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Abstract

Abstractive summarization takes a set of sentences from a source document and repro-

duces its salient information using the summarizer’s own words into a summary. Produced

summaries may contain novel words and have different grammatical structures from the

source document. In a sense, abstractive summarization is closer to how a human summa-

rizes, yet it is also more difficult to automate since it requires a full understanding of the

natural language. However, with the inception of deep learning, many new summarization

systems achieved improved automatic and manual evaluation scores. One prominent deep

learning model is the sequence-to-sequence model with an attention-based mechanism.

Moreover, the advent of pre-trained language models over a huge set of unlabeled data

further improved the performance of a summarization system. However, with all the said

improvements, abstractive summarization is still adversely affected by hallucination and

disfluency. Furthermore, all these recent works that used a seq2seq model require a large

dataset since the underlying neural network easily overfits on a small dataset resulting in

a poor approximation and high variance outputs. The problem is that these large datasets

often came with only a single reference summary for each source document despite that



it is known that human annotators are subject to a certain degree of subjectivity when

writing a summary.

We addressed the first problem by using a mechanism where the model uses a guidance

signal to control what tokens are to be generated. A guidance signal can be defined as

different types of signals that are fed into the model in addition to the source document

where a commonly used one is structural information from the source document. Recent

approaches showed good results using this approach, however, they were using a joint-

training approach for the guiding mechanism, in other words, the model needs to be

re-trained if a different guidance signal is used which is costly. We propose approaches

that work without re-training and therefore are more flexible with regards to the guidance

signal source and also computationally cheaper. We performed two different experiments

where the first one is a novel guided mechanism that extends previous work on abstractive

summarization using Abstract Meaning Representation (AMR) with a neural language

generation stage which we guide using side information. Results showed that our approach

improves over a strong baseline by 2 ROUGE-2 points. The second experiment is a guided

key-phrase extractor for more informative summarization. This experiment showed mixed

results, but we provide an analysis of the negative and positive output examples.

The second problem was addressed by our proposed manual evaluation framework

called Highlight-based Reference-less Evaluation Summarization (HighRES). The pro-

posed framework avoids reference bias and provides absolute instead of ranked evaluation

of the systems. To validate our approach we employed crowd-workers to augment with

highlights on the eXtreme SUMmarization (XSUM) dataset which is a highly abstractive

iv



summarization dataset. We then compared two abstractive systems (Pointer Genera-

tor and T-Conv) to demonstrate our approach. Results showed that HighRES improves

inter-annotator agreement in comparison to using the source document directly, while it

also emphasizes differences among systems that would be ignored under other evaluation

approaches. Our work also produces annotated dataset which gives more understanding

on how humans select salient information from the source document.
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Chapter 1

Introduction

Since the advent of the computer, written text format has been the most popular form

of information. However, the rapid growth of textual information that comes with the

Internet is overwhelming. For this reason, it is necessary to have an intelligent approach

that is capable to process and summarize large amounts of information. Automatic

summarization is the task where given a text an intelligent system can extract all salient

information from it and compile it into an informative and fluent summary. There are

many different types of automatic summarization in used today. We will discuss in

detail different types of summarization in Chapter 2 but in this Thesis, we focus on one

prominent type of summarization: abstractive summarization.

Based on the method of producing a summary, there are two types of summarization:

extractive and abstractive summarization. Extractive summarization focuses on selecting

salient sentences from the document and then presents them directly as a summary, thus

1



Chapter 1 Introduction 2

the result can sometimes lack coherence. Abstractive summarization, on the other hand,

draws salient information from the document and paraphrases them into a summary.

This characteristic improves the coherence of a summary but it is also more difficult to

perform as it requires a full understanding of the natural language.

Today, with the inception of the deep learning approach, many new summarization

systems (Rush et al., 2015; See et al., 2017; Paulus et al., 2018; Lewis et al., 2020; Zhang

et al., 2020) that used it saw a major boost in their automatic and manual evaluation

scores. One prominent deep learning architecture that enables the performance boost

is the sequence-to-sequence (Sutskever et al., 2014, seq2seq) model with an attention-

based mechanism (Bahdanau et al., 2015; Luong et al., 2015). The recent state-of-the-art

approaches (Lewis et al., 2020; Zhang et al., 2020) of abstractive summarization are based

on the seq2seq model (Bahdanau et al., 2015; Luong et al., 2015).

The seq2seq model falls into two neural networks: the encoder and decoder networks.

The encoder encodes a sequence of source tokens into a single vector representation of

which is later decoded by the decoder into a new sequence of target tokens. In a summa-

rization context, this enables the neural model to capture information from the text and

then generates a new and shorter sequence of words but contain only salient information.

Moreover, the advent of pre-trained language models (Radford et al., 2018; Peters

et al., 2018; Devlin et al., 2019) over a huge set of unlabeled data further improves

the performance of summarization systems (Liu and Lapata, 2019; Lewis et al., 2020;

Zhang et al., 2020). This is because leveraging a pre-trained language model, helps the
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neural model to develop general knowledge over many topics and improves the fluency

of language generation. However, with all said improvements, abstractive summarization

is still adversely affected by hallucination and disfluency. Hallucination is defined as

the generation of tokens by the model of which are not relevant to the document. This

definition is adapted from another work of language generation that is related to image

captioning (Rohrbach et al., 2018). Disfluency simply means that the generated text does

not conform the grammatical rules or unintelligible.

We addressed hallucination and disfluency problems by using a mechanism where the

model uses a guidance signal to control what tokens are to be generated. A guidance

signal can be defined as different types of signals that are fed into the model in addition

to the source document where a commonly used one is structural information from the

source document. A structural information is information that comes from the structure

of the text itself, for examples: constituency, AMR, dependency structures and many

others. Leveraging structural information can help language generation since it provides

additional contexts to the model when generating a token.

There are many attempts of using guidance signals to aid summarization but we

will focus on works that used a neural approach as the non-neural approach couldn’t

produce a fluent and coherent output. One example of such works was done by Li et al.

(2018a) which used key-phrases extracted from the structure of the source document using

TextRank(Mihalcea and Tarau, 2004) and then incorporated them in a neural network

which they called Key Information Guide Network. Li et al. (2020) further improves

their work by using key-phrases to improve the encoding representations in the encoder
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network. Other such as Dou et al. (2020) used varieties of structural information such

as highlighted sentences, relations, keywords and retrieved summaries as guides for their

model. All these models, however, were using a joint-training approach for the guiding

mechanism, in other words, to include a different source of information into the model it

has to be re-trained which is costly.

We propose approaches that work without re-training and therefore are more flexi-

ble with regards to the guidance signal source and also computationally cheaper. We

performed two different experiments where the first one is a novel guided mechanism

that extends previous work on abstractive summarization using Abstract Meaning Rep-

resentation (AMR) with a neural language generation stage which we guide using side

information. Results showed that our approach improves over a strong baseline by 2

ROUGE-2 points. The second experiment is a guided key-phrase extractor for more

informative summarization. This experiment showed mixed results, but we provide an

analysis of the negative and positive output examples.

Another problem is that all recent works in abstractive summarization that use the

seq2seq model, on the other hand, require a large dataset (Hermann et al., 2015; Narayan

et al., 2018c; Koupaee and Wang, 2018; Kim et al., 2018) since the underlying neural

network is easily overfit on a small dataset resulting in a poor approximation and high

variance outputs. The problem is that these large datasets often come with only a single

reference the summary for each source document despite that it is known (Harman and

Over, 2004) that a human annotator is subject to a certain degree of subjectivity when

writing a summary. In other words there could be many possible good summaries. This
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problem is called reference bias (Louis and Nenkova, 2013; Fomicheva and Specia, 2016).

ROUGE which was designed for multiple summaries evaluation is also a poor choice for

these datasets since they are heavily biased to the single reference summary. A manual

evaluation is required to properly evaluate summary’s quality however this approach is

also referenced biased when it is done by evaluating the difference between the system

and reference summary.

We addressed the reference bias problem by proposing a new approach of manual

evaluation (Chapter 3) that isn’t biased to the single reference summaries. The second

problem was addressed by our proposed manual evaluation framework called Highlight-

based Reference-less Evaluation Summarization (HighRES). The proposed framework

avoids reference bias and provides absolute instead of ranked evaluation of the systems.

To validate our approach we employed crowd-workers to annotate the eXtreme SUM-

marization (XSUM) dataset with higlights. We then compare two abstractive systems

(Pointer Generator and T-Conv) to demonstrate our approach. Results showed that

HighRES improves inter-annotator agreement in comparison to using the source docu-

ment directly, while it also emphasizes differences among systems that would be ignored

under other evaluation approaches. Our work also produces annotated dataset which gives

more understanding of how humans select salient information from the source document.

HighRES, however, couldn’t be applied to our other experiments since each experiment

uses datasets that are different from the HighRES annotated dataset.

As such our research questions are as follows.
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1. Can we devise a new manual evaluation system that is not affected by the reference

bias problem?

2. How to better leverage structural information as a guidance signal to address hal-

lucination and disfluency problems by an abstractive summarization system?

3. Can we incorporate structural information into the guiding mechanism without

having to re-train the model every time we change the information source?

1.1 Contributions and Publications

Contributions of this Thesis span across three experiments that were conducted to answer

our research questions. We list our contributions as follows.

1. A novel guidance mechanism (Hardy and Vlachos, 2018) in Chapter 4 that works

by leveraging Abstractive Meaning Representation (Banarescu et al., 2013, AMR)

in the source document to increase fluency and informativeness of summaries. We

based our work on an existing AMR summarization by Liu et al. (2015). Our

approach can be applied without having to re-train the model. Results show that

our approach improved over our chosen baseline (See et al., 2017) by 2 ROUGE-

2 points. This contribution addresses the second and third research questions,

however, our work has a limitation where due to small dataset it is difficult to show

significance in the result therefore further experiment on larger data is needed to

validate our approach. Nevertheless, we devise a new manual evaluation (HighRES)
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in order to give a better perspective on our approach but due to time and cost

constraints we did not manage to apply HighRES on this experiment.

2. A novel approach in manual evaluation named Highlight-based Reference-less Eval-

uation of Summarization (Hardy et al., 2019, HighRES) in Chapter 3. We devised

a new approach that allows manual evaluation by using the highlighted source doc-

ument without the need of a reference summary therefore eliminating the reference

bias problem. This contribution addresses the third research question.

3. A new annotated dataset for HighRES evaluation (Hardy et al., 2019). We per-

formed crowd-sourced annotation to obtain a highlighted source document for the

purpose of HighRES evaluation. This annotated dataset also gives better under-

standing on how humans select salient information from the source document. Sub-

sequently our work in Chapter 5 was inspired by this insight.

4. We devised a guided key-phrase extractor for more informative summarization

(Chapter 5) however we couldn’t gain a significant improvement despite a promis-

ing oracle result. We, however, perform analysis to gain insights on why it couldn’t

work and leave it for future works.

Our works are published in two major conferences papers. Chapter 4 is published

as a short paper in the Empirical Methods in Natural Language Processing (EMNLP)

2018 conference while Chapter 3 is published as a long paper in the Association for

Computational Linguistics (ACL) 2019 conference.
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1.2 Report Structure

This Thesis’s purpose is to give detailed explorations on the topic of guided abstractive

summarization using structural information as well as a new method of manual eval-

uation that is not referenced-biased. Chapter 1 is the introduction to our work. We

then present a literature review of deep learning approaches, automatic summarization,

manual and automatic evaluations in summarization, and various approaches on guided

summarization in Chapter 2.

Chapter 3 presents our work on a new manual evaluation that is not reference based

called Highlight-based Reference-less Evaluation of Summarization (HighRES). We also

created a new dataset which is a set of highlighted source documents for the purpose of

HighRES evaluation.

Chapter 4 presents our work in guided neural language generation of AMR for sum-

marization. This novel work improved the fluency and informativeness of generated sum-

maries by an AMR summarization system using the source document information.

Chapter 5 presents our work in guided key-phrase extraction for more informative

summarization. This work seeks to improve an abstractive summarization system by

incorporating key-phrases into the beam-search during the inference process. This work

is a negative experiment with mixed-results, however we give insights on why it didn’t

work.
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Finally, Chapter 6 concludes our work in this Thesis and summarizes our findings for

future research.



Chapter 2

Background

In this chapter, we will give the background of automatic summarization, with a specific

focus on abstractive summarization, along with evaluation approaches, deep learning

approaches for summarization, and how structural information plays a role in the guiding

mechanism.

2.1 Deep Learning (DL)

There are many definitions of DL however we chose one definition by Yann Le Cun’s1:

“DL is constructing networks of parameterized functional modules & training them from

examples using gradient-based optimization. That’s it.” This definition fits nicely with

many different approaches that we want to discuss later. In this section, we discuss three

1https://www.facebook.com/722677142/posts/10156463919392143/

10

https://www.facebook.com/722677142/posts/10156463919392143/
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methods of the deep learning approach that are commonly used for summarizing a text.

Some of the following mathematical formulations and figures are adapted from Goldberg

(2017)’s book.

2.1.1 Recurrent Neural Networks (RNNs)

RNNs (Elman, 1990) are feed-forward neural networks where connections between nodes

are built upon connected temporal sequences. This characteristic allows RNNs to repre-

sent any arbitrary sized sequential input. The following is the formal definition of RNNs.

Given an arbitrary length n input sequence of d-dimensional vectors, x1,x2, · · · ,xn where

xi ∈ Rd, a function called RNN will produce a single hidden vector as an output, yn, as

denoted by the following equations.

yn = RNN(x1:n)

yi = ORNN(si)

si = RRNN(si−1, xi)

(2.1)

where O and R are functions that produce yi and si as an output and state vec-

tors. The O and R functions for a simple RNN can be defined as identity mapping and

activation functions.
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Other alternatives that are similar to RNNs are Long Short-Term Memory (Hochreiter

and Schmidhuber, 1997, LSTM) and Gated Recurrent Unit (Cho et al., 2014, GRU) net-

works. These two come under a type of architecture called gated-based architecture and

are more commonly used in recent models since they are able to capture long contextual

information.

LSTMs can be used for solving the vanishing gradient problem that occurs during a

long sequence processing in RNNs. The vanishing gradient problem happens when the

value of the gradient keeps diminishing after going through a series of weight multiplica-

tions in a long sequence. The LSTMs solution is to consider an additional memory cell

besides the state vector si. The gating mechanism in LSTM controls how much infor-

mation is needed to be preserved in memory cells. This allows the gradient to stay high

across a long sequence. Formally LSTMs can be defined as follows.
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si = RLSTM(si−1,xi) = [ci;hi]

yi = OLSTM(si) = hi

ci = f ⊙ ci−1 + i⊙ z

hi = o⊙ tanh(cj)

i = σ(xiW
xi + hi−1W

hi)

f = σ(xiW
xf + hi−1W

hf )

o = σ(xiW
xo + hi−1W

ho)

z = tanh(xiW
xz + hi−1W

hz)

(2.2)

where ci and hi are memory and hidden state component. There are three gates,

i, f ,o that control how much information can be stored in memory and how much is to

be forgotten.

As LSTMs are computationally expensive, GRUs (Cho et al., 2014) is an alternative

that is simpler and computationally cheaper (Yang et al., 2020) with comparable per-

formance depending on the type of training dataset. The strength of GRUs comes as

GRUs has fewer gates and no separate memory component. The formulation of GRUs is

as follows.
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si = RGRU(si−1,xi) = (1 − z) ⊙ si−1 + z⊙ s̃i

yi = OGRU(si) = hi

z = σ(xiW
xz + si−1W

hz)

r = σ(xiW
xr + si−1W

hr)

s̃i = tanh(xiW
xs + (R⊙ si−1W

sg)

(2.3)

where z and r are the gates of GRUs.

In the context of abstractive summarization, one approach that works well is the

sequence-to-sequence (seq2seq) (Sutskever et al., 2014) model . A seq2seq model com-

prises of an encoder and decoder neural network. The seq2seq model can turn a given

sequence of tokens into another sequence of tokens of which is very useful for the task of

abstractive summarization.

The encoder and decoder network can use RNNs, LSTMs, GRUs or Transformers as

the foundation network. The standard seq2seq model’s performance however, deterio-

rates rapidly as the length of the input increases (Cho et al., 2014). This problem can be

addressed by using an attention-based mechanism (Bahdanau et al., 2015; Luong et al.,

2015). The attention-based mechanism is an alignment model where during the token

generation process the model seeks to only attend to a subset of encoded token represen-

tations that aligns best with the decoder state at a particular time step. The following

is the formulation of a seq2seq with an attention-based mechanism (Luong et al., 2015).
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Given an arbitrary length n input of x1, x2, · · · , xn, the encoder network first computes

the hidden representation of the input, z1, z2, . . . , zk. Following this, the decoder network

generates the target words, y1, y2, . . . , ym, using the conditional probability Ps2s(yj|y<j, z),

which is calculated using the equation

Ps2s(yj|y<j, z) = softmax(Wsh̃t) (2.4)

where the attentional hidden state, h̃t is calculated using the equation

h̃t = tanh(Wc[ct;ht]) (2.5)

where ct is the source context vector, and ht is the target RNNs hidden state. The source

context vector is defined as the weighted average over all source RNNs hidden states, h̄s,

given the alignment vector, at where at is defined as

at(s) =
exp(score(ht, h̄s))∑
s′ exp(score(ht, h̄s′))

(2.6)

2.1.2 Convolutional Neural Networks (CNNs)

CNNs (LeCun and Bengio, 1995) model work by the principle of convolution and pooling.

They are able to capture the representation of local features within a larger structure and

combine them into a single hidden vector representing the structure. This architecture

was first designed for the Computer Vision field but to this date, it has been successfully
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introduced to Natural Language Processing (NLP) field. Here we will explain CNNs

within the scope of the NLP field.

The formal definition of CNNs is as follows. Given an arbitrary length n input se-

quence of d-dimensional vectors with x1,x2, · · · ,xn where xi ∈ Rd, we define a function

“filter”, as a function that transforms a window of k tokens from input sequence into a

single value. The filter function is a linear transformation with weight vector u followed

by a nonlinear activation function. It slides across the input sequence resulting in a value

p as follows.

pi = g(z · u)

zi = concat(xi:i+k−1)

(2.7)

where g is a nonlinear activation function. The vector p can then be pooled into a single

vector c either by max or mean pooling. This vector c represents the whole structure.

Similar to RNN, CNNs also has its own seq2seq version called Convolutional Seq2Seq

(Gehring et al., 2017, ConvS2S). In this model, CNNs are used to compute the hidden

representation and decoder states. The following will explain the formulation of ConvS2S.

Given an arbitrary length n input sequence of d-dimensional vectors, x1, x2, · · · , xn,

we first enrich the input sequence with positional information, p1, p2, · · · , pn where pi is

a positional embedding, before passing them into the encoder. The encoder is a stack of

l of one-dimensional convolutional blocks followed by a non-linear activation unit. This

stacking mechanism allows ConvS2S to capture a hierarchical representation of the input
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sequence where neighbouring words interact in a lower layer while distant words interact

in a higher layer. The output of the encoder is the hidden representation of the input

sequence, zl1, z
l
2, · · · , zln. The decoder is a single block with kernel width k. The output

of the decoder is the decoder state, hl1, h
l
2, · · · , hln.

One model that is using ConvS2S as an abstractive summarization model is Topic

ConvS2S (Narayan et al., 2018c) which we use for HighRES manual evaluation in Chap-

ter 3.

2.1.3 Transformer Networks

Transformers (Vaswani et al., 2017) work by the principle of stacked self-attention and

fully connected layers. The strength of Transformers come from its high parallelization

support and long contextual capturing capabilities. Transformer is designed primarily as

an encoder-decoder network although it can be used as a stand-alone encoder network as

well. We will formulate Transformers as follows.

Consider an arbitrary length n input sequence of d-dimensional vectors with x1,x2, · · · ,xn

where xi ∈ Rd. The encoder produces hidden representations, z1, z2, · · · , zn from the in-

put sequence and the decoder generates an output sequence, y1, y2, · · · , ym one token at

a time. Both encoder and decoder layers comprise of a stack of N identical layers where

each stack is defined as follows.
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h̃l = LayerNorm(hl−1 + MultiHeadAttn(hl−1))

hl = LayerNorm(h̃l + FFN(h̃l))

h0 = {x0,x1, · · · ,xn}

(2.8)

where hl is the l-th depth layer.

Layer Normalization (Ba et al., 2016), LayerNorm function normalizes layer by com-

puting the mean and variance for all the summed inputs in a layer. It is defined as:

µ =
1

l

l∑
i=1

hl; b =
1

d

d∑
i=1

(hl − µ)2

LayerNorm(hl) =
hl − µ√
b+ ϵ

(2.9)

Multi-head Attention represents a number of self-attention in Transformer’s architec-

ture. The self-attention mechanism takes its input as three facets: Queries, Keys, and

Values. Queries and Keys are of dk dimensions while Values is of dv dimensions. These

three are then combined as follows.

Attention(Q,K, V ) = softmax(
QKT

√
dk
V ) (2.10)
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The resulting self-attention, called “head”, is then repeated in different positions. The

resulting multi-heads are concatenated as follows.

MultiHeadAttn(Q,K, V ) = Concat(head1, head2, · · · , headh)WO (2.11)

where WO is the output weight for Multi-head Attention.

The decoder has an extra layer that performs multi-head attention over the output

of the encoder stack. In addition to that, the self-attention in the decoder only attends

to all positions up to the position of the decoder itself to avoid illegal information flow

(peeking ahead).

2.2 Pre-trained Language Model

Pre-trained language models (Mikolov et al., 2013; Peters et al., 2018; Radford et al.,

2018; Devlin et al., 2019) have been shown to improve performance in many natural

language tasks. There are two strategies in using a pre-trained model: feature-based

and fine-tuning. A feature-based strategy like word2vec or ELMo (Mikolov et al., 2013;

Peters et al., 2018) pre-trains a model on a large unlabeled dataset and then uses it as an

additional source of features for the downstream task. Meanwhile fine-tuning (Radford

et al., 2018; Devlin et al., 2019) uses the pre-trained model as the basis for further

parameter fine-tuning on the downstream task. Since the second strategy has been shown

to be the better alternative (Devlin et al., 2019) and also the most commonly used one
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in recent research, we focus on approaches that belong to it. In the next subsection we

discuss several pre-trained model approaches categorized in how they train the model.

2.2.1 Bidirectional Encoder Representations from Transformers

(BERT)

Figure 2.1: BERT illustration (Devlin et al., 2019).

There are two steps in BERT: pre-training and fine-tuning steps. In the pre-training

step, a large unlabeled dataset is used for training the model. While in the fine-tuning

step, the BERT model is initialized with the pre-trained parameters and then fine-tuned

on the downstream task. For the input representation, BERT uses WordPiece embeddings

(Wu et al., 2016).

For the pre-training step, BERT was trained on two unsupervised tasks: Masked

Language Model (MLM) and Next Sentence Prediction (NSP). MLM is done by randomly

masking some percentage of the input tokens and then predict those tokens. NSP on the

other hand predicts whether the subsequent sentence is the next sentence or a random
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sentence. However, BERT is severely under-trained and an alternative RoBERTa (Liu

et al., 2019) is proposed to solve it.

RoBERTa proposes improvements over BERT through several modifications as fol-

lows.

1. Longer training, bigger batch size and bigger data.

2. Removal of the next sentence prediction objective.

3. Longer input sequence.

4. Mask patterns are dynamically changed when using training data.

The improvements gives RoBERTa a better result over BERT’s on both GLUE and

SQuAD.

2.2.2 BART

While BERT and RoBERTa are designed to be encoder only pre-trained models, BART

(Lewis et al., 2020) is designed as an encoder-decoder pre-trained model and therefore it

is more suitable for use in summarization. BART uses the same Transformer architecture

with BERT with the exception that it uses GeLU (Hendrycks and Gimpel, 2016) instead

of ReLU as the activation layer.

For the pre-training step, BART uses a denoising auto-encoder with several strategies:
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1. Token masking: replacing random tokens with masked elements.

2. Token deletion: randomly deleting tokens from the input.

3. Text infilling: randomly masking a span of text. The span length is sampled using

a Poisson distribution.

4. Sentence permutation: randomly shuffling sentences.

5. Document rotation: selecting random tokens and rotating them to the beginning

of the document.

2.2.3 Text-to-Text Transfer Transformer (T5) approach

The motivation for T5 (Raffel et al., 2019) arises from the need to understand and unify

various pre-trained models framework approaches. T5 is similar to BART where it treats

the task of pre-training as text-to-text that is the input and output are both in the form

of a sequence of tokens.

T5 uses Transformers (Vaswani et al., 2017) as its component with some differences,

such as the removal of the Layer Normalization (Ba et al., 2016) bias, layer normalization

placement outside the residual path, and using a position embedding scheme of which is a

scalar that is added to the corresponding logit used for computing the attention weights.

Aside from the difference in the Transformers architecture, T5 also trained on a clean
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dataset called The Colossal Clean Crawled Corpus (C4). The C4 text is a clean version

of the Common Crawl dataset2.

2.2.4 Pegasus

Pegasus (Zhang et al., 2020) follows the same approach as BART(Lewis et al., 2020) and

T5 (Raffel et al., 2019) where the input and output of the pre-training task are a sequence

of tokens. However, Pegasus uses a new pre-training objective called Gap Sentences

Generation (GSG) which is specific to the summarization use. The GSG masked the

whole sentence sentences from the document and concatenate the gap sentences into a

pseudo summary. There are three approaches that are used to select masked sentences:

random, lead and principal. The random approach means sentences are uniformly selected

at random, lead approach means only the top-m sentences are selected, and principal

approach means sentences that are highly aligned with the rest of the document based

on ROUGE scores are selected.

2.3 Automatic Summarization

Formally, automatic summarization is defined as follows. Let S = {s1, . . . , sn} denote a

sequence of n words of a given input text which is called source document, the task is

to generate a shorter sequence of words called target summary, Z = {z1, . . . , zk} where

k < n. Typically the summary’s length is bounded on a given budget, b, which is often

2https://commoncrawl.org/
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measured by word number or file bytes. Finally, the task’s challenge is to maximize the

quality of the produced summary measured by an objective function, f , while limited

by a budget. We can further expand this simple definition into different summarization

types based on two most common characteristics among many others that are related to

our work: the number of source documents and the type of the summary.

2.3.1 Multi-Document and Single Document Summarization

Based on the number of source documents, we can categorize summarization into two

different types: Multi-Document Summarization (MDS) and Single Document Summa-

rization (SDS). MDS (Carbonell and Goldstein, 1998; Fujishige, 2005; Lin and Bilmes,

2012; Kulesza and Taskar, 2016; Perez-Beltrachini and Lapata, 2021) takes a cluster of

thematically related source documents, D = {d1, . . . , d|D|} as the input and produces a

single summary that covers only salient and relevant information from the cluster. This

is in contrast with SDS (Rush et al., 2015; See et al., 2017; Lewis et al., 2020; Zhang

et al., 2020), where only one document, d, is available as the input. Each type plays

an important role in the field and comes with its own set of challenges. We will briefly

review challenges and techniques from past works for each type of summarization.

2.3.1.1 Multi-Document Summarization (MDS)

In MDS there are two main objectives (Carbonell and Goldstein, 1998): novelty and

relevancy. A good system must be able to produce summaries with high novelty, i.e.
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reduced redundancy of information, and relevancy, i.e. covering salient information in

accordance to the user’s need. Avoiding high redundancy can be done by reducing either

partially or fully duplicate information in retrieved summaries. At the same time we want

to ensure that retained information has a wide coverage to all salient information in the

source document cluster. Furthermore, the produced summaries must also be bounded

by a certain length limit. Optimizing these three properties (relevancy, novelty, and

length) is an intractable operation as shown in the work of McDonald (2009). Despite the

intractability, there are many approaches that can be used to find a near-optimal solution

for multi-document summarization such as Submodularity, Integer Linear Programming,

Determinantal Point Processes, Sentence Scoring using Regression and others.

2.3.1.2 Single Document Summarization (SDS)

In SDS, there is usually a little repetition of information in the source document, therefore

the challenge is more on producing summaries that have the highest informativeness yet

are still fluent. Since redundancy issues are not the biggest issue in SDS, many works

in SDS determine the informative value by inferring it from regularities of the training

dataset. We are going to review several of these approaches as follows.

Neural Network The neural network approach and particularly the one with a sequence-

to-sequence architecture is currently the state-of-the-art approach in abstractive sum-

marization. The work is pioneered by Rush et al. (2015) with their Attention-Based

Summarization (ABS) and ABS+ systems, which used an adaptation of feed-forward
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Neural Network Language Models (NNLM) (Bengio et al., 2003) as the decoder, and as

its encoder they used an attention-based contextual model (Bahdanau et al., 2015). For

training, Rush et al. (2015) used Stochastic Gradient Descent to minimize the negative

log-likelihood. ABS+ system, which is an improved ABS is capable to generate unseen

tokens (words that do not exist in the input vocabulary). It also used additional unigram,

bigram, and trigram matching features into the standard ABS scoring function. ABS+

system shows a 2.23 ROUGE 1 points improvement over the non neural approach on

Gigaword dataset (Graff et al., 2003b).

Chopra et al. (2016) further improved the result of Rush et al. (2015)’s work by 4.02

ROUGE 1 points using their system called Recurrent Attentive Summarizer (RAS) on

Gigaword dataset. Chopra et al. (2016) replaced the NNLM core model of Rush et al.

(2015)’s system with the encoder-decoder with attention architecture where the encoder

is a convolutional networks and the decoder is a recurrent neural networks. Later on,

Nallapati et al. (2016) uses a recurrent neural networks encoder-decoder architecture

that further improves Chopra et al. (2016)’s result by 1.52 ROUGE 1 points on CNN/DM

dataset (Hermann et al., 2015).

See et al. (2017)’s work in automatic summarization further improved Nallapati et al.

(2016)’s work by 4.07 ROUGE 1 points on CNN/DM dataset. See et al. (2017) uses a

copy mechanism that enables the model to copy from the source document if needed.

Subsequent works with the neural model have also shown good results and improved the

state-of-the-art several times in a short span of time.
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Integer Linear Programming ILP is also used in SDS (Yoshida et al., 2014; Liu et al.,

2015). Yoshida et al. (2014) formulated the problem of SDS as a knapsack problem over

a dependency-based discourse tree parses of the source document. Similarly, Liu et al.

(2015) also formulated the problem as a knapsack problem but over an Abstract Meaning

Representation (Banarescu et al., 2013, AMR) graph parses of the source document. In

both cases, results are heavily determined by the accuracy of the parser.

2.3.2 Extractive and Abstractive Summarization

Based on the type of the target summary, there are two approaches: extractive and

abstractive summarization. Extractive summarization retrieves a subset of sentences from

one or more source documents in their exact form and concatenates them into a summary.

Abstractive summarization rephrases source document’s salient information into a more

concise summary that may contain new words. Abstractive summarization is considered

a more challenging problem compared to the extractive one since it requires an extra

step of finding and combining not only textual units but semantic information from the

text. Currently, most abstractive summarization systems are done through the use of

the seq2seq approach. We will review various techniques of extractive and abstractive

summarization in the following subsections.
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2.3.2.1 Extractive Summarization

An extractive approach can be posed as a knapsack problem where the task is to select

a subset of sentences or sub-sentences from the source document within a limited length

budget that collectively have the highest amount of salient information. The challenge

is that solving the knapsack formulation is an NP-hard problem, in addition to that

determining a correct sentence valuation is also a problem by itself especially for single

document summarization where there is very little information redundancy. However, it

is difficult to compare these approaches together as each comes with their own evaluation

approaches.

We don’t work on extractive summarization due to the difficulty of producing a fluent

and coherent language using an extractive approach. Moreover, mosts summarization

datasets available have abstractive gold summaries in them which makes them a natural

fit for an abstractive summarization approach.

The following paragraphs describe how previous works address the issue of extractive

summarization.

Sentence Selection Sentence selection (Carbonell and Goldstein, 1998; Lin and Bilmes,

2011; Ouyang et al., 2011; Cao et al., 2015; Kulesza and Taskar, 2016; Ren et al., 2016) is

done by finding a subset within a set of sentences with desirable properties such as feature
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scores (Ouyang et al., 2011; Cao et al., 2015; Ren et al., 2016) or low redundancy cov-

erage (Carbonell and Goldstein, 1998; Lin and Bilmes, 2011; Kulesza and Taskar, 2016).

However, this approach does not ensure the coherence of the selected sentences.

Sentence Compression Sentence compression (Knight and Marcu, 2002; Almeida and

Martins, 2013; Berg-Kirkpatrick et al., 2011) is done by deleting tokens that are not

important. Some approaches (Almeida and Martins, 2013; Berg-Kirkpatrick et al., 2011)

have two objectives: select sentences and delete words. These models are jointly trained to

seek an optimal solution balancing both objectives. Another work like Knight and Marcu

(2002) focused instead on single sentence compression. Figure 2.2 shows the illustrations

of sentence compression.

Figure 2.2: A compression of two sentences using dependency trees. Dropped words
are colored in a lighter color. (Berg-Kirkpatrick et al., 2011).

2.3.2.2 Abstractive Summarization

An abstractive approach produces a summary generated using methods such as para-

phrasing, generalization, deductive reasoning, and etc. It is, therefore, more complex
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than the extractive approach and requires an extensive understanding of natural lan-

guage. In recent years, there have been major breakthroughs in the field of abstractive

summarization through the use of the seq2seq and pre-trained language models. In the

following subsections, we will review several techniques for the abstractive approach.

Sentence Fusion In sentence fusion, the target summary is produced through merging

and rephrasing processes of related information. To facilitate the merging process, the

approach typically uses intermediary representations such as Dependency Trees (McKe-

own et al., 1999; Barzilay and McKeown, 2005; Filippova and Strube, 2008) or Abstract

Meaning Representation (Liu et al., 2015) among many others. There are however limita-

tions in the sentence fusion approach, i.e.: the intermediate representation parser might

not perform well, which introduces noise in the downstream process, and the difficulty to

generate fluent sentences from intermediate representations.

Neural model Advances in the seq2seq model with an attention mechanism (Bah-

danau et al., 2015; Luong et al., 2015) have seen the surge of automatic summarization

approaches. This approach encodes a sequence of tokens from a source document into a

hidden representation and then decodes another sequence of tokens as a target summary.

The availability of a large summarization dataset such as CNN/DM (Hermann et al.,

2015), Gigaword (Graff et al., 2003a), and XSUM (Narayan et al., 2018c) among many

others have helped the progress of neural summarization. The invention of pre-trained

language models (Mikolov et al., 2013; Peters et al., 2018; Devlin et al., 2019) and the
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seq2seq version of pre-trained language models (Lewis et al., 2020; Zhang et al., 2020)

have also improved many state-of-the-art systems. However, the approach still has many

limitations such as:

1. Generated summaries are prone to hallucination, grammatical error and other lin-

guistics mistakes (Wiseman et al., 2017).

2. Requires large dataset to perform well.

2.3.3 Summarization using Structural Information

While we showed that the neural approach can achieve state-of-the-art performance in

single document summarization, it still has difficulty when dealing with small datasets,

for example the DUC and TAC datasets. It also produces summaries that contain halluci-

nations. As such, many works (Liu et al., 2015; Barzilay and McKeown, 2005) have tried

to build summarization systems that are capable to use structural information, and able

to work on a small dataset. In the next sections, we will review works in summarization

that use structural information.

2.3.3.1 Summarization Using Dependency Trees

Dependency trees were used in previous works such as Barzilay and McKeown (2005);

Filippova and Strube (2008); Berg-Kirkpatrick et al. (2011); Almeida and Martins (2013).

Barzilay and McKeown (2005); Filippova and Strube (2008) used dependency trees for
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sentence fusion while Berg-Kirkpatrick et al. (2011); Almeida and Martins (2013) used

them for sentence compression. The use of dependency trees is supported by the availabil-

ity of a good quality parser such as the Stanford Dependency Parser (Chen and Manning,

2014). Early works in sentence fusion summarization were done by combining dependency

trees using heuristic rules such as in McKeown et al. (1999). These rules were used to

discover predicate-argument structures from dependency trees, after which sub-trees that

have a similar predicate-argument structure are combined as a resulting summary tree.

This approach however is difficult when dealing with sentence paraphrasing since two

different dependency trees may share the same meaning but are composed of different

words. This limitation has become the major problem in sentences fusion work using

dependency trees. Other similar works are Barzilay and McKeown (2005) and Filippova

and Strube (2008).

Barzilay and McKeown (2005) performed sentence fusion by synthesizing common

information across documents. To identify common information, they developed a method

for aligning dependency trees of input sentences. Barzilay and McKeown (2005)’s work

comprised of three steps:

1. Identification of common information is done by aligning the similarity between the

structure of the dependency trees and the similarity between lexical items of the

input sentences.

2. Fusion lattice computation which combines intersection subtrees.
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3. Lattice linearization into text which includes a selection of a tree traversal order,

lexical choice among available alternatives, and placement of auxiliaries, such as

determiners.

Filippova and Strube (2008) uses compression where they combined all the input

trees as a single tree then compress the union tree. In this way, all information from the

sentence will be included in the union tree instead of relying on a single basis tree as in

Barzilay and McKeown (2005)’s work.

Other sentence compression approaches are Clarke and Lapata (2008a), Berg-Kirkpatrick

et al. (2011) and Almeida and Martins (2013). They used Integer Linear Programming

to formulate the compression problem where dependency trees are used to ensure the

result is grammatically sound. This can be done by ensuring the head word and modifier

relation remain grammatical after compression. The limitation of this approach is that

it can’t bring together two textual units (phrases or words) that are located far apart

within the document but are still related to each other. This issue is a major challenge

when one wants to build an abstractive summarization system.

2.3.3.2 Summarization Using Abstract Meaning Representation

An AMR graph (Banarescu et al., 2013) is a rooted, directed, and labelled graph that

captures the semantic representation of ‘who is doing what to whom’ in a sentence (see

Figure 2.3). It can also be represented in PENMAN format(Matthiessen and Bateman,

1991) as follows.
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(w / want-01

:ARG0 (b / boy)

:ARG1 (b2 / believe-01

:ARG0 (g / girl)

:ARG1 b))

One advantage of using AMR is that it abstracts away from syntactic idiosyncrasies

for example, sentences like “The man described the mission is a disaster.” and “As the

man described it, the mission is a disaster.” will be represented by the same following

AMR:

(d / describe-01)

:arg0 (m / man)

:arg1 (m2 / mission)

:arg2 (d / disaster))

Besides AMR there are other meaning representation formats such as Discourse Rep-

resentation Structures (Abzianidze et al., 2020), Semantic Dependency Parsing (Oepen

et al., 2014), FrameNet Fillmore and Baker (2010), and many others, however, only AMR

provides a gold label summarization dataset which is why we use AMR in our work.

When AMR graphs are used in summarization (Liu et al., 2015) to represent the

semantic interaction between words, we can focus on capturing semantic information and

process them while staying agnostic to the syntactic structure of the input, for example

in the case of sentence paraphrasing.
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Figure 2.3: An AMR Graph of the sentence ‘the boy wants the girl to believe him.’
(Liu et al., 2015) There is a re-entrancy in the concept node of ‘boy’ which has several

parents.

Liu et al. (2015) introduced AMR graph manipulation for summarizing text as a series

of processes such as graph merging and sub-graph prediction. While graph merging is

a heuristic approach, sub-graph prediction can be formulated as an ILP process where

parameters can be learned in a supervised manner. Liu et al. (2015) however didn’t

perform AMR-to-text generation, instead, they opted to generate bag-of-words that are

sorted based on each word occurrence in the source document. To evaluate their results,

the subgraph of the prediction summaries are compared against the gold summary graphs.

This is possible as the AMR dataset (Knight et al., 2017) provides gold labels AMR

summary graphs.

Even though the results are not fluent, they showed that their approach achieves

58.7% accuracy in node matching between gold summary AMR parses and system AMR

predictions. In the next section, we show how graph merging and sub-graph prediction

are done in Liu et al. (2015).

In graph merging, parses of input sentences AMR graph were combined into a single

graph called source graph (see Figure 2.4), G = (V,E) where v ∈ V and e ∈ E are unique
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Figure 2.4: A joined AMR graph from two sentences AMR graphs. (1) and (2) are
added edges through expansion steps. (Liu et al., 2015)

concepts and relations between pairs of concepts. The merging process is a heuristic

process where a pair of nodes that belongs to the same label from two different AMR

graphs are combined into one node. Afterwards, finding a smaller graph called summary

graph, G′, can be formulated as an ILP problem as follows.
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maximize
N∑
i=1

viθ
⊺f(i) +

∑
(i,j)∈E

ei,jψ
⊺g(i, j)

s.t.

(1) vi − ei,j ≥ 0, vj − ei,j ≥ 0,∀i, j ≤ N

(2)
∑
i

f0,i −
∑
i

vi = 0

(3)
∑
i

fi,j −
∑
k

fj,k − vj = 0, ∀j ≤ N

(4)N · ei,j − fi,j ≥ 0,∀i, j ≤ N

(5)
∑
j

ei,j ≤ 1,∀j ≤ N

(6)
∑
i

∑
j

ei,j = L

(2.12)

where f(i) and g(i, j) are feature representations of node i and edge (i, j) respectively,

θ and ψ are parameters that have to be learned from the training data, vi and ei,j are

selection indicators. Constraint (1) is to ensure the validity of the graph, constraints (2)

- (4) is to ensure the graph connectivity, constraint (5) is to ensure that the resulting

graph is a tree, and finally constraint (6) bounds the graph size.

2.3.4 Summarization Using a Guiding Mechanism

In this section, we discuss approaches where structural information (See et al., 2017; Li

et al., 2018a; Jin et al., 2020; Li et al., 2020; Dou et al., 2020) can be used as a guidance
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signal. A guidance signal can be defined as different types of signal that are fed into the

model in addition to the source document (Dou et al., 2020). In the following subsections,

we will discuss several works that use the guiding mechanism.

Li et al. (2018a)’s System While See et al. (2017)’s approach is very good in handling

the OOV problem, however it is hard for Pointer Network to correctly identify which

words are to be copied. Li et al. (2018a) addressed this problem by proposing a system

called Key Information Guide Network (KIGN). KIGN is a system where the model would

accept external knowledge in the form of key-phrases of which are extracted prior to the

training using TextRank (Mihalcea and Tarau, 2004). These key-phrases become part

of the model input as external information and are encoded using a separate bi-LSTM

layer. The encoded key-phrases are then used as part of the model attention and also in

the pointer mechanism. The modified pointer mechanism is as follows.

pgen = σ(h∗t , st, kt) (2.13)

where kt is the encoded key-phrase in time t. The KIGN model with guidance shows

an improvement of 2.51 ROUGE 1 points higher than Pointer Generator network (See

et al., 2017) on CNN/DM dataset (Hermann et al., 2015).

An example of Li et al. (2018b)’s output can be seen in Table 2.1.
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Text(truncated): google claims to have cracked a problem that has flummoxed
anyone who has tried to read a doctor’s note - how to read anyone’s handwriting.
the firm claims the latest update to its android handsets can under 82 languages in
20 distinct scripts, and works with both printed and cursive writing input with or
without a stylus. it even allows users to simply draw emoji they want to send. scroll
down for video. the california search giant claims the latest update to its android
handsets can understand handwriting in 82 languages in 20 distinct scripts. google
says its handwriting recognition works by building on large-scale language modeling,
robust multi-language ocr.
Gold: google handwriting input works on android phones and tablets. handsets
can under 82 languages in 20 distinct scripts. works with both printed and cursive
writing input with or without a stylus
Baseline+pointer-mechanism: google claims to have cracked a problem that
has flummoxed anyone who has tried to read a doctor ’s note how to read anyone ’s
handwriting
Li et al. (2018b) model: google claims the latest update to its android handsets
can under 82 languages in 20 distinct scripts, and works with both printed and
cursive writing input with or without a stylus.

Table 2.1: Comparison of Li et al. (2018b) model’s output, the pointer generator
baseline and the gold summary.

Dou et al. (2020)’s system The guidance system of Dou et al. (2020)’s proposes

several types of signals:

1. Highlighted sentences in the source document which are extracted sentences using

the greedy approach to maximize the ROUGE score.

2. Retrieved summaries which are summaries of other similar documents extracted

using Elastic Search 3.

3. Keywords are a set of salient individual words from the source document extracted

using TextRank (Mihalcea and Tarau, 2004)

3https://github.com/elastic/elasticsearch

https://github.com/elastic/ elasticsearch
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4. Salient relational triples which are triples containing subject, relation and object

which are extracted using Stanford OpenIE 4.

Guidance signals are then encoded separately using Transformers in the same way as

the encoding of the input sequence. Guidance encoded signals are then incorporated into

the decoder’s attention mechanism to guide the output. This can be seen in the following

equations.

h̃l = LayerNorm(hl−1 + MultiHeadCrossAttn(hl−1),x)

h̃l = LayerNorm(hl−1 + MultiHeadCrossAttn(hl−1),g)

hl = LayerNorm(h̃l + FFN(h̃l))

h0 = {x0,x1, · · · ,xn}

(2.14)

where x and g are encoded input and encoded guidance signals. However, the Dou

et al. (2020)’s model results is only comparable with the baseline BART model (Lewis

et al., 2020). Dou et al. (2020)’s model with different guidance signals can be seen in

Figure 2.5

4https://nlp.stanford.edu/software/openie.html

https://nlp.stanford.edu/software/openie.html
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Figure 2.5: Different guidance signals and its corresponding output using Dou et al.
(2020)’s model

2.4 Guidance by Constraining Beam Search

Previous approaches in guiding abstractive summarization systems require training the

summarization model to include the guidance signal. If during inference time, the domain

of the guidance signal changes then a model re-training is necessary. In this section, we

will discuss various approaches that don’t require model re-training.



Chapter 2 Background 42

2.4.1 Usage in Neural Machine Translation (NMT)

We will first discuss approaches in the NMT field since these approaches are heavily used

in that field for correcting mistakes or forcing certain translations.

Chatterjee et al. (2017)’s System The challenge of adding external knowledge in

NMT is that words and sentences are represented as continuous representations, which

makes it hard to specifically determine how and when one should include external knowl-

edge. To address the issue, Chatterjee et al. (2017) explored the possibility of including

external knowledge to the NMT during the decoding process. Their work improved the

existing baseline at least 3 BLEU points.

In detail, Chatterjee et al. (2017) used a translation recommendation that comes with

the source document to guide the decoder, where using it one can ensure the presence

of certain words from the translation recommendation in correct positions of a target

sentence. This can be done in three ways, which are reviewed in detail as follows.

Forcing the presence of a given term Forcing can be done by modifying the beam

search in the decoding process. Each most probable target word in the probability dis-

tribution is checked whether there is a suggested word that is provided through a phrase

table that can replace said word. If it is found, the word from the phrase table is used

instead of the most probable one.
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Placing the term in the right position This is done when suggestion words from

the translation recommendation are known to be close to each other and we want to

ensure their co-occurrence in the target sentence. An example is when translating “ap-

plication” and the suggestion phrase is “die Anwendung”. By using a look-ahead process,

a part of the suggested word is checked in the beam decoding process to decide whether

“Anwendung” could be generated in the near k-steps in the future. If it is not reachable,

then a forced replacement is done to force the phrase in the target sentence.

Guiding the Out Of Vocabulary (OOV) terms To handle the issue of OOV terms,

a lookup table that stores all the OOV suggestions is used instead of a standard “UNK”

token.

Zhang et al. (2018)’s System In Zhang et al. (2018)’s work, they also explored mod-

ifications to the decoder of a seq2seq model similar to Chatterjee et al. (2017) however

with a different kind of external knowledge. Instead of using a preset translation recom-

mendation, they used a search engine to retrieve sentences and their translation (referred

to as translation pieces) that have a high similarity score with the source sentence. When

similar n-grams from a source document were found in the translation pieces, they re-

warded the presence of those n-grams during the decoding process through a scoring

mechanism that calculates the similarity score between the source sentence and source

side of the translation pieces. Zhang et al. (2018) reported improvements in translation

results up to 6 BLEU points over their seq2seq NMT baseline. In this Thesis, we use
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the same principle and reward n-grams that are found in the source document during the

AMR-to-Text generation process.

He et al. (2021) In He et al. (2021)’s work, a translation memory which is a source-

target pair that is the most similar to the source-target pair to be translated, is encoded

using Transformers network and combined with the translation model which is also using

Transformers network. There are three approaches of translation memory encoding that

are used by He et al. (2021). The first one is embedding the translation memory sequence

directly. The second one is to use a scaled embedding where the scaling is done based

on the similarity score between the translation memory and the input source sequence.

The last one is to use word alignment between the translation memory source and target

sequence. He et al. (2021)’s model shows an improvement of 4.47 BLEU points over the

baseline Transformers.

2.4.2 Lexically Constrained Decoding

In the previous sections, we discussed several approaches in NMT where certain keywords

could be forced to occur in the generated hypothesis by looking at the model attentions

of the source document. Other approaches (Hokamp and Liu, 2017; Post and Vilar,

2018) integrated the keyword look-up in the beam-search by replacing the top-k sampling

mechanism of a standard beam-search.
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Hokamp and Liu (2017)’s System Hokamp and Liu (2017) introduced the Grid

Beam Search (GBS) algorithm which allows the inclusion of pre-specified lexical con-

straints into the output of the generation process. Although GBS was intended for NMT

usage, the principle can be applied to any beam-search process.

The idea of GBS is to allocate C + 1 separate beams (banks) that track which con-

straints are satisfied. There are two variables, t and c, that index and track the beam

in the grid. The t variable tracks the time-step of the search while the c variable tracks

the constraints that are satisfied in the current beam. In each time step, the beam will

update the constraints and build new hypotheses that could satisfy all constraints. Af-

ter the beam-search process has finished, the beam with the highest number of satisfied

constraints is returned. The limitation of this approach is that it requires a large number

of additional beams especially when the number of constraints is large. Another issue is

that GBS changes the number of beams in each sentence as each sentence has a different

number of constraints. As such the work is difficult to be optimized as a batching process

in the GPU.

Post and Vilar (2018)’s System Post and Vilar (2018) improved GBS’s limitation

by introducing the Dynamic Beam Allocation (DBA) mechanism which works the same

way as GBS but uses a fixed k size beam throughout the whole process. DBA is an

allocation strategy for distributing hypotheses that satisfy the constraints. The strategy

is to reserve the same number of hypotheses that satisfy the same number of constraints

in the same bank.
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2.5 Automatic and Manual Evaluation in Summa-

rization

The earliest effort (Edmundson, 1969) to evaluate automatic summarization was done by

having human annotators manually judge the quality of the system produced summary in

terms of how similar it is with the gold summary, and how informative is the information

contained in the summary. At that time, there wasn’t any consensus in the summarization

evaluation. It was in the DUC 2001 that the evaluation of summarization became the

focus of researchers and was continuously getting refined for the subsequent years of the

conference. This section is dedicated to giving an overview of automatic and manual

summarization evaluation that results from the continuous refinement of summarization

evaluation in the DUC and TAC conferences. But first, we are going to review the criteria

that are commonly used in summarization.

2.5.1 Common Criteria for Summarization

In determining criteria for summarization, we have to first determine the purpose of

evaluating a summary. At a high level, there are two purposes in evaluating a natural

processing system (Jones and Galliers, 1995):

1. evaluating the objective of the system, and

2. evaluating the function of the system relating to an external task.
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The first one is called an intrinsic evaluation wherein summarization’s case, the objective

that needs to be evaluated is the summary intrinsic quality such as fluency, coherence,

informativeness and etc., while the second one is called an extrinsic evaluation of which

it measures how well the summarization system works in a certain task, for example:

assuming that a summary contains all salient information from the document, we can

use a Q&A approach to measure how good the summary is by its capability to answer

questions that are derived from the source document as shown by Gorinski and Lapata

(2015)’s work. As extrinsic evaluation requires another set of external task to evaluate

the summary of which create more complexity to the existing evaluation task, we will

only review criteria relating to intrinsic evaluation which are more related to our task.

Coherence and Readability In an extractive summarization, multiples sentences are

extracted from the source document as a summary. This, however, poses a problem when

each sentence is extracted without regarding the context of the other extracted sentences,

hence such a summary is likely to have a low coherence. Most works such as Paulus et al.

(2018) only use readability where the coherence criterion is implied in it. Readability is

a high-level criterion where judges have to rate many aspects at once such as sentence

coherence, fluency and naturalness, the presence of dangling anaphors and etc.

Informativeness A summary that covers a lot of information from the source document

is deemed informative. Of course, the challenge here is to keep the length of the summary

as short as possible while making sure that it has enough coverage. The informativeness
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criterion is also called coverage, or content quality. ROUGE (Lin, 2004) and Pyramid

(Nenkova and Passonneau, 2004) automatic metrics measure informativeness based on

information recall between the reference and the system summary.

Correctness A summary needs to ensure the correctness of the information itself. This

is a problem for advances in summarization that used deep learning (See et al., 2017;

Paulus et al., 2018) where often the correctness of the information might be lost during

the generation process, for example wrong mentions of numbers, dates, and facts. Other

studies such as Maynez et al. (2020) and Kryscinski et al. (2020) explore correctness eval-

uation and propose correctness evaluation methods based on textual entailment (Maynez

et al., 2020) and weakly-supervised (Kryscinski et al., 2020) approaches.

Compression Works (Clarke and Lapata, 2008b; Berg-Kirkpatrick et al., 2011; Almeida

and Martins, 2013) that focus on summarization through compression also used com-

pression as the criterion to measure the quality of the summary where it is commonly

measured as the ratio of the compressed sentence with respect to the original sentence.

2.5.2 Automatic Evaluation

A manual evaluation needs human judges and the process can be long and expensive.

Due to this reason, automatic evaluation has become the tool for providing insights into

system performance before opting to use manual evaluation. There are many automatic

evaluation methods for evaluating summarization results. We will review two of the most
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common ones: Recall-Oriented Understudy for Gisting Evaluation (Lin, 2004, ROUGE)

which is the most popular one and the Pyramid (Nenkova and Passonneau, 2004) method.

ROUGE ROUGE was specifically designed for evaluating automatic summarization

without involving human judgments. Commonly used versions of ROUGE metrics are

ROUGE-N and ROUGE-L. The following will describe each of those in detail.

ROUGE-N evaluates a candidate summary based on the n-gram recall between the

candidate summary and a set of reference summaries. The formula to calculate ROUGE-

N can be seen in Equation 2.15

ROUGE-N =

∑
S∈{Reference Summaries}

∑
gramn∈S Countmatch(gramn)∑

S∈{Reference Summaries}
∑

gramn∈S Count(gramn)
(2.15)

Where n stands for n-gram length, gramn and Countmatch(gramn) is the maximum

number of n-grams co-occuring in a candidate summary and a set of reference summaries.

ROUGE-L evaluates a candidate summary based on the longest common subsequence

between the candidate summary and a set of reference summaries. The formula to cal-

culate ROUGE-L can be seen in Equation 2.16, 2.17 and 2.18.

Rlcs =
LCS(X, Y )

m
(2.16)
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Plcs =
LCS(X, Y )

n
(2.17)

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs

(2.18)

Where X of length m is a reference summary, and Y of length n is a candidate

summary, LCS(X, Y ) denotes the length of a longest common subsequence of X and Y ,

β = Plcs/Rlcs when ∂Flcs/∂Rlcs = ∂Flcs/∂Plcs.

Pyramid Pyramid (Nenkova and Passonneau, 2004) is based on specific textual units

that are not bigger than a clause called Summary Content Units (SCU). The following

examples are given by Nenkova and Passonneau (2004) to show SCU as parts of a sentence.

A1 In 1998 two Libyans indicted in 1991 for the Lockerbie bombing were still in Libya.

B1 Two Libyans were indicted in 1991 for blowing up a Pan Am jumbo jet over Lockerbie,

Scotland in 1988.

C1 Two Libyans, accused by the United States and Britain of bombing a New York bound

Pan Am jet over Lockerbie, Scotland in 1988, killing 270 people, for 10 years were harbored

by Libya who claimed the suspects could not get a fair trail in America or Britain.

D2 Two Libyan suspects were indicted in 1991.

For most of these cases, SCUs in the above examples are spans selected by a human.

If there is a sentence segment that occurs in more than two different sentences, it will be
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annotated as an SCU. Each SCU is weighted based on the number of occurrences in the

examples. The optimal content score for a summary with X SCUs is calculated by the

following equation:

Max =
n∑

i=j+1

×|Ti| + j × (X −
n∑

i=j+1

|Ti|)

where j = max
i

(
n∑

t=1

|T − i| ≥ X)

(2.19)

2.5.3 Manual Evaluation

An automatic evaluation such as Pyramid or ROUGE is lacking in several ways Pyramid

still needs human annotation to provide the SCU annotation beforehand and ROUGE is

prone to fluency and correctness issues where a bad summary can get a good ROUGE

score and the other way around: good summaries can get bad ROUGE score. As such

many works still rely on manual evaluation for their summarization system. However,

there is still no agreement on how to perform a manual evaluation on summarization, and

as such, we will review many different types of manual evaluation in this section.

2.5.3.1 The DUC 2001 Manual Evaluation

The DUC 2001 provides three tasks for participants: single document, multi-document,

and exploratory summarization. The single and multi-document summarization were the

core tasks of the conference and received 11 and 12 systems submissions respectively. The

following paragraphs describe how the manual evaluation was done (Lin and Hovy, 2002).
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Evaluation Materials DUC 2001 provided 10 document clusters making up to 60 set

of documents. For each document and the document cluster, there were three human

summaries created as references where one of them is the main reference and another two

are extra references which were also used for the evaluation purpose. In addition to that,

there were the lead-baseline and coverage baseline summaries provided. The lead-baseline

summary took the first 50, 100, 200 and 400 words from the document (single) or the

last document in the collection (multi-document). The coverage baseline, which was only

available in the multi-document dataset, comes from the beginning lines of each document

in the document cluster until it reaches a summary of 50, 100, 200 or 400 words.

The two extra references have different content compared to the main reference. The

average unigram overlap between the two extra references and the main reference in 50-

words summaries is 15.1%, while for 200-words summary is 19.7%, which are very low.

But Harman and Over (2004) pointed out that this low number is due to the subjectivity

of the human annotators in terms of summary details and granularity.

Evaluation Environment and Metrics To evaluate manually, each human judge

used the Summary Evaluation Environment (SEE) 2.0 (Lin, 2001) which is shown in

Figure 2.6. Using SEE, each judge can compare a pair of summaries consisting of reference

(model) and system (peer) summaries based on their content and quality. For evaluating

content (informativeness), a judge would mark sentences from a reference and system

summaries that share similar information and then specify the rating on four weights: 1

for all, 0.75 for most, 0.5 for some, 0.25 for hardly any. Once all pairs of similar sentences
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Figure 2.6: The Summary Evaluation Environment 2.0 user interface. (Lin, 2001)

were marked and rated, the weighted retention can be measured as:

Retention =
the number of marked sentences

the number of marked sentences in all summary examples
(2.20)

For evaluating summary quality, three questions were asked: “Does the summary

observe English grammatical rules independent of its content?”, “Do sentences in the

summary fit in with their surrounding sentences?”, and “Is the content of the summary

expressed and organized in an effective way?” The three questions measure grammatical-

ity, cohesion and coherence respectively, with each rated on a five-point scale: all, most,

some, hardly any, none
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In Lin and Hovy (2002)’s analysis, it was shown that judges are sometimes inconsistent

in assigning scores, where in single document summarization 18% of total judgments are

ambiguous (multiple scoring for the same sentence), while in multi-document summariza-

tion 7.6% of total judgments are ambiguous. Even though the number of inconsistencies

is small, it is still deemed as problematic since in extractive summarization, every similar

pair should have the same score as nothing is changed in the sentence structure. De-

spite the ambiguity, this did not affect the ranking since human summaries were still

considered better than summaries produced by the system. However, the ranking might

change between systems that have a close scoring when inconsistencies of the scoring are

considered.

The manual evaluation result was also compared against an automatic evaluation

result for each system. The automatic evaluation is evaluated using n-gram interpolation.

The n-gram interpolation is formulated as follows.

a1 ∗ NAM1 + a2 ∗ NAM2 + a3 ∗ NAM3 + a4 ∗ NAM4 (2.21)

where NAMn is the n-gram percentage overlapping between system and all references,

and a1 to a4 are hyper-parameters. The Spearman rank-order correlation between the

manual and automatic summary was over 97%. The high correlation result is because of

the extractive summarization approaches considered where paraphrasing is not involved.
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2.5.3.2 The DUC 2002 Manual Evaluation

The DUC 2002 is the continuation of the DUC 2001 where more sets were added to the

dataset and had several improvements over the manual evaluation method.

Evaluation Materials The number of document sets were now twice the amount of the

DUC 2001 dataset. The summaries were limited to 200 words, eliminating the previous

400-word summaries.

Evaluation Environment and Metrics The SEE GUI had been updated to replace

the text label for the intervals with straight percentages: 20, 40, 60, 80, 100. This was

done to help the perception of the judges of the coverage completeness as words might

be perceived differently by different judges. In total, there were 13 submitted systems for

the single summarization track and 8 submitted systems for the multi-document summa-

rization track.

The manual environment mechanism changed in the way judges evaluate system sum-

maries. Previously, a judge couldn’t access all system summaries, which created inconsis-

tencies. This was addressed in the DUC 2002 by giving a judge access to all summaries

of a given document, this way all judgments can be given in a consistent manner. The

judge can still be more lenient or stricter for the whole document set, of which the DUC

2002 assigned more judges to allow averaging over the effect of strict/lenient judges.
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2.5.3.3 The DUC 2003 and DUC 2004 Manual Evaluation

The DUC 2003 and 2004 introduced new tasks that are different compared to DUC

2001 and 2002. The manual evaluation approach was also changed which comes from

experience running previous years’ DUC.

Evaluation Materials DUC 2003 introduced four tasks for summarization: one very

short summary for a single document, which is intended to generate headlines in newswire,

and three different multi-document summarization tasks. DUC 2004 introduced two

additional tasks of summarization in Arabic and the fifth task which is a blend of task 3

and 4 of DUC 2003.

Evaluation Environment and Metrics The SEE GUI had been updated again for

this DUC. In DUC 2003, there are now 12 questions prepared for measuring the summary

quality (see Appendix A) which can be answered by choosing one of four options: 0, 1-5,

6-10, >10 while in DUC 2004, more complex questions are presented to the judges (see

Appendix B).

The coverage questions were also changed with only one question (previous years are 3

questions) using the wording: “When you have marked all such PUs for the current MU,

then think about the whole set of marked PUs and answer the question:”, “The marked

PUs, taken together, express about [0%, 20%, 40%, 60%, 80% and 100%] of the meaning

expressed by the current reference unit.”
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Besides the summary quality and the coverage quality from the previous DUCs, judges

also evaluated the usefulness of the summary in this year DUC. In this evaluation, judges

were given a document and all summaries of that document. Judges were then asked this

question: “Assume the document is one you should read. Grade each summary according

to how useful you think in getting you to choose the document.”. judges would then rank

each summary from 0 (worst, of no use) to 4 (best).

2.5.3.4 The DUC 2005-2007 and TAC 2008-2009 Manual Evaluation

Starting from the DUC 2005 and afterwards, both tasks and manual evaluation for the

summarization track were simplified. The DUC 2005 itself is the starting point of finding

new evaluation methods that take into account variations in the gold summaries’ con-

tent. The next DUC eventually changed into Text Analysis Conference (TAC) which

subsequently improves from the DUC 2005 framework.

Evaluation Materials The DUC 2005 and 2006 had only one task that is query-

focused summarization. DUC 2007 had two generic summarization tasks which are the

multi-document 250-word (TAC 2008 and afterwards reduce this to 100-word) summary

as the main task and the 100-word summary as the update task. The update task is

intended to challenge a system to produce a summary after the model has read the main

task. The TAC 2008 and 2009 had an update task and an opinion summarization task.
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Evaluation Environment and Metric Starting in the DUC 2005, the metrics for

manual evaluations were changed into two metrics: readability and responsiveness. The

readability was evaluated based on five linguistic properties: grammatical, non-redundancy,

referential clarity, focus, and structure + coherence. See Appendix C for questions re-

garding the readability metrics.

2.5.3.5 Post DUC and TAC

After DUC and TAC, summarization literature has investigated different means of con-

ducting the manual evaluation. We studied a sample of papers from major ACL con-

ferences and outline the trends of manual evaluation in summarization in Table 2.2. A

majority of work has focused on evaluating the content and the linguistic quality of sum-

maries. However, there seems to be a lack of consensus on how a summary should be

evaluated: (i) Should it be evaluated relative to other summaries or standalone in absolute

terms? and (ii) What would be a good source of comparison: the input document or the

reference summary? The disagreements on these issues result in authors evaluating their

summaries often (11 out of 26 papers) using automatic measures such as ROUGE (Lin,

2004) despite of its limitations (Schluter, 2017). In what follows, we discuss previously

proposed approaches along three axes: evaluation metrics, relative vs. absolute, and the

choice of reference.

Evaluation Metrics Despite differences in the exact definitions, the majority (e.g.,

Hsu et al., 2018; Celikyilmaz et al., 2018; Narayan et al., 2018c; Chen and Bansal, 2018;
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Peyrard and Gurevych, 2018) agree on two broad quality definitions: coverage determines

how much of the salient content of the source document is captured in the summary,

and informativeness, how much of the content captured in the summary is salient with

regards to the original document. These measures correspond to “recall” and “precision”

metrics respectively in Table 2.2, notions that are commonly used in information retrieval

and information extraction literature. Clarke and Lapata (2010) proposed a question-

answering based approach to improve the agreement among human evaluations for the

quality of summary content, which was employed by Narayan et al. (2018c) and Narayan

et al. (2018b) (QA in Table 2.2). In this approach, questions were created first from

the reference summary and then the system summaries were judged with regards to

whether they enabled humans to answer those questions correctly. ShafieiBavani et al.

(2018), on the other hand, used the Pyramid method (Nenkova and Passonneau, 2004)

which requires summaries to be annotated by experts for salient information. A similar

evaluation approach is the factoids analysis by Teufel and Van Halteren (2004) which

evaluates the system summary against factoids, a representation based on atomic units

of information, that are extracted from multiple gold summaries. However, as in the

case of the “Pyramid” method, extracting factoids requires experts annotators. Finally,

a small number of works evaluates the ”Correctness” (Chen and Bansal, 2018; Li et al.,

2018b; Chen and Bansal, 2018) of the summary, similar to fact checking (Vlachos and

Riedel, 2014), which can be a challenging task in its own right.

The linguistic quality of a summary encompasses many different qualities such as

fluency, grammatically, readability, formatting, naturalness and coherence. Most works
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uses a single human judgment to capture all linguistic qualities of the summary Hsu et al.

(2018); Kryściński et al. (2018); Narayan et al. (2018c); Song et al. (2018); Groschwitz

et al. (2018); we group them under “Fluency” in Table 2.2 with an exception of “Clarity”

which was evaluated in the DUC evaluation campaigns (Dang, 2005). The “Clarity”

metric puts emphasis on easy identification of noun and pronoun phrases in the summary

which is a different dimension from “Fluency”, as a summary may be fluent but difficult

to be understood due to poor clarity.

Absolute vs Relative Summary Ranking. In relative assessment of summarization,

annotators are shown two or more summaries and are asked to rank them according to

the dimension at the question (Yang et al., 2017; Chen and Bansal, 2018; Narayan et al.,

2018a; Groschwitz et al., 2018; Krishna and Srinivasan, 2018). The relative assessment

is often done using the paired comparison (Thurstone, 1994) or the best-worst scaling

(Woodworth and G, 1991; Louviere et al., 2015), to improve the inter-annotator agree-

ment. On the other hand, absolute assessment of summarization (Li et al., 2018b; Song

et al., 2018; Kryściński et al., 2018; Hsu et al., 2018; Hardy and Vlachos, 2018) is often

done using the Likert rating scale (Likert, 1932) where a summary is assessed on a nu-

merical scale. Absolute assessment was also employed in combination with the question

answering approach for content evaluation (Narayan et al., 2018c; Mendes et al., 2019).

Both approaches, relative ranking and absolute assessment, have been investigated exten-

sively in Machine Translation (Bojar et al., 2016, 2017). Absolute assessment correlates
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highly with the relative assessment without the bias introduced by having a simultaneous

assessment of several models (Bojar et al., 2011).

Choice of Reference. The most convenient way to evaluate a system summary is

to assess it against the reference summary (Celikyilmaz et al., 2018; Yang et al., 2017;

Peyrard and Gurevych, 2018), as this typically requires less effort than reading the source

document. The question answering approach of Narayan et al. (2018c,b) also falls in this

category, as the questions were written using the reference summary. However, sum-

marization datasets are limited to a single reference summary per document (Sandhaus,

2008; Hermann et al., 2015; Grusky et al., 2018; Narayan et al., 2018c) thus evaluations

using them are prone to reference bias (Louis and Nenkova, 2013), also a known issue

in machine translation evaluation (Fomicheva and Specia, 2016). A way to circumvent

this issue is to evaluate against the source document (Song et al., 2018; Narayan et al.,

2018a; Hsu et al., 2018; Kryściński et al., 2018), asking judges to assess the summary

after reading the source document. However this requires more effort and is known to

lead to low inter-annotator agreement (Nenkova and Passonneau, 2004).

2.6 Datasets for Summarization

There are many datasets that are used for summarization purposes. Many of them come

from shared tasks while others crawled from the Internet.
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DUC and TAC Datasets DUC and TAC datasets comprises of documents and their

respective summaries sampled from various newswire dataset. This datasets cover many

different summarization tasks, such as multi-document, single document and others.

Proxy Report section of the AMR Dataset The proxy Report section of the AMR

dataset comprises various newswire datasets that are also annotated with AMR parses.

The size of this dataset is however quite small and isn’t fit for a seq2seq summarization

approach. However this dataset is useful when one wants to build an AMR summarization

(Liu et al., 2015).

eXtreme SUMmarization (XSUM) XSUM dataset (Narayan et al., 2018c) is a

newswire article-summary pairs collected from BBC news articles. XSUM dataset con-

tains higher level of abstractiveness compared to other datasets.

Gigaword (Graff et al., 2003b) The English Gigaword is a large collection of newswire

collected from different sources. It contains document and headline pairs which can be

used for a headline generator or summarization task.

The New York Times (Sandhaus, 2008) The New York Times (NYT) is a collection

of 1.8 millions article written and published by the NYT. Each article comes with an

abstractive summary written the journalists of the NYT.
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CNN / DailyMail (Hermann et al., 2015) The CNN / DailyMail datasets contain

newswire articles collected from CNN and DailyMail news. The articles have higher rate

of extractive characteristic than abstractive since most of the summaries are using the

lead lines of the articles.

WikiHow Wikihow dataset (Koupaee and Wang, 2018) is a highly-abstractive summa-

rization dataset that comes from the Wikihow website5. The summary comes from the

first line of each paragraph in the article.

Reddit-TIFU Reddit-TIFU dataset (Kim et al., 2018) is also a highly abstractive sum-

marization dataset that comes from Reddit specifically the TIFU subreddit. It comprises

of users’ posts as the source document and the TL;DR (Too Long; Don’t Read) section

as the target summary.

Table 2.3 summarizes all previously mentioned datasets’ characteristics.

2.7 Conclusion and Final Remarks

In this chapter we have presented a survey of deep learning approaches, pre-trained

language models, automatic summarization and its evaluation, and guidance mechanism.

The following is the recap of this chapter:

5https://www.wikihow.com/

https://www.wikihow.com/
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1. We have discussed different approaches in Deep Learning approaches, i.e.: RNN,

CNN and Transformer model. For each architecture, we have described the sequence-

to-sequence (seq2seq) model that is used in abstractive summarization setting. We

have also discussed pre-trained language model approach with the focus of BART

which is a seq2seq pre-trained language model.

2. We have surveyed the landscape of automatic summarization and its different types.

We have shown that seq2seq deep learning and pre-trained language models have

substantially improved abstractive summarization however problems still persist in

the model’s output such as hallucination and others.

3. We have discussed different approaches in solving said problems in abstractive sum-

marization using guidance mechanism. We observed that recent approaches in guid-

ing mechanism that use structural information requires re-training the dataset every

time the guidance changes.

4. We have surveyed different approaches in automatic and manual evaluation. We

observed that in the current large dataset, the reference-bias issue is impacting the

quality of evaluation.
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See et al. (2017) ✓
Lewis et al. (2020) ✓

Lin et al. (2018) ✓
Cohan et al. (2018) ✓
Liao et al. (2018) ✓

Kedzie et al. (2018) ✓
Amplayo et al. (2018) ✓

Jadhav and Rajan (2018) ✓
Li et al. (2018a) ✓

Pasunuru and Bansal (2018) ✓
Cao et al. (2018) ✓

Sakaue et al. (2018) ✓
Yang et al. (2017) ✓ ✓ ✓

Celikyilmaz et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓
Chen and Bansal (2018) ✓ ✓ ✓ ✓ ✓
Groschwitz et al. (2018) ✓ ✓ ✓ ✓

Hardy and Vlachos (2018) ✓ ✓
Hsu et al. (2018) ✓ ✓ ✓ ✓ ✓

Krishna and Srinivasan (2018) ✓ ✓ ✓
Kryściński et al. (2018) ✓ ✓ ✓ ✓

Li et al. (2018b) ✓ ✓
Narayan et al. (2018a) ✓ ✓ ✓
Narayan et al. (2018c) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Narayan et al. (2018b) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Peyrard and Gurevych (2018) ✓ ✓ ✓ ✓
ShafieiBavani et al. (2018) ✓

Song et al. (2018) ✓ ✓ ✓ ✓ ✓
Zhang et al. (2020) ✓ ✓ ✓
Dou et al. (2020) ✓ ✓ ✓

Narayan et al. (2021) ✓ ✓ ✓
HighRES (ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 2.2: Overview of manual evaluations conducted in recent summarization sys-
tems. We categorize them in four dimensions: the first column presents papers that do
not report on human evaluation; the second column identifies matrices used for evaluat-
ing content (“Pyramid”, “QA”, “Correctness”, “Recall” and “Precision”) and quality
(“Clarity”, “Fluency”) of summaries; the third column focuses if the system ranking
reported by humans on content evaluation were “Absolute” or “Relative”; and finally,
the fourth column evaluates if summaries were evaluated against the input document
(“With Document”), the reference summary (“With Reference”) or both (“With Ref.

& Doc.”).
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Table 2.3: Various dataset for summarization purpose

Corpus Type Size
DUC 2001 - 2002 Single Document and

multi-document sum-
marization

30 topics

DUC 2003 - 2004 Single Document and
Multi-document sum-
marization

60 topics

DUC 2005 - 2006 Focus Query summa-
rization in Question
Answering style

25 - 50 topics

DUC 2007, TAC
2008 - 2011

Focus Query sum-
marization and
Multi-Document
Summarization

44 topics in 5 cate-
gories with 20 docu-
ments each

PROXY AMR Single Document sum-
marization

8252 sentences with
gold annotated AMR

Gigaword
LDC2012T21

Single Document sum-
marization

10 Million documents
(4 billion words)

The New York
Times Anno-
tated Corpus
LDC2008T19

Single Document sum-
marization

1.8 Million articles
(more than 650 thou-
sands summaries)

Extreme Sum-
marization
(XSUM)

Single Document sum-
marization

399,147 articles

CNN-DM Single Document sum-
marization

907,179 articles

Wikihow Single Document sum-
marization

230,843 articles

Reddit-TIFU Single Document sum-
marization

79,949 TIFU-short
and 42,984 TIFU-long
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HighRES: Highlight-based

Reference-less Evaluation of

Summarization

In this chapter we propose a novel approach for manual evaluation, Highlight-based

Reference-less Evaluation of document Summarization (HighRES), in which a summary

is assessed against the source document via manually highlighted salient content in the

latter.

67
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Figure 3.1: Highlight-based evaluation of summaries. Annotators to evaluate a sum-
mary (bottom) against the highlighted source document (top) presented with a heat
map marking the salient content in the document; the darker the colour, the more

annotators deemed the highlighted text salient.

3.1 Introduction

Progress in automatic summarization is determined by assessing how good a system

produced summary. A good system summary must express salient information of the

source document in a fluent and succinct manner. This is a difficult task as there can

be multiple equally good summaries for the same source document as not all salient

information can fit in a given summary length and also because human annotators are

subject to a certain degree of subjectivity when creating a summary (Harman and Over,

2004).

One solution to the above problem is to provide multiple reference summaries for a

given document as such we can give more weight to information that occurs in multiple
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references. However, prominent datasets (Hermann et al., 2015; Narayan et al., 2018c;

Koupaee and Wang, 2018; Kim et al., 2018) only have a single reference summary avail-

able for each source document, as obtaining multiple ones increases dataset creation cost.

Because of these, system evaluations that are using these datasets are likely to exhibit

reference bias (Louis and Nenkova, 2013; Fomicheva and Specia, 2016) where good sum-

maries that contain salient information different from the single reference are penalized.

Notable works in summarization evaluation such as Pyramid (Nenkova and Passon-

neau, 2004) and ROUGE (Lin, 2004) were created with the idea of multiple summaries.

Another evaluation approach such as Narayan et al. (2018c,b) used question-answering to

determine a system summary quality. All these approaches exhibit reference bias there-

fore they are not suitable for said datasets that only have a single reference summary.

We proposed a solution for the reference-bias problem by doing system summary evalu-

ation directly against highlighted source document called Highlight-based Reference-less

Evaluation of document Summarization (HighRES). We focus on manual evaluation

since automatic measures are unlikely to be sufficient to measure performance in summa-

rization (Schluter, 2017).

3.2 HighRES

Our novel highlight-based reference-less evaluation does not suffer from reference bias as

a summary is assessed against the source document with manually highlighted salient
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content. These highlights are crowd-sourced effectively without the need of expert an-

notators as required by the Pyramid method or to generate reference summaries. Our

approach improves over the “Correctness” or “Fluency” only measure for summarization

by taking salience into account. Finally, the assessment of summaries against the docu-

ment with highlighted pertinent content facilitates an absolute evaluation of summaries

with the high inter-annotator agreement.

Our evaluation framework comprises three main components: document highlight

annotation, highlight-based content evaluation, and clarity and fluency evaluation. The

second component, which evaluates the notions of “Precision” and “Recall” requires the

highlights from the first one to be conducted. However, the highlight annotation needs to

happen only once per document, and it can be reused to evaluate many system summaries,

unlike the Pyramid approach that requires additional expert annotation for every system

summary being evaluated. The third component is independent of the others and can

be run in isolation. In all components, we employ crowd-workers as human judges and

implement appropriate sanity checking mechanisms to ensure good quality judgements.

Finally, we present an extended version of ROUGE that utilizes the highlights to evaluate

system summaries against the document; this demonstrates another use of the highlights

for summarization evaluation.
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3.2.1 Highlight Annotation

In this part, we ask human judges to read the source document and then highlight words

or phrases that are considered salient. Each judge is allowed to highlight parts of the text

at any granularity, from single words to complete sentences or even paragraphs. However,

we enforce a limit in the number of words to K that can be highlighted in total by a judge

in a document, corresponding to the length of the summary expected. The user interface

for highlighting annotation can be seen in Figure 3.2.

Figure 3.2: The UI for highlight annotation. Judges are given an article and asked
to highlight words or phrases that are important in the article.

By employing multiple judges per document who are restricted in the amount of text

that can be highlighted we expect to have a more diverse and focused highlight from

multiple judges who cover different viewpoints of the article.
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To ensure that each highlight is reliable, we performed a sanity check at the end of

the task where we ask the judges to answer a True/False question based on the article.

We rejected all annotations that failed to correctly answer the sanity check question. The

user interface for highlight annotation sanity checking can be seen in Figure 3.3.

Figure 3.3: The sanity checking question at the end of the annotation task.

3.2.2 Highlight-based Content Evaluation

In this component, we present human judges a document that has been highlighted using

heatmap coloring and a summary to assess (see Figure 3.1 for an example). We ask

our judges to assess the summary for (i) ‘All important information is present in the

summary’ and (ii) ‘Only important information is in the summary.’ The first one is

the recall (content coverage) measure and the second, the precision (informativeness)

measure. All the ratings were collected on a 1-100 Likert scale (Likert, 1932). For

baselines, we also did a similar content evaluation but without highlights and reference

only (comparing directly against the reference summary).

The user interface for content evaluation with highlights, without highlights and ref-

erence only can be seen in Figure 3.4, Figure 3.5 and Figure 3.6
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Figure 3.4: The UI for content evaluation with highlights. Judges are given an
article with important words highlighted using a heat map. Judges can also remove
less important highlight color by sliding the scroller at the left of the page. At the right
of the page, judges give the recall and precision assessment by sliding the scroller from

1 to 100 based on the given summary quality.

As with the highlight annotation, we also performed the same form of a sanity check

as the one in the highlight annotation task. The user interface for content evaluation

sanity checking is similar to Figure 3.3.

3.2.3 Clarity and Fluency Evaluations

In this part, we give the judges only the summary and ask them to rate it on clarity and

fluency. For clarity, each judge is asked whether the summary is easy to be understood,

i.e. there should be no difficulties in identifying the referents of the noun phrases (every

noun/place/event should be well-specified) or understanding the meaning of the sentence.
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Figure 3.5: The UI for content evaluation without highlight. At the right of the page,
judges give the recall and precision assessment by sliding the scroller from 1 to 100

based on the given summary quality.

For fluency, each judge is asked whether the summary sounds natural and has no gram-

matical problems. While fluency is often evaluated in summarization work, clarity, while

first introduced in DUC evaluations, has largely been ignored in manual evaluation, de-

spite that it captures a different dimension of summarization quality. The user interface

for clarity and fluency evaluations can be seen in Figure 3.7 and Figure 3.8.

To ensure that the judgments for clarity and fluency are not affected by each other

(poor fluency can affect clarity, but a summary can have perfect fluency but low clarity),

we evaluate each metric separately. We ask the judges to evaluate multiple summaries
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Figure 3.6: The UI for content evaluation using a reference summary as a comparison.
At the right of the page, judges give the recall and precision assessment by sliding the

scroller from 1 to 100 based on the given summary quality.

per task with each dimension on its own screen. For sanity checking, we insert three

fakes summaries with different qualities (good, mediocre and bad summaries). We reject

results that failed to pass this criterion: bad < mediocre < good.

Figure 3.7: The UI for fluency evaluation. Judges are given a number of summaries
which can be switched by pressing the ‘Prev’ or ‘Next’ button. To give an assessment,

there is a scroller from 1 to 100.
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Figure 3.8: The UI for clarity evaluation. Judges are given a number of summaries
which can be switched by pressing the ‘Prev’ or ‘Next’ button. To give an assessment,

there is a scroller from 1 to 100.

3.2.4 Highlight-based ROUGE Evaluation

Our Highlight-based ROUGE (we refer to it as HROUGE) formulation is similar to

the original ROUGE with the difference that the n-grams are weighted by the number

of times they were highlighted. One benefit of HROUGE is that it introduces saliency

into the calculation without being reference-based as in ROUGE. Implicitly HROUGE

considers multiple summaries as the highlights are obtained from multiple workers.

Given a document D as a sequence of m tokens {w1, . . . , wm}, annotated with N

highlights, we define the weight βn
g ∈ [0, 1] for an n-gram g as:

βn
g =

m−(n−1)∑
i=1

[∑i+n−1
j=i

NumH(wj)

N

n

]
wi:i+n−1==g

m−(n−1)∑
i=1

[1]wi:i+n−1==g

(3.1)
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where, [x]y is an indicator function which returns x if y is true and 0, otherwise. NumH(wj) =∑N
k=1

len(Hk)
K [1]wj∈Hk

is a function which returns the number of times word wj is high-

lighted by the annotators out of N times weighted by the lengths of their highlights; Hk

is the highlighted text by the kth annotator and K is the maximum allowed length of

the highlighted text (see Section 3.2.1). NumH(wj) gives less importance to annotators

with highlights with few words. In principle, if an n-gram is highlighted by every crowd-

worker and the length of the highlight of each crowd-worker is K, the n-gram g will have

a maximum weight of βn
g = 1. The HROUGE scores for a summary S can then be defined

as:

HRn
rec =

∑
g∈n -gram(S)

βn
g count(g,D ∩ S)∑

g∈n -gram(D)

βn
g count(g,D)

(3.2)

HRn
pre =

∑
g∈n -gram(S)

βn
g count(g,D ∩ S)∑

g∈n -gram(S)

count(g,S)
(3.3)

HRn
rec and HRn

pre are the HROUGE recall and precision scores; count(g,X ) is the max-

imum number of n-gram g occurring in the text X . There is no weighting in the de-

nominator of precision (βn
g = 1) as if we weighted according to the highlights, words in

the summary that are not highlighted in the original document would be ignored. This

would result in HRn
pre not penalizing summaries for containing words that are likely to be

irrelevant as they do not appear in the highlights of the document. It is important to note

HROUGE has an important limitation in that it penalizes abstractive summaries that

do not reuse words from the original document. This is similar to ROUGE penalizing
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summaries for not reusing words from the reference summaries, however, the highlights

implicitly consider multiple references.

3.3 Summarization Dataset and Models

We use the extreme summarization dataset (XSum, Narayan et al., 2018c)1 which com-

prises BBC articles paired with their single-sentence summaries, provided by the jour-

nalists writing the articles. The summary in the XSum dataset demonstrates a larger

number of novel n-grams compared to other popular datasets such as CNN/DailyMail

(Hermann et al., 2015) or NY Times (Sandhaus, 2008). This makes the dataset suitable

for our experiment since the more abstractive nature of the summary renders automatic

methods such as ROUGE less accurate as they rely on string matching, and thus calls

for human evaluation for more accurate system comparisons. Following Narayan et al.

(2018c), we didn’t use the whole test set portion but sampled 50 articles from it for our

highlight-based evaluation.

We assessed summaries from two abstractive summarization systems using our highlight-

based evaluation:

1. Pointer-Generator model (PtGen) introduced by See et al. (2017) is an RNN-based

abstractive system that allows copying words from the source text.

1https://github.com/EdinburghNLP/XSum

https://github.com/EdinburghNLP/XSum
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2. Topic-aware Convolutional Sequence to Sequence model (TConvS2S) introduced

by Narayan et al. (2018c) is an abstractive model which is conditioned on the

article’s topics and based entirely on Convolutional Neural Networks

We used the pre-trained models2 provided by the authors to obtain summaries from both

systems for the documents in our test set.

3.4 Experiments

All of our experiments were done using the Amazon Mechanical Turk platform. We de-

veloped three types of Human Intelligence Tasks (HITs): highlight annotation, highlight-

based content evaluation, and fluency and clarity evaluation. In addition, we elicited

human judgments for content evaluation in two more ways: we assessed system sum-

maries against the original document (without highlights) and against the reference sum-

mary. The latter two experiments were intended as the comparison for our proposed

highlight-based content evaluation.

3.4.1 Highlight Annotation

We collected highlight annotations from 10 different participants for each of the 50 arti-

cles. For each annotation, we set K, the maximum number of words to highlight, to 30.

Our choice reflects the average length (24 words) of reference summaries in the XSum

2Both models were trained using the standard cross-entropy loss to maximize the likelihood of the
reference summary given the document.
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dataset. To facilitate the annotation of BBC news articles with highlights, we asked our

participants to adapt the 5W1H (Who, What, When, Where, Why and How) principle

(Robertson, 1946) that is a common practice in journalism. The participants however

were not obliged to follow this principle and were free to highlight content as they deem

fit.

The resulting annotation exhibits a substantial amount of variance, confirming the

intuition that different participants are not expected to agree entirely on what is salient

in a document. On average, the union of the highlights from 10 annotators covered

38.21% per article and 33.77% of the highlights occurred in the second half of the article.

This shows that the judges did not focus only on the beginning of the documents but

annotated all across the document.

Figure 3.9: Highlight annotation for the documents with the highest (left) and lowest
(right) agreement. We also show their reference summaries at the bottom.

Using Fleiss Kappa (Fleiss, 1971) on the binary labels provided by each judge on each
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word (highlighted or not) we obtained an average agreement of 0.19 for the 50 articles con-

sidered. Article with the highest agreement (0.32) has more focused highlights, whereas

the article with the lowest agreement (0.04) has highlights spread all over (both articles

can be seen in Figure 3.9). Interestingly, the reference summary on the highest agreement

article appears to be more informative of its content for which the annotator agreement

is high; the reference summary on the lowest agreement article is more indicative, i.e.,

it describes the document rather than directly presenting the information it contains.

These results confirm that the annotation behaviour originates from the nature of the

document and the summary it requires and validates our highlight annotation setup.

Model
Highlight Non High- Reference
-based light-based -based

Prec Rec Prec Rec Prec Rec

TConvS2S 57.42 49.95 52.55 41.04 46.75 36.45
PtGen 50.94 44.41 48.57 39.21 44.24 38.24
Reference 67.90 56.83 66.01 52.45 — —

Table 3.1: Results of content evaluation of summaries against documents with high-
lights, documents without highlights and reference summaries.

Model
Highlight-based Non Highlight-based
Prec Rec Prec Rec

TConvS2S 0.67 0.80 0.75 0.83
PtGen 0.73 0.86 0.73 0.90
Reference 0.49 0.63 0.48 0.67

Table 3.2: Coefficient of variation (lower is better) for evaluating summaries against
documents with and without highlights.
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3.4.2 Content Evaluation of Summaries

We assessed the summaries against (i) documents with highlights (Highlight-based), (ii)

original documents without highlights (Non Highlight-based) and (iii) reference sum-

maries (Reference-based). For each setup, we collected judgments from 3 different par-

ticipants for each model summary. Table 3.1 and 3.2 presents our results.

Both the highlight-based and non-highlight based assessment of summaries agrees on

the ranking among TConvS2S, PtGen and Reference. Perhaps unsurprisingly human-

authored summaries were considered best, whereas, TConvS2S was ranked 2nd, followed

by PtGen. However, the performance difference in TConvS2S and PtGen is greatly

amplified when they are evaluated against documents with highlights (6.48 and 5.54 Pre-

cision and Recall points) compared to when evaluated against the original documents

(3.98 and 1.83 Precision and Recall points). The performance difference is lowest when

they are evaluated against the reference summary (2.51 and -1.79 Precision and Recall

points). The superiority of TConvS2S is expected; TConvS2S is better than PtGen

for recognizing pertinent content and generating informative summaries due to its ability

to represent high-level document knowledge in terms of topics and long-range dependen-

cies (Narayan et al., 2018c).

We further measured the agreement among the judges using the coefficient of variation

(Everitt, 2006) from the aggregated results. It is defined as the ratio between the sample

standard deviation and the sample mean. It is a scale-free metric, i.e. its results are

comparable across measurements of different magnitude. Since, our sample size is small
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Model Fluency Clarity

TConvS2S 69.51 67.19
PtGen 55.24 52.49
Reference 77.03 75.83

Table 3.3: Mean ”Fluency” and ”Clarity” scores for TConvS2S , PtGen and Ref-
erence summaries. All the ratings were collected on a 1-100 Likert scale.

(3 judgements per summary), we use the unbiased version (Sokal and Rohlf, 1995) as

cv = (1 + 1
4n

)σ
x̄
, where σ is the standard deviation, n is the number of sample, and x̄ is

the mean.

We found that the highlight-based assessment, in general, has lower variation among

judges than the non-highlight based or reference-based assessment. The assessment of

TConvS2S summaries achieves 0.67 and 0.80 of Precision and Recall cv points which

are 0.08 and 0.03 points below when they are assessed against documents with no high-

lights, respectively. We see a similar pattern in Recall on the assessment of PtGen

summaries. Our results demonstrate that the highlight-based assessment of abstractive

systems improve agreement among judges compared to when they are assessed against

the documents without highlights or the reference summaries. The assessment of human-

authored summaries does not seem to follow this trend, we report mixed results (0.49 vs

0.48 for precision and 0.63 vs 0.67 for recall) when they are evaluated with and without

the highlights.
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Model
Unigram Bigram
Prec Rec Prec Rec

ROUGE (Original document)

TConvS2S 77.17 4.20 26.12 1.21
PtGen 77.09 4.99 28.75 1.64
Reference 73.65 4.42 22.42 1.17

HROUGE (Highlights from the document)

TConvS2S 7.94 5.42 3.30 2.11
PtGen 7.90 6.46 3.37 2.64
Reference 7.31 5.73 2.39 1.84

Table 3.4: HROUGE-1 (unigram) and HROUGE-2 (bigram) precision, and recall
scores for TConvS2S , PtGen and Reference summaries.

3.4.3 Clarity and Fluency Evaluation

Table 3.3 shows the results of our fluency and clarity evaluations. Similar to our highlight-

based content evaluation, human-authored summaries were considered best, whereas

TConvS2S was ranked 2nd followed by PtGen, on both measures. The Pearson corre-

lation between fluency and clarity evaluation is 0.68 which shows a weak correlation; it

confirms our hypothesis that the ”clarity” captures different aspects from ”fluency” and

they should not be combined as it is commonly done.

3.4.4 Highlight-based ROUGE Evaluation

Table 3.4 presents our HROUGE results assessing TConvS2S , PtGen and Reference

summaries with the highlights. To compare, we also report ROUGE results assessing

these summaries against the original document without highlights. In the latter case,

HROUGE becomes the standard ROUGE metric with βn
g = 1 for all n-grams g.
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Both ROUGE and HROUGE favour the method of copying content from the original

document and penalizes abstractive methods, thus it is not surprising that PtGen is

superior to TConvS2S, as the former has an explicit copy mechanism. The fact that

PtGen is better in terms of HROUGE is also evidence that the copying done by PtGen

selects salient content, thus confirming that the copying mechanism works as intended.

When comparing the reference summaries against the original documents, both ROUGE

and HROUGE confirm that the reference summaries are rather abstractive as reported

by Narayan et al. (2018c), and they in fact score below the system summaries. Recall

scores are very low in all cases which is expected, since the 10 highlights obtained per

document or the documents themselves, taken together, are much longer than any of the

summaries.

3.5 Qualitative Analysis

3.5.1 HighRES eliminates reference bias.

The example presented in Figure 3.10 demonstrates how our highlight-based evaluation

eliminates reference bias in summarization evaluation. In it, we can see that summaries

generated by TConvS2S and PtGen are able to capture the essence of the document.

For example, the words bolded by red color in TConvS2Ssuch as ‘met office‘ and ‘yellow‘

don’t come out in the reference summary but HighRES shows highlights on both words

giving the judge more information. A reference-based evaluation would fail to give a
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Figure 3.10: The highlighted article, reference summary, and summaries are generated
by TConvS2S and PtGen. Words in red in the system summaries are highlighted in

the article but do not appear in the reference.

reasonable score to these system summaries. The HighRES however, would enable the

judges to better evaluate the summaries without any reference bias.

In Figure 3.9 we also show two examples of the highest and lowest agreement for high-

light annotation. In the highest agreement example, it is shown that reference summary

couldn’t capture the most important words in the article while our highlights could. In

the lowest agreement example, we have shown that our highlight annotation could identify

an indicative article while reference alone couldn’t.

3.5.2 Fluency vs Clarity.

Example in Table 3.5 shows disagreements between fluency and clarity scores for differ-

ent summaries of the same article. From the example, we can see that the TConvS2S
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Model Summary Text FluencyClarity

TConvS2S dick advocaat has resigned as
sunderland manager until the
end of the season .

92.80 44.33

PtGen sunderland have appointed for-
mer sunderland boss dick advo-
caat as manager at the end of the
season to sign a new deal .

41.33 6.00

Table 3.5: TConvS2S and PtGen showing a disagreement between fluency and
clarity scores. We italicized words that are not clear in the summaries.

summary is fluent but is not easily understood in the context of ‘the duration of resig-

nation’, while the PtGen summary has word duplication which lowers the fluency and

also lacking clarity due to several unclear words.

3.6 Conclusion

In this chapter, we introduced the Highlight-based Reference-less Evaluation Summarization

(HighRES) framework for manual evaluation. The proposed framework avoids reference

bias and provides absolute instead of ranked evaluation of the systems. We also performed

crowd-sourced annotations to obtain a highlighted source document for the purpose of

HighRESevaluation. This annotated dataset also gives more understanding of how hu-

mans select salient information from the source document.

Our experiments show that HighRES lowers the variability of the judges’ content

assessment while helping expose the differences between systems. We also showed that

by evaluating clarity we are able to capture a different dimension of summarization quality
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that is not captured by the commonly used fluency. We believe that our highlight-based

evaluation is an ideal setup of abstractive summarization for three reasons:

1. Highlights can be crowdsourced effectively without expert annotations.

2. HighRES avoids reference bias.

3. HighRES is not limited by n-gram overlap.

With regards to research questions, our experiment answers the following research

question:

Can we devise a new manual evaluation that is not affected by the reference

bias problem? We developed a new framework that addresses the reference bias prob-

lem which consists of a web application and annotated datasets where annotators can

use it to annotate a new highlighted document or use the existing dataset to evaluate

systems’ summaries.

For future works, we would like to extend our annotation process to multiple new

datasets.



Chapter 4

Guided Neural Language Generation

of AMR for Summarization

Figure 4.1: An Overview Diagram of the Guided NLG of AMR for summarization.

In this chapter, we propose a guided neural language generation of AMR for summa-

rization. The overview diagram for our approach can be seen in Figure 4.1.

89
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4.1 Introduction

Research (See et al., 2017; Chopra et al., 2016; Rush et al., 2015) in abstractive summa-

rization has made progress with the neural encoder-decoder architecture. However, these

models are often challenged when they were required to combine semantic information in

order to generate a longer summary (Wiseman et al., 2017). The longer summary tends

to display references error, incoherence and a lack of fidelity from the source document.

Reference error means that the produced summary contains any entities or concepts that

aren’t found in the source document. Incoherence means that the produced summary

lacks cohesion between its concepts. Finally, lack of fidelity means that the produced

summary produced any information that is not in line with the facts in the source docu-

ment. An example containing these errors can be seen in Table 4.1.

Model Generated Summary
Gold on 8 august 2008 russia con-

ducted airstrikes on geor-
gian targets .

Seq2seq (See et al., 2017) the russian laboratory com-
plex is a 90 - building
campus and served as the
location for russia ’s se-
cret biological weapons pro-
gram in the soviet era of a
moscow regional depository
threaten moscow .

Table 4.1: Neural network model hallucination.

To address these shortcomings, we investigated the use of Abstract Meaning Rep-

resentation (Banarescu et al., 2013, AMR) in an abstractive summarization task. Our
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motivation is that AMR has the capability to capture the predicate-argument struc-

ture which can be utilized in an information aggregation process during summarization.

However, the use of AMR also has its own shortcomings. While AMR is suitable for infor-

mation aggregation, it ignores aspects of language such as tenses, grammatical numbers,

etc., which are important for the natural language generation (NLG) stage that normally

occurs at the end of the summarization process. Due to the lack of such information,

approaches for NLG from AMR typically infer it from regularities in the training data

(Pourdamghani et al., 2016; Konstas et al., 2017; Song et al., 2016; Flanigan et al., 2016).

Due to this limitation, previous work on an AMR-based abstractive summarization (Liu

et al., 2015) only generated bag-of-words from the summary AMR graph. We proposed

an approach to guide the NLG stage in an AMR-based abstractive summarization using

information from the source document (also called side information). Our objective is

twofold:

1. To retrieve the information missing from AMR but needed for NLG

2. Improve the quality of the summary

We achieve our objectives in two stages:

1. Estimating the probability distribution of the side information.

2. Using it to guide a Luong et al. (2015)’s seq2seq model for NLG.

Our approach is evaluated using the Proxy Report from the AMR dataset (Knight et al.,

2017, LDC2017T10) which contains manually annotated source documents and reference
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summary AMR graphs. We built our work on top of Liu et al. (2015)’s work. Using our

proposed guided AMR-to-text NLG, we improved summarization results using both gold

standard AMR parses and parses obtained using the RIGA (Barzdins and Gosko, 2016)

parser by 7.4 and 10.5 ROUGE-2 points respectively. Our model also outperformed a

strong baseline seq2seq model (See et al., 2017) for summarization by 2 ROUGE-2 points.

4.2 Methodology

We first briefly describe the AMR-based summarization method of Liu et al. (2015) and

then our guided NLG approach.

4.2.1 AMR-based summarization

In Liu et al. (2015)’s work, each of the sentences of the source document was parsed

into an AMR graph and then combined into a source graph (see Chapter 2 for more

information). Since they only generated bag-of-words (see Table 4.2) from the summary

AMR graph, we extend their work to generate a fluent text in two different settings:

unguided and guided.

To generate a fluent sentence from the BOW of Liu et al. (2015)’s system we used

an AMR-to-text generator. There are two versions of the AMR-to-text generator that

we used in this work. The first one is the baseline (unguided NLG from AMR) and our

proposed model (the guided NLG from AMR).
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Generated AMR output

(x4 / state-01
:ARG1 (x26 / reach-01

:ARG1 (x14 / and
:op2 (x15 / country :name (n/name :op1 "China" )))

:ARG1 (x27 / agree-01
:ARG1 (x32 / persuade-01

:purpose (x35 / halt-01
:ARG1 (x37 / enrich-01

:ARG1 (x36 / uranium))
:ARG0 (x33 / country :name (n/name :op1 "Iran" ))))

:ARG1 (x30 / action))
:ARG0 (xap1 / person

:ARG0-of (x16 / have-org-role-91
:ARG1 (x19 / meet-03

:time (x21 / date-entity :year 2008 :month 11 :day 13 ))))))

Bag of Word.
actions uranium officials and meeting stated halt 081113
agreement china officials reach persuade iran enrichment

Table 4.2: System outputs of Liu et al. (2015). The bottom bag-of-words are generated
from the top AMR tree.

4.2.2 Unguided NLG from AMR

Our baseline (unguided) is a standard seq2seq model with an attention mechanism (Luong

et al., 2015) that consists of an encoder and decoder that takes the linearized summary

AMR graph as the input and then generates a fluent text.

Before passing the linearized summary AMR graph, we run steps of preprocessing

(Van Noord and Bos, 2017) on the AMR tree with the following steps:

1. Add extra space after all parentheses and remove the beginning and ending paren-

theses.

2. Remove all semantics identifiers from AMR concept nodes.

3. Delete the AMR variable.

The result of preprocessing can be seen in Figure 4.2.
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Figure 4.2: An example of the original AMR (left) and the variable-free AMR (right)
displaying the meaning of Opium is the raw material used to make heroin (Van Noord

and Bos, 2017).

After the preprocessing, we passed the linearized summary AMR graph into the

seq2seq model. The encoder computes the hidden representation of the input, z1, z2, · · · , zk.

The decoder then generates a fluent text, y1, y2, · · · , ym, using the conditional probability

distribution Ps2s(yj|y<j, z)

4.2.3 Guided NLG from AMR

Our goal here is to improve the output of the unguided system in which tokens generation

are sampled over the seq2seq probability distribution, Ps2s, by incorporating information

from the source document. Since not all sentences in the source document will be used

in generating the summary, we pruned the source document to a set of k sentences which

have the highest similarity with the summary AMR graph. For graph-to-graph similarity

comparison, we used the source document AMR parses and calculate the Longest Com-

mon Subsequence (LCS) between linearized AMR parses and the summary AMR graph.

We keep the top-k sentences sorted by the LCS similarity. To distinguish this pruned

document from the source document, we refer to the former as side information.
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Our aim is to combine Ps2s with the probability distribution estimated using words in

the side information, Pside, in order to score each word given its context during decoding.

We estimated Pside as the linear interpolation of 2-gram to 4-gram probabilities in the

form of

Pside(xj|xj−1
j−3) = λ3PLM(xj|xj−1

j−3)

+ λ2PLM(xj|xj−1
j−2)

+ λ1PLM(xj|xj−1)

(4.1)

, where xj is a word occurring in side information document, PLM is an N -gram LM

estimated using Maximum Likelihood:

PLM(xj|xj−1
j−N−1) =

count(xj−N−1 . . . xj)

count(xj−N−1 . . . xj−1)
(4.2)

and λi is defined as

λi = θλi−1 where θ ∈ R, λi > 0 and
∑
i

λi = 1 (4.3)

where θ is a hyper-parameter that we tune using the dev dataset during the experiments.

Lastly, we combined the probability distribution of the decoder, Ps2s with that pro-

vided by the side information, Pside, as follows:

s(yj|y<j, z) = log(a) + ψ ∗ log(
b

a
+ 1) (4.4)
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where ψ is a hyper-parameter determining the influence of the side information on the

decoding process, a is Ps2s(yj|y<j, z) and b is Pside(yj|yj−1
j−3). s(yj|y<j, z) is used during

beam search replacing Ps2s(yj|y<j, z) for all words that occur in the side information.

The intuition behind Eq. 4.4 is that we are rewarding word yj when it appears in similar

context in the side information, i.e. the source document being summarized.

We have tried different equations for the combination which can be seen in Figure 4.3.

The different insights for these equations can be seen in Table 4.3.

Figure 4.3: Effect of different equations for combining the probability distribution of
the decoder with the side information.
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Combination Equation of s Insights
log (a) + ψ ∗ log(b) A very low side probability could bring down

the final score due to logarithm’s nature.
log (a) + log(b) Only a high side probability can affect the

final score and it is difficult to adjust each
probability’s contribution to the final score.

log(a) + ψ ∗ (log(b) + log(a)) Can adjust each probability’s contribution
using a hyper-parameter. However, the side
probability is not very sensitive toward the fi-
nal score (a large hyper-parameter is needed
to improve the sensitivity).

log(a) + ψ ∗ log( b
a

+ 1) Scaling the result using seq2seq probability
increases the side probability sensitivity. N-
Grams which occur in source document are
highly favoured when their probabilities are
high.

Table 4.3: Insights of different equations.

4.3 Experiments

We conduct experiments in order to answer the following questions about our proposed

approach:

1. Is our baseline model comparable with the state-of-the-art AMR-to-text approaches?

2. Does the guidance from the source document improve the result of AMR-to-Text

in the context of summarization?

3. Does the improvement in AMR-to-Text hold when we use the generator for abstrac-

tive summarization using AMR?

We answer each of these in the following paragraphs.
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Model BLEU
Our model (unguided NLG) 21.1
NeuralAMR (Konstas et al., 2017) 22.0
TSP (Song et al., 2016) 22.4
TreeToStr (Flanigan et al., 2016) 23.0

Table 4.4: Results for AMR-to-text

AMR-to-Text baseline comparison We compare our baseline model against previ-

ous works in AMR-to-text using the data from the SemEval-2016 Task 8 (May, 2016,

LDC2015E86). Table 4.4 reports BLEU scores comparing our model against previous

works. Here, we see that our model achieves a BLEU score comparable with the state-of-

the-art, and thus we argue that it is sufficient to be used in our subsequent experiments

with guidance.

Guided NLG for AMR-to-Text In this experiment we apply our guided NLG mech-

anism to our baseline seq2seq model. To isolate the effects of guidance we skip the actual

summarization process and proceed to directly generate the summary text from the gold

standard summary AMR graphs from the Proxy Report section. To determine the model’s

hyperparameters, we perform a grid search using the validation dataset, where we found

the best combination of ψ, θ and k are 0.95, 2.5 and 15 respectively. We have two dif-

ferent settings for this experiment: oracle and non-oracle settings. In the oracle setting,

we directly used the gold standard summary text as the guidance for our model. The

intuition is that in this setting, our model knows precisely which words should appear

in the summary text, thus providing an upper bound for the performance of our guided

NLG approach. We also compared them against the baseline (unguided) model. Table
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4.5 reports performance for all models. The difference between the guided and the un-

guided model is 16.2 points in BLEU and 9.9 points in ROUGE-2, while there is room

for improvement as evidenced by the difference between the oracle and non-oracle result.

Model BLEU
F1 ROUGE
R-1 R-2 R-L

Guided NLG
(Oracle)

61.3 79.4 63.7 76.4

Guided NLG 45.8 70.7 49.5 64.9
Unguided NLG 29.6 68.6 39.6 61.3

Table 4.5: BLEU and ROUGE results for guided and unguided models using test
dataset.

Guided NLG for full summarization In this experiment we combine our guided

NLG model with Liu et al. (2015)’s work in order to generate fluent texts from their

summary AMR graphs using the hyper-parameters tuned in the previous paragraph. Liu

et al. (2015) used parses from both the manual annotation of the Proxy dataset as well

as those obtained using the JAMR parser (Flanigan et al., 2014). Instead of JAMR we

used the RIGA parser Barzdins and Gosko (2016) which achieved the highest accuracy

in the SemEval 2016 Task 8 (May, 2016). We compared our result against Liu et al.

(2015)’s bag of words1, the unguided AMR-to-text model, and a seq2seq summarization

model (OpenNMT BRNN)23 which summarizes directly from the source document to

1We were able to obtain comparable AMR summarization subgraph prediction to their reported results
using their published software but not to match their bag-of-words generation results.

2We use the OpenNMT-PyTorch implementation https://github.com/OpenNMT/OpenNMT-py and a pre-
trained model downloaded from http://opennmt.net/OpenNMT-py/Summarization.html which has higher
result than See et al. (2017)’s summarizer.

3The pre-trained model generates multiple sentences summary, but we use only the first sentence
summary for evaluation in accordance with the AMR dataset.

https://github.com/OpenNMT/OpenNMT-py
http://opennmt.net/OpenNMT-py/Summarization.html
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summary sentence without using AMR as an interlingua and is trained on CNN/DM

corpus (Hermann et al., 2015) using the same settings as See et al. (2017).

AMR
NLG Model

F1 ROUGE
parses R-1 R-2 R-L

Gold
Guided 40.4 20.3 31.4
Unguided 38.9 12.9 27.0
Liu et al. (2015) 39.6 6.2 22.1

RIGA
Guided 42.3 21.2 33.6
Unguided 37.8 10.7 26.9
Liu et al. (2015) 40.9 5.5 21.4

Directly from
Text

OpenNMT BRNN 2 layer, emb
256, hidden 1024

36.1 19.2 31.1

Table 4.6: The F1 ROUGE scores for guided, unguided, Liu et al. (2015) (BoW)
results in Gold and RIGA parses, and seq2seq summarization. All models are run

using test dataset.

In Table 4.6, we can see that our approach results in improvements over both the un-

guided AMR-to-text and the standard seq2seq summarization. We run ANOVA analysis

for significant testing for the R-2 result between the guided and the unguided for the RIGA

parses and found out that the difference is statistically significant where p-value < 0.001.

One interesting note is that using the RIGA parses results in higher ROUGE scores

than the gold parses for the guided model in our experiment. This phenomenon was

also observed in Liu et al. (2015)’s experiment where the summary graphs extracted

from automatic parses had higher accuracy than those extracted from manual parses.

We hypothesize this can be attributed to how the AMR dataset is annotated as there

might be discrepancies in different annotator’s choices of AMR concepts and relations for

sentences with similar wording. In contrast, the AMR parsers introduce errors, but they

are consistent in their choices of AMR concepts and relations. The discrepancies in the
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manual annotation could have impacted the performance of the AMR summarizer that

we use more negatively than the noise introduced due to the AMR parsing errors.

NLG Model Generated Summary
Gold on 8 august 2008 russia con-

ducted airstrikes on geor-
gian targets .

Guided on 8 august 2008 russia con-
ducted airstrikes on geor-
gian separatist targets .

Unguided on 8 august 2008 russia con-
ducted a softening of the
georgia ’s separatist target
.

Seq2seq the russian laboratory com-
plex is a 90 - building
campus and served as the
location for russia ’s se-
cret biological weapons pro-
gram in the soviet era of a
moscow regional depository
threaten moscow .

Table 4.7: Result summaries of guided, unguided and seq2seq models compared with
gold summary.

In Table 4.7, we show sample summaries from the different models, where we can

see that our guided model improves the unguided model by correcting a wrong word (a

softening) into a correct one (airstrikes) and introducing a better-suited word from the

source document (georgian instead of georgia ’s).

NLG Model Fluency
Guided 2.66
Unguided 2.16

Table 4.8: Fluency scores on test dataset.

We also evaluated manually by asking human evaluators to judge sentences’ fluency

(grammatical and naturalness) on a scale of 1 (worst) to 6 (best) for the guided and
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unguided model (see Table 4.8). While the manual evaluation shows improvement over

the unguided model, on the other hand, grammatical mistakes and redundant repetition

in the generated text are still major problems (see Table 4.9) in our AMR generation.

Guided NLG Model Problems
the soldiers were in-
jured when a at-
tempt to defuse the
bombs .

grammatical mistake

on 20 october
2002 the state - run
radio nepal reported
on 20 october
2002 that at the
evening - run radio
nepal reported on
20 october 2002
that the guerrillas
were killed and
killed .

redundant repetition

Table 4.9: Problems in guided model’s summaries.

4.4 Conclusion and Future Works

In this chapter, we show a guided NLG approach that substantially improves the output

of an AMR-based summarization. Our approach used Liu et al. (2015)’s AMR summa-

rization system as the baseline. We improved the baseline by using an AMR-to-Text

generator (Konstas et al., 2017) to generate a fluent language from Liu et al. (2015)’s

output. However the seq2seq approach is prone to hallucination. To solve it we used a

guiding mechanism where we used a language model retrieved from the pruned source
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document as the side information to guide the language generation probability distribu-

tion. The source document is pruned to k most similar sentence graph-to-graph similarity

with the predicted AMR summary from Liu et al. (2015). We have shown that this ap-

proach improved the ROUGE-2 score 2 points over the unguided one. We also have shown

that our complete system that used gold parses and RIGA (Barzdins and Gosko, 2016)

parses improved 7.4 and 10.5 ROUGE-2 score over See et al. (2017)’s approach. With

these results, we revisited our research questions as follows.

How to better leverage structural information to address the hallucination

and disfluency problems by an abstractive summarization system? The base-

line abstractive summarization systems of See et al. (2017) and Liu et al. (2015) have

problems listed in the research question, we addressed these problems by leveraging struc-

tural information obtained through the source document as the side information. The

obtained structural information we then use it to guide the language generation probabil-

ity distribution. Using automatic and manual evaluation, we showed that our approach

reduces hallucination and disfluency.

Can we incorporate structural information into the guiding mechanism with-

out having to re-trained the model every time we change the information

source? Our approach didn’t need to be re-trained and we can use a different source

document as the guidance during inference time.
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For future works, we would like to extend our work to other datasets. At the time

of the experiment, the AMR training dataset that we can use is still very small and the

AMR parser isn’t very good yet. However, in the future, if the AMR parser has matured

we think this approach is very feasible for a larger dataset.



Chapter 5

Guided Key-phrase Extraction for

More Informative Summarization

In this chapter we propose a guided key-phrase extraction for more informative summa-

rization. The overview diagram for our approach can be seen in Figure 5.1.

Figure 5.1: An overview diagram of the guided key-phrase extraction for more infor-
mative summarization.

105
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5.1 Introduction

In recent years, encoder-decoder models (Zhang et al., 2020; Lewis et al., 2020) have

made headway on various summarization datasets achieving state-of-the-art results. De-

spite this, an abstractive summarization system that uses these models still suffers from

hallucination. To this end, several researchers (Li et al., 2018a, 2020; Dou et al., 2020)

investigated the guidance mechanism to improve existing summarization models. The

guidance mechanism uses a guidance signal to control what tokens are to be generated.

A guidance signal can be defined as different types of signals that are fed into the model

in addition to the source document where a commonly used one is structural information

from the source document.

We draw inspiration from our work of manual evaluation (Hardy et al., 2019, Chap-

ter 3) where we showed that highlighted contents can aid human evaluations which leads

to a lower variation in evaluation result. Here in this chapter, we hypothesized that by

automating how a human selects key-phrases, we can then use those key-phrases to im-

prove the decoder’s decision making. This idea is also inspired by our work in guiding

natural language generation using AMR in Hardy et al. (2019, Chapter 4). Our objectives

here are:

1. To extract key-phrases that can be used to improve an abstractive summarization

system

2. To guide an abstractive summarization system using extracted key-phrases
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To date, there are several similar types of research (Li et al., 2018a, 2020; Dou et al.,

2020) with ours that used key-phrases for improving the abstractive summarization sys-

tem1. However, they were using a joint-training approach for the guiding mechanism,

in other words, the model needs to be re-trained if a different guidance signal is used

which is costly. We propose a solution that works without re-training and therefore are

more flexible with regards to the guidance signal source and also computationally cheaper

called Guided Keyphrase Extractor for SUMmarization (GKESUM). We achieve this

by training a key-phrase extractor model that learns to extract key-phrases from the

source document. The key-phrase extractor is a classification model that is much lighter

and cheaper to train than the abstractive model.

To improve the performance of the key-phrase extractor model we included the sum-

marizer model prediction as part of the signal in GKESUM. Extracted key-phrases were

then used as constraints for the summarizer model during inference. We used lexically

constrained beam search (Post and Vilar, 2018) for enforcing key-phrases into the lan-

guage generation of the abstractive model. Post and Vilar (2018)’s algorithm enforces

that key-phrases with the highest ranking would show up first in the prediction. We

hypothesize that this order enforcing could guide the sequence predictions to produce a

sequence that is more similar to the reference summary. However, we obtained mixed

results and this chapter serves to provide our investigation and analysis to gain insights

for future work.

1We discussed their work in Chapter 2
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5.2 Methodology

Our work extends the baseline summarizer model by guiding the model’s predictions using

key-phrases that are extracted using feedback from the summarizer model’s mistakes.

Overall, our summarizer system has three steps:

1. Training the summarizer model for which we used BART Lewis et al. (2020).

2. Combining the summarizer’s predictions with the gold summary as part of the input

along with the source document for key-phrase extraction training.

3. Using the extracted key-phrase to constrain the summarizer model prediction.

5.2.1 Summarizer model training

An abstractive summarization model, M , takes a document D = {w1, . . . , wn} as input

and produces a summary S = {w1, . . . , wm}. Our approach can be applied on any sum-

marizer model that is based on a seq2seq architecture and uses beam search for decoding.

We used the state-of-the-art model, BART (Lewis et al., 2020) as the baseline summarizer

system. We fine-tune BART model on the training dataset. BART predictions however

still contain mistakes that are caused by hallucination (Kryscinski et al., 2020; Zhao et al.,

2020). We want to reduce these mistakes therefore we include these mistakes as part of

our training process for our keyphrase extractor. To achieve it, we generate summaries

from the training dataset for the next step.
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5.2.2 GKESUM extraction training

GKESUM is a keyphrase extractor that is based upon Sun et al. (2020)’s BERTKPE.

Given a document D = {w1, . . . , wn} as input where each token has a relevance score, R =

{r1, . . . , rn}, GKESUM extracts keyphrases P = {p1, . . . , pm}. Similar to BERTKPE,

GKESUM comprises of chunking and ranking networks, however GKESUM applies a

different ranking formulation that takes into account the mistakes of BART model.

Preprocessing GKESUM takes the source document, gold summary and its respec-

tive predicted summary generated by BART as inputs. We first extract key-phrases

from each gold and predicted summaries using Spacy2. We define key-phrases extraction

criteria as:

1. Noun chunks

2. Tokens with NOUN, PROPN, VERB, and NUM part-of-speech tags

3. Named entities

Tokens that are not found in the source document were filtered out from those extracted

key-phrases. We then use gold and predicted summaries key-phrases to calculate relevance

scores. The relevance score, R = {r1, . . . , rn}, is a score that denotes how relevant each

key-phrase to the downstream summarizer model in order to achieve the highest ROUGE

scores. We used a simple formula where we assign the label ‘0‘ when a key-phrase is not

2https://spacy.io
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found in the gold or predicted summary key-phrases, ‘1‘ when it is found in the gold and

predicted summary key-phrases, and ‘2‘ when it is found in the gold summary key-phrases

but not in the predicted summary key-phrases. These ‘0‘, ‘1‘, and ‘2‘ labels denote the

ranking of a key-phrase. The idea is that we want key-phrases that are found in gold but

couldn’t be satisfied by the summarizer i.e. not found in predicted summary key-phrases,

to be prioritized over key-phrases that are found in gold and satisfied by the summarizer

during the extraction process.

Token and NGram Embedding Consider the document D, GKESUM uses the

BERT pre-trained model to retrieve the encoding H = {h1, . . . ,hn} and then applies

CNN to capture the final embedding for each k-gram by sliding a k-sized window over

the text. The representation of the i-th k-gram is:

gk
i = CNNk{hi, . . . ,hi+k−1} (5.1)

Chunking Network The key-phrase probability of n-gram cki is calculated by:

P (cki = yki ) = softmax(Linear(gk
i )) (5.2)

Ranking Network To obtain the ranking, we first apply a linear layer similar to

BERTKPE to predict the relevance score of each n-gram representation:

Φ(cki ) = Linear(gk
i ) (5.3)
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For n-grams that occur several times in the document, we take the one with the maximum

score.

Chunking Loss Function The chunking loss function is the cross-entropy loss which

is as follows:

L(cki ) = CrossEntropy(P (cki = yki )) (5.4)

Ranking Loss Function Given the scores, Φ, from the ranking network, we want to

maximize the ranking using relevance scores, R. This can be done by maximizing the

Normalized Discounted Cumulative Gain (Järvelin and Kekäläinen, 2002, NDCG) which

states:

1. Highly relevant items are more useful when appearing earlier in the ranking

2. Highly relevant items are more useful than marginally relevant items, which are in

turn more useful than irrelevant items.

using the following equation:

DCGp =

p∑
i=1

2ri − 1

log2(i+ 1)
(5.5)
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where p is the position in the ranking and ri is the gold relevance score. We use the

LambdaLoss (Wang et al., 2018) that directly maximizes the NDCG as follows:

L(Φ) =
∑
c,r∈D

∑
ri>rj

∆NDCG(i, j)log2(1 + e−σ(ci−cj)) (5.6)

where c is the set of all n-grams and r is the set of the relevance scores of all n-grams.

NDCG is a length normalized DCG as follows.

NDCG =
1

max DCG

n∑
i=1

2ri − 1

log2(1 + i)
(5.7)

Since the set of |c| is very large due to the large number of the possible key-phrase

n-grams, we therefore measure the loss using the top-100 ranking key-phrases.

Combined Loss For total loss, we use a weighted addition as follows:

L = αLchunk + Lrank (5.8)

where α is a hyperparameter denoting the significance of the loss function. We set α to

100 since the ranking loss is usually much large.
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5.2.3 Summarizer model inference

To guide the summarizer during decoding, we use a lexical constrained beam search (Post

and Vilar, 2018) during inference stage. For the constraints, we used the prediction of

GKESUM.

5.3 Experimental Setup and Result

5.3.1 Data

We used three datasets that cover three different domains: XSum (Narayan et al., 2018c,

news), Reddit-TIFU(Kim et al., 2018, electronic board), and Wikihow(Koupaee and

Wang, 2018, instructional). We chose these datasets because of their highly abstractive

nature and to demonstrate how our approach works in different domains.

5.3.2 Model

We used BART(Lewis et al., 2020) as the baseline to showcase our approach. To further

see how our approach works in different settings, we also experimented with two variants

of BART: chronological and distilled models. The chronological model is a BART model

that is trained on XSUM dataset but only on articles that are published prior to the

year of 2017, while the validation and test dataset is taken from after 2017. The BART
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distilled model will be used to demonstrate how our approach works on a weaker version

of the model.

5.3.3 Evaluation for the Key-phrase Extractor Model

We compare our GKE-SUM with Sun et al. (2020)’s BERTKPE in terms of precision,

recall and F1 scores that can be seen in Table 5.1. We benchmark it using the Reddit-

TIFU dataset. The BART-GKESUM is trained using the predictions of BART. We

can see that BART-GKESUM has better performance than BERTKPE.

Model P@1 R@1 F@1 P@3 R@3 F@3 P@5 R@5 F@5
BART-
GKESUM

0.608 0.062 0.11 0.501 0.149 0.219 0.431 0.21 0.266

BERTKPE 0.566 0.057 0.101 0.465 0.137 0.201 0.399 0.192 0.245

Table 5.1: GKE-SUM and BERTKPE performance using Recall, Precision and F1
scores on one, three and five key-phrases size

5.3.4 Automatic Evaluation for the Summarizer Model

For automatic evaluation, we used ROUGE (Lin, 2004) to measure the similarity between

reference and system summaries. Table 5.2 shows the result where GKESUM is used for

BART model. We show that our approach improves the baseline on Wikihow and Reddit

datasets. However, our approach doesn’t work on XSUM. We think this is due to the

nature of XSUM dataset where the summary is the first line of the article therefore

it contain new information that isn’t found in the article which is not suitable to our



Chapter 5 Guided Key-phrase Extraction for More Informative Summarization 115

approach that constrains the summary to contain more information from the source

document.

In chronological and distilled settings the numbers are, however, comparable between

baseline and constrained. We think this is because the weakened models made more

mistakes in their prediction therefore our approach show comparable result.

We also run oracle-constrained BART-GKESUM for XSUM dataset (see Table 5.4)

where oracle-constraints are constraints that are missing in predicted summaries by

BART. It can be seen that the GKE-SUM can indeed improve the prediction if given

the right key-phrases.

BART BART-GKESUM

XSum 45.45/22.30/37.18 36.75 43.68/21.25/35.49
Wikihow 43.42/19.11/34.54 43.83/19.34/34.76
Reddit TIFU 28.88/10.40/23.16 30.72/10.24/23.95

Table 5.2: Results on three abstractive summarization datasets.

Table 5.3 shows BART in different settings: chronological and distilled.

BART BART-GKESUM

XSUM Chronological 42.59/19.74/34.52 42.68/19.56/34.32
XSUM Distilled 40.14/18.00/33.33 40.52/17.52/33.06

Table 5.3: Results on XSUM dataset with different settings. The chronological is
fine-tuned on the year prior to 2017 and tested on after 2017. The distilled is XSUM

fine-tuned using the distilled version of BART

Model BART-GKESUM

Oracle 54.57/25.39/38.39

Table 5.4: Oracle constraints results of BART-GKESUM on XSUM dataset.
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5.3.5 Human Evaluation

We chose Reddit-TIFU dataset for our human evaluation since it obtain the best result

from Table 5.2. We used HighRES (Hardy et al., 2019, Chapter 3) for evaluating system

summaries, however since we don’t have any highlight annotation for Reddit-TIFU

dataset we used the reference-based evaluation. Using HighRES, we measured Precision

and Recall of information in the baseline and constrained system summaries. Recall

denotes “all important information is present in the summary” while Precision denotes

“only important information is present in the summary”. We also measured linguistic

qualities: clarity and fluency of summaries. In clarity evaluation, each evaluator is asked

whether the summary is easy to be understood while in fluency evaluation, each evaluator

is asked whether the summary sounds natural and has no grammatical problems. For

each system, we evaluate 50 randomly selected summaries with each summary evaluated

by three evaluators. All of our evaluations were done using the Amazon Mechanical Turk

platform. The results can be seen in Table 5.5.

In terms of linguistic quality, BART-GKESUM shows improvement in clarity but

deterioration in fluency. Meanwhile the same mixed results are shown in informativeness

quality where BART-GKESUM improves over precision but deteriorates in the recall.

We think the improvement in the precision score could be attributed to more informative

key-phrases occurrence in the summary meanwhile the deterioration of the recall score

could be due to more hallucinations occurrence which also explain the drop in fluency.
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BART BART-GKESUM

Clarity 45.43 46.48
Fluency 56.5 52.59
Precision 45.43 46.48
Recall 56.5 52.59

Table 5.5: Human evaluation results of BART and BART-GKESUM’s generated
summaries on Reddit.

5.3.6 Qualitative Analysis

NLG Model Generated Summary Constraints
Gold aunt has old car. she said

i can drive it. the key my
aunt said was stuck was not
stuck, but now won’t go
back in the ignition. and
then i saw midget porn.

N/A

BART i tried to start my aunt’s mg
midget with a volvo key and
now i don’t know if it’s a
common issue or not.

N/A

BART-GKESUM i tried to start my aunt’s
mg midget with a volvo
key, and now i’m freaking
out about what to do. car
won’t start, but the key is
stuck in the ignition.

key, car, aunt, ignition, i, it,
mg, stuck, tried

Table 5.6: A positive sample shown in summaries of BART, BART-GKESUM and
gold. Constraints provide missing information and makes BART-GKESUM’s summary

more informative.

We performed qualitative analysis on summaries produced by BART and BART-

GKESUM to seek more insights into the performance of BART-GKESUM. Table 5.6

and Table 5.7 show a positive and negative sample with regards to BART-GKESUM’s

performance. In the positive sample, we can see that BART-GKESUM was able to

produce key-phrases that relate to missing information in the baseline BART and there-

fore improved the informativeness of the summary. However, in the negative sample
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NLG Model Generated Summary Constraints
Gold i made a video for a

french proyect with too
much memes, when my
classmates saw it they were
really disturbed..

N/A

BART made a video as a proyect,
sent it to teacher, class
watched it, made akward
memes, teacher only says
”well... everyone can have
artistic liberty”

N/A

BART-GKESUM made a graduation video,
uploaded it to youtube,
class watched it, memes
started appearing, everyone
was akward, teacher only
says ”well... everyone can
have artistic liberty”

video, class, it, memes

Table 5.7: A negative sample shown in summaries of BART, BART-GKESUM and
gold. Adding constraints that have already been satisfied by the summarization model

causes hallucination in BART-GKESUM’s summary

BART-GKESUM produce key-phrases that are already satisfied by the summarizer

and negatively affects the language generation process causing several hallucinations to

occur in the summary. This negative effect occurs because constrained beam-search (Post

and Vilar, 2018) prioritizes satisfying constraints over minimizing perplexity, therefore,

generating sentences with higher perplexity. This works well only if constraints added

more information.



Chapter 5 Guided Key-phrase Extraction for More Informative Summarization 119

5.4 Conclusion and Future Work

In this chapter, we showed BART-GKESUM which is a guided key-phrase extractor

for more informative summarization. We also showed that BART-GKESUM works

better as a key-phrase extractor compared to the baseline BERTKPE (Sun et al., 2020).

With regards to the quality of abstractive summarization, BART-GKESUM gave mixed

results. Although it has better ROUGE scores in Reddit-TIFU and Wikihow, it

failed to improve results in the XSUM dataset. It also gave mixed results in the human

evaluation. Despite these, we have shown on the oracle dataset, BART-GKESUM could

improve the result substantially if it is able to identify unsatisfied key-phrases most of

the time. We also have analyzed both the positive and negative sample from BART-

GKESUM’s output.

With regards to the research question, we see that this experiment answers partially

the second research question which is “Can we incorporate structural information

into the guiding mechanism without having to re-trained the model every

time we change the in-formation source?”. Despite our mixed results, we showed

that our oracle results have shown a promising result for future work. We think that

improving the key-phrase extractor’s accuracy and ranking would increase the chance of

producing a more informative summary.
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Conclusion and Future Work

In this Thesis, we have investigated the topic of guiding abstractive summarization using

structural information as well as devising a new manual evaluation approached that is

reference bias free. There are three experiments in this Thesis that are done to address

our research questions.

In the first experiment (Chapter 3, we introduced the Highlight-based Reference-less

Evaluation Summarization (HighRES) framework for manual evaluation. The proposed

framework avoids reference bias and provides absolute instead of ranked evaluation of the

systems. We also performed crowd-sourced annotations to obtain a highlighted source

document for the purpose of HighRESevaluation. This annotated dataset also gives

more understanding of how humans select salient information from the source document.

Our experiments show that HighRES lowers the variability of the judges’ content as-

sessment while helping expose the differences between systems. We also showed that by

120
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evaluating clarity we are able to capture a different dimension of summarization quality

that is not captured by the commonly used fluency.

In the second experiment (Chapter 4, we have built a guided NLG approach that

substantially improves the output of an AMR-based summarization. Our approach uses

Liu et al. (2015)’s AMR summarization as the baseline. We improve the baseline by using

an AMR-to-Text generator (Konstas et al., 2017) to generate a fluent language from Liu

et al. (2015)’s output. However the seq2seq approach has shortcomings, i.e.: hallucina-

tions, grammatical mistakes, irrelevancy and other. To solve it we use a guiding mecha-

nism where we use a language model retrieved from the pruned source document as side

information to guide the language generation probability distribution. The source docu-

ment is pruned to k most similar sentence graph-to-graph similarity with the predicted

AMR summary from Liu et al. (2015). We have shown that this approach improved the

ROUGE-2 score 2 points over the unguided one. We also have shown that our complete

system that used gold parses and RIGA (Barzdins and Gosko, 2016) parses improved 7.4

and 10.5 ROUGE-2 score over See et al. (2017)’s approach.

In the third experiment (Chapter 5, we have built BART-GKESUM which is a

guided key-phrase extractor for more informative summarization. We have shown that

BART-GKESUM works better as a key-phrase extractor compared to the baseline

BERTKPE (Sun et al., 2020). With regards to the improvement of abstractive summa-

rization, BART-GKESUM gives mixed results. Although it has better ROUGE scores

in Reddit-TIFU and Wikihow, it fails to improve XSUM dataset. It also gives mixed

results in the human evaluation. Despite these, we have shown on an oracle dataset,
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BART-GKESUM could improve the result substantially if it is able to identify unsatis-

fied key-phrases most of the time. We also have analyzed both the positive and negative

sample from BART-GKESUM’s output.

6.1 Summary of Findings

We revisited each research question that motivated our work and summarise contributions

for each of our experiments.

Can we devise a new manual evaluation that is not affected by the reference

bias problem? We answered this question in the first experiment as well where we

developed a new framework that addresses the reference bias problem which consists of

a web application and annotated datasets where annotators can use it to annotate a new

highlighted document or use the existing dataset to evaluate systems’ summaries.

How to better leverage structural information to address the hallucination,

grammatical mistakes, irrelevancy and disfluency problems by an abstractive

summarization system? We answered this question in the second experiment where

the baseline abstractive summarization systems of See et al. (2017) and Liu et al. (2015)

have problems listed in the first research question. We addressed these problems by

leveraging structural information obtained through the source document. The obtained
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structural information we then use to guide the language generation probability distri-

bution. Our automatic and manual evaluation have shown that our approach reduces

hallucination, grammatical mistakes, irrelevancy and disfluency.

Can we incorporate structural information into the guiding mechanism with-

out having to re-trained the model every time we change the information

source? We answered this question in the second and third experiments. In those two

experiments, our approach didn’t need to be re-trained.

6.2 Future Work

For future works, we would like to:

1. Expand the HighRES approach to more summarization datasets.

2. Extend our work in Chapter 4 to other datasets. At the time of the experiment, the

AMR training dataset that we can use is still very small and the AMR parser isn’t

very good yet. However, in the future, if the AMR parser has matured we think

this approach is very feasible for a larger dataset.

3. Improve our approach in Chapter 5 by improving the keyphrase extractor’s accuracy

and ranking so that it has more chance to produce an informative summary.



Appendix A

DUC 2003 Summary Quality

Questions

12 questions for assessing the summary quality, which are as follows.

1. About how many gross capitalization errors are there?

2. About how many sentences have incorrect word order?

3. About how many times does the subject fail to agree in number with the verb?

4. About how many of the sentences are missing important components (e.g. the sub-

ject, main verb, direct object, modifier) – causing the sentence to be ungrammatical,

unclear, or misleading?

5. About many times are unrelated fragments joined into one sentence?
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6. About how many times are articles (a, an, the) missing or used incorrectly?

7. About how many pronouns are there whose antecedents are incorrect, unclear, miss-

ing, or come only later?

8. For about how many nouns is it impossible to determine clearly who or what they

refer to?

9. About how times should a noun or noun phrase have been replaced with a pronoun?

10. About how many dangling conjunctions are there (”and”, ”however”...)?

11. About many instances of unnecessarily repeated information are there?

12. About how many sentences strike you as being in the wrong place because they

indicate a strange time sequence, suggest a wrong cause-effect relationship, or just

don’t fit in topically with neighboring sentences?



Appendix B

DUC2004 Summary Quality

Question

1 Does the summary build from sentence to sentence to a coherent

body of information about the topic?

A. Very coherently

B. Somewhat coherently

C. Neutral as to coherence

D. Not so coherently

E. Incoherent

2 If you were editing the summary to make it more concise and

to the point, how much useless, confusing or repetitive text would
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you remove from the existing summary?

A. None

B. A little

C. Some

D. A lot

E. Most of the text

3 To what degree does the summary say the same thing over again?

A. None; the summary has no repeated information

B. Minor repetitions

C. Some repetiton

D. More than half of the text is repetitive

E. Quite a lot; most sentences are repetitive

4 How much trouble did you have identifying the referents of noun

phrases in this summary? Are there nouns, pronouns or

personal names that are not well-specified? For example, a person is

mentioned and it is not clear what his role in the story is, or any

other entity that is referenced but its identity and relation with

the story remains unclear

A. No problems; it is clear who/what is being referred to throughout.

B. Slight problems, mostly cosmetic/stylistic
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C. Somewhat problematic; some minor events/things/people/places

are unclear,or a very few major ones, but overall the who and what

are clear.

D. Rather problematic; enough events/things/people/places are

unclear that parts of the summary are hard to understand

E. Severe problems; main events, characters or places are not

well-specified and/or it's difficult to say how they relate to

the topic

5 To what degree do you think the entities (person/thing/event/place/...)

were re-mentioned in an overly explicit way, so that readability

was impaired? For example, a pronoun could have been used instead

of a lengthy description, or a shorter discription would have been

more appropriate?

A. None: references to entities were acceptably explicit

B. A little: once or twice, an entity was over-described

C. Somewhat: to a noticeable but not annoying degree, some

entities were over-described

D. Rather problematic: to a degree that became distracting,

entities were over-described

E. A lot: reintroduction of characters and entities made

reading difficult/caused comprehension problems
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6 Are there any obviously ungrammatical sentences, e.g.,

missing components, unrelated fragments or any other

grammar-related problem that makes the text diffcult to

read.

A. No noticeable grammatical problems

B. Minor grammar problems

C. Some problems, but overall acceptable

D. A fair amount of grammatical errors

E. Too many problems, the summary is impossible to read

7 Are there any datelines, system-internal formatting or

capitalization errors that can make the reading of the summary

difficult?

A. No noticeable formatting problems

B. Minor formatting problems

C. Some, but they do not create any major difficulties

D. A fair amount of formatting problems

E. Many, to an extent that reading is difficult



Appendix C

DUC2005 Summary Quality

Question

C.1 Readability Task

The linguistic quality questions are targeted to assess how readable

and fluent the summaries are, and they measure qualities of the

summary that DO NOT involve comparison with a model summary or DUC

topic. The information content and responsiveness of the summary are

measured separately in another part of the evaluation.

All linguistic quality questions require a certain readability

property to be assessed on a five-point scale from "A" to "E", where
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"A" indicates that the summary is good with the respect to the quality

under question, "E" indicates that the summary is bad with respect to

the quality stated in the question, and "B" to "D" show the gradation

in between. For each question, please try to assess the quality of

the summary only with respect to the property that is described in the

question.

1 Grammaticality

The summary should have no datelines, system-internal formatting,

capitalization errors or obviously ungrammatical sentences (e.g.,

fragments, missing components) that make the text difficult to read.

A. Very Good

B. Good

C. Barely Acceptable

D. Poor

E. Very Poor

2 Non-redundancy
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There should be no unnecessary repetition in the summary.

Unnecessary repetition might take the form of whole sentences that

are repeated, or repeated facts, or the repeated use of a noun or

noun phrase (e.g., "Bill Clinton") when a pronoun ("he") would

suffice.

A. Very Good

B. Good

C. Barely Acceptable

D. Poor

E. Very Poor

3 Referential clarity

It should be easy to identify who or what the pronouns and noun

phrases in the summary are referring to. If a person or other entity

is mentioned, it should be clear what their role in the story is.

So, a reference would be unclear if an entity is referenced but its

identity or relation to the story remains unclear.
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A. Very Good

B. Good

C. Barely Acceptable

D. Poor

E. Very Poor

4 Focus

The summary should have a focus; sentences should only contain

information that is related to the rest of the summary.

A. Very Good

B. Good

C. Barely Acceptable

D. Poor

E. Very Poor
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5 Structure and Coherence

The summary should be well-structured and well-organized. The

summary should not just be a heap of related information, but should

build from sentence to sentence to a coherent body of information

about a topic.

A. Very Good

B. Good

C. Barely Acceptable

D. Poor

E. Very Poor

C.2 Responsiveness Task

You have been given a topic statement and simple user profile, along

with a file containing a number of summaries that contribute toward

satisfying the information need expressed in the topic. Some of the

summaries may be more responsive to the topic than others. Your task

is to help us understand how relatively well each summary responds to

the topic.
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Read the topic statement and all the associated summaries. Then grade

each summary according to how responsive it is to the topic

RELATIVE TO THE OTHERS:

1 2 3 4 5 (1 = worst, 5 = best)

Responsiveness should be measured primarily in terms of the amount of

information in the summary that actually helps to satisfy the

information need expressed in the topic statement, at the level of

granularity requested in the user profile. The linguistic quality of

the summary should play a role in your assessment only insofar as it

interferes with the expression of information and reduces the amount

of information that is conveyed.
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