum 

likelihood fitting method within the MATLAB Statistics and Machine Learning Toolbox. 

 The first four models analysed: (1) Total Information, (2) Accessibility, (3) Precision, 

and (4) DKL von Mises for novel items. The models included three dummy-coded fixed effects: 
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Clustering (0 = Non-Clustered; 1 = Clustered), Delay (with 0hrs being the reference variable 

and 3-hrs and 24-hrs being explicitly modelled) and Setting (0 = In-Lab, 1 = Online). There was 

no 3-hr online fixed effect, so a design matrix of full rank could not be generated. Therefore, 

clustering was made to interact with delay and setting, but delay and setting did not interact 

with each other. In addition to these fixed effects, two random effects were estimated. One 

random effect allowed the intercepts to vary based on the participant, and the other allowed 

the slopes to vary based on the effect of clustering. All elements of the associated random 

effects covariance matrix were estimated via the data. As the variables included in the model 

were dummy coded, linear hypothesis tests of the model coefficients were undertaken to 

examine the effects of interest. The contrast matrices used for these comparisons are detailed 

in Appendix A. 

 For the remaining two models, which analysed the kernel density of non-clustered 

items at the cluster centre, the effects of delay and setting were included, with random 

intercepts based on each participant. For this analysis, differences based on delay and setting 

were analysed, along with  identifying whether kernel density differed from that expected of 

a circular uniform (2𝜋−1). No interactions were modelled. Again, the contrast matrices used 

can be found in Appendix A. 

 For all analyses, the simple effect of clustering isolated to the pilot data was first 

explored; this was done to assess the effect of clustering independent of data from Chapter 

2. For the kernel density (i.e., avoidance) effects, the difference from the uniform value 

isolated to the pilot data was first analysed. Subsequently, any change between mean 

estimates from the behavioural pilot and the data from Chapter 2 were investigated; this was 

done by collapsing 0-hrs and 24-hrs into one level (i.e., Chapter 2) and comparing this to the 

pilot data (3-hr delay). Finally, an assessment of whether the effect of clustering had changed 

file:///C:/Users/jamie/Downloads/Chapter%204%20-%20fMRI%20Planning%20Chapter%20(30.09.2021)%20-%20AJH%20GG.docx%23_Appendix_A_Contrast
file:///C:/Users/jamie/Downloads/Chapter%204%20-%20fMRI%20Planning%20Chapter%20(30.09.2021)%20-%20AJH%20GG.docx%23_Appendix_A_Contrast
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across chapters was undertaken by looking at the interaction between clustering and delay 

(collapsed as previously specified) where available. Though other effects were present in the 

model (e.g., setting), they were not of interest to the present analysis. However, they were 

included to ensure the model was correctly specified to derive unbiased parameter estimates.  

 All mean values represent the estimated marginal means derived from the GLME. 

Further, the Cohen’s d and Bayes Factors reported were calculated using the method 

described in Berens et al. (2020) and estimated only on the fixed factors. The Bayes Factors 

used the default parameters: a prior Cauchy distribution r = .707, centred at 0. All analyses 

used two-tailed tests unless otherwise specified.   

4.3.5. Results 

4.3.5.1. Memory 

 An analysis of the memory measures (It, Ip, and Iκ) was undertaken first. Figure 4.2 

below shows the pattern of results for the pilot compared to the data in Chapter 2.  
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Figure 4.2. Assessment of memory performance across chapters. (A) Kernel Density Plot: This 
represents the average spatial distribution of locations selected for old (memory) items, centred to 
the experimentally imposed von Mises distribution for the pilot data alone. (B-D) Memory Metrics: 
Illustrating the effects of clustering and chapter on: (B) Total Information, (C) Accessibility, and (D) 
Precision. The chapter variable was computed by averaging 0-hrs and 24-hrs (Chapter 2) into one 
level and comparing this to 3-hrs delay (Behavioural Pilot). Error bars represent the estimated 
marginal means and 95% confidence intervals of the model. Dots represent individual data points 
from a given participant.  

 
 First, an exploration of total information occurred. Examination of the effect of 

clustering for the pilot only found no significant difference between conditions, t(556) = 0.13, 

p = .898, d = 0.02, BF01 = 6.53. This effect is in line with the results of Chapter 2, whereby both 

clustered and non-clustered conditions showed similar levels of total information. Next, the 

effect of delay was examined, finding no significant difference between estimates of total 

information, t(556) = 0.92, p = .339, d = 0.11, BF01 = 4.98. This suggests that the levels of total 
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information in the behavioural pilot are consistent with those in Chapter 2. Finally, no 

significant interaction between clustering and delay was found, t(556) = 0.25, p = .806, d = 

0.04, BF01 = 5.25. These results suggest that the SCT inclusion has not affected the pattern of 

results related to total information.  

 Next, accessibility was assessed. Here, no significant difference between clustered and 

non-clustered conditions were found when analysing only the pilot data, t(556) = 1.22, p = 

.225, d = 0.17, BF01 = 3.30. However, the mean estimates for the clustered and non-clustered 

conditions were in the expected direction (see Figure 4.2). Support for a lack of change comes 

from the lack of significant difference between Chapter 2 or the pilot data, t(556) = 1.05, p = 

.296, d = 0.13, BF01 = 4.50. Further, no significant interaction between clustering and delay 

was observed, t(556) = 0.12, p = .902, d = 0.02, BF01 = 5.36. These results suggest that the 

effect of clustering had not changed across chapters. Like total information, it is apparent that 

the inclusion of the SCT has not impacted levels of accessibility.  

 Finally, memory precision was analysed. Assessing the effect of clustering on only the 

pilot found no significant difference between conditions, t(556) = 1.22, p = .223, d = 0.17, BF01 

= 3.28. However, like accessibility, the direction of effects was as expected (see Figure 4.2) 

and in line with Chapter 2. This was supported by a lack of difference in mean estimates 

between Chapter 2 and the pilot data, t(556) = 0.40, p = .693, d = 0.04, BF01 = 8.26. Additionally, 

the effect of clustering across chapters did not show a significant change, t(556) = 0.45, p = 

.652, d = 0.08, BF01 = 4.92. These effects support the view that the inclusion of the SCT did not 

influence any of the memory measures used within the current paradigm.   

4.3.5.2. Generalisation 

 To examine generalisation, the locations selected for novel words across the two 

conditions were compared to the von Mises distribution to assess which was more similar to 
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(i.e., less divergent from) this distribution. It was expected that the clustered condition would 

show less divergence than the non-clustered. However, examination of the pilot data  found 

no such difference, t(556) = 1.18, p = .239, d = 0.16, BF01 = 3.44. This result suggests that both 

conditions were equally divergent to the von Mises distribution. However, as with the memory 

analyses, the direction of effect was as expected (see Figure 4.3), implying the SCT has not 

influenced generalisation behaviour. To corroborate this conclusion, the DKL values obtained 

in the present pilot were compared to the data from Chapter 2, finding no significant 

difference, t(556) = 0.51, p = .609, d = 0.05, BF01 = 7.87. Additionally, no interaction between 

clustering and delay was found, t(556) = 1.12, p = .264, d = 0.19, BF01 = 3.06. These results 

suggest that the effect of clustering had not changed across chapters. Therefore, like memory, 

the inclusion of the SCT did not have a clear effect on generalisation behaviour in the present 

pilot experiment.   

 

Figure 4.3. Assessment of generalisation performance across chapters. (A). Kernel Density Plot: 
The average spatial distribution of locations selected for generalised (novel) items centred to the 
experimentally imposed von Mises distribution for the pilot data only. (B) DKL von Mises: Estimated 
marginal means from the GLME as a function of chapter and clustering. The chapter variable was 
computed by averaging 0-hrs and 24-hrs (Chapter 2) into one level and comparing this to 3-hrs delay 
(Behavioural Pilot). Error bars represent the estimated means and 95% confidence intervals of the 
model. Dots represent individual data points from a given participant. 
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4.3.5.3. Avoidance 

 Next, evidence of avoidance was assessed by comparing the probability densities of 

non-clustered locations at the centre of the cluster to that of a uniform density. The 

distribution of locations selected for memory trials in the pilot data are shown in Figure 4.2 

(above). Examination of the selected locations for the pilot data found no significant evidence 

of avoidance, t(278) = 1.38, p = .084 (one-tailed), d = 0.15, BF01 = 3.35. Despite the Bayes Factor 

suggesting moderate support for the null, the mean estimate is in the expected direction (see 

Figure 4.4). Further, no significant differences between estimates from the pilot and Chapter 

2 were observed, t(278) = 0.57, p = .567, d = 0.11, BF01 = 4.34. Overall, these findings suggest 

little evidence that the SCT impacted avoidance behaviour. Though the Bayes Factor provided 

moderate evidence, the lack of a delay effect supports the view that there is little to no change 

across chapters.  

 For generalisation, the locations selected for both clustered and non-clustered 

conditions are shown in Figure 4.3 (above). Similar to memory, there was no significant 

evidence of avoidance when isolated to the pilot data, t(278) = 0.99, p = .162 (one-tailed), d = 

0.11, BF01 = 5.24. Again, the Bayes Factor provides moderate evidence favouring a null effect, 

contrary to expectations given the previous work. However, examination of across chapter 

differences found no significant effects, t(278) = 0.52, p = .601, d = 0.10, BF01 = 4.44. The lack 

of difference in kernel density values across chapters and examination of the mean estimates 

(Figure 4.4) suggest the data may have been too underpowered to find any significant effect.  
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Figure 4.4. Assessment of avoidance behaviour across chapters. (A) Memory: This represents the 
mean density for chapter 2 and the present behavioural pilot for memory trials. (B) Generalisation: 
This represents the mean density for both chapters for generalisation trials. As before, Chapter 2 
was the combination of 0-hrs and 24-hrs delay. Error bars represent the estimated marginal means 
and 95% confidence intervals. Dots represent the individual participant scores.  

 
  Overall, these results support the view that the inclusion of the SCT has not impacted 

the behaviour observed in previous experiments (i.e., Chapter 2). The moderate evidence for 

a null effect in some of the analyses may be worrisome. However, as there was no evidence 

of differences across chapters, the likely reason for these moderate Bayes Factors could be 

the product of noise in the pilot sample.  

4.3.6. Discussion 

 The behavioural pilot aimed to investigate whether implementing the SCT would 

impact the behaviour reported previously (see Chapter 2). The results show no evidence of 

any meaningful behaviour change compared to the data collected for Chapter 2, suggesting 

the inclusion of the SCT had little impact on the behaviours of interest. Numerically, the 

clustered condition showed greater accessibility but reduced precision compared to the non-

clustered condition. Further, when generalising, participants showed greater adherence to the 

von Mises distribution in the clustered compared to the non-clustered condition. Finally, there 

was evidence of avoidance behaviour, both in memory and generalisation. Though the 
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moderate Bayes Factors in favour of the null may appear worrisome, the lack of differences 

between the present pilot and the data reported in Chapter 2 means no firm conclusions can 

be made without further data.  

 One of the concerns with introducing the SCT was the possibility that participants’ 

explicit use of the superordinate groupings (i.e., human-made and natural) may influence 

some of the behavioural patterns found in Chapter 2. In Chapter 2, very few participants, 4 

out of 261, acknowledged the presence of these superordinate categories, instead focusing 

on the more basic categories (e.g., fruit, office items). In contrast, 29% (6/21) of participants 

reported using these superordinate categories during the pilot debrief when dealing with 

inferences for the task. Evidently, explicit acknowledgement of the superordinate categories 

may not drastically change the behaviour observed in the precision task. Of course, caution 

should be taken with this interpretation given the small sample size.   

 Overall, the behavioural pilot suggests that the implementation of the SCT may not 

impact the behaviour observed in the precision paradigm. Therefore, the SCT may be a 

valuable mechanism for reducing some of the novelty effects associated with the 

generalisation trials and allow us to make firmer conclusions as to why the hippocampus, if 

active, may have been recruited for those trials (Strange et al., 2005).  

4.4. fMRI Pilot 

4.4.1. Aims and Hypotheses 

 Due to the COVID-19 pandemic, the fMRI experiment moved to an exploratory 

investigation of pilot data as a means of generating testable hypotheses for an independent 

experiment. The present study used a Clustering (Non-Clustered vs Clustered) x Trial Type 

(Memory vs Generalisation) design to investigate memory-based generalisation. 

Implementing this design would allow us to investigate any neural dissociations between 
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memory and generalisation as a function of whether items belonged to the clustered or non-

clustered conditions. Despite no firm hypotheses for the present exploration, a Region of 

Interest (ROI) analysis was conducted on the vmPFC and hippocampus, given their 

involvement in the literature previously discussed (see Introduction). 

4.4.2. Methods 

4.4.2.1. Participants 

 A total of 5 participants (4 female) were recruited. The mean age of the sample was 

24.80 years (SD =  .97). One participant’s behavioural data did not converge during mixture 

modelling and was removed for any behavioural analysis reported. However, given the limited 

sample, the participant was included in the fMRI analysis. Therefore, for behavioural analyses, 

there was a total of 4 participants (3 female) with a mean age of 26.00 years (SD = 3.54). All 

participants were fluent English speakers with normal or corrected to normal vision and no 

known neurological condition. Participants took part in exchange for cash payment. Ethical 

approval was granted by the Research Governance Committee in the York Neuroimaging 

Centre.  

4.4.2.2. Procedure 

 Upon arrival, participants completed the SCT and Study Phase of the precision task, 

identical to the description above. Participants were asked to return ~3 hours later to 

complete the Test phase within the scanner. The average time between Study and Test was 

2.67 hours (SD = 0.83).  

 The Test Phase generally followed the same structure as described previously. 

However, the trial timings were adjusted; these changes are illustrated in Figure 4.5 below. 

These timings were similar to the online experiments described in Chapter 2. The inter-trial 

interval (ITI) was fixed to 7.5s; this consisted of a 0.5s fixation cross, the word alone (1s) and 
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then the circle appearing around the word with a location marker placed randomly around its 

circumference, it was here participants could make a response (< 6s). During the response 

window, participants moved the marker via keypresses to either the location they 

remembered or made a best guess, indicating a final position via another keypress. Once a 

response was given, the circle and marker would dim, and the subsequent trial would begin 

once the full ITI had elapsed (i.e., 6s had passed since being able to make a response). If a 

response were not given within the time window, the subsequent trial would begin after the 

ITI had elapsed.  

 

Figure 4.5. Test Phase: fMRI Experiment. Schematic of the structure for test trials during scanning. 
Trial length was fixed to 7.5s, with experimental trials starting with a fixation cross (0.5s), the word 
alone (1s) and then providing participants with the opportunity to reposition the marker back to 
the location they remember or to make a best guess (< 6s). Once a response was given, the circle, 
marker and word would change in luminance to signify a response was registered, and the trial 
would not continue until the ITI had elapsed. For null trials, an ellipse (…) appeared on the screen 
for the full ITI.  

 
 There were two functional runs. Each run consisted of 132 trials: 90 memory and 30 

generalisation, split evenly across levels of clustering. There were also 12 null trials per run. 

During a null trial, participants would be presented with an ellipse (…) on screen for the full 

ITI. The timing and order of trials within each run was determined using optseq2 (Dale, 1999; 

http://surfer.nmr.mgh.harvard.edu/optseq/) to optimise estimation efficiency. Two trial 

http://surfer.nmr.mgh.harvard.edu/optseq/
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sequences were developed via optseq2. Participants experienced both sequences, but the 

order was counterbalanced across participants. The items presented during each run was still 

randomised.   

4.4.2.3. MRI Acquisition 

 All functional and structural volumes were acquired on a 3T Siemens MAGNETOM 

Prisma scanner equipped with a 32-channel phase array head coil at the York Neuroimaging 

Centre at the University of York. Functional data were acquired using T2*-weighted echo-

planer imaging (EPI) via GRAPPA parallel imaging with an acceleration factor of 2 and a multi-

band acceleration factor of 2. A total of 48 axial slices (0° tilt from AC-PC line) per volume were 

acquired in an interleaved order with the following parameters: TE: 26ms, TR: 1200ms, Flip 

Angle: 75°, Field of View (FOV) = 192 x 192mm, Slice Thickness: 3mm, Acquisition Matrix: 64 x 

64. Two functional runs (825 scans lasting 16.5 minutes each) were collected per participant.  

 To unwarp the data, gradient echo field maps were acquired for each participant with 

the following parameters: TE1 = 4.92ms, TE2 = 7.38ms, TR = 650ms, Flip Angle = 60°, FOV = 

192 x 192mm, 48 slices with a slice thickness of 3mm. Additionally, for the purposes of co-

registration and normalisation, one high-resolution T1 weighted structural image was 

acquired using a magnetisation prepared rapid gradient echo (MP-RAGE) pulse sequence with 

the following parameters: TR = 2300ms, TE = 2.26ms, Flip Angle = 8°, FOV = 256 x 256mm, 

Image Resolution = 1mm3.  

4.4.3. Data Handling and Statistical Analysis 

4.4.3.1. Behavioural Analysis 

 The same behavioural analyses as reported in the behavioural pilot above were 

conducted. In short, a GLME was applied to the data using a gamma distribution to model the 

spread of the data. A log-link function was applied to define the relationship between the 
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dependent variable and the linear combination among variables. Although previous models 

have included two random effects per participant, this led to overfitting in the present data. 

Therefore, all models applied a random intercept for each participant, with no random slopes.  

4.4.3.2. fMRI Pre-Processing 

 Image pre-processing was performed using the Statistical Parametric Mapping 

(SPM12; Wellcome Department of Cognitive Neurology, London, United Kingdom) via 

MATLAB (2019b; Mathworks Inc., Natick, MA, United States). First, EPIs were bias-corrected 

by segmenting the first image and applying the bias field to all subsequent EPI’s. Following 

this, EPIs were corrected for head motion (realignment), aligned to the first scan of each run, 

and corrected for magnetic field inhomogeneities (unwarping) using voxel-displacement maps 

derived from the phase and magnitude field maps of each subject. The structural T1 image 

was then co-registered to the mean EPI. A manual reorientation of the images was then 

undertaken to ensure volumes were oriented to the anterior commissure. EPI images were 

then spatially normalised to Montreal Neurological Institute (MNI) space with transformation 

parameters derived from warping each participant’s structural image to a T1-weighted 

average template image (using the DARTEL toolbox; Ashburner, 2007). Normalised images 

were spatially smoothed using an isotropic Gaussian kernel of 8mm full width at half 

maximum. 

4.4.3.3. fMRI First-Level Analysis 

 Subject-specific models were constructed where trials were modelled by convolving a 

boxcar function, based on stimulus onset and event duration, with a canonical hemodynamic 

response function. Though trial lengths were fixed to 7.5s, the duration time used was from 

stimulus onset (i.e., when the word appeared on-screen) to participant response. In instances 

where a response was not given, the entire 7s interval was modelled, ignoring the fixation 
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cross. The model contained four regressors of interest for each functional run representing 

the variables: non-clustered memory, clustered memory, non-clustered generalisation and 

clustered generalisation. Six additional regressors were also included representing movement 

parameters estimated during spatial alignment (three rigid-body translations and three 

rotations). Voxel-wise parameter estimates for each regressor were obtained via restricted 

maximum-likelihood estimation, using a temporal high-pass filter (128Hz) to remove low-

frequency drifts and applying a first-order autoregressive model (Friston et al., 2002) to 

account for temporal autocorrelation. 

4.4.3.4. MRI Group-Based Analysis 

4.4.3.4.1. Whole-Brain  

 A whole-brain voxel-wise analysis was conducted. First-level contrasts of the 

parameter estimates for each of the four experimental conditions (averaged across the two 

functional runs) for each participant were entered into a second-level clustering (non-

clustered and clustered) and trial type (memory and generalisation) repeated measures 

ANOVA to examine both main effects and the interaction. All effects were thresholded at p < 

.001 uncorrected, with an extent threshold of 10 voxels.  

4.4.3.4.2. ROI Definition 

 Given previous work implicating both the hippocampus and vmPFC in schema use, 

anatomical masks were created using the automated anatomical atlas (AAL; Tzourio-Mazoyer 

et al., 2002) implemented in the Wake Forest University (WFU) PickAtlas Toolbox (Maldjian et 

al., 2003). Both the left and right hippocampus were included for the hippocampal ROI. For 

the vmPFC, as there is no devoted label, both left and right gyrus rectus and the left and right 

medio-orbital section of the frontal cortex were used; this is identical to other experiments 

(e.g., Liu et al., 2016; Raykov et al., 2020). The mean beta values for each experimental 
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condition were then extracted using MarsBaR (Brett et al., 2002). A linear mixed model (LMM) 

was applied to these estimates to examine the effects of interest, with random intercepts for 

subject. The LMM used a restricted maximum likelihood estimation fitting method, with the 

covariance pattern estimated using the log-Cholesky parameterisation; this was similar to the 

covariance pattern used for the GLME’s. Estimation of the LMM used the MATLAB Statistics 

and Machine Learning Toolbox. Cohen’s d and Bayes Factors were computed similarly to the 

GLME’s using only the fixed effects. Note, given the limited sample, caution should be taken 

with interpreting all effects reported.   

4.4.4. Results 

4.4.4.1. Behavioural Analysis 

4.4.4.1.1. Memory 

 First, the behavioural effects for memory were assessed. For total information, the 

clustered (M = 0.62, SE = 0.27) was numerically greater than the non-clustered (M = 0.47, SE 

= 0.27) condition, but not significantly different, t(6) = 1.61, p = .158, d = 1.14, BF01 = 0.92. The 

same pattern of effects was found for accessibility, with clustered (M = 0.76, SE = 0.29) being 

numerically larger than non-clustered (M = 0.58, SE = 0.29), t(6) = 1.66, p = .148, d = 1.17, BF01 

= 0.88. Both results are in line with the pattern of effects previously observed. However, for 

precision, the clustered condition (M = 1.52, SE = 0.07) showed greater numerical precision 

compared to the non-clustered (M = 1.50, SE = 0.07), t(6) = 0.17, p = .873, d = 0.12, BF01 = 1.90; 

this is contrary to the pattern typically found. Nevertheless, despite the mean estimates 

suggesting a different direction of effects for precision, the difference of .02 in the mean 

estimate suggests this may be the product of noise due to the small sample (N = 4 for the 

behavioural analyses).  
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4.4.4.1.2. Generalisation 

 Examination of locations selected for novel items found that clustered items (M = 0.41, 

SE = 0.19) were placed more similarly to the experimentally imposed pattern (i.e., von Mises 

distribution) than the non-clustered (M = 1.24, SE = 0.19) items, t(6) = 4.05, p = .007, d = 2.86, 

BF01 = 0.005. This finding is in line with previous work reported throughout the thesis and 

shows that participants may be able to generalise the pattern presented at study to novel 

items.  

4.4.4.1.3. Avoidance 

 Finally, an examination of whether the probability densities of non-clustered trials, 

centred to the experimental cluster, differed from a uniform density in both memory and 

generalisation was undertaken. For memory trials, there was significantly reduced density for 

non-clustered items (M = 0.11, SE = 0.08), t(3) = 4.14, p = .013 (one-tailed), d = 2.07, BF01 = 

0.003. This was also true for generalisation trials (M = 0.06, SE = 0.24), t(3) = 3.89, p = .015 

(one-tailed), d = 1.95, BF01 = 0.007. These results are both in line with expectations, showing 

evidence of avoidance in placing non-clustered items close to the cluster centre.  

4.4.4.2. fMRI Analysis 

 Table 4.1 shows the output for the whole-brain voxel-wise analysis. For the present 

analysis, all peak-level activations that were significant at an uncorrected p < .001 threshold 

are presented. However, the p-values reported are corrected for family wise-error. Region 

labels were acquired using the AAL. However, the region labelled as putamen via the AAL also 

contained the caudate nucleus (see Figure 4.6). As such, this area of activation is referred to 

as the dorsal striatum to encapsulate both regions. From the whole-brain analysis, clustering 

had no suprathreshold effects. However, both trial type and the interaction with clustering 

did. Areas such as the dorsal striatum, ventral striatum and cerebellum were significantly 
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active before correction. However, following family-wise error correction, only the dorsal 

striatum showed marginal significance (p = .057). 

Table 4.1.  

Statistical Results of the Whole Brain Analysis, with labels from the 

AAL Atlas.  

Region Voxels 
MNI Coordinates 

z pFWE 
X Y Z 

Type 

   L Putamen 464 -18 18 -4 4.88 .057 

   R Caudate 87 22 28 8 4.26 .394 

   R Ventral Striatum 120 14 12 -8 3.98 .689 

   L Cerebellum 13 -16 -56 -42 3.34 .998 

Clustering 

No suprathreshold effects present 

Type x Clustering 

   R Putamen 63 -10 24 0 3.71 .914 

   L Caudate 11 0 10 8 3.45 .992 

Note. Effects thresholded at p < .001 uncorrected and an extent 

threshold of 10 voxels. Voxels are listed in MNI standard space. L = 

Left, R = Right.  

 

 MarsBaR was used to extract the beta parameters for the dorsal striatum using the 

peak voxel coordinates (reported in Table 4.1, above) with a 10mm sphere. The beta 

parameters were entered into a linear mixed model as described for the anatomical ROI’s (see 

ROI Definition). As the betas were selected from the peak voxel coordinates from the trial type 

contrast using the repeated measures ANOVA, this effect was not reported. However, the 

direction of the effect was assessed, which showed that memory trials had greater activation 

than generalisation (see Figure 4.6). Nevertheless, no main effect of clustering (F(1,16) = 3.65, 

p = .074, d = 0.62, BF01 = 0.75), nor an interaction (F(1,16) = 3.35, p = .086, d = 0.95, BF01 = 

0.75) were found. However, these were marginally significant.  

file:///C:/Users/jamie/Downloads/Chapter%204%20-%20fMRI%20Planning%20Chapter%20(30.09.2021)%20-%20AJH%20GG.docx%23_ROI_Definition
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Figure 4.6. Whole-brain and ROI Analysis Heatmaps and Descriptives. Above each of the error-bar 
plots are the peak activations within each region: (A) Dorsal Striatum, (B) Hippocampus, and (C) 
vmPFC viewed from the axial, sagittal and coronal planes. Heatmaps represent the t-test contrast 
for memory trials greater than generalisation trials. The error-bar plots show the mean estimates 
derived for each ROI as a function of clustering and trial type. t-value colour bars are presented to 
show the extent of activation within an ROI. Across all plots, dots represent the beta parameters for 
individual subjects. Error bars represent the 95% CI around the estimated mean.  

 
 Subsequently, the anatomical ROIs for the hippocampus and vmPFC were analysed to 

examine whether any effect of clustering, trial type or interaction were present. Figure 4.6 

shows the mean activation for these comparisons.  

 For the hippocampus, there was no significant difference in BOLD activity as a function 

of clustering, (F(1,16) = 0.03, p = .870, d = 0.05, BF01 = 3.14), trial type (F(1,16) = 0.04, p = .840, 

d = 0.07, BF01 = 3.12) nor an interaction between the two (F(1,16) = 0.02, p = .900, d = 0.07, 

BF01 = 2.28). These results suggest the hippocampus did not show differences in BOLD 

activation across conditions. In contrast, for the vmPFC, there was a main effect of trial type, 

with memory trials being associated with greater BOLD response than generalisation trials, 
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F(1,16) = 5.49, p = .032, d = 0.76, BF01 = 0.35. However, there was no main effect of clustering 

(F(1,16) = 0.37, p = .549, d = 0.20, BF01 = 2.74), nor an interaction (F(1,16) = 0.60, p = .449, d = 

0.40, BF01 = 1.89). These patterns of results suggest the activation of the vmPFC during 

memory trials was not differentially affected based on whether the trial was clustered or non-

clustered.  

4.4.5. Discussion 

 Due to the COVID-19 pandemic, a preliminary analysis was undertaken on the existing 

fMRI data. Though firm conclusions cannot be drawn with this sample (N = 5), the results 

indicate possible differences in vmPFC and dorsal striatal activation based on trial type. In both 

instances, there was greater BOLD activation during memory trials compared to 

generalisation. However, no significant effects were found when assessing the hippocampal 

ROI, suggesting this region was equally as active (or inactive) across trials irrespective of 

condition. Below a brief discussion of possible explanations for these patterns of activation is 

provided. 

 Finding the vmPFC to be more active during memory than generalisation may relate to 

its involvement in interference (Incisa della Rocchetta & Milner, 1993; Spalding et al., 2018). 

In their study, Spalding et al., (2018) had patients with vmPFC lesions and controls complete 

an associative inference task. Participants learned associations across items: A-B and B-C. It 

was found that patients were impaired in inferring that A and C were related through B but 

unimpaired in their ability to recall associated pairs (e.g., B-C). However, despite memory 

appearing similar to controls in the task, patients did struggle to retrieve initially learned 

associative pairs (e.g., A-B) compared to retrieving the second pair (e.g., B-C). Due to the 

vmPFC damage, retroactive interference may have taken place, meaning that recall of the 

original A-B pairing was hindered compared to the more recently encoded item (i.e., B-C). This 
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finding would suggest that the vmPFC serves a role in preventing interference among 

competing items and is in line with other work. Concerning the present work, this may explain 

why there was greater vmPFC activation during memory compared to generalisation trials. 

During memory, related information may become active and need to be suppressed so that 

location judgements are not biased by these overlapping events, but instead rely mainly on 

the individual experience. In contrast, during generalisation, allowing for more interference 

from several experiences may allow for greater generalisation, meaning vmPFC activation was 

decreased.   

 There was no evidence of differential hippocampal activation within the present 

paradigm. Based on the previous literature, the hippocampus was expected to show 

differences in activity, being more active during memory than generalisation (Aggleton & 

Brown, 1999; Korkki et al., 2021; Moscovitch et al., 2016; Richter et al., 2016). Finding no 

differential activation within the hippocampus may be due to signal dropout and lack of power 

(Olman et al., 2009) and/or due to not analysing the hippocampus along the anterior-posterior 

axes separately (Bowman & Zeithamova, 2018, 2020; Collin et al., 2015; Frank et al., 2019; 

Schlichting et al., 2015). This proposal is discussed in more length in the Lessons Learned 

section below.  

 Though only marginally significant, the dorsal striatum was more active during 

memory than generalisation; this may be related to its involvement in memory gating (McNab 

& Klingberg, 2008). In their network model, O’Reilly and Frank (2006) proposed that 

communication between the striatum and prefrontal cortex (PFC) ensures that items with high 

utility (i.e., leading to the correct response) are maintained in working memory when making 

a decision, while irrelevant information is not. The dorsal striatum and vmPFC are more active 

during memory than generalisation in the present work. Speculatively, there may be 

file:///C:/Users/jamie/Downloads/Chapter%204%20-%20fMRI%20Planning%20Chapter%20(30.09.2021)%20-%20AJH%20GG.docx%23_Lessons_Learned
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functional coupling between the two regions as the striatum attempts to modulate what items 

will be relevant in the current context and which are not, whilst the vmPFC modulates this 

process, either to decrease interference or support schematic influences on memory. Working 

together, the regions may allow for competing information to not bias location judgements 

during memory trials. However, during generalisation, allowing more information to enter 

working memory to help weight the location judgment may be beneficial to make a more 

accurate judgement.   

 Interestingly, no differences based on the effect of clustering – either alone or 

interacting with trial type – were found. One interpretation may be that in both the clustered 

and non-clustered conditions, participants perceived a pattern. This is evidenced by the 

avoidance effect within the non-clustered condition. The presence of the avoidance suggests 

the possibility that two patterns are perceived by participants – one in the clustered condition 

and the other in the non-clustered condition. Consequently, the two conditions are no longer 

different. Instead, the clustering manipulation will work similarly to other studies where two 

schemas on opposite sides of the circle were present (e.g., Tompary et al., 2020). As such, for 

the present work, finding a lack of differences based on clustering may be explained by the 

presence of the avoidance effect alone. Participants perceiving both conditions as having a 

pattern may result in both relying on the same underlying neural processes.  

 Though firm conclusions cannot be made, the preliminary findings of the present work 

suggest that the vmPFC and dorsal striatum may play important roles in the memory 

behaviour observed in our task. Based on previous work, the vmPFC may attempt to prevent 

interference, whilst the dorsal striatum gates working memory from irrelevant information. In 

this way, the two regions may serve complementary roles. Caution is needed though given 

this is a reverse inference based on previous research. Though there is little evidence of 
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differences in hippocampal activation based on the conditions of interest, this may be due to 

how the region was analysed in the present case. Overall, these findings give preliminary 

insight into the neural correlates of memory-based generalisation using the precision task.  

4.5. Lessons Learned 

 This chapter aimed to provide a preliminary investigation into the neural correlates of 

memory-based generalisation using the precision paradigm. This section examines the lessons 

learned from these preliminary analyses, including possible design changes, analyses plans, 

and open questions, which could be used in an independent experiment.    

4.5.1. Summary of Findings 

 Two studies are reported in this chapter: the behavioural pilot and the fMRI pilot. The 

behavioural pilot was undertaken to investigate how the inclusion of the SCT may influence 

the behaviour observed within the precision paradigm. The SCT was included to deal with item 

novelty effects that may have explained hippocampal activation during our task (Strange et 

al., 2005). The pilot found no evidence of changes in behaviour resulting from the SCT being 

included, with the results from the pilot not being significantly different from those in Chapter 

2. Given that only five fMRI datasets were collected, a preliminary analysis of the collected 

data was undertaken. Here greater activation in the vmPFC (significant) and dorsal striatum 

(marginally significant) during memory trials compared to generalisation. Surprisingly, there 

was no differential activation of the hippocampus during the task.  

4.5.2. Design Considerations 

 During the previous discussion, it was speculated that the vmPFC and dorsal striatum 

might work together, given that they were both more active during memory trials. In their 

neural network model, O’Reilly and Frank (2006) proposed that the dorsal striatum and PFC 

work together to maintain relevant information and keep irrelevant information out of 
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working memory. Speculatively, memory trials would require greater vmPFC and dorsal 

striatal activation to ensure less bias in the reported location where more weight should be 

given to the individual memory. In contrast, generalisation trials may require more 

information to enter working memory to make a location judgment. Therefore, in future, it 

may be helpful to gain subjective information from participants concerning whether they 

perceive a trial as memory (i.e., old) or generalisation (i.e., new). Getting such information 

may allow us to better understand the dorsal striatal and vmPFC activation during memory by 

ensuring only memory and not generalisation instances are assessed. Using the same analysis 

procedure used already (i.e., 2x2 GLM), but relying on the subjective judgements of trial type, 

the relationship between the vmPFC and dorsal striatum could be examined more closely. 

Specifically, it would be predicted that in trials where participants perceived an item as old, 

there should be increased BOLD response in the vmPFC and dorsal striatum compared to trials 

perceived as new. 

 Presently no differences based on the effect of clustering were observed; this might 

be due to both conditions being processed as possessing a pattern. However, it is also possible 

that the effects of clustering may only be observable at the point of encoding as participants 

learn the word-location associations. For example, studies have shown a shift from retrieval-

based to encoding-based representations as more information is accumulated (Bowman et 

al., 2020). This is also proposed in theories such as SLIMMs (van Kesteren et al., 2012). Given 

that the clustered condition would be the one to develop a schema due to the overlapping 

patterns across events (Ghosh & Gilboa, 2014), there may be a shift in the regions responsible 

for encoding this material. Therefore, if possible, it may be helpful to have participants 

complete both encoding and retrieval during scanning as a means of assessing changes in 

regions of activation associated with the task.  
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4.5.3. Analysis Considerations 

 Along with analysing the data using the approaches applied here, it may also be useful 

to assess whether there is evidence of functional coupling between the vmPFC and dorsal 

striatum during the task. Specifically, functional connectivity analyses could be used to infer 

whether the two regions are working in tandem based on their correlated BOLD signal over 

time. This may provide more weight to my speculation that the two regions are working 

together to prevent interference and maintain only relevant information in working memory.  

 Future experiments may wish to analyse hippocampal activity based on the anterior 

and posterior sections instead of the hippocampus as a whole, as was done here. Recent work 

has found that more anterior portions of the hippocampus are involved in generalisation, 

whilst the posterior is involved in memory (Bowman & Zeithamova, 2018, 2020; Collin et al., 

2015; Frank et al., 2019; Schlichting et al., 2015). As such, in future analyses, it may be 

worthwhile to divide the long-axis of the hippocampus into the anterior and posterior portions 

to examine possible functional dissociations. Though subtle, examining the heatmap for the 

hippocampal ROI (see Figure 4.6), suggests possible evidence of differential recruitment of the 

region based on trial type, with greater activation for memory trials towards the posterior and 

reduced activation in the anterior portion. This may explain why no hippocampal effect was 

found as the small cluster of activation in the posterior region was masked when the average 

activity across the entire ROI was taken. Therefore, future work should ensure that the 

anterior and posterior division is used when analysing the hippocampus, particularly when 

examining memory and generalisation in the same paradigm.  

 Finally, concerning the lack of clustering effect, it may be helpful to consider methods 

such as Naïve Bayesian or Support Vector Machine classifiers; this has been done to classify 

cognitive states in other work (e.g., Lee et al., 2009; Ramasangu & Sinha, 2014). Specifically, 
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providing a subset of the fMRI images for each participant and assessing whether the classifier 

could differentiate between clustered and non-clustered images. Using these methods may 

allow us to then identify the neural correlates associated with clustering. If it is the case that 

the two cannot be differentiated, this may support the proposal that both are perceived as 

possessing a pattern. If they can be differentiated, it will provide insight into how the two are 

dissociable at a neural level. One belief, based on previous work, is that the vmPFC may be an 

important area for distinguishing between the two conditions; this relates to its involvement 

in developing schematic representations of overlapping events (Bowman & Zeithamova, 2018; 

Ghosh & Gilboa, 2014; van Kesteren et al., 2012). However, it should be noted that some work 

indicates that the hippocampus may be capable of creating generalised representations of 

overlapping events (Schlichting et al., 2015).   

4.5.4. Open Questions 

 Given the points discussed within the chapter, the following questions were developed 

for the analysis of an independent dataset:  

1. Are there changes in the regions active during encoding, shifting from 

hippocampal to more vmPFC throughout learning?  

2. Does the posterior hippocampus show greater activation during memory trials, 

whilst the anterior shows greater activation during generalisation trials?  

3. Is there greater activation in the dorsal striatum and vmPFC during memory 

trials compared to generalisation?  

4. Do the dorsal striatum and vmPFC show evidence of functional connectivity?  

5. Can the effect of clustering be differentiated using image classifiers (e.g., Naïve 

Bayesian or Support Vector Machines)?  
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4.6. Conclusions 

 The present chapter examined the neural correlates of memory-based generalisation. 

First an exploration of how the inclusion of an SCT could impact behaviour in the precision 

paradigm was undertaken, noting no change due to its inclusion. Subsequently, a preliminary 

analysis of fMRI data occurred, finding the vmPFC and dorsal striatum to be more active during 

memory than generalisation. However, no differences were found within the hippocampus. 

From these results, possible changes to the study's design, including implementing subjective 

judgments and scanning at both Study (encoding) and Test (retrieval) have been suggested. 

Further, targeted analyses were proposed. For instance, functional connectivity analysis to 

assess the relationship between vmPFC and dorsal striatum and image classifiers to distinguish 

the regions involved in processing clustered and non-clustered information. Overall, the 

preliminary insight provided by the present chapter may support future work using the 

precision paradigm to understand memory-based generalisation. 
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Chapter 5: 
General Discussion 

 
 
 
 
 
 
 
 
 

Part of the General Discussion were also presented in the preprint: Cockcroft, J. P., Berens, S., 

Gaskell, M., & Horner, A. J. (2021, August 24). Schematic information influences memory and 

generalisation behaviour for schema-relevant and -irrelevant information. 

https://doi.org/10.31234/osf.io/nzurq. The content was moved to the present Chapter to 

increase continuity across chapters.  

https://doi.org/10.31234/osf.io/nzurq
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 This thesis had three aims: (1) to explore memory-based generalisation using the 

precision paradigm, (2) to identify whether schematic information could influence information 

both relevant and irrelevant to itself, and (3) understand the neural processes of memory-

based generalisation. In order to do this, the precision paradigm was used. Here, participants 

were required to retrieve word-location associations around a circle. A pattern was present in 

one set of word-locations (i.e., the clustered condition), while the other had no underlying 

pattern (the non-clustered condition). The presence of a pattern in the clustered condition 

could lead to a schematic representation being developed (Ghosh & Gilboa, 2014; van 

Kesteren et al., 2012). As such, this paradigm offered an opportunity to examine how schema 

presence biased memory and generalisation behaviour. Across three chapters, an exploration 

of the behavioural, computational, and neural processes involved in memory-based 

generalisation was undertaken.   

5.1. Chapter Summaries 

5.1.1. Chapter 2  

 In Chapter 2, an investigation into how the presence of a pattern (or schema) in one 

condition influenced behaviour in both the clustered and non-clustered conditions was 

undertaken. In this chapter, four experiments are presented. The first looked at memory and 

generalisation behaviour immediately after encoding. The second assessed the same 

measures but with a 24-hour delay between study and test. The inclusion of a delay period 

was to allow for potential consolidation to take place and magnify the effects observed in 

Experiment 1. Subsequently, these two experiments were replicated through two online 

studies to assess the robustness of the effects found.   

 One of the most interesting findings from this chapter was how the presence of a 

pattern affected generalisation behaviour for both relevant (clustered) and irrelevant (non-
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clustered) information. Specifically, participants showed an “avoidance” behaviour, whereby 

they were less likely to place non-clustered novel items within the same area of the circle as 

clustered items, despite those items being equally likely anywhere around the circle. 

Interestingly, this behaviour did not change as a function of time, showing the behaviour both 

at immediate test and following a 24-hour delay. Despite the non-clustered items being 

schema-irrelevant, participants behaviour treated this condition as though it did itself have a 

pattern present – specifically on the opposite side of the circle. Alongside the avoidance effect, 

it was observed that participants could extract and use the pattern within the clustered 

condition to make inferences regarding locations for novel items. Finding immediate 

generalisation behaviour corroborates other findings within the literature (e.g., Djonlagic et 

al., 2009; Sweegers & Talamini, 2014). 

 Examination of the memory measures found that clustered items were more 

accessible than non-clustered, but reporting accuracy (precision) was greater in the latter than 

the former condition. There was an effect of delay for both memory measures, whereby fewer 

items were remembered (accessibility), and greater error was found (i.e., less precision), after 

a 24-hour delay period; this is not surprising as memory declines rapidly post-learning 

(Ebbinghaus, 1885; as cited in Postman, 1968). However, finding that generalisation remained 

stable despite a loss of memory does give weight to the idea of a schematic representation 

being formed (Ghosh & Gilboa, 2014). Further, finding that memory accessibility benefited 

from the schematic representation but at the expense of precision corroborates the effects 

described throughout the literature (Arpit et al., 2017; Berens et al., 2020; Rosenbaum et al., 

2009; Sekeres et al., 2016).   
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5.1.2. Chapter 3 

 The subsequent chapter (Chapter 3) explored mechanisms that may explain the 

avoidance behaviour observed in Chapter 2. To do this, computational modelling techniques 

were used to simulate the data presented in Chapter 2. Each model applied a different 

mechanism to generate a set of responses for the precision task. From there, the model 

output was evaluated to understand whether the patterns presented mapped onto the 

pattern of behaviour observed in Chapter 2. For this chapter, three models were created. The 

first family of models aimed to assess whether basic forms of encoding or retrieval-based 

models could produce the avoidance behaviour. Subsequently, the second family of models 

modulated the retrieval probability of items based on their proximity to the cluster centre. 

Finally, the third model provided an alternative account for the set of behavioural effects 

observed in Chapter 2 by applying an interference mechanism at both encoding (proximity-

based interference) and retrieval (semantic-based interference).    

 Unsurprisingly, the first family of models that used basic forms of encoding or retrieval-

based generalisation could not reproduce the avoidance behaviour. Therefore, there was a 

need to consider other factors that may influence how memories are relied upon at the point 

of generalising.  To examine one potential influence, the second family of models was 

developed. This family of models assessed how modulating retrieval probability based on 

proximity to the cluster may influence generalisation behaviour. Specifically, the model 

modulated retrieval probability based on an item’s proximity to the cluster centre. For 

clustered items, higher probabilities were given to those items closer to the cluster centre. In 

contrast, non-clustered items were given higher probabilities the further from the cluster 

centre they were. Using this method did result in the avoidance behaviour being present 
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during generalisation. However, it also meant avoidance was present during non-clustered 

memory trials.  

 Based on the output of the second set of models, an analysis of the non-clustered 

memory data from Chapter 2 and Berens et al. (2020) occurred. Across both analyses, there 

was evidence of an avoidance in non-clustered memory. This finding supported the second 

set of models output by showing that an avoidance behaviour should be present for memory 

and generalisation. Albeit, the effect in generalisation is larger than in memory (this is 

discussed in more detail below). Along with supporting the second model, these results 

suggested that a pattern in one condition affects behaviour towards items that are irrelevant 

to the pattern itself regardless of whether the items belonged to memory or generalisation 

trials.  

 The final model attempted to provide a more mechanistic explanation for the 

avoidance effect beyond schema presence. Specifically, the model explored whether an 

interference mechanism, using both proximity-based interference (i.e., modulating retrieval 

probability based on proximity of other word-locations) and semantic-based interference (i.e., 

spreading activation to other semantically related items when retrieving the target item) could 

produce this behaviour in both memory and generalisation. Using this mechanism, the model 

replicated the broad patterns of behaviour from Chapter 2, thus providing an alternative 

interpretation for the findings beyond schema.   

5.1.3. Chapter 4 

 Chapter 4 provided a preliminary analysis of an fMRI dataset using the precision 

paradigm to explore memory-based generalisation. The aim of the chapter was twofold. First, 

it aimed to assess whether the inclusion of a semantic categorisation task (SCT) prior to taking 

part in the precision task influenced the behaviour of participants. From there, it aimed to 
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examine the neural correlates of memory-based generalisation using a pilot sample to identify 

possible design changes and open questions.  

 The SCT was implemented to reduce item novelty effects that could lead to 

hippocampal responding during fMRI (see Kumaran & Maguire, 2007, for a discussion). 

However, in Chapter 2, participants did not often refer to the superordinate categories used 

within the task (i.e., human-made and natural). Instead, participants often focused on the 

basic categories (e.g., plants, stationary). Therefore, the inclusion of the SCT raised a concern 

that it could alter the behaviour of participants during the precision task due to shifting their 

perception from basic categories to superordinate. However, no change from the mean values 

obtained in Chapter 2 was found when implementing the SCT. Therefore, it was used in the 

fMRI experiment.  

 For the fMRI task, an investigation into the neural correlates of memory-based 

generalisation took place. Participants completed the SCT and study phase of the precision 

task outside of the scanner. In the scanner, participants were required to either remember 

the location associated with a word or make a best guess. It was found that the vmPFC showed 

greater activation during memory trials compared to generalisation. The dorsal striatum was 

also marginally significant, with greater activation during memory than generalisation trials. A 

consideration of possible design and analysis changes in light of the findings were discussed. 

For instance, scanning during both encoding and retrieval to assess changes in neural 

responding for the clustering manipulation, analysing the long axis of the hippocampus based 

on the anterior and posterior regions to examine divisions of labour for memory (posterior) 

and generalisation (anterior), or the inclusion of subjective judgements to allow for 

distinguishing between trials relying on memory and those relying on generalisation.  
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5.1.4. Chapter Outcomes 

 Across three chapters, an exploration of memory-based generalisation occurred. At 

the behavioural level, it was evident that the presence of a pattern in one condition affected 

members within the condition itself and other irrelevant conditions. This effect could be 

explained via schema influence – the idea that schema bias memory for events based on 

congruency with expectations. However, the computational chapter challenged this view and 

proposed an alternative mechanism to explain this behavioural effect: interference. Under 

this view, the presence of an avoidance behaviour in the non-clustered condition is the result 

of proximity- and semantic-based interference, without the need to form a schematic 

representation of events. The final chapter explored the neural correlates of memory-based 

generalisation, finding preliminary evidence that the vmPFC and dorsal striatum may play 

important roles in this behaviour. However, firm conclusions cannot be made given the limited 

sample size and possible design and analysis considerations.  

5.2. Implications and Future Directions 

5.2.1. The Precision Paradigm 

 Chapter 1 discussed why the precision paradigm was used in the present work. Briefly, 

the paradigm provided the opportunity to get a more sensitive measure of memory-based 

generalisation as it allowed for the examination of patterns extracted and used by 

participants. In contrast, most studies used binary tasks to assess memory-based 

generalisation, such as the face-location paradigm (Sweegers & Talamini, 2014) or associative 

inference (Carpenter & Schacter, 2017; Kumaran, 2013; Preston et al., 2004; Zeithamova et 

al., 2012). Though these tasks offer the opportunity to assess whether generalisation is 

possible, they are limited in their sensitivity to understand the patterns extracted and used by 

participants, instead focusing on “correct” or “incorrect” responses. Using the precision 
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paradigm in the present work identified ways in which a pattern (or schema) in one condition 

affected both pattern-relevant and -irrelevant material. This novel finding provides unique 

insights into how schema may influence behaviour (see the Schema Irrelevance sub-section 

below for more discussion on this point). 

 Additionally, the paradigm allowed for assessment of not only memory accessibility 

(i.e., proportion remembered) which many studies use (e.g., Preston et al., 2004; Sweegers & 

Talamini, 2014), but also memory precision (i.e., angular error from the target to selected 

location). Therefore, it was possible to assess how memory and generalisation were affected 

by schematic representations at a finer level of detail than is typically offered in other 

paradigms. Consequently, future work may benefit from the continued use of this paradigm 

to explore both memory and generalisation.  

5.2.2. Avoidance Behaviour 

 Throughout the thesis, evidence has been presented demonstrating the presence of 

an avoidance behaviour for the non-clustered (schema-irrelevant) condition. This has been 

shown in both the data collected as part of the thesis and a secondary dataset that used a 

different set of words and did not assess generalisation (Berens et al., 2020); this effect is 

therefore robust. However, an open question is what this may mean in the broader context 

of the literature on schema-based effects.  

5.2.2.1. Schema Irrelevance: Control Conditions and Theories 

 The avoidance results highlight that schematic information can affect memory and 

generalisation behaviour for schema-relevant and -irrelevant information. Experimentally, 

these results have implications for studies that use schema-irrelevant information as a control 

condition (e.g., Frank et al., 2018; Greve et al., 2019), where behaviour is assumed not to be 

affected by the presence of a schema. These studies show that memory performance is 
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enhanced for schema-congruent and -incongruent information relative to schema-irrelevant 

information. The present results suggest that the presence of schematic information can bias 

memory for these irrelevant items. Therefore, schema may not boost memory for relevant 

information but suppress the retrieval of irrelevant information.  

 Changes in performance for schema-irrelevant information may have been previously 

missed due to a lack of appropriate control comparison. For example, in Greve et al. (2019), 

retrieval of schema-irrelevant items may have been reduced by the presence of schematic 

information, resulting in what appears to be a schema benefit. Instead, the results may be 

caused by the presence of a schema biasing (i.e., hindering) the retrieval of schema-irrelevant 

information. Due to comparing behaviour in the non-clustered condition to that expected of 

a uniform distribution (representing the distribution of locations expected if no biases were 

present), the present analysis demonstrated biases for schema-irrelevant information that 

may have been missed in previous studies. Therefore, future studies should be aware that a 

schema-irrelevant control condition may not be an appropriate baseline given the present 

results. 

 Theoretically, the results provide insight into schema processing. They suggest that 

schematic information affects memory and generalisation behaviour immediately after 

encoding for schema-relevant and -irrelevant information in a manner that is not predicted by 

existing schema theories. For example, in the SLIMMs model (van Kesteren et al., 2012), the 

predominant focus is on schema-congruence and incongruence and how this may affect 

neural processing. However, as shown in the present work, schemas also affect processing for 

schema-irrelevant information. Given that this effect was found across the present work and 

a secondary analysis, theories must incorporate information on how schemas may bias 
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behaviour for events irrelevant to themselves, not simply support enhanced memory for 

congruent and incongruent events.   

5.2.2.2. Schema vs Interference 

 Throughout the thesis, it is proposed that schema-driven effects may explain the 

patterns of behaviour presented. Schema have been shown to bias the recall of events, 

increasing the number of false alarms and leading to errors in reporting events (Bartlett, 1932; 

Berens et al., 2020; Brewer & Treyens, 1981; Lew & Howe, 2017). Therefore, in the present 

thesis, finding that the non-clustered condition showed a bias away from the area of the circle 

where clustered items were located (i.e., those with a schematic representation) provided 

evidence consistent with a schema bias for irrelevant information.  

 An alternative interpretation may be that two schemas were formed – one acting for 

the clustered and the other the non-clustered condition. Indirect support for this notion may 

come from the lack of differential activation for the clustering effect in the fMRI pilot (Chapter 

4); this suggests that both conditions were treated identically at a neural level. Of course, this 

is a reverse inference, and firm conclusions cannot be drawn. However, it would seem 

computationally expensive for two schemas to be formed that act on the same behaviour. 

Instead, one schema may be formed that identifies when an item does not belong to the 

cluster, it should be placed elsewhere; this would reduce the computational expense. 

Although, given the debrief information of participants from Chapter 2, it was clear 

anecdotally that participants were not explicitly using this strategy. The need for explicit 

awareness is discussed in more detail below.  

 Though focusing on schematic effects was central to the thesis, consideration for 

alternative mechanisms for the avoidance effect were made. For instance, in Chapters 2 and 

3, it was highlighted that mechanisms such as mutual exclusivity, base rate neglect or 
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interference might provide alternative interpretations for this effect. Subsequently, in Chapter 

3, the interference model developed provided a parsimonious explanation for the avoidance 

behaviour. Specifically, the model showed that proximity- and semantic-based interference 

were sufficient to produce an avoidance behaviour in both memory and generalisation. 

Overall, the model provided a good fit for the data reported in Chapter 2 and demonstrated 

no need for a schematic representation to produce the observed effects.   

 Along with providing a parsimonious solution for the data reported in Chapter 2, the 

interference model may explain some of the behavioural effects observed in other 

experiments. As mentioned previously, studies have speculated that they have studied 

schema-based processing using the precision paradigm (e.g., Berens et al., 2020; Tompary et 

al., 2020). However, the present model proposes that these findings may be better explained 

via interference. In the case of Tompary et al. (2020), they investigated how schema use 

changed throughout a 1-week period. In their study, two clusters were used, which appeared 

180° away from one another. They found that schema use increased over time, as evidenced 

by an increased tendency to report items closer to the mean of their cluster. However, the 

accuracy of this schematic representation declined as memory for the individual items 

themselves did. More specifically, one-week post-learning there was greater divergence 

between the patterns presented at study and the ones produced by participants compared to 

when testing occurred 24-hours post-learning. Therefore, despite an increased reliance on the 

central tendency across events (i.e., reporting items closer to the mean), the schema itself 

became increasingly less like the originally learned pattern. As schemas are proposed to be 

stable representations that function independently of the individual experiences themselves 

(see Ghosh & Gilboa, 2014 for review), finding that schema use declined at the same rate as 

memory for the individual items may suggest the use of alternative mechanisms. Instead, the 
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behaviour observed in Tompary et al. (2020) may be driven by retrieval-based mechanisms, 

similar to those used in the interference model described in Chapter 3. Specifically, location 

judgements may have been based on a weighting of retrieval probability (determined by 

location proximity) and spreading activation of related items (determined by semantic 

proximity). Using these weightings, location judgements may appear to show a bias towards 

the cluster, with participants seemingly showing more “schema-like” behaviour. 

 Similarly, the above conclusion about interference rather than schema could be 

applied to the Brady et al. (2018) study. In Brady et al. (2018) participants learned to associate 

objects with a particular colour. For instance, lamps with the colour green. The colours 

associated with an object category were drawn from a von Mises distribution, with the 

primary colour (e.g., green) being the mean of the distribution and therefore being most likely 

to be appear with an object category. Other nearby colours (e.g., yellow or blue) would also 

be associated with this category, but to a lesser degree. It was found that participants would 

increasingly report the colour of an object as the mean of the category (e.g., lamps being 

green) despite also appearing in other colours. This finding was interpreted to evidence 

schematic behaviour, whereby there is an increased tendency to rely on the mean. However, 

interference resulting from proximity could lead to a similar effect. Specifically, there will be 

a lower probability of retrieving an objects colour when there is greater overlap among items. 

When an object is then presented, these lower probabilities would be weighed against the 

psychophysical similarity of the items (similar to the semantic weighting in the interference 

model of Chapter 3). The lower probability of retrieval along with the psychophysical similarity 

among items of a similar category will therefore lead to a bias in reporting items as their mean 

colour. Therefore, what appears to be a schematic bias may be the result of another 

mechanism entirely, in this case interference. Schurgin et al. (2020) considered this notion of 
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alternative mechanisms when proposing the TCC model (discussed in Chapter 3). Here, 

psychophysical similarity and signal detection were used to demonstrate how experiences 

may be misremembered.  

 Therefore, alternative mechanisms beyond schema may explain some of the findings 

reported in the present work and the broader literature. What appeared to be a schema-based 

process may have resulted from an alternative mechanism (e.g., interference). As items were 

encoded, their probability of retrieval was reduced if an item neighboured previously encoded 

items. Subsequently, when retrieving the location for the target item, spreading activation 

would occur, leading to the retrieval of associated items, which bias the reporting of events. 

Hence, what appears to be a schema may be more simply explained by interference. A similar 

challenge of interpretation has been shown in the encoding versus retrieval-based literature, 

whereby retrieval accounts can explain many of the encoding-based effects (see Nosofsky & 

Zaki, 2002 and Smith & Minda, 2000).  

5.2.2.3. Alternative Mechanisms 

 Interference was the one mechanism used in Chapter 3 to provide an alternative way 

of conceptualising the patterns of behaviour presented in Chapter 2. However, other 

proposals were made in Chapters 2 and 3: mutual exclusivity and base rate neglect. Both of 

these mechanisms are considered in more detail below.  

5.2.2.3.1. Mutual Exclusivity 

 The mutual exclusivity bias refers to the tendency to assign only one label to an object 

(e.g., viewing a cup and glass as mutually exclusive labels) and is predominately studied in the 

context of early language learning (Clark, 1988; Golinkoff et al., 1992). However, there has 

been a recent interest in adult learning and the mutual exclusivity bias (Lake et al., 2019). 

Concerning the results reported within the present thesis, one area of the circle will be 
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perceived as devoted to the clustered category, whilst the other would represent the non-

clustered. Therefore, there will be a tendency to report locations for non-clustered items on 

the opposite side of the circle. This would explain the presence of an avoidance effect in both 

memory and generalisation.  

The simplest version of a mutual exclusivity bias might be an explicit process at 

retrieval where, when a new non-clustered word is presented, participants actively retrieve a 

schema related to the clustered condition and use an “if not in the clustered category, place 

on the opposite side of the circle” strategy. Although possible, analysis of the post-retrieval 

debrief suggests very few participants were using explicit strategies such as these. Further, 

the mutual exclusivity bias would require participants to be categorising items at the 

superordinate level (i.e., human-made and natural). The problem with this assumption is that 

the debrief suggested few participants in Chapter 2 (4 of 261, 1.53%) spontaneously referred 

to items belonging to these semantic groupings. Instead, participants were more likely to 

categorise words into basic categories (e.g., “household objects, animals and fruit”, “fruit and 

vegetables, household items, mammals”, “fruit, technology… cars… exotic animals, weather”, 

“planets, animals, food”). Of course, it is not possible to rule out that the mutual exclusivity 

bias worked implicitly (Merriman & Stevenson, 1997), meaning the distinction between 

human-made and natural items occurred without conscious awareness.  

If a mutual exclusivity bias was causing the effect, one critical question is what is driving 

this bias? One explanation would be that the non-clustered condition is unlike most groupings 

found in the real world. Returning to the bathroom example described in Chapters 1 and 2, if 

you have a “bathroom” schema, it is probably less likely that you will find non-bathroom 

related items in this location relative to elsewhere in the house. In short, the “bathroom” 

schema does not tell you where the microwave will be, but it likely provides information about 
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where it is unlikely to be. Although real-world examples of more uniformly distributed items 

may exist (e.g., house plants throughout a home), they may be rare, and as such, we may have 

little experience with them. Participants may apply this real-world sampling experience to the 

present experiments, presuming non-clustered words are less likely to be located in the 

clustered area of the circle.  

5.2.2.3.2. Base-Rate Neglect 

 In contrast, base rate neglect would propose that participants will be biased by the 

relative rather than absolute probabilities of events when generalising (Hawkins et al., 2015; 

Welsh & Navarro, 2012; Wolfe, 2007). Specifically, though non-clustered items had an 

absolute probability of appearing anywhere around the circle, their relative probability of 

appearing in the clustered area of the circle compared to clustered items was much smaller. 

As such, participants may rely on this perceived difference in relative probability to infer 

locations during generalisation. Since memory items can either rely on a remembered 

instance (i.e., the target location for a given item) or generalisation when an item is not 

remembered, the avoidance behaviour will be less apparent during memory compared to 

generalisation as generalisation mechanisms will only be relied upon if an item is not 

remembered. In contrast, generalisation trials cannot rely on memory for the location 

associated with the novel item. These trials rely only on the relative probability of events 

leading to greater avoidance behaviour. Therefore, unlike the mutual exclusivity bias, the base 

rate neglect proposal may be more able to explain the larger presence of avoidance during 

generalisation.  

 One way of potentially testing this theory could be the use of subjective judgements. 

Specifically, for each trial, participants could identify whether an item was perceived as “old” 

or “new”. Doing this will allow for a clear dichotomy between episodes relying on a memory 
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for an individual episode or when they generalised to make a location judgement. Under the 

base-rate neglect proposal, when items are perceived as “old” (or “remembered”), there 

should be uniformity present in the locations for non-clustered items. In contrast, when the 

item is perceived as non-remembered (or novel), the locations will be selected based on 

generalisation mechanisms, thus leading to avoidance for the clustered area.  

 Another advantage of the base-rate neglect proposal is that it can explain the 

avoidance behaviour without considering the semantic groupings at the superordinate level. 

Whilst it would be necessary for the mutual exclusivity bias to consider the groupings at the 

superordinate level, the base rate neglect proposal could function so long as participants were 

sensitive to the semantic distances between words. Similar to the interference-based model 

proposed in Chapter 3, the base-rate neglect proposal does not require a clear dichotomy 

between clustered and non-clustered items. Instead, the model could use the semantic 

distances between items to dissociate between semantic groupings. As such, the base rate 

neglect proposal could explain the avoidance effect without categorisation at the 

superordinate level of human-made and natural items. However, given research has 

suggested that base-rate neglect is driven by explicit processes (Lovett & Schunn, 1999; c.f. 

Bohil & Wismer, 2015; Wismer & Bohil, 2017), it is possible that the avoidance behaviour 

observed throughout the thesis (if base-rate neglect is the correct explanation) would be 

sensitive to whether participants are learning word-location associations under conditions 

that preclude explicit awareness. The need for explicit awareness is discussed in more detail 

below.  

 Regardless of the perceived mechanism, an open question is what would occur if 

encoding were to take place over several days rather than in one session. Would an avoidance 

behaviour still be observed? The reduced memory load caused by encoding over several days 
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may lead to a loss of avoidance behaviour for the interference model. In contrast, schema-

driven biases may predict that the avoidance behaviour would remain given non-clustered 

items would still appear within the clustered area “unexpectedly” and therefore have a 

reduced probability of retrieval. Additionally, if learning occurred over several days, a 

schematic representation may be more likely to develop. In their rodent study, Richards et al. 

(2014) had mice learn platform locations that followed an underlying pattern. This learning 

took place over several days and several repetitions of the same platform. It was found that 

mice 30 days post-training would swim more around the average location than elsewhere, 

suggesting the development of a schematic representation. Suppose a similar training 

approach of spaced learning had taken place for the behavioural work reported in Chapter 2. 

In that case, the avoidance behaviour observed may (assuming a schema-based mechanism) 

or may not have been present (assuming an interference mechanism). Future work may 

benefit in assessing whether the avoidance effect would be observed when encoding occurs 

over time instead of the mass encoding presented in Chapter 2.  

5.2.2.3.3. Summary 

 Overall, it is clear that several different interpretations for the avoidance behaviour 

could be given – from schema, interference, mutual exclusivity and base-rate neglect. Across 

chapters, it appears that schema-driven mechanisms may not be the sole explanation for the 

avoidance behaviour found. Chapter 3 identified that interference mechanisms might provide 

a more parsimonious solution for the presence of an avoidance behaviour. Though a reverse 

inference, one interpretation for the results of Chapter 4 was that two schemas may have 

been formed for the clustered and non-clustered conditions, respectively. Additionally, as 

discussed above, mutual exclusivity and base-rate neglect also give practical interpretations 

for the avoidance effect. Future work may benefit from including subjective judgments to 
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disentangle the base-rate neglect proposal that avoidance would only be observed when 

participants do not remember the location associated with an item or perceive it to be novel.  

5.2.2.4. Explicit or implicit processes 

 An open question is whether the behaviour presented during the thesis resulted from 

explicit awareness of the pattern. Though data was collected via the Introspection 

Questionnaire as to whether participants perceived a pattern in the way items were 

presented, no formal analysis was undertaken as no specific hypotheses were drafted at the 

time of writing. However, a question that has arisen throughout the work is whether explicit 

or implicit mechanisms drive these effects. Specifically, does the avoidance behaviour require 

an explicit awareness of the clustered pattern?  In Chapter 2, 152 (58.24%) of the 261 

participants stated that they perceived a pattern in the word-locations presented. Given not 

all participants show the avoidance effect, if an analysis was undertaken to assess whether an 

avoidance behaviour was present only when a pattern was perceived, this might suggest that 

explicit rather than implicit mechanisms drive this effect. From this, further weight may be 

given to the base-rate neglect proposal, whereby an explicit awareness of the pattern would 

be required.  

 Along with this, it may be worthwhile for future work to consider how to increase the 

perception of a pattern in the present paradigm. Presently, the paradigm used within the 

thesis requires a minimum of 70 memory and 15 generalisation items to generate reliable 

estimates of memory and generalisation performance. As such, at a minimum, 85 words per 

condition are required for the present task. The consequence of this is using superordinate 

categories of words (i.e., human-made and natural). However, using the superordinate 

categories can be difficult, with many studies showing participants preference for using basic 

categories (e.g., fruit and furniture; Rosch et al., 1976). The differentiation between basic-level 
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categories is much easier to accomplish as members within a category are very similar 

compared to members of other categories (Murphy & Brownell, 1985). As a result, it is easier 

to distinguish between category members when the category is more cohesive. Though 

anecdotal, of the 152 participants that perceived a pattern in the word-locations for Chapter 

2, 82 (53.95%) perceived a pattern when natural items were clustered compared to 70 

(46.05%) when human-made items were clustered. This suggests that patterns may have been 

easier to extract for natural items, which are more cohesive than human-made items.  

 Had a more cohesive set of items been used (e.g., fruit and furniture), is it possible that 

the avoidance effect would have been exacerbated as a clear dichotomy between groups 

could be made? Of course, this would likely require the implementation of different analysis 

procedures. Presently, mixture model estimation is used to extract the 𝑝 and 𝑘 memory 

measures, where a minimum of 70 items per condition is required to get a reliable estimate 

of memory performance. Hence why the present work used superordinate categories of 

human-made and natural. However, other studies using the precision paradigm have simply 

used the angular error of responses to estimate memory accuracy (e.g., Tompary et al., 2020). 

Doing this would prevent the fitting issues associated with the mixture model whilst allowing 

for the analysis of memory and generalisation behaviour. Using this analysis procedure, where 

fewer exemplar would be required, means that a more cohesive set of items (e.g., fruit and 

furniture) could be used. Moving from the superordinate (i.e., human-made and natural) to 

basic categories may exacerbate the avoidance behaviour. Although, it is worth bearing in 

mind that this would result in no longer being able to examine differences in memory 

accessibility and precision simultaneously – one of the advantages offered via the present 

paradigm. Therefore, alternative ways of making the categories more prominent may be 
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required should one want to examine both accessibility and precision simultaneously. For 

example, using different fonts or colours for each category during learning.     

5.2.3. Generalisation and Consolidation Models 

 In Chapter 2, generalisation of clustered items to the underlying pattern (i.e., the von 

Mises distribution) was observed immediately and remained stable after a 24-hour delay. This 

is in line with some research showing that generalisation ability remains relatively stable over 

more extended periods (Ellenbogen et al., 2007; Mirković & Gaskell, 2016; Sweegers & 

Talamini, 2014; Tamminen et al., 2012). Though, in some of these investigations, there was a 

demonstration of initial improvement in generalisation ability. For instance, Sweegers and 

Talamini (2014) found that generalisation from immediate test to 4-hours post-study 

significantly increased. However, after a 1-month delay, generalisation ability remained the 

same. Though the initial finding of change was not demonstrated in the present work, this 

may be due to the time-points at which testing occurred and the sensitivity of the precision 

paradigm.   

 These results are contrary to other findings that show generalisation capacity declines 

over time (Tompary et al., 2020). The discrepancy between the present thesis results and 

those of Tompary et al. (2020) is likely also related to the time points examined. In Tompary 

et al. (2020), generalisation was assessed at 24-hours and 1-week post-encoding. In contrast, 

the present thesis assessed generalisation immediately and 24-hours later. Given the 

extended delay period in the Tompary et al. (2020), the finding of a change in generalisation 

may have occurred. If a similar level of delay was used in the present work, a similar decline 

in generalisation capacity might have been observed. Future work may benefit from looking 

at longer delays; this may allow for better examination of whether a schematic representation 

was developed given they should remain stable over time (Ghosh & Gilboa, 2014; van Kesteren 



199 

et al., 2012). Though, if no decline in generalisation capacity is found, this would be contrary 

to the findings of Tompary et al. (2020), which may further corroborate the earlier arguments 

that they were not examining schema-based processes.   

 Finding immediate generalisation also poses a challenge for some systems 

consolidation models. Specifically, according to the CLS (McClelland et al., 1995) model, 

generalisation would require the extraction of commonalities across experiences, driven by 

consolidation (i.e., the slower learning system); this can take hours, days, weeks or years 

(Rasch & Born, 2013). However, the present thesis demonstrated immediate generalisation 

without consolidation; this challenges the proposal made by CLS. Here, participants were able 

to extract and use the commonalities across experiences to generalise to novel instances 

without needing a delay period; this ability also showed no change following a period of 

consolidation. Therefore, the present results pose a challenge for the CLS model.  

 However, more recent extensions of the CLS model, such as REMERGE (Kumaran & 

McClelland, 2012), have overcome the issue described. Specifically, REMERGE proposes that 

generalisation may be possible immediately via the hippocampus (i.e., the “fast learning 

system”). Under this proposal, the hippocampus can use retrieval-based mechanisms to allow 

for generalisation to novel instances. Therefore, the slower extraction of commonalities 

across experiences is not required for generalisation to take place. Consequently, finding that 

generalisation did occur immediately with little change over time is more in line with the 

REMERGE model, which extended the CLS proposals.  

5.2.4. Neural Mechanisms of Memory-Based Generalisation 

 Chapter 4 aimed at exploring the neural mechanisms of memory-based generalisation. 

However, due to the COVID-19 pandemic, the study could not continue. As a result, a 

preliminary analysis was conducted on the existing data to identify future hypotheses, design 
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changes and analysis recommendations for a future study. As described in the chapter itself, 

the vmPFC and dorsal striatum may play important roles in the present task. It was 

hypothesised this may be due to functional coupling between the two regions as they 

attempted to gate working memory (the dorsal striatum) and prevent interference (the 

vmPFC; O’Reilly & Frank, 2006). Surprisingly, however, no differential activation of the 

hippocampus was found. This is contrary to a plethora of studies that find the hippocampus 

to be important to generalisation (Bowman & Zeithamova, 2018; Frank et al., 2019; Schlichting 

et al., 2015). It was speculated this may be due to a lack of statistical power or due to the way 

in which the hippocampus had been analysed. Specifically, not splitting the hippocampus into 

the anterior and posterior portions. Research has shown that posterior regions are associated 

with memory-based processes, whilst anterior portions are associated with generalisation 

(Schlichting et al., 2015). Future work may benefit from considering some open questions. For 

instance, are the vmPFC and dorsal striatum functionally coupled, allowing for memory gating 

of irrelevant information? Would the inclusion of “old” or “new” judgements allow for 

examination of this hypothesis? Can the effect of clustering be differentiated within the brain? 

Does the hippocampus differentially recruit anterior and posterior regions based on task 

demands?  

5.3. Conclusion 

 This thesis aimed at exploring memory-based generalisation using the precision 

paradigm to explore how schematic information influenced behaviour. Across three chapters 

that employed different techniques (i.e., behavioural, computational and neuroimaging) it 

was observed that schema-based processes might influence behaviour for both schema-

relevant and -irrelevant information. This poses questions for studies implementing a schema-

irrelevant control condition and many theories that overlook schema-irrelevant information 
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in their conceptualisations. However, there are alternative interpretations that could be posed 

to the avoidance behaviour found. For instance, interference-based mechanisms may drive 

the avoidance behaviour without schematic influence, as shown via computational modelling. 

This alternative interpretation of the findings could also be applied to other studies and raises 

questions about whether these studies have assessed schema-based processing. Along with 

interference, mutual exclusivity and base-rate neglect were alternative proposals applied to 

the behaviour observed in the present thesis. Future modelling or experimental work may be 

required to disentangle which of these explanations provides the best fit for the data. 

Nevertheless, the thesis provides clear evidence that the presence of a pattern can affect both 

memory and generalisation for both relevant and irrelevant information.  
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Appendix A: 

Contrast Matrices for Experimental Effects 

 Throughout the thesis, dummy-coding was used to construct the GLME’s. A 

consequence of this is that the output from the model, when higher-order terms are present, 

will refer to simple effects as opposed to the effects of interest. Therefore, to ensure the 

relevant hypotheses were tested, linear hypothesis tests were conducted on the model 

coefficients via the coefTest function in MATLAB Statistics and Machine Learning Toolbox. 

This function allows for specific tests to be performed on the model coefficients. Below are 

the contrast matrices used for each of the analyses where higher-order terms were present; 

this is split by Chapter. Note, when looking at the avoidance effect, a comparison is made from 

the average value irrespective of parameters against the uniform density (2π-1). 

Chapter 2 

 In Chapter 2, two forms of GLME were computed in order to assess the memory and 

generalisation measures. The first set of models assessed the effects of Clustering (0 = Non-

Clustered, 1 = Clustered), Delay (0 = Immediate Test, 1 = Delayed Test) and Setting (0 = In-Lab, 

1 = Online) on total information, accessibility, precision and DKL von Mises. Below is a table 

(Table A1) of contrast matrices used for the comparisons reported.  

Table A1. 

Contrast matrices for the analysis of total information, accessibility, precision and DKL von 

Mises.  

Hypothesis 

Parameter 

I C D S C x D C x S D x S 
C x D 

x S 

Clustering: 

Is there a main effect of 

clustering?  

0 1 0 0 0.5 0.5 0 0.25 

Delay: 

Is there a main effect of 

delay? 

0 0 1 0 0.5 0 0.5 0.25 
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Setting: 

Is there a main effect of 

setting? 

0 0 1 0 0 0.5 0.5 0.25 

Clustering x Delay: 

Does the effect of clustering 

change over time?  

0 0 0 0 1 0 0 0.5 

Clustering x Setting: 

Does the effect of clustering 

change by setting? 

0 0 0 0 0 1 0 0.5 

Delay x Setting: 

Does the effect of delay differ 

across settings? 

0 0 0 0 0 0 1 0.5 

Clustering x Delay x Setting: 

Does clustering change as a 

function of delay and setting? 

0 0 0 0 0 0 0 1 

Note. I = Intercept, C = Clustering, D = Delay, S = Setting.  

These values are entered into the coefTest function from MATLAB Statistics and 

Machine Learning Toolbox to derive the t, p and degrees of freedom for each contrast.  

 
 For the GLME that assessed memory precision, a Clustering x Setting interaction was 

found to be significant. To explore this further, post-hoc analyses were conducted. Table A2 

provides the matrices used to explore these effects.  

Table A2. 

Contrast matrices for the post-hoc analysis of Clustering x Setting. 

Comparison 

Parameter 

I C D S C x D C x S D x S 
C x D 

x S 

Non-Clustered In-Lab vs. 

Clustered In-Lab 
0 -1 0 0 -0.5 0 0 0 

Non-Clustered In-Lab vs. 

Non-Clustered Online 
0 0 0 -1 0 0 -0.5 0 

Non-Clustered In-Lab vs. 

Clustered Online 
0 -1 0 -1 -0.5 -1 -0.5 -0.5 

Clustered In-Lab vs.  

Non-Clustered Online 
0 1 0 -1 0.5 0 -0.5 0 

Clustered In-Lab vs. 

Clustered Online 
0 0 0 -1 0 -1 -0.5 -0.5 

Non-Clustered Online vs. 

Clustered Online 
0 -1 0 0 -0.5 -1 0 -0.5 

Note. I = Intercept, C = Clustering, D = Delay, S = Setting.  
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These values are entered into the coefTest function from MATLAB Statistics and 

Machine Learning Toolbox to derive the t, p and degrees of freedom for each 

contrast.  

 
 The second form of GLME examined the avoidance behaviour in generalisation. For 

this model, only the effects of Delay and Setting were input. Below is a table (Table A3) of 

contrast matrices used to assess the effects of interest.  

Table A3. 

Contrast matrices for the kernel density estimates of non-

clustered trials.  

Hypothesis 
Parameter 

I D S D x S 

Avoidance: 

Is there evidence of avoidance 

behaviour? 

1 0.33 0.33 0.33 

Delay:  

Is there a difference in 

avoidance over time?  

0 1 0 0.5 

Setting: 

Does the avoidance behaviour 

change across settings? 

0 0 1 0.5 

Delay x Setting: 

Does the avoidance behaviour 

change differentially based on 

delay and setting?  

0 0 0 1 

Note. I = Intercept, D = Delay, S = Setting.  

These values are entered into the coefTest function from 

MATLAB Statistics and Machine Learning Toolbox to derive 

the t, p and degrees of freedom for each contrast.  

 
Chapter 3 

 In Chapter 3, an exploration of the Trial Type (0 = Memory, 1 = Generalisation), Delay 

(0 = Immediate Test, 1 = Delayed Test) and Setting (0 = In-Lab, 1 = Online) was undertaken to 

explore non-clustered avoidance in memory along with differences in avoidance across 

memory and generalisation trials. This was conducted as an exploratory analysis within this 

chapter. Table A4, below, provides the contrast matrices computed to assess the effects of 

interest. 
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Table A4. 

Contrast matrices for the exploratory analysis of avoidance in memory.  

Hypothesis 

Parameter 

I T D S T x D T x S D x S 
T x D 

x S 

Avoidance:  

Do the densities differ 

from uniform? 

1 0 0.5 0.5 0 0 0.25 0 

Delay:  

Do densities in memory 

change over time? 

0 0 1 0 0 0 0.5 0 

Setting:  

Do densities in memory 

change based on setting?  

0 0 0 1 0 0 0.5 0 

Delay x Setting:  

Do delay and setting 

interact isolated to 

memory? 

0 0 0 0 0 0 1 0 

Trial Type:  

Do memory and 

generalisation differ? 

0 1 0 0 0.5 0.5 0 0.25 

Note. I = Intercept, T = Trial Type, D = Delay, S = Setting.  

These values are entered into the coefTest function from MATLAB Statistics and 

Machine Learning Toolbox to derive the t, p and degrees of freedom for each contrast.  

  
 Along with the above, a confirmatory analysis was undertaken on the Berens et al. 

(2020) dataset to explore whether there was also evidence of avoidance that did not change 

as a function of delay. Here, there were five delay periods used from 0hrs to 24hrs. Table A5 

provides the contrast matrices used to assess the effects of interest.  

Table A5. 

Contrast matrices for the confirmatory analysis of avoidance in memory.  

Hypothesis 

Parameter 

I 
D:  

3hrs 

D:  

6hrs 

D: 

12hrs 

D: 

24hrs 

Avoidance:  

Do the densities differ 

from uniform? 

1 0.20 0.20 0.20 0.20 

Delay: 

Do densities change over 

time? 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 
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Note. I = Intercept. All other values represent the individual delay periods.   

These values are entered into the coefTest function from MATLAB 

Statistics and Machine Learning Toolbox to derive the t, p and degrees of 

freedom for each contrast.  

 
Chapter 4 

 For the behavioural pilot in this chapter, an analysis was undertaken to estimate 

whether the effect of clustering remained the same between Chapters 2 and 4 for each of the 

effects of interest. Two types of GLME were computed. The first set of GLME’s examined the 

effects of total information, accessibility, precision and DKL von Mises. For these models, the 

following parameters were entered: Clustering (0 = Non-Clustered, 1 = Clustered), Delay (0 = 

Immediate Test, with 3-hours and 24-hours explicitly included in the model) and Setting (0 = 

In-Lab, 1 = Online). Clustering was made to interact with Delay and Setting independently due 

to a lack of 3-hour Online effect. Therefore, Delay and Setting did not interact in these models. 

Table A6, below, provides the contrast matrices used to examine the effects of interest for 

these four models.  

Table A6. 

Contrast matrices for the analysis of: total information, accessibility, precision and DKL von 

Mises.  

Hypothesis 

Parameter 

I C 
D:  

3hrs 

D: 

24hrs 
S 

C x D: 

3hrs 

C x D: 

24hrs 
C x S 

Clustering (Pilot): 

Does the pilot study show 

an effect of clustering?  

0 -1 0 0 0 -1 0 0 

Delay:  

Is there a difference in the 

estimate derived for 

Chapter 2 and the pilot? 

0 0 1 -0.5 -0.5 0.5 -0.25 -0.25 

Clustering x Delay: 

Does the effect of 

clustering differ between 

Chapter 2 and the pilot?  

0 0 0 0 0 1 -0.5 -0.5 

Note. I = Intercept, C = Clustering, D: 3-hrs = Delay at 3-hrs, D: 24-hrs = Delay at 24-hrs, S = 

Setting.  
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These values are entered into the coefTest function from MATLAB Statistics and Machine 

Learning Toolbox to derive the t, p and degrees of freedom for each contrast.  

 
 A further two GLME’s were computed, but did not include the Clustering effect as a 

parameter. Instead, the analyses only included Delay and Setting as the effects of interest 

were isolated to the non-clustered condition. Specifically, an exploration of avoidance 

behaviour was conducted. Table A7 provides the contrast matrices used to explore the effects 

of interest.  

Table A7. 

Contrast matrices for the kernel density estimates of non-clustered 

trials.  

Hypothesis 

Parameter 

I 
D:  

3hrs 

D: 

24hrs 
S 

Avoidance (Pilot): 

Is there evidence of avoidance 

behaviour in the pilot data?  

1 1 0 0 

Delay:  

Is there a difference in the estimate 

derived for Chapter 2 and the pilot? 

0 1 -0.5 -0.5 

Note. I = Intercept, D: 3-hrs = Delay at 3-hrs, D: 24-hrs = Delay at 24-

hrs, S = Setting.  

These values are entered into the coefTest function from MATLAB 

Statistics and Machine Learning Toolbox to derive the t, p and degrees 

of freedom for each contrast.  
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Appendix B: 

Retrieval Probability Function – The Equations 

 The retrieval probability function was developed by Sam Berens (S. C. Berens, 

personal communication, 20 August 2020) to determine the probability of retrieving a 

location given its proximity to an arbitrary angle. Below is an in-depth overview of the 

mathematics behind how this function works.  

 First, we define a sigmoidal function denoted (Prret( 𝜃 ∣ 𝑎, 𝑏 )) that provided a 

bounded probability value (i.e., between 0 and 1) describing the likelihood that a location 

would be retrieved from memory based on its proximity to a given angle (θ). Equation 1, 

below, shows this sigmoidal function.  

Prret( 𝜃 ∣ 𝑎, 𝑏 ) =
1

1 + exp(𝑎 ⋅ 𝑔(𝜃) + 𝑏)
(1) 

 The parameter 𝑎 was chosen to satisfy the integral (see 2), where 𝑝 denoted the prior 

probability of retrieval success across the entire domain of the circle (-π, π).  

∫ 𝑓(𝜃)
𝜋

−𝜋

⋅ Prret( 𝜃 ∣ 𝑎, 𝑏 ) 𝑑𝜃 = 𝑝 (2) 

 𝑏 was calculated (see 3) to determine the minimum probability value that could be 

returned by Prret( 𝜃 ∣ 𝑎, 𝑏 ). Ψ was the free parameter that determined this minimum 

probability. Across simulations, this value was set to 0.01.  

𝑏 = log (
1 − 𝜓

𝜓
) (3) 

 Finally, 𝑔(𝜃) represented the standard von Mises probability density function (see 4), 

where µ denoted the mean location of the cluster, κ the concentration and I0(κ) the modified 

Bessel function of the first kind with order 0 evaluated at the point of κ.  

𝑔(θ) =
𝑒𝜅cos(𝜃−𝜇)

2𝜋𝐼0(𝜅)
(4) 
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 Using these parameters, the sigmoidal function (Prret( 𝜃 ∣ 𝑎, 𝑏 )) was able to provide 

an estimated probability of an item being remembered based on its proximity to an angular 

location (e.g., -π). 
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