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Chapter 1  

General introduction: Insect pollinator decline, and the need for 

standardised, systematic monitoring. 

 

1.1 Thesis outline 

Growing evidence of insect pollinator declines and the threat that these pose to ecosystem services 

has led to international push towards greater conservation and monitoring measures (IPBES, 

2016). In order to effectively monitor changes in insect pollinator population trends we need a 

shift towards long-term, large-scale, systematic monitoring, using standardised sampling 

protocols. This in turn requires a greater understanding of the biases inherent within all survey 

methods, so that we can design effective sampling protocols for future monitoring. This thesis 

will focus on the methods that we use to monitor insect pollinators, where I will concentrate on 

two main areas of research: 1) the standardisation of current survey methods, together with an 

exploration of their sampling biases; and 2) the design and exploration of novel technology as a 

route to future monitoring.  

This chapter aims to put these research aims into context. Firstly, I will explore the diversity of 

insect pollinator taxa, and give an overview of their economic and ecological importance as 

ecosystem service providers. I will then introduce the growing body of evidence surrounding 

insect pollinator decline, with a focus on wild as opposed to domestic pollinators, before moving 

onto the need for systematic monitoring of pollinator population trends in response to this. I will 

introduce the range of survey methods currently used to sample insect pollinator populations and 

give an overview of their biases in relation to monitoring. Finally, I will provide a brief summary 

of the thesis and introduce the main content of each chapter. 
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1.2 Introduction 

1.2.1 The diversity and importance of insect pollinators 

The relationship between flowering plants and their insect pollinators is one of the most important 

on Earth (Ollerton, Winfree, & Tarrant, 2011; Potts et al., 2016; Ollerton, 2017). An estimated 87 

per cent of Angiosperms, approximately 308,000 species rely upon animals for pollen transfer, 

enabling reproduction and maintain genetic diversity within their populations (Ollerton, Winfree, 

& Tarrant, 2011; Ollerton, 2017). And, of these animals, over 99 per cent are insects (Ollerton, 

2017). Insect pollinators are myriad in their diversity, representing approximately 347,487 species 

belonging to fourteen Orders, of which the Hymenoptera, Diptera, Lepidoptera, and Coleoptera 

are the most taxonomically diverse (Ollerton, 2017). But the most well-known and well-studied 

insect pollinator taxon are the bees (Hymenoptera: Apoidea). Bees are also one of the most 

individually efficient pollinator taxa (Ollerton, 2017), being almost completely reliant on nectar 

and pollen in both their adult and larval stages. This has led to a wide range of morphological 

adaptations aimed at enabling individuals to maximise pollen collection, i.e., the scopae (pollen 

brushes) found in many solitary bee species, together with high densities of branched body hair, 

for increased surface area; these adaptations also make them excellent movers of pollen between 

plants. There are approximately 20,000 species of bees worldwide, the majority of which are 

solitary in nature (Ollerton, 2017), although the social species, as epitomised by the Western 

Honeybee (Apis mellifera), are probably the best known (Smith & Saunders, 2016).  

Other members of the Hymenoptera are also highly effective pollinators. Solitary wasps, for 

example, are the sole pollinators of fig trees (Ficus spp.) (Machado et al., 2005), and are common 

pollinators of sexually-deceptive orchids (Gaskett, 2011). Social wasp species are also common 

floral visitors, and have been noted as highly efficient pollinators in certain systems (Thomson, 

2019). 

One of the most well-known non-Hymenopteran pollinator taxa are the hoverflies (Diptera: 

Syrphidae) (Rotheray & Gilbert, 2011; Jauker et al., 2012), which subsist on pollen and nectar in 

their adult stage, while the larvae are often either saprophytic or carnivorous . This dual provision 

of ecosystem services makes hoverflies popular with farmers and gardeners due to the larvae of 
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some species providing an effective defence against aphids and other plant pests, while the adults 

provide pollination services to the resulting crop (e.g. Wotton et al., 2019). However, the non-

syrphid Diptera are also effective pollinators (Ssymank et al., 2008; Orford, Vaughan, & 

Memmott, 2015; Rader et al., 2016). The roles of the Coleoptera and Lepidoptera as pollinators 

are less well researched, but no less important (Kevan & Baker, 1983; Listabarth, 2001; 

Macgregor et al., 2015). 

Other insect taxa also take part in providing pollination services to a greater or lesser degree, 

including the Thysanoptera, Hemiptera, and Dermaptera (Ollerton, 2017). Within the UK, it has 

been estimated that there are approximately 6000 species of insects capable of providing 

pollination services (Falk, S., 2018, personal communication). 

1.2.2 The economic and ecological importance of insect pollinators 

The importance of insect pollinators is often quantified in terms of their value as ecosystem 

service providers, specifically their contributions to global agriculture and food production. In 

2009, for instance, Gallai et al. (2009) estimated that global pollination services were worth €153 

billion. A more recent estimate by the Food and Agriculture Organisation placed between five 

and eight per cent of global agricultural production by volume, worth an estimated $235-577 

billion, as directly attributable to animal-mediated pollination; while around 75 per cent of our 

most important food crops, accounting for ca. 35 per cent of global agricultural production, are at 

least partially dependant on pollinators to increase yield (Klein et al., 2007; IPBES, 2016). The 

majority of the world’s staple crops may be wind-pollinated (anemophilous), i.e. wheat, maize, 

barley, oats, and rice, but there is also evidence to suggest that insect pollinators are common 

visitors to many species presumed to be entirely anemophilous, and that their visits may enhance 

crop yield (Saunders, 2018).  

Aside from crop production, domesticated pollinator species like the Western honeybee (Apis 

mellifera) provide additional sources of income to the people and communities that keep them 

(Potts et al., 2016). Honey is a valuable commercial product (García, 2018), and the income 

gained from hiring out honeybee hives for agricultural pollination services can be considerable. 

A classic example of this is the hire and transportation of over two million honeybee hives from 
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across the United States for the purposes of almond crop pollination in California (Lee, Sumner, 

& Champetier, 2019); beekeeping is also an important poverty-alleviation tool in rural and 

developing communities (Potts et al., 2016). All of which is in addition to the economic value 

provided by animal-mediated pollination in terms of employment within the agricultural sector 

(Potts et al., 2016). 

Insect pollinators also contribute to human wellbeing in a more qualitative sense. Current research 

shows that human wellbeing, including our mental health, can be positively influenced by contact 

with nature and green spaces (Millennium Ecosystem Assessment, 2005). Since nearly 90 per 

cent of all flowering plant species rely on animal-mediated pollination for reproduction, 

maintaining diverse insect pollinator communities, especially in urban centres, is only likely to 

enhance these benefits.  

1.2.3 The extent of our knowledge concerning insect pollinator decline 

The importance of insect pollinators, both from an ecological and an economic standpoint, has 

been highlighted by a growing body of evidence concerning population declines within many 

insect pollinator taxa (Biesmeijer et al., 2006; Potts et al., 2010; Carvalheiro et al., 2013; Goulson 

et al., 2015; Powney et al., 2019). This issue is prominent within the international research 

community, and has captured the public consciousness, having been addressed by the United 

Nations under both the Convention on Biological Diversity (CBD)1 and the Food and Agriculture 

Organisation (FAO) (FAO, 2008), as well as by a number of individual national governments (see 

DEFRA, 2014, 2015).  

The drivers of insect pollinator decline have been well-reviewed by several authors (Potts et al., 

2010, 2016; Gonzalez-Varo et al., 2013; Goulson et al., 2015) and primarily consist of habitat 

loss, resulting in a loss of forage and habitat connectivity at a landscape scale (Carvell et al., 2006; 

Cranmer, McCollin, & Ollerton, 2012; Goulson et al., 2015), agricultural intensification and the 

increased use of pesticides (Ollerton et al., 2014; Senapathi et al., 2015), pathogens (Szabo et al., 

 

1 https://www.cbd.int/decision/cop/?id=7179  

https://www.cbd.int/decision/cop/?id=7179
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2012; Goulson et al., 2015), climate change, and the resulting potential for phenological 

mismatches between plants and their insect pollinators (Potts et al., 2010; Potts et al., 2016), and 

the introduction of non-native pollinator species (Potts et al., 2010; Giannini et al., 2015).  

Evidence for insect pollinator declines has primarily been observed across Europe and the United 

States, with limited research available in other regions (Jamieson et al., 2019). The seminal study 

by Biesmeijer et al. (2006) gave evidence for declines in the species richness of bee and hoverfly 

assemblages within the UK, The Netherlands, and Belgium (Carvalheiro et al., 2013), between 

1950 and 1980; although these declines may have begun to slow and/or recover as of 1990 

(Carvalheiro et al., 2013; but see Van Dooren, 2016). Within the UK, these trends were further 

investigated by Ollerton et al. (2014), who indicate that we have lost thirteen bee species, and a 

further thirteen species of flower-visiting wasp, since the mid-1800s; and by Powney et al. (2019), 

who show that a third of our native wild bee and hoverfly species have declined since 1980, with 

these declines being found primarily among more specialist species (Biesmeijer et al., 2006). 

While, in the United States, wild bee abundance was modelled as having decreased across 23 per 

cent of the country, primarily corresponding to those areas with the highest concentrations of 

agricultural land (Koh et al., 2016). Bumblebee species (Bombus spp.), in particular, have 

experienced decreases in range size across the United States (Colla & Packer, 2008; Grixti et al., 

2008; Cameron et al., 2011); a pattern that has been mirrored here in the UK (Goulson, Lye, & 

Darvill, 2008). 

If declines to insect pollinator populations are allowed to continue or become more severe than is 

currently predicted, this could put the pollination services that they provide to agriculture at risk 

(Klein et al., 2007; Potts et al., 2010; IPBES, 2016). Declines are also expected to affect the 

ecosystem services that they provide to natural and semi-natural habitats. Diverse insect pollinator 

communities are key to providing pollination services to native flowering plant communities 

(Potts et al., 2010; Frund et al., 2013; Garibaldi et al., 2013), and Biesmeijer et al. (2006) have 

linked declines in wild bee and hoverfly species richness in both the UK and The Netherlands to 

declines in the distribution of flowering plant species, especially those that rely on animal-

mediated pollination for reproduction. Christmann (2019) discuss how reducing the pollination 
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services provided to wild flowering plant populations can lead to their being less able to cope 

with anthropogenic pressures like climate change due to a lack of genetic diversity.  

Several studies have linked specialism in terms of forage or preferred nesting habitat to increased 

vulnerability to the drivers of insect pollinator decline (Biesmeijer et al., 2006; Carvalheiro et al., 

2013; Powney et al., 2019); with generalist species, in particular those that utilise mass-flowering 

agricultural crops, giving rare instances of increasing population trends (see Powney et al., 2019). 

This, in turn, has been linked with increasing biotic homogenisation within bee and hoverfly 

communities since 1950 (Biesmeijer et al., 2006; Carvalheiro et al., 2013). Kleijn et al. (2015) 

found that 80 per cent of pollinator visits to crops within agricultural landscapes were carried out 

by two per cent of the bee species present, and suggest that these “super generalists” (Giannini et 

al., 2015) are unlikely to suffer from population declines due to the commonly agreed-upon 

drivers of decline. If this is the case, then we need to shift our reasoning for conserving insect 

pollinator species away from concerns regarding the economic value that they provide to 

agriculture (i.e. IPBES, 2016), and toward a more holistic approach involving the importance of 

diverse pollinator communities to the stability of natural and semi-natural habitats (Christmann, 

2019), qualitative benefits relating to human health and urban and non-urban greenspaces 

(Millennium Ecosystem Assessment, 2005; Christmann, 2019), and their intrinsic value as living 

creatures (Kleijn et al., 2015; Christmann, 2019). 

The problems associated with valuing a species based upon its economic worth to human society 

aside, there are substantial problems associated with the evidence supporting insect pollinator 

declines (see Ghazoul, 2005). Primarily, that we lack data concerning the abundance of individual 

insect pollinator populations (Ghazoul, 2005). The vast majority of studies exploring pollinator 

decline do so in terms of species occurrence, species richness, and range sizes (Biesmeijer et al., 

2006; Grixti et al., 2008; Cameron et al., 2011; Carvalheiro et al., 2013; Powney et al., 2019), but 

none of these measures, although valid, allow scientists to make any judgements regarding how 

much an individual species has declined by over a given period of time within a given area. The 

main reason for this relative lack of abundance data is a global absence of centralised, systematic 

insect pollinator monitoring schemes (but see Carvell et al., 2016). Monitoring schemes do exist 
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in several countries: the Great Sunflower Project in the United States2, and the Wild Pollinator 

Count in Australia3, for example, but these are not aimed at the collection of species-level data, 

which are critical to the investigation of population trends. The UK’s national Pollinator 

Monitoring Scheme4 (PoMS) is, to my knowledge, the only example of a nationwide, systematic 

pollinator monitoring project collecting species-level data in the world. 

Schemes like this are rare due to our relative lack of knowledge concerning the survey methods 

we use to monitor insect pollinator populations. We are still in the process of understanding the 

sampling bias inherent to different survey methods, which in turn makes it difficult to standardise 

the protocols that govern their use (Westphal et al., 2008). This process of standardisation is key 

because much of the historical data that informs studies like Biesmeijer et al. (2006), Carvalheiro 

et al. (2013), and Powney et al. (2019) were collected by members of specialist recording schemes 

like the Bees, Wasps, and Ants Recording Society (BWARS) and the Hoverfly Recording Society 

(HRS). These are valuable data, but the volunteers who collected them may have done so using 

multiple survey techniques without a standardised protocol. This makes it difficult to compare 

findings between individuals and across years, and as well as introducing sampling bias into their 

data, which is why the findings of these studies are limited to trends in species occurrence or 

range expansion or contraction, rather than changes in abundance over time (Powney et al., 2019). 

In order for monitoring schemes like PoMS to be able to analyse and compare changing trends in 

insect pollinator populations in the long-term, and at a nationwide scale, species records need to 

be collected using reliable, repeatable methods that provide objective data regarding pollinator 

diversity (Nielsen et al., 2011; Lebuhn et al., 2013; Popic, Davila, & Wardle, 2013). These 

methods need to be appropriate to the aims and design of the monitoring scheme in question, as 

well as to the diverse range of habitats and taxa being studied (Saunders & Luck, 2013). 

 

 

2 See: https://www.greatsunflower.org/ 
3 See: https://wildpollinatorcount.com/ 
4 See: https://ukpoms.org.uk/home  

https://www.greatsunflower.org/
https://wildpollinatorcount.com/
https://ukpoms.org.uk/home
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1.2.4 Insect pollinator survey methods 

There are many methods used to survey and monitor insect pollinator populations. These can be 

separated into two broad categories: active methods, where surveyors are involved in the capture 

of data or samples, and passive methods, where a range of traps are employed to collect data 

without the involvement of the surveyor (Potts, Evan, & Boone, 2005). In recent years, there have 

been many studies that have explored the sampling biases of different insect pollinator survey 

methods, as well as their performance in relation to other methods. However, there is still no 

consensus as to which method or combination of methods constitutes the most effective approach 

to pollinator monitoring. 

1.2.4.1 Pan trapping vs. transect surveys 

The two most commonly used survey methods for insect pollinator communities are pan trapping 

and transect surveys (Potts, Evan, & Boone, 2005; Westphal et al., 2008; Nielsen et al., 2011; 

Popic, Davila, & Wardle, 2013); they are also the two most commonly compared survey methods, 

in terms of their performance. Pan traps, also called Moericke traps (Cane, Minckley, & Kervin, 

2000), are a passive sampling method that uses brightly-coloured bowls, filled with water, as 

surrogate flowers to attract foraging pollinator species, which then drown in the water (Potts, 

Evan, & Boone, 2005; Westphal et al., 2008). This method is often referred to as being 

standardised due to its lack of collector bias relative to active sampling methods (Westphal et al., 

2008; Popic, Davila, & Wardle, 2013). Collector bias can be defined as the effect whereby the 

more sampling experience a surveyor has, the more insects and insect species they are likely to 

capture (Potts, Evan, & Boone, 2005), However, a wide range of different pan trapping protocols 

are used by researchers and conservation practitioners, which may result in wildly different 

findings between studies (Gonzalez et al., 2020).  

Pan trapping has been extensively researched in relation to its sources of sampling bias, primarily 

by directly comparing its results to those of other sampling methods, namely transect surveys 

(Cane, Minckley, & Kervin, 2000; Roulston, Smith, & Brewster, 2007; Westphal et al., 2008; 

Wilson, Griswold, & Messinger, 2008; Grundel et al., 2011; Nielsen et al., 2011; Popic, Davila, 

& Wardle, 2013). Its primary source of sampling bias is the combination of bowl colours used 
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(Potts, Evan, & Boone, 2005). Different insect groups have evolved specific colour preferences 

in relation to their preferred source of forage (Kirk, 1984), and research suggests that oligolectic 

bee species are captured more often in pan traps whose colours are similar to those of their 

preferred forage (Leong & Thorp, 1999). While Saunders & Luck (2013) indicate that colour 

preferences are context-driven, and may change depending on habitat or background floral colour 

(see Toler, Evans, & Tepedino, 2005). There is also research that suggests that pan traps may 

catch fewer insects in florally-rich habitats, due to competition between flowers and the bowls for 

insects (Roulston, Smith, & Brewster, 2007; Wilson, Griswold, & Messinger, 2008; Baum & 

Wallen, 2011). Pan trapping is often considered to be more cost-effective than more active survey 

methods, since it requires less in-person time within the field (Westphal et al., 2008), however, 

time is still required to sort through samples and maintain the equipment, so this view is contested 

by some authors (see Popic, Davila, & Wardle, 2013). This method also collects no behavioural 

data, providing only measures of species richness and relative abundance, in contrast to active 

methods like transect surveys and focal floral resource observations (FFOs) (Popic, Davila, & 

Wardle, 2013). 

Transect surveys, on the other hand, are an active sampling method that involve walking along 

pre-set routes at a slow pace and recording the number of insects observed. If the aim of the study 

is record species-level data, then it is also common for individuals to be captured using nets. As 

with all active methods, transect surveys are open to collector bias, and may have additional biases 

relating to the size and flight speed of individual taxa, for example Potts, Evan, & Boone (2005) 

list transect surveys as being less likely to sample smaller, faster-flying insect pollinator taxa. 

Although, unlike passive methods such as pan trapping, transect surveys do allow observations 

to be made regarding insect pollinator behaviour (Popic, Davila, & Wardle, 2013).  

This method is quite labour-intensive, requiring extensive periods of time to be spent in the field, 

together with taxonomic skills and high-levels of concentration. However, little equipment is 

needed beyond a net, and since any samples taken are not water-logged, they can be easier to 

identify (Potts, Evan, & Boone, 2005; Popic, Davila, & Wardle, 2013). 
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Direct comparisons between pan trapping and transect surveys, in terms of their performance, are 

common within the literature (Cane, Minckley, & Kervin, 2000; Roulston, Smith, & Brewster, 

2007; Westphal et al., 2008; Wilson, Griswold, & Messinger, 2008; Grundel et al., 2011; Nielsen 

et al., 2011; Popic, Davila, & Wardle, 2013). Of these, fewer studies seem to support the sole use 

of pan trapping over net sampling; aside from Westphal et al. (2008), who found that pan traps 

better represented bee species richness than either variable or standardised transect surveys. Based 

upon their results and the lack of collector bias inherent to the method, Westphal et al. (2008) 

recommend pan trapping as the most efficient sampling method for insect pollinator surveys; 

although they also acknowledge that transect surveys still constitute an effective method of 

pollinator sampling, providing that participants undergo standardised training in order to mitigate 

collector bias. Popic, Davila, & Wardle (2013), however, recommend the sole use of transect 

surveys as the most effective method of assessing diversity within pollinator assemblages, since 

they sample only  active floral visitors and therefore more accurately represent the taxa that are 

providing pollination services. However, the predominant view is that, since both methods have 

approximately opposing biases, they are likely to be complementary in regard to completing a 

full inventory of the species present within a site (see Grundel et al., 2011; Nielsen et al., 2011). 

Most of the studies that have compared the performance of pan trapping and transect surveys, 

with the exception of Popic, Davila, & Wardle (2013), did so solely in relation to their ability to 

sample bee communities (Cane, Minckley, & Kervin, 2000; Roulston, Smith, & Brewster, 2007; 

Westphal et al., 2008; Grundel et al., 2011; Nielsen et al., 2011). However, net sampling has also 

been shown to be an effective method of sampling butterflies and flies, including hoverflies (Bates 

et al., 2011; Popic, Davila, & Wardle, 2013); whereas pan traps have been shown to be effective 

at sampling flies, beetles, and thrips (Kirk, 1984; Campbell & Hanula, 2007; Popic, Davila, & 

Wardle, 2013). 

1.2.4.2 Malaise trapping 

Malaise traps consist of an open-sided tent-like structure (Matthews & Matthews, 1971; Potts, 

Evan, & Boone, 2005), and function by intercepting flying insects using a central fabric wall. 

Insects are funnelled up towards the upper-front corner of the tent, where they are captured within 
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a plastic bottle that is sometimes filled with water, in a manner similar to pan trapping (Potts, 

Evan, & Boone, 2005). Possibly the greatest source of bias concerning this method is the 

placement of the trap (Matthews & Matthews, 1971; Potts, Evan, & Boone, 2005); since they 

work by intercepting foragers they typically placed along flight corridors like hedgerows, but if 

they are poorly located then this may hamper their sampling ability. Malaise traps have been 

compared with pan trapping, in terms of their performance, with Bartholomew (2005) showing 

that pan trapping and Malaise trapping catch approximately similar species, even though pan traps 

caught a higher overall abundance. Campbell & Hanula (2007) found that pan traps performed 

better than Malaise traps in terms of both species richness and abundance, while showing that the 

addition of coloured panels to Malaise traps also increases the abundance of insects captured. The 

advantage of these traps lies in the fact that surveyors can leave them unattended for long periods 

of time with little reduction in efficacy (Bartholomew, 2005); however, regular trips must be made 

to empty the traps, or a preservative but be added to the plastic bottle in which the insects are 

captured (Bartholomew, 2005; Potts, Evan, & Boone, 2005).  

1.2.4.3 Vane trapping 

Vane traps are becoming more common within the literature concerning insect pollinator survey 

methods. Vane traps consist of a plain plastic bottle, filled with water, to which two brightly-

coloured, vertical “vanes” are attached above (Stephen & Rao, 2005). Multiple colours could be 

used, although, so far, only yellow and blue have been tested (Stephen & Rao, 2005; Kimoto et 

al., 2012; Hall & Reboud, 2019). Vane traps function in a similar way to pan traps, using bright 

colours to attract foraging insects. On their own, they have been shown capable of catching a 

diverse selection of bee species in a range of habitats (Stephen & Rao, 2005; Kimoto et al., 2012), 

with blue vane traps being the most effective (Joshi et al., 2015; Hall, 2018). While, in comparison 

to other methods, namely pan trapping, blue vane traps have been shown to catch significantly 

more insects in terms of abundance, than pan trapping (Joshi et al., 2015). In fact, Kimoto et al. 

(2012) suggest that, due to their effectiveness in initial studies, fewer vane traps may be needed 

to carry out a monitoring survey than other passive methods, like pan traps. 
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1.2.4.4 Focal floral resource observations 

Focal floral observations (FFOs), sometimes referred to as direct observations or phytometry 

(Woodcock et al., 2014), involve the recording insect pollinators as they visit focal floral patches 

(Potts, Evan, & Boone, 2005). This method, in a similar fashion to transect surveys, allows for 

the observation of foraging behaviour but also requires advanced taxonomic skills depending 

upon the level of taxonomic resolution required by the survey (Potts, Evan, & Boone, 2005); like 

transect surveys, this method is also open to collector bias (Westphal et al., 2008). FFOs perform 

poorly when compared to the results of survey methods like pan trapping and transect surveys 

(Westphal et al., 2008; Nielsen et al., 2011), but may provide a useful measure pollinator activity 

and their resulting pollination service for some insect pollinator taxa (Westphal et al., 2008).  

FFOs also provide an ideal method for use by citizen scientists (Roy et al., 2016) since the method 

requires no specialist equipment and works at varying levels of taxonomic resolution. It is also 

non-destructive, which can be an important consideration when involving citizen scientists in 

large-scale, long-term monitoring schemes (see Knapton, 2017; Barkham, 2017), especially when 

charismatic insect pollinator species like bees are a focal taxon. This is exemplified by the choices 

of the UK’s PoMS, Australia’s Wild Pollinator Count, and the Great Sunflower Project in the US 

to use FFO-based methods as part of their survey designs.  

1.2.4.5 Trap nesting 

Trap nests are a much more specialist survey tool than those listed above, as they are only useful 

for monitoring the diversity of cavity-nesting bee species, such as the Megachilidae here in the 

UK (Potts, Evan, & Boone, 2005; Westphal et al., 2008; Nielsen et al., 2011), although this 

method may also provide data on other cavity-nesting insect species, and their parasites, as well. 

These sampling ability for these traps is reliant upon their design, specifically the type of materials 

used to construct the nesting tubes, as well as the size of the tubes themselves, and only collects 

data on a subset of the overall insect pollinator community (Potts, Evan, & Boone, 2005; Westphal 

et al., 2008). However, they have been shown to be an effective survey tool when used in 

conjunction with other methods (Westphal et al., 2008). 
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1.3 The future of insect pollinator monitoring 

In addition, and in response to the scale of insect pollinator decline, survey methods utilising 

novel technology are being developed and tested (August et al., 2015). Advances in molecular 

techniques, in particular the use of metabarcoding and environmental DNA (eDNA), have opened 

up a route to non-destructively monitoring floral visitors by using the DNA traces left on flowers 

(Thomsen & Sigsgaard, 2019). Video footage may also provide a novel method of monitoring 

insect pollinator activity and diversity at flowers, in a similar fashion to FFOs, but allowing for 

footage to be rewound, replayed, and paused, which would enable small, cryptic, or fast-flying 

taxa to be better detected (Steen, Lene, & Orvedal, 2011; Gilpin, Denham, & Ayre, 2017; Steen, 

2017). While the results of several recent studies suggest that acoustics may provide a novel way 

of non-destructively classifying insect pollinator taxa (Gradišek et al., 2016; Kawakita & 

Ichikawa, 2019), as well as to passively monitor pollinator activity and pollination services (Heise 

et al., 2017; Miller-Struttmann et al., 2017; Galen et al., 2019). These methods are still in their 

infancy, and require testing in relation to more common, traditional survey techniques in order to 

gauge their importance moving forward in terms of future insect pollinator monitoring schemes. 

1.4 Thesis aims 

This thesis aims to explore the methods we use to survey insect pollinator populations, together 

with their biases, and their potential for development as part of a future national monitoring 

scheme. I will begin by focusing on one of the most commonly-used survey methods for assessing 

insect pollinator diversity: pan trapping. Pan trapping is a passive survey technique and is thus 

considered to be standardised due to its lack of collector bias. However, different protocols are 

employed by users of pan trapping worldwide, making comparisons between studies problematic; 

in addition, there is little research available to suggest which set of protocols maximises sampling 

ability. Chapter 2 will compare different pan trapping protocols in terms of their ability to sample 

bee and hoverfly populations, and make recommendations for a standardised protocol that can be 

used by future studies and monitoring schemes. Chapter 3 will build upon the theme of Chapter 

2, focusing upon the sampling biases inherent to different survey methods. All survey methods 

have their own biases that affect the composition of the samples that they collect. Studies of insect 
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pollinator-related survey methods, so far, have tried to quantify these biases by directly comparing 

methods to one-another, with pan trapping and transect surveys being the most often compared. 

But these studies lack any independent knowledge concerning the relative abundance of the insect 

populations present, and are thus of limited use. I will use a mark-release-recapture experiment 

in a closed island ecosystem to provide an independent source of relative abundance data, against 

which the rank abundance of samples collected via pan trapping and transect surveys can be 

compared, in an attempt to accurately quantify their respective sampling biases.  

I then move on to explore the development and performance of a novel method for surveying and 

monitoring insect pollinator communities: acoustics. Taxonomic skills are in decline worldwide, 

which is restricting our ability to generate reliable species-level identifications for data records, 

especially those collected by citizen scientists, and thus our ability to accurately monitor insect 

pollinator population trends. Chapter 4 will focus upon the novel use of bioacoustics to identify 

flower-visiting insect taxa at varying levels of taxonomic resolution, using the sound generated 

by their wing beats during foraging flights. Chapter 5 will build upon Chapter 4, focusing on 

the application of passive acoustic monitoring to survey for flower-visiting insects at a landscape 

scale. Using commercially available automated detection software to extract the number of 

instances of insect flight sound from soundscape recordings, which can then be compared to the 

number of insects sampled by traditional sampling methods, in order to test the performance of 

this novel survey method. I also explore the performance of the automated detection software in 

terms of both false positive and false negative error rates. 

Chapter 6 will then synthesise the findings from Chapters 2-5, and put them in the context of 

the need for future systematic, standardised monitoring in response to insect pollinator decline, 

while suggesting avenues for future research.  
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Chapter 2  

Standardising pan trapping protocols for future insect pollinator 

monitoring projects 

 

“The goal remains to design efficient and repeatable sampling methods that effectively represent 

the diversity of species and how their interactions vary over space and time.” Popic, Davila, & 

Wardle (2013). 

2.1 Introduction 

Widespread international concern over the extent of insect pollinator declines has led ecologists 

to reconsider the ways in which we monitor pollinator populations (Westphal et al., 2008; Lebuhn 

et al., 2013; Popic, Davila, & Wardle, 2013). Many of our current assessments of pollinator status 

or population trends rely upon records of species occurrence to infer changes in species richness 

or distribution over broad spatial and temporal scales (see Biesmeijer et al., 2006; Carvalheiro et 

al., 2013; Ollerton et al., 2014; Powney et al., 2019), but lack the abundance data that would allow 

us to quantify changes to pollinator populations geographically over time (Ghazoul, 2005). In 

turn, our ability to collect systematic data on the abundance of different pollinator groups is 

hampered by our relative lack of knowledge concerning the methods used to survey these 

organisms. A common consensus is lacking regarding the biases of core survey methods and how 

best to standardise the use of these methods as part of future monitoring programs (Westphal et 

al., 2008).  

Pan trapping is one of the most commonly used methods for monitoring pollinating insects, in 

particular bees and hoverflies. It is a passive technique using brightly coloured bowls, partially 

filled with water and a surfactant, into which the insects land and then drown. Unlike active 

sampling methods such as hand-netting and direct observation, pan trapping requires little effort 

or expertise from the field surveyor (although subsequent specimen identification requires both) 

and suffers from minimal collector bias (Westphal et al., 2008). However, pan traps may miss 
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gathering functionally important information at the plant-pollinator interface, including 

behavioural observations that may inform future habitat management or conservation decisions, 

particularly for rare or specialist species (Popic, Davila, & Wardle, 2013). In addition, pan trap 

samples seem to differ in composition from those collected by transect surveys, with higher 

fractions of many solitary bees but lower fractions of honeybees and bumblebees, suggesting 

potential taxonomic biases between survey methods (Roulston, Smith, & Brewster, 2007; Grundel 

et al., 2011; Wilson et al., 2016; Portman, Bruninga-Socolar, & Cariveau, 2020). 

A recent study criticised the widespread use of pan trapping within pollinator monitoring studies 

based upon concerns regarding the method’s ability to accurately estimate population abundances, 

highlighting knowledge gaps concerning the percentage of insect populations that are attracted to 

the bowls and the area over which they sample (Portman, Bruninga-Socolar, & Cariveau, 2020). 

But the common consensus is that pan traps are a robust and efficient tool for monitoring 

pollinator populations (Westphal et al. 2008; Nielsen et al. 2011; but see Popic, Davila & Wardle 

2013). A report to the Food and Agriculture Organisation of the United Nations (LeBuhn et al., 

2016), following on from earlier research by the same authors (Lebuhn et al. 2013), recommended 

pan trapping as the sole basis for a large-scale pollinator monitoring protocol (but see Tepedino 

et al. 2015). And the UK Pollinator Monitoring Scheme5 (PoMS) uses them in combination with 

transect surveys as part of a standardised insect pollinator monitoring protocol (Carvell et al., 

2016). 

But, while pan traps represent a valuable monitoring tool, the protocols governing their use are 

far from standardised. Past studies use a range of different bowl sizes and colour combinations 

and leave pan traps active over varying periods of time with little in the way of experimental 

evidence to support their choices (Saunders & Luck, 2013). Gonzalez et al. (2020) reviewed 

ninety-three studies, published between 2014 and 2018, that involving using pan traps to sample 

bee diversity. They found that bowl size varied between 96.1 and 2000 ml in volume, 7.25-34 cm 

in diameter, and 3-13.5 cm in depth. But, despite this high degree of variation, only three studies 

 

5 https://ukpoms.org.uk/home  

https://ukpoms.org.uk/home
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to date have explored the effects of bowl size on pan trap samples (Droege, 2002; Wilson et al., 

2016; Gonzalez et al., 2020), and with inconsistent results (Droege, 2002; Wilson et al., 2016) 

Similarly, once reviewed, these same 93 studies left pan traps active for between four hours and 

ten days (Supplementary Table 1.1). Yet, only a single study has explored the effects on trap 

duration of sample size (Carboni & Lebuhn, 2003), limiting their comparisons to eight- and 

twenty-four-hour time periods and leaving longer trap duration periods unexplored, despite 

several recent monitoring studies using 48-hour trap duration periods as part of their experimental 

design (see Westphal et al. 2008; Nielsen et al. 2011). There has also been little discussion of 

whether pan traps might have time- or size-specific patterns of accumulation. Gonzalez et al. 

(2020) observed that bee abundance was unaffected by bowl diameter, despite a significant 

increase in bycatch in wider bowls, but a personal observation in Wilson et al. (2016) notes that 

fewer bees were caught in pan traps that were already full of captured insects (though this effect 

had yet to be quantified). It is possible that pan traps left out for longer periods might accumulate 

fewer insects per hour due to a build-up of dead individuals decreasing the attractive nature of the 

bowls. Equally, smaller bowls might reach their carrying capacity more quickly, potentially 

necessitating different trap durations for different bowl sizes. 

The effects of bowl colour on sample size and diversity have been explored in more detail. The 

now-standard combination of yellow, blue, and white bowls has been acknowledged as capturing 

a broad, complementary sample of bee and hoverfly taxa (Bowie et al., 1999; Laubertie, Wratten, 

& Sedcole, 2006; Campbell & Hanula, 2007; Moreira et al., 2016), although other colour 

combinations have been tested. While UV-fluorescent paint is often used to further increase their 

appeal to foraging pollinators (Droege, 2001, 2002; Westphal et al., 2008). However, there is still 

some debate over which colours are most effective at sampling specific pollinator taxa, and 

whether this varies based upon the habitat in which the traps are deployed (Saunders & Luck, 

2013; Moreira et al., 2016), background floral colour (Toler, Evans & Tepedino 2005; Saunders 

& Luck 2013), or the preferred forage plants of individual pollinator species (Leong & Thorp, 

1999). 
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In addition to the physical aspects of the method, the ways in which pan traps interact with their 

surrounding environment also require further investigation. Some research suggests that pan traps 

become less attractive to their target insects in areas where floral abundance is higher (Cane, 

Minckley, & Kervin, 2000; Roulston, Smith, & Brewster, 2007; Wilson, Griswold, & Messinger, 

2008; Baum & Wallen, 2011; O’Connor et al., 2019b; Westerberg et al., 2021), an effect that has 

been attributed to increased competition between pan traps and flowers, where the latter may be 

more attractive to foraging pollinators due to evolved sensory cues (Cane, Minckley & Kervin 

2000, but see Toler, Evans & Tepedino 2005). Furthermore, during seasonal periods of increased 

flowering, pollinators may not need to travel as far in search of forage, potentially reducing their 

chances of coming into contact with individual pan traps (Baum & Wallen, 2011). However, the 

evidence supporting these hypotheses is based predominately upon broad, visual assessments of 

site-level floral abundance, with few quantitative measures of floral abundance surrounding each 

pan trapping station (but see O’Connor et al., 2019b; Templ et al., 2019; Westerberg et al., 2021). 

Furthermore, little attention has been paid to the differing levels of floral rewards associated with 

different plant species, which may have a direct effect on whether pollinators are foraging in an 

area where pan traps have been placed (but see O’Connor et al., 2019b). Additional research is 

also needed regarding the effects of weather variables, such as ambient temperature and wind 

speed, upon the ability of pan traps to sample pollinator populations (Leong & Thorp, 1999; 

Saunders & Luck, 2013). 

2.1.1 Aims 

In this study I will investigate the effects of different physical and environmental factors on the 

abundance and species richness of insect pollinator taxa (focusing specifically upon bees and 

hoverflies) sampled using pan traps within a standardised experimental design. I address five key 

questions and provide recommendations for future best-practice based upon my results.  

1. Do bowl size and trap duration affect the abundance or richness of bees and hoverflies 

sampled by pan trapping? 

2. Do different bowl colours attract different bee or hoverfly taxa? 
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3. Do bowl size and trap duration affect the sampled abundance of bee and hoverflies 

relative to the sampled abundance of invertebrate bycatch? 

4. Does the rate of capture of bees and hoverflies in pan traps change with trap duration, 

and is this change affected by bowl size? 

5. How do local biotic and abiotic factors, in particular local floral abundance, affect the 

abundance or richness of bees and hoverflies sampled by pan trapping? 

2.2 Materials & Methods 

2.2.1 Study sites 

This study was conducted between 2014 and 2015, in four sites surrounding Leeds, West 

Yorkshire, in the north of England: Meanwood Grove (Leeds, SE280381), St. George’s Field 

(University of Leeds West campus, SE292348), Spen Farm (Tadcaster, SE432408), and 

Bramham Park (Wetherby, SE49412). These four sites differed in terms of land-use and the 

diversity of floral resources present. Meanwood Grove is an area of semi-natural grassland where 

the flora was defined by a high relative abundance of Common Bird’s-foot-trefoil (Lotus 

corniculatus) and Red Clover (Trifolium pratense). St. George’s Field is an area of mown amenity 

grassland within the grounds of the University of Leeds campus. Some areas are routinely left 

unmown in order to promote biodiversity, but the overall floral species richness present was low 

and dominated by hardy species like Bellis perennis. The surveys at Spen Farm were carried out 

in two distinct habitats: an agroforestry plot and a fallow field. The agroforestry plot comprised 

an abandoned experimental site that has not been cultivated since approximately 2005 (Keesman 

et al., 2011). The vegetation consisted of rows of Poplar clones (Populus spp.) planted ten meters 

apart (between rows), with a ground cover consisting of grasses combined with species like Spear 

Thistle (Cirsium vulgare) and Common Ragwort (Senecio jacobaea). The fallow field had been 

left uncultivated for an unknown period of time prior to these surveys; it contained a high floral 

species richness defined by a high relative abundance of Borage (Borago officinalis). The 

Bramham Park site consisted of a managed wildflower meadow with a high floral richness, 

comprising a number of common grassland species (Rose & O’Reilly, 2006). 
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Nineteen surveys were carried out during this period: six between July and September 2014, and 

thirteen between June and October 2015. Surveys were planned so that high and low floral 

diversity sites would receive an approximately equal number of surveys, although the four 

individual sites hosted an unequal number of surveys overall. The designations of high or low, in 

terms of floral diversity, were subjective and made on site after a visual scan of the diversity of 

flowering plant species present. Meanwood Grove (designated a low resource site) was sampled 

once, and St. George’s Field (designated a low resource site) was sampled twice. At Spen Farm, 

the agroforestry site (designated a low resource site) was sampled eight times, and the fallow field 

site (designated a high resource site) was sampled five times. Bramham Park (designated a high 

resource site) was sampled three times. For a list of sampling dates for each survey, see 

Supplementary Table 1.2. 

2.2.2 Pan trapping protocol 

Surveys took place on fine days with an ambient temperature of 15˚C or higher and no sustained 

rainfall. Maximum day-time temperature (˚C), rainfall (mm), and average wind speed (mph) were 

recorded each day using data from the UK Met Office MIDAS station at Bramham (SE 448416), 

accessed via the Centre for Environmental Data Analysis (CEDA) archive (Met Office, 2020). 

During each survey, four bowl sizes: 28ml (1 fluid oz.), 57ml (2 fluid oz.), 156ml (5.5 fluid oz.), 

and 284ml (10 fluid oz.), were tested using three trap duration periods: 7 hours, 24 hours, and 48 

hours, and four bowl colours: UV-fluorescent blue, white, yellow, and pink (Sparvar 

Leuchtfarbe). The combination of UV-fluorescent blue, white, and yellow painted bowls has been 

noted as highly attractive to insect pollinators (Westphal et al., 2008), and pink was chosen as 

another naturally prevalent colour of insect-pollinated flowers. The spectral characteristics of 

each colour bowl were investigated using a spectrophotometer (Shimadzu UV-3101 PC UV-VIS-

NIR Scanning Spectrometer). 

Each pan trapping station consisted of four bowls of one size (one of each colour) attached to a 

wooden stand and raised so that the bowls were level with the surrounding flowering vegetation. 

There were six heights to which the wooden stand could be raised, starting at approximately 10cm 

above ground level and increasing in 10cm increments to 60cm above ground level. Each of the 
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three trap duration periods involved four pan trapping stations, one for each differently sized set 

of coloured bowls (Fig. 2.1).  

Figure 2.1 A visual representation of the experimental set-up over each three-day sampling 

period. Each set of four coloured circles represents an active trapping station (one set for 

each bowl size), and each grey set of four circles represents a trapping station that has been 

collected. 

 

Each pan trapping survey lasted for forty-eight hours, spread across three calendar days (Fig. 2.1). 

On the morning of day one the pan trapping stations lasting seven hours and forty-eight hours 

were set out along a 100m linear transect. In one site: Meanwood Grove, the pan trapping stations 

were instead set out across areas that were representative of the types of vegetation present, due 

to the area available for sampling. At least ten meters was left between neighbouring pan trapping 

stations to limit competition between them (Droege et al., 2010), and the placement of specific 

pan trapping stations (as designated by bowl size) was randomised. The four bowl sizes contained 

set volumes of water: 15 ml (28ml), 20 ml (57ml), 85 ml (156ml), and 180 ml (284ml), plus one 

drop of un-scented detergent (Ecover) as a surfactant. This left an unequal amount of space 

between the water and the rim of the bowl between different bowl sizes: approximately 1.5cm 

(28ml), 1.7cm (57ml), 2.2cm (156ml), and 2.4cm (284ml). After seven hours, the 7-hour pan 

trapping stations were collected, and the contents preserved separately by colour in 70% ethanol 

for later identification. On the morning of day two, the 24-hour pan trapping stations were placed 

in the same locations as those previously occupied by the 7-hour pan trapping stations. On the 

morning of day three, both the 24- and 48-hour pan trapping stations were collected, and the 

specimens preserved. 
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Bees (Hymenoptera: Apoidea) and hoverflies (Diptera: Syrphidae), were separated from the other 

invertebrate specimens (hereafter termed as bycatch), pinned, and identified to species following 

the keys in Stubbs & Falk (2002) and Falk (2015). Some species were aggregated together due to 

recognised difficulties in achieving reliable species-level identifications, these were: 1) Bombus 

terrestris and B. lucorum; and 2) Lasioglossum calceatum and L. albipes. 

The average height of the vegetation (cm) surrounding each trapping station was recorded, using 

five haphazardly selected points within a one-meter radius on the first day of sampling during 

each survey. Floral abundance within a two-meter radius was also assessed on the first day of 

sampling, following the methodology presented in Baude et al. (2016) and O’Connor et al. 

(2019b). The number of flowers of each species was counted and multiplied by the estimated 

volume of nectar sugar produced per flower per 24 hours present in Baude, Kunin, & Memmott 

(2015), thus accounting for the differing levels of floral reward produced by different plant 

species. For plants with multiple florets clustered into spikes, racemes, or capitula, such as 

members of the Asteraceae, each flower “head” was counted as a single floral unit (Carvell et al., 

2007). Three representative floral units were then taken from each site and the number of 

individual florets counted and averaged to provide a mean number of flowers per floral unit. This 

value could then be standardised into a volume of daily nectar sugar produced per floral unit per 

day. For further information concerning how each floral species was classified in terms of what 

constituted a floral unit, together with the average number of florets per floral unit, and the 

estimated volume of nectar sugar produced per floret per day and per floral unit per day, see 

Supplementary Table 1.3. For a breakdown of the relative abundance of floral species within a 

two-meter radius of each pan trapping station per survey visit, see Supplementary Table 1.4. 

2.2.3 Data analysis 

All data analyses were performed using R, version 3.2.3 (R Core Team, 2016), and version 4.0.5 

(R Core Team, 2021). 

Bee and hoverfly species were combined into five overlapping taxonomic groups for analysis: 

bumblebees, solitary bees (any non-Bombus/non-Apis species), total bees, hoverflies, and total 

pollinators (total bees + hoverflies). Data on honeybees (Apis mellifera. L.) were included in the 
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“total bees” category, but since the number of honeybees sampled was small (N = 31) they were 

not treated as their own category for further analysis. Some individuals could not be identified to 

species-level and were therefore not included in any species richness analyses but were included 

in the abundance analyses for their pollinator group.  

Generalized linear mixed-effects models (GLMMs) were created using the package glmmADMB 

(Fournier et al., 2012; Skaug et al., 2016). A mixed-effects model structure allowed me to account 

for naturally occurring variation in bee and hoverfly abundance between survey visits, both 

between and within sites, by using survey number (1-19) as a categorical random effect within 

each model (1|survey number). Given that each site received an unequal number of visits, a nested 

random term (1|site/survey number) would have been inappropriate. A Poisson error structure and 

a log link were used to analyse count data. Where data were overdispersed, a negative binomial 

error structure was used. One set of models, focusing on proportional data, used a binomial error 

structure and this is specified below in section 1.2.3.2. Histograms of both abundance and species 

richness data from several pollinator groups showed high proportions of zeros, so the 

zeroInflation argument was included in each model to correct for the presence of any false zeros 

(Zuur et al., 2009). Model selection between zero-inflated and non-zero-inflated models was 

carried out using the Akaike Information Criterion (AIC). 

Model selection was performed via model averaging using the R package MuMIn (Barton, 2016) 

and the approach laid out by (Grueber et al., 2011); variables were not standardised prior to 

analysis. Each global model was dredged using the pdredge function, and all models within 

2ΔAICC of the best model were averaged. The zero method or “full” coefficients are listed in the 

results (Grueber et al., 2011; Nakagawa & Freckleton, 2011), and explanatory variables were 

considered significant where the 95 percent confidence intervals surrounding the parameter 

estimate did not include zero (Nakagawa & Cuthill, 2007; see Martins, Gonzalez, & Lechowicz, 

2015). Results were visualised by plotting the raw data using the geom_bar and geom_smooth 

functions in R package ggplot2 (Wickham, 2009), alongside the viridis package (Garnier et al., 

2021) 
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2.2.3.1 Effects of bowl size, trap duration, and bowl colour on the abundance and 

species richness of bees and hoverflies sampled by pan trapping 

Bowl size was broken down into two variables: bowl surface area and bowl depth (Table 2.1), as 

preliminary data exploration indicated that these dimensions may explain more variation in 

sampled pollinator diversity than bowl volume alone. An interaction between bowl colour and the 

proportion of similarly coloured flowers within a two-meter radius was also included in these 

models. Poisson GLMMs were used to assess the effects of bowl surface area, bowl depth, trap 

duration period, a bowl surface area x bowl depth x trap duration interaction term, and bowl colour 

on pollinator abundance and species richness. 

Global model example 1: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑜𝑟 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 ~ 𝑏𝑜𝑤𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 ∗ 𝑏𝑜𝑤𝑙 𝑑𝑒𝑝𝑡ℎ ∗ 𝑡𝑟𝑎𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

+ 𝑏𝑜𝑤𝑙 𝑐𝑜𝑙𝑜𝑢𝑟 + 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + (1|𝑠𝑢𝑟𝑣𝑒𝑦 𝑛𝑢𝑚𝑏𝑒𝑟)  

Table 2.1 The dimensions of each size of bowl used in this experiment: total bowl volume 

(ml), bowl surface area (cm2) and bowl depth (cm). 

Bowl volume (ml) Bowl surface area (cm2) Bowl depth (cm) 

28 15.90 3.30 

57 30.19 3.10 

156 44.18 6.00 

284 109.36 5.50 

 

2.2.3.2 Effects of bowl size and trap duration on the proportion of bees and 

hoverflies relative to other invertebrates (bycatch) sampled by pan 

trapping 

The presence of bycatch in a pan trap may be affecting the number of pollinators attracted to the 

bowl. Binomial GLMMs were used to assess the effects of bowl surface area, bowl depth, trap 

duration period, and a bowl surface area x bowl depth x trap duration interaction term, on the 

abundance of pollinators relative to the abundance of bycatch. This variable was created by 

combining the number of pollinators of a given category (e.g., total bees) and the corresponding 

counts for non-members of this category (e.g., all non-bees, including hoverflies) using the cbind 
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command in R. I was unable to analyse species richness data in this manner since I was unable to 

identify the bycatch to species. 

Global model example 2: 

𝑃𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑜𝑟 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑐𝑏𝑖𝑛𝑑(𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑜𝑟 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒, 𝑛𝑜𝑛 − 𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑜𝑟 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒) 

𝑃𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑜𝑟 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 ~  𝑏𝑜𝑤𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 ∗ 𝑏𝑜𝑤𝑙 𝑑𝑒𝑝𝑡ℎ ∗ 𝑡𝑟𝑎𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

+ 𝑏𝑜𝑤𝑙 𝑐𝑜𝑙𝑜𝑢𝑟 + 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + (1|𝑠𝑢𝑟𝑣𝑒𝑦 𝑛𝑢𝑚𝑏𝑒𝑟) 

2.2.3.3 Effects of bowl size and trap duration upon the rate of bee and hoverfly 

capture per hour by pan trapping 

Since bees and hoverflies are diurnal, pan traps are only actively sampling for these groups for a 

portion of the time when bowls are left out for 24- or 48-hour periods. The number of daylight 

hours each pan trapping station was “active” for was calculated using Leeds-specific data for civil 

dawn and dusk. A natural log transformation was then applied to these data before they were 

incorporated into a set of Poisson GLMMs as an offset term (Zuur et al., 2009); allowing for the 

rate of bee or hoverfly capture to be explored across my three different trap duration periods. 

These GLMMs were used to assess the effects of bowl surface area, bowl depth, trap duration 

period, and a bowl surface area x bowl depth x trap duration interaction term on pollinator 

abundance and species richness. The offset was constrained to be present in every model run 

during the model averaging process. 

Global model example 3: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑜𝑟 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 ~  𝑏𝑜𝑤𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 ∗ 𝑏𝑜𝑤𝑙 𝑑𝑒𝑝𝑡ℎ ∗ 𝑡𝑟𝑎𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

+ 𝑏𝑜𝑤𝑙 𝑐𝑜𝑙𝑜𝑢𝑟 + 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

+ 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝑛𝑜.  𝑜𝑓 𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠)) + (1|𝑠𝑢𝑟𝑣𝑒𝑦 𝑛𝑢𝑚𝑏𝑒𝑟) 

2.2.3.4 Effects of local environmental variation on the abundance and species 

richness of pollinators sampled by pan trapping 

The following environmental variables were included as additional fixed effects in all of the 

models described above: maximum daytime temperature (˚C), daily rainfall (mm), average wind 

speed (mph), and the average vegetation height surrounding each trapping station (cm). The year 
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and month in which sampling took place were included to account for temporal variation in 

sampling effort.  

Both wind speed and temperature showed evidence of non-linear patterns when plotted against 

bee and hoverfly abundance and richness. Maximum daytime temperature ranged between 15.3 

and 30.5°C during this experiment, with a median value of 20.1°C across all survey visits. Bee 

and hoverfly samples peaked between approximately 17 and 22°C, dropping sharply after 

maximum temperatures rose past 23°C (see Supplementary Fig. 1.1 & 1.2). Wind speed ranged 

between 3.5 and 19.7mph during this experiment, with a median value of 9mph across all survey 

visits. Bee and hoverfly samples showed much less sharply delineated trends in relation to average 

wind speed than maximum day-time temperature (see Supplementary Fig. 1.3 & 1.4), with a broad 

peak between approximately 7 and 12mph in most groups. In the solitary bee group, this peak 

extended from the 3.5mph and started dropping after the average wind speed increased past 

10mph. While in the total pollinator, total bee, and hoverfly groups, an additional peak in samples 

between 3.5 and 6mph was observed. In all groups, samples dopped sharply once the average 

wind speed rose to more than 15mph. To account for these patterns, second-order polynomial 

terms were fitted to both the maximum daytime temperature and average wind speed variables, 

using the poly function in R, to account for these patterns. 

Finally, each site included two proxies of floral abundance. Firstly, the volume of nectar sugar 

produced per 24 hours (µl) within a two-meter radius of each individual pan trapping station was 

averaged across all pan trapping stations per survey. This mean was used as a proxy for floral 

rewards present at the scale of the survey site. Secondly, for each survey, this mean was subtracted 

from the values for daily nectar sugar production within a two-meter radius of each individual 

pan trapping station (pan trapping station-scale nectar sugar production – site-scale mean nectar 

sugar production), providing a positive measure of local daily nectar sugar production within two 

meters of each pan trapping station relative to the average daily nectar sugar production across 

the site. This derived variable was used instead of the raw value for nectar sugar production within 

two meters of each pan trapping station because it reduced the high level of collinearity present 

between the raw values and their mean within each model. I applied a natural log transformation 
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to both nectar variables to correct for a strong right-hand skew in the data. For a breakdown of 

the total volume of nectar sugar produced per day within a two-meter radius of each pan trapping 

station per survey visit, along with the mean value averaged across all pan trapping stations per 

survey, see Supplementary Table 1.5. 

Global model example 4: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑜𝑟 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 ~  𝑏𝑜𝑤𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 ∗ 𝑏𝑜𝑤𝑙 𝑑𝑒𝑝𝑡ℎ ∗ 𝑡𝑟𝑎𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

+ 𝑏𝑜𝑤𝑙 𝑐𝑜𝑙𝑜𝑢𝑟 + 𝑝𝑜𝑙𝑦(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒 = 2)

+ 𝑝𝑜𝑙𝑦(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑, 𝑑𝑒𝑔𝑟𝑒𝑒 = 2)

+ log(𝑚𝑒𝑎𝑛 𝑛𝑒𝑐𝑡𝑎𝑟 𝑠𝑢𝑔𝑎𝑟 𝑝𝑒𝑟 𝑠𝑢𝑟𝑣𝑒𝑦 𝑠𝑖𝑡𝑒 + 1)

+ I(log(pan trapping station − scale nectar sugar production)

− log(𝑚𝑒𝑎𝑛 𝑛𝑒𝑐𝑡𝑎𝑟 𝑠𝑢𝑔𝑎𝑟 𝑝𝑒𝑟 𝑠𝑢𝑟𝑣𝑒𝑦 𝑠𝑖𝑡𝑒 + 1)) + 𝑑𝑎𝑖𝑙𝑦 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙

+ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑌𝑒𝑎𝑟 + 𝑀𝑜𝑛𝑡ℎ + (1|𝑠𝑢𝑟𝑣𝑒𝑦 𝑛𝑢𝑚𝑏𝑒𝑟) 

2.3 Results 

Nineteen pan trapping surveys were carried out during this experiment, sampling 591 individual 

pollinators, comprising 36 species of bee and 24 species of hoverfly (Table 2.2). Bumblebees 

(Bombus spp.) were the most abundant pollinator genus in the pan trap samples, representing 48% 

of all bees and 33% of all pollinators. The Halictidae (Halictus, Lasioglossum, and Sphecodes 

spp.) accounted for 82% of all solitary bees and 37% of all bees. Hoverflies constituted 31% of 

all pollinators sampled. By-catch, consisting of 6351 Diptera, 37 Lepidoptera, 687 wasps (both 

social and solitary), 323 Coleoptera, 368 Hemiptera, and 619 other invertebrates, represented over 

90% of all invertebrates sampled by the pan traps.  

For a full breakdown of the relative abundance of bee and hoverfly species sampled by site, 

together with the relative abundance of different insect orders present within the bycatch sampled 

by site, see Supplementary Tables 1.6 & 1.7. 
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Table 2.2 Bee and hoverfly species sampled by pan trapping during this experiment. 

Pollinator categories 

Solitary bees Honeybees Hoverflies 

Species N Species N Species N 

Andrena (unknown sp.) 1 Apis mellifera 31 Unknown Syrphid spp. 3 

Andrena bicolor 6 
  

Cheilosia albitarsis 2 

A. bimaculata 1 Bumblebees Dasysyrphus albostriatus 2 

A. chrysosceles 1 Species N Episyrphus balteatus 45 

A. falsifica 1 Bombus (unknown spp.) 3 Eristalis (unknown sp.) 1 

A. haemorrhoa 1 Bombus hortorum 10 Eristalis arbustorum 11 

A. minitula 2 B. hypnorum 1 E. pertinax 5 

A. semilaevis 4 B. lapidarius 69 E. tenax 14 

A. subopaca 2 B. pascuorum 17 Eupeodes corollae 1 

Halictus (unknown spp.) 3 B. pratorum 7 Helophilus (unknown spp.) 2 

Halictus rubicundus 3 B. rupestris 8 Helophilus hybridus 1 

H. tumulorum 43 B. soroeensis 3 H. pendulus 43 

Heriades truncorum 1 B sylvestris 2 H. trivittatus 1 

Hylaeus communis 1 B. terrestris/lucorum 60 Melanostoma mellinum 6 

H. hyalinatus 1 B. vestalis 17 M. scalare 1 

Lasioglossum (unknown sp.) 1 
  

Merodon equestris 1 

Lasioglussum calceatum/albipes 40 
  

Neoascia podagrica 8 

L. fulvicorne 3 
  

Parasyrphus nigritarsis 1 

L. leucopus 33 
  

Platycheirus albimanus 1 

L. morio 2 
  

P. manicatus 1 

L. smeathmanellum 19 
  

P. nielseni 1 

L. villosulum 7 
  

Rhingia campestris 2 

Megachile willughbiella 1 
  

Sphaerophoria reuppellii 1 

Osmia aurulenta 1 
  

Syritta pipiens 7 

O. leaiana 2 
  

Syrphus ribesii 15 

Sphecodes ephippius 1 
  

S. vitripennis 3 

Stelis punctulatissima 1 
  

Xylota segnis 2 

Total 182   197   181 
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2.3.1 Effects of bowl size and trap duration on the abundance and species 

richness of bees and hoverflies sampled by pan trapping 

Increasing bowl surface area had a weak but significant positive effect upon sampled abundance 

within the total pollinator (0.073, 95% CI [0.018, 0.127]), bumblebee (0.007 [0.002, 0.012]), and 

hoverfly groups (0.122 [0.022, 0.221]), and upon bumblebee species richness (0.005 [0.001, 

0.009]) (Fig. 2.2A & B). In each of these groups, the bowls with the largest surface area (284ml: 

109.36 cm2) sampled the most individuals and/or the most species. 

Bowl depth had no significant effect upon sampled abundance or species richness within any 

group, but a weak significant two-way interaction between bowl surface area and bowl depth 

upon sampled abundance within the total pollinator (-0.012 [-0.022, -0.001]) and hoverfly groups 

(-0.020 [-0.039, -0.001]), indicates that as bowl depth increased the positive effect of an increasing 

surface area decreased. 

Pan traps left out for 24 hours sampled significantly greater bumblebee richness (0.883 [0.309, 

1.457]) than those left out for 7 hours (Fig. 2.2D). Pan traps left out for 48 hours sampled 

significantly greater total pollinator abundance (0.531 [0.279, 0.783]) and richness (0.459 [0.226, 

0.692]), total bee abundance (0.600 [0.318, 0.882]) and richness (0.598 [0.333, 0.862]), and 

bumblebee abundance (1.479 [0.143, 2.816]) and richness (1.226 [0.701, 1.752]), than pan traps 

left out for 7 hours (Fig. 2.2C & D).  

The model averaging process doesn’t allow for a post-hoc analysis of all possible pairwise 

comparisons between different levels of categorical explanatory variables. Therefore, in terms of 

pan trapping duration I can only present the results of pairwise comparisons between the 7- and 

24-hour pan traps, and the 7- and 48-hour pan traps (see Supplementary Table 1.8 for all available 

pairwise comparisons). 

2.3.2 Effects of bowl colour on the abundance and species richness of bees 

and hoverflies sampled by pan trapping 

Spectrographic analysis of the different bowl colours showed peaks in reflectance at ca. 470nm 

for the blue bowls, 440nm and 620nm for the pink bowls, and 520nm for the yellow bowls, while 
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the white bowls reflected across the whole visual spectrum (Fig. 2.3). The yellow bowls were the 

only colour to show some limited UV reflectance, between 275 and 320nm. 

Figure 2.2 A) Mean abundance of each pollinator group sampled per bowl (TP: total 

pollinators, TB: total bees, BB: bumblebees, SB: solitary bees, and HF: hoverflies) ± 95% 

confidence intervals, plotted against bowl surface area (cm2); B) Mean species richness of 

each pollinator group sampled per bowl ± 95% confidence intervals, plotted against bowl 

surface area (cm2); C) Mean abundance of each pollinator group sampled per bowl ± 95% 

confidence intervals, plotted against trap duration (hours); D) Mean species richness of each 

pollinator group sampled per bowl ± 95% confidence intervals, plotted against trap 

duration. 

 

The yellow bowls sampled significantly greater total pollinator abundance and species richness, 

while the pink bowls sampled the lowest (Table 2.3; Fig. 2.4A & B). The blue bowls sampled a 

significantly greater abundance and richness of both total bees and bumblebees, whereas solitary 

bee abundance and richness was significantly higher in both the yellow and white bowls (Table 

2.3; Fig. 2.4A & B). Hoverfly abundance and richness was significantly greater in the yellow 

bowls (Table 2.3; Fig. 2.4A & B).  

A B 

D C 
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Figure 2.3 The percentage reflectance values for the UV-fluorescent yellow, blue, pink, and 

white (black line) pan traps. 

 

Figure 2.4 A) Mean abundance of each pollinator group sampled per bowl ± 95% confidence 

intervals, plotted against bowl colour; B) Mean species richness of each pollinator group 

sampled per bowl ± 95% confidence intervals, plotted against bowl colour. 

 

 

As previously mentioned, the model averaging process doesn’t allow for a post-hoc exploration 

of all possible pairwise comparisons between different levels of categorical explanatory variables. 

Therefore the pairwise comparisons shown in Table 2.3, combined with the trends shown in Fig. 

A 

B 
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2.4A & B, are my only methods of appraising the differences in samples between differently 

coloured bowls. 

Table 2.3 Model averaged parameter estimates (ΔAICC <2) and their respective 95% 

confidence intervals for the effects of bowl colour on the sampled abundance and species 

richness of each pollinator group. Bold text refers to significant parameter estimates, where 

the respective 95 percent confidence intervals do not include zero. 

   Parameter estimates ± 95% CI 

Group Parameter  Abundance Richness 

Total pollinators Intercept  -4.964 [-6.830, -3.097] -3.862 [-5.720, -2.005] 

 Bowl colour† Pink -0.862 [-1.186, -0.539] -0.733 [-1.039, -0.428] 

  White -0.322 [-0.608, -0.037] -0.200 [-0.459, 0.060] 

  Yellow 0.458 [0.206, 0.711] 0.424 [0.200, 0.648] 

Total bees Intercept   -4.842 [-6.697, -2.986] -4.087 [-5.648, -2.527] 

 Bowl colour Pink -0.981 [-1.339, -0.622] -0.778 [-1.110, -0.446] 

  White -0.421 [-0.736, -0.106] -0.279 [-0.563, 0.005] 

  Yellow -0.171 [-0.473, 0.130] -0.145 [-0.419, 0.128] 

Bumblebees Intercept   -6.498 [-8.538, -4.458] -5.353 [-7.317, -3.389] 

 Bowl colour Pink -1.438 [-1.915, -0.961] -1.195 [-1.662, -0.728] 

  White -1.185 [-1.634, -0.736] -0.930 [-1.353, -0.506] 

  Yellow -1.283 [-1.748, -0.819] -1.240 [-1.715, -0.765] 

Solitary bees Intercept   -4.051 [-6.794, -1.308] -3.506 [-5.946, -1.065] 

 Bowl colour Pink -0.310 [-0.861, 0.241] -0.205 [-0.768, 0.359] 

  White 0.531 [0.079, 0.982] 0.511 [0.033, 0.989] 

  Yellow 0.968 [0.547, 1.389] 0.909 [0.461, 1.356] 

Hoverflies Intercept   -6.782 [-10.156, -3.407] -6.809 [-10.522, -3.097] 

 Bowl colour Pink -0.165 [-0.918, 0.588] -0.470 [-1.261, 0.321] 

  White 0.389 [-0.288, 1.067] 0.223 [-0.435, 0.881] 

    Yellow 2.103 [1.537, 2.669] 1.812 [1.283, 2.342] 
† blue bowls are the reference category 

 

2.3.3 Effects of bowl size and trap duration on the proportion of bees and 

hoverflies relative to other invertebrates (bycatch) sampled by pan 

trapping 

The mean abundance of bycatch sampled in the 28ml (1 fluid oz.), 57ml (2 fluid oz.), 156ml (5.5 

fluid oz.), and 284ml (10 fluid oz.) pan traps was: 3.45 ± SE 0.26, 7.65 ± 0.55, 7.98 ± 0.66, and 

19.30 ± 1.49, respectively. The abundance of bycatch sampled increased significantly as bowl 

surface area increased (0.124 [0.095, 0.152]) and as bowl depth increased (0.577 [0.402, 0.753]). 

However, a weak but significant negative interaction between bowl surface area and bowl depth 
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indicates that fewer invertebrates were sampled in wider bowls when their depth increased (-0.021 

[-0.026, -0.015]). 

The proportion of bumblebees in the pan trap samples decreased significantly as bowl surface 

area increased (-0.133 [-0.228, -0.039]) (Fig. 2.5A), while the proportion of hoverflies decreased 

significantly as bowl depth increased (-0.278 [-0.444, -0.112]) (Fig. 2.5B). There was also a weak 

positive interaction between surface area and depth in the bumblebee group (0.023 [0.006, 

0.041]), indicating that a significantly greater proportion of bumblebees were sampled in bowls 

with larger surface areas as their depth increased. 

The mean abundance of bycatch sampled in the 7, 24, and 48-hour pan traps was: 5.52 ± 0.41, 

9.50 ± 0.81, and 14.00 ± 1.08, respectively. In terms of pan trap duration, the abundance of 

bycatch sampled in the 24-hour pan traps (0.422 [0.177, 0.667]) and 48-hour pan traps (0.782 

[0.462, 1.102]), was significantly higher when compared to pan traps left out for 7 hours. 

The proportion of total pollinators (-0.368 [-0.642, -0.095]) and solitary bees (-1.125 [-1.599,          

-0.651]) was significantly lower in the 24-hour pan traps than in the 7-hour pan traps (Fig. 2.5C). 

Meanwhile, the proportion of bumblebees was significantly greater in the 48-hour pan traps than 

in the 7-hour pan traps (2.459 [0.799, 4.119]), while the proportion of solitary bees was 

significantly lower in the 48-hour pan traps (-0.787 [-1.215, -0.360]) (Fig. 2.5C). See 

Supplementary Table 1.9 for all available pairwise comparisons between the three trap duration 

periods. 

There was also a significant negative interaction between depth and trap duration in the 

bumblebee group, with smaller proportions of bumblebees being sampled in deeper bowls after 

48-hours than after 7-hours (-0.492 [-0.838, -0.146]). 
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Figure 2.5 A) Mean proportion of each pollinator group sampled per bowl (TP: total 

pollinators, TB: total bees, BB: bumblebees, SB: solitary bees, and HF: hoverflies) ± 95% 

confidence intervals, plotted against bowl surface area (cm2); B) Mean proportion of each 

pollinator group sampled per bowl (TP: total pollinators, TB: total bees, BB: bumblebees, 

SB: solitary bees, and HF: hoverflies) ± 95% confidence intervals, plotted against bowl 

depth (cm); C) Mean proportion of each pollinator group sampled per bowl (TP: total 

pollinators, TB: total bees, BB: bumblebees, SB: solitary bees, and HF: hoverflies) ± 95% 

confidence intervals, plotted against trap duration (hours).  

A 

B 

C 
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2.3.4 Effect of bowl size and trap duration upon the rate of bee and 

hoverfly capture per hour by pan trapping 

Pan traps left out for 24 hours sampled significantly lower total pollinator abundance (-0.733          

[-1.007, -0.459]) and richness (-0.780 [-1.035, -0.525]), total bee abundance (-0.821 [-1.132,            

-0.510]) and richness (-0.808 [-1.107, -0.508]), and hoverfly abundance (-0.743 [-1.463, -0.022]), 

per daylight hour than those left out for 7 hours (Fig.2.6A & B). 

Figure 2.6 A) Mean abundance of each pollinator group sampled per daylight hour per bowl 

(TP: total pollinators, TB: total bees, BB: bumblebees, SB: solitary bees, and HF: hoverflies) 

± 95% confidence intervals, plotted against trap duration (hours); B) Mean species richness 

of each pollinator group sampled per daylight hour per bowl ± 95% confidence intervals, 

plotted against trap duration (hours). 

 

Pan traps left out for 48 hours sampled significantly lower total pollinator abundance (-0.963          

[-1.218, -0.708]) and richness (-1.037 [-1.270, -0.804]), total bee abundance (-0.921 [-1.206,            

-0.637]) and richness (-0.928 [-1.193, -0.662]), solitary bee abundance (-3.151 [-4.732, -1.570]) 

and richness (-2.640 [-4.866, -0.414]), and hoverfly abundance (-1.600 [-2.509, -0.691]) and 

richness (-1.651 [-2.654, -0.648]), per daylight hour than those left out for 7 hours (Fig. 2.6A & 

B). See Supplementary Table 1.10 for all available pairwise comparisons between the three trap 

duration periods. 

Two weak significant two-way interaction terms, between trap duration and bowl surface area 

and trap duration and bowl depth, indicate that leaving a pan trap active for 48 hours reduces the 

positive effect of increasing bowl surface area (-0.017 [-0.032, -0.002]), while reducing the 

A B 



36 

 
negative effect of bowl depth (0.619 [0.135, 1.103]), in terms of solitary bee abundance sampled 

per daylight hour. 

2.3.5 Effects of local environmental variation on the abundance and species 

richness of pollinators sampled by pan trapping 

As the nectar sugar production per floret per day at the scale of the site increased, there were 

significant increases in total pollinator abundance (0.164 [0.101, 0.227]) and richness (0.138 

[0.077, 0.198]), total bee abundance (0.230 [0.143, 0.318]) and richness (0.160 [0.075, 0.244]), 

bumblebee abundance (0.156 [0.017, 0.295]), and solitary bee abundance (0.241 [0.126, 0.356]) 

and richness (0.177 [0.070, 0.285]) (Fig. 2.7C & D). Similarly, as the proxy for nectar sugar 

production per floret per day at the scale of the pan trapping station (pan trap-scale nectar sugar 

production – site-scale nectar sugar production) increased, there were significant increases in total 

pollinator abundance (0.075 [0.024, 0.126]) and richness (0.071 [0.023, 0.119]), total bee 

abundance (0.096 [0.026, 0.167]) and richness (0.099 [0.032, 0.165]), solitary bee abundance 

(0.121 [0.018, 0.225]) and richness (0.123 [0.020, 0.226]), and hoverfly abundance (0.075 [0.002, 

0.148]) (Fig. 2.7A & B). In each group, the effect size for site-level daily nectar sugar production 

was consistently larger than those for the proxy for daily nectar sugar production at the scale of 

the pan trapping station. 

The effects of maximum day-time temperature and average wind speed were tested for with linear 

and second-order polynomial terms; the coefficients presented below represent orthogonal 

polynomial terms. Regarding temperature: in the bumblebee group the linear term was significant, 

showing a significant decrease in abundance (-18.755 [-28.430, -9.081]) and richness (-16.982 [-

26.500, -7.465]) as temperature increased (Fig. 2.8A & B); in the hoverfly group the second-order 

term was significant, showing a significant decrease in abundance (-12.599 [-24.855, -0.342]) as 

temperature increased (Fig. 2.8A). Regarding wind speed: the linear term was significant in both 

the bumblebee and solitary bee groups, showing a significant increase in bumblebee abundance 

(15.074 [5.686, 24.462]) and richness (15.611 [5.848, 25.374]), and a significant decrease in 

solitary bee abundance (-11.379 [-19.148, -3.609]) as wind speed increased (Fig. 2.8C & D).  
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Average vegetation height had a weak significant negative effect upon solitary bee abundance      

(-0.010 [-0.019, -0.002]) and richness (-0.010 [-0.019, -0.001]) (Fig. 2.8E & F). However, this 

was not borne out in the raw data, which appears to show both solitary bee abundance and species 

richness increasing as the average vegetation height increased. Daily rainfall, meanwhile, had no 

significant effects upon sampled abundance or species richness within any pollinator group. 

Figure 2.7 A) Mean abundance of each pollinator group sampled per bowl ± 95% confidence 

intervals, plotted against the proxy for nectar sugar at the scale of the pan trapping station 

(log(nectar sugar volume (µl) within 2m of each pan trapping station per survey) – log(mean 

nectar sugar volume (µl) within 2m of each pan trapping station per survey)); B) Mean 

species richness of each pollinator group sampled per bowl ± 95% confidence intervals, 

plotted against the proxy for nectar sugar at the scale of the trapping station (log(nectar 

sugar volume (µl) within 2m of each pan trapping station per survey) – log(mean nectar 

sugar volume (µl) within 2m of each pan trapping station per survey)); C) Mean abundance 

of each pollinator group sampled per bowl ± 95% confidence intervals, plotted against the 

proxy for nectar sugar at the scale of the survey site (log(mean nectar sugar volume (µl) 

within 2m of each pan trapping station per survey)); D) Mean species richness of each 

pollinator group sampled per bowl ± 95% confidence intervals, plotted against the proxy 

for nectar sugar at the scale of the survey site (log(mean nectar sugar volume (µl) within 2m 

of each pan trapping station per survey)). 
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Figure 2.8 A) Mean abundance of bumblebees and hoverflies sampled per bowl ± 95% 

confidence intervals, plotted against maximum day-time temperature (°C); B) Mean species 

richness of bumblebees sampled per bowl ± 95% confidence intervals, plotted against 

maximum day-time temperature (°C); C) Mean abundance of bumblebees and solitary bees 

sampled per bowl ± 95% confidence intervals, plotted against average wind speed (mph); 

D) Mean species richness of bumblebees sampled per bowl ± 95% confidence intervals, 

plotted against average wind speed (mph); E) Mean abundance of solitary bees sampled per 

bowl ± 95% confidence intervals, plotted against average vegetation height (cm); F) Mean 

species richness of solitary bees sampled per bowl ± 95% confidence intervals, plotted 

against average vegetation height (cm). 
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2.4 Discussion 

Pan traps are a commonly used tool for monitoring insect pollinator populations, due both to their 

ease of use and their relative lack of collector bias. However, while their sampling ability has 

been compared extensively to that of other methods (Cane, Minckley, & Kervin, 2000; Roulston, 

Smith, & Brewster, 2007; Westphal et al., 2008; Wilson, Griswold, & Messinger, 2008; Grundel 

et al., 2011; Popic, Davila, & Wardle, 2013; Prendergast et al., 2020), the protocols governing the 

use of pan traps have not been as extensively explored. Here, I show that bowl dimensions, trap 

duration, and the volume of nectar sugar produced per day around the trapping stations all strongly 

influence the diversity and abundance of bees and hoverflies sampled by pan traps. I also 

contribute further evidence to the debate surrounding the existence of taxon-specific bowl colour 

preferences and indications as to how local weather variability may affect pan trap function. I 

follow up by making specific recommendations for a standardised pan trapping protocol to be 

deployed in future studies exploring aspects of insect pollinator diversity, occupancy, and 

population trends. 

2.4.1 Effect of bowl size on the abundance and species richness of bees and 

hoverflies sampled by pan trapping 

In terms of the physical characteristics of the pan traps, bowl size had significant effects on both 

sampled pollinator abundance and species richness. The bowls with the largest surface area (284 

ml: 109.36 cm2) sampled the most sampled the most pollinators overall, as well as greater 

numbers of bumblebees and hoverflies, presumably because bowls with larger surface areas are 

more visible to foraging insects. Larger floral displays are easier to detect by aerial foragers from 

further away (Ohashi & Yahara, 2001; Spaethe, Tautz, & Chittka, 2001), and have been associated 

with higher pollinator visitation rates (Ohashi & Yahara, 2001); although, Spaethe, Tautz & 

Chittka (2001) note that this effect may be dependent on the contrast between the floral colour 

(or that of the pan trap) and that of the background vegetation. Larger floral displays may also be 

indicative of greater floral rewards (Blarer, Keasar, & Shmida, 2002) which may also affect 

pollinator visitation rates to pan traps with larger surface areas. My results broadly agree with 

those of Wilson et al. (2016), who found that larger bowls sampled more bees, but contrast with 
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those of Droege (2002) who found no differences in sampled bee abundance due to bowl size. 

Curiously, out of the seven bowl sizes used by Droege (2002), four are approximately similar in 

volume to those used here, but their results did not mirror the trends in pollinator abundance found 

here. The use of volume as the primary measure of size (as opposed to diameter, surface area, or 

depth) in studies like those by Wilson et al. (2016) and Droege (2002) makes direct comparisons 

between past results and our own difficult. However, Gonzalez et al. (2020), who explored the 

effect of bowl diameter on sample size, also found no effect of bowl size on bee abundance while 

using bowls of a similar diameter to those used in this Chapter. 

Furthermore, while bowl depth had no effect upon pollinator abundance or richness, the ratio 

between bowl surface area and depth may be the cause of the apparent reduced sampling ability 

of the 156ml bowls (44.18 cm2 x 6 cm) in comparison to the 57ml bowls (30.19 cm2 x 3.10 cm) 

in most pollinator groups (Fig. 2.2A & B), despite an increase in surface area. This pattern likely 

led to the negative interaction term between bowl surface area and bowl depth in the total 

pollinator and hoverfly groups - since the 57ml bowls have a higher surface area-to-depth ratio 

than the 156ml bowls (9.74 vs. 7.36), their UV-fluorescent interiors may be more visible to aerial 

foragers, making the smaller bowls more attractive. 

One aspect of bowl size that I did not account for in this analysis was the amount of space left 

between the water and the rim of the bowls, which was not constant between bowl sizes. This 

distance was approximately similar between and 28ml and 57ml bowls (1.5cm and 1.7cm), and 

between the 156ml and 284ml bowls (2.2cm and 2.4cm). One might assume that a smaller gap 

might facilitate more insect samples, because the water in the bowls would be more immediately 

accessible to passing foragers, but a smaller gap may also enhance an insects’ chance of escaping 

capture by providing easier access to the rim of the bowl. This distance was greatest in the two 

deeper bowls (156ml & 284ml), which did sample the most bycatch, indicating that these bowls 

may generally be more difficult to escape from. But both the 15ml and 156ml bowls seem to be 

sampling similar numbers of bees and hoverflies per bowl, despite the gap between the water and 

the rim of the bowl being 7mm larger in the latter. The bowl size which sampled the most bees 

and hoverflies (and bycatch) per bowl also had the deepest gap between the water and the lip of 
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the bowl. Since these bowls also had a larger ratio of surface area to depth and were thus likely 

more attractive to foraging bees and hoverflies, it may be that a larger gap combined with more 

attractive bowl dimensions may facilitate more samples in the bowls. This warrants further 

investigation but, in future, I would suggest standardising the volume of water per bowl so that 

the gap between the water and the rim of the bowl is the same, regardless of bowl size, to reduce 

potential bias. 

When I looked at the proportion of pollinator abundance relative to the abundance of bycatch, I 

observed different trends in relation to bowl size. For instance, bumblebee abundance sampled 

per bowl increased with bowl surface area, but when the abundance of non-bumblebees was 

accounted for, I saw this effect reverse - as bowl surface area increased the proportion of 

bumblebees sampled per bowl decreased. Since research indicates that bumblebees prefer larger 

floral displays (Ohashi & Yahara, 2002; Mitchell et al., 2004), this leaves several potential 

hypotheses to explain this result: 1) since bycatch abundance increased with bowl surface area, 

this is simply a function of other invertebrates being caught more often than bumblebees; 2) cues 

associated with increasing bycatch abundance are deterring bumblebees from the pan traps; or 3) 

a combination of the above. Bumblebees may regard bycatch as visual evidence of competing 

conspecifics/heterospecifics which, at high densities, may lead to avoidance behaviour (Baude et 

al., 2011). Bumblebees also actively avoid flowers that have been visited by other bumblebees 

(Goulson, Hawson, & Stout, 1998; Stout & Goulson, 2001) and hoverflies (Reader et al., 2005), 

based on olfactory cues left by previous foragers. Since the widest bowls were the most attractive 

generally, a greater number of insects are likely to have landed on the bowl rims or interiors, 

potentially leaving scent-marks that may deter foraging bumblebees. Approaching foragers may 

also react to alarm pheromones released by bumblebees already caught in the pan traps (Dukas, 

2001; Llandres, Gonzálvez, & Rodríguez-Gironés, 2013), or to chemical cues linked to the 

breakdown of dead insect bodies within the bowls (Sun & Zhou, 2013), either of which may deter 

individuals from landing. Increasing build-up of bycatch may also make pan traps less visually 

attractive by blocking the attractive colours of the bowls. 
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The proportion of hoverflies sampled per bowl decreased as bowl depth increased. As the deepest 

bowls sampled fewer hoverflies overall, I might assume that this effect was simply compounded 

by the presence of other invertebrates, since the deeper bowls caught significantly more bycatch. 

However, the second deepest bowls (284 ml: 5.5 cm) also had the greatest surface area (109.36 

cm2), and otherwise sampled the greatest abundance of hoverflies. Despite this, the proportion of 

hoverflies was also lower in these bowls (Fig. 2.4A), suggesting that this negative effect was not 

limited to bowls with dimensions that hoverflies already found unattractive. Since the abundance 

of bycatch was also higher in the 284 ml bowls, this indicates that it is the presence of a greater 

relative abundance of bycatch that is deterring hoverflies from the deeper bowls, rather than bowl 

dimensions. There is no evidence to suggest that hoverflies actively avoid flowers occupied by 

other insects (Reader et al., 2005) or that they reject flowers previously visited by insects based 

upon scent marks, which merits further research into this potential behaviour within this group. 

Again, the increasing build-up of bycatch may also have been blocking the colour of the pan traps, 

making them less attractive to foraging hoverflies. 

Overall, these results indicate that pan traps may have size-specific carrying capacities (see 

Wilson et al. 2016), the specifics of which, along with any associated avoidance behaviours 

exhibited by bee and hoverfly taxa, warrant further investigation in future observational studies. 

In terms of recommendations for future monitoring studies, if their aim is to sample a broad range 

of insect taxa, including bees and hoverflies, then I would recommend using the larger 284 ml 

(10 fl. oz.) bowls, as they sampled the greatest abundance and species richness of bees, hoverflies, 

and bycatch within this study. However, if the aim was to sample bees, or bees and hoverflies 

specifically, then the smaller 57ml (2 fl. oz.) bowls sampled a greater proportional abundance of 

both taxa in relation to abundance the bycatch. Regardless, I would recommend future studies use 

pan traps with greater surface area-to-depth ratios, as this seems to increase the attractiveness of 

the bowls of foraging insects. I also suggest that any future studies looking at the effects of bowl 

size on insect pollinator diversity should consider investigating other measures of size than 

volume when planning their experimental design. 
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2.4.2 Effect of trap duration on the abundance and species richness of bees 

and hoverflies sampled by pan trapping 

Trap duration had stronger effects upon pollinator abundance and richness than either measure of 

bowl size. The effects of trap durations beyond 24 hours have not been reviewed within the current 

literature, but shorter trapping periods have been briefly explored and my results largely confirm 

those of Carboni & Lebuhn (2003), who found no significant differences between pan traps left 

active for eight hours and those left active for 24 hours in terms of sampled bee abundance. 

Presumably, pan traps set out in the morning for 7 hours sample the same period of peak pollinator 

activity as those set out for 24 hours, with the latter gaining little extra sampling power from the 

additional hours of daylight prior to the following morning. The longest trap duration tested in 

this study (48 hours) was more successful than the seven and 24-hour pan traps, both in terms of 

the abundance and richness of total pollinators, total bees, and bumblebees. 

However, when pollinator abundance and richness were observed in the context of the rate of 

capture over time then the per-hour sampled abundance and richness in every group except for 

the bumblebees decreased as trap duration increased. Since our pan traps were catching, on 

average, less than one individual pollinator per bowl, we can assume that this is not due to an 

exhaustion of local bee and hoverfly communities, supporting the findings of (Gezon et al., 2015). 

The results concerning species richness may relate to the foraging strategies of different groups. 

Since most bees are central place foragers, limited in their movement by their need to return to 

their nesting site or colony - especially the smaller solitary bee species (Zurbuchen et al., 2010) - 

I might expect the number of new species sampled by stationary pan trapping stations to decrease 

with time. But, since the bumblebee group did not show this trend, and hoverflies (which did) 

display entirely different forgaing strategies (being highly dispersive, with no nest to return to or 

larvae to provision (Rotheray & Gilbert, 2011)), this may not be the case. 

Alternatively, decreases in the per-hour abundance and richness of different bee and hoverfly 

groups with increasing trap duration may be explained with reference to the build-up of bycatch 

over time. The raw abundance of bycatch increased with trap duration, while the proportion of 

solitary bees significantly decreased with trap duration. The proportion of total pollinators also 
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decreased in the 24-hour bowls when compared to the 7-hour bowls, but the proportion of total 

pollinators in the 7-hour and 48-hour bowls was not significantly different. This suggests that the 

proportion of bees and hoverflies together remain somewhat consistent within the bowls each day, 

but that the bowls left active for 24-hours may be sampling additional crepuscular insect species 

later in the evening or earlier the following morning that are increasing the proportion of bycatch 

present relative to the diurnal bee and hoverfly samples. 

This indicates that solitary bees are avoiding pan traps left out for longer due to an increasing 

abundance of bycatch; avoidance behaviour that may be based around visual and/or olfactory cues 

(Yokoi, Goulson, & Fujisaki, 2007; Yokoi & Fujisaki, 2009, 2011), potentially representing 

evidence for a temporal carrying capacity within pan traps (see Wilson et al. 2016). This requires 

further investigation via observational studies to determine the validity of this effect within 

different insect pollinator taxa. 

Overall I suggest that, while pan traps left out for 48 hours may sample greater abundance and 

species richness in terms of bees and hoverflies, they also capture fewer individuals and species 

per hour over time. I therefore suggest that future monitoring protocols use shorter, seven-hour 

trap duration periods, in line with recent practises present in Carvell et al. (2016) and LeBuhn et 

al. (2016). A seven hour trap duration also requires only one day spent in the field, as opposed to 

the two-three days required to carry out a 24- or a 48-hour sampling protocol, increasing the 

number of total sampling visits that can take place over a survey season. Longer trap durations 

also attracted larger numbers of non-target taxa, so the use of shorter trap durations may also help 

to reduce the impact of pan trapping on the wider invertebrate community. 

In discussion of bycatch more broadly: many previously understudied insect taxa, e.g., non-

syrphid flies, are increasingly being recognised as providing valuable pollination services 

(Orford, Vaughan, & Memmott, 2015; Rader et al., 2016). If data concerning these and other taxa 

are already being gathered by pan trapping studies and in large quantities, I suggest that it be 

reported to provide a more inclusive view of pollinator communities in general as a counterpoint 

to the often bee-centric view that is generally represented in the current literature (Westphal et 

al., 2008; Nielsen et al., 2011; Popic, Davila, & Wardle, 2013; O’Connor et al., 2019b). 



45 

 

2.4.3 Effect of bowl colour on the abundance and species richness of bees 

and hoverflies sampled by pan trapping 

Bowl colour had a clear selective effect on the abundance and species richness of pollinator taxa 

sampled by the pan traps. Yellow bowls sampled the most pollinators overall, and my results 

support its use in research where only one bowl colour may be required for experimental reasons 

(Wilson et al., 2016; Gonzalez et al., 2020). But my primary finding was that different insect 

pollinator taxa show distinct colour preferences: hoverflies for yellow bowls, bumblebees for blue 

bowls, and solitary bees for both yellow and white bowls, while the pink bowls performed poorly 

in all groups. The broad appeal of the yellow bowls to both solitary bees and hoverflies may be a 

result of yellow being the only bowl colour that reflected in the ultraviolet portion of the spectrum, 

which both bees and hoverflies can detect, and that bees use to locate nectar guides offered by 

flowers to guide foragers to their nectaries (Horth, Campbell, & Bray, 2014; Orbán & Plowright, 

2014). Mulligan & Kevan (1973) also observed higher insect visitation rates in flowers which 

reflected strongly in the ultraviolet portion of the spectrum. 

However, when these results are compared to those of other authors, it is clear that no definite 

pattern exists with regard to pan trap colour preferences among insect pollinator taxa. For 

instance, while some hoverfly species have displayed an innate preference for the colour yellow 

(Ilse, 1949; Lunau, 1988, 2014), and both Bowie et al. (1999) and Laubertie, Wratten & Sedcole 

(2006) sampled more hoverflies in yellow pan traps, hoverflies can be trained to preferentially 

visit other colours under laboratory conditions (see Ilse 1949). This presumably reflects a natural 

response to changes in the seasonal availability of attractive floral rewards. Bees, meanwhile, 

have displayed diverse preferences for yellow (Abrahamczyk, Steudel, & Kessler, 2010; Gollan, 

Ashcroft, & Batley, 2011), blue (Joshi et al., 2015; Moreira et al., 2016), blue and white 

(Campbell & Hanula, 2007), blue and yellow (Droege, 2002), and yellow and white pan traps 

(Vrdoljak & Samways, 2011; Heneberg & Bogusch, 2014).  

Both Toler, Evans & Tepedino (2005) and Saunders & Luck (2013) suggest that the wide 

disparities in bowl colour preference displayed by different insect pollinator taxa indicates that 

these inclinations are context-specific rather than fixed or purely innate. Thus, pollinator 
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assemblages might develop their own colour preferences based upon local plant rewards or 

phenology, preferences that may vary within and between years (Joshi et al., 2015). The use of 

only one bowl colour within a study would clearly introduce its own experimental bias by 

selecting for only a subset of the pollinator community present (Moreira et al., 2016). I therefore 

recommend maintaining the now-standard combination of UV-fluorescent white, blue, and 

yellow bowls for future pan trapping studies. My results indicate that they are complementary in 

their ability to sample broad pollinator communities, and they are more likely to satisfy a wider 

range of community-specific preferences than any single colour. These results do not justify the 

addition of UV-fluorescent pink to this combination. 

2.4.4 Effect of local environmental variation on the abundance and species 

richness of pollinators sampled by pan trapping 

In addition to the physical characteristics of the pan traps themselves, their local environment can 

also impact upon their sampling ability. Notably, we found that pan traps located in areas with 

increased estimated nectar sugar production per day, both at the scale of the site and (to a lesser 

degree) of the pan trapping station, sampled more individuals and species within most pollinator 

groups. These results contrast with the widely held hypothesis that pan traps sample fewer insects 

in areas with higher floral abundance (Cane, Minckley, & Kervin, 2000; Roulston, Smith, & 

Brewster, 2007; Wilson, Griswold, & Messinger, 2008; Baum & Wallen, 2011; Popic, Davila, & 

Wardle, 2013; Westerberg et al., 2021), and indicate that pan traps may not be competing for 

pollinator visits with surrounding flowers as initially proposed by Cane, Minckley & Kervin 

(2000).  

However, most of these previous studies either did not quantify floral resource availability 

surrounding their pan traps or used proxies without providing data concerning floral abundance, 

which makes it challenging to compare their results to those presented here. Cane, Minckley & 

Kervin (2000), for example, counted the number of Creosote bushes along their pan trapping 

transect (294) but provided no information concerning the number of Creosote blooms, and 

Roulston, Smith, & Brewster (2007) made no attempt to quantify the floral resources present 

around their pan traps despite alluding to an effect of floral abundance upon pan trapping efficacy. 



47 

 
Wilson, Griswold, & Messinger (2008) quantified the “average floral richness” across their sites 

and linked this to bee species richness sampled via pan trapping; showing that, as average floral 

richness rose to approximately eight species in Mid-May, the number of bee species sampled 

dropped to the lowest level across the study. While Baum & Wallen (2011) used targeted 

herbicide application to artificially manipulate floral abundance in two mixed-grass prairie 

pastures, reducing floral species richness by between 63 and 100% over four months, and 

reducing floral abundance by over 90% per month. No further information regarding floral 

availability was provided by the authors, who found the bee species richness was greater in pan 

trapping samples taken from those sites treated with herbicides when compared to untreated 

pastures. Finally, Westerberg et al. (2021) quantified floral frequency at a local scale around each 

pan trapping station (25m2) and at a wider, landscape scale (2-6 ha.), using photographs of 

individual 1m2 vegetation plots. Floral frequency ranged between 9 and 100% across sites, and 

increasing floral frequency was linked to smaller sample sizes from pan traps. Although, solitary 

bees showed no negative bias with regard to floral frequency, and social bees were one of the few 

insect groups sampled to show some limited positive relationships with floral frequency, but only 

at a local scale. 

O’Connor et al. (2019b) provides possibly the closest point of comparison for this study, as the 

authors measured both floral abundance surrounding their pan trapping stations and converted 

this into a measure of nectar sugar production per day. They also provided a measure of floral 

density (per m2) surrounding their pan traps. O’Connor et al. (2019b) found that, while greater 

nectar sugar availability had no effect upon bee or hoverfly abundance sampled per pan trap, 

increasing floral density did have a negative effect upon solitary bee and bumblebee abundance 

sampled per pan trap in apple and field bean crop monocultures, respectively. The floral 

abundance surrounding many of their pan traps was comparable to that surrounding many of ours 

(O’Connor et al., 2019a), which makes this difference in findings puzzling. 

One explanation for these contrasting findings may be the spatial heterogeneity present within 

our respective sampling sites. Rathcke (1983) proposed that co-flowering plant communities 

which share a common set of pollinator species would facilitate one another in terms of attracting 



48 

 
pollinator visits at lower floral densities. This facilitation increases until the pollinator visitation 

rate reaches saturation, at which point the co-flowering species move from facilitation to 

competing for pollinator visits. Rathcke (1983) referred to this as the density-visitation 

relationship and, if applied to pan trapping, we may expect increasing nectar sugar availability at 

lower floral densities to facilitate increased pollinator visits to the bowls. O’Connor et al. (2019b) 

put forward a similar argument concerning their findings, citing that the high levels of 

homogeneous floral density in the crop monocultures that formed part of their study system may 

have increased competition between pan traps and the surrounding flowers. In comparison, the 

floral density present within many of the sites sampled within this Chapter is likely to have been 

far more heterogeneous, potentially facilitating bee and hoverfly visitation to the pan traps. Templ 

et al. (2019) also found that the abundance of wild bee species commonly found in pan trap 

samples correlated with lower levels of floral density (where the average number of floral species 

per meter square was less than ten, and the average number of flowers was less than one hundred). 

Authors of past studies may, likewise, have been sampling from habitats with greater floral 

densities than those represented in our study sites, initiating competition between pan traps and 

the surrounding flowering plants for pollinator visitation. If true, this hypothesis may support the 

common practise of pairing pan trapping with active survey methods like hand-netting, the results 

of which are positively associated with increased floral abundance and diversity (Popic, Davila, 

& Wardle, 2013; O’Connor et al., 2019b). Overall, I recommend that future pan trapping studies 

assess the level of floral rewards present at different scales surrounding their pan traps, and 

provide measures of both abundance and floral density, to control for and further investigate any 

effects that these variables might have on pan trap samples. I would also advise doing so at 

different spatial scales, to account for the level of floral diversity present across the landscape 

within which a survey is being completed. 

My use of the volume of nectar sugar produced per floret per day (µl) in this analysis was an 

attempt to incorporate the level of nutritional reward offered by different flowering plant species 

into a measure of floral abundance, using the dataset of 270 plant species present in Baude, Kunin, 

& Memmott (2015). Nectar provides an immediate, short-term source of energy (in the form of 
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sugars) that is used by insect species, including bees and hoverflies, to maintain flight whilst 

foraging (Kevan & Baker, 1983; Rotheray & Gilbert, 2011; Vaudo et al., 2015). Bees can also 

learn to associate particular plants or patches of plants with high nectar rewards (Cnaani, 

Thomson, & Papaj, 2006; Vaudo et al., 2015; Nery, Moreno, & Arenas, 2020), and both the 

volume of nectar available and the sugar concentration have been positively associated with bee 

visitation rates to flowers (Potts et al., 2004; Cnaani, Thomson, & Papaj, 2006). The use of nectar 

sugar production, however, disregard those plant species that do not produce nectar, which would 

bias this approach in habitats where these are common and/or abundant. In addition to nectar, 

pollen is also an important source of nutrition (proteins and lipids) in bee and hoverfly species 

(Rotheray & Gilbert, 2011; Vaudo et al., 2015), associated with larval development in bees 

(Vaudo et al., 2015), reproduction and reproductive development in both taxa (Heinrich, 1979; 

Rotheray & Gilbert, 2011; Vaudo et al., 2015), and migration in hoverflies (Rotheray & Gilbert, 

2011). There are also hoverfly species that primarily feed on pollen rather than nectar, e.g., 

Episyrphus balteatus and Syrphus ribesii, although this is also affected by both sex and age 

(Rotheray & Gilbert, 2011), and the use of nectar sugar production as a proxy for floral abundance 

may also have biased our analysis against these species. 

In addition to the effects of nectar sugar availability, I also collected data on average vegetation 

height. Across all survey visits, the average vegetation height within a one-meter radius of the 

pan trapping stations ranged from 1.5 to 112.5 cm, with a median value of 35cm (Supplementary 

Fig. 1.5). Both solitary bee abundance and species richness appeared to peak between 30 and 

35cm, dropping after vegetation reached an average 60-70cm in height (Supplementary Fig. 1.6A 

& B). The results of the model averaging reported a negative effect of increasing average 

vegetation height within a one-meter radius of the pan trapping stations on solitary bee abundance 

and species richness. This, however, was not borne out in the raw data, which appears to show 

the number of solitary bees and solitary bee species increasing with taller vegetation. 

Possibly the first reference to pan trap elevation was in Cane, Minckley, & Kervin (2000), who 

found that pan traps placed on the ground in a US desert scrub habitat did not sample any specialist 

bee fauna commonly associated with the locally prevalent Creosote bush (Larrea tridenatata). It 
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has since become common practise to elevate pan traps to the level of the surrounding flowering 

vegetation (Westphal et al., 2008; Nielsen et al., 2011; O’Connor et al., 2019b), usually citing the 

results of either Cane, Minckley, & Kervin (2000) or Tuell & Isaacs (2009). The latter tested the 

effects of elevating pan traps in relation to a highbush blueberry (Vaccinium corymbosum L.) crop 

on sample size, finding that pan traps elevated to approximately one third the height of the crop 

(0.46-0.6m) sampled the most bees. But very few studies report the height to which pan traps 

have been raised or that of the surrounding vegetation. Two exceptions are Geroff, Gibbs, & 

McCravy (2014) and Harris, Braman, & Pennisi (2017). Geroff, Gibbs, & McCravy (2014) tested 

two different pan trap elevations: bowls set at ground level and bowls suspended one meter from 

the ground, and found that, while the elevated bowls sampled significantly more native bees and 

native bee species than those at ground level, both sets of pan trapping samples differed 

significantly in terms of species composition. Indicating that placing bowls at a range of 

elevations within a site could help to sample a more complete species inventory. Harris, Braman, 

& Pennisi (2017), meanwhile, tested two similar elevations: bowls set at ground level and bowls 

suspended 91.5cm from the ground. Both sets of bowls were successful in terms of sampling 

native insect pollinator taxa, but locally abundant Halictid bee species were predominately found 

in pan traps placed upon the ground. 

Gumbert & Kunze (1999) found evidence of stratification in bee foraging activity in a tropical 

aquatic plant community, with smaller bees tending to visit flowers less than 30cm from the 

ground. In a more recent study, Klecka, Hadrava, & Koloušková (2018) experimentally 

manipulated the height of inflorescences in two grassland species: Centaurea scabiosa and Inula 

salicina, to between five and 105cm from the ground in short and tall flowering vegetation 

(averaging 7.2 and 50.1cm, respectively). They found that smaller solitary bee species tended to 

prefer foraging from C. scabiosa flowers at an intermediate height (40-60cm) in both short and 

tall vegetation, and from I. salicina flowers near ground level in short vegetation, and at an 

intermediate height (ca. 40cm) in tall vegetation. It may be that the solitary bee species commonly 

found in our pan traps are less likely to be found in habitats characterised by taller vegetation, or 

that they are present but preferentially forage on plants closer to ground-level. Regardless, my 
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results suggest that, when pan trapping in sites containing a range of different floral strata, an 

effort should be made to place individual pan traps or transects across areas that are representative 

of these strata, otherwise surveys may miss functionally important taxa (Geroff, Gibbs, & 

McCravy, 2014). 

In terms of ambient temperature, almost all sampled pollinators were caught between 17 and 

22°C, with a peak occurring between 20 and 21°C (Supplementary Figures 1.2 & 1.3), with 

significantly fewer bumblebees and hoverflies being sampled as temperatures rose. These results 

may be an artefact of our sampling methodology: we limited our sampling to days where ambient 

temperatures were above 15°C, with a median maximum day-time temperature 20.1°C, so I would 

expect to see some clustering of data points around this value, with little spread towards warmer 

or cooler temperatures. However, as poikilotherms, insects are vulnerable to overheating when 

the ambient temperatures increase above a certain point (although many taxa have evolved 

behavioural and/or physiological methods of combatting heat stress). Heinrich (1979) notes that 

large Bombus species will stop flying in ambient temperatures above 35°C and may die if their 

internal thoracic temperature reaches 45°C (although smaller workers can forage at higher 

temperatures). However, given that bumblebee abundance and richness across our surveys started 

to drop as the maximum temperature rose past 23°C, it’s unlikely that this was primarily due to 

heat stress. Arce et al. (2017) also found that bumblebee foraging activity decreased at warmer 

temperatures, although they do not list the range of values experienced during their study, so I 

cannot compare them to my data. Our data do appear to agree with those shown in Corbet et al. 

(1993), where bumblebee foraging activity peaked between 20 and 25°C. Rotheray and Gilbert 

(2011), meanwhile, note that flight activity in many UK hoverfly species tends to occur between 

15 and 25°C, decreasing above 21°C, which is certainly borne out by my data. 

Pan trapping protocols usually indicate a lower ambient temperature boundary of 10-15°C below 

which pan trapping surveys are inadvisable (see Carvell et al. 2016; LeBuhn et al. 2016), 

presumably due to lower expected samples. But these data imply that, within the UK, there may 

also be an upper threshold of between 25°C and 30°C, beyond which certain pollinator groups 

may be sampled less often. Heinrich (1979) and Rotheray and Gilbert (2011) also note that body 
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size influences the temperatures at which foraging activity can be maintained within bumblebee 

and hoverfly species, implying that future research into the effects of ambient temperature on pan 

trapping samples should take pollinator size into account. 

Wind speed should also be considered when planning pan trapping surveys. My results indicate 

that more solitary bees were sampled when wind speeds were lower, although the raw data suggest 

this effect may be minimal. Most solitary bees sampled during our surveys consisted of smaller 

Halictid species which, due to their size, may be less likely to forage under higher wind speeds 

than larger bee taxa, although there is little published evidence to support this (see Vicens & 

Bosch 2000). Bumblebees, conversely, were sampled more often as wind speed increased. There 

is little evidence to suggest that bumblebees preferentially forage under windier conditions (Peat 

& Goulson, 2005), although they do not appear to avoid them (Tuell & Isaacs, 2010; Crall et al., 

2017). Greater wind speeds (within the range of those measured during this study) also do not 

appear to alter individual bumblebees’ foraging patterns or patch use (Comba, 1999). While Arce 

et al. (2017) found that bumblebee foraging activity actually increased during periods of higher 

wind speeds. 

It is possible that the presence of strong winds may make it more difficult for bumblebees to 

escape a pan trap once captured. Alternatively, Chang, Crall & Combes (2016) indicate that wind 

speeds equivalent to 7.8 mph can leave bumblebees unable to alter their flight speed prior to 

landing, causing them to experience “higher peak decelerations (and thus impact forces) upon 

landing”. This may mean that bumblebees landing on the rim or the dry inner surface of a pan 

trap during higher winds exhibit less control and are more likely to fall into the water. Based upon 

these results, I suggest that pan traps are of limited use in environments where higher wind speeds 

are the norm, and that days with wind speeds in excess of 10 mph (ca. 16 km/hr) should be avoided 

where possible, particularly where smaller, solitary bee taxa are of primary interest to the 

survey/surveyor. 
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2.5 Conclusions 

Overall, I recommend that the bowls used for pan trapping surveys are limited to those with wider 

surface areas and a relatively shallow depth, to increase visibility to aerial foragers. Pan trapping 

surveys should be carried out within a single day, as the rate of capture in terms of bee and 

hoverfly abundance and species richness decreased significantly after this length of time. Shorter 

trap duration periods also minimise both the number of person-hours required to conduct the 

sampling and the amount of non-target taxa sampled. The standard combination of UV-

fluorescent blue, white, and yellow bowls should be maintained by practitioners, in order to 

sample the broadest assemblage of pollinators and pollinator species regardless of habitat. Greater 

volumes of nectar sugar produced per day were positively associated with larger pan trapping 

samples, both at the scale of the pan trapping station and at the scale of the survey site, in contrast 

to the results of several previous studies. To further investigate these results, future studies should 

quantify both the floral density and levels of floral rewards at different spatial scales to test for 

the presence of a density-visitation relationship between local floral resources and pan trap 

samples. Finally, both ambient temperature and wind speed should be considered when planning 

pan trapping surveys. Increasing temperatures appear to reduce the number of bees sampled by 

the bowls, while increasing wind speeds appear to bias pan trap samples in terms of both solitary 

bee and bumblebee abundance. In future, greater investment in direct observational studies may 

provide us with a better understanding of how insects behave around pan traps. Video recordings 

could also be used to verify personal observations without unduly affecting insect pollinator 

behaviour (Steen, Lene, & Orvedal, 2011; Gilpin, Denham, & Ayre, 2017; Steen, 2017). 
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Chapter 3  

Evaluation of insect pollinator survey methods in a closed system 

 

“Sampling bias means that the samples of a stochastic variable that are collected to determine 

its distribution are selected incorrectly and do not represent the true distribution because of non-

random reasons.” (Panzeri, Magri, & Carraro, 2008) 

3.1 Introduction 

Insect pollinators are a highly diverse community that display a broad range of life-history and 

behavioural traits (Wardhaugh, 2015; Ollerton, 2017). They are also under threat from population 

declines on a global scale (Biesmeijer et al., 2006; Cameron et al., 2011; Ollerton et al., 2014; 

Koh et al., 2016; Powney et al., 2019), leading to renewed calls for action concerning the need to 

monitor their changing population trends (Dicks et al., 2013). The urgent need to diagnose these 

declines and their effect upon the diversity of insect pollinator communities are both reflected in 

the wide range of constantly evolving survey techniques available to monitor insect pollinators 

(Potts, Kevan, & Boone, 2005; Westphal et al., 2008; August et al., 2015). 

Regardless of whether the aim of a survey is to detect the presence of a species, estimate the 

abundance of a particular population, or estimate the relative abundance of species within a 

community, the choice of method, or combination of methods used, can have significant impacts 

upon the success of the survey and the conclusions that can be drawn from the data (Disney, 1982; 

Tyre et al., 2003; Portman, Bruninga-Socolar, & Cariveau, 2020). Survey methods each have their 

own inherent sources of sampling bias, and if a particular method is biased against a species or 

group of species, due to their size or foraging behaviour for example, then this may result in Type 

II errors or underestimates of these species in the resulting samples (Tyre et al., 2003). In the 

context of a large-scale, long-term monitoring scheme, such as the UK Pollinator Monitoring 
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Scheme6 (PoMS), this could have knock-on effects on the reliability of data for the purposes of 

modelling population trends and informing conservation policy (Tyre et al., 2003). It is vital, 

therefore, to design standardised survey protocols that minimise or control for sampling bias, to 

ensure that the resulting data are as representative as possible of the populations or communities 

being monitored (Henderson & Southwood, 2016). 

One of the first steps towards designing a standardised survey protocol is to quantify the biases 

associated with a particular survey method or selection of methods. In terms of insect pollinator 

monitoring, previous studies have often attempted to do this through direct comparisons of the 

abundance and/or species richness of insects sampled by different survey methods (Westphal et 

al., 2008; Nielsen et al., 2011; Popic, Davila, & Wardle, 2013; O’Connor et al., 2019b). Among 

these, the most commonly compared survey methods are pan trapping and transect surveys (Cane, 

Minckley, & Kervin, 2000; Roulston, Smith, & Brewster, 2007; Westphal et al., 2008; Grundel 

et al., 2011; Nielsen et al., 2011; Popic, Davila, & Wardle, 2013; Berglund & Milberg, 2019; 

O’Connor et al., 2019b). As I mentioned in Chapter 2, pan trapping is a passive survey method, 

involving the placement of brightly coloured bowls filled with water into which insects are 

attracted and then drown. By comparison, transect surveys are an active survey method, where a 

surveyor walks a predetermined route and counts the number of insects they observe, occasionally 

also capturing them with a net for identification at a later date. Transect surveys are labour-

intensive and are open to collector bias, in that the relative “success” of the survey (however that 

may be measured) is directly reliant upon surveyor experience and training (Montgomery et al., 

2021). Pan trapping, as a passive survey method, is not open to collector bias, and requires less 

effort to carry out in the field. However, samples acquired during pan trapping often require more 

time to sort and identify, as some identifying features can be obscured on wet specimens (Popic, 

Davila, & Wardle, 2013). In addition, while a surveyor walking a transect tends only to collect 

data on species of interest, pan traps attract and capture a diverse range of insects (Disney, 1982; 

Vrdoljak & Samways, 2011; Popic, Davila, & Wardle, 2013; Moreira et al., 2016; Harris, Braman, 

 

6 https://ukpoms.org.uk/home 

https://ukpoms.org.uk/home
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& Pennisi, 2017), some of which may not necessarily be of interest to the survey in question and 

may be discarded as bycatch. 

In Chapter 2, I discuss the non-standard way in which pan trapping has and is being deployed by 

researchers to survey insect pollinators. I also investigate how changing aspects of pan trapping 

survey protocols (i.e., bowl size, shape, colour, and trapping duration) may affect the sampled 

abundance and species richness of bees and hoverflies. In contrast, several standardised transect 

sampling protocols have existed for some time now, notably the Pollard transect (Pollard, 1977), 

and are being used by the UK Butterfly Monitoring Scheme and by the Bumblebee Conservation 

Trust as part of their Bee Walks, while PoMS makes use of both pan trapping and transect surveys 

within a single standardised protocol (Carvell et al., 2016). 

However, past research notes that, when deployed in parallel, the relative abundance of species 

sampled by pan trapping and by transect surveys is often different. Several studies indicate that 

samples collected via pan trapping tend to contain a greater proportion of smaller bee species, 

particularly those belonging to the Halictidae, and a smaller proportion of larger, social species, 

such as bumblebees or the western honeybee (Apis mellifera), than samples collected via transect 

surveys (Roulston, Smith, & Brewster, 2007; Westphal et al., 2008; Wilson, Griswold, & 

Messinger, 2008; Grundel et al., 2011; Wood, Holland, & Goulson, 2015; Rhoades et al., 2017). 

Meanwhile, Potts, Evan, & Boone (2005) indicate that samples collected via transect surveys tend 

to be biased towards larger, slower-moving species, since they are likely to be easier to spot. In a 

rare study focusing on taxa other than bees, Popic, Davila, & Wardle (2013) observed that pan 

trapping sampled fewer species from several key flower-visiting insect taxa, such as wasps and 

the Coleoptera, than transect surveys. Indeed, since transect surveys sample at the plant-pollinator 

interface, they should be more likely to capture data on key flower visitors than passive methods 

like pan trapping (Popic, Davila, & Wardle, 2013). This does mean, however, that transect surveys 

are highly dependent on the availability of local floral resources, sampling greater diversity where 

transects fall in a flower-rich portion of the landscape (Popic, Davila, & Wardle, 2013; O’Connor 

et al., 2019b). It has also been argued that pan trapping may be biased in the opposite direction, 

sampling fewer pollinators in florally rich habitats due to competition between the bowls and the 
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surrounding blooms (Cane, Minckley, & Kervin, 2000; Roulston, Smith, & Brewster, 2007; Baum 

& Wallen, 2011; O’Connor et al., 2019b; Westerberg et al., 2021), although I present 

contradictory evidence to this in Chapter 2. Moreover, while surveyors along a transect are 

spatially limited in terms of their sampling, collecting snapshots of insect diversity over time, the 

area over which a single pan trapping station might sample has not been quantified (Saunders et 

al., 2021). 

As a consequence of past evidence concerning sampling bias, opinion is split regarding whether 

either one of these two survey methods should be preferred when monitoring insect pollinator 

diversity (e.g., Westphal et al., 2008; Popic, Davila, & Wardle, 2013), or whether they should 

routinely be used in tandem, so as to balance out their individual sources of sampling bias 

(Roulston, Smith, & Brewster, 2007; Wilson, Griswold, & Messinger, 2008; Grundel et al., 2011; 

Carvell et al., 2016; O’Connor et al., 2019b; Prendergast et al., 2020). However, lacking any 

independent sources of information regarding the relative abundance of species within a given 

community, there is no way to prove which survey method samples a more accurate representation 

of that community. Attempting to do so would be akin to asking two people to draw a picture of 

the same object before comparing the two pictures to see which provides a better likeness, without 

using the object itself as a reference. 

There are examples of researchers using “gold-standard” methodologies to try and quantify the 

true relative abundance of a population, so as to assess the sampling bias associated with the 

methods commonly used to survey that population. Both Lindenmayer et al. (1995) and Craig & 

Roberts (2001) used the presence of radio-tagged individuals to assess the efficacy of visual 

searches for estimating bird and mammal abundance. Ecoacoustic studies of both marine and 

terrestrial soundscape data frequently combine manual counts of animal vocalisations with counts 

made by automated detection tools, in order to quantify Type I and Type II detection errors 

(Abrahams & Denny, 2018; Ross et al., 2018; Gibb et al., 2019; Apol, Valentine, & Proppe, 2020). 

And Gilpin, Denham, & Ayre (2017) used in-person observations of honeybee visitations to focal 

plants to ground truth counts made through an analysis of static video recordings, in order to 

assess the efficacy of recorded video footage as a monitoring tool for pollination biologists. 
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However, while an observer watching a pan trapping station would be able to quantify the number 

and diversity of individuals that approached the bowls and later compare this to the number and 

diversity of individuals that were physically sampled, thus helping to quantify the proportion of 

insects that visited the bowls but were able to escape, or the identity of the taxa that were 

predominately attracted to the bowls - this kind of ground truthing wouldn’t provide any data 

regarding how the relative abundance of species sampled by pan trapping relates to the relative 

abundance of species in the surrounding environment. 

Mark-release-recapture (MRR) surveys are able to provide reliable estimates of the size of a 

population of a given species within a given area. At its most basic, the method involves capturing 

and marking a subsample of a population, and then allowing the marked individuals to mix back 

into the greater population. If a second sample is then captured at a later date, then the proportion 

of marked individuals within this sample should be the same as the proportion of marked 

individuals within the total population (Henderson & Southwood, 2016). There are multiple 

variations on the MRR methodology, depending on whether the focal populations are assumed to 

be open or closed; that is, whether a population should be assumed to be open to gains and/or 

losses through births and deaths or immigration and emigration, or not. MRR experiments have 

been used to successfully estimate insect population size (Budrys, Budrienè, & Pakalniskis, 2004; 

Franzén, Larsson, & Nilsson, 2009; Peso & Richards, 2011; Yamamoto et al., 2014), but these 

estimates have never before been used to ground truth the samples of other survey methods, in 

order to quantify potential sources of sampling bias. A MRR experiment should enable a 

researcher to reliably estimate the relative abundance of different insect pollinator species within 

a community. These data could then be compared against samples taken from this community 

using different survey methods, like pan trapping and standardised transect surveys, and the rank 

abundance of different species within these samples should illuminate which survey method (if 

either) more accurately represents the community as a whole (Avolio et al., 2019), thus providing 

evidence for any notable sampling biases associated with either method. Robust population 

estimates do rely on marking a large proportion of the individuals present, which may be 

problematic when the focus is on highly abundant and mobile insect taxa (Borchers, Buckland, & 
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Zucchini, 2002; Henderson & Southwood, 2016). However, these issues could be mitigated by 

sampling from within a closed population, like an island ecosystem (where immigration and 

emigration can be assumed to be minimal), in combination with an open population analysis that 

would allow for gains and losses to the population over time via births and deaths (Henderson & 

Southwood, 2016). 

3.1.1 Aims 

In this chapter I will use an open population mark-release-recapture experiment within a semi-

closed island ecosystem to estimate the relative abundance of bee and hoverfly species within the 

local insect pollinator community. I will then use these population estimates to ground truth 

samples made by pan trapping and transect surveys, to test which survey method (if either) best 

represents the bee and hoverfly community present. Specifically, I will address the following 

question:  

1. Does the rank abundance of bee and hoverfly species sampled by either pan trapping or 

transect surveys match the relative abundance of those species in a closed island 

community, as estimated via an open population mark-release-recapture analysis? 

In addition, following on from a result within Chapter 2, I continue to explore the relationship 

between local floral abundance and the abundance and species richness of bees and hoverflies 

sampled by pan trapping and transect surveys. 

3.2 Materials & methods 

3.2.1 Data collection 

Data collection was carried out in April 2016, on the uninhabited islet of Prassológos, 

approximately 1.1km off the coast of north-east Lesvos, Greece (39°16’16.75”N, 26°24’40.97”E) 

(Fig. 3.1). Prassológos measures approximately 1ha in area. The islet’s vegetation is dominated 

by Mediterranean phryganic scrubland species and is regularly grazed by a small herd of resident 

domestic sheep. Prassológos was chosen because its relatively small size means that it can be 

surveyed by a single individual within one day, while its distance from the mainland should 

discourage either immigration or emigration within the local insect fauna. All pollinator sampling 
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was carried out in appropriate weather: temperature ≥ 13°C, wind speed ≤ 3 on the Beaufort scale, 

and no sustained rainfall (Pollard, 1977; Pellet, 2008). 

 

Figure 3.1 A map of Prassológos, Lesvos, Greece, the position of which is highlighted on the 

main map in red. Created using QGIS 3.18.2 (QGIS.org, 2021). Basemap: Microsoft® 

Bing™ Maps satellite imagery (obtained through the QuickMapServices QGIS plugin), 

map data © Microsoft 2021. Microsoft product screen shot(s) reprinted with permission 

from Microsoft Corporation. 

 

3.2.1.1 Mark-Release-Recapture experiment 

A mark-release-recapture (MRR) survey was carried out by two surveyors over seven contiguous 

days between the 13th and 19th of April 2016. Each day was divided into two sampling periods, 

the first between 09:00 and 13:00, and the second between 14:00 and 18:00. During each sampling 

period, each surveyor carried out a variable transect survey. The islet was divided by a central 

longitudinal rocky ridge. Each surveyor started at an opposing end of the islet and, working their 

way clockwise around this ridge, walked a slow zigzag pattern around the islet, aiming to cover 

as much ground as possible. Thus, the whole island was surveyed twice per day by both surveyors, 

to account for any individual variation in collector experience between surveyors (thus reducing 

any collector bias) and to maximise potential insect encounters.  
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During each variable transect walk, bee (Hymenoptera: Apoidea) and hoverfly (Diptera: 

Syrphidae) species were captured using butterfly nets and partially anaesthetised (if necessary) 

using short bursts of compressed carbon dioxide (CO2) gas released into a plastic tube adapted 

from a home aquarium system (see Supplementary Fig. 2.1). Insects were exposed to CO2 for 

approximately 1 minute, until their movement became sluggish, at which point they were marked. 

Each individual was given a small dot on its wing using a coloured permanent marker pen. A 

different colour was used for each of the seven days during the experiment, and the position of 

the mark on the wing denoted the relevant sampling period: AM captures were marked at the tip 

of the wing, and PM captures at the base of the wing (see Fig. 3.2). Darker colours were used so 

as to avoid any later confusion over marks after exposure to sunlight. Previous experience, 

relating to unpublished research by myself, indicates that exposure to permanent marker pen ink 

has no noticeable effect on insect survival or behaviour. Insects were handled gently during the 

marking process and, afterwards, were allowed time to recover until they were able to fly of their 

own accord. Insects were released from the point of capture. 

 

Figure 3.2 An example of the marking system used during the MRR surveys. A) The stylised 

bumblebee displays two marks from two separate days, with the blue mark representing a 

mark given during sampling period i in the morning, and the magenta mark representing a 

mark from sampling period i+1 during the afternoon. B) A male Sphaerophoria scripta, 

displaying marks from two separate sampling periods, both in the morning. 

 

There is conflicting evidence regarding the effects of short-term exposure (>2 minutes) to CO2 on 

insect behaviour and survival. Some authors suggest that the effects are minimal within some 

insect taxa, providing adequate time was given for the insect to recover (Colinet & Renault, 2012), 

A B 
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while others note that even short periods of CO2 exposure (<1 minute) can have harmful sub-

lethal physiological and behavioural effects in species like Apis mellifera (Ribbands, 1950; 

Nicolas, 1989). In this experiment, only the larger, stinging insects (bumblebees, honeybees, and 

larger solitary bee species) regularly required anaesthesia in order to mark them. The smaller 

solitary bee and hoverfly species that formed the majority of individuals encountered on 

Prassológos could be reliably marked without any exposure to CO2.  

Each sampling period during a given day was considered distinct, i.e., any insect marked on the 

morning of one day could be re-captured and re-marked on the afternoon of that same day. This 

maximised the chances of generating accurate population estimates for as many insect species as 

possible over a short period of time. I judged that the hour-long period in between the morning 

and afternoon sampling periods gave all marked insects adequate time to mix back into the general 

population. 

Species identification in the field was carried out with help from Dr Jelle Devalez from the 

University of the Aegean, Lesvos.  

3.2.1.2 Pan trapping  

Pan trapping was carried out during a four-day period between the 20th and 23rd of April, 

immediately after the MRR experiment. By doing so I aimed to ensure that the relative 

abundances of bee and hoverfly species sampled by the pan traps were as representative of the 

final estimates of population size (provided by the MRR surveys) as possible. 

Ten pan trapping stations were set up in fixed locations. Each station was set out between 08:00 

and 09:00 each morning and consisted of three 284 ml bowls attached to a wooden stake at 

approximately the same height as the surrounding flowering vegetation. Three differently 

coloured bowls were used within each station: UV-fluorescent yellow, blue, and white. Research 

suggests that these colours are complementary in their ability to sample bee and hoverfly species 

(Vrdoljak & Samways, 2011; Heneberg & Bogusch, 2014; Moreira et al., 2016), and that UV-

fluorescent paint increases the attraction of pan traps to foraging insects (Westphal et al., 2008). 

Each pan trapping station was emptied between 17:00 and 18:00 in the order in which they were 
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set out. Within each trapping station, the contents of each differently coloured bowl were strained 

through a separate square of muslin before being placed together inside a 100ml falcon tube with 

approximately 50ml of 70% ethanol to act as a preservative. 

3.2.1.3 Standardised transect surveys 

Ten standardised transects were marked out across the islet. Each transect was 10m long and fixed 

in a single location – close to one of the fixed pan trapping stations, but more than 10m away in 

order to prevent competition between the two methods for insects (Droege et al., 2010). Each 

transect was walked once per day, between 09:00 and 19:00, with one transect completed per hour 

during this period. The sampling order of the transect surveys was the same each day, starting 

with transect one. Each transect was surveyed in a similar fashion to a Pollard transect (Pollard, 

1977): where the surveyor sampled any insects, either in-flight or visiting flowers, present within 

1m of either side of the central transect line, up to 1m in front of themselves, and up to 2m from 

the ground, using a butterfly net. Approximately one minute was spent in each meter-long section 

of each transect, to account for any variation in individual’s walking speeds, which was timed 

with a stopwatch. If an insect was caught, the stopwatch was paused and then restarted once the 

capture was complete. Insects caught during a transect walk were placed directly into vials of 

70% ethanol to kill and preserve them. 

Four days of standardised transect surveys were originally planned, to coincide with the dates of 

the pan trapping survey. Unfortunately, shortly after placing the pan traps on the 20th of April, we 

experienced unexpected high wind speeds in excess of 20mph on and around Prassológos. These 

continued until late in the afternoon on the 21st and inhibited our ability to catch insects with nets. 

We also observed very few insects flying during this weather. Standardised transect surveys were, 

therefore, only carried out between the 22nd and 23rd of April. 

3.2.1.4 Floral abundance counts 

Additional data were collected regarding the floral abundance within a 2m radius of each of the 

pan trapping stations and along each of the standardised transects (within 1m of either side of the 

central line). In a similar fashion to Chapter 2, each flower was counted as a single floral unit. 

Where a plant exhibited multiple florets per flower head, i.e., the capitula evolved by members of 
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the Asteraceae, each flower head was counted as a single floral unit (Carvell et al., 2007). Three 

representative flower heads were then taken from each plant species and the number of individual 

florets counted and averaged to provide a mean number of florets per floral unit. This value was 

then multiplied across the total number of floral units for a given species found around each pan 

trapping station or along each standardised transect. For further information concerning how each 

floral species was classified in terms of what constituted a floral unit, together with the average 

number of florets per floral unit, see Supplementary Table 2.1. For a breakdown of the relative 

abundance of floral species within a two-meter radius of each pan trapping station and along each 

transect, see Supplementary Tables 2.2 and 2.3. 

I did not follow the method from Chapter 2 and transform these measures of floral abundance into 

volumes of nectar sugar produced per 24-hours, as most of the plant species present on the island 

could not be readily identified to species. In addition, being a Mediterranean phryganic habitat, it 

may be that the plant species present on Prassológos were not represented in the list of plant 

species from Baude, Kunin, & Memmott (2015) from which the volumes of nectar sugar produced 

per day per floret used in Chapter 2 were taken. 

3.2.2 Data analysis 

All data analyses were carried out using R, version 3.5.3 (R Core Team, 2019). 

3.2.2.1 Mark-release-recapture analysis 

The MRR data analyses assumed an open population, in that each bee and hoverfly population 

present were open to losses, via death or permanent emigration, and gains, via births or 

immigration, over the course of the experiment  (Henderson & Southwood, 2016). I used the 

superpopulation variant of the Jolly-Seber open-population model to generate population 

estimates for each bee and hoverfly species captured during this experiment, the background to 

which is laid out below. 

3.2.2.2 The Jolly-Seber model 

The Jolly-Seber model (Jolly, 1965; Seber, 1965) is a stochastic open-population model that 

allows for the estimation of parameters relating to survival (φi), capture (pi), and population size 
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(Ni), from individual capture histories, based upon maximum likelihood (Pollock & Alpizar-Jara, 

2005). Each individual captured during a Jolly-Seber experiment has a unique capture history, 

e.g., 00101011010000, where a 1 indicates a sampling period in which the individual was 

captured and marked, and a 0 indicates a sampling period in which it was not captured. 

The Jolly-Seber model uses a multinomial maximum likelihood function that is divided into three 

components (Schwarz & Arnason, 1996; Pollock & Alpizar-Jara, 2005):  

𝐿 = 𝐿1 × 𝐿2 × 𝐿3 

L1 is a binomial function that estimates the population size for unmarked individuals at sampling 

period i; L2 is a binomial function that models the probability of losing an individual upon capture; 

and L3 is a multinomial function that models the probability of capture (pi) and survival (φi) for 

marked individuals, often referred to as the Cormack-Jolly-Seber likelihood function (see 

Cormack, 1964). The product of these three components provides the overall likelihood (L) 

(Pollock & Alpizar-Jara, 2005). This likelihood function can then be used to estimate the 

population size for a given species using the following set of equations, adapted from Nichols 

(2005).  

If the total number of individuals caught during sampling period i (𝑛𝑖) is equal to the number of 

unmarked individuals caught during that period (𝑢𝑖) plus the number of marked individuals 

caught during that period (𝑚𝑖), then: 

𝑁̂𝑖 =
𝑛𝑖

𝑝̂𝑖
 

Where 𝑁̂𝑖  equals the estimated total number of individuals in the population present during 

sampling at period i, and 𝑝̂𝑖 is the estimated probability of capture during sampling period i. We 

can then replace 𝑝̂𝑖 with its own estimator: 

𝑝̂𝑖 =
𝑚𝑖

𝑀̂𝑖

 

Where 𝑀̂𝑖 equals the estimated number of marked individuals present in the population 

immediately prior to sampling period i.  
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This provides the true estimate for the total population size present during sampling at period i: 

 

𝑁̂𝑖 =
𝑛𝑖𝑀̂𝑖

𝑚𝑖
 

3.2.2.3 The superpopulation approach 

A more recent variant of the Jolly-Seber model was introduced by Schwarz & Arnason (1996) 

(see also Crosbie & Manly, 1985). It posits the idea of a superpopulation (N), representing all of 

the individuals (seen and unseen) that will enter the sampling area during the course of the 

experiment (Schwarz & Arnason, 1996; Nichols, 2005), where the probability of an individual 

entering the population from this superpopulation between sampling periods i and i+1 can be 

referred to as 𝑏𝑖. In doing so, this approach models new entrants to the population (either by birth 

or immigration, the model does not differentiate between these two causes) more effectively than 

the original Jolly-Seber model (Schwarz & Arnason, 2018), providing potentially more reliable 

population estimates.  

In this experiment, the estimated superpopulation (𝑁̂) would represent all of the insects of a given 

bee or hoverfly species that entered Prassológos over the course of the MRR experiment, while 

individual population estimates (𝑁̂𝑖) would represent the number of insects of a given bee or 

hoverfly species that were active during sampling period i. In this case, “active” would denote 

individuals that were flying, foraging, mating, or involved in any other behaviour that would bring 

an individual insect into contact with one of the surveyors. 

The multinomial likelihood function used by the superpopulation approach is similar to that used 

by the original Jolly-Seber model, but it replaces the previous component L1 (originally a binomial 

function that estimated the population size for unmarked individuals) with a new component 

describing the probability of initial capture for unmarked individuals using a binomial distribution 

(Schwarz & Arnason, 1996). Then, as before, the full likelihood (L) is the product of all three 

likelihood components: 

𝐿 = 𝐿1 × 𝐿2 × 𝐿3 
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Subsequently, the estimated population size during each sampling period (Ni) can be calculated 

iteratively, as in Schwarz & Arnason (2018):  

𝑁1 = 𝐵̂0 

𝑁2 = 𝑁1φ1 + 𝐵̂1 

𝑁3 = 𝑁2φ2 + 𝐵̂2 

⋮ 

Where 𝐵̂𝑖 is the estimated number of entrants to the population directly prior to 𝑁𝑖, and φ𝑖 is the 

estimated probability of survival from sampling period i to period i+1.  

3.2.2.4 Model assumptions 

The following set of assumptions relating to data collection (i.e. how unmarked individuals are 

caught, marked, and then released) are vital for the accurate estimation of population size by the 

superpopulation variation on the Jolly-Seber model (Nichols, 2005; Pollock & Alpizar-Jara, 2005; 

Henderson & Southwood, 2016): 

1. All marks on pollinators are read correctly. 

2. All marked pollinators retain their marks for the entirety of the experiment. 

3. The probability of survival (φi) between sampling occasion i and i +1 is equal for all 

pollinators, whether marked or unmarked. 

4. The probability of capture (pi) at sampling occasion i is equal for all living pollinators 

within the population, whether marked or unmarked. 

5. Sampling is conducted instantaneously. 

6. All emigration from the sampled population is permanent. 

7. The size of the study area remains constant (if the study area were to change with time, 

this might affect size of the population present).  

Of these, assumptions 3 & 4 are considered the most important, as violations of these assumptions 

can lead to over- or underestimates of population size (𝑁̂𝑖) (Jolly, 1965; Seber, 1965; Pollock & 

Alpizar-Jara, 2005; Henderson & Southwood, 2016).  
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3.2.2.5 Estimating population size 

Population sizes were estimated using the R package RMark (Laake, 2013): an interface between 

R and the free MRR analysis software MARK (White & Burnham, 1999). 

I fitted eight models for each bee or hoverfly species that presented with recapture events, using 

the mark.wrapper function in RMark (see Table 3.1). Each of these models was based on variation 

in a combination of four parameters: the probabilities of survival (φi), capture (pi), and entry to 

the population (𝑏𝑖), along with the size of the superpopulation (N). In each model, φi, pi, and 𝑏𝑖, 

were either constrained to be constant over time (~ ·) or allowed to vary with time (~ t). The 

estimated size of the superpopulation (𝑁̂) was constrained to remain constant with time due to the 

relatively short length of the MRR experiment. Model selection was carried out using corrected 

Akaike’s Information Criterion (AICC) scores7, together with their associated ΔAICC scores and 

Akaike weights, where the model with the lowest AICC score, and therefore the highest Akaike 

weight, was assumed to fit the data best. 

Table 3.1 The eight models fitted for each species that presented with recapture events. 

Model Explanation 

φi ~ ·, pi ~ ·, 𝑏𝑖 ~ ·, N ~ · All parameters remain constant with time 

φi ~ t, pi ~ ·, 𝑏𝑖 ~ ·, N ~ · Probability of survival is allowed to vary with time 

φi ~ ·, pi ~ t, 𝑏𝑖 ~ ·, N ~ · Probability of capture is allowed to vary with time 

φi ~ ·, pi ~ ·, 𝑏𝑖 ~ t, N ~ · Probability of entering the population is allowed to vary with time 

φi ~ t, pi ~ t, 𝑏𝑖 ~ ·, N ~ · Probabilities of survival and capture are allowed to vary with time 

φi ~ t, pi ~ ·, 𝑏𝑖 ~ t, N ~ · Probabilities of survival and entry are allowed to vary with time 

φi ~ ·, pi ~ t, 𝑏𝑖 ~ t, N ~ · Probabilities of capture and entry are allowed to vary with time 

φi ~ t, pi ~ t, 𝑏𝑖 ~ t, N ~ · All parameters are allowed to vary with time 

 

3.2.2.6 Goodness of fit 

As briefly noted earlier, violations of the assumptions of the superpopulation approach, 

particularly those regarding equal probability of survival and equal probability of capture, may 

result in over- or underestimates of population size. The ability of our data to meet these two 

 

7 Computed to account for smaller sample sizes. 
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primary assumptions can be assessed using the release.gof function in RMark. This function 

calculates two tests: TEST 2 and TEST 3. TEST 2 investigates heterogeneity in the probability of 

capture (pi) by assessing whether the likelihood of catching an insect is dependent on when it was 

first caught (Cooch & White, 2019), while TEST 3 tests for heterogeneity in the probability of 

survival between sampling period i and i+1 (φi) (Cooch & White, 2019). The results from both 

tests are calculated using contingency tables and yield a chi-square value, degrees of freedom, 

and a p value; if these p values are non-significant (i.e. p > 0.05) then the associated probability 

of survival or capture can be assumed to be homogeneous. The sum of the two chi-square values 

divided by the summed degrees of freedom also provides a measure for overdispersion within the 

dataset (Cooch & White, 2019). 

3.2.2.7 Comparing the rank abundance of bee and hoverfly species sampled by 

pan trapping and standardised transect surveys to the relative abundance 

estimates made via the MRR experiment 

The population estimates for each bee and hoverfly species recorded during the final sampling 

period (𝑁̂14) were used as expected counts within a Pearson’s chi-square test, to test whether there 

were significant differences between the estimated population size of each species and the relative 

abundance of each species as sampled by either pan trapping or the standardised transect surveys. 

Considering that we only completed two of the planned four days of transect surveys, I used both 

the total abundance of each species sampled by the pan traps and the abundance sampled only 

over the two-day period during which standardised transect surveys were possible as observed 

counts within the Pearson’s chi-square. 

Rank abundance curves were created to visualise the estimated rank abundance of each bee and 

hoverfly species during the final sampling period (𝑁̂14), as well as the rank abundance of the bee 

and hoverfly species sampled by pan trapping and by standardised transect surveys. The rank 

abundance curves were generated using the geom_point, geom_line, and geom-text functions in 

the ggplot2 package (Wickham, 2009). 

Ternary plots, generated using the ggtern function in package ggtern (Hamilton & Ferry, 2018), 

were also used to visualise the proportional composition of the raw samples generated by the 
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variable transects surveyed as part of the MRR experiment, by pan trapping, and by standardised 

transect surveys. 

3.2.2.8 Correlating bee and hoverfly abundance and species richness sampled by 

pan trapping and standardised transect surveys with local floral 

abundance 

To test for a relationship between total bee and hoverfly abundance and species richness, as 

sampled by pan trapping and by standardised transect surveys, and local floral abundance as 

measured in section 3.2.1.4, both Pearson’s (parametric) and Spearman’s rank (nonparametric) 

correlations were applied. Data normality was assessed using the shapiro.test function. 

3.3 Results 

3.3.1 Data collection 

Over the course of the MRR surveys we marked 479 insects, representing seven bee species and 

eight hoverfly species (Table 3.2). Only six species presented with recapture events during the 

experiment: Bombus terrestris, Halictus phryganicus, Episyrphus balteatus, Eupeodes corollae, 

Sphaerophoria scripta, and Xylocopa violacea. Of these six species, only four were also sampled 

by both pan trapping and the standardised transect surveys: B. terrestris, H. phryganicus, E. 

corollae, and S. scripta (see Table 3.6). Therefore, these were the only species for which 

population estimates were generated and analysed.  

3.3.2 Mark-release-recapture analysis 

3.3.2.1 Goodness of fit 

The population estimation model that provided the best fit for each species is described in Table 

3.3. In all cases the Akaike weight for the top model was more than 0.99 (see Supplementary 

Table 2.4), negating the need for any model averaging. 

Goodness-of-fit tests indicate that there was no heterogeneity present in terms of either the 

probability of capture or the probability of survival for B. terrestris (TEST 2: χ2
(3) = 2.35, p = 

0.50; TEST 3: χ2
(6) = 3.90, p = 0.69) or for S. scripta (TEST 2: χ2

(13) = 10.98, p = <0.61; TEST 3: 
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χ2

(17) = 6.92, p = <0.99). No overdispersion was present in the data for either species, although a 

degree of underdispersion was present in both. 

Table 3.2 The abundance of the different insect pollinator species caught during the MRR 

surveys between 13/04/2016 and 19/04/2016 , together with the number of recapture events 

for each species (the number of individuals captured once, twice, and three times). 

Order Family Species No. marked 

No. individuals 

recaptured 

1 2 3 

Hymenoptera Andrenidae Andrena hesperia 1 0 0 0 

Apidae Apis mellifera 6 0 0 0 

 
Bombus terrestris 38 3 2 3 

 
Xylocopa violacea 13 1 0 0 

Halictidae Halictus phryganicus 32 1 0 0 

 

Lasioglossum 

malachurum 1 

0 0 0 

  Lasioglossum nitidulum 2 0 0 0 

Diptera Syrphidae Episyrphus balteatus 22 1 0 0 

 
Eristalinus aeneus 5 0 0 0 

 
Eristalis tenax 29 0 0 0 

 
Eupeodes corollae 125 19 4 0 

 
Melanostoma mellinum 12 0 0 0 

 
Paragus quadrifasciatus 3 0 0 0 

 
Sphaerophoria scripta 185 42 7 1 

  Scaeva pyrastri 5 0 0 0 

 

Table 3.3 The best population estimation model for each pollinator species, as chosen via 

AICC values. 

Order Family Species Best model 

Hymenoptera Apidae Bombus terrestris φi ~ ·, pi ~ ·, 𝑏𝑖 ~ ·, N ~ · 

 Halictidae Halictus phryganicus φi ~ ·, pi ~ ·, 𝑏𝑖 ~ ·, N ~ · (constrained) 

Diptera Syrphidae Eupeodes corollae φi ~ ·, pi ~ t, 𝑏𝑖 ~ ·, N ~ · 

  Sphaerophoria scripta φi ~ ·, pi ~ t, 𝑏𝑖 ~ ·, N ~ · 

 

Results for TEST 2 and TEST 3 were not estimable for E. corollae or H. phryganicus. This is 

likely due to relatively sparse recapture data for both species, leading to the contingency tables 

for these two tests presenting with observed frequencies of 0 in one or more cells or expected 
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frequencies of less than 2. I therefore cannot comment on the validity of the assumptions 

concerning equal probability or survival or capture within these two species, nor can I quantify 

over- or underdispersion within the data for either species. As a result, I present the parameter 

estimates for both E. corollae and S. scripta “as is”, but with the joint caveats that I cannot 

necessarily assume that the probabilities of survival or capture are equal for all individuals from 

these species between periods i and i+1 (which may result in over- or underestimates of population 

size), and that over- or underdispersion may be present within the data. 

3.3.2.2 Estimating population size 

Population estimates indicate that there were 15 (95% CI [8, 26]) B. terrestris individuals active 

on Prassológos during the final sampling period (Table 3.4; for all population estimates see 

Supplementary Table 2.5), and that 75 (95% CI [55, 124]) individuals were present on the islet 

over the course of the MRR experiment (Table 3.5). This may be indicative of a small local colony 

on Prassológos, or of a subset of workers from a colony or series of colonies on mainland Lesvos 

repeatedly visiting the islet as a reliable source of forage. 

Population estimates for S. scripta indicate that 69 (95% CI [44, 111]) individuals were active on 

Prassológos during the final sampling period (Table 3.4; for all population estimates see 

Supplementary Table 2.6), and that 659 (95% CI [489, 925]) individuals were present on the islet 

over the course of the MRR experiment (Table 3.5). These are large population estimates for an 

islet not much more than a hectare in area. The top model for this species allowed for pi to vary 

with time, although this parameter remains relatively low for most of the experiment, only rising 

above 0.20 during one sampling period (see Fig. 3.3A). These results may be indicative of a large 

local population of S. scripta on the islet, or that regular migration into and out of the population 

was taking place during the experimental period (or possibly both). 

Population estimates for E. corollae indicate that 158 (95% CI [70, 358]) individuals were active 

on Prassológos during the final sampling period (Table 3.4; for all population estimates see 

Supplementary Table 2.7), and that 526 (95% CI [362, 805]) individuals were present on the islet 

during the MRR experiment (Table 3.5). As with S. scripta, the top model for this species also 

allowed for pi to vary with time, showing a decrease over the course of the experiment (Fig. 3.3B). 
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Again, this may suggest either a large local population exists, or that regular temporary migration 

in and out of the population was occurring. However, since neither of the goodness-of-fit tests 

were estimable for E. corollae, it is also possible that the model overestimated both N and 𝑁̂14 

due to a violation of the assumptions concerning either pi or φi. 

Population estimates for H. phryganicus indicate that 429 (95% CI [79, 2315]) individuals were 

active on Prassológos during the final sampling period (Table 3.4; for all population estimates see 

Supplementary Tables 2.8 & 2.9), and that 500 (95% CI [118, 2580]) individuals were present on 

the islet over the course of the MRR experiment (Table 3.5). The population estimates for this 

species were evidently affected by the low recapture rate, and the large confidence intervals 

indicate that estimates for both N and 𝑁̂14 are not reliable. Since neither goodness-of-fit test was 

estimable, this model is almost certainly overestimating both N and 𝑁̂14, again due to a violation 

of the assumptions concerning either pi or φi. 

Table 3.4 The estimated population size present on the final sampling period of the 

experiment (𝑵̂𝟏𝟒), together with 95% confidence intervals. 

 

 

Table 3.5 The estimated size of the superpopulation present during the course of the 

experiment (𝑵̂), together with 95% confidence intervals. 

 

Order Family Species 𝑁̂14 95% CI 

Hymenoptera Apidae Bombus terrestris 15.22 [8.87, 26.11] 

 Halictidae Halictus 

phryganicus 

428.91 [79.48, 2314.66] 

Diptera Syrphidae Eupeodes corollae 158.30 [69.98, 358.08] 

  Sphaerophoria 

scripta 

69.45 [43.61, 110.60] 

Order Family Species 𝑁̂ 95% CI 

Hymenoptera Apidae Bombus terrestris 77.08 [55.68, 124.36] 

 Halictidae Halictus 

phryganicus 

499.90 [117.92, 2579.98] 

Diptera Syrphidae Eupeodes corollae 525.99 [361.50, 804.88] 

  Sphaerophoria 

scripta 

659.23 [488.87, 925.10] 
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Figure 3.3 The estimated probability of capture during each sampling period (𝒑̂𝒊) ± 95% 

confidence intervals for A) Sphaerophoria scripta, and B) Eupeodes corollae. 

 

3.3.2.3 Comparing the rank abundance of bee and hoverfly species sampled by 

pan trapping and standardised transect surveys to the relative abundance 

estimates generated by the MRR experiment 

Together both pan trapping and standardised transect surveys sampled fourteen species of bee and 

hoverfly, seven of which were also sampled during the MRR experiment (Table 3.6). Of these 

two methods, pan trapping sampled the most species (n = 11 species) and the greatest overall 

abundance of bees and hoverflies. However, if we limit the pan trap samples to those collected 

over the two days where both pan trapping and standardised transects were carried out in tandem, 

A 

B 
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then both survey methods sampled the same species richness (n = 5 species), although pan 

trapping still sampled the greater overall abundance. 

One of the advantages of transect-based survey methods is that the relationships between insect 

pollinators and their preferred forage plants can be observed. Of the seven insects sampled during 

the standardised transect surveys (Table 3.6), four of the hoverflies were sampled mid-flight: S. 

scripta (n = 2), E. tenax (n = 1), and Chrysotoxum sp. (n = 1). Of the remaining three individuals, 

a single unknown solitary bee and one E. corollae individual were sampled whilst foraging on 

Cirsium sp., while the remaining E. corollae individual was sampled whilst foraging on Crepis 

sp. 

Table 3.6 Abundance of insect pollinator species sampled by pan trapping and standardised 

transect surveys. 

Order Family Species Pan traps 

Pan traps 

22– 23 

April† 

Transect 

surveys 

Hymenoptera ~ Unknown solitary bee 

sp. 

0 0 1 

 Apidae Anthophora plumipes 1 0 0 

  Apis mellifera 1 0 0 

  Bombus terrestris 1 0 0 

  Ceratina parvula 5 5 0 

  Eucera sp. 1 0 0 

 Halictidae Halictus sp. 1 0 0 

  Halictus phryganicus 7 5 0 

  Lasioglossum 

nitidulum 

10 6 0 

  Lasioglossum 

leucozonium 

2 2 0 

Diptera Syrphidae Chrysotoxum sp. 0 0 1 

  Eristalis tenax 1 0 1 

  Eupeodes corollae 3 1 2 

  Sphaerophoria scripta 0 0 2 

†The dates that coincide with the standardised transect surveys. 
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The population estimates for B. terrestris, H. phryganicus, E. corollae, and S. scripta together 

provide a picture of the relative abundance of these four bee and hoverfly species within the wider 

insect community present on Prassológos on the final day of the MRR experiment (𝑁̂14). The 

results of the Pearson’s chi-square test show that there were significant differences between these 

expected values and the counts observed within the samples collected by both pan trapping and 

the standardised transect surveys, with significantly fewer individuals sampled by both survey 

methods than were estimated to be active by the MRR method (Table 3.7). This result remained 

consistent when the relative abundance of each of the four individual species was compared to 

the counts observed within the samples collected by both pan trapping and the standardised 

transect surveys (Table 3.7). The results concerning pan trapping also remained consistent 

regardless of whether the analysis used counts collected over the full four-day sampling period, 

or over the two days where both pan traps and transect surveys were deployed in concert (p = 

<0.001 for all species). 

Table 3.7 Results of Chi-square tests comparing the samples from pan trapping and 

standardised transect walks to population estimates generated by mark-release-recapture 

analysis. 

  Pan trapping Transect walks 

Family Species χ2 DF p χ2 DF p 

All species 650.12 3 <0.001 663.96 3 <0.001 

Apidae Bombus 

terrestris 

13.29 1 <0.001 15.22 1 <0.001 

Halictidae Halictus 

phryganicus 

514.02 1 <0.001 428.91 1 <0.001 

Syrphidae Eupeodes 

corollae 

152.36 1 <0.001 154.33 1 <0.001 

 Sphaerophoria 

scripta 

69.45 1 <0.001 65.51 1 <0.001 

 

In terms of the rank abundance of these four species, a combination of both pan trapping and 

standardised transect surveys, when deployed in concert, provided samples that were the closest 

match to the rank abundance of the community estimated on the final day of the MRR 

experiment (𝑁̂14) (Fig. 3.4A & E). However, together the samples from both survey methods still 
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underestimated the relative abundance of H. phryganicus and B. terrestris (not a single B. 

terrestris individual was captured) and overestimated the relative abundance of S. scripta. 

Over the full four-day sampling period, pan trapping provided the closest match to the estimated 

rank abundance of H. phryganicus and E. corollae (Fig. 3.4A & B). Pan trapping overestimated 

the relative abundance B. terrestris and underestimated the relative abundance of S. scripta (not 

a single individual was captured), swapping the ranks of these two species when compared to 

their rank abundances, as estimated by the MRR experiment. If we constrain the pan trap samples 

to those collected when pan trapping was deployed in concert with standardised transect surveys), 

the rank of both H. phryganicus and E. corollae is the same, but the relative abundance of the 

former is overestimated and that of the latter is underestimated (Fig. 3.4A & C). The relative 

abundances of both B. terrestris and S. scripta were incalculable, as not a single individual of 

either species was captured during this period. 

The standardised transect surveys collected samples that were the least similar, in terms of rank 

abundance, to the community estimated on the final day of the MRR experiment (Fig. 3.4A & D), 

massively overestimating the relative abundance of both E. corollae and S. scripta. Meanwhile, 

the relative abundances of H. phryganicus and B. terrestris were incalculable, as not a single 

individual of either species was captured. 

The ternary plots also indicate some interesting trends in the raw abundance data collected by 

each method. In terms of relative abundance, Figure 3.5 indicates that that the samples collected 

via pan trapping contained a higher proportion of solitary bees (84.4%) than the standardised 

transect surveys (14.3%), or the variable transect surveys carried out as part of the MRR 

experiment (10.4%). Conversely, the proportion of hoverflies was greater in the samples collected 

via the variable (81.6%) and standardised transect surveys (85.7%) than in those collected via pan 

trapping (12.5%). The combined samples of both pan trapping and standardised transect surveys, 

when deployed in tandem, were more similar to those collected by pan trapping than those 

collected by either transect method, with samples dominated by a high proportion of solitary bees 

(73.1%). In terms of relative abundance, neither bumblebees nor honeybees were prevalent in the 

samples collected using any of these three sampling methods (Figure 3.6).  
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Figure 3.4 Rank abundance curves showing the relative abundance of Bombus terrestris, 

Halictus phryganicus, Eupeodes corollae, and Sphaerophoria scripta against their rank 

within the community for: A) the Jolly-Seber population estimates for the final day of the 

MRR experiment (𝑵̂𝟏𝟒); B) the samples collected via pan trapping across the full four-day 

sampling period; C) the samples collected via pan trapping between the 22nd and 23rd April; 

D) samples collected via standardised transect surveys between the 22nd and 23rd April; and 

E) the combined samples collected by both pan trapping and standardised transect surveys 

between the 22nd and 23rd April. 

 

 

A B 

C D 

E 
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Figure 3.5 Ternary plots showing the proportional composition of samples generated by 

each different survey method (blue: MRR variable transect surveys; yellow: standardised 

transect surveys; cyan: pan trapping; green: pan trapping between the 22nd-23rd; and 

purple: the combined samples of pan trapping and standardised transect surveys between 

the 22nd-23rd) in terms of the abundance of: A) Bumblebees (orange), solitary bees (black), 

and hoverflies (blue); and B) Honeybees (orange), solitary bees (black), and hoverflies 

(blue). 

 

 

Figure 3.6 Ternary plots showing the proportional composition of samples generated by 

each different survey method (blue: MRR variable transect surveys; yellow: standardised 

transect surveys; cyan: pan trapping; green: pan trapping between the 22nd-23rd; and 

purple: the combined samples of pan trapping and standardised transect surveys between 

the 22nd-23rd) in terms of the species richness of: A) Bumblebees (orange), solitary bees 

(black), and hoverflies (blue); and B) Honeybees (orange), solitary bees (black), and 

hoverflies (blue). 

 

These trends were mirrored in the species richness data, but to a lesser degree (Figure 3.6). 

Samples collected via pan trapping still contained a greater proportion of solitary bee species 

(63.6%) than either the variable (35.7%) or standardised transect surveys (20.0%), while both 

variable and standardised transect surveys sampled a greater proportion of hoverfly species 

A B 

A B 
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(57.1% and 80.0%, respectively) than pan trapping (27.3%). A combination of the samples 

collected by tandem pan trapping and standardised transect surveys, sampled solitary bee and 

hoverfly species in proportions that were much closer to one-another. 

3.3.2.4 Correlating bee and hoverfly abundance and species richness sampled by 

pan trapping and standardised transect surveys with local floral 

abundance 

There were no significant correlations between the total abundance (r(8) = 0.09, p = 0.798) or 

species richness (r(8) = 0.11, p = 0.754) of bees and hoverflies sampled by pan trapping and the 

floral abundance present within a 2m radius of each of the pan trapping stations. This remained 

consistent when only samples collected by both pan trapping and transect surveys, when deployed 

in concert, were considered: abundance (rs(8) = 0.18 p = 0.630) and species richness (r(8) = 0.06, p 

= 0.872). Similarly, there was no significant correlation between the total abundance (rs(8) = 0.04, 

p = 0.869) or species richness (rs(8) = 0.04, p = 0.869) of bees and hoverflies sampled by the 

standardised transect surveys and the floral abundance present along the standardised transects. 

3.4 Discussion 

In light of recent evidence concerning insect pollinator declines (Biesmeijer et al., 2006; Ollerton 

et al., 2014; Powney et al., 2019), the design of standardised monitoring protocols is key to being 

able to accurately and reliably monitor changing population trends (Potts et al., 2016; Powney et 

al., 2019). One aspect of this process that has been investigated extensively by previous studies 

is the quantification of sampling bias within different survey methods, in particular pan trapping 

and transect surveys (Cane, Minckley, & Kervin, 2000; Roulston, Smith, & Brewster, 2007; 

Westphal et al., 2008; Wilson, Griswold, & Messinger, 2008; Grundel et al., 2011; Nielsen et al., 

2011; Popic, Davila, & Wardle, 2013; Prendergast et al., 2020). Most previous research has 

focused on direct comparisons of the abundance or species richness sampled by these methods, 

in order to assess which method best represents insect pollinator communities (albeit usually 

whilst focusing solely on bees). As of yet, there has been no attempt to ground truth these findings 

with data concerning the “true” relative abundance of pollinator species within a given 

community. The aim of this Chapter was to use a mark release recapture (MRR) experiment to 
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estimate the relative abundance of bee and hoverfly species within a semi-closed island 

community in Greece. I then compare these population estimates to samples collected via pan 

trapping and standardised transect surveys to see whether the rank abundance of bee and hoverfly 

species within these samples matched the estimated rank abundance of species within the island 

community.  

Of the fifteen bee and hoverfly species surveyed during the MRR experiment (and twenty-one 

bee and hoverfly species surveyed across Prassológos), only six species had any associated 

recapture events: Bombus terrestris, Halictus phryganicus, Episyrphus balteatus, Eupeodes 

corollae, Sphaerophoria scripta, and Xylocopa violacea. Even within a small, semi-closed island 

ecosystem, the MRR protocol used in this Chapter would not have been capable of providing 

estimates of relative abundance for more than a third of the taxa surveyed. I was primarily unable 

to provide population estimates for smaller solitary bee or hoverfly species (A. hesperia, L. 

malachurum, L. nitidulum, and P. quadrifasciatus) or larger species that would potentially have 

been capable of migrating to and from the mainland (A. mellifera, A. plumipes, E. aeneus, S. 

pyrastri, and X. violacea); many of these species were also surveyed in relatively small numbers, 

which may, in the larger species, be indicative of transitory populations. The variable transect 

surveys that formed the basis of the MRR experiment were open to collector bias (Westphal et 

al., 2008; Nielsen et al., 2011), and although both surveyors had extensive experience in terms of 

hand netting and transect surveys, neither had prior experience with the bee and hoverfly fauna 

of Prassológos prior to beginning the MRR surveys. This may explain why several smaller solitary 

bee species, e.g., L. leucozonium and C. parvula, were not sampled by the variable transect 

surveys, despite the presence of both species on the island being confirmed during the pan 

trapping surveys (see Nielsen et al., 2011). This may also be evidence that transect-based surveys 

do underestimate the relative abundance of smaller insect species (Potts, Evan, & Boone, 2005; 

Rhoades et al., 2017), but since providing evidence for the presence of these sampling biases is 

the main point of this Chapter (and the use of the MRR protocol itself), I will not hypothesise 

further about their presence without available data. 
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However, despite only recapturing individuals for six species, we were still able to sample fifteen 

of the twenty-one species found on the islet using this protocol. This would appear to agree with 

Nielsen et al. (2011) who, in their study of phryganic and other Mediterranean habitats, found 

that variable transects, like those used here as the basis of the MRR experiment, sampled the 

greatest number of bee species, including the greatest number of unique bee species, out of the 

five survey methods they tested. Although, admittedly, in our experiment, the variable transects 

were sampled over seven days, compared to the pan traps’ four-day protocol, and the standardised 

transect surveys’ two-day protocol. In order to generate reliable estimates for a greater share of 

the species present, I would recommend that future researchers working within this kind of 

experimental island system use more surveyors, to ensure that a greater proportion of each 

species’ population can be captured and marked. I would also recommend surveyors spend a short 

period of time prior to beginning the MRR surveys acquainting themselves with the focal fauna. 

The length of the sampling period could be extended to provide additional time to recapture 

marked individuals but, given that many insects have relatively short lifespans and that several of 

the species present on Prassológos are highly dispersive (Beekman & Ratnieks, 2000; Steffan-

Dewenter & Kuhn, 2003; Osborne et al., 2008; Rotheray & Gilbert, 2011; Carvell et al., 2012), 

shorter sampling periods do have the advantage that marked individuals are less likely to leave 

the population via death or emigration before being recaptured (Henderson & Southwood, 2016). 

I was able to meet most of the assumptions necessary for reliable population estimation in the 

four species for which estimates were made. The seven-day marking period, combined with a 

simple marking strategy, ensured that marks were retained over the course of the experiment and 

read correctly by both surveyors, and that the marking process itself was carried out within three 

minutes of capture with marked individuals being allowed time to recover prior to release. 

However, for two of the four species: E. corollae and H. phryganicus, tests for the primary 

assumptions of equal probability of survival and equal probability of capture between periods i 

and i+1 could not be estimated. This, combined with sparse recapture data, means that our 

population estimates for H. phryganicus are almost certainly overestimated, while estimates for 

E. corollae should be treated with caution. 
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It is challenging to say, based upon these data, whether samples collected by pan trapping or by 

standardised transect surveys best represent the bee and hoverfly community present on 

Prassológos during this experiment. If I focus solely on the smaller community formed by the 

four species for which we were able to estimate relative abundance: B. terrestris, H. phryganicus, 

E. corollae, and S. scripta, then the rank abundance of these four species appears to be best 

reflected by the combined samples from both survey methods, when deployed together over the 

two-day period. However, this still results in underestimations of the relative abundance of H. 

phryganicus and B. terrestris, and overestimations of the relative abundance of S. scripta. 

Samples collected over the full four days of pan trapping appear to best represent the relative 

abundance of H. phryganicus, which would appear to confirm the hypothesis that pan trapping is 

well-suited to sampling populations of smaller solitary bee species, such as the Halictidae 

(Roulston, Smith, & Brewster, 2007; Westphal et al., 2008; Wilson, Griswold, & Messinger, 

2008; Grundel et al., 2011), while casting doubt upon the idea that they overestimate the relative 

abundance of these species in samples (Portman, Bruninga-Socolar, & Cariveau, 2020). But, since 

the estimated population size of H. phryganicus presented in Section 3.3.2.2 was most likely itself 

an overestimation (due to poor recapture rates), I cannot definitively say whether either survey 

method, in fact, provides an accurate picture of the relative abundance of this species. Pan 

trapping also overestimated the relative abundance of B. terrestris, potentially bringing into 

question the view than pan traps under-sample larger insect species such as bumblebees (Potts, 

Evan, & Boone, 2005; Roulston, Smith, & Brewster, 2007), although the relative abundance of 

this species within the pan trap samples was still very low overall.  

The standardised transect surveys overestimated the relative abundance of both hoverfly species 

and underestimated the relative abundance of both bee species. Most of the literature that has 

focused on comparing pan trapping and transect surveys has done so solely in terms of either 

method’s ability to sample bees (but see Popic et al., 2013). Both E. corollae and S. scripta share 

bold black and yellow markings, and S. scripta has a distinctive body shape, so their increased 

abundance in the samples collected by the standardised transect surveys relative to their estimated 

abundance in the community may have been a result of collector bias. This may also explain why 
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the transect surveys failed to sample any specimens of the relatively abundant (but visually dull) 

H. phryganicus, or any of the smaller solitary bee species that were relatively abundant in the pan 

trapping samples (i.e., C. parvula or L. nitidulum). This result may provide some confirmation of 

the hypothesis that transect-based methods are less well-suited to sample the populations of 

smaller solitary bees (Potts, Evan, & Boone, 2005; Templ et al., 2019).  

If we focus away from the population estimates for these four species, however, and concentrate 

on the relative abundance of broad taxonomic groups sampled across the variable transect surveys 

(as shown in Figures 3.5 & 3.6), then the standardised transect surveys actually provide the closest 

match, regardless of the wide disparity in total sample sizes. Both transect-based methods sampled 

a lower proportion of solitary bees, honeybees, and bumblebees, and a higher proportion of 

hoverflies (in terms of both abundance and species richness) than pan trapping. This would appear 

to disagree with the findings of O’Connor et al. (2019b), who found that pan trapping and transect 

surveys sampled a similar species richness (and an approximately equivalent rate of species 

accumulation) of hoverflies; although, this decreased in transects if the surveys weren’t carried 

out by acknowledge experts. Pan traps, meanwhile, sampled a high overall proportion of solitary 

bees and low proportions of hoverflies, honeybees, and bumblebees (again, in terms of both 

abundance and species richness). This provides further evidence that pan traps may be a good 

choice for sampling solitary bee populations, although it tells us nothing regarding how well the 

relative abundance of these solitary bee species compares with the relative abundance of these 

species in the focal community. It also shows that the samples collected via pan trapping were not 

representative of the samples generated by the variable transect walks in terms of taxonomic 

diversity, especially if we only consider the samples generated when both pan traps and 

standardised transect surveys were deployed together. The low abundance sampled by the 

standardised transect surveys means that a combination of these samples, and those collected by 

pan trapping between the 22nd and 23rd, were also a poor match for the relative abundance of bee 

and hoverfly taxa sampled during the variable transect surveys. However, these combined 

samples were a much closer match to the proportional species richness sampled during the 

variable transect surveys. If considered only across the two days where both survey methods were 
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used in tandem, both pan trapping and standardised transect surveys also sampled the same 

number of species (n = 5). This would appear to indicate that, if the aim of a survey is to generate 

a comprehensive species inventory for an area, a combination of both pan trapping and transect 

surveys is appropriate, and that both standardised and variable transect protocols should be 

considered; a view that agrees with the findings of Grundel et al. (2011), Nielsen et al. (2011), 

O’Connor et al. (2019b), and Prendergast et al. (2020). 

The relative abundance of B. terrestris was poorly represented in samples collected by both pan 

trapping and standardised transect surveys. Considering the abundance of evidence that suggests 

transects are particularly well-suited to sampling bumblebee populations, this may be further 

evidence that the present population was transitory rather than one native to Prassológos. 

Bumblebees are noted as being more robust to higher wind speeds than smaller bee species (Peat 

& Goulson, 2005; Crall et al., 2017), but travelling over approximately 1km of open water in 

search of forage is unlikely to present a sufficient reward in the inclement weather that occurred 

during the methods comparison portion of this experiment to warrant the energetic effort required 

(Ravi et al., 2013). This would also likely have been the case for local honeybees, which would 

certainly have been travelling across from mainland Lesvos since there was no colony or hive on 

Prassológos. Honeybees were captured rarely enough during the MRR surveys that I assume 

Prassológos either did not present an attractive enough resource for scouts from local hives, or 

that the islet had not been located by local foragers. 

Both pan trapping and standardised transect surveys sampled significantly fewer insects than the 

numbers estimated by the MRR survey. This, to an extent, agrees with the results of Gezon et al. 

(2015), who showed that repeated pan trapping, whether over the course of a season or across 

multiple years, did not affect local bee community composition or abundance. This indicates that, 

even in a small, semi-closed island ecosystem, regular systematic destructive sampling by both 

pan trapping and standardised transect surveys only removes a relatively small proportion of the 

bee and hoverfly community present, even when used in tandem. 

The unexpected high winds present on and around Prassológos when deploying and comparing 

methods in tandem, may have affected the sampling ability of both the pan traps and standardised 
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transect surveys, making comparisons between the two methods problematic. There has been 

relatively little research concerning the effects of local weather conditions on the efficacy of 

different insect pollinator survey methods, an absence which has been commented on by past 

authors (see Saunders & Luck, 2013; Crall et al., 2020). Results from Chapter 2 show that 

increased wind speeds decreased the abundance of solitary bees captured by pan trapping, 

whereas bumblebee abundance and species richness in the same traps was observed to increase 

under higher wind speeds. In the field, fewer bees and hoverflies are typically observed on transect 

surveys during periods of higher winds (personal observation), which can also make it more 

difficult to sample with a net. A more informative approach for this Chapter may have been to 

continue with the transect walks during the period of higher winds, and then use these data as part 

of a generalised linear mixed-effects model to assess the effect of changing wind speeds upon the 

efficacy of both pan trapping and standardised transect surveys. Regardless, the sampling bias 

caused by different weather conditions is clearly an area of research that would benefit from 

further study. 

In contrast to the results of Chapter 2, I found no correlation between the floral abundance present 

around the pan traps or along the standardised transects and the number of bees and hoverflies 

sampled along them. While much of the current literature considers pan traps to be less effective 

in areas with high floral abundance (Roulston, Smith, & Brewster, 2007; Wilson, Griswold, & 

Messinger, 2008; Baum & Wallen, 2011; O’Connor et al., 2019b; Westerberg et al., 2021), 

transect surveys are noted for their ability to sample at the plant-pollinator interface (Potts, Evan, 

& Boone, 2005; Popic, Davila, & Wardle, 2013) and are considered to have a positive sampling 

bias towards areas with a higher floral abundance (Popic, Davila, & Wardle, 2013; O’Connor et 

al., 2019b). Both O’Connor et al. (2019b) and Templ et al. (2019) found that increased floral 

density had opposing effects on the abundance of bee and hoverfly samples collected via pan 

trapping and transect surveys, decreasing the former while increasing the latter, within two 

homogeneous crop monocultures. The abundance of flowers found surrounding the pan traps and 

along the transect surveys in this experiment were similar to those encountered within O’Connor 

et al. (2019b) (see O’Connor et al., 2019a), although our island site is likely to have been 
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significantly more heterogeneous in terms of floral density. I hypothesise that the lack of a 

relationship between floral resource abundance and bee and hoverfly diversity may be due to the 

size of the islet in question. In a semi-closed island site less than one hectare in area, resident 

insect species may be under less behavioural pressure to visit high-resource floral patches, since 

the floral resources present across the island are effectively within reach, even for smaller solitary 

bee species with smaller foraging ranges (Gathmann & Tscharntke, 2002; Greenleaf et al., 2007).  

3.5 Conclusions 

The use of a MRR experiment to ground truth samples collected via different survey methods in 

order to quantify specific sampling biases is a novel approach, that has not been previously tested 

within insect pollinator communities. Due to low recapture rates, I was only able to generate 

population estimates for four of twenty-one species sampled on the islet of Prassológos, and, 

therefore, was unable to provide concrete evidence for the existence of the often-hypothesised 

sampling biases associated with pan trapping and transect surveys; namely that pan traps 

overestimate the relative abundance of smaller solitary bee species, and that transect surveys 

underestimate the relative abundance of these smaller species, while overestimating the 

abundance of larger, slower moving taxa, such as bumblebees. I was, however, able to identify 

some interesting trends in my data that suggest that these proposed biases may, in reality, exist. 

Based upon these results, I recommend that future studies emphasise differences in relative 

abundance and the composition of samples from different survey methods, when attempting to 

assess their relative efficacy, rather than concentrating purely on differences in the raw abundance 

or species richness sampled (see Cane, Minckley, & Kervin, 2000; Roulston, Smith, & Brewster, 

2007; Westphal et al., 2008; Nielsen et al., 2011; Popic, Davila, & Wardle, 2013). 

Furthermore, this experiment did provide an interesting proof of concept for future experimental 

work in this area. Within a semi-closed island system, a greater number of surveyors may increase 

the number of species for which reliable population estimates can be generated. By replicating 

this experiment over a number of years, one could provide enough data to answer questions 

concerning the sampling bias inherent to a range of survey methods. In addition, enough small 

island ecosystems exist, even around the UK (e.g. the Isles of Scilly and the Outer Hebrides), that 
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this concept could be explored in more detail across a wider geographic range with some effort. 

There also exists the potential to create closed artificial populations using a large experimental 

flight chamber, wherein reared populations of insects like Bombus terrestris, Apis mellifera, and 

Osmia bicornis, could be used to assess questions relating to sampling bias (Lihoreau, Chittka, & 

Raine, 2016).  
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Chapter 4  

Acoustic differentiation between flower-visiting insect taxa based on 

wing beat frequencies: a future monitoring tool? 

 

4.1 Introduction 

There is growing evidence concerning insect pollinator declines across the globe (Biesmeijer et 

al., 2006; Ollerton et al., 2014; Teichroew et al., 2015; Koh et al., 2016; Powney et al., 2019), 

The scale of these declines, combined with the relative lack of centralised, standardised 

monitoring protocols (but see Carvell et al., 2016), makes quantifying these trends in pollinator 

populations problematic (Isaac et al., 2014; Powney et al., 2019). Citizen science, defined as “the 

involvement of volunteers in research” by Roy et al. (2016), has a long history within the UK 

(Pocock et al., 2015), where several long-term, national-scale biodiversity monitoring projects 

and organisations rely upon citizen scientists to increase the spatio-temporal scales over which 

they can gather data (see Roy et al., 2012: Appendix II). 

The use of citizen scientists in biodiversity surveys brings with it some methodological issues. 

Survey methods need to be standardised, easy to use, and ideally non-destructive, in order to 

encourage willingness and motivation to participate across a range of potential stakeholder groups 

(Knapton, 2017; Barkham, 2017). The UK’s national Pollinator Monitoring Scheme (PoMS)8 has 

integrated citizen science into its data collection protocol through the use of Flower-Insect Timed 

Counts (FIT Counts), which are analogous to the focal floral resource observations described in 

Roy et al. (2016) (see also Westphal et al., 2008; Nielsen et al., 2011). This non-destructive, visual 

survey method is simple and quick to carry out but does rely upon individuals identifying insects 

from a wide range of taxa to broad groups by sight (Carvell, 2017). Misidentified observations 

can be a major source of bias within citizen science surveys, responsible for both Type I and Type 

 

8 https://ukpoms.org.uk/home 
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II errors (Dennis et al., 2006; Isaac et al., 2014); while research has shown that, even with training, 

volunteers are still liable to make identification errors when surveying insect communities (Roy 

et al., 2016; Falk et al., 2019; but see Kremen, Ullman, & Thorp, 2011; Ratnieks et al., 2016).  

The use of sound to classify organisms may present a more reliable method of non-destructively 

surveying insect pollinators across large spatial scales. There are many applications of acoustics 

within biological monitoring, one of the most common of which is bioacoustics, defined as the 

study of the sounds produced by animals (Ozga, 2017), often with special reference to sounds 

used for communication (Laiolo, 2010; Ozga, 2017). Bioacoustics has been used to recognise and 

successfully classify organisms from a wide range of different taxa, including amphibians 

(Acevedo et al., 2009; Huang et al., 2009), birds (Briggs et al., 2012; Cheng et al., 2012), marine 

mammals (Oswald, Barlow, & Norris, 2000; Moore et al., 2006; Soldevilla et al., 2008), bats 

(Herr, Klomp, & Atkinson, 1997; Armitage & Ober, 2010; Zamora-Gutierrez et al., 2016), and 

insects (Chesmore & Nellenbach, 2001; Chesmore, 2004; Chesmore & Ohya, 2004).  

This bioacoustic revolution in biological recording has been applied broadly to biodiversity 

monitoring as well as being used to detect invasive and pest species (Chesmore, 2008), and to 

monitor the effects of anthropogenic activity upon biodiversity and animal behaviour (see Laiolo, 

2010). This has partly been made possible due to the extensive uptake of machine learning 

techniques within the fields of ecology and conservation science. Machine learning is a form of 

artificial intelligence and is primarily used within ecology to detect patterns in large, complex 

datasets (Olden, Lawler, & Poff, 2016). Supervised machine learning, where pattern-recognition 

algorithms are trained using known data (Olden, Lawler, & Poff, 2016), have been used to classify 

animal acoustic signals with well-above eighty per cent accuracy. For instance, Chesmore & Ohya 

(2004) used artificial neural networks (ANNs) to identify four UK grasshopper species with 

between eighty and one hundred per cent accuracy, while Huang et al. (2009) achieved similar 

rates of accuracy classifying five frog species using support vector machine models (SVMs).  

The widespread application of machine learning techniques, in conjunction with the proliferation 

of personal, hand-held technology (August et al., 2015), has led to the creation of smartphone 
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applications such as Cicada Hunt, designed for the New Forest Cicada Project9. This app uses the 

microphone present in all current smartphones to detect the call of the rare New Forest cicada 

(Cicadetta montana s. str.), encouraging further citizen scientist-participation in this monitoring 

scheme (Pantidi et al., 2014; August et al., 2015). Whereas, plug-in microphones, such as the 

Echo Meter Touch10, have been developed that can combine with smartphone applications to 

allow the general public to detect and identify bat species. 

All of which begs the question: can we apply bioacoustic technology to monitor insect pollinator 

communities? One potential barrier to doing so is the issue of actively vs. passively generated 

sound. Many of the insect taxa that have been the focus of bioacoustic research produce active 

sound, i.e., sounds that are produced for a specific purpose, such as the stridulation signals in the 

Orthoptera (see Chesmore, 2004; Chesmore & Nellenbach, 2001; Chesmore & Ohya, 2004). 

These signals are typically species-specific and are thus easier targets for acoustic classification. 

Most insect pollinator species do not produce sound in this way, rather the sounds they produce 

are the passive by-product of their wingbeats, creating the buzz commonly associated with flying 

insects (Ganchev & Potamitis, 2007). These sounds do vary in frequency as a function of body 

size, with larger insects tending to generate lower frequencies. This has been relatively well 

studied in bumblebees (Bombus spp.). Miller-Struttmann et al. (2017), for instance, found that the 

characteristic frequency associated with the wing beats of two alpine bumblebee species fell from 

approximately 200Hz to nearer 125Hz as both wing length and tongue length increased. And van 

Roy et al. (2014) showed a similar relationship between both body mass and wing dimensions 

and the wing beat frequencies of Bombus terrestris and B. ignitus. Whereas Burkart, Lunau, & 

Schlindwein (2011) found that, in various neotropical bee species, wing beat frequency was also 

negatively associated with increasing body size (intertegular distance). As a rule, larger insects 

tend to have larger wings, which are more subject to inertia and thus beat more slowly (while 

providing more lift), which leads to lower wing beat frequencies (Byrne, Buchmann & Spangler, 

 

9 http://www.newforestcicada.info 
10 https://www.wildlifeacoustics.com/products/echo-meter-touch-2-android 
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1988; van Roy et al., 2014). These frequencies are also liable to vary with temperature. Unwin & 

Corbet (1984) found that the wing beat frequencies of bumblebee foragers decreased by 

approximately 20Hz as the ambient air temperature rose between 14 and 24.5°C. This is assumed 

to be an adaptation on behalf of the bee, where the wing-beat frequency is modulated down in 

warmer temperatures to decrease the rise in body temperature associated with maintained use of 

the flight muscles (Unwin & Corbet, 1984). A similar adaptation has also been observed in an 

anthophorid solitary bee (Spangler & Buchmann, 1991), but not in honeybees (Apis mellifera), 

where Woods, Heinrich, & Stevenson (2005) observed in increase in wing beat frequency in 

response to increasing ambient air temperature. Smaller insects, especially dipteran species, also 

increase their frequency of their wing beats in response to increasing temperature, since their 

smaller size means that the resulting increase in air movement across their body surface can have 

a net cooling effect (Unwin & Corbet, 1984). 

One notable exception where insect pollinator species do produce active sound is sonication, or 

buzz pollination, a behaviour exhibited primarily by bumblebees. Sonication refers to the use of 

intense thoracic muscle vibration to cause flowers with poricidal (tubular/conical) anthers to 

release their concealed pollen (Burkart, Lunau, & Schlindwein, 2011; De Luca & Vallejo-Marín, 

2013). These vibrations occur at higher frequencies than those related to flight and have been 

observed to negatively correlate with bee body size in a similar fashion to flight (Burkart, Lunau, 

& Schlindwein, 2011). Research by De Luca, Cox, & Vallejo-Marín (2014) also indicates that 

there may a species-specific element to sonication frequencies. 

Some authors have investigated whether we can classify flower-visiting insect taxa using the 

passively generated sounds of their wing beats. Initial research by Burkart, Lunau, & Schlindwein 

(2011) showed that buzz pollination and flight frequencies were significantly different between 

two neotropical bee species. Moore & Hassall (2016) appear to be the first to contrast the wing-

beat frequencies of different pollinator species, finding no significant pairwise differences 

between mimetic hoverflies (Diptera: Syrphidae) and their Hymenopteran models using an 

unsupervised classification technique. The most compelling research to-date has been carried out 

by Gradišek et al. (2016) and Kawakita & Ichikawa (2019). Gradišek et al. (2016) tested the 
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performance of four machine learning algorithms in terms of their ability to classify nine 

bumblebee species: their overall rate of classification accuracy was 82.7 per cent, with the 

classification accuracy for individual species varying between fifty and eighty-five per cent. Their 

best performing algorithm has since been incorporated into an open-access internet-based 

application (animal-sounds.ijs.si), where the public can upload their own bumblebee recordings 

for classification. Meanwhile, Kawakita & Ichikawa (2019) focused on the classification of a 

broader selection of taxa: Apis mellifera, Bombus ardens, the solitary bee Tetralonia nipponensis, 

and the Japanese yellow hornet (Vespa simillima xanthoptera). The precision of their support 

vector machine (SVM) classification algorithm differed by species, between seventy-three per 

cent (Bombus ardens) and one hundred per cent (Vespa simillima xanthoptera), indicating that 

classification based upon insect wing beat frequencies may also be possible between common 

flower-visiting insect taxa. But these groups only scratch the surface of the sheer diversity of taxa 

that can be encompassed by the term “pollinator” (see Ollerton, 2017). However, there remains 

no research concerning the performance of bioacoustic classification techniques aimed at insect 

pollinator species as a community, using multiple representatives of key taxonomic groups, in an 

attempt to simulate the diversity that may be encountered as part of a biodiversity survey. 

4.1.1 Aims 

This chapter investigates whether it is possible to reliably classify flower-visiting insects to 

different levels of taxonomic resolution using the passively generated sound of their wing beats; 

with the overall aim of assessing the potential of bioacoustics as a future survey tool for insect 

pollinator communities, including by citizen scientists. The study aims to answers the following 

questions: 

1. Can we reliably differentiate between flower-visiting insect taxa at different levels of 

taxonomic resolution using wing beat frequency? 

2. Can this process be automated using machine-learning algorithms? 
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4.2 Materials & Methods 

4.2.1 Data collection 

Acoustic data collection took place between June-September 2016 and June-August 2018 in 

multiple sites surrounding Leeds, West Yorkshire, and Wimborne Minster, Dorset. Sites varied 

in terms of the diversity of insect and plant species present, including wildflower meadows, 

brownfield sites, and urban parks and gardens. 

Acoustic data were collected using an omnidirectional Sony microphone attached to a Sony ICD-

PX312 Dictaphone. The microphone was placed near to flower-visiting insects, no-more than 

5cm away, while they were foraging from or visiting flowers (Fig. 4.1). I endeavoured to record 

at least ten seconds of flight sounds from each individual. Each individual was identified by eye 

to genus, and to species where possible, whilst being recorded. Once flight sounds from an 

individual had been recorded, I immediately moved on to another individual, preferably from a 

different insect taxon, in an attempt to reduce the likelihood of recording the same individual 

multiple times. Insect audio was recorded at 32 kbps/44.1 kHz in .MP3 format. 

Insects from two common flower-visiting insect Orders were sampled: the Hymenoptera and the 

Diptera. Within these two Orders, I chose six groups of insects to take recordings from: honeybees 

(Apis mellifera), bumblebees (Bombus spp.), solitary bees (any non-Apis and non-Bombus bee 

species), hoverflies (Syrphidae), social wasps (Vespula vulgaris), and non-syrphid Diptera. Due 

to the diversity of UK Diptera, I concentrated on just one morphotype of non-Syrphid: the “green 

bottle”. This term can refer to a number of species from several genera of Calliphoridae, as well 

as several species of Tachinid mimic (Tachinidae Recording Scheme, 2021). I did not differentiate 

between these species in the field, but all are of an approximately similar size (personal 

observation) and are common floral visitors (Kevan & Baker, 1983; Bräuer, Neinhuis, & Voigt, 

2017). Two species of bumblebee: Bombus terrestris and B. lucorum, were also aggregated 

together under the name “Bombus terrestris” during this experiment, due to difficulties in visually 

differentiating workers from these two species in the field. 
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Figure 4.1 Pictures of acoustic recording taking place in the field. 

 

4.2.2 Signal processing 

Insect audio recordings were processed using the free Audacity software (Audacity Team, 2017). 

Periods of flight noise were removed from the original recordings in sections lasting between 0.1 

and 10 seconds and converted to .wav files for later analysis. Sections containing high-amplitude 

background noise capable of potentially interfering with the insect flight audio were not used for 

further analysis. In some cases, where background noise was present but did not interfere with 

the insect flight audio (i.e., where the frequency of background noise was constant and distinct 

from the frequencies occupied by the insect flight audio), Audacity’s equalisation tool was used 

to reduce the amplitude of this noise. Where possible, background noise was left within recordings 

to simulate the kinds of real-world recordings that would be generated as part of a national-scale, 

citizen scientist-led acoustic monitoring scheme. 

4.2.3 Can we differentiate between flower-visiting insects at different levels 

of taxonomic resolution using simple classifiers? 

Initially, I was interested in whether simple acoustic features could be used to define different 

flower-visiting insect groups. Past studies have often passed over this approach, citing the close 
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visual proximity of different insect groups in terms of acoustic descriptors like natural frequency, 

but carrying out no statistical analysis to confirm this (see Gradišek et al., 2016).  

Data analysis was carried out within R, version 3.5.1 (R Core Team, 2018). The analyzeFolder 

function in the soundgen package (Anikin, 2019) was used to extract two acoustic features from 

each insect flight audio recording: the lowest dominant frequency (Hz), which should 

approximate to the fundamental frequency, and the frequency with the highest spectral energy 

(Hz), which should approximate to the dominant frequency. These two features were calculated 

using a short-time Fourier Transform (STFT). An STFT involves splitting an audio recording into 

multiple segments, in this case lasting 50ms. A moving window passes along these segments and 

carries out a Fast Fourier Transform (FFT), where a time-domain signal (all sounds start as a time-

domain signal, measured in terms of amplitude over time) is split into a series of sine and cosine 

waves that represent the harmonic structure of the acoustic signal (Clements, 1998). This 

transforms the signal from the time-domain into the frequency-domain. The values for the 

fundamental and dominant frequencies were calculated within each of these 50ms segments by 

the moving window as it passed across the recording. The values for these two features were then 

mean averaged across each recording. Where there was more than one recording per individual, 

these values were mean averaged across all of these recordings. 

To test whether these simple acoustic features could be used to distinguish between different 

flower-visiting insect taxa, I used a series of Gamma-distributed generalised linear mixed-effects 

models (GLMMs) and Gamma-distributed general linear models (GLMs). The GLMMs, using 

the glmer function in the lme4 package (Bates et al., 2015), were fitted to test whether I could 

distinguish between insects at higher levels of taxonomic resolution, as follows: 

1. Order-level, using the random effect term (1|Order/Group/Taxon). 

a. Hymenoptera vs. Diptera. 

2. Group-level within the Hymenoptera, using the random effect term (1|Group/Taxon). 

a. Honeybees vs. bumblebees vs. solitary bees vs. social wasps 

3. Group-level within the Diptera, using the random effect term (1|Group/Taxon) 

a. Hoverflies vs. non-syrphid Diptera 
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The GLMs, using the glm function, were fitted to test whether I could distinguish between insects 

at the “Taxon-level” - the lowest level of taxonomic resolution available: 

1. Between bumblebee species 

2. Between solitary bee genera (and one Family: the Halictidae) 

3. Between hoverfly genera (and one tribe: the Bacchini) 

Pair-wise comparisons between insect classes in both GLMMs and GLMs were calculated via 

General Linear Hypothesis testing, using the glht function in the multcomp package (Hothorn, 

Bretz, & Westfall, 2008). 

4.2.4 Can we use machine learning algorithms to train models to 

automatically classify flower-visiting insects at different levels of 

taxonomic resolution? 

The second aspect of this chapter is to automate the acoustic classification process using machine 

learning classification algorithms. These algorithms will use a selection of the acoustic data I have 

processed to train models to classify different insect classes. These models can then be validated, 

in terms of classification accuracy, using “new” data (processed acoustic data that were not used 

for model training). 

4.2.4.1 Advanced feature extraction for machine learning 

Feature extraction is the process of taking an acoustic signal and, using a form of Fourier analysis, 

extracting a set of features that represent specific portions or characteristics of the signal 

(Gradišek et al., 2016). There are a wide variety of features that are used to classify acoustic data, 

including the fundamental and dominant frequencies (see Raman, Gerhardt, & Wilkerson, 2007; 

Rashed et al., 2009; De Luca, Cox, & Vallejo-Marín, 2014; Moore & Hassall, 2016; De Luca et 

al., 2018), and Mel-frequency Cepstral Coefficients (MFCCs) (Zhu, 2011; Kawakita & Ichikawa, 

2019). But since there has been relatively little research concerning the classification of insect 

taxa using passively generated wingbeat signals, there is no standard or accepted set of features 

that has been well-tested on this group. I therefore chose to use the same feature extraction 

methodology as Gradišek et al. (2016) in their paper concerning bumblebee classification. This 

involved the use of the open-source Speech and Music Interpretation by Large-space Extraction  
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toolkit (openSMILE), version 2.1 (Eyben et al., 2013), compiled in Linux via the open-source 

Ubuntu operating system. I used the openSMILE toolkit to extract the INTERSPEECH 2010 

Paralinguistic Challenge feature set (see Schuller et al., 2010), which contains 1582 numerical 

features, including features relating to the fundamental frequency and MFCCs, for each insect 

flight audio recording. Data were entered into openSMILE in .wav format and the resulting 

feature sets were saved as .csv files. 

4.2.4.2 Feature selection 

Large feature sets are often pared down after extraction, a process referred to as feature selection 

(Gradišek et al., 2016). The current set of 1582 features would pass on a lot of extraneous data to 

the machine learning algorithms - potentially interfering with any patterns in the dataset and 

reducing processing speed (Gradišek et al., 2016).  

I used information gain theory to select the best 100 features for each machine learning model at 

the Order-, group-, and taxon-level. Information gain is based on information entropy (H): 

features that distinguish between two classes well represent a higher “information gain” and were 

selected for the final feature set (Gradišek et al., 2016). The information.gain function in the 

FSelector package in R (Romanski & Kotthoff, 2018) was used  to calculate the information gain 

value for each feature within the INTERSPEECH 2010 Paralinguistic Challenge feature set.  

4.2.4.3 Machine learning algorithms 

The performance of two common machine learning algorithms was tested as part of this analysis: 

random forest models and support vector machine models (SVMs). SVMs are a supervised 

classification technique that aims to separate data classes using a hyperplane: a line drawn in 

multi-dimensional space (Patel, 2017). The hyperplane is drawn so as to maximise the margin 

between the two or more data classes using support vectors (see Fig. 4.2): the data points that lie 

closest to the hyperplane (Patel, 2017). The best hyperplane is one that maximises the margin 

between the hyperplane and the surrounding support vectors (Patel, 2017). This works well for 

classes that are linearly separable, but where classes are not SVMs use what is called the “kernel 

trick” to separate them (Patel, 2017; Ippolito, 2019). The kernel trick involves transforming the 

data by adding extra dimensions; hyperplanes can then be added to separate classes within multi-



99 

 
dimensional space, before reducing the number of dimensions back to two to test the performance 

of the separator (Patel, 2017; Ippolito, 2019) (see Fig. 4.3). Different kernels exist to achieve this. 

SVM models have been successfully used to classify both amphibian and bird species (Acevedo 

et al., 2009; Huang et al., 2009; Zhao et al., 2017), as well as four insect pollinator species in the 

study by Kawakita & Ichikawa (2019). 

Figure 4.2 A visual representation of a Support Vector Machine (SVM) model separating 

two data classes using a hyperplane (solid black line) fitted to maximise the margin (dotted 

black line) between the hyperplane and the nearest data points from each class, known as 

support vectors. 

 

Figure 4.3 A visual representation of the kernel trick for classifying non-linearly separable 

data (left) classes using Support Vector Machine (SVM) models. Data are transformed by 

inserting additional dimensions using a non-linear kernel (centre) where a hyperplane can 

be applied to separate the two classes; the data can then be transformed back into two 

dimensions (right) where the non-linear hyperplane can be viewed. 
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Random forest models are also supervised classification models but are based upon the decision 

tree algorithm. A decision tree classifies data based upon a tree-like decision structure (see Fig. 

4.4), where decisions made at nodes, based upon extracted features, split data along branches 

which lead to further decision nodes, eventually leading to leaf nodes where the data cannot be 

split any further (Cutler et al., 2007). Each leaf nodes represents a class into which data can be 

assigned (Gradišek et al., 2016). The random forest algorithm is an ensemble method that 

combines many decision trees, where each tree is trained using a random subset of data and a 

random subset of features (Cutler et al., 2007; Gradišek et al., 2016). An individual is passed 

through each tree and classified based upon the number of votes for each data class (Cutler et al., 

2007; Gradišek et al., 2016). Random forest models have been used to successfully classify bird 

and bat species (Armitage & Ober, 2010; Kampichler et al., 2010), as well as the nine bumblebee 

species in the study by Gradišek et al. (2016). 

Machine learning classification models were built and tested using R, version 3.6.1 (R Core Team, 

2019). Both random forest and SVM models require data to be partitioned into training and testing 

sets: the training set trains the initial model, which is then validated using the testing set to assess 

the model’s performance. I tested two data partition sizes: seventy per cent training and thirty per 

cent testing data, and eighty per cent training and twenty per cent testing data. The aim was to 

maximise the amount of data available to train the models, which should generate more accurate 

predictions, while leaving enough testing data to validate them properly. A small testing set may 

result in inaccurate predictions of classification accuracy if the testing set includes any outliers or 

anomalous data, or if some classes are too similar. 



101 

 

Figure 4.4 A visual representation of a decision tree algorithm, where data is run through 

and split at a series of internal decision nodes based upon extracted data features, before 

reaching leaf nodes, representing classified data classes, where the data cannot be split any 

further. Created using Biorender.com. 

 

The SVM models were trained using the train function in the caret package (Kuhn et al., 2019). 

Since my data were not linearly separable, I used the Radial Basis Function kernel to create 

hyperplanes between my data classes by specifying “SvmRadial” in the method argument within 

the train function (Karatzoglou et al., 2004). As part of the training process, SVM models require 

a process called K-fold cross-validation. K-fold cross-validation involves further splitting the 

training set into k subsets; a different selection of k-1 subsets are then used across k iterations to 

train the model, while the remaining subset is used to validate model performance (Gradišek et 

al., 2016; Gupta, 2017). This process helps to reduce any bias introduced into the model training 

process by the prior removal of a portion of the data for future model validation, i.e., under-fitting, 

or failing to accurately classify a data class due to lack of training data (Gupta, 2017). I used 10-

fold cross validation (Gupta, 2017) via the trainControl function in the caret package, which was 

integrated into the SVM model using the trControl argument in the train function. After the SVM 

model was trained, I validated it using the testing set via the predict function. 
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The random forest models were trained using the randomForest function in the randomForest 

package (Liaw & Wiener, 2002). The optimal number of acoustic features to pass on to each 

decision tree was calculated using the tuneRF function in the randomForest package. The optimal 

number of trees to include in the forest was estimated by trial and error: I ran the training model 

with 2001, 1501, 1001, 751, and 501 trees, and picked the model which provided the greatest 

classification accuracy. Random forest models do not require k-fold cross-validation, since they 

already incorporate a number of decision trees, each of which uses different subsets of both the 

training set and the available acoustic feature set (Breiman & Cutler, 2004). The best training 

model was validated using the testing set via the predict function. 

The results from both SVM and random forest models were presented as confusion matrices: 

tables where the rows represent the known data classes, and the columns represent the predicted 

data classes. Confusion matrices allow for the inspection of rates of classification accuracy for 

individual classes, in addition to the overall rate of classification accuracy that is provided by the 

model. 

4.3 Results 

I recorded 1096 instances of insect flight from 540 individual flower-visiting insects, spanning 

two orders: Hymenoptera and Diptera, and six common groups: honeybees (Apis mellifera), 

bumblebees (Bombus spp.), solitary bees, social wasps (Vespula vulgaris), hoverflies (Syrphidae) 

and one morphotype of non-syrphid fly: the green bottle (Table 4.1). These groups included eight 

bumblebee species, three solitary bee genera and one family, and six hoverfly genera and one 

tribe. The Halictidae and the Bacchini were grouped at the family- and tribe-level, respectively, 

due to difficulties differentiating their constituent genera in the field.  
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Table 4.1 A summary of the number of individuals (N) and recordings (n) sampled per class, 

and the mean average values for the fundamental and dominant frequencies (Hz.) ± 

standard error. 

Order Group Taxon N(n)* 

Fundamental 

frequency 

(Hz.)  ± SE 

Dominant 

frequency (Hz.) 

± SE 

Hymenoptera ~ ~ 451 (954) 208.74 ± 1.15 328.64 ± 0.90 

 Bumblebees ~ 391 (734) 205.59 ± 1.40 329.98 ± 0.89 

  Bombus hortorum 20 (58) 197.96 ± 1.32 331.13 ± 2.18 

  Bombus hypnorum 20 (32) 190.50 ± 1.67 335.96 ± 3.32 

  Bombus jonellus 7 (28) 157.31 ± 1.85 324.72 ± 4.40 

  Bombus lapidarius 104 (241) 224.67 ± 4.12 330.11 ± 1.77 

  Bombus pascuorum 73 (187) 205.70 ± 0.77 341.30 ± 1.72 

  Bombus pratorum 19 (37) 197.44 ± 1.62 297.79 ± 3.47 

  Bombus terrestris 64 (127) 190.03 ± 0.99 328.75 ± 2.13 

  Bombus vestalis 12 (23) 163.06 ± 2.13 261.48 ± 2.38 

 Honeybee Apis mellifera 47 (89) 225.73 ± 1.34 328.64 ± 0.90 

 Solitary bees ~ 71 (109) 219.01 ± 1.66 280.71 ± 3.27 

 
 

Colletes spp. 19 (32) 212.85 ± 2.50 300.65 ± 6.04 

  Halictidae spp. 16 (31) 202.52 ± 3.18 253.07 ± 4.73 

  Hylaeus spp. 20 (27) 240.42 ± 3.79 250.61 ± 6.94 

  Megachile spp. 16 (19) 217.99 ± 3.34 325.12 ± 7.55 

 Social wasps Vespula vulgaris 14 (23) 208.54 ± 2.48 340.89 ± 6.38 

Diptera ~ ~ 87 (141) 247.34 ± 5.35 318.62 ± 5.31 
 

Hoverflies ~ 69 (118) 246.80 ± 5.42 319.16 ± 5.52 

 
 

Bacchini spp. 12 (18) 225.43 ± 4.60 269.45 ± 5.94 

  Episyrphus sp. 11 (21) 229.16 ± 2.04 355.06 ± 14.47 

  Eristalis spp. 13 (20) 249.39 ± 20.07 300.40 ± 13.49 

  Merodon sp. 4 (14) 222.48 ± 1.76 372.45 ± 8.46 

  Sphaerophoria spp. 8 (16) 280.89 ± 2.69  304.73 ± 8.78 

  Syritta sp. 7 (12) 225.95 ± 4.16 331.38 ± 8.30 

  Volucella spp. 10 (11) 183.17 ± 4.13 332.48 ± 9.69 

 Non-syrphid 

flies 

Green bottle spp. 18 (23) 259.82 ± 30.78 306.10 ± 11.68 
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4.3.1 Can we differentiate between flower-visiting insects at different levels 

of taxonomic resolution using simple classifiers? 

At the order-level, there were significant differences between Hymenopteran and Dipteran insects 

in terms of the fundamental frequency (Hz.) of their wing beats (Table 4.2), with Hymenopteran 

wing beats having a significantly lower fundamental frequency than Dipteran wing beats 

(parameter est. -0.168 ± SE 0.073, p = 0.022). 

Table 4.2 Output from the Gamma-distributed GLMMs and GLMs concerning differences 

between flower-visiting insect classes based upon the fundamental and dominant 

frequencies (Hz.). 

Taxonomic resolution Fundamental frequency (Hz.) Dominant frequency (Hz.) 

GLMM (Gamma) Χ2 DF P Χ2 DF P 

Order-level 5.290 1 0.022 0.073 1 0.787 

Hymenoptera: group-level 1.179 3 0.758 12.419 3 0.006 

Diptera: group-level 3.111 1 0.078 0.026 1 0.872 

GLM (Gamma) F DF P F DF P 

Bumblebees: taxon-level 1.510 7 0.163 4.890 7 <0.001 

Solitary bees: taxon-level 1.860 3 0.145 1.647 3 0.187 

Hoverflies: taxon-level 2.170 6 0.059 0.688 6 0.660 

 

At the group-level, there were significant differences between Hymenopteran insect groups based 

upon the dominant frequency of their wing beats (Table 4.2). Solitary bee wing beats had a 

significantly lower dominant frequency than those of honeybees (-62.90 ± 23.24, p = 0.031) and 

bumblebees (-34.51 ± 13.81, p = 0.054), while social wasp wing beats had a significantly higher 

dominant frequency than those of solitary bees (74.15 ± 29.95, p = 0.058). There were no 

differences between Dipteran groups based upon either the dominant or fundamental frequencies 

of their wing beats. 

At the taxon-level, there were significant differences between bumblebee species based upon the 

dominant frequency of their wing beats (Table 4.2). The wing beats of Bombus vestalis had a 

significantly lower dominant frequency than those of B. hortorum (-0.265 ± 0.065, p = 0.001), B. 

jonellus (-0.249 ± 0.0.085, p = 0.057), B. lapidarius (-0.221 ± 0.054, p = 0.001), B. pascuorum (-

0.284 ± 0.056, p = <0.001), and B. terrestris (-0.222 ± 0.056, p = 0.002). The wing beats of 
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Bombus pratorum had a lower dominant frequency than those of B. pascuorum (-0.160 ± 0.046, 

p = 0.010). There were also significant differences between hoverfly species based upon the 

fundamental frequency of their wing beats (Table 4.2), with the wing beats of Volucella species 

having a significantly lower fundamental frequency than those of Sphaerophoria species (-0.359 

± 0.103, p = 0.008). 

A note regarding the GLMMs: the number of data points was often not sufficient to handle the 

complex nested random effect terms included in each model. Since these terms were necessary to 

account for the potential variation associated with a nested dataset, I was forced to lower the 

number of points used to evaluate the adaptive Gauss-Hermite approximation to the log-

likelihood from one to zero via the nAGQ argument in the glmer function (D. Bates et al., 2015, 

2019). This allowed the models to run but reduced the accuracy of the parameter estimates 

generated by the GLMMs, so the results of these models should be viewed as pointing towards 

evidence of potential trends rather than as representing actual effects. 

4.3.2 Can we use machine learning algorithms to train models to 

automatically classify flower-visiting insects at different levels of 

taxonomic resolution? 

Since my dataset is inherently unbalanced (see Table 1), I chose to artificially balance the number 

of recordings from different insect classes passed on to each decision tree within the random forest 

models during model training; a process known as down-sampling (Thapliyal, 2019). This was 

carried out using the sampsize argument in the randomForest function in the randomForest 

package (Liaw & Wiener, 2002). I was unable to carry out a similar process within the SVM 

models, as the weight argument in the train function in the caret package (Kuhn et al., 2019) is 

unavailable to SVM model types. 

4.3.2.1 Order-level classification: Hymenoptera vs. Diptera 

The random forest model with the highest overall classification accuracy at the order-level used 

a 70% - 30% data partition between the training and testing sets. The training model classified 

flower-visiting insects to order with an overall accuracy rate of 83.83%, classifying Dipteran 

insects with 75.79% accuracy, and Hymenopteran insects with 84.97% accuracy (Table 4.3). 
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When the training model was validated using the testing dataset, the overall accuracy of the model 

was 86.63%; Dipteran insects were classified with 74.47% accuracy, and Hymenopteran insects 

with 88.65% accuracy (Table 4.3). 

The SVM model with the highest overall classification accuracy at the order-level used an 80% - 

20% data partition between the training and testing sets. The training model classified flower-

visiting insects to order with an overall accuracy rate of 89.96% but, due to the cross-validation 

process, I cannot produce a confusion matrix for the training set. When the training model was 

validated using the testing data, the overall accuracy of the model was 90.00% (Table 4.4), and 

Dipteran insects were classified with 33.33% accuracy, and Hymenopteran insects with 97.93% 

accuracy. 

Table 4.3 The rates of classification accuracy for two flower-visiting insect Orders generated 

by the random forest model, using a 70% - 30% training – testing data partition. Values in 

bold indicate accurate classifications. 

Training data    

 Diptera Hymenoptera % Classification accuracy 

Diptera 72 23 75.79 

Hymenoptera 101 571 84.97 

Testing data    

 Diptera Hymenoptera % Classification accuracy 

Diptera 35 12 74.47 

Hymenoptera 32 250 88.65 

 

Table 4.4 The rates of classification accuracy for two flower-visiting insect Orders generated 

by the SVM model, using an 80% - 20% training – testing data partition. Values in bold 

indicate accurate classifications. 

Testing data    

 Diptera Hymenoptera % Classification accuracy 

Diptera 9 18 33.33 

Hymenoptera 4 189 97.93 
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4.3.2.2 Hymenopteran group-level classification: Bumblebees vs. Honeybees vs. 

Solitary bees vs. social wasps 

The random forest model with the highest overall classification accuracy at the group-level within 

the Hymenoptera used a 70% - 30% data partition between the training and testing sets. The 

training model classified flower visiting Hymenoptera to groups with an overall accuracy rate of 

70.91%, classifying bumblebees with 72.23% accuracy, honeybees with 69.84% accuracy, 

solitary bees with 73.63% accuracy, and social wasps with 18.75% accuracy (Table 4.5). When 

the training model was validated using the testing dataset, the overall accuracy of the model was 

72.47%; bumblebees were classified with 74.15% accuracy, honeybees with 65.39% accuracy, 

solitary bees with 72.22% accuracy, and social wasps with 42.86% accuracy (Table 4.5).  

The SVM model with the highest overall classification accuracy at the group-level within the 

Hymenoptera used a 70% - 30% data partition between the training and testing sets. The training 

model classified flower visiting Hymenoptera to groups with an overall accuracy rate of 80.83%. 

When the training model was validated using the testing data, the overall accuracy of the model 

was 83.62%; bumblebees were classified with 95.76% accuracy, honeybees with 34.62% 

accuracy, solitary bees with 27.78% accuracy, and social wasps with 0.00% accuracy (Table 4.6). 

Table 4.5 The rates of classification accuracy for the four Hymenopteran insect groups 

generated by the random forest model, using a 70% - 30% training – testing data partition. 

Values in bold indicate accurate classifications. 

Training data 

 Bumblebee Honeybee Solitary bee Social wasp % Classification 

accuracy 

Bumblebee 359 38 63 37 72.23 

Honeybee 8 44 10 1 69.84 

Solitary bee 11 10 67 3 73.63 

Social wasp 6 1 6 3 18.75 

Testing data      

 Bumblebee Honeybee Solitary bee Social wasp % Classification 

accuracy 

Bumblebee 175 15 31 15 74.15 

Honeybee 3 17 4 2 65.39 

Solitary bee 4 1 13 0 72.22 

Social wasp 1 1 2 3 42.86 



108 

 
Table 4.6 The rates of classification accuracy for the four Hymenopteran insect groups 

generated by the SVM model, using a 70% - 30% training – testing data partition. Values 

in bold indicate accurate classifications. 

Testing data      

 Bumblebee Honeybee Solitary bee Social wasp % Classification 

accuracy 

Bumblebee 226 4 6 0 95.76 

Honeybee 14 9 3 0 34.62 

Solitary bee 13 0 5 0 27.78 

Social wasp 6 0 1 0 0.00 

 

4.3.2.3 Dipteran group-level classification: Hoverflies vs. non-Syrphid flies 

The random forest model with the highest overall classification accuracy at the group-level within 

the Diptera used an 80% - 20% data partition between the training and testing sets. The training 

model classified flower visiting Diptera to groups with an overall accuracy rate of 84.07%, 

classifying hoverflies with 86.32% accuracy, and non-Syrphid flies with 72.22% accuracy (Table 

4.7). When the training model was validated using the testing dataset, the overall accuracy of the 

model was 93.10%; hoverflies were classified with 91.67% accuracy, and non-Syrphid flies with 

100% accuracy (Table 4.7). 

Table 4.7 The rates of classification accuracy for the two Dipteran insect groups generated 

by the random forest model, using an 80% - 20% training – testing data partition. Values 

in bold indicate accurate classifications. 

Training data    

 Non-syrphid fly Hoverfly % Classification accuracy 

Non-syrphid fly 13 5 72.22 

Hoverfly 13 82 86.32 

Testing data    

 Non-syrphid fly Hoverfly % Classification accuracy 

Non-syrphid fly 5 0 100 

Hoverfly 2 22 91.67 

 

The SVM model with the highest overall classification accuracy at the group-level within the 

Diptera used an 80% - 20% data partition between the training and testing sets. The training model 

classified flower visiting Diptera to groups with an overall accuracy rate of 85.85%. When the 
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training model was validated using the testing data, the overall accuracy of the model was 82.76%; 

hoverflies were classified with 100% accuracy, and non-Syrphid flies with 16.67% accuracy 

(Table 4.8). 

Table 4.8 The rates of classification accuracy for the two Dipteran insect groups generated 

by the SVM model, using an 80% - 20% training – testing data partition. Values in bold 

indicate accurate classifications. 

Testing data    

 Non-syrphid fly Hoverfly % Classification accuracy 

Non-syrphid fly 1 5 16.67 

Hoverfly 0 23 100 

 

4.3.2.4 Bumblebee taxon-level classification 

The random forest model with the highest overall classification accuracy at the taxon-level within 

the bumblebees used a 70% - 30% data partition between the training and testing sets. The training 

model classified bumblebees to species with an overall accuracy rate of 58.28%, classifying 

different species with between 28.57% accuracy (Bombus jonellus) and 91.67% accuracy (B. 

vestalis) (see Table 4.9). When the training model was validated using the testing dataset, the 

overall accuracy of the model was 56.36%; with different species classified with between 35.71% 

accuracy (B. jonellus) and 72.73% accuracy (B. vestalis) (see Table 4.9). 

The SVM model with the highest overall classification accuracy at the taxon-level within the 

bumblebees used an 80% - 20% data partition between the training and testing sets. The training 

model classified bumblebees to species with an overall accuracy rate of 52.76%. When the 

training model was validated using the testing dataset, the overall accuracy of the model was 

55.78%; with different species classified with between 12.50% accuracy (B. jonellus) and 77.36% 

accuracy (B. lapidarius) (see Table 4.10). 
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Table 4.9 The rates of classification accuracy for the eight bumblebee species generated by the random forest model, using a 70% - 30% training – testing 

data partition. Values in bold indicate accurate classifications. 

Training data          

 B. hortorum B. hypnorum B. jonellus B. lapidarius B. pascuorum B. pratorum B. terrestris B. vestalis % Classification 

accuracy 

B. hortorum 24 0 0 8 1 0 7 0 60.00 

B. hypnorum 1 9 0 2 4 5 6 0 33.33 

B. jonellus 0 0 4 0 0 0 10 0 28.57 

B. lapidarius 6 2 0 96 36 2 19 1 59.26 

B. pascuorum 4 1 0 36 80 2 12 0 59.26 

B. pratorum 2 1 0 1 4 21 2 0 67.74 

B. terrestris 4 1 1 17 12 1 54 2 58.70 

B. vestalis 0 0 0 0 0 0 1 11 91.67 

Testing data          

 B. hortorum B. hypnorum B. jonellus B. lapidarius B. pascuorum B. pratorum B. terrestris B. vestalis % Classification 

accuracy 

B. hortorum 7 0 0 7 2 0 2 0 38.39 

B. hypnorum 0 3 0 0 0 1 1 0 60.00 

B. jonellus 0 0 5 1 0 0 8 0 35.71 

B. lapidarius 6 0 0 53 8 1 10 1 67.09 

B. pascuorum 1 0 0 11 31 1 8 0 59.62 

B. pratorum 0 0 0 0 3 3 0 0 50.00 

B. terrestris 1 1 0 9 9 1 14 0 40.00 

B. vestalis 3 0 0 0 0 0 0 8 72.73 
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Table 4.10 The rates of classification accuracy for the eight bumblebee species generated by the SVM model, using a 70% - 30% training – testing data 

partition. Values in bold indicate accurate classifications. 

Testing data          

 B. hortorum B. hypnorum B. jonellus B. lapidarius B. pascuorum B. pratorum B. terrestris B. vestalis % Classification 

accuracy 

B. hortorum 4 0 0 6 1 0 1 0 33.33 

B. hypnorum 0 1 0 0 0 2 0 0 33.33 

B. jonellus 0 0 1 0 0 0 7 0 12.50 

B. lapidarius 2 0 0 41 4 0 6 0 77.36 

B. pascuorum 0 0 0 10 21 1 4 0 58.33 

B. pratorum 0 0 0 0 3 1 1 0 20.00 

B. terrestris 1 0 0 7 5 0 10 0 43.48 

B. vestalis 1 0 0 0 0 0 3 3 42.86 
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4.3.2.5 Solitary bee taxon-level classification 

The random forest model with the highest overall classification accuracy at the taxon-level within 

the solitary bees used an 80% - 20% data partition between the training and testing sets. The 

training model classified solitary bees to Family or genus with an overall accuracy rate of 71.26%, 

classifying Colletes spp. with 80.00% accuracy, Halictidae spp. with 72.00% accuracy, Hylaeus 

spp. with 66.67% accuracy, and Megachile spp. with 62.50% accuracy (Table 4.11). When the 

training model was validated using the testing dataset, the overall accuracy of the model was 

90.91%; Colletes spp. were classified with 71.43% accuracy, Halictidae spp. with 100% accuracy, 

Hylaeus spp. with 100% accuracy, and Megachile spp. with 100% accuracy (Table 4.11). 

The SVM model with the highest overall classification accuracy at the taxon-level within the 

solitary bees used an 80% - 20% data partition between the training and testing sets. The training 

model solitary bees to Family or genus with an overall accuracy rate of 66.20%. When the training 

model was validated using the testing data, the overall accuracy of the model was 81.82%; 

Colletes spp. were classified with 100% accuracy, Halictidae spp. with 100% accuracy, Hylaeus 

spp. with 60.00% accuracy, and Megachile spp. with 60.00% accuracy (Table 4.12). 

Table 4.11 The rates of classification accuracy for the three solitary bee genera/one solitary 

bee Family generated by the random forest model, using an 80% - 20% training – testing 

data partition. Values in bold indicate accurate classifications. 

Training 

data 

     

 Colletes Halictidae Hylaeus Megachile % Classification 

accuracy 

Colletes 17 0 3 4 80.00 

Halictidae 4 12 1 2 72.00 

Hylaeus 5 1 11 2 66.67 

Megachile 2 1 3 8 62.50 

Testing data      

 Colletes Halictidae Hylaeus Megachile % Classification 

accuracy 

Colletes 5 0 0 2 71.43 

Halictidae 0 6 0 0 100 

Hylaeus 0 0 6 0 100 

Megachile 0 0 0 3 100 
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Table 4.12 The rates of classification accuracy for the three solitary bee genera/one solitary 

bee Family generated by the SVM model, using an 80% - 20% training – testing data 

partition. Values in bold indicate accurate classifications. 

Testing data      

 Colletes Halictidae Hylaeus Megachile % Classification 

accuracy 

Colletes 6 0 0 0 100 

Halictidae 0 6 0 0 100 

Hylaeus 2 0 3 0 60.00 

Megachile 1 1 0 3 60.00 

 

4.3.2.6 Hoverfly taxon-level classification 

The random forest model with the highest overall classification accuracy at the taxon-level within 

the hoverflies used a 70% - 30% data partition between the training and testing sets. The training 

model classified hoverflies to tribe or genus with an overall accuracy rate of 61.54%, classifying 

different tribes/genera with between 0.00% accuracy (Volucella spp.) and 80.00% accuracy 

(Sphaerophoria spp.) (see Table 4.13). When the training model was validated using the testing 

dataset, the overall accuracy of the model was 67.65%; with different tribes/genera classified with 

between 50.00% accuracy (Syritta sp. and Volucella spp.) and 100% accuracy (Eristalis spp. and 

Merodon sp.) (see Table 4.13). 

The SVM model with the highest overall classification accuracy at the taxon-level within the 

hoverflies used a 70% - 30% data partition between the training and testing sets. The training 

model classified hoverflies to Family or genus with an overall accuracy rate of 47.72%. When the 

training model was validated using the testing dataset, the overall accuracy of the model was 

52.94%; with different tribes/genera classified with between 0.00% accuracy (Syritta sp. and 

Volucella spp.) and 83.33% accuracy (Eristalis spp.) (see Table 4.14). 
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Table 4.13 The rates of classification accuracy for the six hoverfly genera/one hoverfly tribe generated by the random forest model, using a 70% -30% 

training – testing data partition. Values in bold indicate accurate classifications. 

Training data         

 Bacchini Episyrphus Eristalis Merodon Sphaerophoria Syritta Volucella % Classification accuracy 

Bacchini 4 1 1 0 0 2 0 50.00 

Episyrphus 1 11 1 0 0 1 0 78.57 

Eristalis 0 3 10 0 1 2 1 58.82 

Merodon 0 0 3 9 0 0 0 75.00 

Sphaerophoria 1 0 0 0 8 1 0 80.00 

Syritta 0 0 1 0 1 6 0 75.00 

Volucella  0 1 6 1 0 1 0 0.00 

Testing data         

 Bacchini Episyrphus Eristalis Merodon Sphaerophoria Syritta Volucella % Classification accuracy 

Bacchini 6 2 2 0 0 0 0 60.00 

Episyrphus 1 4 0 0 2 0 0 57.14 

Eristalis 0 0 3 0 0 0 0 100 

Merodon 0 0 0 2 0 0 0 100 

Sphaerophoria 0 0 0 1 5 0 0 83.33 

Syritta 0 0 1 0 1 2 0 50.00 

Volucella  0 0 1 0 0 0 1 50.00 



115 

 

Table 4.14 The rates of classification accuracy for the six hoverfly genera/one hoverfly tribe generated by the SVM model, using a 70% -30% training – 

testing data partition. Values in bold indicate accurate classifications. 

Testing data         

 Bacchini Episyrphus Eristalis Merodon Sphaerophoria Syritta Volucella % Classification accuracy 

Bacchini 2 5 0 0 0 1 0 25.00 

Episyrphus 0 4 1 0 0 0 0 80.00 

Eristalis 0 0 5 0 0 1 0 83.33 

Merodon 0 0 2 5 0 0 0 71.43 

Sphaerophoria 0 1 1 0 2 0 0 50.00 

Syritta 0 0 1 0 0 0 0 0.00 

Volucella  0 1 1 1 0 0 0 0.00 
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4.4 Discussion 

Bioacoustic technology has been widely employed within the fields of ecology and conservation 

to monitor the occurrence of species from a wide range of taxa (Chesmore & Nellenbach, 2001; 

Chesmore & Ohya, 2004; Huang et al., 2009; Armitage & Ober, 2010; Briggs et al., 2012; Cheng 

et al., 2012). Bioacoustics also provides a novel and accessible method by which citizen scientists 

can involve themselves in large-scale, long-term standardised monitoring schemes (Gradišek et 

al., 2016), thanks to widespread ownership of personal hand-held technology with built-in sound 

recording capabilities (August et al., 2015; Gradišek et al., 2016). The focus of most bioacoustics 

research to date has been on taxa that produce active, species-specific sound, i.e., mating or alarm 

calls, but our ability to identify species by passively generated sound has yet to be extensively 

explored (but see Burkart, Lunau, & Schlindwein, 2011; Moore & Hassall, 2016; Gradišek et al., 

2016; Kawakita & Ichikawa, 2019). I show that, using machine learning techniques, it is possible 

to differentiate flower-visiting insects, with varying rates of accuracy and at different levels of 

taxonomic resolution, based solely upon acoustic features extracted from their wing-beat 

frequencies. I explore the limitations of this method with regard to its potential for future use as 

a survey tool for monitoring insect pollinator taxa and provide recommendations for future studies 

regarding the development of this research. 

I was unable to consistently differentiate between flower-visiting insects at either the group- or 

the taxon-level using either of the simple acoustic features (the fundamental and dominant 

frequencies), but I was able to distinguish between Hymenopteran and Dipteran insects using the 

fundamental frequency of their wing beats. This would appear to be contrary to results presented 

by Moore & Hassall (2016), who found no differences between Hymenopteran and Dipteran 

insects based upon similar acoustic features. One of the key physiological differences between 

these two insect orders is their number of wings: the extra pair of wings present in Hymenopteran 

insects would increase total wing surface area, which has been linked to lower wing-beat 

frequencies (Corben, 1983; Ha et al., 2013). Past studies have also observed that greater body 

size, body mass, and wing length are all associated with decreasing wing beat frequencies (Byrne, 

Buchmann, & Spangler, 1988; Molloy et al., 1988; Burkart, Lunau, & Schlindwein, 2011; 
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Gradišek et al., 2016; Miller-Struttmann et al., 2017). Most of the Hymenopteran insects sampled 

as part of this study were larger and more robust than the Diptera (personal observation), which 

was reflected in the fundamental frequencies of their wing beats (Tables 4.1 & 4.2). If this result 

remains consistent in a larger, more diverse dataset, then this simple classifier may provide a 

quick method of differentiating between these two orders. 

It is similarly unsurprising that Bombus vestalis can be reliably distinguished from most other 

bumblebee species recorded during this study, based upon the significantly lower dominant 

frequency of their wing beats. Bombus vestalis is a cuckoo bumblebee and is therefore only 

represented by males and reproductive females, which are analogous to queens in other Bombus 

species in terms of size (Goulson, 2010). Since the other bumblebee species recorded during this 

study were almost entirely represented by smaller workers and males, it is logical that B. vestalis 

individuals would be easily separable from them by virtue of their body mass alone. What is 

surprising is that the solitary bees, as a group, appear to beat their wings with a lower dominant 

frequency than honeybees, social wasps, and bumblebees, all of which are, on average, larger 

than the solitary bee genera recorded as part of this study. This would run counter to the existing 

evidence showing that wing-beat frequencies in insects are related to body size (Unwin & Corbet, 

1984; Byrne, Buchmann & Spangler, 1988). Alternatively, this may indicate that the dominant 

frequency may not be an effective method of representing complex acoustic signals since it is 

largely defined by amplitude, which can be affected by other factors than those relating to 

morphology: proximity to the microphone, for example (De Luca et al., 2018).  

The results of the machine learning classification algorithms were far more promising. Of the two 

algorithms compared here, the random forest models performed better in all insect classes, 

mirroring the results of Gradišek et al. (2016), as well as those of Kampichler et al. (2010) and 

Kawakita & Ichikawa (2019). Although the SVM models often presented with higher overall 

levels of classification accuracy than the random forest models, in terms of individual insect 

classes they were always biased towards the most abundant insect classes. This was likely due to 

my being unable to specify class weights in the SVM models during the model training process, 

which was possible within the random forest models. 
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Within the random forest models, a seventy per cent/thirty per cent partition between the training 

and testing sets performed best in terms of classification accuracy within models with a large 

amount of available data (see Tables 4.3, 4.5 & 4.9), whereas an eighty per cent/twenty per cent 

partition performed better in models with less available data (see Tables 4.7 & 4.11). Future data 

collection should, therefore, focus on generating a much more balanced dataset, with enough data 

in each insect class to provide an adequate training set; I would recommend collecting recordings 

from at least 100 individuals per class. 

Combining the random forest models with the more comprehensive feature set extracted using 

the openSMILE toolkit, I was able to classify flower-visiting insects to order with 84.97 per cent 

accuracy, which increased to 86.63 per cent when the training model was validated with new data. 

This supports my earlier finding that Hymenopteran and Dipteran insects are distinguishable from 

one another based upon the sound of their wing beats. 

An even higher level of classification accuracy was reached at the group-level within the Diptera: 

84.07 per cent, rising to 93.10 per cent when the training model was validated. Differences in 

flight kinematics may account for this. No distinctions were made between hovering and non-

hovering flight during the field recordings, and research suggests that hovering flight not only has 

different mechanics than regular flight (Ellington, 1984b; Lei Mou, Peng Liu, & Sun, 2011), but 

may also be associated with specific wing morphometrics (Ellington, 1984a); all of which may 

affect the wing-beat frequency of hoverflies in relation to non-syrphids. Research by Rashed et 

al. (2009) also indicates that hoverflies and non-syrphid flies may be separable in terms of flight 

acoustic signals, although Moore & Hassall (2016) found no differences between the two groups. 

Classification accuracy within the Hymenopteran groups was slightly lower: 70.91 per cent, rising 

to 72.47 per cent after validation. This is lower than the rates of classification accuracy found by 

Kawakita & Ichikawa (2019), especially within the “wasp” category. In the absence of differing 

flight mechanics, distinguishing between Hymenopteran insects is likely to be a function of the 

size variation between groups. This could explain why the honeybee and social wasp groups 

achieved lower levels of classification accuracy, as both have a fairly generic body form common 

to many Hymenopteran insects, combined with a body size that overlaps with that of many other 
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Hymenopteran groups. This, combined with the fewer recordings available for model training 

within the social wasp group, may be the reason why these two groups were more likely to be 

misclassified than the solitary bees (which represent a wider range of body sizes) and bumblebees 

(which are, on average, larger and more robust than other UK Hymenoptera). 

The wide range of body sizes present within insect taxa, especially within the UK bee fauna (Falk, 

2015), makes this kind of group-level analysis impractical. It was computed here due to high 

levels of data imbalance between the bumblebees and the other hymenopteran genera, but it would 

be far more informative to focus on collecting a more diverse dataset, with a balanced number of 

recordings from a range of genera and body size classes, to test the extent to which we can classify 

individuals at the genus- or family-level. Indeed, the taxon-level random forest models show that 

solitary bee genera and Families can be classified to a surprisingly high level of accuracy: 100 

per cent within the Halictidae, Hylaeus, and Megachile during after model validation. These taxa 

represent a range of size classes, from the smaller Hylaeus spp. and Halictidae spp.1 to the larger 

Megachile spp., which could explain this result if body size or mass is strongly related to wing 

beat frequency.  

This level of classification accuracy is analogous to those from other studies focused on 

classifying Orthoptera based upon stridulation signals (see Chesmore, 2001, 2004; Chesmore & 

Nellenbach, 2001; Chesmore & Ohya, 2004), which makes this result all the more remarkable. 

Although, the testing set was small enough within all solitary bee taxa that further data would be 

required to truly validate this finding. The results concerning bumblebee species classification 

add further credence to the hypothesis that Hymenopteran wing-beat frequencies are strongly 

related to body size. The rates of classification accuracy within different bumblebee species 

ranged from between 28 and 91 per cent, where the highest level of accuracy was found in Bombus 

vestalis, validating earlier results concerning the dominant frequency feature. This wide disparity 

in classification accuracy would be expected if wing-beat frequency was strongly related to body 

 

1 Most of the Halictidae recorded during this study were the smaller, metallic green species, 

typified by Lasioglossum morio or Halictus tumulorum. 



120 

 
size or mass. Most of the bumblebees recorded as part of this study were workers, and many 

bumblebee species in the UK overlap in terms of worker size (Falk, 2015). In addition, 

intraspecific bumblebee worker size can vary by as much as ten times over the course of a year  

(Peat, Tucker, & Goulson, 2005) based upon a number of factors, including the quantity and 

quality of forage in the surrounding area (Persson & Smith, 2011), the foraging requirements of 

the colony (Peat, Tucker, & Goulson, 2005), and colony age (Couvillon et al., 2010).   Classifying 

bumblebees to species based solely upon their wing beat frequencies is likely, therefore, to present 

a significant challenge. This makes the results of Gradišek et al. (2016) all the more surprising, 

since they were able to classify many bumblebee species to a high degree of accuracy using the 

same method as presented here, and with fewer individuals to train their random forest models. 

Classification accuracy at the genus-level was higher for the hoverflies, at levels comparable to 

the models for solitary bee genera. There were also clear size differences between the hoverfly 

genera recorded as part of this study (Stubbs & Falk, 2002), though these do not appear to relate 

to any kind of pattern regarding classification accuracy. For instance, both Merodon and Volucella 

species are similar in terms of body size and shape, both being bumblebee mimics (Stubbs & Falk, 

2002; Rotheray & Gilbert, 2011), and yet individuals from the genus Merodon were classified 

with 100 per cent accuracy after validation compared to the 50 per cent accuracy found in the 

Volucella. The genus Sphaerophoria, which represents a fairly unique, elongate body shape 

among the hoverfly taxa recorded here (Stubbs & Falk, 2002), was classified quite well. Other 

morphological features may be more important predictors of wing beat frequency in hoverflies, 

wing length for instance (Ottenheim & Volmer, 1999; but see Cheng & Sun, 2016), or the ratio 

of wing surface area or wing length to body mass (Corben, 1983; Ha et al., 2013). This would 

benefit from further research (as in Ha et al., 2013), which could be extended to other flower-

visiting insect taxa and then used to inform a more relevant acoustic feature set, aimed at better 

representing the wing beat frequencies of specific taxa. However, as with the solitary bee genera, 

the size of our testing set for different hoverfly genera was small enough that we would need to 

collect more data to validate this and our findings regarding classification accuracy. 
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4.5 Conclusions 

These results suggest that accurate and reliable classification of flower-visiting insects using wing 

beat frequencies may be possible, especially at the higher levels of taxonomic resolution. Our 

ability to classify individuals to genus- or species-level is highly likely to be reliant on the extent 

of the size variation between taxa. The bumblebee model found was unable to reliably classify 

different species due to overlapping size classes within the bumblebee group, likely also 

combined with high levels of intraspecific size variation; but this may be just as true for solitary 

bee or social wasp species. The Halictidae are, on average, smaller than most other bee families, 

but contain species that range from 4mm to over 1cm in length (Falk, 2015), and many species 

from different bee families or genera overlap in terms of size. In addition, many insect species are 

sexually dimorphic (Falk, 2015), which may cause further intraspecific differences in terms of  

wing beat frequency. This requires further research in the form of a more diverse, balanced dataset 

that includes recordings representing the full range of the UK’s flower-visiting insect taxa. Since 

this would involve sampling ca. 6000 species in total (Falk, S. 2018, personal communication, 01 

November), a dataset that aimed to characterise the level of size variation present within key 

flower-visiting insect taxa may be more practical. This would still allow us to answer questions 

concerning our ability to classify individuals at different levels of taxonomic resolution, and those 

concerning the effects of size variation between taxa on wing beat frequency. If recorded 

individuals were also lethally sampled, then morphometric data could also be generated 

concerning body mass or wing surface area etc. The relationship between this functional diversity 

and different acoustic features, like the fundamental frequency, would allow us to evaluate inter- 

and intraspecific differences in wing beat frequency as it relates to morphology (see Gradišek et 

al., 2016; Miller-Struttmann et al., 2017). 

In terms of the machine learning classification methods, the random forest models provided a 

high level of classification accuracy within several groups, allowing an inherently unbalanced 

dataset to be reweighted through down-sampling. There are, however, other classifiers that could 

be explored, specifically the artificial neural networks (ANNs) used in Chesmore (2001), 

Chesmore & Nellenbach (2001), and Chesmore & Ohya (2004), which achieved higher levels of 
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classification accuracy than those found here. And, whereas the feature set extracted using 

openSMILE contained many frequency-domain features that have previously been used to 

successfully classify insect taxa  using wing beat frequency (Raman, Gerhardt, & Wilkerson, 

2007; Gradišek et al., 2016; Kawakita & Ichikawa, 2019), the performance of alternative feature 

extraction tools also deserves investigation, including the time-domain signal coding (TDSC) 

methods used by Chesmore (2001) and the more pared-down feature sets of Raman et al. (2007) 

and Kawakita & Ichikawa (2019). There are also alternative feature sets available through the 

openSMILE toolkit that could be explored (Eyben et al., 2013). 

Regarding the use of bioacoustics as a potential survey tool for citizen scientists - this would 

depend largely on what the monitoring was aiming to achieve. It is clear from my results that the 

reliable acoustic classification of flower-visiting insects to any level of taxonomic resolution 

would require both more testing and more data before being applied to any kind of standardised 

survey protocol. Despite achieving high levels of classification accuracy between Hymenopteran 

and Dipteran insects, there are many other insect orders that I have not recorded and tested, and 

therefore have no data concerning how their acoustic signals may overlap with those of the two 

orders tested here. Otherwise, at the moment, its greatest utility would be as a classification tool 

between Hymenopteran and Dipteran insects during surveys like the Flower-Timed Insect Counts 

(FIT Counts) employed by the UK PoMS (UK Pollinator Monitoring Scheme, 2021). Individuals 

could make recordings and then classify them using machine learning algorithms based in 

software on their smartphone (similar to Gradišek et al., 2016, and Mukundarajan et al., 2017). 

My results were generated using recordings made by an affordable, mid-range Dictaphone and a 

lapel microphone; equivalent data should be achievable using a modern smartphone with an in-

built microphone (August et al., 2015). This would reduce the collector bias typically associated 

with visual surveys, but would run the risk of misclassifying “other” insects as members of the 

Hymenoptera or Diptera. Alternatively, it is possible that I could adapt the random forest models 

(or explore other classification methods) to simply recognise insect wing beats in general (e.g., 

Heise et al., 2017), and then test the effectiveness of this within a FIT Count-type survey to detect 

flower-visiting insect activity without any further taxonomic classification. This may still yield 
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interesting data that could be tied to overall insect decline (Penone et al., 2013), but would provide 

no species-level population data and would be difficult to tie to measures of insect abundance, 

since it would be possible to record individuals multiple times (Gibb et al., 2019).  
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Chapter 5  

Acoustic pan trapping: testing the performance of a novel survey 

method for flower-visiting insects 

“…for hundreds, maybe thousands of years, physicians have listened to our hearts and our lungs 

and our intestines to check their health. And in the last few years, ecologists have started doing 

the same thing to assess the health of ecosystems.” (Eldridge, 2019) 

5.1 Introduction 

Advances in technology are transforming the ways in which we survey and monitor organisms 

(August et al., 2015). From the advent of the internet and smartphone technology, enabling wide-

spread citizen science involvement in biological monitoring through applications like iRecord2, 

to advances in molecular techniques providing us with the ability to monitor the environment non-

invasively through the use of eDNA (Barnes & Turner, 2016; Thomsen & Sigsgaard, 2019), 

technology is increasing the spatial and temporal scales over which we can monitor ecosystem 

change. This comes at a time when the need to record long-term ecological data at large spatial 

scales is more relevant than ever. Declines within insect pollinator populations in response to 

anthropogenic drivers are challenging to monitor at large spatio-temporal scales due to a shortage 

of both trained, field-capable personnel (Carvell et al., 2016) and taxonomic skills (Agnarsson & 

Kuntner, 2007; Drew, 2011; Timms et al., 2013), especially when combined with the relative lack 

of standardised monitoring protocols for groups like insect pollinators (Westphal et al., 2008; 

Popic, Davila, & Wardle, 2013). 

There are several responses to this: 1) the use of citizen scientists to gather records, which has the 

potential to provide long-term, large-scale, continuous data, but with the joint caveats that the 

taxonomic resolution of these data is often low, and that effort must be expended to maintain and 

motivate volunteers (Roy et al., 2012); and 2) the development and introduction of novel passive 

 

2 https://www.brc.ac.uk/iRecord/ 

https://www.brc.ac.uk/iRecord/
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monitoring tools. Passive monitoring techniques allow ecological communities to be surveyed 

without the direct involvement of surveyors. Recent developments in drone technology (Koh & 

Wich, 2012; Ivošević et al., 2015; Hodgson et al., 2018), weather radar (Chilson et al., 2012; Frick 

et al., 2017; Shamoun‐Baranes et al., 2019), light detection and ranging (LIDAR) (Malmqvist et 

al., 2018), and the use of recorded video footage (Steen, Lene, & Orvedal, 2011; Gilpin, Denham, 

& Ayre, 2017; Steen, 2017), have provided novel tools for the non-invasive, passive monitoring 

of animal communities, including insect pollinators. But research regarding how many of these 

methods compare to more traditional survey techniques is on-going. 

Passive acoustic monitoring is an extension of the bioacoustic survey method explored within 

Chapter 4, using autonomous acoustic sensors to provide long-term soundscape recordings 

across varied spatial scales (Gibb et al., 2019). The term “soundscape” refers to the sum of all 

sound that emerges from a landscape (Pijanowski et al., 2011). These sounds are not just 

biological in nature (what is termed “biophony”), but also include sounds relating to human 

activity (“anthrophony”, sometimes also called technophony), and ambient noise, such as wind, 

rain, and thunder (“geophony”) (Pijanowski et al., 2011; Sueur & Farina, 2015; Farina, 2018). 

The collection and analysis of sound at a landscape scale enables not only the exploration of 

species interactions and diversity (Aide et al., 2013; Gasc et al., 2013; Campos-Cerqueira & Aide, 

2017), but also their reactions of drivers of change, including anthropogenic activity  (Penone et 

al., 2013; Lecchini et al., 2018; Lopez-Tello & Muthukumar, 2018) and natural phenomena 

(Galen et al., 2019); a field referred to as ecoacoustics (Sueur & Farina, 2015). Passive acoustic 

survey techniques are non-destructive and non-invasive (Gibb et al., 2019), and are often 

combined with machine learning classification methods to aid in the identification of different 

taxa (Aide et al., 2013). 

Passive acoustic sensors have been used to provide data within a number of systems, including 

freshwater (Linke et al., 2018; Desjonquères, Gifford, & Linke, 2019), terrestrial (Chesmore, 

2001; Payne, Thompson, & Kramer, 2003; Kalan et al., 2015; Wrege et al., 2017), and marine 

environments (Simon et al., 2010; Parks et al., 2011; Stimpert et al., 2011; Lecchini et al., 2018). 

Past uses include the detection and monitoring of species populations (Chesmore, 2001; Payne, 
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Thompson, & Kramer, 2003; Kalan et al., 2015), monitoring the effects of anthropogenic 

disturbance or activity upon species behaviour or community composition (Penone et al., 2013; 

Lecchini et al., 2018), and observing the effects of acoustic diversity upon human enjoyment of, 

or the mental health benefits associated with, urban greenspaces (Watts, Miah, & Pheasant, 2013; 

Medvedev, Shepherd, & Hautus, 2015; Moscoso, Peck, & Eldridge, 2018). In relation to insect 

taxa, passive acoustic monitoring has been used to explore the effects of urbanisation and 

agricultural intensification upon Orthopteran communities, showing that community diversity 

was negatively affected by human activity (Penone et al., 2013). And more recently, it has also 

been used to monitor and investigate flight activity in bees: Miller-Struttmann et al. (2017) used 

microphones set at flower height to monitor bumblebee activity in alpine meadows, showing that 

measures of acoustic activity were positively correlated with the results of visual transect surveys 

and with local pollination service provision, indicating that passive acoustic monitoring could 

provide a novel method for quantifying certain ecosystem services. Galen et al. (2019) also used 

passive acoustic sensors to monitor “bee” activity during a solar eclipse, showing that complete 

darkness at the height of the eclipse disrupted flight activity. However, since the authors did not 

ground truth their acoustic observations in any way, it is impossible to know whether the sounds 

that they were detecting came solely from foraging bees or were, as I suspect, representative of a 

broader range of insect taxa. 

The recent uptake of acoustic monitoring within ecology has been facilitated by the proliferation 

and affordability of recording devices (Gibb et al., 2019). Autonomous acoustic sensors are now 

routinely capable of recording for periods in excess of several weeks (Whytock & Christie, 2016; 

Hill et al., 2018, 2019), and make use of single-board computers like the Raspberry Pi or Arduino 

to employ open-source operating systems that are programmable by the user (Whytock & 

Christie, 2016). These, in turn, allow for a variety of different recording schedules to be pre-

programmed prior to data collection, while giving practitioners the option to focus on specific 

sound thresholds, such as ultrasound, or to alter microphone sensitivity in response to perceived 

or predicted background noise (Whytock & Christie, 2016). The cost of these sensors is variable, 

but the use of passive acoustic monitoring is still invariably cheaper, in terms of both time and 
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expense, than employing surveyors to collect data in the field (Gibb et al., 2019). Data storage on 

these devices often requires the use of micro-SD cards, which do require continual replacement 

when recording for long periods of time (Whytock & Christie, 2016). Although, technology now 

enables wireless internet connectivity between some acoustic sensors and a central storage hub, 

so that audio files can be transferred directly to the user without the need for internal storage 

(Sheng et al., 2019). 

Notable advances have also been made in developing automated detection and classification tools 

for acoustic signals within soundscapes (Gibb et al. 2019), although manual counts are still often 

used, particularly when attempting to quantify classification or detection errors (Gibb et al. 2019). 

A wide range of different supervised and unsupervised tools for ecoacoustic analyses can be 

accessed via open-source software, such as R (Sueur, Aubin, & Simonis, 2008; Katz, Hafner, & 

Donovan, 2016; Ligges et al., 2018; Anikin, 2019; R Core Team, 2021), Python (van Rossum & 

Drake, 2009; Giannakopoulos, 2015; Fonseca et al., 2019), and Biosounds (Darras et al., 2020), 

but the use of these tools assumes a familiarity with both programming and acoustic analysis. 

Many researchers have also developed specific algorithms for their own projects. Heise et al. 

(2017) used MATLAB to create an automated detection tool based upon Auditory Scene 

Analysis, which was later used successfully by Miller-Struttmann et al. (2017). There is also a 

range of commercial software tools that facilitate automated acoustic detection and analysis. 

Kaleidoscope Pro (© Wildlife Acoustics, Inc., 2019), for instance, provides an intuitive 

supervised cluster analysis tool based upon Hidden Markov Models, that is capable of identifying 

and aggregating similar acoustic signals. And while this programme has been used to detect both 

bat and avian acoustic signals (Abrahams & Denny, 2018; Ross et al., 2018), it has yet to be tested 

with insect acoustic signals. These commercial tools are often expensive, but do not require 

extensive programming ability or in-depth prior knowledge of acoustic analysis, creating a low 

barrier to entry for conservation practitioners. 

In light of recent results by Heise et al. (2017), Miller-Struttmann et al. (2017), and Galen et al. 

(2019), it is clear that autonomous passive acoustic sensors can be used to generate soundscape 

recordings from which insect flight sounds can be extracted and analysed to answer relevant 
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ecological questions at a range of spatial scales. By combining an autonomous acoustic recording 

device with the design of a traditional passive survey method aimed at insect pollinator species, 

such as the pan trap, I aim to create a template for a non-destructive, passive acoustic survey 

technique focused on attracting and sampling flower-visiting insect communities through the 

passively generated sound of their wing beats. The addition of a visual attractant to the simpler 

recording method employed by Miller-Struttmann et al. (2017) would standardise the technique, 

potentially allowing it to be used within a range of habitats with differing levels of floral diversity. 

However, the performance of this novel “acoustic pan trap” would still need to be compared with 

that of more traditional survey methods beyond the visual transects used by Miller-Struttmann et 

al (2017), in order to assess its utility in terms of wider scale insect pollinator monitoring.  

Since pan trapping will form the basis of the design off this new passive acoustic survey method, 

it would make sense to use this method as one basis for methodological comparison. Pan trapping 

is a similar passive survey method aimed at flower-visiting insect species, that uses brightly 

coloured bowls filled with water to attract and then destructively sample insects (Westphal et al., 

2008). A comparison with this method would also allow me to assess how well with measures of 

acoustic animal activity relate to measures of animal abundance – a facet of ecoacoustic 

monitoring that is still poorly understood due to the issue surrounding the assumed non-

independence of acoustic signals (Marques et al., 2013; Gibb et al., 2019). That is, it can be 

difficult to assess whether ten approximately identical bird calls come from ten individuals of the 

same species or a single individual calling multiple times. 

Of the three standardised survey techniques currently employed by the UK Pollinator Monitoring 

Scheme (PoMS): pan trapping, standardised transect surveys, and Flower-Insect Timed Counts 

(FIT Counts), the FIT Count (a timed focal floral resource observation) would provide another 

logical source of comparison. Focal floral resource observations (FFOs) involve observing a focal 

plant or vegetative plot and counting the number of insect individuals that visit during a specific 

time frame (Potts, Evan, & Boone, 2005; Westphal et al., 2008; Roy et al., 2016). If individuals 

are not destructively sampled upon visiting the focal resource, then FFOs provide a measure of 

flower-visiting insect activity that would be conceptually similar to the acoustic insect activity 
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recorded by an acoustic pan trap. FFOs can also be carried out at intervals throughout the day, 

providing a measure of diel activity within local insect communities that could be compared to 

the diel acoustic activity recorded by an acoustic pan trapping station.  

Indeed, this novel acoustic pan trapping method occupies an interesting middle-ground between 

these two established survey methods. As a passive survey method, it lacks the collector bias 

associated with active observation-based methods like FFOs, while providing a non-destructive 

alternative to traditional pan trapping. However, the relative success of this novel method would 

be heavily reliant upon matching this survey technique with suitable automated detection software 

that could reliably extract individual instances of insect flight sound from whole soundscape 

recordings. The acoustic data would also be unable to provide any form of taxonomic resolution 

until classification algorithms (like those discussed in Chapter 4) have been more thoroughly 

tested on a broad range of flower-visiting insect taxa. 

5.1.1 Aims 

In this chapter, I will test the performance of a novel passive acoustic survey method: an acoustic 

pan trap, in relation to two common survey techniques: traditional water-based pan trapping and 

focal floral resource observations. I will also investigate the reliability and accuracy of the 

commercially available Kaleidoscope Pro acoustic analysis software, in terms of its ability to 

detect and identify instances of insect flight sound from whole soundscape recordings. I will 

address the following questions: 

1. What are the Type 1 (false positive) and Type 2 (false negative) error rates associated 

with the Kaleidoscope Pro cluster analysis tool? 

2. Are there differences between the number of instances of insect flight sound clustered by 

Kaleidoscope Pro and the number of instances of insect flight sound present within the 

soundscape recordings? 

3. Is there a relationship between the number of instances of insect sound recorded by the 

acoustic pan traps and the number of insects sampled by traditional water-based pan 

trapping or observed during hourly focal floral resource observations? 
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4. Is there a relationship between the number of instances of insect sound recorded per hour 

by the acoustic pan traps and the number of insects observed during hourly focal floral 

resource observations?  

5. Is the number of instances of insect sound recorded per hour by the acoustic pan traps 

affected by local environmental variables, specifically hourly temperature (°C), hourly 

wind speed (mph), hourly rainfall (mm), and local floral abundance? 

5.2 Materials & Methods 

5.2.1 Data collection 

Acoustic data were collected from thirteen sites between August and October 2017, and from 

seven sites between June and September 2018, of which six were repeat visits to sites from 2017. 

These sites were a mixture of urban and rural areas within Leeds, West Yorkshire, and its 

surrounding suburbs (see Table 5.1), each covering an area of approximately 100 x 100m and 

separated by a minimum of 1km. The sites were primarily a mixture of amenity grassland and 

semi-natural grassland. The amenity grassland sites consisted of urban parks and playing fields, 

where the grass sward was short and routinely mown and the flora consisted of a mixture of hardy 

species like Bellis perennis and Taraxacum spp. Some of these amenity sites contained areas of 

grass left unmown to promote biodiversity, which contained a slightly broader range of floral 

species, including Red Clover (Trifolium pratense) and Common Ragwort (Senecio jacobaea). 

The semi-natural grassland sites were defined by a  flora consisting of Common Bird’s-foot trefoil 

(Lotus corniculatus), Red Clover, Common Ragwort, and Common Hogweed (Heracleum 

sphondylium). Site visits were carried out during fair weather, where temperatures were between 

13-25°C, wind speeds were not more than 10mph, and there was no sustained rainfall. The hourly 

temperature (°C), hourly wind speed (mph), and hourly rainfall (mm) were recorded for each 

sampling date using data from the UK Met Office MIDAS station at Bramham (SE 448416), 

accessed via the Centre for Environmental Data Analysis (CEDA) archive (Met Office, 2020). 

Each site was visited and sampled once per year, with the following three sampling protocols 

being deployed in parallel (Fig. 5.3). 
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5.2.1.1 Acoustic pan trap design 

The design of the acoustic pan trap was based upon the SOLO acoustic recorder (Whytock & 

Christie, 2016). SOLO is an open-source, autonomous recording tool comprised primarily of a 

Raspberry Pi single board computer, a sound card, an external battery pack, a microphone, and a 

waterproof container (see Fig. 5.1), and is designed to record sounds of up to 22.05 kHz. for up 

to forty days at a time (Whytock & Christie, 2016). The Unix-based operating system is open-

source, and, through the Raspberry Pi, various aspects of the software can be altered to suite 

individual project requirements (Whytock & Christie, 2016). The SOLO recorder was chosen 

because it is affordable (ca. £110 per recorder), versatile, and designed for self-assembly; it has 

also been extensively field-tested in the UK by its designers (Whytock & Christie, 2016).  

Figure 5.1 The internal components of a single SOLO acoustic recorder. From left to right: 

the external battery pack, the Raspberry Pi single board computer, the USB soundcard, and 

the microphone. 

 

A plastic picnic plate (433.74cm2) was used in place of the traditional water-filled trio of bowls, 

and, as per the results from Chapter 2, plates with a wider surface area were chosen to create an 

attractive, non-destructive surface for foraging insects. These plates were painted with UV-

fluorescent yellow paint (Wilson et al., 2016). This colour has been shown to be attractive to a 

range of different insect pollinator taxa, as seen in Chapter 2 (Bowie et al., 1999; Laubertie, 

Wratten, & Sedcole, 2006; Gollan, Ashcroft, & Batley, 2011; Vrdoljak & Samways, 2011; 

Heneberg & Bogusch, 2014). A single colour was chosen over the traditional trio of UV-
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fluorescent yellow, blue, and white associated with pan trapping due to the placement of the 

microphone on the plates. If the plates were painted in thirds radiating from the centre, this would 

have left at least one colour behind the microphone, potentially biasing the resulting recordings 

towards those insects attracted to the remaining colours. 

The picnic plate was attached to a stand on a wooden stake, set at approximately the same level 

as the surrounding flowering vegetation (Westphal et al., 2008; Tuell & Isaacs, 2009). There were 

six heights along the wooden stake to which the stand could be raised, starting at approximately 

10cm above ground level and increasing in 10cm increments to approximately 60cm above 

ground level. The SOLO acoustic recorder was set underneath the plate and the microphone was 

attached to the centre of the plate, tilted slightly upwards (see Fig. 5.2). 

Figure 5.2 A single passive acoustic pan trapping station, as deployed in the field. 
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5.2.1.2 Pan trapping protocol 

The pan trapping protocol used here was based upon the results from Chapter 2. Five pan 

trapping stations were set out at each site at regular intervals along either a 50m or a 100m transect 

(Fig. 5.3), depending upon the area of the site in question. A distance of 10m (on a 50m transect) 

or 20m (on a 100m transect) was left between neighbouring pan trapping stations, so as to avoid 

competition between them for insects (Droege et al., 2010). Each pan trapping station consisted 

of three 296ml bowls, painted UV-fluorescent yellow, blue, and white (Sparvar Leuchtfarbe). 

These bowls were filled with ca. 180ml of water and approximately one drop of un-scented 

detergent and attached to a stand on a wooden stake at approximately the same level as the 

surrounding flowering vegetation. As with the acoustic pan traps, the bowls could be raised to 

one of six heights along the wooden stake, starting at approximately 10cm above ground level 

and increasing in 10cm increments to 60cm above ground level. Each pan trapping station was 

set out between 08:30 - 09:30 AM and was left active for approximately seven hours. Specimens 

collected from the pan traps were strained through muslin and preserved in 70% ethanol for 

identification. Samples from each pan trapping station were stored separately by bowl colour. 

Figure 5.3 A visual representation of the experimental set-up during each survey: two 

parallel 50m transects, set at least 10m away from one another, with either traditional pan 

trapping stations (the trio of white, yellow, and blue circles) or acoustic pan trapping 

stations (large yellow circles) set at equal distances (10m). The numbers in white indicate 

the potential positions for the random placement of the focal floral resource observations. 
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5.2.1.3 Acoustic pan trapping protocol 

Five acoustic pan trapping stations were set out along a second 50m or 100m transect, run in 

parallel to the pan trapping transect (Fig. 5.3). A distance of 10m (on a 50m transect) or 20m (on 

a 100m transect) was left between neighbouring acoustic pan trapping stations, so as to avoid 

competition between them for insects (Droege et al., 2010) (Fig. 5.3). A 10m distance was left 

between the acoustic and traditional pan trapping transects. Each acoustic pan trapping station 

was set out between 08:30 - 09:30 AM and was left active for approximately seven hours. 

Acoustic data were exported from the 64GB micro-SD cards using the Linux Reader 2.7 software 

(DiskInternals) and stored securely on University of Leeds’ servers. After each use, the SOLO 

Operating System Image (SOSI) was flashed onto the micro-SD card using Win32 Disk Imager 

1.0 software3. 

5.2.1.4 Floral abundance counts 

In addition to local weather variation, the floral abundance present within a two meter radius of 

each pan trapping and acoustic pan trapping station was also recorded. As in Chapters 2, each 

flower was counted as a single floral unit and then multiplied by the estimated volume of nectar 

sugar produced per flower per 24 hours (µl) found in Baude, Kunin, & Memmott (2015), 

following the method presented in Baude et al. (2016) and O’Connor et al. (2019). For species 

with where the flowers comprise multiple florets, e.g., the racemes belonging to members of the 

Fabaceae, I counted each flower head as a single floral unit (Carvell et al., 2007). I then counted 

the number of florets belonging to representative three flower heads of each of these species and 

calculated the average number of florets per head. This value was then multiplied by the volume 

of nectar sugar produced per floret per day to provide the volume of nectar sugar produced per 

floral unit. This process allowed me to account for the differing levels of floral reward produced 

by different plant species and brought this analysis into line with the findings from Chapter 2. . 

For information concerning how each floral species was classified in terms of what constituted a 

floral unit, the average number of florets per floral unit, and the estimated volume of nectar sugar 

 

3 https://sourceforge.net/projects/win32diskimager/ 

https://sourceforge.net/projects/win32diskimager/
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produced per floret per day and per floral unit per day, see Supplementary Table 3.1. For a 

summary of the relative abundance of the floral species within a two-meter radius of each acoustic 

pan trapping station per site, see Supplementary Table 3.2. 

5.2.1.5 Focal floral resource observation protocol 

I designed the focal floral resource observation (FFO) protocol specifically for this experiment, 

although aspects were based upon the protocol used by the UK’s PoMS Flower-Insect Timed 

Counts (FIT Counts) (UK Pollinator Monitoring Scheme, 2021), as well as the method used by 

Roy et al. (2016). The primary advantage of this protocol is that it does not rely on existing on-

site floral resources to survey insect activity, and instead uses a portable potted plant to attract 

insect visitors. This was advantageous because most of my survey sites were urban in nature and 

several had little in the way of existing floral resources (either in terms of abundance or species 

richness). 

The focal floral resource I chose comprised a single potted Rudbeckia fulgida var. 'Little Goldstar', 

purchased from B&Q4. Rudbeckia fulgida is an herbaceous perennial plant native to North 

America (Campbell & Seymour 2013) while the “Little Goldstar” cultivar is commonly found in 

garden centres across the UK. A member of the Asteraceae, the inflorescences (capitula) of this 

plant are formed of yellow ray florets surrounding a conical dark brown disk. The florets produce 

a faint scent, and the stamens produce small quantities of pollen (Uebelhart, 2011). I can find no 

data concerning nectar production by either R. fulgida or the “Little Goldstar” cultivar. Rudbeckia 

fulgida also has ultraviolet-absorbing nectar guide patterns present on its ray florets that are 

visible to insects, the size of which have been shown to enhance visitation rates by insects in 

Rudbeckia cultivars (Horth, Campbell, & Bray, 2014). 

Rudbeckia fulgida has been shown to be attractive to flower-visiting insect taxa. Rollings & 

Goulson (2019) ranked R. fulgida 26th out of 111 plant cultivars in terms of attractiveness to insect 

pollinators, noting that it was attractive to a wide variety of pollinator groups (Simpson’s D = 

 

4 https://www.diy.com/  

https://www.diy.com/
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0.75), in particular - solitary bees. While Harris et al. (2016) found that R. fulgida, along with two 

similar species: R. hirta and R. triloba, were visited by a wide range of beneficial insects, 

including pollinator taxa such as bees and hoverflies. Rudbeckia spp. are also listed on the Royal 

Horticultural Society’s list of “Plants for Pollinators”5, although Garbuzov, Alton, & Ratnieks 

(2017) showed that, while plants with this label are often more attractive to insect pollinators than 

plants that are not, many ornamental cultivars found in UK garden centres exhibit lower visitation 

rates when compared to known attractive plant species6. But two of the three Rudbeckia cultivars 

tested by Garbuzov, Alton, & Ratnieks (2017) (R. hirta “Toto Gold” and R. triloba “Prairie 

Glow”) did compare favourably with other ornamental cultivars in terms of insect pollinator 

visitation; although, neither R. fulgida nor the “Little Goldstar” cultivar were included in their 

study. 

The use of a Rudbeckia cultivar as the focal floral resource will naturally have biased the results 

of the FFOs in favour of those insects that are attracted to flowers with a similar shape, scent, and 

colour. However, a short period of ad-hoc observation in the garden centre where I purchased the 

plants demonstrated that our chosen cultivar attracted a diverse range of insect taxa, including 

bumblebees, honeybees, hoverflies, and non-syrphid Diptera. Another plant species that has been 

used in FFOs is lavender (Lavendula spp.) (Roy et al., 2016), but evidence suggests that this plant 

is primarily a source of forage for longer-tongued insect species (Balfour, Garbuzov, & Ratnieks, 

2013). 

FFOs were carried out once per hour over the seven-hour survey period during which the pan 

traps and acoustic pan traps were active. Once per hour at approximately ten minutes past the 

hour, a single potted R. fulgida var. 'Little Goldstar' plant was placed at least 10m away from an 

acoustic/pan trapping station, the position of which was decided at random with a ten-sided die 

(Fig. 5.3), at a perpendicular angle to the station in question. The plant was then left undisturbed 

for ten minutes to give insects foraging in the local area time to acclimatise to its presence. After 

 

5 https://rhs.org.uk/plantsforpollinators 
6 Garbuzov, Alton, & Ratnieks (2017) used marjoram (Origanum vulgare). 

https://rhs.org.uk/plantsforpollinators
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the acclimation period, the plant was observed for twenty minutes and each insect visitation to 

the plant was recorded along with the identity of the visitor. Insects were identified to species 

where possible, otherwise insect identity was marked using the system used by the PoMS FIT 

Counts, where insects are labelled as either bumblebees, honeybees, solitary bees, wasps, 

hoverflies, other flies, butterflies and moths, beetles (larger than 3mm), small insects (smaller 

than 3mm), or as other insects. 

A single potted R. fulgida var. 'Little Goldstar' plant, sold in a 2l. pot, was in use for FFOs at any 

one time, although I cycled through several plants over the course of each survey season due to 

wear. The number of inflorescences per plant varied, but when choosing replacements I chose 

plants with a similar number of capitula to the original. If more were present than the original, I 

trimmed the capitula to remove any excess. The original plant purchased in 2017 had thirty-nine 

inflorescences. The average number of inflorescences per plant was 38 (N = 4 plants) in 2017, 

and 35 (N = 3 plants) in 2018. The choice to move and then observe a single plant multiple times 

over the course of each survey, as opposed to leaving seven plants in static locations for the 

duration of each day’s sampling, was made primarily due to logistic concerns regarding the 

movement of equipment to and from each site, which was predominantly carried out via two 

people using either taxis or public transport. 

5.2.2 Data analysis 

5.2.2.1 Signal processing 

The SOLO recorders record sound in .wav format audio files lasting ten minutes, except for those 

audio files representing the beginning and end of a given sampling period, which may be shorter. 

These audio files were grouped in one-hour bins, i.e., 09:00-10:00, and labelled according to the 

hour at the start of the bin, i.e., 09:00. The binned files were organised by trapping station and 

then by survey site. No further signal processing was carried out on the audio files, e.g., noise 

reduction, since the aim was to use field-realistic soundscape recordings representing a range of 

habitats, inclusive of the variety of biophonic, geophonic, and anthrophonic noise present in each. 
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5.2.2.2 Automated detection of insect flight sounds 

The cluster analysis tool present in the Kaleidoscope Pro 5.4.2 software (Non-bat Analysis Mode) 

(Wildlife Acoustics Inc., 2021) was used to detect and cluster instances of insect sound (buzzes) 

present in the binned audio files, with each hour of audio recordings from each survey being run 

through Kaleidoscope Pro individually. 

I based the clustering protocol upon the advanced classifier tutorial present on (Wildlife Acoustics 

Inc., 2019b). The cluster analysis tool aims to detect vocalisations within a series of recordings 

based upon a common set of signal parameters: the signal frequency (Hz.), the signal length 

(seconds), and the inter-syllable gap (the minimum length of time separating individual 

vocalisations, measured in seconds). Vocalisations that meet these parameters are clustered into 

similar sound classes. The parameters I used were based upon visual inspections of spectrograms 

of the soundscape files, and of the insect audio recordings made during Chapter 4. Spectrograms 

were generated using Audacity (Audacity Team, 2019). 

Signal parameters: 

• Signal frequency: 90 – 3000 Hz. 

• Signal length: 0.1 – 7 seconds 

• Inter-syllable gap: 0.1 second 

The cluster analysis tool was initially run using the signal parameters alone to guide the selection 

and clustering of individual sounds. Then, using the 12:00-13:00, 13:00-14:00, and 14:00-15:00 

audio files from the first acoustic pan trapping station from each survey as an exemplar sound set, 

each clustered sound was listened to and each insect buzz was labelled “insect”, leaving all non-

insect sounds with their original cluster labels. These labels were then used to train the cluster 

analysis tool to create stronger classifiers. Only clear examples of insect buzzes were labelled as 

such. Instances where insect buzzes intersected with other types of biophony (i.e., bird song or 

human speech) were not labelled, as the competing acoustic signals may confuse the clustering 

tool. For the same reasons, any insect buzz that was identifiable but overlaid with high-amplitude 

geophonic or anthrophonic sound (i.e., wind or traffic noise) was also not labelled. I chose to use 

the audio files from between 12:00 and 15:00 as exemplar sound sets because insect flight activity 
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often peaks after midday towards the mid-afternoon (Steen, 2017), and I wanted to maximise the 

number of buzzes available for labelling.  

The ability of the cluster analysis tool to accurately and reliably cluster (classify) unknown insect 

buzzes should increase with the number of known buzzes used to train the classifier. When I refer 

to accuracy, I describe the software’s ability to determine whether a given sound belongs to the 

insect cluster or not. I set an arbitrary minimum acceptable number of insect buzzes per survey at 

15. If there were not at least 15 instances of insect flight sound present within the three exemplar 

audio files from the first trapping station, then the equivalent audio files from the second acoustic 

pan trapping station were used and so on. The cluster analysis tool was then re-run using these 

manual labels to create a KCS file representing a Specialist Insect Classifier (SIC) (Wildlife 

Acoustics Inc., 2019b). This classifier was then used to detect and cluster instances of insect flight 

sound within the rest of the audio recordings from a given site. 

A SIC was generated independently for each site visit using the same set of signal parameters, 

enabling me to consider the unique diversity of sound present within the soundscapes recorded 

from different sites at different times. There were two exceptions to this: Allerton Grange Fields 

(2017) and Farnley Hall Park (2018), where no more than two and fourteen buzzes, respectively, 

were found across any of the exemplar sound sets for these two sites. The Allerton Grange Fields 

site was not included in any further analysis, since I could not realistically create an SIC for the 

site with only two training buzzes. In the case of Farnley Hall Park (2018), I used the SIC created 

for the same site in 2017; while the soundscapes will be different, the mixture of sounds present 

within the soundscapes at the site should be similar enough to allow the application of the 2017 

SIC to the 2018 soundscape data. 

5.2.2.3 What are the Type 1 (false positive) and Type 2 (false negative) error rates 

associated with the Kaleidoscope Pro cluster analysis tool? 

In order to test the performance of the supervised cluster analysis tool in Kaleidoscope Pro, 

specifically the tool’s ability to reliably recognise and accurately cluster insect buzzes, I started 

by quantifying the proportion of false positive and false negative errors within my soundscape 
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recordings. False positive errors (FP) are defined as instances of non-insect sound incorrectly 

classified as insect buzzes; the false positive rate (FPR) is calculated as: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Where TN represents the number of true negatives, or the number of instances of correctly 

classified non-insect sound.  

False negative errors (FN) are defined as insect buzzes incorrectly classified as instances of non-

insect sound; the false negative rate (FNR) is calculated as: 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

Where TP represents the number of true positives, or the number of correctly classified insect 

buzzes. Neither the false positive rate nor the false negative rate are true rates, but instead 

represent proportions of error within a given soundscape recording. 

I began by identifying a subset of my existing soundscape recordings. I binned all my hour-long 

recording segments into three groups, according to the number of insect buzzes clustered per hour 

by the cluster analysis tool. Due to the non-Gaussian distribution of these data (Fig. 5.4), I 

separated the groups based upon their distance from the median. Those recordings within the first 

quartile (0-25%: 0-7 buzzes) were defined as “low estimated activity”, those within the second 

and third quartiles (26-75%: 8-35 buzzes) were defined a “medium estimated activity”, and those 

within the fourth quartile (>75%: >36 buzzes) were defined as “high estimated activity”. Those 

recordings used to train the SICs at each site were not binned, since I would expect the false 

positive and false negative rates derived from an analysis of these recordings to be artificially 

low. Twenty-five hour-long recording segments were then randomly selected from each of these 

three groups, seventy-five hours in total, representing approximately 10.20 per cent of the total 

number of hours of soundscape data recorded during this experiment.  

I re-ran the appropriate site-specific SIC on each of these recording segments and listened to each 

instance of sound detected and clustered by the cluster analysis tool, using the Kaleidoscope Pro 

Viewer window. I identified each instance of sound as either a true positive, a true negative, a 
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false positive, or a false negative. The number of true positives plus the number of false negatives 

provided a count of insect buzzes detected by the SICs, referred to here as detected buzzes. This 

approach to quantifying false positive and false negative error rates, using a subset of the original 

data to inspect and verify the identity of individual classified signals, is commonplace within 

ecoacoustic research (Heinicke et al., 2015; Abrahams & Denny, 2018; Ross et al., 2018; Pérez-

Granados & Schuchmann, 2020). 

 

Figure 5.4 A histogram showing the distribution of the number of clustered insect buzzes 

per hour across all acoustic pan trapping stations during this experiment. The black vertical 

line shows the median (15), while the red dashed vertical lines show the first (7) and third 

(35) quantiles. 

 

Once I had quantified the false negative and false positive error rates within this subset of 

soundscape recordings, I wanted to explore whether the number of insect buzzes used to train the 

relevant SICs effected these two measures of error. All subsequent statistical analyses were 

carried out in R, version 4.0.5 (R Core Team, 2021).  

I used a generalised linear model to test for this, with a quasibinomial error distribution to account 

for the fact that my dependant variables were expressed as proportions. I included the estimated 
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activity level of each recording (low, medium, or high) as an additional explanatory variable, to 

test whether either measure of error differed between them. Results were plotted using the 

geom_smooth and geom_boxplot functions in the ggplot2 package (Wickham, 2009). 

Global model example: 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 ~ 𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑢𝑧𝑧𝑒𝑠 + 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 

I was also interested in whether there was a relationship between the false positive and false 

negative error rates, e.g., did recordings with low false positive errors also have low false negative 

errors. I used a Spearman’s rank (non-parametric) correlation to test for this. Data normality was 

assessed using the shapiro.test function, and the results were plotted using the geom_point and 

geom_smooth functions in the ggplot2 package (Wickham, 2016). 

5.2.2.4 Is there a difference between the number of instances of insect flight sound 

clustered by the Kaleidoscope Pro cluster analysis tool and the number of 

instances of insect flight sound present within the soundscape recordings? 

Using the same subset of seventy-five hour-long recordings, representing recordings with low, 

medium, and high estimated activity, I loaded each hour-long soundscape recording segment into 

Audacity and listened to them manually; counting and labelling the number of insect buzzes 

present using the same criteria as those applied by the SICs: 

• Signal frequency: 90 – 3000 Hz. 

• Signal length: 0.1 – 7 seconds 

• Inter-syllable gap: 0.1 second 

Insect buzzes were labelled using the Add Label at Selection function within Audacity and the 

annotations for each segment were exported and saved as text files. Any sounds where I was 

unsure of their identity, either due to their amplitude or the presence of other overlapping sounds 

or background noise, were ignored. Any instances where the flight sounds from multiple insects 

overlaid one another along a single stretch of recording were labelled and counted as a single 

insect buzz. The difference between these manual counts of insect buzzes within each hour-long 

soundscape recording segment and the total number of detected buzzes (true positives + false 
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negatives) provided an estimate for a third form of error: the number of insect buzzes recorded 

by the acoustic pan trap but not detected by the SICs, hereafter termed undetected buzzes. 

This process left me with four measures of insect activity from within each hour-long recording 

from the subset: the number of buzzes clustered by Kaleidoscope Pro, the number of buzzes 

detected by Kaleidoscope Pro, the number of true positives, and my manual counts. I used a 

generalised linear mixed-effects model (GLMM) to test whether there were significant 

differences between these four measures of insect activity. Since the data were overdispersed, I 

used a negative binomial distribution via the glmer.nb function in the lme4 package (Bates et al., 

2015). Each hour-long soundscape recording was allocated a unique identifier, which was used 

as a random effect within each model (1|ID) to account for the fact that I was comparing multiple 

measures of acoustic activity from within each recording. I initially ran the GLMM on all seventy-

five recordings within the data subset, I then ran it a further three times: once on each sub-group 

of twenty-five recordings, representing soundscapes with low, medium, and high estimated insect 

activity. Overdispersion was tested for using the overdisp.glmer function in the RVAideMemoire 

package (Hervé, 2019), and pairwise comparisons were carried out via General Linear Hypothesis 

testing, using the glht function in the multcomp package (Hothorn, Bretz, & Westfall, 2008). The 

results were plotted using the geom_boxplot function in the ggplot2 package (Wickham, 2009).  

Following the calculation of the number of undetected buzzes present within each soundscape 

recording, I used a quasibinomial GLM (via the glm function) to investigate whether the number 

of signals used to train each SIC affected the proportion of undetected buzzes within each 

recording.  

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑢𝑧𝑧𝑒𝑠 =  
𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑠𝑒𝑐𝑡𝑠

𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠
 

I also included the estimated activity level of each hour-long recording (low, medium, or high) as 

an additional explanatory variable, to test whether the proportion of undetected buzzes differed 

between recordings with different levels of estimated activity. Results were plotted using the 

geom_smooth function in the ggplot2 package (Wickham, 2009). 
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Finally, I tested whether there was a relationship between the number of buzzes clustered by each 

SIC and my manual counts of insect activity. I also tested whether there was a similar relationship 

between the number of true positives and my manual counts. In both cases I used a Spearman’s 

rank (non-parametric) correlation. Data normality was assessed using the shapiro.test function, 

and the results of these correlations were plotted using the geom_point and geom_smooth 

functions in the ggplot2 package (Wickham, 2009). 

5.2.2.5 Is there a relationship between the number of instances of insect sound 

detected by the acoustic pan traps and the number of insects sampled by 

traditional water-based pan trapping or observed during hourly focal 

floral resource observations? 

I summed the number of clustered insect buzzes from each of the acoustic pan trapping stations 

deployed per site, and then averaging these totals to create twenty site-level means. I performed 

the same set of calculations for the traditional pan trapping stations. I then used Pearson’s 

(parametric) and Spearman’s rank (non-parametric) correlations to test whether there was a 

relationship between the site-level means of the total number of insect buzzes clustered per 

acoustic pan trapping station and the total number of insects sampled per traditional pan trapping 

station. I also summed the number of insect visitors observed during the FFOs at each site and 

correlated these values against the mean total number of insect buzzes clustered per acoustic pan 

trapping station per site. Data normality was assessed using the shapiro.test function, and the 

results of these correlations were plotted using the geom_point and geom_smooth functions in the 

ggplot2 package (Wickham, 2009). 

5.2.2.6 Is there a relationship between the number of instances of insect sound 

detected per hour by the acoustic pan traps and the number of insects 

observed during hourly focal floral resource observations? 

I calculated the mean number of insect buzzes clustered per hour across all five of the acoustic 

pan trapping stations per site and correlated these values with the number of insect visitations 

recorded during each hourly FFO per site using Pearson’s and Spearman’s rank tests. Data 

normality was assessed using the shapiro.test function, and the results of these correlations were 
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plotted using the geom_point, geom_smooth, and geom_line functions in the ggplot2 package 

(Wickham, 2009). 

5.2.2.7 Is the number of instances of insect sound detected per hour by the 

acoustic pan traps affected by local environmental variables, specifically 

maximum day-time temperature (°C), wind speed (mph), rainfall (mm), 

and local floral abundance? 

I used a GLMM to test for the effects of local environmental variables on the number of clustered 

buzzes per hour. I used a negative binomial distribution via the glmer.nb function in the lme4 

package (Bates et al., 2015). The following variables were included as explanatory variables: 

hourly temperature (°C), hourly wind speed (mph), and the volume of  nectar sugar produced per 

day within a two meter radius of each acoustic pan trapping station. Hourly rainfall (mm) data 

were collected but were not included in the GLMM since there were no instances of rainfall during 

this study. The year in which each sampling visit took place, as well as the hour of the day were 

also included as additional fixed effects, to account for temporal variation in insect activity across 

this experiment. The date of each sampling visit and the location of the acoustic pan trapping 

station (1-5) were used within a nested random effect (1|Date/Station) to account for any natural 

variation in insect acoustic activity between sites or between trapping stations within sites.  

Both hourly temperature and hourly wind speed showed signs of non-linear relationships with the 

number of clustered buzzes per hour. Hourly temperature during this study ranged between 10 

and 25°C, with a median value of 17°C. The number of clustered buzzes peaked at approximately 

17°C (see Supplementary Fig. 3.1). Hourly wind speed ranged between 3 and 17mph, with a 

median speed of 9mph. The number of clustered buzzes per hour was greatest between 3 and 

4mph, dropping as wind speeds rose to 10mph, before rising again as wind speeds increased (see 

Supplementary Fig. 3.2). In response to these patterns, I fitted second-order polynomial terms to 

both hourly temperature and hourly wind speed, using the poly function in R. I also applied a 

natural log transformation to the nectar sugar variable to correct for a strong right-hand skew in 

the data. For a summary of the total volume of nectar sugar produced per day within a two-meter 

radius of each acoustic pan trapping station per site, see Supplementary Table 3.3. 
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Global model example: 

𝑁𝑜. 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 𝑏𝑢𝑧𝑧𝑒𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 ~ 𝑝𝑜𝑙𝑦(ℎ𝑜𝑢𝑟𝑙𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒 = 2)

+ 𝑝𝑜𝑙𝑦(ℎ𝑜𝑢𝑟𝑙𝑦 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑, 𝑑𝑒𝑔𝑟𝑒𝑒 = 2)

+ log(𝑑𝑎𝑖𝑙𝑦 𝑛𝑒𝑐𝑡𝑎𝑟 𝑠𝑢𝑔𝑎𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 1) + ℎ𝑜𝑢𝑟 + 𝑦𝑒𝑎𝑟

+ (1|𝑑𝑎𝑡𝑒/𝑠𝑡𝑎𝑡𝑖𝑜𝑛) 

Overdispersion was tested for using the overdisp.glmer function in the RVAideMemoire package 

(Hervé, 2019). Backwards stepwise regression was used to find the minimum adequate model. 

Pairwise comparisons were carried out via General Linear Hypothesis testing, using the glht 

function in the multcomp package (Hothorn, Bretz, & Westfall, 2008). Results were plotted using 

the geom_smooth and geom_bar functions in the ggplot2 package (Wickham, 2009). 

5.3 Results 

Approximately 735 hours of acoustic soundscape data were recorded across thirteen site visits in 

2017, and seven site visits in 2018 (Table 5.1). Kaleidoscope Pro’s cluster analysis tool clustered 

27,481 acoustic signals as insect buzzes from a total 289,039 detected acoustic signals across all 

acoustic pan trapping stations successfully deployed during this experiment. In contrast, the pan 

trapping surveys sampled 5808 insects, and the FFOs observed 1170 instances of insect visitation 

to the focal floral resources. 

5.3.1 What are the Type 1 (false positive) and Type 2 (false negative) error 

rates associated with the Kaleidoscope Pro cluster analysis tool? 

The false positive and false negative error rates associated with in Kaleidoscope Pro’s cluster 

analysis tool were quantified across a subset of seventy-five hours of soundscape recordings, 

which was further split into three subsets of twenty-five hours, representing recordings with high, 

medium, and low estimated acoustic insect activity. The mean values shown in Table 5.2 show 

that false positive errors were universally low, with fewer than ten per cent of detected non-insect 

sounds incorrectly clustered as insects per hour, regardless of the estimated acoustic activity. The 

false negative errors were much higher, with an average sixty per cent of detected insect buzzes 

incorrectly clustered as non-insect sounds across the whole subset. 
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Table 5.1 A summary of the sites, locations, and dates of the surveys made during this Chapter, together with brief habitat classifications for each site. A 

date in bold indicates a site where a full set of soundscape recordings was made, all other sites made only partial sets of recordings due to errors associated 

with the SOLO recorders. 

  Date  

Site name Coordinates 2017 2018 Habitat 

Allerton Grange fields SE313383 08/09/17 - Amenity grassland 

Asket Hill SE338370 01/09/17 - Semi-natural grassland  

Bramley Fall Park SE244363 - 04/07/18 Semi-natural grassland 

Farnley Hall Park SE247322 26/08/17 02/07/18 Amenity grassland 

Halton Moor SE336330 19/09/17 - Amenity grassland 

Killingbeck fields SE340342 17/09/17 - Unmown amenity grassland 

Kirkstall Abbey SE261361 28/08/17 31/07/18 Amenity grassland 

Meanwood Grove SE280381 - 27/06/18 Semi-natural grassland 

Meanwood road  SE292362 28/08/17 - Amenity grassland 

Meanwood farm SE291365 28/08/17 - Semi-natural grassland 

Primrose Valley SE346340 29/09/17 - Amenity grassland 

Rothwell Country Park SE354296 12/09/17 - Low-lying scrub 

Rothwell Pastures SE340283 15/09/17 03/08/18 Semi-natural grassland 

Skelton Woods SE361382 06/09/17 - Unmown amenity grassland border 

Temple Newsam SE356319 20/09/17 03/07/18 Amenity grassland 

Water Haigh SE367284 04/09/17 01/09/18 Unmown amenity grassland 
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There was a weak negative correlation between the false positive and false negative rates (rs(59) = 

-0.31, P = 0.017; Fig. 5.5A), where recordings with higher false positive rates tended to have 

lower false negative rates. For a full summary of the false positive and false negative error rates 

across this subset of recordings, see Supplementary Table 3.4. 

Table 5.2 The mean false positive and false negative error rates (± SE) across a subset of 

seventy-five hours of soundscape recordings, and within each further subset of twenty-five 

hours, representing recordings with high, medium, and low estimated acoustic insect 

activity. 

 Mean false positive rate N Mean false negative rate N 

All subset data 0.058 ± 0.007 75 0.601 ± 0.039 61 

High activity 0.078 ± 0.008 25 0.472 ± 0.051 22 

Medium activity 0.062 ± 0.011 25 0.720 ± 0.057 22 

Low activity 0.034 ± 0.016 25 0.613 ± 0.092 17 

 

The quasibinomial GLMs showed no significant differences in terms of either the false positive 

(χ 2
(2) = 2.331, p = 0.312) or false negative (χ2

(2) = 2.282, p = 0.319) error rates between the three 

estimated activity classes. However, both classes of error were affected by the number of insect 

buzzes used to train the relevant SICs. As the number of training buzzes increased, there was a 

weak but significant increase in the false positive rate (parameter estimate: 0.002, 95% CI [0.001, 

0.003]; Fig. 5.5B), and a weak but significant decrease in the false negative rate (-0.003 [-0.005, 

-0.002]; Fig. 5.5C). 
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Figure 5.5 A) A scatterplot showing the relationship between the false positive rate and the 

false error rate (± SE); B) The false positive rate ± 95% confidence intervals plotted against 

the number of insect sounds used to train the specialist insect classifiers (SICs); C) The false 

negative rate ± 95% confidence intervals plotted against the number of insect sounds used 

to train the specialist insect classifiers (SICs). 

  

A 

C 
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5.3.2 Are there differences between the number of instances of insect flight 

sound clustered by the Kaleidoscope Pro cluster analysis tool and the 

number of instances of insect flight sound present within the 

soundscape recordings? 

The number of insect buzzes present within each of the seventy-five hour-long soundscape 

recordings were counted manually and compared to three measures of estimated insect activity 

derived using Kaleidoscope Pro: the number of clustered insect buzzes (clustered insects), the 

number of true positives, and the number of detected insects (true positives + false negatives). 

These four measures of acoustic activity (known or estimated) differed significantly from one 

another (χ2
(3) = 199.120, p = <0.001; Table 5.3, Fig. 5.6A). Pairwise comparisons indicate that 

that there were no significant differences between the number of insect buzzes clustered by 

Kaleidoscope Pro and the manual counts of insect buzzes taken from the soundscapes themselves. 

However, the number of true positives was significantly lower than all other measures of insect 

activity, while the number of total detected buzzes was significantly lower than both the number 

of clustered buzzes and the manual counts. 

There remained significant differences between the four measures of acoustic activity (known or 

estimated) within each of the three activity subgroups: low (χ2
(3) = 102.380, p = <0.001), medium 

(χ2
(3) = 109.360, p = <0.001), and high (χ2

(3) = 43.768, p = <0.001). Within the medium and high 

activity groups, these comparison tests showed the same pattern of pairwise differences as within 

the whole subset of seventy-five recordings (Fig. 5.6B & 5.6C). Within the low activity group, 

all three measures of estimated insect activity were significantly lower than the manual counts of 

insect activity, while the number of total detected insect buzzes and clustered insect buzzes were 

both significantly greater than the number of true positives. There were no significant differences 

between the number of clustered insect buzzes and the number of total detected insect buzzes 

(Fig. 5.6D). For further details concerning the pairwise comparisons within each of the three 

subgroups, see Supplementary tables 3.5, 3.6, and 3.7.  
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Table 5.3 Pairwise comparisons between four measures of acoustic insect activity: manual 

counts of insect buzzes per hour, the number of insect buzzes clustered per hour by 

Kaleidoscope Pro (clustered insects), the number of true positives therein, and the number 

of total detected buzzes (true positives + false negatives). Bold values indicate significant 

pairwise comparisons. 

Pairwise comparison Parameter estimate 95% CI 

True positives -- Clustered insects -1.816 (-2.230, -1.402) 

Detected insects -- Clustered insects -0.871 (-1.271, -0.471) 

Manual count -- Clustered insects 0.134 (-0.250, 0.518) 

Detected insects -- True positives 0.945 (0.565, 1.326) 

Manual count -- True positives 1.950 (1.564, 2.337) 

Manual count -- Detected insects 1.005 (0.643, 1.368) 

 

There was a moderately strong positive correlation between the number of insect buzzes clustered 

per hour by the cluster analysis tool and the manual counts of insect buzzes during each hour-

long recording (rs(73) = 0.56, P = <0.001; Fig. 5.7A). There was a much stronger positive 

correlation relationship between the no. of true positives clustered per hour and the manual counts 

of insect buzzes during each hour-long recording (rs(73) = 0.88, P = <0.001; Fig. 5.7B). 

The proportion of undetected buzzes was quantified within each hour-long soundscape recording 

within the subset of seventy-five recordings. The mean values shown in Table 5.4 indicate that 

the detection rate was relatively low across the whole subset, regardless of estimated activity - 

never rising above 50%. Quasibinomial GLMs showed no significant differences in terms of the 

proportion of undetected buzzes between the three activity classes (χ2
(2) = 3.431, p = 0.180). The 

proportion of undetected buzzes was, however, affected by the number of insect buzzes used to 

train the relevant SICs. As the number of training buzzes increased, there was a weak but 

significant decrease in the proportion of undetected buzzes (-0.002 [-0.004, -0.001]; Fig. 5.8A). 

For a breakdown of manual counts and the number of undetected insect buzzes, see 

Supplementary Table 3.9.  
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Figure 5.6 A) A boxplot showing the number of buzzes per hour clustered by Kaleidoscope 

Pro (Clustered), the number of true positives, the number of buzzes per hour detected by 

Kaleidoscope Pro (true positives + false negatives), and the manual counts of insect buzzes 

across all seventy-five hour-long recordings within the data subset; B) A boxplot showing 

the number of buzzes per hour clustered by Kaleidoscope Pro (Clustered), the number of 

true positives, the number of buzzes per hour detected by Kaleidoscope Pro (true positives 

+ false negatives), and the manual counts of insect buzzes across the twenty-five recordings 

with high estimated acoustic insect activity; C) A boxplot showing the number of buzzes per 

hour clustered by Kaleidoscope Pro (Clustered), the number of true positives, the number 

of buzzes per hour detected by Kaleidoscope Pro (true positives + false negatives), and the 

manual counts of insect buzzes across the twenty-five recordings with medium estimated 

acoustic insect activity; D) A boxplot showing the number of buzzes per hour clustered by 

Kaleidoscope Pro (Clustered), the number of true positives, the number of buzzes per hour 

detected by Kaleidoscope Pro (true positives + false negatives), and the manual counts of 

insect buzzes across the twenty-five recordings with low estimated acoustic insect activity. 
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Figure 5.7 A) A scatterplot showing the relationship between the number of buzzes clustered 

per hour by Kaleidoscope Pro and the manual counts of insect buzzes per hour (±SE); B) A 

scatterplot showing the relationship between the number of true positives clustered per hour 

by Kaleidoscope Pro and the manual counts of insect buzzes per hour (±SE). 
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Table 5.4 The mean proportions of the manual counts that were either not detected or not 

correctly clustered the cluster analysis tool in Kaleidoscope Pro (± SE) across a subset of 

seventy-five hours of soundscape recordings, and within each further subset of twenty-five 

hours, representing recordings with high, medium, and low estimated acoustic insect 

activity. 

 Mean undetected N Mean un-clustered N 

All subset data 0.620 ± 0.035 72 0.849 ± 0.022 72 

High activity 0.527 ± 0.067 25 0.736 ± 0.048 25 

Medium activity 0.597 ± 0.051 25 0.889 ± 0.022 25 

Low activity 0.753 ± 0.055 22 0.932 ± 0.021 22 

 

Out of interest, I repeated this test using the proportion of the manual counts that were not 

correctly clustered by Kaleidoscope Pro as the dependant variable: 

𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠 − 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠
 

This proportion was universally high across the whole data subset, and never dropped below 70%. 

Again, the quasibinomial GLMs showed no significant differences between the three activity 

classes (χ2
(2) = 2.169, p = 0.338), but there was a weak, but significant decrease in the proportion 

of manual counts not correctly clustered by the cluster analysis tool in response to an increasing 

number of training buzzes (-0.004 [-0.006, -0.003]; Fig. 5.8B). 
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Figure 5.8 A) The proportion of buzzes not detected by Kaleidoscope Pro per hour ± 95% 

confidence intervals plotted against the number of insect sounds used to train the specialist 

insect classifiers (SICs); B) The proportion of buzzes not correctly clustered by 

Kaleidoscope Pro per hour ± 95% confidence intervals plotted against the number of insect 

sounds used to train the specialist insect classifiers (SICs). 
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5.3.3 Is there a relationship between the number of instances of insect 

sound detected by the acoustic pan traps and the number of insects 

sampled by traditional pan trapping or observed during focal floral 

resource observations? 

There were seven site visits where one or more of the acoustic pan trapping stations did not record 

any audio data during the sampling period due to technical problems (see Table 5.1). Data from 

these site visits were not used when testing for a relationship between the number of insect buzzes 

and the total number of insects sampled by the pan traps or observed during the FFOs, since the 

audio data would not be representative of the sum of acoustic insect activity present at these sites. 

These data were, however, used to test for relationships between the number of buzzes detected 

per hour by individual acoustic pan trapping stations and the number of insects observed per hour 

during the FFOs. 

There was no correlation between the site-level means of insect buzzes detected by the acoustic 

pan trapping stations and insects sampled by the pan trapping stations (rs(11) = -0.291, p = 0.334; 

Fig. 5.9A). In case this was an artefact of only one colour being represented by the acoustic pan 

trapping stations versus the three colours present at each of the traditional pan trapping stations, 

the correlation was run again using only the number of insects sampled by the yellow pan traps; 

however, there was no correlation present (rs(11) = -0.143, p = 0.641; Fig. 5.9B). Similarly, there 

was no correlation between the site-level mean number of insect buzzes detected by the acoustic 

pan trapping stations and the total number of insects visitations observed during the focal floral 

resource observations per site1 (rs(14) = 0.021, p = 0.940; Fig. 5.9C). 

 

 

 

 

 

 

1The correlation between the acoustic pan trapping stations and the FFOs used data from three 

sites that were not included in the correlations between the acoustic pan trapping stations and 

the traditional pan traps. At these three sites, all five acoustic pan trapping stations were 

recording but ceased doing so before the end of the seven hour survey period due to battery 

issues, and therefore were not representative of the sum of acoustic insect activity present at 

these sites. But I was able to correlate them with the summed insect visitations during the 

FFOs up until the point when they ceased recording. 
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Figure 5.9 A) A scatterplot showing the relationship between the mean number of insect 

buzzes clustered per site by Kaleidoscope Pro and the mean number of insects sampled per 

site by water-based pan trapping; B) A scatterplot showing the relationship between the 

mean number of insect buzzes clustered per site by Kaleidoscope Pro and the mean number 

of insects sampled per site by water-based pan trapping (yellow bowls only); C) A 

scatterplot showing the relationship between the mean number of insect buzzes clustered 

per site by Kaleidoscope Pro and the mean number of insects observed per day during the 

hourly FFOs.  
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5.3.4 Is there a relationship between the number of instances of insect 

sound detected per hour by the acoustic pan traps and the number of 

insects observed during hourly focal floral resource observations? 

There were only two sites with significant correlations between the mean number of insect buzzes 

recorded per hour across all five acoustic pan trapping stations and the number of insects observed 

per hour during the FFOs: Bramley Fall Park (2018) (rs(5) = -0.89, p = 0.007) and Farnley Hall 

Park (2018) (r(5) = -0.81, p = 0.028). In both cases, the mean number of insect buzzes recorded 

per hour by the acoustic pan traps fell as the number insect visitations during the FFOs increased 

(Fig. 5.10). 

5.3.5 Is the number of instances of insect sound recorded per hour by the 

acoustic pan traps affected by local environmental variables, 

specifically average hourly temperature (°C), average hourly wind 

speed (mph), hourly total rainfall (mm), and local floral abundance? 

The following variables had significant effects upon the number of clustered insect buzzes 

recorded per hour by the acoustic pan traps: average hourly temperature (°C), average hourly 

wind speed (mph), and the hour of the day. The effects of temperature and wind speed were tested 

for with linear and second-order polynomial terms, and the coefficients presented below represent 

orthogonal polynomial terms. Regarding temperature, the linear term had a significant negative 

effect on the number of clustered insect buzzes recorded per hour (-6.896 ± SE 3.243, p = 0.034) 

(Fig. 5.11A). Regarding wind speed, the second order term had a significant negative effect on 

the number of clustered insect buzzes recorded per hour (-2.759 ± SE 1.252, p = 0.028) (Fig. 

5.11B). The hour of the day had a significant effect upon the number of clustered insect buzzes 

recorded per hour (χ2
(9) = 184.32, p = <0.001; Table 5.4, Fig. 5.12), with significantly fewer 

clustered insect buzzes recorded between 8:00-09:00 and 16:00-17:00 than at other times of day 

(Table 5.4). For a full breakdown of all pairwise comparisons between different times of day, see 

Supplementary Table 3.10. 
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Figure 5.10 A) A scatterplot showing the relationship between the number of insect buzzes 

clustered per hour by Kaleidoscope Pro and the number of insects observed during the 

hourly FFOs at Bramely Fall Park (2018); B) A line chart showing the number of insect 

buzzes clustered per hour by Kaleidoscope Pro and the number of insects observed during 

the hourly FFOs at Bramely Fall Park (2018); C) A scatterplot showing the relationship 

between the number of insect buzzes clustered per hour by Kaleidoscope Pro and the 

number of insects observed during the hourly FFOs at Farnley Hall Park (2018); B) A line 

chart showing the number of insect buzzes clustered per hour by Kaleidoscope Pro and the 

number of insects observed during the hourly FFOs at Farnley Hall Park (2018).  
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Figure 5.11 A) The number of insect buzzes clustered per hour by Kaleidoscope Pro ±95% 

confidence intervals plotted against the hourly temperature (°C); B) The number of insect 

buzzes clustered per hour by Kaleidoscope Pro ±95% confidence intervals plotted against 

the hourly wing speed (mph). 

 

  

A 
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Figure 5.12 A bar chart showing the mean number of insect buzzes clustered per hour by 

Kaleidoscope Pro ±95% confidence intervals plotted against the hours of the day over which 

the surveys were carried out. Means were calculated over both 2017 and 2018. 

5.4 Discussion 

Passive acoustic monitoring has been increasingly used to provide a low-cost, non-destructive, 

autonomous alternative to traditional sampling methods within many ecological systems, and with 

a focus on numerous different taxonomic groups (Browning et al., 2017; Gibb et al., 2019). In 

terms of insect monitoring, low-cost passive acoustic sensors have already been used to detect 

and count mosquitos, with the aim to quantify the spread of disease vectors (Raman, Gerhardt, & 

Wilkerson, 2007; Mukundarajan et al., 2017), and to investigate the effects of habitat loss, 

degradation, and fragmentation on Orthopteran communities (Penone et al., 2013). More recently, 

these techniques have been used to measure “bee” activity during a solar eclipse (Galen et al., 

2019), and to predict pollination services in relation to the density of bumblebee flight sounds 

(Miller-Struttmann et al., 2017); suggesting that this technique may have promising applications 

with regard to monitoring flower-visiting insects. Research by Miller-Struttmann et al. (2017) 

also shows that acoustic bumblebee activity in alpine meadows is a positive predictor of 

bumblebee abundance sampled along visual transect surveys, but we have no evidence aside from 

this regarding how well passive acoustic monitoring techniques perform in relation to traditional 

insect pollinator survey methods, especially those commonly used alongside transect surveys as 

part of standardised insect pollinator monitoring schemes, such as pan trapping or focal floral 

resource observations (FFOs) (see Carvell et al., 2016). 
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In an attempt to answer this question, I designed a standardised passive acoustic monitoring tool: 

an acoustic pan trap. Emulating traditional pan trap design, this is, as far as I am aware, the first 

instance of a passive acoustic sensor combined with a visual attractant aimed at surveying flower-

visiting insect communities. I trialled this novel survey method alongside traditional pan trapping 

and FFOs across twenty-one site visits to compare the results of the three survey methods, using 

a commercially available, established method of automated soundscape analysis that had yet to 

be tested in regard to its ability to detect and identify insect wing beat signals: the cluster analysis 

tool from the Kaleidoscope Pro software (non-bat analysis mode), version 5.4.2 (Wildlife 

Acoustics Inc., 2021). I discuss the utility of the Kaleidoscope Pro software in terms of its ability 

to detect and identify insect buzzes from soundscape data, and present evidence that, while 

passive acoustic monitoring does provide a wealth of data concerning insect activity, these data 

are not predictive of insect abundance sampled via pan trapping or FFOs. I also explore whether 

local environmental variables, such as wind speed and temperature, affect the number of insect 

buzzes detected and clustered from soundscape data by Kaleidoscope Pro. I finish by providing 

recommendations for the future development and testing of this novel survey method in relation 

to insect pollinator monitoring. 

The cluster analysis tool within the Kaleidoscope Pro software did not perform as well as expected 

in terms of its ability to reliably and accurately detect and cluster insect wing beat signals, or 

“buzzes”, from within soundscape recordings collected by the acoustic pan traps. In terms of the 

cluster analysis tool’s ability to detect insect buzzes from within the soundscape data, 

Kaleidoscope Pro never outperformed the human ear. Within a subset of seventy-five hour-long 

recordings, the number of insect buzzes manually counted per hour was significantly greater than 

the total number buzzes detected by the cluster analysis tool (true positives + false negatives). 

This remained consistent regardless of whether a recording was perceived as being high, medium, 

or low in terms of insect acoustic activity. The mean proportion of undetected insect buzzes was 

0.62 (± SE 0.035) which indicates that my SICs were only detecting, on average, approximately 

forty per cent of the available insect signals present within the soundscape data. The proportion 

of undetected insect buzzes did decrease significantly when greater numbers of insect buzzes were 
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used to train the SICs, although our results indicate that between 300 and 400 training signals 

would have been required to raise the detection rate to more than fifty per cent. This might be 

considered prohibitive if I am solely using insect buzzes generated from individual sites to create 

site-specific classifiers (to account for the individual acoustic footprint of different areas, in terms 

of background noise), especially in areas with relatively low acoustic insect activity. However, 

repeated visits to the same site over a short period of time, e.g., several months (so that the acoustic 

footprint of the site remains relatively constant), should provide enough data to make this 

possible. 

It is possible that this low detection rate may have been due to an issue with the microphone used, 

as opposed to an issue with Kaleidoscope Pro. Recent research suggests that the signal-to-noise 

ratio (the power of a given signal relative to the power of the background noise) inherent to each 

microphone2 can affect its ability to detect acoustic signals of interest (Darras et al., 2016, 2018; 

Darras et al., 2020). However, Darras et al. (2020) indicates that microphones equivalent to those 

used as part of this study (with a high signal-to-noise ratio of ca. 80dB at 1kHz) were capable of 

detecting bird calls over an area in excess of 9000m2, which suggests that they should be capable 

of detecting insect wing-beats within a 433.74cm2 plate. 

In terms of the cluster analysis tool’s ability to accurately classify those insect buzzes it has 

detected; the number of true positives was significantly lower than both the number of total 

number buzzes detected by the cluster analysis tool and the manual counts of buzzes per hour, a 

pattern which remained consistent regardless of the perceived activity level of each recording. 

The mean proportion of the manual counts that were not correctly clustered by the algorithm was 

0.85 (± 0.022), indicating that my SICs only accurately clustered fifteen per cent of the insect 

signals present. And, while this proportion decreased significantly as the number of insect signals 

used to train the SICs increased, it was initially so high that our results suggest that more than 500 

 

2 Defined in relation to the self-noise associated with a microphone. That is, the noise produced 

by a microphone in a perfectly silent environment, which itself defines the lowest sound 

pressure level that can be detected by a given microphone (Darras et al., 2020). 



164 

 
training signals would be required raise the number of accurately clustered availably signals to 

more than fifty per cent. 

The SICs created and trained using the cluster analysis tool had very low associated false positive 

rates (mean: 0.058 ± SE 0.007; range: 0 – 0.4), indicating that they are capable of both accurately 

and reliably clustering non-insect acoustic signals. These values are comparable with those of 

Raman, Gerhardt, & Wilkerson (2007), whose mosquito detection program had an associated 

false positive rate of 6.5%, and are considerably lower than those linked with the Computational 

Auditory Scene Analysis (CASA) tool developed by Heise et al. (2017) (and later used by Miller-

Struttmann et al. (2017)), where the false positive rate was much more variable, ranging from 

0.047 to 0.946, with an overall false positive rate of 0.386. The false negative rates associated 

with the SICs, however, were both high and highly variable (mean: 0.601 ± 0.039; range: 0 – 1); 

on average, only forty per cent of detected insect buzzes were correctly classified as such. This 

compares far less favourably with the results of the CASA tool developed by Heise et al. (2017), 

where the false negative rate ranged between 0.062 and 0.805, with an overall false negative rate 

of 0.320 – approximately half that associated with my SICs. In analytical terms, my SICs have 

high specificity (a low false positive rate) but low sensitivity (a high false negative rate) (Heise 

et al., 2017). 

Increasing the number of insect signals used to train the SICs did decrease the false negative rate, 

but my results indicate that approximately 500 training signals would be required to match the 

rates shown by Heise et al. (2017). In addition, Figure 5.5B suggests that increasing the number 

of training signals to 500 would effectively double the false positive rate. I am not sure why this 

should be so, since logic suggests that a better trained algorithm should experience lower Type I 

and Type II errors. It is possible that background noise (usually either anthrophony or geophony) 

present within the training signals may be affecting the false positive rate. If the signal-to-noise 

ratio is low, then the cluster analysis tool may begin to associate the background noise with the 

insect cluster. I avoided using insect signals with any high amplitude background noise to train 

the SICs, but with more than 300 training signals it’s possible that geophonic or anthrophonic 

signals with even moderate power relative to the insect signal may begin to effect the accuracy of 
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the cluster analysis tool, potentially increasing the false positive rate (Darras et al., 2016; Darras 

et al., 2020). The CASA detection tool developed by Heise et al. (2017) actually incorporates the 

signal-to-noise ratio of the soundscape recordings into its analytical approach through the 

application of their focal template. This “filter” (for want of a better term) takes 10ms sections of 

sound and looks for the four time-frequency bins that contain the highest spectral energy. Insect 

wing beats are highly harmonic signals (Heise et al., 2017), and if these four bins are in a harmonic 

relationship with one another then the signal is passed on for further classification, if not the sound 

is rejected as background noise. The mosquito detection tool by Raman, Gerhardt, & Wilkerson 

(2007) also used the harmonic “shape” of a wing beat to decide if a sound belonged to a mosquito 

or not: using the difference (in terms of decibels) between the first four harmonics of a given 

sound, as well as the differences between these peaks and the five inter-harmonic frequencies 

between them. If the shape of the signal described by the differences between these peaks did not 

meet the threshold associated with a mosquito’s wing beats, then the sound segment in question 

would be discarded. By comparison, Kaleidoscope Pro describes each sound using Discrete 

Cosine Transform (DCT) coefficients extracted following a Fast Fourier Transform (FFT). These 

coefficients describe the shape of (or the pattern of energy within) each signal that meets the 

signal parameters described in section 5.2.2.2 by summing the cosine functions that comprise the 

waveform. The cluster analysis then uses a combination of Hidden Markov Models, K-means 

clustering, and Fisher scores to determine the similarity of different signals (Wildlife Acoustics 

Inc., 2019a). This may lead to a less focused analysis, as the cluster analysis tool is not focusing 

specifically on the harmonic nature of the candidate signals, but on differences in their overall 

shape. Heise et al. (2017) use a similar technique, initially, to describe the shape of each of their 

signals – a Discrete Fourier Transform (DFT) – which sums both the sine and cosine functions of 

the signal. But the analytic process applied after this transformation, specifically their use of a 

high-pass filter to remove high-energy low frequency background noise from each 10ms section 

of sound, and the application of their focal template which filters out non-harmonic signals, 

probably explains why their detection rate and classification accuracy was much higher than those 

associated with Kaleidoscope Pro. 
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There is an additional source of error that my current analysis has not considered: the number of 

insects that came into contact with the acoustic pan trapping stations but were not recorded by the 

microphones. The signal-to-noise ratio associated with the microphone indicates that I should be 

able to pick up any insect signal produced within the bounds of the UV-fluorescent plate (Darras 

et al., 2016; Darras et al., 2020). But in an environment with high levels of background noise, 

smaller insects, e.g., pollen beetles (Meligethes spp.) or smaller dipteran species, may produce 

flight sounds with a signal-to-noise ratio that is lower than the self-noise associated with the 

microphone (see footnote 18, page 163). I could attempt to solve this issue by collecting video 

footage of the acoustic pan trapping stations and comparing the number of visible insect 

visitations to manual counts of insect signals within the soundscapes. 

Kaleidoscope Pro’s cluster analysis tool has been used by other studies to detect and classify both 

bat and bird signals. The bat analysis mode within Kaleidoscope Pro operates very differently 

from the non-bat analysis mode used within this Chapter, with an automated identification 

function based upon pre-built libraries of recordings of known bat species. In addition, it appears 

to be common practise within bat acoustic studies to manually verify all identifications made by 

automated classifiers like Kaleidoscope Pro (see Braun de Torrez, Ober, & McCleery, 2018; 

Gorresen et al., 2018; Layng et al., 2019; Nocera et al., 2019), so discussions of error rates or 

classification accuracy using these types of commercial software aren’t common. In terms of 

birds, however, Ross et al. (2018) used Kaleidoscope Pro to detect the calls of five bird species 

within soundscapes from five sites across Okinawa, Japan. Classification accuracy ranged 

between zero and one hundred per cent, depending on the site and the species, with an average 

accuracy of 76.8% (indicating a false negative rate of 33.2%, approximately similar to Heise et 

al. (2017)). Abrahams & Denny (2018) used Kaleidoscope Pro to detect Capercaillie (Tetrao 

urogallus) mating calls at lek sites near Aviemore, Scotland. The authors used a similar process 

to generate a supervised classifier and achieved comparable levels of error to those within this 

Chapter, with a false positive rate of 16.4% and a false negative rate of 64.9%. Pérez-Granados 

& Schuchmann (2020), meanwhile, achieved remarkably low false negative rates, between 0.015 

and 0.09, whilst monitoring two nocturnal Neotropical bird species. The authors also manually 
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counted the number of bird calls within a subset of their soundscape data and found that their 

supervised classifier was detecting between 73.6 and 85.2% of the bird calls known to be present. 

By comparison my SICs were detecting thirty-eight per cent of the insect signals known to be 

present. This would suggest that our SICs are not as accurate or as reliable as those created by 

previous studies to detect and cluster bird calls. 

Overall, although both the number of clustered insect buzzes and the number of true positives 

were positively correlated with the number of manual counts, which enabled me to carry on with 

my intended program of methods comparisons, I would not recommend Kaleidoscope Pro as an 

effective automated detection and classification tool for insect wing beat signals. The initial logic 

behind this choice of program was its low barrier to entry – it requires no programming ability 

and only a basic knowledge of acoustic concepts like frequency and amplitude. But my results 

suggest that the detection software developed by teams like Raman, Gerhardt, & Wilkerson 

(2007) and Heise et al. (2017) appear to be much better suited to the detection and classification 

of insect wing beat signals than commercially available programs aimed primarily at analysing 

bird and bat calls. These tools focus on known aspects of insect wing beat signals, e.g., their 

harmonic structure, that distinguish them from the majority of other biophonic, geophonic, or 

anthrophonic signals within a soundscape. Future studies should focus on adapting these tools 

and making them not only open source, but also more openly accessible to a non-expert audience, 

via the addition of a menu-driven graphical user interface (GUI) for example.  

The methods comparisons show that the number of insect buzzes clustered by Kaleidoscope Pro 

from the acoustic pan trap recordings were not predictive of the number of insects sampled by the 

traditional pan traps or the number of insect visitations observed during the FFOs. With regard to 

the pan trapping samples, this is not necessarily surprising. Pan trap surveys provide a measure 

of abundance, and since the method is destructive – each insect can only be sampled once. Indeed, 

the results from Chapter 2 indicate that, depending on the bowl size used, as the number of insects 

sampled increases, the number of new individuals attracted into the bowls appears to decrease. 

The acoustic pan traps, meanwhile, provide a measure of acoustic activity where each insect can 

be sampled multiple times. I had assumed, however, (and perhaps naively) that there might be a 



168 

 
link between the results of the two methods, in that areas with greater insect abundance might 

also have higher levels of acoustic insect activity, but this was not the case. Several previous 

studies have looked at methods by which passive measures of acoustic activity can be successfully 

transformed into estimates of animal density (Thompson, Schwager, & Payne, 2010; Marques et 

al., 2013; Bader et al., 2015), using prior knowledge concerning the behaviour of animal species, 

such as call rates, average group size, or range size, combined with the detection space associated 

with their microphones. However, these techniques are unlikely to be useful in regard to insect 

flight signals since these sounds are a passive by-product of their movement, rather than an active 

process, such as a mating call. My results also indicate that this lack of a link between the two 

methods is unlikely to be the result of colour bias, introduced by the combination of UV-

fluorescent yellow, blue, and white bowls used during the pan trapping surveys, compared to the 

UV-fluorescent yellow plates used by the acoustic pan trapping stations. However, if attempting 

to compare the two methods again in future I would use yellow pan traps only, and try to match 

the approximate surface area of the bowls to that of the plates used as part of the acoustic pan 

traps. 

What is more surprising is that there was no link between the number of clustered insect buzzes 

and the number of insect visitations recorded during the FFOs. Like the acoustic pan traps, the 

FFOs provide a measure of insect activity, since each insect visiting the focal floral resource was 

not marked in any way, or captured, and could visit the plant multiple times within the twenty 

minute survey period. In contrast, Miller-Struttmann et al. (2017) found a positive relationship 

between bumblebee activity recorded along visual transect surveys and acoustic bumblebee 

activity recorded by microphones placed at flower height within flower-rich alpine meadows. I 

also found no overall link between the average acoustic activity clustered per hour across all 

acoustic pan trapping stations per site and the insect activity recorded per hour by the FFOs, with 

significant correlations at just two sites visited in 2018. In both cases, the correlation was negative, 

with the number of clustered buzzes falling as the number of insect visitations to the focal floral 

resource increased. Since the pattern of diel activity described by the number of clustered buzzes 

per hour compares positively to past studies of temporal patterns in flower-visiting insect activity 
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(Heinrich, 1979; Gilbert, 1985; Corbet et al., 1993; Steen, 2017), although diel activity is far from 

constant between insect taxa (Willmer & Stone, 2004), it’s likely that our FFO protocol was 

simply not as effective at sampling insect activity as the visual transect surveys used by Miller-

Struttmann et al. (2017). Both Westphal et al. (2008) and Nielsen et al. (2011) note that 1 x 2m 

floral observation plots performed poorly in comparison to both variable and standardised transect 

surveys in terms of sampled bee abundance. The FFO protocol used here was designed so that it 

could be carried out in any habitat regardless of the floral abundance present, whereas the FIT 

counts used by UK PoMS (upon which my protocol was partly based) relies on existing floral 

resources. I used a single plant and moved it randomly between a set of ten pre-defined locations 

within each site. It is entirely possible that this constant movement may not have allowed flower-

visiting insects enough time to grow accustomed to either the presence or the position of the plant, 

or the level of resource that it represented in terms of pollen or nectar. If this was the case, then 

the FFOs would only have measured chance visitations by insects that happened to be come into 

contact with the plant, rather than a more representative measure of insect foraging activity within 

each site. By comparison, the acoustic pan traps remained in static locations throughout the day. 

If I were to carry out this experiment again, I would change the protocol concerning the FFOs to 

either leave a single plant in one randomly chosen location throughout each survey, or five plants 

in a third stationary transect parallel to the transects containing the acoustic pan trapping stations 

and traditional pan trapping stations.  

As previously discussed, both the detection and classification rates associated with Kaleidoscope 

Pro were poor in comparison to those used by other authors (see Raman, Gerhardt, & Wilkerson, 

2007; Heise et al., 2017; Miller-Struttmann et al., 2017), indicating that the number of clustered 

insect buzzes that I am correlating with the results of alternative survey methods is not necessarily 

representative of the acoustic insect activity present across each site. Although, within my subset 

of seventy-five hour-long recordings, the number of clustered buzzes and the number of true 

positives were both positively correlated with the number of buzzes manually counted from each 

soundscape. I am, therefore, hesitant to say that the results of the novel acoustic pan trapping are 

definitively not predictive of measures of insect abundance or activity provided by more 
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traditional methods. To do so, I would need to apply a more accurate and reliable detection and 

classification tool, as well as redesign the FFO protocol to be more representative of flower-

visiting insect activity within each site. 

This doesn’t, however, mean that the value of the acoustic pan traps as a survey tool can’t 

currently be discussed. Within the subset seventy-five hour-long recordings, the mean number of 

insect buzzes manually counted per hour was 77.09 ± 15.30 (range: 0 – 868). This was also, in a 

way, an underestimate of the true number of insect buzzes present, since I was only counting the 

number of buzzes that met the signal parameters listed in section 5.2.2.1 and that, therefore, could 

have been detected by Kaleidoscope Pro. The total number of insect buzzes that met these 

parameters across all seventy-five recordings was 5782, which is approximately comparable to 

the total number of insects sampled by the pan traps throughout this experiment (N = 5808). This 

promises a large quantity of available data that could eventually be used to predict pollination 

services within a given area (Miller-Struttmann et al., 2017), and study insect activity in relation 

to anthropogenic activity, e.g., urbanisation or pesticide use (Penone et al., 2013), or natural 

phenomena (Galen et al., 2019). 

Increases in hourly temperature and hourly wind speed both had significant negative effects upon 

the number of insect buzzes clustered per hour. The fact that there was an effect of temperature 

indicates that I am observing at least some form of biological pattern in the number of clustered 

insects. Insects are poikilotherms and many rely (to varying extents) on ambient air temperature 

to increase the internal temperature of their flight muscles and therefore maintain flight (Heinrich, 

1974; Heinrich, 1975). Extremes (high or low), therefore, will result in decreases in flight activity. 

Either due to an inability to maintain the internal thoracic temperature necessary to initiate flight, 

or due to overheating (Heinrich, 1974). However, given the weak nature of the effect and the fact 

that the number of clustered buzzes only started to drop as temperatures rose past 21°C (similar 

to the effect I saw upon bumblebees and hoverflies sampled via pan trapping in Chapter 2), it is 

unlikely that this drop is due to insects overheating, but rather (potentially) individuals seeking 

shade during the warmer portions of the day (Rotheray & Gilbert, 2011).  
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Increasing wind speeds may also depress insect flight activity (Digby, 1958; Juillet, 1964; Walters 

& Dixon, 1984; Vicens & Bosch, 2000), but the number of clustered insect buzzes dropped 

sharply at relatively low wind speeds of between 3 and 5mph. During the analysis for Chapter 2, 

the abundance of bees and hoverflies sampled by traditional pan trapping peaked between 

approximately 7 and 10mph. This suggests that it is more likely that the low-frequency 

background noise caused by higher wind speeds interfered with the ability of the SICs to detect 

insect buzzes. Wind, a source of geophonic noise, exists at relatively low frequencies (less than 

2kHz, based upon my own observations), which have been shown to interfere with the detection 

of low-frequency animal calls by significantly lowering their signal-to-noise ratio (Lin et al., 

2014; Priyadarshani, Castro, & Marsland, 2018). All of the wing-beat signals associated with the 

flower-visiting insect taxa recorded during Chapter 4 had fundamental frequencies between 150 

and 300 Hz. In this manner, increasing wind speeds may decrease the detection rate of the cluster 

analysis tool or increase the false negative rate by interfering with its ability to classify insect 

wing-beats. Heise et al. (2017) dealt with this type of issue by passing 10ms segments of sound 

through a high-pass filter, reducing the spectral energy associated with low-frequency signals. 

As in Chapter 3, there was no effect of local floral abundance (expressed here as the volume of 

nectar sugar produced per day within a two meter radius of each acoustic pan trapping station) 

upon the number of clustered buzzes. O’Connor et al. (2019b) observed no effect of increasing 

volumes of nectar sugar production surrounding their pan trapping stations on sampled bee and 

hoverfly abundance. If I compare the sites visited during this Chapter to those visited in O’Connor 

et al. (2019b) and Chapter 2, both the number of florets and the volume of nectar sugar produced 

per day surrounding each trapping station were greater within the latter two studies, often by an 

order of magnitude. It’s probable that the floral density at many of my sites was so low that I 

should expect to see no effect of either floral abundance or nectar sugar production per day on 

insect flight activity. The sites used within this study were predominately urban in nature, 

representing mostly areas of amenity grassland along with some semi-natural grassland sites, 

chosen in an attempt to test the acoustic pan traps in areas with a diverse range of background 
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soundscapes3. By comparison, Miller-Struttmann et al. (2017) carried out their study in clover-

rich alpine meadows during peak flowering, actively placing their acoustic recorders in areas of 

high floral abundance. The acoustic survey protocol used by Miller-Struttmann et al. (2017) 

incorporated no standardised attractant, but simply placed microphones at the same height as the 

surrounding clover racemes. In this way they may have biased the results of their acoustic surveys 

towards those of their visual transects, which tend to be positively correlated with floral 

abundance (Popic, Davila, & Wardle, 2013; O’Connor et al., 2019b). This acoustic survey 

protocol would also be of limited use within habitats with low levels of floral abundance. 

In terms of time spent in the field, the acoustic pan traps were comparable to the traditional pan 

traps and required less effort (but more equipment) than the FFOs. In terms of data analysis, the 

time needed to sort through and identify the physical specimens sampled by the pan traps was 

little different to the time required to create the site-specific SICs for the cluster analysis, while 

all of the identifications for the FFO data were completed in the field. It is important to note, 

however, that the computational time spent training any detection and classification algorithm 

should be thought of as an investment. Once an algorithm has been trained, tested, and found to 

meet the accuracy requirements of a given study, it can then be continuously re-applied to new 

data, reducing future data analysis time in comparison to more traditional methods. The algorithm 

may still require updating as new training data containing different taxa or new sites with different 

acoustic fingerprints are collected, but this doesn’t need to happen each time the algorithm is 

applied. Which means that acoustic pan trapping data would require less effort to analyse in the 

long-term than samples from traditional pan trapping. In addition, the technology fuelling the 

current peak in interest in passive acoustic monitoring is constantly being updated. Since starting 

this body of research in 2017, the AudioMoth recorders, fast becoming an industry standard, have 

become more affordable than the SOLO recorders used in this Chapter, and their open source 

 

3 The sites used in 2017 were also originally chosen as part of a separate thesis chapter, focusing 

on how experimental additions of floral resources in areas around Leeds, as part of Buglife’s 

Urban Buzz scheme (https://www.buglife.org.uk/projects/urban-buzz-leeds), might affect 

pan trapping efficacy. The acoustic pan traps were also tested within these sites so as not to 

duplicate sampling effort during a limited survey season. 

https://www.buglife.org.uk/projects/urban-buzz-leeds
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operating system makes them equally easy to use and apply to novel survey methods like the 

acoustic pan trap. These recorders are also significantly smaller than the SOLO recorders, and 

would reduce the amount of equipment needed to carry out future acoustic surveys. 

There is also a move towards more open sharing of data, citing the huge amounts of information 

inherent to soundscape recordings relating to different biophonic, geophonic, and anthrophonic 

sources of sound, which most studies only scratch the surface of. My soundscapes contain data 

concerning bird song and orthopteran stridulation in urban and non-urban environments, traffic 

noise, human speech that could be linked to people’s use of urban greenspace, all in addition to 

the insect wing beat signals that I was primarily interested in. There have been moves towards the 

creation of open-source, citable libraries where practitioners and researchers could lodge their 

data so that others can access them (Kasten et al., 2012; Browning et al., 2017; Gibb et al., 2019). 

This feeds into the concept that soundscape recordings are multipurpose datasets, and that the 

data they contain can be re-purposed by researchers with different expertise, focusing on different 

aspects of the soundscape, to answer a variety of ecological questions. The creation of these 

libraries for soundscape data could become key to the concept of whole ecosystem monitoring 

through sound. 

5.5 Conclusions 

Acoustic pan trapping provides a novel method of passively monitoring flower-visiting insect 

activity that has the potential to collect long-term data concerning insect activity. I was unable to 

generate accurate estimates of acoustic insect activity throughout this experiment due to the 

limitations associated with the cluster analysis tool in Kaleidoscope Pro. Namely, higher rates of 

Type II errors than those associated with other algorithms used to investigate acoustic insect 

activity (Raman et al., 2007; Heise et al., 2017). Due possibly in part to this, I was also not able 

to find any link between the number of insect buzzes clustered by Kaleidoscope Pro and either 

the abundance of flower-visiting insects sampled by pan trapping or observed during hourly focal 

floral resource observations. I can, therefore, make no comparisons between the efficacy of the 

acoustic pan trap in relation to these two common survey methods. Despite this, my data indicate 

that the acoustic pan traps were recording large quantities of acoustic insect activity per hour. 
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Acoustic pan trapping is clearly not a replacement for either visual surveys or passive surveys 

based upon methods like pan trapping, but the data it can provide would still allow us to explore 

the effects of drivers of insect pollinator decline, e.g., agricultural intensification and urbanisation, 

by using acoustic activity as a proxy for community health. Future research should focus on the 

creation, adaptation, or optimisation of novel or existing detection software tools to allow us to 

extract these acoustic signals with greater levels of accuracy, so that we can use these data moving 

forward. 
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Chapter 6  

General discussion: towards a standardised set of monitoring protocols 

for insect pollinators 

 

“What is a university for if it isn't to tell you that everything you think you know is wrong?” 

Terry Pratchett, Collegiate Casting-Out of Devilish Devices. 

 

 

6.1 Introduction 

Insect pollinators account for nearly 350,000 species, and are responsible for reproduction in 87.5 

per cent of flowering plant species, including 75 per cent of the world’s leading food crops, or 35 

per cent of global food-crop production by volume (Ollerton, Winfree, & Tarrant, 2011; IPBES, 

2016; Ollerton, 2017). Environmental change driven by human activity, including habitat loss and 

fragmentation, agricultural intensification and pesticide-use, and climate change, has led to 

declines in insect pollinator populations worldwide (Potts et al., 2010; Gonzalez-Varo et al., 2013; 

Goulson et al., 2015). In the UK, a third of our native wild bee and hoverfly species have 

experienced declines since 1980 (Powney et al., 2019), changes that appear to primarily affect 

rarer and more specialist species, with generalist species and crop specialists displaying rare 

positive trends (Biesmeijer et al., 2006; Powney et al., 2019). If these trends are allowed to 

continue then we risk not only the ecosystem services provided by insects in terms of agriculture, 

but also the pollination services provided to wild plant species, and the knock-on effects this 

would have upon plant-pollinator interaction and terrestrial ecosystem stability (Biesmeijer et al., 

2006; Burkle, Marlin, & Knight, 2013; Christmann, 2019).  

It is concerning, therefore, that the greater part of our knowledge concerning insect pollinator 

decline is limited to records of species occupancy (Powney et al., 2019), trends in species richness 
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(Biesmeijer et al., 2006; Carvalheiro et al., 2013; Ollerton et al., 2014), and changes in range size 

(see Williams & Osborne, 2009). Even in countries with a well-studies insect fauna, such as the 

UK, we lack long-term abundance data at the species level which would allow us to quantify 

population trends and pinpoint targets for future conservation. 

6.2 Standardised sampling protocols for current survey methods 

The systematic collection of long-term abundance data is only possible through the development 

and use of standardised survey methods and monitoring protocols (Lebuhn et al., 2013; O’Connor 

et al., 2019b; Powney et al., 2019). Historical data collection by specialist recording schemes, 

such as the Bees, Wasps, and Ants Recording Society (BWARS) and the Hoverfly Recording 

Society (HRS), provide valuable long-term datasets, but the lack of standardised survey protocols 

means that these data are open to sampling bias and are difficult to compare and contrast over 

space and time (Powney et al., 2019). It is vital, therefore, that that the biases of established survey 

methods are explored, and the performance of different sampling protocols are tested, enabling 

population data from future monitoring schemes to be compared across wider spatio-temporal 

scales, both nationally and internationally (Lebuhn et al., 2013).  

My first two chapters focus on two of the most common methods used to survey insect pollinator 

communities: pan trapping and transect surveys (Westphal et al., 2008; Nielsen et al., 2011; Popic, 

Davila, & Wardle, 2013). In Chapter 3, I focus on attempting to quantify the sampling biases 

inherent within these two methods with regard to bees and hoverflies, but first, in Chapter 2, I 

take a closer look at the varied range of protocols employed by users of pan trapping, in an attempt 

to standardise future usage of this method. 

Pan trapping is a popular method for sampling insect pollinators (Westphal et al., 2008; Lebuhn 

et al., 2013), primarily due to its lack of collector bias. Surveyors currently employ a range of 

protocols based upon differences in bowl size, bowl colour, and trap duration (Carboni & Lebuhn, 

2003; Moreira et al., 2016; Gonzalez et al., 2020), which may bias the data collected and make it 

challenging to compare results between studies (Lebuhn et al., 2013; Powney et al., 2019). And, 

while there has been a lot of focus upon comparing the performance of this method to others, such 
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as transect walks (see Chapter 3), there has been comparatively little published comparing the 

performance of different pan trapping protocols (but see Droege et al., 2010; Wilson et al., 2016).  

Chapter 2 presents what is, to the best of my knowledge, the first published study to compare 

multiple aspects of pan trapping methodology, based primarily around bowl size, bowl colour, 

and trap duration, in combination with the effects of local environmental variability, upon the 

abundance and species richness of bee and hoverfly samples captured by pan traps. The results 

form the basis for recommendations regarding future best practise concerning this method. 

While past studies have explored the effects of bowl size on pan trap samples (Droege, 2002; 

Wilson et al., 2016; Gonzalez et al., 2020), they have often used volume as their sole measurement 

(see Droege, 2002; Wilson et al., 2016), but here I show that bowl surface area and bowl depth 

are potentially more likely to influence the number of bees and hoverflies sampled, with 

significantly greater abundance and species richness captured in bowls with larger surface areas 

and greater surface area-to-depth ratios. However, while total sample size did increase with bowl 

surface area, the proportion of bumblebees sampled (relative to the abundance of all non-

bumblebees) actually decreased. Whether this is due to olfactory signals left by previous foragers, 

or increased sample size blocking out the attractive colours of the bowls, is unclear, but this is the 

first evidence that pan traps may have size-specific carrying capacities. 

This concept can also be linked with time. Of the three different trap durations tested as part of 

this study: seven hours, 24 hours, and 48 hours, the bowls left out for 48 hours sampled the most 

bees and hoverflies. However, as trap duration increased, the rate of capture within these groups 

decreased, indicating that shorter trap durations are sampling more bees and hoverflies per hour 

than long longer surveys.  

These results open up interesting avenues for further research. For instance, manipulating the 

number of insects present in pan traps by emptying them at regular intervals and replacing the 

samples with different numbers of insects, i.e. laboratory-raised Calliphoridae, would allow for 

an examination of whether pan trap carrying capacities are a response to visual stimuli, based 

upon an aversion to the sight of dead insects or a blockage of bowl colour. Any aversive effects 
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related to scent-marks left by previous foragers could be eliminated by regularly wiping the rim 

of the bowls with ethanol or another quick-drying solvent.  

In terms of how the local environment variables affects the sampling ability of pan traps, the 

primary finding was that nectar sugar production at two spatial scales: within a two meter radius 

of the pan trapping stations, and as an average across the experimental site, had a positive effect 

on bee and hoverfly abundance and species richness within the pan traps. This contrasts with the 

findings of several past studies (Roulston, Smith, & Brewster, 2007; Baum & Wallen, 2011; 

Wilson et al., 2016; O’Connor et al., 2019b; Westerberg et al., 2021), all of which suggest that 

pan traps sample fewer bees in the presence of greater floral diversity. This is the first evidence 

to contradict these past findings, and indicates that pan traps may be suitable for sampling in a 

wider variety of habitats than previously supposed. Alternatively, this result may be the product 

of a density-visitation relationship (see Rathcke, 1983), where, at relatively low levels of floral 

density, the presence of more flowers is facilitating visits to the pan traps. This would also agree 

with the findings of O’Connor et al. (2019b), who found than bee and hoverfly samples decreased 

in pan traps placed in high floral density crop monocultures. In order to test for this, and for the 

repeatability of my own results, I recommend that future research focuses on testing pan traps in 

habitats representing a much wider range of floral densities than those tested here. In addition, 

future studies should fully quantify their chosen measure of floral abundance, diversity, or 

density, since many previous studies have used only broad estimates of floral diversity at a site-

level scale (Roulston, Smith, & Brewster, 2007; Baum & Wallen, 2011; Popic, Davila, & Wardle, 

2013). 

This chapter also provides a synthesis of initial evidence concerning how local weather affects 

pan trap sampling. Many sampling protocols include caveats regarding what is and is not suitable 

weather, but there is, to my knowledge, very little research informing these suggestions (Saunders 

& Luck, 2013). I show that solitary bee species were caught less often during extremes of wind 

(>10 mph), and that fewer pollinators and bumblebees were sampled when temperatures were in 

excess of 25-30°C; providing the first evidence to suggest an upper temperature limit in relation 

pan trapping surveys. This evidence shows that more attention should be paid to “ambient” effects 
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like weather in relation to the sampling ability of different survey methods, especially in light of 

results like those found in Chapter 3, where the sampling ability of both pan traps and transect 

surveys may have been negatively impacted by extreme wind speeds, and Chapter 5, where 

increased wind speeds decreased the ability of an automated acoustic detection software to detect 

and cluster instances of insect flight sounds from soundscape recordings. 

Studies like this have the potential to being applied to any sampling method, and the creation of 

standardised protocols for individual survey methods is an important first step towards the 

systematic collection of data concerning insect pollinator population trends. The second is the 

exploration of methods-based sampling bias. There has been a lot of focus on comparing the 

performance of different methods in an attempt to discern or quantify their inherent sampling bias 

(Westphal et al., 2008; Nielsen et al., 2011; Popic, Davila, & Wardle, 2013), with pan trapping 

and transect surveys being the most commonly compared within the literature (Cane, Minckley, 

& Kervin, 2000; Roulston, Smith, & Brewster, 2007; Westphal et al., 2008; Wilson, Griswold, & 

Messinger, 2008; Nielsen et al., 2011; Popic, Davila, & Wardle, 2013; O’Connor et al., 2019b). 

The primary biases of both pan trapping and transect surveys are well-known: colour bias, based 

upon the bowl colours used, and collector bias, respectively (Potts, Evan, & Boone, 2005). 

Evidence for other potential biases has also been presented by previous studies, primarily that pan 

trap samples contain a greater proportion of smaller solitary bees than samples from transect 

surveys, but fewer bumblebees (Bombus spp.) or honeybees (Apis mellifera) (Roulston, Smith, & 

Brewster, 2007; Wilson, Griswold, & Messinger, 2008; Grundel et al., 2011), and that transect 

surveys are biased towards larger, slower-flying insect species (Potts, Evan, & Boone, 2005). This 

grey area in our knowledge-base has led to disagreements over which method best represents 

insect pollinator communities in its samples. For instance, several past studies indicate that pan 

trapping should always be pared with an active sampling method like transect surveys as their 

respective sampling biases offset one another (Grundel et al., 2011; Nielsen et al., 2011), whereas 

other studies indicate that transect surveys or pan trapping alone are sufficient to survey insect 

pollinator communities in a representative manner (Westphal et al., 2008; Lebuhn et al., 2013; 

Popic, Davila, & Wardle, 2013; LeBuhn et al., 2016). 
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Chapter 3 is an attempt to quantify these biases, but with one critical difference. Instead of simply 

comparing the samples from the two methods, I used a mark-release-recapture (MRR) experiment 

in a closed island ecosystem in Greece (Prassológos, Lesvos) to provide estimates of the relative 

abundance of local bee and hoverfly species. Thus allowing for comparisons between the rank 

abundance of species in samples collected by pan trapping and transect surveys and the rank 

abundance of species estimated to be present within the local bee and hoverfly community. This 

is the first study of sampling bias in relation to insect pollinators to include comparisons with an 

independent source of data concerning the relative abundance of species within a community, 

and, to my knowledge, the first study to use MRR methods to estimate population size in bee and 

hoverfly species using a closed island ecosystem. The pan trapping protocol used during this study 

was based upon initial results from Chapter 2. 

The MRR experiment estimated population size for four insect pollinator species on the islet of 

Prassológos: two bees and two hoverflies. In comparison to their estimated population size, the 

relative abundance of each species as sampled by both pan trapping and transect surveys was 

significantly smaller than expected. This suggests that the subsample of the community being 

collected by both methods is smaller than has been supposed by some studies (see Tepedino et 

al., 2015; Wilson et al., 2016). Indicating that both methods can be used fairly intensively, even 

in quite isolated systems, without adversely affecting local pollinator community composition or 

diversity (as in Gezon et al., 2015). 

It may be possible to quantify exactly how large this subsample of the population is, at least with 

regard to pan trapping, through the use of repeated observational studies. An observer would set 

up a pan trapping station and record the number of insects from different taxa that are sampled by 

the bowls in relation to the number that approach but do not land, or which approach and land in 

the water but escape etc. This type of experiment would explore the behaviour of different insect 

pollinator taxa in relation to the pan traps, and allow an exploration of taxonomic sampling bias 

within the method. Although, it would be require high levels of concentration and taxonomic 

ability from the surveyor, but this could be mitigated through the use of video footage, which has 

been shown to provide an accurate alternative to in-person surveys (Steen, Lene, & Orvedal, 2011; 
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Gilpin, Denham, & Ayre, 2017; Steen, 2017); with the added advantage that instances of 

challenging or cryptic taxa, or smaller, fast-flying individuals, can be dealt with by replaying 

footage or seeking confirmation from additional surveyors (Gilpin, Denham, & Ayre, 2017). 

In terms of sampling bias, the rank abundance of the four species I was able to produce population 

estimates for was most closely matched by a combination of the samples from both pan trapping 

and transect surveys (employed in tandem). This would appear to confirm the results of several 

past studies who suggest that the two survey methods should be employed together in order to 

balance their respective sampling biases (Roulston, Smith, & Brewster, 2007; Grundel et al., 

2011; Nielsen et al., 2011; Prendergast et al., 2020). On its own, pan trapping samples represented 

the relative abundance of one solitary bee species (Halictus phryganicus) better than either 

transect surveys or a combination of pan trapping and transect surveys; evidence contrary to the 

common hypothesis that pan trapping overestimates solitary bee abundance (Roulston, Smith, & 

Brewster, 2007; Westphal et al., 2008; Wilson, Griswold, & Messinger, 2008; Grundel et al., 

2011; Portman, Bruninga-Socolar, & Cariveau, 2020). The transect surveys, meanwhile, 

overestimated the relative abundance of the two hoverfly species, possibly due to the effects of 

collector bias. Bumblebees and honeybees were poorly sampled by both methods; but data from 

the MRR surveys show that honeybees were rare visitors to Prassológos, while bumblebee 

foragers, although common, may have been discouraged by the presence of high winds during the 

pan trapping/transect survey portion of the experiment. The effects of wind upon sampling by 

either survey method were not quantified as part of this study, but may have provided a key 

advance to the findings from Chapter 2 if they had been. This drives home the message that local 

weather variables should be recorded and accounted for in analyses relating to the performance 

of different survey methods, as weather can be a source of sampling bias in and of itself (Tyre et 

al., 2003). 

The data generated as part of this chapter didn’t lend themselves to a rigorous statistical analysis, 

in part due to the small number of samples collected. However, in the context of the system in 

which we were working, neither pan trapping nor transect surveys collected a representative 

sample of the species richness encountered during the MRR surveys, although pan trapping 



182 

 
collected the most diverse and abundant set of samples. This supports the view of Grundel et al. 

(2011) and Nielsen et al. (2011), who suggest that the two methods should be used in tandem to 

generate more complete species inventories.  

Mark-release-recapture provides an exciting novel tool to ground-truth the findings of different 

survey methods, although limited in its use with regard to insect pollinator communities by the 

availability of closed population systems like islands. Open-population analysis methods exist 

and were used during this study, but landscapes that are truly open to unlimited immigration and 

emigration would contain communities that are too large and mobile to accurately quantify using 

MRR methods.  

6.3 The development and testing of novel survey methods  

The evidence for insect pollinator declines crosses international boundaries (Biesmeijer et al., 

2006; Goulson, Lye, & Darvill, 2008; Carvalheiro et al., 2013; IPBES, 2016) and both survey 

methods and sampling protocols need to be applicable to nationwide surveys if we are to quantify 

their population trends moving forward (Lebuhn et al., 2013). However, survey methods, such as 

those described and tested in Chapters 2 and 3, are not necessarily applicable to monitoring at a 

nationwide scale (but see Carvell et al., 2016). 

For instance, the standardised pan trapping protocol defined in Chapter 2 would have to involve 

equipment being sent to surveyors, and would generate samples that would need to be sent back 

for identification if individual surveyors did not have the taxonomic experience necessary to 

identify samples themselves. Whereas transect surveys, if the goal is to provide data at the highest 

level of taxonomic resolution possible, would require surveyors either with previous experience 

or to undergo extensive training regarding insect field identification. Prior research suggests that 

there are not enough trained personnel, either in terms of field experience or traditional taxonomy 

skills, to supply volunteers for a full-time, nationwide pollinator monitoring scheme (Pocock et 

al., 2015). 

In response to this, current monitoring schemes, like the UK’s national Pollinator Monitoring 

Scheme (PoMS), often incorporate citizen scientists into their sampling protocols in an effort to 
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expand the spatial and temporal scales over which they can gather data. However, citizen science 

data collection still requires standardised survey protocols to enable reliable data comparisons 

between individuals. While the use of volunteers can introduce bias into data collection through 

collector bias, temporally-patchy records, and misclassification of taxa in the field (Isaac et al., 

2014; Falk et al., 2019). 

In Chapter 4, I explore a novel, non-destructive classification method for insect pollinator taxa 

that can be applied to future monitoring surveys, including those using citizen scientist volunteers. 

Bioacoustics is a discipline devoted to the study of sounds made by animals, and has been used 

extensively to classify and monitor a range of taxonomic groups (Chesmore, 2001, 2004; Acevedo 

et al., 2009; Armitage & Ober, 2010; Briggs et al., 2012). Its use within pollinator monitoring 

may reduce the bias associated with misclassification errors by citizen scientists in the field, while 

providing an exciting new avenue through which volunteer participants could involve themselves 

in long-term, large-scale standardised monitoring surveys.  

In terms of insect pollinator taxa, bioacoustic classification has been explored by two previous 

publications: 1) by Gradišek et al. (2016) focuses on species-level identification in bumblebees 

using their wing beat frequencies, and 2) by Kawakita & Ichikawa (2019) used wing beat 

frequency to classify four Hymenopteran pollinator species. However, here I present the first 

study to use bioacoustic classification methods to identify a range of Hymenopteran and Dipteran 

taxa at multiple levels of taxonomic resolution. 

By comparing two different machine learning methods: random forest and support vector machine 

(SVM) models, I was able to reliably classify between Hymenopteran and Dipteran insects with 

an 86 per cent accuracy rate, between syrphid and non-syrphid flies with a 93 per cent accuracy 

rate, and between bumblebees, honeybees, solitary bees, and social wasps, with a 72 per cent 

accuracy rate. This indicates that bioacoustic classification at lower levels of taxonomic resolution 

is theoretically possible, and could present a reliable method of surveying insect pollinator species 

analogous to the Flower-Timed Insect Counts (FIT Counts) used by PoMS (Carvell, 2017). The 

implementation of such a method would, however, require a more balanced dataset incorporating 



184 

 
a wider range of flower-visiting insect taxa, so as to better explore and quantify the differences 

between them. 

In contrast to the results of Gradišek et al. (2016), I found that bioacoustic classification was less 

accurate at higher levels of taxonomic resolution. Within the bumblebee genus, for example, 

classification accuracy for individual species ranged between 28 and 91 per cent. This was likely 

due the relationship between wing beat frequency and body size (Byrne, Buchmann, & Spangler, 

1988; Molloy et al., 1988; Burkart, Lunau, & Schlindwein, 2011; Gradišek et al., 2016; Miller-

Struttmann et al., 2017), considering the high level of overlap in terms of worker size between 

bumblebee species (Peat, Tucker, & Goulson, 2005; Goulson, 2010; Falk, 2015). Whereas 

different solitary bee and hoverfly genera were classified with greater accuracy (between fifty and 

100 per cent). Future data collection should aim to better quantify the effects of body size on the 

inter- and intra-specific variation in insect wing beat frequencies, to drive further development of 

this potential survey tool. 

The dataset collected and used to train the machine learning algorithms is, to my knowledge, the 

largest collection of insect pollinator flight recordings in the UK, containing 1196 instances of 

insect flight sounds. It is my intention to publish this dataset in an open-access format, so that it 

can be used and built upon by future researchers and conservation practitioners for the further test 

and develop this methodology. However, it is also inherently unbalanced, with insect classes like 

the non-syrphid Diptera and the social wasps containing far fewer recordings than the bumblebee 

class. Future data collection should focus upon generating a more balanced dataset, as well as a 

more diverse one. As mentioned in Chapter 1, the term “insect pollinator” can refer to more than 

350,000 species, approximately 6000 of which may be found in the UK (Falk, S. 2017, personal 

communication), including bees, flies, beetles, wasps, moths, and butterflies (Ollerton, 2017). 

Any collection of future recordings should aim to include examples of as many of these different 

taxa as possible, to enable classification between multiple taxonomic groups. 

In Chapter 5, I expand on the technology explored in Chapter 4, by exploring the application of 

acoustic research to the passive monitoring of insect pollinator communities. There has been 

increasing interest in recent years in the exploration of passive, non-invasive survey methods 
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capable of exploring community interactions and species diversity at a landscape scale (August 

et al., 2015; Gibb et al., 2019). These include eDNA and the use of metabarcoding (Thomsen & 

Sigsgaard, 2019), Light Detection and Ranging (LiDAR) (Malmqvist et al., 2018), weather radar 

networks (Chapman, Reynolds, & Smith, 2004), and passive acoustic methods (Miller-Struttmann 

et al., 2017; Galen et al., 2019).  

In terms of insect monitoring, autonomous acoustic sensors have been used by past studies to 

explore the effects of human activity upon community composition (Penone et al., 2013), as well 

as changes in animal activity in relation to natural phenomena (Galen et al., 2019). More recently, 

Miller-Struttmann et al. (2017) used passive acoustic sensors to successfully predict pollination 

services based upon the density of local bee “buzzes”, showing that acoustic measures of 

bumblebee activity were positively correlated with visual observations of bumblebee abundance. 

As an extension of this I wanted to test the performance of passive acoustic surveys in relation to 

other traditional survey methods, in order to assess its future utility in terms of monitoring flower-

visiting insect community activity.  

As part of this chapter, I designed the first example of a standardised passive acoustic trap aimed 

at sampling flower-visiting insects, based upon the autonomous SOLO acoustic recorder 

(Whytock & Christie, 2016) and the methods used in Miller-Struttmann et al. (2017). I also 

provided the first test of the commercially available Kaleidoscope Pro automated detection 

software (© Wildlife Acoustics, Inc., 2019) with regard to its ability to detect and cluster instances 

of insect flight sound from soundscape recordings. The number of instances of insect sound 

recorded by the acoustic pan traps and detected by Kaleidoscope Pro would be correlated with 

insect samples collected using two traditional survey techniques, both used by the UK PoMS as 

part of their standardised survey protocol: pan trapping and hourly focal floral resource 

observations (FFOs). The sampling protocols governing the pan trapping and acoustic pan 

trapping were designed based upon the findings from Chapter 2. 

The supervised cluster analysis tool employed by Kaleidoscope Pro did not provide an effective 

automated method of either detecting or classifying instances of insect flight sound. Using a 

randomly-selected subset of seventy-five hours of soundscape recordings, I quantified the false 
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positive and false negative errors. I found that, although the algorithm had very low false positive 

errors and was, therefore, very effective at classifying instances of non-insect sound, it performed 

much more poorly in terms of its ability to correctly classify instances of insect flight sound, 

especially in relation to more specialist classifiers previously developed to classify acoustic insect 

signals (Raman et al., 2007; Heise et al., 2017). I also manually quantified the number of insect 

acoustic signals within each of these recordings and compared these data to the number of insect 

signals detected by Kaleidoscope Pro, finding that it was detecting only 40 per cent of the acoustic 

insect signals present. Based upon this, I would not recommend the use of the Kaleidoscope Pro 

software for future work aiming to quantify acoustic insect activity from within soundscape data. 

Instead, I would focus on the creation or adaption of algorithms that emphasise the qualities that 

separate insect wing beats from other signals within a soundscape, namely their highly harmonic 

nature.  

The number of instances of insect sound clustered by Kaleidoscope Pro did not correlate with the 

samples collected by traditional pan trapping. This was not necessarily unexpected, since the two 

methods are sampling insects in fundamentally different ways: the pan traps provide a measure 

of abundance, while the acoustic pan traps provide a measure of activity. Although, it may be 

expected that insect activity may be greater in areas with higher overall insect abundance. This 

suggests that the future utility of this method would lie in measuring insect pollinator activity in 

relation to drivers of change in insect communities or populations, like urbanisation (see Penone 

et al., 2013) or agricultural intensification, rather than as a method of quantifying changing 

population trends. Acoustic recordings could be combined with video footage, in a similar fashion 

to Steen, Lene, & Orvedal (2011), Gilpin, Denham, & Ayre (2017), and Steen (2017), to compare 

the species attracted to the acoustic pan traps to those sampled by the water-based pan traps or 

observed during the FFOs. This would also provide some data concerning the acoustic detection 

space associated with the acoustic pan traps (Darras et al., 2016). That is, up to what spatial extent 

can the microphone record insect wing beats? And is this affected by the size of the insect in 

question or the level of ambient background noise? This method could also be combined with 

more comprehensive versions of the classification tools initially tested in Chapter 4, potentially 
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allowing us to generate some estimate of the taxonomic diversity surrounding the acoustic pan 

traps, even if only at a low level of taxonomic resolution.  

There were also no correlations between the number of instances of insect sound detected per 

hour by the acoustic pan traps and the number of insect observed per hour using the FFOs in most 

of the experimental field sites. This was a more surprising result since both the acoustic pan trap 

and the FFOs provide a measure of insect activity. However, it may be that this result is due to 

issues concerning the FFO protocol combined with the relatively poor detection and classification 

rates associated with Kaleidoscope Pro. 

Across the random subset of seventy-five hours of recordings, the acoustic pan traps recorded an 

average 77.09 ± 15.30 insect signals per hour. Multiplied across the 735 hours of soundscape 

recordings generated throughout this study, this provides a library of nearly 57,000 instances of 

acoustic insect activity. This is, to my knowledge, the only soundscape dataset focused 

specifically on recording flower-visiting insects and insect pollinators. As with the data informing 

Chapter 4, it is my intention to make this dataset open-access so that it is available to other 

researchers or conservation professionals etc. The soundscapes themselves contain a wealth of 

data in addition to the sounds relating to insects, including sounds relating to bird diversity, human 

activity, and urbanisation. All of which can be explored in future, along with their relationship to 

different levels of insect activity. Soundscape data like this could also form the basis for measures 

of habitat quality in urban greenspaces, or the pace of recovery in areas receiving conservation 

action, where insect activity is just one aspect of the diversity of sounds being measured (Gibb et 

al., 2019). Measures of insect activity could also be used as a proxy to test people’s enjoyment or 

appreciation of greenspaces, in terms of their effects on human health (Millennium Ecosystem 

Assessment, 2005).  

6.4 Concluding remarks 

It is clear from the results of this thesis that neither the novel acoustic survey methods explored 

in Chapters 4 and 5, nor the traditional survey methods tested in Chapters 2 and 3, are the sole 

foci around which we should base future standardised insect pollinator monitoring. Both sets of 

techniques have a place in future monitoring strategies, alongside the many other methods 
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currently used or being investigated in relation to insect pollinators (Chapter 1). The more 

traditional survey methods, like pan trapping and transect surveys, provide data with a high level 

of  taxonomic resolution that informs population trends and our knowledge of decline within 

different species. While the novel, non-invasive acoustic technology may enthuse and motivate 

citizen scientists to become involved with schemes like PoMS, providing data at a lower 

taxonomic resolution but with less inherent bias relating to misidentifying insects in the field. Or 

by providing measures of flower-visiting insect activity in relation to drivers of decline. The key 

area of future research is the continued focus on standardisation of monitoring protocols, as in 

Chapter 2, and the focus on quantifying sampling bias, as in Chapters 3, 4 and 5, without which, 

data concerning insect pollinator populations and communities cannot be reliably compared 

between studies, or across space and time. 
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Appendix 1. 
Supplementary Table 1.1. List of studies cited by Gonzalez et al. (2020) that used pan traps to survey bees, published between January 2014 and 

December 2018, showing the duration (in hours) over which the pan traps were left active. Instances of multiple rows per study indicate multiple 

treatments within the same article.  

Year Author Reported trap duration Country Comments  

  Hours Days Weeks    

2018 Amy et al. 7   Belgium Set out between 09:00-
17:00. 

 

2018 Campbell et al. 72   USA   

2018 Choate et al. 48   USA  
 

2018 Davis et al. 24   Ireland    

2018 Halinski et al. 24   Brazil   

2018 Happe et al.  7  Germany   

2018 Kehinde et al.  5  Italy, South Africa  

2018 Milam et al. 24   USA  
 

2018 Sircom et al.  7-10  Canada  
 

2018 Perrot et al.  4  France  
 

2018 Pfiffner et al. 27-37   Switzerland Only sampled during hours 
of sunshine. 

 

2018 Sivakoff et al. 48   USA  
 

2018 Stein et al. 72   Burkina Faso  
 

2018 Stephenson et al. 11   USA  
 

2018 Talašová et al. 48   Czech Republic  
 

2017 Andersson et al.  ~4  Stockholm   

2017 Bukovinszky et al.  2  Netherlands   

2017 Gervais et al. 48   Canada   

2017 Harris et al.   6-7  USA   

   5     

2017 Heneberg et al. *   Czech Republic *“The Moericke traps were 
exposed for several days in 
each of the following three 
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periods: 6–10 May 2013, 
6–10 June 2013, and 8–15 
August 2013.” 

2017 Lagucki et al. 24   USA   

2017 Landaverde-González et al. *   Mexico *“…we sampled the bee 
community in 
chilli-growing areas for at 
least 1 day every week 
from May to 
June in 2010 and from May 
to August in 2011.” 

 

2017 Lucas et al.  4  Wales   

2017 McCravy and Ruholl 9   USA   

2017 McKechnie et al. 24   Canada   

2017 Meyer et al. 11   Swiss Alps   

2017 Morrison et al. 7   Spain   

2017 Normandin et al.  48   Canada   

2017 Pascarella 24   USA  
 

2017 Plascencia and Philpott 11   USA   

2017 Rhoades et al. 24   USA   

2017a Zou et al.  10  China  
 

2017b Zou et al.  10  China  
 

2016 Basu et al. 24   India  

2016 Campbell et al. 72   USA  

2016 Elwell et al. 8.5   USA  

2016 Féon et al. 48   Argentina  

2016a Geslin et al. 24   France  

2016b Geslin et al. 24   South Africa  

2016 Gonzalez et al.  2  Turkey  

2016 Gostinski et al. 48   Brazil  

2016 Hall    USA I could not access this 
article 
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2016 Heneberg et al.   2-8  Czech Republic  

2016 Hevia et al. ~8   Spain Left active between sunrise 
and sunset 

2016 Kovacic et al. 8   Croatia  

2016 Lazarina et al. 48   Greece  

2016 Love and Cane ~4-6   USA  

2016 Moreira et al. 24   Brazil  

2016 Mouga and Warkentin 7   Brazil  

2016 Quistberg et al. ~7-8   USA  

2016 Ritchie et al. 24   USA  

2016 Rodrigo et al. ~30   Spain  

2016 Ruttan et al.  8   Canada  

2016 Sahli et al.    Hawaii I could not access this 
article 

2016 Sing et al. 9   China, Malaysia, Thailand, Singapore  

2016 Todd 24   USA  

2016 Torne-Noguera et al.  ~9-10   Spain  

2016 Wheelock et al. 24   USA  

2015 Classen et al. 48   Tanzania  

2015 Connelly et al. 72   USA  

2015 Geslin et al. 24   France  

2015 Gezon et al. ~9   USA  

2015 Gill and O’Neal 24   USA  

2015 González et al. 72   Argentina  

2015 Halinski et al. 24   Brazil  

2015 Hanula et al.  5  USA  

2015 Joshi et al. 24   USA  

2015 Marshall et al. 24   Netherlands  

2015 Meindl and Ashman  ~2-3  USA Bowls were left for 2 
weeks, but were collected 
three times a week 
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2015 Miller et al. 24   Hawaii  

2015 Moisan-DeSerres et al. ~72   Canada  

2015 Richards et al. ~6   Canada  

2015 Rodríguez and Kouki 72   Finland  

  96     

2015 Rubene et al. *   Sweden  Pan traps were emptied 
three times between 1st of 
June and 22nd of 
August, 2011. 

2015 Sammegård et al.  2-3  Ethiopia  

   3-4    

2015 Saunders et al. 8   Australia  

2015 Schlueter and Stewart ~8-10   USA  

2015 Tang et al. 24   England  

2015 Wood et al. 96   United Kingdom   

2014 Alvarez et al. ~8   Argentina  

2014 Buri et al. 11   Switzerland  

2014 Cruz-Sánchez et al. 48   Spain  

2014 Fortel et al. 24   France  

2014 Geroff et al. 9   USA  

2014 Hall and Ascher ~24-26   USA  

2014 Heneberg and Bogusch   2-7  Czech Republic  

2014 Jackson et al.  2-3  USA  

2014 Larsen et al.  7  New Zealand  

2014 Pardee and Philpott ~6-7   USA  

2014 Ramírez et al. 10   Mexico  

2014 Rogers et al. 8   USA  

2014 Sardiñas and Kremen 4   USA  

2014 Shapiro et al.  8-10   USA  

  7-9     

  48     
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Supplementary Table 1.2. The sampling date and site identity of each survey carried out during Chapter 

2. 

Survey number Date Site 

1 30/07/2014 St. George’s Field 

2 03/08/2014 Spen farm: agroforestry plot 

3 03/08/2014 Spen farm: agroforestry plot 

4 02/09/2014 Spen farm: fallow field plot 

5 10/09/2014 Spen farm: agroforestry plot 

6 10/09/2014 Spen farm: agroforestry plot 

7 16/06/2015 Spen farm: fallow field plot 

8 24/06/2015 Spen farm: agroforestry plot 

9 24/06/2015 Spen farm: agroforestry plot 

10 01/07/2015 Bramham Park 

11 01/07/2015 Bramham Park 

12 09/07/2015 Spen farm: agroforestry plot 

13 11/07/2015 Spen farm: fallow field plot 

14 15/07/2015 Spen farm: agroforestry plot 

15 17/07/2015 Spen farm: fallow field plot 

16 21/07/2015 Spen Farm: fallow field plot 

17 05/08/2015 Bramham Park 

18 29/09/2015 St. George’s Field 

19 03/10/2015 Meanwood Grove 
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Supplementary table 1.3. The identity of each floral species found during each survey, along with each species’ definition of a floral unit, the 

mean number of florets per floral unit, the mean volume of nectar sugar produced per floret per 24-hours (µl) (taken primarily from Baude, 

Kunin, & Memmott (2015)), and the mean volume of nectar sugar produced per floral unit per 24-hours (µl) (mean number of florets per floral 

unit multiplied by the mean volume of nectar sugar produced per floret per 24-hours). 

Survey Date/site Plant species Floral unit 
definition 

Mean no. of florets/floral 
unit 

Mean vol. of nectar sugar 
produced/day/floret (µl) 

Mean vol. of nectar sugar 
produced/day/floral unit 
(µl) 

1 30/07/2014 Bellis perennis Single capitulum 220.8 0.84 185.472 
 

St. George’s Field Leontodon 
autumnalis 

Single capitulum 45.3 13.70236274 620.7170321 

  
Trifolium repens Single raceme 27 48.97 1322.19 

  
Veronica 
agrestis 

Single flower 1 14.42 14.42 

2 03/08/2014 Cirsium vulgare Single capitulum 76.26 76.51 5834.6526 
 

Spen farm: 
agroforestry plot 

Prunella 
vulgaris 

Single flower 1 138.62 138.62 

  
Senecio 
jacobaea 

Single capitulum 45.9 22.6 1037.34 

  
Trifolium repens Single raceme 35.6 48.97 1743.332 

3 03/08/2014 Cirsium vulgare Single capitulum 76.26 76.51 5834.6526 
 

Spen farm: 
agroforestry 

Senecio 
jacobaea 

Single capitulum 45.27 22.6 1023.102 

4 02/09/2014 Anagallis 
arvensis 

Single flower 1 0 0 

 
Spen farm: fallow 
field plot 

Borago 
officinalis 

Single flower 1 72 72 

  
Ranunculus 
acris 

Single flower 1 78.83 78.83 

  
Sherardia 
arvensis 

Single flower 1 9.48 9.48 

  
Sinapis sp. Single flower 1 55.6 55.6 

  
Trifolium repens Single raceme 32 48.97 1567.04 

  
Veronica persica Single flower 1 31.5897447 31.5897447 

5 10/09/2014 Cirsium vulgare Single capitulum 76.26 76.51 5834.6526 
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Spen farm: 
agroforestry plot 

Senecio 
jacobaea 

Single capitulum 39.5 22.6 892.7 

6 10/09/2014 Cirsium vulgare Single capitulum 76.26 76.51 5834.6526 
 

Spen farm: 
agroforestry plot 

Leontodon 
autumnalis 

Single capitulum 45.3 13.70236274 620.7170321 

  
Senecio 
jacobaea 

Single capitulum 43.9 22.6 992.14 

7 16/06/2015 Anagallis 
arvensis 

Single flower 1 0 0 

 
Spen farm: fallow 
field plot 

Bellis perennis Single capitulum 120 0.84 100.8 

  
Geranium 
columbinum 

Single flower 1 2.69 2.69 

  
Leucanthemum 
vulgare 

Single capitulum 172.4285714 15.81 2726.095714 

  
Myosotis stricta Single spike 5 23.36 116.8 

  
Papaver rhoeas Single flower 1 5.35 5.35 

  
Ranunculus 
acris 

Single flower 1 78.83 78.83 

  
Raphanus 
raphanistrum 

Single spike 3.7 115.08 425.796 

  
Sherardia 
arvensis 

Single flower 1 9.48 9.48 

  
Sinapis arvensis Single spike 3 55.6 166.8 

  
Sonchus asper Single capitulum 304 0.13 39.52 

  
Veronica persica Single flower 1 31.59 31.59 

8 24/06/2015 Cruciata 
laevipes 

Single stem 220 3.58 787.6 

 
Spen farm: 
agroforestry plot 

Daucus carota Single umbel 385.5 7.35 2833.425 

  
Heracleum 
sphondylium 

Single umbel 390 98.17 38286.3 

  
Plantago major Single stem 30 0 0 

  
Ranunculus 
acris 

Single flower 1 78.83 78.83 
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Trifolium repens Single raceme 24 48.97 1175.28 

  
Vicia sativa Single flower 1 300.34 300.34 

9 24/06/2015 Geranium 
columbinum 

Single flower 1 2.69 2.69 

 
Spen farm: 
agroforestry plot 

Myosotis stricta Single spike 5 23.36 116.8 

  
Ranunculus 
acris 

Single flower 1 78.83 78.83 

  
Sonchus asper Single capitulum 304 0.13 39.52 

  
Trifolium repens Single raceme 30 48.97 1469.1 

10 01/07/2015 Bellis perennis Single capitulum 120 0.84 100.8 
 

Bramham Park Centaurea nigra Single capitulum 46 198.99 9153.54 
  

Dactylorhiza 
fuchsii 

Single stem 35 0 0 

  
Daucus carota Single umbel 132 7.35 970.2 

  
Lamiastrum 
galeobdolon 

Single whorl 3.444444444 440.16 1516.106666 

  
Leontodon 
hispidus 

Single capitulum 35 6.15 215.25 

  
Lotus 
corniculatus 

Single flower 1 61.82 61.82 

  
Ranunculus 
repens 

Single flower 1 104.51 104.51 

  
Trifolium 
pratense 

Single raceme 25 116.86 2921.5 

11 01/07/2015 Daucus carota Single umbel 75 7.35 551.25 
 

Bramham Park Galium aparine Single stem 80 9.48 758.4 
  

Lotus 
corniculatus 

Single flower 1 61.82 61.82 

  
Ranunculus 
acris 

Single flower 1 78.83 78.83 

  
Trifolium repens Single raceme 20 48.97 979.4 

  
Vicia cracca Single flower 1 484.4 484.4 

  
Vicia sativa Single flower 1 300.34 300.34 
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12 09/07/2015 Cirsium arvense Single capitulum 55.6 76.22 4237.832 
 

Spen farm: 
agroforestry plot 

Ranunculus 
acris 

Single flower 1 78.83 78.83 

  
Trifolium repens Single raceme 28.8 48.97 1410.336 

13 11/07/2015 Anagallis 
arvensis 

Single flower 1 0 0 

 
Spen farm: fallow 
field plot 

Borago 
officinalis 

Single stem 8.958333333 72 645 

  
Cardamine 
pratensis 

Single stem 4.477777778 58.68 262.756 

  
Phacelia 
tanacetifolia 

Single stem 14 75.64 1058.96 

  
Plantago major Single stem 58 0 0 

  
Ranunculus 
repens 

Single flower 1 104.51 104.51 

  
Sherardia 
arvensis 

Single flower 1 9.48 9.48 

  
Sinapis arvensis Single spike 5.35 55.6 297.46 

  
Veronica persica Single flower 1 31.59 31.59 

14 15/07/2015 Cirsium arvense Single capitulum 35.9 76.22 2736.298 
 

Spen farm: 
agroforestry plot 

Cirsium vulgare Single capitulum 74.6 76.51 5707.646 

  
Ranunculus 
repens 

Single flower 1 104.51 104.51 

  
Senecio 
jacobaea 

Single capitulum 41.53333333 22.6 938.6533333 

  
Trifolium repens Single raceme 19.37142857 48.97 948.6188571 

15 17/07/2015 Bellis perennis Single capitulum 120 0.84 100.8 
 

Spen farm: fallow 
field plot 

Borago 
officinalis 

Single stem 7.2 72 518.4 

  
Cardamine 
pratensis 

Single stem 3.3 58.68 193.644 

  
Cirsium arvense Single capitulum 72.2 76.22 5503.084 

  
Cirsium vulgare Single capitulum 76.4 76.51 5845.364 
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Daucus carota Single umbel 1023.6 7.35 7523.46 

  
Leucanthemum 
vulgare 

Single capitulum 201 15.81 3177.81 

  
Papaver rhoeas Single flower 1 5.35 5.35 

  
Phacelia 
tanacetifolia 

Single stem 14.8 76.09 1126.132 

  
Prunella 
vulgaris 

Single spike 5 138.62 693.1 

  
Ranunculus 
repens 

Single flower 1 104.51 104.51 

  
Senecio 
jacobaea 

Single capitulum 159 22.6 3593.4 

  
Sinapis arvensis Single spike 2 55.6 111.2 

  
Trifolium repens Single raceme 25.55 48.97 1251.1835 

16 21/07/2015 Borago 
officinalis 

Single stem 6.714285714 72 483.4285714 

 
Spen Farm: fallow 
field plot 

Cardamine 
pratensis 

Single stem 15.45833333 58.68 907.0949998 

  
Cirsium arvense Single capitulum 55.25 76.22 4211.155 

  
Papaver rhoeas Single flower 1 5.35 5.35 

  
Phacelia 
tanacetifolia 

Single stem 6.6 75.64 499.224 

  
Sinapis arvensis Single spike 2 55.6 111.2 

17 05/08/2015 Centaurea nigra Single capitulum 46 198.9882969 9153.461657 
 

Bramham Park Filipendula 
ulmaria 

Single flower 1 0 0 

  
Gallium verum  Single flower 1 0.656449056 0.656449056 

  
Leontodon 
autumnalis 

Single capitulum 35 13.70236274 479.5826959 

  
Leucanthemum 
vulgare 

Single capitulum 201 15.81 3177.81 

  
Lotus 
corniculatus 

Single flower 1 61.82363977 61.82363977 

  
Prunella 
vulgaris 

Single flower 1 138.6185614 138.6185614 
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Ranunculus 
acris 

Single flower 1 78.83013231 78.83013231 

  
Rhinanthus 
minor 

Single flower 1 108.8977655 108.8977655 

  
Stachys 
officinalis 

Single flower 1 311.106 311.106 

  
Trifolium 
pratense 

Single raceme 22 116.8559138 2570.830104 

18 29/09/2015 NA NA - - - 

 St. George’s Field      

19 03/10/2015 Lotus 
corniculatus 

Single flower 1 61.82363977 61.82363977 

 
Meanwood Grove Trifolium 

pratense 
Single raceme 1 116.8559138 116.8559138 
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Supplementary table 1.4. The relative abundance of floral species within a two-meter radius of each pan trapping station per survey visit, 

together with the total floral abundance surrounding each pan trapping station. Relative abundance is measured as the total number of florets 

present per species. 
  

7-hour pan trapping stations 24-hour pan trapping stations 48-hour pan trapping stations 

Surve
y 

Plant species 28ml 
bowls 

57ml 
bowls 

156ml 
bowls 

284ml 
bowls 

28ml 
bowls 

57ml 
bowls 

156ml 
bowls 

284ml 
bowls 

28ml 
bowls 

57ml 
bowls 

156ml 
bowls 

284ml 
bowls 

1 Bellis perennis 0 0 662.4 0 0 0 662.4 0 1104 220.8 0 0 

1 Leontodon 
autumnalis 

906 0 0 0 951.3 0 0 0 0 0 0 0 

1 Trifolium 
repens 

0 0 0 0 0 0 0 27 0 135 0 0 

1 Veronica 
agrestis 

0 0 0 0 0 0 0 0 0 0 2 0 

1 Total 906 0 662.4 0 951.3 0 662.4 27 1104 355.8 2 0 

2 Cirsium vulgare 76.26 0 152.52 152.52 76.26 0 152.52 152.52 228.78 0 152.52 0 

2 Prunella 
vulgaris 

0 0 0 2 0 0 0 0 0 0 0 15 

2 Senecio 
jacobaea 

23638.5 12943.8 59073.3 13311 23638.5 12943.8 59073.3 13311 10143.9 33461.1 36582.3 9639 

2 Trifolium 
repens 

1281.6 1673.2 0 356 1281.6 1673.2 0 356 1495.2 676.4 213.6 1281.6 

2 Total 24996.3
6 

14617 59225.8
2 

13821.5
2 

24996.3
6 

14617 59225.8
2 

13819.5
2 

11867.8
8 

34137.5 36948.4
2 

10935.6 

3 Cirsium vulgare 0 76.26 228.78 0 0 76.26 228.78 0 0 0 0 0 

3 Senecio 
jacobaea 

497.97 0 0 0 497.97 0 0 0 679.05 543.24 0 0 

3 Total 497.97 76.26 228.78 0 497.97 76.26 228.78 0 679.05 543.24 0 0 

4 Anagallis 
arvensis 

0 7 0 0 0 7 0 0 0 3 0 0 

4 Borago 
officinalis 

33 24 262 4 33 24 262 4 49 46 9 39 

4 Ranunculus 
acris 

0 2 0 0 0 2 0 0 1 0 0 0 
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4 Sherardia 
arvensis 

0 34 0 0 0 24 0 0 9 65 0 0 

4 Sinapis sp. 2647 2619 3877 3433 2647 2619 3877 3433 6478 1760 2903 3880 

4 Trifolium 
repens 

0 0 0 32 0 0 0 32 0 0 0 0 

4 Veronica 
persica 

0 25 0 43 0 25 0 43 49 23 54 0 

4 Total 2680 2711 4139 3512 2680 2701 4139 3512 6586 1897 2966 3919 

5 Cirsium vulgare 0 0 0 0 0 0 0 0 152.52 0 0 0 

5 Senecio 
jacobaea 

0 0 434.5 0 0 0 434.5 0 0 434.5 0 632 

5 Total 0 0 434.5 0 0 0 434.5 0 152.52 434.5 0 632 

6 Cirsium vulgare 228.78 76.26 76.26 0 228.78 76.26 76.26 0 0 0 0 0 

6 Leontodon 
autumnalis 

0 0 0 5073.6 0 0 0 5073.6 0 0 0 0 

6 Senecio 
jacobaea 

3994.9 6453.3 6189.9 0 3994.9 6453.3 6189.9 0 18262.4 13960.2 13345.6 8692.2 

6 Total 4223.68 6529.56 6266.16 5073.6 4223.68 6529.56 6266.16 5073.6 18262.4 13960.2 13345.6 8692.2 

7 Anagallis 
arvensis 

0 0 0 0 0 0 0 0 0 22 12 2 

7 Bellis perennis 8280 0 1680 30240 207000 0 201000 0 0 0 0 0 

7 Geranium 
columbinum 

0 183 0 0 0 183 0 321 0 21 39 77 

7 Leucanthemum 
vulgare 

0 1608 6030 0 0 1608 0 0 3417 402 7 1407 

7 Myosotis 
stricta 

16120 5160 7750 4830 16120 5160 14925 0 875 2625 0 1350 

7 Papaver rhoeas 9 0 0 0 9 0 0 0 1 1 0 0 

7 Ranunculus 
acris 

192 732 720 440 192 732 166 208 659 364 111 374 

7 Raphanus 
raphanistrum 

1904 132 0 0 1904 33 2088 780 1072 972 312 664 

7 Sherardia 
arvensis 

0 47123 0 95521 0 47123 0 0 150796 150796 188495 28274 

7 Sinapis arvensis 960 36 360 1584 960 48 723 525 0 648 0 8532 
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7 Sonchus asper 59280 0 0 0 59280 0 70832 24320 0 0 0 0 

7 Veronica 
persica 

0 4 0 0 0 4 0 0 0 9 7 83 

7 Total 86745 54978 16540 132615 285465 54891 289734 26154 156820 155860 188983 40763 

8 Cruciata 
laevipes 

0 0 19800 0 0 0 52800 0 0 0 0 0 

8 Daucus carota 2760 1590 1640 720 2760 1590 1640 720 3168 10400 4598 1440 

8 Heracleum 
sphondylium 

9750 1560 0 0 9750 1560 0 0 0 0 0 0 

8 Plantago major 0 0 2132 1664 0 0 2132 1664 0 0 0 68 

8 Ranunculus 
acris 

0 0 18 18 0 0 18 18 15 0 118 7 

8 Trifolium 
repens 

0 0 0 0 0 0 0 0 0 0 0 120 

8 Vicia sativa 26 7 5 16 26 7 5 16 1 0 0 6 

8 Total 12536 3157 23595 2418 12536 3157 56595 2418 3184 10400 4716 1641 

9 Geranium 
columbinum 

0 0 0 0 0 0 0 0 0 0 2 0 

9 Myosotis 
stricta 

0 0 0 0 0 0 0 0 0 20 0 0 

9 Ranunculus 
acris 

0 0 0 0 0 0 0 0 0 0 0 1 

9 Sonchus asper 0 0 0 0 0 0 0 0 0 0 1520 0 

9 Trifolium 
repens 

60 0 510 120 60 0 510 120 0 0 120 390 

9 Total 60 0 510 120 60 0 510 120 0 20 1642 391 

10 Bellis perennis 3840 6600 600 0 3840 6600 600 0 5160 4080 2400 3480 

10 Centaurea 
nigra 

92 138 0 506 92 138 0 506 0 92 0 0 

10 Dactylorhiza 
fuchsii 

418 190 595 736 418 190 595 736 224 612 68 544 

10 Daucus carota 576 0 0 0 576 0 0 0 120 0 1560 0 

10 Lamiastrum 
galeobdolon 

126 6 0 110 126 6 0 110 27 180 0 9 
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10 Leontodon 
hispidus 

0 0 420 1960 0 0 420 1960 385 0 0 4620 

10 Lotus 
corniculatus 

100 52 16 27 100 52 16 27 78 33 0 0 

10 Ranunculus 
repens 

13 14 0 0 13 14 0 0 0 38 12 3 

10 Trifolium 
pratense 

22 0 40 0 22 0 40 0 544 120 2800 36 

10 Total 5187 7000 1671 3339 5187 7000 1671 3339 6538 5155 6840 8692 

11 Daucus carota 0 0 0 0 0 0 0 0 0 5850 0 0 

11 Galium aparine 0 0 0 0 0 0 0 0 320 0 0 0 

11 Lotus 
corniculatus 

0 0 0 3 0 0 0 3 0 17 0 0 

11 Ranunculus 
acris 

0 2 0 0 2 2 0 0 0 4 0 0 

11 Trifolium 
repens 

0 0 0 0 0 0 0 0 0 20 0 0 

11 Vicia cracca 0 0 0 0 0 0 0 0 0 14 0 0 

11 Vicia sativa 42 0 0 14 0 0 0 14 17 0 0 0 

11 Total 42 2 0 17 2 2 0 17 337 5905 0 0 

12 Cirsium arvense 0 58 330 0 0 58 330 0 104 0 0 0 

12 Ranunculus 
acris 

0 0 0 0 0 0 0 0 0 0 8 0 

12 Trifolium 
repens 

832 660 0 2820 832 660 0 2820 924 884 120 2752 

12 Total 832 718 330 2820 832 718 330 2820 1028 884 128 2752 

13 Anagallis 
arvensis 

8064 21312 8512 9728 8064 21312 8512 9728 0 0 8025 0 

13 Borago 
officinalis 

147 497 800 2744 147 497 800 2744 1520 2688 1230 1728 

13 Cardamine 
pratensis 

26 93.6 70 43.2 29.9 93.6 70 43.2 24 0 0 0 

13 Phacelia 
tanacetifolia 

360 481 288 0 360 481 288 0 0 0 0 84 

13 Plantago major 0 0 0 0 0 0 0 0 0 174 0 0 
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13 Ranunculus 
repens 

227 66 31 116 227 66 31 116 600 440 208 0 

13 Sherardia 
arvensis 

0 0 0 0 0 0 0 0 0 0 7539 0 

13 Sinapis arvensis 56 300 1168 110 117.6 300 1168 110 117 68 374 1400 

13 Veronica 
persica 

12032 11020 11430 0 12032 11020 11430 0 0 0 0 0 

13 Total 20912 33769.6 22299 12741.2 20977.5 33769.6 22299 12741.2 2261 3370 17376 3212 

14 Cirsium arvense 128.4 45.6 0 0 128.4 45.6 0 0 0 0 0 0 

14 Cirsium vulgare 0 0 0 0 0 0 0 0 223.8 0 0 0 

14 Ranunculus 
repens 

0 0 0 0 0 0 0 0 9 0 0 0 

14 Senecio 
jacobaea 

0 0 0 0 0 0 0 0 342 588.8 0 589.6 

14 Trifolium 
repens 

0 0 1612.8 725.4 0 0 1612.8 725.4 0 91 432.6 84.8 

14 Total 128.4 45.6 1612.8 725.4 128.4 45.6 1612.8 725.4 574.8 679.8 432.6 674.4 

15 Bellis perennis 0 1080 0 0 0 0 0 0 0 0 0 0 

15 Borago 
officinalis 

26.4 0 70.2 0 26.4 0 70.2 0 0 0 0 0 

15 Cardamine 
pratensis 

118.8 0 122.1 0 118.8 0 122.1 0 0 0 0 0 

15 Cirsium arvense 0 0 1155.2 0 0 0 1155.2 0 0 0 0 0 

15 Cirsium vulgare 1528 3896.4 2139.2 1833.6 1528 3896.4 2139.2 1833.6 3972.8 10390.4 916.8 4507.6 

15 Daucus carota 0 0 0 5140 0 0 0 5140 12336 0 1023 17187 

15 Leucanthemum 
vulgare 

0 0 0 4623 0 1809 0 4623 8844 5427 0 6633 

15 Papaver rhoeas 0 4 0 1 0 4 0 1 2 0 1 0 

15 Phacelia 
tanacetifolia 

473.6 0 784.4 0 473.6 0 784.4 0 0 0 0 0 

15 Prunella 
vulgaris 

0 0 0 0 0 0 0 0 0 0 0 30 

15 Ranunculus 
repens 

0 18 0 48 0 18 0 48 33 21 75 61 
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15 Senecio 
jacobaea 

0 1016 0 1470 0 1480 0 441 0 0 0 630 

15 Sinapis arvensis 142 0 138 0 142 0 138 0 0 0 0 0 

15 Trifolium 
repens 

0 471.2 0 0 0 471.2 0 0 0 211.2 1100.4 0 

15 Total 2288.8 6485.6 4409.1 13115.6 2288.8 7678.6 4409.1 12086.6 25187.8 16049.6 3116.2 29048.6 

16 Borago 
officinalis 

0 38.4 16.8 0 2 140 6.6 0 9 0 12.6 0 

16 Cardamine 
pratensis 

37.4 30.8 47.3 8.4 16.8 36 941.2 509.6 25.2 101.2 4 99.2 

16 Cirsium arvense 436.8 0 0 0 0 0 218.4 15.6 0 0 0 364 

16 Papaver rhoeas 1 5 0 0 0 10 0 0 0 7 0 0 

16 Phacelia 
tanacetifolia 

0 12.6 52.8 0 0 140.8 0 76.8 25.2 408 0 244.2 

16 Sinapis arvensis 0 0 0 0 0 0 0 0 0 0 0 18 

16 Total 475.2 86.8 116.9 8.4 18.8 326.8 1166.2 602 59.4 516.2 16.6 725.4 

17 Centaurea 
nigra 

9706 2438 6118 2254 9706 2438 6118 2254 3496 2944 2530 1656 

17 Filipendula 
ulmaria 

0 33 0 0 0 33 0 0 0 0 0 0 

17 Gallium verum  0 0 0 0 0 0 0 0 150 0 0 0 

17 Leontodon 
autumnalis 

70 0 0 0 70 0 0 0 0 0 0 0 

17 Leucanthemum 
vulgare 

0 0 201 0 0 0 201 0 0 0 0 0 

17 Lotus 
corniculatus 

3 0 7 22 3 0 7 22 2 1 3 0 

17 Prunella 
vulgaris 

0 29 29 0 0 29 29 0 28 0 95 9 

17 Ranunculus 
acris 

0 6 0 0 0 6 0 0 0 0 0 0 

17 Rhinanthus 
minor 

63 4 57 3 63 4 57 3 14 22 11 12 

17 Stachys 
officinalis 

0 0 0 0 0 0 0 0 234 0 0 24 
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17 Trifolium 
pratense 

66 0 0 88 66 0 0 88 0 0 396 0 

17 Total 9908 2510 6412 2367 9908 2510 6412 2367 3924 2967 3035 1701 

18 NA 0 0 0 0 0 0 0 0 0 0 0 0 

19 Lotus 
corniculatus 

0 114 207 150 0 114 207 150 0 0 14 0 

19 Trifolium 
pratense 

62 0 0 0 62 0 0 0 0 0 0 0 

19 Total 62 114 207 150 62 114 207 150 0 0 14 0 
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Supplementary Figure 1.1. A) Total pollinator abundance plotted against maximum day-time 

temperature (°C); B) Total bee abundance plotted against maximum day-time temperature (°C); C) 

Bumblebee abundance plotted against maximum day-time temperature (°C); D) Solitary bee abundance 

plotted against maximum day-time temperature (°C); E) Hoverfly abundance plotted against maximum 

day-time temperature (°C). The black line displays a linear relationship (± 95% confidence intervals), the 

red line displays a second-order polynomial relationship (± 95% confidence intervals). 
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Supplementary Figure 1.2. A) Total pollinator species richness plotted against maximum day-time 

temperature (°C); B) Total bee species richness plotted against maximum day-time temperature (°C); C) 

Bumblebee species richness plotted against maximum day-time temperature (°C); D) Solitary bee 

species richness plotted against maximum day-time temperature (°C); E) Hoverfly species richness 

plotted against maximum day-time temperature (°C). The black line displays a linear relationship (± 95% 

confidence intervals), the red line displays a second-order polynomial relationship (± 95% confidence 

intervals). 
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Supplementary Figure 1.3. A) Total pollinator abundance plotted against average wind speed (mph);B) 

Total bee abundance plotted against average wind speed (mph); C) Bumblebee abundance plotted 

against average wind speed (mph); D) Solitary bee abundance plotted against average wind speed 

(mph); E) Hoverfly abundance plotted against average wind speed (mph). The black line displays a linear 

relationship (± 95% confidence intervals), the red line displays a second-order polynomial relationship (± 

95% confidence intervals). 
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Supplementary Figure 1.4. A) Total pollinator species richness plotted against average wind speed 

(mph); B) Total bee species richness plotted against average wind speed (mph); C) Bumblebee species 

richness plotted against average wind speed (mph); D) Solitary bee species richness plotted against 

average wind speed (mph); E) Hoverfly species richness plotted against average wind speed (mph). The 

black line displays a linear relationship (± 95% confidence intervals), the red line displays a second-order 

polynomial relationship (± 95% confidence intervals). 
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Supplementary table 1.5. The total volume of nectar sugar produced per 24 hours (µl) within a two-meter radius of each pan trapping station per 

survey visit. Along with the mean volume of nectar sugar produced per 24 hours (µl) across all pan trapping stations per survey visit. 
Su

rv
ey

 7-hour pan trapping stations 24-hour pan trapping stations 48-hour pan trapping stations  

28ml 
bowls 

57ml 
bowls 

156ml 
bowls 

284ml 
bowls 

28ml 
bowls 

57ml 
bowls 

156ml 
bowls 

284ml 
bowls 

28ml 
bowls 

57ml 
bowls 

156ml 
bowls 

284ml 
bowls 

Survey 
mean 

1 12414.3
4 

0 556.42 0 13035.0
6 

0 556.42 1322.19 927.36 6796.42 28.84 0 2969.75 

2 602824.
70 

374466.
48 

1346725
.89 

330208.
47 

602824.
70 

374466.
48 

1346725
.89 

329931.
23 

319976.
04 

789344.
17 

848889.
28 

282680.
65 

629088.
66 

3 11254.1
2 

5834.65 17503.9
6 

0 11254.1
2 

5834.65 17503.9
6 

0 15346.5
3 

12277.2
2 

0 0 8067.43 

4 149549.
20 

148614.
13 

234425.
20 

194088.
21 

149549.
20 

148519.
33 

234425.
20 

194088.
21 

365416.
77 

102510.
77 

163760.
66 

218536.
00 

191956.
91 

5 0 0 9819.70 0 0 0 9819.70 0 11669.3
1 

9819.70 0 14283.2
0 

4617.63 

6 107788.
70 

151679.
23 

145726.
39 

69520.3
1 

107788.
70 

151679.
23 

145726.
39 

69520.3
1 

412730.
24 

315500.
52 

301610.
56 

196443.
72 

181309.
53 

7 678896.
63 

668200.
47 

354559.
10 

1166525
.08 

845821.
43 

657474.
75 

820267.
78 

139374.
13 

1679328
.93 

1674148
.53 

1832024
.40 

904922.
03 

951795.
27 

8 985252.
34 

166934.
08 

85858.6
4 

11516.3
8 

985252.
34 

166934.
08 

203998.
64 

11516.3
8 

24767.5
9 

76440.0
0 

43097.2
4 

18814.2
5 

231698.
50 

9 2938.20 0 24974.7
0 

5876.40 2938.20 0 24974.7
0 

5876.40 0 467.20 6079.38 19177.1
3 

7775.19 

10 91337.9
9 

40323.3
6 

8750.52 162829.
68 

91337.9
9 

40323.3
6 

8750.52 162829.
68 

87862.2
7 

120997.
72 

341944.
12 

39818.1
3 

99758.7
8 

11 12614.2
8 

157.66 0 4390.22 157.66 157.66 0 4390.22 8139.38 52124.7
6 

0 0 6844.32 

12 40743.0
4 

36740.9
6 

25152.6
0 

138095.
40 

40743.0
4 

36740.9
6 

25152.6
0 

138095.
40 

53175.1
6 

43289.4
8 

6507.04 134765.
44 

59933.4
3 

13 446268.
33 

449358.
75 

512746.
23 

218342.
14 

449922.
14 

449358.
75 

512746.
23 

218342.
14 

180059.
52 

243301.
20 

202562.
20 

208609.
76 

340968.
12 

14 9786.65 3475.63 78978.8
2 

35522.8
4 

9786.65 3475.63 78978.8
2 

35522.8
4 

25792.7
3 

17763.1
5 

21184.4
2 

17477.6
2 

28145.4
8 

15 169497.
57 

346959.
61 

331649.
54 

289401.
20 

169497.
57 

385139.
10 

331649.
54 

266145.
80 

537911.
70 

893307.
55 

139393.
61 

600840.
37 

371782.
76 
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16 35492.8
8 

5551.96 7978.96 492.91 1129.82 22896.0
9 

72351.2
6 

36901.5
1 

4032.86 36836.9
9 

1141.92 53037.2
2 

23153.7
0 

17 1947098
.10 

490061.
98 

1231248
.09 

460489.
75 

1947098
.10 

490061.
98 

1231248
.09 

460489.
75 

774089.
89 

588279.
12 

564267.
44 

339545.
50 

876998.
15 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 7245.07 7047.89 12797.4
9 

9273.55 7245.07 7047.89 12797.4
9 

9273.55 0 0 865.53 0 6132.79 
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Supplementary table 1.6. The relative abundance of bee and hoverfly species sampled by pan trapping during each survey visit. 

Survey Date Site Group Species Abundance 

1 30/07/2014 St. George's Field Honeybee Apis mellifera 1  
 

 
Bumblebee Bombus soroeensis 1  

 
 

Hoverfly Episyrphus balteatus  5  
 

 
Solitary bee Lasioglossum smeathmanellum 1  

 
 

Hoverfly Melanostoma mellinum 1 

2 03/08/2014 Spen farm: agroforestry plot Honeybee Apis mellifera 2  
 

 
Bumblebee Bombus hortorum 1  

 
 

Bumblebee Bombus lapidarius 2  
 

 
Bumblebee Bombus pascuorum 1  

 
 

Bumblebee Bombus terrestris/lucorum 8  
 

 
Hoverfly Episyrphus balteatus  4  

 
 

Hoverfly Eristalis arbustorum  1  
 

 
Hoverfly Eristalis tenax  3  

 
 

Solitary bee Halictus rubicundus 1  
 

 
Hoverfly Helophilus pendulus  3  

 
 

Solitary bee Hylaeus communis 1  
 

 
Solitary bee Lasioglossum calceatum/albipes 6  

 
 

Solitary bee Lasioglossum fulvicorne 1  
 

 
Solitary bee Lasioglossum leucopus 3  

 
 

Hoverfly Melanostoma mellinum 2  
 

 
Hoverfly Neoascia podagrica  1  

 
 

Hoverfly Platycheirus manicatus 1  
 

 
Hoverfly Platycheirus nielseni 1  

 
 

Hoverfly Rhingia campestris 1  
 

 
Hoverfly Syritta pipiens 7 

3 03/08/2014 Spen farm: agroforestry plot Bumblebee Bombus lapidarius 1  
 

 
Bumblebee Bombus terrestris/lucorum 1 
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Bumblebee Bombus vestalis 3  

 
 

Hoverfly Dasysyrphus albostriatus 1  
 

 
Hoverfly Episyrphus balteatus  18  

 
 

Hoverfly Helophilus pendulus  2  
 

 
Solitary bee Lasioglossum calceatum/albipes 1  

 
 

Solitary bee Lasioglossum smeathmanellum 1  
 

 
Hoverfly Melanostoma mellinum 2  

 
 

Hoverfly Neoascia podagrica  2  
 

 
Hoverfly Sphaerophoria rueppellii  1 

4 02/09/2014 Spen farm: fallow field plot Honeybee Apis mellifera 8  
 

 
Bumblebee Bombus pascuorum 1  

 
 

Hoverfly Dasysyrphus albostriatus 1  
 

 
Hoverfly Eristalis arbustorum  7  

 
 

Hoverfly Eristalis pertinax 2  
 

 
Hoverfly Eristalis tenax  3  

 
 

Solitary bee Halictus rubicundus 1  
 

 
Solitary bee Halictus tumulorum 5  

 
 

Hoverfly Helophilus pendulus  2  
 

 
Hoverfly Helophilus trivittatus 1  

 
 

Solitary bee Lasioglossum calceatum/albipes 4  
 

 
Solitary bee Lasioglossum leucopus 4  

 
 

Hoverfly Neoascia podagrica  1  
 

 
Hoverfly Parasyrphus nigritarsus 1  

 
 

Hoverfly Xylota segnis 1 

5 10/09/2014 Spen farm: agroforestry plot Honeybee Apis mellifera 1  
 

 
Solitary bee Halictus tumulorum 1  

 
 

Hoverfly Helophilus pendulus  8  
 

 
Solitary bee Lasioglossum calceatum/albipes 1  

 
 

Solitary bee Lasioglossum leucopus 1  
 

 
Hoverfly Rhingia campestris 1 
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6 10/09/2014 Spen farm: agroforestry plot Honeybee Apis mellifera 2  
 

 
Hoverfly Eristalis arbustorum  1  

 
 

Hoverfly Eristalis pertinax  2  
 

 
Hoverfly Eristalis tenax  1  

 
 

Solitary bee Halictus tumulorum 4  
 

 
Hoverfly Helophilus pendulus  22  

 
 

Solitary bee Lasioglossum leucopus 3  
 

 
Hoverfly Melanostoma scalare 1  

 
 

Hoverfly Neoascia podagrica  4  
 

 
Hoverfly Syrphus ribesii  4 

7 16/06/2015 Spen farm: fallow field plot Solitary bee Andrena haemorrhoa 1  
 

 
Bumblebee Bombus hortorum 1  

 
 

Bumblebee Bombus terrestris/lucorum 3  
 

 
Solitary bee Halictus tumulorum 7  

 
 

Solitary bee Lasioglossum calceatum/albipes 7  
 

 
Solitary bee Lasioglossum leucopus 2  

 
 

Solitary bee Sphecodes ephippius 1 

8 24/06/2015 Spen farm: agroforestry plot Bumblebee Bombus hortorum 1 
 

 
 

Bumblebee Bombus lapidarius 1  
 

 
Hoverfly Cheilosia albitarsis  2  

 
 

Solitary bee Halictus tumulorum 1  
 

 
Solitary bee Lasioglossum calceatum/albipes 1  

 
 

Solitary bee Lasioglossum leucopus 1  
 

 
Solitary bee Osmia aurulenta 1 

9 24/06/2015 Spen farm: agroforestry plot Solitary bee Andrena chrysosceles 1  
 

 
Honeybee Apis mellifera 1  

 
 

Bumblebee Bombus hortorum 1  
 

 
Bumblebee Bombus hypnorum 1  

 
 

Bumblebee Bombus pratorum 2 
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Bumblebee Bombus sylvestris 2  

 
 

Solitary bee Halictus tumulorum 1  
 

 
Solitary bee Hylaeus hyalinatus 1  

 
 

Solitary bee Lasioglossum calceatum/albipes 5  
 

 
Solitary bee Lasioglossum leucopus 1  

 
 

Solitary bee Lasioglossum smeathmanellum 1  
 

 
Solitary bee Osmia leaiana 1  

 
 

Solitary bee Stelis punctulatissima 1  
 

 
Hoverfly Xylota segnis 1 

10 01/07/2015 Bramham park Solitary bee Andrena pascuorum 1  
 

 
Bumblebee Bombus pascuorum 1  

 
 

Bumblebee Bombus terrestris/lucorum 1  
 

 
Solitary bee Lasioglossum calceatum/albipes 2  

 
 

Solitary bee Lasioglossum leucopus 12  
 

 
Solitary bee Lasioglossum morio 1  

 
 

Solitary bee Megachile willughbiella 1  
 

 
Hoverfly Merodon equestris  1  

 
 

Solitary bee Osmia leaiana 1 

11 01/07/2015 Bramham park Solitary bee Andrena bicolor 1  
 

 
Solitary bee Andrena semilaevis 1  

 
 

Bumblebee Bombus pratorum 1  
 

 
Solitary bee Lasioglossum calceatum/albipes 3  

 
 

Solitary bee Lasioglossum leucopus 3 

12 09/07/2015 Spen farm: agroforestry plot Solitary bee Andrena bicolor 4  
 

 
Honeybee Apis mellifera 2  

 
 

Bumblebee Bombus lapidarius 1  
 

 
Bumblebee Bombus terrestris/lucorum 1  

 
 

Bumblebee Bombus vestalis 2  
 

 
Hoverfly Episyrphus balteatus  1  

 
 

Solitary bee Halictus tumulorum 2 
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Solitary bee Lasioglossum calceatum/albipes 2  

 
 

Solitary bee Lasioglossum leucopus 1  
 

 
Solitary bee Lasioglossum villosulum 2 

13 11/07/2015 Spen farm: fallow field plot Solitary bee Andrena semilaevis 3  
 

 
Honeybee Apis mellifera 3  

 
 

Bumblebee Bombus lapidarius 8  
 

 
Bumblebee Bombus terrestris/lucorum 14  

 
 

Bumblebee Bombus vestalis 1  
 

 
Hoverfly Eristalis arbustorum  1  

 
 

Hoverfly Eristalis tenax  1  
 

 
Solitary bee Halictus tumulorum 16  

 
 

Solitary bee Lasioglossum calceatum/albipes 1  
 

 
Solitary bee Lasioglossum leucopus 1  

 
 

Solitary bee Lasioglossum villosulum 3  
 

 
Hoverfly Syrphus ribesii  1 

14 15/07/2015 Spen farm: agroforestry plot Solitary bee Andrena minutula 1  
 

 
Solitary bee Andrena subopaca 1  

 
 

Honeybee Apis mellifera 1  
 

 
Bumblebee Bombus hortorum 2  

 
 

Bumblebee Bombus lapidarius 1  
 

 
Bumblebee Bombus pascuorum 1  

 
 

Bumblebee Bombus pratorum 2  
 

 
Bumblebee Bombus terrestris/lucorum 1  

 
 

Bumblebee Bombus vestalis 1  
 

 
Hoverfly Episyrphus balteatus  3  

 
 

Hoverfly Eupeodes corollae  1  
 

 
Solitary bee Halictus rubicundus 1  

 
 

Solitary bee Halictus tumulorum 2  
 

 
Solitary bee Lasioglossum calceatum/albipes 4  

 
 

Solitary bee Lasioglossum smeathmanellum 1 
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Solitary bee Lasioglossum villosulum 1  

 
 

Hoverfly Syrphus ribesii  4 

15 17/07/2015 Spen farm: fallow field plot Solitary bee Andrena minutula 1  
 

 
Solitary bee Andrena subopaca 1  

 
 

Honeybee Apis mellifera 2  
 

 
Bumblebee Bombus hortorum 3  

 
 

Bumblebee Bombus lapidarius 19  
 

 
Bumblebee Bombus pascuorum 2  

 
 

Bumblebee Bombus pratorum 1  
 

 
Bumblebee Bombus terrestris/lucorum 15  

 
 

Hoverfly Episyrphus balteatus  4  
 

 
Hoverfly Eristalis arbustorum  1  

 
 

Hoverfly Eristalis tenax  1  
 

 
Solitary bee Halictus tumulorum 4  

 
 

Solitary bee Lasioglossum leucopus 1  
 

 
Solitary bee Lasioglossum morio 1  

 
 

Hoverfly Syrphus ribesii  3 

16 21/07/2015 Spen farm: fallow field plot Solitary bee Andrena bicolor 1  
 

 
Honeybee Apis mellifera 1  

 
 

Bumblebee Bombus lapidarius 12  
 

 
Bumblebee Bombus pascuorum 1  

 
 

Bumblebee Bombus pratorum 1  
 

 
Bumblebee Bombus terrestris/lucorum 10  

 
 

Hoverfly Episyrphus balteatus  2  
 

 
Hoverfly Eristalis tenax  1  

 
 

Solitary bee Lasioglossum calceatum/albipes 1  
 

 
Solitary bee Lasioglossum villosulum 1  

 
 

Hoverfly Syrphus ribesii  3 

17 05/08/2015 Bramham park Solitary bee Andrena bimaculata 1  
 

 
Solitary bee Andrena falsifica 1 
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Honeybee Apis mellifera 4  

 
 

Bumblebee Bombus lapidarius 24  
 

 
Bumblebee Bombus pascuorum 2  

 
 

Bumblebee Bombus rupestris 8  
 

 
Bumblebee Bombus soroeensis 2  

 
 

Bumblebee Bombus terrestris/lucorum 6  
 

 
Bumblebee Bombus vestalis 10  

 
 

Hoverfly Episyrphus balteatus  6  
 

 
Solitary bee Heriades truncorum 1  

 
 

Solitary bee Lasioglossum calceatum/albipes 2  
 

 
Solitary bee Lasioglossum fulvicorne 2  

 
 

Solitary bee Lasioglossum smeathmanellum 14  
 

 
Hoverfly Melanostoma mellinum 1  

 
 

Hoverfly Platycheirus albimanus 1  
 

 
Hoverfly Syrphus vitripennis  3 

18 29/09/2015 St. George's Field Honeybee Apis mellifera 1 
 

 
 

Hoverfly Episyrphus balteatus  1  
 

 
Hoverfly Eristalis pertinax  1  

 
 

Hoverfly Eristalis tenax  2  
 

 
Hoverfly Helophilus hybridus  1  

 
 

Solitary bee Lasioglossum smeathmanellum 1 

19 03/10/2015 Meanwood Grove Honeybee Apis mellifera 2  
 

 
Bumblebee Bombus hortorum 1  

 
 

Bumblebee Bombus pascuorum 8  
 

 
Hoverfly Episyrphus balteatus  1  

 
 

Hoverfly Eristalis tenax  2  
 

 
Hoverfly Helophilus pendulus  6 
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Supplementary table 1.7. The relative abundance of bycatch (identified to order) sampled by pan trapping during each survey visit. 

Transect Non-Syrphid Diptera Coleoptera Hemiptera Lepidoptera Non-bee Hymenoptera Other 

1 80 0 0 0 25 12 

2 609 3 3 2 26 6 

3 432 0 0 1 21 13 

4 647 3 1 1 33 146 

5 595 0 3 4 10 11 

6 257 4 0 4 17 7 

7 146 20 8 0 33 19 

8 303 14 54 5 71 16 

9 391 7 56 2 121 23 

10 52 0 22 1 2 4 

11 195 12 74 2 33 18 

12 291 27 74 9 76 25 

13 255 8 28 0 29 31 

14 203 26 23 5 91 35 

15 218 37 8 1 34 54 

16 1030 87 0 0 13 94 

17 466 69 7 0 37 101 

18 82 3 1 0 9 0 

19 99 3 6 0 6 4 
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Supplementary Table 1.8. Model averaged parameter estimates ± 95% confidence intervals for the 

effects of trap duration on sampled abundance and species richness within each pollinator group. 

Asterisks refer to statistically significant parameter estimates (where the respective 95 percent 

confidence intervals do not include zero). 

   Parameter estimates ± 95% CI 

Group Parameter  Abundance Richness 

Total pollinators Intercept  -4.964 [-6.830, -3.097] -3.862 [-5.720, -2.005] 

 Trap duration† 24 0.057 [-0.213, 0.327] 0.010 [-0.244, 0.264] 

  48 0.531 [0.279, 0.783] * 0.459 [0.227, 0.692] * 

Total bees Intercept   -4.842 [-6.697, -2.986] -4.087 [-5.648, -2.527] 

 Trap duration† 24 -0.009 [-0.317, 0.299] 0.005 [-0.293, 0.304] 

  48 0.600 [0.318, 0.882] * 0.598 [0.333, 0.862] * 

Bumblebees Intercept   -6.498 [-8.538, -4.458] -5.353 [-7.317, -3.389] 

 Trap duration† 24 0.693 [-0.435, 1.821] 0.883 [0.309, 1.457] * 

  48 1.479 [0.143, 2.816] * 1.226 [0.701, 1.752] * 

Solitary bees Intercept   -4.051 [-6.794, -1.308] -3.506 [-5.946, -1.065] 

 Trap duration† 24 -0.778 [-2.561, 1.006] -0.686[-2.149, 0.778] 

  48 -1.362 [-3.251, 0.526] -0.779[-2.928, 1.370] 

Hoverflies Intercept   -6.782 [-10.156, -3.407] -6.809 [-10.522, -3.097] 

 Trap duration† 24 0.001 [-0.271, 0.273] NA†† 

  48 -0.045 [-0.421, 0.330] NA†† 
† 7 hours was the reference category  
†† trap duration did not feature in any of the component models of the model averaging  
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Supplementary Table 1.9. Model averaged parameter estimates ± 95% confidence intervals for the 

effects of trap duration on the ratio of sampled pollinator abundance to the abundance of bycatch. 

Asterisks refer to statistically significant parameter estimates (where the respective 95 percent 

confidence intervals do not include zero). 

   Parameter estimates ± 95% CI 

Group Parameter  Abundance 

Total pollinators Intercept  -1.790 [-4.152, 0.573] 

 Trap duration† 24 -0.368 [-0.642, -0.095]* 

  48 -0.234 [-0.498, 0.029] 

Total bees Intercept   -3.240 [-6.536, 0.056] 

 Trap duration† 24 -0.520 [-4.568, 3.528] 

  48 0.918 [-2.314, 4.150] 

Bumblebees Intercept   -4.625 [-8.573, -0.676] 

 Trap duration† 24 -0.046 [-1.952, 1.859] 

  48 2.459 [0.799, 4.119]* 

Solitary bees Intercept   -5.625 [-7.861, -3.389] 

 Trap duration† 24 -1.125 [-1.599, -0.651]* 

  48 -0.787 [-1.215, -0.360]* 

Hoverflies Intercept   -4.293 [-6.333, -2.253] 

 Trap duration† 24 -0.183 [-0.865, 0.499] 

  48 -0.714 [-2.046, 0.617] 
† 7 hours was the reference category 
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Supplementary Table 1.10. Model averaged parameter estimates ± 95% confidence intervals for the 

effects of trap duration on the abundance and species richness sampled per hour within each pollinator 

group. Asterisks refer to statistically significant parameter estimates (where the respective 95 percent 

confidence intervals do not include zero). 

   Parameter estimates ± 95% CI 

Group Parameter  Abundance Richness 

Total pollinators Intercept  -6.942 [-8.807, -5.076] -5.763 [-7.614, -3.913] 

 Trap duration† 24 -0.733 [-1.007, -0.459] * -0.780 [-1.035, -0.525] * 

  48 -0.963 [-1.218, -0.708] * -1.037 [-1.270, -0.804] * 

Total bees Intercept   -6.920 [-8.735, -5.106] -6.076 [-7.603, -4.549] 

 Trap duration† 24 -0.821 [-1.132, -0.510] * -0.808 [-1.107, -0.508] * 

  48 -0.921 [-1.206, -0.637] * -0.928 [-1.193, -0.662] * 

Bumblebees Intercept   -8.612 [-10.558, -6.665] -7.772 [-9.873, -5.672] 

 Trap duration† 24 -0.047 [-0.723, 0.629] 0.022 [-0.369, 0.413] 

  48 -0.022 [-0.818, 0.773] -0.144 [-0.616, 0.327] 

Solitary bees Intercept   -5.907 [-8.701, -3.114] -5.173 [-7.477, -2.870] 

 Trap duration† 24 -1.649 [-3.543, 0.245] -1.538 [-3.207, 1.306] 

  48 -3.151 [-4.732, -1.570] * -2.640 [-4.867, -0.414] * 

Hoverflies Intercept   -8.833 [-12.240, -5.425] -8.819 [-12.588, -5.050] 

 Trap duration† 24 -0.743 [-1.463, -0.023] * -0.519 [-1.491, 0.452] 

  48 -1.600 [-2.509, -0.691] * -1.651 [-2.654, -0.648] * 
† 7 hours was the reference category 
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Supplementary Figure 1.5. A histogram of the average vegetation height (cm) present within a 1m radius 

of each pan trapping station. 

  

 

Supplementary Figure 1.6. A) Solitary bee abundance plotted against the average vegetation height (cm) 

present within a 1m radius of each pan trapping station; B) Solitary bee species richness plotted against 

the average vegetation height (cm) present within a 1m radius of each pan trapping station. 

 

References cited in Appendix 1. 

Baude, M., Kunin, W. E., & Memmott, J. (2015). Nectar sugar values of common British plant 
species [AgriLand]. NERC Environmental Information Data Centre. 
https://doi.org/https://doi.org/10.5285/69402002-1676-4de9-a04e-d17e827db93c 
 

A B 
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Appendix 2. 

 

Supplementary figure 2.1. Adapted aquarium equipment used to partially anaesthetise pollinators prior 

to marking. 

 

In supplementary Figure 2.1, the clear plastic tube is used to contain the insect while the compressed CO2 

gas was gradually released from the canister in short bursts. After approximately one minute, the insect 

was released from the tube and was gently pressed down using a cardboard tube covered with string or 

thread mesh at one end. The insect was marked on the appropriate spot on the wing through the mesh 

and released.  

 

Supplementary table 2.1. Each floral species found along each survey visit, along with each species’ 

definition of a floral unit, and the mean number of florets per floral unit. 

Floral species Floral unit definition Mean no. of florets/floral unit 

Cirsium sp. Single capitulum 57.75483 

Crepis sp. Single capitulum 21.33333 

Geranium sp. Single flower 1 

Anagallis arvensis Single flower 1 

Unknown Single flower 1 

Silene sp. Single flower 1 

Calendula sp. Single capitulum 66 
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Supplementary table 2.2. The relative abundance of each floral species within a two-meter radius of 

each pan trapping station, together with the total number of flowers present within a two-meter radius 

of each pan trapping station. Measured on 21/04/2016. Relative abundance is measured as the number 

of florets, not the number of floral units. 

Station Cirsium 
sp. 

Crepis 
sp. 

Geranium 
sp. 

Anagallis 
arvensis 

Unknown Silene 
sp. 

Calendula 
sp. 

Station 
total 

1 8663.225 0 30 7 0 0 0 8700.225 

2 9240.773 0 19 0 0 0 0 9259.773 

3 3465.29 85.33333 16 140 0 60 0 3766.623 

4 1501.626 256 17 62 0 8 0 1844.626 

5 2425.703 85.33333 7 48 0 35 0 2601.036 

6 1097.342 0 6 0 0 0 0 1103.342 

7 1039.587 917.3333 0 6 2 25 0 1989.92 

8 16748.9 0 6 0 0 0 0 16754.9 

9 1848.155 192 6 0 0 0 5082 7128.155 

10 5659.974 682.6667 14 0 0 0 0 6356.64 

 

 

Supplementary table 2.3. The relative abundance of each floral species along each transect (within one 

meter to either side of the central line), together with the total number of flowers present along each 

transect. Measured on 22/04/2016. Relative abundance is measured as the number of florets, not the 

number of floral units. 

Transect Cirsium 
sp. 

Crepis 
sp. 

Anagallis 
arvensis 

Silene 
sp. 

Unknown Geranium 
sp. 

Calendula 
sp. 

Transect 
total 

1 6526.296 64 60 5 0 10 0 6665.296 

2 5890.993 0 14 2 0 7 0 5913.993 

3 2310.193 149.3333 44 6 0 24 0 2533.527 

4 1039.587 554.6667 17 12 0 29 0 1652.254 

5 1443.871 170.6667 73 3 1 14 0 1705.537 

6 9240.773 469.3333 1 0 0 10 0 9721.107 

7 519.7935 0 10 42 0 11 0 582.7935 

8 5197.935 106.6667 35 19 0 5 0 5363.602 

9 1905.909 170.6667 2 0 2 55 0 2135.576 

10 5197.935 0 0 5 0 10 330 5542.935 
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Supplementary Table 2.4. A table summarising the fit of each Jolly-Seber (superpopulation approach) 

model run for each species during the MRR analysis, as described using AICC, ΔAICC, and Akaike weights. 

Model AICC Δ AICC Akaike weight No. of 
parameters 

Bombus terrestris 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 167.13 0.00 0.9993025792 4 

φi ~ ·, pi ~ t, 𝑏𝑖  ~ ·, N ~ · 183.14 16.01 0.0003341437 17 

φi ~ t, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 184.00 16.87 0.0002172350 16 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ t, N ~ · 184.79 17.66 0.0001460421 16 

φi ~ t, pi ~ ·, 𝑏𝑖  ~ t, N ~ · 236.63 69.50 0.0000000000 28 

φi ~ t, pi ~ t, 𝑏𝑖  ~ ·, N ~ · 252.28 85.15 0.0000000000 29 

φi ~ ·, pi ~ t, 𝑏𝑖  ~ t, N ~ · 255.76 88.63 0.0000000000 29 

φi ~ t, pi ~ t, 𝑏𝑖  ~ t, N ~ · 478.40 311.27 0.0000000000 41 

Halictus phryganicus (unconstrained) 

φi ~ t, pi ~ t, 𝑏𝑖  ~ t, N ~ · -272.38 0.00 1.0000000000 41 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 98.35 370.73 0.0000000000 4 

φi ~ ·, pi ~ t, 𝑏𝑖  ~ ·, N ~ · 108.82 381.20 0.0000000000 17 

φi ~ t, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 131.35 403.73 0.0000000000 16 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ t, N ~ · 145.25 417.63 0.0000000000 16 

φi ~ t, pi ~ ·, 𝑏𝑖  ~ t, N ~ · 498.14 770.52 0.0000000000 28 

φi ~ t, pi ~ t, 𝑏𝑖  ~ ·, N ~ · 666.89 939.27 0.0000000000 29 

φi ~ ·, pi ~ t, 𝑏𝑖  ~ t, N ~ · 669.37 941.75 0.0000000000 29 

Halictus phryganicus (constrained) 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 98.35 0 1.0000000000 4 

Eupeodes corollae 

φi ~ ·, pi ~ t, 𝑏𝑖  ~ ·, N ~ · 303.35 0.00 0.999602 17 

φi ~ t, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 324.40 21.05 0.00002673418 16 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ t, N ~ · 326.19 22.84 0.00001094446 16 

φi ~ t, pi ~ t, 𝑏𝑖  ~ ·, N ~ · 330.68 27.33 0.000001159879 29 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 333.09 29.74 0.0000003471298 4 

φi ~ t, pi ~ ·, 𝑏𝑖  ~ t, N ~ · 333.27 29.92 0.0000003168987 28 

φi ~ ·, pi ~ t, 𝑏𝑖  ~ t, N ~ · 333.76 30.41 0.0000002482734 29 

φi ~ t, pi ~ t, 𝑏𝑖  ~ t, N ~ · 364.75 61.40 0.0000000000000 41 

Sphaerophoria scripta 

φi ~ ·, pi ~ t, 𝑏𝑖  ~ ·, N ~ · 543.03 0.00 0.9992643 17 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ t, N ~ · 558.54 15.51 0.0004278014 16 

φi ~ t, pi ~ t, 𝑏𝑖  ~ ·, N ~ · 559.74 16.71 0.0002352059 29 
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φi ~ ·, pi ~ t, 𝑏𝑖  ~ t, N ~ · 562.63 19.60 0.00005546717 29 

φi ~ t, pi ~ ·, 𝑏𝑖  ~ t, N ~ · 565.37 22.34 0.00001410018 28 

φi ~ t, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 568.40 25.37 0.000003088310 16 

φi ~ ·, pi ~ ·, 𝑏𝑖  ~ ·, N ~ · 577.97 34.94 0.00000002584792 4 

φi ~ t, pi ~ t, 𝑏𝑖  ~ t, N ~ · 584.28 41.25 0.000000001101937 41 
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Supplementary Table 2.5. The estimated population size (𝑵̂𝒊) of Bombus terrestris, with 95% confidence 

intervals, for each sampling period during the seven-day MRR experiment. 

Sampling period 𝑁̂𝑖  - 95% CI + 95% CI 

1 18.38981 7.335439 46.10289 

2 21.93581 10.31011 46.67067 

3 14.25879 7.082498 28.70639 

4 18.02232 10.09693 32.1686 

5 12.52032 6.657191 23.54723 

6 16.3754 9.527884 28.14409 

7 11.78872 6.348654 21.89028 

8 15.68232 9.140322 26.90661 

9 11.48084 6.206107 21.23869 

10 15.39065 8.962471 26.42933 

11 11.35127 6.153235 20.94042 

12 15.26791 8.892972 26.21272 

13 11.29674 6.136774 20.79535 

14 15.21625 8.868403 26.10778 

 

Supplementary Table 2.6. The estimated population size (𝑵̂𝒊) of Sphaerophoria scripta, with 95% 

confidence intervals, for each sampling period during the seven-day MRR experiment. 

Sampling period 𝑁̂𝑖  - 95% CI + 95% CI 

1 434.93 250.77 754.33 

2 432.71 258.09 725.45 

3 234.89 152.30 362.25 

4 241.62 163.51 357.05 

5 138.78 94.78 203.20 

6 149.82 106.89 209.99 

7 92.61 62.27 137.73 

8 105.71 73.75 151.54 

9 70.42 45.40 109.24 

10 84.52 56.27 126.97 

11 59.77 37.18 96.09 

12 74.34 47.70 115.88 

13 54.65 33.78 89.74 

14 69.45 43.61 110.60 
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Supplementary Table 2.7. The estimated population size (𝑵̂𝒊) of Eupeodes corollae, with 95% confidence 

intervals, for each sampling period during the seven-day MRR experiment. 

Sampling period 𝑁̂𝑖 - 95% CI + 95% CI 

1 58.68 8.39 410.22 

2 92.53 26.73 320.29 

3 89.65 44.32 181.33 

4 122.41 74.94 199.95 

5 106.99 61.42 186.37 

6 139.13 81.88 236.40 

7 116.70 58.69 232.02 

8 148.49 77.02 286.25 

9 122.13 55.66 267.95 

10 153.72 73.48 321.61 

11 125.17 53.73 291.58 

12 156.66 71.30 344.18 

13 126.87 52.54 306.34 

14 158.30 69.98 358.08 

 

Supplementary Table 2.8. The estimated population size (𝑵̂𝒊) of Halictus phryganicus (unconstrained), 

with 95% confidence intervals, for each sampling period during the seven-day MRR experiment. 

Sampling period 𝑁̂𝑖  - 95% CI + 95% CI 

1 9.00 9.00 9.00 

2 8.17 8.17 8.17 

3 0.99 0.99 0.99 

4 0.52-14 0.52-14 0.52-14 

5 3.99 3.99 3.99 

6 0.52-12 0.52-12 0.52-12 

7 3.00 3.00 3.00 

8 3.01 3.01 3.01 

9 54.25 54.25 54.25 

10 54.25 54.25 54.25 

11 7.99 7.99 7.99 

12 0.56-12 0.56-12 0.56-12 

13 3.99 3.99 3.99 

14 0.86-12 0.86-12 0.86-12 
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Supplementary Table 2.9. The estimated population size (𝑵̂𝒊) of Halictus phryganicus (constrained), 

with 95% confidence intervals, for each sampling period during the seven-day MRR experiment. 

Sampling period 𝑁̂𝑖  - 95% CI + 95% CI 

1 499.89 99.27 2517.26 

2 499.11 99.21 2511.00 

3 487.42 97.82 2428.85 

4 486.66 97.70 2424.14 

5 475.26 95.53 2364.54 

6 474.52 95.36 2361.28 

7 463.41 92.46 2322.68 

8 462.68 92.24 2320.77 

9 451.85 88.71 2301.49 

10 451.14 88.46 2300.80 

11 440.58 84.43 2299.01 

12 439.88 84.15 2299.44 

13 429.59 79.78 2313.26 

14 428.91 79.48 2314.66 
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Appendix 3. 

Supplementary Table 3.1. The identity of each floral species found during each survey, along with each species’ definition of a floral unit, the 

mean number of florets per floral unit, the mean volume of nectar sugar produced per floret per 24-hours (µl) (taken primarily from Baude, 

Kunin, & Memmott (2015)), and the mean volume of nectar sugar produced per floral unit per 24-hours (µl) (mean number of florets per floral 

unit multiplied by the mean volume of nectar sugar produced per floret per 24-hours). 

Date Site Binomial Floral unit 
definition 

Mean no. of 
florets/floral 
unit 

Mean vol. of nectar 
sugar 
produced/day/floret 
(µl) 

Mean vol. of nectar 
sugar 
produced/day/floral 
unit (µl) 

26/08/2017 Farnley Hall Park Bellis perennis Single capitulum 95 0.841424157 79.93529492 

27/08/2017 Kirkstall Abbey Taraxacum spp. Single capitulum 206.4 22.57258633 4658.981819 

28/08/2017 Meanwood farm Senecio jacobaea Single capitulum 24.4 22.59852245 551.4039478 

28/08/2017 Meanwood road Bellis perennis Single capitulum 95 0.841424157 79.93529492  
 Taraxacum spp. Single capitulum 206.4 22.57258633 4658.981819  
 Trifolium repens Single raceme 22.7 48.96555613 1111.518124 

01/09/2017 Asket Hill NA NA NA NA NA 

02/09/2017 Temple Newsam Taraxacum spp. Single capitulum 206.4 22.57258633 4658.981819 

04/09/2017 Water Haigh Ranunculus repens Single flower 1 104.5103816 104.5103816  
 Taraxacum spp. Single capitulum 206.4 22.57258633 4658.981819  
 Trifolium pratense Single raceme 24.1 116.8559138 2816.227523 

06/09/2017 Skelton wood Cirsium vulgare Single capitulum 195.2 76.51305191 14935.34773  
 Lotus corniculatus Single flower 1 61.82363977 61.82363977  
 Ranunculus repens Single flower 1 104.5103816 104.5103816  
 Senecio jacobaea Single capitulum 24.4 22.59852245 551.4039478 

12/09/2017 Rothwell Country 
Park 

Anagallis arvensis Single flower 1 0 0 

 
 Lotus corniculatus Single flower 1 61.82363977 61.82363977  
 Trifolium pratense Single raceme 24.1 116.8559138 2816.227523 

15/09/2017 Rothwell pastures Lotus corniculatus Single flower 1 61.82363977 61.82363977  
 Taraxacum spp. Single capitulum 206.4 22.57258633 4658.981819  
 Trifolium pratense Single raceme 24.1 116.8559138 2816.227523 
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17/09/2017 Killingbeck fields Heracleum 
sphondylium 

Single umbel 14.66666667 98.16742963 1439.788968 

 
 Trifolium pratense Single raceme 24.1 116.8559138 2816.227523 

19/09/2017 Halton Moor Taraxacum spp. Single capitulum 206.4 22.57258633 4658.981819 

20/09/2017 Primrose Valley NA NA NA NA NA 

27/06/2018 Meanwood Grove Lotus corniculatus Single flower 1 61.82363977 61.82363977  
 Ranunculus repens Single flower 1 104.5103816 104.5103816  
 Trifolium dubium Single raceme 14.8 0 0 

02/07/2018 Farnley Hall Park NA NA NA NA NA 

03/07/2018 Temple Newsam Leucanthemum 
vulgare 

Single capitulum 135.2 15.81 2137.512 

04/07/2018 Bramley Fall Park Heracleum 
sphondylium 

Single umbel 14.66666667 98.16742963 1439.788968 

31/07/2018 Kirkstall Abbey Plantago 
lanceolata 

Single stem 3 2.666406005 7.999218015 

  
Taraxacum spp. Single capitulum 206.4 22.57258633 4658.981819 

03/08/2018 Rothwell pastures Lotus corniculatus Single flower 1 61.82363977 61.82363977   
Senecio jacobaea Single capitulum 24.4 22.59852245 551.4039478 

01/09/2018 Water Haigh Leontodon 
autumnalis 

Single capitulum 37.2 13.70236274 509.7278939 
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Supplementary Table 3.2. The relative abundance of floral species within a two-meter radius of each acoustic pan trapping station per survey 

visit. Relative abundance is measured as the total number of florets present per species. 

Date Site Binomial Station 1 Station 2 Station 3 Station 4 Station 5 

26/08/2017 Farnley Hall Park Bellis perennis 0 95 0 190 0 

27/08/2017 Kirkstall Abbey Taraxacum spp. 0 0 619.2 206.4 619.2 

28/08/2017 Meanwood farm Senecio jacobaea 561.2 0 902.8 0 0 

28/08/2017 Meanwood road Bellis perennis 570 380 0 190 380   
Taraxacum spp. 412.8 0 206.4 0 0   
Trifolium repens 0 0 0 0 68.1 

01/09/2017 Asket Hill NA 0 0 0 0 0 

02/09/2017 Temple Newsam Taraxacum spp. 1857.6 825.6 0 206.4 825.6 

04/09/2017 Water Haigh Ranunculus repens 0 0 0 0 3   
Taraxacum spp. 825.6 0 0 0 0   
Trifolium pratense 1397.8 2482.3 313.3 24.1 48.2 

06/09/2017 Skelton wood Cirsium vulgare 0 0 0 585.6 0   
Lotus corniculatus 10 16 2 0 2   
Ranunculus repens 0 0 1 0 1   
Senecio jacobaea 0 0 0 0 536.8 

12/09/2017 Rothwell Country 
Park 

Anagallis arvensis 0 0 3 0 0 

  
Lotus corniculatus 8 11 0 15 0   
Trifolium pratense 0 144.6 0 120.5 0 

15/09/2017 Rothwell pastures Lotus corniculatus 3 0 0 0 1   
Taraxacum spp. 0 0 0 0 206.4   
Trifolium pratense 0 0 0 0 168.7 

17/09/2017 Killingbeck fields Heracleum sphondylium 220.00000
01 

0 0 0 0 

  
Trifolium pratense 0 0 361.5 0 0 

19/09/2017 Halton Moor Taraxacum spp. 0 0 0 619.2 0 

20/09/2017 Primrose Valley Park NA 0 0 0 0 0 
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27/06/2018 Meanwood Grove Lotus corniculatus 166 4 0 0 0   
Ranunculus repens 3 1 0 0 5   
Trifolium dubium 236.8 0 0 0 0 

02/07/2018 Farnley Hall Park NA 0 0 0 0 0 

03/07/2018 Temple Newsam Leucanthemum vulgare 135.2 2704 811.2 0 0 

04/07/2018 Bramley Fall Park Heracleum sphondylium 220.00000
01 

29.333333
34 

29.333333
34 

0 0 

31/07/2018 Kirkstall Abbey Plantago lanceolata 0 0 0 0 3   
Taraxacum spp. 4953.6 2683.2 5985.6 1032 1857.6 

03/08/2018 Rothwell pastures Lotus corniculatus 84 0 10 6 0   
Senecio jacobaea 0 0 0 0 268.4 

01/09/2018 Water Haigh Leontodon autumnalis 0 74.4 37.2 0 0 
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Supplementary Figure 3.1. The number of clustered buzzes per hour plotted against hourly temperature 

(°C). The black line displays a linear relationship (± 95% confidence intervals), the red line displays a 

second-order polynomial relationship (± 95% confidence intervals). 

 

 

Supplementary Figure 3.2. The number of clustered buzzes per hour plotted against hourly wind speed 

(mph). The black line displays a linear relationship (± 95% confidence intervals), the red line displays a 

second-order polynomial relationship (± 95% confidence intervals). 
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Supplementary Table 3.3. The total volume of nectar sugar produced per 24 hours (µl) within a two-meter radius of each acoustic pan trapping 

station per survey visit. Along with the mean volume of nectar sugar produced per 24 hours (µl) across all acoustic pan trapping stations per 

survey visit. 

Date Site Station 1 Station 2 Station 3 Station 4 Station 5 Total 

26/08/2017 Farnley Hall Park 0 79.93529492 0 159.8705898 0 239.8058847 

28/08/2017 Kirkstall Abbey 0 0 13976.94546 4658.981819 13976.94546 32612.87273 

28/08/2017 Meanwood farm 12682.2908 0 20401.94607 0 0 33084.23687 

28/08/2017 Meanwood road 9797.575407 319.7411797 4658.981819 159.8705898 3654.295552 18590.46455 

01/09/2017 Asket Hill 0 0 0 0 0 0 

02/09/2017 Temple Newsam 41930.83637 18635.92727 0 4658.981819 18635.92727 83861.67273 

04/09/2017 Water Haigh 181977.1236 290071.4348 36610.95779 2816.227523 5945.98619 517421.7299 

06/09/2017 Skelton wood 618.2363977 989.1782363 228.1576611 44806.0432 12359.04451 59000.66001 

12/09/2017 Rothwell Country Park 494.5891182 17577.42517 0 15008.49221 0 33080.5065 

15/09/2017 Rothwell pastures 185.4709193 0 0 0 24434.39812 24619.86904 

17/09/2017 Killingbeck fields 21596.83452 0 42243.41284 0 0 63840.24736 

19/09/2017 Halton Moor 0 0 0 13976.94546 0 13976.94546 

20/09/2017 Primrose Valley Park 0 0 0 0 0 0 

27/06/2018 Meanwood Grove 10576.25535 351.8049407 0 0 522.551908 11450.6122 

02/07/2018 Farnley Hall Park 0 0 0 0 0 0 

03/07/2018 Temple Newsam 2137.512 42750.24 12825.072 0 0 57712.824 

04/07/2018 Bramley Fall Park 21596.83452 2879.577936 2879.577936 0 0 27355.9904 

31/07/2018 Kirkstall Abbey 111815.5636 60566.76364 135110.4727 23294.90909 41938.83558 372726.5447 

03/08/2018 Rothwell pastures 5193.185741 0 618.2363977 370.9418386 6065.443426 12247.8074 

01/09/2018 Water Haigh 0 1019.455788 509.7278939 0 0 1529.183682 
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Supplementary Table 3.4. The site name, acoustic pan trapping station, hour of the day, and estimated activity level associated with each of the 

seventy-five hour-long soundscape recordings within the data subset used to quantify the number of true positives (TP), false positives (FP), and 

false negatives (FN), and therefore the true positive rate (TPR), false positive rate (FPR), and the false negative rate (FNR). Also displayed are the 

number of insect signals used the train the relevant site-specific Specialist Insect Classifier (SIC), and the number of clustered buzzes present. 

Date Site Station Hour Activity Training 
buzzes 

Clustered 
buzzes 

TP FP FN TPR FPR FNR 

20/09/2017 Primrose 
Valley Park 

4 10:00:00 Low 224 2 0 2 0 NA 0.011 NA 

28/08/2017 Meanwood 
road 

5 16:00:00 Low 33 7 3 4 3 0.500 0.071 0.500 

27/08/2017 Kirkstall 
Abbey 

1 16:00:00 Low 16 5 0 5 3 0.000 0.030 1.000 

19/09/2017 Halton Moor 5 12:00:00 Low 30 5 1 4 0 1.000 0.016 0.000 

28/08/2017 Meanwood 
road 

4 08:00:00 Low 33 2 2 0 4 0.333 0.000 0.667 

26/08/2017 Farnley Hall 
Park 

4 09:00:00 Low 31 6 2 4 15 0.118 0.011 0.882 

31/07/2018 Kirkstall 
Abbey 

1 09:00:00 Low 48 4 0 4 1 0.000 0.075 1.000 

19/09/2017 Halton Moor 3 15:00:00 Low 30 4 0 4 0 NA 0.022 NA 

27/08/2017 Kirkstall 
Abbey 

3 12:00:00 Low 16 3 3 0 7 0.300 0.000 0.700 

19/09/2017 Halton Moor 5 13:00:00 Low 30 2 1 1 0 1.000 0.004 0.000 

31/07/2018 Kirkstall 
Abbey 

5 15:00:00 Low 48 7 7 0 8 0.467 0.000 0.533 

02/09/2017 Temple 
Newsam 

4 15:00:00 Low 22 5 1 4 0 1.000 0.015 0.000 

19/09/2017 Halton Moor 3 13:00:00 Low 30 7 4 3 13 0.235 0.006 0.765 

27/08/2017 Kirkstall 
Abbey 

2 16:00:00 Low 16 0 0 0 0 NA 0.000 NA 

12/09/2017 Rothwell 
Country Park 

3 09:00:00 Low 59 0 0 0 0 NA 0.000 NA 
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03/08/2018 Rothwell 
pastures 

5 11:00:00 Low 28 2 2 0 10 0.167 0.000 0.833 

27/08/2017 Kirkstall 
Abbey 

1 12:00:00 Low 16 4 1 3 5 0.167 0.038 0.833 

20/09/2017 Primrose 
Valley Park 

5 16:00:00 Low 224 5 0 5 0 NA 0.029 NA 

27/08/2017 Kirkstall 
Abbey 

5 16:00:00 Low 16 4 1 3 0 1.000 0.021 0.000 

01/09/2017 Asket Hill 2 17:00:00 Low 114 6 0 6 0 NA 0.400 NA 

27/08/2017 Kirkstall 
Abbey 

4 12:00:00 Low 16 3 1 2 4 0.200 0.014 0.800 

17/09/2017 Killingbeck 
fields 

2 15:00:00 Low 47 3 0 3 3 0.000 0.014 1.000 

03/08/2018 Rothwell 
pastures 

1 11:00:00 Low 28 3 3 0 30 0.091 0.000 0.909 

19/09/2017 Halton Moor 2 09:00:00 Low 30 1 0 1 0 NA 0.037 NA 

17/09/2017 Killingbeck 
fields 

2 10:00:00 Low 47 3 0 3 0 NA 0.029 NA 

06/09/2017 Skelton wood 5 16:00:00 Medium 178 11 0 11 0 NA 0.212 NA 

20/09/2017 Primrose 
Valley Park 

5 11:00:00 Medium 224 9 2 7 2 0.500 0.024 0.500 

20/09/2017 Primrose 
Valley Park 

4 16:00:00 Medium 224 24 0 24 1 0.000 0.048 1.000 

28/08/2017 Meanwood 
road 

2 11:00:00 Medium 33 25 3 22 5 0.375 0.094 0.625 

19/09/2017 Halton Moor 1 14:00:00 Medium 30 19 0 19 1 0.000 0.019 1.000 

01/09/2018 Water Haigh 1 11:00:00 Medium 54 9 4 5 15 0.211 0.057 0.789 

27/08/2017 Kirkstall 
Abbey 

4 15:00:00 Medium 16 10 1 9 1 0.500 0.035 0.500 

26/08/2017 Farnley Hall 
Park 

2 14:00:00 Medium 31 18 2 16 0 1.000 0.035 0.000 

03/07/2018 Temple 
Newsam 

5 10:00:00 Medium 33 35 5 30 37 0.119 0.028 0.881 
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28/08/2017 Meanwood 
road 

1 10:00:00 Medium 33 30 0 30 1 0.000 0.180 1.000 

02/07/2018 Farnley Hall 
Park 

2 13:00:00 Medium 31 35 0 35 2 0.000 0.044 1.000 

01/09/2018 Water Haigh 4 11:00:00 Medium 54 10 0 10 3 0.000 0.023 1.000 

03/07/2018 Temple 
Newsam 

1 16:00:00 Medium 33 10 0 10 3 0.000 0.043 1.000 

27/06/2018 Meanwood 
Grove 

3 12:00:00 Medium 78 35 23 12 93 0.198 0.023 0.802 

12/09/2017 Rothwell 
Country Park 

3 16:00:00 Medium 59 19 13 6 10 0.565 0.031 0.435 

03/08/2018 Rothwell 
pastures 

3 10:00:00 Medium 28 19 19 0 178 0.096 0.000 0.904 

04/09/2017 Water Haigh 3 14:00:00 Medium 145 19 2 17 1 0.667 0.101 0.333 

19/09/2017 Halton Moor 1 09:00:00 Medium 30 14 1 13 1 0.500 0.053 0.500 

31/07/2018 Kirkstall 
Abbey 

4 10:00:00 Medium 48 12 0 12 0 NA 0.023 NA 

01/09/2017 Asket Hill 5 15:00:00 Medium 114 34 5 29 9 0.357 0.207 0.643 

12/09/2017 Rothwell 
Country Park 

4 12:00:00 Medium 59 14 3 11 8 0.273 0.042 0.727 

12/09/2017 Rothwell 
Country Park 

4 16:00:00 Medium 59 22 12 10 24 0.333 0.063 0.667 

03/07/2018 Temple 
Newsam 

4 09:00:00 Medium 33 25 4 21 33 0.108 0.036 0.892 

27/08/2017 Kirkstall 
Abbey 

4 13:00:00 Medium 16 8 0 8 0 NA 0.036 NA 

15/09/2017 Rothwell 
pastures 

4 12:00:00 Medium 30 30 4 26 7 0.364 0.084 0.636 

27/06/2018 Meanwood 
Grove 

4 12:00:00 High 78 44 26 18 84 0.236 0.030 0.764 

02/07/2018 Farnley Hall 
Park 

5 13:00:00 High 31 53 0 53 1 0.000 0.058 1.000 
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28/08/2017 Meanwood 
farm 

4 15:00:00 High 364 49 14 35 9 0.609 0.082 0.391 

01/09/2017 Asket Hill 2 16:00:00 High 114 107 0 107 0 NA 0.132 NA 

27/06/2018 Meanwood 
Grove 

4 15:00:00 High 78 37 22 15 72 0.234 0.034 0.766 

28/08/2017 Meanwood 
farm 

4 14:00:00 High 364 70 16 54 3 0.842 0.120 0.158 

28/08/2017 Meanwood 
farm 

2 11:00:00 High 364 36 6 30 2 0.750 0.048 0.250 

15/09/2017 Rothwell 
pastures 

2 10:00:00 High 30 67 0 67 0 NA 0.092 NA 

02/07/2018 Farnley Hall 
Park 

2 14:00:00 High 31 37 1 36 3 0.250 0.049 0.750 

04/07/2018 Bramley Fall 
Park 

4 09:00:00 High 511 107 39 68 30 0.565 0.108 0.435 

04/07/2018 Bramley Fall 
Park 

1 16:00:00 High 511 101 90 11 52 0.634 0.078 0.366 

04/07/2018 Bramley Fall 
Park 

3 10:00:00 High 511 185 78 107 57 0.578 0.092 0.422 

03/07/2018 Temple 
Newsam 

2 11:00:00 High 33 37 29 8 36 0.446 0.009 0.554 

28/08/2017 Meanwood 
farm 

3 13:00:00 High 364 44 6 38 2 0.750 0.063 0.250 

04/07/2018 Bramley Fall 
Park 

2 11:00:00 High 511 414 336 78 54 0.862 0.104 0.138 

28/08/2017 Meanwood 
road 

5 12:00:00 High 33 60 52 8 29 0.642 0.086 0.358 

27/06/2018 Meanwood 
Grove 

4 11:00:00 High 78 61 53 8 209 0.202 0.006 0.798 

04/07/2018 Bramley Fall 
Park 

3 11:00:00 High 511 137 58 79 25 0.699 0.114 0.301 

15/09/2017 Rothwell 
pastures 

5 10:00:00 High 30 99 0 99 0 NA 0.131 NA 
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04/07/2018 Bramley Fall 
Park 

3 12:00:00 High 511 187 125 62 50 0.714 0.132 0.286 

04/07/2018 Bramley Fall 
Park 

5 14:00:00 High 511 505 448 57 220 0.671 0.107 0.329 

04/07/2018 Bramley Fall 
Park 

4 11:00:00 High 511 203 115 88 81 0.587 0.111 0.413 

28/08/2017 Meanwood 
farm 

3 15:00:00 High 364 69 4 65 3 0.571 0.112 0.429 

01/09/2017 Asket Hill 3 13:00:00 High 114 36 29 7 19 0.604 0.038 0.396 

27/06/2018 Meanwood 
Grove 

3 10:00:00 High 78 52 44 8 208 0.175 0.007 0.825 
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Supplementary table 3.5. Pairwise comparisons between four measures of acoustic insect activity: 

manual counts of insect buzzes per hour, the number of insect buzzes clustered per hour by 

Kaleidoscope Pro (clustered insects), the number of true positives therein, and the number of total 

detected insects (true positives + false negatives), within the low estimated activity category. Bold 

values indicate significant pairwise comparisons, where the 95% confidence intervals do not overlap 

zero. 

Pairwise comparison Parameter 

estimate 

95% CI 

True positives -- Clustered insects -1.4191 [-2.1822, -0.6559] 

Detected insects -- Clustered insects -0.1221 [-0.7610, 0.5168] 

Manual count -- Clustered insects 1.2157 [0.6237, 1.8077] 

Detected insects -- True positives 1.2970 [0.5702, 2.0238] 

Manual count -- True positives 2.6348 [1.9307, 3.3389] 

Manual count -- Detected insects 1.3378 [0.7747, 1.9010] 

 

 

Supplementary table 3.6. Pairwise comparisons between four measures of acoustic insect activity: 

manual counts of insect buzzes per hour, the number of insect buzzes clustered per hour by 

Kaleidoscope Pro (clustered insects), the number of true positives therein, and the number of total 

detected insects (true positives + false negatives), within the medium estimated activity category. Bold 

values indicate significant pairwise comparisons, where the 95% confidence intervals do not overlap 

zero. 

Pairwise comparison Parameter 

estimate 

95% CI 

True positives -- Clustered insects -2.3193 [-2.9475, -1.6911] 

Detected insects -- Clustered insects -1.0204 [-1.5882, -0.4525] 

Manual count -- Clustered insects -0.2072 [-0.7385, 0.3241] 

Detected insects -- True positives 1.2989 [0.7025  1.8954] 

Manual count -- True positives 2.1121 [1.5183  2.7058] 

Manual count -- Detected insects 0.8131 [0.2914  1.3348] 
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Table 3.7. Pairwise comparisons between four measures of acoustic insect activity: manual counts of 

insect buzzes per hour, the number of insect buzzes clustered per hour by Kaleidoscope Pro (clustered 

insects), the number of true positives therein, and the number of total detected insects (true positives + 

false negatives), within the high estimated activity category. Bold values indicate significant pairwise 

comparisons, where the 95% confidence intervals do not overlap zero. 

Pairwise comparison Parameter 

estimate 

95% CI 

True positives -- Clustered insects -1.46609 [-2.16375, -0.76841] 

Detected insects -- Clustered insects -0.80659 [-1.50983, -0.10335] 

Manual count -- Clustered insects -0.06355 [-0.73982, 0.61272] 

Detected insects -- True positives 0.65950 [0.05298, 1.26602] 

Manual count -- True positives 1.40254 [0.78558, 2.01950] 

Manual count -- Detected insects 0.74304 [0.13529, 1.35080] 
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Supplementary Table 3.8. The site name, acoustic pan trapping station, hour of the day, and estimated activity level associated with each of the 

seventy-five hour-long soundscape recordings within the data subset used to manually quantify the number of insect buzzes present within each 

recording (manual counts) and calculate the number and proportion of buzzes that were either not detected by Kaleidoscope Pro (undetected) 

or not correctly clustered by Kaleidoscope Pro (unclustered). Also displayed are the number of insect signals used the train the relevant site-

specific Specialist Insect Classifiers (SIC), and the number of clustered buzzes present. 

Date Site Station Hour Activity Training 
buzzes 

Detected 
buzzes 

Manual 
counts 

Undetected 
buzzes 

Prop. 
undetected 

Unclustered 
buzzes 

Prop.  
unclustered 

20/09/2017 Primrose 
Valley Park 

4 10:00:00 Low 224 0 5 5 1.000 5 1.000 

28/08/2017 Meanwood 
road 

5 16:00:00 Low 33 6 10 4 0.400 7 0.700 

27/08/2017 Kirkstall Abbey 1 16:00:00 Low 16 3 13 10 0.769 13 1.000 

19/09/2017 Halton Moor 5 12:00:00 Low 30 1 27 26 0.963 26 0.963 

28/08/2017 Meanwood 
road 

4 08:00:00 Low 33 6 17 11 0.647 15 0.882 

26/08/2017 Farnley Hall 
Park 

4 09:00:00 Low 31 17 40 23 0.575 38 0.950 

31/07/2018 Kirkstall Abbey 1 09:00:00 Low 48 1 9 8 0.889 9 1.000 

19/09/2017 Halton Moor 3 15:00:00 Low 30 0 0 0 NA 0 NA 

27/08/2017 Kirkstall Abbey 3 12:00:00 Low 16 10 26 16 0.615 23 0.885 

19/09/2017 Halton Moor 5 13:00:00 Low 30 1 22 21 0.955 21 0.955 

31/07/2018 Kirkstall Abbey 5 15:00:00 Low 48 15 19 4 0.211 12 0.632 

02/09/2017 Temple 
Newsam 

4 15:00:00 Low 22 1 31 30 0.968 30 0.968 

19/09/2017 Halton Moor 3 13:00:00 Low 30 17 38 21 0.553 34 0.895 

27/08/2017 Kirkstall Abbey 2 16:00:00 Low 16 0 2 2 1.000 2 1.000 

12/09/2017 Rothwell 
Country Park 

3 09:00:00 Low 59 0 4 4 1.000 4 1.000 

03/08/2018 Rothwell 
pastures 

5 11:00:00 Low 28 12 63 51 0.810 61 0.968 

27/08/2017 Kirkstall Abbey 1 12:00:00 Low 16 6 32 26 0.813 31 0.969 
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20/09/2017 Primrose 
Valley Park 

5 16:00:00 Low 224 0 1 1 1.000 1 1.000 

27/08/2017 Kirkstall Abbey 5 16:00:00 Low 16 1 7 6 0.857 6 0.857 

01/09/2017 Asket Hill 2 17:00:00 Low 114 0 0 0 NA 0 NA 

27/08/2017 Kirkstall Abbey 4 12:00:00 Low 16 5 11 6 0.545 10 0.909 

17/09/2017 Killingbeck 
fields 

2 15:00:00 Low 47 3 5 2 0.400 5 1.000 

03/08/2018 Rothwell 
pastures 

1 11:00:00 Low 28 33 80 47 0.588 77 0.963 

19/09/2017 Halton Moor 2 09:00:00 Low 30 0 0 0 NA 0 NA 

17/09/2017 Killingbeck 
fields 

2 10:00:00 Low 47 0 1 1 1.000 1 1.000 

06/09/2017 Skelton wood 5 16:00:00 Medium 178 0 2 2 1.000 2 1.000 

20/09/2017 Primrose 
Valley Park 

5 11:00:00 Medium 224 4 7 3 0.429 5 0.714 

20/09/2017 Primrose 
Valley Park 

4 16:00:00 Medium 224 1 2 1 0.500 2 1.000 

28/08/2017 Meanwood 
road 

2 11:00:00 Medium 33 8 16 8 0.500 13 0.813 

19/09/2017 Halton Moor 1 14:00:00 Medium 30 1 4 3 0.750 4 1.000 

01/09/2018 Water Haigh 1 11:00:00 Medium 54 19 22 3 0.136 18 0.818 

27/08/2017 Kirkstall Abbey 4 15:00:00 Medium 16 2 5 3 0.600 4 0.800 

26/08/2017 Farnley Hall 
Park 

2 14:00:00 Medium 31 2 13 11 0.846 11 0.846 

03/07/2018 Temple 
Newsam 

5 10:00:00 Medium 33 42 97 55 0.567 92 0.948 

28/08/2017 Meanwood 
road 

1 10:00:00 Medium 33 1 4 3 0.750 4 1.000 

02/07/2018 Farnley Hall 
Park 

2 13:00:00 Medium 31 2 24 22 0.917 24 1.000 

01/09/2018 Water Haigh 4 11:00:00 Medium 54 3 20 17 0.850 20 1.000 
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03/07/2018 Temple 
Newsam 

1 16:00:00 Medium 33 3 12 9 0.750 12 1.000 

27/06/2018 Meanwood 
Grove 

3 12:00:00 Medium 78 116 185 69 0.373 162 0.876 

12/09/2017 Rothwell 
Country Park 

3 16:00:00 Medium 59 23 34 11 0.324 21 0.618 

03/08/2018 Rothwell 
pastures 

3 10:00:00 Medium 28 197 197 0 0.000 178 0.904 

04/09/2017 Water Haigh 3 14:00:00 Medium 145 3 22 19 0.864 20 0.909 

19/09/2017 Halton Moor 1 09:00:00 Medium 30 2 7 5 0.714 6 0.857 

31/07/2018 Kirkstall Abbey 4 10:00:00 Medium 48 0 2 2 1.000 2 1.000 

01/09/2017 Asket Hill 5 15:00:00 Medium 114 14 20 6 0.300 15 0.750 

12/09/2017 Rothwell 
Country Park 

4 12:00:00 Medium 59 11 20 9 0.450 17 0.850 

12/09/2017 Rothwell 
Country Park 

4 16:00:00 Medium 59 36 52 16 0.308 40 0.769 

03/07/2018 Temple 
Newsam 

4 09:00:00 Medium 33 37 74 37 0.500 70 0.946 

27/08/2017 Kirkstall Abbey 4 13:00:00 Medium 16 0 8 8 1.000 8 1.000 

15/09/2017 Rothwell 
pastures 

4 12:00:00 Medium 30 11 22 11 0.500 18 0.818 

27/06/2018 Meanwood 
Grove 

4 12:00:00 High 78 110 211 101 0.479 185 0.877 

02/07/2018 Farnley Hall 
Park 

5 13:00:00 High 31 1 14 13 0.929 14 1.000 

28/08/2017 Meanwood 
farm 

4 15:00:00 High 364 23 137 114 0.832 123 0.898 

01/09/2017 Asket Hill 2 16:00:00 High 114 0 4 4 1.000 4 1.000 

27/06/2018 Meanwood 
Grove 

4 15:00:00 High 78 94 348 254 0.730 326 0.937 

28/08/2017 Meanwood 
farm 

4 14:00:00 High 364 19 20 1 0.050 4 0.200 



298 
 

28/08/2017 Meanwood 
farm 

2 11:00:00 High 364 8 22 14 0.636 16 0.727 

15/09/2017 Rothwell 
pastures 

2 10:00:00 High 30 0 8 8 1.000 8 1.000 

02/07/2018 Farnley Hall 
Park 

2 14:00:00 High 31 4 19 15 0.789 18 0.947 

04/07/2018 Bramley Fall 
Park 

4 09:00:00 High 511 69 101 32 0.317 62 0.614 

04/07/2018 Bramley Fall 
Park 

1 16:00:00 High 511 142 216 74 0.343 126 0.583 

04/07/2018 Bramley Fall 
Park 

3 10:00:00 High 511 135 195 60 0.308 117 0.600 

03/07/2018 Temple 
Newsam 

2 11:00:00 High 33 65 247 182 0.737 218 0.883 

28/08/2017 Meanwood 
farm 

3 13:00:00 High 364 8 68 60 0.882 62 0.912 

04/07/2018 Bramley Fall 
Park 

2 11:00:00 High 511 390 394 4 0.010 58 0.147 

28/08/2017 Meanwood 
road 

5 12:00:00 High 33 81 97 16 0.165 45 0.464 

27/06/2018 Meanwood 
Grove 

4 11:00:00 High 78 262 282 20 0.071 229 0.812 

04/07/2018 Bramley Fall 
Park 

3 11:00:00 High 511 83 178 95 0.534 120 0.674 

15/09/2017 Rothwell 
pastures 

5 10:00:00 High 30 0 8 8 1.000 8 1.000 

04/07/2018 Bramley Fall 
Park 

3 12:00:00 High 511 175 260 85 0.327 135 0.519 

04/07/2018 Bramley Fall 
Park 

5 14:00:00 High 511 668 868 200 0.230 420 0.484 

04/07/2018 Bramley Fall 
Park 

4 11:00:00 High 511 196 306 110 0.359 191 0.624 

28/08/2017 Meanwood 
farm 

3 15:00:00 High 364 7 26 19 0.731 22 0.846 
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01/09/2017 Asket Hill 3 13:00:00 High 114 48 163 115 0.706 134 0.822 

27/06/2018 Meanwood 
Grove 

3 10:00:00 High 78 252 256 4 0.016 212 0.828 
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Table 3.9. Pairwise comparisons between the different hours of the day during which the 

experiment was conducted, across both 2017 and 2018, in terms of the number of insect 

buzzes clustered per hour by Kaleidoscope Pro. Bold values indicate significant pairwise 

comparisons, where the 95% confidence intervals do not overlap zero. 

Pairwise comparison Parameter estimate 95% CI 

09:00 -- 08:00 1.435 -0.389, 3.258 

10:00 -- 08:00 2.168 0.349, 3.987 

11:00 -- 08:00 2.274 0.448, 4.100 

12:00 -- 08:00 2.151 0.310, 3.992 

13:00 -- 08:00 2.085 0.239, 3.931 

14:00 -- 08:00 2.270 0.411, 4.129 

15:00 -- 08:00 2.239 0.373, 4.105 

16:00 -- 08:00 1.347 -0.529, 3.222 

17:00 -- 08:00 0.204 -1.851, 2.260 

10:00 -- 09:00 0.733 0.368, 1.099 

11:00 -- 09:00 0.839 0.424, 1.255 

12:00 -- 09:00 0.716 0.229, 1.204 

13:00 -- 09:00 0.650 0.138, 1.163 

14:00 -- 09:00 0.835 0.273, 1.397 

15:00 -- 09:00 0.804 0.214, 1.394 

16:00 -- 09:00 -0.088 -0.703, 0.527 

17:00 -- 09:00 -1.230 -2.265, -0.195 

11:00 -- 10:00 0.106 -0.233, 0.445 

12:00 -- 10:00 -0.017 -0.408, 0.374 

13:00 -- 10:00 -0.083 -0.494, 0.327 

14:00 -- 10:00 0.102 -0.352, 0.556 

15:00 -- 10:00 0.071 -0.409, 0.551 

16:00 -- 10:00 -0.821 -1.330, -0.312 

17:00 -- 10:00 -1.964 -2.946, -0.981 

12:00 -- 11:00 -0.123 -0.468, 0.222 

13:00 -- 11:00 -0.189 -0.547, 0.169 

14:00 -- 11:00 -0.004 -0.395, 0.387 

15:00 -- 11:00 -0.035 -0.448, 0.378 

16:00 -- 11:00 -0.927 -1.371, -0.484 

17:00 -- 11:00 -2.070 -3.026, -1.113 

13:00 -- 12:00 -0.066 -0.397, 0.265 
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14:00 -- 12:00 0.119 -0.227, 0.465 

15:00 -- 12:00 0.088 -0.273, 0.449 

16:00 -- 12:00 -0.804 -1.195, -0.413 

17:00 -- 12:00 -1.946 -2.887, -1.006 

14:00 -- 13:00 0.185 -0.154, 0.524 

15:00 -- 13:00 0.154 -0.196, 0.505 

16:00 -- 13:00 -0.738 -1.118, -0.359 

17:00 -- 13:00 -1.880 -2.816, -0.945 

15:00 -- 14:00 -0.031 -0.367, 0.305 

16:00 -- 14:00 -0.923 -1.286, -0.560 

17:00 -- 14:00 -2.066 -2.998, -1.133 

16:00 -- 15:00 -0.892 -1.251, -0.533 

17:00 -- 15:00 -2.035 -2.966, -1.103 

17:00 -- 16:00 -1.142 -2.080, -0.205 
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