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Abstract

Topological phases of matter are a particular class of phases of matter which are potentially

of interest in the construction of quantum computers. Examples are given by fractional

quantum Hall states. Topological quantum field theories (TQFTs), and generalisations

of TQFTs, are mathematical constructions that axiomatise the properties of topological

phases. In this thesis we are motivated by the aim of understanding possible statistics of

generalised quasiparticles (loops or strings in 3-dimensions, for example), in topological

phases of arbitrary dimension.

In 2-dimensional topological phases, the worldlines of monotonic evolutions of point parti-

cles, which start and end in the same configuration, can be modelled by the braid groups.

The braid group has several different topological realisations, each with possible generali-

sations. In particular it has realisations as a mapping class group and as a motion group.

In Chapter 4 we construct for each manifold M its motion groupoid MotM , whose objects

are the power set of M , and a mapping class groupoid MCGM with the same object class.

These generalise the classical definition of a motion group and mapping class group as-

sociated to a pair of a manifold and a subset. The classical definitions can be recovered

by considering the automorphisms of the corresponding object. Our motivating aim is

to frame questions that inform the modelling of the worldlines of particles in topologi-

cal phases. These include questions about the skeletons of these categories, and about

monoidal structures. But our constructions also frame technical questions that we answer

here, such as the following. For a chosen manifold M we explicitly construct a functor

F∶MotM →MCGM and prove that this is an isomorphism if π0 and π1 of the appropriate

space of self-homeomorphisms of M is trivial. In particular we have an isomorphism in

the physically important case M = [0,1]n with fixed boundary, for any n ∈ N.
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In Chapter 5 we are motivated by the construction of embedded TQFTs. These are

functors from some choice of embedded cobordism category, which models the worldlines

of particles in topological phases, into Vect. We construct a category HomCob, and

a family of functors ZG∶HomCob → Vect, one for each finite group G. The category

HomCob has equivalence classes of cospans of topological spaces as morphisms. This

is a very general construction, making it possible to later fix a choice of a categorical

model of particle worldlines, and obtain a TQFT by precompsing ZG with a functor

into HomCob. Roughly, such a functor can be realised by taking the complement of the

particle worldlines in the ambient space. Notice we do not require that the complement

be modelled as a manifold. We also give an interpretation of the functor ZG showing that

it is explicitly calculable. The construction is a generalisation of an untwisted version of

Dijkgraaf-Witten.

iv



Contents

1 Introduction 1

1.1 Physical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Topological phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Topological quantum computation . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Topological quantum field theory . . . . . . . . . . . . . . . . . . . . . 5

1.2 Present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Motion Groupoids and mapping class groupoids . . . . . . . . . . . . 8

1.2.2 Topological quantum field theories for cospan cobordisms . . . . . . 10

1.2.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 General preliminaries 13

3 Preliminaries 15

3.1 Magmoids, categories and groupoids . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Magmoid congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Normal subgroupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 I, paths Top(I,X) and the fundamental groupoid . . . . . . . . . . . . . . . 29

3.4 The compact-open topology on sets Top(X,Y ) . . . . . . . . . . . . . . . . 35

3.5 Forgetful functors, natural transformations and adjunctions . . . . . . . . . 37

3.5.1 The space TOP(X,Y ) and the product-hom adjunction . . . . . . . 41

3.6 Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Coproducts and pushouts . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.2 General colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.3 Colimits in Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



CONTENTS CONTENTS

3.6.4 Colimits in Grpd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Motion groupoids and mapping class groupoids 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Space of self-homeomorphisms TOPh(X,X) . . . . . . . . . . . . . . . . . . 71

4.2.1 Action groupoid HomeoM of the action of Toph(M,M) on subsets 72

4.3 Motion groupoid MotAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Pre-motions: paths in Top(I,Toph(M,M)) . . . . . . . . . . . . . . 74

4.3.2 Motions: the action of pre-motions on subsets . . . . . . . . . . . . . 78

4.3.3 Motions as maps from M × I, schematics and movie representations 80

4.3.4 Motion magmoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.5 Path homotopy congruence on motion magmoids . . . . . . . . . . . 88

4.3.6 The motion groupoid MotM : congruence induced by set-stationary

motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.7 Pointwise A-fixing motions . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 A useful alternative congruence leading to MotM . . . . . . . . . . . . . . . . 109

4.5 Mapping class groupoid MCGA
M . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.1 The Mapping class groupoid MCGM . . . . . . . . . . . . . . . . . . . 113

4.5.2 Pointwise A-fixing mapping class groupoid MCGA
M . . . . . . . . . . 115

4.6 Functor from MotAM to MCGA
M . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.1 Long exact sequence of relative homotopy groups . . . . . . . . . . . 119

4.6.2 Isomorphism from MotAM to MCGA
M . . . . . . . . . . . . . . . . . . . 123

4.6.3 Examples using long exact sequence . . . . . . . . . . . . . . . . . . . 125

5 Topological quantum field theories for homotopy cobordisms 130

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Cofibrations in Top and a van Kampen theorem . . . . . . . . . . . . . . . . 134

5.2.1 Cofibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.2 A van Kampen Theorem for cofibrations . . . . . . . . . . . . . . . . 139

vi



CONTENTS CONTENTS

5.2.3 Cofibre homotopy equivalence . . . . . . . . . . . . . . . . . . . . . . . 141

5.3 Homotopy cobordisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3.1 Magmoid of concrete cofibrant cospans CofCsp . . . . . . . . . . . . . 143

5.3.2 Category of cofibrant cospans CofCsp . . . . . . . . . . . . . . . . . . 149

5.3.3 Category of homotopy cobordisms HomCob . . . . . . . . . . . . . . 160

5.4 Topological quantum field theory construction . . . . . . . . . . . . . . . . . 166

5.4.1 Magmoid of based cospans . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4.2 Magmoid morphism from bHomCob to VectC . . . . . . . . . . . . . 169

5.4.3 Functor from HomCob to VectC . . . . . . . . . . . . . . . . . . . . . 174

5.4.4 Writing the colimit in terms of a local equivalence . . . . . . . . . . 185

5.4.5 Monoidal functor ZG∶HomCob→VectC . . . . . . . . . . . . . . . . . 194

6 Conclusions 197

A Appendices to Chapter 4 199

A.0.1 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.0.2 Motions as maps from M × I . . . . . . . . . . . . . . . . . . . . . . . 202

vii



List of Figures

1.1 Schematic representing a concrete morphism in the tangle category . . . . 7

1.2 Schematic representing a concrete embedded cobordism in [0,1]3 . . . . . . 8

1.3 Schematic representing a concrete embedded cobordism in [0,1]4 . . . . . . 9

4.1 Representation of point particles braiding in 2-dimensions . . . . . . . . . . 67

4.2 Schematic representation on Toph(M,M) . . . . . . . . . . . . . . . . . . . . 81

4.3 Flare schematic for the self-homeomorphism idI×I . . . . . . . . . . . . . . . 83

4.4 Flare line schematic for a non-identity self-homeomorphism of I × I. . . . . 83

4.5 Flare schematics for two motions in I . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Flare schematic of self-homeomorphism of S1 × I . . . . . . . . . . . . . . . . 85

4.7 Flare schematic of self-homeomorphism of S1 × I . . . . . . . . . . . . . . . . 85

4.8 Flare schematic of self-homeomorphism of S1 × I . . . . . . . . . . . . . . . . 85

4.9 Flare schematic of self-homeomorphism of S1 × I . . . . . . . . . . . . . . . . 86

4.10 Schematic for composition of motions represented as flare schematics . . . 89

4.11 Arrangement of points and circles in [0,1]3 . . . . . . . . . . . . . . . . . . . 105

4.12 Movie presentation of motion of a point and circle in [0,1]3 . . . . . . . . . 106

4.13 Relative path-homotopy in schematic representation of Toph(M,M) . . . 111

4.14 Movement of two points during motion τπ∗τπ ∶P2 À P2, mapped into MotI2 ,

and represented as the image of a homeomorphism I3 → I3 . . . . . . . . . . 126

4.15 Example of motion of circle which is a 2π rotation carrying a point to itself. 127

5.1 Example of a concrete cofibrant cospan from S1 to S1 . . . . . . . . . . . . 145

5.2 Example of a concrete cofibrant cospan obtained from an embedded sub-

manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Example of a concrete cofibrant cospan from S1 ⊔ S1 to S1 . . . . . . . . . . 147

viii



LIST OF FIGURES LIST OF FIGURES

5.4 Example of a based homotopy cobordism . . . . . . . . . . . . . . . . . . . . 167

5.5 Illustration of calculation of Z!
G on the complement of embeddings of S1 in I2170

5.6 Figure showing possible choice of basepoints added to Example 5.3.8 . . . . 171

5.7 Figure demonstrating that Example 5.3.7 is a concrete homotopy cobordism 192

ix



Chapter 1

Introduction

The content of this work looks like pure maths, but we are motivated and informed by

physics. We begin by attempting to give enough of the physical picture, and directions

to more complete references, to give the reader an idea of our motivation, and thus an

understanding of the choices we make in this thesis.

In Section 1.1 we cover the background, and then in Section 1.2 we explain the work

covered in this thesis, and give a thesis overview.

1.1 Physical background

Our motivation can be concisely stated as ‘modelling the statistics of generalised quasi-

particle excitations in topological phases’, so this is what we aim to make sense of here.

1.1.1 Quasiparticles

The formalism of quantum mechanics allows for the possibility of precisely two types of

point particle in 3-dimensions, bosons and fermions (see e.g. [DV11, Sec.6.3]). It will be

most useful for us to consider this from the point of view of the path integral formalism of

quantum mechanics, developed by Feynman [HF65]. Suppose a quantum system evolves

in time from an initial particle configuration, to a final particle configuration. The path

integral formalism says that the change to the wave function describing the system, caused

by such an evolution, is given by a sum over all possible paths of the particles from the

initial configuration to the final configuration. Here path is not yet a mathematically

1



1.1. Physical background Chapter 1. Introduction

well-defined notion, rather just an allowed particle trajectory in a given physical setting.

We refer to particle trajectories in spacetime as worldlines.

Suppose now that physical space is well modelled by Rd, where d is the spatial dimension.

Suppose also that allowed particle trajectories are paths in the configuration space of

the particles – for indistinguishable particles this is the set of all possible arrangements of

particles in Rd, where each particle occupies a different point, quotiented by permutations,

and topologised as a subset of (Rd)n where n is the number of particles. It can be shown

that it is consistent with quantum mechanics to split the sum over paths further into

summands, each consisting of a sum over all paths in a homotopy class and a coefficient

known as a weight factor. Homotopy classes of paths in the configuration space are

elements of the fundamental group of the configuration space, and the allowed weight

factors are representations of the fundamental group (see [LD71; LM77]). These weight

factors are what is meant by particle statistics.

In a 3-dimensional system consisting of two indistinguishable particles, there are only two

homotopy classes of loops in the configuration space, one class that swaps the positions

of the two particles, and one that contains the identity. Moreover following a trajectory

which swaps the particles twice is homotopic to the identity. Hence there are two possible

1-dimensional representations, the trivial representation and the representation sending

the swap to −1. These two choices of representations correspond to bosons and fermions.

(Higher dimensional representations are shown to be excluded in [LD71].) In a system of

N indistinguishable particles in 3 dimensions, particle statistics are representations of the

symmetric group.

In a 2-dimensional system with two point particles, the path which takes one particle once

around the other, which remains fixed, and returns it to its initial position is not homotopic

to the identity. Hence the setup allows for point particles which have non-trivial braiding

statistics, by which we mean a path in the relevant configuration space which swaps a pair

of particles can change the wave function by a factor other than 1 or −1. In 2 dimensions,

the statistics of a system of N indistinguishable particles are given by representations of

the braid group, and they are no longer restricted to 1-dimensional representations. Such

particles whose interchange can give any phase were called anyons by [Wil82a] (for further

discussion of how anyons arise see also [Wil82b; LM77]). Note in particular that, after

2



Chapter 1. Introduction 1.1. Physical background

fixing a mathematical model of the worldlines of particles, the statistics of the particles are

given by representations of the mathematical model. Trajectories which are topologically

non-trivial is a requirement for non-trivial statistics, but it is not sufficient.

Electrons, protons and photons are all still bosons or fermions, even when confined to a

plane. But if a system confined to a plane has quasiparticles, these may be anyons. Quasi-

particle excitations in condensed matter systems are local excitations of the ground state.

These emergent phenomena allow us to model the system as though it was made up of these

emergent particles in a vacuum [Nay+08, Sec.II.A]. Anyons were considered in conformal

field theory in [MS89], and in the context of discrete gauge theories in [Bai80; BDWP92].

Also topological phases, the fractional quantum Hall effect, for example, support anyons

[ASW84; Hal84; MR91].

1.1.2 Topological phases

In condensed matter physics, the principle of emergence says that the properties of a

system are determined by the arrangements of particles within the system [Wen17]. Phases

of matter are equivalence classes of arrangements of particles which share certain physical

properties [RW18]. Think, for example, of a glass containing ice and water. This physical

system consists of regions in four distinct phases: the glass, the water, the ice and the air

above the water. The densities, indices of refraction, the melting point of the ice and the

boiling point of the water are all examples of properties which are uniform within each

phase. A phase transition is an abrupt change in the physical properties of the system. A

question then is how to classify phases. That is, what invariants can be used to determine

if two systems are in the same or different phases.

A key result in answering this question was provided by Landau [Lan36; GL50]. Many

phases can be classified by certain symmetry groups of the system, and a phase transition

occurs when a symmetry is broken. An example is ferromagnets. Below the Curie tem-

perature, all spins are aligned parallel to one another, and the material is permanently

magnetic. Above the Curie temperature, the spins are randomly aligned, so the system

gains rotational symmetry, and the material loses its magnetism [KW62].

The first experimental realisation of a system completely outside of the classification af-

forded by Landau theory came from the fractional quantum Hall effect [TSG82]. This

3



1.1. Physical background Chapter 1. Introduction

effect is observed in 2-dimensional systems of electrons in a strong magnetic field, at low

temperature. One of the unusual properties of the fractional quantum Hall effect can be

observed by taking a resistance measurement. The measured resistance depends only on

the order in which the voltage and current leads are connected around the edge of the

sample, and smooth deformations of the positions do not change the measurement. This

is in contrast with a resistance measurement on a sample of metal, for example, which

depends on exactly where the leads are attached and on the size and shape of the sample.

A feature of fractional quantum Hall systems is the emergence of topological quasiparticles

– as they are quantum systems, the evolution of these systems depends on the wordlines of

these particles, but only up to their ‘topology’ [Nay+08] (we are being deliberately vague

about the meaning of topology here). Fractional quantum Hall states, and the related

chiral spin states were thus dubbed topological phases [Wen89].

We make common and practical assumption that physical systems are well-mathematically-

modelled as living in ambient spaces that are manifolds (other assumptions are explored

in [Sch79], for example, and references therein). Then we can say that precisely, a physical

system is in a topological phase if its low-energy observable properties are invariant under

diffeomorphisms of the spacetime manifold in which the system lives — see e.g. [Nay+08,

Sec.3]. For further discussion of how such emergent topology can arise in physical, hence

metric, systems we direct the reader to, for example [Fra13] and references therein.

The topological quasiparticles supported by a topological phase are an invariant of the

phase, and the presence of topological quasiparticles is a sufficient condition for a system

to be in a topological phase [Wen17]. Topological phases in 3 spatial dimensions support

particles which are point like, as well as loop and string excitations which may be knotted

and linked [Wen+18].

1.1.3 Topological quantum computation

Topological quantum computation refers to using a topological phase, which supports

topological quasiparticles, to perform computation [Nay+08]. Computations are carried

out by braiding quasiparticles around each other, and non-trivial operations are possible

because the particles are anyons – thus have non-trivial statistics.

Decoherence describes the collapse of the wavefunction as a result of its interaction with
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Chapter 1. Introduction 1.1. Physical background

the environment, and is a problem in other quantum computing models [WS06]. The

operations in topological quantum computation are protected from these errors since they

are sensitive only to the topology of the particle motion, hence remain unchanged by small

perturbations [Kit03].

Topological phases have the property that there is an energy gap between the ground

state and the first excited state, this is known as a gapped ground state. The presence of

a gapped ground state means that, at low energy, essentially the only way a topological

phase can move from one ground state to another is by braiding particles around each

other. Moreover, to perform a computation, the particles only have to trace the correct

braid. In other models of quantum computation, one has to take exceptional care to ensure

that a given system evolution is actually the one performed. Hence topological quantum

computers are theoretically completely protected from control errors [LP17]. For more on

topological quantum computing, see for example [Kit03; Fre+03].

1.1.4 Topological quantum field theory

Topological quantum field theories (TQFTs) are mathematical constructions abstracting

the properties of topological phases. Indeed, one way to define a topological phase is as a

physical system whose low-energy effective field theory is a TQFT [Nay+08, Sec.III.A].

The first constituent part of a TQFT is a cobordism category. Locality in field theories

implies that a global computation can be made on spacetime, by cutting spacetime into

parts, each of which represents some finite time evolution of the system, calculating on the

component parts, and then composing the results [Fre92]. Note that the diffeomorphism

invariance of topological phases implies something stronger than this. We must have that

the image of an evolution of the form X × [0,1], where X is any ambient space and [0,1]

represents time, must be the same as the image of X × J where J is any finite length

interval. This implies the unit of time is unimportant in TQFT, and this has various

implications, see [Nay+08, Sec.III.A.] for more. When making cuts we must retain, in

each component part, sufficient information to capture the local interaction – the result

of the computation should not depend on the choice of how to make cuts. Precisely

what constitutes ‘sufficient’ here will depend on the field theory. We can ensure sufficient

information is retained by giving conditions on the way we are allowed to make cuts in
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1.1. Physical background Chapter 1. Introduction

terms of some form of ‘collaring’.

We again assume ambient space in physical systems is well-mathematically-modelled by a

manifold. An (n + 1)-dimensional concrete cobordism from an n-dimensional oriented

smooth manifold X to an n-dimensional oriented smooth manifold Y , is an (n + 1)-

dimensional oriented manifoldM equipped with an orientation preserving diffeomorphism

ϕ∶ X̄⊔Y → ∂M (where the bar denotes the opposite orientation) [Lur09]. The collection of

all cobordisms will, in general, be too large to be an interesting object of study. Thus we

use the diffeomorphism invariance of topological phases to add an equivalence relation. A

cobordism is an equivalence class of concrete cobordisms, where a pair of cobordisms are

equivalent, roughly speaking, if there is a diffeomorphism between them which commutes

with the maps into the boundary.

The question of how to impose a sufficiently strong equivalence, such that we obtain a

manageable algebraic structure, will be a recurring theme of this thesis. By manageable,

we will often mean a finitely generated category, such that we can give a presentation, and

thus construct representations. Usually these categories are finitely generated only for a

certain subcategory of the categories we construct, a specific choice of ambient space or

particle type, for example.

Cobordisms can be composed via pushouts of representative concrete cobordisms, intu-

itively this can be thought of as gluing along the boundary – see [Koc04; Lur09], for

example, for more. We note that there is not a unique way to globally define smooth

structures on such compositions, although they are all represent the same cobordism.

With this composition, cobordisms can be organised into a category [Mil65], we denote

the category whose objects are n-dimensional manifolds by Cobn.

A TQFT is a functor from a cobordism category, mapping a manifold X to a C vector

space, which we think of as the space of states, and a cobordism to a linear map. Although

not originally written in terms of categories, this axiomatisation of TQFT is due to [Ati88].

To understand particles in TQFTs, we can add embeddings of submanifolds modelling the

worldlines of the particles in cobordisms, as is the approach in [Wit89]. There are various

ways to construct a category of embedded cobordisms, and in this thesis we will not try

to explicitly fix a choice, rather construct a framework to investigate the implications of

various choices. We will refer to all such categories as embedded cobordism categories. Here
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Chapter 1. Introduction 1.1. Physical background

Figure 1.1: Schematic representing an example of a concrete morphism in the tangle
category. The ambient space is [0,1]2, and at t = 0, along the bottom boundary, there
are three embedded point particles. As time progresses up the page the left most two
particles braid with each other and then braid with two particles which are created, before
annihilating. The right most particle does not braid with any other particles. There are
also two creations giving four particles which are braided into a trefoil knot, and then
pairwise annihilated. At t = 1, on the top boundary, there are three point particles.

we give some examples of concrete morphisms in various embedded cobordism categories.

LetM be a manifold representing some ambient space. It is common to restrict evolutions

of spacetime to be of the form M × [0,1], so then worldlines of particles are submanifolds

embedded in M × [0,1], such that the boundaries of the submanifolds are in M × {0,1}.

This is the approach taken in the tangle category, which corresponds to point particles in

2-dimensional space (see [Kas12]). This approach is also discussed in general in [Pic97],

and in [BD95] where they are referred to as generalised tangle categories.

In Figure 1.1 we have a schematic representation of an example of a concrete morphism

in the tangle category. We think of time as going up the page, so the bottom boundary

corresponds to a configuration of three point particles in [0,1]2, and similarly there are

three particles at the top of the box. In the interior the particles braid and knot with each

other as shown. We also have pairwise creations and annihilations of particles.

Figure 1.2 depicts an example of a concrete embedded cobordism, with M = [0,1]2, and

loop-like particles. At the bottom boundary of the box, there is a single loop particle.

Progressing up the page, this loop splits into two, with one loop remaining inside the

other. At the final time we have two nested loop particles. In Figure 1.3 we have a

schematic representing loop particles in [0,1]3. In 4-dimensions, it is possible for the loop

particles to pass through each other as shown. It is also possible to have knotted or linked

7



1.2. Present work Chapter 1. Introduction

Figure 1.2: Schematic representing an embedded cobordism, with ambient space [0,1]2.
At the bottom boundary there is a copy of S1 embedded in [0,1]2. As time progresses
up the page, the loop splits in two, and one loop remains inside the other, tracing an
embedded submanifold in [0,1]3. At the top the system is represented by an embedding
of two copies of S1 in [0,1]2.

particles, whose worldlines form knotted surfaces.

It is also possible to construct embedded cobordism categories which allow for the world-

lines of particles to be embedded in a non-trivial evolution of spacetime, this is related

to the cobordism with defects framework in [CMS16]. We note however, that it is not

straightforward to allow for particles, and worldlines of particles which are not manifolds

in embedded cobordism categories. In Chapter 4, and the examples therein, we discuss a

framework that allows for modelling particles in topological phases which are any subset

of the ambient manifold.

1.2 Present work

Our motivating aim here is to construct a framework allowing for the study of the statistics

of generalised quasiparticle excitations in topological phases, varying both the ambient

manifold and the topology of the particles (loop or string excitations in a 3-ball, for

example).

1.2.1 Motion Groupoids and mapping class groupoids

Modelling particle trajectories as paths in the appropriate configuration space leads to the

result that the statistics of point particles in 2 dimensions are realised by representations

of the braid groups, since the braid groups can be defined as homotopy classes of paths in

8



Chapter 1. Introduction 1.2. Present work

Figure 1.3: This schematic represents an embedded cobordism in 4-dimensions projected
down a dimension. The bottom boundary represents two loop particles in 3-dimensions.
We have then marked the image of each loop particle at various times progressing up the
page. The left most particle shrinks and passes through the right most particle, and at
the top boundary the particles have swapped positions.

the configuration space of point particles in 2 dimensions [BB05]. Similarly one also arrives

at the result that the statistics of (unknotted, unlinked) loop particles in 3 dimensions are

realised by representations of the loop braid groups [Dam17].

The tangle category, models point particles in 2 dimensions, is one of the main examples

of an embedded cobordism category in the literature [Kas12]. One way to approach the

study of embedded cobordism categories is to restrict initially to the simpler subcategories

of isomorphisms. Isomorphisms in the tangle category are equivalence classes of mono-

tonic embeddings of unit intervals in R2 × [0,1], and this subcategory can be shown to

be isomorphic to the braid category (this follows from Theorem 12 of [Art50]). The braid

category has the braid groups as automorphism groups. Physically this says that again,

the braiding statistics of point particles in 2-dimensional space are again given by repre-

sentations of the braid groups. One can also define ambient isotopy equivalence classes

of monotonic embeddings of (unknotted and unlinked) loop-particles in R3 × [0,1], which

is another way to define the loop braid groups [Dam17]. This is why the statistics of

loop-particles in 3-dimensional topological phases give rise to representations of the loop

braid group [BFMM19].

Part of our aim is to understand in general when the different ways of modelling the

worldlines of particles lead to different algebraic structures, and thus different possible

statistics.

9



1.2. Present work Chapter 1. Introduction

The braid groups also have topological realisations as motion groups, and as mapping

class groups. Our objective here is to generalise these topological constructions to, for

each ambient manifold, a motion groupoid and a mapping class groupoid. The object

set in each category is the power set of the underlying set of the ambient manifold. The

objects model particle types, and thus this allows for particle types which are any subset of

the ambient manifold. A novel aspect of our construction is that we work with groupoids

– allowing for worldlines of particles which do not start and end in the same configuration.

We also construct a functor between the motion groupoid and mapping class groupoid of

a manifold M , and conditions for isomorphism.

We give a further mathematical introduction in 4.1.

1.2.2 Topological quantum field theories for cospan cobordisms

TQFTs give representations of embedded cobordism categories, thus statistics of parti-

cles in topological phases. Examples of TQFTs which are determined using homotopy

invariants of the cobordisms include [Qui95; Yet92] and an untwisted version of Dijkgraaf-

Witten [DW90]. Our motivating aim is to construct TQFTs using homotopy invariants

for embedded cobordisms.

TQFTs will often factor through categories with stronger equivalence relations than those

in cobordism categories. Often these categories will be easier to work with. Concrete

cobordisms can be seen as cospans, i.e. diagrams of the form i∶X →M ← Y ∶j, considered

as a kind of morphism from X to Y , with some conditions on the maps i and j. In

Section 5.3 we define homotopy cobordisms; cospans of topological spaces, with a condition

on the maps in terms of cofibrations. There is a canonical map from a concrete non-

embedded cobordism to a homotopy cobordism, and we can map an embedded cobordism

to a homotopy cobordism by taking the complement of the embedded space. Note that

for this to work for all embedded cobordisms we might be interested in, we require the

generality of working with topological spaces. This is because the complement of an

embedded space, or even manifold, may not be itself a manifold. We quotient the homotopy

cobordisms by a kind of homotopy equivalence of cospans and organise them into a category

HomCob.

In Section 5.4 we construct a functor from HomCob into the category Vect, of vector

10



Chapter 1. Introduction 1.2. Present work

spaces and linear maps. For this we follow the construction of [Yet92], working with

fundamental groupoids, as opposed to triangulations. Our construction is more general

than that of Yetter as we work with topological spaces, and in any dimension. A key

aspect of our construction is that we give an interpretation working with the fundamental

groupoid with respect to a finite set of basepoints, allowing for explicit calculation.

We note that although we construct a specific family of functors, HomCob is a useful source

category to construct a larger class of TQFTs. We can consider functors which make use

of higher homotopy groups, and algebraic structures which are models for higher n-types,

such as crossed modules, for example.

1.2.3 Thesis overview

In Chapter 2 we collect some notation and conventions. In Chapter 3 we give preliminaries

that we will need throughout the thesis, and fix notation. Here we introduce some well

known constructions in unusual ways which we will find to be useful in what follows:

the introduction of magmoids in Section 3.1 leading to categories, and obtaining the

fundamental groupoid via the path magmoid in Section 3.3, for example.

In Chapter 4 we have the construction of the motion groupoid MotM and the mapping

class groupoid MCGM of a manifold M , the object class of each is the power set P(M)

(Theorems 4.3.37 and 4.5.4). Picking a single object and looking at the automorphism

group gives back respectively, the motion group and mapping class group of a manifold,

subset pair, as given in [Gol81; Dam17]. We also have a version of the motion group fixing

a distinguished subset (Theorem 4.3.47) and an equivalent theorem for the mapping class

groupoid (Theorem 4.5.7).

In Theorem 4.6.1 we construct a functor from MotM to MCGM . We also have The-

orem 4.4.6 which says that there is an alternative congruence on motions which leads

to the same groupoid, MotM . This will be necessary to prove Theorem 4.6.12, which

gives conditions under which the aforementioned functor is an isomorphism. In Theo-

rem 4.6.13 we have a version giving conditions for isomorphism of groupoids relative to

some distinguished subset. We also give many examples demonstrating the richness of our

construction.

11
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In Chapter 5 we give the construction of a category CofCsp which has topological spaces

as objects and cofibrant cospans as morphisms (Theorem 5.3.16). We then have Theo-

rem 5.3.21 which proves there is a monoidal structure on CofCsp with monoidal product

which, on objects, is given by disjoint union. Next we obtain the category HomCob (The-

orem 5.3.32) as a subcategory of CofCsp with a finiteness condition on spaces, and show

that the monoidal structure from CofCsp also makes HomCob a monoidal category (The-

orem 5.3.34).

In Section 5.4 the main result is Theorem 5.4.24 which gives a functor ZG∶HomCob →

VectC. We then have Theorem 5.4.27, which gives an alternative interpretation of the

map ZG on objects, making explicit calculation possible. Finally we have Theorem 5.4.27

which gives another alternative interpretation of ZG on objects, connecting our construc-

tion to others in the literature, e.g. [DW90].

Finally in Chapter 6 we have some conclusions and suggestions for future directions.

12



Chapter 2

General preliminaries

Here we collect the various general notation and conventions that we will need.

Definition 2.0.1. For X a set, PX denotes the power set of X.

Definition 2.0.2. Let X and Y be sets. A relation between X and Y is a an element

R ∈ P(X ×Y ). If (x, y) ∈ R we write x ∼ y. When X = Y we say that R is a relation on X.

Given a set S and a relation ρ on S we write ρ̄ for the reflexive, symmetric transitive

closure of ρ. Given an equivalence relation ∼ on S we write S/ ∼ for the corresponding set

of equivalence classes. We will also write S/ρ for S/ρ̄.

Definition 2.0.3. Let I be an indexing set. Given any family (Ai)i∈I of sets, the disjoint

union ⊔i∈I Ai is the set of all pairs (a, i) with i ∈ I and a ∈ Ai.

A topological space (from now, a space) is a pair (X,τ) whereX is a set and τ is a topology

on X. We shall see topologies as collections of either open or closed sets, depending on

what is most convenient. Often we will refer to both the set and the topology using just

the symbol X.

Definition 2.0.4. We will fix notation for some topological spaces we will make use of. In

each of the following cases we define the space as a subset and take the subspace topology:

• I = [0,1] ⊂ R,

• Sn = {x ∈ Rn+1 ∣ ∣x∣ = 1}, and

• Dn = {x ∈ Rn ∣ ∣x∣ ≤ 1}.
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Chapter 2. General preliminaries

Definition 2.0.5. Let X and X ′ be topological spaces. The underlying set of the product,

denoted X×X ′, is the cartesian product {(x, y) ∣ x ∈X,y ∈X ′}. The topology on X×X ′ is

the coarsest topology that makes the canonical projections X ×X ′ →X and X ×X ′ →X ′

continuous.

14



Chapter 3

Preliminaries

Here we introduce concepts that will be relevant throughout the thesis. We will focus on

aspects that we will need and thus do not aim to give a complete picture, for example in

Section 3.6 we discuss colimits but not limits. In each section we give references directing

the reader to more complete approaches.

We spend some time on this section for number of reasons. One is to make this work

accessible to a wide audience. Another is to take the opportunity to fix some non-standard

notation that will be helpful. Finally we do this because we take some unusual routes to

well known constructions that will be a useful warm up for later sections, using a path

magmoid to construct the fundamental groupoid in Proposition 3.3.8 for example.

We start, in Sections 3.1 and 3.2, with magmoids, and magmoid congruences which may

lead to categories. In Section 3.3 we have the fundamental groupoid, and in Section 3.4 the

compact-open topology. In Section 3.5 we introduce adjunctions, which allows us to use

the compact-open topology to obtain a partial lift of the classical product-hom adjunction

in the category of sets (Lemma 3.5.16). In Section 3.6 we fix choices of colimits in the

categories of sets, topological spaces and groupoids. Finally we have monoidal categories

in Section 3.7.

3.1 Magmoids, categories and groupoids

In this work constructions of categories are a recurrent theme. Such constructions will

often start from something concrete with a composition. Equivalence classes of these

15



3.1. Magmoids, categories and groupoids Chapter 3. Preliminaries

concrete things eventually become the morphisms of the constructed category. So it will

be useful to have a general machinery for studying such constructions. We can think of

the underlying idea of a category as sets of objects, morphisms and a non associative

composition - a magmoid. We can then study congruences on these magmoids, some of

which will lead to categories.

We are unaware of a reference to magmoids in the literature although the construction is

a straightforward extension of the use of magmas for the underlying structure of a group.

Everything else in this section can be found in e.g. [Mac71; Rie17; AHS90].

Definition 3.1.1. A magmoid M is a triple

M = (Ob(M),M(−,−),∆M)

consisting of

(I) a collection Ob(M) of objects,

(II) for each pair X,Y ∈ Ob(M) a collection M(X,Y ) of morphisms from X to Y , and

(III) for each triple X,Y,Z ∈ Ob(M) a composition

∆M∶M(X,Y ) ×M(Y,Z)→M(X,Z).

We use f ∶X → Y to indicate that f is a morphism from X to Y and f ∈ M to indicate

there exists a pair of objects X,Y ∈ Ob(M) such that f ∈M(X,Y ).

Where convenient we will replace instances of − in the triple with generic symbols.

Example 3.1.2. The following are magmoids. In each case we give the objects and

morphisms, the composition is then the usual composition of maps of each structure.

(i) Set: Objects are sets and morphisms from X to Y are all functions f ∶X → Y .

(ii) Vectk: Objects are vector spaces over the field k and morphisms from V to W are

k-linear maps f ∶V →W .

Example 3.1.3. There is a magmoid

Top = (Ob(Top),Top(−,−), ○)
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where Ob(Top) is the set of all topological spaces, for X,Y ∈ Ob(Top), Top(X,Y ) is the

set of continuous maps from X to Y and composition of maps is given by the composition

of the underlying functions in Set.

Example 3.1.4. We will treat the following more thoroughly in Section 3.3. Let X be

a topological space. Then there is a magmoid PX = (X,PX(−,−),Γ1
2
) where for a pair

x,x′ ∈X, P(x,x′) is the set of paths from x to x′ in X and Γ1
2
is path composition.

Definition 3.1.5. A magmoid M = (Ob(M),M(−,−),∆M) is called reversible if for all

pairs N,N ′ ∈ Ob(M), there is a bijection

rev∶M(N,N ′)→M(N ′,N).

Definition 3.1.6. A magmoid M is called small if Ob(M) is a set and for each pair

X,Y ∈ Ob(M), M(X,Y ) is a set.

Definition 3.1.7. Let M and M′ be magmoids. A magmoid morphism F ∶M → M′ is a

map sending each object X ∈ Ob(M) to an object F (X) ∈ Ob(M′) and each morphism

f ∶X → Y in M to a morphism F (f)∶F (X) → F (Y ) in M′ such that for any pair of

morphisms f, g ∈M

F (∆M(f, g)) =∆M′(F (f), F (g))

wherever ∆M(f, g) is defined.

Proposition 3.1.8. Let M,M′,M′′ be magmoids. There exists a partial composition of

magmoid morphisms which sends a pair of magmoid morphisms F ∶M →M′ and F ′∶M′ →

M′′ to F ′ ○ F ∶M→M′′ with

F ′ ○ F (f ∶X → Y ) = F ′(F (f))∶F ′(F (X))→ F ′(F (Y )).

Proof. It is straightforward to check that F ′○F is well defined and is a magmoid morphism.

Definition 3.1.9. A magmoid morphism F ∶M→M′ is full if for each X,Y ∈ Ob(M), the

induced map M(X,Y ) → M′(F(X),F(Y )) is surjective and faithful if the same map is

injective.
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Let M = (Ob(M),M(−,−),∗M) be a magmoid. We will find it convenient to have an

alternative notation for composition, for which we use function order. For morphisms

f ∶X → Y and g∶Y → Z in M we define

∗M(f, g) = g ∗M f.

We now give the familiar definition of a category in terms of a magmoid.

Definition 3.1.10. A category is a quadruple

C = (Ob(C),C(−,−),∗C ,1−)

consisting of a magmoid (Ob(C),C(−,−),∗C) and

(IV) for each X ∈ Ob(C) a distinguished morphism 1X ∈ C(X,X) called the identity,

such that the following axioms are satisfied.

(C1) Identity: for any morphism f ∶X → Y , we have 1Y ∗C f = f = f ∗C 1Y .

(C2) Associativity: for any triple of morphisms f ∶X → Y , g∶Y → Z and h∶Z → W we

have h ∗C (g ∗C f) = (h ∗C g) ∗C f .

We refer to (Ob(C),C(−,−),∗C) as the underlying magmoid of C. By abuse of notation we

refer also to the underlying magmoid as C.

Proposition 3.1.11. There exist categories with underlying magmoids Set and Vectk,

defined in Example 3.1.2. In each case the identities are the usual identities for each

object. We denote these by Set and Vectk respectively.

Proof. It is straightforward to check axioms C1 and C2.

Proposition 3.1.12. There exists a category with underlying magmoid Top, defined in

Example 3.1.3. For a space X, the identity is the map which is the identity in Set on the

underlying set of X, we denote this idX ∶X →X.

Proof. Axioms C1 and C2 follow directly from the corresponding axioms for the underlying

maps in Set.
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Proposition 3.1.13. There is a category Mag = (Ob(Mag),Mag(−,−), ○,1−) where

objects are all small magmoids, Mag(M,M′) is the set of all magmoid morphisms from

M to M′, composition is as in Proposition 3.1.8 and the identity on each magmoid is the

magmoid morphism which is the Set identity on objects and morphisms.

Proof. Proposition 3.1.8 gives that ○ is a composition. It is immediate that this composi-

tion is associative and the described magmoid morphism is an identity.

Proposition 3.1.14. Let C = (Ob(C),C(−,−),∗C ,1−) be a category. There is a category

Cop = (Ob(C),Cop(−,−),∗Cop ,1−) where for X,Y ∈ Ob(C), Cop(X,Y ) = C(Y,X) and for

composable morphisms f, g ∈ Cop we have f ∗Cop g = g ∗C f . This is called the opposite

category.

Proof. The associativity and identity axioms follow directly from the corresponding axioms

in C.

Definition 3.1.15. A category C is called finitely generated if there exists a finite set X

of morphisms (including identities) in C such that every morphism in C can be obtained

by composing morphisms in X.

Note that this implies there are finitely many objects.

Proposition 3.1.16. Let C and D be categories. Then there is a category

C ×D = (Ob(C) ×Ob(D),C ×D(−,−),∗C×D,1X,Y = (1X ,1Y ))

where C ×D(W ×X,Y ×Z) = C(W,Y )×D(X,Z) and (f ′, g′)∗C×D (f, g) = (f ′ ∗C f, g′ ∗D g).

This is called the product category.

Proof. Straightforward.

Definition 3.1.17. We will say a category C is finite if the collection of all morphisms in

C is a finite set.

A category C is called small if the collection of all morphisms in C is a set. Note this implies

that Ob(C) is a set, since the objects of any category are in bijective correspondence with

the identity morphisms.
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Definition 3.1.18. A morphism f ∶X → Y in a category C is an isomorphism if there

exists an inverse morphism g∶Y →X such that g ∗C f = 1X and f ∗C g = 1Y .

If there exists an isomorphism X to Y we say that X and Y are isomorphic.

Definition 3.1.19. Let C and C′ be categories. A functor F ∶C → C′ is a magmoid mor-

phism C → C′ such that for any X ∈ Ob(C)

1F (X) = F (1X).

Definition 3.1.20. A bifunctor is a functor F ∶C ×C ′ →D whose domain is a product of

two categories.

Proposition 3.1.21. Let C be a category. There is a bifunctor

HomC ∶Cop × C → Set

which sends

• an object (X,X ′) ∈ Cop × C to the set of morphisms C(X,X ′),

• a pair of morphisms f ∶X → Y in Cop (so f ∶Y →X is a morphism in C) and g∶X ′ →

Y ′ in C to the function HomC(f, g)∶C(X,X ′)→ C(Y,Y ′),

(h∶X →X ′)↦ (g ∗C h ∗C f ∶Y → Y ′).

This is called the hom bifunctor.

Proof. The pair (1X ,1X) ∈ Cop × C is mapped to the function h ↦ h from C(X,X) to

C(X,X).

Let (f, g)∶ (X,X ′) → (Y,Y ′) and (f ′, g′)∶ (Y,Y ′) → (Z,Z ′) be morphisms in Cop × C. The

composition in Cop×C is (f∗Cf ′, g′∗Cg) so we haveHomC(f∗Cf ′, g′∗Cg) =HomC(f ′, g′)∗Set

HomC(f, g) is the function (h∶X →X ′)↦ (g′ ∗C g ∗C h ∗C f ∗C f ′∶Z → Z ′).

Example 3.1.22. Let V be a vector space over a field k. Then HomVectk(V,k) is the set

of linear maps from V to k, which is the underlying set of the dual vector space of V . Let

V ′ ∈ Ob(Vectk) be a vector space, and f ∶V ′ → V a linear map. Then HomVectk(f,1k) is
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the set map sending a linear map h∶V → k to hf ∶V ′ → k, this is the transpose of f .

Definition 3.1.23. In analogy with the magmoid case, a functor F ∶C → D is full if for

each X,Y ∈ Ob(C), the induced map C(X,Y )→ D(F(X),F(Y )) is surjective and faithful

if the same map is injective.

Proposition 3.1.24. Let C,C′ and C′′ be categories and F ∶C → C′ and F ′∶C′ → C′′ be func-

tors. The composition ○ of the magmoid morphisms F and F ′ given in Proposition 3.1.8,

extends to a composition of functors.

Proof. For each X ∈ Ob(C), F ′ ○ F (1X) = F ′(1F (X)) = 1F ′(F (X)) = 1F ′○F (X).

We note that where we feel a more concise notation is helpful we may sometimes use the

null composition symbol (i.e. just juxtaposition) for composition of functors and magmoid

morphisms.

Proposition 3.1.25. There is a category Cat = (Ob(Cat),Cat(−,−), ○,1−) where objects

are all small categories, Cat(C,C′) is the set of all functors from C to C′, composition is

as in Proposition 3.1.24, and the identity 1C is the functor C → C which acts identically

on objects and morphisms.

Proof. The triple (Ob(Cat),Cat(−,−), ○) is a magmoid as Proposition 3.1.24 gives that

○ is a composition. It is clear that 1C is an identity for each category C.

Definition 3.1.26. Let C = (Ob(C),C(−,−),∗C ,1−) be a category. A subcategory S of C

consists of

• a subset Ob(S) ⊆ Ob(C),

• for each X,Y ∈ Ob(S), a subset S(X,Y ) ⊆ C(X,Y ),

such that,

• for all X ∈ Ob(S), 1X ∈ S(X,X), and

• for all pairs of composable morphisms f, g ∈ S, g ∗C f ∈ S.

Note this implies S = (Ob(S),S(−,−),∗C ,1−) is a category.
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Definition 3.1.27. A subcategory S of C is called full if, given any two objects X,Y ∈

Ob(S), S(X,Y ) = C(X,Y ).

A subcategory S of C is called wide if Ob(S) = Ob(C).

Definition 3.1.28. A groupoid G is a pentuple

G = (Ob(G),G(−,−),∗G ,1−, (−)↦ (−)−1)

consisting of a small category (Ob(G),G(−,−),∗G ,1−), and

(V) for each pair (X,Y ) ∈ Ob(G) ×Ob(G) a function

(−)−1∶G(X,Y )→ G(Y,X)

f ↦ f−1

called the inverse assigning function;

such that the following is satisfied.

(G1) Inverse: for any morphism f ∶X → Y , we have f−1 ∗G f = 1X and f ∗G f−1 = 1Y .

Remark 3.1.1. A groupoid is precisely a small category in which all morphisms are iso-

morphisms.

Remark 3.1.2. We will see below that every group action leads to a groupoid, although

groupoids arising from distinct group actions are not necessarily unique up to groupoid

isomorphism.

Remark 3.1.3. Notice that a groupoid is necessarily reversible, although a reversible mag-

moid M does not imply the existence of a groupoid with underlying magmoid M.

Proposition 3.1.29. Let G = (X, ○G, eG) be a group. Then

GG = ({∗},GG(∗,∗), ○G,1∗ = eG, g ↦ g−1)

where GG(∗,∗) =X, is a groupoid.

Proof. Straightforward.
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Lemma 3.1.30. Let (G, ○G, eG) be a group, X a set and ρ∶G ×X → X a group action.

Define for x and x′ in X,

X//ρG(x,x′) = {(g, x, x′) ∣ ρ(g, x) = x′}.

The pentuple

X//ρG = (X, X//ρG(−,−), ○G, eG, g ↦ g−1)

is a groupoid. That is,

(I) objects are elements of X;

(II) morphisms x to x′ are elements of X//ρG(x,x′), denoted by triples (g, x, ρ(g, x))

where g ∈ G, x ∈X and ρ(g, x) = x′;

(III) triples (g1, x, ρ(g1, x)) and (g2, x′, ρ(g2, x′)) are composable if ρ(g1, x) = x′, and then

the composite is (g2 ○G g1, x, ρ(g2 ○G g1, x));

(IV) the identity for any object x ∈X is the triple (eG, x, ρ(eG, x)) = (eG, x, x)

(V) the inverse of a morphism (g, x, ρ(g, x)) is the morphism (g−1, ρ(g, x), ρ(g−1, ρ(g, x)))

= (g−1, ρ(g, x), x).

We call X//ρG the action groupoid of the action of G on X.

Remark 3.1.4. Note that in the last three entries of the tuple in the previous lemma we

gave only information about what happens to the group element in each morphism. We

do this to keep notation readable. We will take the same liberty in future constructions

without the subsequent clarification. It will be clear what should happen to the relevant

objects from the composition, identity and inverse axioms.

Proof. (C1) Let (g, x, ρ(g, x)) be a morphism. Then (g○eG, x, ρ(g○eG, x)) = (g, x, ρ(g, x))

and (eG ○ g, x, ρ(eG ○ g, x)) = (g, x, ρ(g, x)).

(C2) The composition is associative by the group associativity of G.

(G1) For any morphism (g, x, ρ(g, x)) with ρ(g, x) = x′, we have (g○g−1, x′, ρ(g○g−1, x′)) =

(eG, x′, x′) and (g−1 ○ g, x, ρ(g−1 ○ g, x)) = (eG, x, x).

Remark 3.1.5. Let G be a groupoid. By abuse of notation we will refer also to the under-

lying magmoid as G. Note that the identities and inverses of G are uniquely determined
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from the underlying magmoid of G.

Definition 3.1.31. Let G be a groupoid, a subgroupoid S of G is defined analogously to

the category case with the additional condition that

• for all f ∈ S, f−1 ∈ S.

Proposition 3.1.32. Let G and G′ be groupoids and F ∶G → G′ a magmoid morphism.

Then we have

• for any X ∈ Ob(G), 1F (X) = F (1X), and

• for any morphism f ∈ G, F (f−1) = (F (f))−1.

The says that a magmoid morphism preserves the structure of a groupoid without any

additional conditions.

In analogy with the category case, we refer to a magmoid morphism between groupoids as

a functor.

Proof. We have that F (1X) ∗G′ F (1X) = F (1X ∗G 1X) = F (1X). Since G′ is a groupoid,

we can compose with F (1X)−1 and hence F (1X) = 1F (X).

Suppose f ∶X → Y is a morphism in G. Then 1F (X) = F (1X) = F (f−1 ∗G f) = F (f−1) ∗G′

F (f) so F (f−1) is a left inverse for F (f). We can similarly show it is a right inverse and

so, by uniqueness of inverses, F (f−1) = F (f)−1.

Remark 3.1.6. There is not a similar result for categories: a magmoid morphism on the

underlying magmoids of a pair of categories can fail to be a functor.

Proposition 3.1.33. There is a category Grpd = (Ob(Grpd),Grpd(−,−), ○,1−) where

objects are all small groupoids, Grpd(G,G′) is the set of all functors from G to G′, com-

position is as in Proposition 3.1.8 and the identity 1G is the functor G → G which acts

identically on objects and morphisms.

Proof. It is immediate from the definition that this is a subcategory of Cat, and hence a

category. In fact it is a full subcategory of Cat.

24



Chapter 3. Preliminaries 3.2. Magmoid congruence

3.2 Magmoid congruence

Often the magmoids we construct are too large to be interesting objects of study them-

selves. Here we introduce congruences and quotient magmoids, our main tool for obtaining

a category from a magmoid. Congruences are families of relations on the morphism sets

of magmoids. Note in particular that the object set is always fixed. Allowing equivalence

relations on objects in magmoids potentially leads to extra morphisms, and so is not really

a quotient in the usual sense. In Chapter 4 we will be particularly interested in cases for

which we obtain a finitely generated category.

As with the previous section we are unaware of a reference that explicitly discusses con-

gruences of structures which are not yet categories. However, if we take a category and

quotient the underlying magmoid by a congruence the quotient magmoid can also be given

a categorical structure in a canonical way (Proposition 3.2.3), in this case we obtain the

same quotient category as in Chapter 2 of [Mac71].

Definition 3.2.1. A congruence C on a magmoid M = (Ob(M),M(−,−),∆M) consists of,

for each pair X,Y ∈ Ob(M) an equivalence relation RX,Y on M(X,Y ), such that f ′ ∈ [f]

and g′ ∈ [g] implies ∆M(f ′, g′) ∈ [∆M(f, g)] where defined.

Definition 3.2.2. Let M = (Ob(M),M(−,−),∆M) be a magmoid and C a congruence on

M. The quotient magmoid of M by C is M/C = (Ob(M),M(X,Y )/RX,Y ,∆M/C) where for

each triple X,Y,Z ∈ Ob(M/C)

∆M/C ∶M/C(X,Y ) ×M/C(Y,Z)→M/C(X,Z)

([f], [g])↦ [∆M(f, g)].

(That the composition is well defined follows directly from the definition of a congruence.)

In practice we will use the notation for the composition inM to denote also the composition

M/C.

Proposition 3.2.3. Suppose C = (Ob(C),C(X,Y ),∗C ,1−) is a category. For any congru-

ence C on (Ob(C),C(X,Y ),∗C), we have that C/C = (Ob(C),C(X,Y )/RX,Y ,∗C/C , [1−]),

where composition is defined analogously to the magmoid case, is a category.

We call this C/C the quotient category of C by C.
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Proof. (C1) For all [f]∶X → Y we have

[f] ∗C/C [1X] = [f ∗C 1X] = [f] = [1Y ∗C f] = [1Y ] ∗C/C [f].

(C2) Let [f], [g], [h] be composable morphisms in C/C. Then

[h] ∗C/C ([g] ∗C/C [f]) = [h ∗C g ∗C f] = ([h] ∗C/C [g]) ∗C/C [f].

Proposition 3.2.4. Suppose G = (Ob(G),G(X,Y ),∗G ,1−, (−)−1) is a groupoid. For any

congruence C on (Ob(G),G(X,Y ),∗G), we have that

G/C = (Ob(G),G(X,Y )/RX,Y ,∗G/C , [1−], [(−)−1]),

where composition is defined analogously to the magmoid case, is a groupoid. We call G/C

the quotient groupoid of G by C.

Proof. We have from Proposition 3.2.3 that G/C is a category. It remains only to check

(G1). Any [f] ∈ G/C(X,Y ) has inverse [f−1] since

[f−1] ∗G/C [f] = [f−1 ∗G f] = [1X], and [f] ∗G/C [f−1] = [f ∗G f−1] = [1Y ].

Lemma 3.2.5. Let M be a magmoid and C a congruence on M. There is an induced

quotient morphism Q∶M → M/C which is the identity on objects and which sends mor-

phisms to their equivalence class under C.

Proof. Let f ∈ M(X,Y ) be a morphism. It is immediate from the definition of M/C that

Q(f) is a morphism from X to Y .

For composable morphisms f, g ∈M we have

Q(∆M(f, g)) = [∆M(f, g)] =∆M/C([f], [g])

by the definition of ∆M/C , so Q is a magmoid morphism.

Proposition 3.2.6. Let M and M′ be magmoids and F ∶M → M′ a magmoid morphism.

26



Chapter 3. Preliminaries 3.2. Magmoid congruence

For any pair X,Y ∈ Ob(M) there is a relation on M(X,Y ) given by f ∼ g if F (f) = F (g),

which is easily seen to be an equivalence relation. Suppose in addition F restricts to the

identity on the set of objects, then all such equivalence relations give a congruence on M.

This is called the fibre congruence of F .

Proof. Let f ′, g′ be composable morphisms in M with F (f ′) = F (f) and F (g′) = F (g),

hence f ′ ∈ [f] and g′ ∈ [g] under the fibre congruence of F . We have

F (∆M(f ′, g′)) =∆M′(F (f ′), F (g′)) =∆M′(F (f), F (g)) = F (∆M(f, g))

which implies ∆M(f ′, g′) ∈ [∆M(f, g)].

It is immediate from the construction that, for a congurence C on a magmoid M, the fibre

congruence of the quotient morphism Q∶M→M/C is precisely C.

Definition 3.2.7. Let M be a magmoid, C a congruence, and Q∶M → M/C the induced

quotient morphism. If there exists a magmoid M′ and full, non-identity magmoid mor-

phisms G∶M→M′ and H ∶M′ →M/C such that Q =H ○G, we say that the fibre congruence

of Q has a factor. If Q has no factor we say that the fibre congruence of Q is minimal.

Definition 3.2.8. Let M be a magmoid and R = {RX,Y }X,Y ∈Ob(M) a collection of relations

on the sets M(X,Y ). Then let R̄ be the closure of R to a congruence, this means we take

the reflexive, symmetric, transitive closure of each RX,Y and insist that for any composition

∆M(f, g) ∼∆M(f ′, g′) if f ∼ f ′ and g ∼ g′.

Definition 3.2.9. Let G be a directed graph and F (G) the free category generated by

G. To give a presentation of a category C is to give a directed graph G and family of

relations R on the morphism sets F (G)(−,−), such that the quotient groupoid F (G)/R̄

is isomorphic to C.

A presentation of a groupoid is similarly defined.

3.2.1 Normal subgroupoids

Often we will find it convenient to study congruences by passing through a factor. In

particular we will work with factors which are groupoids. For any groupoid G we can

construct a congruence on G from a subgroupoid which is normal and thus obtain a
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quotient groupoid, mirroring quotienting groups by normal subgroups. We make this

explicit here.

Everything in this section can be found in Section 1.4.3 of [Bro+99].

Definition 3.2.10. Let G be a groupoid and H a wide subgroupoid. Then H is said to be

normal if for any morphism h∶Y → Y inH and any g∶X → Y in G we have g−1∗Gh∗Gg∶X →

X is in H.

We sayH is totally disconnected if for anyX,Y ∈ Ob(H) withX ≠ Y we haveH(X,Y ) = ∅.

Lemma 3.2.11. Let G be a groupoid and H a normal, totally disconnected subgroupoid.

For each X,Y ∈ Ob(G) and g, g′ ∈ G(X,Y ) the relation g ∼ g′ if g′−1 ∗G g ∈ H is an

equivalence relation on G(X,Y ). Moreover all such relations are a congruence on G.

Proof. We first check that ∼ defines an equivalence relation on each G(X,Y ). Let g, g′, g′′ ∈

G(X,Y ) with g ∼ g′ and g′ ∼ g′′. Reflexivity holds since we have g−1 ∗G g = 1X ∈H since H

contains all identities. Symmetry holds since g′−1∗G g ∈H implies (g′−1∗G g)−1 = g−1∗G g′ ∈

H since H contains all inverses. For transitivity we have g′−1 ∗G g ∈H and g′′−1 ∗G g′ ∈H,

hence g′′−1 ∗G g = (g′′−1 ∗G g′) ∗G (g′−1 ∗G g) ∈H by closure.

We now check that ∼ is a congruence. Suppose we have f, f ′ ∈ G(X,Y ) with f ∼ f ′ and

g, g′ ∈ G(Y,Z) with g ∼ g′, so f ′−1 ∗G f ∈ H and g′−1 ∗G g ∈ H. We show g ∗G f ∼ g′ ∗G f ′.

We have

(g′ ∗G f ′)−1 ∗G (g ∗G f) = f ′−1 ∗G g′−1 ∗G g ∗G f

= f ′−1 ∗G (f ∗G f−1) ∗G g′−1 ∗G g ∗G f

= (f ′−1 ∗G f) ∗G (f−1 ∗G g′−1 ∗G g ∗G f)

which is in H using closure and normality of H. Hence g ∗G f ∼ g′ ∗G f ′.

Remark 3.2.1. Note that this is the weakest congruence such that all morphisms of the

form h∶X →X in H are equivalent to the appropriate identity.

28



Chapter 3. Preliminaries 3.3. I, paths Top(I,X) and the fundamental groupoid

3.3 I, paths Top(I,X) and the fundamental groupoid

In this section we first construct a magmoid of paths and then add a congruence such

that the quotient groupoid is the fundamental groupoid (Proposition 3.3.8). Some careful

constructions of the fundamental groupoid can be found in the literature for example in

[Die08] and [Bro06], although our magmoid approach is non-standard and we will use

(more radical versions of) similar ideas repeatedly in Chapter 4 so we think this ‘warm

up’ is worthwhile. Here we also discuss the relationship between fundamental groupoids

obtained by varying a finite number of basepoints which will be necessary for our TQFT

construction in Chapter 5 (Lemmas 3.3.13 and 3.3.14).

Throughout the rest of this thesis we will use path-equivalence alongside several other

equivalence relations so we introduce some careful notation here.

Definition 3.3.1. Let X be a topological space. An element of Top(I,X) is called a

path in X i.e. the set of all paths in X is {γ∶ I→X ∣ γ is continuous} .

We will use γt for γ(t), and we say γ is a path from x to x′, denoted γ∶x→ x′, when γ0 = x

and γ1 = x′. For x,x′ ∈X, let

PX(x,x′) = {γ∶ I→X ∣ γ ∈ Top(I,X), γ0 = x, γ1 = x′}.

Proposition 3.3.2. Let X be a topological space. For any x,x′, x′′ ∈ X, there exists a

composition

Γ1
2
∶PX(x,x′) ×PX(x′, x′′)→PX(x,x′′)

(γ, γ′)↦ γ′γ

with

(γ′γ)t =
⎧⎪⎪⎨⎪⎪⎩

γ2t 0 ≤ t ≤ 1/2,
γ′2(t−1/2) 1/2 ≤ t ≤ 1.

(3.1)

(Note the convention to choose distinguished point t = 1/2 and the null composition symbol

here.)

Proof. We check that, for any γ ∈ PX(x,x′) and γ′ ∈ PX(x′, x′′), γ′γ ∈ PX(x,x′′). We
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have γ1 = γ′0 so Equation (3.1) defines an continuous map. Notice (γ′γ)0 = γ0 = x and

(γ′γ)1 = γ′1 = x′′, so the composition is well defined.

Remark 3.3.1. We find the above convention for ordering path composition to be more

convenient as we will later want to map paths to functions.

Definition 3.3.3. Let X be a topological space. Define the magmoid

PX = (X,PX(−,−),Γ1
2
).

Proposition 3.3.4. Let X be a topological space. For any x,x′ ∈X, there is a bijection

rev∶PX(x,x′)→PX(x′, x)

γ ↦ γrev

where γrevt = γ1−t. Hence PX is reversible.

Proof. It is straight forward to see that the automorphism of I given by t ↦ 1 − t is

continuous. It follows that γrev is continuous. The map rev is self-inverse, thus a bijection.

Definition 3.3.5. Let X be a topological space. Define a relation on PX(x,x′) as

follows. Suppose we have paths γ, γ′ ∈ PX(x,x′), then γ p∼ γ′ if there exists a continuous

map H ∶ I × I→X such that

• for all t ∈ I, H(t,0) = γ(t),

• for all t ∈ I, H(t,1) = γ′(t), and

• for all s ∈ I, H(0, s) = x and H(1, s) = x′.

Notation: We call such an H a path-homotopy from γ to γ′.

Proposition 3.3.6. Let X be a topological space. For each pair x,x′ ∈ X,
p∼ is an equiv-

alence relation on PX(x,x′).

Notation: If γ
p∼ γ′ we say γ and γ′ are path-equivalent . We use [γ]p for the path-
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equivalence class of γ. Where we feel it simplifies the exposition, we may also use γ for

the path-equivalence class of γ.

Proof. We show that
p∼ is reflexive, symmetric and transitive. Let γ ∈ PX(x,x′), γ′ ∈

PX(x,x′) and γ′′ ∈PX(x,x′) be paths with γ
p∼ γ′ and γ′ p∼ γ′′.

The relation is reflexive since the function H(t, s) = γ(t) is a path-homotopy from γ to

γ. By assumption, there exists a path-homotopy, say Hγ,γ′ , from γ to γ′. The function

Hγ′,γ(t, s) =Hγ,γ′(t,1−s) is a path-homotopy from γ′ to γ, hence the relation is symmetric.

By assumption, there also exists a path-homotopy, say Hγ′,γ′′ , from γ′ to γ′′. The function

Hγ,γ′′(t, s) =
⎧⎪⎪⎨⎪⎪⎩

Hγ,γ′(t,2s) 0 ≤ s ≤ 1
2

Hγ′,γ′′(t,2(s − 1
2))

1
2 ≤ s ≤ 1.

is a path-homotopy from γ to γ′′, so
p∼ is transitive.

Lemma 3.3.7. Let X be a topological space. The equivalence relations (PX(x,x′), p∼) for

each x,x′ ∈X are a congruence on PX.

Proof. Suppose γ, γ′ ∈PX(x,x′) are path-equivalent and so there exists a path homotopy,

say Hγ,γ′ from γ to γ′. And suppose δ, δ′ ∈ PX(x′, x′′) are path-equivalent and so there

exists a path homotopy, say Hδ,δ′ from δ to δ′. Notice Hγ,γ′(1, s) = Hδ,δ′(0, s) = x′ and so

the function

H(t, s) =
⎧⎪⎪⎨⎪⎪⎩

Hγ,γ′(2t, s) 0 ≤ t ≤ 1
2

Hδ,δ′(2(t − 1
2), s)

1
2 ≤ t ≤ 1

is a homotopy from δγ to δ′γ′.

Spanier [Spa89] and Brown [Bro06] were among the first to consider fundamental groupoids.

Proposition 3.3.8. Let X be a topological space. There exists a groupoid

π(X) = PX/ p∼ = (X,PX(−,−)/ p∼,Γ1
2
, [ex]p, [γrev]p)

with underlying magmoid as in Definition 3.3.3. Here the identity morphism [ex]p at each

object x is the path-equivalence class of the constant path γt = x for all t ∈ I. The inverse

of a morphism [γ]p from x to x′ is the path-equivalence class of γrevt = γ1−t.

This is the fundamental groupoid of X.
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Proof. (G1) Suppose γ ∈ PX(x,x′), the following function is a path homotopy from exγ

to γ:

Hid(t, s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ t
s
2+ 1

2

0 ≤ t ≤ s
2 +

1
2

x s
2 +

1
2 ≤ t ≤ 1.

The case for γex′ is very similar.

(G2) The following function is a path homotopy γ′′(γ′γ) to (γ′′γ′)γ:

Hass(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ t
s
4+ 1

4

0 ≤ t ≤ s
4 +

1
4

γ′
4(t− s

4
− 1

4
)

s
4 +

1
4 ≤ t ≤

s
4 +

1
2

γ′′
t− s

4− 1
2

1
2− s

4

s
4 +

1
2 ≤ t ≤ 1.

(G3) The following function is a homotopy γrevγ to ex:

Hin(t, s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ2t 0 ≤ t ≤ 1
2 −

s
2

γ1−s
1
2 −

s
2 ≤ t ≤

1
2 +

s
2

γ1−2(t− 1
2
)

1
2 +

s
2 ≤ t ≤ 1.

A similar homotopy gives γγrev
p∼ ex.

Lemma 3.3.9. There is a functor π∶Top → Grpd which sends a space X to the funda-

mental groupoid π(X) and is defined on morphisms as follows. Let f ∶X → Y be a contin-

uous map, π(f)∶π(X) → π(Y ) is given by π(f)(x) = f(x) for a point x ∈ X = Ob(π(X))

and by π(f)([γ]p) = [f ○ γ]p for a path γ in X.

Proof. We first check the functor is well defined. Suppose [γ]p ∈ π(X) is an equivalence

class of paths with γ, γ′ ∈ [γ]p. Then there is a homotopy, H say, from γ to γ′. So

f ○ γ ∼ f ○ γ′ via the homotopy f ○H.

If f is the identity map on a space X, it is immediate from the definition that π(f) is the

identity functor on π(X).

That π preserves composition follows from associativity of function composition in Set.

Definition 3.3.10. Let X be a topological space and A ⊆ X a subset. The fundamental

groupoid of X with respect to A is the full subgroupoid of π(X) with object set A, denoted

π(X,A).

We refer to A as the set of basepoints.
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We have π(X,X) = π(X). Let X be a path-connected topological space and x ∈ X be a

point, we have that π(X)(x,x) is the fundamental group based at x ∈X. For any A′ ⊆ A,

there is an inclusion ι∶π(X,A′)→ π(X,A).

Definition 3.3.11. Let X and A be topological spaces, A is called representative in X

if A contains a point in every path-component of X. (The nomenclature (X,A) is a

0-connected pair is also used.)

Lemma 3.3.12. Suppose f ∶X → Y is a surjection and A is a representative subset of X,

then f(A) is representative in Y .

Proof. Let y ∈ Y be any point. We must construct a path from y to an element of f(A).

Let y′ ∈ f−1(y) be any preimage, then there exists a path γ from y′ to a point in A and

f ○ γ is a path from y to an element of f(A).

We will need the following results about the fundamental groupoid with finite sets of

basepoints in Chapter 5.

Lemma 3.3.13. Let G be a groupoid, X a topological space, X0 ⊆ X a finite subset

and y ∈ X ∖ X0 any point. Given a groupoid map f ∶π(X,X0) → G, a path γ∶x → y

where x ∈ X0 and a morphism g∶ f(x) → g in G with g ∈ Ob(G), there exists a unique

F ∶π(X,X0 ∪ {y})→ G extending f such that

• the diagram

π(X,X0 ∪ {y})
F

&&
π(X,X0)

ι
66

f
// G

(3.2)

commutes, where ι is the inclusion map, and

• F (γ) = g.

Proof. First we construct such an F . On objects we have,

F (a) =
⎧⎪⎪⎨⎪⎪⎩

g, if a = y
f(a), otherwise.
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For a path-equivalence class ϕ∶a→ y with a ∈X0 we must have

F (ϕ) = F (γγ−1ϕ) = F (γ)F (γ−1ϕ) = gf(γ−1ϕ)

Arguing similarly for all cases we have that for a morphism ϕ∶a→ b,

F (ϕ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gf(γ−1ϕ), if a ∈X0, b = y
f(ϕγ)g−1, if a = y, b ∈X0

gf(γ−1ϕγ)g−1, if a = y, b = y.

Notice that in each case F is inferred from the conditions set out in the theorem and by

functoriality. This gives uniqueness. Now it remains to check that functoriality is always

preserved, i.e. for any two paths ϕ,ϕ′ ∈ π(X,X0 ∪ {y}) we have F (ϕ′)F (ϕ) = F (ϕ′ϕ). We

check this case by case.

(I) If we have ϕ ∶ a→ y, a ∈X0, ϕ
′ ∶ y → b, b ∈X0, then

F (ϕ′)F (ϕ) = f(ϕ′γ)g−1gf(γ−1ϕ) = f(ϕ′γγ−1ϕ) = f(ϕ′ϕ) = F (ϕ′ϕ).

(II) If we have ϕ∶ y → y, ϕ′∶ y → b, b ∈X0, then

F (ϕ′)F (ϕ) = f(ϕ′γ)g−1gf(γ−1ϕγ)g−1 = f(ϕ′γγ−1ϕγ)g−1 = F (ϕ′ϕ).

(III) If we have ϕ∶a→ y, a ∈X0, ϕ
′∶ y → y, then

F (ϕ′)F (ϕ) = gf(γ−1ϕ′γ)g−1gf(γ−1ϕ) = gf(γ−1ϕ′γγ−1ϕ) = gf(γ−1ϕ′ϕ) = F (ϕ′ϕ).

(IV) If we have ϕ∶ y → y, ϕ′∶ y → y, then

F (ϕ′)F (ϕ) = gf(γ−1ϕ′γ)g−1gf(γ−1ϕγ)g−1 = gf(γ−1ϕ′γγ−1ϕγ)g−1

= gf(γ−1ϕ′ϕγ)g−1 = F (ϕ′ϕ).

There are another four cases which can be checked similarly.

Lemma 3.3.14. Let X be a topological space, G a group, X0 ⊆ X a finite representative
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subset and y ∈X a point with with y ∉X0. There is a non-canonical bijection of sets

Θγ ∶Grpd(π(X,X0),GG) × GG →Grpd(π(X,X0 ∪ {y}),GG)

(f, g)↦ F

where γ is a choice of a path from some x ∈X0 to y and F is the extension along γ and g

as described in Lemma 3.3.13.

(Recall GG = ({∗},GG(∗,∗), ○G, eG, g ↦ g−1) from Proposition 3.1.29.)

Proof. First notice that any g ∈ GG satisfies the conditions of Lemma 3.3.13 since GG has

only one object.

The map Θγ has inverse which sends a map f ′ ∈ Grpd(π(X,X0 ∪ {y}),G) to the pair

(f ′ ○ ι, f ′(γ)) where ι∶π(X,X0)→ π(X,X0 ∪ {y}) is the inclusion.

3.4 The compact-open topology on sets Top(X,Y )

At this point we change pace somewhat and discuss the compact-open topology on mor-

phism sets in Top. We will use this topology to construct our motion groupoids in Chap-

ter 4. In addition to its intuitive naturality (see Propositions 3.4.4-3.4.6), the compact-

open topology allows us to find a partial lift of the classical product-hom adjunction in

Set to an adjunction in Top (Theorem 3.5.16). We discuss the compact-open topology

here, in particular, so that once we discuss adjunctions in the next section, we have the

machinery in place to construct this product-hom adjunction in Section 3.5.1.

Everything in this section can be found in [Hat02]. Here we give the definition and some

results to aid intuition.

Definition 3.4.1. Given a set X, and a subset Y of PX with ∪A∈YA =X, we write Y for

the topology closure of Y . Hence the open sets in the topological space (X,Y ) are unions

of finite intersections of elements in Y . We say that Y is a subbasis of (X,τ) if Y = τ .

(Note that τ = Y does not in general determine Y .)

Definition 3.4.2. A neighbourhoods basis of (X,τ) at x ∈ X is a subset B ⊆ τ , whose
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members are called basic neighbourhoods of x, such that every neighbourhood1 of x con-

tains an element of B.

Definition 3.4.3. Let (X,τX) and (Y, τY ) be topological spaces, then the compact-open

topology τ coXY on Top(X,Y ) has subbasis

bXY = {BXY (K,U)∣K ⊆X is compact, U ∈ τY }

where

BXY (K,U) = {f ∶X → Y ∣ f(K) ⊆ U} .

That is τ coXY = bXY . 2

We will use capital TOP(X,Y ) to indicate the morphism set Top(X,Y ) considered as a

space with the compact open topology, so

TOP(X,Y ) = (Top(X,Y ), τ coXY ).

Proposition 3.4.4. If X is the space with a single point then the τ coXY is the same in the

obvious sense as the topology on Y .

Proof. The maps X → Y can be labelled by their image in Y . The only compact setK ⊆X

is the single point set X. For any U ∈ τY , the elements of the set of maps BXY (K,U) can

be labelled by elements of U which correspond to the image of the point.

Proposition 3.4.5. If X a is space of n points with the discrete topology, τ coXY is the

same in the obvious sense as the topology on Y n = Y × . . .×Y , the product of Y with itself

n times.

Proof. Maps X → Y are tuples (y1, . . . , yn) ∈ Y n where yi is the image of xi ∈ X and

i ∈ {1, . . . , n}. All subsets of X are compact so we have

BXY (K,U) = {(y1, . . . , yn) ∣ yi ∈ U if xi ∈K}
1Our convention is that a neighbourhood of x is a subset of X containing an open set containing x.
2There are two conventions for the compact-open topology: the one written here (which is the classical

one) and the one where we additionally impose that each K in BXY (K,U) be Hausdorff. For example
[May99, Chapter 5] takes the latter convention. This creates an a priori smaller set of open sets in the
function space. However they coincide for Hausdorff topological spaces.
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which is the subset of Y n with ith component U if xi ∈K and Y otherwise. Hence elements

of the subbasis of τ coXY are open sets in the product topology.

Basis elements in the topology on Y n are obtained from the compact open topology as

follows. Let V be a basis open set in the topology on Y n, then V is of the form V1×. . .×Vn.

Now

BXY ({xi}, Vi) = {(y1, . . . , yn)∣yi ∈ Vi},

and ∩iBXY ({xi}, Vi) = V n.

Proposition 3.4.6. (A.13 in [Hat02]) Let X be a compact space and Y a metric space

with metric d. Then

(i) the function

d′(f, g) ∶= sup
x∈X

d(f(x), g(x))

is a metric on Top(X,Y ); and

(ii) the compact open topology on Top(X,Y ) is the same as the one defined by the metric

d′.

Proof. See A.13 in [Hat02].

3.5 Forgetful functors, natural transformations and adjunc-

tions

Here we recall some results about forgetful funtors, natural transformations and adjunc-

tions; giving examples and fixing notation that will be useful later. A non exhaustive list

of references for the topics covered here is [Per19; AHS90; Rie17].

Many examples of adjunctions will come from forgetful functors. A forgetful functor is a

general term for a functor which forgets structure.

Proposition 3.5.1. There is a forgetful functor from Cat to Mag, which sends a category

C = (Ob(C),C(−,−),∗C ,1−) to the magmoid (Ob(C),C(−,−),∗C) and which sends a functor

to its underlying magmoid morphism.

Proof. This is immediate from the definitions.
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Example 3.5.2. There is a forgetful functor UT∶Top → Set sends a space to its under-

lying set and a continuous map to its underlying function.

Example 3.5.3. There is a forgetful functor UG ∶Grpd → Set which sends a groupoid G

to the set Ob(G) and a functor to the corresponding set map determined by its action on

objects.

Example 3.5.4. There is a forgetful functor UVk ∶Vectk → Set which sends a vector

space V to the set of all vectors and a linear map to the corresponding set map determined

by its action on vectors.

Definition 3.5.5. A concrete category is a category C equipped with a faithful functor

F ∶C → Set.

Example 3.5.6. The forgetful functors UT, UG and UVk from Examples 3.5.2, 3.5.3 and

3.5.4 are faithful and thus Top, Grpd and Vectk are concrete categories when equipped

with UT, UG and UVk respectively.

Definition 3.5.7. Let C and D be categories and F,G∶C → D functors. A natural

transformation η∶F → G consists of

• for each object X ∈ C a morphism ηX ∶F (X)→ G(X) in D

such that for any morphism f ∶X → Y in C the following square of morphisms in D

commutes.

F (X) F (Y )

G(X) G(Y )

F (f)

ηX ηY

G(f)

A natural isomorphism is a natural transformation η∶F → G such that every ηX is an

isomorphism in D.

Given a functor F ∶C → D one can ask if this is an isomorphism in Cat, although in some

cases it is useful to consider a weaker notion. Let X be a Set and F (X) the free group

generated by X. Then the underlying set of F (X) is not X. However, if we consider the

set of all group homomorphisms from F (X) to another group G, then there is a canonical
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bijection with the set of all functions X to the underlying set of the group G. Adjunctions

generalise this phenomenon.

We write the following definition in a form that is only applicable to locally small categories

– categories for which all collections of morphisms C(X,Y ) are sets. Adjunctions can be

defined for categories which are not locally small, although we will not need that generality

here.

Definition 3.5.8. An adjunction consists of a pair of functors F ∶C → D and G∶D → C

together with, for each X ∈ Ob(C) and Y ∈ Ob(D), a set-bijection

ϕX,Y ∶D(F (X), Y )
∼Ð→ C(X,G(Y ))

natural in both variables. That is for any morphisms f ∶X ′ → X in C and g∶Y → Y ′ in D

the following square commutes

D(F (X), Y ) C(X,G(Y ))

D(F (X ′), Y ′) C(X ′,G(Y ′))

ϕX,Y

HomC(f,G(g)) HomD(F (f),g)

ϕX′,Y ′

where Hom is as in Proposition 3.1.21.

We refer to F as the left adjoint and G as the right adjoint.

Forgetful functors often have adjoints. The following adjunctions can be found, for exam-

ple, in [Per19, Ch. 4].

Lemma 3.5.9. Consider the forgetful functor UT∶Top→ Set introduced in Example 3.5.2.

(I) There is a functor FT∶Set→ Top which sends a set X to the space with underlying set

X and the discrete topology and sends a function to the map which has the same action

on the underlying sets.

(II) The functor FT is left adjoint to UT.

Proof. (I) Let X be any set, and S a topological space. Any function f ∶FT(X) → S

is continuous as FT has the discrete topology, and so the image of any function g∶X →

Y is a continuous map FT(g)∶FT(X) → FT(Y ), thus FT is well defined. Clearly FT

sends identities to identities. Preservation of composition follows immediately from the
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definition.

(II) Consider a continuous map f ∈ Top(FT(X), S), then UT(f) is the function on the

underlying sets, and given a function g ∈ Set(X,UT(S)), then the function g defines a

continuous map FT(X) → S, so we have a bijective correspondence. It is straightforward

to check naturality.

Lemma 3.5.10. Consider again the forgetful functor UT∶Top → Set introduced in Ex-

ample 3.5.2.

(I) There is a functor GT∶Set → Top which sends a set X to the space with underlying

set X and the indiscrete topology and sends a function to the map which has the same

action on the underlying sets.

(II) The functor GT is right adjoint to UT .

Proof. (I) For sets X and Y , let f ∶X → Y be a function. Then f−1(Y ) =X and f−1(∅) = ∅

so f defines a continuous function from GT(X) to GT(Y ). Thus GT is well defined. Clearly

GT sends identities to identities. Preservation of composition follows immediately from

the definition.

(II) This is similar to the previous lemma, the appropriate isomorphism sends functions

to continuous maps which act in the same way on the underlying set.

Proposition 3.5.11. Let X be a set, there is a groupoid which has object set X and exactly

one morphism (x, y) from x to y for any pair x, y ∈ X, with the composition defined by

(x, y)(y, z) = (x, z). The identity morphisms are (x,x) and (x, y)−1 = (y, x). This is called

the indiscrete groupoid and denoted ∆(X).

Proof. Straightforward.

Lemma 3.5.12. (I) There is a functor ∆∶Set → Grpd which sends a set X to ∆(X),

and sends a function f ∶X → Y to the unique functor from ∆(f)∶∆(X) → ∆(Y ) which

acts as f on objects.

(II) The functor UG ∶Grpd→ Set introduced in Example 3.5.3 has right adjoint ∆∶Set→

Grpd.

Proof. Straightforward.
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Lemma 3.5.13. Consider the functor UVk ∶Vectk → Set as in Example 3.5.4.

(I) There is a functor FVk ∶Set→Vectk which sends a set X to the free vector space over

X and a function to the unique linear map between the corresponding free vector spaces.

(II) The functor FVk is left adjoint to UVk ∶Vectk → Set.

Proof. Straightforward.

3.5.1 The space TOP(X,Y ) and the product-hom adjunction

Here we recall the construction of a partial product-hom adjunction in the category Top,

this is Theorem 3.5.16. The adjunction holds subject to some conditions which are not

too restrictive for us. In particular, the compact-open topology allows us to define a

right-adjoint to the functor − ×K ∶Top → Top (see Lemma 3.5.14), when K is a locally

compact Hausdorff space. (The case K = [0,1] was one of the examples given in the

original reference on adjoint functors [Kan58, pp 294].)

We will see in Chapter 4 that this adjunction will be crucial in understanding the con-

nection between the generalised motions we construct and embedded cobordisms. We will

also need the fact that the product −× I preserves colimits in Top for many of the proofs

in Chapter 5.

We also give a first example of the utility of the product-hom adjunction in the context of

the fundamental groupoid; paths in the fundamental groupoid are equivalent if and only

if there is a path between them in the space of paths (Lemma 3.5.19).

Lemma 3.5.14. Fix a topological space Y . We can define a functor − × Y ∶Top → Top

as follows. A space X is sent to the product space X × Y . A continuous map f ∶X → X ′

is sent to the map f × id∶X × Y →X ′ × Y , (x, y)↦ (f(x), y). We will refer to this as the

product functor.

Proof. We must show that, for a map f ∶X → X ′, f × id is a continuous map X × Y to

X ′ × Y . Let U ′ × V be a basis open set in X ′ × Y . Then the preimage under f × id is

f−1(U ′) × V which is open since f is continuous. It is clear that the product functor

preserves the identity and respects the composition.

Lemma 3.5.15. Fix a topological space Y . We can define a functor Top(Y,−)∶Top →
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Top as follows. A space Z is sent to the space TOP(Y,Z). A continuous map f ∶Z → Z ′

is sent to f ○−∶TOP(Y,Z)→ TOP(Y,Z ′), g ↦ f ○g. We will refer to this as the top-hom

functor.

Note the relation to the hom functor introduced in Proposition 3.1.21.

Proof. We must show that f ○ − is a continuous map. Open sets in the subbasis of τ coY Z′

are of the form BY Z′(K,U) for some K a compact set in Y and U an open set in Z ′. The

set f−1(U) is open in Z since f is a continuous map. Hence BY Z(K,f−1(U)) is an open

set in τ coY Z .

We will show that the inverse image of BY Z′(K,U) under f○− is BY Z(K,f−1(U)). For any

g ∈ BY Z(K,f−1(U)) we have f ○g ∈ BY Z′(K,U). Conversely suppose some h ∈ BY Z′(K,U)

can be written in the form f ○g′ for some g′ ∈ TOP(Y,Z), then g′ ∈ BY Z(K,f−1(U)).

Lemma 3.5.16. Let Y be a locally compact Hausdorff topological space. The product

funtor −×Y ∶ Top→ Top is left adjoint to the top-hom functor TOP(Y,−). In particular

for objects X,Y,Z ∈ Top the usual hom-tensor adjunction from Set sending a set map

f ∶X → TOP(Y,Z) to f̂ ∶X × Y → Z, (x, y) ↦ f(x)(y) is well-defined in Top (i.e. f̂ is

continuous); and this gives a set map

ΦXZ ∶Top(X,TOP(Y,Z))→ Top(X × Y,Z)

that is a bijection, natural in the variables X and Z. 3

Remark 3.5.1. By twisting ΦX,Y with a homeomorphism g∶Y → Y , so f ∶X → TOP(Y,Z)

is sent to the map (x, y)↦ f(x)(g(y)), it can be shown that each g ∈ Top(Y,Y ) leads to a

distinct adjunction between the maps − × Y and TOP(Y,−). The proof proceeds exactly

as for the untwisted case.

Proof. That we have a bijection of sets is proved in Proposition A.14 of [Hat02]. It remains

to prove that this bijection is natural. Suppose we have continuous maps α∶X ′ → X and

3There is in fact an adjustment of the compact open topology which, with an adjustment to the product,
gives an adjunction without the need to restrict Y . See section 5.9 in [Bro06] for more.
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β∶Z → Z ′ then we must show we have a commuting diagram of the form

Top(X,TOP(Y,Z)) Top(X × Y,Z)

Top(X ′,TOP(Y,Z′)) Top(X ′ × Y,Z ′)

ΦXZ

Hom(α,β○−) Hom(α×id,β)

ΦX′Z′

where Hom is the hom-functor Cop×C → Set as in Proposition 3.1.21. Looking first at the

left hand vertical arrow, a map f ∶X → TOP(Y,Z) is sent to the map X ′ → TOP(Y,Z ′),

x′ ↦ β ○ f(α(x′)), and then to (x′, y)↦ (β ○ f(α(x′)))(y) in Top(X ′ ×Y,Z ′). Going first

along the top, a map f is sent to the map X × Y → Z, (x, y) ↦ f(x)(y) and then to the

map X ′ × Y → Z ′ defined by (x′, y)↦ β(f(α(x′))(y)) = (β ○ f(α(x′)))(y).

Corollary 3.5.17. The function K ∶TOP(M,M) ×M → M defined by K(h,m) = h(m)

is a continuous map.

Proof. Let X = TOP(M,M), Y = M and Z = M and then consider the image of

id∶TOP(M,M)→ TOP(M,M) under ΦTOP(M,M)M .

Definition 3.5.18. Let X be a space. We call TOP(I,X) the path space of X.

Lemma 3.5.19. Let X be a topological space. Let γ, γ′ ∈PX(x,x′) be paths. Then γ
p∼ γ′

if and only if there is a path H̃ ∶ I → TOP(I,X) such that H̃(0) = γ, H̃(1) = γ′ and for

all t ∈ I, H̃(t) ∈ PX(x,x′). In other words, paths in X are equivalent in the fundamental

groupoid if and only if they are connected by a path in the path space of X.

Proof. We have that I is a locally compact Hausdorff topological space so Theorem 3.5.16

gives that there is a bijection between continuous maps I × I → X and continuous maps

I→ TOP(I,X). It is straightforward to check that the image of the set of path homotopies

H from a path γ to a path γ′ under this bijection is the set of paths γ to γ′.

3.6 Colimits

Colimits will play an integral role in Chapter 5 so we use this section to review some

key properties. We also fix representative colimits in the categories we will work with

throughout the thesis.
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The topics covered here can be found, for example, in [Per19, Ch.3].

3.6.1 Coproducts and pushouts

We start by defining two specific types of colimit that will be particularly useful.

Definition 3.6.1. Let C be a category. A coproduct of two objects C1,C2 ∈ Ob(C) is a

diagram

C1 C C2
i1 i2

of morphisms in C, with the universal property that for any diagram

C1 C ′ C2
v1 v2

of morphisms in C, there is a unique morphism v∶C → C ′ such that v ∗C i1 = v1 and

v ∗C i2 = v2. By abuse of language it is common to refer to C as a coproduct of C1 and

C2. We may use C1 ∐C2 for a coproduct of C1 and C2.

As the following example shows, coproducts in a category do not always exist.

Example 3.6.2. Let C be the category with Ob(C) = {A,B} and only identity morphisms,

then a coproduct of A and B does not exist.

If a coproduct of two objects in a category does exist there will generally be many choices

of coproduct. It is straightforward to see that if C1
i1Ð→ C

i2←Ð C2 is a coproduct in a

category C, and there exists an isomorphism u∶C → C ′ in C, then C1
u∗Ci1ÐÐÐ→ C ′

u∗Ci2←ÐÐÐ C2 is

also a coproduct.

Even when there is a unique choice of object C1 ∐C2, there may be many choices of maps

making C1 → C1 ∐C2 ←Ð C2 a coproduct. Although we do have the following lemma.

Lemma 3.6.3. Let C be a category and C1,C2 ∈ C. Suppose C1
i1Ð→ C

i2←Ð C2 and C1
v1Ð→

C
v2←Ð C2 are both coproducts. There is a unique morphism v∶C → C ′ making the following
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diagram commute

C

C1 C2

C ′,

v

i1

v1

i2

v2

and v is an isomorphism.

Proof. It follows from the universal property of the coproducts that there are unique

morphisms v∶C → C ′ and v′∶C ′ → C making the above diagram commute.

The universal property also gives that v∗C v′ is the identity on C and v′∗C v is the identity

on C ′, hence v, v′ are isomorphisms.

Where coproducts do exist, we are free to choose a representative element of each iso-

morphism class of coproducts to work with. Indeed we will fix representative elements for

various categories so a coproduct is uniquely defined by giving two elements of the category.

For example, in Set we will fix the representative coproduct of a pair X,Y ∈ Ob(Set), to

be the disjoint union

X ⊔ Y ∶= (X × {1}) ∪ (Y × {2}) ,

with the natural inclusions (i.e. those given by ιi(x) ∶= (x, i)).

We check this really is a coproduct.

Lemma 3.6.4. The diagram X X ⊔ Y Y
ι1 ι2 is a coproduct in Set.

Proof. Suppose we have another diagram X A Y.
v1 v2 Then a map v∶X ⊔ Y → A is

defined as follows. For all x ∈ X, v(x,1) = v1(x) and for all y ∈ Y , v(y,2) = v2(y). By

construction the map v commutes with the vi and ιi, and is unique.

Definition 3.6.5. Let C be a category. A pushout of two morphisms f1∶C0 → C1 and

f2∶C0 → C2 in C is a diagram

C0 C1

C2 C

f1

f2 u1

u2
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which is commutative and has the universal property that for any other diagram

C0 C1

C2 C ′,

i1

i2 v1

v2

there exists a unique v∶C → C ′ such that v ∗C u1 = v1 and v ∗C u2 = v2.

Again, it is common to refer to C as the pushout.

As with coproducts, pushouts in a category do not always exist but, where they do exist,

are unique up to canonical isomorphism (the proof is very similar to Lemma 3.6.3). We

explain our convention for pushouts in Set.

Consider morphisms f ∶Z →X and g∶Z → Y in Set. Then the diagram below:

Z X

Y X ⊔Z Y

f

g pX

pY

is a pushout in Set. Here

X ⊔Z Y ∶= (X ⊔ Y )/ ∼,

where ∼ is the reflexive, symmetric, transitive closure of the relation

{(ι1(f(z)), ι2(g(z))) ∣ z ∈ Z},

on X ⊔Y , pX(x) is the equivalence class of ι1(x) in X ⊔Y / ∼ and pY (y) is the equivalence

class of ι2(y) in X ⊔ Y / ∼.

Coproducts and pushouts also exist in the categories Vectk, Top and Grpd. We fix

representative coproducts and pushouts in the category Top in Section 3.6.3, and discuss

colimits in Grpd in Section 3.6.4.

3.6.2 General colimits

We now recall the construction of a general colimit. We will only need to fix a general

representative colimit in Set.
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Definition 3.6.6. Let C be a category and I a small category. A functor D∶ I→ C is called

a diagram in C of shape I.

Let P = ● ← ● → ● be a category with three objects and two non identity morphisms as

shown. Then a functor P → C for some category C is uniquely specified by drawing a

diagram

C1 C0 C2
f1 f2

in C of the same shape as P, hence the nomenclature.

Definition 3.6.7. Let C be a category, I a small category and D∶ I → C a diagram in C.

A cocone is an object C ∈ Ob(C) together with a family of morphisms

ψ = (ψi∶D(i)→ C)i∈Ob(I)

indexed by the objects in I such that for all morphisms f ∶ i→ j in I the following triangle

commutes.

D(i) D(j)

C

D(f)

ψi ψj

A colimit of D is a cocone (C,ϕ) with the universal property that for any other cocone

(C ′, ψ) there exists a unique morphism C → C ′ making the following diagram commute

for all morphisms f ∶ i→ j in I.

D(i) D(j)

C

C ′

D(f)

ϕi

ψi

ϕj

ψj∃!

We will refer to the object C as colim(D).

Example 3.6.8. A colimit of a diagram of shape P is a pushout.

Example 3.6.9. Let T be the category with two objects and no non identity morphisms,

then a colimit of a diagram of shape T is a coproduct.
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Definition 3.6.10. Let E = ● ● be the category with two objects and two non

identity morphisms as shown. A colimit of a diagram of shape E is called a coequaliser.

Proposition 3.6.11. Let f, g∶X → Y be functions in Set. Then there exists a coequaliser

X Y Y / ∼,
f

g

p

where ∼ is the reflexive, symmetric and transitive closure of the relation

{(f(x), g(x)) ∣ x ∈ N}

on Y , and p is the canonical map sending y ∈ Y to its equivalence class [y] ∈ Y / ∼.

Lemma 3.6.12. Let f1∶C0 → C1 and f2∶C0 → C2 be morphisms in a category C. Then

C0 C1

C2 C

f1

f2 p1

p2

is a pushout of f1 and f2 if and only if

C0 C1 ∐C2 C
i1∗Cf1

i2∗Cf2

p

is a coequaliser, where p is the map obtained from applying the universal property of the

coproduct to the maps C1
p1Ð→ C

p2←Ð C2 .

Proof. Let h∶C1 ∐ C2 → H be a morphism with h ∗C i1 ∗C f1 = h ∗C i2 ∗C f2. Then, using

the universal property of the coproduct, h uniquely determines a pair of maps h1∶C1 →H

and h2∶C2 → H with h ∗C i1 = h1 and h ∗C i2 = h2, and hence h1 ∗C f1 = h2 ∗C f2. Then

there exists a unique map unique map h′∶C → H, with p1 ∗C h′ = h1 and p2 ∗C h′ = h2 if

and only if h′ is also the unique map satisfying p ∗C h′ = h.

We will fix the following representative colimit in Set. Let D∶ I→ Set be a diagram. Then

⊔i∈Ob(I)D(i) is the disjoint union as in Definition 2.0.3. For i ∈ I, let ϕ̃i∶D(i) → ⊔i∈ID(i)
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denote the map x↦ (x, i). Consider the relation

R = {(ϕ̃i(x), ϕ̃j(D(f)(x)) ∣ f ∶ i→ j ∈ I}

on ⊔i∈ID(i). The colimit of D is given by

colim(D) = ⊔i∈ID(i)/R̄

with maps ϕi∶D(i)→ ⊔i∈ID(i)/∼ which send x to the equivalence class of ϕ̃i(x).

The following theorem, which says that adjunctions interact nicely with colimits, will play

a key role in Chapter 5.

Theorem 3.6.13. ([Rie17, Thm. 4.5.3]) Left adjoints preserve colimits. This means for

any left adjoint F ∶C → D, any diagram D∶ I→ C then

F (colim(D)) = colim(F (D)).

3.6.3 Colimits in Top

By Lemma 3.5.10 the forgetful functor UT∶Top → Set is a left adjoint. Thus, by Theo-

rem 3.6.13, UT preserves colimits. This means coproducts and pushouts of diagrams in

Top have the same underlying set as the coproducts and pushouts of their images in Set.

Let X and Y be spaces. Then

τX⊔Y ∶= {U ⊆X ⊔ Y ∣ ι−11 (U) is closed in X and ι−12 (U) is closed in Y }

is a topology on X ⊔ Y . It is straightforward to prove that (X ⊔ Y, τX⊔Y ) is a coproduct

in Top (see for example (3.1.2) of [Bro06]). We will use the notation indicated by the

following diagram to refer to the map given by the universal property of the coproduct in

Top.

X X ⊔ Y Y

M

ι1

i

∃!⟨i,j⟩

ι2

j

(3.3)
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(If we have maps of spaces i∶X →M and j∶Y → N , we will use i ⊔ j for the obvious map

X ⊔ Y →M ⊔N .)

Let X,Y,Z be topological spaces. Consider continuous maps f ∶Z →X and g∶Z → Y . The

topology on X⊔ZY which makes it into a pushout in Top is the following:

τX⊔ZY ∶= {U ⊆X⊔ZY ∣ p−1X (U) is closed and p−1Y (U) is closed}.

This topology can be equivalently defined as the finest topology on X⊔ZY making pX and

pY continuous.

3.6.4 Colimits in Grpd

Our construction of a TQFT in Chapter 5 will rely on the fact that the pushout of two

finitely generated groupoids is a finitely generated groupoid, which we prove in Theo-

rem 3.6.21. We do this by explicitly constructing coequalisers in Grpd. Our main ref-

erence for this is [Hig71], although the parts on universal morphisms are also covered in

[Bro06, Ch.8]. We note that everything done here can also be done in Cat.

The difficulty in constructing colimits of groupoids stems from the fact that the image of

a functor of groupoids is often not a groupoid, as it is not closed. More precisely, suppose

F ∶G →H is a functor of groupoids, and g1∶w → x and g2∶ y → z are morphisms in G. Then

g2 ∗g1 is defined if and only if x = y and then we must have F (g2 ∗g1) = F (g2)∗F (g1), i.e.

F (g2) ∗ F (g1) must be the image of a morphism in G. Suppose, however, that x ≠ y but

F (x) = F (y), then F (g2) ∗ F (g1) is defined in H but will not be the image of any single

element in G. A consequence is that it is possible for the coequaliser of finite groupoids to

be infinite. This is illustrated by the following example.

Let (Z,+) denote the category with one object and morphisms labelled by elements of Z,

with composition given by addition in Z.

Example 3.6.14. Let {∗} be the groupoid with one object and only the identity morphism,

and let I be the groupoid with two objects {a, b} and one non-identity morphism from a to

b. Let ιa be the functor uniquely defined by ιa(∗) = a, and ιb the functor uniquely defined
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by ιb(∗) = b. The following diagram is a coequaliser

{∗} I (Z,+),
ιa

ιb

p

where p is a functor which maps the only non-identity morphism to 1 ∈ Z. (Note p must

send {a} and {b} to the only object in (Z,+).)

Let G1,G2 ∈ Ob(Grpd) be groupoids. Then we fix a representative coproduct, denoted

G1 ⊔G2 as follows. The object set of Ob(G1 ⊔G2) = Ob(G1)⊔Ob(G2), the coproduct in Set,

and the morphism set in G1 ⊔ G2 is the coproduct in Set of the morphisms in G1 and the

morphisms in G2, where for f ∶w → x in G1 and g∶ y → z in G2, (f, g) is a morphism from

(w,y) to (x, z).

We proceed towards explicitly constructing coequalisers in Grpd by first introducing

universal morphisms.

Let X be a set. Throughout this section we will also use X to denote the trivial groupoid

with the set X as objects and only identity morphisms. The meaning will be clear from

context.

Definition 3.6.15. Let F ∶G → H be a functor and denote by Ob(F ) the unique functor

making the following square, where the vertical maps are inclusions, commute.

Ob(G) Ob(H)

G H

Ob(F )

ιG ιH

F

Then F is called universal if this square is a pushout.

Lemma 3.6.16. Let X be a set, G a groupoid and σ∶Ob(G) → X a function. There is a

groupoid Uσ(G) constructed as follows.

(I) We have Ob(Uσ(G)) =X.

(II) For a pair x, y ∈X a word of length n from x to y is a sequence

a = an...a1
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of morphisms ai∶ gi → g′i in G such that

(i) for all i = {1, . . . , n − 1}, g′i ≠ gi+1,

(ii) for all i = {1, . . . , n − 1}, σ(g′i) = σ(gi+1),

(iii) σ(g1) = x and σ(g′n) = y,

(iv) for all i ∈ {1, . . . , n}, ai ≠ 1gi.

For a pair x, y ∈ X the set of morphisms Uσ(G)(x, y) is the set all words from x to

y when x ≠ y and in the case x = y we also add the empty word which we will denote

1x. (Notice that Uσ(G)(x, y) may well be empty, and certainly will be in the case

x ≠ y and x and y are not in the image of σ.)

(III) Morphisms are composed by concatenating words and, where possible, evaluating

compositions in G cancelling identities.

(IV) For x ∈X, the identity morphism is the empty word which we denote 1x.

(V) Suppose a = an . . . a1 is a word in Uσ(G)(x, y), then it has inverse a−1 = a−11 ...a−1n ,

where a−1i is the inverse in G. Notice that this is in Uσ(G)(y, x).

Proof. (C1) It is immediate from the construction that the empty word acts as an identity

under concatenation.

(C2) Evaluating compositions is associative because concatenation is associative and the

composition in G is associative.

(G1) It is immediate from the construction that the described word is an inverse.

Lemma 3.6.17. Let G be a groupoid, X a set, σ∶Ob(G) → X a function and Uσ(G) as

constructed in Lemma 3.6.16. There is a functor σ′∶G → Uσ(G), defined as follows. On

objects σ′ = σ. For a morphism a∶ g → g′ in G we have σ′(a) = 1σ(g) if a = 1g and σ′(a) = a,

considered as a length one word in Uσ(G), otherwise. Note that a is a word from g to g′.

Proof. First note that the all identities in G are mapped to identities in Uσ(G) by con-

struction.

Suppose a∶ g → g′ and a′∶ g′ → g′′ are morphisms in G. If a = 1g then σ′(1g∗Ga′) = σ′(a′) = a′

which is the concatenation of a′ with the empty word. If a′ = 1g, then similarly σ(a∗G a′)
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is precisely the concatenation σ′(a)σ′(a′). If neither a, nor a′ is an identity, then

σ′(a ∗G a′) = a ∗G a′

which is precisely the concatenation σ′(a)σ′(a′) with all possible compositions in G eval-

uated.

Lemma 3.6.18. Let G be a groupoid, X a set and σ∶Ob(G)→X a function. The functor

σ′∶G → Uσ(G) as constructed in Lemma 3.6.17 is universal.

Proof. To prove σ′ is universal we construct, for any groupoid K and functors τ and ϕ

with τ ∗G σ = ϕ ∗G ιG , a unique map ϕ∗ making the following diagram commute.

Ob(G) X

G Uσ(G)

K

σ

ιG ιX
τ

σ′

ϕ

ϕ∗

We must have that on objects x ∈ Ob(Uσ(G)) = X, ϕ∗(x) = τ(x) and that ϕ∗(1x) =

τ(1x). Now let a1 be a word of length 1 in Uσ(G), then a1 is a morphism in G and,

by commutativity, we must have ϕ∗(a1) = ϕ(a1). For words of length n, a = an . . . a1 in

Uσ(G), by functoriality we must have

ϕ∗(a) = ϕ∗(an) ∗K . . . ∗K ϕ∗(a1)

= ϕ(an) ∗K . . . ∗K ϕ(a1).

Notice for any ai∶ gi → g′i and ai+1∶ gi+1 → g′i+1 we have σ(g′i) = σ(gi+1), hence τ(σ(g′i)) =

τ(σ(gi+1)) and so, by commutativity of the diagram, ϕ(g′i) = ϕ(gi+1), so we have that

ϕ∗ is well defined. By construction composition is preserved on word concatenations.

Composition is preserved also by evaluating compositions and removing identities because

ϕ preserves composition. We have that ϕ∗ is unique by construction.

We now construct coequalisers in Grpd.

53



3.6. Colimits Chapter 3. Preliminaries

Since left adjoints preserve colimits (Theorem 3.6.13), and the forgetful functor UG ∶Grpd→

Set which sends a groupoid to its object set is a left adjoint (Lemma 3.5.12), we can find

the object set of a coequaliser of a diagram D in Grpd by evaluating the set coequaliser

of UG ○D in Set.

Lemma 3.6.19. Let f, g∶G0 → G1 be functors of groupoids and let f̃ , g̃∶Ob(G0) → Ob(G1)

denote UG(f) and UG(g) respectively. Let σ∶Ob(G1) → Ob(G1)/ ∼Ob be the coequaliser

of f̃ and g̃ in Set, and let σ′∶G1 → U ′σ(G1) denote the universal map constructed as in

Lemma 3.6.17.

For each pair x, y ∈ Ob(G1)/ ∼Ob let Rx,y be the relation on U ′σ(G1)(x, y) with

(an . . . a1, a′n . . . a′1) ∈ Rx,y

if there exists a morphism b ∈ G0 such that for some i ∈ {1, . . . , n}, σ′f(b) = ai and

σ′g(b) = a′i and for all other j ≠ i, aj = a′j. (I) The collection of equivalence relations

R̄ = (U ′σ(G1)(x, y), R̄x,y) is a congruence, hence there is a quotient groupoid U ′σ(G1)/R̄.

(II) The following diagram is a coequaliser

G0 U ′σ(G1) U ′σ(G1)/R̄,
σ′f

σ′g

γ∗
(3.4)

where γ∗ is the quotient functor induced by R̄.

Proof. (I) This is straightforward to check.

(II) Suppose we have a groupoidH and a map ψ∶U ′σ(G1)→H with ψ∗Gσ′∗Gf = ψ∗Gσ′∗Gg.

Let a1 and a′1 be words of length 1 in U ′σ(G1) and suppose there exists b ∈ G0 such that

σ′ ∗G f(b) = a1 and σ′ ∗G g(b) = a′1. Then, by assumption, we must have ψ(a1) = ψ(a′1).

Now suppose there exists words a = an . . . a1 and a′ = a′n . . . a′1 in U ′σ(G1) and a morphism

b ∈ G0 such that for some i ∈ {1, . . . , n}, σ′f(b) = ai and σ′g(b) = a′i, and for all other j ≠ i,

aj = a′j . Then by functoriality we must have ψ(a) = ψ(a′).

Thus we arrive at precisely the relation described in the Lemma. So ψ must factor through

U ′σ(G1)/R̄, and the diagram is a coequaliser.
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Lemma 3.6.20. Let f, g∶G0 → G1 be functors of groupoids. Then

G0 G1 U ′σ(G1)/R̄
f

g

γ∗σ′
(3.5)

is a coequaliser, where we use the notation of the previous Lemma.

Proof. We have from the Lemma 3.6.19 that (3.4) is a coequaliser. Suppose we have a

functor ψ∶G1 → H with ψ ∗G f = ψ ∗ g, then since U ′σ(G1) is universal, there exists a

unique map ψ′∶U ′σ(G1) → H with ψ = ψ′σ′ and hence using the universal property of the

coequaliser a unique map Ψ∶U ′σ(G1)/R̄ →H making (3.4) commute. Then Ψγ∗σ′ = ψ and so

Ψ makes (3.5) commute.

Note that this is unique, since any Ψ′∶U ′σ(G1)/R̄ → H making (3.5) commute will also

commute with ψ′ and (3.4), and by the universal property of the coequaliser, this map is

unique.

We have now shown that we can construct a coequaliser in Grpd of any pair of maps.

It is, in fact, possible to obtain all colimits in terms of from coproducts and coequalis-

ers, although we won’t need that level of generality here. Thus, having constructed the

coequaliser, we now know that Grpd has all colimits.

Theorem 3.6.21. Let G0 and G1 be finitely generated groupoids and f ∶G0 → G1 and

g∶G0 → G1 functors. The pushout of f and g is finitely generated.

Proof. By Lemma 3.6.12 we can construct the pushout of f and g by finding the coequaliser

of f̃ ∶G0 → G1⊔G2 and g̃∶G0 → G1⊔G2, where the tilde indicates composition with the maps

into the coproduct. By Lemmas 3.6.17 and 3.6.16, equivalence classes of morphisms in

the coequaliser are represented by words in G1 ⊔ G2. By construction G1 ⊔ G2 is finitely

generated if G1 and G2 are, generated by the disjoint union of the generators of G1 and G2.

Thus the coequaliser will be finitely generated.

3.7 Monoidal categories

Here we recall the definition of monoidal and symmetric monoidal categories, and of

functors preserving this extra structure. We also give examples that we will make use of
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later. A good reference for this section is [TV17].

Definition 3.7.1. A monoidal category is a pentuple

(C,⊗,1, α−,−,−, λ−, ρ−)

consisting of a category C and,

• a functor ⊗∶C × C → C called the monoidal product;

• an object 1 ∈ Ob(C) called the monoidal unit;

• for each triple of objects X,Y,Z ∈ Ob(C), an isomorphism

αX,Y,Z ∶ (X ⊗ Y )⊗Z →X ⊗ (Y ⊗Z)

called an associator;

• for each X ∈ Ob(C) an isomorphism λX ∶1⊗X →X called a left unitor;

• for each X ∈ Ob(C) an isomorphism ρX ∶X ⊗ 1→X called a right unitor.

These are subject to the following constraints:

(M1) for all W,X,Y,Z ∈ Ob(C) the following diagram, called the pentagon identity com-

mutes:

(W ⊗X)⊗ (Y ⊗Z)

((W ⊗X)⊗ Y )⊗Z W ⊗ (X ⊗ (Y ⊗Z))

(W ⊗ (X ⊗ Y ))⊗Z W ⊗ ((X ⊗ Y )⊗Z),

αW,X,Y ⊗Z

αW,X,Y ⊗1Z

αW⊗X,Y,Z

αW,X⊗Y,Z

1W⊗αX,Y,Z

(M2) for all X,Y ∈ Ob(C) the following diagram, called the triangle identity, commutes:

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y,

αX,1,Y

ρX⊗1Y 1X⊗λY

(M3) all the associators and the left and right unitors are natural isomorphisms, that is
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for each morphism f ∶X →X ′ in C, the following diagrams commute:

1⊗X 1⊗X ′

X X ′,

11⊗f

λX λX′

f

X ⊗ 1 X ′ ⊗ 1

X X ′,

f⊗11

ρX ρX′

f

and for all morphisms f ∶X → X ′, g∶Y → Y ′ and h∶Z → Z ′ in C, the following

diagram commutes:

(X ⊗ Y )⊗Z (X ′ ⊗ Y ′)⊗Z ′

X ⊗ (Y ⊗Z) X ′ ⊗ (Y ′ ⊗Z ′).

(f⊗g)⊗h

αX,Y,Z αX′,Y ′,Z′

f⊗(g⊗h)

Definition 3.7.2. An initial object in a category C is an object I ∈ Ob(C) such that for

any X ∈ Ob(C), there exists a unique morphism f ∶ I →X.

Example 3.7.3. In Set the empty set ∅ is an initial object. In Top the space with

underlying set ∅ is an initial object.

Proposition 3.7.4. [Mac71, Sec.VII.1] If C is a category with all coproducts and an

initial object then C becomes a monoidal category as follows. The monoidal product is the

coproduct and monoidal unit the initial object.

The associators are obtained by applying the universal property of the coproduct twice,

it can be shown these are isomorphisms by constructing inverses in the same way. The

unitors are obtained by applying the universal property of the coproduct to the pair 1X ∶X →

X and the unique map 1 → X. By construction, the map into the coproduct X → X ⊗ 1

(or X → 1 ⊗X) composed with the relevant unitor must commute with the identity, thus

these are isomorphisms.

This is called the cocartesian monoidal structure.
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Proof. The triangle and pentagon identities can be proved by noting that objects in the

same isomorphism class as a coproduct, are also coproducts of the same pair of objects, and

the isomorphism connecting them is unique. It is straightforward to check the naturality

diagrams.

The following three propositions are examples of cocartesian monoidal structures.

Proposition 3.7.5. (I) There exists a bifunctor

⊔∶Set × Set→ Set

(f ∶W →X,g∶Y → Z)↦ f ⊔ g∶W ⊔ Y →X ⊔Z

where f ⊔ g is the map obtained using the universal property of the coproduct on the maps

ι1 ○ f ∶W →X ⊔Z and ι2 ○ g∶Y →X ⊔Z where X
ι1Ð→X ⊔Z ι2←Ð Z is the coproduct given in

Section 3.6.1.

(II) There exists a monoidal category

(Top, ⊔ , ∅ , αSX,Y,Z ∶ (X ⊔ Y ) ⊔Z →X ⊔ (Y ⊔Z) , λSX ∶ ∅ ⊔X →X , ρSX ∶X ⊔ ∅→X)

where the associators and unitors are the obvious isomorphisms.

Proof. (I) It is immediate from the construction that f ⊔ g is a map W ⊔ Y →X ⊔Z.

(II) This is precisely the monoidal structure described in Proposition 3.7.4. It is also

straightforward to check each of the identities directly.

Proposition 3.7.6. (I) There exists a bifunctor

⊔∶Top ×Top→ Top

(f ∶W →X,g∶Y → Z)↦ f ⊔ g∶W ⊔ Y →X ⊔Z

where f ⊔ g is the map obtained using the universal property of the coproduct on the maps

ι1 ○ f ∶W → X ⊔Z and ι2 ○ g∶Y → X ⊔Z, where W ι1Ð→W ⊔ Y ι2←Ð Y is the coproduct given

in Section 3.6.3.
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(II) There exists a monoidal category

(Top, ⊔ , ∅ , αTX,Y,Z ∶ (X ⊔ Y ) ⊔Z →X ⊔ (Y ⊔Z) , λTX ∶ ∅ ⊔X →X , ρTX ∶X ⊔ ∅→X)

where the associators and unitors are the obvious isomorphisms.

Proof. As for Proposition 3.7.5.

Proposition 3.7.7. (I) There exists a bifunctor

⊗k∶Vectk ×Vectk →Vectk

defined as follows. Let V and W be vector spaces, then V ⊗kW = V ×X/ ∼ where ∼ is the

closure to an equivalence of the relations: for all k ∈ k, v, v′ ∈ V and w,w′ ∈W

• (kv1, v2) ∼ k(v1, v2) ∼ (v1, kv2),

• (v1 + v′1, v2) ∼ (v1, v2) + (v′1, v2),

• (v1, v2 + v′2) ∼ (v1, v2) + (v1, v′2).

Given any v ∈ V and w ∈W , we use v ⊗k w to denote the equivalence class [(v,w)]. For

linear maps S∶V →X and T ∶W → Y we define

S ⊗k T ∶V ⊗kW →X ⊗k Y

(v ⊗k w)↦ S(v)⊗k T (w).

(II) There exists a monoidal category

(Vectk,⊗k,k, αkV,W,X , λkV , ρkV ).

where for all v ∈ V , w ∈ W , x ∈ X and k ∈ k, αkV,W,X((v ⊗k w) ⊗k x) = (v ⊗k (w ⊗k x)),

λkV (v ⊗ k) = kv and ρkV (k ⊗ v) = kv.

Proof. This is an example of a cocartesian monoidal category (see Proposition 3.7.4).

Remark 3.7.1. Using the relations in V ⊗kW , it is not hard to show that a basis for V ⊗kW

is given by elements of the form v ⊗k w where v ∈ V and w ∈W are basis elements.

59



3.7. Monoidal categories Chapter 3. Preliminaries

Definition 3.7.8. A monoidal subcategory of a monoidal category (C,⊗,1, α−,−,−, λ−, ρ−)

is a pentuple (D,⊗,1, α−,−,−, λ−, ρ−) such that

• D is a subcategory of C,

• ⊗ restricts to a closed composition on D,

• 1 ∈ D, and

• for all X,Y,Z ∈ Ob(D) we have αX,Y,Z , λX , ρX are in D.

Definition 3.7.9. Let (C,⊗,1, α−,−,−, λ−, ρ−) and (D,⊗′,1′, α′−,−,−, λ′−, ρ′−) be monoidal

categories. A monoidal functor is a functor F ∶C → D endowed with a morphism F0∶1′ →

F (1) in D and with a natural transformation

F2 = {F2(X,Y )∶F (X)⊗′ F (Y )→ F (X ⊗ Y )}
X,Y ∈Ob(C)

between the functors F ⊗′ F = ⊗′ ○ (F × F )∶C × C → D and F ○ ⊗∶C × C → D such that for

all X,Y,Z ∈ Ob(C) the following three diagrams commute.

(F (X)⊗′ F (Y ))⊗′ F (Z) F (X)⊗′ (F (Y )⊗′ F (Z))

F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗Z)

F ((X ⊗ Y )⊗Z) F (X ⊗ (Y ⊗Z))

F2(X,Y )⊗
′1F (Z)

α′
F (X),F (Y ),F (Z)

1F (X)⊗′F2(Y,Z)

F2(X⊗Y,Z) F2(X,Y ⊗Z)

F (αX,Y,Z)

1
′ ⊗′ F (X) F (X)

F (1)⊗′ F (X) F (1⊗X)

λ′
F (X)

F0⊗1F (X)

F2(1,X)

F (λX)

F (X)⊗′ 1 F (X)

F (X)⊗ F (1) F (X ⊗ 1)

1F (X)⊗F0

ρ′F(X)

F2(X,1)

F (ρ′X)

Definition 3.7.10. A strong monoidal functor is a monoidal functor F where F0 and all

maps in F2 are isomorphisms.
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Example 3.7.11. Let (C,⊗,1, α−,−,−, λ−, ρ−) be a monoidal category. Then the identity

functor 1C ∶C → C with (1C)0 = 11∶1 → 1 and (1C)2(X,Y ) = 1X⊗Y ∶X ⊗ Y → X ⊗ Y is a

strong monoidal functor.

Proposition 3.7.12. There is an associative composition of monoidal functors which

sends a pair F ∶C → D and G∶D → E to the monoidal functor G ○ F ∶C → E with

(G ○ F )0 = G(F0)G0 and (G ○ F )2(X,Y ) = G(F2(X,Y )) ○G2(F (X), F (Y ))

for all X,Y ∈ Ob(C).

Proof. Straightforward.

Definition 3.7.13. A braided monoidal category is a six-tuple

(C,⊗,1, α−,−,−, λ−, ρ−, β−,−)

consisting of a monoidal category (C,⊗,1, α−,−,−, λ−, ρ−) and a family of natural isomor-

phisms

βX,Y ∶X ⊗ Y → Y ⊗X

for each pair X,Y ∈ Ob(C) such that

βX,Y ⊗Z = (1Y ⊗ βX,Z) ∗C (βX,Y ⊗ 1Z)

βX⊗Y,Z = (βX,Z ⊗ 1Y ) ∗C (1X ⊗ βY,Z).

Naturality of β means that for any morphisms f ∶X → X ′ and g∶Y → Y ′ the following

diagram commutes.

X ⊗ Y X ′ ⊗ Y ′

Y ⊗X Y ′ ⊗X ′

f⊗g

βX,Y βX′,Y ′

g⊗f

Such a family of natural isomorphisms is called a braiding on (C,⊗,1, α−,−,−, λ−, ρ−).

When speaking about (braided) monoidal categories we may drop entries of the tuple

corresponding to the natural isomorphisms, or even refer to a braided monoidal category
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as just C where C is the notation of the underlying category. We note however, that there

will often be many (braided) monoidal categories with the same underlying category,

monoidal product and monoidal unit.

Proposition 3.7.14. There exists a braided monoidal category

(Top, ⊔ , ∅ , αTX,Y,Z , λTX , ρTX , βTX,Y ∶X ⊗ Y → Y ⊗X)

where (Top, ⊔ , ∅ , αTX,Y,Z , λTX , ρTX) is as in Proposition 3.7.6 and the βX,Y are the

obvious isomorphisms.

Proof. Again it is straightforward to explicitly check each of the identities.

Definition 3.7.15. A braided monoidal subcategory of a braided monoidal cate-

gory (C,⊗,1, α−,−,−, λ−, ρ−, β−,−) is a six tuple (D,⊗,1, α−,−,−, λ−, ρ−, β−,−) such that

(D,⊗,1, α−,−,−, λ−, ρ−) is a monoidal subcategory of (C,⊗,1, α−,−,−, λ−, ρ−) and for all

X,Y ∈ Ob(D), βX,Y ∈ D.

Definition 3.7.16. A braiding β on a monoidal category (C,⊗,1, α−,−,−, λ−, ρ−) is called

symmetric if for all pairs X,Y ∈ Ob(C) we have

βY,X ∗C βX,Y = 1X⊗Y ∶X ⊗ Y →X ⊗ Y.

A symmetric monoidal category is a braided monoidal category (C,⊗,1, α−,−,−, λ−, ρ−, β−,−)

such that β is symmetric.

Proposition 3.7.17. The braided monoidal category

(Top, ⊔ , ∅ , αTX,Y,Z , λTX , ρTX , βTX,Y ∶X ⊗ Y → Y ⊗X)

is a symmetric monoidal category.

Proof. It is easy to see that βTY,X ∗C βTX,Y = 1X⊗Y .

Definition 3.7.18. A braided monoidal functor between braided categories (C, β−,−) and
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(C′, β′−,−) is a monoidal functor F ∶C → C′ such that for all X,Y ∈ Ob(C),

F2(Y,X) ○ β′F (X),F (Y ) = F (βX,Y ) ○ F2(X,Y ).

Definition 3.7.19. A symmetric monoidal functor is a braided monoidal functor between

symmetric monoidal categories.
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Chapter 4

Motion groupoids and mapping

class groupoids

4.1 Introduction

The braid group has several different realisations, each with very different flavours – see

for example [BB05]. As discussed in Section 1.1, it has realisations as homotopy classes of

paths in the configuration space of points in the 2-disk, D2, and as monotonic embeddings

of unit intervals in D2 × [0,1]. It has further topological realisations as a motion group of

points in D2, and as a mapping class group of marked points in D2. Each construction

consists of concrete elements with a composition, and then some equivalence. We note that

none of the constructions are pairwise equivalent when considering the concrete elements.

Each construction lends itself to a possible generalisation, and these generalisations may

or may not lead to groups which are again isomorphic.

In Figure 4.1 we have some schematics illustrating some aspects of the bridges between

these different realisations of the braid group. At the top we have a series of schematics

representing boundary-fixing self-homeomorphisms of the disk, where the movement of

the disk is illustrated by the marking of a polar grid. The schematics represent evenly

spaced points along a path in an appropriate space of self-homeomorphisms of the disk.

At the bottom we have a schematic of two point particles exchanging places. Notice that

naively, this picture may represent an embedding of two unit intervals in the cylinder,

although it could also represent the path in the space of self-homeomorphisms illustrated
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by the top schematic, which moves the point particles as shown. The latter is roughly a

concrete morphism in the motion group. The schematic may also represent the path in

the configuration space of points in the disk which moves the particles as shown. And

the equivalence further complicates the picture. A concrete element of the mapping class

group is a single self-homeomorphism, as opposed to a path. A map from the motion

group to the mapping class group can be obtained by taking the endpoint of a path. For

braids it is known that all these pictures are equivalent [BB05]. And for loop braid groups

we have analogous equivalences between the different settings [Dam17].

Our objective here is to generalise the mathematical definitions of motion groups and

mapping class groups away from braid groups: to different manifolds, to subsets which are

not point like (loop or string excitations in a 3-ball, for example) and to evolutions that

do not necessarily start and end in the same configuration. To allow for evolutions which

do not start and end in the same configuration, we use the language of groupoids.

One long term aim is to understand if the realisation of braids as both isomorphisms in

the tangle category (discussed in Section 1.1.4) and as motions, lifts to a more general

connection between isomorphisms in embedded cobordism categories and the generalised

motions discussed in this paper. Another is the connection between generalised motions

and configuration spaces.

Motion groups of a manifold and submanifold pair were first rigorously studied by Dahm

as a way to generalise braid groups [Dah36], and subsequently developed by Goldsmith

[Gol72]. Mapping class groups of a manifold and submanifold pair similarly have origins in

the study of braid groups [Bir16]. As already discussed, the braid group can be equivalently

defined as the mapping class group or as the motion group of finite sets of points in the 2-

disk [Bir16; Gol81], and the loop braid group can be obtained as the mapping class group

or as the motion group of unlinked, unknotted loops in the 3-disk [BWC+07; Gol81;

Dam17]. For further examples of the study of other motion groups in literature, see

[Bul+19; DK19].

Here we construct, for a manifold M , its motion groupoid MotM , and its mapping class

groupoid MCGM . The object set of both is the power set of M . Looking at the automor-

phism group of a particular object in each case gives back the corresponding group. We
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then study the relationship between our two constructions. In particular we construct a

functor

F∶MotM →MCGM

and give conditions for it to be an isomorphism of groupoids.

In this chapter we do all constructions in the topological category, following the motion

group construction of e.g [Gol81]. We note that embedded cobordism categories are com-

monly constructed in the smooth setting, although configuration spaces are a topological

construction, and also used to model worldlines of particles, as discussed above. Our aim

is precisely to investigate the implications of different choices of assumptions. We expect a

similar construction in the smooth category to be possible. For motion groups constructed

in the smooth category see [BWC+07; QW21]. For unknotted, unlinked loop particles in

3-dimensions and for point particles in 2-dimensions the smooth and topological settings

coincide [Wat72].

We will present some key examples to demonstrate the richness of our construction. For

example, the groupoid framework allows us to think about skeletons. Note that the exis-

tence of a homeomorphism between subspaces, or indeed a homeomorphism of the ambient

space sending one subspace to the other is not enough to ensure that the underlying sets

are connected by a morphism in the motion groupoid. Alternatively we can find subsets

which have isomorphic automorphism groups but which are not connected in the motion

groupoid.

We also give examples to demonstrate the utility of the functor F∶MotM → MCGM . In

particular we give examples for which the motion groupoid and mapping class groupoid

are not isomorphic. We show that the boundary fixing motion groupoid and mapping class

groupoid of Dn are isomorphic for all n ∈ N, and that for S1 the mapping class groupoid

and motion groupoid are not isomorphic.

One of our objectives is to add a monoidal structure to the motion groupoid developed here.

This will be addressed in a separate work. We intend to use this to prove a presentation for

a full subcategory of the motion groupoid of points and unknotted, unlinked loops in the

3-disk, which is conjectured in Section 4.3.8. We also plan, in a future work, to address the

relationship of the motion groupoid with isomorphisms in embedded cobordism categories.

66



Chapter 4. Motion groupoids 4.1. Introduction

Figure 4.1: Top: Series of boundary-fixing self-homeomorphisms of the disk revealed by
a marked polar grid. Bottom: We add a couple of marked points on the disk and watch
them braid-exchange.
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4.1.1 Chapter overview

In Section 4.2 we give the construction of a groupoid of self-homeomorphisms HomeoM cor-

responding to a manifold M , with object class the power set P(M) (see Definition 4.2.4).

This is a natural first step in our construction.

In Section 4.3 the main theorem is Theorem 4.3.37, the construction of the motion groupoid

MotM of a manifoldM , whose object class is again the power set P(M). We start by defin-

ing two magmoids of motions in M , which are paths in a space of self-homeomorphisms.

We first quotient both magmoids by a congruence using path-homotopy, and show we

obtain the same groupoid. We then quotient again by a normal subgroupoid of stationary

motions, to obtain MotM . In Theorem 4.3.47, we consider a version of Theorem 4.3.37

where motions fix a distinguished subset ofM , pointwise. This generalisation is important

for us to explain the relationship of motion groupoids with braid groups and loop braid

groups. Picking a single set in P(M) and looking at the group of automorphisms we get

back the motion group constructed by Dahm [Dah36] and developed by Goldsmith [Gol72].

We also have Theorem 4.3.18 which says that motions are equivalent to homeomorphisms

fromM×[0,1] toM×[0,1] subject to some conditions. In Section 4.3.8 we have examples.

In Section 4.4 we discuss an alternative choice of congruence on the aforementioned

groupoid of motions up to path-homotopy. The main result is Theorem 4.4.6 which says

that this congruence leads again to the motion groupoid.

In Section 4.5 we construct the mapping class groupoid of a manifold M (Theorem 4.5.4).

We obtain this as a quotient of the groupoid HomeoM . Theorem 4.5.7 is a subset-fixing

version. The automorphism group of an object in this category is the mapping class group

of a pair, as described in [Dam17].

In Section 4.6 we construct a functor from the motion groupoid of a manifold to its

mapping class groupoid (Theorem 4.6.12). We show that the restriction of this functor

to automorphism groups is part of the long exact sequence of homotopy groups, following

the ideas used in the group case by [Gol81]. This allows us to give conditions on the

space of self-homeomorphisms of M under which we obtain an isomorphism between the

motion groupoid of a manifold and its mapping class groupoid (Theorem 4.6.12). In

Theorem 4.6.13 we have version relative to some distinguished subset. In Section 4.6.3 we
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give some examples demonstrating the use of the functor from Theorem 4.6.12.
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Glossary

Top The category of topological spaces and continuous maps.
Set The category of sets and functions between sets.
τ coXY The compact-open topology on the set Top(X,Y ).
PX(x,x′) The subset of Top(I,X) of paths from x to x′.
p∼ Indicates paths related by path-equivalence, i.e. homotopy relative to

the end-points, see Definition 3.3.5.
[γ]p Equivalence class of a paths up to path-equivalence, see Definition 3.3.5.
π(X) The fundamental groupoid of X.
π(X,A) The fundamental groupoid of X with respect to a subset A ⊂ X of

basepoints.

Toph(M,M) The submonoid of Top(M,M) containing homeomorphisms.

TOPh(M,M) The set Toph(M,M) equipped with subspace topology from τ coMM .

HomeoAM Groupoid with PM as objects and triples (f,N,N ′) with f a self-
homeomorphism fixing A pointwise, N ⊂ M a subset and f(N) = N ′
as morphisms, see Definition 4.2.4.

fA∶N ↷ N ′ Notation for morphisms in HomeoAM .

PremotM Set of all pre-motions in M , i.e. f ∈ Top(I,Toph(M,M)) such that
f0 = idM , see Definition 4.3.1 .

IdM Pre-motion in M which is the path ft = idM for all t.
f ∶N À N ′ A motion from N to N ′ in the specified manifold, f is a pre-motion and

f1(N) = N ′.
MtM(N,N ′) The set of all motions from N to N ′ in M .
MtM The set of all motions in M .

MtM/
p∼ Magmoid of motions up to path equivalence with ∗ or ⋅ composition, see

Corollary 4.3.29.
m∼ Indicates motions related by motion-equivalence, see Proposition 4.3.36.
[f ∶N À N ′]m Equivalence class of a motion f ∶N À N ′ up to motion-equivalence, see

Proposition 4.3.36.

fA∶N À N ′ A motion from N to N ′ fixing a distinguished subset A of the ambient
manifold.

MotAM Groupoid with subsets of M as objects and motion-equivalence classes
of A-fixing motions as morphisms, see Theorems 4.3.37 and 4.3.47.

rp∼ Indicates motions related by relative path-equivalence, see Definition
4.4.1.

[f ∶N À N ′]rp Equivalence class of a motion f ∶N À N ′ up to motion-equivalence, see
Lemma 4.4.2.

i∼ Indicates self-homeomorphisms related by isotopy, see Definition 4.5.1.
[f∶N ↷ N ′]i Equivalence class of a self-homeomorphism f∶N ↷ N ′ up to isotopy, see

Lemma 4.5.2.

MCGA
M Groupoid with subsets of M as objects and isotopy equivalence classes

of A-fixing self-homeomorphisms as morphisms, see Theorems 4.5.4 and
4.5.7.

I The space [0,1] ⊂ R with the subset topology.
D2 The 2-disk {x ∈ C∣ ∣x∣ ≤ 1} ⊂ C with the subset topology.
S1 The circle {x ∈ C∣ ∣x∣ = 1} ⊂ C with the subset topology.
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4.2 Space of self-homeomorphisms of a space TOPh
(X,X)

For any space X then Top(X,X) is a monoid, with identity the identity map. The subset

of maps which are set bijections is a submonoid. Let Toph be the subcategory of Top

with the same objects as Top and morphisms which are homeomorphisms. (Note that the

indicated subset is in fact closed.) Then Toph(X,X) is the group of homeomorphisms

f∶X → X. Denote by TOPh(X,X) the subspace of TOP(X,X) with underlying set

Toph(X,X).

In Section 4.3 we will be interested in formalising how certain paths in TOPh(M,M),

where M is a manifold, induce ‘motions’ of subsets in M . As discussed in Section 4.1, one

aim of this work is to establish a general relationship between motion groupoids and iso-

morphisms in embedded cobordism categories. For this we need to have a correspondence

between paths in TOPh(M,M) and homeomorphisms ofM ×I, which exists ifM satisfies

the conditions of the product-hom adjunction (Theorem 3.5.16), and TOPh(M,M) is a

topological group (this is proved in Theorem 4.3.18).

Here we begin by giving the precise conditions necessary such that, for a space X,

TOPh(X,X) a topological group. Then in Section 4.2.1 we restrict to the case X =M is a

manifold and organise the elements of Toph(M,M) into a groupoid HomeoM . In general

this category is too large to be an interesting object of study itself but it is a natural first

step in the construction that follows.

We have the following theorem giving conditions under which TOPh(X,X) becomes a

topological group. Notice that in this case we also have that that X satisfies the conditions

of Theorem 3.5.16, the product-hom adjunction.

Theorem 4.2.1. [Are46, Thm. 4] If X is a locally connected, locally compact Hausdorff

space then TOPh(X,X), the group of self-homeomorphisms of X with the subspace topol-

ogy from τ coXX , is a topological group. (This means the composition (f,g) ↦ f ○ g and the

map f↦ f−1 are both continuous.)

Proof. See Section A.0.1.

71



4.2. Space of self-homeomorphisms TOPh(X,X) Chapter 4. Motion groupoids

Lemma 4.2.2. Let X be a space and A ⊂ X a subset and let TophA(X,X) denote the

subset of Toph(X,X) of homeomorphisms which fix A pointwise. Then TophA(X,X) is a

subgroup of Toph(X,X).

Proof. For all a ∈ A, we have idX(a) = a so idX ∈ TophA(X,X). Let f,g ∈ TophA(X,X)

then for all a ∈ A, f ○ g(a) = f(a) = a and f−1(a) = a.

4.2.1 Action groupoid HomeoM of the action of self-homeomorphisms on

subsets

In this thesis, manifold means a Hausdorff topological manifold, which in particular is

locally compact and locally connected.

Let M be a manifold possibly with boundary. Then we have that TOPh(M,M) is a

topological group and we can use the product-hom adjunction. Here we organise the

elements of Toph(M,M) into a groupoid HomeoM , constructed as an action groupoid.

Lemma 4.2.3. Let M be a manifold and A ⊆M a subset. There is a (left) group action

σA∶TophA(M,M) ×PM → PM

(f,N)↦ f(N).

Proof. For any subset N ⊆ M , idM(N) = N and for any f,g ∈ TophA(M,M), f(g(N)) =

(f ○ g)(N).

Definition 4.2.4. Let M be a manifold and A a subset. By Lemma 3.1.30 there is an

action groupoid, which we denote

HomeoAM = PM//σA TophA(M,M).

Explicitly the objects are PM and the morphisms are triples (f,N, f(N)) where

• f is a homeomorphism M →M ,

• f(N) = N ′,

• f fixes A pointwise.
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We will denote triples (f,N, f(N)) ∈ HomeoAM(N,N ′) as fA∶N ↷ N ′. In this notation the

identity at each object N is idM ∶N ↷ N , where idM denotes the identity homeomorphism,

and given a morphism fA∶N ↷ N ′ the inverse is the morphism f−1A∶N ′ ↷ N .

We will use just HomeoM to denote Homeo∅M , so morphism sets in HomeoM are of the

form HomeoM(N,N ′) and we denote morphisms as f∶N ↷ N ′.

Where convenient we will also use HomeoAM(N,N ′) to denote the set obtained by pro-

jecting to the first element of the triple. Then we have Toph(M,M) = HomeoM(∅,∅) =

HomeoM(M,M) and every HomeoAM(N,N ′) ⊆ Toph(M,M). Notice each f ∈ Toph(M,M)

will belong to many such HomeoAM(N,N ′).

Lemma 4.2.5. LetM be a manifold and A ⊆M a fixed subset. For any subsets N,N ′ ⊆M

we have

HomeoAM(N,N ′) ≅ HomeoAM(M ∖N,M ∖N ′).

Proof. Since any fA∶N ↷ N ′ is a bijection, f(N) = N ′ iff f(M ∖N) =M ∖N ′.

Lemma 4.2.6. Let M be a manifold and A ⊆M a subset. Each HomeoAM(N,N) becomes

a topological subgroup of TOPh(M,M).

Proof. Suppose we have self-homeomorphisms fA∶N ↷ N and gA∶N ↷ N , then f ○ g(N) =

f(N) = N and for all a ∈ A, f ○ g(a) = f(a) = a so f ○ gA∶N ↷ N is in HomeoAM(N,N).

Similarly f−1A∶N ↷ N is in HomeoAM(N,N). Note that a subgroup of a topological group

is itself a topological group with the induced topology.

Remark 4.2.1. There are various ways in which we could equip the subsets of M with

extra structure. For example we could let N and N ′ be submanifolds of M equipped with

an orientation and then consider homeomorphisms which preserve these orientations.

4.3 Motion groupoid MotAM

In this section we construct the motion groupoid associated to a manifold.

The core topological ideas used in this section are present in [Gol81], and first appeared

in [Dah36] (see also [Gol72]). Here Goldsmith constructs motion groups associated to a
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pair of a manifold and a subset.

We proceed by first defining pre-motions in a manifold M , and giving two choices of

composition. At this point there are no ‘objects’, one choice of composition gives a magma,

the other a group. We obtain motions by considering an action of pre-motions on PM .

The two compositions on motions give two magmoids, one of which can be given a groupoid

structure. Under a congruence using path homotopy these magmoids become the same

groupoid. This groupoid has, in general, uncountable morphism sets, and thus we add a

further equivalence. By quotienting by the normal subgroupoid of set-stationary motions,

we obtain the motion groupoid MotM (Theorem 4.3.37). The object set is the power set

PM and the morphisms are equivalence classes of motions. Looking at the automorphism

group at some N ⊆M gives back the motion group for the pair (M,N) as in [Gol81].

To make the notation more manageable we only give the full details of the proofs when

working in HomeoM . In Section 4.3.7 we also construct a version using HomeoAM , i.e fixing

a distinguished choice of subset A ⊆M . This leads to the motion groupoid MotAM .

In Section 4.3.8 we have some examples which frame some of the questions that our

construction allows us to ask. For example we can think about skeletons of our motion

groupoids, or equivalently which subsets of a manifold M are connected in the motion

groupoid. Alternatively we could look for subsets which are not connected by a morphism

in the motion groupoid, but for which we do have isomorphic automorphism groups.

4.3.1 Pre-motions: paths in Top(I,Toph(M,M))

Here we define pre-motions and introduce two compositions.

Definition 4.3.1. Fix a manifold M . A pre-motion in M is a path in HomeoM(∅,∅) =

Toph(M,M) starting at idM ; i.e. a map f ∈ Top(I,Toph(M,M)) with f0 = idM . We

define notation for the set of all pre-motions in M ,

PremotM = {f ∈ Top(I,Toph(M,M)) ∣ f0 = idM}.

Example 4.3.2. For any manifold M the path ft = idM for all t, is a pre-motion. We

will denote this pre-motion IdM .

74



Chapter 4. Motion groupoids 4.3. Motion groupoid MotAM

Example 4.3.3. For M = S1 (the unit circle) we may parameterise by θ ∈ R/2π in the

usual way. Consider the functions τϕ ∶ S1 → S1 (ϕ ∈ R) given by θ ↦ θ + ϕ, and note

that these are homeomorphisms. Then consider the path ft = τtπ (‘half-twist’). This is a

pre-motion.

Lemma 4.3.4. Let M be a manifold. For any pre-motion f in M , then (f−1)t = f−1t is a

pre-motion.

Proof. By Theorem 4.2.1 we have that Toph(M,M) is a topological group, so the map

g ∈ Toph(M,M) ↦ g−1 ∈ Toph(M,M) is continuous. It follows that the composition

t↦ ft ↦ f−1t is continuous. Notice also that (f−1)0 = id−1M = idM .

Composition of pre-motions

The usual non-associative ‘stack+shrink’ composition of paths in Top(I,X) (see (3.1)) is

a partial composition, precisely gf is a path if the end of the path f is the start of the path

g. Now suppose X = TOP(Y,Y ) for some space Y and f, g ∈ Top(I,TOP(Y,Y )). We can

use the function composition in TOP(Y,Y ) to construct paths g0 ○ ft and gt ○ f1 which

share an endpoint, and thus we can use the usual path composition on these modified

paths.

Proposition 4.3.5. Let Y be a space. There exists a composition

∗∶Top(I,TOP(Y,Y )) ×Top(I,TOP(Y,Y ))→ Top(I,TOP(Y,Y ))

(f, g)↦ g ∗ f

where

(g ∗ f)t =
⎧⎪⎪⎨⎪⎪⎩

g0 ○ f2t 0 ≤ t ≤ 1/2,
g2(t−1/2) ○ f1 1/2 ≤ t ≤ 1.

(4.1)

Proof. We check that for any f, g ∈ Top(I,TOP(Y,Y )), g ∗ f ∈ Top(I,TOP(Y,Y )).

For any g ∈ TOP(Y,Y ) the map g ○ −∶TOP(Y,Y ) → TOP(Y,Y ), f ↦ g ○ f is continuous

as for a subasis open set BY Y (K,U) (see Definition 3.4.3) with K ⊆ Y compact and U ⊆ Y

open we have g ○ f ∈ BY Y (K,U) ⇐⇒ g(f(K)) ⊆ U ⇐⇒ f ∈ BY Y (K,g−1(U)) which is

open.
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Similarly for any g ∈ TOP(Y,Y ) the map − ○ g∶TOP(Y,Y ) → TOP(Y,Y ), f ↦ f ○ g is

continuous as for a subbasis open set BY Y (K,U) with K ⊆ Y compact and U ⊆ Y open

we have f ○ g ∈ BY Y (K,U) ⇐⇒ f(g(K)) ⊆ U ⇐⇒ f ∈ BY Y (g(K), U) which is open.

We also have that both functions agree at t = 1/2, hence Equation (4.1) defines a continuous

map.

Proposition 4.3.6. Let M be a manifold. There exists a composition

∗∶PremotM × PremotM → PremotM

(f, g)↦ g ∗ f

where

(g ∗ f)t =
⎧⎪⎪⎨⎪⎪⎩

f2t 0 ≤ t ≤ 1/2,
g2(t−1/2) ○ f1 1/2 ≤ t ≤ 1.

(4.2)

Proof. This is the restriction of the ∗ function of Proposition 4.3.5 to PremotM so we

need only to check that g ∗ f ∈ PremotM . We have (g ∗ f)0 = f0 = idM and for all t ∈ I,

(g ∗ f)t is a homeomorphism as it is the composition of two homeomorphisms.

Remark 4.3.1. Notice that this means there is a magma (PremotM ,∗).

Given a manifold M , we can also define another composition of paths in PremotM which

relies on the fact TOP(M,M) is a topological group.

Lemma 4.3.7. Let M be a manifold. There is an associative composition

⋅ ∶PremotM × PremotM → PremotM

(f, g)↦ g ⋅ f

where (g ⋅ f)t = gt ○ ft.
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Proof. We first check that g ⋅ f is a path. This can be seen by rewriting as

I → TOPh(M,M) ×TOPh(M,M)→ TOPh(M,M)

t↦ (ft, gt) ↦ gt ○ ft.

The map into the product is continuous because it is continuous on each projection and

the second map is continuous because TOPh(M,M) is a topological group by Theorem

4.2.1. Notice also that (g ⋅ f)0 = g0 ○ f0 = idM , so we have that g ⋅ f is a pre-motion. As in

Set, composition of functions is associative and thus ⋅ is associative.

Remark 4.3.2. There is a group (PremotM , ⋅) whose identity is IdM and the inverse of

f ∈ PremotM is f−1 as defined in Lemma 4.3.4.

Lemma 4.3.8. Let M be a manifold and f, g ∈ PremotM . Then g ∗ f p∼ g ⋅ f .

Before the proof, let us fix some conventions. Pre-motions are paths I → TOPh(M,M)

and then homotopies of paths are functions H ∶ I × I → TOPh(M,M). We will always

think of the first copy of I in a homotopy as the one parameterising the pre-motion and

will continue to use the parameter t. For the second copy of I which parameterises the

homotopy we will use s.

Proof. The following function is a suitable path homotopy to prove the path-equivalence

H(t, s) =
⎧⎪⎪⎨⎪⎪⎩

gts ○ f2t(1−s)+ts 0 ≤ t ≤ 1
2 ,

g2(t−1/2)(1−s)+ts ○ f(1−s)+ts 1
2 ≤ t ≤ 1.

(4.3)

Notice H(t,0) = (g ∗ f)t, H(t,1) = (g ⋅ f)t and for all s ∈ I we have H(0, s) = g0 ○ f0 = idM

and H(1, s) = g1 ○ f1.

Remark 4.3.3. There are other choices of composition of pre-motion which assign paths g

and f to a path which is path-homotopic to g ∗ f and g ⋅ f . For example

(g ∗′ f)t =
⎧⎪⎪⎨⎪⎪⎩

g2t 0 ≤ t ≤ 1/2,
g1 ○ f2(t−1/2) 1/2 ≤ t ≤ 1.

We can also generate from any pre-motion f , a pre-motion f̄ which reverses the path.
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Proposition 4.3.9. Let M be a manifold. There exists a set map

¯∶PremotM → PremotM

f ↦ f̄

with

f̄t = f(1−t) ○ f−11 . (4.4)

Proof. The path f(1−t) is continuous as it is the composition of the two continuous maps

t ↦ 1 − t and t ↦ ft. By the same argument used in the proof Proposition 4.3.5, the

composition with f−11 is continuous and so f̄ is continuous. Also notice f̄0 = f1 ○ f−11 =

idM .

Remark 4.3.4. The operation f ↦ f̄ is an involution, namely ¯̄f = f .

Intuitively f̄ is obtained from f by first changing the direction of travel along the path and

then precomposing at each t with f−11 to force the reversed path to start at the identity.

Notice also that for a pre-motion f , f̄ ∗ f = f revf , with path composition as in (3.1) and

the reverse path as in Proposition 3.3.8. Thus we have already shown in the proof of

Proposition 3.3.8 that f̄ ∗ f p∼ IdM .

Proposition 4.3.10. Let f and g be pre-motions in a manifold. Then g ∗ f = f̄ ∗ ḡ.

Proof. This is immediate from the definitions.

4.3.2 Motions: the action of pre-motions on subsets

We may think of a magma action as a group action without the identity condition, then

(PremotM ,∗) acts on PM as (f,N) ↦ f1(N). We can then obtain a motion mag-

moid where morphisms and composition are defined analogously to the groupoid case

(Lemma 3.1.30). A motion is an element of this action magmoid.

Definition 4.3.11. Fix a manifoldM . A motion inM is a triple (f,N, f1(N)) consisting

of a pre-motion f ∈ PremotM (Definition 4.3.1), a subset N ⊆M and the image of N at

the endpoint of f , f1(N). (Note f1(N) = N ′ if and only if f1 ∈ HomeoM(N,N ′).)
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We will denote such a triple by f ∶N À N ′ where f1(N) = N ′, and say it is a motion from

N to N ′. For subsets N,N ′ ⊆M we define

MtM(N,N ′) = {(f,N, f1(N)) a motion in M ∣ f1(N) = N ′}.

For each N ⊆M and f ∈ PremotM the triple (f,N, f1(N)) is in exactly one MtM(N,N ′),

so

MtM = ⋃
N,N ′∈PM

MtM(N,N ′) ≅ PremotM ×PM,

where the union is over all pairs N,N ′ ⊆M .

As with HomeoM , where convenient we will also use MtM(N,N ′) to denote the set ob-

tained by projecting to the first element of the triple. Then each f ∈ PremotM will belong

to many MtM(N,N ′).

The bar operation generates from any motion from N to N ′, a motion from N ′ to N .

Proposition 4.3.12. Let M be a manifold. For any subsets N,N ′ ⊆M there is a set map

¯∶MtM(N,N ′)→MtM(N ′,N)

f ∶N À N ′ ↦ f̄ ∶N ′ À N

where f̄ is as in Equation (4.4).

Proof. Proposition 4.3.9 gives that f̄ is a pre-motion. Note that we have f̄1(N ′) = f0 ○

f−11 (N ′) = N , hence (f̄ ∶N ′ À N) ∈MtM(N ′,N).

Example 4.3.13. For a manifold M , a subset N ⊆ M and the pre-motion IdM as in

Example 4.3.2, IdM ∶N À N is a motion. We will call this the ‘trivial motion’ from N to

N . Note that the pre-motion IdM becomes a motion from N to N for any N , but not a

motion from N to N ′ unless N = N ′.

Example 4.3.14. The half-twist of S1 (see Example 4.3.3) becomes a motion in S1 from

N to τπ(N) for any N ⊆ S1.
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4.3.3 Motions as maps from M ×I, schematics and movie representations

In this section we give two further equivalent ways to define motions in a manifold M ,

in terms of certain maps from M × I. Equivalence Theorem 4.3.18 is significant because

it indicates that we can connect to the cobordism picture of embeddings in M × I, as

discussed in Section 1.1.4. (Note that the equivalences are still different so this does not

immediately imply a functor between the two settings). The various definitions of motions

lead us to some useful schematic representations, so we also discuss these here.

We begin by representing the spaceTOPh(M,M), and elements of Top(I,TOPh(M,M))

schematically for arbitrary M . Figure 4.2 gives, schematically, two examples of motions

in M . Here TOPh(M,M) is represented as two disconnected regions of the plane, so

the various HomeoM(N,N ′)s are possibly intersecting subregions. The blue path (a) rep-

resents a motion from N to N . Notice this is a path starting and ending in the same

shaded region of HomeoM(N,N). This is possible since HomeoM(N,N) must contain the

identity. (Although HomeoM(N,N) may also have path connected components which do

not contain the identity, as pictured.) The red path (b) is a motion from N to N ′ where

N ≠ N ′.

Note a pre-motion corresponds to precisely one path in TOPh(M,M), although many

motions can have the same underlying pre-motion, thus to make such a diagram con-

vey a motion it is necessary to explicitly state the subsets in addition to the schematic

representation of the path.

We now give an interpretation of motions in a manifold M as a subset of Top(M × I,M).

Definition 4.3.15. Let M be a manifold and N,N ′ ⊂M . Let MtmovM (N,N ′) ⊂ Top(M ×

I,M) denote the subset of elements g ∈ Top(M × I,M) such that:

(I) for all t ∈ I, g∣M×{t} is a homeomorphism from M × {t} to M ,

(II) for all m ∈M , g(m,0) =m, and

(III) g(N × {1}) = N ′.

Lemma 4.3.16. Let M be a manifold and N,N ′ ⊂M . The restriction of the map

Φ∶Top(I,TOP(M,M))→ Top(M × I,M)
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TOPh(M,M)

TOPh(M,M)

idM (b)

(a)

HomeoM(N,N ′)

HomeoM(N,N)

Figure 4.2: A schematic representation of TOPh(M,M), for a fixed but arbitrary M , as
a not-necessarily connected, not-necessarily simply-connected subset of R2. In practice
we are only interested in the connected component of the point idM . The blue line (a) is
then a motion from N to N , and the red line (b) a motion from N to N ′.

Φ obtained by letting X = I and Y = Z =M in Lemma 3.5.16 yields a bijection

MtM(N,N ′)→MtmovM (N,N ′)

Proof. See Section A.0.2.

Let M be a manifold and f ∶N À N ′ a motion. Our next schematics are based on the

‘movie presentations’ of [CRS97]. A movie presentation of f consists of a number of

pictures where each picture corresponds to a chosen value of t and shows the image of

N ⊂M under ft, ordered by t ∈ I. We may also add ‘grid line’ subsets in M — these help

to show the homeomorphism at t of M . See the top schematic of Figure 4.1. Here the

relevant motion is of the from f ∶ ∅À ∅ and the grid lines are a polar grid at t = 0. Movie

presentations are used in [CRS97] for schematics representing the images of isotopies at

various t ∈ I, Lemma 4.3.16 gives that motions are precisely isotopies.

Next we give our second interpretation of motions in a manifoldM as a subset ofToph(M×

I,M × I).
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Definition 4.3.17. LetM be a manifold and N,N ′ ⊂M . Let MthomM (N,N ′) ⊂ Toph(M ×

I,M × I) denote the subset of homeomorphisms g ∈ Toph(M × I,M × I) such that

(I) g(m,0) = (m,0) for all m ∈M ,

(II) g(M × {t}) =M × {t} for all t ∈ I, and

(III) g(N × {1}) = N ′ × {1}.

Theorem 4.3.18. Let M be a manifold and N,N ′ ⊂M . There is a bijection

Θ∶MtM(N,N ′) → MthomM (N,N ′),

f ↦ ((m, t)↦ (ft(m), t)).

Proof. See Section A.0.2.

Definition 4.3.19. [BZH13, Def.1.2] Two embeddings f0, f1∶X → Y are ambient isotopic

if there exists an isotopy

H ∶Y × I→ Y × I, H(y, t) = (ht(y), t),

with f1 = h1 ○ f0 and h0 = idY .

Remark 4.3.5. From Theorem 4.3.18 it is straightforward to see that MtM(N,N ′) is non-

empty if and only if N and N ′ are the images of ambient isotopic embeddings into M .

Suppose we have an element g ∈ MthomM (N,N ′), there is a map g′∶M → M defined by

g′(m) = p0 ○ g(m,1) where p0 is the projection to the first coordinate. Then we have

embeddings ι∶N → M , the inclusion, and g′ ○ ι∶N → M . Definition 4.3.17 says precisely

that there is an ambient isotopy between the inclusion ι and g′ ○ ι . An ambient isotopy

in M between embeddings f, g∶N →M , is an element of MthomM (f(N), g(N)).

We now introduce ‘flare schematics’. These are to be understood as follows. A flare

schematic represents the image of a monotonic homeomorphism g∶M × I → M × I with

g(m,0) = (m,0) for all m ∈ M . By Theorem 4.3.18 this is a schematic for a pre-motion,

and hence a motion for some appropriate choice of N,N ′ ⊂M . In addition to the relevant

subset N ⊂M , we also mark chosen subsets of M whose images under g reveal the image
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↦

Figure 4.3: Flare schematic for the self-homeomorphism idI×I. This is also the image under
Θ of the constant path in IdI ∈ TOPh(I, I) starting at idI.

↦

Figure 4.4: Flare line schematic for a non-identity ‘y-monotonic’ self-homeomorphism of
I × I. This homeomorphism restricts to the identity on the south, east and west but not
the north part of the boundary. It is the image under Θ of a path in TOPh(I, I) starting
at idI (mapped to the southern edge) but not ending at idI.

of M as t ∈ I increases.

Our first examples are Figures 4.3 and 4.4. In both figures the left square is just a reference

image of I×I. The ambient space I is oriented horizontally left to right. We choose marked

points inM , in this case we have discrete points along the bottom boundary of the square.

We mark the same subset of M at all t ∈ I. The right hand figures represent the image

of a homeomorphism g∶ I × I → I × I, in Figure 4.3 this is the identity morphism idI×I and

in Figure 4.4 we have a non-identity homeomorphism. We also see the image of these

marked points under the homeomorphisms. The effect at each t ∈ I is seen ascending up

the page. We call the resultant vertical indicator lines ‘flares’. (The horizontal lines mark

out snapshots of I as we progress along the path and so are merely a guide to the eye.)

In Figure 4.5 we have two more flare schematics corresponding to different motions in

I. Here we have omitted the reference image of I × I, and only show the image of the
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N

N’

N

N

Figure 4.5: Schematic for motions (a) from N to N ′ and (b) from N to N in case M = I,
where N and N ′ are intervals in I and the grey shading represents the image of N at each
t ∈ I progressing up the figure.

homeomorphism. These schematics represent motions from various intervals, so we mark

these intervals in addition to the flares.

Figures 4.6, 4.7, 4.8 and 4.9 show paths of self-homeomorphisms of the circle M = S1,

realised as homeomorphisms g∶M × I→M × I. Again we include a reference figure on the

left in each case. We put a marker set of eight points in S1. The reference picture shows

S1 × I with the product of each of the eight points with I marked. We have drawn − × I

radially, thus marked points become radial lines. The ‘horizontal’ lines we put in the I

case merely to mark the passage of the t variable here become concentric circles.

We turn now to the paths themselves. The paths represented by Figures 4.7 and 4.6

both start at a different self-homeomorphism to the one in which they begin. The paths

represented by Figures 4.8 and 4.9 instead both end at the same self-homeomorphism to

the one in which they begin. The path in Fig.4.8 is contractible to the constant path. The

path in Fig.4.9 is not.

We can also use our flare schematics to add some intuition to the construction f̄ . Notice

that if we turn a flare schematic upside down (respectively inside-out in the S1 case) it is

not a flare schematic of a motion, because f(1−t) is not the identity at t = 0; but the initial

f−11 in f̄ ‘fixes’ this.
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↦

Figure 4.6: Illustration of a path of self-homeomorphisms of the circle M = S1, realised as
a homeomorphism M × I→M × I. The circle is drawn together with eight points upon it,
marked to reveal the space ‘moving’ under the path of self-homeomorphisms. In this case
the − × I is drawn radially, outside-to-inside, rather than bottom-to-top on the page (so
the drawing scale changes with radial distance; while the angular coordinate does not).
The path in Toph(S1, S1) illustrated here does not end at the same homeomorphism in
which it begins.

↦

Figure 4.7: The path in Toph(S1, S1) illustrated here does not end at the same homeo-
morphism at which it begins.

↦

Figure 4.8: Illustration of a path of self-homeomorphisms of the circle M = S1, realised
as a homeomorphism M × I→M × I. This path ends at the same self-homeomorphism at
which it begins.

85



4.3. Motion groupoid MotAM Chapter 4. Motion groupoids

↦

Figure 4.9: Illustration of a path of self-homeomorphisms of the circleM = S1. Comparing
with Fig.4.8, both paths can be taken to start at IdI, and both finish at the same point.

4.3.4 Motion magmoids

The two compositions of pre-motions introduced in Section 4.3.2 become two distinct

motion compositions mirroring how group compositions become compositions in the cor-

responding action groupoids. This leads to two magmoids with the same objects and

morphisms.

Proposition 4.3.20. Let M be a manifold. Then

(I) for any subsets N,N ′,N ′′ ⊆M there exists a composition

∗∶MtM(N,N ′) ×MtM(N ′,N ′′)→MtM(N,N ′′)

(f ∶N À N ′, g ∶N ′ À N ′′)↦ (g ∶N ′ À N ′′) ∗ (f ∶N À N ′)

where (g ∶N ′ À N ′′)∗ (f ∶N À N ′) = g ∗f ∶N À N ′′ with g ∗f as defined in Equation (4.2).

(II) The triple

Mt∗M = (PM,Mt∗M(−,−),∗)

is a magmoid.

Proof. (I) From Proposition 4.3.6 we have that that g ∗ f is a pre-motion. We have also

that (g ∗ f)1(N) = g1 ○ f1(N) = g1(N ′) = N ′′, hence g ∗ f ∶N À N ′′ ∈MtM(N,N ′).
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(II) This follows from (I).

See Figure 4.10 for an example of composition in our flare schematic representation. Fig-

ure 4.10(a) simply shows the flare-schematics for two pre-motions in a formal stack —

note that this is not itself a flare-schematic for a motion, since the indicative paths are not

matched at the join. To turn this picture into a flare schematic, we must trace the images

of the marked points along the bottom, throughout the whole schematic schematic. In

Fig.4.10(b) we consider what happens when we move to motions. Choosing a subset along

the bottom boundary and tracking it under the first pre-motion determines a choice of

subset in the second motion such that paths of self-homeomorphisms become composable

motions. Note that if we were to turn this into a flare schematic, the bold line representing

the image of the chosen subset at each t ∈ I will remain the same.

Proposition 4.3.21. The magmoid Mt∗M is reversible.

Proof. Proposition 4.3.12 gives a well defined map from MtM(N,N ′) to MtM(N ′,N) for

any N ′,N ∈M . This is a bijection by Remark 4.3.4.

Proposition 4.3.22. Let M be a manifold. There is a magmoid morphism

¯∶Mt∗M →Mt∗M

f ∶N À N ′ ↦ f̄ ∶N ′ À N

where f̄ is as in Equation (4.4).

Proof. The map ¯ is well defined by Proposition 4.3.12. That ¯ preserves composition

follows directly from Proposition 4.3.10.

Lemma 4.3.23. Let M be a manifold. Then (I) for any subsets N,N ′,N ′′ ⊆ M there

exists an associative composition

⋅ ∶MtM(N,N ′) ×MtM(N ′,N ′′)→MtM(N,N ′′)

(f ∶N À N ′, g ∶N ′ À N ′′)↦ (g ∶N ′ À N ′′) ⋅ (f ∶N À N ′)
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where (g ∶N ′ À N ′′) ⋅ (f ∶N À N ′) = g ⋅ f ∶N À N ′′ and (g ⋅ f)t = gt ○ ft.

(II) The triple

Mt ⋅M = (PM,MtM(−,−), ⋅)

is a magmoid.

Proof. (I) We have from 4.3.7 that g ⋅ f is a pre-motion, and that ⋅ is associative. Notice

that (g ⋅ f)1(N) = g1 ○ f1(N) = g1(N ′) = N ′′ so (g ⋅ f)1 ∈ HomeoM(N,N ′′). So we have

that g ⋅ f is a motion from N to N ′′.

(II) This follows from (I).

Lemma 4.3.24. Let M be a manifold. The pentuple

(PM,MtM(−,−), ⋅, IdM , (f−1)t = (ft)−1)

is a groupoid.

Note that we give only the relevant pre-motions in the identity and inverse in order to

shorten the notation. Explicitly, the magmoid Mt ˙M becomes a groupoid whose identity

at each object N ∈ Mt ˙M is IdM ∶N → N and for any morphism f ∶N À N ′, the inverse

morphism is f−1 ∶N ′ À N where (f−1)t = (ft)−1.

Proof. Lemma 4.3.23 proves the action of (PremotM , ⋅) on P(M) defined by (f,N) ↦

f1(N) preserves composition. We also have that for all N ⊆ M , IdM(N) = N . The

described groupoid is precisely the action groupoid P (M)//σ (PremotM , ⋅).

4.3.5 Path homotopy congruence on motion magmoids

Here we show that path-equivalence is a congruence on Mt∗M and that the corresponding

quotient magmoid is a groupoid. We then show the same equivalence is a congurence on

Mt ⋅M and that the quotient magmoid is precisely the groupoid obtained from Mt∗M .

Lemma 4.3.25. Let M be a manifold.

(I) For each pair N,N ′ ⊆M of subsets,
p∼ is an equivalence relation on MtM(N,N ′) (see
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Figure 4.10: Schematic for composition of motions. (a) formal stack of pictures of paths;
(b) formal stack of pictures of paths with a choice of subset in I that we track as t ∈ I
progresses.

Definition 3.3.5 for the definition of
p∼ ). In our notation this means

(f ∶N À N ′) ∼ (f ′∶N À N ′) if f
p∼ f ′.

(II) The equivalence relations (MtM(N,N ′),
p∼ ) for each pair N,N ′ ⊆M are a congruence

on Mt∗M .

Notation: We use [f ∶N À N ′]p for the path-equivalence class of f ∶N À N ′.

Proof. (I) We have that for any pair N,N ′, MtM(N,N ′) ⊆ Top(I,Top(M,M)), thus the

proof that path-homotopy is an equivalence relation on Top(I,Top(M,M)) (Proposi-

tion 3.3.6) is sufficient.

(II) Suppose we have pairs of equivalent motions (f ∶N À N ′) p∼ (f ′∶N À N ′) and

(g ∶N ′ À N ′′) p∼ (g′∶N ′ À N ′′). Then there exists a path homotopy, say Hf from f to

f ′ and a path homotopy, say Hg from g to g′. Notice that, since path homotopies fix the
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endpoints, for all s ∈ I we have Hf(1, s) = f1. Thus the map

H(t, s) =
⎧⎪⎪⎨⎪⎪⎩

Hf(2t, s) 0 ≤ t ≤ 1/2
Hg(2(t − 1/2), s) ○ f1 1/2 ≤ t ≤ 1

is a path homotopy g ∗ f to g′ ∗ f ′.

Notice that, since path homotopies fix the endpoints, for any motion f ∶N À N ′ and

path-equivalence f
p∼ f ′, f ′∶N À N ′ is a motion.

Lemma 4.3.26. Let M be a manifold. The pentuple

Mt∗M/
p∼ = (PM, MtM(N,N ′)/

p∼, ∗, [IdM ]p, [f]p ↦ [f̄]p)

is a groupoid.

Proof. We have proved in Lemma 4.3.8 that g ∗ f p∼ g ⋅ f , and by Lemma 4.3.24 ⋅ is as-

sociative and unital with unit IdM . This is sufficient to prove (C1) and (C2). Since we

are considering a different inverse to the inverse in the group (PremotM , ⋅), we prove this

directly.

(G3) Note that for any morphism [f ∶N À N ′]p, f̄ ∶N ′ À N is well defined by Proposi-

tion 4.3.12. For any morphism [f ∶N À N ′]p, the following function

Hinv(t, s) =
⎧⎪⎪⎨⎪⎪⎩

f2t(1−s) 0 ≤ t ≤ 1
2 ,

f(1−2(t−1/2))(1−s)
1
2 ≤ t ≤ 1

(4.5)

is a homotopy from f̄ ∗f to IdM . Observe that for each fixed s, the path Hf̄∗f(t, s) starts

at the identity, follows f until f(1−s), and then follows f(1−t) back to idM .

Remark 4.3.6. Note that Mt∗M/
p∼ is the action groupoid PM//σ ((PremotM ,∗)/

p∼) where

σ([f]p,N) = f1(N). The proof of Lemma 4.3.26 is essentially a proof that (PremotM ,∗)/
p∼

is a group.

Lemma 4.3.27. Let M be a manifold. The relations (MtM(N,N ′),
p∼) for each pair

N,N ′ ⊆M are a magmoid congruence on Mt ˙M .
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Proof. By Lemma 4.3.8 f ⋅g p∼ f ∗g for all pre-motions, hence that
p∼ is a congruence follows

from Lemma 4.3.25.

Lemma 4.3.28. Let M be a manifold. The quotient magmoids Mt∗M/
p∼ and Mt ˙M/

p∼ are

the same.

Proof. By construction the two categories have the same objects and morphisms. By

Lemma 4.3.8 the composition is the same up to path-equivalence.

Lemma 4.3.29. For a manifold M , then (I)

Mt ⋅M/
p∼ = (PM,MtM(N,N ′)/

p∼, ⋅, [IdM ]p, [f]p ↦ [f−1]p)

and

Mt∗M/
p∼ = (PM,MtM(N,N ′)/

p∼,∗, [IdM ]p, [f]p ↦ [f̄]p).

are groupoids and (II) they are the same groupoid.

We will now denote this groupoid by just MtM/
p∼.

Proof. (I) Lemmas 4.3.26 gives that Mt∗M/
p∼ is a groupoid. We have from Lemma 4.3.24

that Mt ⋅M is a groupoid, and by Proposition 3.2.4 the quotient is also a groupoid.

(II) Lemma 4.3.28 gives that the underlying magmoids are the same. By uniqueness of

inverses and identities, they are the same groupoid.

The previous lemma allows us to work with either of the compositions or inverses according

to which simplifies each proof.

Let M be a manifold and N,N ′ be subsets of M . Given two motions f, f ′∶N À N ′ such

that f1 ≠ f ′1, then their path-homotopy classes (which we recall are relative to end-points)

are different, so [f ∶N À N ′]p ≠ [f ′∶N À N ′]p. From this we can see that the groupoid

MtM/
p∼ typically has uncountable sets of morphisms.

In particular, let M = D2 and N ⊂ int(D2) be a finite set in the interior of D2. Fix an

x ∈ int(D2) ∖N . For any y ∈ int(D2) ∖N there is a motion fy ∶N À N with fy1 (x) = y

and fyt (N) = N for all t ∈ I (using homogeneity of smooth manifolds). Note that [fy ∶N À
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N]p ≠ [fy
′ ∶N À N]p if y ≠ y′, as fy1 (x) = y whereas fy

′
1 (x) = y′. There are uncountably

many choices of y, hence the set MtM/
p∼ (N,N) is uncountable.

Both the braid groups and the loop braid groups have presentations with a finite number

of generators, thus are not uncountable. In the next section we impose a further quotient

that will identify the motions fy and fy
′
.

4.3.6 The motion groupoid MotM : congruence induced by set-stationary

motions

Given an ambient space M , we are interested in how movements of a subset are induced

by movements of M . We aim to study these movements ‘combinatorially’, i.e. arranged

into countable/finitely-generated classes. Accordingly, by imposing path equivalence, we

have washed out some distinctions that do not affect the induced movement of subsets

(else our sets are certainly larger than combinatorial). However, for general subsets, so

far, we are still only allowing motions to be equivalent if their underlying paths share the

same end point, and these sets can still be very large. Dahm’s idea of ‘motion groups’

(partially) addresses this problem. Here we prove there is a lift of Dahm’s idea to the

groupoid setting.

We start by defining N -stationary motions, motions from N to N which leave N fixed

setwise. We then show that N -stationary motions lead to a normal subgroupoid in

MtM/
p∼ and hence induce a congruence. This leads to the motion groupoid MotM in

Theorem 4.3.37.

Definition 4.3.30. Let M be a manifold, and N ⊂ M a subset. A motion f ∶N À N in

M is said to be N -stationary if ft ∈HomeoM(N,N) for all t ∈ I. Define

SetStatNM = {f ∶N À N ∈MtM(N,N) ∣ ft ∈HomeoM(N,N) for all t ∈ I} .

Example 4.3.31. Let M = D2, the 2-disk and let N ⊂M be a finite set of points. Then

a motion f ∶N À N is N -stationary if and only if ft(x) = x for all x ∈ N and t ∈ I. More

generally this holds if N is a totally disconnected subspace of M , e.g. Q in R.

Example 4.3.32. Let M = D2, the 2-disk. Consider the pre-motions which are homeo-
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morphisms of D2 as shown in the top schematic of Figure 4.1. Now pick a subset N ⊂D2

which is any circle centred on the centre of the disk, i.e. the set of all points a fixed distance

from the centre using the metric induced from the complex plane. Then these pre-motions

become N -stationary motions from N to N .

Example 4.3.33. The schematic Figure 4.5(b) represents an N -stationary motion from

N to N in I.

Lemma 4.3.34. Let M be a manifold. For N,N ′ ⊂M let SetStatM(N,N) be the subset

of MtM/
p∼ (N,N) of those classes that intersect SetStatNM . Let SetStatM(N,N ′) = ∅ if

N ≠ N ′. There is a totally disconnected, normal subgroupoid of MtM/
p∼,

SetStatM = (PM, SetStatM(N,N ′), ∗, [IdM ]p, [f]p ↦ [f̄]p).

Note that

SetStatM(N,N ′) = {[f ∶N À N ′]p ∣ ∃ N -stationary f ′∶N À N ′ ∈ [f ∶N À N ′]p}.

Proof. First we will show that the tuple SetStatM is a subgroupoid.

For each N ⊂ M the identity [IdM ∶N À N]p is in SetStatM(N,N) as for all t ∈ I,

(IdM)t(N) = idM(N) = N .

For the existence of inverses observe that there is nothing to show if N ≠ N ′. For each

[x∶N À N]p ∈ SetStatM(N,N) with x∶N À N a N -stationary motion, the inverse [x̄∶N À

N]p is in SetStatM(N,N) since for all t ∈ I, x̄t(N) = x1−t ○ x−11 (N) = x1−t(N) = N .

Let [x∶N À N]p and [x′∶N À N]p be in SetStatM(N,N) with x∶N À N and x′∶N À N

N -stationary. For all t ∈ [0,1/2] we have that (x′∗x)t(N) = xt(N) = N and for t ∈ [1/2,1]

that (x′ ∗ x)t(N) = x′t ○ x1(N) = x′t(N) = N . Thus composition closes, and so SetStatM is

a groupoid.

Observe now that SetStatM is totally disconnected and wide by construction.

Finally, we have that SetStatM is normal as for any morphism [f ∶N À N ′]p ∈ MtM/
p∼

and for [x∶N ′ À N ′]p in SetStatM(N ′,N ′), with x∶N ′ À N ′, N ′-stationary, the following
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function

H(t, s) = f−1t(1−s)+s ○ xt ○ ft(1−s)+s

is a path homotopy from f−1 ⋅ x ⋅ f to the path f−11 ○ xt ○ f1, which is an N -stationary

motion.

Proposition 4.3.35. Let M be a manifold. Let (f ∶N À N ′) p∼ (g ∶N À N ′) be path-

equivalent motions in M . Then ḡ∗f ∶N → N is path-equivalent to an N -stationary motion.

Proof. We have MtM/
p∼ is a groupoid by Lemma 4.3.26, thus with unique inverses. Hence

[f ∶N À N ′]p = [g ∶N À N ′]p implies [f ∶N À N ′]−1p = [ḡ ∶N À N ′]p. This implies there is a

path-homotopy H from ḡ ∗ f to IdM , which is an N -stationary motion.

Proposition 4.3.36. For N,N ′ ⊂M , denote by
m∼ the relation

f ∶N À N ′
m∼ g ∶N À N ′ if g ∗ f ∈ SetStatM(N,N)

on MtM(N,N ′). This is an equivalence relation.

We call this motion-equivalence and denote by [f ∶N À N ′]m the motion-equivalence class

of f ∶N À N ′.

Proof. Lemma 4.3.34 gives that SetStatM is a normal subgroupoid of MtM/
p∼. Hence,

by Lemma 3.2.11, there is a congruence SetStatM on MtM/
p∼ consisting of equivalence

relations on MtM/
p∼ (N,N ′) given by

[f ∶N À N ′]p ∼ [g ∶N À N ′]p if [g ∗ f]p ∈ SetStatM(N,N).

By Proposition 4.3.35 motions which are path-equivalent are motion-equivalent, thus

(MtM(N,N ′)/
p∼)/SetStatM =MtM(N,N ′)/ m∼.

Therefore we have:

Theorem 4.3.37. Let M be a manifold. There is a groupoid

MotM = (MtM/
p∼)/SetStatM = (PM, MtM(N,N ′)/ m∼,∗, [IdM ]m, [f]m ↦ [f̄]m)
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where

(I) objects are subsets of M ;

(II) morphisms between subsets N,N ′ are motion-equivalence classes [f ∶N À N ′]m of

motions, explicitly

f ∶N À N ′
m∼ g ∶N À N ′ if ḡ ∗ f ∶N À N ∈ SetStatM(N,N);

(III) composition of morphisms is given by

[g ∶N ′ À N ′′]m ∗ [f ∶N À N ′]m = [g ∗ f ∶N À N ′′]m

where

(g ∗ f)t =
⎧⎪⎪⎨⎪⎪⎩

f2t 0 ≤ t ≤ 1/2,
g2(t−1/2) ○ f1 1/2 ≤ t ≤ 1;

(4.6)

(IV) the identity at each object N is the motion-equivalence class of IdM ∶N À N , where

(IdM)t(m) =m for all m ∈M ;

(V) the inverse for each morphism [f ∶N À N ′]m is the motion-equivalence class of

f̄ ∶N ′ À N where f̄t = f(1−t) ○ f−11 .

Remark 4.3.7. Using Lemma 4.3.29 we could also have written the composition in MotM

to be ⋅ and the inverse of a motion f as (ft)−1 = (f−1)t in Theorem 4.3.37.

Lemma 4.3.38. Let M and M ′ be manifolds such that there exists a homeomorphism

ψ∶M →M ′. Then there is a isomorphism of categories

Ψ∶MotM →MotM ′

defined as follows. On objects N ⊂ M , Ψ(N) = ψ(N). For a motion f ∶N À N ′ in M ,

let (ψ ○ f ○ ψ−1)t = ψ ○ ft ○ ψ−1. Then Ψ sends the equivalence class [f ∶N À N ′]m to the

equivalence class [ψ ○ f ○ ψ−1∶ψ(N)→ ψ(N ′)]m.

Proof. Notice (ψ ○ f ○ ψ−1)0 = idM ′ and (ψ ○ f ○ ψ−1)1(ψ(N)) = ψ ○ f1 ○ ψ−1(ψ(N)) =
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ψ ○ f1(N) = ψ(N ′).

We check Ψ is well defined. Suppose f ∶N À N ′ and f ′∶N À N ′ are equivalent motions

in M . So there is a path homotopy f̄ ′ ∗ f to a path say x such that x∶N À N is an

N -stationary motion, let us call this H. It is straightforward to check that the function

(ψ ○H ○ψ−1)(t, s) = ψ ○H(t, s) ○ψ−1 is a homotopy making Ψ(f ′) ∗Ψ(f) path-equivalent

to ψ ○ x ○ ψ−1 ∶ψ(N)À ψ(N) which is a ψ(N)-stationary motion.

We can define an inverse Ψ−1∶MotM ′ →MotM as follows. On objects N ⊂M ′, Ψ−1(N) =

ψ−1(N). Suppose we have a motion f ∶N À N ′ in M ′, then Ψ−1 sends the equivalence

class [f ∶N À N ′]m to the equivalence class [ψ−1 ○ f ○ ψ∶ψ−1(N)→ ψ−1(N ′)]m.

Corollary 4.3.39. Let M be a manifold and N,N ′ ⊂M subsets such that there exists a

homeomorphism f∶M →M with f(N) = N ′. Then there is a group isomorphism

MotM(N,N)
≅Ð→MotM(N ′,N ′).

Proof. Letting ψ = f in the previous theorem gives the isomorphism.

Lemma 4.3.40. Let M be a manifold. There is an involutive automorphism

Ω∶MotM →MotM

which sends an object N ⊂ M to its complement M ∖ N and which sends a morphism

[f ∶N À N ′]m to [f ∶M ∖N ÀM ∖N ′]m.

Proof. First notice that by Lemma 4.2.5, f1 ∈ HomeoM(M ∖N,M ∖N ′). We also need

to check this functor is well defined. Suppose f ∶N À N ′ and f ′∶N À N ′ are motion-

equivalent, so there is a path homotopy f ′ ∗f to a stationary motion. So then f ∶M ∖N À

M∖N ′ m∼ f ′∶M∖N ÀM∖N ′ using the same homotopy. It is clear that Ω is self inverse.

Example 4.3.41. Let M be a manifold, then MotM(M,M) is trivial. This is because for

any f ∈ PremotM , f ∶M À M is a motion, and it is M -stationary. By Lemma 4.3.40,

also MotM(∅,∅) is trivial.
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4.3.7 Pointwise A-fixing motions

So far we have avoided working with A-fixing homeomorphisms to avoid overloading the

notation and thus make the exposition clearer. Everything we have done so far could

have been done by working instead with paths in HomeoAM(∅,∅). We have the following

adjusted definitions.

Definition 4.3.42. Fix a manifold M and a subset A ⊆M . An A-fixing pre-motion in M

is a path in HomeoAM(∅,∅) = TOPh
A(M,M) starting at idM (recall f ∈ TOPh

A(M,M) is

a self-homeomorphism with ft(a) = a for all a ∈ A); i.e. a path f ∈ Top(I,TOPh
A(M,M))

with f0 = idM . We define notation for the set of all A-fixing pre-motions in M ,

PremotAM = {f ∈ Top(I,TophA(M,M)) ∣ f0 = idM}.

Definition 4.3.43. Let M be a manifold and A ⊆M a subset. An A-fixing motion in M

is a triple (fA,N, f1(N)) consisting of an A-fixing pre-motion fA ∈ PremotAM , a subset

N ⊆M and the image of N at the endpoint of fA, f1(N).

Notation: We will denote such a triple by fA∶N À N ′ where f1(N) = N ′, and say it is

an A-fixing motion from N to N ′. For subsets N,N ′ ⊆M we define

MtAM(N,N ′) = {(fA,N, f1(N)) a motion in M ∣ f1(N) = N ′}.

In practice we will mostly be interested in the case A = ∂M .

Example 4.3.44. All motions of I are ∂I-fixing motions.

Example 4.3.45. The half-twist motions described in Example 4.3.14 are not A-fixing

motions for any non-empty subset A ⊆ S1.

Example 4.3.46. Let M = D2 be the 2-disk. Consider the motions of the 2-disk repre-

sented schematically in Figure 4.1. These are ∂D2 fixing motions.

We have an analogous version of Theorem 4.3.37 working with A-fixing motions and con-

sidering equivalence as paths in TOPh
A(M,M).
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Theorem 4.3.47. Let M be a manifold and A ⊆M a subset. We obtain a category

MotAM = (PM, MtAM(N,N ′)/
m∼,∗, [IdM ]m, [fA]m ↦ [f̄A]m).

Explicitly we have that A-fixing motions fA∶N À N ′ and gA∶N À N ′ are equivalent if ḡ∗f

is path-equivalent to an A-fixing N -stationary motion as paths in HomeoAM(∅,∅).

Proof. Notice that if fA∶N À N ′, gA∶N ′ À N ′′ are A-fixing motions then f̄ , f−1, g ∗ f

and g ⋅ f are all A-fixing motions. All motions constructed in homotopies required for

the proof of Theorem 4.3.37 and associated lemmas are A-fixing if the input paths are

A-fixing. Thus all proofs work in exactly the same way for A-fixing motions.

Proposition 4.3.48. LetM andM ′ be manifolds such that there exists a homeomorphism

ψ∶M →M ′. Then there is a isomorphism of categories

Ψ∶MotAM →Mot
ψ(A)
M ′

defined as in Proposition 4.3.38.

Proof. We can use the same proof as in Proposition 4.3.38.

Corollary 4.3.49. Let M be a manifold and A ⊆ M subset. Let N,N ′ ⊆ M be subsets

such that there exists a homeomorphism f∶M → M with f(N) = N ′ and f(a) = a for all

a ∈ A. Then there is a group isomorphism

MotAM(N,N)
≅Ð→MotAM(N ′,N ′).

Proof. As for Corollary 4.3.39. Note that for any motion fA∶N À N , the path f ○ f ○ f

fixes A pointwise.

Lemma 4.3.50. Let M be a manifold. There is an involutive automorphism

Ω∶MotAM →MotAM

which sends an object N ⊆ M to it’s complement M ∖ N and which sends a morphism

[fA∶N À N ′]m to [fA∶M ∖N ÀM ∖N ′]m.
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Proof. This is the same as for Lemma 4.3.40.

Theorem 4.3.51. Let n be a positive integer. Consider M =D2 and A = ∂D2. Given any

finite subset K, with n elements, in the interior of D2, then Mot∂D
2

D2 (K,K) is isomorphic

to Bn, the braid group in n strands. In particular the image of the motion represented in

Figure 4.1 is an elementary braid on two strands.

Also if L is an unlink in the interior of D3 with n components then Mot∂D
3

D3 (L,L) is

isomorphic to the extended loop braid group.

Proof. This theorem is essentially in [Dah36] (Thm. II.1.2). A proof is contained in Re-

marks 4.6.2 and 4.6.3 in Section 4.6.3 below. Our argument makes use of the functor

from the motion groupoid to the mapping class groupoid that we construct in Theo-

rem 4.6.1.

Remark 4.3.8. There are several different realisations of the braid group [BB05; Dam17].

In the proof of the previous theorem we use the realisation of Bn as a mapping class

group. Let k1, . . . , kn be distinct elements of C. Let K = {k1, . . . , kn}. We can see Bn as

an isomorphic group of the fundamental group B′n of the configuration space:

Cn ∶= {(x1, . . . , xn) ∈ Cn ∣ i ≠ j Ô⇒ xi ≠ xi}/Sn,

based at [(k1, . . . , kn)].

An explicit isomorphism from Mot∂D
2

D2 (K,K) sends the class of a motion f ∶K ÀK to the

homotopy class of the closed path:

t ∈ [0,1]↦ [(ft(k1), . . . , ft(kn))] ∈ Cn.

In particular the equivalence class of any motion which moves two points as shown in the

bottom schematic of Figure 4.1 will be sent to the generating element of the braid group

on 2 strands.

It is straightforward to show this map is well defined, but harder to show injectivity and

surjectivity, cf. [BB05, Theorem 1].
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4.3.8 Examples

Here we will consider some examples which serve to illustrate some key aspects of the

richness of the construction.

By Lemma 4.3.48 we have that if M and M ′ are homeomorphic manifolds, MotM and

MotM ′ are isomorphic groupoids. Thus it is enough to consider one M for each homeo-

morphism class.

An interesting problem in each case is to give a characterisation of a skeleton. This is far

from straightforward, even if we restrict to objects that are themselves manifolds. Note

that subsets N,N ′ ⊂M being homeomorphic submanifolds is not a sufficient condition to

ensure an isomorphism connecting them in the motion groupoid. For example, let M = I2.

Let N ⊂ int(I2) be the circle of points a distance 1/4 from the point (1/2,1/2). Let L be

the point (1/2,1/2), and L′ the point (3/4,3/4). Then N ∪L and N ∪L′ are homeomorphic

but MotI3(N ∪ L,N ∪ L′) = ∅. Examples 4.3.52-4.3.55 below discuss which objects are

connected in the motion groupoids I and R.

We can think of the aforementioned characterisation of the skeleton as looking for ‘inner’

isomorphisms, objects which are connected by an isomorphism in the motion groupoid.

This allows us to compare these with ‘outer’ isomorphisms, by which we mean: for a

manifold M , which N and N ′ have a constructible group isomorphism χ∶MotM(N,N)→

MotM(N ′,N ′), but with MotM(N,N ′) empty? This is discussed Examples 4.3.57-4.3.62.

Observe that even in a skeleton most objects are undefinable so it is a good exercise to

restrict to a full subgroupoid of particular interest. Given a subset Q of the object class

PM of MotAM we write MotAM ∣Q for the corresponding full subgroupoid.

In Section 4.3.8 we give a conjecture for a presentation of the the full subgroupoid of

the motion groupoid of certain configurations of points and loops in I3. Here we see one

benefit of working with a motion groupoid, as opposed to the motion group: we can often

write a more simple presentation. Adding constraints on motions can make presentations

more complicated. We can see this phenomenon by looking at the example of the braids.

The pure braid group on n strands is a subset of the braid group on n strands but there

is a simpler presentation of the braid group than of the pure braid group.
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On MotI

Example 4.3.52. Suppose N ⊂ I ∖ {0,1} is a compact subset with a finite number of

connected components. So N is a union of points and closed intervals. We can assign a

word in {a, b} to N as follows: each point in N is represented by an a and each interval

by b, ordered in the obvious way using the natural ordering on I. Let N ′ ⊂ I ∖ {0,1} be

another compact subset with a finite number of connected components. It is possible to

construct even a piecewise linear motion from N to N ′ if the word assigned to N and N ′

is the same. And then ∣MotI(N,N ′)∣ = 1. Otherwise MotI(N,N ′) = ∅.

Note homeomorphisms send boundary points to boundary points and interior points to

interior points, so any continuous path of homeomorphisms I→ I fixes the boundary points.

So if we instead consider, for example, finite subsets A,B ⊆ I we have ∣MotI(A,B)∣ = 1

if and only if A ∩ {0,1} = B ∩ {0,1} and A and B have the same cardinality. Otherwise

MotI(A,B) = ∅.

Example 4.3.53. If we consider non-compact subsets we must also pay attention to the

embeddings. Suppose N = (1/4,1/2) ∪ (1/2,3/4) and N ′ = (1/4,3/8) ∪ (5/8,3/4), then

MotI(N,N ′) = ∅.

The automorphism group MotI(N,N) for N ⊂ I with a finite number of connected compo-

nents are always trivial. The following example shows this changes dramatically if more

complicated subsets of I are considered.

Example 4.3.54. Let M = I and N = I ∩Q, then Mot∂II (N,N) is uncountably infinite.

This will be shown in Example 4.5.9 and Remark 4.6.4.

On MotR

Example 4.3.55. Let M = R. There does not exist a motion f ∶Q À Z. This can

be seen by observing that there is no homeomorphism θ∶R → R sending Q to Z, since

homeomorphisms R→ R must map dense subsets to dense subsets.

Question: Let N ≠ N ′ be countable dense subsets of R. Then does this imply the

existence of a motion f ∶N À N ′ in R?
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Example 4.3.56. Let M = R. Then there is a group isomorphism ϕ∶ (Z,+) ≅Ð→MotR(Z,Z)

such that, for n ∈ (Z,+), ϕ(n) is the motion-equivalence class of the motion f ∶ZÀ Z such

that ft(x) = x + tn.

Relating automorphism groups

It may be useful to be able to obtain the automorphism group of an object in terms of the

automorphism group of another object. If objects are connected in the motion groupoid

then this is straightforward. Otherwise we may still be able to construct a canonical

‘outer’ isomorphism between automorphism groups, or we may be able to construct a

group homomorphism. The following examples investigate this in various cases.

Example 4.3.57. For any M , MotM(∅,∅) ≅ MotM(M,M) are trivial, each containing

only the motion-equivalence class of the motion with underlying pre-motion IdM . Also

MotM(∅,M) = ∅ unless M = ∅.

Example 4.3.57 is a special case of the following example.

Example 4.3.58. Let M be any manifold, N ⊂ M a subset and N ′ = M ∖ N . Using

Lemma 4.2.5 we have a group isomorphism MotM(N,N) ≅ MotM(N ′,N ′). In general

there will not exist an inner isomorphism in MotM(N,N ′), although we can construct

specific cases for which MotM(N,N ′) ≠ ∅. For example let M = S1, and τtπ ∶N À τπ(N)

as in Example 4.3.14. Then letting N = [0, π) ⊂ S1, we have that this is a motion N to

N ′ =M ∖N .

Let M be a manifold. Let h∶M → M be a homeomorphism and S ⊂ M be a subset.

Let T = h(S), then h(cl(S)) = cl(T ). In particular if f is a pre-motion in M such

that f ∶S À T is a motion, then f ∶ cl(S) À cl(T ) is a motion. Note that if f ∶S À S is N -

stationary then f ∶ cl(S)À cl(S) is also N -stationary. This again follows since if h∶M →M

is a homeomorphism sending S to S then h(cl(S)) = cl(S). In particular it follows that

for any subsets S,T ⊂M , there is a mapping:

ΓMS,T ∶MotM(S,T )→MotM(cl(S), cl(T )).
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Note that this map is, in general, neither injective, nor surjective, as the following examples

show.

Example 4.3.59. Let M = D2 = {x ∈ C∣ ∣x∣ ≤ 1} ⊂ C. Let N = [−a, a] be a closed interval

in the real axis with 0 < a < 1, and let N ′ = (−a, a].

There is a path in Top(I,TOPh(D2,D2)), which we label τπ, such that τπt is a πt rotation

of D2. Now τπ gives a motion from N to N , but not from N ′ to N ′. Any motion from

f ∶N ′ À N ′ must satisfy f1(a) = a.

A stationary motion s∶N À N must satisfy, for all t ∈ I, st(a) = a and st(−a) = −a, as

there is no path of homeomorphisms from N to N starting at the identity and ending in

a homeomorphism sending a to −a. Suppose (f ∶N À N) m∼ (τπ ∶N À N), then f̄ ∗ τπ
p∼ s,

where s∶N À N is some stationary motion. So we have (f̄ ∗ τπ)1(a) = a. We know

τπ1(a) = −a, so this implies f̄1(−a) = a, and hence f1(a) = −a. So all f ∈ [τπ]m satisfy

f1(a) = −a. Hence [τπ]m has no preimage in MotM(N ′,N ′) under ΓD
2

N,N ′.

It is possible to show that if x ∈ N is any point in the interior of N , and and N ′′ =

N ∖{x}, then ΓD
2

N,N ′′ ∶MotD2(N ′′,N ′′) ∼Ð→MotD2(N,N) is a group isomorphism. Similarly

ΓD
2

N,(−a,a)∶MotD2((−a, a), (−a, a)) ∼Ð→MotD2(N,N) is a group isomorphism.

Note also that none of the constructed subsets are isomorphic to each other in MotD2.

Example 4.3.60. Let M = D2. Let N be a circle centred on the centre of the disk,

and N ′ = N ∖ {x} where x ∈ N is any point, so N ′ = cl(N). Let τ2π be the path in

TOPh(D2,D2), constructed analogously to τπ in Example 4.3.59. Then we have that

τ2π ∶N À N and τ2π ∶N ′ À N ′ are motions. Notice that τ2πt(N) = N for all t ∈ I, thus

IdM ∗ τ2π ∶N À N is a stationary motion, and (τ2π ∶N À N) m∼ (IdM ∶N À N).

For N ′, τ2πt(N ′) ≠ N ′ unless t ∈ {0,1}, thus we do not obtain a motion-equivalence between

(τ2π ∶N ′ À N ′) and (IdM ∶N ′ À N ′) in the same way. This would require a path-homotopy

IdM ∗ τ2π to a N ′-stationary motion, and hence a path-homotopy τ2π to an N ′-stationary

motion. Such a path-homotopy would imply the existence of a path-homotopy making the

2π rotation of S1, considered as a motion from any point y ∈ S1 to itself, motion equivalent

to a {y}-stationary motion. We discuss this situation further in Section 4.6.3.

Notice N and N ′ are not connected in the motion groupoid as this would imply N home-
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omorphic to N ′. Using the comment before previous the example, there is a map from

MtM(N ′,N ′) to MtM(N,N) sending a motion to the motion with the same underlying

pre-motion. There is a homomorphism MotM(N ′,N ′)→MotM(N,N) ×Z constructed as

follows. A representative motion f ∶N ′ À N ′ is mapped to the product of the equivalence

class of the motion f ∶N À N , and the number of 2π rotations of the point x, (where

clockwise rotations correspond to positive numbers, and anti-clockwise to negative).

In fact it can be shown that the group MotM(N,N) is trivial.

Example 4.3.61. Let M = I3 and N ⊂ I3 a subset which is a Hopf link in the interior.

Let N ′ = N ∖ {x} where x ∈ N is any point. Then MotM(N,N ′) = ∅. We can construct a

homomorphism similar to the one constructed in the previous example.

Let K ⊂ I3 be the subset with 2 unknotted unlinked connected components homeomorphic

to S1. Then MotM(N ′,K) = ∅.

Let a ⊂ N be an arc in one component of the Hopf link, and N ′′ = N ∖ a. Then

MotM(N ′,N ′′) = ∅, and MotM(K,N ′′) = ∅.

Example 4.3.62. Let M be the torus T 2 = S1 × S1, and let N = S1 × {1}. Let N ′ be the

image of N under a Dehn twist about {1}×S1. Then the curves N and N ′ are not isotopic

so there is no path f in TOPh(T 2, T 2), starting in idT 2 and with f1(N) = N ′. However

MotT 2(N,N) ≅MotT 2(N ′,N ′). This is just a case of Corollary 4.3.39.

Example 4.3.63. Let M = S3. If K and K ′ are non-isotopic knots in S3 then we have

MotS3(K,K ′) = ∅.

Points and unknotted circles in M = I3

The setup

For n ∈ N denote by An the set of objects in Mot∂I
3

I3 which are subsets of I3 of the

following form. Let N ∈ An, then N has n connected components which we label by ai,

i ∈ {1, . . . , n}. Each ai is either a circle or a point. If ai is a point, then it is the point

((i − 1/2)/n,1/2,1/2). If ai is a circle, then it is a circle lying in the plane y = 1/2 with

centre ((i − 1/2)/n,1/2,1/2) and radius 1/4n. See Figure 4.11 for an example. For a fixed

n ∈ N, we denote the full subgroupoid Mot∂I
3

I3 ∣An by An.
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y = 1
2

Figure 4.11: Example of positioning of three circles and four points in I3. This is an object
in A7.

It will be clear that the set ∪nAn can be given the structure of a free monoid, with

generators ⋅ and ○. Thus for example (fixing appropriate conventions) the element in

Fig.4.11 is ○ ⋅ ○ ○ ⋅ ⋅ ⋅.

Let us consider some motions in An. First let N ∈ A2 be the subset of I3 corresponding

to ○⋅, as shown on the left hand side of Figure 4.12, labelled t = 0. Let N ′ ∈ A2 be the

subset ⋅○ of I3 with a1 a loop and a2 a point, as shown on the right hand side of Figure

4.12, labelled t = 1.

There is a continuous map ς ∶ I3 × I → I3 that fixes ∂I3 and such that the circle prescribes

a well-defined disk at in the y = 1/2 plane every t, and such that, looking at the image of

N under ς, the point ‘passes through’ the plane, and indeed the disk, of the circle exactly

once. That is, the image of the point lies in the disk of the image of the circle only at

t = 1/2, approaching from above the plane, and departing below. We claim that such

a motion may have a movie presentation as shown in Figure 4.12. Since this is not the

crux of the present section, we leave it to intuition here to ensure that there exists such

a smooth path of embeddings moving the subsets as described. Hence, using the isotopy

extension theorem for smooth, compact submanifolds, (see for example [Hir12, Ch.8.1])

such a motion can be shown to exist. (Of course there are infinitely many such maps.)

This yields a motion ς ∶N À N .

There is another motion, with underlying map ϱ say, taking N to N ′ (again among in-

finitely many such) during which the circle again prescribes a well-defined disk at every t

and the point does not pass through this disk.

We claim that the above characterisations are enough to ensure that the two motions are
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t = 0 t = 1/4 t = 1/2

t = 3/4 t = 1

Figure 4.12: The images of subset N ⊂ I3 as shown at t = 0 under a motion in I3. The
black markings indicate the position of N at the labelled time, while the gray markings
indicate the position of N at earlier times.
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not representatives of the same morphism.

There is also a motion τ from N to N which leaves the point fixed for all t but which

rotates the circle by π around an axis in the y = 1/2 plane which passes through the centre

of the circle. (If we added an orientation this would be a motion changing the orientation

of the circle.) We claim this motion is not a representative of the same morphism as the

identity.

A conjecture for a presentation for An.

In this section we will construct an abstract category by giving objects, generating mor-

phisms and relations and conjecture that this category is isomorphic to An.

Definition 4.3.64. For any n ∈ N, denote by Dn the category with objects, generating

morphisms and relations as follows.

The objects of Dn are words of length n in {p, c}. Let {s1, . . . , sn} denote the generators of

the Coxeter presentation of the symmetric group, Sn. The generator si acts onX ∈ Ob(Dn)

by permuting the ith and i + 1th letters. We use Xsi to denote the image of X under the

action of si.

(Note that in what follows we find it convenient to label morphisms by a triple f ∶X → Y ,

so there may exist a distinct morphism f ∶W → Z with W ≠ X and Y ≠ Z, and f alone

has no meaning.)

For each X ∈ Ob(Dn) we have generating morphisms ρi∶X →Xsi for each i ∈ {1, . . . , n−1}

subject to the following relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρj ∶Xsi →Xsjsi) ∗ (ρi∶X →Xsi) = (ρi∶Xsj →Xsisj) ∗ (ρj ∶X →Xsj) ∣i − j∣ > 1

(ρi∶Xsi+1si →Xsisi+1si) ∗ (ρi+1∶Xsi →Xsi+1si) ∗ (ρi∶X →Xsi) =
(ρi+1∶Xsisi+1 →Xsi+1sisi+1) ∗ (ρi∶Xsi+1 →Xsisi+1) ∗ (ρi+1∶X →Xsi+1)

i = 1, . . . , n − 2

(ρi∶Xsi →Xsisi) ∗ (ρi∶X →Xsi) = 1X ∶X →X i = 1, . . . , n − 1.

And also for each X ∈ Ob(Dn) such that the i+1th letter of X is c, generating morphisms
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σi∶X →Xsi for each i ∈ {1, . . . , n − 1}, subject to the following relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σj ∶Xsi →Xsjsi) ∗ (σi∶X →Xsi) = (σi∶Xsj →Xsisj) ∗ (σj ∶X →Xsj) ∣i − j∣ > 1

(σi∶Xsi+1si →Xsisi+1si) ∗ (σi+1∶Xsi →Xsi+1si) ∗ (σi∶X →Xsi) =
(σi+1∶Xsisi+1 →Xsi+1sisi+1) ∗ (σi∶Xsi+1 →Xsisi+1) ∗ (σi+1∶X →Xsi+1)

i = 1, . . . , n − 2

(σj ∶Xsi →Xsjsi) ∗ (ρi∶X →Xsi) = (ρi∶Xsj →Xsisj) ∗ (σj ∶X →Xsj) ∣i − j∣ > 1

(ρi∶Xsi+1si →Xsisi+1si) ∗ (ρi+1∶Xsi →Xsi+1si) ∗ (σi∶X →Xsi) =
(σi+1∶Xsisi+1 →Xsi+1sisi+1) ∗ (ρi∶Xsi+1 →Xsisi+1) ∗ (ρi+1∶X →Xsi+1)

i = 1, . . . , n − 2

(σi∶Xsi+1si →Xsisi+1si) ∗ (σi+1∶Xsi →Xsi+1si) ∗ (ρi∶X →Xsi) =
(ρi+1∶Xsisi+1 →Xsi+1sisi+1) ∗ (σi∶Xsi+1 →Xsisi+1) ∗ (σi+1∶X →Xsi+1)

i = 1, . . . , n − 2

And also for each X ∈ Ob(Dn) such that the ith letter of X is c generating morphisms

τi∶X →X for each i ∈ {1, . . . , n} subject to the following relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(τj ∶X →X) ∗ (τi∶X →X) = (τi∶X →X) ∗ (τj ∶X →X) i ≠ j

(τi∶X →X) ∗ (τi∶X →X) = (1X ∶X →X) i = 1, . . . , n

(τj ∶Xsi →Xsi) ∗ (σi∶X →Xsi) = (σi∶X →Xsi) ∗ (τj ∶X →X) ∣i − j∣ > 1

(τj ∶Xsi →Xsi) ∗ (ρi∶X →Xsi) = (ρi∶X →Xsi) ∗ (τj ∶X →X) ∣i − j∣ > 1

(ρi∶X →Xsi) ∗ (τi∶X →X) = (τi+1∶Xsi →Xsi) ∗ (ρi∶X →Xsi) i = 1, . . . , n − 1

(σi∶X →Xsi) ∗ (τi∶X →X) = (τi+1∶Xsi →Xsi) ∗ (σi∶X →Xsi) i = 1, . . . , n − 1

(σi∶X →Xsi) ∗ (τi+1∶X →X) = (τi∶Xsi →Xsi) ∗ (ρi∶X →Xsi)∗
(σi∶X →Xsi)

−1 ∗ (ρi∶X →Xsi)
i = 1, . . . , n − 1

Note that there is a monoidal structure on ∪nOb(Dn) given by concatenation of words. The

monoid is freely generated by p and c. Thus there is a monoid morphism ϕ0 ∶ ∪nOb(Dn)→

∪nAn given by ϕ0(p) = ⋅ and ϕ0(c) = ○. Notice that this restricts to a function for each

fixed n.

Conjecture 4.3.65. For each n ∈ N, there is a functor

ϕ∶Dn → An =Mot∂I
3

I3 ∣An

which is given by the following. A word w ∈ Ob(Dn) is mapped to the object in An, with ai

a point if the ith letter in w is p and ai a circle if the ith letter is a c (i.e. the restriction

of ϕ0 as above).

We only give the images of certain generators in the n = 2 case, and leave it to the reader
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to fully construct the morphism for each n. The morphism σ1∶pc → cp is mapped to

the motion equivalence class of the motion ς ∶N À N ′ described above. The morphism

ρ1∶pc → cp is mapped to the motion equivalence class of the motion ϱ∶N À N ′ described

above. The morphism τ2∶pc→ pc is mapped to the motion equivalence class of the motion

τ∶N À N described above.

Conjecture 4.3.66. For each n ∈ N the map

ϕ∶Dn → An

is an isomorphism. That is to say Dn is a presentation of An =Mot∂I
3

I3 ∣An.

Note that if we further restrict to the subset N ∈ An where all connected components

are points, this is a presentation of the symmetric group and if we restrict to the subset

N ′ ∈ An where all connected components are circles this is a presentation of the nth

extended loop braid group [Dam17, Prop. 3.14 and 3.16]. The presentation of the non-

extended version of the loop braid group is obtained by considering the subgroupoids with

all τ generators excluded. Topologically, this corresponds to allowing only orientation

preserving homeomorphisms .

4.4 A useful alternative congruence leading to MotM

In this section we introduce an alternative equivalence relation on the sets MtM(N,N ′).

We prove in Theorem 4.4.6 that this alternative equivalence relation is the same as the

relation
m∼ constructed in the previous section, and thus leads to the motion groupoid.

This gives us another way to understand equivalence classes of motions.

The equivalence relation we use here is the relative path-equivalence used in the construc-

tion of the relative fundamental set of a pair of spaces. Thus it will allow us to use the

relative homotopy long exact sequence to prove the relationship between motion groupoids

and mapping class groupoids in Section 4.6.

Definition 4.4.1. Fix a manifold M . Define a relation on MtM(N,N ′) as follows.

Let f ∶N À N ′
rp∼ g ∶N À N ′ if the motions f ∶N À N ′ and g ∶N À N ′ are relative
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path-homotopic. This means there exists a continuous map

H ∶ I × I→ TOPh(M,M)

such that

• for any fixed s ∈ I, t↦H(t, s) is a motion from N to N ′,

• for all t ∈ I, H(t,0) = ft , and

• for all t ∈ I, H(t,1) = gt .

We call such a homotopy a relative path-homotopy.

Lemma 4.4.2. Fix a manifold M . For each pair N,N ′, the relation
rp∼ is an equivalence

relation on MtM(N,N ′).

Notation: We call
rp∼ classes relative path-equivalence classes and use [f ∶N À N ′]rp for

the class of f .

Proof. Let f ∶N À N ′, g ∶N À N ′ and h∶N À N ′ be motions. We can prove reflexivity by

observing that the homotopy H(t, s) = ft for all s ∈ I is a relative path-homotopy from

f ∶N À N ′ to itself.

For symmetry let Hf,g be a relative path-homotopy from f ∶N À N ′ to g ∶N À N ′. Then

the function Hg,f(t, s) = Hf,g(t,1 − s) is a relative path-homotopy from g ∶N À N ′ to

f ∶N À N ′.

For transitivity let Hg,h be a relative path-homotopy from g ∶N À N ′ to h∶N À N ′. Then

Hf,h(t, s) =
⎧⎪⎪⎨⎪⎪⎩

Hf,g(t,2s) 0 ≤ s ≤ 1
2

Hg,h(t,2(s − 1
2))

1
2 ≤ s ≤ 1

is a relative path-homotopy from f ∶N À N ′ to h∶N À N ′.

Proposition 4.4.3. Let (f ∶N À N ′) p∼ (g ∶N À N ′) be path equivalent motions, then

(f ∶N À N ′) rp∼ (g ∶N À N ′).

Proof. A path-homotopy from f to g has fixed endpoint, thus is a relative path-homotopy

(f ∶N À N ′) to (g ∶N À N ′).
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TOPh(M,M)
idM

(b)
(a) HomeoM(N,N ′)

HomeoM(N,N) (c)

Figure 4.13: Let M be a manifold, and N,N ′ ⊂ M subsets. Here we use the same
schema used in Figure 4.2. The space TOPh(M,M) is a connected region of the plane
homeomorphic to S1 × I. The paths labelled (a), (b) and (c) represent motions from N to
N ′ in M . There is a relative path-homotopy from (b) to (c), but not from (a) to (b) or
(c).

Figure 4.13 gives examples of relative path-homotopic, and non relative path-homotopic

motions in our schema introduced in Figure 4.2.

Lemma 4.4.4. Suppose we have relative path-equivalent motions (f ∶N À N ′) rp∼ (f ′∶N À

N ′), then (f ∶N À N ′) m∼ (f ′∶N À N ′).

Proof. Let H be a relative path-homotopy from f ∶N À N ′ to f ′∶N À N ′. We must show

that f̄ ′ ∗ f ∶N À N is path-equivalent to a stationary motion from N to N .

Notice first that H(1,1 − s) is a path f ′1 to f1 which is in HomeoM(N,N ′) for all t, we

relabel this path as γ. We define γ̃ as γ̃ = γ ○ f ′−11 , so γ̃ ∶N ′ À N ′ is a stationary motion

with γ̃1 = f1 ○ f ′−11 .

We can useH to construct a path-homotopy from f to the path composition γf ′. Explicitly

a suitable function is:

H1(t, s) =
⎧⎪⎪⎨⎪⎪⎩

H( 2t
2−s , s) t ≤ 1 − s

2

γ2t−1 1 − s
2 ≤ t.

For fixed s ∈ I the path H1(t, s) starts at the identity, traces the whole of the path H(t, s)

followed by the part of the path γ starting from γ1−s = H(1, s) and ending at γ1. Note

that the path composition, γf ′ is precisely the motion composition γ̃ ∗ f ′, so f p∼ γ̃ ∗ f ′.

By gluingH1 appropriately with the trivial homotopy, we have that f̄ ′∗f is path-equivalent
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to f̄ ′ ∗ (γ ∗ f ′).

Now using the normalcy of stationary motions proved in Lemma 4.3.34, we have that the

motion f̄ ′ ∗ (γ̃ ∗ f ′)∶N À N is path-equivalent to a stationary motion from N to N .

Lemma 4.4.5. Suppose we have motion-equivalent motions (f ∶N À N ′) m∼ (f ′∶N À N ′),

then (f ∶N À N ′) rp∼ (f ′∶N À N ′).

Proof. By uniqueness of inverses we have (f ∶N À N ′) m∼ (f ′∶N À N ′) implies (f̄ ∶N ′ À

N) m∼ (f̄ ′∶N ′ À N) . Thus we have a path-homotopy, say H, from f ′ ∗ f̄ to a stationary

motion γ ∶N ′ À N ′. Consider the following function:

H1(t, s) =
⎧⎪⎪⎨⎪⎪⎩

f 2t
2−s

t ≤ 1 − s
2

γ2(t+ s
2
−1) ○ f1 1 − s

2 ≤ t.

We have that H1(t,0) is the path f and H1(t,1) is the path γ ∗ f . And for any fixed

s ∈ I we have H(0, s) = idM and H(1, s)(N) = γs ○ f1(N) = γs(N ′) = N ′. Also note H1 is

continuous as both functions agree when t = 1 − s
2 . Hence we have that H1 is a relative

path-homotopy and (f ∶N À N ′) rp∼ (γ ∗ f ∶N À N ′).

Using Lemma 4.3.8 we have that γ ∗ f p∼ γ ⋅ f . Now H2(t, s) = H(t,1 − s) ○ ft is a path-

homotopy giving γ ⋅ f p∼ (f ′ ∗ f̄) ⋅ f . Again using Lemma 4.3.8 (f ′ ∗ f̄) ⋅ f p∼ f ′ ⋅ f̄ ⋅ f p∼

f ′ ⋅ (f̄ ∗ f) p∼ f ′ ⋅ IdM , so γ ∗ f p∼ f ′.

Using Proposition 4.4.3 this implies (γ ∗ f ∶N À N ′) rp∼ (f ′∶N À N ′) and hence we have

(f ∶N À N ′) rp∼ (f ′∶N À N ′).

Theorem 4.4.6. For a manifold M and a motion f ∶N À N ′ in M we have

[f ∶N À N ′]rp = [f ∶N À N ′]m.

This means quotienting MtM by relative path-equivalence leads to the same groupoid as

quotienting by motion-equivalence.

Proof. This follows from Lemmas 4.4.4 and 4.4.5.

Remark 4.4.1. All proofs in this section work in exactly the same way restricting to A-fixing
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motions. Hence we also have that for a manifold M and an A-fixing motion fA∶N À N ′

[fA∶N À N ′]rp = [fA∶N À N ′]m.

4.5 Mapping class groupoid MCGA
M

4.5.1 The Mapping class groupoid MCGM

In this section we construct the mapping class groupoid MCGM associated to a manifold

M . We do this by constructing a congruence on HomeoM , so the morphisms in MCGM

are certain equivalence classes of self-homeomorphisms of M . Compare this with motions,

which keep track of an entire path in TOPh(M,M).

These are in general a simpler construction than motion groupoids and there are many

known results already in the literature, e.g. [Bir16; FM11; Ham74; HT80].

Recall from Section 4.2 that for a manifold M and for subsets N,N ′ ⊆ M , morphisms

in HomeoM(N,N ′) are triples denoted f∶N ↷ N ′ where f ∈ Toph(M,M) and f(N) = N ′.

Where convenient we also think of the elements of HomeoM(N,N ′) as the projection to

the first coordinate of each triple i.e. f ∈ Toph(M,M) such that f(N) = N ′.

Definition 4.5.1. Let M be a manifold and N,N ′ ⊆M . For any f∶N ↷ N ′ and g∶N ↷ N ′

in HomeoM(N,N ′), f∶N ↷ N ′ is said to be isotopic to g∶N ↷ N ′, denoted by
i∼, if there

exists a continuous map

H ∶M × I→M

such that

• for all fixed s ∈ I, the map m↦H(m,s) is in HomeoM(N,N ′),

• for all m ∈M , H(m,0) = f(m), and

• for all m ∈M , H(m,1) = g(m).

We call such a map an isotopy from f∶N ↷ N ′ to g∶N ↷ N ′.

Lemma 4.5.2. Let M be a manifold. For all pairs N,N ′ ⊆M , the relation
i∼ is an equiv-

alence relation on HomeoM(N,N ′).
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Notation: We call this equivalence relation isotopy equivalence. We denote the equiva-

lence class of f∶N ↷ N ′ up to isotopy equivalence as [f∶N ↷ N ′]i.

Proof. Let f∶N ↷ N ′, g∶N ↷ N ′ and h∶N ↷ N ′ be in HomeoM(N,N ′) with (f∶N ↷ N ′) i∼

(g∶N ↷ N ′) and (g∶N ↷ N ′) i∼ (h∶N ↷ N ′). Then there exists some isotopy, say Hf,g, from

f∶N ↷ N ′ to g∶N ↷ N ′ and an isotopy, say Hg,h, from g∶N ↷ N ′ to h∶N ↷ N ′.

We first check reflexivity. Then the map H(m,s) = f(m) for all s ∈ I is an isotopy from

f∶N ↷ N ′ to itself. For symmetry, H(m,s) = Hf,g(m,1 − s) is an isotopy from g∶N ↷ N ′

to f∶N ↷ N ′. For transitivity,

H(m,s) =
⎧⎪⎪⎨⎪⎪⎩

Hf,g(m,2s) 0 ≤ s ≤ 1
2

Hg,h(m,2(s − 1
2)

1
2 ≤ s ≤ 1

is an isotopy from f∶N ↷ N ′ to h∶N ↷ N ′.

Lemma 4.5.3. Let M be a manifold. The family of relations (HomeoM(N,N ′), i∼) for all

pairs N,N ′ ⊆M are a congruence on HomeoM .

Proof. We have that
i∼ is an equivalence relation on each HomeoM(N,N ′) from Lemma 4.5.2.

We check that the composition descends to a well defined composition on equivalence

classes. Suppose there exists an isotopy, say Hf,f′ , from f∶N ↷ N ′ to f′ ∶N ↷ N ′ and

another isotopy, say Hg,g′ from g∶N ↷ N ′ to g′ ∶N ↷ N ′. Then

H(m,s) =Hg,g′(m,s) ○Hf,f′(m,s)

is an isotopy from g ○ f∶N ↷ N ′′ to g′ ○ f′ ∶N ↷ N ′′.

Theorem 4.5.4. Let M be a manifold. There is a groupoid

MCGM = (PM,HomeoM(N,N ′)/ i∼, ○, [idM ]i, [f]i ↦ [f−1]i).

We call this the mapping class groupoid of M .

Proof. This is the quotient HomeoM/ i∼. Lemma 4.5.3 gives that
i∼ is a congruence and

Proposition 3.2.4 gives that the quotient of a groupoid by a congruence is still a groupoid
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with the given identity and inverse.

Lemma 4.5.5. Let M be a manifold. We have that as a set

MCGM(N,N ′) = π0(HomeoM(N,N ′)).

Here we are considering HomeoM(N,N ′) as a space which is possible by Lemma 4.2.6.

Proof. Using Theorem 3.5.16 a continuous map M × I → M satisfying the conditions in

Definition 4.5.1 corresponds to a path I→ HomeoM(N,N ′) from f to g.

Proposition 4.5.6. We have

MCGS1(∅,∅) = Z/2Z.

Proof. Let f,g∶S1 → S1 be homeomorphisms that are connected by a path inTOPh(S1, S1).

Then f and g are homotopic, so they have the same degree, so either they are both ori-

entation preserving or orientation reversing. It is proven in [Ham74, Theorem 1.1.2] that

the space of orientation preserving homeomorphisms S1 → S1 is homotopic to S1, and

in particular that it is path-connected. Since the identity map S1 → S1 is orientation

preserving, the path-component of the identity in TOPh(S1, S1) is the set of orientation

preserving homeomorphisms from S1 to itself.

If f and g are orientation reversing, then f ○ g−1 is orientation preserving, and hence can

be connected by a path to idS1 . It follows that f and g can be connected by a path in

TOPh(S1, S1).

In particular, TOPh(S1, S1) has two path-components, containing respectively the orien-

tation preserving and the orientation reversing homeomorphisms from S1 to itself. There-

fore the homomorphism π0(HomeoS1(∅,∅))→ {±1} ≅ Z/2Z induced by the degree homo-

morphism deg∶Toph(S1, S1) = HomeoS1(∅,∅)→ {±1} is an isomorphism.

4.5.2 Pointwise A-fixing mapping class groupoid MCGA
M

Here we have a subset fixing version of the mapping class groupoid.
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Theorem 4.5.7. Let M be a manifold and A ⊆M a subset. There is a groupoid

MCGA
M = (PM,HomeoAM(N,N ′)/

i∼, ○, [idM ]i, [f]i ↦ [f−1]i).

Note that in this case the first condition in Definition 4.5.1 becomes: for all s ∈ I the map

m↦H(m,s) is in HomeoAM .

Proof. This is the quotient HomeoAM/
i∼. The proofs of Lemmas 4.5.2 and 4.5.3 proceed in

the exactly the same way for A-fixing self-homeomorphisms. All constructed homotopies

will be A-fixing for all s ∈ I. Proposition 3.2.4 gives that the quotient of a groupoid by a

congruence is still a groupoid.

Proposition 4.5.8. The morphism group MCG∂D2

D2 (∅,∅) is trivial.

Proof. (This follows from the Alexander trick [Ale23].) Suppose we have f∂D
2 ∶ ∅ ↷ ∅ in

D2. Define

ft(x) =
⎧⎪⎪⎨⎪⎪⎩

t f(x/t) 0 ≤ ∣x∣ ≤ t,
x t ≤ ∣x∣ ≤ 1.

Notice that f0 = idD2 and f1 = f and each ft is continuous. Moreover:

H ∶D2 × I→D2,

(x, t)↦ ft(x)

is a continuous map. So we have constructed an isotopy from any boundary preserving

self-homeomorphism of D2 to idD2 .

Note that a lot more is true. The same argument gives that the space of maps D2 → D2

fixing the boundary is contractible; see [Ham74].

Remark 4.5.1. Note that if K is a finite subset of D2 ∖ ∂D2 then the morphism group

MCG∂D2

D2 (K,K) is isomorphic to the braid group on ∣K ∣ strands. For discussion see [BB05;

Bir16]. See also [Dam17] for a thorough exposition of how loop braid groups arise as

morphisms groups of the form MCG∂D3

D3 (L,L) where L consists of a set of unknotted

loops contained in the interior of D3.
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Example 4.5.9. Let M = I and N = I ∩Q. We show that MCGI(N,N) is uncountably

infinite.

We begin by choosing elements of Toph(I, I). Choose points x,x′ ∈ N ∖ {0,1}, then there

is a unique piecewise linear, orientation preserving map with precisely two linear segments

sending x to x′ and moreover this map sends N to itself. Denote this by ϕxx′. Let us fix

the point x, then varying x′ gives an infinite choice of maps ϕxx′.

We prove by contradiction that all such ϕxx′ represent distinct equivalence classes in

MCGI(N,N). Let x,x′, x′′ ∈ N∖{0,1} and suppose ϕxx′ ∶N → N is isotopic to ϕxx′′ ∶N → N

in MCGI(N,N). Then for all n ∈ N we have a path ϕxx′(n) to ϕxx′′(n) in Q, and hence

a path ϕxx′(x) = x′ to ϕxx′′(x) = x′′. But all paths I→ Q are constant, which follows from

the intermediate value theorem. Hence x′ = x′′. Therefore any pair of distinct maps of the

described form are not isotopic.

More generally a piecewise linear map can be defined as follows. Starting from t = 0,

each segment is be defined by choosing the upper bound t ∈ {0,1] and the gradient (which

is bounded by condition that the map is well defined). Repeating with the condition that

the upper bound must be distinct from the upper bound of the previous section until t = 1

is chosen, defines a map. Choosing rational gradients, and rational bounds is sufficient

to ensure such a map sends N to itself. By the same argument as above distinct such

maps are non isotopic. Allowing for infinite segments, then this construction is countable

product of countable sets, thus uncountable. (More precisely it has the cardinality of the

continuum.)

4.6 Functor from MotAM to MCGA
M

It is known that the braid groups and loop braid groups can be defined as mapping class

groups, as well as as motion groups [Dam17; Dah36; Gol81; Bir16]. Here we generalise

this by constructing, for any manifold M , a functor F∶MotM →MCGM in Theorem 4.6.1.

We prove this is an isomorphism if π1(HomeoM(∅,∅)) and π0(HomeoM(∅,∅)) are trivial.

Precisely we prove F is full if and only if π0(HomeoM(∅,∅)) is trivial, and that F is faithful

if π1(HomeoM(∅,∅)).

In Theorem 4.6.13 we state the version where we fix a distinguished subset A ⊆M .
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Theorem 4.6.1. Let M be a manifold. There is a functor

F∶MotM →MCGM

which is the identity on objects and on morphisms we have

F ([f ∶N À N ′]m) = [f1∶N ↷ N ′]i.

Proof. We first check F is well defined. By Theorem 4.4.6 two motions f ∶N À N ′ and

f ′∶N À N ′ are motion-equivalent if and only if they are relative path-equivalent, i.e. we

have a relative path-homotopy:

H ∶ I × I→ TOPh(M,M).

Then H(1, s) is a path f1 to f ′1 such that for all s ∈ I, H(1, s) ∈ HomeoM(N,N ′). Hence

f1∶N ↷ N ′ and f ′1 ∶N ↷ N ′ are isotopic.

We check F preserves composition. For [f ∶N À N ′]m and [g ∶N ′ À N ′′]m in MotM we have

F ([g ∶N ′ À N ′′]m ∗ [f ∶N À N ′]m) = F ([g ∗ f ∶N ′ À N ′′]m) = [(g ∗ f)1∶N ↷ N ′′]i

= [g1 ○ f1∶N ↷ N ′′]i = [g1∶N ′ ↷ N ′′]i ○ [f1∶N ↷ N ′]i

= F ([g ∶N ′ À N ′′]m) ○ F ([f ∶N À N ′]m) .

Lemma 4.6.2. Let M be a manifold. The functor

F∶MotM →MCGM

defined in Theorem 4.6.1 is full if and only if we have that π0(HomeoM(∅,∅), idM) =

π0(TOPh(M,M), idM) is trivial.

Proof. Suppose π0(HomeoM(∅,∅), idM) is trivial and let [f∶N ↷ N ′]i ∈ MCGM(N,N ′).

Since HomeoM(∅,∅) is path connected, there exists a path f with f0 = idM and f1 = f.

Since f(N) = N ′, f ∶N À N ′ is a motion and F([f ∶N À N ′]m) = [f∶N ↷ N ′]i.
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Now suppose π0(HomeoM(∅,∅), idM) is non-trivial. Let f be a self-homeomorphism in a

path component of HomeoM(∅,∅) which does not contain the identity. Then [f∶ ∅ ↷ ∅]i ∈

MCGM(∅,∅) and all representatives are in the same path connected component. Hence

there is no motion with endpoint in [f∶ ∅ ↷ ∅]i.

Example 4.6.3. The functor F may be a surjection on some morphism sets and not on

others.

Let M = S3, then MCGS3(∅,∅) = Z/2Z corresponding to an orientation preserving and

orientation reversing component (see [Hat78]) and so by the previous lemma F is not full.

Consider K ⊂ S3 a knot which is not homeomorphic to its mirror image. Now MCGS3(K,K)

contains only orientation preserving self-homeomorphisms, which are in the same con-

nected component as the identity. Hence, by the first part of the proof of the previous

lemma, the restriction F∶MotS3(K,K)→MCGS3(K,K) is full.

4.6.1 Long exact sequence of relative homotopy groups

To prove F is faithful if π1(HomeoM(∅,∅)) we will use the homotopy long exact sequence.

We briefly introduce this here, see [Hat02, Sec.4.1] or [May99, Ch.9] for a more thorough

exposition.

Definition 4.6.4. Let In−1 be the face of In with last coordinate 1 and let Jn−1 be the

closure of ∂In ∖ In−1, i.e. the union of all remaining faces of In.

Proposition 4.6.5. Let X be a topological space and A ⊆X a subset and x0 ∈ A a point.

For fixed n ≥ 1 we define a relation on the set of continuous maps

γ∶ (In, ∂In, Jn−1)→ (X,A,x0)

as follows. We say γ ∼ γ′ if there exists H ∶ In × I→X such that

• for all s ∈ I, H ∣In×{s} is a map (In, ∂In, Jn−1)→ (X,A,x0),

• for all x ∈ In, H(x,0) = γ(x), and

• for all x ∈ In, H(x,1) = γ′(x).
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This is an equivalence relation.

Notation: We will call the set of such maps with the described equivalence the nth relative

homotopy set and denote it πn(X,A,x0).

Proof. We omit this proof. It is similar to Lemma 4.4.2; see also [Hat02].

Lemma 4.6.6. Let M be a manifoldand N ⊆M a subset. Then MotM(N,N) is precisely

the relative fundamental set π1(HomeoM(∅,∅),HomeoM(N,N), idM).

Proof. By projecting to the first element of the triple MotM(N,N) is the subset of paths

f ∈ (I,Toph(M,M)) = (I,HomeoM(∅,∅)) such that f0 = idM and f1 ∈ HomeoM(N,N),

up to relative path equivalence. This is precisely the definition of the relative fundamental

set π1(HomeoM(∅,∅),HomeoM(N,N), idM).

Notation: Due to the fact the two equivalences coincide on the sets we are interested in

we will use [γ]rp for the equivalence class of a continuous map γ in some relative homotopy

set.

Lemma 4.6.7. Let X be a topological space, A ⊆ a subset and x0 ∈ A a point. For

n ≥ 2, given continuous maps β∶ (In, ∂In, Jn−1) → (X,A,{x0}) and γ∶ (In, ∂In, Jn−1) →

(X,A,{x0}), Define

(γ + β)(t1, . . . , tn) =
⎧⎪⎪⎨⎪⎪⎩

β(2t1, . . . , tn) 0 ≤ t1 ≤ 1
2 ,

γ(2(t1 − 1
2), . . . , tn)

1
2 ≤ t1 ≤ 1.

Then there is a composition

+∶πn(X,A,{x0}) × πn(X,A,{x0})→ πn(X,A,{x0})

(γ, β)↦ γ + β.

Proof. Note first that the two functions agree at t1 = 1/2 as Jn−1 is sent to x0 under both

α and β, hence α + β is continuous.

We now check the composition is well defined. Suppose β,β′∶ (In, ∂In, Jn−1) → (X,A,x0)

are equivalent in π(X,A,{x0}) via some homotopy, say H1. Similarly suppose γ and

γ′ are maps (In, ∂In, Jn−1) → (X,A,x0) which are equivalent in π(X,A,{x0}) via some

120



Chapter 4. Motion groupoids 4.6. Functor from MotAM to MCGA
M

homotopy, say H2. Consider the function

H(t1, . . . , tn, s) =
⎧⎪⎪⎨⎪⎪⎩

H1(2t1, . . . , tn, s) 0 ≤ t1 ≤ 1
2

H2(2(t1 − 1
2), . . . , tn, s)

1
2 ≤ t1 ≤ 1.

Notice that since H1 and H2 are both relative path homotopies H1(Jn−1×{s}) =H2(Jn−1×

{s}) = {x0} and the two component functions agree on t = 1/2. Hence H is a relative path-

homotopy from γ + β to γ′ + β′.

Lemma 4.6.8. Let X be a topological space, A ⊆ X a subset and x0 ∈ A a point. For

n ≥ 2 the set πn(X,A,{x0}) becomes a group with +. The identity is the equivalence class

of the constant path ex(t) = {x0}. The inverse of [γ]rp ∈ πn(X,A,{x0}) is the equivalence

class of (t1, . . . , tn)↦ γ(1 − t1, . . . , tn).

Proof. See [Hat02, Sec. 4.1].

Theorem 4.6.9. (See for example [Hat02, Sec. 4.1].) Let i∶ (A,{x0}) → (X,{x0}) and

j∶ (X,{x0},{x0})→ (X,A,{x0}) be the inclusions. Then we define

in∗ ∶πn(A,{x0})→ πn(X,{x0})

[γ]p ↦ [i ○ γ]p

and

jn∗ ∶πn(X,{x0})→ πn(X,A,{x0})

[γ]p ↦ [j ○ γ]rp.

We also define a map which is the following restriction:

∂n∶πn(X,A,{x0})→ πn−1(A,{x0})

[γ]rp ↦ [γ∣In−1]p.
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Note in particular that, for n = 1 we have

∂1∶π1(X,A,{x0})→ π0(A,{x0}),

[γ]rp ↦ [γ(1)]p.

Let X be a space, A ⊆X a subspace and x0 ∈ A a basepoint. There is a long exact sequence:

. . .→ πn(A,{x0})
in∗Ð→ πn(X,{x0})

jn∗Ð→ πn(X,A,{x0})
∂nÐ→ πn−1(A,{x0})

in−1∗ÐÐ→ . . .
i0∗Ð→ π0(X,{x0})

where exactness at the end of the sequence, where group structures are not defined, means

the image of one map is equal to the set of maps sent to the homotopy class of the identity

by the next.

We note that the following long exact sequence generalises the sequence that appears in

[Gol81].

Lemma 4.6.10. Let M be a manifold and fix a subset N ⊆M . Then we have a long exact

sequence

. . .→ πn(HomeoM(N,N), idM)
in∗Ð→ πn(HomeoM(∅,∅), idM)

jn∗Ð→

πn(HomeoM(∅,∅),HomeoM(N,N), idM)
∂nÐ→ πn−1(HomeoM(N,N), idM)

in−1∗ÐÐ→

. . .
∂2Ð→ π1(HomeoM(N,N), idM)

i1∗Ð→ π1(HomeoM(∅,∅), idM)
j1∗Ð→MotM(N,N)

FÐ→MCGM(N,N)
i0∗Ð→ π0(HomeoM(∅,∅), idM)

where all maps are group maps and F is the appropriate restriction of the functor defined

in Theorem 4.6.1.

Proof. We have from Lemma 4.5.5 that MCGM(N,N) = π0(HomeoM(N,N), idM) and

from Lemma 4.6.6 that MotM(N,N) = π1(HomeoM(∅,∅),HomeoM(N,N), idM) as sets.

Notice also that, as a set map, F∶MotM(N,N)→MCGM(N,N) is precisely ∂1. Hence by

substituting X = HomeoM(∅,∅), A = HomeoM(N,N) and x0 = idM into Theorem 4.6.9

we get the exact sequence.
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We have that F is a group map, as it is the restriction of a functor of groupoids. It remains

to show that j1∗ and i0∗ become group maps. We check that j1∗ preserves composition. Let

g and f be paths from idM to idM in HomeoM(∅,∅). Then the gf is a well defined

pre-motion and it is precisely the pre-motion g ∗ f as f1 = idM . Hence we have

j1∗([gf]p) = [gf ∶N À N]rp = [g ∗ f ∶N À N]rp = [g ∶N À N]rp ∗ [f ∶N À N]rp

= j1∗([g]p) ∗ j1∗([f]p).

The composition is in MCGM(N,N) is composition of homeomorphisms, hence the com-

position is the same in the source and target of i0∗, and i
0
∗ is an inclusion. Thus composition

is preserved.

Lemma 4.6.11. Suppose M is a manifold and fix a subset N ⊆M . Suppose

• π1(HomeoM(∅,∅), idM) is trivial, and

• π0(HomeoM(∅,∅), idM) is trivial.

Then there is a group isomorphism

F∶MotM(N,N)
∼Ð→MCGM(N,N).

Proof. Using the conditions of the lemma, the long exact sequence in Lemma 4.6.10 gives

short exact sequence

1→MotM(N,N)→MCGM(N,N)→ 1.

4.6.2 Isomorphism from MotAM to MCGA
M

Here we give conditions under which the motion groupoid and the mapping class groupoid

of a manifold are isomorphic categories.

Theorem 4.6.12. Let M be a manifold. If

• π1(HomeoM(∅,∅), idM) is trivial, and

• π0(HomeoM(∅,∅), idM) is trivial,
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the functor

F∶MotM →MCGM ,

defined in Theorem 4.6.1 is an isomorphism of categories.

Proof. Suppose π1(HomeoM(∅,∅), idM) and π0(HomeoM(∅,∅), idM) are trivial. We

have from Lemma 4.6.2 that F is full. We check F is faithful. Let [f ∶N À N ′]m and

[f ′∶N À N ′]m be in MotM(N,N ′). If

F ([f ∶N À N ′]m) = F ([f ′∶N À N ′]m) ,

then

[idM ∶N ↷ N]i = F([f ′∶N À N ′]m)−1 ○ F([f ∶N À N ′]m) = F([f ′∶N À N ′]−1m ∗ [f ∶N À N ′]m)

= F([f̄ ′ ∗ f ∶N À N]m).

By Lemma 4.6.11 this is true if and only if

[f̄ ′ ∗ f ∶N À N]m = [IdM ∶N À N]m

which is equivalent to saying IdM ∗ (f̄ ′ ∗ f) is path-equivalent to a stationary motion, and

hence that f̄ ′ ∗f is path-equivalent to the stationary motion (since IdM ∗(f̄ ′ ∗f)
p∼ f̄ ′ ∗f).

So we have [f ∶N À N ′]m = [f ′∶N À N ′]m.

Remark 4.6.1. We note that it is possible for the functor F to restrict to a faithful functor

on some subsets and not on others. See Example 3 in the next section.

We give a subset fixing version of the previous theorem.

Theorem 4.6.13. Let M be a manifold. If

• π1(HomeoAM(∅,∅), idM) is trivial, and

• π0(HomeoAM(∅,∅), idM) is trivial

the functor

F∶MotAM →MCGAM ,
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where F defined analogously to Theorem 4.6.1, is an isomorphism of categories.

Proof. The proof proceeds exactly as for the previous theorem.

4.6.3 Examples using long exact sequence

Here we give examples of M for which F is an isomorphism, and examples for which it

is not. Even when we do not have a category isomorphism, the long exact sequence of

Lemma 4.6.10 will often be useful to obtain results about motion groupoids from results

about mapping class groupoids.

Example 1: the disk Dm.

Proposition 4.6.14. Let D2 be the 2-disk as defined in Definition 5.3.6. Then we have

an isomorphism

F∶Mot∂D
2

D2 →MCG∂D2

D2

with F as in Theorem 4.6.1.

Proof. We proved in Proposition 4.5.8 that MCG∂D
D2 (∅,∅) = π0(Homeo∂D

2

D2 (∅,∅), idM) is

trivial. Also Homeo∂D
2

D2 (∅,∅) is contractible, see e.g. Theorem 1.1.3.2 of [Ham74]. Hence

by Theorem 4.6.12 we have the result.

Remark 4.6.2. As we recalled in Section 4.5.2, if K is a set with n-elements in the interior

of D2, then the morphism group MCG∂D2

D2 (K,K) is isomorphic to the braid group in n

strands. Hence the previous proposition implies that the group Mot∂D
2

D2 (K,K) is isomor-

phic to the braid group in n-strands. This isomorphism was (from what we know) first

noticed in [Dah36; Gol81].

Remark 4.6.3. In fact, letting Dm be the m-dimensional disk, Homeo∂D
m

Dm (∅,∅) con-

tractible for all m. This follows from the Alexander Trick [Ale23]. Hence the same

argument as for the n = 2 case proves that we have an isomorphism

F∶Mot∂D
3

D3 →MCG∂D3

D3 .

If L is an unlinked set of n loops in D3, then this means that the loop braid group

[Dam17; BWC+07] can either be defined as MCG∂D3

D3 (L,L) or as Mot∂D
3

D3 (L,L). This
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latter isomorphism was also mentioned in [Dam17; Gol81].

We say a few words about what happens if we do not fix the boundary of the disk in the

mapping class groupoid as we think it adds some nice intuition. Let P2 ⊂ D2 be a subset

consisting of two points equidistant from the centre of the disk. Let τ2π be the path in

TOPh(D2,D2) such that τ2πt is a 2πt rotation of the disk.

The motion τπ ∶P2 À P2 represents a non-trivial equivalence class in MotD2 , and its end

point also represents a non trivial element of MCGD2 . Now consider the motion τπ ∗

τπ ∶P2 À P2. It is intuitively clear this motion is non-trivial in MotD2 by considering the

as its image as a homeomorphism D2 × I → D2 × I, see Figure 4.14. A proof follows from

the fact that the worldlines of the trajectory of the points in P2 transcribe a non-trivial

braid. However its endpoint is a 2π rotation, which clearly represents [idD2 ∶P 2 ↷ P 2]i in

MCGD2 .

Figure 4.14: Movement of two points during motion τπ ∗ τπ ∶P2 À P2 (see text), mapped
into MotI2 , and represented as the image of a homeomorphism I3 → I3.

In fact, the map F∶MotD2 → MCGD2 is neither full nor faithful. The space HomeoD2

is homotopy equivalent to S1 ⊔ S1, where the first connected component corresponds to

orientation preserving homeomorphisms and the second orientation reversing (see Section

1.1 of [Ham74]). Hence we have that π1(HomeoD2(∅,∅), idD2) = Z where the single

generating element corresponds to the 2π rotation. And π0(HomeoD2(∅,∅), idD2) = Z/2Z.

So we have an exact sequence:

. . .→ π1(HomeoD2(N,N), idD2)
i1∗Ð→ Z→MotD2(N,N)→MCGD2(N,N)→ Z/2Z.

Remark 4.6.4. Using again that Homeo∂D
m

Dm (∅,∅) contractible for all m we have an iso-

morphism

F∶Mot
{0,1}
I →MCG

{0,1}
I
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and since all motions in I are boundary fixing, an isomorphism

F∶MotI →MCG
{0,1}
I .

All mapping classes considered in Example 4.5.9 are boundary fixing, thus the isomorphism

implies MotI(N,N) where N = Q ∩ (0,1) is uncountably infinite.

Example 2: the 1-circle S1. The unit circle S1 is an example of very simple manifold

with different motion and mapping class groupoids.

Let P ⊂ S1 be a subset containing a single point in S1. Similarly to the disk, there is a

non-trivial morphism in MotS1(P,P ) represented by a 2π rotation of the circle, see Figure

4.15.

Figure 4.15: Example of motion of circle which is a 2π rotation carrying a point to itself.

We can prove this using the long exact sequence: Note that the connected component

containing idS1 of HomeoS1(P,P ) is contractible, see section 1 of [Ham74]. In particular

π1(HomeoS1(P,P ), idS1) is trivial. Also from [Ham74] we have that S1 ⊔ S1 is a strong

deformation retract of HomeoS1(∅,∅), with the first copy of S1 corresponding to orein-

tation preserving homeomorphisms and the second to orientation reversing. Hence the

sequence becomes

. . .→ {1}→ Z→MotS1(P,P )→MCGS1(P,P )→ Z/2Z.

The exact sequence gives an injective map Z ≅ π1(HomeoS1(∅,∅), idS1) → MotS1(P,P ).

Explicitly this sends n ∈ Z to the equivalence class of the pre-motion tracing a 2nπ rotation

of the circle S1. The space HomeoS1(P,P ) only has two connected components, consisting

of orientations preserving and orientation reversing homeomorphisms of S1 fixing P , each
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of which is connected. In particular it follows that the projection map MotS1(P,P ) →

MCGS1(P,P ) ≅ Z/2Z is the trivial group map, since its image only contains isotopy

equivalence classes of orientation preserving homeomorphisms. Hence the exact sequence

becomes:

. . .→ {1}→ Z ≅Ð→MotS1(P,P ) 0Ð→MCGS1(P,P ) ≅Ð→ Z/2Z.

In particular the equivalence class of the 2π rotation of S1 is non-trivial in MotS1(P,P ),

even though its image in MCGS1(P,P ) is trivial.

Example 3: the 2-sphere. Let M = S2 and P2 be a subset containing 2 points in the

sphere.

From Section 1.2 of [Ham74] we have the following,

π1(HomeoS2(P2, P2), idS2) = Z

π1(HomeoS2(∅,∅), idS2) = Z/2Z

π0(HomeoS2(∅,∅), idS2) = Z/2Z.

So the exact sequence becomes

⋅ ⋅ ⋅→ Z→ Z/2Z→MotS2(P2, P2)→MCGS2(P2, P2)→ Z/2Z.

Also from [Ham74], the map π1(HomeoS2(P2, P2), idS2) → π1(HomeoS2(∅,∅), idS2) is

surjective, with the non trivial element in π1(HomeoS2(∅,∅), idS2) represented by a path

which maps t ∈ I to a 2πt rotation about some chosen axis. Hence the map Z/2Z →

MotS2(P2, P2) is the zero map, and the same rotation is trivial in MotS2(P2, P2).

This can be seen directly by choosing the points to be antipodal, say the north and south

pole. Now consider a 2π rotation with axis through north and south pole. This is a path

fixing both points, hence a stationary path which is equivalent to the identity.

Looking back at the exact sequence, we have that the mapMotS2(P2, P2)→MCGS2(P2, P2)

is injective. From pg.50 of [FM11] we have that the subgroup of MCGS2(P2, P2) of ori-

entation preserving mapping classes is isomorphic to Z/2Z. If f and g are orientation

preserving, then g−1 ○ f is orientation reversing, thus HomeoS2(P2, P2) has two isomorphic
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connected components, corresponding to orientation reversing and orientation preserving

homeomorphisms. Thus we have that MCGS2(P2, P2) ≅ Z/2Z × Z/2Z. The non trivial

element in the first copy of Z/2Z is represented by a self-homeomorphism which swaps the

points by an orientation preserving self-homeomorphism, and the non trivial element in

the second component is represented by a self-homeomorphism swapping the two points

with is orientation reversing. Hence a motion which swaps the two points represents a non

trivial morphism in MotS2(P2, P2).

Let MCG+S2 be the mapping class groupoid constructed using only orientation preserving

homeomorphisms. Then we have a group isomorphism

MotS2(P2, P2) ≃MCG+S2(P2, P2).

Note this does not extend to a category isomorphism. Considering instead the subset

consisting of three points the groups are non isomorphic. Intuitively we can see this

by arguing that we cannot place three points on the sphere such that any 2π rotation

is a stationary motion. But as with the previous examples a 2π rotation of the sphere

represents the identity morphism in the mapping class groupoid.
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Chapter 5

Topological quantum field theories

for homotopy cobordisms

5.1 Introduction

Our motivating aim here is the construction of representations of embedded cobordism

categories, that is functors from some category of embedded cobordisms into the category

VectC of complex vector spaces and linear maps.

We discussed embedded cobordisms in Section 1.1.4, and directed the reader to various

references giving detailed constructions. Thus here, rather than specifying a choice of

embedded cobordism category, we will simply use EmbCob to denote some choice. We

aim to give a construction sufficiently general that it does not depend on the particular

choice.

We are interested in particular in functors from EmbCob to VectC which are defined in

terms of the homotopy of the complement of the embedding inside the ambient manifold.

The non-embedded TQFTs of [Yet92; Kit03] and an untwisted version of [DW90] can all

be shown to assign to a space Σ the vector space with basis homotopy classes of maps

π(Σ) → G. Each of these examples are generalised by [Qui95], which gives a class of

TQFTs constructed using the ‘homotopy content’ of the manifolds involved, an invariant

calculated using all homotopy groups. The approach of looking at the homotopy of the

complement is taken in certain invariants of knots [CF63], Artin’s representation of braids
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[Bir16] and its lift to loop braids [DMM21].

Such a functor may factor through other categories. In some cases, these categories will

be more convenient to work with. We will find it useful to study such functors by thinking

about an intermediate category HomCob such that we have a composition

F∶EmbCob→ HomCob→VectC

where F is a TQFT for EmbCob. Here the idea is that HomCob is some topologically

defined category, but one which forgets some of the information contained in the category

EmbCob, information that will not be seen by F, smooth structure, for example. We

construct functors HomCob to VectC, and these can be turned into TQFTs by fixing a

choice of embedded cobordism category. Here we construct the category HomCob and

give family of functors HomCob to VectC, one associated to each finite group.

A concrete (embedded) cobordism can be seen as a cospan, that is, a diagram of shape

i∶X →M ← Y ∶j, considered as a kind of morphism from X to Y . HereM represents some

spacetime evolution, X the initial state of the system, and Y the final state, and i and j

are maps from X and Y respectively intoM . The category HomCob will be constructed in

terms of concrete morphisms which are cospans of topological spaces. There is then a map

from a concrete non-embedded cobordism by forgetting the smooth manifold structure,

and from embedded cobordisms by taking the complement of the embedded manifold. Note

that working with topological spaces means that we do not have to check the complement

is itself a manifold, or can be turned into a manifold. Thus our construction is simplified

and allows for greater generality in terms of the particle types and evolutions we can

consider. Our first objective is to construct a category HomCob using cospans which will

be useful for constructing homotopy invariant topological quantum field theories.

The ‘natural’ formalism for such constructions depends on one’s perspective, i.e. upon

one’s aims. For example we have the categorical/‘join’ perspective following Benabou

[Bén67]. One of Benabou’s archetypes is the bicategory Sp(V ) of spans over a category

V with pullbacks and a distinguished choice of pullback for each span. And a ‘dual’,

Cosp(V ) of cospans over a category with pushouts and choices. But this comes at a cost

of inducing categories with properties that are undesirable in our setting, in particular the
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choice of identity cospan and failure of homotopy invariance. If one follows this line then

a fix (the fix, essentially tautologically) is some form of ‘collaring’, which in this context

means conditions on the maps in the cospans. This is the approach of [Mor09; Gra07].

These can be compared with [Fon15], for example, whose decorated cospans do not include

a collaring.

Physically this collaring is the same as the conditions on the way we are allowed to make

‘cuts’ discussed in Section 1.1.4, and will be depend on the field theory. In the category

of cobordisms, concrete morphisms are cospans i∶X → M ← Y ∶j of smooth manifolds

X,Y and M , with the condition that the map obtained using the universal property of

the colimit, ⟨i, j⟩∶X ⊔Y → ∂M , is a diffeomorphism. The axioms of TQFT give that, for

a manifold X, the evolution X × I and thus the cospan ι0∶X →X × I←X ∶ι1 should be an

identity. Thus to obtain a category of cobordisms, it is necessary to take cospans up to

a notion of diffeomorphism of cospans. Notice that the equivalence required to obtain a

category was essentially forced by the collaring. Equivalence up to diffeomorphism is also

forced by issues with the smooth structure of a pushout of smooth manifolds, but this will

not be so informative for our purposes.

Here we introduce cospans of topological spaces with the condition that the map obtained

from the universal property of the coproduct is a closed cofibration. (Note these are

cofibrations in the Strøm model structure on topological spaces (see [DS95]), and many

of our results could alternatively be proved using tools from model categories.) Pushouts

of cofibrations behave well with respect to homotopy, this is shown by a version of the

van Kampen theorem due to Brown [Bro06], here it is Theorem 5.2.17. In this case the

appropriate equivalence relation, to ensure the equivalence class of ι0∶X → X × I ← X ∶ι1

is an identity, is a notion of homotopy equivalence of cospans. We note that composing

cospans of topological spaces via pushouts gives a magmoid; the composition itself does

not necessitate an equivalence as in the case of smooth manifolds. We still have to choose

an element of the diffeomorphism class of the pushout, but we can do this in a global way,

unlike for smooth manifolds.

We also construct a functor into Vect from the category HomCob of homotopy cobordisms.

The construction of our functor is largely based on the approach taken in [Yet92], although

Yetter follows most of the construction with triangulations, whereas we work with the
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fundamental groupoid. The key novel part of our construction with respect to [Yet92] is

our choice of source category.

5.1.1 Chapter Overview

In Section 5.2 we recall the definition of a cofibration, as well as some properties that we

will make use of. We also have Corollary 5.2.18 which is a corollary of a version of the

van Kampen theorem using cofibrations, due to [Bro06]. Our construction relies on this

result.

In Section 5.3, we begin by constructing a magmoid whose objects are topological spaces

and whose morphisms are concrete cofibrant cospans, which are cospans with some condi-

tions. We then quotient by a congruence in terms of homotopy equivalences to obtain a

category CofCsp which has cofibrant cospans as morphisms, this is Theorem 5.3.16. We

then have Theorem 5.3.21 which proves there is a monoidal structure on CofCsp with

monoidal product which, on objects, is given by disjoint union. Next we have the category

HomCob (Theorem 5.3.32) which is a subcategory of CofCsp with a finiteness condition

on spaces. In Theorem 5.3.34 we have a version with the monoidal structure from CofCsp.

We begin Section 5.4 by constructing, in Lemma 5.4.5, another magmoid which has

as morphisms cospans of pairs of a topological space and a subset of basepoints, we

call this bHomCob. We then construct a magmoid morphism Z!
G∶bHomCob → VectC

(Lemma 5.4.11), which depends on a finite group G. Under Z!
G, pairs (X,X0) are mapped

to the vector space with basis the set of maps π(X,X0) to G. We also give some exam-

ples. We then take a colimit over a diagram whose vertices are all allowed sets of base-

points. This leads to a map ZG∶Ob(HomCob) → Ob(VectC), given in Definition 5.4.20.

We then extend this to morphisms so we have, in Lemma 5.4.23, a magmoid morphism

ZG∶HomCob → VectC. In Theorem 5.4.24 we prove equivalence is preserved and thus

we have a functor ZG∶HomCob → VectC. In general the colimit construction is a global

equivalence relation on an uncountably infinite set. Theorem 5.4.27 gives an alternative

interpretation of ZG(X), as the vector space with basis {f ∶π(X,X0)→ G} / ≅ for some

choice of basepoints X0, where ≅ denotes functors up to natural transformation. This

gives ZG in terms of a local equivalence relation on a finite set. This result makes explicit

calculation possible. It also follows that as a functor from Cobn, the (non-embedded)
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cobordism category, our functor is an untwisted version of Dijkgraaf-Witten [DW90]. Fi-

nally we have Theorem 5.4.27 which says, for X ∈ Ob(HomCob), ZG(X) is isomorphic to

the vector space with basis {π(X)→ G} / ≅, hence our alternative construction leads to

the same map on objects as in [Mor09].

5.2 Cofibrations in Top and a van Kampen theorem

In Section 5.3 we define a magmoid whose morphisms are cospans of cofibrations, and

quotient by a congruence in terms of cofibre homotopy equivalence. Then, in Section 5.4,

our TQFT construction will rely on a version of the van Kampen Theorem for cofibrations.

Here we recall the results we will need. More detail on cofibrations can be found in [Die08,

Ch. 5] or [Bro06, Ch. 7], the version of the van Kampen theorem reproduced here can be

found in [Bro06, Thm. 9.1.2], and see [May99, Ch. 6] for cofibre homotopy equivalence.

5.2.1 Cofibrations

A cofibration can be thought of as a homotopically well behaved embedding. Specifically,

an embedding i∶A → X is a cofibration if we have both, that there is an open neighbour-

hood of the image which strongly deformation retracts onto i(A), and that this retraction

can be extended to a homotopy on the whole of X. In other words there is an open neigh-

bourhood of the image which, up to a homotopy of X, is equivalent to the image. This

characterisation of a cofibration is not immediately obvious from the below definition but

we will see it is equivalent in Theorem 5.2.8.

One can think of the previous characterisation of a cofibration as a version of the Collar

neighbourhood Theorem of a boundary of a manifold. To construct cobordism categories

(see [Mil65]) the collar neighbourhood is required to prove the identity axiom. The

cofibration condition we impose will play a similar role in our category construction, see

Theorem 5.3.16.

The following definition is from [Die08, Sec. 5.1].

Definition 5.2.1. Let A and X be spaces. A map i∶A→X has the homotopy extension

property, with respect to the space Y , if for each homotopy h∶A × I → Y and each map

f ∶X → Y with (f ○ i)(a) = h(a,0) there exists a homotopy H ∶ X × I → Y , extending h,
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with H(x,0) = f(x) and H(i(a), t) = h(a, t). This is illustrated by the following diagram.

X

A X × I Y

A × I

ιX0

f

i

ιA0

∃H

i×idI

h

(Where for any space X, ιX0 ∶X →X × I is the map x↦ (x,0).)

Definition 5.2.2. Let A and X be spaces. We say that i∶A → X is a cofibration if

i satisfies the homotopy extension property for all spaces Y . A closed cofibration is a

cofibration with image a closed set. If A ⊆ X is a subspace and the inclusion ι∶A → X is

a cofibration, we say (X,A) is a cofibred pair.

Remark 5.2.1. Therefore a map i∶A→X is a cofibration if and only if the following square

X

A X × I

A × I

ιX0i

ιA0
i×idI

is a weak pushout : a pushout without the uniqueness condition.

The following are well known results.

Lemma 5.2.3. The composition of two cofibrations is a cofibration.

Proof. Let A,X and Y be spaces and suppose i∶A → X and j∶X → Y are cofibrations.

Let K be any space and f ∶Y →K and h∶A × I→K be maps with h(a,0) = f ○ i ○ j(a) for

all a ∈ A. Consider the following diagram:

A × I

A X × I
K

X Y × I

Y

h
i×id

i

iA0

j×id

h′

j

iX0

H

iY0

f
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Using that i is a cofibration we can extend the maps h and f ○ j to a map h′∶X × I → Z.

Now using that j is a cofibration we can extend maps f and h′ to a map H ∶Y × I → Z,

hence j ○ i∶A→ Y is a cofibration.

Lemma 5.2.4. Every homeomorphism is a cofibration.

Proof. Suppose X and X ′ are homeomorphic spaces via some homeomorphism ϕ∶X →X ′.

Let K be any space, f ∶X ′ → K a map and h∶X × I → K a homotopy such that for all

x ∈X h(x,0) = f ○ ϕ(x). Then h ○ (ϕ−1 × id) is a homotopy extending f .

Proposition 5.2.5. Let A and X be spaces and i∶A→X a map which is a homeomorphism

onto its image. Then i is a cofibration if and only if (X, i(A)) is a cofibred pair.

Proof. Suppose i∶A → X is a cofibration and K is any space. Consider a map f ∶X → K

and a homotopy h∶ i(A) × I → K such that for all x ∈ i(A), h(x,0) = f(x). Applying the

homotopy extension property to f and h ○ (i × id) gives a homotopy H ∶X × I → K. This

same H is also a homotopy extending h, and hence (X, i(A)) is a cofibred pair.

Suppose i∶A → X a map which is a homeomorphism onto its image and (X, i(A)) is a

cofibred pair. From Lemma 5.2.4 we have that the homeomorphism A→ i(A), a↦ i(a) is

a cofibration and the inclusion i(A)→X is a cofibration by assumption,. Hence i∶A→X

is a composition of cofibrations, and so a cofibration by Lemma 5.2.3.

Theorem 5.2.6. (See for example [Str67, Th. 1]) Let A and X be spaces. If i∶A→ X is

a cofibration then i is a homeomorphism onto i(A) with the subspace topology (i.e. i is an

embedding).

To prove specific pairs are cofibred we have the following two classical results.

Proposition 5.2.7. (See for example [Die08, Prop. 5.1.2]) Let A be a closed subspace of

X. The pair (X,A) is cofibred if and only if X × {0} ∪ A × I is a retract of X × I.

(Recall N ⊂M is a retract ofM if there is a continuous map r∶M → N such that r(n) = (n)

for all n ∈ N .)
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The following lemma characterises cofibrations as inclusions such that there is a neighbour-

hood of the image that deformation retracts onto, and hence is homotopy equivalent to the

image. This is reminiscent of the Collar neighbourhood Theorem for smooth manifolds.

Theorem 5.2.8. [Str67, Th. 2] Let A be a closed subspace of space X. Then (X,A) is a

cofibred pair if and only if there exists

i) a neighbourhood U ⊆ X of A and a homotopy H ∶U × I → X such that for all t ∈ I,

x ∈ U and a ∈ A, we have H(x,0) = x, H(a, t) = a and H(x,1) ∈ A, and

ii) a map ϕ∶X → I such that A = ϕ−1(0) and ϕ(x) = 1 for all x ∈X −U .

There is also a slightly more general version of the previous theorem (see [Str69, Lem. 4])

which characterises cofibred pairs in a similar way without restricting to closed subspaces.

However we will only need the case of closed subspaces and this one will be easier to work

with. Observe the following useful lemma about cofibrations and the coproduct in Top.

Lemma 5.2.9. Let X and Y be topological spaces. The map ι1∶X →X ⊔ Y , x↦ (x,1) is

a cofibration.

Proof. Let K be any space. Suppose we have a homotopy h∶X×I→K and map f ∶X⊔Y →

K such that h(x,0) = f ○ ι1(x). We can define a map H ∶ (X ⊔Y )× I→K commuting with

h and f as follows.

H((x, i), t) =
⎧⎪⎪⎨⎪⎪⎩

h(x, t) if i = 1
f(x) if i = 2

Examples of cofibrations

Here we give some key examples of cofibrations that will be useful later.

Example 5.2.10. For any space X, the pairs (X,X) and (X,∅) are cofibred.

Example 5.2.11. The pair (I,{0,1}) is cofibred.

Consider I × I as a subset of R2 and let z = (12 ,
3
2) ∈ R

2. For any x ∈ I × I, let x′ be the

unique point of I×0 ∪ {0,1}×I such that z, x, x′ are colinear. Then ρ∶x↦ x′ is a retraction
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I × I to I × 0 ∪ {0,1} × I. This is illustrated by the following figure.

z = (12 ,
3
2)

x′

x

x

x′

Example 5.2.12. The pair (Dn, Sn−1) is cofibred.

A retraction r∶Dn → Sn−1 × I ∪ Dn ×0 can be constructed in a similar way to the previous

example, see [Die08, Ex. 2.3.5].

The previous two examples are special cases of the following proposition for manifolds.

Proposition 5.2.13. Let M be a smooth manifold with boundary. The inclusion i∶∂M →

M is a cofibration.

Proof. The Collar neighbourhood Theorem [Mil65, Cor. 3.5] says that there is a diffeo-

morphism f ∶N → ∂M × [0,1), where N is a open neighbourhood of ∂M . Specifically

we can choose N such that the we can identify the closure of N with ∂M × I, where

∂M ≅ ∂M × {0}. Then the function

H ∶ (∂M × [0,1)) × I→M

((n, s), t)↦ (n, s(1 − t))

is a homotopy satisfying condition (i) of Theorem 5.2.8. Define a map ϕ∶M → I as follows.

ϕ(m) =
⎧⎪⎪⎨⎪⎪⎩

s if m = (n, s) ∈ ∂M × [0,1]
1 if m ∈M ∖ (∂M × [0,1))

Notice that these definitions agree on the overlap so ϕ is continuous. Hence by Theo-

rem 5.2.8 the inclusion i∶∂M →M is a cofibration.

Recall that a smooth submanifold ofM is a subset N ⊂M such that the identity inclusion

ι∶N → M is a diffeomorphism onto its image and a topological embedding, as in [Lee03,
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Ch. 5]. A submanifold N ⊂M is neatly embedded if ∂N ⊂ ∂M .

We have the following stronger proposition.

Proposition 5.2.14. Let N be a closed smooth submanifold of a smooth manifold M

which is neatly embedded. Then the inclusion ι∶N →M is a cofibration.

Proof. There exists a tubular neighbourhood U ⊂M of N [Hir12, Th. 6.3] which has the

structure of a vector bundle. This allows us to see points in U as pairs (n, v) where n ∈ N

and v is a vector in the fibre over n. Further, this neighbourhood admits a Reimannian

metric [Kos13, Thm. 3.2] and hence we can choose an ϵ > 0 and take U to be the open

neighbourhood obtained by taking (n, v) with ∣v∣ < ϵ, and Ū ⊂M the closed neighbourhood

of N obtained by taking all (n, v) ∈ U with ∣v∣ ≤ ϵ. Now, as in the previous proposition,

we can define a homotopy

H ∶U × I→M

((n, v), t)↦ (n, (1 − t)v)

and a map ϕ∶M → I with

ϕ(m) =
⎧⎪⎪⎨⎪⎪⎩

∣v∣/ϵ if m = (n, v) ∈ Ū
1 if m ∈M ∖ Ū .

In many cases it will be easier to find a CW complex structure than to prove we have a

smooth manifold submanifold pair. In this case we have the following proposition.

Proposition 5.2.15. Let X be a CW complex and let A be a subcomplex of X. Then the

inclusion i∶A→X is a closed cofibration.

Proof. If (X,A) is a CW pair, then X × {0} ∪A × I is a deformation retract of X × I, this

is [Hat02, Prop. 0.16].

5.2.2 A van Kampen Theorem for cofibrations

The following generalisation of the van Kampen Theorem, due to Brown [Bro06], says

that pushouts are preserved by the fundamental groupoid functor if at least one of the
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maps we take the pushout over is a cofibration. Hence, in this case, we can obtain the

fundamental groupoid of a pushout in Top as a pushout of groupoids.

Suppose we have spaces X0, X1 and X2 and maps f ∶X0 → X1 and g∶X0 → X2. Consider

the pushout square:

X0 X1

X2 X1 ⊔X0 X2

f

g p1

p2

(5.1)

Now let A, B and C be representative subsets of X0, X1 and X2 respectively, with f(A) =

B ∩ f(X0) and g(A) ⊆ C. Let D = B ⊔A C, the pushout of f ∣A∶A→ B and g∣A∶A→ C.

Lemma 5.2.16. Under the above conditions conditions D is representative in X1 ⊔X0 X2

(See Definition 3.3.11 for representative).

Proof. It is clear that B⊔C is representative in X1⊔X2. By Lemma 3.3.12 surjections send

representative subsets to representative subsets, hence we have the result by considering

the surjection ⟨p1, p2⟩∶X1 ⊔X2 →X1 ⊔X0 X2.

Theorem 5.2.17. (See [Bro06, Thm. 9.1.2].) Now suppose in addition to the above

conditions we take X0 ⊆ X1 and f = ι∶X0 → X1 the inclusion map in (5.1). Then the

following diagram is a pushout if (X1,X0) is a cofibred pair.

π(X0,X0 ∩B) π(X1,B)

π(X2,C) π(X1 ⊔X0 X2,D)

π(ι)

π(g) π(p1)

π(p2)

Corollary 5.2.18. Now suppose in addition to the above conditions, we instead consider

f = i∶X0 →X1 any cofibration in (5.1). Then the following square is a pushout.

π(X0,A) π(X1,B)

π(X2,C) π(X1 ⊔X0 X2,D)

π(i)

π(g) π(p1)

π(p2)

Proof. Using Proposition 5.2.5 and Theorem 5.2.6 we can separate the cofibration i into

two maps, a homeomorphism ĩ∶X0 → i(X0) and a cofibred inclusion ι∶ i(X0) → X1. Con-
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sider the following commuting pushouts.

i(X0) X1

X0

X2 X1 ⊔X0 X2

ι

g○̃i−1 p1

g

iĩ

p2

Notice that the pushout of g and i, and of g ○ ĩ−1 and ι, really is the same since ĩ is a

homeomorphism. Choosing the subset i(A) in i(X0) and keeping all other subsets as in

the statement of the corollary, the outer pushout is preserved by the fundamental groupoid

functor by Theorem 5.2.17. Hence, by functoriality, so is the inner pushout.

5.2.3 Cofibre homotopy equivalence

We will require a notion of homotopy equivalence of spaces relative to maps from a shared

space.

Definition 5.2.19. A space under A is a map i∶A → X. A map of spaces under A from

i∶A→X to j∶A→ Y is a map f ∶X → Y such that we have a commuting diagram

A

X Y

i j

f
.

Suppose f ′∶X → Y is map under A from i∶A→X to j∶A→ Y . A homotopy under A from

f to f ′ is a continuous map H ∶X × I→ Y such that

• for all a ∈ A and t ∈ I, H(i(a), t) = j(a),

• for all x ∈X, H(x,0) = f(x),

• for all x ∈X, H(x,1) = f ′(x).

Proposition 5.2.20. Define a relation on spaces under A as follows. We have (i∶A →

X) ∼ (j∶A → Y ) if there exists a map under A, f ∶X → Y from i∶A → X to j∶A → Y , and

a map of spaces under A, f ′∶Y → X from j∶A → Y to i∶A → X such that there exists a

homotopy under A from f ○ f ′ to the identity on Y and from f ′ ○ f to the identity on X.
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This is an equivalence relation.

Proof. Note that f ○ f ′ is a map under A from j∶A → Y to j∶A → Y since f ○ f ′ ○ j(a) =

f ○ i(a) = j(a). Similarly f ′ ○ f is a map under A from i∶A→X to i∶A→X. We omit the

rest of the proof as it proceeds exactly as for the usual notion of homotopy equivalence.

Definition 5.2.21. Given a space A, the equivalence relation described in Proposi-

tion 5.2.20 is called cofibre homotopy equivalence.

The following technical result, which justifies the choice of name, will be crucial for our

construction. Proofs are present in [May99; Bro06; Str72].

Theorem 5.2.22. (See for example [Bro06, Thm. 7.2.8].) Let A, X and Y be spaces.

Let i∶A → X and j∶A → Y be cofibrations and let f ∶X → Y be a map such that f ○ i = j.

Suppose that f is a homotopy equivalence from X to Y , then f is a cofibre homotopy

equivalence i∶A→X to j∶A→ Y .

5.3 Homotopy cobordisms

In this section the main result is Theorem 5.3.34 which says that we have a symmetric

monoidal category, HomCob, of homotopy cobordisms.

We proceed by first constructing a magmoid whose morphisms are concrete cofibrant

cospans, which compose via pushouts. We then quotient by a congruence to obtain the

category CofCsp (Theorem 5.3.16) and show that there exists a symmetric monoidal struc-

ture on CofCsp (Theorem 5.3.21). We add some finiteness conditions to the topological

spaces in cospans to arrive at the category HomCob (Theorem 5.3.32) as a subcategory of

CofCsp and show that it becomes a symmetric monoidal category with the same monoidal

structure as CofCsp (Theorem 5.3.34).

We note that the congruence we use is chosen with the type of functor we will construct

in the next section already in mind. We want our quotient category of CofCsp to be a

manageable object to work with, but we don’t want to make any morphisms equivalent

that might have been mapped to different linear maps by the functor. We have already
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said that we are interested in functors which depend on the homotopy of the spaces, hence

the congruence is a defined in terms of a suitable version of homotopy equivalence.

We note that our cospan categories deviate from those of e.g. [Fon15], in our choice of

identity. For Fong, the category identity at an object X is the equivalence class of the

cospan idX ∶X → X ← X ∶ idX . In a topological quantum field theory we require that

any arbitrary time evolution of a state X is evaluated as the identity if the state X does

not change. Hence we insist identities are the equivalence classes of cospans of the form

ιX0 ∶X →X × I←X ∶ιX1 . As a result more work is required to prove that this is, in fact, an

identity; see Theorem 5.3.16.

5.3.1 Magmoid of concrete cofibrant cospans CofCsp

Here we define concrete cofibrant cospans, construct a composition and organise them into

a magmoid.

Definition 5.3.1. Let X, Y and M be spaces. A concrete cofibrant cospan from X to Y

is a diagram i∶X → M ← Y ∶j such that ⟨i, j⟩∶X ⊔ Y → M is a closed cofibration. (The

map ⟨i, j⟩ is obtained via the universal property of the coproduct, see Diagram (3.3).)

For spaces X,Y ∈ Top, we define the set of all concrete cofibrations

CofCsp(X,Y ) =
⎧⎪⎪⎨⎪⎪⎩

X Y

M
i j

RRRRRRRRRRRRR
⟨i, j⟩ is a closed cofibration

⎫⎪⎪⎬⎪⎪⎭
.

Remark 5.3.1. The previous definition forces the images of i and j to be disjoint since a

cofibration is a homeomorphism onto its image (Theorem 5.2.6).

Example 5.3.2. Let X be a space. The cospan idX ∶X → X ← X ∶ idX is, in general, not

a concrete cofibrant cospan. This is clear from the previous remark.

Physically we expect the identity cospan to be (the equivalence class of) ιX0 ∶X →X × I←

X ∶ιX1 .

Proposition 5.3.3. For X a topological space, the cospan ιX0 ∶X → X × I ← X ∶ιX1 is a

concrete cofibrant cospan.
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Proof. The complement of the image of ⟨ιX0 , ιX1 ⟩∶X ⊔X →X ×I is X ×(0,1) which is open,

so the image is a closed set.

We now show ⟨ιX0 , ιX1 ⟩∶X ⊔X → X × I is a cofibration. Let K be any space and suppose

we have a homotopy h∶ (X ⊔X)× I→K. By Theorem 3.5.16 the product with I preserves

colimits, using this together with the universal property of the coproduct, the map h∶ (X ⊔

X) × I → K is uniquely defined by a pair of maps h0∶X × I → K and h1∶X × I → K. Now

suppose we have a map f ∶X × I→K such that for all x ∈X we have h0(x,0) = f(x,0) and

h1(x,0) = f(x,1). (Notice this implies h(x̃,0) = f(⟨ιX0 , ιY0 ⟩(x̃)) for x̃ ∈X ⊔X.)

We can construct a homotopy H ∶ (X ×I)×I→K which commutes with h and f as follows.

Let L = {0,1} × I ∪ I × {0} be the subset of the unit square consisting of the two vertical

edges and the bottom horizontal edge. Let Γ∶ I × I → L be a retraction sending the unit

square to the subset L, see Example 5.2.11. We denote elements of X ×L ⊂ (X × I) × I as

triples (x, s, t) and define g∶X ×L→K as

g(x, s, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x, s) t = 0,
h0(x, t) s = 0,
h1(x, t) s = 1.

By assumption these agree on the overlap and so g is continuous. Now defineH ∶ (X×I)×I→

K by g(x,Γ(s, t)).

The following definition can be found in e.g. [Lur09], where it is referred to as a bordism.

Definition 5.3.4. An n-dimensional concrete cobordism from an (n − 1)-dimensional

smooth oriented manifold X to an (n − 1)-dimensional smooth oriented manifold Y , is

an n-dimensional smooth oriented manifold M equipped with an orientation preserving

diffeomorphism ϕ∶ X̄ ⊔ Y → ∂M (where the bar denotes the opposite orientation).

Proposition 5.3.5. There is a canonical way to map a concrete cofibration to a concrete

cofibrant cospan. Precisely, let X, Y and M be smooth oriented manifolds, and let M be

a concrete cobordism from X to Y . Hence there exists a diffeomorphism ϕ∶ X̄ ⊔ Y → ∂M .

Define maps i(x) = ϕ(x,0) and j(y) = ϕ(y,1). Then, using X, Y and M to denote the

underlying topological spaces, i∶X →M ← Y ∶j is a concrete cofibrant cospan.
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S1

D2

ji
S1S1S1

Figure 5.1: Here i is a diffeomorphism from S1 to the boundary of D2, and j is a smooth
embedding of S1 into the interior of the disk D2. We have that i∶S1 → D2 ← S1 ∶j is a
concrete cofibrant cospan (Proposition 5.3.6).

Proof. The pair (M,∂M) is cofibred by Proposition 5.2.13. The map ⟨i, j⟩ is a homeo-

morphism onto its image ∂M as ϕ is a diffeomorphism, hence using Proposition 5.2.5 ⟨i, j⟩

is a cofibration. The boundary ∂M is closed so ⟨i, j⟩ a closed cofibration.

Proposition 5.3.6. (See Figure 5.1.) There is a concrete cofibrant cospan i∶S1 → D2 ←

S1 ∶j where i is a diffeomorphism sending S1 to the boundary of D2, and j is a smooth

embedding of the S1 into the interior of D2.

Proof. The map ⟨i, j⟩∶S1 ⊔ S1 → D2 is the composition of a homeomorphism from S1 ⊔

S1 to i(S1) ⊔ j(S1), and an inclusion ι∶ i(S1) ⊔ j(S1) → D2. Proposition 5.2.14 gives

that ι is a cofibration, by Proposition 5.2.5 the homeomorphism is a cofibration, and by

Proposition 5.2.3 the composition is a cofibration.

Example 5.3.7. Consider the manifold I3 and let M ′ be an embedded submanifold as

illustrated by the black part of Figure 5.2. Let M = I3∖M ′, X = (I2×{0})∖(M ∩(I2×{0}))

and Y = (I2×{1})∖(M∩(I2×{1})), i.e. X is the complement of M ′ in top boundary in the

figure and Y the bottom boundary. There is a concrete cofibrant cospan i∶X →M ← Y ∶j

where i and j are subspace inclusions. We can see this by noticing that there are non-

intersecting neighbourhoods of the top and bottom boundary of M are homeomorphic to

X × [0, ϵ] and Y × [0, ϵ′] with ϵ, ϵ′ ∈ R. Thus an H and ϕ satisfying the conditions of

Theorem 5.2.8 can be constructed as in the proof of Proposition 5.2.13.

Example 5.3.8. There is a concrete cofibrant cospan as shown in Figure 5.3, and ex-

plained in the caption. Proposition 5.2.13 gives that ⟨i, j⟩ is a cofibration. Notice also that

the boundary is a closed subset of M .
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X

Y

M

Figure 5.2: Here the grey lines represent the manifold I3, and the black lines represent an
embedded submanifoldM ′ ⊂ I3. Let X, be the complement ofM ′ in the bottom boundary,
I2 × {0}, Y the complement in the top boundary, I2 × {1}, and M the complement in I3.
Then there is a concrete cofibrant cospan i∶X → M ← Y ∶j where i and j are subspace
inclusions.

Lemma 5.3.9. For any pair X,Y ∈ Ob(Top) there is a bijection

rev ∶ CofCsp(X,Y ) → CofCsp(Y,X)
X Y

M
i j

↦
Y X

M.
j i

Proof. We first check rev is well defined. Suppose we have a map h∶ (Y ⊔X)× I→K and a

map f ∶M →K for any space K which satisfy the conditions of Definition 5.2.1. The map

h canonically determines a map h′∶ (X ⊔Y )× I→K. The map ⟨i, j⟩ is a cofibration so we

can apply the homotopy extension property to give a map H ∶M × I→K which extends f

and h′. This H also commutes with f and h.

The image of ⟨j, i⟩ is the same as the image of ⟨i, j⟩ so it is a closed cofibration.

It is clear that rev is its own inverse, thus it is a bijection.

Lemma 5.3.10. If i∶X → M ← Y ∶j is a concrete cofibrant cospan, then i∶X → M and

j∶Y →M are closed cofibrations.

Proof. The map i∶X → M is equal to the composition X
ι1Ð→ X ⊔ Y ⟨i,j⟩ÐÐ→ M . The map

ι1 is a cofibration by Lemma 5.2.9 and the composition of cofibrations is a cofibration by

Lemma 5.2.3, hence i is a cofibration.

We now prove that the image of X under the composition is closed in M . Here we use

primes to denote images of ⟨i, j⟩. The map ⟨i, j⟩ is an embedding by Theorem 5.2.6, hence
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X

Y

M

Figure 5.3: Let M be the represented manifold, let X be the bottom boundary and Y the
top boundary. Then there is a concrete cofibrant cospan i∶X →M ← Y ∶j where i and j
are subspace inclusions.

a homeomorphism onto its image, and it is straightforward to see that ι1(X) is closed in

X ⊔ Y . Hence there exists an open U ⊆ M with U ∩ (X ⊔ Y )′ = (X ⊔ Y )′ ∖ ι1(X)′. The

image of X ⊔Y is closed since ⟨i, j⟩ is a closed cofibration, so M ∖ (X ⊔Y )′ is an open set.

Thus there is an open set M ∖ (X ⊔ Y )′ ∪ U = M ∖ ι1(X)′, hence the image of X under

⟨i, j⟩ ○ ι1 is closed.

The same argument gives that j is a closed cofibration.

Lemma 5.3.11. (I) For any spaces X,Y and Z in Ob(Top) there is a composition of

concrete cofibrant cospans

● ∶CofCsp(X,Y ) × CofCsp(Y,Z)→ CofCsp(X,Z)

⎛
⎜
⎝
X Y

M
i j

,

Y Z

N
k l

⎞
⎟
⎠
↦
X Z

M ⊔Y N
ĩ l̃

where ĩ = pM ○ i and l̃ = pN ○ l are obtained via the following diagram

X Y Z

M N

M ⊔Y N,

i j k l

pM pN

the middle square of which is the pushout of j∶M ← Y → N ∶k in Top.
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(II) Hence there is a magmoid

CofCsp = (Ob(Top),CofCsp(−,−), ●).

Proof. We need to prove that ⟨̃i, l̃⟩ ∶X ⊔ Z → M⊔YN is a closed cofibration. We first

check the map is closed. The image of ⟨̃i, l̃⟩ is equal to pM(i(X)) ∪ pN(l(Y )). Sets in

M ⊔Y N are closed if the preimage under pM and pN is closed inM and N respectively. By

Proposition 5.2.5, ⟨i, j⟩ is a homeomorphism onto its image, hence we have i(X)∩j(Y ) = ∅.

This implies p−1N (pM(i(X))) = ∅, which is closed, and p−1M (pM(i(X))) = i(X) is closed by

Lemma 5.3.10. Hence pM(i(X)) is closed in M ⊔Y N . Similarly pN(l(Y )) is closed.

We now check ⟨̃i, l̃⟩ is cofibration. Define J to be the map obtained by taking either route

around the pushout square:

Y

M N

M ⊔Y N.

j k

J

pM pN

We will prove that we have a cofibration ⟨⟨̃i, J⟩, l̃⟩⟩∶ (X ⊔ Y ) ⊔ Z → M ⊔Y N , then by

Lemmas 5.2.3 and 5.2.9 we then have that the composition

X ⊔Z (X ⊔ Y ) ⊔Z M ⊔Y N
⟨⟨̃i,J⟩,l̃⟩

,

which is equal to ⟨̃i, l̃⟩, is a cofibration. Let K be a space and suppose we have maps

f ∶M ⊔Y N →K and h∶ ((X ⊔Y )⊔Z)× I→K satisfying the conditions of Definition 5.2.1.

We construct a map H ∶ (M ⊔Y N) × I → K extending f and h as follows. First note that

by Theorem 3.5.16, the product with I preserves coproducts and thus we have canonical

isomorphisms, ((X⊔Y )⊔Z)×I ≅ ((X×I)⊔(Y ×I))⊔(Z×I) and (M⊔YN)×I ≅M×I⊔Y ×IN×I.

By the universal property of the coproduct we have that the map h is in one to one

correspondence with a triple of maps hX ∶X×I→K, hY ∶Y ×I→K and hZ ∶Z×I→K. Now

using the homotopy extension property of ⟨i, j⟩ on the maps ⟨hX , hY ⟩ and the restriction

of f to M , we obtain a map HL∶M × I → K. Similarly we obtain a map HR∶N × I → K.

These two homotopies agree on the images of Y × I by construction so we can use the

universal property of the pushout to obtain a map ⟨HL,HR⟩∶M × I⊔Y ×IN × I→K which,
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precomposed with the canonical isomorphism (M⊔Y N)×I ≅M×I⊔Y ×IN×I, is a homotopy

extending h.

Proposition 5.3.12. The magmoid CofCsp is reversible.

Proof. This follows from Proposition 5.3.9.

5.3.2 Category of cofibrant cospans CofCsp

Notice that the composition in CofCsp is not strictly associative. Here we impose a con-

gruence on concrete cofibrant cospans such that we obtain a category.

One option would be cospan isomorphism, by which we mean i∶X →M ← Y ∶j is equivalent

to i′∶X → N ← Y ∶j′ if there exists a homeomorphism M → N which commutes with the

cospans. This is a direct analogue of the equivalence usually used for smooth manifold

cobordisms in e.g. [Lur09]. This equivalence would be sufficient to give an associative

composition. However it will not be sufficient to ensure the cospan ιX0 ∶X →X × I←X ∶ιX1
behaves as an identity. (This is the image of a representative of the smooth manifold

cobordism identity under the map described in Proposition 5.3.5.) One way to see this

is by thinking about the cospan in Example 5.3.6: taking a pushout over S1 to glue the

cylinder S1 × [0,1] to the interior of the disk will not give a space homeomorphic to the

disk. Hence we use a stronger equivalence relation.

Definition 5.3.13. For each pairX,Y ∈ Ob(CofCsp), we define a relation on CofCsp(X,Y )

by

⎛
⎜
⎝
X Y

M
i j

⎞
⎟
⎠
ch∼
⎛
⎜
⎝
X Y

Ni′ j′

⎞
⎟
⎠

if there exists a commuting diagram

M

X Y

M ′

ψ

i

i′

j

j′

where ψ is a homotopy equivalence.

Lemma 5.3.14. The relation
ch∼ an equivalence relation.
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We call the map ψ a cospan homotopy equivalence, and refer to an equivalence class of

concrete cofibrant cospans as just a cofibrant cospan, denoted [i∶X →M ← Y ∶j]
ch
. Thus

we have

CofCsp/ ch∼ (X,Y ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

X Y

M
i j

⎤⎥⎥⎥⎥⎦ch

RRRRRRRRRRRRR
⟨i, j⟩ is a closed cofibration

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Proof. We can rewrite this relation in terms of a map ψ∶M → M ′ under X ⊔ Y from

⟨i, j⟩∶X ⊔ Y → M to ⟨i′, j′⟩∶X ⊔ Y → M ′. Then since the maps X ⊔ Y → M are defined

to be cofibrations, Theorem 5.2.22 gives that this relation is precisely cofibre homotopy

equivalence of spaces underX⊔Y , thus is an equivalence relation by Proposition 5.2.20.

Remark 5.3.2. The fact that, by Theorem 5.2.22, cospan homotopy equivalence is equiva-

lent to cofibre homotopy equivalence of spaces under the disjoint union of the objects, will

be vital to obtain a congruence from cospan homotopy equivalence. We could have instead

defined cospan homotopy equivalence to be cofibre homotopy of spaces under the disjoint

union of the objects. Then we would use Theorem 5.2.22 in the proof of the identity axiom

instead.

Lemma 5.3.15. For each pair X,Y ∈ Top the relations (CofCsp(X,Y ), ch∼) are a congru-

ence on CofCsp and hence we have a magmoid

CofCsp = (Ob(Top),CofCsp/ ch∼ , ●).

Proof. The magmoid CofCsp is the quotient CofCsp/ ch∼ , and we have from Lemma 5.3.14

that the
ch∼ are equivalence relations for each pair X,Y ∈ Top. Thus we only need to check

that the relations respect composition.

Let i∶X →M ← Y ∶j and i′∶X →M ′ ← Y ∶j′ be two representatives of the same cofibrant

cospan from X to Y and similarly let k∶Y → N ← Z ∶ l and k′∶Y → N ′ ← Z ∶ l′ be

representatives of the same cofibrant cospan from Y to Z.

Using Theorem 5.2.22 we have the following commuting diagram where ϕ,ϕ′, ψ and ψ′ are
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cofibre homotopy equivalences between spaces under X,Y or Z as shown.

M ⊔Y N

M N

X Y Z

M ′ N ′

M ′ ⊔Y N ′

pM

ϕ

pN

ψ

i

i′

j k

j′ k′

l

l′

pM ′

ϕ′

pN ′

ψ′

This means there exists a homotopy under X ⊔ Y , say Hϕ∶M × I →M , from ϕ′ ○ ϕ to the

identity and a homotopy under Y ⊔Z, say Hψ ∶N × I→ N , from ψ′ ○ψ to the identity. And

for all y ∈ Y we have Hϕ(j(y), t) = j(y) and Hψ(k(y), t) = k(y).

By the universal property of the pushout, the commuting pair pM ′ ○ϕ and pN ′ ○ψ uniquely

determine a map F ∶M ⊔Y N →M ′ ⊔Y N ′ making the diagram commute. We will show F

is a homotopy equivalence.

We can similarly construct a map F ′∶M ′⊔Y N ′ →M⊔Y N using the pair pM ○ψ′ and pN ○ϕ′.

Notice the maps pM ○Hϕ ○(j× idI)∶Y × I→M ⊔Y N and pN ○Hψ ○(k× idI)∶Y × I→M ⊔Y N

commute using that for all y ∈ Y we have Hψ(k(y), t) = k(y) and Hϕ(j(y), t) = j(y), and

the commutativity of the diagram. Taking the product with I of the pushout of j and k

is still a pushout, by Theorem 3.5.16. Using the universal property of this pushout on the

maps pM ○Hϕ and pN ○Hψ gives a map (M ⊔Y N) × I → M ⊔Y N which is a homotopy

from F ′ ○ F to the identity functor.

In the same way we can construct a homotopy F ○ F ′ to the identity.

Theorem 5.3.16. The quadruple

CofCsp =
⎛
⎜
⎝
Ob(Top) , CofCsp(X,Y )/ ch∼ , ● ,

⎡⎢⎢⎢⎢⎣

X X

X × IιX0 ιX1

⎤⎥⎥⎥⎥⎦ch

⎞
⎟
⎠

is a category.

Proof. Note that (Ob(Top) , CofCsp(X,Y )/ ch∼ , ●) is a magmoid by Lemma 5.3.15.
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(C1) Note first that ιX0 ∶X → X × I ← X ∶ιX1 is a concrete cofibrant cospan by Proposi-

tion 5.3.3. Suppose we have a cofibrant cospan represented by i∶X →M ← Y ∶j. We will

show there is a cospan homotopy equivalence from (i∶X →M ← Y ∶j) ● (ιY0 ∶Y → Y × I ←

Y ∶ιY1 ) to i∶X →M ← Y ∶j. Consider the following diagram.

X Y Y

M Y × I

M ⊔Y (Y × I)

M

i j ιY0 ιY1

pM

id

pY ×I

(y,t)↦j(y)ϕ

The map ϕ is constructed using the universal property of the pushout. By construction ϕ

commutes with the cospans (i∶X →M ← Y ∶j) ● (ιY0 ∶Y → Y × I ← Y ∶ιY1 ) and i∶X →M ←

Y ∶j. We claim ϕ is a homotopy equivalence with homotopy inverse pM . It is immediate

that ϕ ○ pM = id.

We construct a homotopy pM ○ϕ→ id as follows. SinceM ⊔Y (Y ×I) is a pushout, the map

pM ○ ϕ is uniquely determined by the pair of maps M →M ⊔Y (Y × I), m ↦ pM(m) and

Y ×I→M⊔Y (Y ×I), (y, t)↦ pM(j(y)), or equivalently (y, t)↦ pY ×I(ιY0 (y)). Similarly the

identity is determined by the pairM →M⊔Y (Y ×I), m↦ pM(m) and Y ×I→M⊔Y (Y ×I),

(y, t) ↦ pY ×I(y, t). The map HY ×I∶ (Y × I) × I → M ⊔Y (Y × I), ((y, t), s) ↦ pY ×I(y, ts)

is a homotopy between the two maps from Y × I. And for M we can use the homotopy

HM ∶M × I→M ⊔Y (Y × I), (m, t)↦ pM(m).

By Theorem 3.5.16 the product with I preserves pushouts. Notice that HM ○ (j × id)∶Y ×

I → M ⊔Y (Y × I) is (y, t) ↦ pM(j(y)) and HY ×I ○ (ιY0 × id)∶Y × I → M ⊔Y (Y × I) is

(y, s) ↦ pY ×I(ιY0 (y)), so we can use the universal property of the pushout of j × id and

ιY0 × id to obtain a homotopy H∶ (M ⊔Y (Y × I)) × I→M ⊔Y (Y × I) from pM ○ ϕ to id.

We can similarly construct a cospan homotopy equivalence (ιY0 ∶Y → Y ×I← Y ∶ιY1 )●(i∶X →

M ← Y ∶j) to i∶X →M ← Y ∶j.

(C2) We now check that the composition is associative. Let i∶W → M ← X ∶j, k∶X →

N ← Y ∶ l and r∶Y → O ← Z ∶s be concrete cofibrant cospans. The two ways to compose
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these three cospans corresponds to taking a pushout first over X or first over Y as shown

in the following diagram

W X Y Z

M N O

M ⊔X N N ⊔Y O

(M ⊔X N) ⊔Y O M ⊔X (N ⊔Y O) .

i j k l r s

We can use the universal property of the pushout on the pair of mapsM →M⊔X (N ⊔Y O)

and N → N ⊔Y O → M ⊔X (N ⊔Y O) to obtain a map M ⊔X N → M ⊔X (N ⊔Y O). We

can then apply the universal property again to this map M ⊔X N →M ⊔X (N ⊔Y O) and

the map O → N ⊔Y O → M ⊔X (N ⊔Y O) to obtain a map (M ⊔X N) ⊔Y O → M ⊔X

(N ⊔Y O) which commutes with the diagram. In a similar way we can obtain an inverse

M ⊔X (N ⊔Y O)→ (M ⊔X N) ⊔Y O.

Let i∶X →M ← Y ∶j and k∶Y → N ← Z ∶ l be concrete cofibrant cospans. In an attempt to

avoid excessive notation, from here we may use i and l to refer also to the maps ĩ = pM ○ i

and l̃ = pN ○ l obtained in the composition.

Proposition 5.3.17. The map rev∶CofCsp(X,Y )→ CofCsp(Y,X) from Proposition 5.3.9

extends to a functor

rev ∶ CofCsp→ CofCsp

⎡⎢⎢⎢⎢⎣

X Y

M
i j

⎤⎥⎥⎥⎥⎦ch
↦
⎡⎢⎢⎢⎢⎣

Y X

M.
j i

⎤⎥⎥⎥⎥⎦ch

Proof. Proposition 5.3.9 gives that rev is well defined. To show composition is preserved,

let i∶X → M ← Y ∶j and k∶Y → N ← Z ∶ l be concrete cofibrant cospans. Then the

universal property of the pushout gives an isomorphism between M ⊔Y N and N ⊔Y M ,

which gives a cospan homotopy equivalence from rev((k∶Y → N ← Z ∶ l) ● (i∶X → M ←

Y ∶j)) to rev(i∶X →M ← Y ∶j) ● rev(k∶Y → N ← Z ∶ l).
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Monoidal structure on CofCsp

We now construct a bifunctor on CofCsp and show there exists a symmetric monoidal

category with underlying category CofCsp.

Lemma 5.3.18. There is a bifunctor

⊗ ∶ CofCsp ×CofCsp → CofCsp

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

W X

M
i j

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

Y Z

N
k l

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠
↦
⎡⎢⎢⎢⎢⎣

W ⊔ Y X ⊔Z
M ⊔Ni⊔k j⊔l

⎤⎥⎥⎥⎥⎦

where i ⊔ j is the image of a pair of maps under the monoidal product on Top as in

Proposition 3.7.6.

Proof. We first check that i⊔k∶W ⊔Y →M⊔N ←X⊔Z ∶j⊔l is a concrete cofibrant cospan.

We will show that the map ⟨i⊔k, j ⊔ l⟩∶ (W ⊔Y )⊔(X ⊔Z)→M ⊔N is a closed cofibration.

Let K be some space and suppose we have maps h∶ ((W ⊔ Y ) ⊔ (X ⊔ Z)) × I → K and

f ∶M ⊔N → K satisfying the axioms of Definition 5.2.1. By Theorem 3.5.16, the product

with I preserves colimits so the map h uniquely determines a pair h′∶W ⊔ Y → K and

h′′∶X ⊔ Z → K. Similarly the map f determines maps f ′∶M → K and f ′′∶N → K. We

can use the homotopy extension property of ⟨i, j⟩ on the pair h′ and f ′ to obtain a map

H ′∶M × I→K and similarly of ⟨k, l⟩ on the pair h′′ and f ′′ to obtain H ′′∶N × I→K. Now

using Theorem 3.5.16 again, H ′ and H ′′ determine uniquely a map H ∶ (M ⊔N) × I → K

extending f and h.

The image of ⟨i ⊔ k, j ⊔ l⟩ is the union of the images of ⟨i, j⟩ and ⟨k, l⟩, thus is closed.

We now check that the monoidal product is well defined. Suppose we have a concrete

cofibrant cospan i′∶W →M ′ ←X ∶j′ which is cospan homotopy equivalent to i∶W →M ←

X ∶j via some cospan homotopy equivalence ϕ∶M →M ′ and similarly k′∶Y → N ′ ← Z ∶ l′

equivalent to k∶Y → N ← Z ∶ l via ψ∶N → N ′. Then there exist homotopy inverses ϕ′ of ϕ
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and ψ′ of ψ. Then the following diagram commutes

M ⊔N

W ⊔ Y X ⊔Z

M ′ ⊔N ′

ϕ⊔ψ

i⊔k

i′⊔k′

j⊔l

j′⊔l′

and using the universal property of the coproduct on the appropriate homotopies it is

straightforward to check that ϕ ⊔ ψ is a homotopy equivalence with homotopy inverse

ϕ′ ⊔ ψ′.

Let X,Y be any spaces. The canonical isomorphism (X ⊔ Y ) × I → (X × I) × (Y × I),

which in particular is a homotopy equivalence, is sufficient to show that ιX0 ⊔ ιY0 ∶X ⊔ Y →

(X × I) ⊔ (Y × I) ← X ⊔ Y ∶ιX0 ⊔ ιY1 is cospan homotopy equivalent to ιX⊔Y0 ∶X ⊔ Y →

(X ⊔ Y ) × I←X ⊔ Y ∶ιX⊔Y1 .

Finally we check that ⊗ preserves composition. Given two pairs of composable concrete

cofibrant cospans, there are distinct cospans obtained from first appplying ⊗ and then

composing and from composing and then applying ⊗. A commuting isomorphism is con-

structed between these cospans using the universal properties of the coproduct and the

pushout.

Lemma 5.3.19. Let X and X ′ be spaces and f ∶X → X ′ a homeomorphism. Then the

cospan

X X ′

X ′ × I
ιX
′

0 ○f ιX
′

1

is a concrete cofibrant cospan and its cospan homotopy equivalence class is an isomorphism

in CofCsp.

Proof. We first prove the cospan is a concrete cofibrant cospan. Note that the map

⟨ιX′0 ○ f, ιX
′

1 ⟩ is equal to the composition

X ⊔X ′ ⟨f,idX⟩ÐÐÐÐ→X ′ ⊔X ′
⟨ιX

′
0 ,ιX

′
1 ⟩ÐÐÐÐÐ→ (X ′ ⊔X ′) × I.

The first map is a homeomorphism; hence it is a cofibration by Lemma 5.2.4. The second
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map is the map from the coproduct corresponding to the concrete cofibrant cospan in

Lemma 5.3.3. Hence the composition is a cofibration by Lemma 5.2.3. Since the first map

is a homeomorphism, the image of the composition is equal to the image of the second

map, so is closed by Lemma 5.3.3.

To see that the cospan homotopy equivalence class is an isomorphism notice that the

composition
⎡⎢⎢⎢⎢⎢⎣

X X ′

X ′ × IιX
′

0 ○f ιX
′

1

⎤⎥⎥⎥⎥⎥⎦
●

⎡⎢⎢⎢⎢⎢⎣

X ′ X

X ′ × IιX
′

0 ιX
′

1 ○f

⎤⎥⎥⎥⎥⎥⎦

is equivalent to ιX
′

0 ○ f ∶X → X ′ × I ← X ∶ιX′1 ○ f via the obvious isomorphism X ′ × I ≅

(X ′×I)⊔X′ (X ′×I), which is equivalent to ιX0 ∶X →X ×I←X ∶ιX1 via the homeomorphism

f × id∶X × I→X ′ × I.

Lemma 5.3.20. Recall from Proposition 3.7.6 that (Top,⊔,∅, αTX,Y,Z , λTX , ρTX) is a monoidal

category. There is a monoidal category

(CofCsp , ⊗ , ∅ , αX,Y,Z , λX , ρX)

where ⊗ is as in Lemma 5.3.18,

• for any spaces X,Y,Z ∈ Ob(CofCsp) the associator αX,Y,Z ∶ (X⊔Y )⊔Z →X⊔(Y ⊔Z)

is the cospan homotopy equivalence of the cospan

(X ⊔ Y ) ⊔Z X ⊔ (Y ⊔Z)

(X ⊔ (Y ⊔Z)) × I,
ι
X⊔(Y ⊔Z)
0 ○αT

X,Y,Z ι
X⊔(Y ⊔Z)
1

• for any space X ∈ Ob(CofCsp) the left unitor λX ∶ ∅⊔X →X is the cospan homotopy

equivalence class of the cospan

∅ ⊔X X

X × I,ιX0 ○λ
T
X

ιX1

• for any space X ∈ Ob(CofCsp) the right unitor ρX ∶X⊔∅→X is the cospan homotopy
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equivalence class of the cospan

X ⊔ ∅ X

X × I.ιX0 ○ρ
T
X

ιX1

Proof. First note that Lemma 5.3.19 gives that all associators and unitors are isomor-

phisms.

The proofs of the pentagon and triangle identities, and of naturality are similar, so we

only give the proof of the triangle identity here.

We must construct a cospan homotopy equivalence from the cospan

(X ⊔ ∅) ⊔ Y X ⊔ (∅ ⊔ Y ) X ⊔ Y

(X ⊔ (∅ ⊔ Y )) × I (X × I) ⊔ (Y × I)

(X ⊔ (∅ ⊔ Y )) × I ⊔X⊔(∅⊔Y ) (X × I) ⊔ (Y × I),

ι
X⊔(∅⊔Y )
0 ○αT

X,∅,Y ι
X⊔(∅⊔Y )
1

ιX0 ⊔(ι
Y
0 ○λ

T
Y )

ιX1 ⊔ι
Y
1

to the cospan

(X ⊔ ∅) ⊔ Y X ⊔ Y

(X × I) ⊔ (Y × I).
(ιX0 ○ρ

T
X)⊔ι

Y
0

ιX1 ⊔ι
Y
1

By the universal property of the coproduct and Theorem 3.5.16, a map f ∶ (X × I) ⊔ ((∅×

I) ⊔ (Y × I))→ (X × I) ⊔ (Y × I) is uniquely determined by

fX ∶X × I→ (X × I) ⊔ (Y × I)

(x, t)↦ ((x, t/2),1)

and

fY ∶Y × I→ (X × I) ⊔ (Y × I)

(y, t)↦ ((y, t/2),2).
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Similarly a map g∶ (X × I) ⊔ (Y × I)→ (X × I) ⊔ (Y × I) is determined by the pair

gX ∶X × I→ (X × I) ⊔ (Y × I)

(x, t)↦ ((x,1/2(t + 1)),1)

and

gY ∶Y × I→ (X × I) ⊔ (Y × I)

(y, t)↦ ((y,1/2(t + 1)),2).

We have that f ○ ιX⊔(∅⊔Y )1 = g ○ ιX0 ⊔ (ιY0 ○ λTY ) commute, so by the universal property of

the pushout, these maps determine a map

h∶ ((X ⊔ (∅ ⊔ Y )) × I) ⊔X⊔(∅⊔Y ) ((X × I) ⊔ (Y × I))→ (X × I) ⊔ (Y × I)

which is a homeomorphism, and it is straightforward to check this commutes with the

cospans, hence is a cospan homotopy equivalence.

Theorem 5.3.21. There is a symmetric monoidal category

(CofCsp , ⊗ , ∅ , αX,Y,Z , λX , ρX , βX)

where (CofCsp,⊗,∅, αX,Y,Z , λX , ρX) is as in Lemma 5.3.20, and for any spaces X,Y ∈

Ob(CofCsp) the braiding βX,Y ∶X ⊗ Y → Y ⊗X is the cospan homotopy equivalence class

of the cospan

Y ⊔X X ⊔ Y

(Y ⊔X) × I
ιY ⊔X0 ○βT

X,Y ιY ⊔X1

where βTX,Y is the braiding in Top as in Proposition 3.7.14.

By abuse of notation we will refer to this symmetric monoidal category as CofCsp.

Proof. As with the previous theorem, the proofs of all necessary identities are similar.

Here we give the proof that β is symmetric.
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We must construct a cospan homotopy equivalence from the cospan

X ⊔ Y Y ⊔X X ⊔ Y

(Y ⊔X) × I (X ⊔ Y ) × I

((Y ⊔X) × I) ⊔Y ×X ((X ⊔ Y ) × I),

ιY ⊔X0 ○βT
X,Y ιY ⊔X1 ιX⊔Y0 ○βT

Y,X ιX⊔Y1

to the cospan

X ⊔ Y X ⊔ Y

(X ⊔ Y ) × I.ιX⊔Y0 ιX⊔Y1

Define maps

f1∶ (Y ⊔X) × I→ (X ⊔ Y ) × I

(x, t)↦ (βTY,X(x), t/2)

and

f2∶ (X ⊔ Y ) × I→ (X ⊔ Y ) × I

(x, t)↦ (x,1/2(t + 1)).

Note that f1 ○ ιY ⊔X1 = f2 ○ (ιX⊔Y0 ○ βTY,X), hence applying the universal property of the

pushout determines a map

f ∶ ((Y ⊔X) × I) ⊔Y ×X ((X ⊔ Y ) × I)→ (X ⊔ Y ) × I.

Notice that f is a homeomorphism, and it is straightforward to check that it commutes

with the cospans, and so is a cospan homotopy equivalence.

Remark 5.3.3. Recall that Toph is the wide subcategory of Top where all maps are

homeomorphisms. There is a functor κ∶Toph → CofCsp, which sends a homeomorphism

f∶X → Y to the cospan homotopy equivalence class of the cospan f∶X → Y × I ← Y ∶ιY1 .

It then follows that the triangle, pentagon and braiding identities commute in CofCsp as

they are precisely the images of the corresponding identities in Top. This functor extends

to a functor from the mapping class groupoid of a space X into CofCsp. This is why
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TQFTs give representations of mapping class groups.

5.3.3 Category of homotopy cobordisms HomCob

Here we construct the category HomCob (Theorem 5.3.34), which we will use as the

source category of the TQFT we construct in Section 5.4. We obtain HomCob as a full

subcategory of CofCsp with a finiteness condition on spaces.

Definition 5.3.22. A space X is called homotopically 1-finitely generated if π(X,A) is

finitely generated for all finite sets of basepoints A.

Let χ denote the class of all homotopically 1-finitely generated spaces.

The following result says that, to check a space X is homotopically 1-finitely generated, it

will be sufficient to find a single representative subset A ⊆X such that π(X,A) is finitely

generated.

Lemma 5.3.23. If π(X,A) is finitely generated for some finite representative set A, then

π(X,A′) is finitely generated for all finite representative sets A′.

Proof. Let A = {a1, ..., aN} and B = {b1, ..., bM} with N,M ∈ N. The groupoid π(X,A) is

finitely generated so there exists a finite set of generating morphisms. Let S = {s1, ..., sK}

be a set of representative paths, such that taking path-equivalence classes of each path

gives a set of generating morphisms for π(X,A).

For each pair {n,m} such that an and bm are in the same path connected component,

choose a path γn,m∶an → bm. We denote the set of all such paths by Γ. Note that this

is finite since A and B are finite. We will show that π(X,B) is generated by the set by

the set of path-equivalence classes of all paths of the form γn′,m′sγ
−1
n,m, where s ∈ S and

s0 = an and s1 = an′ . Note this is again finite.

Let t ∶ bn → bn′ be any path. Choose m such that am is in the same path connected

component as bn, then t̃ = γ−1m,n′tγm,n∶am → am is a path and γm,n′ t̃γ
−1
m,n

p∼ t. Now we have

t̃ ∼ pL . . . p2p1, where L ∈ N, with each pl = sk for some 1 ≤ k ≤ K, since the equivalence

classes of the sk generate π(X,A). Hence t p∼ γm,n′pL...p2p1γ−1m,n.

For each pl, choose a path denoted γpi ∈ Γ such that (γpi)0 = (p1)1, so γ−1p1 γp1
p∼ id(p1)1 .

Now t
p∼ γm,n′plγ−1pl−1 ...γp2 p2γ

−1
p1 γp1 p1γ

−1
m,n, which is of the desired form.
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We will need the following result about homotopically 1-finitely generated spaces to ensure

⊗ restricts to a closed composition in HomCob.

Lemma 5.3.24. If X and Y are homotopically 1-finitely generated spaces, then X ⊔Y is

homotopically 1-finitely generated.

Proof. Suppose X0 and Y0 are finite representative subsets of X and Y respectively. The

images of X and Y in X⊔Y are disjoint, hence there is an isomorphism π(X⊔Y,X0⊔Y0) ≅

π(X,X0)∐ π(Y,Y0) of groupoids given by sending a path equivalence class [γ] to ([γ],1)

if γ is a path in X and to ([γ],2) if γ is a path in Y . By Theorem 3.6.21 we have that

π(X,X0) ∐ π(Y,Y0) is finitely generated if and only if π(X,X0) and π(Y,Y0) are. By

Lemma 5.3.23 this is sufficient.

Lemma 5.3.25. There exists a submagmoid

HomCob = (χ,HomCob(−,−), ●)

of CofCsp where

HomCob(X,Y ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

X Y

M
i j

RRRRRRRRRRRRR

⟨i, j⟩ is a closed cofibration, and

X,Y and M are homotopically 1-finitely generated

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Morphisms in HomCob are called concrete homotopy cobordisms.

Proof. We check HomCob is closed under composition. Suppose i∶X → M ← Y ∶j and

k∶Y → N ← Z ∶ l are concrete homotopy cobordisms. Consider the pushout

Y

M N

M⊔YN.

j k

We may choose finite representative subsets Y0 ⊆ Y , M0 ⊆ M and N0 ⊆ N such that

j(Y0) =M0 ∩ j(Y ) and k(Y0) = N0 ∩k(Y ). Applying Corollary 5.2.18 the following square
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is also a pushout.

π(Y,Y0)

π(M,M0) π(N,N0)

π(M⊔YN,M0⊔Y0N0)

π(j) π(k)

We have, from Theorem 3.6.21, that the pushout of finitely generated groupoids is finitely

generated, so π(M⊔YN,M0⊔Y0N0) is finitely generated since π(M,M0) and π(N,N0) are.

Hence the composition is a concrete homotopy cobordism.

Example 5.3.26. The concrete cofibrant cospan in Proposition 5.3.6 is a concrete homo-

topy cobordism, as the fundamental group of D2 and S1 are finitely generated.

Example 5.3.27. The concrete cofibrant cospan, i∶X →M ←X ∶j, in Example 5.3.8 is a

concrete homotopy cobordism. We have X ≅ S1 ⊔ S1, hence, letting X0 be a subset with a

single point in each copy path connected component, π(X,X0) ≅ Z ⊔ Z. Similarly Y ≅ S1,

so π(Y,{y}) ≅ Z for any y ∈ Y . The manifold M is a homotopy equivalent to the twice

punctured disk, hence has fundamental group π(M,{m}) ≅ Z∗Z. Hence X, Y and M are

homotopically 1-finitely generated.

Example 5.3.28. The concrete cofibrant cospan, i∶X → M ← X ∶j, in Example 5.3.7

is a concrete homotopy cobordism. The space X is homotopy equivalent to the disjoint

union of two copies of the disk and a twice punctured disk. Thus, choosing X0 ⊂X with a

point in each connected component, we have π(X,X0) is finitely generated. The space Y

is homotopy equivalent to the disjoint union of the circle and the disk thus, choosing Y0 in

the same way, we have π(Y,Y0) finitely generated. The space M is the disjoint union of a

contractible space, and a space which is homotopy equivalent to a sphere with three lines

from the boundary meeting at a point in the centre, and thus via a stereographic projection,

homotopy equivalent to the twice punctured disk. Hence π(M,M0) ≅ Z ∗ Z for any choice

of M0 consisting of one basepoint in each connected component.

Example 5.3.29. Let Γ be a finite graph. Choose disjoint sets V1, V2 ⊆ V (Γ) of vertices.

Then i∶V1 → Γ ← V2 ∶j is a concrete homotopy cobordism where i and j are inclusions.
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That the spaces are homotopically 1-finitely generated can be seen by taking basepoints to

be all vertices, and generating paths to be edges.

Example 5.3.30. Let M be a CW complex, and X and Y disjoint subcomplexes. Then

i∶X → M ← Y ∶j, where i and j are inclusions, is a concrete homotopy cobordism. That

the inclusions are cofibrations follows from Proposition 0.16 of [Hat02], and that finitely

generated CW complexes have finite fundamental group is essentially Proposition 1.26 of

[Hat02].

Definition 5.3.31. A cofibrant cospan is called a homotopy cobordism if there exists a

representative which is a concrete homotopy cobordism.

For homotopically 1-finitely generated spaces X,Y ∈ Top define

HomCob(X,Y ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

X Y

M
i j

⎤⎥⎥⎥⎥⎦ch

RRRRRRRRRRRRR

X Y

M
i j

is a concrete homotopy cobordism

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Notice that if i∶X →M ← Y ∶j is a concrete cofibrant cospan with all spaces homotopically

1-finitely generated, then it is clear from the definition of cospan homotopy equivalence

that every cospan in the equivalence class also has all spaces homotopically 1-finitely

generated.

Theorem 5.3.32. There is a subcategory of CofCsp (see Theorem 5.3.16)

HomCob =
⎛
⎜
⎝
χ,HomCob(X,Y ), ● ,

⎡⎢⎢⎢⎢⎣

X X

X × IιX0 ιX1

⎤⎥⎥⎥⎥⎦ch

⎞
⎟
⎠

with

• all homotopically 1-finitely generated spaces as objects;

• for spaces X,Y ∈ Ob(HomCob), morphisms in HomCob(X,Y ) are homotopy cobor-

disms i.e. cospan homotopy equivalence classes (see Lemma 5.3.14) of cospans

⎡⎢⎢⎢⎢⎣

X Y

M
i j

⎤⎥⎥⎥⎥⎦ch

with all spaces homotopically 1-finitely generated and ⟨i, j⟩ a cofibration;
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• composition is as follows

● ∶HomCob(X,Y ) ×HomCob(Y,Z)→ HomCob(X,Z)

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

X Y

M
i j

⎤⎥⎥⎥⎥⎦ch ,

⎡⎢⎢⎢⎢⎣

Y Z

N
k l

⎤⎥⎥⎥⎥⎦ch

⎞
⎟
⎠
↦
⎡⎢⎢⎢⎢⎢⎣

X Z

M ⊔Y N
ĩ l̃

⎤⎥⎥⎥⎥⎥⎦ch

where ĩ = pM i and l̃ = pN l are obtained via the pushout diagram

X Y Z

M N

M ⊔Y N ;

i j k l

pM pN

• for a space X ∈ Ob(HomCob) the identity morphism is the equivalence class of the

cospan
X X

X × I.ιX0 ιX1

Proof. We have from Lemma 5.3.25 that HomCob = (χ,HomCob(X,Y ), ●) is a magmoid.

Theorem 5.3.16 gives that ● is a associative, and that the proposed identity is an identity

of ●. It remains only to prove that the identity is in HomCob.

Let X be a homotopically 1-finitely generated space. Then X × I is homotopy equivalent

to X, and so [ιX0 ∶X →X × I←X ∶ιX1 ] is a homotopy cobordism.

Proposition 5.3.33. Let Cob(n) be the category where objects (n−1)-dimensional closed

oriented smooth manifolds and morphisms are equivalence classes of concrete cobordisms

(Definition 5.3.4) as in [Lur09, Ch. 1]. For all n ∈ N there is a functor

Cobn∶Cob(n)→ HomCob

which maps objects to their underlying space and maps a morphism to the equivalence class

of the concrete cofibrant cospan which is the image of a representative cobordism under

the mapping described in Proposition 5.3.5.

Proof. We first check that Cobn is well defined. Chapter 6 of [Hir12] proves that compact
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smooth manifolds have the homotopy type of finite CW complexes (see in particular the

start of Section 3 and Theorems 1.2 and 4.1). If we choose the set of basepoints to be

the 0-cells of the corresponding CW complex, then the generators of the fundamental

groupoid are the 1-cells and so the fundamental groupoids of smooth manifolds with a

finite set of basepoints are finitely generated. If two concrete cobordisms are equivalent

up to boundary preserving diffeomorphism then they are certainly equivalent up to cofibre

homotopy equivalence using the same map. So we have that the functor is well defined.

Let X,Y,Z be a triple of objects in Cob(n) and M ∶X → Y , M ′∶Y → Z a pair of

cobordisms. Then we have maps ϕ∶X ⊔ Y → M and ϕ′∶Y ⊔ Z → M ′ between the un-

derlying topological spaces. The image of the composition in Cob(n) is the cospan

i∶X → M ⊔ N/((y,0) ∼ (y,1)) ← Z ∶j where i(x) = ϕ(x,0) and j(y) = ϕ′(z,1). This

is precisely the composition of the images of M ∶X → Y and M ′∶Y → Z in HomCob.

The identity for a manifold X in Cob(n) is represented by the cylinder X × I with

⟨ιX0 , ιX1 ⟩∶ X̄ ⊔ X → X × I, this clearly maps to a representative of the identity cospan

of X.

Monoidal structure on HomCob

The category HomCob becomes a symmetric monoidal category, just like CofCsp.

Theorem 5.3.34. There is a symmetric monoidal subcategory

(HomCob , ⊗ , ∅ , αX,Y,Z , λX , ρX , τX)

of CofCsp. Here ⊗ is as in Lemma 5.3.18, associators and unitors are as in Lemma 5.3.20

and braiding as in Lemma 5.3.21.

Proof. The empty set is homotopically 1-finitely generated. For each pair of homotopically

1-finitely generated spaces, the disjoint union is homotopically 1-finitely generated by

Lemma 5.3.24 so ⊗ sends a pair of homotopy cobordisms to a homotopy cobordism.

Using again Lemma 5.3.24 along with the fact that for any space X and finite A ⊆ X

we have π(X,A) ≅ π(X × I,A × {0}), the associators, unitors and braidings are all in

HomCob.
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Proposition 5.3.35. The functor Cobn∶Cobn → HomCob as in Proposition 5.3.33 is

symmetric strong monoidal with (Cobn)0 = [∅∶∅→ ∅← ∅ ∶∅]ch and (Cobn)2(X,Y ) =

[ιX⊔Y0 ∶X ⊔ Y → (X ⊔ Y ) × I←X ⊔ Y ∶ιX⊔Y1 ]
ch
.

Proof. Notice that the monoidal product ⊗′ in Cob(n) is given by disjoint union, thus we

have ⊗ ○ (Cobn × Cobn) = Cobn ○ ⊗′ and (Cobn)2 is the required natural transformation.

It is straightforward to check all identities as (Cobn)0 and (Cobn)2 are identities and the

functor Cobn maps all associators, unitors and braidings to exactly the corresponding

associators, unitors and braidings in HomCob.

5.4 Topological quantum field theory construction

In this section we will explicitly construct a functor (Theorem 5.4.24)

ZG∶HomCob→VectC,

dependent on a choice G of finite group. Ultimately our functor will map a space X to

the vector space with basis the set of maps f ∶π(X) → G up to natural transformation.

The particular interest of our construction over and above this result twofold. Firstly we

prove that this arises naturally as a colimit over all representative finite subsets A ⊆X of

basepoints and maps g∶π(X,A)→ G. Secondly we prove that this global equivalence over

all subsets has an interpretation in terms of a local equivalence, taking maps g∶π(X,A)→

G up to natural transformation for some fixed choice of finite representative subset A ⊆X.

Thus our construction is explicitly calculable, see Example 5.4.36.

We begin by defining a magmoid morphism from a version of HomCob with basepoints,

to VectC. We then use a colimit construction to remove the dependence on basepoints

and arrive at the functor ZG. We then show, in Section 5.4.4, that ZG can be calculated

on objects by choosing a fixed set of basepoints. In Section 5.4.5 we prove that ZG is a

symmetric monoidal functor.

5.4.1 Magmoid of based cospans

Let χχχ denote the class of pairs of the form (X,X0) where X is a homotopically 1-finitely

generated space and X0 is a representative finite subset of X. We will refer to the set X0
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(D2,D2
0)

ji
(S1, S1

0
′)(S1, S1

0)

Figure 5.4: Here the dots represent basepoints, so the three blue points in the leftmost
copy of S1 are S1

0 and and two red basepoints in the rightmost copy of S1 are S1′
0. The

set of basepoints D2
0 then contains i(S1

0) ∪ j(S1′
0) as well as two extra basepoints marked

in green which do not intersect i(S1) ∪ j(S1). Then i∶ (S1, S1
0) → (D2,D2

0) ← S1′
0 ∶j is a

concrete based homotopy cobordism.

as a set of basepoints.

Definition 5.4.1. Let X,Y be spaces and A ⊆ X and B ⊆ Y be subsets. A map of pairs

f ∶ (X,A)→ (Y,B) is a map f ∶X → Y such that f(A) ⊆ B.

Definition 5.4.2. Let (X,X0), (Y,Y0) and (M,M0) be pairs in χχχ. A concrete based ho-

motopy cobordism from (X,X0) to (Y,Y0) is a diagram i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶j

such that:

(i) i∶X →M → Y ∶ j is a concrete homotopy cobordism.

(ii) i and j are maps of pairs.

(iii) M0 ∩ i(X) = i(X0) and M0 ∩ j(Y ) = j(Y0).

For any pairs (X,X0), (Y,Y0) with X,Y ∈ Top and X0 ⊆ X, Y0 ⊆ Y finite representative

subsets,

bHomCob((X,X0), (Y,Y0)) = { based homotopy cobordisms
(X,X0) (Y,Y0)

(M,M0)
i j } .

Example 5.4.3. Consider the concrete cofibrant cospan in Proposition 5.3.6, which is

a homotopy cobordism (see Example 5.3.26). We can add basepoints to obtain a based

homotopy cobordism as shown in Figure 5.4.

Proposition 5.4.4. Let i∶X →M ← Y ∶j be a concrete homotopy cobordism, then there

exists a based homotopy cobordism i∶ (X,X0) → (M,M0) ← (Y,Y0) ∶j for some represen-

tative finite subsets X0, Y0 and M0 of X, Y and M respectively.

Proof. A suitable choice of X0, Y0 and M0 is constructed as follows. Choose a point in

each path-connected component of X, and let X0 be the union of these points. Choose a
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Y0 similarly. Let M0 be the union of i(X0) and j(Y0) along with a choice of point in each

path-connected component not already containing a point in M0.

Notice that X0, Y0 and M0 are finite, as X, Y and M are homotopically 1-finitely gener-

ated, and thus contain a finite number of path-connected components.

Of course for any manifold X consisting of a single path connected component, there is

an uncountably infinite number of choices of {x} such that (X,{x}) ∈ χχχ. Hence there will

usually be many ways to obtain a based homotopy cobordism from a homotopy cobordism.

The following Lemma says that the composition ● extends to a composition of based

homotopy cobordisms.

Lemma 5.4.5. (I) For any spaces X,Y and Z in Ob(Top) there is a composition

● ∶bHomCob((X,X0), (Y,Y0)) × bHomCob((Y,Y0), (Z,Z0))→ bHomCob((X,X0), (Z,Z0))

⎛
⎝
(X,X0) (Y,Y0)

(M,M0)
i j

,

(Y,Y0) (Z,Z0)

(N,N0)
k l

⎞
⎠
↦ (X,X0) (Z,Z0)

(M ⊔Y N,M0 ⊔Y0 N0)
ĩ l̃

where ĩ∶X → M ⊔Y N ← Z ∶ l̃ is the composition (i∶X → M ← Y ∶j) ● (k∶Y → N ← Z ∶ l)

with ● as in Lemma 5.3.11, and M0 ⊔Y0 N0 the set pushout of M0
j←Ð Y0

kÐ→ Z0 (where we

use j and k also for the obvious restrictions).

(II) Hence there is a magmoid

bHomCob = (χχχ,bHomCob(−,−), ●).

Proof. We check that the composition is well defined. We first show that M0 ⊔Y0 N0 is

representative in M ⊔Y N .

Note that our fixed representatives of pushouts in Top have the same underlying set and

set maps as the representative of the corresponding pushout of the underlying set maps

in Set. Also j and k are homeomorphisms, by Lemma 5.2.4. Thus M0 ⊔Y0 N0 ⊆M ⊔Y N

and M0 ⊔Y0 N0 = pM(M0) ∪ pN(N0) where pM and pN are as in Proposition 5.3.11.

Let m ∈M ⊔Y N be any point, then it has a preimage p−1(m) in M or N , and thus there

is a path in M or N connecting p−1(m) to a point in M0 or N0. The image of this path

under pM or pN connects m to a point in M0 ⊔Y0 N0.
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We have from Proposition 5.3.32 that i∶X → M ⊔Y N ← Z ∶ l is a concrete homotopy

cobordism.

Since M0 ⊔Y0 N0 = pM(M0) ∪ pN(N0), and i(X0) ⊆ M0 and l(Z0) ⊆ N0, we have ĩ(X0) ⊆

M0 ⊔Y0 N0 and l̃(Z0) ⊆M0 ⊔Y0 N0, thus ĩ and k̃ are maps of pairs.

The map ⟨i, j⟩∶X⊔Y →M is a cofibration, hence by Theorem 5.2.6 it is a homeomorphism

onto its image. This means i(X) ∩ j(Y ) = ∅ in M , and similarly k(Y ) ∩ l(Z) = ∅. Hence

there is no equivalence on points in X or Z in the pushout. Thus (M0 ⊔Y0 N0) ∩ ĩ(X) =

ĩ(X0) follows directly from the fact that (M0)∩ i(X) = i(X0) and similarly (M0 ⊔Y0 N0)∩

l̃(Z) = l̃(Z0).

5.4.2 Magmoid morphism from bHomCob to VectC

Here we construct a magmoid morphism Z!
G∶bHomCob→ VectC.

Recall from Proposition 3.1.29 that there is a groupoid GG obtained from any group G

with morphisms the elements of G. Throughout this section, by abuse of notation we will

use G for GG.

Definition 5.4.6. Let G be a group.

For a pair (X,X0) ∈ χχχ, define

Z!
G(X,X0) = C (Grpd (π(X,X0),G)) .

That is, Z!
G(X,X0) is the C vector space whose basis is the set of groupoid maps from the

fundamental groupoid of X with respect to X0 into G.

Example 5.4.7. Let X = S1 ⊔ S1, and let X0 ⊂ X contain two points, one in each copy

of S1. We have π(X,X0) ≅ Z ⊔ Z. Hence maps from π(X,X0) to G are determined by

pairs in G ×G, where the elements of G denote the image of the generating elements of

each copy of Z. So we have Z!
G(X,X0) ≅ C(G ×G).

In the following example note that X0 must be representative by the definition of χχχ,

therefore we choose basepoints even in path components that are homotopically trivial.
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x1
x2

Figure 5.5: Let X be the complement in I2 of the embeddings of S1 shown. Let X0 be
three basepoints as shown.

This will be necessary for the full calculation since, when considered as part of a cospan,

these trivial components may have image in a homotopically non trivial component.

Example 5.4.8. Let X and X0 be as explained in the caption to Figure 5.5. Then

π(X,X0) ≅ Z ∗Z and maps from π(X,X0) to G are determined by pairs in G ×G, where

the elements of G denote the image the equivalence classes of the loops marked x1 and x2

in the figure. So we have Z!
G(X,X0) ≅ C(G ×G).

The vector spaces Z!
G(X,X0) has an intrinsic basis, the maps into G. We will define linear

maps assigned to based homotopy cobordisms as matrices in terms of these bases.

Definition 5.4.9. Let i∶ (X,X0) → (M,M0) ← (Y,Y0) ∶j be a concrete based homotopy

cobordism. We define a matrix

Z!
G (

(X,X0) (Y,Y0)

(M,M0)
i j ) ∶ Z!

G(X,X0)→ Z!
G(Y,Y0)

as follows. Let f ∈ Z!
G(X,X0) and g ∈ Z!

G(Y,Y0) be basis elements, then

⟨g ∣Z!
G (

(X,X0) (Y,Y0)

(M,M0)
i j )∣f⟩ =

RRRRRRRRRRRRRRRRRRRRRR

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h ∶ π(M,M0)→ G

RRRRRRRRRRRRRRRRRRRRRR

π(X,X0) π(Y,Y0)

π(M,M0)

G

π(i)

f

π(j)

g
h

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

RRRRRRRRRRRRRRRRRRRRRR

. (5.2)

In other words, the right hand side is the cardinality of the set of maps h making the

diagram commute. Here we are using Dirac notation: (5.2) is the matrix element in the

column corresponding to f and the row corresponding to g.

When we have already specified the relevant cospan, we will often use Z!
G(M,M0) for
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x2

γ1

y1

x1
X

Y

M

γ2

Figure 5.6: This figure represents the concrete cofibrant cospan from Example 5.3.8, soM
is the represented manifold, and X and Y are the bottom and top boundary respectively,
with the inclusion maps. The red points and lines show a possible choice of basepointsM0

and generating paths. Let X0 and Y0 be the intersection ofM0 with X and Y respectively.

Z!
G (i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶j), and write the matrix elements as

⟨g ∣Z!
G(M,M0) ∣ f⟩ = ∣{h∶π(M,M0)→ G ∣ h∣π(X,X0) = f ∧ h∣π(Y,Y0) = g}∣ ,

where by h∣π(X,X0) we really mean the restriction of the map h to the image

π(i)(π(X,X0)).

Example 5.4.10. Let i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶j be the based homotopy cobordism

shown in Figure 5.6 with base points as marked. Note this is a homotopy cobordism as

discussed in Examples 5.3.8 and 5.3.27. Note also that there is a finite number of marked

points, and at least one in each connected component of X, Y and M .

Now π(Y,Y0) ≅ Z, where the isomorphism is realised by mapping the loop labelled y1 in the

figure to 1. Hence a map g∶π(Y,Y0)→ G is uniquely determined by a choice of an element

g1 ∈ G with f(p∼ y1) = g1. Thus we have Z!
G(Y,Y0) ≅ C(G).

Recall from Example 5.4.7 that Z!
G(X,X0) ≅ C(G ×G), where a pair (g1, g2) denotes the

map (g1, g2)(
p∼ x1) = g1 and (g1, g2)(

p∼ x2) = g2.

Let x be the basepoint which is in the loop labelled x1. By Lemma 3.3.14, there is a bijection

sending a map h ∈ Grpd(π(M,M0),G) to a map h′ ∈ Grpd(π(M,{x}) ×G ×G, which

agrees with h on π(M,{x}) and where the first element of G corresponds to the image h(γ1)

and the second to h(γ2). The space M is equivalent to the twice punctured disk, which has

fundamental group isomorphic to the free product Z∗Z. This isomorphism can be realised
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by sending the element represented by x1 to the 1 in the first copy of Z and by γ−12 x2γ2 to the

1 in the second copy of Z. Thus we can label elements in Grpd(π(M,{x}),G) by elements

of G ×G where a ∈ (a, b) corresponds to the image of
p∼ x1, and b the image of

p∼ γ−12 x2γ2.

Hence a map in Grpd(π(M,M0),G) is determined by a quadruple (a, b, c, d) ∈ G×G×G×G

where a corresponds to the image of x1, b to the image of γ−12 x2γ2, and c and d correspond

to the images of γ1 and γ2 respectively.

Choosing basis elements (f1, f2) ∈ Z!
G(X,X0) and g1 ∈ Z!

G(Y,Y0) the commutation con-

dition in (5.2) gives conditions on allowed quadruples (a, b, c, d) ∈ G × G × G × G. We

have

⟨(g1) ∣ Z!
G(M,M0) ∣ (f1, f2)⟩ = ∣ {a, b, c, d ∈ G ∣ (a, dbd−1) = (f1, f2), c−1bac = g1} ∣

= ∣ {b, c, d ∈ G∣dbd−1 = f2, c−1bf1c = g1} ∣

= ∣ {d ∈ G∣c−1d−1f2df1c = g1} ∣.

Lemma 5.4.11. We have a magmoid morphism

Z!
G∶bHomCob→ VectC.

Proof. It is immediate from the construction that the map is well defined. Thus we

only need to check that composition is preserved. Let i∶ (X,X0) → (M,M0) ← (Y,Y0) ∶j

and k∶ (Y,Y0) → (N,N0) ← (Z,Z0) ∶ l be concrete based homotopy cobordisms. Let f ∈

Z!
G(X,X0) and g ∈ Z!

G(Z,Z0) be basis elements. The matrix element corresponding to

these basis elements is given by counting maps h in the following diagram.

π(X,X0) π(Y,Y0) π(Z,Z0)

π(M,M0) π(N,N0)

π(M ⊔Y N,M0 ⊔Y0 N0)

G

π(i)

f

π(k)π(j) π(l)

gh

From Definition 5.4.2 and Lemma 5.3.10, the pushout of (M,M0)
j←Ð (Y,Y0)

kÐ→ (N,N0)

satisfies the conditions of Corollary 5.2.18. Hence the middle square of this diagram
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is a pushout. Hence each h is uniquely determined by a pair h1∶π(M,M0) → G and

h2∶π(N,N0)→ G such that the above diagram commutes. So we have

⟨g ∣F !
G(M ⊔Y N,M0 ⊔Y0 N0) ∣ f⟩

= ∣{h1, h2 ∣h1 ○ π(j) = h2 ○ π(k) ∧ h1∣π(X,X0) = f ∧ h2∣π(Z,Z0) = g}∣

=∑
θ ∶ π(Y,Y0)→ G

∣{h1 ∣h1∣π(Y,Y0) = θ ∧ h1∣π(X,X0) = f}∣
∣{h2 ∣h2∣π(Y,Y0) = θ ∧ h2∣π(Z,Z0) = g}∣

=∑
θ ∶ π(Y,Y0)→ G

⟨g∣F !
G(N,N0)∣θ⟩⟨θ∣F !

G(M,M0)∣f⟩

Now this is precisely the corresponding matrix element given by multiplying the matrices

F !
G(M,M0) and F !

G(N,N0).

The following lemma says that Z!
G respects cospan homotopy equivalence.

Lemma 5.4.12. Suppose we have concrete homotopy cobordisms i∶X → M ← Y ∶j and

i′∶X →M ′ ← Y ∶j′ which are equivalent up to cospan homotopy equivalence (as defined in

Lemma 5.3.14). Then (by Theorem 5.2.22) we have homotopy equivalences ψ∶M →M ′ and

ψ′∶M ′ → M which commute with the cospans. Choose sets of baspoints X0 ⊆ X, Y0 ⊆ Y ,

M0 ⊆M such that i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶j is a based homotopy cobordism. Then

Z!
G (

(X,X0) (Y,Y0)

(M,M0)
i j ) = Z!

G (
(X,X0) (Y,Y0)

(M ′,M ′
0)

i′ j′ )

where M ′
0 = ψ(M0).

Proof. Let f ∈ Z!
G(X,X0) and g ∈ Z!

G(Y,Y0) be basis elements and h∶π(M,M0) → G a

map with h∣π(X,X0) = f and h∣π(Y,Y0) = g. On the level of fundamental groupoids ψ and ψ′

become inverse group isomorphisms making the following diagram commute.

π(M,M0)

π(X,X0) π(Y,Y0)

π(M ′,M ′
0)

G

π(ψ)

h

π(i′)

π(i)

f

π(j)

π(j′)

g
h′

π(ψ′)
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For any such h we can obtain a map h′ making the diagram commute by precomposing h

with π(ψ′). Thus we have a set map

Ψ∶{h∶π(M,M0)→ G ∣h∣π(X,X0) = f ∧ h∣π(Y,Y0) = g}→

{h′∶π(M ′,M ′
0)→ G ∣h′∣π(X,X0) = f ∧ h

′∣π(Y,Y0) = g} ,

which has inverse given by precomposing with π(ψ). Thus we have ⟨g ∣Z!
G(M,M0) ∣ f⟩ =

⟨g ∣Z!
G(M ′,M ′

0) ∣ f⟩ for all f, g.

5.4.3 Functor from HomCob to VectC

The magmoid morphism Z!
G depends on the choices of sets of basepoints. Also notice

that there are many ways we could obtain a based cospan from the cospan representing

the identity, ιX0 ∶X → X × I ← X ∶ιX1 , and in general these based cospans will not give

the identity matrix under Z!
G. In this section we take a colimit over Z!

G for all choices of

basepoints, and adjust the map on morphisms such that ZG no longer depends on the sets

of basepoints, and hence we can extend it to a functor from HomCob. We will find that

removing the basepoint dependence will also solve the identity problem.

Varying the set of basepoints

Let i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶j be a concrete based homotopy cobordism. We first

consider how changing the set of basepoints in the set M0 changes Z!
G(M,M0).

If such a point exists, choose a point m ∈M ∖M0 such that i∶ (X,X0)→ (M,M0 ∪{m})←

(Y,Y0) ∶j is also a concrete based homotopy cobordism. By Lemma 3.3.14, the set of

maps h′∶π(M,M0 ∪ {m}) → G is in bijective correspondence with the set of pairs of a

map h∶π(M,M0) → G and an element of G, via the bijection Θγ . Let f ∈ Z!
G(X,X0) and

g ∈ Z!
G(Y,Y0) be basis elements. Note that for all h∶π(M,M0)→ G such that h∣π(X,X0) = f

and h∣π(Y,Y0) = g, the map h′ obtained from a pair (h, g) using the map Θ−1γ as in the proof

of Lemma 3.3.14 also satisfies h′∣π(X,X0) = f and h′∣π(Y,Y0) = g. Hence by Lemma 3.3.14

for all pairs f, g we have that ⟨g ∣Z!
G(M,M0 ∪ {m}) ∣ f⟩ = ∣G∣ ⟨g ∣Z!

G(M,M0) ∣ f⟩, and hence

that

Z!
G(M,M0 ∪ {m}) = ∣G∣Z!

G(M,M0).
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It follows that for all M ′
0 ⊇M0 we have Z!

G(M,M ′
0) = ∣G∣(∣M

′
0∣−∣M0∣)Z!

G(M,M0), and hence

∣G∣−∣M ′
0∣Z!

G(M,M ′
0) = ∣G∣−∣M0∣Z!

G(M,M0).

Now suppose instead there are no containment conditions between M ′
0 and M0, then we

can write

Z!
G(M,M ′

0 ∪M0) = ∣G∣(∣M
′
0∪M0∣−∣M0∣)F !

G(M,M0)

and

Z!
G(M,M ′

0 ∪M0) = ∣G∣(∣M
′
0∪M0∣−∣M

′
0∣)Z!

G(M,M ′
0)

which together imply

∣G∣−∣M0∣Z!
G(M,M0) = ∣G∣−∣M

′
0∣Z!

G(M,M ′
0)

and that

∣G∣−(∣M0∣−∣X0∣)Z!
G(M,M0) = ∣G∣−(∣M

′
0∣−∣X0∣)Z!

G(M,M ′
0).

We have proven the following.

Lemma 5.4.13. The linear map Z!!
G, assigning a linear map to a concrete based homotopy

cobordism as follows

Z!!
G (

(X,X0) (Y,Y0)

(M,M0)
i j ) = ∣G∣−(∣M0∣−∣X0∣)Z!

G (
(X,X0) (Y,Y0)

(M,M0)
i j ) ,

does not depend on the choice of subset M0 ⊆M .

When the relevant cospan is clear, we will refer to the image as Z!!
G(M,X0, Y0) to highlight

the dependence on X0 and Y0.

In defining this new matrix we have included a term counting the cardinality of X0.

Some term counting basepoints in X or Y is necessary to ensure the new definition is

still compatible with the composition; however we could have chosen 1/2(∣X0∣ + ∣Y0∣) for

example, as is the convention in [Yet92], and avoided the asymmetry. The reason for our

convention is that it allows us to work for longer in the basis set rather than moving to

the C vector space, making calculation easier. We will highlight later where this becomes
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relevant (Remark 5.4.1).

Lemma 5.4.14. Let i∶ (X,X0) → (M,M0) ← (Y,Y0) ∶j and k∶ (Y,Y0) → (N,N0) ←

(Z,Z0) ∶ l be concrete based homotopy cobordisms. Then

Z!!
G (

(Y,Y0) (Z,Z0)

(N,N0)
k l )Z!!

G (
(X,X0) (Y,Y0)

(M,M0)
i j ) = Z!!

G (
(X,X0) (Y,Y0)

(M,M0)
i j

●
(Y,Y0) (Z,Z0)

(N,N0)
k l )

where concatenation denotes composition of linear maps, or equivalently matrix multipli-

cation.

Proof. We have

Z!!
G(M ⊔Y N,X0, Z0) = ∣G∣−(∣M0⊔Y0N0∣−∣X0∣)Z!

G(M ⊔Y N,M0 ⊔Y0 N0)

= ∣G∣−(∣M0∣+∣N0∣−∣Y0∣−∣X0∣)Z!
G(M,M0)Z!

G(N,N0)

= ∣G∣−(∣M0∣−∣X0∣)Z!
G(M,M0)∣G∣−(∣N0∣−∣Y0∣)Z!!

G(N,N0)

= Z!!
G(M,X0, Y0)Z!!

G(N,Y0, Z0)

using that, by 5.4.23, Z!
G preserves composition.

Basepoint independent map from Ob(HomCob) to Ob(VectC)

We focus here on the sets of basepoints in Ob(bHomCob). Here we will move to using Greek

subscripts to indicate varying choices of subsets, so for a space X, objects in bHomCob are

pairs of the form (X,Xα). We will eventually show that we can choose just one subset to

calculate our functor and will then switch back to the original notation.

We proceed by constructing, for a space X ∈ Ob(HomCob), a colimit in VectC over a

diagram with vertices the images under Z!
G of all possible choices Xα such that (X,Xα) ∈

χχχ = Ob(bHomCob).

Proposition 5.4.15. Let X be a homotopically 1-finitely generated space. There is a

subcategory of Set,

FinSet∗(X) = (Ob(FinSet∗(X)),FinSet∗(X)(−,−), ○, id)
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where Ob(FinSet∗(X)) contains all Xα such that (X,Xα) ∈ χχχ and FinSet∗(X)(Xα,Xβ)

contains the inclusion ιαβ ∶Xα →Xβ if Xα ⊆Xβ, otherwise FinSet∗(X)(Xα,Xβ) = ∅.

Proof. Note we have ιαα = 1Xα ∶Xα →Xα in FinSet∗(X)(Xα,Xα). Suppose Xα,Xβ,Xγ ∈

FinSet∗(X), with Xα ⊆Xβ ⊆Xγ , then the composition of ιαβ ∶Xα →Xβ and ιβγ ∶Xβ →Xγ

is precisely the unique morphism in FinSet∗(X)(Xα,Xγ). (This is the only case for which

we have composable morphisms.)

By abuse of notation, for an inclusion ιαβ ∶Xα → Xβ we will also write ιαβ ∶π(X,Xα) →

π(X,Xβ) for the inclusion of groupoids.

Lemma 5.4.16. There is a contravariant functor

VX ∶ FinSet∗(X)→ Set

constructed as follows. Let Xα,Xβ ∈ Ob(FinSet∗(X)) with Xβ ⊆ Xα. Let VX(Xα) =

Grpd(π(X,Xα),G). For any vα ∈ VX(Xα) we have a commuting triangle

π(X,Xβ) π(X,Xα)

G.

ιβα

vα○ιβα
vα

Now let VX(ιβα∶Xβ →Xα) = ϕαβ where ϕαβ ∶ VX(Xα)→ VX(Xβ), vα ↦ vα ○ ιαβ.

Proof. We have V(1Xα ∶Xα → Xα) = 1V(Xα)∶V(Xα) → V(Xα). Suppose Xα,Xβ,Xγ ∈

FinSet∗(X), with Xγ ⊆Xβ ⊆Xα, then ϕαβ ○ϕβγ = ϕαγ since (vα○ιβα)○ιγβ = vα○(ιαγ).

Lemma 5.4.17. For any space X and Xβ,Xα ∈ Ob(FinSet∗(X)) with Xβ ⊆ Xα, ϕαβ is

a surjection.

Proof. By Lemma 3.3.13 for any vβ ∈ VX(Xβ) we can extend to some vα ∈ VX(Xα) which

is equal to vβ on the image ιβα(π(X,Xβ)) in π(X,Xα).
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The colimit over VX consists of a family of commuting triangles diagrams of the form

VX(Xα) VX(Xβ)

colim(VX)
ϕα

ϕαβ

ϕβ

for each pair Xβ ⊆Xα. By abuse of notation we will use vα for both vα ∈ VX(Xα) and its

image in ⊔XαVX(Xα). Hence we have

colim(VX) = ⊔XαVX(Xα)/∼

where ∼ is the reflexive, symmetric and transitive closure of vα ∼ vβ if ϕαβ(vα) = vβ. See

Section 3.6 for more on colimits in Set. We use [vα] to denote the equivalence class of vα

in colim(VX). Hence we have ϕα∶VX(Xα)→ colim(VX), vα ↦ [vα].

Notice that this relation is certainly not itself an equivalence. For example for any Xβ ⊂

Xα, with vβ = vα ○ ιβα∶π(X,Xβ) → G, then the relation says vβ = ϕαβ(vα) ∼ vα but not

vα ∼ vβ as there is no map ϕβα.

Lemma 5.4.18. Let VX ∶FinSet∗(X) → Set be as in Lemma 5.4.16, then all maps

ϕα∶VX(Xα)→ colim(VX) are surjections.

Proof. Fix some VX(Xα). We must show that every equivalence class [v] ∈ colim(VX)

has a representative in VX(Xα). Certainly [v] has a representative vβ in some VX(Xβ).

Let Xγ = Xα ∪Xβ and choose vγ ∈ VX(Xγ) with ϕγβ(vγ) = vβ, which is always possible

since ϕγβ is an epimorphism by Lemma 5.4.17. Now vα = ϕγα(vγ) is a representative for

[v] since vγ ∼ vβ and vγ ∼ vα.

Lemma 5.4.19. Let VX ∶FinSet∗(X)→ Set be as in Lemma 5.4.16. The set colim(VX)

is finite.

Proof. The groupoid π(X,Xα) is finitely generated since X is a homotopically 1-finitely

generated space andG is finite, hence the VX(Xα) is finite for allXα, so with Lemma 5.4.18

we have the result.
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The free functor FVC is a left adjoint to the forgetful functor UVC and so preserves colimits

(see Lemma 3.5.13).

Definition 5.4.20. For X ∈ χ define

ZG(X) = colim(V ′X) = C(colim(VX))

where V ′X = FVC ○ VX and VX ∶FinSet∗(X)→ Set as in Lemma 5.4.16.

Magmoid morphism ZG∶HomCob→ VectC

The linear map Z!!
G assigned to a based homotopy cobordism still depends on the basepoints

in objects. Here we will adjust Z!!
G such that it assigns to a based homotopy cobordism,

i∶ (X,X0)→ (M,M0)← (Y,Y0) ∶j, a linear map ZG(X)→ ZG(Y ). We will then show that

this linear map is also be independent of X0 and Y0.

Let (X,Xα), (X,Xβ) ∈ χχχ. In the previous section we constructed VX ∶FinSet∗(X) → Set

(Lemma 5.4.16) which sends inclusions ιβα∶Xβ → Xα to maps ϕαβ ∶V (Xα) → V (Xβ).

Notice that FVC ○V(Xα) = V ′(Xα) = Z!
G(X,Xα), so we have a map FVC(ϕαβ)∶Z!

G(X,Xα)→

Z!
G(X,Xβ). By abuse of notation we will also use ϕαβ to refer to the maps FVC(ϕαβ). In

this section we will need to vary the input space in the construction of VX , thus we add

a superscript denoting the space, so we have maps

ϕXαβ ∶Z!
G (X,Xα)→ Z!

G (X,Xβ) .

Lemma 5.4.21. Let i∶X →M ← Y ∶j be a concrete homotopy cobordism. Then for any

pair Xα,Xβ ⊆ X with Xβ ⊆ Xα, and concrete based homotopy cobordisms i∶ (X,Xα) →

(M,Mαα′) ← (Y,Yα′) ∶j and i∶ (X,Xβ) → (M,Mβα′) ← (Y,Yα′) ∶j, the following diagram

commutes

Z!
G (X,Xα) Z!

G (X,Xβ)

Z!
G(Y,Yα′)

Z!!
G(M,Xα,Yα′)

ϕXαβ

Z!!
G(M,Xβ ,Yα′)

.

That is, the maps Z!!
G form a cocone over the vector spaces Z!

G(X,Xα) and the maps ϕXαβ.
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Hence there is a unique map

dMα′ ∶ZG(X)→ Z!
G(Y,Yα′).

Proof. First suppose Xα =Xβ∪{x} for some x ∉Xβ. Let f ∈ Z!
G(X,Xα) and g ∈ Z!

G(Y,Yα′)

be basis elements. We have

⟨g∣Z!!
G(M,Xα, Yα′)∣f⟩ = ∣G∣−(∣Mαα′ ∣−∣Xα∣) ⟨g ∣Z!

G(M,Mαα′) ∣ f⟩

and

⟨g∣Z!!
G(M,Xβ, Yα′)∣ϕXαβ(f)⟩ = ∣G∣−(∣Mβα′ ∣−∣Xβ ∣) ⟨g ∣Z!

G(M,Mβα′) ∣ϕXαβ(f)⟩

for appropriate choices Mαα′ and Mβα′ . We may choose Mαα′ = Mβα′ ∪ {x}. There is a

map from ⟨g ∣Z!
G(M,Mαα′) ∣ f⟩ to ⟨g ∣Z!

G(M,Mβα′) ∣ϕXαβ(f)⟩ given by taking the restriction

of a map h∶π(M,Mαα′) → G to h′ = h∣π(M,Mβα′)
. Note also that if h∣π(X,Xα) = f and

h∣π(Y,Yα′) = g, then also h′∣π(X,Xβ)
= ϕXαβ(f) and h′∣π(Y,Yα′) = g.

This map has inverse given by extending any map h̃ ∶ π(M,Mβα′) → G to map h̃′ ∶

π(M,Mαα′) → G, which sends a path γ ∶ x → x′ in π(X,Xα), with x′ ∈ Xβ, to f(γ),

as in Lemma 3.3.13. If the map h̃ satisfies h̃∣π(X,Xβ)
= ϕXαβ(f) and h̃∣π(Y,Yα′) = g, then

h̃′∣π(X,Xα) = f and h̃′∣π(Y,Yα′) = g. Hence

⟨g ∣F !
G(M,Mαα′) ∣ f⟩ = ⟨g ∣F !

G(M,Mβα′) ∣ϕXαβ(f)⟩.

Also ∣Mβα′ ∣ − ∣Xβ ∣ = ∣Mαα′ + 1∣ − ∣Xα + 1∣ = ∣Mαα′ ∣ − ∣Xα∣. The set Xα ∖Xβ is finite, so we

can repeat the same process for all {x1, ..., xn} ∈Xα ∖Xβ.

Remark 5.4.1. Notice that, had we defined the normalisation to be ∣G∣−(M0−1/2(X0+Y0), as is

Yetter’s convention, the triangle in the previous Lemma would not be commutative. The

fix is to redefine the maps ϕαβ in such a way that they no longer send basis elements to

basis elements. This complicates the picture slightly. It is straighforward to see that each

choice leads to the same image on any cospan of the form ∅→M ← ∅.

Lemma 5.4.22. Let i∶X →M ← Y ∶j be a concrete homotopy cobordism. Fix a choice of

Yα′ ⊆ Y such that (Y,Yα′) ∈ χχχ. For each pair Xα,Xβ ⊆ X such that (X,Xα), (X,Xβ) ∈ χχχ
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we have the following diagram

Z!
G (X,Xα) Z!

G (X,Xβ)

ZG(X)

Z!
G(Y,Yα′)

ZG(Y ).

Z!!
G(M,Xα,Yα′)

ϕXαβ

ϕXα

Z!!
G(M,Xβ ,Yα′)

ϕXβ

dMα′

ϕYα′

(5.3)

The assignment

ZG
⎛
⎜
⎝
X Y

M
i j

⎞
⎟
⎠
= ϕYα′dMα′

does not depend on the choice of Yα′.

As above, where we have given a cospan we will use the notation ZG(M) for ZG(i∶X →

M ← Y ∶j).

Proof. We show that the following diagram commutes for any pair Yα′ , Yβ ′

Z!
G(X,Xα)

Z!
G (Y,Yα′) Z!

G (Y,Yβ ′)

Z!!
G(M,Xα,Yα′) Z!!

G(M,Xα,Yβ′)

ϕYα′β′

This implies that ϕYα′β ′ is a map of cocones and, by the universal property of the colimit

that ϕYα′β ′d
M
α′ = dMβ ′ and hence that ϕYα′d

M
α′ = ϕYβ ′ϕYα′β ′dMα′ = ϕYβ ′dMβ ′ .

Suppose first that Yα′ = Yβ ′ ∪ {y} for some y ∉ Yβ ′ and let f ∈ Z!
G(X,Xα) and g ∈

Z!
G(Y,Yβ ′) be a basis elements. The map ϕYα′,β ′ ∶VY (Yα′) → VY (Yβ ′) is an epimorphism

(by Lemma 5.4.17), so sends a subset of VY (Yα′) to g ∈ VY (Yβ ′). Thus the matrix element

⟨f ∣ϕYα′β ′Z!!
G(M,Xα, Yα′)∣g⟩ is the sum of the matrix elements in Z!!

G(M,Xα, Yα′) correspond-
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ing to f and to each g′ in the preimage ϕYα′β ′
−1(g). Hence we have

⟨g ∣ϕYα′β ′Z!!
G(M,Xα, Yα′) ∣ f⟩ = ∑

g′∈ϕY −1
α′β′ (g)

⟨g′ ∣Z!!
G(M,Xα, Yα′) ∣ f⟩

= ∣G∣−(∣Mαα′ ∣−∣Xα∣) ∑
g′∈ϕY −1

αβ

⟨g′ ∣Z!
G(M,Mαα′) ∣ f⟩

for an appropriate choice of Mαα′ . Following the same argument as used in the previous

lemma we may choose a subset Mαβ ′ with Mαα′ =Mαβ ′ ∪ {y} and then

⟨g ∣Z!
G(M,Mαβ ′) ∣ f⟩ = ⟨g′ ∣Z!

G(M,Mαα′) ∣ f⟩ .

For every map g ∶ π(Y,Yβ ′) → G, there will be precisely G maps in the preimage under

ϕYα′β ′ , one for each choice of an element of G. This can be seen by noting that ϕYα′β ′ is

the composition of the bijection Θ−1γ ∶Grpd(π(X,Yα′),G) → Grpd(π(Y,Yβ′),G) × G in

Lemma 3.3.14 with the projection to the first coordinate, for some choice of γ∶ y → y′ ∈

Mαβ′ . Hence we have

⟨g ∣ϕYα′β ′Z!!
G(M,Xα, Yα′) ∣ f⟩ = ∣G∣−(∣Mαα′ ∣−∣Xα∣)∣G∣ ⟨g ∣Z!

G(M,Mαα′) ∣ f⟩

= ∣G∣−(∣Mαβ′ ∣−∣Xα∣) ⟨g ∣Z!
G(M,Mαβ ′) ∣ f⟩

= ⟨g∣Z!!
G(M,Xα, Yβ ′)∣f⟩ .

Now suppose Yα′ = Yβ ′ ∪ {y1, ..., yn}, then we similarly acquire one factor of ∣G∣ and one

factor ∣G∣−1 for each new point, hence ϕYα′β ′Z
!!
G(M,Xα, Yα′) = Z!!

G(M,Xα, Yβ ′).

Lemma 5.4.23. We have a magmoid morphism

ZG∶HomCob→ VectC

where ZG is given in Definition 5.4.20 and Lemma 5.4.22.

Proof. Lemmas 5.4.13 and 5.4.22 give that ZG is well defined.

We prove ZG preserves composition. Suppose we have concrete homotopy cobordisms

i∶X →M ← Y ∶j and k∶Y → N ← Z ∶ l. Let Y0 ⊆ Y and Z0 ⊆ Z be fixed finite representa-

tive subsets. Notice that for any finite representative subset X0 ⊆ X, by Lemma 5.4.14,
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we have Z!!
G(M ⊔N,X0, Z0) = Z!!

G(N,Y0, Z0)Z!!
G(M,X0, Y0) = dN0 ϕY0 Z!!

G(M,X0, Y0). Thus

dN0 ϕ
Y
0 d

M
0 ∶ZG(X) → Z!

G(Z,Z0) is a map commuting with the cocone given by the maps

Z!!
G(M ⊔ N,X0, Z0). Hence by the uniqueness of the map obtained from the universal

property of the colimit gives dN0 ϕ
Y
0 d

M
0 = d

M⊔Y N
0 . Hence we have ϕZ0 d

N
0 ϕ

Y
0 d

M
0 = ϕZ0 d

M⊔Y N
0

and ZG(N)ZG(M) = ZG(M ⊔Y N).

The functor ZG∶HomCob→VectC

The following theorem says that ZG becomes a functor from the category HomCob.

Theorem 5.4.24. There is a functor

ZG∶HomCob→VectC

defined as follows.

• For a space X ∈ Ob(HomCob),

ZG(X) = C (colim(VX))

where VX is the diagram in Set with vertices VX(Xα) = Grpd (π(X,Xα),G) for

each finite representative subset Xα ⊆X and edges ϕαβ ∶VX(Xα)→ VX(Xβ) whenever

Xβ ⊆Xα sending each f ∈ VX(Xα) to f ○ ιβα where ιβα∶π(X,Xβ)→ π(X,Xα) is the

inclusion.

• For a homotopy cobordism [i∶X →M ← Y ∶j]
ch
,

ZG
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

X Y

M
i j

⎤⎥⎥⎥⎥⎦ch

⎞
⎟
⎠
= ZG

⎛
⎜
⎝
X Y

M
i j

⎞
⎟
⎠
= ϕYα′dMα′ ∶ZG(X)→ ZG(Y )

where Yα′ ⊆ Y is some choice of finite representative subset and, ϕYα′ and d
M
α′ are as

in Lemma 5.4.22.

Proof. We have from Lemma 5.4.23 that ZG is a magmoid morphism so it remains only to

check that ZG does not depend on a choice of representative cospan and that it preserves

identities. We will need a different interpretation of the colimit to prove that ZG preserves

identities, we do this in Lemma 5.4.35.
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In Lemma 5.4.12 we show that Z!
G does not depend on the representative homotopy cobor-

dism we choose. It thus follows that Z!!
G and hence ZG do not depend on a choice of

representative cospan.

The following Lemma gives an alternative description of the image of the linear map a

cospan is sent to under ZG, in terms of a choice of based cospan.

Lemma 5.4.25. Let i∶X → M ← Y ∶j be a concrete homotopy cobordism, i∶ (X,X0) →

(M,M0)← (Y,Y0) ∶j a choice of concrete based homotopy cobordism, and [f] ∈ ZG(X) and

[g] ∈ ZG(Y ) be basis elements (so [f], for example, is an equivalence class in colim(VX)),

then

⟨[g]∣ZG(M)∣[f]⟩ = ∣G∣−(∣M0∣−∣X0∣) ∑
g∈ϕY −10 ([g])

∣{h∶π(M,M0)→ G ∣h∣π(X,X0) = f ∧ h∣π(Y,Y0) = g}∣

= ∣G∣−(∣M0∣−∣X0∣) ∑
g∈ϕY −10 ([g])

⟨g ∣Z!!
G(M,M0) ∣ f⟩

where ϕY0 ∶Z!
G(Y,Y0)→ ZG(Y ) is the map into colim(V ′Y ); see Definition 5.4.20.

Proof. We will use notation as in 5.3. Since each map ϕY0 is surjective (Lemma 5.4.18),

we can find dM0 ([f]) by looking at Z!!
G(M,X0, Y0)(f). Hence we have

dM0 ([f]) = ∑
g∈VY (Y0)

⟨g ∣Z!!
G(M,X0, Y0) ∣ f⟩ ∣g⟩

and, choosing a basis element [g] ∈ ZG(Y ),

⟨[g]∣ZG(M)∣[f]⟩ = ∑
g∈ϕY −10 ([g])

⟨g ∣Z!!
G(M,X0, Y0) ∣ f⟩

= ∣G∣−(∣M0∣−∣X0∣) ∑
g∈ϕY −10 ([g])

⟨g ∣Z!!
G(M,M0) ∣ f⟩

= ∣G∣−(∣M0∣−∣X0∣) ∑
g∈ϕY −10 ([g])

∣{h∶π(M,M0)→ G ∣h∣π(X,X0) = f ∧ h∣π(Y,Y0) = g}∣ .

Remark 5.4.2. The set of maps ϕ−10 ([g]) contains all maps g′∶π(Y,Y0)→ G such that g′ ∼ g

where ∼ is the equivalence relation defined by the colimit. And since we are only counting
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the cardinality of maps h we can rewrite the map on morphisms as

⟨[g]∣ZG(M)∣[f]⟩=∣G∣−(∣M0∣−∣X0∣) ∣{h ∶ π(M,M0)→ G ∣h∣π(X,X0) = f ∧ h∣π(Y,Y0) ∼ g}∣ (5.4)

where we have removed the sum and only insist maps h are equivalent to g on Y . In many

cases, especially with the local equivalence obtained in following section, this will be the

most useful formulation to use for calculations.

Example 5.4.26. Let i∶X →M ← Y ∶j be the homotopy cobordism shown in Figure 5.3.

Note this is a homotopy cobordism from Examples 5.3.8 and 5.3.27. Using 5.4, we may

choose to calculate the image of ZG([i∶X →M ← Y ∶j]
ch
) using the based homotopy cobor-

dism considered in Example 5.3.8. Using the results and notation from Example 5.3.8, we

have

⟨[(g1)] ∣ ZG(M) ∣ [(f1, f2)]⟩ = ∣G∣−1⟨(g1) ∣ Z!
G(M,M0) ∣ (f1, f2)⟩

= ∣G∣−1 ∣ {c, d ∈ G∣c−1d−1f2df1c ∼ g1} ∣.

5.4.4 Writing the colimit in terms of a local equivalence

For a general homotopically 1-finitely generated spaceX it is unlikely to be straightforward

to calculate the colimit constructed in the previous section. Usually there will be an

uncountably infinite number of choices of finite representative subsets Xα ⊆ X, and thus

an uncountably infinite number of vertices in VX . However we did show, in Lemma 5.4.19,

that ZG(X) is finite dimensional for all X.

In this section we show that this global equivalence given by taking the colimit over all

subsets, is the same as choosing a single subset and taking a local equivalence given by

taking maps up to natural transformation.

This will allow us to prove, in Lemma 5.4.35, that ZG preserves the identity. We will also

need this interpretation of ZG to prove, in Section 5.4.5, that ZG is a monoidal functor.

Here we only need to work with a single spaceX, so with VX as constructed in Lemma 5.4.16,

we drop the subscript on VX , and the superscript on the ϕX . Consider the commuting
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diagram

colim(V)

V(Xα)/≅

ϕ̂α --

V(Xα)pα
oo

ϕα

33

ϕαβ

// V(Xβ),

ϕβ

kk (5.5)

where ≅ denotes taking maps up to natural isomorphism (it is straightforward to check this

is an equivalence relation). The set map pα sends a groupoid map in Grpd(π(X,Xα),G)

to its equivalence class in V(Xα)/≅. The map ϕ̂α ∶ V(Xα)/≅ → colim(V) is the canonical map

sending an equivalence class to ϕα of some representative (it remains to check this is well

defined).

Theorem 5.4.27. For a space X, the map ϕ̂α is an isomorphism. Hence, for a homo-

topically 1-finitely generated space X ∈ χ

ZG(X) = C((Grpd(π(X,X0),G)/ ≅),

for any choice X0 ⊂ X of finite representative subset, where ≅ denotes taking maps up to

natural transformation.

Proof. Surjectivity follows directly from Lemma 5.4.18. We prove ϕ̂α is well defined and

injective in Lemmas 5.4.28 and 5.4.30 respectively.

For a path s∶ I → X in X, we will also use s to denote its path equivalence class in π(X)

and s
p∼ s′ to mean that s′ ∈ [s]p.

Lemma 5.4.28. Let vα, v
′
α ∈ V(Xα) be two groupoid maps such that pα(vα) = pα(v′α),

then ϕα(vα) = ϕα(v′α).

Proof. There exists a subset Xα̃ ⊆ Xα containing precisely one basepoint in each path-

connected component, and maps ṽα, ṽ
′
α∶π(X,Xα̃) → G such that ϕαα̃(vα) = ṽα and

ϕαα̃(v′α) = ṽ′α. We will show that ṽα and ṽ′α are equivalent in the colimit, implying vα ∼ v′α.
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The idea of this proof is illustrated by the following diagram.

π(X,Xγ) π(X,Xγ)

π(X,Xα̃) π(X,Xβ) π(X,Xα̃)

G

vγ v′γ

ṽα ṽ′α

We use the morphisms in the natural transformation connecting vα and v′α to extend the

map ṽα to a map from vγ ∶π(X,Xγ)→ G, where Xγ is a larger set of basepoints. We also

trivially extend the map ṽ′α to v′γ ∶π(X,Xγ)→ G, and show that these extensions have the

same image under some ϕγβ, and therefore are equivalent in the colimit.

The set Xα̃ is finite so we can write Xα̃ = {x1, ..., xN}. Since vα and v′α are related by

a natural transformation, for all points xn ∈ Xα̃ and for all equivalence classes of loops

s∶xn → xn, the below square commutes.

vα(xn)
vα(s)

//

ηxn
��

vα(xn)
ηxn
��

v′α(xn) v′α(s)
// v′α(xn)

Recall that the image of vα and vα′ is a groupoid with one object, so the image on points

is always the same. Hence the two maps must be the same on any path-components that

have no non-trivial paths.

Choose another set of points Xβ = {y1, ..., yN} as follows. If there are no non-trivial loops

based at xn then yn = xn, otherwise choose yn ≠ xn and choose a path tn∶xn → yn, with tn

the constant path if xn = yn. This is always possible since a non-trivial loop based at xn

must contain some yn ≠ xn.

Let Xγ =Xα̃∪Xβ. We define a map vγ ∶π(X,Xγ)→ G as follows. Let vγ ∣π(X,Xα̃)
= ṽα, and

vγ(tn) = ηxn unless tn is the constant path, in which case vγ(tn) = 1G. By Lemma 3.3.13

this completely defines vγ . Notice ϕγα̃(vγ) = ṽα, hence ṽα ∼ vγ .

Define another map v′γ ∶π(X,Xγ) → G by v′γ ∣π(X,Xα̃)
= ṽ′α and v′γ(tn) = 1G. We have

ϕγα̃(v′γ) = ṽ′α and so ṽ′α ∼ v′γ .

Now we check that ϕγβ(vγ) = ϕγβ(v′γ), hence vγ ∼ v′γ . Since Xβ has only one point in each
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path-connected component we only need to check that vγ and vγ′ agree on loops. For any

trivial s∶xn → xn with yn = xn, we have vγ(s) = 1G = ṽα(s) = ṽ′α(s).

Now suppose s∶ yn → yn is any class of loops with yn ≠ xn,

vγ(s) = vγ(tnt−1n stnt−1n ) = ηxn ṽα(t−1n stn)η−1xn = ṽ
′
α(t−1n stn)

and similarly,

v′γ(s) = v′γ(tnt−1n stnt−1n ) = v′γ(tn)v′γ(t−1n stn)v′γ(t−1n ) = ṽ′α(t−1n stn).

Hence ϕγβ(vγ) = ϕγβ(v′γ) so vγ ∼ v′γ and ṽα ∼ ṽ′α.

Lemma 5.4.29. For any finite representative subset Xα of a space X, π(X,Xα) and

π(X) are equivalent as categories.

Proof. We have an inclusion ια∶π(X,Xα)→ π(X). We define explicitly a map rα∶π(X)→

π(X,Xα) as follows. For each x ∈ X ∖ Xα, choose a point yx ∈ Xα in the same path-

connected component as x, and a path tx∶x → yx. If x ∈ Xα choose yx = x and tx the

trivial path. Now define

rα(x) = yx

and for a path s∶x→ x′ in π(X)

rα(s) = tx′st−1x

The composition rαια is equal to the identity and a natural transformation η∶ id→ ιαrα is

given by

ηx = tx.

Lemma 5.4.30. Let vα, v
′
α ∈ V(Xα) be two maps such that ϕα(vα) = ϕα(v′α). Then

pα(vα) = pα(v′α).

Proof. The maps vα and v′α being equivalent in the colimit means there is some finite

sequence of relations vα = v0 ∼ v1 ∼ ... ∼ vN = v′α where vn ≠ vn+1, and of maps
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vn∶π(X,Xn) → G such that for each pair vn, vn+1 we have one of the following two di-

agrams:

π(X,Xn) π(X,Xn+1)

G

ιn,n+1

vn=vn+1ιn,n+1
vn+1

π(X,Xn+1) π(X,Xn)

G

ιn+1,n

vn+1=vnιn+1,n
vn

Then we have a commuting diagram of the following form

π(X,Xn,n+1)

π(X,Xn) π(X,Xn+1)

G

ι′n

vn

ι′n+1

vn+1

where we let Xn,n+1 be the larger of Xn and Xn+1 and one ι′n and ι′n+1 is a strict inclusion

and the other is the identity. The middle arrow is either vn or vn+1. Consider the below

diagram

π(X)

π(X,X0,1) π(X,Xn,n+1) π(X,XN−1,N)
... ...

π(X,X0) π(X,X1) π(X,Xn) π(X,Xn+1) π(X,XN−1) π(X,XN)

G

r0
r0,1

r1
rn rn,n+1

rn+1
rN−1

rN,N−1

rN

ι′0

v0

ι′1

v1

ι′n

vn

ι′n+1

vn+1

ι′N−1

vN−1

ι′N

vN

where the maps r and ι are as constructed in the proof of Lemma 5.4.29.

We will show there is a natural transformation v0r0 to vNrN . Since X0 =XN =Xα, ι0 = ιN

and hence v0r0 ≅ vNrN implies v0r0ι0 ≅ vNrN ιN . This implies v0 ≅ vN since rβιβ = id for

all finite representative Xβ ⊆X by Lemma 5.4.29.

We show all triangles in the diagram commute up to natural transformation. The bottom

triangles commute exactly by the construction explained in the first part of the proof. No-

tice that ι′nrn = rn,n+1ιnrn, where ιn∶π(X,Xn)→ π(X) is the inclusion. By Lemma 5.4.29
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we have that rn,n+1ιnrn ≃ rn,n+1.

Example 5.4.31. Let X = S1 ⊔ S1. Then, letting X0 ⊂ X be a subset with precisely

one point in each connected component, Grpd(π(X,X0),G) = G × G as discussed in

Example 5.4.7. Taking maps up to natural transformation corresponds to allowing taking

each element of G up to conjugation, so we have ZG(X) = C(G/G ×G/G).

Example 5.4.32. Consider again Example 5.4.26, which in turn refers to Examples 5.3.8

and 5.3.27. The equivalence class [g1] in the basis of ZG(Y ) consists of all maps send-

ing S1 to something in the conjugacy class of g1. This allows us to refine the result of

Example 5.4.26 as follows.

⟨[(g1)] ∣ ZG(M) ∣ [(f1, f2)]⟩ = ∣G∣−1∣ {c, d ∈ G∣c−1d−1f2df1c ∼ g1} ∣

= ∣ {d ∈ G∣d−1f2df1 ∼ g1} ∣.

Example 5.4.33. Let X be the embedding of two circles as shown in Figure 5.5. Then,

letting X0 ⊂ X be the subset shown, Grpd(π(X,X0),G) = G × G as discussed in Ex-

ample 5.4.8. Since all objects are mapped to the unique object in G, taking maps up

to natural transformation is equivalent to conjugation by elements of G at each point,

hence corresponds to taking the pairs up to simultaneous conjugation, so we have ZG(X) =

C((G ×G)/G).

Theorem 5.4.34. Let X ∈ χ be a homotopically 1-finitely generated space. Then

ZG(X) ≅ C(Grpd(π(X),G)/ ≅),

the set of groupoid maps up to natural transformation.

Proof. We have from Theorem 5.4.27 that ZG(X) ≅ C(Grpd(π(X,X0),G)/ ≅), for some

finite representative set X0.

We have from Lemma 5.4.29 that π(X,X0) and π(X) are equivalent as categories. Let

ι0∶π(X,X0)→X and r0∶π(X)→ π(X,X0) be as in the proof of Lemma 5.4.29.
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Let [f] ∈Grpd(π(X),G)/ ≅, then there is a map

ϕ∶Grpd(π(X),G)/ ≅→Grpd(π(X,X0),G)/ ≅

ϕ([f])↦ [f ○ ι0].

We show this map is well defined. Suppose f ′ ∈ [f], so there is natural transformation,

say η, from f to f ′. Then f ′ ○ ι0 ∼ f ○ ι0 using the restriction of η to x ∈X0.

This ϕ has inverse ϕ′, where ϕ′(g) = g ○ r0. Again this map is well defined, this time if η

is a natural transformation in Grpd(π(X,X0),G)/ ≅, then maps ηr0(x) give the required

natural transformation.

We now use Theorem 5.4.27 to prove that identities are preserved.

Lemma 5.4.35. The identity homotopy cobordism [ιX0 ∶X →X × I←X ∶ιX1 ]ch for a space

X is mapped to the identity matrix by ZG.

Proof. We will show that the matrix element

⟨[f]∣ZG(X × I)∣[g]⟩ .

is 1 if [f] = [g] and 0 otherwise.

Let ei denote the constant path at any point i. First note, there is an isomorphism

π (X × I, (X0 × {0}) ∪ (X0 × {1}))
∼Ð→ π(X,X0) × π ([0,1],{0,1}) .

given by sending an equivalence class of paths to the pair containing the equivalence classes

of each projection (see 6.4.4 in [Bro06]). Hence we have that ⟨f ∣ Z!
G(X × I) ∣ g⟩ is given

by the cardinality of the set of maps

h∶π(X,X0) × π ([0,1],{0,1})→ G

such that

h(γ, ei) =
⎧⎪⎪⎨⎪⎪⎩

f(γ), i = 0,
g(γ), i = 1.
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X

Y

γ1

γ2

x1 x2

y1

γ3 M

Figure 5.7: This figure represents the concrete cofibrant cospan from Example 5.3.7. The
red points and lines show a possible choice of basepoints M0 and paths. It can be seen
that the equivalence classes of the marked paths generate π(M,M0). We can see X and Y
are homotopically 1-finitely generated by considering the intersection of the marked points
and paths with X and Y respectively. Thus it is a concrete homotopy cobordism.

Any pair in the product space can be written as a composition of pairs with only one non-

identity component. The morphisms of π ([0,1],{0,1}) are generated by the equivalence

class of the path id∶ [0,1] → [0,1]. Thus a map h is completely defined by specifying its

action on pairs of the form (exj , id). Let s∶x0 → x1 be a path in X with x0, x1 ∈X0. Notice

that

(ex1 , id−1)(s, e1)(ex0 , id) = (s, e0) Ô⇒ h(ex1 , id)−1g(s)h(ex0 , id) = f(s).

Hence such an h exists if and only if the h(exi , id) are a natural transformation from f

to g. By Theorem 5.4.27 this means the matrix element corresponding to f and g is zero

unless [f] = [g].

Now we consider the matrix element

⟨[f]∣ZG(X × I)∣[f]⟩ .

A map h is a defined by a choice of h(ex0 , id) ∈ G for each x0 ∈X and all choices define a

natural transformation. Using the definition of ZG from Lemma 5.4.25, we must sum over

all ⟨f ∣ Z!
G(X × I) ∣ f ′⟩ with f ′ ∼ f , which, by Theorem 5.4.27, means there is a natural

transformation f to f ′. Hence all choices of h(ex0 , id) = g ∈ G will contribute to the sum.

There are ∣G∣∣X0∣ choices, then with the normalisation, the matrix element is 1.

Example 5.4.36. Consider the based homotopy cobordism shown in Figure 5.2. This

represents a manifold M , which is the complement of the marked subset in I3 and X and
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Y are given by the bottom and top boundary respectively. This becomes a cospan with the

inclusion maps. This is in fact a homotopy cobordism from Examples 5.3.7 and 5.3.28.

We calculate ZG( [i∶X →M ← j ∶Y ]
ch
). We choose to use the based homotopy cobordism

shown in Figure 5.7 for calculation. The set M0 consists of all marked points and X0 and

Y0 consist of the intersection of M0 with X and Y respectively.

We have from Example 5.4.32 that basis elements in ZG(X) are given by equivalence

classes [(f1, f2)] where f1, f2 ∈ G and [] denotes simultaneous conjugation by the same

element of G.

Basis elements in ZG(Y ) are given by elements of g taken up to conjugation, denoted [g1].

Let x ∈X be the basepoint which is in the connected component of X homotopy equivalent

to the punctured disk, and x′ ∈X some choice of basepoint in another connected component.

By Lemma 3.3.14, there is a bijection sending a map h ∈Grpd(π(M,M0),G) to a map h′ ∈

Grpd(π(M,{x,x′})×G×G×G, which agrees with h on π(M,{x,x′}) and where the first

element of G corresponds to the image h(γ1), the second to h(γ2), and the third to h(γ3).

Now π(M,{x,x′}) is the disjoint union of the groupoids π(M1,{x}) and π(M2,{x′}) where

M1 is the path connected component of M containing x, and M2 is the path connected

component containing x′. The group π(M2,{x′}) is trivial, so there is one unique map into

G. The group π(M1,{x}) is equivalent to the twice punctured disk (see Example 5.3.28),

which has fundamental group isomorphic to the free product Z∗Z. This isomorphism can

be realised by sending the loop x1 to the 1 in the first copy of Z and x2 to the 1 in the

second copy of Z. Thus we can label elements in Grpd(π(M1,{x}),G) by elements of

G×G where g1 ∈ (g1, g2) corresponds to the image of x1, and g2 the image of x2. Hence a

map in Grpd(π(M,M0),G) is determined by a five tuple (a, b, c, d, e) ∈ G×G×G×G×G

where a corresponds to the image of x1, b to the image of x2, and c, d and e correspond

to the images of γ1, γ2 and γ3 respectively. Hence we have

⟨[g1]∣ZG(M)∣[(f1, f2)]⟩ = ∣G∣−2 {a, b, c, d, e ∈ G ∣ a = f1, b = f2, g1 ∼ ebae−1}

= {e ∈ G ∣ g1 ∼ ef1f2e−1}

=
⎧⎪⎪⎨⎪⎪⎩

∣G∣ if g1 ∼ f1f2
0 otherwise.
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5.4.5 Monoidal functor ZG∶HomCob→VectC

We now show that the functor ZG is symmetric monoidal. We will need the following

lemma.

Lemma 5.4.37. Let X and Y be homotopically 1-finitely generated spaces. There is a

bijection

κ∶ colim(VX⊔Y )
∼Ð→ colim(VX) × colim(VY )

where VX is as in Lemma 5.4.16

Proof. For any subsets Xα ⊆ X and Yα′ ⊆ Y , and points x ∈ Xα and y ∈ Yα′ , we have

that π(X ⊔ Y,Xα ⊔ Yα′)(x, y) is empty. Thus there is an isomorphism of groupoids

π(X ⊔ Y,Xα ⊔ Yα′)
∼Ð→ π(X,Xα) ⊔ π(Y,Yα′) and we have a bijection Grpd(π(X ⊔ Y,Xα ⊔

Yα′),G)
∼Ð→ Grpd(π(X,Xα),G) ×Grpd(π(Y,Yα′),G) sending a map to the appropriate

pair of restrictions. Equivalently we have a bijection VX⊔Y (Xα⊔Yα′)
∼Ð→ VX(Xα)×VY (Yα′).

Thus colim(VX⊔Y ) is isomorphic to the colimit over the diagram with vertices of the form

VX(Xα)×VY (Yα′) and maps of the form (ϕXαβ, ϕYα′β′), which we denote colim(VX⊔Y )′. We

construct a bijection between colim(VX⊔Y )′ and colim(VX) × colim(VY ).

Suppose [(f, g)] = [(f ′, g′)] in colim(VX⊔Y )′ with (f, g) ∈ VX(Xα)×VY (Yα′) and (f ′, g′) ∈

VX(Xβ)×VY (Yβ′). By the construction of the colimit, there is a sequence of sets VX(X0)×

VY (Y0), ...,VX(Xn) × VY (Yn) with VX(X0) × VY (Y0) = VX(Xα) × VY (Yα′) and VX(Xn) ×

VY (Yn) = VX(Xβ) × VY (Yβ′), and a sequence of maps ϕ0, ..., ϕn−1 connecting (f, g) and

(f ′, g′) where each ϕi is either a map VX(Xn)×VY (Yn)→ VX(Xn+1)×VY (Yn+1) or a map

VX(Xn+1)×VY (Yn+1)→ VX(Xn)×VY (Yn). The projections of this sequence of maps give

sequences of maps connecting f and f ′ in colim(VX) and g and g′ in colim(VY ). Thus

there is a well defined map

κ′∶ colim(VX⊔Y )′ → colim(VX) × colim(VY )

[(f, g)]↦ ([f], [g]).

It is easy to see this map is a surjection. To see that it is an injection, suppose now

that [f] = [f ′] in colim(VX) and [g] = [g′] in colim(VY ) then there are sequences

ϕf0 , ..., ϕ
f
n and ϕg0, ..., ϕ

g
n as in the proof of well definedness. Now the sequence given
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by (ϕf0 , id), ..., (ϕ
f
n, id), (id, ϕg0), ...(id, ϕ

g
1) is a sequence connecting (f, g) and (f ′, g′) in

colim(VX⊔Y )′.

Lemma 5.4.38. The functor ZG∶HomCob → VectC (where VectC has the monoidal

structure from Lemma 3.7.7) endowed with (ZG)0 = 1C∶C→ C and natural transformations

(ZG)2(X,Y )∶ZG(X)⊗C ZG(Y )→ ZG(X ⊔ Y )

which acts on basis elements as

[f]⊗C [g]↦ κ−1([f], [g])

with κ as in Lemma 5.4.37, is strong monoidal.

Proof. Notice colim(V∅) = ∅ as V∅ has just one vertex, the empty set, and no maps.

Hence ZG(∅) = C so (ZG)0 is well defined.

The vector space ZG(X) ⊗C ZG(Y ) has a basis isomorphic to colim(VX) × colim(VY ).

Thus the map (ZG)2(X,Y ) is the linear extension of κ−1, hence an isomorphism by

Lemma 5.4.37.

The only complication in checking the associativity relation is understanding the image of

the associator, ZG(αX,Y,Z). The proof is similar to the proof that the identity is preserved

so we don’t repeat it here but we have that on basis elements ZG(αX,Y,Z)((f ⊗C g)⊗Ch) =

f ⊗C (g⊗C h). Similarly we can check the unitality relations using that, on basis elements,

we have ZG(λX)(∅⊗C f) = f and ZG(ρX)(f ⊗C ∅) = f .

Lemma 5.4.39. The monoidal functor ZG∶HomCob→VectC is symmetric monoidal.

Proof. As in the previous proof it is straightforward to check the relevant identity.

Lemma 5.4.40. The functor

Z̃G = ZG ○Cobn∶Cob(n)→VectC

where Cobn is as in Proposition 5.3.33, is a TQFT for all n ∈ N , i.e. is a symmetric

monoidal functor.
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Proof. We have from Propositions 5.3.33 and 5.3.35 that Cobn is a symmetric monoidal

functor into HomCob and from Theorem 5.4.24 and Lemma 5.4.39 that ZG is a symmetric

monoidal functor HomCob→VectC.
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Conclusions

We conclude by summarising the work done in this thesis and outlining some possible

future directions.

In Chapter 4 we constructed the motion groupoid and mapping class groupoid associated

to a manifold, generalising motions groups [Dah36] and mapping class groups [Bir16]. We

also gave the general relationship between these constructions, proving there is a groupoid

isomorphism whenever the space of homeomorphisms of the manifold, with the compact-

open topology, has only one path component, which has trivial π1. One interesting future

direction would be completing the relationship between the motion groupoid and gener-

alisations of other topological definitions of the braid group. In particular the definition

of braids as monotonic embeddings of intervals in I3. An important part of the bridge

between the motion groupoid setting and the monotonic embedding setting is provided by

the interpretation of motions as maps from M × I to M × I given in Section 4.3.3. This

leads to a map from motions to embeddings. The work to be done consists of investigat-

ing what map this leads to on equivalence classes. We discuss in Section 1.1.4 that the n

strand braid group can be realised as isomorphisms at the object consisting of n points

in the tangle category. One motivating aim was to understand if the braid-tangle relation

generalises to a more general relationship between motion groupoids and embedded cobor-

dism categories. The final part required is to understand how isomorphisms in embedded

cobordism categories relate to monotonic embeddings.

Another possible future direction is to give combinatorial presentations of certain motion
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subgroupoids corresponding to physically interesting configurations of subsets in man-

ifolds, loops and simple links in a 3-ball, for example. One objective is to prove the

presentation of the motion groupoid of loops and points conjectured in Section 4.3.8. We

have already begun work on a construction of a monoidal structure for these groupoids,

which will be a useful tool in proving presentations of these groupoids. Another physi-

cally interesting setting would be modifying the motion groupoid to allow for points on a

graph. This is of interest because one system which may be useful for building a topological

quantum computer consists of particles moving in systems of nanowires.

In Chapter 5 we give a family of functors from the category HomCob into VectC, which

take as input a finite group G and which are constructed using the fundamental groupoid.

Putting together this with the relationship between TQFTs and modular tensor categories

(MTCs), an interesting question would be to characterise the modular tensor categories

which correspond to TQFTs arising from our construction. Following a similar line, it

would be interesting to investigate constructions using higher homotopical properties of

the spaces involved, and again understand which MTCs arise in this way.

It would also be interesting to consider constructions which use information about the

complement of a particle trajectory, but also of the embedding. This would be a generali-

sation of a kind of quandle invariant of knots, which is a stronger invariant than the knot

group.

Another direction is to directly calculate the image of the functor on specific choices of

spaces. In many cases it should be a relatively straightforward exercise to extend the

functor ZG to a functor from a motion groupoid and calculate its value on elements, thus

obtaining representations of motion groupoids.
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Appendix A

Appendices to Chapter 4

A.0.1 Proof of Theorem 4.2.1

This section follows the proof of Theorem 4 in [Are46].

Recall that a spaceX is said to be locally compact if each x ∈X has an open neighbourhood

which is contained in a compact set. If X is Hausdorff, X is locally compact if and only

if for each x ∈ X and open set U ⊂ X containing x, there exists an open set V containing

x with V̄ compact and V̄ ⊂ U (where V̄ is the closure of V ) [Mun16, Thm 29.2].

Lemma A.0.1. Let X be a locally compact Hausdorff space. Let K ⊂ X be compact and

U ⊂ X be open with K ⊂ U . Then there exists an open set V with K ⊂ V ⊂ V ⊂ U , where

V is compact.

Proof. Since X is locally compact Hausdorff, for every x ∈K there is an open set V (x) ⊂ U

with V (x) ⊂ U compact. The set of all V (x) is a cover for K, and K is compact so there

exists a finite subcover. Hence we have

K ⊂ ⋃
i∈{1,...,n}

V (xi) ⊂ ⋃
i∈{1,...,n}

V (xi) ⊂ U

for some finite set {x1, . . . xn} ⊂K. We can choose V = ⋃i∈{1,...,n} V (xi), noting that (since

the union is finite) V = ⋃i∈{1,...,n} V (xi), and hence V is compact, since it is a finite union

of compact subsets.
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Lemma A.0.2. Let X be a locally compact Hausdorff space. Then the composition of

homeomorphisms

○∶TOPh(X,X) ×TOPh(X,X)→ TOPh(X,X)

(f,g)↦ g ○ f

is continuous.

Proof. Let BXX(K,U) be an element of the subbasis of τ coXX . Now suppose h ∈ BXX(K,U)

is in the image of ○, so h = g ○ f for some g, f ∈ Toph(X,X). We show that for all such h,

we can construct an open set in V ∈ Toph(X,X)×Toph(X,X) with (f,g) ∈ V and for all

(f′,g′) ∈ V , g′ ○ f′ ∈ BXX(K,U).

We have g(K) ⊂ f−1(U), and so by Lemma A.0.1 there exists an open set W with g(K) ⊂

W ⊂ W ⊂ f−1(U), and W compact. Now BXX(K,W ) × BXX(W,U) is an open set

containing (f,g) and for any (f′,g′) ∈ BXX(K,W ) ×BXX(W,U), g ○ f ∈ BXX(K,U).

There is a more general version of the previous Lemma where the maps are not necessarily

homeomorphisms, see [Dug66, Thm.2].

Lemma A.0.3. Let X be a locally connected, locally compact Hausdorff space. Then the

sets BXX(L,U) where L is compact, connected and has non-empty interior, and U is

open, form a subbasis for the compact open topology.

Proof. Again we follow the argument in [Are46]. Let h ∈ Toph(X,X). We show that for

any BXX(K,U) containing h where K is compact and U is open, there exists a subset

of BXX(K,U) containing h of the form BXX(L1, U) ∩ ⋅ ⋅ ⋅ ∩BXX(Ln, U) where each Li is

compact, connected and has non empty interior.

Since h is continuous, for each x ∈K we can find an open set V (x) containing x such that

h(V (x)) ⊂ U . Since X is locally compact and Hausdorff, we can then find another V ′(x),

open in X, such that

x ∈ V ′(x) ⊂ V ′(x) ⊂ V (x),

with V ′(x) compact. Now since X is locally connected, there exists a connected open set

V ′′(x) such that x ∈ V ′′(x) ⊂ V ′(x). Also V ′′(x) is compact, since V ′′(x) ⊂ V ′(x) and
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closed subsets of compact spaces are compact. Furthermore V ′′(x) ⊂ V (x), so h(V ′′(x)) ⊂

U.

The V ′′(x) cover K and so there exists a finite subcover by V (xi) for some finite set of

xi ∈K with i ∈ {1, . . . , n}. Clearly:

h ∈ ⋂
i∈{1,...,n}

BXX(V ′′(xi), U) ⊂ BXX(K,U).

Lemma A.0.4. Let X be a locally connected, locally compact Hausdorff space. Then the

inverse map

(−)−1∶TOPh(X,X)→ TOPh(X,X)

f↦ f−1

is continuous.

Proof. Throughout the proof, only, we will put (−)−1 = T . So T ∶TOPh(X,X)→ TOPh(X,X)

is the function such that T (h) = h−1.

By Lemma A.0.3, in order to prove that T is continuous, we only need to prove that the

inverse images under T of sets of the form BXX(L,U), with L compact, connected and

with non-empty interior, and U open, are open in TOPh(X,X).

Let L ⊂ X be compact, connected, and with a non-empty interior. Let U be open in X.

We show that for any f−1 ∈ BXX(L,U), we can construct an open subset of TOPh(X,X),

containing f, which is a subset of T −1(BXX(L,U)).

Since f−1 is a homeomorphism, it sends compact subsets to compact subsets. So f−1(L) is

compact. Also f−1(L) ⊂ U , since f−1 ∈ BXX(L,U).

Using Lemma A.0.1, we can choose an open set V ⊂ X such that f−1(L) ⊂ V ⊂ V ⊂ U ,

with V compact, and then an open set W ⊂ X with V ⊂ W ⊂ W ⊂ U , with W compact.

In full:

f−1(L) ⊂ V ⊂ V ⊂W ⊂W ⊂ U.
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Therefore

f((X ∖ V ) ∩W ) = (X ∖ f(V )) ∩ f(W ) ⊂ (X ∖L) ∩ f(U).

We can also choose an x ∈ X such that f(x) ∈ int(L) (where int(L) is the interior of L).

So there exists an open set (in TOPh(X,X)):

BXX ({x}, int(L)) ∩BXX ((X ∖ V ) ∩W, (X ∖L) ∩ f(U))

containing f, which we denote U0. We claim that U0 ∈ T−1(BXX(L,U)).

Let h ∈ U0. We have: h ((X ∖ V ) ∩W ) ⊂ (X∖L)∩f(U). Taking complements and reversing

the inclusion we have

L ∪ (X ∖ f(U)) ⊂ h(V ∪ (X ∖W )) = h(V ) ∪ h(X ∖W ).

Now h(V ) and h(X ∖ W ) are disjoint open sets, and L is connected1, so either L is

contained in h(V ) or L is contained in h(X ∖W ), but not both. We claim that L ⊂ h(V ).

Note that since h ∈ BXX ({x}, int(L)), we have h(x) ∈ int(L). Since f(x) ∈ int(L), by

construction, we have x ∈ f−1(int(L)) ⊂ V. So h(x) ∈ h(V ). So L ∩ h(V ) ≠ ∅. So L ⊂ h(V ).

Since L ⊂ h(V ), we have h−1(L) ⊂ V ⊂ U . Hence h−1 ∈ BXX(L,U).

Proof. (Of Theorem 4.2.1) In Lemma A.0.2 we prove that the composition is continuous

if X is locally compact Hausdorff. In Lemma A.0.4 we prove that the inverse map is

continuous.

A.0.2 Motions as maps from M × I

Definition A.0.5. Fix a manifoldM . Let PremotmovM ⊂ Top(M×I,M) denote the subset

of elements g ∈ Top(M × I,M) such that:

(I) for all t ∈ I, g∣M×{t} is a homeomorphism M × {t}→M , and

(II) for all m ∈M , g(m,0) =m.

1This is where the crucial fact that L can be chosen to be connected is used.
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Lemma A.0.6. The restriction of the map Φ obtained by letting X = I and Y = Z = M

in Lemma 3.5.16 yields a bijection

PremotM
∼Ð→ PremotmovM .

Proof. We have that Φ is a bijection so we just need to check that Φ(PremotM) =

PremotmovM and that Φ−1(PremotmovM ) = PremotM where Φ−1 sends a map g∶M × I →M

to the map t↦ (m↦ g(m, t)).

Let f ∈ PremotM be a pre-motion. Then Φ(f)∣M×{t} = ft which is a homeomorphism and

Φ(f)(m,0) = f0(m) =m.

Let g ∈ PremotmovM . Then m ↦ g(m, t) is a homeomorphism for all t ∈ I and Φ−1(g)(0) =

(m↦ g(m,0)) = idM .

Proof. (Of Lemma 4.3.16) Notice first that each MtmovM (N,N ′) is a subset of PremotmovM .

We have from Lemma A.0.6 that Φ gives a bijection PremotM ≅ PremotmovM so we only

need to check that Ψ(MtM(N,N)) =MtmovM (N,N ′) and Ψ−1(MtmovM (N,N)) =MtM(N,N ′).

Suppose f ∶N À N ′ is a motion, then Φ(f)(N × {1}) = f1(N) = N ′. Suppose f ′ ∈

MtmovM (N,N ′), then Φ−1(f ′)1(N) = f ′(N × {1}) = N ′.

Definition A.0.7. Fix a manifold M . Consider Toph(M × I,M × I). Let

PremothomM = { f ∈ Toph(M × I,M × I) ∣ f(m,0) = (m,0) ∀m ∈M ;

f(M × {t}) =M × {t} ∀t ∈ I}.

That is, PremothomM ⊂ Toph(M × I,M × I) denotes the subset of homeomorphisms g ∈

Toph(M × I,M × I) such that

(I) g(m,0) = (m,0) for all m ∈M , and

(II) g(M × {t}) =M × {t} for all t ∈ I.

Notice that to prove the following we need both that HomeoM(∅,∅) is a topological group

and the product-hom adjunction of Lemma 3.5.16. 2

2We use the fact that M is a manifold, so that HomeoM(∅,∅) is a topological group. An alternative
proof of this result that holds if M is compact (and not necessarily a manifold) follows from the fact that
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Lemma A.0.8. Let M be a manifold. There is a bijection

Θ∶PremotM → PremothomM ,

f ↦ ((m, t)↦ (ft(m), t)).

Proof. We first check the Θ is well defined. Let f ∈ PremotM . Then Θ(f) is continuous

since the projection onto the first coordinate of the map (m, t) ↦ (ft(m), t) is Φ(f) with

Φ as defined in Lemma 3.5.16 and the projection on the second coordinate is clearly

continuous. We have Θ(f)(m,0) = (f0(m),0) = (m,0) and Θ(f)(M ×{t}) = ft(M)×{t} =

M × {t}.

We now check Θ(f) is a homeomorphism. The map (m, t) ↦ (ft(m), t) has inverse

(m, t) ↦ (f−1t (m), t). Let us see that the inverse is continuous. We have that f is a pre-

motion and so Lemma 4.3.4 gives that f−1 is a pre-motion, specifically it is a continuous

map I→ TOP(M,M). Hence (m, t)↦ (f−1t (m), t), which is the image of f−1 under Θ, is

continuous.

Consider the following map.

Θ−1∶PremothomM → PremotM

g ↦ (t↦ (m↦ p0 ○ g(m, t))

It is straightforward to check that for any f ∈ PremotM we have Θ−1 ○ Θ(f) = f and

that for any g ∈ PremothomM we have Θ ○Θ−1(g) = g. It remains to check that Θ−1 is well

defined. Let g ∈ PremothomM . The map Θ−1(g) is continuous as it is equal to (Φ−1)(p0 ○g),

with Φ as in Lemma 3.5.16.

We have (Θ−1(g))0(m) = p0 ○ g(m,0) = m so Θ−1(g)0 = idM . For all t ∈ I the restriction

g∣M×{t} is also a homeomorphism onto its image which, by (II), is M ×{t}. The projection

p0∶M × {t} → M is an isomorphism. Hence for all t ∈ I, Θ−1(g)t = p0 ○ g∣M×{t} is in

HomeoM(∅,∅).

Proof. (Of Theorem 4.3.18) Notice each MthomM (N,N ′) is a subset of PremothomM . Also

Lemma A.0.8 gives that Θ yields a bijection PremotM ≅ PremothomM , hence we only need

any continuous bijection between compact Hausdorff spaces is a homeomorphism.
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to check that Θ(MtM(N,N ′)) ⊂MthomM (N,N ′) and Θ−1(MthomM (N,N ′)) ⊂MtM(N,N ′).

If f ∶N À N ′ is a motion, then Θ(f)(N × {1}) = f1(N) × {1} = N ′ × {1}. Now suppose

f ′∶M × I →M × I is a homeomorphism with f ′(N × {1}) = N ′ × {1}, then Θ−1(f ′)1(N) =

p0 ○ f ′(N × {1}) = p0(N ′ × {1}) = N ′, so Θ−1(f) is in MtM(N,N ′).
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