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Abstract

Patients with myocardial infarction are at elevated risk of sudden cardiac death, and scar tissue
arising from infarction is known to play a role. The accurate identification of scars therefore is cru-
cial for risk assessment, quantification and guiding interventions. Typically, core scars and grey pe-
ripheral zones are identified by radiologists and clinicians based on cardiac late gadolinium enhance-
ment magnetic resonance images (LGE-MRI). Manual segmentation of scar from LGE-MRI varies
in size, shape, heterogeneity, artifacts, and image resolution. The process is time consuming, and
influenced by the observer’s experience (bias effect). Here we propose a framework that delivers an
automatic segmentation pipeline to develop 3D anatomical models of the left ventricle with border
zone and core scar areas that are free from bias effect. We deliver the SOCRATIS framework for au-
tomatic segmentation of cardiac left ventricle and total infarct scars. SOCRATIS involves two main
pipelines; i) deep learning segmentation of cardiac regions and total infarct scar (DL-SOCRATIS)
and ii) multi-atlas segmentation of cardiac regions and total infarct scar (MA-SOCRATIS). In this
PhD thesis we discovered that MA-SOCRATIS was a superior technique providing high accuracy
of the segmentation. However, DL-SOCRATIS was faster (less than 10 min per patient) and it does
not require expert supervision, contrary to the MA-SOCRATIS. Since both pipelines are included
in the SOCRATIS framework, it is possible to configure the segmentation so that duration of the
analysis is traded off against high accuracy of the segmentation. SOCRATIS utilizes LGE-MR
images, without the need of further multi-modal supervision (bSSFP, T2, LGE images) or train-
ing/tuning in other cohorts, contrary to the majority of the state of the art techniques. About the
scar segmentation we utilized a border zone and core scar segmentation of left ventricle and total
infarct scar (BZ-SOCRATIS). We tested two different segmentation AI approaches; i) an automatic
and ii) semi-automatic, to segment the core scar and border zone of unhealthy tissue from LGE-
MRI of the left ventricle. Our framework delivers a fully automatic segmentation pipeline to extract
3D specific patient anatomical models of left ventricle, border zone and core scar region, which can
be used by clinicians to determine treatment and evaluation of the catheter radiofrequency ablation
procedure.
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Table 1: TABLE OF ACRONYMs
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CGAN-SOCRATIS CycleGAN Segmentation Of Cardiac Regions And Total

Infarct Scar
cine-MRI Cine-Magnetic Resonance Imaging
cine-SOCRATIS Cine Segmentation Of Cardiac Regions And Total Infarct

Scar
CMR Cardiac Magnetic Resonance
CNN Convolution Neural Network
CNR Carrier-to-Noise Ratio
CRF Cinditional Random Field
CS Core Scar
CT Computerised Tomography
DCE Dice Cross Entropy
DL Deep Learning
DL-SOCRATIS Deep-Learning Segmentation Of Cardiac Regions And Total

Infarct Scar
DLc-SOCRATIS Deep-Learning-cine Segmentation Of Cardiac Regions And

Total Infarct Scar
DLl-SOCRATIS Deep-Learning-LGE Segmentation Of Cardiac Regions And

Total Infarct Scar
DICOM Digital Imaging and Communications in Medicine
DNA DeoxyriboNucleic Acid
ECM ExtraCellular Matrix
ED End-Diastolic
EM Expectation Maximization
EP ElectroPhysiology
ES End-Systolic
FWHM Full Width Half Maximum
GAN Generative Adversarial Network
Gd Gadolinium
GMM Gaussian Mixture Model
GP Gaussian Process
GT Ground Truth
IE Implicit Exploration
KNN K-Nearest Neighboor
LA Left Atrium
LGE-MRI Late Gadolinium Enhancement Magnetic Resonance Imaging
LV Left Ventricle
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1
Introduction

1.1 Summary

Abnormalities of electrical activation in the heart result in arrhythmia. Sudden death associated

with cardiac arrhythmias remains a significant global health problem ( 208). Patients with regions

of ventricular fibrosis or scar, often as a result of prior myocardial infarction, are at elevated risk

of ventricular arrhythmias ( 121). Accurate identification of scar and its border zone (gray zone) is
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therefore important for risk stratification and for guiding interventions ( 147).

A range of modalities are used in the clinical setting for imaging anatomy, and they are used as

a baseline to determine treatment decisions and diagnosis. Ascha et al. ( 11) compare and contrast

imaging modalities for mapping cardiac anatomy and function, including X-rays, computed to-

mography (CT), ultrasound, and magnetic resonance imaging (MRI). Chest X-ray is the baseline

modality for patients with pulmonary hypertension. CT is a method characterized by high tem-

poral resolution, spatial resolution, and speed of image acquisition. Although CT images enable

diagnosis, they are associated with an X-ray dose. In contrast, MRI is less harmful to the health of

the patient, however it is expensive and needs an expert operator. The most common protocol for

cardiac imaging is cine-MRI, in which a series of images are taken throughout the cardiac cycle. The

scan orientation is usually the short axis of the heart, with 8-mm or 2-mm slice intervals.

Late gadolinium enhancement (LGE-MRI) is a technique in which using gadolinium (Gd) in-

creases the contrast visibility of MRI, and diethylentriaminopentacetic acid defines the in vivo be-

haviour of the whole heart. As a result, the imaging of cardiac chambers relative to the blood pool

and other structures is improved. Ordovas et al. ( 141) demonstrated the utility of LGE-MRI to in-

crease the difference in contrast between healthy and diseased myocardium. As a result, LGE-MRI is

widely used in clinical scanning to detect myocardial scars. Moreover, using LGE-MRI, a gray zone

of partially viable tissue can also be detected ( 160). The gray zone is a complex of necrotic (white in-

tensity) and healthy (black intensity) zones which in the last years has been used to aid MRI-guided

treatment for ventricular arrhythmia ( 125).

LGE-MRI automatic segmentation: Cardiac MRI with late gadolinium enhancement (LGE)

is routinely used for imaging regions of scar in patients. However, scar segmentation is a challenging

topic as there is great variability in the size, heterogeneity, intensity of scar regions in LGE images,

low resolution and image noise artifacts ( 175).

The current standard practice is manual segmentation, which relies on sketching contours slice
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by slice using pointing devices such as a mouse or trackball. Three dimensional MRI can include as

many as one hundred slices. Thus, manual segmentation is time consuming, tedious, and limited

by inter-observer and intra-observation variability ( 200,181). Automated segmentation can over-

come these limitations, and methods have been developed for automated scar segmentation in atrial

( 137,46,90,87) and ventricular ( 4,97,50,116) images.

These automated segmentation techniques are typically pixel-to-pixel techniques such as support

vector machines, c-means, and other machine learning techniques. These methods performance is

highly related with the signal to noise ratio (SNR) of the image ( 184). As a result, these algorithms

tend to suffer from low accuracy. Other approaches are model-based methods like atlas, multi-atlas,

and deformable models ( 13). However, these approaches usually involves a large dataset to capture

the geometrical shape distribution of the heart with sufficient generalisation.

To sum up, an automatic segmentation pipeline is a way to identify both the myocardium and

regions of scar in LGE images of the left ventricle. The main focus of this PhD project is the auto-

matic segmentation of cardiac chambers and more specifically of the left ventricle (LV) with scars

based on magnetic resonance images (CMRI). We are interested to verify if it is possible to segment

the regions of healthy and unhealthy myocardium (scar) of the LV robust and quickly by a fully

automated segmentation framework without expert radiology supervision.

In the next sections, we will present the motivation and aim of our study, the contribution of our

study in the medical image analysis field, and the future work of this study. Finally, we will deliver an

overview of the PhD thesis.

1.2 Motivation and Aim

A normal heart beat arises from spontaneous electrical activity in the heart’s natural pacemaker lo-

cated in the right atrium. Electrical activity spreads through the atria, and then through the cardiac
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conduction system into the ventricles. This electrical activation acts to initiate mechanical contrac-

tion. Abnormalities of the excitation sequence are arrhythmias which can be deadly. Arrhythmias

are defined based on their location, atrial fibrillation, ventricular fibrillation, supra-ventricular tachy-

cardia. Ventricular arrhythmia (VA) is an important cause of mortality and sudden cardiac death

(75-80% of cases)( 140, 117, 208).

Ventricular scar is a main substrate for reentry arrhythmias and can sustain VA ( 22). Scars are

created in myocardial tissue, when there is inadequate supply of blood to cardiac muscle. The slow

conduction of electrical activation inside and around the scars generates reentry. Re-entrant acti-

vation usually exits sites along the border zone of scar. Thus, the spatial distribution of myocardial

scars for the accurate treatment of VA is a major importance ( 22, 121). Ventricular tachycardia (VT)

can be treated with radiofrequency catheter ablation surgery (RFCA) ( 2, 166, 26). The main reason

is the large size of possible re-entrant circuits plus the fact that scars in the endocardium can be deep

and sometimes difficult to detect. There is evidence that the size, shape, and location of the scar can

be useful to guide ventricular tachycardia ablation ( 88, 54, 7). Thus, valid and accurate mapping of

the scars is crucial for correct guidance and treatment of VT in catheter ablation (CA). Moreover,

the anatomical mesh based on realistic mapping of the scar is an import contribution about the

study of cardiac arrhythmia mechanisms ( 147).

Segmentation of scars from images of the left and right ventricle is a challenging topic (Fig-

ure 1.1), as the large variability of internal (e.g., size heterogeneity of scars, spatial distribution, in-

tensity distribution) and external (e.g. resolution, noise) situations, cannot be fitted by a simple

model ( 175). Manual segmentation of the scar based on threshold definition is a typical technique.

Manual segmentation of the scar relies on sketching contours slice by slice using pointing devices

such as a mouse or trackball. Three dimensional MRI can include as many as one hundred slices.

Thus, manual segmentation is time consuming, tedious, and limited by inter-observer and intra-

observation variability. Moreover, many algorithms used in manual segmentation depend on initial-
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Figure 1.1: An example of MRI with the scar and myocardium segmented. Green color the epicardial contour, red the
endocardial contour and red area the scar regions.

ization. When only one expert is involved, the segmentation can be biased. Moreover, manual seg-

mentation affects the reproducibility of the results ( 200, 181). Automatic segmentation can overcome

the limitations of manual methods. There are many studies based on automatic scar segmentation

in atrial regions ( 137, 46, 90), 87) and others in ventricular regions ( 4, 97, 50, 116).

Typical automated segmentation techniques are classification techniques such as support vector

machines, c-mean, and other machine learning techniques. The main drawback of these methods

is that the results are highly dependent on signal to noise ratio image ( 184). As a result, these algo-

rithms suffer from low accuracy and robustness ( 90). Other methods are model-based methods like

atlas models, which need a large dataset to capture the geometrical shape distribution of heart for

sufficient generalization ( 13).

1.3 Contribution

During the initial part of this project it became apparent that there is a need to increase the certainty

of scar detection in order to address the question: ”Is expert supervision crucial?”. The need for

expert supervision could be considered compulsory, as in the majority of AI methods the user in-
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teraction is needed. The observation and segmentation of scar regions from LGE-MRI images can

be easier than in cine-MRI because scar tissue is better highlighted in LGE-MRI images ( 80). How-

ever, it can be difficult even for experts to conclude if a region is scar or not, from LGE-MRI images

alone. Thus, if the LGE-MRI modality is enough to justify the existence of a scar in LV, it will bet-

ter for an automated method or even the experts if information about possible scar location is ex-

tracted from more than one observation, as an individual observation has a bias error. For this PhD

project, we would like to test the following ideas:

a. Can an automatic segmentation pipeline deliver accurate segmentation of the left ventricle

with scars from LGE-MRI images?

b. Can the implemented pipeline work well in different patient cohorts? The reason for this

is that the diversity of MRI scanning machines, the variability of cardiac shape and size, and the

external-internal conditions of MRI scanning procedure can affect the accuracy of AI.

c. Is expert supervision crucial for the accurate detection of scar and myocardium of left ventri-

cle?

To this end, we implemented an automatic segmentation pipeline of the myocardium and scar

regions of LV in LGE-MR images.

Myocardium segmentation involves two steps, initial and re-estimate segmentation, the initial

step includes a deep learning structure ( 13) to detect the region of interest (ROI), and a multi-atlas

to initial segment the ROI ( 16, 102). The re-estimate step combines k-means thresholding and level-

set active contour segmentation method ( 136, 105). For the scar automatic segmentation, we use an

algorithm that combines mixture model histogram fitting and constrained watershed segmentation

by an automatic seed point scar region technique. Our pipeline refers to ( 72) with amendments

in the watershed segmentation technique. A limitation was the use of Rayleign-Gaussian mixture

models, healthy myocardium described as Rician distribution ( 175, 164). Our approach involves the
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use of Rician-Gaussian mixture models.

The novel contribution of this thesis to cardiac automatic segmentation topic is:

• MA-SOCRATIS machine learning pipeline, which is:

i. An unsupervised automatic segmentation pipeline, which does not need training or tuning

(MA-SOCRATIS).

ii. A comparison of the efficiency of deep learning approaches compared to probabilistic

multi-atlases.

• DL-SOCRATIS deep learning pipeline, which is:

i. A fully automatic segmentation pipeline using deep learning established techniques.

ii. A sensitivity and specificity dice-weighted cross-entropy (SS-DCE) cost function to in-

crease the dice accuracy of endocardial and epicardial automatic segmentation in a cross-

vendor validation (85.8 to 89.8 % for the epicardial regions).

iii. A less accurate but faster and no need of expert’s supervision results compared with MA-

SOCRATIS.

iv. A flexible enough pipeline to be used as a quick initial evaluation of scar and myocardial

regions in cross-modality analysis tasks; such as when expert radiologists have different or

constrained modality scan images for a specific patient (cine-MR, LGE-MR, or a mixed of

cine and LGE MR images).

• BZ-SOCRATIS scar segmentation pipeline, which is:

i. A thorough study regarding automatic and semi-automatic segmentation of both border

zone and core scar regions in LV with infarct LGE-MR images.
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ii. An unsupervised automatic segmentation pipeline (combination of Rician-Gaussian

mixture model and watershed techniques), which does not need training or tuning for fully

automatic scar region segmentation.

iii. A highlight of the importance of correct detection of myocardium boundaries in LGE-

MRI in patients with infarct tissue.

iv. A 3D geometric representation/mapping of the border zone, core scar and LV fully auto-

matically.

• Robust and unbiased method for evaluation :

i. By unbiased ground truth for the evaluation (intra-observation and inter-observer variabil-

ity) of the automatic segmentation results.

ii. By cross-institutional evaluation (our LGE dataset and MS-CMRSeg 2019 dataset) of the

automatic segmentation results.

iii. By gathering a challenging multidomain MRI dataset of 100 patients (LGE-MR, cine-

MR) with manual segmentation of the left ventricle and scars.

1.4 Future work

As a future work, we believe that i) a more thoroughly study in transfer learning techniques, and ii)

an additional training in cross-vendor and institute cohorts; they can increase the accuracy of DL-

SOCRATIS pipeline. Finally, cross-institute validation of BZ-SOCRATIS pipeline to generalize the

use and robustness of pipeline would be useful. In addition, to the imaging modality and increase

robustness of the results, we suggest the implementation of an artificial intelligence - motion analysis

of cardiac region and total infarct scar (AI-MACT) to detect the scar position and portion based on

the deformation and strain of ES and ED phases of cine-MRI images.
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1.5 Basic terminology

For this thesis, when we mention the word unsupervised methods, we reference at methods evalu-

ated in an unseen cohort without training, tuning or using of transfer learning techniques.

1.6 Publications

During the three years of this PhD project, we published the following studies:

• MA-SOCRATIS: An automatic pipeline for robust segmentation of the left ventricle and

scar (published Computerized Medical Imaging and Graphics journal).

• Traditional computer vision and deep learning approaches for optimal automatic segmenta-

tion of left ventricle with scar (submitted in journal).

• 3D anatomical models to assess cardiac arrhythmia risk: from manual segmentation to a new

era of automation (submitted in journal).

1.7 Overview of thesis

The focus of this PhD project is the automated analysis of cardiac magnetic resonance images

(CMR) and more specifically of the left ventricle (LV) with scars. Moreover, we would like to estab-

lish if it is possible to detect the regions of scar in the LV, using different techniques (segmentation,

image analysis) and different MRI modalities (LGE-MRI, cine-MRI). Lastly, we want to test if a

combination of these techniques could deliver full automated detection of the scar in a patient.

In the implementation part, we developed two software pipelines: multi-atlas segmentation of

cardiac region and total infarct scar (MA-SOCRATIS) and deep learning segmentation of cardiac

region and total infarct scar (DL-SOCRATIS). The MA-SOCRATIS is an unsupervised automatic
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segmentation pipeline of LV with scar in LGE-MRI images. Moreover, we modified the pipeline

with some deep learning parts (DL-SOCRATIS); and we compared the two different frameworks.

As a final step, we used the scar segmentation pipeline which we implemented for two tasks. First, to

the segmented core of the scar region and second extracted the gray zone and the core of scar tissue

of LV (BZ-SOCRATIS).

This thesis is organized as follows. Chapter 2 describes the motivation and background of this

study. Chapter 3 describes the related studies and literature review in medical imaging analysis and

segmentation. Chapter 4 and 5 describes our research regarding automatic segmentation of the my-

ocardium and scar of left ventricle (LV) based LGE-MRI images. Chapter 6 describes the evaluation

of the results based on clinical data. Chapter 7 describes the contribution, limitations, and future

work of this study. Chapter 8 presents the conclusions of this PhD thesis.
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2
Background

2.1 Background overview

The aim of this PhD thesis is the automated segmentation of the LV with scars. We use techniques

of machine learning and deep learning to detect the myocardium and scar regions of the left ven-

tricle. A combination of these techniques could deliver automated detection of scar in a patient,

without the need of an expert’s interaction.
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This chapter is organized as follows. Section 2.2 describes the cardiac anatomy background. Sec-

tion 2.3 describes the kind of cardiac arrhythmias and specifically the ventricle (VA). Section 2.4

presents different imaging modalities techniques. Section 2.5 magnetic describes resonance about

physics and scanning. Lastly, Section 2.6 summarizes the machine learning and deep learning tech-

niques in medical applications.

2.2 Cardiac physiology

2.2.1 Cardiac anatomy

The cardiovascular system consists of the heart, circulation loops, blood vessels, coronary circu-

lation, and blood. The role of the cardiovascular system is to transport nutrients, hormones, and

oxygen. The circulation loops are classified as pulmonary (heart to lungs) and systemic (heart to

all tissues of body). Blood vessels consist of arteries and arterioles, capillaries, veins, and venules.

The heart is a muscular pumping organ which consists of the left-right atrium, ventricles, valves,

aorta, superior cava, pulmonary artery, vein, septum, and inferior cava (figure 2.1), it is electrically

excitable, and specialized conduction system. The main parts of the system are the sino-atrial (SA)

node, Bachman’s bundle, atrio-ventricular (AV) node, the His bundle, Tawara branches and Purk-

inje fibres. The SA is the main pacemaker of the heart which creates and propagates electrical waves

in all conduction systems. The propagation of the electrical wave in the AV is slow, thus a delay of

the excitation of the ventricle by the Purkinje fibres can be observed ( 182). This pattern is the excita-

tion of a normal heart beat. Abnormal formation of the electrical impulse is an arrhythmia.

At the microstructure level, the heart is composed of a large number of cells with different func-

tionalities and properties are existed. The most common cardiac cells are myocytes and fibroblasts.

Myocytes are located mainly in heart muscle and generate mechanical tension. Fibroblasts from the

largest volume fraction of the myocardium, and have passive mechanical properties, which play an
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Figure 2.1: Anatomy of heart (reproduce with permission of (23)

important role in the maintenance of the extracellular matrix (ECM). Other cell types are endothe-

lial, neural cells and vascular smooth muscle cells ( 39).

There are many diseases about heart function. One of the major causes of sudden cardiac death is

acute myocardial ischemia, in which narrowing of one or more coronary arteries results in reduced

blood flow to the myocardium, leading to a decrease in oxygen and nutrients in regions of the my-

ocardium. Moreover, myocardial infarction occurs when blood flow is obstructed, and this may

result in myocardial scar.
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2.2.2 Cardiac arrhythmias

Excitation continuously propagates into the recovering tissue. Re-entry is favoured by regions of

slow conduction, slow conduction occurs in regions of the scar, and so reentry is often associated

with scar ( 8). Re-entry is a mechanisms that sustains an arrhythmia, where excitation continuously

propagates into recovering tissue. Regarding anatomical factors, obstacles like scars or infarct circus

movement reentry around them. Mines et al. ( 128) established that the interruption of reentry at

any point may terminate the process of circus movement and as an extension can stop an arrhyth-

mia. This is the general idea of catheter ablation surgery.

Ventricular arrhythmias are one of the most important causes of mortality and sudden cardiac

death (75-80% of cases) ( 140, 117, 208). More specifically, ventricular tachycardia (VT) is one of the

main risks of sudden death in structural heart diseases ( 98). In 2003, Monserrat et al. ( 132) showed

that VT is connected with sudden death risk in young patients with hypertrophic cardiomyopathy

(HCM). In 2016, there were 50-100 sudden cardiac deaths (SCDs) per 100.000 people per year in

Europe and USA due to VA ( 70). In 2017, the cardiovascular statistics based on Alkatib et al.( 2)

estimate that there were many out-of-hospital cardiac arrest incidents (357.000 in adults over 18

years of age) due to VT. The survival rate was only 10 % ( 6% survival occurring in the home).

2.3 Scars and border zone regions

Sudden death associated with cardiac arrhythmias remains a significant global health problem.

Patients with regions of ventricular fibrosis or scar are at elevated risk of ventricular arrhythmias

( 180,121), and accurate identification of the scar is important for both risk stratification and guiding

interventions ( 147). Cardiac MRI with late gadolinium enhancement (LGE) is routinely used for

imaging scars in patients ( 102). During the last decade, the radiology society explored the correlation

of the border zone region (gray intensity pixels around the core scar) of the cardial myocardium with

28



cardiac arrhythmias, to predict and evaluate the existent strategies of treatment ( 131,194).

The border zone (BZ) tissue, surrounding a core infarct scar, determines a remodeling tissue

with significant variation in the electrophysiological (EP) properties compared with the healthy my-

ocardium. Two different remodeling phenomena occur, one associated with active remodeling (ion

channels across the cell membrane) and another with passive remodeling resulting from structural

changes (re-organization of gap junction distribution) ( 41). As a result the EP and structural fea-

tures of the myocardial scar region (border zone and the core infarct) can contribute to the risk of

VT in patients. However, this statement is still poorly understood and debated. The extraction of

robust and accurate two-and three-dimensional computational models of different core scar regions

and border zones can enhance the assist to develop improved methodologies. Thus, it will be possi-

ble the detection and differentiation of arrhythmogenic and nonarrhythmogenic scars. The initial

step of these computational models is the segmentation of the border zone, core scar and myocardial

regions.

2.4 The role of core scar and border zone in VT

By using LGE-MRI, expert radiologists can identify peri-infarct zones located between normal and

infarcted tissue, surrounding the core scar. Border zones appear as regions of intermediate inten-

sity on LGE CMR, thus they are referred to as gray zones. Histological studies have verified that

intermediate intensity regions usually represent a mixture of viable myocardium and scar ( 9). It has

been shown that the extent of the heterogeneous zone is associated with spontaneous and inducible

VT, which can lead to mortality after myocardial infarction ( 161,196). The post-infarction VT con-

ducting channels were associated with heterogeneous zones, which can be detected by LGE CMR

images ( 148). Even if the experts can justify that re-entry is sustained by the region around the my-

ocardial infarction, identification of the specific region (border zone or core scar) that initiates and
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sustains re-entry in VT is a challenge ( 68).

To understand the pathophysiology of VT and the relation with border zone and core scar a

different range of animal studies were presented in the literature. Some studies show that hetero-

geneous zones were located at successfully ablated VT sites, and that incomplete ablation of these

zones was associated with VT recurrence ( 12,55,188). On the other hand, several studies point to the

scar core on CMR as the substrate for VT ( 49,167,150). Gucuk Ipek et al. ( 68) mentioned that both

sets of studies described above are likely correct, and portions of the heterogeneous border-zone are

involved in VT circuits, most commonly as entrance or exit sites.

2.5 Imaging modalities

A range of modalities are used and are recommended as a baseline to determine treatment decisions

and disease detection for the clinicians. Ascha et al. ( 11) are imaging modalities for mapping cardiac

anatomy and functionality including X-ray, computed tomography (CT), doppler ultrasound scan,

and magnetic resonance imaging (MRI).

The chest X-ray is a common scanning modality for initial detection and evaluation of pul-

monary hypertension. Even the X-ray is a standard imaging modality, it is not preferable to cardiac

scanning as it does not yield detailed information about the heart. CT is a scanning imaging tech-

nique involves high temporal, spatial resolution and speed. CT is a common technique using by

clinicians in a huge range of cardiovascular and lung diseases. An important drawback is the expo-

sure of the patient to CT is used to image the cardiac chambers for signs of right ventricle failure.

Doppler ultrasound is a noninvasive test that can be used to estimate the blood flow through

your blood vessels by bouncing high-frequency sound waves (ultrasound) off circulating red blood

cells. Regular ultrasound uses sound waves to produce images, however they can not show blood

flow. Major principles of ultrasound imaging are the reflection of a sound wave. The ultrasound
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probe detects these reflected waves to form the desired scan. Reflection of a sound wave observes

when the wave travels between two tissues of different acoustic speeds and a fraction of the wave re-

turns back. Doppler ultrasound may help diagnose many conditions, including blood clots, poorly

functioning valves in leg veins, heart valve defects congenital heart disease, blocked arteries, and

bulging arteries (aneurysms) ( 69).

Magnetic resonance imaging (MRI) scanners utilize strong magnetic fields, magnetic field gra-

dients, and radio waves to generate images of the organs in the body. MRI is safe and it has a less

harmful effect on the health of the patient composed of CT, however it is expensive and needs

an expert operator. The most common protocol is with 8-mm slice intervals and 2-mm inter slice

gap of a short-axis MRI (Figure 2.2). When a MRI scan utilizes to produce a proton density (PD)

weighted image, the result is that the tissues with the higher concentration of protons (hydro-

gen atoms) produce the strongest signals and appear the brightest on the image. Proton density

weighted sequence produces contrast mainly by minimizing the impact of T1 and T2 differences

with long TR (2000-5000ms) and short TE (10-20). The easiest way to identify PD-weighted im-

ages is to compare the fluid with the fat signal. Fluids normally appear as grayish white, almost

similar appearance as the fat in the body. If an accurate cardiac segmentation of cardiac chambers

is needed, a late gadolinium enhancement LGE-MRI is used in the majority of cases. LGE-CMR

scanning is a multi-parametric, multi-planar medical image technique with prognostic potential in

patients with chronic myocardial infarction. Moreover, in LGE-MRI the scan is using gadolinium

(Gd), which increases the contrast visibility, and diethylentriaminopentacetic acid which defines

the in vivo behaviour of the whole heart. This procedure increase the detection accuracy of cardiac

chambers.

Manually, scar recognition is most often based on the image characteristics of the scarred area,

such as signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) ( 78). Ordovas et al. ( 141)

demonstrate the utility of LGE-MRI to increase the difference of contrast between the healthy and
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Figure 2.2: Long axis (le ) and short axis (right) of cardiac anatomy

necrotic myocardium. Thus, by using LGE-MRI, the grey zone can efficiently be detected ( 160).

The gray zone is a complex of necrotic (white intensity) and healthy (black intensity) zones which

in the last years has been used to aid MRI-guided anatomic VT ablation ( 125). The myocardial scar

usually is six standard deviations above the average myocardial intensity.

The established col of LGE-CMR is executed with breath holding in two-dimensional orienta-

tion and the final files are restored by inversion recovery gradient echo sequence methods ( 141). Ex-

cept the two-dimensional LGE-CMR, radiology community is starting to use the three-dimensional

LGE-MRI (3D) which can scan the whole heart with smaller gaps between the slices (higher resolu-

tion of z-axis) and increase the signal-to-noise ratio (SNR) ( 93, 37). There are studies verifying that

the use of 3D LGE-MRI can reduce acquisition time compared the 2D ( 64) and present a higher

mean scar volume after manual segmentation than the 2D ( 56). The main disadvantage of 3D LGE-

MRI is the breath holding because of the large duration time is needed (more than twenty minutes).

For this reason, there are studies in the literature that try to minimize the respiration effect of breath

which creates miss alignment between the MRI slices in z-axis ( 94, 149). Bizino et al. ( 24) establish

that the use of navigated free-breathing 3D LGE-MRI extracts is more reliable for scar mass com-

pared to breath-hold techniques.
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2.6 Magnetic resonance, physics and scanning

2.6.1 MR physics

A hydrogen atom (part of water molecule) is composed of two sub-particles the nucleus (proton)

and an electron. MR uses the gyromagnetic properties of hydrogen atoms to measure the ratio of

magnetic dipole moment to angular momentum ( 187). If a strong magnetic field B0 exists the ran-

dom orientation of dipoles (spinning protons) in space tend to align to the magnetic field direction,

and a net magnetisation is produced. This net magnetisation can be used to generate images ( 187).

Moreover, protons spin around their own axes. As spin is combined with electrical charge, the hy-

drogen atoms generates magnetic dipole moment, like a small bar magnet ( 21). As each microscopic

volume in the human body containing crowd behaviour of protons can be modelled by the Lar-

mor frequency f ( 187,158) which is proportional to the gyromagnetic ratio γ and the magnetic field

strength B0, by: f = γ ∗ B0. As a result of the spin behaviour within microscopic volumes, the net

magnetisation vector has an angular precession frequency, and a phase, which describes the angular

position relative to the MR magnets ( 158). In preparation for MR scanning, the system measures the

Larmor frequency of the water in the region of interest and then tunes the spins of net magnetisa-

tion to avoid a out-of-phase shift or dephasing of the two spins ( 187). By rotating the net magnetisa-

tion into the x–y plane, the constituent spins will also acquire energy from the radiofrequency (RF)

pulse. After that, the net magnetisation will return to the lower energy levels (initial equilibrium

point) spin-lattice relaxation T1 ( 187).

2.6.2 From MR signals to image

The MR signals are used to localize and encode to build up a cross-sectional 2-dimensional image

(or image slice). In this sub-section we will describe the most commonly methodology to build up a
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cross-sectional 2D image using a combination of RF pulses and gradient magnetic fields.

The first step is the selection of an image slice ( 21). By applying a gradient of magnetic field at

the same time as the RF excitation pulse transmission, the resonance of protons is limited to a slice

of ROI tissue. This can be done as the frequency of the RF pulse corresponds to the Larmor fre-

quency of the slice volume and the direction corresponds to the applied gradient. The scan reso-

nance only detects protons in the plane that are in the correct angles to the gradient direction of the

MR magnetic field. After the slice selection, a phase encoding gradient (GP) is applied for a speci-

fied period ( 21). The protons change the frequency of precession based on the gradient behaviour

(if gradient increases the magnetic field then the protons develop a higher frequency). The protons

change their relative phase by an amount depending on their position along the gradient. Following

the phase encoding, the frequency encoding gradient (GF) is applied in a direction at right angles to

it. As in phase encoding, the protons are tuned to rotate at different frequencies with respect of gra-

dient relative direction. The final step is the image reconstruction. The frequency encoded signal is

analysed using a Fourier transform (FT) ( 21) and based on an inverse FT an image is reconstructed.

2.6.3 Late gadolinium enhancement imaging

Late gadolinium enhancement (LGE) scanning is a highly spin-lattice relaxation sensitive gradient-

echo imaging ( 158). This modality scanning take on during the administration of a gadolinium-

based contrast agent (Gd). Gd helps to distributes in greater volumes in fibrotic myocardium, where

it demonstrates slower washout times compared to normal myocardium. Using a T1-sensitive gra-

dient echo sequence, some minutes (around 10-15) after the administration of Gd, it is possible to

demonstrate the abnormal deposition of the contrast agent. Because of the Gd injection the focal

regions of fibrosis become enhanced, indicating replacement fibrosis, whereas normal myocardium

remains black. Expert radiologists are needed to adjust the inversion–recovery null time so that nor-

mal myocardium is null and appears dark ( 158). LGE has been an established scanning technique
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in CMR, as the presence of enhancement indicating various kinds of focal fibrosis has been vali-

dated histologically ( 158). The CMR focal fibrosis has been shown to be associated with higher risk

of worse outcome in diseases such as dilated cardiomyopathy, hypertrophic cardiomyopathy and

arrhythmias conditions.

2.7 Machine learning and deep learning in medical applications

The use of machine learning (ML) and deep learning (DL) in medical applications is difficult, as the

majority of medical data sets are characterized by incompleteness, incorrectness (systematic noise),

inexactness (no complete parameters for a certain task) and sparseness. However, there are many

studies in the literature that involve the solution of a medical problem using machine learning or

deep learning techniques ( 81, 171). Jiang et al. ( 81) deduce that AI can assist clinicians to identify and

treat medical diseases more effectively because of the advantage of AI to learning and self-correcting

from data and to extract information from a patient population. Below we will introduce some

fundamental ML and DL terminologies and ideas.

2.7.1 Machine learning

Overview

Artificial Intelligence (AI) is an agent that reacts to a specific environment. It can identify the state

of the environment through sensors and affect the state of its output. AI is a superset of machine

learning (ML) as it does not use explicit programming. ML is a computer program in which the per-

formance of some tasks evaluated by performance measurements improves by experience learning

( 47).
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Machine learning applications

Machine learning techniques have been applied in many different fields, and these include automa-

tion, industry, automotive, and aerospace. The contribution of ML to solve and help in the diag-

nosis and prognosis of medical problems is significant due to the unbiased results, the saving time

and the automatic procedures which ML can provide. Machine learning techniques, and Bayesian

statistics ( 169) have the advantage to handle efficiently missing information due to imputation (e.g.,

multilayer perceptron (MLP), self-organization maps (SOM) and k-nearest neighbour (KNN)) and

fewer assumptions of the models. Bayesian statistics is a combination of data analysis technique and

model fitting, where the available knowledge about parameters in a statistical model is updated with

the information in the observed data based on Bayes’ theorem. ML techniques used in topics such

as treatment strategies and detection of cardiac disease. ML is utilized by clinicians and radiologists

to classify cardiac diseases and guide them in pre-surgery procedures ( 170, 83). This arise the question

”Does the ML works in clinical applications? And how robust the results can be?”

AI and ML techniques applied to cardiovascular diseases during the years 2013-2016 were one

thousand papers and was the third most popular field after neoplasms and nervous (2800,1800 re-

spectively) ( 81). Jiang et al. ( 81) in their survey discuss the prospect of ML systems in health care.

Moreover, they mention that ML literature focuses mainly on cancer, nervous system disease, and

cardiovascular diseases. Shameer et al. ( 170) state the limitations and challenges of applying machine

learning techniques in cardiovascular medicine. They highlight that after 2000 studies of machine

learning and cardiology (data have PubMed) from zero to five thousand per year. Lastly, Johnshon

et al. ( 83) review common ML algorithms with supervised and unsupervised learning and cardi-

ology and ML techniques, so more accurate personalized medicine can be delivered by clinicians.

They mention that unsupervised techniques will be used for better classification of patient cases

and reinforcement learning algorithms can be an advisor for clinicians in difficult cases, regarding
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treatment methodologies and prognosis of cardiac disease. Reddy et al. ( 155) concludes that the use

of a preacquired MRI 3D mapping system is accurate to guide an left ventricle catheter ablation

procedure. Jiang et al. ( 81) establised that the most common AI algorithms are the Support Vector

Machine (SVM) and Neural Networks (NN). Moreover, they demonstrate that deep learning (Con-

volutional Neural Network) is used mainly in diagnostic imaging. Feng et al. ( 57) presents a learning

from a demonstration framework which takes into account previous cardiac mapping procedures

and a Gaussian process (GP) model-based learning for the detection of voltage mapping in right ven-

tricle operations. The framework was validated and the regression error was reduced compared to

an existing geometry-based method. The learning problem is solved to maximize the insight of an

optimization cost function by minimizing the constrains related to this. Feng et al. ( 57) used a ker-

nel training method for the 24/25 different folds datasets and the remaining one was used to test the

mapping strategy by an ”Implicit exploration (IE) approach”. One of the most important challenges

in machine learning techniques is avoiding the overfitting or underfitting of the data sets (we will

discuss more in section 2.6.3). Owning to the restricted engagement of the predictive models with

the input training data, the use of orthogonal and general different techniques of validation with

different formality and independent data is needed ( 170).

2.7.2 Deep learning

Overview

Deep learning (DL) is a subset of the ML family techniques based on artificial neural networks with

representation learning and multiply layers (deep). Das et al. ( 47) classified the DL algorithms as

supervised learning, unsupervised learning, and reinforcement learning. In this subsection, we will

present different deep learning strategies, some regularization techniques, and some network ar-

chitectures. In the last subsection we will discuss about supervised and unsupervised methods and
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different types of applications.

Deep learning networks training

For the training of a deep learning network the determination of the optimizer algorithm, the cost

function, the form of output units, and the type of the activation function is needed. Regarding the

optimization techniques, the compute of the gradients of the cost function is necessary, and usually

the backward-propagation algorithm is used. To train effectively a neural networks, feedforward

and backward propagation depend on each other. Below we will discuss about feedforward and

backward propagation, regularization, and network architectures.

Feedforward propagation

In deep learning, the major goal is to fit a data set to a function, so can approximate the functions

f* that describe the general population of the data set. The feedforward networks parameterize

y=f(x;θ) and it tries to learn θ so f can approach f*. In the feedforward network, there are no feed-

back connections. The feedback connections presented only in recurrent neural networks. f* is

approached most of the time by a chain of functions f1,f2,f3, ... with f(x)=f3(f2(f1(x))). Each f

function expresses a layer of the network. The length of the layers gives the depth and the final layer

called output layer. The layer between the input (data) and output layer are called hidden layers as

the user have no clue of the outputs of them. The width is the dimensionality of the hidden layers.

Each layer is consisted by units.

In the scenario that f* is a nonlinear function, then in the feedforward network it can be ap-

proached by a combination of linear chain functions with nonlinear transformed input φ(x). The
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function φ in deep learning is defined through the learning process to define the θ of each layer:

y = f(x; θ,w) = f(x; θ)Tw) (2.1)

Backward propagation

Backward propagation computes the gradient of neural network parameters. This method traverses

the network in reverse order with respect of feedforward chain, from the output to the input layer,

according to the chain rule from calculus. The algorithm stores any intermediate variables (partial

derivatives) required while calculating the gradient with respect to some parameters. If we assume

functions Y=f(X) and Z=g(Y), in which the input and the output X,Y, and Z are tensors of arbitrary

shapes, by using the chain rule, we can compute the derivative of Z with respect of X. By this way

the update of network parameters values during the epoch is computed by:

dZ
dX

= prod(
dZ
dY

,
dY
dX

) (2.2)

where prod operator is utilized to multiply its arguments after the necessary operations, such as

transposition and swapping input positions, have been carried out.

Regularization

An important limitation of ML and deep network techniques is that the model can overfit or under-

fit the data of a cohort. Overfitting is when the model fits the data so closely that it also follows the

noise in the dataset. Underfitting occurs when the model is too simple to capture the trend of the

data. Both underfitting and overfitting will not lead to models that generalise well.

There exist a lot of different strategies to avoid overfitting like drop out, data augmentation, and

synthetic data ( 171). Dropout is a regularization technique for reducing overfitting in neural net-
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Figure 2.3: a) Neural network basic architecture (NN) b) Convoluted deep learning neural network (CNN) c) u-net modi-
fied structure

works by preventing complex co-adaptations on training data. Dropout relates a systematic drop-

ping out of both hidden and visible units in a neural network during the training process. It is a

way of performing model averaging on deep learning neural networks. Data augmentation and syn-

thetic data techniques that focus on increasing the variation of shape, size, artifacts, and intensity

histogram of the a specific dataset.

Networks architecture

There are plenty of different networks in deep learning and machine learning methods. Figure 5.1

shows typical neural networks including: b) a convolution neural network and c) an u-net structure.

Figure 5.1 a) shows a convolution neural networks (CNNs) layer which is the most common layer

used in deep high-parameter networks in the computer vision and medical image analysis fields. U-

net is an established deep learning network for supervised medical image segmentation of different

human’s organs (lung, liver, heart, etc.).
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Supervised and Unsupervised learning applications

Supervised learning algorithms are trained based on computing and adjusting the estimated error

with respect to computing output and expected output. Unsupervised learning uses a clustering

prepossessing step where it learns and adopts a pattern of input data (deep learning algorithm).

Lastly, the reinforcement learning is based on an adjustment of the output of the algorithm with a

reward for correct and a penalty for wrong outputs.

Supervised learning has been applied in fields including e-mail data, handwriting-speech-face

recognition, information retrieval, operating system, computer vision, intrusion detection, signals

detection, text categorization, text processing, hierarchical categorization of web pages, data opti-

mization, dimensionality reduction, classification, computational finance, semantic scene classifi-

cation and sound signal processing ( 47). Some unsupervised learning applications are DNA classi-

fication, social network analysis, organizing large clusters, astronomical data and analysis, anomaly

detection of astronomical data, medical records, computational biology, medical problems, and

speech activity processes ( 47). Finally, reinforcement learning is applied in computer games, ma-

chinery applications, traffic forecasting services, stock market analysis, and semantic annotation of

environments. Das et al. ( 47) justifies that the ML will be always in the state of the art processes, as it

makes machines autonomous, creates autonomous computing, and reduce the vigilance of users.

2.7.3 Training, Testing and validation

In machine learning and deep learning techniques is very important to split the dataset in training,

and testing sub-samples ( 186). The standard approach in DL networks is to use a portion of 80-20

% or 70-30 % of the dataset samples in training, and testing respectively ( 10). In ML methods cross-

validation (CV) strategies are used, where the dataset is split into training and testing subsets ( 186).

Splitting data into training and testing subsets can be done using various methods, such as leave-
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one-out, leave-p-out, k-fold, and Monte-Carlo sampling ( 10). The network or model is trained on

the training set, while its evaluation performance is measured on the testing set. The aim of this

process is to assess the ability of the machine learning algorithm to generalize to new data. For CV

to be valid, the training and the testing sets need to be independent ( 186).

During the training process of ML and DL techniques, we try to avoid overfitting or underfit-

ting of the dataset ( 186). Overfitting is when the model fits the data so accurate that it also follows

the noise in the dataset. Noise is occurred as a result of the random fluctuations or the offsets gen-

erate from the true values in the independent, and dependent variables of the cohort. This can be

observed when the performance of the method is better in the training samples than in the testing

samples. Underfitting occurs when the model cannot detect a pattern in the cohort. This means

that the model is not fitting the training data very accurate. When a model overfits the training data,

it is said to have high variance, and when underfits high bias. To avoid the overfitting of the dataset,

regularization techniques are used (discussed above in the subsection 2.6.2 REGULARIZATION).

On the other hand, when underfitting is observed the model may not be complex enough, in terms

of the features, the type of features, the depth, and other parameters of it.

2.8 The manual segmentation of myocardium and other organs regions.

Manual segmentation is the gold standard for segmentation of human organs from images obtained

using different modalities. The segmented regions can be used to evaluate and detect diseases, or

schedule and determine strategies of treatment in each specific patient. Manual segmentation of

organs can be done based on manual annotation of points/contours (full manual approach) or by

threshold techniques like full width half maximum (FWHM) or standard deviation (SD) methods

(semi-automatic segmentation). In the full manual approach, radiologists sketch contours slice by

slice using pointing devices such as a mouse or trackball. In 3D MRI or CT scanning image stacks
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for manual segmentation can include as many as one hundred slices. In these cases, the manual seg-

mentation is time consuming, thus semi-automatic approaches can be used. Semi-automatic seg-

mentation of organs can be done based on threshold definition, where full width half maximum

(FWHM) is a typical technique ( 88). FWHM is a technique where the expert has to define the dark-

est intensity (minimum) and the lightest (maximum) intensity of the region of interest, and the

algorithm automatically thresholds all the regions that are higher or equal of the half of the two in-

tensities ( 89).

Manual segmentation has some important limitations like the time consuming process and the

bias effect from the expert’s knowledge and biased observations. Moreover, in some cases manual

segmentation or semi-automatic segmentation of organs can be very challenging even for experts.

The main reason is the variability of internal (e.g., heterogeneity, spatial distribution, intensity dis-

tribution) and external (e.g. resolution, noise) factors ( 175). Lastly, because some algorithms for

manual segmentation depend on initialization; when only one expert is involved the segmentation

can be biased ( 200).
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3
Related work and our pipelines

3.1 Overview

In this chapter, we will review the literature on automatic segmentation, image analysis, and process-

ing of cardiac magnetic resonance images.

This chapter is organized as follows. Section 3.1 reviews the automatic segmentation of heart

and scar regions. Section 3.2 surveys the automatic image analysis and detection techniques of heart
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regions. Section 3.3 describes the different ways of clinical evaluation of automatic pipelines. Lastly

in 3.4 we present our framework and the different pipelines we developed in the Phd thesis.

3.2 Review of automatic segmentation techniques of LV and scar

3.2.1 Review of myocardium segmentation methods

An important step so that automatic segmentation of scars from cardiac MRI can be attainable is

the efficient and accurate segmentation of the myocardium, which can involve different AI tech-

niques, such as active appearance models, edge and contour detection, region-based, graph-cuts,

model fitting and deep learning.

The first technique that is used in the literature for myocardium and whole cardiac segmentation

is the three dimensional active appearance models (AAM) ( 44). This technique is defined to locate

rigid objects. Moreover it is focused on the learning patterns of the training set, so the specificity

score of the model is decreased. This is a very good method to detect a general shape of a region of

interest (ROI) but less accurate in the detection of the details of the specific ROI ( 44, 185).

Mitchell et al. ( 129) highlighted a comprehensive design of a 3D AAM ( 44). Andreopoulos et al.

( 6) presented a 3D AAM with short axis of cardiac MRI (CMR). They used a Gauss-Newton op-

timization technique and a time active shape model (ASM) for constraint 3D AAM segmentation.

They indicated that the utilized of hierarchical 2D and time ASMs method improved significantly

the results of 3D AAM method for the automatic segmentation of heart.

The main limitation of 3D AAM is misalignment. Because of errors arising from movement

during breath-hold, the misalignment is widespread in the 3D AAM technique. Another important

drawback is the dependence on the training set. The model learns only the variation of the training

MRI cohort. Therefore, if there are no abnormal samples in the dataset, it is not possible to detect

an abnormal case correctly (increase of cohort complexity). Lastly, the computational memory is a
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concern due to the three dimensions of model.

Another promising technique of edge and contour detection is the active contour method ( 92).

Kass et al. ( 92) introduced the idea of ’snake’ contour models. Kass et al. ( 92) described a technique

related to energy minimizing to detect contours and edges in images. It combines the energy func-

tion relating the spatial topology of the image. Geodesic contour is a method based on active con-

tours and minimal distance curves ( 28). These two techniques create a combination of classical en-

ergy flow and the theory of curve evolution (a curve in a Riemannian space derived from the image

content). As a result, the evolving curves are more adaptable regarding the topology, and different

objects can be detected.

An active contour technique is used by Rananath et al. ( 154), as an extraction contour algorithm

applied to CMR images. Pluempitiwiriyawej et al. ( 151) present a novel stochastic active contour

scheme (STACS). They use the level set method to solve the minimization problem of the contour

evolution with Euler-Lagrange equation. The energy function is combined stochastic region-based

and edge-based information. With this scheme, they achieved a robust method regarding the initial-

ization, contour, and noise segmentation problems. Ranganath et al. ( 154) uses the idea of Kass et al.

( 92) to detect the cardiac contours of the left ventricle. Pluempitiwiriyawej et al. ( 151) demonstrate

an active contour structure that uses Euler-Lagrange equation to describe the contours. Again, the

application was in cardiac MRI (CMR). Lee et al. ( 105) utilize a combination of iterative thresh-

olding and active contour model. The main drawback of this method is the needed manual inter-

vention when the intensity between the epicardium and the surrounding tissues (lungs and liver) is

zero. The reason is the sensitivity of the computed gradient value to noise (the gray area of a MRI

image magnifies noise). Paragios et al. ( 145) used level set framework to track the left ventricle. The

level set framework of Paragios et al. ( 145) was a combination of geodesic active contour ( 28) using

Heaviside as distribution ( 204). Geodesics contours can detect objects of complex topology with
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high noise, artifacts, and shadow effects ( 28).

An advantage of classical active is that there is not a need to specify a different object to detect

them (contrary to the geodesic contour). The main drawbacks of active contour algorithms are the

sensitivity of the computed gradient value to noise and the need to initialize the energy functions

near at the contour of interest.

Region based techniques is related to the active contour region of interest by global homogene-

ity region properties. Some known region-based techniques are k-means, fuzzy c-means, and the

expectation-maximization (EM) algorithm using the Gaussian mixture model.

Chen et al. ( 31) describe a combination of adaptive k-mean clustering with spatial based on

Gibbs random fields. The use of Gibbs random fields helps decrease the effect of noise and artifacts

within the image in the k-means segmentation procedure. Ng et al. ( 135) use the k-means method

to improve the performance of the watershed segmentation technique. The k-means are used to re-

duce the over-segmented phenomenon of watershed methods. The main drawback of k-means is the

need of priory knowledge. By priory information, we mean the number and initial mean intensity

values of segmented regions. Rezaee et al. ( 157) utilize a pyramidal image segmentation using fuzzy

c-means clustering algorithm of the left ventricle (LV) in 140 CMR. They achieved a 90 per cent

accuracy LV segmentation by using pyramidal segmentation instead of 86 per cent that achieved

c-means alone. Pyramidal segmentation is a hierarchical way to sort the length of each cluster region

in an image from maximum to minimum. Zhang et al. ( 203) describe a method based on hidden

Markov random fields. Markov random field is a method related to region-based algorithms. Hid-

den Markov random field combines stochastic function and Markov. Zhang et al. ( 203) used to

create synthetic images using stochastic sampling methods (Gibs sampler ( 63)) to determine the

sample distribution. The main drawback of this method is that the gradient can be trapped in the

local minimum and does not convert the optimization technique.

The main limitations of region-based methods are: the sensitivity of the initialized region, and
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the low performance because of the noise and the inhomogeneity of image intensities.

Another common automatic segmentation technique is model fitting algorithms. A predefined

statistical shape model is used to fit a specific patient image. The most common algorithms using

this technique are deformable models, atlas model, and statistical shape model ( 85).

Deformable models follow the principles of deformable theory, elasticity theory, and soft tissue

mechanics ( 146). In deformable models are used as a combination of other techniques ( 165). Ecabert

et al. ( 51) apply deformable model technique for automatic segmentation of the whole heart in CT

images. They use a hybrid model of ASM and shape priors with a deformable model. As shape pri-

ors, they utilize a principal component analysis (PCA) method. In their study Ecabert et al. ( 52)

present an automatic segmentation framework for heart detection. They use a linear transforma-

tion to initialize a deformable model ( 139). The main disadvantages of this method are: the needed

object, the learning of training shape variation, and the high memory requirements.

Probabilistic atlases are shape models based on a training dataset, a generalized statistical model is

created with specific standard deviation and mean values of edges shape ( 118). In some cases multi-

atlases are used for better generalization. Multi-atlases are a complex of atlases from different ven-

dors and patient shape variation.

Lorenzo et al. ( 114) use an atlas of 14 normal subjects and deformable registration techniques to

fit the prior shape of atlas. In 2004, Lorenzo et al. ( 114) utilize an automatic atlas 4D segmentation

framework. They use as prior shape, an atlas to register the edge shape of ROI in each patient. Fi-

nally, using 4D Markov random fields, they classify accurate regions of heart. Rikxoort et al. ( 159)

use a multi-atlas scheme to segment the heart. They compare three different cases of multi-atlases.

Firstly, they registered all multi-atlases prior shapes. Secondly, they register the most similar atlases

to the MRI images. Moreover, they use the atlas with the best registration results (smaller error)

as a reference. Based on the accuracy of other atlases in the local edge of interest. Bai et al. ( 15) use
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multi-atlas to automatically segment the left ventricle of heart. They utilize an efficient refine regis-

tration to increase the accuracy of atlas fitting. Moreover, they use a patch-based label fusion model.

As a result, the registration error is decreased. The main drawback of atlas segmentation is the lack

of reproducibility of the results because of the assumption optimization problem. Moreover, shape

variation of atlas in the training cohort ( 17). Lastly, some other limitations are: the high computa-

tional memory and time cost and the needed landmark determination by clinicians.

The advantage of model fitting algorithms is the ability to deformate edges with poor visual-

ization of boundaries (weak edges). Because of this, these models are more flexibly than the rigid

representation of AAM. However, this method has high computational cost regarding memory

time, needing landmarks from expert or other complex prior shape algorithms such as AAP or ASP.

Lastly, the adaptability of the method is restricted based on vendor and patient variation (etc., car-

diac shape, age, sex). Thus, generalization is a tricky task ( 71).

Greig et al. ( 67) introduce the idea of graph-cut technique. Greig use maximum a posteriori es-

timation (MAP) to determine the maximum flow of a binary image. In the graph, the cut technique

determines the seed points of the background and the region of interest. Based on these solvers,

MAP determines the best optimal solution. Graph cut is a network graph of nodes (pixels) and

edges (regions of pixels) that are connected to each other. A common technique linked with graph

cut is watershed ( 127, 115). In the literature, there are studies that combine a watershed with other

segmentation techniques, so more accurate results can be delivered ( 72, 45, 15).

Couprie et al. ( 45) introduce an extended version of the traditional watershed segmentation. This

uses graph cuts, random walker, and shortest-path segmentation ( 172). Kang et al.( 86) use watershed

algorithm of Couprie et al. ( 45) combined with the active contour model. Moreover, Bai et al. ( 15)

utilize a combination of active contour and watershed algorithms to segment the whole heart. They

use the active contour method to detect heart contours. Active contour is initialized by the results
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of watershed segmentation. Thus, the drawback of noise and over-segmentation of the watershed

method is reduced.

Generally, graph-cut techniques are accurate. However, the main limitations of watershed tech-

niques are the need to manually seed points and the trend of the method to include more regions in

the segmentation results than the ground truth (over-segmentation effect) ( 85).

In the literature, it is common to used more than one of the above techniques as an image pro-

cessing pipeline to deliver more accurate results; as these frameworks can use combination of meth-

ods to strengthen and reduce the advantages and disadvantages of them. These pipelines are known

as image driven segmentation frameworks.

Cocosco et al. ( 40) use a combination of ROI detection, Otsu’s binary thresholding, and filters

to increase SNR and region growing techniques. Huang et al. ( 77) described a pipeline to segment

the left ventricle and papillary muscles. Again, they use a network to locate the ROI and a combi-

nation of image filtering, edge detection, thresholding, and image processing techniques. Moreover,

Markov random field (MRF) and Conditional random fields (CRF) are used as supervised pipelines

in automatic medical image segmentation ( 91, 84). MRF tries to estimate the likelihood distribution.

It follows the theorem of independent observation regarding the labels. Probabilities uses uni-modal

Gaussian distribution. CRF follows graphical notation. It is a discriminative model with relaxed

independent assumptions of observation and labels. Moreover, in the discriminative model, there

is no need of computing likelihood. This is an advantage as in some cases the real likelihood is very

complex to be estimated.

There is an increase in the use of deep learning algorithms for cardiac automatic segmenta-

tion ( 131,205,32). Deep learning is a multilevel (deep) neural network (convolution neural network

for imaging analysis) with a high number of fitting parameters which can learn a large amount of

data (Big Data). Deep learning for cardiac automatic segmentation of LV is a widespread method.
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The results of supervised methods are better than those obtained using machine learning and com-

puter vision algorithms. In the cardiac segmentation challenge of MICCAI 2017, nine out of ten

segmentation methods were based on deep learning ( 205). In addition, during the cardiac segmen-

tation challenge of MICCAI 2019, the methods were used for image to image translation and seg-

mentation of LGE-MRI, cine-MRI, and T1-MRI were deep learning networks. The automated

myocardium segmentation methods are described by ( 131,192,111), all use deep learning networks

applied to LGE-MRI images. The approach is described by Chen et al. ( 32) use a image to image

translation network from balanced steady-state free-precession (bSSFP) images to LGE-MR images.

They achieve an unsupervised segmentation of the LGE-MRI images.

One of the main drawbacks of deep learning (DL) techniques is the possibility of overfitting

during the training process. As a result, the model fits the noise of the training set and loses the

generalisation of the model that can be robust to variations in vendor and cardiac shape structure.

To achieve a valid generalisation, a large labelled training set is required from different vendors and

with variation of patients (such as abnormal or healthy cases, sex and age). Obtaining this kind of

dataset is difficult. Moreover, because there is a need of manual segmentation or classification from

expert radiologists.

Table 3.1 summarizes the different frameworks and pipeline techniques for automatic and semi-

automatic segmentation of the myocardium of the LV with scar.

3.2.2 Review scar segmentation

Segmentation of a cardiac scar, and the surrounding region, often called as grey zone of a specific

patient is challenging, because of the uncertain variation of size, shape, and location. The scars could

be located in the atrial or ventricular wall of heart. Below we will review some machine learning and

deep learning techniques.
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Table 3.1: Comparison of automa c segmenta on state of the art and established techniques of myocardial region
based on average and standard devia on (SD) dice values (NM:not men oned).

Region dice +/- SD (%) Technique
Myocardium 86.0 +/- NM DL 131

Myocardium 83.0 +/- NM Unsupervised Multi-modal 32

Myocardium 82.7 +/- 6 SK-Unet 192

Myocardium 81.2 +/- 6.1 Combining Multi-Sequence and Synthetic-LGE27

Myocardium 80.1 +/- NM Adversarial Domain Adaptation Network
(GFRM)191

Myocardium 78.0 +/- NM Multi-Atlas-CNN noise images163

Myocardium 74.9 +/- 10.0 Supervised-Domain-Adaptation189

Myocardium 71.4 +/- 10.0 Deep-Learning-Framework206

Myocardium 68.6 +/- 7.8 Shape-Transfer GAN network177

Myocardium 65.4 +/- 7.0 Multi-Atlas16

Myocardium 61.7 +/- 8.6 Pseudo-3D network111

Myocardium 61.7 +/- NM CNN weak Domain Transfer32

Myocardium 61.0 +/- NM Adversarial-CNN-Domain-Adaptation33

Myocardium 57.3 +/- NM 2D/3D-UNET Framework195

Myocardium 47.0 +/ 11.7 UNET++ Framework156
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Machine learning techniques

Machine learning techniques are used for automated segmentation of atrial wall ( 137, 46, 90) . Karim

et al. ( 90) surveyed different algorithms about automatic segmentation of the left atrium with scar.

The data of this study were 60 images from pre-post ablation subjects. Segmentation techniques

from seven different institutions were examined. These were hysteresis thresholding (IC), Mevis

Region growing with mixture model fitting (MV), graph cuts with fuzzy c-means clustering (SY),

mix of active contours and mixture model fitting (HB), combination of thresholding selection with

manual wall delineation (YL) and unsupervised learning using k-means clustering (UTB). The best

scores of the evaluation metrics were YL = 48%, UTA = 42%, UTB = 45% for pre-ablation and MV

= 85%, YL = 84%, KCL = 78%, UTA = 78% for post-ablation cases. Karim et al. ( 90) suggested that

a fixed model (SD and FWHM) is not a good candidate for segmentation of the atrium and ventri-

cle. The reason is the different variability of internal characteristics (shape-size, histogram distribu-

tion, heterogeneity) and external conditions (resolution,image noise, and inversion time) of the scar

region.

The left ventricle plays a critical role in generating cardiac output, but can be affected by infarct

scar. Thus, the majority of segmentation studies focus on the left ventricle (LV).

Amado et al. ( 4) evaluated a region-growing algorithm based on two different kind of semi-

automatic segmentation criteria of scar. The criteria were a N-standard deviation remote myocardium

region (N=1,2,3,4,5,6) and a semi-automatic full-width at half-maximum (FWHM). FWHM

method was a more accurate segmentation technique compare N-standard deviation techniques.

Kolipaka et al. ( 97) evaluated a thresholding semi-automatic technique to segment the scar regions

of LV. They used two to three standard deviations above the average intensity value.

Detsky et al. ( 50) used fuzzy clustering techniques in their study to identify infarct zones in mul-

ticontrast delayed enhancement images of the left ventricle. Lu et al. ( 116) utilized the graph cut
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segmentation technique to separate the scar region from the healthy myocardial region of the left

ventricle. The advantages of this automatic method were: high speed, comparing the manual seg-

mentation, no false detection of scar region (common in FWHM manual methods), and automatic

detection of scar regions. The limitation of this study was the needed manual correction of 66/136

images, due to misalignment deformation between the DE-MRI. Tao et al. ( 175) evaluated a seg-

mentation method which combined intensity and spatial information to segment LV region. Their

approach was based on theoretical density model theory. They assumed that the tissue follows Ri-

cian distribution ( 78) and a Gaussian distribution. The authors recommended this method for ac-

curate myocardium scar delineation. Moreover, they suggested this as a useful tool for quantitative

assessment in late gadolinium enhancement (LGE) MRI.

Karim et al. ( 88) evaluated six fixed-threshold methods and five algorithms about scar segmen-

tation of LV. The dataset was from human’s and pocine’s hearts. Karim et al. ( 88) used an over-

lap metric and volumetric-based metric (dice metric) to evaluate the algorithms with respect to

an expert’s manual segmentation. The best segmentation results of human’s hearts were those of

MCG = 85%, KCL = 74%, and FWHM = 78%, 6-SD = 64%. On the other hand, porcine subject

best results were observed in AIT = %86, KCL = 80% and 6-SD = 76%, FWHM = 69%. Karim et

al. ( 88) elucidated that the best segmentation algorithm was the conditional Markov random field

(MCG)( 84, 99). Mixture model with watershed transformation algorithm ( 72) had low accuracy.

Some limitations of this study were the small number of subjects (30 patients) and the bias effect of

ground truth (one expert). Moreover, there was high intensity variation across the images due to the

coil shading effect. These segmentation methods were the portion of scar tissue. However, in cases

of cardiac disease treatment, the specific location of the scar of LV is crucial.

Solis-Lemus et al. ( 174) developed a systematic pipeline to quantify the size and location of scar

regions in the atrium based on LGE-MR images to evaluate the ablation procedures. The frame-

work was semi-automatic and it was focusing in three phases: calculate the area of the scar, identify
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the percentage of the pulmonary vein encircled by the scar, and compare the preprocessing and post-

processing results of ablation. The main limitation is the manual segmentation of the atrium and

scar regions.

Kurzendorfer et al. ( 101) utilized a fractal analysis and a random forest classifier to detect scar

segmentation in LGE-MR images. They used fractal analysis to binary decompose the images and

export information related to fractal dimension, the average gray value, and the size of binary ob-

jects. Lastly, they utilized a random forest to classify the features. The main limitation was the low

accuracy (64 %) and the high standard deviation (17 %) that they can not verify the robustness and

accuracy in other datasets, vendors, or institutes.

Deep learning techniques

In the last decade, deep learning networks have been used for automatic supervised scar segmenta-

tion ( 131,176,201). Deep learning is a promising method that is capable of accurate results. However,

there is a need for preprocessing steps with training-testing datasets. Moreover, there can be a bias in

the training dataset if the labelled images for supervised approaches rely on only one expert.

Abramson et al. ( 1) used a three level layer deep learning model for the detection of region of

interest segmentation and correct anatomy of the regions in both slices and volumes. The main lim-

itation of this study was the supervised training and multi-model scanning inputs (cine-MRI and

LGE-MRI). Yang et al. ( 197) implemented an automatic segmentation pipeline of the left atrium

(LA) with scars in LGE-MR images. They used a multi-atlas technique to deliver the LA and a deep

learning network to deliver the scar regions.Main limitation of the pipeline, the supervision DL

network that needs retraining or tuning in new institute or vendor datasets. Moccia et al. ( 130) im-

plemented a supervised DL network and they studied two different protocols of fully automatic

left ventricle scar segmentation. The limitations were: the lack of a true GT for algorithm training

and testing (performed by one clinician) and the supervised nature of the deep learning technique.
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Table 3.2: Comparison of established machine learning techniques for automa c and semi-automa c scar segmenta-
on.

Region Median (%) Technique (cohort)
Scar 85.0 MCG 88

Scar 74.0 KCL 88

Scar 73.0 AIT88

Scar 44.0 MV 88

Campelo et al. ( 27) delivered a deep learning automatic pipeline for segmenting scar regions using

registered multisequence CMR image sequences (LGE, bSSFP, and T2). The limitations were the

need of multi-modality scanning information and supervised training or tuning in new cohorts.

Table 3.2 summarizes the different frameworks and pipeline techniques for automatic and semi-

automatic segmentation of the scar reg of the LV with scar. To conclude, in all deep learning ap-

proaches, the main limitations are the need of multi-modality scan images, the supervised network

that needs retraining or tuning in new institute or vendor datasets.

3.2.3 Automated border zone and scar segmentation

Ukwatta et al. ( 184) developed an analytical framework of the automatic segmentation of LV with

scar and border zones to use in an electrophysiology study of treatment strategies involving VT.

They deliver very good results, however, they had to extract all LV myocardium manually annotated

and their method evaluated only in 51 short-axis LGE-MR images. To author knowledge, MyoPS

2020 (https://zmiclab.github.io/projects/myops20/ )is the first challenge where they study the

automatic segmentation of the total scar region including the border zone (edema) and the core scar.

Ukwatta et al. ( 184) achieved one of the best results of the challenge with a dice value of 60.4, 68.7,

and 48.8 for the core scar, total scar, and border zone regions. The drawback of pipeline is the use of

multi-modal scans (T2, LGE-MRI, cine-MRI) and they did not validate their code in cross-institute

cohort.
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Automated tumor segmentation

Another similar topic such as the automatic scar segmentation of the cardiac myocardium is the

automatic tumor segmentation in organs like brain or lung. In the literature, there are plenty of

studies related to the automatic segmentation of total tumor edema, non-enhancing tumor core,

and enhancing tumor regions ( 124,190,19,38,202,199). The main limitations arising in this medical ap-

plication of automatic segmentation regions have a serious overlap with the CMR scar segmentation

(total scar, border zone, and core zone scar). Once again, the issue of robust and accurate results in

the core and gray zones of the regions of interest, either tumor or scar, is crucial. Finally, the need of

unsupervised techniques without any further need for retraining or even tuning in a new cohort is

another important topic arising.

3.2.4 Image-to-image translation review

The unsupervised image-to-image translation (UNIT) problem is a hot topic in the deep learning

community, especially after the introduction of generalized adversarial networks (GAN) based on

the study of ( 65). Moreover, GAN can be used for the creation of synthetic images. These tech-

niques increase the generalization of the networks and decrease the overfitting effect when the num-

ber of images are limited ( 30). This is happening as the synthetic images increase the variation of

different shapes, sizes, and artifacts in the training process of model. In this section, we will review

some of the state of the art networks for modality scan translation and some studies related to trans-

lation from cine-MR to LGE-MR images.

Hoffman et al. ( 74) offers a combination of mapping images across domains (pixel-level adapta-

tion), mapping images from source to target and back to the source (cycle-consistency), mapping

feature level method which discriminates the features or semantics of two images based on a specific

task (feature level adaptation) and a semantic segmentation task. By this way, they deliver an accu-
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rate translation from image to image space and semantic segmentation. Kim et al. ( 95) implement

an unsupervised image-to-image translation. The novelty of this work was the use of an attention

module to learn semantically important areas, like geometrical shape transformation. Moreover,

they utilize a learnable normalization function to determine the scale level of geometrical shape vari-

ation in the image to image translation. Zhu et al. ( 207) implement an unpaired image-to-image

translation using cycle-consistent adversarial networks (CycleGAN), an approach for learning to

translate an image from a source to a target domain in the absence of paired trained data. Their

network translation task which involved color and texture changes, was successful. However, in ex-

treme transformations, such as geometric changes, the network failed. This can be done as in some

cases the distribution characteristics of the training datasets do not include all geometrical shape

variations of the translation task. Ming-Yu Liu et al. ( 110) designed an conditional GAN to deliver

the task of translation. They use an u-net as a generator and a PatchGAN network as a discriminator

to penalize structures at the scale of image patches.

Translation from cine-MR to LGE-MR image scan modalities is essential as an alternative reg-

istration of the LGE-MR images to cine-MRI and vice versa. Tao et al. ( 175) implement a shape-

transfer GAN for cardiac segmentation of LV, RV, and myocardium from LGE-MRI images. Their

model could generate realistic LGE images with anatomical shape information. Their method was

validated on a dataset of 40 LGE-MRI patients and achieved a 68.6% myocardium segmentation

dice metric accuracy. Gao et al. ( 61) propose a universal MR image standardization method which

used an optimized CycleGAN to standardize images. Based on a weak pair approach, an accurate

intensity transformation between two randomly paired MR images. There are some studies related

image to image translation from other scan modalities, LGE-MRI or cine-MRI. Chartsias et al. ( 30)

demonstrate the use of CycleGAN to translate CT images to realistic MR images. Welander et al.

( 193) evaluate two unsupervised GAN models (CycleGAN and UNIT) for translation of T1 to T2-

weighted MRI. Both networks show similar results. They conclude that translation images to be
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visually realistic can not be done with just the use of quantitative measurements.

CycleGAN is a fast trained and accurate enough network to deliver an unsupervised unpaired

image-to-image translation from cine-MRI to LGE-MRI, which is the task of this study.

3.3 Review of clinical evaluation of automatic pipelines

3.3.1 Observer variability - evaluation metrics

Observer variability is related to Measurement Systems Analysis. A thorough study about the collec-

tion of data and evaluation of the automatic algorithm is needed as part of quality control. Parame-

terization of the uncertainty sources and the bias effect of observers ( 152). Popovic et al. ( 152) high-

lighted the needed observer variability in the cardiovascular imaging field. McAlindon et al. ( 122)

defined intra-observation and inter-observer variability. Furthermore, they determined scan vari-

ability (interscan) in MRI imaging, regarding different manual segmentation techniques. FWHM

is an established semi-automatic segmentation technique to be used in the majority of cases. Re-

garding different manual techniques, inter-scan variability has the highest variation followed by

intra-observation and inter-observer variability ( 122).

Inter/intra-observer variability can determine the variation of the results of different observers

(inter), and regarding the time of extraction of the same observer (intra). The need for a generalized

unbiased ground truth to evaluate an automatic segmentation technique is crucial. Li et al. ( 109)

compared different methods of ground truth extraction with respect to inter-observer variability

(with eight experts), and the best voting threshold method was found to be the most accurate ( 109).

3.4 Our pipelines

In this thesis we developed the SOCRATIS framework, which is a fully automatic segmentation

methodology for LV with scar in LGE-MR images. SOCRATIS has two implemented pipelines;
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 3D-SOCRATIS
    VTK interpolation 

 From 
         2D to 3D

Myocardial

Border zone

Core scar

Figure 3.1: Our automa cally three dimensional model extrac on method. The method use as input LGE-MR images
of specific pa ent. (Le top corner) SOCRATIS framework for automa c myocardial and scar region segmenta on
(BZ-SOCRATIS). The expert can decide about robust and accurate results using the MA-SOCRATIS pipeline or fast
results using DL-SOCRATIS pipeline. (Le bo om corner) three different LGE-MRI slices of different depth and different
pa ent. (Right top corner) automa c results of two dimensional slices of myocardial, border zone and core scar regions.
(Right bo om corner) 3D-SOCRATIS pipeline to extract three dimension models of myocardial, border zone and core
scar region of le ventricle.

a multi atlas - segmentation of cardiac region and total infarct scar (MA-SOCRATIS) and a deep

learning - segmentation of cardiac region and total infarct scar (DL-SOCRATIS). This section de-

scribes the mathematical background of the MA-SOCRATIS and DL-SOCRATIS automatic seg-

mentation pipelines and the overview of SOCRATIS framework. A comprehensive presentation of

all the myocardium segmentation techniques is in Appendix A.

3.4.1 SOCRATIS framework

The outcome of the SOCRATIS framework aims to optimise the automatic segmentation of

the LV with scars based on LGE-MRI images. SOCRATIS framework involves two alternative

pipelines DL-SOCRATIS or MA-SOCRATIS, for quick or robust automatic segmentation results,
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respectively. Fig. 3.1 illustrates the SOCRATIS framework and the expert user interaction. BZ-

SOCRATIS is an extension of the MA-SOCRATIS pipeline which identifies both the border zone

(BZ) and core scar regions of the LV cardiac chamber in LGE-MR images. The 3D-SOCRATIS

pipeline was used to extract from 2D to 3D the border zone, core, scar, and myocardial of LV geom-

etry.

MA-SOCRATIS

Based on the review of the methods summarised above, we have constructed an automatic pipeline

for LV myocardium and scar segmentation as described below. Myocardium segmentation involves

two steps; initial and reestimate segmentation. The initial step includes a multi-atlas initial segmen-

tation technique ( 16,102). The re-estimate step uses a combination of k-means thresholding and a

level-set active contour segmentation method ( 136,105). Combining these methods enables their

limitations to be overcome. The parameters of the active contour are determined from the initial

step, which overcomes the limitation of the active contour scheme, and the use of active contours

overcomes the effects of noise and image artifacts on a k-means pixel-wise classifier.

DL-SOCRATIS

Based on the review of the methods summarised above and the need to use only LGE-MRI im-

ages as the based input pipeline, we have modified the initial myocardium segmentation of MA-

SOCRATIS, by two different aspects. We utilized a combination of image-to-image translation

network (LGE-MRI to cine-MRI) cycle-GAN ( 207) and an u-net ( 162) network trained on cine-

MR images. In the second aspect, we used an u-net network trained on LGE-MR images. In both

assumptions, we used a deep learning structure ( 13) to detect the region of interest (ROI).
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3.4.2 BZ-SOCRATIS

For automated segmentation of scar, we use an algorithm that combines mixture model, histogram

fitting and constrained watershed segmentation using an automatic seed point for the scar region.

This approach is based on Hennemuth et al. ( 72) with some amendments, so the performance of

watershed segmentation is improved. A limitation of the method described by Hennemuth et al.

( 72) was the use of Rayleign-Gaussian mixture models. Other studies have assumed that the healthy

myocardium is described by a Rician distribution ( 175,164). Thus, our approach involves the use of

Rician-Gaussian mixture models. In addition, the re-estimation of the myocardium can deliver au-

tomatic seed points for the scar region with good spatial accuracy. Regarding the automatic border

zone and core scar segmentation, we add a border zone (BZ-TH) thresholding segmentation tech-

nique. This technique is a BZ-TH threshold determination between the rician threshold (TR) and

the Gaussian threshold (TG); based on different portions. The region between the TR and BZ-TH

thresholds is the border zone region and between the BZ-TH and TG are the core scar areas.

In the next chapters, we will describe the methods that are involved in MA-SOCRATIS, BZ-

SOCRATIS, and DL-SOCRATIS pipelines.
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4
Methodology of MA-SOCRATIS and

BZ-SOCRATIS pipelines

4.1 Overview

In this section, we describe in detail the MA-SOCRATIS pipeline, and the extension of MA-SOCRATIS’s

scar segmentation pipeline (BZ-SOCRATIS) to automatically and semi-automatically the border
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Figure 4.1: MA-SOCRATIS pipeline for automa c segmenta on of myocardium (le ) and scar (right) regions of the LV.

zone can be extracted.

4.2 Methods of MA-SOCRATIS

This study aimed to create a computational pipeline able to process a stack of LGE MR images with

8-bit resolution and size 256× 256 pixels, to obtain contours representing the LV endocardium, LV

epicardium, and scar edge. We separated the problem into two stages; myocardial segmentation and

scar segmentation. These pipelines are illustrated in Figure 4.1, and we describe in turn.

4.2.1 Overview

One of the aims of this thesis is to test if a combination of AI techniques can deliver full automated

segmentation of the myocardium and scar regions in a patient, without the need for expert’s super-
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vision.

In the implementation part of the first automatic pipeline, we implemented two different pipelines

for myocardial and scar segmentation (Figure 4.1). Myocardial segmentation was split in two steps,

initial segmentation and re-estimation.

As an initial segmentation, we used the pipeline of multi-atlas segmentation with registration re-

finement ( 16) to estimate the myocardium in LGE-MRI images. The idea of using an atlas pipeline

as part of initial myocardium segmentation was from Kurzedorfer et al. ( 102) study. They used a

cine-MRI atlas with deformable registration to estimate the endocardium and epicardium of LV

with scars in 3D LGE-MRI images. However, the result was less than 80% accurate when measured

using the dice metric. A multi-atlas segmentation technique was used by Yang et al. ( 198) for left

atrium segmentation with higher results than Kurzedorfer et al. ( 102). Even using the multi-atlas ap-

proach ( 16), the result was not high accurate, as the dice average and standard deviation values were

65.4 ± 7.0. A possible explanation can be that multi-atlas method was created based on the balanced

steady state free precession (b-SSFP) sequence of a patient without LV scar regions. Additionally,

the cohort was composed of LGE-MRI images with LV scar. Because of the low accuracy of the

multi-atlas segmentation, we included a re-estimation step to increase the accuracy of the automatic

myocardium segmentation pipeline.

The re-estimation step (Figure 4.1) was a combination of k-means clustering and a geometric

median shape variation. k-means was used as a thresholding process to define potential scar tissue

based on histogram intensity variation technique (Figure 4.1). On the other hand, geometric me-

dian shape variation was utilized to estimate the median shape of the myocardium based on space

variation technique (Figure 4.1). Finally, we used an active contour technique to determine the un-

healthy and healthy myocardial wall.

Scar segmentation was produced by a combination of a Rician-Gaussian mixture model (thresh-

olding technique) to determine the minimum and maximum intensity of the FWHM criterion
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(Figure 4.1). Potential scar intensity threshold of the myocardium re-estimate step (k-mean thresh-

olding process), and the intensity threshold of FWHM criterion were compared (Figure 4.1). The

minimum value was then used as the final intensity threshold of the scar region. Lastly, a watershed

with automatic seed point framework was used to segment the final scar region (Figure 4.1).

Figure 4.2: Post-processing pipeline results of the images before (le ) and a er (right) the processing.

The initial parameters of the MA-SOCRATIS pipeline do not need to redefine in a new cohort

of LGE-MRI for segmentation of LV with scars. By this way MA-SOCRATIS is an unsupervised

pipeline which needs no training or tuning in new datasets.

4.2.2 Pre-processing and post-processing frameworks

The pre-processing framework is used to reduce noise and artifacts in the images. We used a frame-

work with a series of binomial deconvolution filters, Landweber deconvolution, and curvature

anisotropic diffusion image filters ( 120). The post-processing framework is a combination of ob-
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ject removal filter ( 106), median smooth filter, and binary filter (Figure 4.2). The median filter is

a nonlinear filter. It is used to smooth an image without being affected by random noise or shot

noise, and it is implemented in the ITK library. We used post-processing techniques to make the

segmentation results smooth, eliminate artifacts of small regions (object removal filters), and re-

duce the SNR ratio. Image pre-processing is a field of computer vision theory related to decades

of research and study. As a possible future work, we will use optimization techniques to deliver

smoother results from a clinical point of view, which could possibly increase the performance of the

SOCRATIS framework.

4.2.3 Myocardium segmentation

Myocardium segmentation (Figure 4.3) involved two steps; an initial segmentation step and a re-

estimate segmentation step. Below we will thoroughly present the structure of these two steps.

Myocardium segmentation: Initial step

The pipeline for the initial segmentation step is shown in the left hand column of Figure 4.3. The

comprehensive review of Chen et al. ( 32) describes a combination of machine learning techniques

and shape models as a way to increase the robustness of a segmentation pipeline. This is a very com-

mon idea in the literature. The idea of using an atlas pipeline for initial myocardium segmentation

was described by Kurzendorfer et al. ( 102). A cine-MRI atlas with deformable registration was used

to estimate the LV endocardium and epicardium with scars from 3D LGE-MRI images. A multi-

atlas segmentation technique was used by Yang et al. ( 198) for left atrium segmentation. Since this

approach yielded better performance than a single atlas, we used multi-atlas segmentation to initially

estimate the myocardium in LGE-MRI images.

The multi-atlas segmentation was based on a method with registration refinement described by
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Figure 4.3: The myocardium segmenta on phase. The myocardium segmenta on is separated in three steps; ini al
segmenta on step, re-es ma on step, and final myocardium mask extrac on step. The ini al segmenta on step in-
volves the semi-automa c segmenta on of mul -atlases approach and the detec on of region of interest (ROI) using
a convolu on neural network. The re-es ma on step involves a combina on of ac ve contour method and a k-mean
thresholding technique to es mate the mean intensity of healthy, unhealthy and blood pool regions. The circle mask
algorithm uses the informa on of the mul -atlas segmenta on results to apply epicardium and endocardium bound-
aries in the outputs of k-mean thresholding technique. A er this phase, the last images combined with the results of
ac ve contour. A geometrical shape approach is applied to verify the symmetrical shape of LV and fill the holes of the
myocardium region extracted from the combined stage. The final mask is extracted by a combina on of the healthy my-
ocardium image (HM) and the image from the geometrical shape output. BP: blood pool, PS: possible scars, HM: healthy
myocardium, 1,2,3: the three binary circle masks with different radius.
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Figure 4.4: The scars segmenta on phase. The scar segmenta on pipeline for automa c has three steps; scars thresh-
olding step, scars geometrical step, and final scars mask step. For the implementa on of this pipeline we used as first
step, four different combina on of Rician-Gaussian (RG) mixture model (RG, RRG, RGG, RRGG) and a heap sort algo-
rithm to sort the mixture model results from minimum to maximum values. As second step, we extract a par al volume
model with the Rician threshold TR (minimum value of heap-sort block) and the Gaussian threshold TG (maximum value
of heap-sort block). As third step, we use a watersheed technique with an automa c seed point genera on algorithm
to determine the core scar. Finally, we u lize the par al volume model to create a binary model of the border zone re-
gion. As last step, we connect the border zone and the core zone to extract the total scar region. PS: possible scars, TR:
threshold rician, TG: threshold gaussian
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Bai et al. ( 16). Landmarks in the LGE-MRI images related with the epicardium and endocardium

boundaries were manually annotated by experts. The annotation landmark points ( 16) were six; two

points in the first and last short-axis slices of LGE-MRI, and four in the middle slice, to determine

the epicardium, and endocardium boundaries of left and right ventricle. The experts need about 30

seconds per patient for the manual annotation of the landmarks. Moreover, an automated process

for the generation of landmarks has been described by Oktay et al. ( 138). The multi-atlas segmenta-

tion yielded a 256 × 256 myocardial segmentation Iatlas−myo. A 100 x 100 pixels ROI image IROI

was then obtained from the center of Iatlas−myo image by cropping the raw image IMRI.

Myocardium segmentation: Re-estimation step

Figure 4.5 shows three example LGE images in the first column, and the results of LV myocardium

segmentation based on the initial step alone in the second column. The third column is the man-

ual segmentation of the myocardium based on expert radiologists and the forth MA-SOCRATIS

results after the re-estimation step. Table 4.1 shows the dice accuracy of MA-SOCRATIS and the

initial myocardium step (multi-atlas), demonstrating the improved accuracy of our pipeline (MA-

SOCRATIS) compared with the multi-atlas. This improvement of the resolution and performance

of myocardium segmentation was based on the re-estimationn step shown in the central column of

Figure 4.3. There were four main phases to this re-estimation step; active contour, circle estimation,

k-means thresholding, and a geometric phase.

Active Contour: The region-based techniques involved the selection of a global model so the

estimation of the myocardium could be accomplished. Some hybrid techniques of boundary-based

and region-based algorithms were generated. Kang et al. 85 classified this technique into three sub-

categories, parametric representation algorithms, level-set, and clustering. In the parametric repre-

sentation, the field was dominated by the Mumford-Shah functional and the Bayesian, maximum α

posteriori (MAP) estimators. The Mumford-Shah function ( 48) utilizes a piecewise smooth model
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Table 4.1: Improved accuracy of myocardial segmenta on by MA-SOCRATIS with re-es ma on compared to the Mul -
Atlas segmenta on alone, using the MS-CMRSeg 2019 dataset.

Intra-Inter observer results
Region dice (%) Sensitivity (%) Specificity (%) Cohort
MA-SOCRATIS 70.0 ± 5.5 90.5 ± 7.0 93.0 ± 1.7 MS-CMRSeg

2019 dataset
Multi-Atlas 65.4 ± 7.0 57.8 ± 4.6 97.8 ± 1.4 MS-CMRSeg

2019 dataset

Figure 4.5: Comparison of ini al and re-es ma on steps in three example images. LGE-ROI shows the region of interest,
with the LV towards the centre of the image. ATLAS label shows the result of ini al segmenta on with the mul -atlas
method. Manual label shows manual segmenta on of myocardium (green) and scar (red). Re-es mate label shows the
result of the re-es ma on step.
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given by:

E(f,C) = μLength(C) + λ
∫ ∫

R
(f(x, y)− I(x, y))2 dx dy+

∫ ∫
R−C

||∇(f(x, y)||2 dx dy+ μ|C|

(4.1)

where λ and μ were positive parameters, C was the boundary length, R was a domain, I the image,

and f the piecewise smooth function which estimated the image of interest. Chan et al. ( 29) mod-

eled the active contour based on techniques of Mumford-Shah segmentation and level set method.

The novelties of this model were that it did not utilize an edge function to converge the detection of

the desired boundary, there was no need to smooth the initial image even with a lowsignal to noise

ratio, the model could detect objects without the use of gradient definition and it could be deter-

mined the interior curve automatically, starting from only one initial curve. A level set formulation

of a curve C based on a φ(x, y) Lipschitz function was defined by 29 , by:

C = dω = (x, y) ∈ Ω : φ(x, y) = 0 (4.2)

inside(C) = ω = (x, y) ∈ Ω : φ(x, y) > 0 (4.3)

outside(C) = Ω/ω = (x, y) ∈ Ω : φ(x, y) < 0 (4.4)

where Ω was the pixels of the image and x,y the index of a pixel. Chan et al. ( 29) utilized the energy

equation to approach the optimization problem:

F(c1, c2,C) = μLength(C)+νArea(inside(C))+λ1

∫
Ω
(uo(x, y)−c1)

2 dx dy+λ2

∫
Ω
(uo(x, y)−c2)

2 dx dy

(4.5)

And based on the above equation, the Mumford-Shah function ( 48) and the Heaviside function H,
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they established the following energy equation:

F(c1, c2, φ) = μ
∫

Ω
δε(φ(x, y))|∇φ(x, y)| dx dy+ν

∫
Ω
Hε(φ(x, y)) dx dy+λ1

∫
Ω
(uo(x, y)−c1)

2Hε(φ(x, y)) dx dy

+ ”λ2
∫

Ω(uo(x, y) − c2)
2(1 − Hε(φ(x, y))) dx dy(4.6)where Hε was a regularization form of H

given by:

Hε(z) =



1, if z > ε

0, if z < −ε

1
2 [1 +

z
ε +

1
π sin( πzε )], if |z| ≤ ε

(4.7)

and δε =
dHepsilon(z)

dz . Lastly, they used Euler-Lagrance equation to update the φ(t, x, y):



dφ
dt = δepsilon[μdiv(

∇φ
|∇φ|)− ν− λ1(uo − c1)

2

+λ2(uo − c2)
2] = 0 ∈ (0,∞)× Ω,

φ(0, x, y) = φo(, x, y) ∈ Ω (initial contour)

δε(φ)
|∇φ|

dφ
d⃗n = 0 ∈ dΩ

(4.8)

where n⃗ is the external normal to the boundary dΩ.

The IROI initialized the active contour without the edge detection method as discussed above ( 29)

. Following the active contour method, we used the first and second cycle binary masks to isolate the

endocardium and epicardium area.

Circle estimation: The initial myocardium segmentation was used to estimate three circular

binary masks enclosing different parts of the chamber. The centre of each circle was the origin of
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the endocardial contour in the initial multi-atlas segmentation. We defined two additional radii, a

maximum and a minimum. The maximum was calculated as the half of the Euclidean distance be-

tween the minimum and maximum points of the initial epicardium plus an offset. The minimum

radius was calculated from the endocardial contour in a similar way (equation below). The endocar-

dial and epicardial circles (first and second masks) were used as binary masks to constrain the active

contour segmentation method described below. The third circle was used to define the maximum

intensity of the blood pool region as part of the k-meanss thresholding. Fig4.6 shows how the mini-

mum radius was computed.

Figure 4.6: The computa on process of minimum radius for the circle es ma on step.

radiusmax
circle = |maxpoint(Catlas

epi )−minpoint(Catlas
epi )|+ offsetepi (4.9)

radiusmin
circle = |maxpoint(Catlas

endo)−minpoint(Catlas
endo)|+ offsetendo (4.10)

The third radius circle is given by the difference of the maximum and minimum radius:
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radiusBPcircle = radiusmax
circle − radiusmin

circle (4.11)

offsetepi = rate ∗ |(maxpoint(Catlas
epi )−minpoint(Catlas

epi ))| (4.12)

offsetendo = rate ∗ |(maxpoint(Catlas
endo)−minpoint(Catlas

endo))| (4.13)

The endocardial and epicardial circles (first and second masks) were used as binary masks to re-

strict the active contour segmentation method described below. The third circle was used to define

the maximum intensity of the blood pool region as part of the k-mean thresholding.

k-means thresholding: Figure 4.7 shows the k-means structure we used in our pipeline. The

framework combines three k-means clusters with a variation in the initial number of regions. The

first k-means cluster has 5 to 12 regions, the second 2 to 7, and the third 3 to 9. The variation in

the number of regions is determined by the histogram intensity in each image. The first k-means

cluster was used to create an homogeneous image, so an FWHM threshold could be computed (us-

ing radiusmax
circle mask). The second k-means cluster was used to define the maximum intensity of

the blood pool area (using radiusBPcircle mask). Given the homogeneous image from the first k-means

cluster, a third k-means cluster is computed as the FWHM threshold for a possible scar. Based on

this FWHM threshold, the blood pool and regions of possible scar were defined. If the threshold

of the blood pool in the second k-means cluster was greater than the highest mean value of the first

cluster, then it was assumed that there was no scar present. In this case, the FWHM threshold of

the first k-means cluster defines only healthy myocardium and blood pool regions (lower and higher

respectively) and the third k-mean was not computed.

The outputs of the k-means framework were therefore estimates of the pixel intensity thresholds

for healthy myocardium, blood pool, and possible scar regions.
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Figure 4.7: This is the re-es mate myocardium phase based on k-means. There are three different k-mean clusters of a
varia on of different (5-12, 2-7 and 3-9) areas of determina on. Each of these clusters are focusing in a different region
of interest (ROI). Respec vely from up to down, the first is focusing in the whole LV region histogram, the second in
blood pool histogram and the third in ini al scar region. Based on these 3 k-mean clusters the BP, PS, HM and IS are
defined in the end of this step, where: BP: blood pool, PS: possible scars, HM: healthy myocardium, IS: ini al scars

Geometric phase: The geometric phase is shown in Figure 4.8. The thresholds estimated from

the k-means framework were used to compute a healthy myocardium image IHmyo, a possible scar

surface image Iscarmyo and a blood pool image IBP. IROI was used to initialise an active contour without

edge detection method ( 29). This was combined with the first and second binary circle masks to

restrict endocardium and epicardium areas. A framework to process redefined binary myocardium

mask Ibinarynewmyo based on an object removal filter ( 106), median smooth filter and binary filter was used.

Lastly, pre-processing filters were used on Ibinarynewmyo to reduce noise and artifacts in the image.
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symmetry symmetry

Figure 4.8: Detailed workflow for final step of re-es ma on of myocardium segmenta on. The outer circle mask (1),
healthy myocardium (HM), possible scar (PS), and blood pool (BP) were combined, a further geometrical mask was
applied (see text for details), and a final myocardial binary mask Imyo was computed.

After k-means thresholding we estimated median myocardium thickness (Figure 4.8), the last

component of the re-estimation step. We separated ITP
myo and its associated epicardial contour into

four quadrants. We extracted two maximum volumes of ITP
myo between the mirror sub-parts. A me-

dian ventricular wall thickness was then computed. Four arc masks were created based on the two

median thicknesses. These arc masks were located at the maximum distance of the correspond epi-

cardium sub-parts. Each arc mask was added to ITP
myo so the IGP

myo myocardium mask of geometric

phase was extracted. Finally IHmyo and IGP
myo were combined, so the myocardial binary mask Imyo could

be computed.
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Watershed

Figure 4.9: The BZ-SOCRATIS pipeline for automa c segmenta on of total scar, or border zone and core scar regions
of the le ventricle. For the implementa on of this pipeline we used as first step, four different combina on of Rician-
Gaussian (RG) mixture model (RG, RRG, RGG, RRGG) and a heap sort algorithm to sort the mixture model results from
minimum to maximum values. As second step, we extract a par al volume model with the Rician threshold TR (minimum
value of heap-sort block) and the Gaussian threshold TG (maximum value of heap-sort block). Moreover, we define a
border zone threshold (BZ-TH) to split the intensity range of TR and TG in intensity areas of border zone area and core
scar. As third step, we use a watersheed technique with an automa c seed point genera on algorithm to determine the
core scar. Finally, we u lize the par al volume model to create a binary model of the border zone region. As last step,
we connect the border zone and the core zone to extract the total scar region.

4.2.4 Scar segmentation

The pipeline for scar segmentation is shown in Figure 4.4. The pipeline has two detection compo-

nents, threshold and geometric, and is designed to take into account the variation in pixel intensity

histograms and the geometrical shape size of the LV.
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Threshold detection component

We used a Rician-Gaussian mixture model ( 175,164) to estimate the intensity threshold of nor-

mal myocardium and scar. First, we defined a threshold for scar in each myocardium region. We

used four different mixture models of Rician-Gaussian (RG) distributions (RG, RGG, RRG and

RRGG), and these are shown in Figure 4.9. For each LGE-MRI image, we tested each combination

of RG mixture model. Then we sorted the mean values of each RG model from maximum to min-

imum. The maximum value was defined as Gaussian threshold (TG) and the minimum as Rician

threshold (TR). We assumed two different cases of mixture model initialisation; fixed mean values

(pixel intensity of: 0, 60, 100, 200) and initial mean values based on Hennemuth et al. ( 72). The

above strategy is defined after manual sensitivity evaluation of different initial conditions (initial

values of the RG mixture model), and different number of mixture models. The presented strategy

outperformed all the others. We defined the threshold for the scar region as the FWHM of maxi-

mum (Gaussian mean value) and minimum (Rician mean value) sorted mean values. Lastly, these

thresholds of Rician (TR) and Gaussian (TG) distributions were used to define a linear partial vol-

ume model ( 72).

Rician Gaussian mixture models technique: Mixture models are a statistical tool related to fit-

ting distribution in the density histogram of an image (graph-cut technique). The most common

is a Gaussian mixture models (GMM). Lets assume a GMM of M components and a probability a

vector (πi..., πM) (where the summation of the vector is equal to one) to be the weight to each com-

ponent. The main assumption regarding the components is that each component k is randomly and

independently sampled, and a observation pk(x) is generated. Let assumed X to be a random sam-

ple with observed values x and Z a random sample of the probability vectors with observed values

πj. Then P(Z = j) = πj and P(X = x|Z = j) = pj(x). In GMM the pj(x) followed a Gaus-

sian distribution, thus through the joint distribution of Z and X and the marginalization of Z the
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(X = x) =
∑M

j=1 πjpj(x) =
∑M

j=1 πjN(x; μj,Σj where μj and Σj denoted the mean and covariance

matrix of the jth component ( 183). Using the Bayes theorem, the posterior probability is then given

by:

P(j|x) = p(x|Z = j)p(Z = j)
p(x)

=
πjN(x; μj,Σj)∑M
l=1 πlN(x; μl,Σl)

(4.14)

To fit the GMM, an expectation maximization (EM) optimization algorithm was used. The as-

sumptions were that the mixture component number was specified and the mixture parameters of

the model were θ = πj, μj,Σj|j = 1....M. Then the parameters of the model were defined by solving

the maximization of the log-likelihood ( 183):

θML = argθmaxlog(p(X; θ)), (4.15)

assuming independent and identically distributed (i.i.d.) of the input sample dataset, so the likeli-

hood could be written as:

p(X; θ) = ΠN
n=1

M∑
j=1

πjN(xn; μj,Σj). (4.16)

The EM has two steps, the estimation (E) and the maximization (M) step. In E step, the hidden

values zjn were computed based on:

⟨ztjn⟩ =
πtjN(xn; μtj,Σt

j∑M
j=1 πtjN(xn; μtj,Σt

j
(4.17)

In the M step, the expected values of the above equation are defined as the likelihood equation

which tries to estimated the θ(t) parameters by the:

Q(θ, θt) =
N∑
n=1

M∑
j=1

⟨ztjn⟩logπj +
N∑
n=1

M∑
j=1

⟨ztjn⟩logN(xn; μj,Σj) (4.18)
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The updates of the parameters were given from:



π(t+1)
j = 1

N
∑N

n=1 < ztjn >,

μ(t+1)
j =

∑N
n=1<ztjn>xn∑N
n=1<ztjn>

,

Σ(t+1)
j =

∑N
n=1<ztjn>(xn−μtj)((xn−μtj)

T∑N
n=1<ztjn>

,

(4.19)

Hennemuth et al. ( 72) apply a Raleigh-Gaussian mixture model in cardiac scar segmentation of LV.

The mixture model intensity equation was given by:

h(x) = αR
x
σR

e
− x2

2σ2
R + αG

1√
2πσG

e−
1
2 (

x−μ
sigmaG

)2
(4.20)

Finally, Hennemuth et al. ( 72) use a Rician-Gaussian mixture model (RGM) with density function:

h(x) = αR
x
σ2
R
e
− x2+m2

2σ2
R Io(

xm
σ2
R
) + αG

1√
2πσG

e−
1
2 (

x−μ
sigmaG

)2
(4.21)

where Io is the zero modified Bessel function, αR and αG the mixture model portions of Rician and

Gaussian distributions.

Geometric segmentation component

For the geometric component, we used a graph cut technique to identify the geometrical shape of

scars. We used a morphological watershed segmentation technique, with initial seed points com-

puted automatically with respect to the linear partial volume model equation and Euclidian dis-

tances distvariation between the endocardium and epicardium contours ( 18).

The seed points and the image from the p(x) equation were the input of a watershed segmentation

algorithm ( 126), which provided an initial estimate of the scar region Iinitscar . The minimum of the
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RGMM threshold and the k-mean threshold obtained in the re-estimation phase of myocardial

segmentation was used as a threshold to convert the image from the p(x) equation to a binary image

as shown in Figure 4.9. The final scar binary image Iscars was then extracted by combining the binary

p(x) image and Iinitscar .

Watershed technique: Watershed is an efficient graph cut segmentation algorithm based on

mathematical morphology theory that used for segmentation and region detection. The main draw-

back is the over-segmentation of the image. However there exist a lot of techniques in literature to

reduced this effect ( 20, 126). In morphology theory, morphological gradient is a gray-tone function

related to the highest and lowest pixel intensity of a given neighborhood of an index pixel x. The

morphological definition of gradient was the difference between the dilated function (f ⊕ B) and

eroded function (f ⊖ B) of a morphological function f where B was a disk with specific radius. Let

y be the intensity value of a pixel in an image. The distance function was defined by the distances

of each pixel point (y) from its neighbour pixels set Yc with (d(y) = dist(y,Yc)). There are many

different distance function types such as Euclidean or geodesic (in our case we used geodesic). Maps

of these distances could be computed such as Xi(d) = y : d(y)≥ i = Y ⊖ B where i was the level

of threshold. The geodesic distance was defined as the shortest path between two points α, β of a

X set of pixels in an image (dis(a,b)). The geodesic zone (z(Yi)) was determined as the set of points

of a region X which had finite distance from the Yi subregion of X and are closer than the other

Yj sub-regions. Some other morphological important futures in watershed transformation, are the

minimum and maximum regional functions. These were functions that compute the minimum

(or maximum) of a region and a map of these values based on a pixels intensity threshold level i was

created. Regarding the watershed line segmentation, if intensity function f (morphological gradient

of image), geodesic zone (z(Zi(f))) of the sub-regions (Zi(f)) of image (Xi(f)) and minimal of the

function f (mi(f)) in the i thresholding levels were defined, then the computation of the watershed
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subsection was implemented by:



Wi+1(f) = [∪i+1zZi+1(f)(X(f)i+1)] ∪mi+1(f)

mi+1(f) = Zi+1(f)/RZi+1(Zi(f))

DL(f) = Wc
N(f)(withmax(f) = N)

(4.22)

where the iterative algorithm was initiated with (W−1(f) = 0), RZi+1(Zi(f) the geodesic dis-

tances of Zi(f) and DL(f) were the final watershed line. The total sum of (mi(f)) equation gave

the geodesic skeleton by zones (SKIZ).

For more robust results, we used seed points in the area of possible scars. The automatic seed

points were computed based on the p(x) image and the Euclidian distances(distvariation) between the

endocardium and epicardium contours by:

{
distance(x,Cfinal

endo )

distance(Cfinal
epi ,Cfinal

endo )
≤ distvariation, if p(x) = 1 (4.23)

4.3 Implementation of pipeline

4.3.1 Cardiac MR images and image analysis

In this study, we used cardiac LGE MR images for training different components of our processing

pipeline, and for comparing the performance of the pipeline against a ground truth (GT) deter-

mined from manual segmentation.

4.3.2 Image analysis of the datasets

The effect of image noise was reduced with filters comprising binomial deconvolution, Landweber

deconvolution, and curvature anisotropic diffusion image filters ( 153).
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The manually segmented GT binary images of myocardium and scar and the automatic segmen-

tation image results were modified by a post-processing framework to reduce the artifacts and noise

of the images. This framework is an iterative process of a removal filter ( 106), a median smooth fil-

ter, and a binary filter. The removal filter erases any binary region smaller than 500 and 1000 full

connected pixels regarding scar and myocardium binary images, respectively.

Finally, all automatic segmentation binary images had to be aligned with each corresponding

manual inter-intra-ground truth image.

4.3.3 Training and testing data

We assembled a new dataset of short-axis LGE-MR images from 20 patients (LGE-20). All images

were acquired, anonymised, and stored in DICOM format. All patients gave informed consent. The

region of interest (ROI) was defined on the center of the endocardium region of each image. For

myocardium regions, we evaluated our system on the data of 20 patients we collected and on the

data of 40 patients of MS-CMRSeg 2019 challenge (STACOM at MICCAI 2019). The LGE-MRI

dataset was obtained from a collection of three different MRI machine vendors with a variation

in the initial settings used for a Philips MRI scanner. The images from each patient comprised

between 8 and 12 short axis slices. Three experts segmented these images by identifying the LV

endocardial and epicardial surfaces, and the borders of scar. Segmentation was done using MASS

(research version 2017; Leiden University Medical Center, Leiden, the Netherlands).

4.3.4 Ground truth estimation

To assess inter- observer variability, each of the three experts segmented the myocardium and scar

in each slice from each of the 20 patients. The experts were independent and they did not know

the structure of our automatic segmentation pipeline. For the manual segmentation, we used a
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voxel-by-voxel marking for the myocardium GT, and semi-automatic approach using thresholding

filters (FWHM) for the scar GT. To assess intra-observation variability, one expert repeated the

segmentation three times. Ground truths (GTs) were then determined based on the best voting

threshold assessment described by Li et al. ( 109). GT masks were given by k = (J+ 1)/2 where k was

the threshold value of agreement among observations, and J the total manual observer observations.

To evaluate the performance of the processing pipeline, for each scar and myocardium region, we

computed the dice, sensitivity, and specificity metrics as follows:

dice(Bmodel,Bground) =
2(|B1

model| ∧ |B1
ground|)

|B1
model|+ |B1

ground|
, (4.24)

Sensitivity(Bmodel,Bground) =
|B1

model ∧ B1
ground|

|B1
ground|

, (4.25)

Specificity(Bmodel,Bground) =
|B0

model ∧ B0
ground|

|B0
ground|

, (4.26)

where Bmodel represents the model prediction for each image, Bground GT label, and the super-

scripts denote the set of pixels in the image that are classified as either scar or myocardium (1) or

outside these regions (0).

Pipeline parameters definition

The parameters of the MA-SOCRATIS pipeline defined as the circle rate of equation (4.13) was

0.2 and for equation (4.12) was 0.75. Regarding the endocardium and epicardium boundary con-

strains, the maximum radius of the epicardium circle region was 160 pixels and the minimum radius

of the endocardium was 25 pixels. The minimum thickness of the myocardium was 50 pixels. These

parameters were extracted from the statistical mean values of normal epicardium and endocardium
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radius. These parameters do not need to be redefined in a new cohort of LGE-MRI for segmen-

tation of LV with scars. In this way MA-SOCRATIS is an unsupervised pipeline which needs no

training or tuning in new datasets.

Regarding the FWHM ratio, instead of using the half distance (0.5) between the maximum and

minimum intensity pixels, we used 0.45. This amendment was justified as the scar segmentation

pipeline performed better with the amendment compared to 0.5. Finally, there was a mean intensity

pixel threshold of 80. This threshold was determined based on image quality analysis of the available

cohorts. After a statistical analysis of the histogram datasets we observed that the 80 mean intensity

threshold is the lowest intensity level in which experts can perform good quality of manual segmen-

tation in an image. For this study, three different experts evaluated and verified this observation (80

mean intensity pixels) about the good quality of a LGE-MR image. If the FWHM was less than this

threshold, we assumed that there was no scar.

These parameters do not need to redefine in a new cohort of LGE-MRI for segmentation of LV

with scars.

4.3.5 Software and hardware details

The code implementation is available on a public repository with url: https://github.com/INSIGNEO/

MA-SOCRATIS. The code is implemented in C++ and Python. For automatic segmentation of my-

ocardium scar regions of our dataset, we used an Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz

with 8GB RAM. The automatic segmentation pipeline needed 8.55 minutes for each patient of the

LGE-MRI data set (8-12 slices of LGE-MRI images, around 40 s per slice).
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Figure 4.10: The BZ-SOCRATIS pipeline for automa c segmenta on of total scar, or border zone and core scar regions
of the le ventricle. For the implementa on of this pipeline we used as first step, four different combina on of Rician-
Gaussian (RG) mixture model (RG, RRG, RGG, RRGG) and a heap sort algorithm to sort the mixture model results from
minimum to maximum values. As second step, we extract a par al volume model with the Rician threshold TR (minimum
value of heap-sort block) and the Gaussian threshold TG (maximum value of heap-sort block). Moreover, we define a
border zone threshold (BZ-TH) to split the intensity range of TR and TG in intensity areas of border zone area and core
scar. As third step, we use a watersheed technique with an automa c seed point genera on algorithm to determine the
core scar. Finally, we u lize the par al volume model to create a binary model of the border zone region. As last step,
we connect the border zone and the core zone to extract the total scar region.

4.4 Methods of BZ-SOCRATIS

4.4.1 Overview

In this section, we implement an extension of MA-SOCRATIS’s scar segmentation pipeline so the

border zone extraction could be possible. Initially, the scar segmentation pipeline uses a combina-

tion of a Rician-Gaussian mixture model and a portion thresholding technique to determine the

intensity pixels in scar regions. Following this step, a watershed method with an automatic seed

point framework segments the final scar region. BZ-SOCRATIS uses an extra border zone thresh-

old between the Rician and Gaussian thresholds to segment the border zone and core scar regions.
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4.4.2 Total scar segmentation

The pipeline for total scar segmentation is shown in Figure 4.10. The pipeline has two detection

components, threshold and geometric, and is designed to take into account the variation in pixel

intensity histograms and the geometrical shape size of the LV.

Threshold detection component:

For the threshold detection component we followed the same process as in MA-SOCRATIS pipelines,

be using a Rician-Gaussian mixture model ( 175,164) to estimate the intensity threshold of normal

myocardium and scar.

4.4.3 Geometric segmentation component:

For the geometric component, we used a graph cut technique to identify the geometrical shape of

scars. We used a morphological watershed segmentation technique, with initial seed points com-

puted automatically with respect to the linear partial volume model equation and Euclidian dis-

tances distvariation between the endocardium and epicardium contours ( 18).

The seed points and the image from the p(x) equation were the input of a watershed segmentation

algorithm ( 126), which provided an initial estimate of the scar region Iinitscar . The minimum of the

RGMM threshold and the k-mean threshold obtained in the re-estimation phase of myocardial seg-

mentation was used as a threshold to convert the image from the p(x) equation to a binary image as

shown in Figure 4.10. The final scar binary image Iscars was then extracted by combining the binary

p(x) image and Iinitscar .
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4.4.4 BZ-TH and different portions segmentation

In the border zone segmentation, the geometric phase was the same. Regarding the thresholding

segmentation, we used again the Rician-Gaussian distributions (Figure 4.10). The only difference of

the two tasks is the BZ-TH box of Figure 4.10. In the border zone and core scar segmentation tasks,

we had to compute an extra threshold of the border zone (BZ-TH) so we could split the two regions

of interest. We used a variation of different portions regarding this threshold between the TR and

TG, such as 10, 25, 45, 50, 75 %. The border zone area was determined as the region between the

TR and BZ-TH and the core scar region between the BZ-TH and TG thresholds.

4.5 Implementation of pipeline

Training and testing data

We utilized a new dataset of short-axis LGE-MR images from 20 patients (LGE-20). All images

were acquired, anonymised, and stored in DICOM format. All patients gave informed consent. The

region of interest (ROI) was defined on the center of the endocardium region of each image. We

followed the same pre-and post-processing of the dataset in MA-SOCRATIS training and testing

application (Section:4.2.5, Training and testing data).

To evaluate the performance of the processing pipeline, for each scar and myocardium region, we

computed the dice, sensitivity and specificity metrics.

4.6 Next chapter

In the next chapter, we will present the DL-SOCRATIS myocardial segmentation architecture.
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5
Methodology of DL-SOCRATIS pipeline

Another aim of this study was to compare the performance of DL-SOCRATIS and MA-SOCRATIS

computational pipelines when used for processing stacks of LGE MR images with 8-bit resolution

and size 256 × 256 pixels, to obtain contours representing the LV endocardium, LV epicardium,

and scar edge. We separated the problem again into two stages; myocardial segmentation and scar

segmentation (explained in the first section of MA-SOCRATIS pipeline). These pipelines are illus-

trated in Figure 5.1, and we describe each in turn. Based on these results, in this chapter we describe
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our integrated SOCRATIS framework; a framework to identify both the myocardium and regions

of scar in LGE images of the left ventricle that can be tuned to optimise either speed or robustness.

5.1 Overview

Deep learning networks are increasingly used for automatic cardiac segmentation ( 205). The my-

ocardium segmentation pipeline of DL-SOCRATIS (Figure 5.1) has the same architecture as MA-

SOCRATIS except for the initial segmentation step. In DL-SOCRATIS, the multi-atlas segmenta-

tion part is replaced by two different deep learning networks DLc-SOCRATIS and DLl-SOCRATIS.

DLc-SOCRATIS was a network trained using cine-MRI data, and DLl-SOCRATIS was a network

trained using LGE-MRI data. In DL-SOCRATIS, the multi-atlas segmentation part is replaced by

two different deep learning networks DLc-SOCRATIS and DLl-SOCRATIS. DLc-SOCRATIS

was a network trained using cine-MRI data (cine-SOCRATIS and CGAN-SOCRATIS), and DLl-

SOCRATIS was a network trained using LGE-MRI data (DL-SOCRATIS).

This pipeline was evaluated using LGE-MRI (more details in implementation subsection 5.3.8),

as the scar regions are highlighted best in this modality. We chose to train the u-net structure using

both cine-MR and LGE-MR images (more details in implementation subsection 5.3.8) . The reason

for this choice was that in some cases the extraction of the myocardium region from LGE-MRI im-

ages was tricky and biased, even for experts. The main reason is there is not a clear distance between

the intensity values of the scar, the blood pool, and the healthy myocardium regions, and the organs

(lung, liver) around the heart. Moreover, the collection of an extensive LGE-MRI dataset to train a

deep learning network is difficult as in some cases patients have to hold their breath for an extended

time during a LGE-MRI scan.

To conclude, we would like to study the different accuracy and speed of a deep learning network

in a translation image to image framework and in a network trained in the domain space of interest
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DL
U-Net

U-Net

CycleGAN

DL-SOCRATIS

MA-SOCRATIS

Figure 5.1: DL-SOCRATIS and MA-SOCRATIS (119) pipelines for automa c unsupervised segmenta on pipeline. Red
colour the myocardium segmenta on and scar segmenta on frameworks of MA-SOCRATIS. Orange colour the modified
ini al segmenta on step of DL-SOCRATIS framework. In top Figure 1,2,3, are the three binary circle masks with differ-
ent radius, BP is blood pool, PS is possible scar, and HM is healthy myocardium. Bo om right Figure highlights the scar
segmenta on framework, which is common in both pipelines. R is threshold Rician, TG is threshold Gaussian, and PS are
possible scars. Bo om le Figure is the deep learning network structure to detect and segment the le ventricle. We
used two different networks a combina on of cycle-GAN/u-net network, and a u-net network.

(LGE-MRI). The aim of the next subsection is to develop a deep network that can train on cine-

MRI and be deployed on LGE images because of the limited availability of published LGE datasets.

5.2 Methods of DLc-SOCRATIS

For the DLc-SOCRATIS method, we utilized a combination of a deep learning structure ( 13) to

specify the region of interest (ROI), a cycle-GAN network ( 207) to translate the images from LGE-

MR to the cine-MR space and an u-net ( 162) network trained on cine-MR images to segment the

left ventricle (Figure 5.2) ( CGAN-SOCRATIS and cine-SOCRATIS respectively).
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Figure 5.2: CGAN-SOCRATIS architecture. Top: CycleGAN structure to translate LGE-CMR to cine-CMR images. Dis-
criminator is a patchGAN architecture and Generator is a encoder, decoder with residual block transformer network.
Bo om le : CNN to detect the le ventricle. from cine-MR images Bo om right: Unet network to segment the my-
ocardium from cine-MR images.

5.2.1 cycle-GAN

Architecture: For our first deep learning model, we needed an image to image translation method

( 73) as the DL network trained on cine-MRI data and the input scanning data were a LGE-MR im-

ages. In the original translation methods, there was a consistence on the domain and initial space

datasets to be paired. In our case, the cine-MR and LGE-MR images were not paired. Thus, there

was a needed unpaired translation method. Finally, we want to take into account both the forward

and backward cycle consistency (eq.5.2) so the final loss of the network can be computed more effi-

ciently accurately. To deliver the above needs, we used the Cylcle-GAN network ( 207). Figure 5.2

shows the network and the idea behind the CGAN-SOCRATIS pipeline.

The generalized adversarial network (GAN) theory ( 79) references a generator (G) and a discrim-

inator (D). The generator is a network which tries to mimic the distribution of the domain dataset.

The domain dataset initializes a discriminator network. In the majority of cases, a Gaussian noise
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distribution initializes the generator. Based on the loss function, the GAN tries to train the weights

of G to mimic the behaviour of D. As generator we used a ResNet deep learning network ( 82). This

network contains three convolutions, several residual blocks, and two fractionally strided convo-

lutions with stride 1. We use 6 blocks for 128 x 128 images and 9 blocks for 256 x 256 and higher-

resolution training images. We use instance normalization. For the discriminator networks we used

an 70 x 70 PatchGANs ( 79, 108, 104).

Training: The cycleGAN networks were trained using two challenging cohorts of LGE-MR and

cine-MRI images (more details of the datasets are given in subsection 4.3.8). The LGE-MR and

cine-MR images in end-diastolic phase of the cardiac cycle.

For the training and testing simulation, we set λ = 10 in equation 5.3. The loss function was

optimized using the Adam method ( 96) a batch size of 4. All networks were trained from scratch

with a learning rate of 0.0001. We keep the same learning rate for the first 100 epochs and linearly

decay the rate to zero over the next 100 epochs (following the process of ( 207)).

Optimisation function: Equation 5.1 is a pixel level adaptation cost function, so the network

learns to map samples across domains. In the training process, we need to include the information

of pixel level adaptation and both forward and backward cycle consistency (eq.5.2) so we used the

loss function of equation 5.3.


LGAN(G,DY,X,Y) = Ey≈pdata(y)[logDY(y)]

+Ex≈pdata(x)[log(1 −DY(G(x))],
(5.1)


Lcycle(G, F) = Ex≈pdata(x)[F(G(x))− x1]

+Ey≈pdata(y)[G(F(y))− y1].

(5.2)
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Lloss(G, F,DX,DY) = LGAN(G,DY,X,Y)

+LGAN(F,DX,Y,X) + λ ∗ Lcycle(G, F)
(5.3)

where G generator generates an image G(x), images from domain Y, while DY aims to distinguish

between the translated sample G(x) and real samples y. controls the relative importance of the two

objectives. The mapping functions G link the space of X to Y and F Y to X, and they associated

adversarial discriminators DY and DX.

5.2.2 Deep learning

Architecture: A deep learning structure ( 13, 162) was used to identify ROI in LGE-MRI images.

The initial image size is 256 × 256. We downsampled it to 64 × 64 by interpolation/shrink tech-

nique (ITK software) to reduce the complexity of the network. The down-sampling was by a factor

of 4, which helps to define the region of interest more accurately. After the ROI detection, we used

up-sampling techniques to return to the original size of LGE-MR images. Figure 5.3(a) shows the

structure of network ( 13).

For myocardium segmentation, we used a u-net structure with reduced depth compared to the

original ( 162) network (cine-SOCRATIS). The modified structure of the u-net is shown in Fig-

ure 5.3(b). These modifications were based on the fact that the dataset was in 256 × 256 thus we

need to remove the initial level of the original u-net network. There are contracting, expanding,

and base layers on the left, right, and bottom of the Figure, respectively. Every step of the contrac-

tion part was based on a 3 × 3 convolution, batch normalisation, rectified linear unit (ReLu) and

a 3 × 3 convolution layer. The expanding part consisted of a 3 × 3 convolution, a ReLU, a 3 × 3

convolution, and two consecutive blocks. The upsampling of the images was a sequence of 2 × 2

up-convolution with stride 2 blocks. The input image had a 284 × 284 size and the segmented my-

ocardium region was 196 × 196.
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Training: The deep learning networks were trained using the MICCAI 2017 whole cardiac cine-

MRI segmentation challenge dataset (more details of the datasets in subsection 4.3.8). As the LGE-

MRI images are in end-diastolic phase of the cardiac cycle, we trained using only the end-diastolic

time frame of this training dataset.

The ROI network was trained based on the mean squared error cost function. The optimisation

technique we used was the Adam method ( 96) with a fixed learning rate 0.001. We used data aug-

mentation techniques details mentioned in subsection 5.3.2 ) and we trained the model for 100 iter-

ations. The accuracy of model was 91% on the validation dataset and 92% on the training dataset.

For the u-net network, the loss function was optimized using the Adam method ( 96) with an ex-

ponential decrease in the learning rate. The initial value of learning rate was 0.1, with 200 epochs.

Moreover, classical methods of data augmentation are applied.

Optimisation function: We used the mean squared error for training the ROI detection model.

Regarding the u-net train, we used two different cost functions. First, a dice-weighted cross-entropy

loss combination (DCE):



Lfinal = λCE ∗ LCE + λdice ∗ Ldice

Ldice =
∑

i wi ∗ log(2 −
∑

x ti(x)p(x,i)+ε∑
x ti(x)+p(x,i)+ε

LCE =
∑

i wi ∗ (−
∑

x wti(x) ∗ log(p(x, ti(x)))

(5.4)

And second, a sensitivity, specificity dice-weighted cross entropy (SS-DCE) cost function:
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LDCE = λCE ∗ LCE + λdice ∗ Ldice

Lsensitivity =
tp

(tp+fn)

Lspecificity =
tn

(tn+fp)

LSS = 2 − Lsensitivity − Lspecificity

Lfinal = λa ∗ LDCE + λb ∗ LSS

(5.5)

where ti is the binary map of the i class (in our case the classes are two: endocardium and epicardium)

The λ are weights. λCE is equal with 0.4, λdice with 0.6, λa with 0.2 and λb with 0.8. The tn, tp, fn,

and fp are true negative, true positive, false negative, and false positive pixels, respectively.

Validation: For the DCE cost function training, we used a validation bootstrapping scheme of

five cycles. We split the dataset to validate and train the data with a 0.3 and 0.7 rate, respectively.

In each cycle, we replaced the selected data (images) and we shuffled them by a random seed point

initialization. All validation accuracy results were higher than 90 % when measured with the dice

metric, and higher than 82 % when measured with the jaccard metric. The accuracy of the model is

shown in Table 5.1.

Regarding the SS-DCE cost function training, we used a validation bootstrapping scheme of ten

cycles, with the same rate as before (0.3 and 0.7). All validation accuracy results were higher than

93 % when measured with the dice metric, and higher than 87 % when measured with the jaccard

metric. The accuracy of the model is shown in Table 5.2. As we would like to know which of the

two training u-net has the best accuracy, we tested in a cross-vendor cohort of 40 patients with cine-

MR images (cine-40 mentioned in Implementation section). Table 5.4 shows the performance of

the two different cost functions in a cross-vendor clinical cine-MRI dataset. In the first pipeline, the

SS-DCE cost function delivered better performance than DCE. DCE achieved almost 86 percent

dice accuracy and with SS-DCE 90% in the forty patient (436 images) cross-vendor clinical dataset.
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Table 5.1: u-net first segmenta on results of endocardium (EN) and epicardium (EP) regions in cine-100 dataset using
the dice cross entropy (DCE) cost func on.

DCE cost function results of cine-MRI
Metric 1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle
jaccard (EP)(%) 83.3 81.9 82.2 84.4 83.8
jaccard (EN)(%) 92.5 92.8 92.6 93.0 93.2
dice (EP)(%) 90.9 90.0 90.2 91.5 91.2
dice (EN)(%) 96.2 96.3 96.2 96.5 96.6

Table 5.2: u-net segmenta on results of endocardium (EN) and epicardium (EP) regions in cine-100 dataset using the
sensi vity, specificity, dice cross entropy (SS-DCE) cost func on.

SS-DCE cost function results of cine-MRI
Metric 1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle
jaccard (EP)(%) 87.1 87.0 87.5 87.2 86.8
jaccard (EN)(%) 92.5 93.0 92.6 93.1 93.2
dice (EP)(%) 93.1 93.0 93.4 93.2 92.8
dice (EN)(%) 96.1 96.4 96.1 96.5 96.6

SS-DCE cost function results of cine-MRI
Metric 6st cycle 7nd cycle 8rd cycle 9th cycle 10th

cycle
jaccard (EP)(%) 87.1 86.7 86.4 87.2 86.8
jaccard (EN)(%) 93.6 93.4 93.7 93.5 93.2
dice (EP)(%) 93.1 92.8 92.7 93.3 93.0
dice (EN)(%) 96.8 96.6 96.9 96.7 96.4

Thus, in the cine-SOCRATIS, we will use the u-net model trained by SS-DCE cost function.

5.3 Methods of DLl-SOCRATIS

DLl-SOCRATIS is a deep learning pipeline with a combination of two deep learning structures,

a CNN ( 13) to detect the region of interest (ROI) and an u-net network trained on LGE-MR im-

ages to segment the myocardium (Figure 5.3). Below we explain the analytical architecture and the

training evaluation strategies.
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Table 5.3: Different cost func on segmenta on results; In cross-ins tute and cross-vendor, end-diastolic cine-40
dataset for endocardium (EN) and epicardium (EP) regions. The sensi vity, specificity, and dice cross-entropy (SS-DCE)
highly improve the performance compared with the dice cross-entropy (DCE) func on.

Results of cine-MRI
Metric jaccard (EP)

(%)
jaccard (EN)
(%)

dice (EP) (%) dice (EN) (%)

u-net DCE 75.5 92.2 85.8 96.0
u-net SS-DCE 81.7 93.5 89.8 96.7

5.3.1 Deep learning

Architecture: A deep learning structure ( 13, 162) was used to identify ROI in LGE-MRI images.

The initial image size is 256 × 256. We downsampled it to 64 × 64 by a cubic interpolation/shrink

technique (ITK software) to reduce the complexity of network. Figure 5.3(a) shows the network

based on the assumption of Avendi et al. ( 13).

For myocardium segmentation, we used a u-net structure with reduced depth compared to the

original ( 162) network. The modified structure of the u-net is shown in Figure 5.3(b), and it is iden-

tical to the u-net of DLc-SOCRATIS pipeline.

Training: The deep learning networks were trained using a challenging cohort of LGE-MRI

images (more details of the datasets in subsection 4.3.8). The LGE-MRI images are in end-diastolic

phase of the cardiac cycle.

The ROI network was trained based on the mean squared error cost function. The optimisa-

tion technique we used was the Adam method ( 96) with a fixed learning rate 0.001. We used data

augmentation techniques (details mentioned in subsection 5.3.2 ) and we trained the model for

100 iterations. The accuracy of model was 91.6% on the validation dataset and 92.5% on the train-

ing dataset. For the u-net network, the loss function was optimized using the Adam method ( 96)

with an exponential decrease in the learning rate. The initial value of learning rate was 0.1, with 100

epochs. Moreover, classical methods of data augmentation are applied.
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ocardium segmenta on

.

Optimisation function: We used the mean squared error for training the ROI detection model.

Regarding the u-net train, we used the sensitivity, specificity dice-weighted cross entropy (SS-DCE)

cost function as we defined in (5.5).

where ti is the binary map of the i class (in our case the classes are two: endocardium and epicardium)

The λ are weights. λCE is equal with 0.4, λdice with 0.6, λa with 0.2 and λb with 0.8. The tn, tp, fn,

and fp are true negative, true positive, false negative, and false positive pixels, respectively.

Validation: Regarding the SS-DCE cost function training, we used a validation bootstrapping

scheme of 5 cycles. Again, the portion of validation and training data was 0.3 and 0.7, respectively.

All validation accuracy results were higher than 94% when measured with the dice metric, and

higher than 88% when measured with the jaccard metric. Table 5.4 shows the performance of the

model.
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Table 5.4: u-net segmenta on results of endocardium (EN) and epicardium (EP) regions in LGE-100 dataset, using the
SS-DCE cost func on .

SS-DCE cost function results of LGE-MRI
Metric 1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle
jaccard (EP)(%)) 88.60 88.70 88.86 88.18 89.95
jaccard (EN)(%) 90.41 90.84 92.56 90.07 94.86
dice (EP)(%) 94.03 94.06 94.12 93.63 94.75
dice (EN)(%) 95.01 95.23 96.11 94.85 97.51

5.3.2 Deep learning regularization techniques

Regarding the DL networks, we need to use regularization techniques to avoid any overfitting of the

training datasets. We have used data augmentation techniques including rotation (rotation around

the center of the image by a random angle in the range of 0◦–15◦), width shift range (width shift of

the image by up to 20 pixels), height shift range (height shift of the image by up to 20 pixels), ZCA

whitening (add noise in each image, 100) and horizontal - vertical flips of images.

Finally, we constrained the weights incident to each hidden unit to have a norm less than or equal

to 3 for each convolution layer of the modified u-net network.

5.3.3 Scar segmentation pipeline architecture

Figure 5.1 outlines the structure of the scar automatic segmentation pipeline. This pipeline is the

same as MA-SOCRATIS. The main parts are the RGMM framework and the watershed seed point

algorithm.

5.3.4 Ground truth estimation

The evaluation of automatic segmentation should be robust. Thus, a generalized and unbiased

ground is crucial. In this study, three experts did manual segmentation of both myocardium and

scar regions in each LGE-MR image with inter-observer variability, and one expert repeated the
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manual segmentation three times, so that intra-observation variability could be determined. The

intra-observation and inter-observer variability were then computed using the best voting threshold

( 109).

The results of automatic segmentation are compared against these GTs by computing the dice,

sensitivity and specificity metrics.

5.4 Implementation of pipeline

5.4.1 Cardiac MR images and image analysis

In this study, we used cardiac cine-MR and LGE-MR images for training different components of

our processing pipeline, and for comparing the performance of the pipeline against a ground truth

determined from manual segmentation.

5.4.2 Training and test data

The ROI deep learning network of the initial segmentation step for myocardium segmentation was

trained using the MICCAI 2009 LV segmentation challenge dataset. To train the u-net network for

cine-MRI segmentation, we used the MICCAI 2017 whole heart segmentation challenge dataset.

In the present study, we assembled three new datasets (cine-40, cine-100, and LGE-100) com-

prising 900 short-axis LGE-MR images (LGE-100) from 100 patients and 900 short-axis cine-MR

images from 100 patients (cine-100). All images were acquired, anonymized, and stored in DICOM

format. The LGE/cine-MRI dataset was obtained from a collection of three different MRI ma-

chine vendors with a variation in the initial settings used for a Philips MRI scanner. All patients gave

informed consent analysis of all LGE-MRI images as well as the manual segmentation of the endo-

cardium and epicardium regions and scars of the left ventricle was performed offline using MASS

software (Version 2016EXP, Leiden University Medical Center, Leiden, The Netherlands). The
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region of interest (ROI) was defined on the center of the endocardium region of each image. Im-

age analysis was performed for all slices to reduce the effect of noise and increase the signal to noise

ratio (SNR). A single expert did manual segmentation of both epicardial and endocardial LV con-

tours. Lastly, we assembled the cine-40 dataset comprising 436 short-axis cine-MR images from 40

patients randomly selected from the 100 patients of the cine-100 cohort above.

We used a short-axis LGE-MR image of 20 patients (LGE-20) to evaluate the DL-SOCRATIS.

All images were acquired, anonymized, and stored in DICOM format. The LGE-MRI dataset was

obtained from a collection of three different MRI machine vendors with a variation in the initial

settings used for a Philips MRI scanner. All patients gave informed consent. The region of inter-

est (ROI) was defined on the center of the endocardium region of each image. For myocardium

regions, we evaluated our system on the data from 20 patients, described in Tao et al. ( 176). The im-

ages from each patient comprised between 8 and 12 short axis slices. Three experts segmented these

images by identifying the LV endocardial and epicardial surfaces, and the borders of scar. Segmen-

tation was done using MASS (research version 2017; Leiden University Medical Center, Leiden, the

Netherlands).

MA-SOCRATIS and DL-SOCRATIS results of automatic segmentation of myocardial LV in

LGE-MRI with scar was evaluated based on a cross-institution scheme; the LGE-20 and 40 patients

of MS-CMRSeg 2019 (STACOM at MICCAI 2019) challenge datasets.

The results of both deep learning segmentation pipelines were compared against the manual

ground truth (GT) by computing the dice and jaccard accuracy metrics.

5.4.3 Image analysis

We use the same pre-processing framework as in MA-SOCRATIS pipeline (Section 4.2.1). Again,

the manual GT binary images of the myocardium - scar region and the automatic segmentation

image results were modified using a post-processing framework as in MA-SOCRATIS. Finally, all
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automatic segmentation binary images had to be aligned with each corresponding manual inter-

intra-ground truth image. The code implementation is available on a public repository with url:

https://github.com/INSIGNEO/DL-SOCRATIS.

5.5 Next chapter

In the next chapter, we will present the results of the MA-SOCRATIS and DL-SOCRATIS my-

ocardial segmentation and BZ-SOCRATIS and MA-SOCRATIS total scar, border zone and crore

zone scar of LV cardiac chamber in LGE-MR images.
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6
Comparison and evaluation of pipelines
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6.1 Overview

In this chapter, we present an evaluation of our unsupervised pipelines (MA-SOCRATIS, DL-

SOCRATIS, and BZ-SOCRATIS) using cross-institute LGE-MRI cohorts (LGE-100, LGE-20,

MS-CMRSeg 2019 in subsection 5.3.8) based on unbiased ground truths (intra-observation, inter-

observer variability and each observation individual). This chapter includes Section 6.2, which

presents the results of MA-SOCRATIS in LGE-20 and MS-CMRSeg 2019 challenge cohorts. Sec-

tion 6.3 shows the results of DL-SOCRATIS two challenges and a comparison of DL-SOCRATIS,

MA-SOCRATIS state of the art techniques. Section 6.4 describes the results of automatic extrac-

tion of the scar border zone using the BZ-SOCRATIS LGE-20 cohort images.

6.2 MA-SOCRATIS automatic segmentation of LV with scars

6.2.1 Automated segmentation of myocardium and scar

The automated segmentation of the myocardium and scar was evaluated against both intra-observation

and inter-observer GTs, and these comparisons are summarised in Table 6.1. The overall accuracy is

given as a mean dice, sensitivity, and specificity score with standard deviations, which were evalu-

ated over all 167 MR images included in the test set. The dice score measures the overall similarity

of the pipeline and ground truth classifications, whereas the sensitivity and specificity measure how

well the pipeline identifies regions of myocardium and scar relative to the ground truth. To further

evaluate the accuracy and robustness of our myocardium automatic pipeline in different cohorts, we

tested it in the 40 patients cohort of the MS-CMRSeg 2019 challenge dataset (STACOM at MIC-

CAI 2019). Table 6.1 shows the results.

Overall, the dice scores for myocardium segmentation were higher than for scar segmentation,

with only small differences between comparisons of intra-observation and inter-observer ground
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Table 6.1: Summary of automa c segmenta on of myocardium and scar compared to intra-observa on and inter-
observer ground truth. Scar segmenta on performance was measured with either manual (MM) or automa c my-
ocardium segmenta on (AM)

Intra-Inter observer results
Region dice (%) Sensitivity (%) Specificity (%) Compared with
Myocardium 81.9 ± 9.4 91.9 ± 11.0 95.9 ± 1.2 Intra Ground Truth
Myocardium 78.1 ± 9.3 94.2 ± 11.8 95.1 ± 1.2 Inter Ground Truth
Myocardium 70.0 ± 5.5 90.5 ± 7.0 93.0 ± 1.7 MS-CMRSeg 2019 chal-

lenge
Scar 70.5 ± 11.7 75.0 ± 12.5 99.6 ± 0.3 Intra Ground Truth (MM)
Scar 29.5 ± 8.0 31.6 ± 9.0 98.1 ± 0.7 Intra Ground Truth (AM)
Scar 70.5 ± 17.2 85.4 ± 7.5 99.6 ± 0.2 Inter Ground Truth (MM)
Scar 24.4 ± 9.0 36.5 ± 11.2 98.0 ± 0.7 Inter Ground Truth (AM)

truth. In MS-CMRSeg 2019 dataset, the accuracy reduced to 70 %. MA-SOCRATIS achieved

these results without the need of training, tuning, or transfer learning in both cohorts.

The accuracy of automated scar segmentation was the same for both intra-observation and inter-

observer ground truth. The accuracy of scar segmentation depends on the myocardium segmenta-

tion, and so we used the intra-observation and inter-observer ground truths for myocardium seg-

mentation before applying the scar segmentation pipeline. The sensitivity of scar segmentation

was lower than for myocardium segmentation, whereas the specificity was very high. This can be

explained because the binary scar region has a smaller number of pixels compared to the number

of pixels classified as myocardium. The sensitivity will therefore have a higher variance as the sen-

sitivity is calculated from the number of white pixels, and the shape, size, and location of the scars

are less smooth than the myocardium. Figure 6.1 illustrates the performance of automated my-

ocardium segmentation with respect to inter-observer variability in three cases where the accuracy

(mean dice) was lower than average (<70%), close to the average (70-80%), and higher than average

(>80%). Although the top two rows show good accuracy with respect to the manual observations,

our automated method has identified the papillary muscle in the myocardium region for this case
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Figure 6.1: Myocardium segmenta on and inter-observer ground truth. Comparison of automa c segmenta on, manual
segmenta on by 1st and 3rd observer, and overall inter-observer ground truth for images where the automated my-
ocardial segmenta on showed high accuracy (top row), mid-range accuracy (middle row), and low accuracy (bo om row)
compared to ground truth. Right hand column shows the image ROI in each case.

(Figure 6.1), whereas this has been ignored by the manual observers. MA-SOCRATIS pipeline can

include or exclude the papillary muscle in the automatic myocardial segmented area. For this study

we extract the metric results (dice, sensitivity, and specificity) by excluding the pupillary muscle, as

the experts did not include it in the manual segmentation GTs. This is an advantage of our pipeline,

because in some cases ( 53, 36) it is crucial, the detection of papillary muscle as part of ventricle my-

ocardium. However, the papillary muscle should not be included in calculations such as ejection

fraction or myocardial mass. In those cases, our pipeline can ignore the papillary. The papillary mus-

cles are detected in the active contour technique of the MA-SOCRATIS re-estimation step, and it

can be removed by utilizing merge filters (ITK libraries). In the bottom row, the myocardium is very

clear on the image, but the low intensity of the surrounding tissue has resulted in patchy automated

segmentation. These observations are consistent with the examples of myocardial segmentation

compared to intra-observation variability shown in Figure 6.2, where the detection of papillary mus-

108



Figure 6.2: Myocardium segmenta on and intra-observa on ground truth. Comparison of automa c segmenta on,
manual segmenta on with 1st and 2nd observa ons, and overall intra-observa on ground truth for images where
the automated myocardial segmenta on showed high accuracy (top row), mid-range accuracy (middle row), and low
accuracy (bo om row) compared to ground truth. Right hand column shows the image ROI in each case.

cle by automated segmentation is even more pronounced.

Scar segmentation is illustrated in Figures 6.3 and 6.4, for inter-observer and intra-observation

variability, respectively. For large scars (top row in both figures), the accuracy of the automated

pipeline is high, and the consistency between and within manual observers is also high. For smaller

scars, it becomes harder for both automated and manual segmentation to distinguish between scars

and noise in the image.

6.2.2 Accurate myocardium segmentation is important for subsequent scar

segmentation

In our pipeline, the segmentation of an LGE image proceeds in two stages: segmentation of the my-

ocardium and then segmentation of scar regions. In the results reported above, we have treated these

two parts of the pipeline separately. When we combined automated myocardium segmentation
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Figure 6.3: Scar segmenta on and inter-observer ground truth. Comparison of automa c segmenta on of scar, manual
segmenta on of scar with 1st and 3rd observer, and overall inter-observer ground truth for images where the auto-
mated scar segmenta on showed high accuracy (top row), mid-range accuracy (middle row), and low accuracy (bo om
row) compared to ground truth. Right hand column shows the image ROI in each case.

Figure 6.4: Scar segmenta on and intra-observa on ground truth. Comparison of automa c segmenta on, manual seg-
menta on with 1st and 2nd observa ons, and overall intra-observa on ground truth for images where the automated
scar segmenta on showed high accuracy (top row), mid-range accuracy (middle row), and low accuracy (bo om row)
compared to ground truth. Right hand column shows the image ROI in each case.
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with automated scar segmentation, then we found that errors in automated myocardium segmenta-

tion were associated with a loss of accuracy for scar segmentation, and these findings are summarised

in Table 6.1. The accuracy of our scar segmentation pipeline based on manual segmentation was

70.5% with respect to inter-observer or intra-observation ground truth (Table 6.1), but the accuracy

fell to less than 30% when our automatic myocardial segmentation pipeline was used. The reasons

for this finding are illustrated in Figure 6.5, which shows a set of images for a single patient where

the myocardium was segmented automatically with high accuracy relative to manual myocardium

segmentation. The four columns on the left of the figure highlighted in blue show that the my-

ocardium is distinct in the raw LGE-MR image, and there is generally a good correspondence be-

tween the automatic segmentation and the inter-observer and intra-observation ground truths. The

four columns highlighted in orange show the inter-observer and intra-observation ground truths for

the scar, together with the automatic scar segmentation based on the manual myocardial (MM) seg-

mentation shown in columns 2 and 3. The final column shows automatic scar segmentation based

on the automatic myocardium (AM) segmentation shown in column 1.

With automatic myocardium (AM) segmentation, more scar pixels are identified close to the

endocardial surface compared to both manual scar segmentation and automatic scar segmentation

based on manual myocardium (MM) segmentation. In this example, the endocardial pixels account

for the differences in scar segmentation with the AM and MM approaches, and this effect can be

traced back to the myocardial segmentation in column 1 of Figure 6.5.

6.2.3 MA-SOCRATIS extra results

Extra results of automatic segmentation cohort

The automated segmentation of the myocardium and scar was evaluated against both inter-observer

and intra-observation ground truth, and these comparisons were summarised in Table 6.1. Fig-
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Figure 6.5: Images from a single pa ent showing comparison of: i) automated myocardium segmenta on with manual
inter-observer and intra-observa on ground truth (blue), ii) automated scar segmenta on with manual myocardium
segmenta on (MM) compared to inter-observer and intra-observa on ground truth (orange), and iii) scar segmenta on
with automated myocardium segmenta on (AM, red).
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Figure 6.6: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.
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Figure 6.7: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.

ures 6.6-6.14 illustrate the performance of automated scar/myocardium segmentation with respect

to inter-observer variability in the LGE challenge data of the 20 patients. Here we illustrate 7 pa-

tients. Based on these figures, it is clear that dice metrics are not the best metric to evaluate the scar

regions even if the scar regions are detected. This can be explained as noise and artifacts between the

images affect the accuracy of the dice metric. The over and under segment of LV could be the shape

of multi-atlas process. As the MRI slices mis-align with multi-atlas slices (registration error) and the

circle estimation process is under determined.
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Figure 6.8: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.
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Figure 6.9: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.
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Figure 6.10: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.
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Figure 6.11: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.
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Figure 6.12: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.
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Figure 6.13: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.
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Figure 6.14: Myocardium and scar results of inter-observer manual segmenta on and automa c segmenta on pipeline.

6.3 DL-SOCRATIS automatic segmentation of myocardium of LV.

In DL-SOCRATIS, the multi-atlas segmentation part is replaced by two different deep learning

networks DLc-SOCRATIS and DLl-SOCRATIS. DLc-SOCRATIS was a network trained using

cine-MRI data (cine-SOCRATIS and CGAN-SOCRATIS), and DLl-SOCRATIS was a network

trained using LGE-MRI data (DL-SOCRATIS).

6.3.1 Comparison with MA-SOCRATIS

We trained the u-net network using cine-MRI and evaluated in a LGE-MRI dataset. We estimate

that this cross-modality application will probably reduce the accuracy of the segmentation task. The

Fig. 6.15, 6.17 confirmed this estimation. The LGE-MRI captures the infarct region better than the

cine-MRI scan modality. The scar region is not detectable in the cine-MR images. As a result, the

cine-SOCRATIS network did not detect efficiently the infarct scar region for a cross-modality task.

Thus, the dice accuracy of myocardium segmentation in the cine-SOCRATIS is worst than this

of DL-SOCRATIS The circle binary mask of epicardium and endocardium is given by the u-net.

Fig. 6.16 shows the results of DL-SOCRATIS and MA-SOCRATIS, respectively, from the same

patient. We compare the automatic myocardium segmentation (AM) scar segmentation scheme, as
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Figure 6.15: Results of MA-SOCRATIS, DL-SOCRATIS, cine-SOCRATIS and CGAN-SOCRATIS pipelines in LGE-20
dataset about myocardium lesions, compared with intra GTs.

it references above. The myocardium segmentation accuracy of this patient for intra-inter cases is

44% and 43% for the MA-SOCRATIS and 56 % and 71 % for the DL-SOCRATIS. This is the worst

accuracy of MA-SOCRATIS. The main reason for these results is fault align of LGE-MRI images

because of the multi-atlas techniques. The scar AM segmentation accuracy of this patient for intra-

inter cases is 14% and 30% for the MA-SOCRATIS and 12 % and 17 % for the DL-SOCRATIS.

In this specific case, the accuracy of DL-SOCRATIS is better than that of MA-SOCRATIS for

the myocardium region and worse for the scar region. A possible explanation can be that the initial

myocardium segmentation was more accurate in DL-SOCRATIS than MA-SOCRATIS. Figures

6.15, 6.17 highlight the results of myocardium segmentation for the cine-SOCRATIS, CGAN-

SOCRATIS, DL-SOCRATIS, and MA-SOCRATIS for two random patients. Figure 6.15 shows

that MA-SOCRATIS has the most accurate results based on intra-GT and inter-GT compared

with others pipelines. Regarding the deep learning pipeline, CGAN-SOCRATIS is slightly more

accurate than cine-SOCRATIS. DL-SOCRATIS is more accurate about the three last images

and CGAN-SOCRATIS is more accurate about the first two. Figure 6.17 shows that again MA-
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Figure 6.16: Worst pa ent results of MA-SOCRATIS pipeline; A comparison of MA-SOCRATIS and DL-SOCRATIS results
of myocardial and scar lesions. Images from one pa ent showing comparison of: i) automated myocardium segmenta-
on with manual inter-observer and intra-observa on ground truth (blue), ii) automated scar segmenta on with manual

myocardium segmenta on (MM) compared to inter-observer and intra-observa on ground truth (orange), and iii) scar
segmenta on with automated myocardium segmenta on (AM, red).
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Figure 6.17: Results of MA-SOCRATIS, DL-SOCRATIS, cine-SOCRATIS and CGAN-SOCRATIS pipelines in LGE-20
dataset about myocardium lesions compared with inter GTs.

SOCRATIS has the most accurate results based on intra-GT and inter-GT compared with the three

DL pipelines. Regarding the deep learning pipeline, CGAN-SOCRATIS is again slightly more ac-

curate than cine-SOCRATIS. DL-SOCRATIS is more accurate about the second and last images.

On the other hand, CGAN-SOCRATIS is more accurate about the first, third, and forth images.

These behaviours between the three DL pipelines can be explained as when the myocardium has not

a large portion of the scar region, it can be detected more accurately in the cine-MRI images. Thus,

the CGAN-SOCRATIS and cine-SOCRATIS had better results comparing the DL-SOCRATIS

model. The table 6.2 shows the total mean values and standard deviations of all patients for the

two pipelines. The myocardium segmentation accuracy of MA-SOCRATIS is 81.9 and 78.1 % for

intra-observation and inter-observer GTs, respectively, contrary to DL-SOCRATIS, which achieves

60.4 and 55.0 %. Regarding, the scar segmentation accuracy, MA-SOCRATIS achieves 24.4 and

29.5 % for intra and inter observer GTs respective contrary to DL-SOCRATIS, which achieves 8.5

and 12.5 %. Regarding the robustness of the pipelines, MA-SOSCRATIS has the smallest stan-

dard deviation (SD). DL-SOCRATIS has the lower SD compared to the CGAN-SOCRATIS and

cine-SOCRATIS pipelines. This can be explained as the DL-SOCRATIS is one modality analysis
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Table 6.2: Summary of myocardial scar segmenta on results comparing MA-SOCRATIS (119), DL-SOCRATIS, cine-
SOCRATIS and CGAN-SOCRATIS with intra/inter-observer ground truths. The results are the average values of dice,
sensi vity and specificity metrics +/- the standard devia on (SD)

Intra observer variation results
Region dice +/- SD (%) Sensitivity +/-

SD (%)
Specificity +/-
SD (%)

Technique

Myocardium 81.9 +/- 9.4 91.9 +/- 11.0 95.9 +/- 1.2 MA-SOCRATIS
Myocardium 60.38 +/- 10.1 70.87 +/- 15.0 92.38 +/- 2.5 DL-SOCRATIS
Myocardium 57.8 +/- 10.8 61.4 +/- 15.9 93.5 +/- 2.8 CGAN-SOCRATIS
Myocardium 56.5 +/- 12.2 60.7 +/- 16.1 93.5 +/- 2.8 cine-SOCRATIS
Scar 24.4 +/- 9.0 36.5 +/- 11.2 98.0 +/- 0.7 MA-SOCRATIS
Scar 12.15 +/- 6.4 16.1 +/- 8.3 97.0 +/- 1.1 DL-SOCRATIS
Scar 10.4 +/- 5.5 13.6 +/- 7.9 97.0 +/- 1.6 CGAN-SOCRATIS
Scar 10.1 +/- 5.4 12.6 +/- 8.2 97.1 +/- 1.6 cine-SOCRATIS

Inter observer variation results
Region dice +/- SD (%) Sensitivity +/-

SD (%)
Specificity +/-
SD (%)

Technique

Myocardium 78.1 +/- 9.3 94.2 +/- 11.8 95.1 +/- 1.2 MA-SOCRATIS
Myocardium 55.0 +/- 11.1 70.0 +/- 18.8 91.6 +/- 3.0 DL-SOCRATIS
Myocardium 51.7 +/- 11.5 61.3 +/- 18.2 92.2 +/- 3.7 CGAN-SOCRATIS
Myocardium 50.0 +/- 12.6 60.0 +/- 20.0 91.3 +/- 5.5 cine-SOCRATIS
Scar 29.5 +/- 8.0 31.6 +/- 9.0 98.1 +/- 0.7 MA-SOCRATIS
Scar 8.5 +/- 5.2 17.7 +/- 10.3 96.9 +/- 10.7 DL-SOCRATIS
Scar 8.3 +/- 4.9 17.7 +/- 15.1 97.0 +/- 1.6 CGAN-SOCRATIS
Scar 8.0 +/- 5.7 17.3 +/- 15.5 96.9 +/- 1.7 cine-SOCRATIS
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pipeline contrary to the CGAN-SOCRATIS and cine-SOCRATIS which are cross-modality net-

works (trained in cine-MRI applied in LGE-MRI).

To conclude, in this cohort the multi-atlas technique delivers more accurate results than the DL.

However, the DL pipelines are less time consuming than multi-atlases (however, DL needs more

time in training) and they do not need any landmarks. In addition, the deep learning pipeline can

be used as a cine-MRI modality analysis network; in this case, the expert radiologists have only cine-

MRI modalities to scan images for a specific patient (cine-SOCRATIS pipeline).

6.4 BZ-SOCRATIS automatic segmentation of border zone and core scar of

LV

In the second task, we studied the semi-automatic scar segmentation accuracy of our pipeline in

the border zone (BZ) and core scar (CS) regions. BZ and CS segmentation for intra-observation

and inter-observer GTs are illustrated in Figures 6.18, 6.20 and Figures 6.19, 6.21 respectively. Fig-

ures 6.18 and 6.19 show that in the majority of the cases, where a large size of BZ and CS regions

are detected, accurately segmented, and the consistency between and within the intra/inter-manual

GTs are high. For small BZ and CS areas, it becomes harder in both GTs to distinguish between

the region of interest (ROI) and noise in the image. Figures 6.20 and 6.21 show that in some cases

the accuracy of our pipeline (Automatic) is higher than the GTs based on the LGE-MRI observa-

tion. This was happening as the manual scar segmentation was based on FWHM techniques and

the experts determine ’by hand’ only the epicardial and endocardial contours. As the manual con-

tour methodology for border zone or core scar determination is very time consuming and highly

dependent on the image resolution, the clinician and expert radiologists prefer to use thresholding

techniques. As a result, the manual segmentation of the scar can not be considered a purely manual

process. However, even if the human interaction and the human error can not be determined in this
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Figure 6.18: Results of border zone and core scar segmenta on. 1st row: the intra observa on ground truth (Manual
GT), 2nd row: the automa c results of our method (Automa c) and 3rd row: the le and right ventricle regions of LGE-
MR input slice. The top two columns are the core scar area segmenta on and the bo om two columns the border zone
area segmenta on.
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Figure 6.19: Results of border zone and core scar segmenta on. 1st row: the inter observa on ground truth (Manual
GT), 2nd row: the automa c results of our method (Automa c) and 3rdrow: the le and right ventricle regions of LGE-
MR input slice. The top two columns are the core scar area segmenta on and the bo om two columns the border zone
area segmenta on.
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Figure 6.20: Results of border zone and core scar segmenta on. 1st row: the intra observa on ground truth (Manual
GT), 2nd row: the automa c results of our method (Automa c) and 3rd row: the le and right ventricle regions of LGE-
MR input slice. The top two columns are the core scar area segmenta on and the bo om two columns the border zone
area segmenta on.

process (as there is no contour drawing of scar regions); the error is still present as the FWHM needs

a human selection of the highest intensity (scar) and the lowest intensity (healthy myocardium) pix-

els. In addition, the human error in the extraction of scar GTs is affected by the manual contour

determination of endo and epi (as we will discuss in Section 6.1). Therefore, we can claim that in

the process of GTs extraction, there exists a variation and uncertainty because of the inter-observer

and intra-observation variability.

To conclude, we will end up comparing our automatic pipeline with the FWHM or other thresh-

olding techniques. This is the reason that in some cases our pipeline performs more accurately than

the GTs (Figures 6.20 and 6.21)

6.5 Next chapter

In the next chapter, we will discuss about the robustness of the MA-SOCRATIS pipeline regarding

different GTs, and the statistical significant of the different deep learning methods we used in DL-
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Figure 6.21: Results of border zone and core scar segmenta on. 1st row: the inter observa on ground truth (Manual
GT), 2nd row: the automa c results of our method (Automa c) and 3rdrow: the le and right ventricle regions of LGE-
MR input slice. The top two columns are the core scar area segmenta on and the bo om two columns the border zone
area segmenta on.

SOCRATIS pipeline. Moreover, we will compare the results of MA-SOCRATIS, DL-SOCRATIS,

and BZ-SOCRATIS pipelines in myocardial and scar automatic segmentation with established and

state of the art techniques. We will conclude by summarizing the limitations, advantages, and future

work of the SOCRATIS pipeline.
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7
Discussion and future work

In this chapter, we present a statistical significant analysis of the different versions of the pipelines

we used (DL-SOCRATIS, cine-SOCRATIS, CGAN-SOCRATIS, and MA-SOCRATIS). Fur-

thermore, we compare the results of the performance of our two pipelines (DL-SOCRATIS and

MA-SOCRATIS) with state of the art and established techniques, and we define the SOCRATIS

framework. Moreover, we discuss the BZ-SOCRATIS pipeline and the significant analysis of the

different thresholding portions in the BZ-TH technique. Lastly, we discuss the importance and
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Table 7.1: Summary of intra-observa on and inter-observer variability in manual segmenta on of myocardium and scar
compared to overall ground truth (GT)

Observation Intra Myo dice (%) Intra Scar dice (%) Inter Myo dice (%) Inter Scar dice (%)
First 90.9 50.5 90.5 44.4
Second 85.2 41.6 86.4 38.2
Third 88.7 44.8 89.6 43.6
GT 100 100 100 100

robustness of our automated pipeline and conclude by considering both the limitations of our ap-

proach and the next steps of development.

7.1 Discussion of MA-SOCRATIS pipeline

7.1.1 Robustness of the pipeline in different GT cases

To illustrate the differences in manual segmentation between and within individual experts, Fig-

ure 7.1 shows an example of manual myocardial and scar segmentation by three independent ob-

servers. In Figure 7.1(left), the inter-observer differences for myocardial segmentation can be clearly

seen in the upper row, and the lower row illustrates how these differences were resolved using the

best threshold approach to provide the ground truth. Figure 7.1(right) shows that the inter-observed

differences for scar segmentation were greater than for myocardial segmentation. The intra-observation

variability was generally less than inter-observer variability.

In addition Table 7.1 shows the effectiveness of GT determination. As it can be observed, there

is a consistent variability within the three observers (inter-variability) and three observations (intra-

variability). The manual myocardium segmentation was much more repeatable than scar segmenta-

tion as we expected (the artifact and noise of the scar region increase the complexity of a repeatable

segmentation).

To check the robustness of our pipeline, we evaluated with respect to both single expert observa-
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myocardium scar

Figure 7.1: Extrac on of unbiased inter-observer ground truth for myocardium (le ) and scar (right).

Figure 7.2: Extrac on of unbiased myocardium intra-observa on varia on ground truth.
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Figure 7.3: Extrac on of unbiased scar intra-observa on varia on ground truth.

tions and each intra-observation of scar and myocardium lesions (single-case). By this method, we

could capture the variation in sensitivity, accuracy, and specificity metrics of our two pipelines.

Figures 7.4 and 7.5 show the variation of sensitivity, specificity, and dice value results by chang-

ing the ground truth inter-observer and intra-observation variability. We used the terminology:

Myo_Sens_GT for myocardial sensitivity total ground truth, Myo_Spec_O1 for myocardial speci-

ficity observer/ation one ground truth, and Myo_dice_O2 for myocardial dice observer/ation two

ground truth.

Figure 7.4 and Figure 7.5 show that the sensitivity, specificity, and dice metrics are less robust

in the cases of both one observation and one observer compared to the total GT. The standard de-

viation, especially in the sensitivity metric, was also higher in single observations and with a single

observer compared to the total GT, and the mean values of the metrics are in some cases an overesti-

mation or underestimation of the total GT.

Figures 7.1(left), and 7.2 show examples of myocardium segmentation with different observers

and observations. By the extraction of an unbiased truth, we can evaluate our pipeline in a more
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Figure 7.4: Varia on in sensi vity, dice and specificity metrics of automa c myocardial segmenta on by changing the
intra observa on ground truths.

(%)

Figure 7.5: Varia on in sensi vity, dice and specificity metrics of automa c myocardial segmenta on by changing the
inter observa on ground truths
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generalized way. Therefore, our pipeline accuracy is less sensitive to observation bias, something

that can be a problem with other automated segmentation techniques such as deep learning net-

works. Moreover, by the extraction of the unbiased GT, the effect of noise is reduced between ob-

servations, especially in scar regions. In the examples shown in figures 7.1(right) and 7.3, the vari-

ability of the first, second, and third observation observers and the reduced variability of the GT

can be seen in each case (intra-inter). The inter-observer and intra-observation variability that we

observed highlights the difficulty of obtaining a GT, and the importance of at least two different

experts and at least two observations by one expert for constructing a biased GT.

Table 7.2 summarises the robustness of our scar and myocardium segmentation pipelines. My-

ocardium is segmented with an accuracy of 0.819 assessed with the intra-observation GT and 0.781

with inter-observer GT. Moreover, there is a variation from 0.83 to 0.78 of accuracy in intra-observation

case and 0.82 to 0.745 in inter-observer single cases. These results are consistent with our hypothe-

sis that the number of expert observations influences assessment of accuracy in an automatic pipeline.

The bias effect of an observation could overestimate or underestimate the accuracy of an automatic

pipeline. Automatic techniques should therefore be evaluated with an unbiased ground GT if this is

possible.

For automatic scar region segmentation, we utilised two manual myocardium GT binary segmen-

tations to evaluate the scar accuracy in inter-observer and intra-observation cases (MM). Therefore,

the scar segmentation pipeline delivers more robust results than the myocardium pipeline alone as

in both GT the dice metric was 70.5 % and the accuracy variation among intra-observations and

different experts were from 70.0 to 65.1 %.

All these findings demonstrate the importance of reducing bias in GTs used to evaluate auto-

matic segmentation pipelines.

130



Table 7.2: Summary of myocardium scar segmenta on results comparing different inter/intra- ground truths

Intra-observation variation results
Region dice (%) Sensitivity (%) Specificity (%) Manually Case
Myocardium 81.9 ± 9.4 91.9 ± 11.0 95.9 ± 1.2 Ground Truth
Myocardium 80.0 ± 10.2 90.2 ± 12.5 96.4 ± 1.1 First observation
Myocardium 83.0 ± 8.8 92.4 ± 8.4 96.5 ± 1.0 Second observation
Myocardium 78.1 ± 11.7 86.3 ± 22.4 45.9 ± 1.9 Third observation
Scar 70.5 ± 11.7 75.0 ± 12.5 99.6 ± 0.3 Ground Truth
Scar 70.0 ± 8.2 76.2 ± 14.4 99.4 ± 0.3 First observation
Scar 65.8 ± 18.6 73.1 ± 21.1 99.3 ± 0.4 Second observation
Scar 68.2 ± 12.3 77.1 ± 10.5 99.4 ± 0.4 Third observation

Inter-observer variation results
Region dice (%) Sensitivity (%) Specificity (%) Manually Case
Myocardium 78.1 ± 9.3 94.2 ± 11.8 95.1 ± 1.2 Ground Truth
Myocardium 79.3 ± 12.3 93.5 ± 12.7 94.8 ± 1.6 First observer
Myocardium 75.5 ± 10.8 93.0 ± 13.1 93.8 ± 1.1 Second observer
Myocardium 82.0 ± 10.0 90.3 ± 8.0 96.0 ± 2.0 Third observer
Scar 70.5 ± 17.2 85.4 ± 7.5 99.6 ± 0.2 Inter Ground Truth
Scar 68.9 ± 16.5 82.2 ± 10.6 99.6 ± 0.2 First observer
Scar 65.1 ± 21.6 75.6 ± 23.4 99.6 ± 0.2 Second observer
Scar 67.5 ± 18.3 87.1 ± 8.5 99.6 ± 0.1 Third observation
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7.1.2 Comparison with established and state of the art techniques

There are few publicly available cardiac LGE-MRI datasets with labeled scar segmentation. Thus,

comparison of MA-SOCRATIS with established and state of the art techniques using the same

dataset was challenging. We therefore compared our pipeline with established automatic or semi-

automatic segmentation methods of LV with scars; focusing on datasets with identically or almost

the same experimental conditions as our cohort (20 patient testing cohort, LGE-MRI modalities).

To the author’s knowledge, the datasets used to evaluate the methods which we compared with

MA-SOCRATIS are not published. An exception is the MS-CMRSeg challenge of 2019, which we

included as a cross-institute validation dataset.

The established methods we used have been evaluated on datasets which followed a specific

preprocessing and tuning methodology ( 88, 131, 112). So we had to utilize the same procedures or

none in our datasets. We chose not to do any tuning in either our own LGE-MRI dataset of 20

patients, or in the MS-CMRSeg challenge of 2019. We did not use any supervision from experts,

so the pipeline was totally automatic. Moreover, we used an initial noise reducing pre-processing

step for both datasets, as described in the supplementary material (Pre-processing and post processing

frameworks section).

Table 7.3 compares the performance of our MA-SOCRATIS pipeline with state of the art tech-

niques for myocardium segmentation of LV with scar from LGE-MRI images based on deep learn-

ing techniques. All of these state of the art techniques are supervised to some extent, and the per-

formance of our myocardial segmentation pipeline was comparable or better than the dice metrics

quoted in these studies. The segmentation techniques described by ( 131,112) all used deep learn-

ing myocardium segmentation networks applied to LGE-MRI images. They used supervised tech-

niques and still they did not achieve more than 86.0 % dice value. In contrast, the method MA-

SOCRATIS is an unsupervised method with no tuning or transfer learning techniques, yet achieved
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Table 7.3: Comparison of our myocardium and scar segmenta on pipeline and established machine/deep learning
techniques

Region dice (%) Technique (cohort)
Myocardium 86.0 DL131 dataset
Myocardium 81.9 MA-SOCRATIS (Intra GT dataset)
Myocardium 80.8 CNN112 dataset
Myocardium 78.1 MA-SOCRATIS (Inter GT dataset 80.5 median)
Region Median (%) Technique (cohort)
Scar 85.0 MCG88 dataset
Scar 75.5 MA-SOCRATIS (Inter GT dataset)
Scar 74.0 KCL 88 dataset
Scar 73.0 AIT88 dataset
Scar 72.5 MA-SOCRATIS (Intra GT dataset)
Scar 44.0 MV 88 dataset

an 81.9 % dice.

In one of the studies listed in Table 7.3, Karim et al. ( 88) evaluated four different techniques

with a test dataset of 20 patients. Of the methods evaluated, the conditional Markov random field

(MCG) had the best results following by Graph-cuts with EM-algorithm technique (KCL) and

support vector machines combined with a level set technique (AIT). All of these techniques were

supervised and some were semi-automatic. This means that there is a need for training in a specific

cohort. The cohort has to be split into testing (20 patient) and training (10 patient) patients. The

only unsupervised technique was the EM-algorithm and watershed transformation (MV), and these

achieved a modest median accuracy of only 44%. Our scar segmentation pipeline is unsupervised,

and with our test dataset of 20 patients, we achieved a 72.5 and 75.5 % median dice accuracy for

intra-observation and inter-observer ground truths respectively. The MV technique evaluated by

Karim et al. ( 88) and our scar segmentation pipeline are both based on the study of Hennemuth et

al. ( 72), although we have modified the approach of ( 72) as described in the methods section.

We also tested our pipeline using the open source MS-CMRSeg 2019 challenge dataset. Table
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Table 7.4: Comparison of our myocardium segmenta on pipeline and state of the art techniques in MS-CMRSeg 2019
published dataset based on average and standard devia on (SD) dice values (NM:not men oned).

Region dice +/- SD (%) Technique (MS-CMRSeg 2019 dataset)
Myocardium 83.0 +/- NM Unsupervised Multi-modal 32

Myocardium 82.7 +/- 6 SK-Unet 192

Myocardium 81.2 +/- 6.1 Combining Multi-Sequence and Synthetic-LGE27

Myocardium 80.8 +/- NM Automatic Cardiac Segmentation Framework111

Myocardium 80.1 +/- NM Adversarial Domain Adaptation Network
(GFRM)191

Myocardium 78.0 +/- NM Multi-Atlas-CNN noise images163

Myocardium 74.9 +/- 10.0 Supervised-Domain-Adaptation189

Myocardium 71.4 +/- 10.0 Deep-Learning-Framework206

Myocardium 70.0 +/- 5.5 MA-SOCRATIS
Myocardium 68.6 +/- 7.8 Shape-Transfer GAN network177

Myocardium 65.4 +/- 7.0 Multi-Atlas16

Myocardium 61.7 +/- 8.6 Pseudo-3D network112

Myocardium 61.0 +/- NM Adversarial-CNN-Domain-Adaptation33

Myocardium 57.3 +/- NM 2D/3D-UNET Framework195

Myocardium 47.0 +/ 11.7 UNET++ Framework156

7.4 summarizes the results and compares the performance of MA-SOCRATIS with other pub-

lished methods. The approach described by ( 32,112,192) used a multi-modal image translation net-

work from balanced steady-state free-precession (bSSFP) images to LGE images. In all case these

methods need tuning or supervised training with the training cohort of the MS-CMRSeg 2019

challenge dataset. Chen et al. ( 32) used a cascaded segmentation for the bSSFP images. Although

they achieved an unsupervised segmentation of the LGE-MRI images, the cascade network required

supervised training. Wang et al. ( 192) used manual ROI definition and they used all T2 cine-MRI

and LGE in the training process. They used an image postprocessing process; such as hole filling

technique, connected component analysis, and the largest connected component of all slices in each

patient. Segmentation areas that exceed the largest connected range were removed. The approach

described by ( 32, 111, 192) used a multi-modal image translation network from balanced steady-state
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free-precession (bSSFP) images to LGE images. In all cases, they need tuning or supervised training

in T2, bSSFP, and LGE-MR images in the training cohort of MS-CMRSeg 2019 challenge dataset.

In contrast to these studies, MA-SOCRATIS is free of any kind of multimodal training in bSSFP

or LGE-MRI images or tuning, yet it still achieved 70.0 % accuracy against the MS-CMRSeg 2019

challenge dataset. It is important to mention that our pipeline achieved the most robust results as

the standard deviation of the results was the smallest (5.5 %) of all methods.

7.2 Discussion of DL-SOCRATIS pipeline

7.2.1 Performance analysis of the models

The quantitative performance analysis of the intra/inter observation/er GTs for MA-SOCRATIS,

cine-SOCRATIS, CGAN-SOCRATIS, and DL-SOCRATIS networks over the LGE-20 dataset

has been presented as box-plots in Fig. 7.7 and 7.6. From the box-plots presented in Fig. 7.7, it is

clearly visible that the MA-SOCRATIS network achieves higher performance for the myocardium

segmentation, irrespective of the quantitative evaluation indices (sensitivity, specificity and dice)

compared with the other networks. Moreover, it is clear that the MA-SOCRATIS delivered the

most robust results as the variations of the three metrics are the smallest compared with the deep

learning techniques in both intra-GT and inter-GT experiments. The most sensitive pipeline is the

DL-SOCRATIS as it has the higher variation of all. CGAN-SOCRATIS even if it has the second

average performance in the deep learning techniques; it highlights the lower variation with respect to

the three quantitative evaluation indices among the DL networks.
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Figure 7.6: The sensi vity, specificity and dice metrics sta s cal analysis of the MA-SOCRATIS, cine-SOCRATIS, CGAN-
SOCRATIS and DL-SOCRATIS for the inter-observer GTs dataset.
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Figure 7.7: The sensi vity, specificity and dice metrics sta s cal analysis of the MA-SOCRATIS, cine-SOCRATIS, CGAN-
SOCRATIS and DL-SOCRATIS for the intra-observa on GTs dataset.
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Table 7.5: Comparison of MA-SOCRATIS and DL-SOCRATIS myocardium segmenta on pipelines and state of the art
techniques in MS-CMRSeg 2019 published dataset based on average and standard devia on (SD) dice values (NM:not
men oned).

Region dice (%) Technique (MS-CMRSeg 2019 dataset)
Myocardium 83.0 +/- NM Unsupervised Multi-modal 32

Myocardium 82.7 +/- 6 SK-Unet192

Myocardium 80.8 +/- NM Automatic Cardiac Segmentation Framework112

Myocardium 80.1 +/- NM Adversarial Domain Adaptation Network
(GFRM)191

Myocardium 74.9 +/- 10.0 Supervised-Domain-Adaptation189

Myocardium 70.0 +/- 5.5 MA-SOCRATIS
Myocardium 68.6 +/- 7.8 Shape-Transfer GAN network177

Myocardium 65.4 +/- 7.0 Multi-Atlas16

Myocardium 61.7 +/- 8.6 Pseudo-3D network111

Myocardium 57.3 +/- NM 2D/3D-UNET Framework195

Myocardium 53.3 +/- 9.2 DL-SOCRATIS-tuning
Myocardium 50.1 +/- 10.0 DL-SOCRATIS-no-tuning
Myocardium 47.0 +/- 11.7 UNET++ Framework156

Myocardium 44.1 +/- 10.8 CGAN-SOCT-no-tuning
Myocardium 43.1 +/- 13.2 cine-SOCT-no-tuning

7.2.2 Comparison of the DL-SOCRATIS and MA-SOCRATIS pipelines; with state

of the art techniques

Table 7.5 compares the performance of the DL-SOCRATIS and MA-SOCRATIS pipelines with

established and state of the art techniques for automatic myocardium segmentation. The approach

described by ( 32,111,192) used a multi-modal image translation network from balanced steady-state

free-precession (bSSFP) images to LGE images. In all these cases, tuning or supervised training in

the training cohort of MS-CMRSeg 2019 challenge dataset was needed. Chen et al. ( 32) used a cas-

caded segmentation for the bSSFP images. Although they achieved an unsupervised segmentation

of the LGE-MRI images, the cascade network required supervised training. Wang et al. ( 192) used

manual ROI definition and they used all T2 cine-MRI and LGE in the training process. They used
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Figure 7.8: Results of MA-SOCRATIS, DL-SOCRATIS tuning and DL-SOCRATIS no tuning, pipelines in MS-CMRSeg 2019
dataset about myocardium lesions, compared with GTs.

an image postprocessing process; such as hole filling technique, connected component analysis, and

the largest connected component of all slices in each patient. Segmentation areas that exceed the

largest connected range were removed. The approach described by ( 31,111,192,112) used a multi-modal

image translation network from balanced steady-state free-precession (bSSFP) images to LGE im-

ages. In all cases, they need tuning or supervised training in T2, bSSFP, and LGE-MR images in the

training cohort of MS-CMRSeg 2019 challenge dataset.

Contrary to these studies, MA-SOCRATIS is free of any kind of supervised multi-modality

training (bSSFP, cine-MRI, and LGE-MRI images) or even tuning and it still achieved 70.0 % ac-

curacy in the MS-CMRSeg 2019 challenge dataset. DL-SOCRATIS without any need of tuning

, multi-modality training (bSSFP, T2, LGE images) or manually assign of landmarks in the region

of interest (as in MA-SOCRATIS); it succeed 50.1 % dice value. Additionally, it was important

to study the variation of the result metrics if the u-net network was tuned in the new cohort (DL-

SOCRATIS-tuning). For this task, we used five patients of the training cohort of MS-CMRSeg

2019 challenge dataset and evaluated the results again in the testing cohort of MS-CMRSeg 2019
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Figure 7.9: Results of MA-SOCRATIS, DL-SOCRATIS tuning and DL-SOCRATIS no tuning, pipelines in MS-CMRSeg 2019
dataset about myocardium lesions, compared with GTs.

dataset. The DL-SOCRATIS-tuning delivered an improved accuracy of 53.3 percent. This results

is 6.3% higher than the UNET++ Framework ( 156) that succeed only 47.0% in an attempt to de-

liver results with almost the same conditions as our DL-SOCRATIS pipeline ( no need of multi-

modality training in bSSFP/T2/LGE images, or manually supervision in the region of interest from

expert). Lastly, the DL-SOCRATIS is in both cases more robust than the UNET++ Framework

( 156) as the SD is 9.2 or 10.0 % (tunning, no tunning case respectively) against the 11.7% of the

UNET++. Figures 7.8,7.9,7.10 and 7.11 show the results of MA-SOCRATIS and DL-SOCRATIS

on MS-CMRSeg 2019 challenge dataset. The results of MA-SOCRATIS are the best estimation of

the manual myocardial except the Figure 7.9 where the DL-SOCRATIS-tuning was more accurate.

The DL-SOCRATIS-tuning is more accurate than the DL-SOCRATIS-no-tuning as we expected.

An exception are the three cases of Fig. 7.8 image four and Fig. 7.9 images one and three.

DL-SOCRATIS did not segment accurately the myocardium; as the u-net did not detect cor-

rectly the location and the shape of the left ventricle (LV). Thus, the initial segmentation under-

estimates or overestimates the circle radius of SOCRATIS reestimation phase and it detected a
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Figure 7.10: Results of MA-SOCRATIS, DL-SOCRATIS tuning and DL-SOCRATIS no tuning, pipelines in MS-CMRSeg
2019 dataset about myocardium lesions, compared with GTs.

wrong position of the LV center. As a result, in some images the pipeline detects some portions

of the left and right ventricle myocardium like in Fig. 7.11 image four and five. In some other cases,

it detects some peripheral organs/areas such as in Fig. 7.8 the images two, three, four, and five of

DL-SOCRATIS-tuning and images three and four of DL-SOCRATIS-no-tuning pipelines.

7.2.3 Compare the tuning and no tuning deep learning network of initial my-

ocardium segmentation of DL-SOCRATIS

In this subsection, we will discuss explanations and possible solutions to the problem of false de-

tection of the myocardial region. Moreover, we will analyse the behaviour of tuning and no-tuning

u-net network in the 40 patients of MS-CMRSeg 2019 dataset.

Figures 7.12,7.13 show some of the results for the tuning and non-tuning u-net network regard-

ing the initial endocardial (ENDO) and epicardial (EPI) segmentation of the left ventricle. In most

of the cases, the endocardial position was detected correctly in the tuning model, with no tuning (an

exception is the image of Fig. 7.13).
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Figure 7.11: Results of MA-SOCRATIS, DL-SOCRATIS tuning and DL-SOCRATIS no tuning, pipelines in MS-CMRSeg
2019 dataset about myocardium lesions, compared with GTs.

Tuning 5 patientNo tuning  LGE-MRI manuaI GT 

Figure 7.12: DL-SOCRATIS no-tuning and DL-SOCRATIS tuning results of pa ent about myocardial-scar lesions, with
manual GTs.
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EPI  |   ENDO EPI  |   ENDO EPI  |   ENDO 

Figure 7.13: DL-SOCRATIS no-tuning and DL-SOCRATIS tuning results of pa ent about myocardial-scar lesions, with
manual GTs.

Regarding the shape of ENDO, there are some cases where the size is more accurate in tuning

model ( Fig. 7.12) than the non-tuning and there are some cases where the size of ENDO is more

accurate in non-tuning model to the tuning model (Fig. 7.13 second,forth and sixth images). How-

ever, in the case, the position of ENDO is false. In most cases, the epicardial position was detected

correctly in the tuning model, contrary to the non-tuning (an exception is the image of Fig. 7.13).

Regarding the shape of EPI, there are some cases where the size is more accurate tuning model ( Fig.

7.12, Fig.7.13 second, third and fifth images) than the non-tuning and there are some cases where

the size of EPI is more accurate in non-tuning model to the tuning model (Fig. 7.13 first and sixth

images). However, in the last observation, the position of EPI is false. Figure 7.14 shows the results

of the tuning model LGE images, the sixth patient of MS-CMRSeg 2019 challenge cohort. For pa-

tient number six, the epicardial and endocardial position was detected correctly in the tuning model.
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Figure 7.14: DL-SOCRATIS tuning automa c segmenta on myocardial results of pa ent number 6 of MS-CMRSeg 2019
dataset.

Regarding the shape of ENDO, there are some cases where the size is accurate enough (second,

forth, fifth, ninth, and tenth images of Fig. 7.14). EPI size is accurate in the first, seventh, eighth,

and ninth images of Fig. 7.14. It can be observed that the tuning network was the segment LV and

a portion of RV epicardium region. Thus, the epicardium size is not correct. For tuning the model,

we used a transfer learning technique. We initialized the u-net weight-based training results of co-

hort LGE-100, so we can tune the model in the five training patient of MS-CMRSeg 2019 dataset.

One limitation of this study is that the accuracy of DL-SOCRATIS can be the transfer learning

technique and the size of the tuning network. In future work, we extend the study to other transfer

learning techniques and different variations of the tuned number of patients in cross-institutional

dataset.
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Figure 7.15: The border zone and core scar automa c results of abla on analysis for different values of border zone
thresholding parameter. In this figure we present the automa c segmenta on results of BZ-TH values in 0,10,25,45,75
% of the difference between minimum and maximum intensity (BZ-TH:0%, BZ-TH:10%, BZ-TH:25%, BZ-TH:45% and
BZ-TH:75%) compare with the manual inter-observer ground truth (Manual GT).

7.3 Discussion of BZ-SOCRATIS pipeline

7.3.1 Performance analysis of the BZ-TH portion change in BZ-SOCRATIS

In this section, we discuss how significant are the analysis of different BZ-TH portions. Figure 7.15

illustrates the different results of border zone and core scar automatic segmentation for five different

variations of BZ-TH portions (0, 10, 25, 45 and 75%). The most accurate result based on the man-

ual GT is the BZ-TH:25%; however the results of the two regions in each of the different portions

do not show significant difference. Table 7.6 summarizes the different dice, sensitivity and speci-

ficity scores of the border zone (BZ), and core scar (CS) areas for different portions of BZ-TH; as we

determined in the methodology section. The overlap between intra-observation and inter-observer

variability GTs as far as it concerns the highest results of the different portions of BZ-TH method

for BZ and CS regions are in BZ-TH:10% and BZ-TH:25%. For intra-GTs, the mean dice value of

BZ is 43.7 and 37.7% with a standard deviation (STD) 10.7 and 11.2% and of CS 58.7 and 57.7%
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with a 17.5 and 17.0% STD in BZ-TH:10% and BZ-TH:25% respectively. For inter-GTs, the mean

dice value of BZ is 31.7 and 32.4% with a standard deviation (STD) 13.4 and 13.2% and of CS 56.4

and 60.0% with a 24.2 and 21.8% STD in BZ-TH:10% and BZ-TH:25% respectively. Regarding

the sensitivity metric for intra-GTs the BZ region was segmented with 55.1, 50.1% value (STD of

10.9, 7.2%) and the CS region achieved a 57.1 and 67.7% sensitivity value (STD of 22.2 and 17.2%)

in BZ-TH:10% and BZ-TH:25% respectively. For inter-GTs, the sensitivity score of BZ is 57.1,

67.7% (STD of 13.4, 13.2%) and of CS 70.8 and 71.1% (STD of 17.6, 18.9%) in BZ-TH:10% and

BZ-TH:25% respectively.

Figure 7.16 shows the boxplots for the quantitative performance analysis of the different portion

of BZ-TH method in intra/inter observation/er GTs. The most robust and higher accuracy results

are the one of BZ-TH:25% (red box); as they have the highest mean value and the same time the

lowest variability of the three metrics (sensitivity, specificity, and dice) compared with the 50, 40 and

75 BZ-TH portions.

To conclude, the different portions of BZ-TH method do not change dramatically the accuracy

and STD of the results, so we can claim that the best portion threshold for our pipeline is the BZ-

TH:25% based on the above observations (Figures 7.15, 7.16 and Table 7.6).

7.3.2 Comparison with established and state of the art techniques of core

scar segmentation.

There are few publicly available cardiac LGE-MRI datasets with scar segmentation. Thus, compar-

ison of BZ-SOCRATIS with established and state of the art techniques using the same dataset was

challenging. We therefore compared our pipeline with established automatic or semi-automatic seg-

mentation methods of LV with scars; focusing on datasets with identically or almost the same exper-

imental conditions as our cohort (20 patient testing cohort, LGE-MRI modalities). To the authors’

knowledge, the datasets used to evaluate the methods which we compared with BZ-SOCRATIS are
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Table 7.6: Summary of automa c segmenta on of border zone (BZ) and core scar (CS) compared to intra-observa on
and inter-observer ground truth.

Intra observer results
Region dice (%) Sensitivity (%) Specificity (%) parameter
Scar (BZ) 41.5 ± 10.7 53.3 ± 13.2 98.3 ± 0.5 BZ-TH:0%
Scar (BZ) 43.7 ± 10.9 55.1 ± 10.9 98.6 ± 0.5 BZ-TH:10%
Scar (BZ) 37.7 ± 11.2 50.1 ± 7.2 98.9 ± 0.4 BZ-TH:25%
Scar (BZ) 38.0 ± 11.0 50.7 ± 6.9 99.0 ± 0.4 BZ-TH:45%
Scar (BZ) 36.9 ± 11.5 49.7 ±7.8 98.8 ± 0.4 BZ-TH:50%
Scar (BZ) 38.8 ± 11.2 50.5 ± 6.9 99.0 ± 0.4 BZ-TH:75%
Scar (CS) 60 ± 18.2 72.8 ± 15.3 99.1 ± 0.5 BZ-TH:0%
Scar (CS) 58.7 ± 17.5 66.3 ± 15.8 99.2 ± 0.5 BZ-TH:10%
Scar (CS) 57.7 ± 17.0 70.3 ± 22.8 99.4 ± 0.5 BZ-TH:25%
Scar (CS) 55.7 ± 17.3 67.4 ± 25.6 99.4 ± 0.4 BZ-TH:45%
Scar (CS) 57.0 ± 17.8 68 ± 24.5 99.4 ± 0.5 BZ-TH:50%
Scar (CS) 56.2 ± 17.5 67.5 ± 25.6 99.3 ± 0.5 BZ-TH:75%

Inter observers results
Region dice (%) Sensitivity (%) Specificity (%) parameter
Scar (BZ) 32.3 ± 14.2 50.7 ±24.2 97.5 ± 0.8 BZ-TH:0%
Scar (BZ) 31.7 ± 13.4 57.1 ± 22.2 97.0 ± 0.9 BZ-TH:10%
Scar (BZ) 32.4 ± 13.2 67.7±17.2 96.0 ± 1.6 BZ-TH:25%
Scar (BZ) 31.5 ± 12.1 64.8 ± 21.1 96.1 ± 1.2 BZ-TH:45%
Scar (BZ) 30.1 ± 12.6 65.1 ± 20.6 96.1 ± 1.2 BZ-TH:50%
Scar (BZ) 28.4 ± 13.3 64.0 ± 22.5 95.2 ± 2.3 BZ-TH:75%
Scar (CS) 55.3 ± 22.4 70.8 ± 18.5 98.7 ± 1.0 BZ-TH:0%
Scar (CS) 56.4 ± 24.2 70.8 ± 17.6 98.9 ± 0.8 BZ-TH:10%
Scar (CS) 60.0 ± 21.8 71.1 ± 18.9 98.8 ± 0.7 BZ-TH:25%
Scar (CS) 61.9 ± 21.1 66.0 ± 16.8 99.1 ± 0.7 BZ-TH:45%
Scar (CS) 60.9 ± 21.1 65.9 ± 16.9 99.1 ± 0.7 BZ-TH:50%
Scar (CS) 53.8 ± 15.6 46.2 ± 14.1 99.5 ± 0.2 BZ-TH:75%
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Figure 7.16: Box plots for the quan ta ve performance analysis of the different values of BZ-TH method in intra/inter
observa on/er GTs. In this figure we present the dice, sensi vity and specificity metrics results of BZ-TH values for
50,25,45,75 % of the difference between minimum and maximum intensity (BZ-TH:50%, BZ-TH:25%, BZ-TH:45% and
BZ-TH:75% le to right).

Table 7.7: Comparison of our total scar segmenta on pipeline and established machine/deep learning techniques

Region Median (%) Technique (cohort)
Scar 85.0 MCG88 dataset
Scar 75.5 MA-SOCRATIS (Inter GT dataset)
Scar 74.0 KCL 88 dataset
Scar 73.0 AIT88 dataset
Scar 72.5 MA-SOCRATIS (Intra GT dataset)
Scar 44.0 MV 88 dataset

not published.

In Table 7.7, Karim et al. ( 88) evaluated four different techniques with a test dataset of 20 pa-

tients. Of the methods evaluated, the conditional Markov random field (MCG) had the best results

following by Graph-cuts with EM-algorithm technique (KCL) and support vector machines com-

bined with a level set technique (AIT). All of these techniques were supervised and some were semi-
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automatic. This means that there is a need of training in a specific cohort. The cohort has to be split

in testing (20 patient) and training (10 patient) patients. The only unsupervised technique was the

EM-algorithm and watershed transformation (MV), and these achieved a modest median accuracy

of only 44.0%. Our scar segmentation pipeline is unsupervised, and with our test dataset of 20 pa-

tients, we achieved a 72.5 and 75.5 % median dice accuracy for intra-observation and inter-observer

ground truths respectively.

7.3.3 Extraction of 3D models: a future perspective for automatic border

zone, core scar and myocardial mapping.

After the 2D slice extraction of the BZ, CS, and LV regions; we utilized a 3D interpolation pipeline

(3D-SOCRATIS) which automatically extracted the 3D representation of these regions. Based

on these 3D geometries, the expert radiologist and clinicians have a three-dimensional anatom-

ical model of a specific patient’s LV with infarct. The 3D model is extracted fully automatically

based on DICOM LGE-MR images of the patient. Figures 7.17, 7.18, 7.19 and 7.20 show the 3D

anatomical models of the BZ, CS, and LV areas of different patients.The differences regarding the

smoothness of the 3D anatomical models of 7.17 and 7.19 are a result of different number of itera-

tion in the post-processing step (as mentioned in 4.2.2). These results were delivered after a manual

sensitivity analysis for different post-processing iterations of the 3D volume extraction pipeline (3D-

SOCRATIS). In the future more investigation regarding optimal number of iteration is needed to

deliver smoother 3D anatomical models.

7.4 Abstraction of SOCRATIS framework

In this section of the thesis, we will discuss the idea behind the SOCRATIS framework. We im-

plemented a framework for fully automatic, and semi-automatic segmentation of LV with scars
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Figure 7.17: Three dimension representa on models. Top le corner: le ventricle (LV), top middle: LV with border
zone, top right corner: LV with core scar, bo om le corner: total scar, bo om middle and right corner: two different
orienta ons of LV with total scar regions.

Figure 7.18: Three dimension representa on of border zone, core scar and total scar (from le to right).
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Figure 7.19: Three dimension representa on of le ventricle (LV), LV with border zone, LV with core scar, total scar and
two different orienta ons of LV and total scar regions (from up to down and le to right).

Figure 7.20: Three dimension models of two different pa ents. Pa ent 1: le and middle 3D geometry and Pa ent 2:
right 3D geometry. The 3D models represent the le ventricle, border zone and core scare regions of the two specific
pa ents.

optimized based on speed or either on accuracy of the results. We will mention the importance and

robustness of MA-SOCRATIS automated method and in some cases the benefit of the high speed
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that DL-SOCRATIS can offer. Lastly, we will present the strategy that SOCRATIS framework

follows.

7.4.1 Robustness and accuracy of the two pipelines

MA-SOCRATIS without any need for tuning or multi-modality training, delivered dice values of

81.9 and 78.1 % accuracy in our challenging LGE cohort and a 70.0 % accuracy in the cross institute

validation of the method (MS-CMRSeg 2019 challenge dataset). DL-SOCRATIS operates with-

out any need of tuning, multi-modality training (bSSFP, T2, LGE images) or manually assign of

landmarks in the region of interest (as in the initial segmentation step of multi-atlases myocardium

of MA-SOCRATIS pipeline); it succeeded 60.4 and 55.0 % in our challenging LGE cohort and

a 50.1% accuracy in the cross institute validation of the method (MS-CMRSeg 2019 challenge

dataset). Regarding the robustness of the dice standard deviation (SD) values of the methods were:

9.4, 9.3 and 5.5 % for the MA-SOCRATIS and 10.0, 11.1 and 9.2 % for the DL-SOCRATIS with

respect to the intra/inter 20 LGE-MRI patient cohort and the 40 patient of MS-CMRSeg 2019

challenge dataset. To conclude, it is obvious that the results of MA-SOCRATIS are more robust

and accurate.

7.4.2 Speed of the two pipelines

MA-SOCRATIS needed almost 1 hour after the multi-atlas registration step and 8.55 minutes

for the automatic segmentation of the myocardial and scar regions of LV for each patient (8-12

slices of LGE-MRI images, around 40 s per slice after the multi-atlas registration step) in a Intel(R)

Core(TM) i5-4570 CPU @ 3.20GHz with 8GB RAM. Moreover, the time expert supervision

for the initial manual landmark assignment does not included in the computation of speed. On

the other hand, DL-SOCRATIS is fully automated, there is no need of expert supervision, and it
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Figure 7.21: The myocardial segmenta on part of SOCRATIS framework.

takes 9.22 minutes per patient in total in a Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz with 8GB

RAM. For this reason, the DL-SOCRATIS is a quicker and fully unsupervised compare to the MA-

SOCRATIS.

7.4.3 The myocardium decision framework

Fig. 7.21 shows the pipeline of the SOCRATIS framework. The decision of the SOCRATIS frame-

work involves the optimal solution that an expert will want to deliver in the problem of the fully

automatic segmentation of the LV with scars based on LGE-MRI images. The options are speed, vs,

robustness, and accuracy. If the expert chooses the optimal speed, the framework utilizes the DL-

SOCRATIS method and delivers 10 to 12 myocardial and scar region slices based on a LGE-MRI

short axis image in only 9.22 minutes. If the expert chooses the optimal robustness, the framework

uses the MA-SOCRATIS method and delivers 10 to 12 myocardial and scar region slices based on

a LGE-MRI short axis image in more than one hour but with high robustness and accuracy results.

Lastly, the expert can use a hybrid approach to initially use a quick automatic estimation of the my-
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Figure 7.22: The SOCRATIS fully automa cally border zone, core scar and LV regions 3D geometries extrac on based
on expert decisions.

ocardial and scar regions by the DL-SOCRATIS method; and if the results are not acceptable based

on clinical global standards, then they can use the more time expensive MA-SOCRATIS method

for more robust and accurate results.

7.4.4 The total framework

Figure 7.22 illustrates the fully automatic framework of SOCRATIS method. The expert can de-

cide if they want fast results or robust results regarding the LV myocardium and if they need total

scar or BZ and SC regions for the unhealthy 3D mapping tissues of the specific patient.
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7.5 Limitations of the study

7.5.1 MA-SOCRATIS pipeline limitations

The main limitation of this study was the computational time required by the MA-SOCRATIS

pipeline to deliver the myocardium and scar automatically segmentation (almost an hour per pa-

tient), as the registration step of multi-atlas method was time consuming. In addition, in some cases,

the detection of the initial position and size of endocardial and epicardial regions was not accurate

enough (dice mean value less than 50.0 %). A possible explanation could be the shape variation of

multi-atlas process combined with the fact that we used the method for cross-modality application

(cine-MRI to LGE-MRI). As a result, the MRI slices of some of the patients were miss-aligned with

respect to the multi-atlas slices (registration error). Lastly, the low accuracy of myocardium seg-

mentation in some patients can explain the big difference between AM and MM scar segmentation

results (29.5 to 70.5 % respectively).

7.5.2 DL-SOCRATIS pipeline limitations

The detection of the initial position and size of endocardial and epicardial regions was not accurate

enough (two DL approaches: DLl, DLc of initial myocardium segmentation step). This is the main

limitation of our myocardial pipeline. A possible explanation could be the cross-modality applica-

tion of the u-net network (cine-MRI training, applied in LGE-MRI validation dataset). Finally,

even if we trained the u-net on the LGE-100 dataset or translate the images from cine to LGE im-

ages (CGAN-SOCRATIS); when we applied our pipeline in a cross-institute validation (LGE-100

to LGE-20 or LGE-40) the dice value of the results was low. Thus, the position and size of epicar-

dial and endocardial regions was not detected efficiently. Moreover, the STDs of the metrics results

of DL-SOCRATIS pipeline are high enough. It is possible that increasing the number of training or
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tuning samples of the cross institutes/vendor datasets will solve this problem. As a result, regarding

future work, it will be interested in focusing on transfer learning (such as domain adaptation theory)

and techniques applied to translation between two modality spaces (cine to LGE) or cross-institute

cohorts.

7.5.3 BZ-SOCRATIS pipeline limitations

One of the main limitations of the study is that we cannot claim the intra-observation and inter-

observer ground truths of the BZ and CS regions to be manual process. Even if the human interac-

tion and the human error can not be determined in this process (as there is no contour drawing of

scar regions); it still exists as the the FWHM needs a human selection of the highest intensity (scar)

and the lowest intensity (healthy myocardium) pixels. Therefore, we can claim that in the process

of GTs extraction, there exists a inter-observer and intra-variation and uncertainty. Still, this is not

the best way of evaluating the pipeline as we observed some cases where our pipeline delivers more

highly accurate results than the inter-observer and intra-GTs. This can explain the not so high re-

sults of dice and sensitivity scores of BZ and CS regions. Except this limitation, we need to test the

cross-institute and cross-vendor robustness of the BZ-SOCRATIS pipeline. Unfortunately, to the

authors knowledge, there is not existing any published CMR-LGE cohort to manually label of BZ

and CS regions. As a future work, we need to determine a manual contour based BZ and CS region

extraction cohort and apply our pipeline in cross-vendor and institute cohorts.

7.6 Future Work

As a future work, we suggest:

• Additional training in cross-vendor and institute cohorts to increase the accuracy of DL-

SOCRATIS pipeline.
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• A more thorough study of transfer learning techniques to increase the generalization of DL-

SOCRATIS pipeline.

• Cross-institute validation of BZ-SOCRATIS pipeline to generalize the use and robustness of

pipeline.

Lastly, we suggest the implementation of an artificial intelligence - motion analysis of cardiac

region and total infarct scar (AI-MACT). The AI-MACT will be an automatic pipeline to detect

the scar position and a portion based on the deformation and strain of ES and ED phases of cine-

MRI images. Below is an initial literature review about the aim and possible techniques which can

be used.

Zito et al. ( 42) reviews two dimensional speckle-tracking echocardiography (STE) as a way to esti-

mate global longitudinal strain (GLS). They found that the GLS can be used as a marker to diagnose

myocardial damage and dysfunction such as myocarditis, systemic disease, neuromuscular disorders,

chronic ischemic cardiomyopathy and arrhythmias. In addition, they mention that STE GLS results

are almost as accurate as MRI evaluation. Scatteia et al. ( 168) mention that CMR techniques are the

best way to identify strains in the ventricle. Thus, they infer the importance of CMR as a reference

for the evaluation of bi-ventricular function and morphology. They survey different techniques to

estimate myocardial strain.

Acquisition methods track the magnetization of tissue by a specific radio-frequency prepulse

spatial modulation of magnetization (SPAMM). Although this operation has good tracking repro-

ducibility and many validation studies, it suffers from low spatial resolution, which is time consum-

ing with low temporal resolution and long acquisition time.

Phase velocity mapping (PVM) uses the myocardial velocity and the phase of signal. Displace-

ment encoding with stimulated echoes (DENSE) encodes the myocardium displacement into the

phase of image. Strain encoded (SENC) imaging is a CMR scanner which utilizes quantification of
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regional deformation. All three techniques detect a good strain estimation in short acquisition time

with quick post-processing, but they suffer from low signal to noise ratio (SNR), fading, the need of

clinical experience from the user and the radial strain can not be measured.

Finally, the CMR-FT feature tracking technique computes the deformation of the images with

respect to time frames in cine-MRI. It is a postprocessing approach quickly and without the need

of further MRI acquisition. The drawbacks are the motion artifacts and the limitation of pixel size

within each image. There are CMR-FT studies related to the application of myocardial strain detec-

tion in ischemic heart disease.

Some studies in the literature detect pathological and normal heart functionality by utilizing

CMR image analysis techniques. Neizel et al. ( 133) uses the SENC technique to compute CMR

strain and discriminate different transmurality states in myocardial infraction disease. Neizel et al.

( 133) uses the SENC in healthy subjects too. Finally, Gao et al. ( 60) utilize a b-spline deformable

registration as a CMR-FT technique to evaluate the LV myocardial strain and they compare it with

DENSE technique. Gao et al. ( 60) conclude that in some cases the b-spline deformable registration

overestimates the strain regarding the DENSE. The use of myocardium strain based on cine-MRI

can be another way to test and predict the location of scars in the left ventricle ( 5), but reliable au-

tomated methods have not yet been developed. This is very interested to the extent of PhD study,

so a more robust result of myocardial and scar region segmentation can be delivered, so other MRI

modalities and AI techniques take into account.
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8
Conclusion

8.1 Overview

In this PhD thesis, we have described and evaluated an automatic segmentation of cardiac regions

and total infarct scar (SOCRATIS) pipeline for identifying regions of scar and healthy myocardium

from LGE cardiac MRI. In this last chapter, we summarize the importance of each pipeline and of

single-modality (LGE-MR) automatic framework.
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8.2 Justification of the importance of single-modality (LGE-MR) pipeline

Cardiac MRI by default is multi-parametric imaging. However, the basic CMR protocols can vary

between centres. LGE-imaging is included in the majority of ischaemic or non-ischaemic cardiomy-

opathy assessments as any scar on the myocardium has both diagnostic and prognostic roles ( 62,34).

The main reason in this work we preferred to have a single method pipeline is because, in routine

clinical practice, different centres will have different acquisition protocols for cines and tissue char-

acterization. This makes running multi-modal pipelines challenging. In addition, a single modality

pipeline avoids the issue of spatial miss-registration of data. Moreover, it avoids scenarios where the

quality of other modalities is sub-optimum, limiting the automated pipeline segmentation.

8.3 MA-SOCRATIS pipeline

In this part of the thesis, we have presented an automatic unsupervised segmentation pipeline

(MA-SOCRATIS) which achieved impressive results when evaluated with two different datasets

(STACOM at MICCAI 2019, our collection of 20 patients with challenging scar regions and LV

area). Hence, we have tested the adaptability of our pipeline to new cohorts and assessed perfor-

mance without the need for training, tuning, or changes to the initial hyper-parameters. The robust-

ness and generalization of this pipeline are therefore demonstrated, and our unsupervised method

achieves dice metrics comparable to state-of-the-art supervised techniques.

Moreover, we have highlighted the importance of correct detection of myocardium boundaries

in LGE-MRI in patients with infarct tissue, in both automatic and manual segmentation. Further-

more, we elucidated the sensitivity of our two pipelines to GT from both repeated observations and

different experts. As a result, we clarified the robustness of our pipeline, which produces generalized

and accurate results free of intra-observation and inter-observer bias effects. We demonstrated a ro-

bust unsupervised combination of Rician-Gaussian mixture model and watershed techniques for
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automatic scar segmentation of LV in LGE images. Lastly, we justify the importance of an unbiased

ground truth to evaluate an automatic pipeline; thus, no overestimation or underestimation effects

of the metrics results can be occurred.

8.4 DL-SOCRATIS pipeline

In this section of the thesis, we studied the automatic segmentation results of the myocardium and

scar regions if we changed the initial myocardium segmentation step of MA-SOCRATIS. We de-

cided to change the multi-atlas technique by deep learning (DL) networks. We chose this alternative

as: i) the DL networks are less time consuming than the multi-atlas technique ii) the DL structure

can be trained based on big data of cardiac shape, size, and external conditions (noise and artifacts

from different scans and vendors) and iii) DL does not need any landmark initialization. As we

wanted to increase as much as possible the cross-vendor automatic segmentation efficiency of the

deep learning pipeline; we trained the u-net network based on a sensitivity, specificity dice-weighted

cross-entropy (SS-DCE) cost function and the dice accuracy in the cross-vendor validation of 40 pa-

tients increased from 96.0 to 96.7 % for the endocardial and 85.8 to 89.8 % for the epicardial regions

compared with the ordinary used dice cross entropy (DCE) cost function.

Because the segmentation of scar and healthy myocardium of LV in LGE-MR images is tricky

even for experts, we used a variation of different deep learning techniques to train DL-SOCRATIS’s

initial segmentation of LV myocardium ( a. u-net training only in cine-MRI images and testing in

LGE-mages, b. CGAN image to image translation from LGE-MRI to cine-MRI scan modalities

and testing in LGE-images, c. u-net training in LGE-images, and testing in LGE-images, d. u-net

training in LGE-images, tuning in the cohort of interest and testing in LGE-MR images).

The multi-atlas technique delivers better results than the deep learning (DL) approach. How-

ever, the DL-SOCRATIS is less time consuming and does not need any landmark determination as
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in multi-atlas method. Thus, the DL-SOCRATIS is still a strong candidate for good quality of fully

automatic segmentation results without the need of an expert. The fact that it utilizes only one type

of scanning modality (cine-MRI or LGE-MRI) without any need of further multi-modal supervi-

sion (bSSFP, T2, LGE images) is positioned in an advantage state contrary to the majority of the

state of the art techniques. Moreover DL-SOCRATIS pipeline is flexible enough and it can be used

as a quick initial evaluation of scar and myocardial regions in cross-modality analysis tasks; such as

when expert radiologists have different or constrained modalities of scan images for a specific patient

(only cine-MRI, or only LGE-MRI, or a mixed of these two).

Summarizing, in this study we delivered the SOCRATIS framework; which involves the choice

of optimal speed or optimal robustness and accuracy, based on which an expert radiologist wants

to solve the problem of the fully automatic segmentation of the LV with scars based on LGE-MRI

images.

8.5 BZ-SOCRATIS pipeline

In the last part of the PhD thesis, we have presented an automatic unsupervised scar segmenta-

tion pipeline (BZ-SOCRATIS) and an automatic unsupervised scar segmentation pipeline (MA-

SOCRATIS) which achieved impressive results. Hence, we have evaluated our pipeline in a new

cohort and assessed performance without the need for training, tuning, or changes to the initial

hyper-parameters. The robustness of our unsupervised method was compared with established and

state-of-the-art supervised techniques and delivered high accuracy.

It is essential to mention that this is a novel complete study regarding automatic and semi-automatic

segmentation techniques of both border zone and core scar regions in LV with infarct LGE-MR

images. Moreover, we have highlighted the importance of correct detection of myocardium bound-

aries in LGE-MRI in patients with infarct tissue, in both automatic and manual segmentation. We
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demonstrated a robust unsupervised combination of Rician-Gaussian mixture model and watershed

techniques for automatic total scar and border zone core scar region segmentation of LV in LGE

images. We justified the importance of an unbiased fully manually ground truth (contour extrac-

tion based) to evaluate an automatic pipeline; thus no overestimation or underestimation effects of

metrics scores can be occurred. Lastly, we delivered a 3D geometric representation/mapping of the

border zone, core scar, and LV fully automatically and share an automatic system framework for

expert radiologist interaction in a 3D space.
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A
Appendix

Appendix A1. Automatic segmentation thoroughly background

A.0.1 Overview

In this section of Appendix, we would like to extend the literature review of automatic segmenta-

tion techniques. Reconstruction of anatomical models is related to segmentation of cardiac CT,

MRI images into the labeled region . Manual segmentation of medical images is a time consuming

163



and tricky operation. Valid threshold values and contours of the cardiac region are not always easy

determinable due to the variation of the cardiac anatomy, thus an expert clinician is needed. There

are studies of manual segmentation of heart ( 59 , 75 , 113) . Segmentation is recommended by clini-

cians to be automated due to time consuming and subjective characteristics of the manual process.

Methods for automatic segmentation is a common case study in many literature studies ( 3, 103 , 58) .

The main challenges of automatic CMR segmentation methods are the non-clear localization of

cavity borders due to blood flow, the artifacts and the noise of images, and the presence of papillary

muscles in the LV and trabeculations in the RV ( have the same gray level as the myocardium) which

have to exclude from myocardium segmentation, as the high complexity of patient-specific shape of

the RV. Because isolated RV pathology is not so common, most research effort has focused on the

LV ( 173).

There are several techniques for automatic segmentation of the cardiac regions and the whole

heart. In the literature the automatic segmentation algorithms are divided mainly in four categories

( 85, 71) boundary-driven, region-based, and statistical shape models. This section is organised as

follow: A.02 automatic segmentation background of our pipelines, A.03 boundary-driven, A.04

region-based, A.05 statistical shape models (model-based), and A.06 hybrid techniques.

A.0.2 Automatic segmentation background of our pipelines

Probabilistic Atlas

Atlases have been used in many model fitting application of medical imaging. Frangi et al. ( 59) out-

lined an automatic construction of atlas from MRI and CT images (Fig. A.1). These images were

segmented in regions and aligned to a reference model. A basic atlas model was then created by an

iterative algorithm. Via a shape based blending ( 59) an average atlas model was created. The testing

images and the average atlas model were transformed to natural coordinate systems. Landmarks in
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Figure A.1: Pipeline of anatomical cardiac atlas

the testing images were generated. Via a non-rigid transformation matrix the nature coordinate sys-

tems of testing images were modified on atlas nature coordinates system. Then landmark points of

atlas model, were copied and applied to them. These models were converted back to their initial na-

ture coordinates through a inverse local nonrigid transformation matrix. A Principal Component

Analysis (PCA) system was used to produced statistical models ( 71). Multi-atlas structures involve a

similar process, iterated through multi-vendors samples.

Deep Learning

Deep learning algorithms are state-of-the-art methodology for cardiac automatic segmentation and

region of interest (ROI) detection. Avendi et al. ( 13) detected the ROI of left ventricle by using a

convolution network. The network combined from four layers; two convoluted features:

Cl[i, j] = f(Zl[i, j]) (A.1)
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Zl[i, j] =
11∑

k1=1

11∑
k2=1

Fl[k1, k2]I[i+ k1 − 1, J+ k2 − 1] + bo[l] (A.2)

where i and j the index of pixel location, and two average pooling features:

Pl[i1, j1] =
1
6

6i1∑
i=(6i1−5)

6j1∑
j=(6j1−5)

Cl[i, j] (A.3)

where I(x,y) defines image intensity, Fl convolution filter and bo biased weight.

A.0.3 K-Means:

An unsupervised region-based technique is k-means clustering. Bayes rule be determined by p(x|y) ∝

p(y|x)p(x), given an image y and its segmented ROI x. Let assume that there are k region of interest

to segment. Moreover, let assume that distributions p(x) and p(y|x) follow exp(−
∑

C(Vc(x))) and

exp(−
∑

s(
1

2σ2
s
(ys − μs)

2)) respectively. Then exp(−
∑

s(
1

2σ2
s
(ys − μs)

2) −
∑

C(Vc(x))) where μs is

the mean and σs the variance at a pixel locations (posteriori probability). Clique potential Vc(x) was

equal with a constant β if xs = xt or - β if xs ̸= xt with s,t are belong to a clique C and t be the pixels

of a define neighborhood of s ( 31). Clique is a set of sites where all the pixels are neighborhood. The

k-means problem solved by optimization algorithms.

Active Contour:

Active contour is a main methodology for detecting edges and lines. Kass et al. ( 92) called them

’snake’. The basic snake equilibrium involves internal and external image constraint (’forces’). The

external forces are functions of constraints that they have to set the snake near the region of interest.

The internal forces is related to piecewise smoothness constraint of curves. The image ’forces’ are

equations that used to detect the edges, lines and subjective contours of image topology. The active
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contour theory follows an optimization-minimization problem of these ’forces’, which guide the

snake to the ROI contour. The main equations are ( 92):

E∗snake =
1∫

0

Esnake(v(s))ds =
1∫

0

Eint(v(s)) + Eimage(v(s)) + Econ(v(s))ds (A.4)

The internal energy is given from:

Eint = (α(s)|vs(s)|2 + β(s)|vss(s)|2)/2 (A.5)

where the α(s) is a first order term related to the relative importance of the membrane and the

β(s) controls the thin-plate terms (v(s) is the parametrical position of snake v(s) = (x(s), y(s)) and vs

is the first derivative with respect of s ). The image energy is given from:

Eimage = wlineEline + wedgeEedge + wtermEterm (A.6)

where the Eline is the intensity of image, Eedge = −|∇I(x, y)|2, and the Eterm =
d2C/dn2

⊥
dC/dn . The

C(x, y) = Gσ(x, y)I(x, y) and is a slightly version of image (Gσ is a Gaussian of standard deviation of

”σ), n = (cosθ, sinθ), n⊥ = (cosθ,−sinθ) and θ = tan−1(Cy/Cx) .

Geodesic active contour is a combination of active contour theory and minimal distance curves

theory in Riemannian space ( 28). More analytically, the basic function of snake energy including an

edge regularization order is given by:

E(C) = α
1∫

0

|C′
(q)|2dq+ β

1∫
0

|C′′
(q)|2dq+ λ

1∫
0

|∇I(C(q))|dq (A.7)

Caselles et al. ( 28) justified that the curve smoothing will be obtained when β = 0, so internal

energy of equation (3.5) take into account only the first regularization order. Moreover, they assume
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a restricted decreasing function g(r), where when it approaches the infinite the r goes to zero. Thus

the edge regularization part can become:

E(C) = α
1∫

0

|C′
(q)|2dq+ λ

1∫
0

g(|∇I(C(q))|)2dq (A.8)

The last part is the external energy of the curve. The equation (3.8) is the geodesic active contour

characteristic equation.

The equation (3.5) needs to minimized from a specific curve C(q). Caselles et al. ( 28) shown that

a geodesic curve in a Riemannian space, is the solution. This justified from the theorem of Mauper-

tuis’ Principle which defines when an energy problem have a geodesic curve solution in a Rieman-

nian space ( 14). The geodesic curve solution in a Riemannian space are given from the functions:

U(C) = −λg(|∇I(C)|)2, (A.9)

E(C) =
1∫

0

L|C(q)|dq, (A.10)

L(C) = m/2|C′ |2 − U(C), (A.11)

H(C) = p2/2m+ U(C), (A.12)

gij = 2m(Eo − U(C))δij (A.13)

where α = m/2, p = mC′ , H is Hamiltonian anf L Lagrangian equations. Caselles et al. ( 28)
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solve the minimization problem by the use of the light rays problem ( 14, 25) by applying the equa-

tion above. By using the theorem of Fermat’s principle they defined the light waves metric in Rie-

mannian space ( 14) given by:

gij =
1

c2(X)
δij (A.14)

where c(X) is the speed light at X point, and c(X) = 1/g(X). The high values of speed light

are edges, and the low are non-edges. Casseles et al. ( 28) used the above equation and solved the

minimization problem, by applying optic theory and minimizing instead of equation (3.5) the:

1∫
0

g(|∇I(C(q))|)|C′
(q)|dq (A.15)

with Eo = 0.

The distance transformation that they use in Riemannian space is the Euclidean ( 66). This trans-

formation used to define the Euclidean length curve in Riemannian space (where the Euclidean

length is L). The Ct = κN is the flow that gives the fastest way to reduce the length equation. Base

on that the final Euclidean length curve is LR =
L∫

0
(C)g(|∇I(C(q))|)ds where L =

∫
ds. This

transformation determine the geodesic curve flow that is the principle of geodesic active contour

methodology. Finally the minimization problem is just an optimization of the LR function, by us-

ing the main curve evolution flow:

dC(t)
dt

= g(I)κN− (∇gN)N (A.16)

where the κ is the Euclidean curvature and N is the unit inward normal. This equation is deliv-

ered based on the snake generalized equation, and the use of theorem of Maupertuis’ Principle.

Generally, an edge-detector can be defined as a decrease function g(z) (when z approaches infinite
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the g(z) is zero) and it is depend on the gradient of image I. Then the gradient define as:

g(|∇I(x, y)|) = 1
1 + |∇Gσ(x, y) ∗ I(x, y)|p

|, p ≥ 1 (A.17)

where Gσ a Gaussian function and Gσ(x, y) ∗ I(x, y) a smoother version of I ( 29 ).

Using the level set formulation ( 142) the derivation of (4.13) becomes:

du
dt

= g(I)|∇u|κ +∇g(I)∇u (A.18)

where the C represents by a level set of u (ut = |∇u|) and κ = div( ∇u
|∇u|) .

The equation (3.12) is the minimization equation has to be solved, detecting the contour of in-

terest. Caselles et al. ( 28) use the level set formulation and solve the geodesic problem of equation

(3.12) by the formulation :

du
dt

= |∇u| div(g(I)
∇u
|∇u|

+ cg(I)|∇u|, (A.19)

where cg(I)|∇u| is an area constraint of (4.12) minimization problem (c Lagrange multiplier).

Based on the use of mean curvature of Osher and Sethian ( 143) the (4.16) become the final geodesic

active contour model with level set formulation:


du
dt = |∇u|div(g(I) ∇u

|∇u|)) + cg(I)|∇u|, in [0,∞]×ℜ2

u(t, x, y) = uo(x, y), in ℜ2 for t = 0
(A.20)
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An interesting application of a prior statistical shape curve (shape and pose) and geodesic active

contour is the one of Leventon ( 107). They used as an initial surface curve, a statistic shape model

based on principal component analysis method (PCA). A prior knowledge of a curve of interest

(COI) ũ can be estimate by:

ũ = Ukα + μ (A.21)

where α = UT
k (u− μ) and Uk is the k first columns of U and are the k-first principal components

of shape model. In the majority of cases the α follows an Gaussian distribution. Leventon et al .

( 107) estimated pose, and shape of the specific patient image , and solves the optimization problem

of equation (3.12) by using the maximum α posteriori (MAP) approach:

< αMAP, pMAP >= argmaxa,pP(α, p|u,∇I) (A.22)

where α is the shape parameter given from PCA prior shape and p is the rigid pose parameters of

shape (translation and rotation with respect of PCA training scheme). To compute the maximum

posteriori final curve they used Bayes’ Rule and solve the:

P(α, p|u,∇I) =
P(u|α, p)P(∇I|α, p, u)P(α)P(p)

P(u,∇I)
(A.23)

where P(u|a, p) = exp(−Voutside) (Voutside the volume outside of the estimated compute edge

(u∗) at t+1 time) and P(∇I|α, p, u) = exp(−h(α, p) − ∇I2) with h(α, p) the best fit of Gaussian

distribution to the sample (u∗, ∇I).

Lastly, they used as evolve surface the equation:
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u(t+ 1) = u(t) + λ1(g(c+ κ)|∇u(t)|+∇u(t)∇g) + λ2(u(t)∗ − u(t)) (A.24)

where u(t)∗ is the final estimation of curve in t: time and λ1 and λ2 are coefficients between [0,1].

These coefficients used to variate the influence of the shape model and the gradient-curvature model

respectively.

A.0.4 Boundary-driven techniques

In boundary-driven segmentation the most common algorithm is the active contour or “snake”.

The “snake” uses the external and internal image forces and a minimization problem is solved. Kass

( 92), was the first who applied the deformable models (snakes) for image segmentation. The active

contour algorithm has some limitations regarding the contour estimation. The curve can agglu-

tinates in a local minimum near the initial counter or passes out of the boundaries of the fields of

view. Moreover the accurate of algorithms is limited to the type of the minimization technique. The

geodesic active contour is an extension of “snake” algorithm where the level set formulation is uti-

lized. In the majority of the active contour methods a edge-detector filter has to be applied, so the

contour of interest can be detected.

A.0.5 Region-based techniques

The region-based techniques involve the selection of a global model so the estimation of the region

of interest (ROI) could be accomplished. Kang et al. ( 85) classified this techniques in three subcat-

egories the parametric representation algorithms, level-set and clustering. In parametric representa-

tion field is dominated by the Mumford-Shah functional and the Bayesian, maximum α posteriori
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(MAP) estimators. The Mumford-Shah function ( 48) utilizes a piecewise smooth model given by:

E(f,C) = μLength(C) + λ
∫ ∫

R
(f(x, y)− I(x, y))2 dx dy

+
∫ ∫

R−C ||∇f(x, y)||2 dx dy+ μ|C|(A.25)

where λ and μ are positive parameters C is the boundary length, R is a domain I the image and f

the piecewise smooth function which estimate the image of interest. The computational cost and

the no robustness in the face of strong noise, enact the use of a fuzzy algorithm with Bayesian and

MAP estimators. Chan et al. ( 29)  implemented an active counter based on techniques of Mumford-

Shah segmentation and level sets methods. The novelty was that the model does not utilize an edge-

function to converge the detection of the desired boundary, there is no need of smoothing the initial

image, and the model can detect object without the use of gradient definition. Finally, this method

can determine interior curve automatically, starting by only one initial curve.

A level set formulation of a curve C based on a φ(x, y) Lipschitz function is defined by ( 29) , by:



C = dω = (x, y) ∈ Ω : φ(x, y) = 0

inside(C) = ω = (x, y) ∈ Ω : φ(x, y) > 0

outside(C) = Ω/ω = (x, y) ∈ Ω : φ(x, y) < 0

(A.26)

where Ω is the pixels of image and x,y the index of a pixel (Figure A.2). 29 utilize the energy equa-

tion regarding the optimization problem:

F(c1, c2,C) = μLength(C) + νArea(inside(C))

+ ”λ1
∫

Ω(uo(x, y)− c1)
2 dx dy

+ ”λ2
∫

Ω(uo(x, y)− c2)
2 dx dy
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Figure A.2: curve C propaga on in N direc on

(A.27)

Based on the above equation, the Mumford-Shah function ( 48), and the Heaviside function H,

Chan et al. established the following energy equation:

F(c1, c2, φ) = μ
∫

Ω
δε(φ(x, y))|∇φ(x, y)| dx dy

+ ”ν
∫

Ω Hε(φ(x, y)) dx dy

+ ”λ1
∫

Ω(uo(x, y)− c1)
2Hε(φ(x, y)) dx dy

+ ”λ2
∫

Ω(uo(x, y)− c2)
2(1 −Hε(φ(x, y))) dx dy

(A.28)

where Hε is a regularization form of H given by:
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Hε(z) =



1, if z > ε

0, if z < −ε

1
2 [1 +

z
ε +

1
π sin( πzε )], if |z| ≤ ε

(A.29)

and δε =
dHepsilon(z)

dz . Lastly, they use Euler-Lagrance equation to update the φ(t, x, y):



dφ
dt = δepsilon[μdiv(

∇φ
|∇φ|)− ν− λ1(uo − c1)

2 + λ2(uo − c2)
2] = 0 ∈ (0,∞)× Ω,

φ(0, x, y) = φo(x, y) ∈ Ω (initial contour)

δε(φ)
|∇φ|

dφ
d⃗n = 0 ∈ dΩ

(A.30)

where vecn external normal to the boundary dΩ.

An other region-based techniques is the k-means clustering. Given an image y and the seg-

mented region of interest x the Bayes rule is p(x|y) ∝ p(y|x)p(x). Let assume that there are k re-

gion of interest for segmentation. Then by assuming that the distribution p(x) and p(y|x) follows

exp(−
∑

C(Vc(x))) and exp(−
∑

s(
1

2σ2
s
(ys − μs)

2)) respectively. The final posteriori probability can

define as exp(−
∑

s(
1

2σ2
s
(ys − μs)

2)−
∑

C(Vc(x))) where μs is the mean and σs the variance at a pixel

location s, clique potential Vc(x) is equal with a constant β if xs = xt or - β if xs ̸= xt with s,t are

belong to a clique C (clique is a set of sites where all the pixels are neighborhood) with t be the pixels

of a define neighborhood of s ( 31). The k-means implement using optimization techniques such us

MAP.

Graph-cut techniques

Graph cut techniques uses optimization algorithms to detect the regions with maximum flow for

binary images. The most common optimization algorithm is the MAP.
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A.0.6 Model-based techniques

An other common automatic segmentation technique is the statistical shape algorithms. These

algorithms use a predefined statistical shape model to fit in a specific patient image region of interest

(ROI). We will present bellow the mathematics of some basic model based techniques.

To create a statistical shape model, each shape in the training data determine from points (land-

marks) x = (x1, y1, z1, ......xn, yn, zn)T). From this land marks points a mean shape model can ex-

tract as μ = 1/n
∑

xi and a co-variance matrix S S = 1/(n− 1)
∑

(xi− μ)(xi− μ)T ( 43). Moreover,

model-based techniques uses the PCA formulation to compute the eigenvector and eigenvalues of S

matrix, and the model parameter vector α.

Active shape model (ASM) is a technique which initially is used to define and locate rigid ob-

jects. Cootes et al. ( 43) outlined the method of ASM. Shape model is a statistically based technique,

rely on representing the object of a flexible objects via determine labeled points. Through the statis-

tic study of the position and shape of the objects a point distribution model (PDM) is used by

the authors. Cootes et al. ( 43) demonstrates the ASM method focusing in the statistics of a set of

shapes, and the fitting techniques of the training sample. To begin with, the chosen parts of the im-

ages have to be labeled, and a set of training shapes must be defined. The alignment of the shape

by scaling rotating and translating transformation with respect to a set of axes is needed (aligning

the training set). A minimization problem between the landmarks of each training sample is solved.

Moreover, the mean shape x, co-variance matrix (S) of the shapes are computed and the eigenvector

p of S, eigenvalue λ are generated as:

Sp = λp (A.31)

x = x+ Pb (A.32)

where P is the matrix of the eigenvectors and b the vector of weights. If a Gaussian distribution is
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assumed to solve the statistic problem of the shape model, then b can be obtained by solving the

Mahalanobis distance minimization (Dm).

g = g+ Pb (A.33)

Regarding the gray level appearance modeling, the utilize of (4) is needed (g is the gray level of the

shapes). In this method, the measure of how well the model fits the profile is used to minimize the

distance from the object with gray scale intensity. A minimization problem is used based on the

Mahalanobis distance and the sum of the squares of differences R2 given by:

R2 = (g− g)T(g− g)− bTb (A.34)

Based on the flexible shape model above, Cootes et al. ( 43) define the PDM and used the ASM

for image search. To define the position, orientation, and scale of the target shape of the image,

create an instance X by solving the equation:

X = M(s, θ)[x] + Xc (A.35)

where s is the scale of the image and θ the rotating angle. The approach the authors used was to

calculate the displacement of the point required to move it to a better location, adjustment the pose

and scale of the shape parameters basing the point distribution method (PDM), and update the

model parameters. By this way to the test samples are remaining similar to those of the training set.

Deformable models is based on the elastic and deformation theory. Mcinerney et al. ( 123) eluci-

dates the deformable models, a technique to assisted medical image analysis. Deformable model is an

elastic model which deforms by ’forces’ and restricted by constraints. Thus, an external potential en-

ergy defines, based on the data of interest, to apply ’forces’ in the model to fit at the data. The most
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public deformable model is the snakes ( 134) . The snakes is a parametric template initialized inside

the image I(x,y). The template is given by:

v(s) = (x(s), y(s))T, s ∈ [0, 1] (A.36)

where x,y are the coordinate functions of the 2D image and s is the parametric domain. The shape

of the contour subject to an image is given by:

E(v) = S(v) + P(v) (A.37)

S is the internal deformation energy given by:

S(v) =
1∫

0

w1(s)|
dv
ds
|2 + w2(s)|

d2v
ds2

|2 ds (A.38)

The w1(s) controls the tension and w2(s) the rigidity of the snake.

The P(x,y) is defined by:

P(v) =
1∫

0

P(v(s)) ds (A.39)

which is a scalar potential function to align the snake with the image. For instance this can be

done choosing a potential P(x, y) = −c|∇[Gs ∗ I(x, y)]| to attract the intensity extrema of the

Image (where Gs is a Gaussian smoothing filter convoluted with the image). The extrema of the

external potential P(v) are designed to concur with the edges boundaries of the region, and other im-

age features of interest. Regarding the use of this the minimization of the energy E(v) is needed. The

equilibrium equation that the minimization problem must be satisfied is the Euler-Lagrange equa-

tion. The utilization of this model in dynamic phenomena such as anatomical structures which are
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deformable. Thus, nonrigid motion (heart cycle, etc.) could be delivered via dynamic deformable

models. For example, the dynamic snake is taking into account the inertia and damping forces (mass

density m(s), and damping density g(s) ( 123)). To solve the optimization problem, there are two

popular methods a discretization of the energy E(v), and a probabilistic framework approach. The

discretization of the energy can be delivered by using finite elements, finite differences, geometric

splines (local basis functions), and Fourier bases (global basis functions). The time derivatives of an

dynamic snake model are approximated by finite difference and explicit or implicit numerical time

integration methods. The discrete form of energy is written as:

Mü+ Cu̇+ Ku = f (A.40)

where M is the mass matrix, C is the damping matrix and f = −∇P with P the external potential.

Concerning the probabilistic framework, a maximization of a posteriori probability is used p(u|I)

based on Bayes’ theorem ( p(u|I) =
p(I|u)p(u)

p(I) ). The u represents the deformable model shape

parameters and I the image. A Boltzmann or Gibbs distribution is used. The prior probability is

defined by:

p(u) =
1
Zs

exp(−S(u)) (A.41)

and the likelihood probability by:

p(I|u) = 1
Zi

exp(−P(u)) (A.42)

The probabilistic framework can be applied in dynamic models or in system models by resulting

in Kalman filter ( 179) . Mcinerney et al. ( 123) review the application of the deformable model related

to image segmentation with deformable curves, volume image segmentation with deformable sur-
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faces, matching, motion tracking analysis, and incorporating an initial knowledge of the geometry

(pose and shape).

Bilinear models are based on the point distribution analysis theory (PDA). The main frame-

work to solve a two factor task using bilinear models is described by Tenenbaum et al. ( 178) . The

bi-linearity is defined as the effect of the observations to be linear with respect to the variable fac-

tor when the other factor remains constant (property of separability). Tenenbaum et al. ( 178) em-

ploy the terms of style and content for the variable and invariable independent factors, to subsen-

tence a set of observations. Contrary to the hierarchical factorial model, the fitting model tech-

niques are more efficient for the study of linear models (singular value decomposition SVD and the

expectation-maximization algorithm EM), due to the minimization of the stochastic approxima-

tions. Tenenbaum et al. ( 178), illustrates the classification, extrapolation, and translation problems

of a bilinear face image problem, where the style factor was the different pose of persons and the

content was the different persons. In the study of Hoogendoorn et al. ( 76) a bilinear model is cre-

ated to reconstruct the shape of the heart at discrete points of the heart cycle. A style factor was

determined based on the shape variability of inter-subject variation, and it contents the intrinsic dy-

namics of the human heart. Bilinear models separated in symmetric and asymmetric models. Fitting

of a bilinear model to an array of observations of content and style classes during the training and

testing phase is recommended ( 178). The aim of the model during the training (and approximately

in testing) phase is to minimize the squared error over the training observations of the sample for

symmetric and asymmetric models (or to maximize the likelihood estimation of the style and con-

tent parameters given the training data). The symmetric models are given by the equation:

ysck = as
T
Wkbc (A.43)

where as and bc denote a dimensionality I and J respectively, and the ysc denote a K-dimensional
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observation of style s and content class c. The K matrices Wk describe a bilinear map from style and

content vector spaces to the K-dimensional observation space. The asymmetric model is given by the

equation:

ysck =
∑
j
asjkb

c
j (A.44)

where

αsjk =
I∑

j=1
ws
ijka

s
i (A.45)

Let assume that y(t) is the training observations (y=1…,T) and let the indicator variable of equation

(4.36) be hsc(t)=1 if y(t) is in style or content class, otherwise 0. Then the total square error for the

asymmetric model fitting ( 178) is given by :

E =
T∑
t=1

S∑
s=1

C∑
c=1

hsc(t)||y(t)− Asbc||2 (A.46)

where the part Asbc is compute by solving the SVD of y of matrix estimation Y. Lastly, the total

square error for the symmetric model fitting ( 178) is given by :

E =
N∑
t=1

S∑
s=1

C∑
c=1

K∑
k=1

hsc(t)(y(t)− asTWkbc)2 (A.47)

A.0.7 Hybrid techniques

Image-driven or Hybrid techniques are a combination of computer vision, image processing, and

segmentation techniques. The segmentation of dynamic medical (cardiac) images, such as steady

state free procession (SSFP), and 3D+time short axis MRI can be performed automatically. Co-

cosco et al. ( 35) proposed a novel automatic image-driven segmentation method to deal with 3D+time

short axis MRI (cine cardiac MRI) and the handle of both left and right ventricles of the heart.
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This automatic method uses simple prior knowledge, segments heart’s ventricles dynamically, de-

creases the time consuming, and contents an automatic method for computing the region of interest

(ROI). The pipeline of this study is summarized to extract ROI by a fully automatic method. It uses

an automatic unsupervised binary voxel classification from the intensity histogram of the 4D image

within the ROI. It is applying a binary thresholding method with no adjustable parameters ( 144) ,

and it uses to the foreground of the 4D image thinning operation to label the region of the 3D+time

binary image. It uses a region growing technique based on the previous classification to compute the

difference between the extrema of the spatial volume (X-Y-Z) for each connected component, and it

uses a final region growing in the Z direction. With this process, ( 35) create an segmented 3D+time

image with labeled voxels of the MRI.
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Table A.1: Summary of ini al parameters of four RG models.

first case: Fix means values
Initial Parameters RG RGG RRG RRGG
portion first Rician model 0.5 0.5 0.25 0.25
mean value first Rician model 0 0 0 0
variance first Rician model 250 250 250 250
portion second Rician model - - 0.25 0.25
mean value second Rician model - - 50 50
variance second Rician model - - 250 250
portion first Gaussian model 0.5 0.25 0.5 0.25
mean value first Gaussian model 200 200 200 200
variance first Gaussian model 250 250 250 250
portion second Gaussian model - 0.25 - 0.25
mean value second Gaussian model - 100 - 100
variance second Gaussian model - 250 - 250

Appendix B1. Additional details of Rician Gaussian mixture model

Threshold detection component: We described the use of a Rician-Gaussian mixture model ( 175

and 164) to estimate the intensity threshold of healthy and unhealthy myocardium. We defined

a threshold value of scar in each myocardium region. We used four different mixture models of

Rician-Gaussian (RG) distributions (RG, RGG, RRG, and RRGG), and these are shown in Fig-

ure 4.9. For each LGE-MRI image, we tested each combination of RG mixture model. Then, we

sorted the mean values of each RG model from maximum to minimum. The maximum value was

defined as Gaussian threshold (TG) and the minimum as Rician threshold (TR). We assumed two

different cases of mixture model initialisation; fixed mean values (pixel inetnsity of: 0, 60, 100, 200)

and initial mean values based on Hennemuth et al. ( 72) study.

Additional details of Rician Gaussian mixture model configurations

The main description of RGMM framework is presented in chapter 4.2. Table A.A.2 shows the

initial parameters of GR models based on Hennemuth et al. ( 72) assumption extended to three and
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Table A.2: Summary of Hennemuth et al. (72) study ini al parameters of four RG models.

second case: Initial parameters based on 72

Initial Parameters RG RGG RRG RRGG
(ar) portion first Rician model freqmax freqmax freqmax freqmax
(mr) mean value first Rician model 0 0 0 0
(sr) variance first Rician model observmax observmax observmax observmax

(ar2) portion second Rician model - - ar * 0.5 ar * 0.5
(mr2) mean value second Rician
model

- - Eq. A.48 Eq. A.48

(sr2) variance second Rician model - - Eq. A.48 Eq. A.48
(ag) portion first Gaussian model 1-ar 1- ar-

0.25
1- (ar * 1.5) 0.25

(mg) mean value first Gaussian
model

Eq. A.48 Eq. A.48 Eq. A.48 Eq. A.48

(sg) variance first Gaussian model Eq. A.48 Eq. A.48 Eq. A.48 Eq. A.48
(ag2)portion second Gaussian model - 0.25 - 0.15
(mg2) mean value second Gaussian
model

- Eq. A.48 - Eq. A.48

(sg2) variance second Gaussian model - Eq. A.48 - Eq. A.48
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four mixture models (RGG, RRG, RRGG). The freqmax is the maximum frequency of each image

histogram, and observmax the maximum observation of a specific pixel intensity.



mg = freqmax + ( Imax−observmax
2 )

sg = sqrt( Imax−mg
3 )

mg2 = (mg+ mg
2 )− 1

sg2 = sg ∗ 0.8

mr2 = (mg− mg
2 )− 1

sr2 = sr ∗ 0.8

(A.48)

Lastly, we defined a threshold of the scar region based on the FWHM method of maximum

(Gaussian mean value) and minimum values (Rician mean value). The thresholds of Rician (TR)

and Gaussian (TG) distributions were used to define a linear partial volume model by:

p(x) =



0, if x ≤ TR

x−TR
TG−TR , if TR < x ≤ TG

1, if x < TG

(A.49)
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