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Abstract

The study of dynamics on networks is a subject area that has wide-

reaching applications in areas such as epidemic outbreaks, rumour

spreading, and innovation diffusion. In this thesis I look at how to

both approximate and infer these dynamics. Specifically, I first ex-

plore mean-field approximations for SIS epidemic dynamics. I outline

several established approximations of varying complexity, before in-

vestigating how their accuracy depends on the network and dynam-

ical parameters. Next, I use a method called approximate lumping

to coarse-grain SIS dynamics, and I show how this method allows

us to derive mean-field approximations directly from the full master

equation description, rather than via ad hoc moment closures, as is

common. Finally, I consider inference of network dynamic parameters

on multilayer networks. I focus on a case study of SIS dynamics occur-

ring on a two-layer network, where the dynamics on one of the layers

is unobserved or “hidden”. My goal is to estimate the SIS parameters,

assuming I only have data about the events occurring on the visible

layer. To do this I develop several simpler approximate models of

the dynamics which have tractable likelihoods, and then use Markov

chain Monte Carlo routines to infer the most likely parameters for

these approximate dynamics.
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tions of SIS dynamics on an Erdős-Rényi network of N = 15 nodes,

starting with the entire network initially infected. The heatmap

shows how each of the 1000 simulations evolved until the time

t = 100. The counts are plotted on a log scale, where I have added

1 to the number of counts before taking logs (to avoid infinities).

The darker cells around I = 10 infected nodes shows how the sim-

ulations tend to cluster around this steady state value. As time

progresses, more of the solutions get absorbed by the disease-free

steady state, and so the cells representing I = 0 infected nodes

gradually get darker. The thick grey line shows the ensemble av-

erage. The black line shows the exact solution that is computed

by solving the full system of Kolmogorov equations. . . . . . . . . 36

2.3 Two heatmaps showing the results from simulation ensembles of
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Chapter 1

Introduction

1.1 Motivation

From its roots in graph theory, the science of networks is a subject that holds

real-world relevance across a huge number of applied fields, simply because con-

nected systems are everywhere. Networks appear extensively in biology, where

they can be used to model both large-scale structures such as ecosystems of inter-

acting species [7], or fine-scale structures such as amino acids and protein-protein

interactions [8]. Networks appear in sociology, where they can be used to describe

the social ties between people [9]. Notably, social media has led to the creation of

online social networks, which can be mined to create huge network data sets and

which have opened up unique opportunities for the marketing and advertising

sectors [10, 11]. Network medicine is an emerging field which connects together

symptoms and treatments in an attempt to identify, prevent and treat disease

[12]. Networks can even describe many practical structures in society, such as

transport systems [13] and energy grids [14].

Networks have particularly wide-reaching applications in the study of different

dynamical systems. Many dynamical processes occur on a connected system,

and incorporating information about the underlying network into any model of

the process will provide a more accurate picture. Phenomena that have been

modelled this way include epidemic dynamics [15], opinion dynamics [16], rumour

spreading [17], the spread of memes online [18], the diffusion of innovation [19],

racial segregation [20] and even the evolution of language [21]. This thesis was

1
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largely inspired by social contagion dynamics, because this PhD project was a

CASE partnership with Jaywing Intelligence, a data-led insight and marketing

agency based in Leeds. A discussion of how the work in this thesis might be used

in this industry context, and open questions relating to this application, feature

in the conclusions in Chapter 6.

The thesis will also focus on dynamical processes largely used in the study of

epidemic dynamics. This research area has proved especially topical over the last

few years during the COVID-19 pandemic, where the use of models of disease

spread in social and transport networks to estimate infection rates and predict

the effects of interventions [22] has had literally life-or-death consequences. This

focus is also relevant to the social contagion context, as some social contagion

models are inspired in part by common epidemic models. I will elaborate on this

point in Section 1.3.2.

In this thesis, I will explore several problems around the subject of approxi-

mating and inferring dynamics on networks. To this end, the next few sections

will introduce some basic network concepts and structures. A majority of these

definitions can be found in the core text by Newman [23], but I have aimed to

relate these ideas to real-world networks to show their relevance. I will also sum-

marise some of the dynamical processes most commonly modelled on networks,

and the broad approaches used to solve these systems. The final section of this

chapter will provide a breakdown of the thesis, and will introduce the questions

I will be looking to answer in this work.

1.2 Networks

1.2.1 Notation

A graph (or network) can be described as an ordered pair G = (V,E) comprising

a set V of n vertices (or nodes), and a set E of m edges (or links). If i, j ∈ V are

vertices then the edge (i, j) ∈ E if and only if i and j are connected. If i and j

are connected we say that j is adjacent to i, and j is i’s neighbour. If a vertex i

is one of the two endpoints of an edge, we say that the vertex is incident to the
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edge. I will use the words graph and network interchangeably during this thesis,

and similarly for node and vertex, and edge and link.

Edges can be directed or undirected, depending on the nature of the relation-

ship. For example, if the vertices represent two employees, where an edge between

two vertices represents two employees working on a project together, then this

network is undirected, since if person A works with person B then person B also

works with person A. However, if the network edges instead represent one em-

ployee sending another employee an email, this network is directed: if person A

sends person B an email, this is not necessarily reciprocated by person B send-

ing person A an email. For directed networks, an edge (i, j) refers to a directed

connection from node i to node j, and it is distinct from the edge (j, i).

A simple graph does not have any self-edges (edges beginning and starting at

the same node) or multi-edges (multiple edges between the same pair of nodes).

A multigraph is a graph where multi-edges are allowed. If we have a situation

that is best modelled by defining different types of connections or relations, then

we might model this as a multilayer network, where nodes can exist on different

layers. A more detailed definition of multilayer networks will be provided in

Chapter 5.

A path is a sequence of vertices P = (v1, v2, ..., vl) such that vi is adjacent to

vi+1 for 1 ≤ i < l . A path from v1 to vl is a path of length l − 1. A path can

in general revisit a vertex, but if the path does not contain repeats of a vertex

then we call it a simple path. If we are considering a directed network, then the

sequence of vertices must be connected by edges that are all directed in the same

direction. A vertex j is reachable from a vertex i if there exists a path from i to

j. A cycle is a path wherein a vertex is reachable from itself.

A subgraph of a graph G is a graph formed from a subset of the vertices and

edges of G. A connected component of an undirected graph G is a subgraph of G

in which any two vertices belonging to the subgraph are connected to each other

by paths, and which is connected to no additional vertices in G. If the network is

directed we can define two types of components: strongly connected components,

where every vertex is reachable from every other vertex, and weakly connected

components, where every vertex is reachable from every other vertex only if the

directed network became undirected.
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Networks can be represented pictorially (see Figure 1.1 for an example), but

for the sake of calculating certain metrics, and particularly to store information

about a network in a computer, a numerical representation is useful. An adja-

cency matrix of a simple network is a matrix A with elements Aij where

Aij =

{
1 if there is an edge between vertices i and j,
0 otherwise.

For a network with multi-edges the matrix element Aij is equal to the number

of edges between i and j. For directed networks the matrix element Aij is equal

to 1 if there is an edge going from vertex i to vertex j, so Aij is not necessarily

equal to Aji. In later chapters I will sometimes equivalently use G and gij to

denote the adjacency matrix of a network and its elements, to avoid confusion

with other matrices labelled A introduced later.

Another way to represent a network is via an edge list, i.e. a list of all pairs

of nodes which are connected by an edge. If the network is directed then the pair

represents an edge going from the first node listed to the second node. If the

network is undirected then the order of the pair doesn’t matter.

Related to both of these concepts is the adjacency list. The adjacency list is

in fact a set of lists, containing for each vertex a list of the other vertices it is

connected to by an edge. This representation makes it very quick to identify a

vertex’s neighbours.

Figure 1.1 shows an example of a directed network, with the corresponding

adjacency matrix, edge list and adjacency list, to illustrate these different rep-

resentations. Which representation of the network is more convenient depends

on the application. For example, if we have to delete an edge between node i

and j in a network consisting of n nodes and m edges, this is an operation of

O(1) time-complexity if we store the network as an adjacency matrix, while it is

an operation of O
(
m
n

)
time-complexity if we store the data as an adjacency list.

However, if we have an algorithm that requires us to scan through the neighbours

of a node, the adjacency list is usually the better choice, since this operation has

time-complexity O
(
m
n

)
, which is an improvement on the O(n) complexity of the

same operation performed using the adjacency matrix.
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1
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(a) (b)

(c) (d)

Figure 1.1: An example of a directed network (a), along with the corresponding

adjacency matrix (b), the corresponding edge list (c), and the corresponding

adjacency list (d). Note that for a directed network, the adjacency list might

feature lists of the outgoing edges (as in this example), or it might feature lists

of the ingoing edges, or it might feature lists of each.

1.2.2 Metrics

The degree of a node is equal to the number of edges incident to it, with self-edges

counted twice. In a network with no self-edges, then the degree of a node is equal

to the number of adjacent nodes it has. Given an undirected graph G = (V,E)

where nodes have degree deg(i):∑
i∈V

deg(i) = 2|E|.

For directed networks we can distinguish between the in-degree of a node i, which

is the number of nodes connected to i by an edge pointing towards i, and the

out-degree of a node i, which is the number of nodes connected to i by an edge

5



1.2 Networks

pointing away from i. For example, in the context of social media a node’s in-

degree might represent the number of users who follow that individual, and the

node’s out-degree might represent the number of users who that user follows.

The degree distribution p(k) describes the fraction of nodes with degree k. If

the network is directed then one can distinguish between the in-degree distribu-

tion and the out-degree distribution. The degree distribution describes one aspect

of the large-scale structure of a network, but fails to tell us how the nodes connect

to each other and what kinds of patterns emerge from those connections. The

degree distribution of most real-world networks is characterised by having a few

nodes with very high degree, and a lot of nodes with very low degree, something

I will expand upon in the next section.

The global clustering coefficient describes the tendency of nodes to connect

with neighbours of their neighbours: it essentially tells us to what extent the ‘a

friend of my friend is also my friend’ principle holds in a network. This property

is often also referred to as the transitivity of a network, and is defined as

C =
number of closed triplets

number of all triplets (open and closed)
.

Here a triplet is defined as three nodes which are connected, where one of the

three nodes is considered the central node. If each node is connected directly to

each of the other nodes with an edge (i.e. the triplet has three edges) then they

form a closed triplet. If the three nodes are only connected via the central node

(i.e. the triplet only has two edges) then they form an open triplet. A triangle

graph (three nodes, each connected to the two other nodes) includes three closed

triplets, one centred on each of the nodes. Therefore we also define the clustering

coefficient as

C =
3× number of triangles

number of all triplets (open and closed)
.

Figure 1.2 shows how the clustering coefficient increases as we form more edges

and turn open triplets into closed triplets. Newman analyses the clustering coef-

ficient for a number of different networks [24], and finds that the higher clustering

coefficients tend to appear in networks representing people and communities: for

example, he finds clustering coefficients of 0.59 and 0.45 in networks representing

company director connections and coauthorships in physics papers respectively,
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compared to coefficients of 0.01 and 0.09 found in an electronic circuit network

and a biological metabolic network.

Figure 1.2: Three networks demonstrating increased clustering as more triplets

are closed. Image adapted from Ravasz et al [1].

The degree assortativity coefficient rdegree measures to what extent nodes con-

nect with nodes that have a similar degree. For example, are popular people

generally connected to other popular people? This coefficient is given by

rdegree =

∑
ij(Aij − kikj/2m)kikj∑
ij(kiδij − kikj/2m)kikj

,

where m is the number of edges in the network, Aij is an element of the adjacency

matrix, and ki is the degree of node i. The numerator is in fact the covariance of

the degrees of neighbouring nodes calculated over all edges. We can also recognise

that the first term
∑

ij Aijkikj in the numerator is a measure of the degrees of

neighbouring nodes. The second term
∑

ij
kikj
2m
kikj is a measure of the degrees of

neighbouring nodes if the nodes were placed completely randomly. Taking the

difference between these two values shows whether the network displays positive

or negative assortativity. The denominator acts as a normalising constant, so

that rdegree = 1 for the case of a perfectly mixed network where ki = kj for all

neighbouring nodes i and j. Networks with high degree assortativity are net-

works where the high-degree nodes are connected to other high-degree nodes,

and low-degree nodes are connected to other low-degree nodes. Networks with

negative degree assortativity display the opposite behaviour, where high-degree

nodes connect with low-degree nodes and vice versa. This results in the network

displaying star-like branches. Examples of an assortative network and a disas-

sortative network are shown in Figure 1.3. In his paper on assortative mixing

in real-world networks [25], Newman found a general trend that social networks,

such as research coauthorships and company directors, tended to be assortative,
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1.2 Networks

while biological networks, such as protein interactions and the food web, tended

to be disassortative.

We can consider other measures of assortativity in a network. For example,

properties associated with the nodes can also be assortative or disassortative.

For example, Bollen et al [26] found the happiness, or ‘subjective well-being’,

of Twitter users was assortative across the platform, throwing up interesting

questions about the impact of online social networks on our mood.

Figure 1.3: On the left we have an assortative network, and on the right we have

a disassortative network, from Hao and Li [2]. Note the star-like pattern typical

to disassortative networks.

A shortest path, or geodesic path, between two nodes is a path between the

two nodes that visits the fewest intermediate nodes (or equivalently traverses the

fewest edges). The length of a geodesic path is called the geodesic distance. This

concept appears informally when we talk about ‘six degrees of separation’: the

idea that any two people are separated by a chain of (at most) six connections

[27]. If we calculate the geodesic distance between all pairs of nodes in the

network, and find the average, this is called the average path length. It can be

thought of as a measure of efficiency of transport on a network, or a measure

of how interconnected a social network is. However, as an average it doesn’t

tell us about the range of geodesic distances. This is why it might be useful to

also evaluate the diameter of a network, which is defined as the longest geodesic

distance between any two nodes in the network.

Centrality is a measure of which nodes are the most important or influential

in the network, and consequently it is a concept that is particularly useful in

social network analysis. There are a number of different centrality measures used

8



1.2 Networks

to quantify a node’s importance. Degree centrality is the most basic, and is

simply the degree of a node. This is used because we would generally expect the

nodes with the most neighbours to be the most influential. However, it doesn’t

discriminate between how important those neighbours are.

Eigenvector centrality accounts for this, giving more weight to connections

with higher centrality nodes. The centrality xi of a node i is proportional to the

sum of its neighbours’ centralities:

xi = κ−1
1

∑
j

Aijxj,

where Aij is an element of the network adjacency matrix, and κ1 is the largest

eigenvalue of the adjacency matrix. However, when applied to directed networks

there is an issue: any node with only outgoing edges and no incoming ones will

always have zero centrality. This zero-centrality node then won’t contribute to

the centrality of any of the nodes connected to its outgoing edges.

To avoid this issue we can use Katz centrality, where every node is given a

non-zero base value of centrality regardless of its connections. The Katz centrality

is defined as

xi = α
∑
j

Aijxj + β,

where β is a positive constant defining how much initial centrality each node

is assigned by default. The choice of α determines the balance between the

eigenvector term and the constant β centrality term. Using this definition, we

can also calculate the Katz centrality of node i as

xi = β
∞∑
l=0

n∑
j=1

αl(Al)ij.

Here we can recognise that the element (i, j) of the adjacency matrix A raised

to the power of l (Al) is equal to the number of paths between nodes i and j of

length l. In this way the Katz centrality of a node can also be thought of as the

sum of the path lengths l to all other nodes in the network, with these distances

attenuated by a factor αl as they increase. Whereas previously the parameter β

was needed to ensure non-zero centralities for certain nodes, this is no longer the

case in this formulation. We can also ignore the l = 0 contribution in the sum,
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1.2 Networks

since this is just a constant value for each node. Therefore we reach the other

commonly used expression for the Katz centrality of a node:

xi =
∞∑
l=1

n∑
j=1

αl(Al)ij.

We can also define measures of centrality based on shortest paths. For ex-

ample, the betweenness centrality for a vertex is the number of shortest paths

between all pairs of nodes in the network that pass through the vertex. We would

expect nodes with high betweenness centrality to have a large amount of influ-

ence over information or objects passing between other nodes in the network. The

closeness centrality of a vertex i looks at the mean of the shortest paths dij from

vertex i to vertex j, averaged over all other n − 1 vertices j 6= i in the network.

We then take the inverse of this value, so that nodes that are closer to others

have a higher closeness centrality value.

Centrality measures have many applications due to their ability to identify

influential nodes in a network. In epidemic dynamics, centrality can be used

to try and flag which nodes are likely to be “superspreaders” [28]. Centrality

measures have also been used to identify users in online networks for use in

marketing, such as in Laflin et al [29], where the degree centrality and Katz

centrality of users on a Twitter network are compared. However, we should be

careful when drawing conclusions from these centrality measures. The relevance

of a centrality measure depends highly on context. For example, a node with a

high betweenness centrality might have a lot of control over interactions between

different clusters in a network, or it might simply be on the periphery of both

clusters and not important to either. It has also been shown that which nodes

are the most influential is often not independent of the dynamics being studied.

For example, Ferraz de Arruda et al [30] show that, for non-spatial networks, the

degree centrality holds more relevance for epidemic spreading, while the closeness

centrality is more relevant to rumour dynamics.

1.2.3 Models

Now that I have introduced various different network properties, it is worth con-

sidering a number of different network models that can be used to generate or
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1.2 Networks

describe networks with specific properties. In particular, we are interested in

what kind of network properties generally arise in the networks we actually see

in real-life.

The most basic network model, the Erdős-Rényi model, generates random

networks with a fixed number of vertices. Technically there are two Erdős-Rényi

models. The first is the G(n,m) model, where a graph is chosen uniformly at

random from all possible graphs having n nodes and m edges. The second is

the G(n, p) model, where a graph is constructed by including each edge (and

its attached nodes) with probability p independent from all other edges. Strictly

these models are not defined in terms of a single randomly generated network, but

as a probability distribution over all possible networks. G(n, p) is the ensemble

of networks with n vertices in which each graph G with m edges appears with

probability

P (G) = pm(1− p)(
n
2)−m.

To calculate the degree distribution consider a given vertex in the graph. The

vertex is connected with independent probability p to each of the n − 1 other

vertices. The probability of having degree k is the probability of being connected

to k vertices and not to the remaining n− 1− k: pk(1− p)n−1−k. There are
(
n−1
k

)
ways of choosing the k vertices, and so the probability of having degree k is

pk =

(
n− 1

k

)
pk(1− p)n−1−k.

So the G(n, p) model has a binomial degree distribution. An example of an

Erdős-Rényi can be seen in Figure 1.4(c).

Figure 1.4: Example networks for the small-world model (a), the preferential

attachment model (b), and the Erdős-Rényi model (c), from Huang et al [3].
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1.2 Networks

However, this binomial degree distribution with most nodes having degree

close to the mean degree is not one commonly found in real-life networks. Most

real-life networks have a few nodes with very high degree, and a large number of

nodes with low degree [31], with a degree distribution shaped similarly to Figure

1.5(a). If the degree distribution is such that the probability pk of a node having

degree k obeys

pk = Ck−α,

for some constant exponent α, then we call it a power law distribution, or a scale-

free distribution [32]. The term ‘scale-free’ is subject to much ambiguity, and

there is much debate around whether many real-life networks are truly scale-free.

Broido and Clauset [33] investigate this in a paper which assesses the structure of

almost 1000 networks, including social, biological, technological, transportation

and information networks. They conclude that while some technological and

biological networks appear to be “strongly” scale-free, social networks at at best

“weakly” scale-free. However, while most real-world networks don’t follow this

power-law exactly, the ‘heavy-tail’ is still a common feature.

Figure 1.5: Plots showing the different ways of displaying a power law distribu-

tion, to help identify the distribution and determine the value of the power-law

exponent. Panel (a) shows a histogram of 1 million random numbers, generated

from a power-law probability distribution p(x) = Cx−α, where α = −2.5. The

log-log plot (b) of the same data reveals a roughly straight line, indicative of a

power law distribution. The complementary cumulative distribution (c) reduces

the amount of noise in the tail of the distribution, and also follows a power law.

These plots are from Newman’s paper on power laws [4].
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1.2 Networks

The question of how to best identify a power law distribution, and how to

calculate the correct value of the exponent α, is covered in a paper by Newman

[4]. If we plot the histogram a power law distribution on a log-log scale, then the

resulting histogram will be a straight line obeying

ln p(x) = −α ln p(x) + c,

as in Figure 1.5(b). However, the tail towards the right hand side will inevitably

exhibit a lot of noise, because the number of samples in the histogram bins are

small and statistical fluctuations are therefore more noticeable. A solution to this

is to plot the complementary cumulative distribution of the same data, which is

the probability P (x) that x has a value greater than or equal to x, as in Figure

5(c). This distribution also follows a power law, but with exponent α − 1. To

find the value of α we could naively do a least-square fit to the slope of this

cumulative distribution, but a more reliable method is to perform maximum-

likelihood analysis.

The preferential attachment model of Barabási and Albert [34] attempts to

explain how these power law degree distributions might have formed. It is an

example of a growth model, where the network grows node by node, and each

new node forms connections due to a set procedure. Each new node forms exactly

c connections, and these connections are made to existing nodes with probability

precisely proportional to their current degree. This ultimately results in a degree

distribution where the probability pk of having degree k is approximately of the

form

pk = Ck−3,

i.e. here the power law exponent α is equal to 3. The model of Barabási and

Albert is a model of an undirected network, but similar growth models based on

the same principle of preferential attachment exist for directed networks, such as

Price’s model. It can be seen in Figure 1.6 that preferential attachment models

accurately generate fat-tailed degree distributions. The phrase “fat-tailed” is

used instead of scale-free, as the scale-free condition is more stringent. Another

example of a scale-free network is shown in Figure 1.4.

However, one flaw of the network models described so far is that the resulting

networks do not tend to exhibit the notable clustering that is present in many
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Figure 1.6: Example of a Barabási Albert network formed of 100 nodes, and the

corresponding degree distribution and complementary cumulative degree distri-

bution. The complementary cumulative degree distribution is plotted on a log-log

scale to show the resulting approximate straight line.

real-life networks. The small-world model of Watts and Strogatz [5] was designed

to mimic this clustering. The phrase ‘small-world’ is also used because the model

can be used to generate networks with short average path lengths relative to

the number of nodes, another property common to real-life networks [35]. To

understand the Watts and Strogatz model it is easer to first understand a simpler

‘circle model’ that generates clustering. An example network generated by this

model is shown in Figure 1.7, labelled ‘Regular’. In the circle model, we can

arrange vertices equally spaced on a circle. Each vertex is then connected to the
c
2

vertices either side (c must be an even number). In Figure 1.7 c = 4, and so

each vertex is connected to the two vertices either side of it.

We now compute the clustering coefficient for a network generated using the

circle model. To traverse a triangle on such a network we must take two steps

forward around the circle, and then one step back to the original vertex. The

last step can be at most c
2

spacings, and the number of ways to choose the two

steps forward is equal to the number of ways of choosing the target vertices for

those steps from the c
2

possibilities, which is
(
c/2
2

)
= 1

4
c(1

2
c − 1). Therefore the

number of triangles in a circle with n nodes is 1
4
nc(1

2
c− 1). Since the number of

connected triples is
(
c
2

)
= 1

2
c(c− 1), the clustering coefficient is

C =
1
4
nc(1

2
c− 1)× 3

1
2
nc(c− 1)

=
3(c− 2)

4(c− 1)
.
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1.2 Networks

The model of Watts and Strogatz starts with the circle model, and then

rewires some edges at random. Specifically, with probability p we remove an

edge and replace it with one that joins two vertices chosen uniformly at random.

The randomly placed edges are often referred to as shortcuts, due to the fact

that they create shortcuts from one part of the circle to another. When p = 0

we have the circle model, which has high clustering but no small-world short

average path length. This is shown in Figure 1.7, labelled ‘Regular’. When p = 1

we have a random graph, with a short average path length but low clustering.

This is also shown in Figure 1.7, labelled ‘Random’. However, as p is increased

from 0 the clustering is maintained up to quite large values, while the small-

world behaviour appears for relatively low values, showing that the two effects

are indeed compatible. This is a small-world network, labelled ‘Small-world’ in

Figure 1.7.

Figure 1.7: Example of the transition from the circle model into a small-world

network into a random network, as we increase the probability of shortcuts form-

ing. The regular circle model has high clustering but large average path length.

The random network has short average path length but low clustering. The in-

termediate state, the small-world network, is the sweet spot where both short

average path length and high clustering occur. This image is from Watts and

Strogatz [5].

In this way the Watts and Strogatz model manages to capture both the clus-

tering and small-world effect commonly found in real-life networks. However, the
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1.2 Networks

degree distribution does not mimic well the fat-tailed distributions of most real-

life networks. By considering a slightly different version of the Watts and Strogatz

model, where shortcuts are added but none of the circle model connections are

removed, it can be shown that the degree distribution follows

pk = e−cp
(cp)k−c

(k − c)!
,

i.e. the degree distribution has a peaked shape, and so does not obey a strict

power law, but does have a fat-tail.

The final network model I will describe is the exponential random graph model

(ERGM). The exponential random graph is an ensemble model, which means, as

with random graphs, it is a set of possible networks plus a probability distribution

over them. Rather than defining merely the probability of an edge forming, as

in the Erdős-Rényi model, we in effect define the probabilities of any number of

a range of “configurations” occurring. The ensemble generated is then the set

of possible networks that have a set number of nodes, with their probabilities

of occurring determined by how many of these configurations they feature. A

list of common configurations is shown in Figure 1.8. The density configuration

effectively corresponds to the number of edges, and the reciprocity configuration

corresponds to the number of reciprocated edges in a directed network.

Consider G to be the set of all graphs with n vertices, and define an ensemble

by assigning each graph G in the set G a probability P (G) such that∑
G∈G

P (G) = 1.

The mean of any network measure 〈xi〉 within this ensemble will be given by

〈xi〉 =
∑
G∈G

P (G)xi(G).

If we then fix the mean value of each of our measures within the ensemble, this

becomes a constraint on the graph probability distribution. The configuration

probabilities that we choose to define determine which measure mean values 〈xi〉
we set. However, the number of these measures will typically be far less than the

possible number of graphs in the ensemble. As a result they do not specify the

probability distribution P (G) precisely.
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1.2 Networks

Figure 1.8: Common configurations, from Robins et al [6]. These are just some of

the potential configurations one can model with an ERGM. The two-star model

referenced in the text uses the Density and Two-star configurations.
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We want to make the best choice for the probability distribution given only

a small number of constraints. It turns out that the best choice [23] is one that

maximises the Gibbs entropy of the system

S = −
∑
G∈G

P (G) lnP (G),

subject to the known constraints. To maximise this entropy subject to constraints

we use the method of Lagrange multipliers. Introducing Lagrange multipliers

α and βi as the Lagrange multipliers for the constraints
∑

G∈G P (G) = 1 and∑
G∈G P (G)xi(G) = 〈xi〉 respectively, we want to maximise

−
∑
G∈G

P (G) ln p(G)− α

[
1−

∑
G∈G

P (G)

]
−
∑
i

βi

[
〈xi〉 −

∑
G∈G

P (G)xi(G)

]
.

If we differentiate this with respect to P (G) and set the result to zero to find the

maximum, we find that

− lnP (G)− 1 + α +
∑
i

βixi(G) = 0,

which can be solved to find

P (G) = exp

[
α− 1 +

∑
i

βixi(G)

]
,

or

P (G) =
eH(G)

Z
,

where Z = e1−α is the partition function and

H(G) =
∑
i

βixi(G)

is the graph Hamiltonian. The partition function Z can be thought of as the nor-

malising constant for the probability distribution, and can be found by requiring

that ∑
G∈G

P (G) =
1

Z

∑
G∈G

eH(G) = 1.
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1.3 Dynamical processes

This fixes the value of Z as

Z =
∑
G∈G

eH(G),

which in turn also fixes the value for the Lagrange multiplier α. However, no

equivalent general formulas for the values of βi exist. They can be found by substi-

tuting the ERGM definition P (G) = eH(G)

Z
into the constraint

∑
G∈G P (G)xi(G) =

〈xi〉, which results in a solvable set of non-linear simultaneous equations that are

dependent on the form of the Hamiltonian.

Once we have an expression for the probability distribution P (G) we can

substitute it in to find the expectation values of other quantities of interest within

the ensemble. For example, if we are interested in a quantity y then we can find

its expectation value by using the formula

〈y〉 =
∑
G∈G

P (G)y(G) =
1

Z

∑
G∈G

eH(G)y(G).

In this way the exponential graph framework can be used to answer the ques-

tion of: “If I know about the likelihood of certain configurations occuring in my

network, what is the best estimate of some other property of the network?”

The ability of ERGMs to model numerous different configurations means they

can be adapted to various different situations. They are especially useful in

social network analysis [36], since they allow researchers to specify configurations

based on node attributes (which might correspond to gender, race, expertise in

a field, etc.). However, there are several problems with the exponential graph

framework. One such problem occurs in the two-star model, which specifies the

expected number of edges and the expected number of two-stars in the network

(see Figure 1.8). Sometimes the networks generated from this model have high

density, and sometimes they have low density, and this can’t be predicted in

advance. There are also certain combinations of α and β which cannot occur.

1.3 Dynamical processes

A dynamical system is a system whose state changes over time. The changes in

time are governed by some given rules or equations, and the system can evolve
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in discrete or continuous time. If the dynamics are running on a network, the

network topology will affect the process. For example, if we model a diffusion

process, we can impose that whatever is diffusing can only travel to adjacent

nodes. In this section I will outline several different kinds of dynamical model

that are commonly studied, before outlining several methods used to formulate

and study these dynamics on networks in Section 1.4.

1.3.1 Epidemic models

Epidemic models simulate the spread of disease in a population. The inclusion

of network topology provides information about who is in contact with whom,

allowing for the epidemic spread to be more accurately modelled.

The most basic epidemic model is the SI model. In this model individuals

can be in one of two states: suspectible (S) to the infection, or infected (I).

Susceptible individuals can become infected through contact with an infected

individual, governed by a spreading rate β, which describes how fast the disease

spreads when individuals interact. This is an incredibly simplified view, but it

allows for straightforward modelling using the reaction equation

S + I
β−→ 2I.

The number of suspectible individuals decreases at the same rate that the number

of infected individuals increases. Given a non-zero initial number of infected

individuals, this model will always tend towards the absorbing state of an entirely

infected population, although stochastic realisations of the model will reach this

state at different times. This inevitable saturation of the population limits how

applicable this model is.

One extension of the SI model to make it more realistic is by adding in the

potential for recovery. In real life individuals often successfully fight off an in-

fection. In the SIS model, an individual that recovers from the infection moves

back into the susceptible state, and so there is no infection immunity. There is

also a new model parameter, the recovery rate γ, governing how quickly infected

individuals recover and return to the susceptible state. The reaction equations

become

S + I
β−→ 2I,
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which governs infection as for the SI model, and

I
γ−→ S,

which governs recovery. The endemic state is when the rates at which individuals

are infected and recover are exactly balanced, with the number of infected indi-

viduals I > 0 [37]. The disease-free state in which all individuals are susceptible

is an absorbing state, but for large systems this state may be extremely unlikely

to occur. There also exists an epidemic threshold that separates the evolution

going towards either a state which will tend to this endemic state, or towards

the disease-free state. Due to the lack of infection immunity, this model can be

used to describe situations such as certain sexually transmitted infections, where

reinfection is common [38].

However, many diseases do confer immunity, particularly those caused by

viral agents such as mumps, measles and chickenpox [39]. Therefore an obvious

alternative extension to the SI model is to include long-term recovery, where

recovered individuals are then immune to reinfection. Infection recovery and

subsequent immunity is captured in the SIR model. There are now three states:

susceptible (S), infected (I) and recovered (R). The two possible processes are

S + I → 2I, infection of an individual, and I → R, recovery of an individual.

The reaction equations become

S + I
β−→ 2I,

and

I
γ−→ R.

Approximations of this process on a network also generally find an epidemic

threshold [37].

There are numerous other variants on these models in epidemic research, such

as the SEIR model. This model includes an exposed (E) state, which can be used

to model the incubation period of an illness [40]. This model in particular has

been used in research modelling the COVID-19 pandemic [41], where the delay

between an individual being exposed to the illness and becoming contagious can

be significant.
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1.3.2 Social contagion

The contagion metaphor can also apply in a social context, for example, the

epidemic-like outbreak of a meme going viral online. Sometimes, models such as

the SI model and SIS model can be lifted and applied directly, as in the work

by Kandhway and Kuri [42]. However, in general a few adjustments have to be

made in order to account for specific features of social contagion, and a good

summary is provided in Pastor-Satorras et al [15]. For example, the transmission

of information generally involves an intentional act by the sender and receiver,

and people won’t ‘recover’ from the infection in the same sense. This calls for

either the spreading process or the recovery process of the epidemic model to be

changed.

Some popular rumour spread models are an adaptation of the SIR model, with

the recovery process altered. In these models the recovered state corresponds to

an individual who has heard the rumour but is no longer interested in spreading

it, and the infected state corresponds to an individual interested in spreading

the rumour. Daley and Kendall [43] first formalised the process, including three

different interactions

S + I
β−→ 2I,

R + I
γ−→ 2R,

2I
γ−→ 2R.

The final two interactions correspond to infected individuals losing interest in

spreading the rumour further after they find out that the person they are gossiping

with already knows it. In an otherwise identical model by Maki and Thompson

[44] called the MT rumour model, the final process is instead

2I
γ−→ R + I,

and says that when two infected individuals gossip with each other only one of

the individuals (the one doing the “telling”) loses interest.

Finally, it is worth noting that there also exist a number of models specifically

created to model social contagion, which aren’t built as directly on epidemic

models. For example, the Bass model is a growth model focusing on the timing
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of people’s initial purchases of new consumer products [45]. The model assumes

that people are either innovators or imitators, and that the speed at which they

purchase a product is dependent on the extent to which they fit these roles.

There is also an argument to be made that social contagion models should often

be non-linear, in the sense that an individual should instead adopt an idea (or

product, etc.) only once some minimum threshold of their neighbours have also

adopted it [46]. These kinds of models are called threshold models. They are

thought to occur in a range of situations, such as the diffusion of innovations [47]

(where people may be wary of, for example, new medical advancements until they

see enough of their peers engaging), rumour spreading [48] (where an individual

might only find a rumour credible once they have heard it from enough people),

and deciding who to vote for [49] (partly due to social influence, partly due to

‘tactical voting’ pressures).

1.4 Modelling dynamics on networks

Analysis of these dynamical models on networks has been developed using a

number of different approaches, but perhaps the standard method is that of

mean-field approximations [50], which focus on the probabilities of nodes being

in different dynamical states while typically ignoring local clustering, modularity,

and dynamical correlations [51]. This thesis will focus heavily on these mean-

field approximations, and I will go into further detail about their justification,

derivation and accuracy in Chapter 2. As we will see, these approximations can

generally be used to reduce the state space of the problem and allow us to solve for

any steady states, or identify further properties such as the epidemic threshold.

For completeness, note that there are alternative approaches to mean-field ap-

proximations. One such approach uses generating functions [52] to study models

without steady-states, such as the SIR model. Solving the SIR dynamics for the

late-time static properties can be translated into an equivalent bond percolation

problem, as in a key paper by Newman [52]. Percolation problems essentially

involve looking at the removal of nodes or edges from a system, which Newman

explains parallels the removal of susceptible nodes during an SIR infection. He
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defines various generating functions for distributions related to the degree dis-

tribution, and uses these to find the outbreak size distribution (or equivalently

the size distribution of the connected component in the percolation problem).

Further work has used the generating function approach on SIR-like dynamics to

evaluate immunisation strategies [53] and containment measures [54, 55].

We can also get information about how the process will run on a network

by looking at the spectra of the adjacency matrix and graph Laplacian. The

Laplacian L = D − A is formed by the difference between the degree matrix

D (defined as the matrix that has the degree of each node along the diagonal,

and zero elsewhere) and the adjacency matrix A. This spectral approach can

be used to find an alternative, more accurate approximation for the epidemic

threshold of SIS dynamics on any given network, by evaluating the eigenvalues

of the Laplacian as in Wang et al [56]. They show that the condition for a stable

disease-free state is

1− γ + βλ1,A < 1

where γ is the recovery parameter, β is the infection parameter, and λ1,A is the

largest eigenvalue of the adjacency matrix. This gives us an expression for the

epidemic threshold:
β

γ
=

1

λ1,A

.

Spectral methods have also given insight as to exactly where the epidemic

is sustained if the epidemic threshold is reached. Goltsev et al [57] investigate

whether the eigenvector associated with the largest adjacency matrix eigenvalue

is localised. If the eigenvector is localised, then when the infection-recovery ratio

just reaches the epidemic threshold the infection is localised to a finite number

of vertices, and the actual fraction of nodes infected is negligibly small. As the

ratio increases, the infection smoothly spreads to a finite fraction of vertices. If

the eigenvector isn’t localised, then the infection is sustained amongst a finite

fraction of vertices as soon as the ratio reaches the threshold.
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1.5 Thesis structure

As previously stated, in this thesis I will investigate both how to approximate and

how to infer dynamics on networks. I have already referred to several different

types of dynamical process, and several different ways of approximating these

processes on networks. Chapters 2 and 3 will go into further detail, studying

the error of some of these approximations both qualitatively and quantitatively.

Chapter 2 will show specifically how to formulate the mean-field approach for

SIS epidemic dynamics on networks. I also perform an investigation into the

accuracy of various different mean-field approximations when compared to simu-

lation results on a range of different networks, to see in which situations each of

the different mean-field approximations are appropriate. I have chosen to focus

on SIS dynamics and mean-field approximations for a number of reasons. Epi-

demic dynamics have gained particular relevance due to the recent COVID-19

pandemic, and the SIS model is one of the simplest epidemic models to study.

My discussion of several different social contagion models has also shown how,

despite its simplicity, the SIS model can provide the basis for numerous other

models of interest in different fields. Since mean-field approximations are gener-

ally presented as the standard approach for these types of problems, our emphasis

on these approximations throughout this thesis will give it relevance to a wide

variety of network science research.

In Chapter 3, I present a novel coarse-graining of SIS dynamics on a network

using a technique called approximate lumping. I will show how this technique can

be applied to recover one of the mean-field approximations presented in Chapter 2,

providing a novel justification for this approximation. This work aims to showcase

the insights that this lumping approach can offer us. This chapter also constitutes

the basis of an article that is currently in the process of being submitted to a

peer reviewed journal.

Chapters 4 and 5 turn to the subject of inference in network science. Chapter

4 presents an overview of the work already done in this area, with a particular

focus on the approaches used to infer the dynamics on a network when there is

missing information: either an unknown dynamical process, or a known dynamical

process and missing observations. This chapter aims to explain the advantages
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1.5 Thesis structure

and disadvantages of these different inference approaches, and also introduces

several tools such as Bayesian Markov Chain Monte Carlo (MCMC) methods,

and Approximate Bayesian Computation (ABC).

Several of these tools are then incorporated into the analysis performed in

Chapter 5, where I look at a novel application of these ideas to a multilayer

network system. This chapter provides an introduction to the concept of a mul-

tilayer network, before performing a case study on the problem of inferring SIS

dynamics on a multilayer network where only one of the layers is visible. I look

at simulated data of SIS dynamics on a two-layer network, and then use two

different inference frameworks to try and recover the infection parameters when

the information about the second ‘hidden’ layer is removed. This chapter aims

to flag pitfalls that analysts confronted with a system like this need to be wary

of. The work also aims to identify what specific situations will allow us to per-

form accurate inference, and in what situations we are forced to collect further

information about the hidden layer before we can draw useful conclusions.

Finally, Chapter 6 concludes the thesis, providing both a summary of each

chapter’s findings, and a discussion of some potential industry applications related

to my CASE partnership.

26



Chapter 2

Mean-field approximations for

SIS dynamics on networks

2.1 Introduction

As indicated in the previous chapter, there are a range of different dynamical

processes that can be applied to networks, across a wide variety of fields. I

have also touched upon a number of different ways of solving these systems,

both in terms of their formulation, and approximations that enable analytical

tractability. In this chapter I will focus on SIS dynamics in particular, and

explore in more detail how mean-field approximations can be used to solve the

Markovian stochastic formulation of this dynamical model on networks.

The focus on SIS dynamics in this chapter leads into work in Chapters 3 and

5, both of which also involve SIS dynamics in some way. I’ve chosen to focus

on SIS dynamics because it is arguably one of the simplest epidemic models,

while offering slightly more complexity than the SI model due to the presence

of a meaningful endemic steady state. In this way SIS dynamics gives us a

fairly simple and relevant framework within which to present some novel ideas

on approximate lumping (Chapter 3) and multilayer networks (Chapter 5). We

might also expect that some of the approximations and methods used to analyse

SIS dynamics throughout this thesis can be extended to more complex epidemic

models, such as the previously mentioned SIR and SEIR models, as well as social

infection models.
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2.1 Introduction

The SIS model also notably contains both an absorbing disease-free state,

and a quasi-stationary endemic state, which will be studied later in this section.

We can eliminate the absorbing state by simply adding a constant background

infection rate, dynamics referred to here as the SISa model [58]. This adaptability

will prove useful in Chapter 3, where it will allow me to easily consider how my

analysis changes for situations with or without an absorbing state.

I’ve chosen to study mean-field approximations because they offer significant

analytical tractability, as I will demonstrate during this chapter. While they will

prove to be inaccurate under certain conditions, the ability to derive threshold

conditions for the endemic state, and quickly explore the solution space to see

how the dynamical model parameters influence the solution, will prove useful in

predicting interesting results in Chapter 5. I will also show how approximate

lumping can be used to estimate the error of some of these approximations in

Chapter 3.

In this chapter I will first introduce the deterministic compartmental model

for SIS dynamics in Section 2.2. In Section 2.3 I detail the formulation of SIS

dynamics on a network of contacts, and I demonstrate the need for ways to sim-

ulate and approximate these dynamics beyond the exact formulation. Sections

2.4 focuses on simulation methods, while in Sections 2.5 and 2.6 I outline the

derivations and analytical results for a range of different mean-field approxima-

tions. Finally, in Section 2.7 I investigate how the results of these mean-field

approximations compare to simulation results for various different networks and

parameter values.

Overall, this chapter provides an overview of the standard mean-field mod-

els describing SIS dynamics, setting up the principles behind these models and

detailing the basic results in anticipation of future chapters. The homogeneous

mean-field model at the single level will reappear in Chapter 3, where I derive

it using novel arguments that are arguably more rigorous than the physical rea-

soning presented in this chapter. The results of the final section, looking at the

accuracy of the various mean-field approximations, will also help guide work in

Chapter 5, where I study a homogeneous mean-field model of SIS dynamics on a

multilayer system.
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2.2 Deterministic SIS compartmental model

2.2 Deterministic SIS compartmental model

First we construct the deterministic compartmental model of the SIS process,

which ignores any network structure. Individuals can be in one of two states

or ‘compartments’: susceptible (S) or infected (I). There are two processes,

infection and recovery, governing the transitions of individuals between compart-

ments. These possible transitions are illustrated in Figure 2.1. We assume that

individuals meet each other at some fixed rate, and that the rate of infection

in the population is dependent on the probability of a given meeting involving

a susceptible individual and an infected individual. Given a well-mixed popula-

tion, this probability, and therefore the rate of infection, is proportional to the

number of individuals in the infected compartment and the number of individuals

in the susceptible compartment. Since individuals recover independently of their

interactions with other individuals, we assume that the rate of recovery in the

population is proportional to simply the number of individuals in the infected

compartment. If we also denote the number of susceptible and infected individu-

als by S and I respectively (it will be clear based on context whether I mean the

number of individuals in a state, or the state itself), this leads to the governing

equations:

Ṡ = −β S
N
I + γI

İ = β
S

N
I − γI.

The constants of proportionality β and γ are known as the infection rate and

recovery rate respectively. We can think of β as the rate at which infected indi-

viduals make contact with others in a way that could transmit infection.
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2.2 Deterministic SIS compartmental model

Figure 2.1: Compartmental model for SIS, showing the possible transitions from

the susceptible compartment (S) to the infected compartment (I), and from I to

S.

We can see from the conservation identity S + I = N that this system can

be reduced to a single equation, describing the time evolution of the number of

infected individuals. This equation can be solved directly, using the substitution

y = I−1 [39]. We find that there are two steady state solutions: a disease-free

state with I = 0, and an endemic state with I = N
(

1− γ
β

)
. This latter state has

physical significance only if β
γ
> 1. We call this ratio the ‘basic reproductive ratio’,

denoted by R0. R0 can be thought of here as the ratio of infections to recoveries

that happen in a short time interval. If R0 = β
γ
> 1, the endemic steady state

has physical meaning and is stable, while the disease-free steady state is unstable.

For R0 < 1, the endemic steady state no longer has physical meaning (and is

unstable), and the disease-free steady state is stable. At R0 = 1 a transcritical

bifurcation occurs, where the stability of the fixed points is exchanged. In this

way the value of R0 determines the epidemic threshold of the system. We can

also define this point using the critical value of the infection parameter βc = γ.

Although this model gives simple analytical results, the assumption of a fully-

mixed population is extremely crude. Often we have access to information about

the way a population is connected, and the next section considers how to incor-

porate that information into the dynamics.
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2.3 Exact stochastic formulation of SIS dynam-

ics on networks

We now consider a stochastic formulation of the process, and account for an

explicit network of contacts between the individuals. Consider initially general

dynamics on a network with N vertices, where each vertex can be in one of M

vertex-states {Σ1,Σ2, ...,ΣM}. A given state si of the system can be described by

a vector of vertex-states si = (σ1, σ2, ..., σN), where the vertex-state for a given

vertex σv ∈ {Σ1,Σ2, ...,ΣM}. In this way the state space of the dynamical system

consists of n = MN states, S = {s1, s2..., sn}. The transition rate between two

states si and sj can be expressed as h(si, sj), with h(si, si) = −
∑

j 6=i h(si, sj)

so that −h(si, si) is the rate at which the system transitions out of state si to

any other state. We make a number of assumptions here. We consider time

to be continuous, and assume that the process is stochastic, with exponentially

distributed inter-event times. We also consider transitions at different nodes to

be independent events. These assumptions allow us to structure the problem as

a continuous-time Markov chain as follows.

Let Xi(t) be the probability that the system is in state si at time t, i.e.

Xi(t) = P (s(t) = si). Then the vector X(t) = (X1(t), X2(t), ...XMN (t)) forms

the time-dependent Markov chain probability distribution over the state-space S.

Using the transition probabilities above, the probability of transitioning from si

to sj in a short time interval (t, t + δt) is h(si, sj)δt+ o(δt), where the notation

o(δt) represents an error that behaves as o(δt)/(δt) → 0 as δt is decreased to

0 [59]. The probability of the transition not occurring in the same interval is

likewise 1− h(si, sj)δt+ o(δt). Therefore, if the system starts in state si at time

t,

P (s(t+ δt) = sj | s(t) = si) = h(si, sj)δt+ o(δt).
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2.3 Exact stochastic formulation of SIS dynamics on networks

Using the law of total probability, we find

Xj(t+ δt) = P (s(t+ δt) = sj)

=
n∑
i=1

P (s(t+ δt) = sj | s(t) = si)P (s(t) = si)

=

(∑
i 6=j

h(si, sj)δtXi(t)

)
+ (1−

∑
k 6=j

h(sj, sk)δt)Xj(t) + o(δt)

=

(∑
i 6=j

h(si, sj)δtXi(t)

)
+ (1 + h(sj, sj)δt)Xj(t) + o(δt).

If we subtract Xj(t), divide by the time interval δt and take δt→ 0, we find

Ẋj(t) =

(
n∑
i=1

h(si, sj)Xi(t)

)
+ h(sj, sj)Xj(t).

Therefore the master equation describing the time evolution of X(t) is given by

Ẋ = QTX,

where Q is the infinitesimal generator formed by the instantaneous transition

rates, with off-diagonal elements Qij = h(si, sj) and diagonal elements Qii =

h(si, si) = −
∑

k 6=i h(si, sk) such that each row sums to zero.

The SIS model of epidemics is an example of a more general class of dynami-

cal models defined by Ward and López-Garćıa as single-vertex transition (SVT)

models [60]. In a SVT model, the transition rate h(si, sj) between any two states

si = (σ1, σ2, ...σN) and sj = (ξ1, ξ2, ...ξN) is non-zero only if the vertex-states are

different for at most one vertex v: if σv 6= ξv and σu = ξu for all u 6= v. Kiss et

al. actually restrict to a smaller subclass of models in their work [59]: they con-

sider SVTs where the rate at which a vertex transitions to another vertex-state

is the same for all vertices that are in the same state and which have the same

number of neighbours in each state. If we let n(v) = (nΣ1 , nΣ2 , ...nΣM ) represent

the number of neighbours vertex v has in each vertex-state, then we can define

fA,B(n(v)) as the rate at which vertex v transitions from a state A to a state B.

Therefore the transition rates h(si, sj) satisfy

h(si, sj) =

{
fA,B(nΣ1 , nΣ2 , ...nΣM ) if si, sj differ in one vertex-state v

0 otherwise.
,
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2.4 Simulations of SIS dynamics

For these SVT models, it can be helpful to define the classes or levels of the

system. Each level CkΣ1
,kΣ2

,...kΣM is the subset of states that have kΣ1 , kΣ2 , ...kΣM

vertices in vertex-states Σ1,Σ2, ...ΣM respectively.

For SIS dynamics, we have just two node-states: S for susceptible, and I for

infected. There are likewise two types of node-state transition that can occur for a

node, from S → I and from I → S. The rate at which an infected node v recovers

depends solely on the recovery rate γ. In this way the transition probability

h(si, sj) = γ if si is identical to sj except for node v which recovers from infection.

However the rate at which a susceptible node v becomes infected depends both on

the infection rate τ , and on nI(v), the number of infected neighbours node v has

in the current state. The infection rate τ here is more precisely the per-contact

infection rate, the rate at which transmission occurs across an edge between

an infected node and a susceptible node. Therefore the transition probability

h(si, sj) = τnI(v) if si is identical to sj except for node v, which has nI(v)

infected neighbours in state sα and which becomes infected. Since we can deduce

the number of susceptible nodes from the number of infected nodes, the levels of

the system can be written as CkI with just a single index kI .

Since there are two node-states, the infinitesimal generator Q for this system

is an 2N by 2N matrix, and equivalently there are 2N linear differential equations

in the system of master equations. Due to this exponential scaling, the dynamics

quickly become intractable on networks with even a modest number of vertices.

This motivates the use of methods and approximations to reduce the state space

to a more feasible size.

2.4 Simulations of SIS dynamics

In anticipation of these equations becoming unwieldy for larger networks, it is

helpful to develop an algorithm to instead simulate the dynamical system. We

can then run a large ensemble of these simulations and analyse the ensemble

average and spread. Performing these simulations for smaller networks, where we

can still solve the full system of master equations, will allow us some insight into

how the simulation results compare with the true solution.
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2.4 Simulations of SIS dynamics

To perform simulations of SIS dynamics on networks (and later on multilayer

networks in Chapter 5), I decided to use the Gillespie algorithm. I first present

the general form of the algorithm, before presenting my results of applying this

algorithm to SIS dynamics.

2.4.1 Gillespie algorithm

The Gillespie algorithm is a general algorithm for simulating Markovian stochastic

processes involving reaction-dependent populations [61]. The method involves

generating two random numbers uniformly between 0 and 1, which determine at

what time the next event will happen, and which event will happen at that time.

This lets the stochastic process be modelled as a continuous-time process, and

avoids simulating time steps where nothing happens. Due to this, the simulation

time tends to be faster than for a step-by-step discrete-time simulation. The

algorithm steps are presented below for a general network process:

1. Generate two random numbers r1, r2, picked from a uniform distribution

on [0, 1].

2. Compute the propensity function αmi (x) for each node i and event m. The

propensity function is such that the probability that event m will happen

to node i in the time interval dt, given the current state x of the entire

network, is αmi (x)dt [62]. From this we can compute the total propensity

for the system:

α0 =
M∑
m=1

N∑
i=1

αmi (x).

3. Using the fact that the inter-event times are exponentially distributed for

Markovian stochastic processes, compute the time until the next event takes

place as

τ =
1

α0

log
1

r1

.

4. Compute which event takes place at t+ τ , i.e find k, j such that

r2 ≥
1

α0

k−1∑
m=1

j−1∑
i=1

αmi (x) and r2 ≤
1

α0

k∑
m=1

j∑
i=1

αmi (x).
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2.4 Simulations of SIS dynamics

5. Update the node states and propensities accordingly.

6. Repeat from step 1, starting at time t+ τ .

To apply this algorithm to SIS dynamics, we note that there are two types of

node events: infection events and recovery events. The propensity function for

a node i being infected is αIi (x) = τnI , where τ is the infection rate and nI is

the number of infected neighbours of node i. The propensity function for a node

i recovering is αRi (x) = γ, where γ is the recovery rate. In order to efficiently

calculate the propensities at each time step, I have designed the algorithm so

that I store the number of infected neighbours of each node. With each node

that is either infected or recovers, the ‘infected neighbour’ counts for the node’s

neighbours are updated. The algorithm terminates when either the total number

of infected nodes reaches zero (in which case the infection can no longer spread),

or the time exceeds some input time.

2.4.2 Simulated results

I ran these simulations on an Erdős-Rényi network of N = 15 nodes (p = 4
15

), with

τ = 0.8 and γ = 1. I ran an ensemble of 1000 simulations, and each simulation

began with the entire network initially infected. I also found the exact expected

solution by solving the full system of Kolmogorov equations, using the ‘ode’

function in the R deSolve package with its default settings. The default method

is an LSODA integrator that can switch between stiff and non-stiff methods.

The default absolute and relative tolerances are 1 × 10−6. I chose a network

with N = 15 nodes because this was the largest network where the Kolmogorov

equations were tractable.

Figure 2.2 shows the ensemble of simulations plotted as a heat map. The

thick grey line shows the ensemble average, and the black line shows the exact

expected solution. Here it is easy to see that the simulated solutions each follow

a general behaviour: they fluctuate around some quasi-stationary state (close to

I = 10 infected nodes), before the stochastic nature of the process means they

inevitably fall into the absorbing state of I = 0 infected nodes. Eventually, all

the simulations will reach the absorbing state.
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Figure 2.2: A heatmap showing the results from an ensemble of 1000 simulations

of SIS dynamics on an Erdős-Rényi network of N = 15 nodes, starting with the

entire network initially infected. The heatmap shows how each of the 1000 sim-

ulations evolved until the time t = 100. The counts are plotted on a log scale,

where I have added 1 to the number of counts before taking logs (to avoid infini-

ties). The darker cells around I = 10 infected nodes shows how the simulations

tend to cluster around this steady state value. As time progresses, more of the

solutions get absorbed by the disease-free steady state, and so the cells repre-

senting I = 0 infected nodes gradually get darker. The thick grey line shows the

ensemble average. The black line shows the exact solution that is computed by

solving the full system of Kolmogorov equations.

The presence of this absorbing state creates some questions around how we

should seed the infection. If we seed the infection with only a few infected nodes,

we can sometimes generate an ensemble that is divided into two outcomes: those

where the infection quickly dies out in the first few events, and those where the

infection survives and reaches the steady state value. To demonstrate this, I

simulated an ensemble of 1000 runs on an Erdős-Rényi network of 100 nodes

(p = 0.4), running the simulations until t = 100. The parameters were τ = 0.04

and γ = 1. Note that in this case the network is too large to compute the exact

solution from the master equations. Initially I seeded the simulations with just 1
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2.4 Simulations of SIS dynamics

infected node. The heatmap in Figure 2.3(a) shows the results of this simulation

ensemble. The darker spots around I = 40 show the runs that reached the

steady state, while the dark line at I = 0 show the runs that were absorbed into

the disease-free state. The thick grey line shows the ensemble average. In this

case the ensemble average fails to capture either of the two outcomes. It is also

computationally wasteful to be running a large number of simulations that simply

die out.

However, this divide in simulation outcomes is avoided if we seed the infection

with a larger number of initially infected nodes. The heatmap in Figure 2.3(b)

shows the results of a simulation ensemble on the same network, with the same

infection parameters, but with 10 initially infected nodes rather than 1. There are

1000 simulations in the ensemble, and for each simulation the 10 initially infected

nodes are chosen at random. Here far fewer simulations are absorbed into the

steady state before t = 100, and the ensemble average tends to a state more

closely matching the stationary state. Therefore if we want the ensemble average

to be informative with regards to the stationary state value, it is important to

seed the simulations with a sufficiently large number of infected nodes.
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(a) 1 initially infected seed node
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(b) 10 initially infected seed nodes

Figure 2.3: Two heatmaps showing the results from simulation ensembles of SIS

dynamics on an Erdős-Rényi graph of N = 100 nodes. The counts are plotted

on a log scale, where I have added 1 to the number of counts before taking logs

(to avoid infinities). In (a), the epidemic is seeded with just 1 infected node.

We can see that in a large number of solutions the epidemic dies out straight

away, represented by the dark I = 0 cells. A significant number of solutions see

the number of infected nodes rising to the steady state value, around I = 40,

represented by the darker cells surrounding this value. The thick grey line shows

the ensemble average, which notably here does not meaningfully capture either

of these two types of solution. In (b), the epidemic is seeded instead with 10

infected nodes. Here the I = 0 cells are slightly lighter than in (a), showing how

in this case far fewer of the solutions see the epidemic dying out quickly. The

majority of solutions see the number of infected nodes rising to the steady state

value. The thick grey line shows the ensemble average, which this time captures

the steady state value well.

As we can see by the close agreement of the simulated ensemble average and

the exact solution in Figure 2.2, the mean behaviour of the ensemble is accurate.

However, generating a large enough ensemble to reliably find this expected be-

haviour can become computationally demanding for larger networks. As such,

a variety of different approximations have been developed, which describe the

system at a coarser-grain level than the exact master equations. These will in-

evitably be less accurate than the exact system, but the tractability they offer

makes them useful nonetheless, and in many cases they still offer a useful in-
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2.5 Homogeneous mean-field approximations

sight into the system behaviour. The following two sections 2.5 and 2.6 introduce

first homogeneous mean-field approximations to SIS dynamics, and then a num-

ber of alternative approximations, before I compare the results of applying these

approximations with simulation results in Section 2.7.

2.5 Homogeneous mean-field approximations

In this section I will detail several homogeneous mean-field approximations. They

are so-called ‘homogeneous’ because they involve the assumption that each node’s

degree can be well-approximated by the mean degree. These homogeneous mean-

field approximations in particular will resurface later in the thesis: first in Chap-

ter 3, where we find that rates involved in the homogeneous mean-field at the

single level can be derived directly from the full continuous-time Markov chain

formulation, and then in Chapter 5, where we use a homogeneous mean-field

approximation at the single level to guide an investigation into multilayer SIS

dynamics. This section therefore acts as an introduction to these approximations

in anticipation of their derivation in Chapter 3, and provides justification for

their use in Chapter 5. The choice to use the homogeneous mean-field approx-

imation, rather than any alternative approximation, will be further justified in

the investigation of results in Section 2.7.

The goal of the mean-field construction is to find a population-level description

of the system. In other words, we would like to track the number of susceptible

and infected nodes in the system at each time. Following the derivation presented

by Simon et al [63], we can construct this population-level description by returning

to the continuous-time Markov chain description of the system, and ordering the

states by ascending number of infected nodes. This then leads to a block-diagonal

infinitesimal generator Q of the form

Q =



B0 A0 0 0 0 0
C1 B1 A1 0 0 0
0 C2 B2 A2 0 0

0 0
. . . . . . . . . 0

0 0 0 CN−1 BN−1 AN−1

0 0 0 0 CN BN


. (2.1)
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2.5 Homogeneous mean-field approximations

We also divide the state vector X into sub-vectors X = (X0, X1, ...XN), where

Xk is the sub-vector whose entries all correspond to the states with k infected

nodes belonging to the class Ck. We also denote a state belonging to the class

Ck as sk. Structuring the dynamics in this way leads to a master equation of the

form

Ẋk = AkXk−1 +BkXk + CkXk+1,

where the Ak matrices capture the transition of a node in the system from S

to I, the Ck matrices capture the transition of a node from I to S, and the Bk

matrices account for the rate of ski → skj transitions. If we sum the elements in

the jth column of matrix Ak, this is the equivalent to summing over all possible

infection transitions out of the state sk−1
j . The probability of a susceptible node

is a function of the number of its infected neighbours, which can also be thought

of as the number of (S, I) edges that are connected to the node. Therefore the

Ak matrices satisfy the identities

ck∑
i=1

Aki,j = τNSI(s
k−1
j ), k = 0, 1, ..., N

where NSI(s
k−1
j ) is the total number of (S, I) edges in state sk−1

j . If we perform

the same sum over the elements in the jth column of the matrix Ck, this time

we are effectively summing over all possible recovery transitions out of the state

sk+1
j . In this state we have (k+ 1) infected nodes, and so the Ck matrices satisfy

the identities
ck∑
i=1

Ck
i,j = γ(k + 1), k = 0, 1, ..., N.

We can also note that the rate of transition from ski to skj is zero if si 6= sj. In

this way Bk is a diagonal matrix, where the diagonal elements

Bk
i,i = −

ck+1∑
j=1

Ak+1
j,i −

ck−1∑
j=1

Ck−1
j,i

because the sum of the entries in any column is 0. Since we are interested in the

population-level counts, it is worth expressing the expected number of infected
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2.5 Homogeneous mean-field approximations

and susceptible nodes in terms of the Markov chain vector. We can see that, for

the expected number of infected nodes:

[I](t) =
N∑
k=0

ck∑
j=1

kXk
j (t) =

N∑
k=0

kekX
k,

where ek is a row vector of ones with ck entries. Likewise, for the expected number

of susceptible nodes:

[S](t) =
N∑
k=0

ck∑
j=1

(N − k)Xk
j (t) =

N∑
k=0

(N − k)ekX
k.

Finally, we can express the expected number of SI edges (the number of edges

incident to both a susceptible node and an infected node):

[SI](t) =
N∑
k=0

ck∑
j=1

NSI(s
k
j )X

k
j (t).

Since we are interested in the time evolution of the system, we look at the time

derivative of the expected number of infected nodes, and we obtain

[İ] =
N∑
k=0

kekẊ
k (2.2)

=
N∑
k=0

kek(A
kXk−1 +BkXk + CkXk+1) (2.3)

=
N∑
k=1

kekA
kXk−1 +

N∑
k=0

kekB
kXk +

N−1∑
k=0

kekC
kXk+1 (2.4)

=
N−1∑
k=0

(k + 1)ek+1A
k+1Xk +

N∑
k=0

kekB
kXk +

N∑
k=1

(k − 1)ek−1C
k−1Xk (2.5)

=
N∑
k=0

(
(k + 1)ek+1A

k+1 + kekB
k + (k − 1)ek−1C

k−1
)
Xk. (2.6)

It can be shown that

ek+1A
k+1 + ekB

k + ek−1C
k−1 = 0
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2.5 Homogeneous mean-field approximations

for all k = 0, 1, ..., N . Using this identity, we can simplify the above expression

for [İ] and we find

[İ] =
N∑
k=0

(
ek+1A

k+1 − ek−1C
k−1
)
Xk.

Then, by using (
ek−1C

k−1
)
j

=

ck−1∑
i=1

Ck−1
i,j = γk,

which implies ek−1C
k−1 = γkek, we find

N∑
k=0

ek−1C
k−1Xk =

N∑
k=0

γekX
k = γ[I].

Similarly, by using

(
ek+1A

k+1
)
j

=

ck+1∑
i=1

Ak+1
i,j = τNSI(s

k
j ),

we find

N∑
k=0

ek+1A
k+1Xk =

N∑
k=0

ck∑
j=1

(
ek+1A

k+1
)
j
Xk
j = τ

N∑
k=0

ck∑
j=1

NSI(s
k
j )X

k
j (t) = τ [SI].

Putting this together, we have the exact mean-field equations:

[İ] = τ [SI]− γ[I]

[Ṡ] = γ[I]− τ [SI],

where we have found the equivalent equation for [Ṡ] by making use of the fact

that [Ṡ] + [İ] = 0. We can similarly derive the following differential equations for

the various edge pairings [64]:

[ṠI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]),

[ ˙SS] = 2γ[SI]− 2τ [SSI],

[ ˙II] = −2γ[II] + 2τ([ISI] + [SI]).

To solve these equations in their exact form, we theoretically need to find equa-

tions governing the time evolution of the triplets [SSI] and [ISI]. These equations
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2.5 Homogeneous mean-field approximations

would in turn involve terms involving four node-states, and the process continues

until we have effectively rewritten the full master equations. In order to reduce

the state space and make the mean-field approximations useful, we can apply clo-

sures to the mean-field equations [65]. Closure approaches all involve expressing

higher order structures in terms of lower order ones, either exactly or approx-

imately. These approaches rely on the assumption that, at some scale, certain

variables can be treated as independent. In the following subsections I will show

how we can apply closures to the exact SIS mean-field model, at two different

levels: the first involving an approximation for the expected number of pairs [SI],

[II] and [SS] in terms of the singles [S] and [I], and the second involving an ap-

proximation for the expected number of triples [SSI] and [ISI] in terms of the

pairs. Following the convention of Kiss, Miller and Simon [59], we call these the

closures at the pair and triple levels, leading to mean-field approximations at the

single level and pairwise level respectively.

2.5.1 Closure at the pair level

In order to make a closure at the pair level and express [SI] in terms of [S]

and [I], we make a number of assumptions. We first assume that the network is

homogeneous: that is, each node has the same number of neighbours n. We also

assume that infected nodes are distributed randomly. This means that if there

are I infected nodes making up [I]
N

of the population, an average susceptible node

will have n[I]
N

infected neighbours. Using this, the total number of SI edges is

approximated by

[SI] ≈ n

N
[S][I].

In reality infected nodes are more likely to be in contact with other infected

nodes due to how the infection propagates, and in general the network will not

be homogeneous. Using this approximation for [SI] will therefore result in an

inexact closed system of equations, and the values of [S] and [I] found by solving

the closed system will only be approximations of the true expected values. The

discrepancies between these values will vary based on the network properties and

the dynamical parameters, and I investigate this in Section 2.7. However, making
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2.5 Homogeneous mean-field approximations

this closure allows us to limit the number of equations which describe the system.

Starting with the exact system,

[İ] = τ [SI]− γ[I]

[Ṡ] = γ[I]− τ [SI],

and making the closure at pair level, these equations become

[Ṡ] = −τ n
N

[S][I] + γ[I]

[İ] = τ
n

N
[S][I]− γ[I].

As stated above, we refer to this system as the homogeneous mean-field at the

single level. This is essentially a stochastic equivalent of the deterministic com-

partmental model described earlier, with β replaced by nτ . These equations can

be easily solved, and the results mirror those for the compartmental model: the

system has two steady states at [I] = 0, where the disease dies out entirely, and

[I] = N(1− γ
nτ

), where the system reaches an endemic state. The latter solution

is only physical for γ < nτ . Stability analysis reveals that for γ > nτ the disease-

free equilibrium point is stable, and for γ < nτ the endemic equilibrium point

is stable. There is therefore a transcritical bifurcation at the epidemic threshold

γ = nτ , at the critical value τc = γ
n
.

It is useful here to return to the concept of the basic reproduction ratio R0. In

the stochastic context, the reproduction ratio is defined as the average number of

secondary infections caused by a primary infection introduced in a fully suscep-

tible population [66]. Given that an infected node will be infected for an average

time of 1
γ
, and the rate of transmission from one infected node in a susceptible

population will be nτ , this means that

R0 =
nτ

γ
.

The epidemic threshold can then be defined in terms of the reproduction ratio. If

R0 > 1 then there exists an endemic steady state. If R0 < 1 then the disease-free

steady state is the only physical steady state in existence.
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2.5 Homogeneous mean-field approximations

2.5.2 Closure at the triple level

To potentially improve the accuracy of the approximation, we can instead apply

a closure at the triple level. To do this we need to find approximations for the

expected number of triples [SSI] and [ISI] in terms of singles and pairs. Again,

we can use physical reasoning to find sensible approximations. Considering still

a homogeneous system with each node having degree n, the number of edges

starting from susceptible nodes is n[S]. Given a total number of SI edges [SI],

then a proportion [SI]/n[S] of the edges starting from susceptible nodes will lead

to infected nodes. Using the same reasoning, a proportion [SS]/n[S] will lead

to susceptible nodes. Therefore if we choose a susceptible node u and two of

its neighbours v and w, the probability of the nodes forming a [SSI] triplet is

[SS][SI]/n2[S]2. Since there are n(n − 1) ways we can choose the neighbours v

and w, we can conclude that

[SSI] ≈ n− 1

n

[SS][SI]

[S]
.

We can apply equivalent analysis to find

[ISI] ≈ n− 1

n

[SI]2

[S]
.

This approximation again does not fully account for correlations between the

node-states of neighbouring nodes: a previously infected, recently recovered node

is more likely to have infected neighbours than other susceptible nodes. However,

it again allows us to reduce the system of equations down to a tractable state

space:
[Ṡ] = −τ [SI] + γ[I]

[İ] = τ [SI]− γ[I]

[ṠI] = γ([II]− [SI]) + τ
n− 1

n

[SI]([SS]− [SI])

[S]
− τ [SI]

[ ˙SS] = 2γ[SI]− 2τ
n− 1

n

[SI][SS]

[S]

[ ˙II] = −2γ[SI] + 2τ
n− 1

n

[SI]2

[S]
+ 2τ [SI].
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We can actually reduce this system even further by recognising that the following

conservation relations hold:

[S] + [I] = N

2[SI] + [SS] + [II] = nN

[SS] + [SI] = n[S]

[SI] + [II] = n[I].

Using these, the system simplifies down to a two-dimensional system:

[Ṡ] = γN − (γ + nτ)[S] + τ [SS]

[ ˙SS] = 2(n[S]− [SS])
(
γ − τ(n− 1)

[SS]

n[S]

)
.

We can solve these equations, again revealing a disease-free steady state and an

endemic steady state. The disease-free state [I] = 0, [SS] = nN is stable for

τ(n− 1) < γ, and the endemic steady state [S] = N γ(n−1)
τn(n−1)−γ , [SS] = γn

τ(n−1)
[S] is

stable for τ(n− 1) > γ.

We can label the single level approximation with the subscript ‘1’ (indicating

the first approximation), and the pair level approximation with the subscript ‘2’

(indicating the second approximation). It can be shown (as in Kiss, Miller and

Simon [59]), that the following inequalities hold:

n

N
[S]2[I]2 > [SI]2, [SS]2 >

n

N
[S]21, [II]2 >

n

N
[I]22.

These can be used to further show that [I]2 < [I]1, i.e. the single level approx-

imation of the infection prevalence provides an upper bound for the pair level

approximation. We will see confirmation of this in Section 2.7, where I will ex-

plore the accuracy of these mean-field approximations on a range of different

networks.

2.6 Alternative approximations

There are a large number of more sophisticated approximations, which try to

capture a wider range of system behaviours. In this section I will briefly sum-

marise some of the more commonly used approximations, discuss the assumptions

inherent in their formulation, and present the resulting system equations for each.
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2.6 Alternative approximations

2.6.1 Heterogeneous mean-field approximations

The heterogeneous mean-field is formulated similarly to the homogeneous case,

but instead of focussing on the expected number of infected (and susceptible)

nodes, we focus on the expected number of infected (and susceptible) nodes that

have degree k, for k = 1, 2, ..., kmax, where kmax is the maximum degree. We can

also introduce Nk, the number of nodes with degree k, and so N1+N2+...+NM =

N . This allows us to relax the assumption that every node has the same degree,

and therefore we can account for a heterogeneous degree distribution. The system

of master equations becomes

[Ṡk] = γ[Ik]− τ [SkI]

[İk] = τ [SkI]− γ[Ik]

for k = 1, 2, ..., kmax. We can also derive equations for the time evolution of the

pairs [SkIl], [SkSl] and [IkIl]. As with the homogeneous mean-field approximation,

we need to apply a closure to this system in order to make it useful. We start

with a closure at the pair level. Heuristic reasoning gives us that

[SkI] ≈ k[Sk]πI ,

where k[Sk] is the expected number of edges leaving susceptible nodes of degree

k, and πI =
∑kmax

l=1 l[Il]/
∑kmax

l=1 lNl is the probability that a randomly chosen edge

leaving any node is connected to an infected node. This allows us to write the

system using 2kmax equations:

[Ṡk] = γ[Ik]− τk[Sk]πI

[İk] = τk[Sk]πI − γ[Ik]

πI =
kmax∑
l=1

l[Il]/
kmax∑
l=1

lNl.

This closure assumes the “annealed network” assumption of random neighbour

selection: in other words, it assumes that the neighbours of all nodes are inter-

changeable (or that the nodes are changing their neighbours rapidly). As in the

homogeneous closure of pairs, this approximation fails to account for correlations

between neighbouring nodes in static networks.
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2.6 Alternative approximations

Using [Sk]+[Ik] = Nk, we can reduce this system to kmax equations for [İk], and

solve the system for the steady states. We find again a disease-free steady state

and an endemic steady state. Stability analysis reveals there is a transcritical

bifurcation occurring at
τ

γ
=
〈k〉
〈k2〉

,

and so the critical value of τ is given by

τc = γ
〈k〉
〈k2〉

.

There also exists a heterogeneous pairwise model, although this has O(k2
max)

equations, and for practical reasons a compact pairwise model with 2kmax + 3

equations is often used instead:

[Ṡk] = γ[Ik]− τk[Sk]
[SI]

[SX]

[İk] = τk[Sk]
[SI]

[SX]
− γ[Ik]

[ṠI] = γ([II]− [SI]) + τ([SS]− [SI])[SI]Qc − τ [SI]

[ ˙SS] = 2γ[SI]− 2τ [SS][SI]Qc

[ ˙II] = 2τ [SI]− 2γ[II] + 2τ [SI]2Qc,

where [SX] =
∑kmax

k=1 k[Sk] and Qc = 1
[SX]2

∑kmax

k=1 (k − 1)k[Sk]. The approxima-

tions required for this model assume that the neighbours of all susceptible nodes

are interchangeable. However, neighbours of a susceptible degree k node that

has been previously infected are more likely to be infected than neighbours of a

susceptible degree k node that has never been infected.

2.6.2 Individual-based mean-field approach

The approximations so far have been derived using what Kiss, Miller and Simon

describe as a ‘top-down’ approach, where the system equations are formulated by

initially tracking the vector X(t), containing the probabilities of the entire system

being in each system-state. An alternative ‘bottom-up’ approach is possible,

where we instead track the probabilities of each node being in each node-state.
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2.6 Alternative approximations

We denote the probability of node i being susceptible or infected at time t by

〈Si(t)〉 and 〈Ii(t)〉 respectively. We then seek to find the time evolution of these

probabilities. The resulting equation for 〈Ii〉 is

〈İi〉 = τ
N∑
j=1

gij〈SiIj〉 − γ〈Ii〉,

where gij is the ijth element of the adjacency matrix G describing the connections

between nodes, and γ is the recovery rate. This formulation theoretically allows

for the value of the recovery parameter to vary for different nodes, by introducing

separate recovery rates γi for each node i. In this chapter I consider only the

simpler case where the recovery rate is the same for each node.

This equation for 〈Ii〉 depends on 〈SiIj〉, and so we also need to include the

equation describing the time evolution of this term too:

〈 ˙SiIj〉 = τ
N∑

k=1,k 6=i

gjk〈SiSjIk〉−τ
N∑

k=1,k 6=j

gik〈IkSiIj〉−τgij〈SiIj〉−γ〈SiIj〉+γ〈IiIj〉.

This equation in turn depends on triples as well as the further pairs, and we find

the same problem as in the homogeneous and heterogeneous mean-field approx-

imations. In order to meaningfully reduce the state space of the exact system,

we need to apply a closure. The simplest choice is to apply a closure at the pair

level, and the resulting individual-based mean-field model at the single level is

described by the system of equations

〈Ẏi〉 =

(
τ

N∑
j=1

gij(1− 〈Yi〉)〈Yj〉

)
− γ〈Yi〉,

where 〈Xi〉 and 〈Yi〉 are approximations to 〈Si〉 and 〈Ii〉 respectively. This system

involves N equations, and is the same system as that referred to by Van Mieghem

et al as the N-intertwined mean-field approach (NIMFA) [67]. This closure at the

pair level assumes neighbouring node-states are independent, and so the system

cannot account for correlations between neighbouring nodes.

In fact, it can be proved that NIMFA will give overestimates of the true infec-

tion probabilities. To show this, we use the fact that Markovian SIS epidemics are
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non-negatively correlated [68], so 〈SiIj〉 ≤ 〈Si〉〈Ij〉 for t > 0. If we then consider

the exact individual-based model:

〈İi〉 = τ
N∑
j=1

gij〈SiIj〉 − γ〈Ii〉

= τ
N∑
j=1

gij〈Si〉〈Ij〉 − γ〈Ii〉+ τ

N∑
j=1

gij(〈SiIj〉 − 〈Si〉〈Ij〉)

= τ
N∑
j=1

gij(1− 〈Ii〉)〈Ij〉 − γ〈Ii〉+ τ

N∑
j=1

gij(〈SiIj〉 − 〈Si〉〈Ij〉)

≤ τ
N∑
j=1

gij(1− 〈Ii〉)〈Ij〉 − γ〈Ii〉.

Assuming that the exact individual-based model, and the approximate closed

model both start with the same initial conditions, i.e. 〈Ii〉(0) = 〈Yi〉(0) for

i = 1, 2, ..., N , then 〈Ii〉(t) ≤ Yi(t) for i = 1, 2, ..., N .

2.6.3 Approximate master equations

The final approximation I will consider is that of the approximate master equa-

tions derived by Gleeson [69]. In Gleeson’s approach, we track the variables

Sk,m(t) and Ik,m(t), the fractions of k-degree nodes that have m infected neigh-

bours and are either susceptible or infected respectively. Note that in this section

S and I denote fractions of susceptible and infected nodes, rather than absolute

numbers. This model is a SVT model, and in its most general form Gleeson

allows the probability of a node changing state to depend on its degree as well

as on the number of its infected neighbours. Therefore the probability that a

k-degree susceptible node with m infected neighbours becomes infected in a time

interval dt is denoted by Fk,mdt. The probability of a k-degree infected node with

m infected neighbours recovering within a time dt is similarly denoted Rk,mdt.

Gleeson derives the master equations for the evolution of the variables Sk,m and

Ik,m, and finds

Ṡk,m = −Fk,mSk,m +Rk,mIk,m − βs(k −m)Sk,m + βs(k −m+ 1)Sk,m−1 − γsmSk,m + γs(m+ 1)Sk,m+1

İk,m = −Rk,mIk,m + Fk,mSk,m − βi(k −m)Ik,m + βi(k −m+ 1)Ik,m−1 − γimIk,m + γi(m+ 1).
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The terms including the rates Fk,m and Rk,m describe transitions where a k-degree

node is either infected or recovers. The remaining terms represent situations

where the neighbour of a k-degree node changes state. The rates βs, βi, γs and γi

are variable, and are approximated by counting the number of edges of each type

and seeing how they change as the system evolves. For example, the probability

βsdt is calculated by finding the number of S−S edges which transition to S− I
edges in the small time interval dt, and dividing this by the total number of S−S
edges at time t. We can find Ik(t), the total fraction of k-degree nodes that are

infected, by summing over all possible values of m: Ik(t) =
∑k

m=0 Ik,m. The total

fraction of nodes that are infected, I(t), can also be found, by summing over all

possible degrees: I(t) =
∑

k PkIk(t).

If we have nodes varying in degree from k = 0 to some maximum degree

k = kmax, there are (kmax + 1)(kmax + 2) equations, and so the state space grows

as O(k2
max). For networks with a small value of kmax, these master equations

are tractable, and for kmax � N , the state space is significantly smaller than

that of the standard master equations. I will show in the next section how, for a

number of different networks, the solution to these approximate master equations

is more accurate than the solutions found using the previous approximations. For

networks of this size, we can also use the approximate master equations to find

the SIS epidemic threshold. An appropriate linearisation of the master equations

reveals a link between the largest eigenvalue of a matrix of order k2
max and the

epidemic threshold.

However, for systems with larger maximum degree, this full system is not

tractable and the matrix used in determining the epidemic threshold is too

large to construct or analyse. We again look at ways we can apply a closure

to the system, to reduce the state space. To do this we consider instead the

parameters pk(t) and qk(t), the probabilities of a randomly-chosen neighbour

of a susceptible or infected k-degree node respectively being infected at time t.

These parameters can be expressed in terms of Sk,m and Ik,m. For example,

pk =
∑k

m=0 mSk,m/
∑k

m=0 kSk,m. Then we can apply a closure approximation

to Sk,m and Ik,m, and approximate the two variables as being proportional to

binomial distributions: Sk,m ≈ (1 − Ik)Bk,m(pk), Ik,m ≈ IkBk,m(qk). This sys-
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tem ultimately results in a system of 3kmax + 1 differential equations, with time

evolution equations for Ik, pk and rk for all values of k.

An even cruder approximation replaces both pk and qk with ω, where ω =

〈k
z
Ik〉 is the probability that one end of a randomly-chosen edge is infected. This

gives us a system of just kmax + 1 differential equations for Ik:

İk = Ik

k∑
m=0

Rk,mBk,m(ω) + (1− Ik)
k∑

m=0

Fk,mBk,m(ω).

Inputting for Fk,m and Rk,m the specific infection and recovery rates for the SIS

model, this system reduces to that used by Pastor-Satorras and Vespignani [50].

2.7 Accuracy of approximations compared to sim-

ulation

In this section I will examine the accuracy of the approximations detailed above,

comparing the results from these approximations with results from simulated

ensembles. The main aims of this investigation are as follows:

• To assess the accuracy of the homogeneous mean-field approximation at

the single level, and to see how this compares to the other approximations.

Given the approximation will be the focus of much of Chapter 3, and will

be used during the investigation in Chapter 5, it is necessary to know when

it will give practical results.

• To identify whether there is a significant improvement in accuracy by using

the approximations with larger state spaces, and whether this improvement

is large enough to outweigh any sacrifices in analytical tractability.

To do this, I have simulated SIS dynamics running on a number of different

networks. I explored the effects of the system parameters, such as the network

size N and the reproductive ratio R0, and the effects of structural properties of

the networks, such as the average degree 〈k〉 and the degree distribution variance

〈k2〉−〈k〉2. To do this I also used several different structures of networks, several

of which were introduced in Chapter 1:
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• Erdős-Rényi networks: these are random networks, defined by some prob-

ability p of each edge being present. I generated these networks in R using

the ‘erdos.renyi.game’ function in the igraph package.

• Scale-free networks: these are networks where the degree distribution ap-

proximately follows a power-law distribution. I generated these networks

in R using the ‘barabasi.game’ function in the igraph package.

• Regular random networks: these are random networks where each node

has the same degree. I generated these networks in R using the ‘sam-

ple k regular’ function in the igraph package.

• Bimodal random networks: these are random networks where each node

can have one of two different degrees, labelled d1 and d2. I generated these

networks in R using the ‘sample degseq’ function in the igraph package.

The latter two network structures can be generated by using methods based

on the configuration model method. The configuration model generates random

networks, given a set degree sequence. Each degree in the given degree sequence is

assigned to a node. These degrees can be thought of as half-edges or ‘stubs’, which

need to be connected with another degree in order to form an edge between two

nodes. If we sample randomly from the unpaired degrees in the network, we can

randomly place the edges on the network while preserving the degree distribution.

This model can result in self-edges or multi-edges, but the R functions aim to

avoid this through more sophisticated algorithms.

For this investigation I worked exclusively with networks that were too large

for me to solve the SIS dynamics analytically (ranging from N = 100 to N =

1000). I wanted to see how well the mean-field results capture both the transi-

tional period as well as the steady state value. To this end, I started the sim-

ulations from a state of low infection where 10% of nodes are initially infected.

I chose to start with 10% of nodes initially infected, rather than simply a single

infected node, so that the majority of simulations would reach the endemic state,

and avoid the absorbing state. This means the ensemble average is more likely to

meaningfully represent the endemic steady state, and this allowed me to compare

the accuracy of the mean-field steady state with the ensemble result.
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2.7 Accuracy of approximations compared to simulation

First, I investigated the performance of both the homogeneous single level

approximation and the homogeneous pairwise level approximation. This section

closely follows the work done by Kiss, Miller and Simon, and confirms many of

their results [59]. I started by examining the dynamics on a regular random net-

work with N = 1000 and 〈k〉 = 20 for different values of R0, or equivalently differ-

ent values of τ relative to the homogeneous single level critical value τc = γ
n
. Plots

showing the results for R0 = 0.9, 1, 1.1, 1.5, equivalently τ = 0.9τc, τc, 1.1τc, 1.5τc,

are shown in Figure 2.4. The thick grey line indicates the ensemble average, and

the homogeneous single level and pairwise level approximations are indicated by

the solid and dashed red lines respectively. We can see that the approxima-

tions perform better for values further from the predicted epidemic threshold

τ = τc. The single level approximation in particular seems sensitive to this.

These simulations (and all further ones during this investigation) also confirm

the previously-proved result that the homogeneous mean-field pairwise model is

bounded by the single level model. The single level model appears to perform

worse than the pairwise model, a result we might anticipate from the fact that the

pairwise model is a larger system including more information about the pairwise

behaviour.

To study the dependence on the size of the network, I performed simulations

on regular random networks of size N = 100, 200, 400 and 800. For each of the

networks I kept the node degree the same at 〈k〉 = 10. I set R0 = 1.5. We can see

in Figure 2.5 that the simulation result more closely matches the approximations

for larger systems. Notably, for N = 100 we can see that the ensemble average

reaches an apparent stationary state before decaying towards (at some future

time) the disease-free steady state. This behaviour cannot be captured by the

mean-field approximations, which ignore this stochastic effect.

I also found that the denser the network, the more accurate the approxima-

tions. Figure 2.6 shows the results for sparse and dense regular random networks

(with 〈k〉 = 5 and 〈k〉 = 50 respectively), and for sparse and dense Erdős-Rényi

networks (again, with 〈k〉 = 5 and 〈k〉 = 50). In both cases the homogeneous ap-

proximations perform better for the denser network. The approximations perform

better for the regular random networks than the Erdős-Rényi networks, an initial
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2.7 Accuracy of approximations compared to simulation

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

time

fr
ac

tio
n 

in
fe

ct
ed

homo single
homo pair

(a) τ = 0.9τc
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(b) τ = τc
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(c) τ = 1.1τc
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(d) τ = 1.5τc

Figure 2.4: The results of simulating SIS dynamics on a regular random network

for varying values of τ (thick grey line), compared with the homogeneous single

level model (solid red line) and the homogeneous pairwise model (dashed red

line). The values of the parameters are N = 1000, 〈k〉 = 20, γ = 1, and τ =

0.9τc, τc, 1.1τc, and 1.5τc for plots (a), (b), (c) and (d) respectively.
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(a) N = 100
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(b) N = 200
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(c) N = 400
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(d) N = 800

Figure 2.5: The results of simulating SIS dynamics on regular random networks of

varying size (thick grey line), compared with the homogeneous single level model

(solid red line) and the homogeneous pairwise model (dashed red line). The sizes

of the networks are N = 100, 200, 400 and 800 for plots (a), (b), (c) and (d)

respectively. The networks all have 〈k〉 = 10, and the epidemic parameters are

γ = 1, τ = 1.5τc.
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2.7 Accuracy of approximations compared to simulation

example of how the accuracy breaks down once the network degree distribution

shows some heterogeneity.

To further explore this, I widened my consideration to include the two het-

erogeneous approximations, and NIMFA at the single level. Since these three ap-

proximations include information about the degree distribution, we might expect

them to outperform the homogeneous mean-field approximations for networks

with large degree heterogeneity. I looked at the dynamics on bimodal random

networks, where I could adjust the two different possible degrees to generate

networks with varying degree heterogeneity.

Figure 2.7 shows the results as I moved from a degree variance of 〈k2〉 −
〈k〉2 = 4 (Figure 2.7(a)) to a degree variance of 〈k2〉− 〈k〉2 = 225 (Figure 2.7(c)).

The two homogeneous approximations are again marked in red lines (a solid line

for the single level, dashed for pairwise). As we move from more homogeneous

to more heterogeneous degree distributions, these two approximations start to

perform worse. The pairwise approximation does a better job, in general, but

still fails to accurately predict the dynamics. This is to be expected, since the

key assumption of homogeneity no longer holds for the bimodal networks with

larger degree variance.

In comparison, the heterogeneous approximations shown in blue lines (solid

for single level, dashed for compact pairwise) perform better for the most het-

erogeneous case. However, we can see that for the most homogeneous case, the

heterogeneous single level approximations in fact performs worse than the homo-

geneous pairwise level approximation. This suggests that, for more homogeneous

networks, it becomes more important to capture the pairwise correlations than

the (low) heterogeneity of the network.

The NIMFA single level approximation (illustrated with a dashed green line)

shows similar behaviour to the heterogeneous single level approximation: it pe-

forms relatively poorly for the more homogeneous networks, since it is a single

level closure, but performs relatively well for the heterogeneous case, where the

inclusion of the adjacency matrix allows it to better capture the heterogeneous

degree distribution.

I also performed simulations for the dynamics on a power law network, gen-

erated using the Barabasi-Albert model with constant degree of 10 for all newly-
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(a) Sparse regular random network
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(b) Dense regular random network
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(c) Sparse Erdős-Rényi network
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(d) Dense Erdős-Rényi network

Figure 2.6: The results of simulating SIS dynamics (thick grey line), first on (a)

sparse and (b) dense regular random networks, and then on (c) sparse and (d)

dense Erdős-Rényi networks, compared with the homogeneous single level model

(solid red line) and the homogeneous pairwise model (dashed red line). The

networks all have N = 1000, with 〈k〉 = 5 for the sparse networks and 〈k〉 = 50

for the dense networks. The epidemic parameters are γ = 1 and τ = 1.5τc.
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(a) d1 = 18, d2 = 22
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(b) d1 = 10, d2 = 30
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(c) d1 = 5, d2 = 35

Figure 2.7: The results of simulating SIS dynamics on a range of different bimodal

networks (thick grey line), compared to the homogeneous single level model (solid

red line), the homogeneous pairwise model (dashed red line), the heterogeneous

single level model (solid blue line), the heterogeneous compact pairwise model

(dashed blue line), and NIMFA (dashed green line). The networks all have the

same size (N = 1000) and average degree (〈k〉 = 20), but the network in (a)

has d1 = 18, d2 = 22, and degree variance 〈k2〉 − 〈k〉2 = 4 the network in (b)

has d1 = 10, d2 = 30 and degree variance 〈k2〉 − 〈k〉2 = 100, and the network in

(c) has d1 = 5, d2 = 35 and degree variance 〈k2〉 − 〈k〉2 = 225. The epidemic

parameters in all three cases are γ = 1 and τ = 1.5τc.

59



2.7 Accuracy of approximations compared to simulation

attached vertices. This led to a network with maximum degree 161, and degree

variance 〈k2〉−〈k〉2 = 302. As shown in Figure 2.8, the homogeneous approxima-

tion accuracy completely breaks down in this large variance situation. Again, the

results from NIMFA closely follow the heterogeneous single level model, while the

heterogeneous compact pairwise model performs best. These results suggest that

the homogeneous approximations are not a reasonable choice of approximation

for networks that have high degree variance.

0 5 10 15 20

0.
10

0.
20

0.
30

0.
40

time

fr
ac

tio
n 

in
fe

ct
ed

homo single
homo pair
het single
het pair
NIMFA

Figure 2.8: The result of simulating SIS dynamics on a Barabási-Albert network

(thick grey line), compared to the homogeneous single level model (solid red line),

the homogeneous pairwise model (dashed red line), the heterogeneous single level

model (solid blue line), the heterogeneous compact pairwise model (dashed blue

line) and NIMFA (dashed green line). The network parameters are N = 1000

with constant degree 10 for each newly-attached vertex, max degree 161, degree

variance 〈k2〉 − 〈k〉2 = 302. The epidemic parameters are γ = 1 and τ = 1.5τc.

I also explored the same three dependences as before, now with these heteroge-

neous approximations: how their accuracy varies with proximity of the infection

parameter to the critical value τc, density of the network, and size of the network.

Taking again a bimodal network with N = 1000 and d1 = 5, d2 = 35, Figure 2.9

shows how the approximations are more accurate further from the heterogeneous

single level critical value of τc = γ〈k〉/〈k2〉. Figure 2.10 shows the results for a

sparse Erdős-Rényi network and a dense Erdős-Rényi (N = 1000, 〈k〉 = 10 and

50 respectively), and we see better agreement for the denser network. Finally I
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2.7 Accuracy of approximations compared to simulation

looked at the dynamics on bimodal networks of varying size: N = 100, 200, 400

and 800, all with d1 = 5, d2 = 15. Figure 2.11 shows the results, and we can

see how the approximations gradually become more accurate as the network size

increases. These three results are all in line with my findings for the homogeneous

approximations.

Finally, the approximate master equations performed well in the situations

I tested. Figure 2.12 shows how closely the result (the magenta dashed line)

matches the simulation (the thick grey line) for a range of different networks,

including very heterogeneous networks and a small network. This accuracy is

predictable, as the state space for this system is much larger than the other ap-

proximations. However, this larger state space means that the computational

demands of solving the system are non-trivial. I used the ‘ode’ function in R,

again with the default settings, to solve the system, and I found that calculat-

ing the solution was a struggle for networks with maximum degree kmax > 50.

Figure 2.12 also shows the result of the heterogeneous compact pairwise model

(again a dashed blue line) for the same networks and parameters. For all ex-

cept the simulation on the Barabási-Albert network, the heterogeneous compact

pairwise solution and the approximate master equations solution are almost indis-

tinguishable. Given the heterogeneous compact pairwise model has only 2kmax+3

equations, and involves far fewer operations to solve, this seems a more sensible

choice of approximation.

Summarising these results in relation to the main aims of this investigation:

• The homogeneous mean-field approximation at the single level performs well

on networks with homogeneous degree distributions. Its accuracy increases

with the size of the network, the density of the network, and for values of

τ far from the critical value τc. The pair level closure generally gives more

accurate results, but for the case of the power-law network, the single level

closure actually performed better.

• The two approximations with the largest state spaces, the heterogeneous

compact pairwise model and the approximate master equations, give the

most accurate results across all the networks and parameters studied in

this section. However, the heterogeneous compact pairwise model performs
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(a) τ = 0.9τc
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(b) τ = τc
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(c) τ = 1.1τc
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(d) τ = 1.5τc

Figure 2.9: The results of simulating SIS dynamics on a bimodal network for

varying values of τ (thick grey line), compared with the heterogeneous single

level model (solid blue line), the heterogeneous compact pairwise model (dashed

blue line), and NIMFA (dashed green line). The values of the parameters are

N = 1000, d1 = 5, d2 = 35, 〈k〉 = 20, γ = 1, and τ = 0.9τc, τc, 1.1τc, and 1.5τc for

plots (a), (b), (c) and (d) respectively.
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(a) Sparse Erdős-Rényi network
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(b) Dense Erdős-Rényi network

Figure 2.10: The results of simulating SIS dynamics on (a) sparse and (b) dense

Erdős-Rényi networks (thick grey line), compared with the heterogeneous single

level model (solid blue line), the heterogeneous compact pairwise model (dashed

blue line) and NIMFA (dashed green line). The networks both have N = 1000,

with 〈k〉 = 5 for the sparse network and 〈k〉 = 50 for the dense network. The

epidemic parameters are γ = 1 and τ = 1.5τc.

almost identically to the approximate master equations, despite having a

much smaller state space in general and being much less computationally

expensive to solve. This shows that the gains in accuracy from using a more

detailed model are not always significant enough to justify the increased

computational demands.

2.8 Summary

This chapter has outlined a number of different ways of approximation and solving

SIS dynamics on a network. The compartmental model is the simplest model,

but does not include any information about the underlying network. A stochastic

Markov Chain treatment allows us to incorporate network information, but this

system is only tractable for very small networks. Simulation methods offer one

way of solving the system for larger networks, but they can be computationally

expensive. I have therefore presented and explored a number of different mean-

field approximations, which can be used to reduce the state space of the system.
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(a) N = 100
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(b) N = 200
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(c) N = 400
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(d) N = 800

Figure 2.11: The results of simulating SIS dynamics on bimodal networks of

varying size, compared with the heterogeneous single level model (solid blue line),

the heterogeneous compact pairwise model (dashed blue line) and NIMFA (dashed

green line). The sizes of the networks are N = 100, 200, 400 and 800 for plots

(a), (b), (c) and (d) respectively. The networks all have d1 = 5 and d2 = 15 with

〈k〉 = 10, and the epidemic parameters are γ = 1, τ = 1.5τc.
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(a) Erdős-Rényi network
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(b) Erdős-Rényi network
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(c) Bimodal network
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(d) Barabási-Albert network

Figure 2.12: The results of simulating SIS dynamics on several different net-

works (thick grey line), compared with the approximate master equations solution

(magenta dashed line) and the heterogeneous compact pairwise model solution

(dashed blue line). The two solutions are almost identical, and so almost indis-

tinguishable. The networks and parameters are respectively: (a) an Erdős-Rényi

network with N = 1000, 〈k〉 = 20 and γ = 1, τ = 0.9τc; (b) an Erdős-Rényi

network with N = 1000, 〈k〉 = 20 and γ = 1, τ = 1.1τc; (c) a bimodal network

with N = 1000, d1 = 5, d2 = 35 where τ = 2τc; (d) a Barabási-Albert network

with N = 100, constant degree 5 for each newly-added node and τ = 2τc.
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2.8 Summary

As expected, the accuracy of the homogeneous mean-field approximations

breaks down when applied to networks with large degree heterogeneity, such as

Barabási-Albert networks. In these situations, approximations that can take into

account the heterogeneous degree distribution, such as the heterogeneous mean-

field approximations and NIMFA, are the most appropriate approximations to

use. If the network is fairly homogeneous, however, then the homogeneous mean-

field approximations perform well, and it becomes more important to apply a

closure at the level of pairs than to capture information about the degree distri-

bution. The approximate master equations generally outperform the five other

approximations investigated, but these equations aren’t practical for networks

that have a maximum degree kmax > 50. The heterogeneous compact pairwise

model also gives incredibly close results to the approximate master equations for

the networks explored in this investigation, and is in general less computationally

demanding, providing a more attractive choice in most situations. This shows

how systems with a larger state space are not always significantly more accurate

than simpler, smaller systems.

Notably, this investigation has shown how it is hard to know a priori which

approximation will perform best, even when we know the general trends in ap-

proximation accuracy. For example, when considering the sparse Erdős-Rényi

network shown in Figure 2.6(c), the single level homogeneous approximation ac-

tually outperformed the pairwise homogeneous approximation. Likewise this re-

sult occurred for the Barabási-Albert network in Figure 2.8. It is also possible for

the homogeneous pairwise level approximation to outperform the heterogeneous

single level approximation, as in the fairly homogeneous network shown in Figure

2.7(a). This shows the need to develop a better understanding of how the error

depends on network properties. My work in the next chapter starts to tackle this

problem.
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Chapter 3

Approximate lumping of

dynamics on networks

3.1 Introduction

The mean-field approximations explored in the previous chapter are frequently

applied to dynamics on networks, but many of the assumptions that underpin

these approximations, such as the absence of local clustering or dynamical cor-

relations, are routinely violated by dynamical processes on real-world networks

[51]. As shown in the previous chapter, their motivation is also typically based on

intuitive probabilistic reasoning rather than rigorous mathematics. This means

it is generally difficult to predict how well these approaches will work, beyond

the general trends based on the dynamical parameters, and the size, density and

homogeneity of the network already investigated in the previous chapter. Due

to these issues, Pellis et al identified the problem of giving rigorous theoretical

understanding to approximation schemes as one of the core current challenges

facing network research [70].

In this chapter I focus on an approximation method called the approximate

lumping method, and I show how this method provides us with a novel theoretical

underpinning to mean-field approaches. I define a quantity called the lumping

error, which measures the extent to which the approximate lumping violates the

condition for an exact lumping. I minimise this quantity for a broad range of

dynamical processes on networks, and I demonstrate how this approach allows us
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3.2 Approximate lumping optimisation

to derive an expression for the error of the approximate lumped solution. This

error expression relies in part on the steady state solution of the dynamics, and

therefore is of limited usefulness without further work. A full investigation of

the error analysis for larger networks was beyond the scope of this thesis, but I

discuss some preliminary ideas which feature in a submitted paper [71] in Section

3.6.3 of this chapter.

Section 3.2 describes the Markov Chain formulation of the system, and shows

how approximate lumping can be applied, and the lumping error minimised, for a

general set of network dynamics. In Section 3.3 I solve this minimisation process

for the case of single-vertex transition models with binary vertex-states, and show

that we recover the homogeneous mean-field approximation transition rates. In

Section 3.4 I analyse the error of the approximate lumped solution in the binary

vertex-state case, for processes with and without absorbing states. Section 3.5

extends some of this work to models with non-binary vertex-states. Section 3.6

concludes and outlines some potential extensions to this work.

3.2 Approximate lumping optimisation

In this chapter I will focus on finite simple networks, i.e. undirected, unweighted

networks that have no self-edges. Consider such a network with N vertices,

where each vertex can be in one of M vertex-states {Σ1,Σ2, ...ΣM}. We can then

construct the same Markov chain formulation of general dynamics as in Section

2.3, which is summarised again here.

The Markov chain state space consists of n = MN states, S = {s1, s2...sn}.
We denote the vertex-state of a given vertex v as σv, where σv ∈ {Σ1,Σ2, ...ΣM}.
A given state si can then be described by a vector of these vertex-states si =

(σ1, σ2, ...σN). The transition rate between two states si and sj can be ex-

pressed as a general function of the two states h(si, sj). The vector X(t) =

(X1(t), X2(t), ...XMN (t)) contains the probabilities Xi(t) that the system is in

state si at time t, and forms the time-dependent Markov chain probability distri-

bution over the state-space S. The master equation describing the time evolution

of X(t) is given by

Ẋ = QTX,
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3.2 Approximate lumping optimisation

where Q is the infinitesimal generator formed by the instantaneous transition

rates [59]. Q is an MN by MN matrix, and equivalently there are MN linear

differential equations in the system of master equations. Due to this exponential

scaling, the dynamics quickly become intractable on networks with even a modest

number of vertices. This motivates the use of methods and approximations to

reduce the state space to a more feasible size, as initially explored in Chapter 2.

Lumping is one method of reducing the state space, in which states are parti-

tioned into a smaller number of subsets referred to as cells. Importantly, lumping

preserves the Markov property, which holds when the probability of observing

each possible future state of a stochastic process is dependent only on the present

state of the system, and not on the past states. More formally, a partitioning of

the state space S is defined as L = {L1, L2, ...Lr}, where a cell Lk is a non-empty

subset of S, Lk ∩ Ll = ∅,
⋃
k Lk = S. We say that a state space S is strongly

lumpable with respect to a given partitioning L if the lumped system also obeys

the Markov condition [72]. A necessary and sufficient condition for this is that

for any pair of cells Li and Lj, the transition rate of going from any sk ∈ Li to

any state sl ∈ Lj is the same for all sk, i.e. there exists a matrix Rij such that

Rij =
∑
sl∈Lj

Qkl for all sk ∈ Li. (3.1)

We can define the collector matrix C [73] for a given partitioning L:

Cij =

{
1 if si ∈ Lj
0 otherwise.

We can also define the distributor matrix D [73] for a given partitioning:

Dij =

{
1

#Li
if sj ∈ Li

0 otherwise,

where #Li is the number of states in the cell Li. This matrix satisfies DC = I.

If the state space is strongly lumpable, then the matrix R can be constructed

as R = DQC, and satisfies the lumping condition QC = CR. This lumping

condition is equivalent to (3.1). This matrix R functions as the infinitesimal

generator governing the time evolution of a vector Y = (Y1(t), Y2(t), ...Yr(t)),

which contains the probabilities Yi(t) of being in each cell Li at time t:

Ẏ = RTY.
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3.2 Approximate lumping optimisation

For a strongly lumpable system, Y(t) = CTX(t) for all time t.

The possible lumpings of a system are intrinsically linked with the symmetries

of the network [59]. This makes lumping an effective tool for use on very small

networks or larger networks with obvious patterns of symmetry, but less practical

for the more complex networks generally found in real-life. Therefore I chose

to explore approximate lumping, where the condition of preserving the Markov

property is no longer imposed. An approximate lumping is therefore any lumping

of the state space for which there does not exist a matrix R satisfying condition

(3.1).

I aimed to seek the most appropriate infinitesimal generator R to govern the

time evolution of the vector Y, in the approximate lumping case where the lump-

ing condition QC = CR is violated. Since QC − CR = 0 for exact lumpings,

I would like to construct the generator R such that a measure of QC − CR

is small. Using the Frobenius norm, I therefore sought to minimise the quan-

tity ‖QC−CR‖F , which I call the lumping error. From the definition of the

Frobenius norm:

‖QC−CR‖F =
MN∑
i=1

r∑
j=1

(QC−CR)2
ij (3.2)

=
r∑
i=1

∑
sk∈Li

r∑
j=1

(QC−CR)2
kj. (3.3)

Using the previous definition of the collector matrix

Cij =

{
1 if si ∈ Lj
0 otherwise

then we can see that

(CR)kj =
r∑
i=1

CkiRij = Rij if sk ∈ Li,

and so

‖QC−CR‖F =
r∑
i=1

∑
sk∈Li

r∑
j=1

[(QC)kj −Rij]
2.

For ease of notation we can also define the matrix P = QC, and then the condi-

tion to minimise the lumping error corresponds to minimising the sum of square
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3.3 Binary vertex-state dynamics

differences
r∑
i=1

r∑
j=1

∑
sk∈Li

(Pkj −Rij)
2.

This is minimised if we choose Rij to be the average of the sum of rates out of

states in the ith level and into the jth level, i.e.

Rij =
1

#Li

∑
sk∈Li

Pkj. (3.4)

This infinitesimal generator is in fact still structured as R = DQC. Therefore

using this construction for the generator R, even when the lumping condition

is not satisfied, is still optimal if we wish to minimise the lumping error. The

structure for the generator R for SIS dynamics on a four-node network, along

with the collector matrix C, distributor matrix D, and an illustration of the

matrix multiplication DQC = R, are shown in Figure 3.1(a).

This optimisation applies in the case of general transition rates h(si, sj). For

the following sections, I limited my consideration to the set of SVT models con-

sidered by Kiss et al in their work [59]. As previously defined in Chapter 2, these

models only allow for transitions where one vertex-state changes, and the tran-

sition rates are the same for nodes that have the same number of neighbours in

each vertex-state:

h(si, sj) =

{
fA,B(nΣ1 , nΣ2 , ...nΣM ) if si, sj differ in one vertex-state v

0 otherwise.
,

Recall that we can define the levels or classes of the system, where each

level CkΣ1
,kΣ2

,...kΣM is the subset of states that have kΣ1 , kΣ2 , ...kΣM vertices in the

vertex-states Σ1,Σ2, ...ΣM respectively. Here I choose these levels as the cells

for our lumped space, so that the lumped system forms a population model. I

consider first the elements of the new lumped infinitesimal generator R in the

case of binary vertex-states, and then consider the matrix in the more general

case of M ≥ 2 vertex-states.

3.3 Binary vertex-state dynamics

To illustrate the results for binary vertex-state dynamics, let us consider the SIS

epidemic model. The two states here are susceptible (S) and infected (I). We
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3.3 Binary vertex-state dynamics

note that the levels can now be written as Ck, using just a single index k, the

number of infected vertices. There are N + 1 levels, and each level Ck directly

corresponds to a cell Lk for k = 1, 2, ..., N + 1.

The only entries in the approximate lumped infinitesimal generator R will

be the tri-diagonal entries. To compute the entries Rk,k+1 for all k, we need to

calculate the average transition rates from every state in Lk to every state in Lk+1.

The number of neighbours a vertex i has is equal to its degree di. For a given

vertex i, there are
(
di
m

)(
N−1−di
k−m

)
states in Lk where vertex i is susceptible and m of

its neighbours are infected. In these states, the rate at which the vertex i becomes

infected by its neighbours is τm, as in the standard SIS model. Summing this

rate over all N vertices and all possible values of m, and using the fact that there

are
(
N
k

)
level k states, we find that the average of transition rates from states in

Lk to states in Lk+1 is

Rk,k+1 = τ
k!(N − k)!

N !

N∑
i=1

k∑
m=0

m

(
di
m

)(
N − 1− di
k −m

)
.

If we expand the binomial coefficient, we can simplify this to

Rk,k+1 = τ
k!(N − k)!

N !

N∑
i=1

di

k∑
m=0

(
di − 1

m− 1

)(
N − 1− di
k −m

)
,

and then, applying the Chu-Vandermonde identity to the sum over m, we find

Rk,k+1 = τ
k!(N − k)!

N !

(
N − 2

k − 1

) N∑
i=1

di (3.5)

= τk(N − k)
z

N − 1
, (3.6)

where z =
∑N
i=1 di
N

is the mean degree of all N vertices. Note that this is very

similar to the homogeneous mean-field transition rate, usually derived from the

exact stochastic models by applying a moment closure at the single level [74], as in

Chapter 2. This result therefore provides a satisfying mathematical argument for

this closure. We can also analyse the error of the approximate lumped solution,

as shown in the following section. This gives us an alternative framework within

which to analyse the error of the homogeneous mean-field approximation.
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3.3 Binary vertex-state dynamics

This approximate lumping method is applied to SIS dynamics on a small four-

node network in Figure 3.1. The first panel illustrates the matrix multiplication

DQC = R, showing the structure of these matrices. The second and third

panels show the possible transitions out of a specific state in level C2, and the

lumped transitions out of level C2 respectively. The fourth panel compares the

results of the exact system of Kolmogorov equations and the approximate lumped

equations.
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3.4 Error analysis of binary state dynamics

Figure 3.1: An illustration of the approximate lumping method applied to SIS

dynamics on a small four-node network. Panel (a) shows the structure of the

distributor matrix D, the infinitesimal generator Q and the collector matrix C,

and shows how the multiplication DQC generates the smaller lumped generator

R. The colour scale shows the value of the matrix entries for τ = 4, γ = 1. Panel

(b) shows the structure of the network, and shows the possible transitions out of

a specific state in level C2, where k = 2 (i.e. two infected nodes). The blue nodes

are susceptible, and the red nodes are infected. There are two possible recovery

transitions (in which either of the two infected nodes recover), and two possible

infection transitions (in which either of the two susceptible nodes are infected by

their infected neighbours). The arrows are annotated with the transition rates.

The vertical dots indicate that there are other states possible that have two

infected nodes. Panel (c) shows the corresponding transitions rates for the lumped

system. Finally panel (d) compares the solution to the full system of Kolmogorov

equations (the exact solution) with the solution to the lumped system ODEs (the

approximate solution).

3.4 Error analysis of binary state dynamics

In this section I show how the approximate lumping method allows us to directly

quantify the error of the approximate lumped solution. Since the generator R

does not satisfy the lumping condition QC = CR for this partitioning L, the
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3.4 Error analysis of binary state dynamics

solution Y to the equation Ẏ = RTY will not contain the true probabilities of

being in each lumped cell. Y = CTX will no longer hold for all time t. As such

I defined the error of the approximate lumped solution as Z = CTX−Y, which

I will analyse in this section.

To determine how the error changes in time, consider the error commutator

∆ = QCD − CDQ. For exact lumping, CD commutes with Q, and so this

commutator is equal to zero. This does not hold in general for approximate

lumping, however. Differentiating Z with respect to time, we find

Ż = CTẊ− Ẏ,

= CTQTX−RTY,

= CTDTCTQTX−RTY,

= CT
[
QTDTCT + ∆T

]
X−RTY,

= RTZ + CT∆TX,

where I have used the fact that DC = CTDT = I and the decomposition R =

DQC. If we now integrate, using the variation of constants formula [75], we find

that

Z(t) = exp(RTt)Z(0) +

∫ t

0

exp(RT(t− s))CT∆TX(s) ds.

I assume that the initial lumped state Y(0) = CTX(0) is known, and so Z(0) = 0.

This allows the error to be written as

Z(t) =

∫ t

0

exp(RTs)H(t− s) ds,

where I have applied a change of integration variable s to t− s, and grouped the

final terms CT∆TX(t− s) = H(t− s).
This expression has two main parts: one consisting of the exponential of the

lumped infinitesimal generator R, and one consisting of the factor H, which is

related to the commutator ∆ and the system state X(t − s). The following

subsections break down the analysis by exploring each of these terms in turn.

Section 3.4.1 and 3.4.2 investigate the lumped infinitesimal generator R and the

error commutator matrix ∆ respectively. Section 3.4.3 and Section 3.4.4 then

apply these results to two situations: first the situation where the system has a
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3.4 Error analysis of binary state dynamics

non-zero stationary state, and then the situation where the system has only a

non-zero quasi-stationary state. These two situations impact the way I treat the

X(t− s) term and create differences for the time integral.

3.4.1 Lumped infinitesimal generator R matrix

To calculate the exp
(
RTs

)
term, we need to know the structure of the R matrix,

specifically its eigenvalues and eigenvectors. For SVT binary-state processes the

R matrix is of the form

R =


β0 α0 0 0 0
γ1 β1 α1 0 0

0
. . . . . . . . . 0

0 0 γN−1 βN−1 αN−1

0 0 0 γN βN

 ,

where the αi entries describe the lumped rate of moving from cell Li to Li+1, the γi

entries describe the lumped rate of moving from cell Li to Li−1, and −βi = αi+γi.

In situations where β0 = 0 = α0 = 0 (as in SIS dynamics), or where γN = βN = 0,

we have absorbing states. For situations that do not have an absorbing state, such

as SISa dynamics, −β0 = α0 6= 0 and −βN = γN 6= 0. In both situations, we

can see by eye that λ0 = 0 is an eigenvalue of R with a corresponding right

eigenvector u0 = (1, 1, ..., 1)T . The Gershgorin circle theorem tells us that there

can be no positive eigenvalues, since each Gershgorin disc is centred at −βi with

radius αi + γi = βi [76].

We look to see if we can transform R into a symmetric matrix, since symmetric

matrices have special properties. In the case of a real tridiagonal asymmetric

matrix

T =


a1 b1 0 0 0
c1 a2 b2 0 0

0 c2
. . . . . . 0

0 0
. . . . . . bN−1

0 0 0 cN−1 aN

 ,

it is possible to perform a similarity transformation and generate a symmetric

tridiagonal matrix, if the off-diagonal products are all strictly positive, i.e. bici >
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3.4 Error analysis of binary state dynamics

0 for all i. This is done by defining a transformation matrix F

F = diag(δ1, ..., δN)

where

δi =

{
1 i = 1√

ci−1...c1
bi−1...b1

i = 2, ..., N
.

The transformed symmetric tridiagonal matrix is then given by

J = F−1TF =


a1

√
b1c1 0 0 0√

b1c1 a2

√
b2c2 0 0

0
√
b2c2

. . . . . . 0

0 0
. . . . . .

√
bN−1cN−1

0 0 0
√
bN−1cN−1 aN

 .

In the case where−β0 = α0 6= 0 and−βN = γN 6= 0, R is a real tridiagonal matrix

that satisfies the condition of having strictly positive off-diagonal products. When

β0 = α0 = 0, or βN = γN = 0, this is no longer true. As an example to show what

we can learn about the eigenvalues and eigenvectors, I take here the example of

SIS dynamics with β0 = α0 = 0. In this case we can instead consider the matrix

R+ formed by omitting the first row and first column of R, which does satisfy

the condition. The transformation matrix F can be constructed as defined above,

giving the symmetric matrix

F−1R+F =


β1

√
α1γ2 0 0 0√

α1γ2 β2
√
α2γ3 0 0

0
√
α2γ3

. . . . . . 0

0 0
. . . . . .

√
αN−1γN

0 0 0
√
αN−1γN βN

 .

This is a real, symmetric matrix with positive above-diagonal entries, and so

the eigenvectors of this matrix are orthonormal and the eigenvalues are real and

distinct. Therefore we know that the eigenvalues of R+ are real, negative and

distinct:

λ0 = 0 > λ1 > λ2 > ... > λN .

These eigenvalues of R+ are the same as the eigenvalues of R. To obtain

the eigenvectors of R, I first considered the orthonormal basis of eigenvectors
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{w1,w2, ...wN} of the symmetric matrix F−1R+F. The right eigenvectors of R+

are therefore

{Fw1,Fw2, ...,FwN},

and the left eigenvectors are

{F−1wT
1 ,F

−1wT
2 , ...,F

−1wT
N}.

These can then be transformed to give us the right and left eigenvectors of the

full R matrix:

uk =

(
0

F−1wk

)
and

vk =
(
γ1δ1(wk)1/λk,FwT

k

)
.

While the eigenvalues and eigenvectors could be computed without relating

them to the symmetric case, this has shown that the eigenvalues are real and

distinct, and the calculations may be computationally helpful. The lumped in-

finitesimal generator R can be expressed in Jordan normal form, R = UΛV,

where U is the matrix of right eigenvectors as columns, V is the matrix of left

eigenvectors as rows, and Λ is the diagonal matrix of eigenvalues. This allows

the exponential term in the error integral to be rewritten as

exp
(
RTs

)
= VT exp

([
0 0
0 Λ−

]
s

)
UT,

where Λ− = diag(λ1, λ2, ..., λN) is a submatrix of Λ containing the non-zero

eigenvalues.

3.4.2 Error commutator ∆ matrix

To construct the ∆ matrix, I examined the structure of the matrix Q, and the

collector and distributor matrices C and D. For SVT models with binary states,

it is possible to order the states such that the generator Q is block tridiagonal:

Q =



B0 A0 0 0 0 0
C1 B1 A1 0 0 0
0 C2 B2 A2 0 0

0 0
. . . . . . . . . 0

0 0 0 CN−1 BN−1 AN−1

0 0 0 0 CN BN


. (3.7)

78



3.4 Error analysis of binary state dynamics

Note that this generator has the same tridiagonal structure as the generator

defined in equation 2.1 for SIS dynamics, but here the matrices Ak, Bk and Ck

currently describe a more general set of transition rates. Ak is a matrix with

ck =
(
N
k

)
rows and ck+1 columns. It contains the rates at which states with k

nodes in a state A transition to states with k + 1 nodes in state A. Ck is a

matrix with ck rows and ck−1 columns. It contains the rates at which states with

k nodes in state A transition to states with k − 1 nodes in state A. With the

states ordered in this way, the collector matrix C takes the form

C =


e0 0 0 0 0
0 e1 0 0 0

0 0
. . . 0 0

0 0 0 eN−1 0
0 0 0 0 eN

 , (3.8)

where ek is here a column vector of length ck with every entry equal to 1. The

distributor matrix D takes the form

D =


1
c0

eT
0 0 0 0 0

0 1
c1

eT
1 0 0 0

0 0
. . . 0 0

0 0 0 1
cN−1

eT
N−1 0

0 0 0 0 1
cN

eT
N

 . (3.9)

It is easy to confirm from the structure of the collector matrix and the distributor

matrix that the product DC = I. It is also straightforward to see that the product

CD is a matrix with the following structure:

CD =


1
c0

E0 0 0 0 0

0 1
c1

E1 0 0 0

0 0
. . . 0 0

0 0 0 1
cN−1

EN−1 0

0 0 0 0 1
cN

EN

 , (3.10)

where Ek = eke
T
k is a ck × ck matrix with each term equal to 1.

The ∆ matrix is defined as ∆ = QCD − CDQ The matrix ∆ appears in

the integral in the term H(t − s) = CT∆TX(t − s). While we can calculate
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∆ = QCD−CDQ directly, it is more useful to calculate ∆C:

∆C =



b0 a0 0 0 0 0
c1 b1 a1 0 0 0
0 c2 b2 a2 0 0

0 0
. . . . . . . . . 0

0 0 0 cN−1 bN−1 aN−1

0 0 0 0 cN bN


,

where

ak = (
1

ck+1

AkEk+1 − 1

ck
EkAk)ek+1,

bk =
1

ck
(BkEk − EkBk)ek and

ck = (
1

ck−1

CkEk−1 − 1

ck
EkCk)ek−1.

Here I introduce qk = Akek+1. This vector relates to the characteristics of the

original graph: its jth coordinate is equal to the probability of transitioning out

of the jth state of class Ck, to any state in class Ck+1. For SIS dynamics, this

is equal to the number of SI edges in the jth state, multiplied by the infection

rate. I also define q̄k = 1
ck

∑ck
j=1(qk)j which is the average of the entries of qk, i.e.

the average rate of transition from states in class Ck to any of the states in class

Ck+1. Using these expressions we can write

ak = qk − q̄kek.

Equivalent expressions pk = Ckek+1 and p̄k = 1
ck

∑ck
j=1(pk)j let us also write

ck = pk − p̄kek.

These terms will appear in the error integral. In this way I have highlighted how

the error is dependent on the rates of transition out of each state in a level, and

the difference between each of these rates and the average rate.

3.4.3 Processes with no absorbing state

Here I return to the integral for the error:

Z(t) =

∫ t

0

exp(RTs)H(t− s) ds,
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where H(t− s) = CT∆TX(t− s).
I considered first the processes that have no absorbing state, for example SISa

dynamics. These processes have a steady state X∗ which will be reached after a

finite time. If we assume that we begin the error calculation already in this steady

state, then H(t− s) is some constant H = CT∆TX∗ for all time. Using this fact,

and the Jordan normal form for R found in Section 3.4.1, the integration becomes

straightforward:

Z(t) =

∫ t

0

VT exp

([
0 0
0 Λ−

]
s

)
UTHds,

= VT

[
t 0
0 (exp(Λ−t)− I)(Λ−)−1

]
UTH,

=

(
tvT

0 uT
0 +

N∑
i=1

1

|λi|
[
1− eλit

]
vT
i uT

i

)
H.

We assume here that we can calculate vi,ui, λi (the right eigenvectors, left eigen-

vectors, and eigenvalues respectively) from the matrix R. This appears a fair

assumption, since R is a tridiagonal N ×N matrix. However, since we cannot in

general solve for X∗(s), we are limited to finding a bound rather than an exact

value for the H matrix.

Noting the tridiagonal structure of ∆C, and the fact that −bk = ak + ck, we

can write the factor H as

H =


−aT

0 X∗0 + cT
1 X∗1

aT
0 X∗0 − aT

1 X∗1 + cT
2 X∗2 − cT

1 X∗1
...

aT
N−2X

∗
N−2 − aT

N−1X
∗
N−1 + cT

NX∗N − cT
N−1X

∗
N−1

aT
N−1X

∗
N−1 − cT

NX∗N

 ,

where X∗j is a subset of the probability distribution X∗, containing only the

probabilities of being in the states in class Cj. This shows further that the more

likely a state in class Cj is to be observed in the steady state, the larger the

contribution of the corresponding component of the aj and cj terms. We can

also see that the sum of components in H is equal to zero. This is relevant since

u0 = (1, . . . , 1)T , and so the term proportional to t vanishes. In this way the
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expression for the error reduces to

Z(t) =

(
N∑
i=1

1

|λi|
[
1− eλit

]
vT
i uT

i

)
H

=
N∑
i=1

1

|λi|
[
1− eλit

]
vT
i uT

i H.

This is an explicit solution of the error. However, the eigenvector decomposi-

tion can be unstable. For small networks, where Q can be feasibly constructed,

it can be simpler to solve the ODEs for Z directly. For these small networks the

exact solution from the full Kolmogorov equations can also be solved directly,

and compared with the lumped solution. This allows us to check and confirm

the validity of the solutions for Z. I solved these equations for SISa dynamics

on three small networks, all with N = 15 nodes: an Erdős-Rényi network, a star

network, and a cycle network. I first solved the full Kolmogorov equations, to

find the true steady state X∗. I then solved the lumped system, assuming that

the system starts in the state Y∗ = CTX∗. I then solved the ODEs for Z, by con-

structing the appropriate R and ∆ matrices, and using the previously calculated

X∗ solution in the factor H.

For each of the three networks, I have plotted the calculated approximation

error alongside the difference between the lumped solution and the true solution,

in Figures 3.2, 3.3 and 3.4. As expected, the two results agree for each network.

Since both the lumped solution and the true solution have a non-zero steady-

state, the error is constant once the lumped system has relaxed into its steady-

state from its initial value Y0 = Y∗. In all three cases the lumped solution is an

overestimate of the true steady state value.
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(a) Erdős-Rényi network
(b) Plot of lumped solution

vs full solution

(c) Plot of the absolute er-

ror

Figure 3.2: Plots showing the results of the approximate lumping analysis of

SISa dynamics on an Erdős-Rényi network. The network is shown in (a), and

has N = 15 nodes, p = 4
15

. The SISa parameters are τ = 0.9091, γ = 1, φ = 1.

The plot in (b) compares the infected fraction of the network found by solving

the approximate lumped system (the red line) with the true fraction found by

solving the exact full system (the blue line). The difference between the solutions

looks substantial at this axis scale, but I have in fact zoomed in to show what

is actually a small difference more clearly. The plot in (c) shows the absolute

error between these two solutions with time, solved exactly using the calculation

presented in this section (black line), and calculated by taking the difference of

the two solutions shown in (b) (dashed red line).
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(a) Star network
(b) Plot of lumped solution

vs full solution

(c) Plot of the absolute er-

ror

Figure 3.3: Plots showing the results of the approximate lumping analysis of

SISa dynamics on an star network. The network is shown in (a), and has N = 15

nodes. The SISa parameters are τ = 2, γ = 1, φ = 1. The plot in (b) compares the

infected fraction of the network found by solving the approximate lumped system

(the red line) with the true fraction found by solving the exact full system (the

blue line). As in Figure 3.2, the difference between the solutions looks substantial

at this axis scale, but I have in fact zoomed in to show what is actually a small

difference more clearly. The plot in (c) shows the absolute error between these

two solutions with time, solved exactly using the calculation presented in this

section (black line), and calculated by taking the difference of the two solutions

shown in (b) (dashed red line).
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(a) Cycle network
(b) Plot of lumped solution

vs full solution

(c) Plot of the absolute er-

ror

Figure 3.4: Plots showing the results of the approximate lumping analysis of

SISa dynamics on a cycle network. The network is shown in (a), and has N = 15

nodes. The SISa parameters are τ = 4, γ = 1, φ = 1. The plot in (b) compares

the infected fraction of the network found by solving the approximate lumped

system (the red line) with the true fraction found by solving the exact full system

(the blue line). As in Figures 3.2 and 3.3, the difference between the solutions

looks substantial at this axis scale, but I have in fact zoomed in to show what

is actually a small difference more clearly. The plot in (c) shows the absolute

error between these two solutions with time, solved exactly using the calculation

presented in this section (black line), and calculated by taking the difference of

the two solutions shown in (b) (dashed red line).

Note that this method for finding the error necessarily involves solving the

full equations as its first step. While this makes the use of the approximation

and the calculation of its error somewhat redundant in this case, this work is

simply exploring how to formulate the error equation. This allows us to see how

the error is connected to network structure and dynamics. For larger networks,

the Q matrix becomes too computationally demanding to construct, and so we

cannot solve the full system. The consequences of this are discussed in Section

3.6.3 of this chapter.

3.4.4 Processes with an absorbing state

Many common binary-state processes have an absorbing state, for example SIS

dynamics. This means that the endemic state is quasi-stationary. If we return to
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3.4 Error analysis of binary state dynamics

the expression for the error integral

Z(t) =

∫ t

0

VT exp

([
0 0
0 Λ−

]
s

)
UTHds,

we see that we cannot simply take the factor H as constant when the state is

in this quasi-stationary state. Instead we can examine the quasi-stationary state

and see how this changes with time. For processes like this with an absorbing

state, the infinitesimal generator Q takes the form

Q =

(
0 0T

τ T

)
,

where T is a lossy generator defined on the subspace containing all the states

with k > 0 [77]. This lossy generator governs a lossy Markov chain, and the

limiting distribution to this Markov chain is the quasi-stationary distribution.

By adding a sufficiently large positive constant to the diagonal of T, we can

apply the Perron-Frobenius theorem [78] to show that T has a strictly negative

largest eigenvalue µ < 0, and that there exists a unique probability vector W∗

with strictly positive components which satisfies

µW∗T = W∗TT.

The quasi-stationary state is therefore equivalent to the left eigenvector of the

lossy generator T corresponding to this largest eigenvalue µ.

The (lossy) transition matrix of X(t) is given by

T(t) = exp(Tt) =
∞∑
n=0

Tntn

n!
,

and so the quasi-stationary state of the system will decay in time according to

the exponential exp(µt):

W∗TT(t) = W∗T
∞∑
n=0

(µ1t)
n

n!
= exp(µt)W∗T.

Assuming that the system starts in this quasi-stationary state, then after a time

s the full state of the system will be

X(s) =

(
1− exp(µs)
exp(µs)W∗

)
,
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where I have deduced the probability of being in the absorbing state by using the

fact that the sum of components in X(s) must sum to 1 at all times. Here I also

return to our expression for the factor H. Note that the term X0 = 1− exp(µs)

only appears with a0. Reminding ourselves of the definition of ak,

ak =
1

ck+1

(AkEk+1 − EkAk)ek+1,

we can see that A0 = 0T for systems with an absorbing state. Therefore a0 = 0,

and we can write H(s) = exp(µs)H∗, where

H∗ =


cT

1 W∗
1

−aT
1 W∗

1 + cT
2 W∗

2 − cT
1 W∗

1
...

aT
N−2W

∗
N−2 − aT

N−1W
∗
N−1 + cT

NW∗
N − cT

N−1W
∗
N−1

aT
N−1W

∗
N−1 − cT

NW∗
N

 .

The error integral is therefore very similar to the case with no absorbing state,

except with the inclusion of the exponential exp(µ(t− s)) term:

Z(t) =

∫ t

0

VT exp

([
0 0
0 Λ−

]
s

)
UT exp(µ(t− s))H∗ds

=

∫ t

0

N∑
i=1

vT
i uT

i exp(λis) exp(µ(t− s))H∗ds

=
N∑
i=1

vT
i uT

i

1

λi − µ
(exp(λit)− exp(µt)) H∗.

To check this result on small networks, some care has to be taken to find the

quasi-stationary state W∗ and the eigenvalue µ. First, I solved the full ODEs

to a short time (t = 50) to get it near quasi-stationary. Then I normalised

the resulting distribution (with the entry for the zero state being zero) to find

W∗ and solved the full ODEs for a long time (t = 500) with this as the starting

distribution. Comparing successive results for the infected fraction of the network

allowed me to estimate the value for µ. Finally, I used this to solve the ODEs for

the error Z, and compared this with the difference between the lumped solution

and the full solution.

This analysis was performed for SIS dynamics on the same three networks as

in Section 3.4.3: an Erdős-Rényi network, a star network, and a cycle network,
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3.4 Error analysis of binary state dynamics

all with N = 15 nodes. The results are shown in Figures 3.5, 3.6, and 3.7. Again,

as expected, the directly-computed error agrees with the difference between the

lumped solution and full solution for each of the three networks. The lumped

solution is also again an overestimate in these three examples. We see that,

in the case of the Erdős-Rényi and star networks, the error starts from zero,

grows but eventually turns over and starts to decay again. Ultimately, as the two

solutions tend to the absorbing state zero, the error will tend to zero. This will

be true for the cycle network too, but the process is happening more slowly and

so isn’t apparent by t = 500.

As in the non-absorbing state case, this analysis becomes non-trivial for large

networks. Further discussion of this is in Section 3.6.3.

(a) Erdős-Rényi network
(b) Plot of lumped solution

vs full solution

(c) Plot of the absolute er-

ror

Figure 3.5: Plots showing the results of the approximate lumping analysis of

SIS dynamics on an Erdős-Rényi network. The network is shown in (a) and has

N = 15 nodes, with p = 4
15

. The SIS parameters are τ = 0.9091, γ = 1, φ = 1.

The plot in (b) compares the infected fraction of the network found by solving

the approximate lumped system (the red line) with the true fraction found by

solving the exact full system (the blue line), from t = 0 to t = 50. The plot in (c)

shows the absolute error between these two solutions with time, for a longer time

period of t = 500, solved exactly using the calculation presented in this section

(black line), and calculated by taking the difference of the two solutions shown in

(b) (dashed red line). Here we can see how, after reaching a maximum deviation

of close to 0.1, the two solutions slowly move closer together as they both decay

gradually to the absorbing state.
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(a) Star network
(b) Plot of lumped solution

vs full solution

(c) Plot of the absolute er-

ror

Figure 3.6: Plots showing the results of the approximate lumping analysis for SIS

dynamics on a star network. The network is shown in (a), and has N = 15 nodes.

The SIS parameters are τ = 2, γ = 1. The plot in (b) compares the infected

fraction of the network found by solving the approximate lumped system (the

red line) with the true fraction found by solving the exact full system (the blue

line), from t = 0 to t = 50. The plot in (c) shows the absolute error between these

two solutions with time, for a longer time period of t = 500, solved exactly using

the calculation presented in this section (black line), and calculated by taking the

difference of the two solutions shown in (b) (dashed red line). We see that the

difference between the two solutions reaches a peak before starting to decrease,

as with the Erdős-Rényi network case in Figure 3.5.
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(a) Cycle network
(b) Plot of lumped solution

vs full solution

(c) Plot of the absolute er-

ror

Figure 3.7: Plots showing the results of the approximate lumping analysis for SIS

dynamics on a cycle network. The network is shown in (a), and has N = 15 nodes.

The SIS parameters are τ = 4, γ = 1. The plot in (b) compares the infected

fraction of the network found by solving the approximate lumped system (the

red line) with the true fraction found by solving the exact full system (the blue

line), from t = 0 to t = 50. The plot in (c) shows the absolute error between these

two solutions with time, for a longer time period of t = 500, solved exactly using

the calculation presented in this section (black line), and calculated by taking the

difference of the two solutions shown in (b) (dashed red line). Unlike in Figures

3.5 and 3.6, here the time period is not long enough to see the difference between

the two solutions reach a maximum and start to decrease. This is unsurprising,

as we can see from the solutions in (b) that the rate of decay to the absorbing

state is very slow.

3.5 Non-binary vertex-state dynamics

Here I lift the restriction of binary vertex-states, and study the more general

set of dynamics where there are M ≥ 2 vertex-states. One example is the SIR

epidemic model, where M = 3. Vertices can transition from susceptible (S) to

infected (I), and from infected to recovered (R). A more general case of non-

binary vertex-state dynamics, which I consider in this section, lets a vertex v

transition from any vertex-state A to any other vertex-state B at a transition

rate fA,B(nΣ1 , nΣ2 , ..., nΣM ) = τABnB(v).

Again, I considered the cells of the lumped state-space to align with the levels

of the system CkΣ1
,kΣ2

,...kΣM . We can also think of this as assigning to each level
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Li a vector ki = (kΣ1 , kΣ2 , ...kΣM ) which lists the number of vertices in each of

the M vertex-states. For a system of N vertices and M vertex-states there are(
N+M−1

N

)
levels, and so there are

(
N+M−1

N

)
lumped cells. The optimisation process

used before still holds, and so the lumped infinitesimal generator remains as

Rij =
1

#Li

∑
sk∈Li

Pkj. (3.11)

To demonstrate that Rij can be calculated as in the binary state case, let us take

as an example a cell Li described by ki = (kA, kB, ..., kM) and a cell Lj described

by kj = (kA−1, kB +1, ..., kM), where ki and kj differ only in the first two terms.

A transition from a state in cell Li to a state in the cell Lj is caused by a vertex

in vertex-state A transitioning to be in vertex-state B.

For a given vertex v, there are
(
dv
mB

)(
N−1−dv
kB−mB

)(
N−1−kB
kA−1

)(
N−kA−kB
kC ,...,kM

)
states in Li

where vertex v is in vertex-state A and mB of its neighbours are in vertex-state B.

In these states, the rate at which the vertex v transitions to vertex-state B due to

its neighbours is τABmB. Summing this rate over all N vertices and all possible

values of mB, and using the fact that there are
(
N
kA

)(
N−kA
kB

)(
N−kA−kB
kC ,...,kM

)
states in

Li, we find that the average of transition rates from states in Li to states in Lj is

Rij = τBA

(
N−1−kB
kA−1

)(
N
kA

)(
N−kA
kB

) N∑
i=1

kB∑
mB=0

mB

(
di
mB

)(
N − di − 1

kB −mB

)

= τBA

(
N−1−kB
kA−1

)(
N
kA

)(
N−kA
kB

) N∑
i=1

di

kB∑
mB=0

(
di − 1

mB − 1

)(
N − di − 1

kB −mB

)
.

As before, we can apply the Chu-Vandermonde identity to simplify this and we

find that

Rij = τBA

(
N−1−kB
kA−1

)(
N
kA

)(
N−kA
kB

)(N − 2

kB − 1

) N∑
i=1

di

= τBAkA ·
kB

N − 1
·
∑N

i=1 di
N

.

As one might expect from the binary vertex-state analysis, this result is again

the same as that derived by applying moment closures at the single level to the

exact master equations.
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3.6 Discussion and future research directions

3.6.1 Summary

In this chapter I have applied approximate lumping to the class of single-vertex

transition models on networks, and in doing so I have demonstrated how calcula-

tion of the lumped infinitesimal generator R recovers the homogeneous mean-field

rates, in the case of both binary and non-binary vertex-states, providing rigorous

mathematical reasoning for these rates.

I have identified three main areas of this work that I feel hold potential for

future investigation. Firstly, it could be interesting to explore the results for

non-linear infection rates. The following section 3.6.2 presents a derivation and

discussion of the lumped infinitesimal generator R rates for the case where the

vertex infection rates go as ∼ m2, where m is the number of infected neighbours.

Secondly, I would like to extend the evaluation of the approximation error to

larger networks. My initial investigation of this is discussed in Section 3.6.3.

Finally, there might be scope to consider less coarse lumping, with fewer states

per cell. This would hopefully allow for more accurate approximations than those

derived in this chapter, while still improving the tractability of the system ODEs.

3.6.2 Non-linear functions of neighbour state

I have so far focused on dynamics where the vertex transition rates depend on

either constant rates, or linearly on the states of their neighbours. However, there

exist multiple SVTs with transition rates that depend non-linearly on neighbour

states, such as the non-zero temperature Ising-Glauber model [79], the nonlinear

q-voter model [80], and threshold models of opinion dynamics [81]. While I was

unable to generalise to these more complex transition rates, I was able to adjust

the binary-state calculation to consider a non-linear vertex infection rate that

depends on mq, where m is the number of infected neighbours and q ≥ 2. Here I

show how the calculation can be performed for q = 2. The method demonstrated

can theoretically be extended for q ≥ 2, although it quickly becomes unwieldy.
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Using the same reasoning as before, the transition rate Rk,k+1 is now given by

Rk,k+1 = τ
k!(N − k)!

N !

N∑
i=1

k∑
m=0

m2

(
di
m

)(
N − 1− di
k −m

)
.

We can make use of the absorption/extraction identity for binomial coefficients

[82] to expand the
(
di
m

)
coefficient out to O( 1

m2 ), and simplify accordingly:

Rk,k+1 = τ
k!(N − k)!

N !

N∑
i=1

k∑
m=0

m2 di
m

di − 1

m− 1

(
di − 2

m− 2

)(
N − 1− di
k −m

)

= τ
k!(N − k)!

N !

(
N∑
i=1

k∑
m=0

di(di − 1)

(
di − 2

m− 2

)(
N − 1− di
k −m

)

+
N∑
i=1

k∑
m=0

di
di − 1

m− 1

(
di − 2

m− 2

)(
N − 1− di
k −m

))
.

Then, absorbing any remaining m terms back into the binomial coefficients, and

again making use of the Chu-Vandermonde identity, we find

Rk,k+1 = τ
k!(N − k)!

N !

((
N − 3

k − 2

) N∑
i=1

di(di − 1) +

(
N − 2

k − 1

) N∑
i=1

di

)
.

As expected, this expression collapses to be the same as the linear case if all

di ≤ 1. Ordering the terms in powers of di,

Rk,k+1 = τ
k!(N − k)!

N !

(
N − 3

k − 2

)( N∑
i=1

d2
i +

(
N − 2

k − 1
− 1

) N∑
i=1

di

)
.

When N − 2 < 2(k − 1) the second moment of the vertex degrees is weighted

higher than the first moment. However, which term contributes the most to the

value of Rk,k+1 depends on the relative magnitude of the two moments as well as

this weighting.

The above method can be adapted to perform the calculation for general

q > 2. For infection rate τmq, the
(
di
m

)
coefficient is expanded to O( 1

mq
) before

simplifying, and the resulting expression will contain up to the qth moment of

the vertex degrees. Unfortunately I was unable to find a straightforward formula

for the weightings of these moments for a general q.
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3.6.3 Error estimates for larger networks

Whereas for small networks it is possible to construct the full infinitesimal genera-

tor Q (and hence the error commutator matrix ∆), and solve the full Kolmogorov

equations to find the stationary distribution X∗ (or the quasi-stationary solution

W∗), these calculations are impossible with larger networks. We can see the

practical implications of this if we consider the factor H in the error calculation

for processes with no absorbing state:

H =


−aT

0 X∗0 + cT
1 X∗1

aT
0 X∗0 − aT

1 X∗1 + cT
2 X∗2 − cT

1 X∗1
...

aT
N−2X

∗
N−2 − aT

N−1X
∗
N−1 + cT

NX∗N − cT
N−1X

∗
N−1

aT
N−1X

∗
N−1 − cT

NX∗N

 .

The values of aj, cj and X∗j are unknown. Some of the consequences of this

are presented in a paper I have co-authored [71] (currently in submission) which

details and extends the work in this chapter. In the paper we limit consideration

to SISa dynamics, where all cj = 0. It can be shown that in this case if we can

find an upper bound on the values of
∣∣aT
j X∗j

∣∣ then this allows us to calculate an

upper bound on the error.

Let a+
j = max|aj| ≥ 0, then

∣∣aT
j X∗j

∣∣ ≤ a+
j

∑
k(X

∗
j)k. Essentially we can define

an upper bound for the expression
∣∣aT
j X∗j

∣∣ by assuming that each entry of aj is

equal to the maximum entry of aj. We are now posed with the problem of finding

the value of a+
j . It is possible to define a hard bound for this value which will

always hold, but this bound is often much larger than desirable. For example,

for SISa dynamics the value of a+
j will correspond to the state in level Cj that

has the highest number of SI edges. We can assume that the state with the

highest number of SI edges is one where the j nodes with the highest degrees

are infected, and all their neighbours are susceptible. If we sum their degrees,

we find a hard upper bound on the number of SI edges. In reality, this state

will often not exist: if any of the j nodes are neighbours to each other then the

calculation of SI edges will be more complex than this simple sum. Finding a

more intelligent estimate for the value of a+
j which is closer to the true value than
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this crude bound remains an area for future investigation, and the paper presents

some ideas on this subject.

There is also the question of how to handle the expression
∑

k(X
∗
j)k. The

paper explores the assumption that
∑

i(X
∗
j)i ≤ Y∗j . If this assumption holds,

then
∣∣aT
j X∗j

∣∣ ≤ a+
j Y∗j , and we can use the value of a+

j Y∗j in our construction of an

upper bound. The paper investigates how often this assumption holds, and shows

that even for some cases where the assumption does not hold and
∑

i(X
∗
j)i > Y∗j ,

the value of the calculated bound is still found to correctly bound the error.
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Chapter 4

Inference on networks

Previous chapters have explored approximations that are necessary due to compu-

tational limitations. In theory, we can solve the Kolmogorov equations precisely,

and we are only inhibited by computational power and time. However, often in

network science we also have to make approximations and estimations because

we simply do not have all the necessary information available. Due to a number

of factors, such as the feasibility or cost of data collection, it’s often not possible

to gather information on the entire network that is being studied. Sometimes

we are unaware of what the relevant network might even be. If there is a dy-

namical process occurring on a network, we might not be able to observe the

entire process, instead we might be limited to discrete-time observations, such as

prevalence data collected during regular intervals during an epidemic [83]. Entire

node-states or transition types might not be visible, such as in an SEIR model

of a disease that has an asymptomatic ‘incubation period’. In this situation we

might not be able to model the exact time when an individual moves from the

susceptible state (S) to the asymptomatic exposed state (E) [40]. These prob-

lems of missing information have led to the development of a number of inference

techniques, which I briefly summarise in this chapter.

Section 4.1 discusses existing approaches to infer an unknown network, whereas

Section 4.2 focuses on existing approaches to infer an unknown network process

(which might be happening on a known or unknown network). I explore this

literature in anticipation of my work in Chapter 5, where I will investigate the

problem of inferring an SIS process on a multilayer network with a hidden layer.
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This is a novel inference problem, due to the fact that the missing information

corresponds to an entire hidden network layer. My choice of inference scheme

for this problem, discussed and justified later in Section 5.4, was chosen with

consideration of the different schemes outlined in this chapter.

4.1 Inferring the network

In situations where it is not possible to collect information on the entire network, a

sampled subgraph of the network, formed by sampling certain nodes and edges of

the network, is often studied instead. The forward problem is concerned with how

the sampling method affects the properties of the sampled subgraph in relation to

the original network. Different sampling procedures will induce different biases,

and it is important to consider this when choosing the appropriate sampling

procedure for a problem [84, 85]. Meanwhile the inverse problem attempts to

infer the original network properties based on a sampled subgraph and a known

sampling method. This problem is sometimes framed in terms of a ‘missing data’

problem as opposed to a sampling problem [86]. Handcock and Gile [87] cover the

inverse problem, and define two different approaches to this inference problem:

design-based inference and model-based inference.

4.1.1 Design-based inference

The design-based framework treats the network as fixed, and the interest focuses

on determining the exact network (‘population graph’) based on partial observa-

tion. Any random variation is treated as due to sampling alone. No model for the

data is needed, and the unobserved data values are the parameters of interest.

Design-based inference has the advantage that no specific knowledge about the

network being sampled is required, but there are limitations.

One such limitation can be seen when we try to infer the degree distribution

of the population graph from the sample degree distribution, as explored by

Zhang et al [88]. For certain sampling designs, such as random node and random

edge sampling (where the nodes or edges of a network are sampled with a set

probability α), we can actually express the relationship between the expected
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degree distribution of the sampled subgraph p′(k) and that of the population

graph p(k0) precisely. Here k refers to the degree of a node in the sampled

subgraph, and k0 refers to the degree of a node in the population graph. In the

case of random edge sampling, in order to observe a node of degree k in the

subgraph that has degree k0 in the population graph, we need to have sampled k

edges incident to the node, and not sample the remaining k0 − k. There are
(
k0

k

)
ways of selecting the edges like this. Therefore the probability of observing this

node is given by the binomial formula,
(
k0

k

)
αk0(1 − α)k−k0 , and the relationship

between the degree distributions is given by

p′(k) =
∞∑

k0=k

p(k0)

(
k0

k

)
αk(1− α)k0−k,

where α is the probability of sampling each edge. We can also write this as

p′ = Ap, where A is a matrix with elements

Aij =

(
i

j

)
αj(1− α)i−j.

Therefore to find p given p′ we might naively expect we can invert the equation to

give us an estimate of the true degree distribution, given the sampled subgraph

degree distribution

p = A−1p′.

However, if we perform this calculation using a known population graph and a

corresponding sampled subgraph, we find that the naive estimate differs hugely

from the true degree distribution. The reason for this result is that we can only

write down an expression for the expected sample degree distribution. In reality

the sample degree distribution will vary from this expected result, and it turns

out that this small deviation from this expected result leads to a huge deviation in

our naive estimate for the true degree distribution. In other words, the problem

is ill-conditioned.

This can also be seen by studying the condition number κ(A) of the matrix

A. For a linear equation Ax = b, the condition number describes the extent to

which an error in b causes an error in the solution of x. A large condition number

means that even a small error in b can cause a large error in x. By considering
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the ratio of the relative error in the solution x to the relative error in b, it can be

shown that the condition number of a matrix κ(A) = ‖A‖‖A−1‖. As Zhang et al

claim, in this case the condition number goes as

κ(A) ∼ 1

αD
,

where D is the maximum degree of the nodes in the population graph, and

therefore also the number of rows and columns of matrix A. As the value of

D increases, the condition number increases, and practically the matrix becomes

almost singular. I derived this relationship to check Zhang et al ’s claim, work

which is included in Appendix 1.

It is only possible to even express this relationship between degree distribu-

tions for random node sampling and random edge sampling because for these

sampling schemes we can state the probability of selecting a node of degree j and

selecting i of its neighbours. However, it is not possible to state this probability

for all sampling schemes, and here we identify the main flaw with design-based

inference, which Handcock and Gile raise [87]. To make unbiased design-based

inference without assuming anything about the distribution of the unobserved

data, we need full knowledge of the sampling procedure. Typically, full knowl-

edge of the sampling procedure includes knowledge of the sampling probability of

each unit in the sample. In the context of networks, this means we need to know

the sampling probability for each pair of nodes. Sampling methods where it is

possible to know these sampling probabilities are known as ‘probability sampling

methods’. The simpler schemes mentioned above, like random node and random

edge sampling, are probability sampling methods. However, link-tracing designs

such as multiple-wave snowball sampling are so-called ‘non-probability sampling

methods’, where it is not possible to know the sampling probabilities for each

pair of nodes [89].

4.1.2 Model-based inference

Model-based inference frameworks, on the other hand, treat the network as a

stochastic realisation of an underlying random process. The goal is then to deter-

mine a model for this underlying process, rather than the precise network itself.
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Inference in this framework involves formulating a model for the population graph,

and calibrating the model parameters against the sample data available [87].

This method is often applied using exponential random graph models (ERGMs,

as introduced in Section 1.2.3) as the model for the population graph. An ERGM

is defined by a probability distribution P (G) over a set of possible networksG ∈ G:

P (G) =
eH(G)

Z
,

where H(G) =
∑

i βixi(G) is the graph Hamiltonian and Z =
∑

G∈G e
H(G) is

the normalising constant. The ERGM parameters βi are conjugate to certain

configurations of the network, which are measured by the function xi(G). To

estimate the ERGM parameters for a given sampled network, we first have to

understand how the parameters are estimated for a completely-observed network,

and then adapt these methods to consider missing information.

To estimate the parameters for a completely-observed network, we apply

Markov Chain Monte Carlo (MCMC) methods to sample from the probability

density functions of these parameters. MCMC algorithms construct a Markov

chain whose stationary distribution is the same as the desired target probability

distribution [90]. The states of the chain then serve as a sample of the target

distribution. This approach requires us to know some function π(x) of the current

Markov state x which is proportional to the target distribution.

There are a number of different algorithms for constructing such a chain.

One general framework is the Metropolis-Hastings algorithm [91, 92], a method

which uses a proposal kernel (also known as a proposal density) to generate the

next potential step in the chain. This next potential step is then either rejected

or accepted according to an acceptance ratio, which is a function of both the

proposal kernel and the function π(x).

If, at step t the Markov chain is in state x, i.e. X(t) = x, then one step of the

algorithm is as follows [93]:

1. Draw a proposed state y from some proposal kernel q(x, y). Note that the

new proposed step depends on the current state of the Markov chain.
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2. Calculate the acceptance ratio

α(x, y) =

{
min

[
π(y)q(y,x)
π(x)q(x,y)

]
if π(x)q(x, y) > 0

1 otherwise
,

where π(x) is a function proportional to the target distribution.

3. Generate a uniform random number u ∈ [0, 1], and compare this to the

acceptance ratio.

• If u ≤ α(x, y) then we accept the move to state y: X(t+ 1) = y.

• If u > α(x, y) then we reject the move to state y, and stay at state x:

X(t+ 1) = x.

Starting the Markov chain in an initial state x0, the above steps are repeated until

enough states have been generated for the chain to settle into its equilibrium

distribution. When this happens the Markov chain is said to have converged.

Practically convergence is often identified by eye, and the samples before this

are considered part of a ‘burn-in’ period and are simply discarded. In principle

however, one can look at the internal variation along the chain, or check for

convergence between multiple chains generated from different starting points [94].

We can use this algorithm to perform maximum likelihood estimation on the

ERGM parameter values of a network, as long as we use a function π(x) in

the acceptance ratio that is proportional to the likelihood of the network being

generated as a function of the ERGM parameters. In other words, the Markov

chain states x under consideration become some vector of ERGM parameters θ,

and π(x) in the algorithm above becomes π(θ) = p(g | θ) = eH(g)

Z
, with H(g) =∑

i θixi(g) and Z =
∑

g∈G e
H(g), where g is the observed network. The acceptance

ratio similarly becomes

α(θ0, θ1) =

{
min

[
p(g|θ1)q(θ1,θ0)
p(g|θ0)q(θ0,θ1)

]
if p(g | θ0)q(θ0, θ1) > 0,

1 otherwise.

Note that the normalising constant Z depends on the ERGM parameters θ. This

means that the value of Z that features in the distribution p(g | θ1) will not be

the same as that featurng in p(g | θ0), and so the normalising constants will not
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4.1 Inferring the network

cancel in the fraction p(g|θ1)
p(g|θ0)

. Due to the fact that these normalising constants Z

are often intractable, calculating the acceptance ratio is not trivial.

Initial solutions to this problem involve an approximation for the acceptance

ratio which requires generating a random sample of networks from the set of con-

figuration parameter values under consideration [95]. These random sample net-

works also have to be simulated using an MCMC routine. Snijders distinguishes

between these two routines in his discussion of MCMC estimation of ERGMs

[96], identifying an “MCMC simulation algorithm” which is used to generate the

sample of networks from a set of parameter values, and an “MCMC estimation

algorithm”, which estimates the parameters for a given observed network, and

which involves repeated use of the MCMC simulation algorithm. When a model

is not a good representation of the observed network, the MCMC simulated net-

works may be far enough away from the observed network that the estimation

process is affected [97]. In the worst case scenario, the simulated networks will be

so different that the algorithm fails altogether. This happens in instances such as

the two-star model ERGMs, where both high density networks and low density

networks appear unpredictably. The model does not converge properly, and is

said to be degenerate [98].

Koskinen [99] considers an initial Bayesian treatment of the problem, attempt-

ing to estimate the posterior probability distributions for the ERGM parameters.

Bayes theorem states in this context that

p(θ | g) =
p(g | θ)p(θ)

p(g)
,

where p(θ) is a prior we can define, and p(g | θ) = eH(g)

Z
again for the observed

network g. The function π(x) in the algorithm definition here becomes π(θ) =

p(θ | g) = p(g|θ)p(θ)
p(g)

, thereby allowing us to incorporate the prior p(θ) into the

MCMC inference. This distribution is “doubly-intractable”, in the sense that

both the normalising constant p(g), and the normalising constant Z involved in

p(g | θ) = eH(g)

Z
, are intractable. Fortunately the denominator p(g) is independent

of the ERGM parameters θ, and so is cancelled out in the acceptance ratio.

Caimo and Friel [100] make use of the exchange algorithm presented in Murray

et al [101], in which the intractable normalising constants Z that feature in p(g | θ)
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4.2 Inferring the dynamics on a network

also cancel out in the acceptance ratio. This method offers improved efficiency,

but still involves a step which requires a network to be generated from a given set

of ERGM parameters, so the nested structure of an MCMC simulation algorithm

within an MCMC estimation algorithms remains.

Finally, Koskinen et al [86] show how to extend this Bayesian MCMC algo-

rithm to the inference question at hand: the situation where we only have access

to a sample of the data (or equivalently a situation with missing data). Each itera-

tion of their algorithm draws proposed values for the unobserved data, alongside

proposed values for the configuration parameters and a generated network for

use in the exchange algorithm. The unobserved data can also be generated by an

MCMC sampler, where the sampler is constrained so that the observed parts of

the network are never updated. This method presumes we know and can observe

all the nodes of the network, and it is simply some edge values that are missing.

4.2 Inferring the dynamics on a network

When a dynamical process is occurring on a network, further inference problems

arise. Given an assumed model for the process, we can attempt to infer the

values of the model parameters. Since any model for the dynamical process that

we might use for inference is inevitably an approximation, we can also ask the

larger question: can we determine which model is the most accurate, or most

appropriate, for investigating the dynamics in question? These questions have

become particularly relevant due to the recent outbreak of coronavirus. If we can

better understand how a disease spreads, we are more equipped to predict how

the spread will progress, and to predict the result of interventions.

In some trivial cases, where we have complete information about the underly-

ing contact network and the time and types of event that are happening, inference

is straightforward. For example, Becker and Britton [102] consider observation

of an SIR process where we know the infection and recovery times of every node.

Direct likelihood maximisation can be used in this case, since the likelihood func-

tion for a given set of observations in terms of the model parameters can be

expressed and maximised exactly.
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If we are missing event observations, or do not have full knowledge of the un-

derlying network, then the inference problem becomes more complicated. These

systems do not generally have straightforward likelihoods, and so we have to take

a more complicated approach. Here Bayesian methods are particularly useful, as

they allow us to treat all unknowns equally and properly track the corresponding

uncertainties. The sequence of events, and potentially some information about

the underlying network, can be inferred along with the process parameters.

O’Neill outlines a number of different ways to approach these problems with

intractable likelihoods [103]. Here I will summarise three of these: using an

approximate model, data augmentation methods, and likelihood-free methods.

4.2.1 Using an approximate model

If the likelihood for a more complex model is proving intractable, one solution is

to use a simpler model that has a computable likelihood instead.

One very simple example of this is considering the infected period in e.g. an

SIS or SIR model to be a fixed constant, rather than exponentially or otherwise

distributed [104]. This allows a data set that is missing either the infection event

times or the recovery event times to be treated as a complete data set instead,

although it means that the process is no longer Markovian. Another example of

an approximate model features in Becker and Britton’s study of disease spread-

ing between households of individuals [105]. They take a model of household

transmission that explicitly models between-household interactions, and replace

these explicit interactions with a fixed probability that each individual avoids

between-household infection. This allows the individual households to be treated

as independent, and the likelihood becomes tractable.

Using a simpler approximate model is often an efficient method, but one must

be careful in choosing appropriate approximations. If the model is too far from

reality, the results may not be meaningful or helpful.

4.2.2 Data augmentation methods

In situations where evaluation of the likelihood requires information about the

epidemic that we do not have, we can use data imputation to provide that in-
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4.2 Inferring the dynamics on a network

formation. Phillip O’Neill et al [106] provide a tutorial introduction outlining

this method. They make use of a Bayesian MCMC routine which has the joint

posterior density of the model parameters as its target density. Each iteration

of the routine involves proposing a potential sequence of events using the cur-

rent parameter values, and then selecting a set of parameter values based on the

likelihood of the sequence of events.

The proposed potential sequence of events has to be compatible with the

existing observations. A number of different methods exist to generate such a

sequence of events. O’Neill and Roberts [107] feature one such method in their

work studying an SIR process occurring in a well-mixed (network-free) popula-

tion. They take a set of recovery times as the observed data set, and treat the

unobserved infection times as further unknown model parameters. Each itera-

tion of the MCMC algorithm requires sampling a potential sequence of infection

times. To do this they take an initial set of infection times and use a Metropolis-

Hastings algorithm that has three possible moves (either moving an infection

time, removing an infection time, or adding a new infection time), with appro-

priate acceptance probabilities for given moves. The new infection times are

uniformly sampled from the time interval (I1, T ), where I1 is the infection time

of the first individual and T is the time of the final observed recovery event.

We can also attempt to simulate a potential set of events, ideally conditioning

on the observed events. Hobolth and Stone [108] consider this in a more general

form of simulating events from any continuous-time Markov chain conditioned on

fixed endpoints. They outline the most basic, inefficient method: using a Gillespie

algorithm to generate a set of events, and then accepting this set of events only

if it aligns with the observed events. This is time-consuming, and might never

find compatible solutions for certain systems.

Hobolth and Stone go on to describe several further, more sophisticated meth-

ods, finally outlining the method of uniformization. This method involves con-

structing an auxiliary stochastic process, defined by an adjusted transition matrix

that allows for virtual state changes, where a jump occurs but the state is un-

changed. This method allows us to sample first the number of state changes

(including virtual changes) that occur between a pair of observations, and then

sample the times for the state changes and the nature of the changes (including
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identifying which changes are virtual). Calculating this information involves tak-

ing the exponential of the adjusted transition matrix. This matrix has the same

dimensions as the original transition matrix governing the master equations of

the system. Therefore for systems with a large state space, the uniformization

method can be too time-consuming and is not always numerically stable [109].

However, Choi and Rempala [110] successfully applied this method to a partially-

observed SIRS epidemic, by considering the system as a well-mixed population.

This meant the transition matrix involved was only an (N+1) by (N+1) matrix,

where N is the total population size, rather than the 3N by 3N matrix describing

the dynamics on the full network structure.

Britton and O’Neill [111] extend the idea of using data augmentation within

an MCMC routine to perform inference on an unknown network. They study

an SIR process, and consider the situation where only the recovery times of the

individuals are known. They show that in this case, the parameters describing the

network (given a presumed random network model in this case) can be inferred

alongside the sequence of events and the dynamic parameters. Here each iteration

of the MCMC algorithm generates a potential realisation of the network G by

generating edges conditioned on the sequence of events, before then sampling

a potential ‘infection path’ (i.e. select the edges (i, j) between nodes i and j

along which the infection passes) by sampling nodes i uniformly from the possible

infected neighbours of all ultimately infected nodes j. Finally a Metropolis-

Hastings algorithm is used to update potential infection times, conditioned on

the infection path.

4.2.3 Likelihood-free methods

If the likelihood cannot be evaluated conveniently using the previous methods, we

can turn to likelihood-free methods, in particular Approximate Bayesian Compu-

tation (ABC) methods [112]. In ABC, an initial set of parameters are chosen and

used to perform a simulation of the dynamical process. The results of the simula-

tion are then reduced to summary statistics and compared with the data, and the

parameters are either rejected or accepted according to the distance between the
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simulated and the true observed summary statistics [113] and a pre-defined tol-

erance. In this way the likelihood is essentially replaced by this ‘quasi-likelihood’

distance measure.

The choice of summary statistics will generally depend on the particular in-

ference question we would like to address, since it is the summary statistics that

in a sense describe how ‘good’ a proposed set of parameters are. In choosing a

set of summary statistics we also need to be careful to avoid ‘the curse of dimen-

sionality’, which Prangle discusses in a review of the subject in relation to ABC

[114]. Here the term dimension refers to the number of summary statistics. If we

use too many summary statistics, then it becomes more likely for the distance

between the simulated and observed summary statistics to exceed the tolerance.

We are forced to either increase the tolerance, which will affect the accuracy of

the posterior distribution, or to use fewer summary statistics, which reduces the

amount of detail we can incorporate. These considerations must be balanced

when selecting summary statistics and defining the tolerance.

Kypraios et al. [115] present a tutorial where they use ABC methods to

estimate the parameters of a homogeneously mixing, network-free SIR model.

The data being compared are the counts of how many individuals are in each

state at each time. They use the sum-of-squared differences between observed

and simulated counts in several time intervals as a summary statistic. McKinley

et al [116] study an SEIR process in a homogeneously mixed population. They

posit a criterion that involves placing an envelope around the observed data such

that any simulated epidemic is rejected if it deviates beyond the envelope at any

point. However, they judge this to be too sensitive to spurious fluctuations, and

go on to suggest a sum-of-squared difference as in Kypraios et al. In the end

they use a chi-squared goodness-of-fit criterion, which scales the contribution at

each time point by the observed data, and as such incorporates the fact that the

variation will change as the epidemic plays out.

Where the process occurs on a network, more complicated summary statistics

can be used, such as those used in Dutta et al [117]. They consider both a simple

SI model and a more complex general contagion model. They ran the processes

on known networks: synthetic networks generated using BA and ER models, each

with 100 nodes, and larger empirical networks, including a social network with
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more than 4000 nodes. To accurately capture the state of the system at each

discretely observed time step, they use multiple summary statistics. The first

is the proportion of exposed nodes at different time steps. The second involves

the subgraphs induced by the infected nodes and those induced by the exposed

nodes at each time step. The shortest path lengths between pairs of nodes in the

induced subgraphs are calculated. This allows the summary statistics to capture

the differences in the locations of the infected and exposed nodes, as well as

simply the proportions of the nodes that are in these states. These are high-

dimensional summary statistics, but their interdependence helps avoid the curse

of dimensionality problem.

4.3 Summary

In this chapter I have provided a brief summary of the different kinds of inference

problems that have been explored in the context of network analysis. The first

section discussed how to infer the population graph, given a sampled subgraph

of the network. Design-based inference, where we seek to find out information

about the exact population graph, can be applied in the case of certain probability

sampling methods such as random node sampling and random edge sampling.

However, some of this inference faces problems of ill-conditioning. Model-based

inference is an alternative that can be used for nonprobability sampling methods.

This inference scheme involves trying to identify a suitable model and model

parameters for the population network, rather than the exact network itself.

ERGMs are often used for this type of inference, as they can be calibrated against

a number of different configurations, but in some cases these models face problems

of convergence.

The second section looked at the problem of performing inference of dynamical

systems on networks in situations with missing information. Using an approxi-

mate model can drastically simplify the inference process, but we risk oversim-

plifying and rendering the results less useful. Data augmentation methods are

an alternative to this, where we impute the data required to make the likeli-

hood tractable. This can be time-consuming and computationally demanding.

In particular the method of uniformization requires taking the exponent of the
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system transition matrix, which is not always possible. ABC methods eliminate

the need to evaluate the likelihood, replacing it with a ‘quasi-likelihood’ in the

form of summary statistics. However, choosing appropriate summary statistics

can be a challenge.

In the next chapter I will analyse a system that has a huge amount of missing

information: an SIS process occurring on a two-layer network, where one of the

layers is hidden entirely. This system contains both missing information about

the network (the hidden layer), and missing observations of the dynamical pro-

cess (events on the hidden layer). I will attempt to infer the parameters of the

dynamical system, assuming that every event on the visible layer is observed.

In choosing an inference scheme, I considered the various different methods de-

scribed in this chapter. A discussion around which inference scheme I selected,

and why, features in section 5.4.
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Chapter 5

Multilayer network with a latent

layer

5.1 Problem set-up and motivation

So far the research discussion and investigation have only involved systems which

are naturally described by a single network. However, sometimes data can be

more appropriately described by a multilayer system, where each layer either

represents a different network entirely, or represents the same or a similar set

of nodes interacting in a different way. These types of network can be used to

describe social networks, where people generally interact with different groups of

people in different ways [118]. They have also been used to model situations in

epidemiology, for example the situation where the two processes of a disease and

disease-awareness spread across the same nodes on different networks [119]. Even

society infrastructure can be thought of as coordination across a large number

of interrlated networks such as energy supply and transport networks [120]. The

effect of this multilayer structure on phenomena that have been well studied on

single-layer networks is an important emerging area of interest [121].

At the heart of this topic is the core question of whether multilayer networks

are really needed, or whether we can ‘flatten’ the multilayer structure into an

aggregated network. To aggregate two network layers, the nodes and edges on

both layers are considered to instead lie on the same, single layer. Any differences

in the type of node or edge on the two layers are disregarded. Initial research
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in this area has found instances where ignoring the multilayer structure skews

measures such as the centrality of the nodes [122], and can affect things such as

the epidemic threshold of the network dynamics [123]. However, since multilayer

networks are inherently a more complex structure than single-layer networks, it

is useful to identify and clarify any situations in which the network does not need

to truly be modelled as multilayer, or instances where layers can be aggregated

without affecting our analysis. The nature of these situations depends on the

kind of analysis we would like to perform, and exactly how we define the concept

of similarity in network science. De Dominico et al. [124] use the application of

Von Neumann entropy to networks, and compare the entropy of the completely

aggregated multilayer network to the entropy of various different partial aggrega-

tions of the layers. Sanchez et al. [125] instead choose to compare the eigenvalue

spectra of the adjacency and Laplacian matrices of the full multilayer network

with those of the aggregrated network. Meanwhile Diakovona et al. [126] take

the specific example of voter model dynamics on a multilayer network, and com-

pare simulation results of the dynamics on the complete multilayer network with

analytic predictions of the dynamics on various aggregated single-layer networks.

They conclude that consideration of the full structure is necessary in this context

for all but either extremely connected or extremely unconnected layers.

As a way to further explore this question, we decided to study SIS dynamics

occurring on a two-layer network, where the dynamics on one layer are hidden.

This might occur in real life if data collection on one layer is not possible, im-

practical or expensive. In attempting to infer both the dynamical model and the

parameters of this model, we can investigate when, if ever, it is possible to ap-

proximate the multilayer structure and dynamics with simpler models. This will

highlight instances where the multilayer structure is redundant, and instances

where it cannot be ignored or simplified. We will also need to adapt the inference

approaches discussed in Chapter 4 that have been previously applied to one-layer

systems, exploring the problem of how we can perform inference when there is

an entire hidden layer.

Section 5.2 outlines the basic multilayer definitions and representations that

will allow us to study this problem. Section 5.3 describes further the two-layer

SIS dynamics, and provides a basic mean-field analysis of the problem. This
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section also includes some preliminary investigation using simulations, to identify

interesting combinations of parameters and types of network structure to study.

In Section 5.4 I discuss the possible ways of approaching this inference problem,

and justify my choice to use approximate models to perform inference. First in

Section 5.5 I use simulated data to determine whether the two-layer dynamics can

be approximated using a naive one-layer SISa model. Section 5.6 then looks at

fitting the simulated data using a more complicated ‘latent variable’ model which

involves approximating the hidden layer dynamics using just a single node on the

hidden layer. These latter two sections will use MCMC methods of inference,

with Section 5.6 adapting a method used in hidden Markov models. Section 5.7

summarises and discusses ideas for future investigation.

5.2 Multilayer networks

To formally define multilayer networks, we look to Boccaletti et al. [127], which

outlines a number of different multilayer structures. The most general form of

a multilayer network is described by a pair M = (G,C), a set of layers G and a

set of interconnections C between nodes of different layers respectively. The set

of layers G = {Gα;α ∈ {1, ...,M}} is a family of graphs Gα = (Xα, Eα), where

Xα = {xα1 ..., xαNα} is the set of nodes on layer α and Eα is the set of edges that

connect nodes within layer α. The edges Eα are known as intralayer edges. The

set of interconnections C = {Eαβ ⊆ Xα ×Xβ;α, β ∈ {1, ...,M}, α 6= β} contains

the edges Eαβ that are known as interlayer edges. In some types of multilayer

network, the same nodes will feature on multiple layers. We call these node

replicas.

Multilevel networks are a type of multilayer network where interlayer edges

only exist between node replicas, but not all nodes necessarily have replicas. An

example of this might be a two-layer network of a group of users interacting on

different social media platforms, where some but not all have Facebook or Twitter

accounts. Interlayer edges represent the switching between different platforms.

Multiplex networks are a type of multilevel network where all nodes feature on

all layers. An example of this might be a system describing the different kind of
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relations between colleagues: one layer might contain the edges connecting col-

leagues who consider each other friends, while another might contain the edges

between colleagues who have worked directly on projects together. Multiplex

networks have also frequently been used to model systems where a disease is

spreading alongside awareness of the disease [119]. One layer contains the edges

along which the epidemic spreads between individuals, while a second layer con-

tains the edges along which knowledge of the epidemic spreads. This thesis has

so far shown a focus on epidemic dynamics, and so in this section I have cho-

sen to focus on multiplex networks. However, for completeness, there also exist

interconnected networks, where the layers represent different networks, and the

interlayer edges correspond to interactions between networks. An example of this

might be a two-layer network representing sexual relationships, with one layer

formed of males and one layer formed of females. Heterosexual relationships are

represented by interlayer edges, while homosexual relationships are represented

by intralayer edges.

With these more complex network systems comes the question of how best to

represent them. One natural way of representing the connections in a multilayer

network is to extend the standard adjacency matrix representation of one-layer

networks to a tensor representation [128]. Alternatively the tensor representa-

tion can be flattened by combining all of the layers and node indices to obtain

additional node indices, arriving at the supra-adjacency representation. Sanchez

et al. [125] describe the resulting supra-adjacency matrix AM = AMG
, which has

diagonal blocks Aα, the adjacency matrices of the layers Gα, and has off-diagonal

blocks Aαβ, matrices representing the inter-layer connectivity. Note that the

supra-adjacency matrix representation alone cannot be used to identify which

nodes are replicas of each other. Sanchez et al. also define the supra-node set as

the set of nodes representing the same object, to contain the information about

node replicas.

The multilayer Laplacian tensor and supra-Laplacian matrix can be con-

structed from the adjacency tensor and supra-adjacency matrix as in the single-

layer case [129]. The supra-Laplacian matrix has diagonal blocks encoding the

Laplacian matrices for the corresponding network layers, while the off-diagonal
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blocks enocode the interlayer connections. Spectral analysis of multilayer net-

works involves the eigenvalues of these supra- matrices [130].

Single-layer network properties such as the degree distribution, associativity,

and clustering coefficient can be generalised and applied to multilayer networks,

a comprehensive study of which can be found in Battiston et al. [131]. There are

also properties specific to multilayer networks and their structure, for example

interdependence, which compares the number of shortest paths in which multiple

layers are traversed to the total number of shortest paths [132]. Another measure,

overlap, can be used to describe the common connections between the layers. The

total overlap between two layers is defined as the total number of links that are

common between two layers [133], while the local overlap of a node i is defined

as the total number of neighbours of node i that are neighbours in both layers

[133].

5.3 Mean-field analysis and simulation results

In order to explore the problem of inferring SIS dynamics on a two-layered multi-

plex network, we first need to extend the one-layer SIS model to two layers. This

introduces further epidemic parameters: two separate intralayer spreading rates

τ11 and τ22 are required to describe how the epidemic spreads between nodes on

layer 1 and layer 2 respectively, while the interlayer spreading rates τ12 and τ21

describe how frequently the epidemic spreads from nodes on layer 1 to layer 2,

and vice versa. Two recovery rates γ1 and γ2 allow for nodes on layer 1 to recover

at a different rate to nodes on layer 2. An example of a two-layer network with

the infection rates labelled is shown in Figure 5.1.
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Figure 5.1: A pictorial representation of a two-layer multiplex network, showing

how the infection might spread between nodes. The infection spreads within each

layer with intralayer spreadings τ11 and τ22, and between layers with interlayer

spreadings τ12 and τ21.

In some models of multilayer SIS dynamics, nodes that are infected on one

of the layers are taken to be instantly infected on the other layers. However,

we have chosen to model the interlayer spreading as non-instantaneous, to allow

for a ‘layer-switching cost’, in agreement with [134]. This better approximates

situations such as people travelling through a transport network, where switching

mode of transport can take time. There may also be a layer-switching cost in

social media. For example, it takes very little effort for someone to repost infor-

mation on the same social network where they first observed it, but the process of

copying the information or link across to another site might require more effort.

In situations where cross-layer infection is best modelled as instantaneous, it may

be that these dynamics can be recovered in the limit of large interlayer spread-

ing rates. There are fewer good examples in the context of infection dynamics,

although a layer-switching cost might be appropriate if the nodes on different

layers do not strictly model the same thing. For example, nodes on one layer

may represent people, and nodes on another layer may represent the households

people belong to. We might not want to immediately classify a household as
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infected if only one person is infected, and similarly we may not want to classify

all the people in a household as infected if their household is classified as infected.

We can now derive a mean-field approximation for these dynamics. We denote

the number of susceptible and infected nodes on layer 1 as S1 and I1 respectively.

We denote the equivalent quantities on layer 2 as S2 and I2. Drawing from the

single-layer mean-field approach discussed in Chapter 2, we can then describe the

evolution in time of infected nodes on layer 1 and layer 2 as:

[İ1] = τ11[S1I1] + τ21[S1I2]− γ1[I1],

[İ2] = τ22[S2I2] + τ12[S2I1]− γ2[I2].

The first term in each equation represents the increase in infected nodes due to

infection from a same-layer neighbour. The second term represents an increase

due to infection from a replica in the other layer. The final term models the

decrease in infected nodes due to recovery.

We can make a closure at the single level:

[S1I1] ≈ [S1]n11
[I1]

N1

,

[S2I2] ≈ [S2]n22
[I2]

N2

,

[S1I2] ≈ [S1]n12
[I2]

N2

,

[S2I1] ≈ [S2]n21
[I1]

N1

,

where nab is the average number of connections between a node in layer a and a

node in layer b, and Na is the number of nodes in layer a. This closure can be

justified with the same physical reasoning as in Chapter 2: the expected number

of (S1, I1) links will equal the number of susceptible nodes on layer 1 ([S1]),

multiplied by the fraction of nodes on layer 1 that are infected ( [I1]
N1

) and the

average number of layer-1 connections that a given susceptible node has (n11).

Equivalent reasoning gives us expressions for the other three terms.

In a multilevel network the [S1I2] and [S2I1] terms will correspond to the

number of nodes that are susceptible in one layer but infected in the other. In
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5.3 Mean-field analysis and simulation results

a multiplex network, n12 = 1. In a multilevel network with overlapping fraction

p, n12 = p. In an interconnected network, n12 can take any number of values

(limited only by the number of nodes in each layer). Since this chapter focuses on

multiplex networks, I will use n12 = n21 = 1 for all networks that are mentioned.

Applying this closure, and using the conservation identities [S1] = N1 − [I1]

and [S2] = N2 − [I2], the mean-field equations can be written:

[İ1] = τ11
n11

N1

(N1 − [I1])[I1] + τ21
n12

N2

(N1 − [I1])[I2]− γ1[I1]

[İ2] = τ22
n22

N2

(N2 − [I2])[I2] + τ12
n21

N1

(N2 − [I2])[I1]− γ2[I2].
(5.1)

Solving for [İ1] = 0 and [İ2] = 0, there exists a disease-free solution I1 = I2 = 0.

The remaining solutions for I1 and I2 satisfy

I2 =
γ1I1 − τ̂11(N1 − I1)I1

τ̂21(N1 − I1)
,

where τ̂11 = τ11
n11

N1
and τ̂21 = τ21

n12

N2
. Likewise we define τ̂22 = τ22

n22

N2
and τ̂12 =

τ12
n21

N1
. To find the solution for I1 involves solving the following cubic:

[τ̂11τ̂21τ̂12 − τ̂22τ̂
2
11]I3

1 +

[γ2τ̂11τ̂21 + γ1τ̂21τ̂12 + τ̂ 2
21τ̂12N2 − 2τ̂11τ̂21τ̂12N1 + 2τ̂ 2

11τ̂22N1 − τ̂11τ̂22τ̂21N2 − 2τ̂11τ̂22γ1]I2
1 +

[2τ̂11τ̂22τ̂21N2N1 − γ1τ̂22τ̂21N2 − γ2
1 τ̂22 + 2τ̂11τ̂22γ1N1 − τ̂ 2

11τ̂22N
2
1 − 2τ̂ 2

21τ̂12N1N2 − τ̂21τ̂12γ1N1+

τ̂11τ̂21τ̂12N
2
1 + γ1γ2τ̂21 − 2τ̂11τ̂21γ2N1]I1+

[γ1τ̂22τ̂21N1N2 − τ̂11τ̂22τ̂21N2N
2
1 + τ̂ 2

21τ̂12N
2
1N2 − γ1γ2τ̂21N1 + γ2τ̂11τ̂21N

2
1 ] = 0.

(5.2)

We can consider the discriminant ∆3 = 18abcd− 4b3d+ b2c2− 4ac3− 27a2d2 of a

cubic ax3 + bx2 + cx+d = 0. If the discriminant ∆3 > 0, then the cubic has three

distinct roots. If ∆3 = 0 the cubic has repeated roots, and if ∆3 < 0 then the

cubic has one real root and two non-real complex conjugate roots. Computing ∆3

for the cubic 5.2 with different values of the dynamical parameters revealed that

∆3 can be both positive or negative. However, for all the parameter combinations

I tested, I found there was at most one solution for I1 and I2 that was physical,

i.e. both values were real and positive. It appears there are two possible steady

state solutions: the disease-free absorbing state, and, if the dynamical parameters

allow, an endemic state with I1 > 0, I2 > 0.
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5.3 Mean-field analysis and simulation results

To examine the stability of these steady states analytically, we can analyse

the Jacobian for the system 5.1:

J =

[
∂İ1
∂I1

∂İ1
∂I2

∂İ2
∂I1

∂İ2
∂I2

]
=

[
τ̂11(N1 − 2I1)− τ̂21I2 − γ1 τ̂21(N1 − I1)

τ̂12(N2 − I2) τ̂22(N2 − 2I2)− τ̂12I1 − γ2

]
.

First I investigated the stability of the case where I1 > 0, I2 > 0. Given the rela-

tions I2 = γ1I1−τ̂11(N1−I1)I1
τ̂21(N1−I1)

and I1 = γ2I2−τ̂22(N2−I2)I2
τ̂12(N2−I2)

, we know that for these solu-

tions γ1− τ̂11(N1−I1) > 0 and γ2− τ̂22(N2−I2) > 0. This means that the trace of

the Jacobian, Tr(J) = − (γ1 − τ̂11(N1 − I1))− τ̂11I1− τ̂21I2−(γ2 − τ̂22(N2 − I2))−
τ̂22I2 − τ̂12I1 < 0. For this steady state solution to be stable, we also have the

condition that the determinant of the Jacobian det(J) must be positive. Knowing

that the diagonal terms of the Jacobian are each sums of negative values, we can

write

det(J) = identically positive terms + τ̂12τ̂21I1I2 − τ̂12τ̂21(N1 − I1)(N2 − I2).

Therefore at least for cases where I1I2 > (N1 − I1)(N2 − I2), det(J) > 0 and

the solution is stable. For example, solutions where I1 >
N1

2
, I2 >

N2

2
will be

stable. Numerically det(J) > 0 held for all the solutions with I1 > 0, I2 > 0 that

I explored, but I was unable to analytically show if this was true for all possible

solutions.

Analysing the Jacobian for the disease-free stationary point I1 = I2 = 0 proved

more straightforward. The stationary point will be stable if the real part of both

eigenvalues Λ± of the Jacobian evaluated at this point are negative. Equivalently,

the point will be unstable if Λ+ > 0. Redefining the infection rates as τ̂11 = τ11n11,

τ̂22 = τ22n22, τ̂12 = τ12n21 and τ̂21 = τ21n12, then at I1 = I2 = 0 the eigenvalues

Λ± satisfy

Λ2
± − ((τ̂11 − γ1) + (τ̂22 − γ2))Λ± + (τ̂11 − γ1)(τ̂22 − γ2)− τ̂12τ̂21 = 0.

Therefore Λ+ > 0 is satisfied when

(τ̂11 − γ1) + (τ̂22 − γ2) +
√

((τ̂11 − γ1) + (τ̂22 − γ2))2 − 4((τ̂11 − γ1)(τ̂22 − γ2)− τ̂12τ̂21) > 0.

If (τ̂11 − γ1) + (τ̂22 − γ2) > 0 (condition 1) is true, i.e. if the trace of the

Jacobian is positive, then this is automatically satisfied. If condition 1 is not
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true, we can manipulate the inequality further to reach condition 2: τ̂12τ̂21 >

(τ̂11 − γ1)(τ̂22 − γ2), i.e. the discriminant is negative.

If the two terms (τ̂11−γ1) and (τ̂22−γ2) are both positive, then condition 1 is

satisfied. If the terms have opposite signs, then condition 2 is satisfied. Therefore

a necessary (but not sufficient) condition for the disease-free stationary point to

be stable is if (τ̂11 − γ1) and (τ̂22 − γ2) are both negative. If we note here that

(τ̂11−γ1) > 0 and (τ̂22−γ2) > 0 are the conditions for an endemic steady state on

the isolated network layers 1 and 2 respectively, this result means that if either

one of the layers can sustain an endemic steady state by itself, then the disease-

free state will not be stable. The layer capable of supporting an endemic state

will constantly reseed the other layer, and in this way an epidemic can occur on

a layer which would not otherwise be sustained, a situation I will refer to in this

work as an induced epidemic.

These conditions are illustrated in a diagram in Figure 5.2, which shows the

different regions of stability for the disease-free state as τ̂11 and τ̂22 are varied. The

values of the other parameters are: τ̂12 = 0.5, τ̂21 = 1, γ1 = 1 and γ2 = 2. The

red regions indicate where condition 1 holds. In this region an endemic steady

state could be sustained on at least one of the layers in isolation, and we find the

disease-free state is unstable. The blue regions indicate where condition 2 holds.

Note that the regions are shaded with transparent colour, and the purple region

indicates where both conditions hold. In the section where only condition 2 holds,

neither of the layers could sustain an endemic steady state in isolation, but the

connections with the other layer and the values of the interlayer spreading are

such that the disease-free state is still unstable. The white region indicates the

only area where Λ+ < 0, and the disease-free steady state is stable.

To explore how well the mean-field results matched the results from simulating

the stochastic system, I considered the dynamics running on a fully connected

two-layer multiplex network (i.e. each node is connected to every other node

on the same layer, and each node is connected to its replica in the other layer)

that has 100 nodes on each layer. I chose this network because I expected it to

represent a ‘best-case scenario’ multiplex network where the two-layer homoge-

neous mean-field approximation would perform the best: it is the densest network

with N = 100 possible, and every node has the same number of neighbours. I
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5.3 Mean-field analysis and simulation results

Figure 5.2: Diagram showing the different regions of stability for the disease-free

steady state as τ̂11 and τ̂22 vary. The other parameters are kept fixed at the

values: τ̂12 = 0.5, τ̂21 = 1, γ1 = 1 and γ2 = 2. The red line indicates where

(τ̂11 − γ1) + (τ̂22 − γ2) = 0, and the red regions indicate where the condition

(τ̂11 − γ1) + (τ̂22 − γ2) > 0 (condition 1) holds. The blue line indicates where

τ̂12τ̂21 = (τ̂11− γ1)(τ̂22− γ2), with the black line indicating the asymptote for this

plot, and the blue regions indicate where the condition τ̂12τ̂21 > (τ̂11−γ1)(τ̂22−γ2)

(condition 2) holds. Note that I have made these colours transparent, and so the

purple region indicates where both of these conditions hold. In these coloured

regions Λ+ > 0, and the disease-free steady state becomes unstable. The white

region marks the values of τ̂11 and τ̂22 where the disease-free steady state is stable.

compared the mean-field steady state value to the estimated steady state value

of the stochastic simulations for various different parameter values. To estimate

steady state values for the simulations, I started the simulations with an en-

tirely infected network, and played out the Gillespie algorithm until the number

120



5.3 Mean-field analysis and simulation results

of infected nodes had either reached zero or seemed to be fluctuating around a

constant value. I judged this ‘burn-in’ time by visual inspection. For each set

of parameter values, 1000 simulations were performed. I computed the mean

of these 1000 simulations, and the value of this mean after the ‘burn-in’ time

was taken as the estimated steady state value. An example of a single simula-

tion, and the mean of an ensemble of 1000 such simulations, for the parameters

τ̂11 = τ̂22 = 0.02, τ̂12 = τ̂21 = 0.8, and γ1 = γ2 = 1 are shown in Figure 5.3.
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(b) Ensemble mean, 1000 runs

Figure 5.3: Plots showing the number of infected layer 1 nodes with time on a

fully connected two-layer multiplex network with 100 nodes on each layer. The

multilayer SIS parameters were τ̂11 = τ̂22 = 0.02, τ̂12 = τ̂21 = 0.8, and γ1 = γ2 = 1.

The plot in (a) shows the result of a single simulation, while the plot in (b) shows

the mean result of an ensemble of 1000 simulations. I judged the burn-in time

for this system to be t = 10.

In the first case, the values of τ̂11 and τ̂22 were varied while keeping the other

parameter values fixed at the values τ̂12 = τ̂21 = 0.8, γ1 = γ2 = 1. Figure

5.4 shows a comparison of the simulated steady-state values with the mean-field

steady-state solutions. The left dotted line marks the point at which τ̂12τ̂21 =

(τ̂11 − γ1)(τ̂22 − γ2), and the right marks the point at which τ̂11 = γ1, τ̂22 = γ2.

We find that the simulation and mean-field predictions agree better at higher

τ̂11 = τ̂22. Particularly at lower τ̂11 = τ̂22, the predicted value for the fraction

infected in the steady state is much higher than the simulation. This could be

due to the difficulty in judging the burn-in time for these simulations. When the
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5.3 Mean-field analysis and simulation results

steady state is close to I1 = 0, running the simulation for too long results in most

of the solutions falling into the absorbing disease-free state.

Figure 5.4: Plot showing how the fraction of infected nodes on layer 1 in the steady

state of the dynamics varies with the value of τ̂11 = τ̂22. The simulation results are

plotted in black markers, with the blue line showing the curve joining these values,

while the curve joining the prediction values is plotted in red. The left dotted

line marks the point at which condition 2 is met: τ̂12τ̂21 = (τ̂11 − γ1)(τ̂22 − γ2).

The right dotted line indicates where τ̂11 = γ1 = τ̂22 = γ2. Between these lines,

the disease-free steady state is unstable, and we see that there exists an endemic

steady state with I1 > 0. The existence of these endemic steady state values

between these lines confirms that the system can sustain an endemic solution

even when an endemic solution would not be sustained on the individual layers

in isolation. We can see that the predicted results and the simulation results

agree better at higher values of τ̂11 = τ̂22.

In the other case the values τ̂12 and τ̂21 were varied while the other values

stayed fixed. The results are shown in Figure 5.5. Here τ̂11 = τ̂22 = 0.5 < γ1 =

γ2 = 1, so condition 1 is never fulfilled as we vary τ̂12 = τ̂21. The dotted line
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marks the value of τ̂12τ̂21 = (τ̂11−γ1)(τ̂22−γ2). Again, for low predicted fractions

of infected nodes, the simulation steady state is very close to 0. This could again

be in part due to the difficulty in judging the burn-in time for these simulations.

Figure 5.5: Plot showing how the fraction of infected nodes on layer 1 in the steady

state of the dynamics varies with the value of τ̂12 = τ̂21. The simulation results

are plotted in black markers, with the blue line showing the curve joining these

values, while the curve joining the prediction values is plotted in red. The dotted

line marks the point at which condition 2 is met: τ̂12τ̂21 = (τ̂11−γ1)(τ̂22−γ2). To

the right of this point, the disease-free state is unstable, and we find that there

is an endemic steady state.

If we keep the values of n11, n22, n12 and n21 the same, we have 6 parameters

which can vary: τ12, τ21, τ11, τ22, γ1, γ2. If we fix γ1 and γ2, we can vary the τ

values relative to these fixed γ values. We identify τ11 and τ22 as high or low by

comparing them to the infection threshold for the single-layer case, i.e. τ11 is high

means

τ11 �
γ1

n11

,
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and τ11 is low means

τ11 �
γ1

n11

.

We can extend this to define high interlayer spreading rate τ12 as

τ12 �
γ1

n12

,

and low interlayer spreading rate as

τ12 �
γ1

n12

,

and likewise for τ21. We can label the different scenarios as in Table 5.1: i.e., num-

bered from scenario 1 to scenario 16 based on whether the parameters τ11, τ22, τ12

and τ21 are high or low.

τ22

high low

τ21 τ21

high low high low

τ11

high τ12

high 1 2 9 10

low 3 4 11 12

low τ12

high 13 14 5 6

low 15 16 7 8

Table 5.1: Table highlighting the different parameter combinations possible.

These parameter combinations are numbered, and the corresponding scenarios

are referred to in the text by the same number, e.g. scenario 1 refers to a scenario

where τ11, τ22, τ12 and τ21 are all high.

To explore these different scenarios I analysed the situation where the network

is the same Erdős-Rényi network on both layers, generated to have 100 nodes with

p = 0.5. I used p = 0.5 so that all graphs with N = 100 are equally likely. This

resulted in a network on each layer with an average degree of 49.56. I assumed

each node was connected to itself (i.e. n12 = n21 = 1, each node was capable of

spreading the infection between layers by infecting its replica). I performed 1000

simulations and, in contrast to the previous investigation where the simulations
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started with all nodes infected, here we seed the infection by infecting a randomly

selected node in layer 1. This creates an asymmetry in the initial system. Epi-

demics will generally occur in this way, with perhaps one or more simultaneous

seeds, and the results will highlight how stochasticity early on in the process can

hugely affect the outcome in some situations. The results for each scenario are

summarised below.

Scenarios 1-4 have high intralayer spreading on both layers. Due to the high

spreading on layer 1 in all of these instances, an epidemic will always be sustained

on layer 1. If the epidemic reaches layer 2, an epidemic will also be sustained on

layer 2. Therefore in scenarios 1 and 2, where τ12 is high, the infection spreads

quickly down to layer 2 and quickly reaches an endemic state on both layer 1

and layer 2. Figure 5.6 shows plots demonstrating this behaviour for examples of

scenarios 1 (5.6(a)) and 2 (5.6(b)). The blue lines in these plots show the number

of infected nodes on layer 1, while the orange lines show the number of infected

nodes on layer 2. In both of these scenarios, the infection spreads quickly onto

layer 2 due to the high value of τ12. However, in scenario 2, the low value of τ21

means that layer 1 has a lower endemic steady state value than layer 2.

However, in scenarios 3 and 4, where τ12 is low, the infection only occasion-

ally spreads down to layer 2, and does so after varying times. The ensemble is

therefore composed of simulations showing two very different outcomes: either

the infection spreads to layer 2 and spreads quickly to reach an endemic state,

or the infection never spreads to layer 2. The ensemble average for the number

of infected nodes on layer 2 loses physical meaning, and is perhaps not the best

way to show the results of the simulations. Instead the ensemble results for the

spread on layer 2 for these two scenarios are shown as a heatmaps in Figure 5.7.

Both of these heatmaps show the two different types of outcome: there is a large

concentration of results around the non-zero steady state, and also a large con-

centration of results in the absorbing infection-free state.
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(a) Scenario 1
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(b) Scenario 2

Figure 5.6: Plots showing the number of infected nodes in two scenarios (1 and

2) where the intralayer spreading is high. The blue lines indicate the number of

infected nodes on layer 1, while the orange lines indicate the number of infected

nodes on layer 2. In both scenario 1 (panel (a)) and 2 (panel (b)) τ12 is high, and

so the infection quickly spreads to layer 2 and reaches an endemic state on both

layers. In scenario 1, due to the networks on each layer being the same and the

parameters τ11 = τ22 and τ12 = τ21, the endemic steady state value is the same

for both layers, and so the lines lie on top of each other. In scenario 2 τ21 is low,

and so layer 1 has a lower endemic steady state value than layer 2.
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(b) Scenario 4

Figure 5.7: Heatmaps showing the number of infected nodes on layer 2 for two

scenarios (3 and 4) where the intralayer spreading is high. Scenario 3 is illustrated

in panel (a), and scenario 4 is illustrated in panel (b). For both these scenarios

the interlayer spreading τ12 is low, and we see a large spread of results for layer

2 in the ensemble. In some cases the infection reaches layer 2, and subsequently

spreads on layer 2 to reach an endemic state, while in others the infection never

spreads to layer 2 within the course of the simulation. The black lines show the

ensemble averages, making the point that the ensemble average does not capture

either of the two extreme outcomes.

When there is low intralayer spreading on both layers, as in scenarios 5-8,

the intralayer spreading is below each of the single-layer epidemic thresholds.

Therefore neither layer would be able to sustain an epidemic in isolation. As

suggested by the steady state stability condition 2, it is possible for non-zero

steady state values to still be achieved in these scenarios if the interlayer spreading

rates are large enough. In reality, a node can infect its replica in the other

layer very quickly, but neither copy of the node is then able to infect any of

its neighbours before it recovers due to low τ11 and τ22. It is possible that the

node and its replica can get into an extended cycle of recovering and then being

re-infected by their still-infected replica. I have illustrated this behaviour for

two different simulations in Figure 5.8. Each plot shows, for each node which is

infected at some point in the simulation, the number of its infected replicas with
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time. The maximum value this can be is 2, when the replicas on layer 1 and layer

2 are both infected. Figure 5.8(a) shows an extreme situation where an initially

infected node enters into a cycle of infection/recovery with its replica, and no

other nodes are infected. Figure 5.8(b) shows a similar situation, where a second

and third node are infected at some point, and also enter into infection/recovery

cycles with their replicas.

In scenarios 6 and 7 one interlayer infection rate is high, but due to the asym-

metry and low intralayer infection rates the infection still dies out on both layers.

In scenario 8 all the infection rates are low, and so the infection dies out very

quickly. These three scenarios are shown in Figure 5.9.
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(b) Scenario 5, another instance

Figure 5.8: Plots illustrating the infection dynamics for two examples of scenario

5, where intralayer spreading is low but interlayer spreading is high. The plots

show, for nodes which are infected at some point during the simulation, the

number of its replicas that are infected. In (a) the initially seeded node infects its

replica, one then recovers, is reinfected, and the cycle continues until both node

replicas happen to recover. In (b) this same pattern occurs, but by chance the

initial node infects one of its neighbours, and then a third node is infected. Each

of these nodes enters into a recovery/infection cycle with its replica, until both

replicas happen to recover before they can be reinfected.
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Figure 5.9: Plots showing the number of infected nodes for scenarios (6,7 and

8) where intralayer spreading is low on both layers. The blue lines indicate the

number of infected nodes on layer 1, and the orange lines indicate the number

of infected nodes on layer 2. In scenario 6, illustrated in panel (a), and scenario

7, illustrated in panel (b), one direction of interlayer spreading is high and the

other low. In scenario 8, illustrated in panel (c), interlayer spreading is low in

both directions. The interlayer spreading is not enough for any of these cases to

sustain some sort of epidemic, and the infection quickly dies out.

In scenarios 9, 10, 13 and 15 we have potential for an induced epidemic to

occur, where one of the layers wouldn’t sustain an epidemic in isolation, but

sustains an epidemic due to high interlayer infection. In scenarios 9 and 10, there

is high infection rate on layer 1, and so the infection quickly reaches the endemic

steady state. The high τ12 rate means that the infection continuously spreads to

layer 2, and the infection is sustained on layer 2 despite the low rate of infection

between nodes on layer 2. Figure 5.10 shows the number of infected nodes on

layer 2 for both of these cases.

Scenarios 13 and 15 are a little more subtle, but the same phenomenon is

at play. The infection rate on layer 1 is low, so in some situations the infection

will simply die out. However, if the infection spreads to layer 2 quickly enough

- which it will do frequently if τ12 is high, as in scenario 13 - then the infection

will spread and reach a significant endemic steady state on layer 2. Due to the

high value of τ21 this infection will then feed layer 1, and induce an epidemic on

layer 1. Figure 5.11(a) shows the number of infected nodes on layer 1 for this

scenario, which is clearly non-zero despite the low value of τ11. This behaviour
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5.3 Mean-field analysis and simulation results

can also occur in scenario 15, although less frequently, because the lower value of

τ12 means the probability of the infection first reaching layer 2 before it has died

out in layer 1 is much lower. Here a heatmap is used in Figure 5.11(b), to again

more clearly distinguish between these two outcomes: one where the infection

reaches layer 2 before it dies out in layer 1 (and so we get an induced epidemic

on layer 1), and one where the infection dies out before it reaches layer 2 (and so

we do not get an induced epidemic on layer 1).

These situations of induced epidemics are notable. If viewed naively, without

knowledge of the second endemic layer, these situations will act strangely. If nodes

are infected on the visible layer that have no infected neighbours on the visible

layer, we might suspect a hidden endemic layer, or a background ambient infec-

tion rate. However, if infections observed on the visible layer are driven by the

spread on the hidden layer, and consequent intralayer infections from the hidden

layer to the visible layer, then we might deduce a much larger infection/recovery

ratio on the visible layer than the reality.
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(a) Scenario 9
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(b) Scenario 10

Figure 5.10: Plots showing the number of infected nodes for two scenarios (9 and

10), where an induced epidemic occurs on layer 2. The blue lines indicate the

number of infected nodes on layer 1, and the orange lines indicate the number

of infected nodes on layer 2. In both cases τ11 is high, and so an epidemic is

sustained on layer 1 regardless of layer 2. Scenario 9, illustrated in panel (a),

shows the case where interlayer spreading is high in both directions, whereas in

scenario 10, illustrated in panel (b) τ12 is high but τ21 is low. In both cases

the intralayer spreading on layer 2 τ22 is low, and so the epidemic on layer 2 is

sustained due to interlayer infections rather than intralayer infections.
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(a) Scenario 13 (b) Scenario 15

Figure 5.11: Plots showing the number of infected nodes for two scenarios (13 and

15), where an induced epidemic occurs on layer 1. Scenario 13 is illustrated in

panel (a), and the number of infected nodes on layer 1 and layer 2 are indicated

by the blue and orange lines respectively. The high τ12 parameter means the

infection is quick to spread to layer 2, where it reaches an endemic steady state

and induces an infection on layer 1. In scenario 15, τ12 is low, and so the scenario

has two different outcomes: either the infection dies out on layer 1 before it

spreads to layer 2, or it spreads to layer 2, where it again reaches an endemic

steady state and induces an infection on layer 1. These two different outcomes

are best illustrated in panel (b) with a heatmap showing the number of infected

nodes on layer 1. Two other plots are shown in panel (b): the fraction of the

simulations which are in the state with zero infected nodes on layer 1, and the

ensemble mean of infected nodes on layer 1. The first helps to show the change in

the dark line at I = 0 in the heatmap. The ensemble simulations that move into

this state are ones where the infection never reaches an endemic state on layer

2, and so the epidemic is never induced on layer 1. Most of the simulations (973

out of 1000) reach this state within the simulation time. The final plot in panel

(b) allows us to see the ensemble mean more clearly than if this is plotted over

the heatmap. Note the reduced axis scale on this plot.

In scenarios 11, 12, 14 and 16 one layer has a large spreading rate, while

the other has a small spreading rate. In each scenario the interlayer τij value

associated with the infection spreading from nodes in the layer with high infection

rate to nodes in the layer with low infection rate is low. Therefore in these

scenarios we will only see instances where one layer is in an endemic state, and
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5.3 Mean-field analysis and simulation results

the other layers only sees very rare interlayer infections. Examples of scenarios

11, 12 and 14 are shown in Figure 5.12. In scenarios 14 and 16 we will sometimes

see instances where the infection dies out completely, as the infection can die out

before it spreads down to layer 2. This is especially likely in scenario 16, where

τ11 and τ12 are both low, as shown in the heatmap in Figure 5.13.
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(a) Scenario 11
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(b) Scenario 12
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(c) Scenario 14

Figure 5.12: Plots showing the number of infected nodes for scenarios (11,12 and

13) where the infection reaches a high steady state on one layer, but not the other.

The blue lines indicate the number of infected nodes on layer 1, and the orange

lines indicate the number of infected nodes on layer 2. These large discrepancies

in the steady state value between the layers is due to each scenario having high

intralayer spreading on one layer, low intralayer spreading on the other, and low

interlayer spreading.
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5.4 Selecting an inference scheme

Figure 5.13: Heatmap (left) showing the two different types of outcome on layer

2 for scenario 16, where τ11 is low, τ22 is high, and τ12 and τ21 are both low. In

some cases the infection simply dies out on layer 1 before it spreads to layer 2.

However, in the rare event that the infection spreads to layer 2, then it will take

off and reach an endemic state. The plots on the right show the fraction of the

simulations that are in a state with zero infected nodes on layer 2 (top), and the

ensemble mean of infected nodes on layer 2 (bottom). The top plot helps to show

the change in the dark line at I = 0 in the heatmap. The ensemble simulations

that move into this state are ones where the infection never spreads to layer 2, or

spreads to layer 2 but does not reach an endemic state, before the infection dies

out on layer 1. Most of the simulations (977 out of 1000) follow this behaviour.

The bottom plot allows us to see the ensemble mean more clearly than if this is

plotted over the heatmap. Note the reduced axis scale on this plot.

5.4 Selecting an inference scheme

In order to infer the parameters governing the dynamics, an inference scheme has

to be selected. First, it is important to note that the likelihood for the full two-

layer SIS model as described above is intractable when one of layers is entirely

hidden. Therefore, we are forced to consider methods such as those described in

Chapter 4.

The fact that we are assuming no knowledge about the hidden layer makes the

134



5.5 SISa approximation

inference problem challenging. Any data augmentation method would require us

to make assumptions about the network structure of the hidden layer, in order

to impute the hidden infection and recovery events. The chances of assuming an

accurate enough structure such that the imputed events are compatible with the

observed events seemed low. Similarly, to use a likelihood-free ABC method, we

would again have to assume the network structure of the hidden layer. Again,

it seems unlikely that we would be able to assume an accurate enough hidden

layer network for the summary statistics of the simulated events to be within a

reasonably small tolerance.

Due to these factors, I decided to use some approximate models for inference

instead. The first model I considered was the SISa model, where I have assumed

that the effects of the intralayer infections due to the hidden layer can be effec-

tively modelled as a constant ambient background infection rate. The second

model is a so-called ‘latent variable’ (LV) model, where I have assumed that the

hidden layer consists of a single node, which is connected to every node on the

visible layer. The following sections 5.5 and 5.6 discuss these models in more

depth. I show how the likelihood is tractable in both cases, and present some

results of trying to infer the parameters of these models in different situations.

As well as having tractable likelihoods, these approximate models help to

answer the main question posed in this chapter: in which situations can the

multilayer structure of the network be modelled using a cruder structure? If these

models can effectively infer the parameters of the system in certain situations, this

suggests that the more complicated structure of the hidden layer is not necessary

information for these instances. However, as these models are hugely simplified, I

expect them to be inappropriate in a large number of situations. These limitations

are also discussed in the following sections.

5.5 SISa approximation

Viewing an SIS process across a two-layer network where one of the layers is

hidden can cause some nodes to appear as if they are spontaneously infected. A

one-layer SIS process cannot account for these events. However an SISa model,

which has an extra constant background ambient infection rate φ that applies
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5.5 SISa approximation

to every node, might be able to. We would like to explore whether, if we only

observed one-layer data of this two-layer SIS process, and naively assumed we

were observing a one-layer SISa process, there are any situations where we will

accurately infer the infection and recovery parameters.

To investigate this, I first simulated an SIS process on two-layers using the

Gillespie algorithm and a known set of parameters. I then flattened the two-

layer data to one-layer data by simply removing any information about events

occurring on the second layer, taking it to be ‘hidden’. Under a one-layer SISa

model, events that originally involved nodes on the hidden layer infecting nodes

on the visible layer (interlayer infection events) can now be interpreted as either

infection events due to nodes on the visible layer, or ambient infection events.

The task is then to fit an SISa model to this flattened one-layer data, and

see how well the values for the visible layer infection parameter and recovery

parameter are estimated. We can fit the data using an MCMC routine.

5.5.1 MCMC routine

In order to use an MCMC routine, it is necessary to know the probability of

a set of observed events, given a set of parameters. To begin calculating this

probability, we assume we know all the information about a particular epidemic

realisation. This includes knowledge of each event time (and hence the interevent

times), and complete knowledge of each event (i.e. which node is affected). Since

the SISa model is a Markov process, the information of the state at each time

forms a Markov chain. Moreover, since each transition of the Markov process is

independent, we can find the probability of the entire visible Markov chain given

certain epidemic parameters simply by finding the probabilities of each observed

event.

We define the state of the system X(t) at time t, which describes the node-

state of each node. The system is observed from t = 0 to t = T , and we denote

the full Markov chain of observed system states between these times as X0:T .

We label the times at which events ei are observed ti, where i = 1...E and E is

the total number of events. The set I contains all I events where an infection

occurs, either through same-layer infection or ambient infection, and the set R
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5.5 SISa approximation

contains all R events where a recovery occurs. We label the node affected in

the event by ni, and the number of infected neighbours the affected node has

at ti by NI(ni). The system has three dynamical parameters: the infection rate

τ which determines the likelihood of infection spreading from an infected node

to its susceptible neighbours, the recovery rate γ, and the background ambient

infection rate φ affecting all susceptible nodes.

Using the fact that the interevent times are exponentially distributed (i.e.

the recovery and infection processes can be modelled as Poisson processes with

corresponding rates), then the probability of k events happening in any continuous

time interval δt is

p(k events in interval δt) = exp(−rδt)(rδt)k

k!
,

where r is the rate at which events occur [135]. Therefore the probability of an

event (of any kind) occurring in a given interevent time is

p(a single event occuring in interval δti) = (riδti) exp(−riδti),

where ri is the rate of an event occurring in interval δti = ti − ti−1, defined by

the sum of propensities of the nodes at state X(ti−1):

ri = γ × (number of infected nodes at ti) + τ
∑

susceptible
nodes s

NI(s)

+ φ× (number of susceptible nodes at ti).

(5.3)

This is the probability of any event occurring. To find the probability of a specific

observed event occurring, we then need to multiply this value by the probability

of the observed event occurring, conditional on the fact that we know an event

(of any kind) has occurred. For an infection event, this probability is τNI(ni)+φ
ri

.

For a recovery event this probability is γ
ri

. To find the total probability of the

entire Markov chain being observed, given certain parameter values for τ, γ and

φ, we also need to calculate the product of the probabilities of each individual
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event. In this way we find that

p(X0:T | τ, γ, φ) ∝
E∏
i=1

(riδti) exp(−riδti)

×
∏
ei∈I

τNI(ni) + φ

ri

×
∏
ei∈R

γ

ri
.

(5.4)

If we focus on the terms which depend on the parameters we find

p(X0:T | τ, γ, φ) ∝ (γ)R
∏
ei∈I

(τNI(ni) + φ)
E∏
i=1

exp(−riδti).

And so we can write the log-likelihood of the observed Markov chain as

L = log(p(X0:T | τ, γ, φ)) = R log(γ) +
∑
ei∈I

log(τNI(ni) + φ)−
E∑
i=1

riδti + C,

where C is the normalisation constant. Differentiating this likelihood with respect

to the recovery rate parameter, we find

∂L

∂γ
=
R

γ
−

E∑
i=1

(number of infected nodes at ti)δti.

Setting this derivative to zero we find that the maximum likelihood value

γ̂ =
R∑E

i=1(number of infected nodes at ti)δti
.

However, the equivalent maximising processes for the parameters τ and φ result in

simultaneous equations for τ̂ and φ̂ that are not solvable analytically. The maxi-

mum likelihood values also fail to give us clear information about the error of these

estimations. In contrast, Bayesian methods allow us to incorporate prior beliefs

of these parameter values, as well as giving us easily interpretable posterior prob-

ability distributions over the three parameters. We can apply a straightforward

MCMC algorithm, using the above expression for the log-likelihood to accept or

reject each proposed set of parameter values. For now, we use an uninformative

prior.
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5.5 SISa approximation

We label the parameters of the SIS two-layer system as τ11, τ22, τ12, τ21, γ1 and

γ2 as before. The three parameters of the SISa approximation are simply labelled

τ, γ and φ. The recovery rate γ here has a direct parallel with the SIS parameter

γ1. Since the visible layer infections recover independently of events on the hidden

layer, we expect the MCMC will recover the value for γ1 accurately. The ambient

rate φ has no direct parallel, and captures the effective background rate due to the

multiple parameters τ22, τ12, τ21, and γ2 affecting the hidden layer. We can draw

comparisons between τ and τ11, but it must be noted that since we are fitting a

model that is ultimately incorrect, we may find combinations of the parameters

τ and φ that best describe the dynamics even when the value for τ is far from

the actual value of τ11.

5.5.2 Results

From numerical experiments, I have found that the results broadly lie between

three extreme regimes, based on the SIS parameters and the relationship between

the layers. I will refer in this section to ‘systems’, by which I mean a given com-

bination of parameters and network structure. For each system I first simulated

an SIS epidemic on the full network structure, each time seeded with 1 infected

node on the visible layer, before discarding the information about the hidden

layer. I applied the MCMC routine described in the previous section to fit SISa

dynamics to the remaining 1-layer data. For each inference experiment, I drew

100000 samples from the posterior distribution for each parameter. It is also

worth noting that in all of these examples, the MCMC routine was initialised

several times: first with values for τ and γ exactly equal to the true values for τ11

and γ1 respectively, and then for several values further away from the true values.

In all cases, regardless of the initial parameter values, the Markov chain appeared

to converge on the same values, as the resulting distributions were all centred on

the same values. The different regimes, and the accuracy of the converged values

in each case, will be discussed in turn.

The first regime contains the systems where there are either no or very few

interlayer events affecting the visible layer (case 1). The effective ambient rate is
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negligible, and so the posterior density for τ will accurately match the value of

τ11, while the posterior density for φ will suggest a value close to zero. The SISa

inference results of an example realisation falling within this regime are shown

in Figure 5.14. The epidemic was simulated on a network where both layers

are the same Erdős-Rényi network with 100 nodes, p = 0.3. The low values of

τ12 = τ21 = 0.00005 meant that the epidemic simulations typically showed no

interlayer events, and I chose one such simulation for inference. The figure shows

the posterior probability densities for the parameters, and (in all future plots as

in this plot) the thick black lines illustrate the true parameter values. Notably

the true value of τ11 = 0.6 lies well within the posterior distribution for the τ

parameter, and the distribution for φ is skewed heavily towards a zero or low

value.
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Figure 5.14: Plot showing example posterior probability densities for case 1. The

parameters used to generate the case 1 simulation were τ11 = 0.6, τ22 = 0.1, τ12 =

τ21 = 0.05, γ1 = γ2 = 8, and the simulation ran until t = 5. The true value

of τ11 = 0.6 (indicated by the thick black line) lies within the distribution for

the τ parameter, and the distribution for φ is skewed heavily towards a zero or

low value, suggesting that this case is best captured by an SISa model that is

essentially a 1-layer SIS model. This is not surprising, given the lack of interlayer

events.

The second regime contains systems where the interlayer infections from the

hidden layer to the visible layer are well-modelled by a value for τ that is higher
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than τ11. In this regime we would expect to find a value τ > τ11, and a low

value of φ. This can occur in systems where the perceived ambient infections are

frequently affecting nodes that already have infected neighbours on the visible

layer. This might happen if there is a large overlap between the neighbours of

each node’s replicas, and the value of τ22 is low compared to the value of τ21

and τ11 (case 2). Infected nodes on the visible layer will infect their replica on

the hidden layer. This replica can then infect their neighbouring hidden nodes,

which can then infect their replicas on the visible layer. If the neighbourhoods of

the two replicas are similar, this will lead to interlayer infections which are easily

explained by an increased number of visible layer intralayer infections. The results

of an example of a realisation falling within this regime are shown in Figure 5.15.

This realisation is again simulated on a network where both layers are the same

random network with 100 nodes and p = 0.3. This guarantees that, for each pair

of node replicas, their neighbourhoods are the same. The values of τ12 = τ21 = 10

are high but the value of τ22 = 0.1 is low. This time the true value of τ11 = 0.6 is

not contained in the posterior probability distribution for τ , and the distribution

for φ appears centred on a low value of φ. This system seems best described by

an SISa model where some of the interlayer events are attributed to intralayer

infection instead.

Another system that can lead to this phenomenon is if the visible layer is

quickly saturated with infected nodes before the hidden layer sees many infec-

tions, or before the hidden nodes have a chance to infect many visible nodes

(τ11 > τ12, τ11 > τ22, or τ11 > τ21) (case 3). This situation also requires that the

majority of visible layer nodes have a large number of infected neighbours. This

might happen if the steady state value on the visible layer is high (τ11 > γ1),

or if the nodes all have very high degree. If these conditions are true then any

interlayer infection events on the visible layer will be hard to distinguish from

intralayer infection events. Figure 5.16 shows the results of an example of this

case, using the same network with identical random layers. Here the fact that

the node layers are identical is not important. The distribution of τ is centred

on a higher value (1.12) than the true value of τ11 = 1, and does not contain the

value 1. The distribution of φ suggests a low value of the parameter. Again, the

best fit for the SISa model seems to attribute some of the interlayer events to the
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intralayer parameter τ .
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Figure 5.15: Plot showing example posterior probability densities for case 2. The

parameters used to generate the case 2 simulation were τ11 = 0.6, τ22 = 0.1, τ12 =

τ21 = 10, γ1 = γ2 = 8, and the simulation ran until t = 5. The two network layers

are identical, and the high values of τ12 and τ21 compared to τ22 mean that the

interlayer infections often affect the neighbours of infected nodes on the visible

layer. In this way the interlayer infections are hard to distinguish from intralayer

infection events. As such, the posterior probability densities suggest a value of τ

that is higher than the true value of τ11, and a very low value of φ.

The third regime describes systems where the effective ambient parameter is

high, and cannot be modelled accurately by simply increasing τ relative to τ11.

In this regime we would expect to accurately recover τ = τ11, and find a non-zero

estimate for φ. This can occur when the interlayer events are highly uncorrelated

with the behaviour of the visible layer. For example, this might be a system

consisting of two very different network on the two layers (i.e. two network layers

with low overlap) (case 4). In a system like this a node is unlikely to share the

same neighbours on each of the two layers. If the infection is spreading out from

part of the network on the hidden layer, the visible layer replicas of these infected

hidden nodes (which could therefore be infected with interlayer infections) are

unlikely to be connected. The posterior probability densities for an example of

case 4 are shown in Figure 5.17.

Another instance belonging to this regime is the case where we have the same
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Figure 5.16: Plot showing example posterior probability densities for case 3. The

parameters used to generate the case 3 simulation were τ11 = 1, τ22 = 0.6, τ12 =

0.02, τ21 = 10, γ1 = γ2 = 8, and the simulation ran until t = 5. The visible layer

is quickly infected, and reaches a high steady state, before many interlayer events

take place. In this way the interlayer events tend to affect nodes that already

have infected neighbours on the visible layer. The interlayer infection events are

therefore again hard to distinguish from intralayer infection events, and again the

posterior probability densities suggest a value of τ higher than the true value of

τ11, and a low value of φ.

or very similar network layers, but the hidden layer gets saturated with a high

steady state value much faster than the visible layer (case 5). The results for an

example of case 5 are shown in Figure 5.18. Yet again, we use the same network

with two identical random layers. This time the value of τ22 = 2 is larger than the

value of τ11 = 0.4. The posterior distribution for the τ parameter includes the true

value of τ11, and the distribution of φ is centred around a non-zero (if small) value

for φ, showing that the intralayer and interlayer events are indeed distinguishable.

These results are summarised in comparison with the latent variable model results

in the final section 5.7.1 of this chapter.
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Figure 5.17: Plot showing example posterior probability densities for case 4. The

parameters used to generate the case 4 simulation were τ11 = τ22 = 10, τ12 =

τ21 = 50, γ1 = γ2 = 2, and the simulation ran until t = 0.15.The two network

layers are very different: both network layers have 9999 edges, but only 22 edges

are common to both layers. Therefore as the infection spreads on the hidden

layer, the visible node replicas that the hidden nodes can infect are unlikely to

be connected. Any interlayer infections will therefore be more likely to appear as

ambient infections, and we find a non-zero estimate of φ and a distribution for τ

that includes the true value of τ11 = 10.
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Figure 5.18: Plot showing example posterior probability densities for case 5. The

parameters used to generate the case 5 simulation were τ11 = 0.4, τ22 = 2, τ12 =

1.7, τ21 = 0.05, γ1 = 8, γ2 = 1, and the simulation ran until t = 1.The hidden layer

quickly reaches its steady state value, ahead of the visible layer. As with case

4, this means that the interlayer infections are likely to affect visible nodes with

no (or very few) infected neighbours. The distribution for τ includes the true

value for τ11 = 0.4, and the model correctly identifies a set of interlayer events by

fitting a non-zero value of φ.
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5.6 Latent variable model

Considering these regimes, we can identify situations when the SISa model will

be ill-fitting. If the hidden layer reaches a high steady state value, the interlayer

infections will begin to behave ambiently. However, it might take the system

considerable time to reach this point, during which the interlayer infections might

instead be strongly correlated with the intralayer infections. This is one example

where a static value of the ambient infection rate will describe the system poorly.

The limitations of a static ambient infection rate led us to consider a more complex

model where the ambient infection rate can change.

In this model we assume that the hidden layer is composed of just a single

node that is connected to every node on the visible layer. A picture of this model

is shown in Figure 5.19. The hidden node can be in either a susceptible or infected

state, and the state of this node can now be thought of as a latent variable. This

is equivalent to an SISa system where the ambient parameter is either ‘on’ or

‘off’ dependent on the state of the latent node. Effectively we have coupled the

ambient parameter to the state of the nodes in the visible layer. We can assess

how well this latent variable (LV) model fits the data by using an MCMC scheme.

Figure 5.19: A pictorial representation of the latent variable model. The hidden

layer has just a single node, which is connected to every node on the visible layer.

5.6.1 Hidden Markov model approach

The MCMC approach requires us to calculate or estimate the likelihood of the

observed events, given a certain set of parameters. Assuming the LV variable
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model, the state of the hidden layer (i.e. the hidden node) will always be un-

observed, while the state of the visible layer is always observed. This led us to

consider hidden Markov model (HMM) methods. Below I have explained how we

used ideas from the HMM forward algorithm to calculate the likelihood of the

Markov chain of observed events.

The forward algorithm is used to calculate the probability of each possible

hidden state at a certain time, given a history of observed visible ‘motifs’. Here

the visible motif is the set of visible-layer nodes and their corresponding node-

states. The hidden states refer to the entire state of the system (i.e. the states of

both the visible nodes and the hidden node). For each visible motif Mn observed,

there are two possible states of the entire system: one where the hidden node is

infected which we label Mn(I), and one where it is susceptible which we label

Mn(S). In both cases the node-states of the visible-layer nodes in the full-system

states Mn(I) and Mn(S) match the node-states of the visible-layer nodes in the

corresponding visible motif Mn.

Consider a pair of consecutively observed motifs: M1 observed at time T1 and

M2 observed at time T2. An example is shown in Figure 5.20. We can label

M1(S),M1(I),M2(S),M2(I) as states 1, 2, 3, 4 respectively. Prior to time T2 the

system can transition between M1(S) and M1(I) without our knowledge. The

instantaneous rate matrix for the transitions between M1(S) and M1(I) is

Q1 =

(
−R1 τ12I1(M1)
γ2 −R2

)
,

where I1(M1) is the number of infected nodes on layer 1 (the visible layer) in M1

(abbreviated to just I1 in the following), and R1 and R2 are the total rates of

transition out of states 1 and 2 respectively.

Given the probability vector α1 = (α1(S), α1(I)) of being in M1(S) and M1(I)

at time T1, then the probabilities of being in states M1(S) and M1(I) at time

T1 + t < T2 are described by α1 ·B1, where the transition matrix B1 = exp(Q1t).

Using the eigenvector decomposition of Q1 where Q1 = UDλU
−1,

U =

(
−τ12I1 −τ12I1

−R1 − λ+ −R1 − λ−
)
, Dλ =

(
λ+ 0
0 λ−

)
,

λ± = −(R1 +R2)

2
± 1

2

√
(R1 −R2)2 + 4γ2(τ12I1),
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Figure 5.20: This picture demonstrates the different stages considered when cal-

culating the probabilities of observing motif M2 at time T2, of being in M1(S)

or M1(I) at time T1. The left-hand images show the observed progression of the

system. The right-hand images show the possible hidden states of the system

corresponding to the observed motifs. Following an observation of motif M1 at

time T1, we allow the system to transition between M1(S) and M1(I) for time

t. The probabilities of these transitions are governed by transition matrix B1,

which is derived in the text. A transition must then happen after the time inter-

val T2 − (T1 + t) between either M1(S) and M2(S) or M1(I) and M2(I), so that

the system matches the observed motif M2 at time T2. The probability of this

transition is described by transition matrix B2. Multiplying the two transition

matrices together, and integrating over all possible values of t, gives us the final

transition matrix.
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then the transition matrix can be written as

B1 = exp(Q1t)

= U exp(tDλ)U
−1

=
1

τ12I1(λ− − λ+)
×(

τ12I1(−R1 − λ+)eλ
−t − τ12I1(−R1 − λ−)eλ

+t (τ12I1)2(eλ
−t − eλ+t)

(−R1 − λ−)(−R1 − λ+)(eλ
+t − eλ−t) τ12I1(−R1 − λ+)eλ

+t − τ12I1(−R1 − λ−)eλ
−t

)
.

However, we also know that at T2 a transition occurs to a node on the visible layer

such that the visible layer matches the observed motif M2. We have to allow for

a transition from M1(S) and M1(I) to M2(S) and M2(I) after the waiting time

T2 − (t+ T1) = (T2 − T1)− t = δT − t. We denote the rate of transition between

state M1(S) and M2(S) as rSS, and likewise rSI , rIS and rII for the other three

possible transitions. A second matrix describing the transition after the waiting

time δT − t can then be constructed:

B2 =

(
rSS(δT − t)e−R1(δT−t) rSI(δT − t)e−R1(δT−t)

rIS(δT − t)e−R2(δT−t) rII(δT − t)e−R2(δT−t)

)
.

Since we are assuming a SVT model where only transitions involving one node

changing can occur, rSI = rIS = 0. Multiplying the two transition matrices gives

us

A = B1B2 =
1

γ2 + τ12I1

×(
rSS(δT − t)e−R1(δT−t) (γ2 + τ12I1e

−(γ2+τ12I1)t
)

rII(δT − t)e−R2(δT−t) (τ12I1 − τ12I1e
−(γ2+τ12I1)t

)
rSS(δT − t)e−R1(δT−t) (γ2 − γ2e

−(γ2+τ12I1)t
)

rII(δT − t)e−R2(δT−t) (τ12I1 + γ2e
−(γ2+τ12I1)t

) ) .
We now have to integrate this matrix product over potential times 0 ≤ t ≤ δT ,

to sum over all potential transition possibilities. Taking the first term A1,1 in

the matrix as an example, we first expand the expression, grouping the terms by

powers of t:∫ t=δT

t=0

A1,1dt =

∫ t=δT

t=0

rSS(δT − t)e−R1(δT−t) (γ2 + τ12I1e
−(γ2+τ12I1)t

)
dt

=rSS

∫ t=δT

t=0

γ2e
−R1δT δTeR1t + τ12I1e

−R1δT δTe(R1−γ2−τ12I1)t−

γ2e
−R1δT teR1t − τ12I1e

−R1δT te(R1−γ2−τ12I1)tdt.
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We can then perform the integration, applying integration by parts to the third

and fourth terms:∫ t=δT

t=0

A1,1dt = rSS

[
γ2e
−R1δT

δT

R1

eR1t + τ12I1e
−R1δT

δT

R1 − γ2 − τ12I
e(R1−γ−τ12I1)t

]δT
0

−

rSS

[
γ2e
−R1δT

1

R2
1

eR1t(R1t− 1)+

τ12I1e
−R1δT

1

(R1 − γ − τ12I1)2 e
(R1−γ2−τ12I1)t ((R1 − γ − τ12I1)t− 1)

]δT
0

.

Evaluating this at the limits we find∫ t=δT

t=0

A1,1dt = rSS

[
γ2e
−R1δT

δT

R1

eR1δT − γ2e
−R1δT

δT

R1

+ τ12I1e
−R1δT

δT

R1 − γ2 − τ12I1

e(R1−γ2−τI)δT − τ12I1e
−R1δT

δT

R1 − γ2 − τ12I1

]
−

rSS

[
γ2e
−R1δT

1

R2
1

eR1δT (R1δT − 1) + γe−R1δT
1

R2
1

+ τ12I1e
−R1δT

1

(R1 − γ2 − τ12I1)2
e(R1−γ2−τ12I1)δT ((R1 − γ2 − τ12I1)δT − 1)

+ τ12I1e
−R1δT

1

(R1 − γ2 − τ12I1)2

]
,

which simplifies to∫ t=δT

t=0

A1,1dt = rSS

(
γ2

R2
1

(1− (1 +R1T2) exp−R1T2)

+
τ12I1

(R1 − γ2 − τ12I1)2
(exp−(γ2+τ12I2)T2 −(1 + (R1 − γ2 − τ12I1)) exp−R1T2)

)
.
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The results for the other three terms are∫ t=δT

t=0

A1,2dt = rII

(
τ12I1

R2
2

(1− (1 +R2T2)e−R2T2)

− τ12I1

(R2 − γ2 − τ12I1)2
(e−(γ2+τ12I2)T2 − (1 + (R2 − γ2 − τ12I1))e−R2T2)

)
∫ t=δT

t=0

A2,1dt = rSS

(
γ2

R2
1

(1− (1 +R1T2)e−R1T2)

− γ2

(R1 − γ2 − τ12I1)2
(e−(γ2+τ12I2)T2 − (1 + (R1 − γ2 − τ12I1))e−R1T2)

)
∫ t=δT

t=0

A2,2dt = rII

(
τ12I1

R2
2

(1− (1 +R2T2)e−R2T2)

+
γ2

(R2 − γ2 − τ12I1)2
(e−(γ2+τ12I2)T2 − (1 + (R2 − γ2 − τ12I1))e−R2T2)

)
.

Now we can calculate the probabilities of being in states M2(S) and M2(I) at

time T2, given the probabilities of being in states M1(S) and M1(I) at time T1.

These probabilities are conditional, so tildes are used to differentiate between

conditional and unconditional probabilities:(
α̃2(S)
α̃2(I)

)
=

(
α1(S)
α1(I)

)
·
∫
Adt.

So, the total probability of seeing motif M2 at time T2, given all previous obser-

vations, is the sum a2 = α̃2(S) + α̃2(I). If we now want to move on to consider

the next time interval and event, we need to know the probability of being in

M2(S) and M2(I), given that we observe M2. Therefore we need to normalise the

probabilities (
α2(S)
α2(I)

)
=

1

a2

(
α̃2(S)
α̃2(I)

)
,

before performing the same calculations as above with the next interval.

For a given set of observed motifsM1,M2, ...,Mn measured at times T1, T2, ..., Tn,

we can perform this process iteratively for all pairs of consecutively observed mo-

tifs. This gives us the probabilities a1, a2, ..., an of seeing the observed motifs

M1,M2, ...,Mn respectively. The total probability of seeing the sequence of ob-

served motifs P (M1...Mn) is then the product of these probabilities, or, if we take

logs:

logP (M1...Mn) =
n∑
i=1

log ai.
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This is the probability of seeing all the observed events, over the full time in

which observations are measured. This probability is conditional on the chosen

parameters, and can be used as the likelihood measure in the MCMC algorithm.

5.6.2 Results

Again, I performed a range of numerical experiments to explore the results of

using this LV model to infer the dynamical parameters of the system, fitting only

the visible layer event data for each simulation. In each case I set the probability

vector α1 = (α1(S), α1(I)) = (1, 0) in the HMM forward algorithm, i.e. I as-

sumed the hidden node is initially susceptible. Since the MCMC routine requires

us to calculate the transition rates rSS, rII , R1 and R2 for each pair of motifs,

for each set of proposed parameter values, this MCMC scheme is much more

computationally demanding. I found I could only practically draw 5000 samples

from the posterior distributions for each inference experiment. I initialised the

MCMC routines several times again: first with values for τ11 and γ1 exactly equal

to the true values for τ11 and γ1, and then for several values futher away from

the true values. Due to the small number of samples I could draw, the further

away values struggled to converge on a solution effectively. This highlights an

area of improvement, in finding ways to further optimise the MCMC routine and

allow for more samples within a reasonable time. Note that in the following plots

showing the MCMC posterior probability distributions, I have included a result

showing a distribution for τ22. This is somewhat misleading: since the LV model

does not feature any possible intralayer infections on layer 2, and the HMM for-

ward algorithm does not depend on the parameter τ22, the acceptance ratio in the

MCMC does not depend on the new proposed value of τ22. We would therefore

not expect to see any obvious single peak in the distribution. This meant that

including the distribution for τ22 was still useful: if there were clear gaps and very

isolated peaks in the distribution for τ22, this was a quick indicator of potentially

poor mixing.

In some situations, the effect of the hidden layer is consistent throughout the

vast majority of the simulation. For example, if the nodes on the hidden layer

never get infected (if τ12 is low) and there are solely intralayer events, then the
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hidden layer effectively does not contribute to the dynamics. Figure 5.21 shows

the result of simulating an epidemic where this happens and fitting it using the

LV variable model, on a network where both layers are the same random Erdős-

Rényi network (N = 100, p = 0.3). There are no interlayer events, and so the

nodes on the hidden layer are never infected. The HMM MCMC finds posterior

distributions for τ11, τ12 and τ21 that contain the true, very low values (indicated

by the thick black lines). There is a parallel to make here: the LV variable model

with effectively-zero values for τ12 and τ21 is essentially a 1-layer SISa model

with φ = 0. Since the 1-layer SISa model accurately recovered the value of τ11

with a value φ = 0 in a similar situation in Section 5.5.2 (see Figure 5.14), it is

unsurprising that the LV model also successfully recovers the value of τ11 here,

and finds τ12 and τ21 to be low.
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Figure 5.21: Plot showing the LV model results for the case of no interlayer events.

The parameters used to generate this case were τ11 = 2, τ22 = 0.5, τ12 = τ21 =

0.00001, γ1 = 15, γ2 = 10, and the simulation ran until t = 0.3. The posterior

probability distribution for τ11 contains the true value for the parameter (marked

by the thick black lines), and the distributions for τ12 = τ21 = 0.00001 both seem

to centre on a value extremely low compared to the other rates.

Likewise if the nodes on the hidden layer are all very quickly infected and

reach a high steady state value (high τ12, τ22 >> τ11) then the rate of interlayer

infections from layer 2 to layer 1 is consistent (at a high value) for the entire

run. Figure 5.22 shows the result of using the LV model to fit a simulation of

an epidemic where this happens, again on a network where both layers are the

same random network (N = 100, p = 0.3). Here both τ12 and τ21 have posterior

distributions suggesting non-zero values. The true value of τ11 falls within the

posterior distribution. Again, we have a parallel with the SISa model here. An

LV model where the hidden node is infected early and stays infected is equivalent

to the SISa model with a non-zero value of φ. Since the SISa model performed
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well applied to a similar example in Section 5.4, it is again unsurprising that the

LV model recovers the true value of τ11 well here.

In these situations, where the effect of the hidden layer is consistent through-

out the majority of the simulation, both the LV model and the SISa model perform

well, with the computationally expensive LV model not obviously offering much

advantage over the simpler and quicker SISa inference scheme.
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Figure 5.22: Plot showing the LV model results for the case where the hidden layer

is quickly saturated with infected nodes. The parameters used to generate the

simulation in this case were τ11 = 2, τ22 = 40, τ12 = 30, τ21 = 10, γ1 = 15, γ2 = 10,

and the simulation ran until t = 0.2. The model produces posterior distributions

for τ11, τ12 and τ21 that all contain the true values of these parameters. This

makes sense: a system where the majority of the nodes on the hidden layer

become infected will act very similar to a LV model with a hidden node that is

infected.

Alternatively, there are situations where the effect of the hidden layer changes

during the simulation. For example, if we observe a system with the exact struc-
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ture that the LV model assumes (i.e. one hidden node on the second hidden layer

connected to every node on the visible layer), and set τ12 and γ2 low, it is possi-

ble to simulate a situation where the hidden node is susceptible for the majority

of the first half of the simulation, and infected for the second half. The results

of fitting this situation, simulated with a path graph of 20 nodes on the visible

layer, with the LV model are presented in Figure 5.23. The LV model captures

the nuance of this situation well, correctly estimating the value for τ11 and the

high value of τ21. The results for the same data fitted with the SISa model are

shown in Figure 5.24. The SISa results show a posterior distribution for τ11 that

does not contain the true value of 1. This is in contrast to the LV model, and

shows a clear example of where the LV model has an advantage.
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Figure 5.23: Plot showing the LV model results for the case where the hidden node

is susceptible for half the simulation, and infected for the other. The parameters

used to generate the case 2 simulation were τ11 = 1, τ22 = 0.5, τ12 = 0.05, τ21 =

20, γ1 = 1, γ2 = 0.2, and the simulation ran until t = 20. The LV model produces

a posterior distribution for τ11 that contains the true value, as well as a non-zero

τ12 and a distribution of τ21 that is centred on the true value.
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Figure 5.24: Plot showing the SISa model results for the same data as in 5.23,

where the hidden node is susceptible for half the simulation, and infected for the

other. Unlike the LV model, the posterior distribution for the τ parameter in the

SISa model case does not include the true value of τ11 = 1. The SISa model results

also suggest a low value of φ, suggesting very few seemingly ambient infections.

We can also look at the same system with the parameters changed such that

the hidden node is constantly changing, being infected and recovering many times

throughout the epidemic. The results are shown for the LV model in Figure 5.25.

Comparing these to the SISa results in Figure 5.26, we notice that both methods

do poorly at recovering the true value for τ11. In both cases they overestimate

the value of τ11. The latent variable method finds very low results for τ12.

These results are summarised and discussed further in the final section 5.7.1

of this chapter.
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Figure 5.25: Plot showing the results of the LV model for the case where the

hidden node is frequently alternating between susceptible and infected. The pa-

rameters used to generate the simulation in this case were τ11 = 2, τ22 = 0.5, τ12 =

0.5, τ21 = 20, γ1 = 1, γ2 = 10, and the simulation ran until t = 20. The LV model

inference scheme seems to perform poorly here, as it does not manage to recover

the true values for τ11, τ12 or τ21. The distribution of τ11 centring on a value so

much larger than the true value τ11 = 2 suggests that the effects of the hidden

node layers are being attributed to an increased intralayer infection rate.
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Figure 5.26: Plot showing the results of the SISa model, for the same data as

in 5.25 where the hidden node is frequently alternating between susceptible and

infected. As with the LV model, the SISa model fits a larger value of τ than the

true value of τ11 = 2. As the results are similar for the two models, there seems

to be no convincing motivation as to why the LV model is more useful in this

instance.

5.7 Discussion and future research directions

5.7.1 Summary

In this section, I have attempted to infer a two-layer SIS process where one

of the layers is hidden. An initial exploration confirmed that there are certain

phenomena unique to the multilayer SIS process, such as the induced epidemic

where an epidemic is only sustained on one layer due to interlayer infections

spreading from the other layer. These are situations where analysis must be

performed carefully, so we do not simply apply naive inference assuming a single

layer.

Due to the fact that the likelihood is intractable for the full two-layer SIS

model, this inference problem called for an alternative approach. Data augmen-

tation seemed infeasible: given that we are assuming no knowledge about the

hidden layer network, inferring the structure of the hidden layer while also simu-

lating a set of events on the hidden layer that are compatible with the observed

events seemed unwieldy. Likewise, I anticipated that simulating a set of events us-
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ing ABC that had summary statistics within a reasonably small tolerance would

be challenging. As such, I attempted inference using two simpler approximate

models instead: the SISa model and the LV model.

I found that the SISa model was able to recover a distribution for its parameter

τ that contained the true value of the intralayer spreading on the visible layer (τ11)

for a number of regimes. The first regime contained systems that had no interlayer

infections. Since these systems are essentially SISa dynamics with a zero value

for the ambient parameter, the accurate results are expected. The second regime

contains situations where the interlayer infections of the system frequently occur

in an ‘ambient’ fashion, i.e. the interlayer infections seem random, unrelated to

the spread of the nodes on the visible layer, and affect nodes on the visible layer

that have no infected neighbours.

The LV model was similarly able to recover a distribution for its parameter τ

that contained the true value of τ11 for these regimes. I did manage to find a single

situation where the LV model recovered a distribution containing τ11 and the SISa

model did not: the situation where the hidden layer is in fact a single node, which

becomes infected halfway through the epidemic. This situation exploits the fact

in the LV model, the effect of the hidden layer can change with time (as the latent

node becomes infected and recovers), unlike in the SISa model where the ambient

parameter (representing infections from the hidden layer) is static. However, it is

unsurprising that the LV model does better at recovering the true value of τ11 in

this situation, as the LV model very accurately represents this network structure.

Arguably, given its increased complexity and computational time, there appears

to be little benefit to using the LV model instead of the SISa model.

In cases where the interlayer infection events do not perform ‘ambiently’, both

models generated distributions that do not contain the true value of τ11. They

also struggled with the situation where there was a single hidden node fluctuating

quickly between susceptible and infected. These results have helped to highlight

that in these suspected scenarios, gathering information about the hidden layer

might be the only way to effectively perform inference.

All of these findings point to a key question: given that the two models

perform so differently across the different regimes, how can we know a priori

which regime we are in, and therefore what to expect from the inference results?
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One situation at least is easy to identify: if there are nodes on the visible layer

that are frequently being infected, even when they have no infected neighbours,

then these infections are clearly due to the hidden layer, and we might hope that

the interlayer infections can be modelled ‘ambiently’. However, in all situations

there will be a certain number of educated assumptions required in order to

interpret the results, perhaps developed alongside expert consultation and careful

consideration of the field, e.g. social networks are rarely structured like random

networks.

5.7.2 Future research directions

Given the scope of the research question, there are numerous other directions

for future study. To begin with, we could explore an entirely different approach

to deal with the intractable likelihood of the full two-layer SIS dynamics. In

this chapter, I decided to use some approximate models that had a tractable

likelihood instead. This was due to the data augmentation and likelihood-free

methods seeming unwieldy for the situation with an entirely hidden layer. Ex-

ploring these alternative approaches was beyond the scope of this thesis, but it

would be interesting to see if they are feasible in any other related situations: for

example, if we know the structure of the hidden network but cannot observe the

hidden layer events.

Alternatively, we could explore extensions of the current approximate model

approach, by formulating further models with increased complexity to try and

fit the data. We briefly considered a ‘latent mean-field model’, where the hidden

layer is approximated by a well-mixed population that is entirely connected to

each node on the visible layer, using a simple homogeneous mean-field model. In

essence, this is an SISa model where the ambient parameter can vary discretely

between zero and some maximum throughout the simulation, rather than the

binary on/off values that the LV model provides. However, the transition matrices

involved in a system like this mean the likelihood function cannot be calculated

as simply as in the latent variable case. The diagonalisation of Q1 is complicated

and I struggled to express B1 symbolically to allow for integration.
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A question I’ve touched on throughout this chapter is what we actually mean

by a ‘well-fitting’ model in this situation. Finding a model that produces parame-

ter values that are similar to the true parameter values might not necessarily suit

the problem at hand. It might be that it is more useful to find parameter values

that can be used to accurately predict future results, to model the initial spread

accurately, or to achieve the correct steady state value. It would be interesting

to see if there are many situations where the results for the SISa and LV model

appear to diverge under these different measurements of ‘goodness of fit’.

Related to this question is one of model selection. So far I have provided

some descriptive examples of where the SISa and LV models work well and where

they might run into pitfalls, but ideally one would perform some kind of model

selection to quantify which model is the most suitable to use in a given situation.

Any model selection method would require a clear choice of ‘goodness of fit’

measurement. Model selection can be based on various information criterion

methods [136], which generally specify a penalty per parameter to discourage

overfitting.

Another particularly pertinent question is whether there are multiple com-

binations of parameters that have similar likelihoods for the scenarios analysed.

One way to probe this is to repeat the MCMC routine with a large number of

different initial values for the parameters, and see whether this results in a large

number of different solutions. I touched on this for the SISa inference model,

where I initialised the MCMC routine with a handful of different values, and

found good convergence to the solutions I have presented. However, this was

more difficult for the LV inference model, since the limited number of iterations

possible in the MCMC routine meant it struggled with convergence for initial pa-

rameter values far from the true values. A more rigorous investigation into this

question might involve testing more initial values and running longer MCMC

routines for the LV model.

It would also be helpful, if possible, to identify whether there are any basic

multilayer properties that indicate when the different models are most appropri-

ate, and what to expect from the results. Assuming we have a reasonable estimate

of the hidden layer properties, this would make it easier to a priori select the most

suitable model for our analysis, and draw considered conclusions. One possible
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example of such a property might be the overlap of the network: we might expect

situations where the layers have low overlap to have interlayer infections that are

more easily identifiable as ‘ambient’ infections, leading to non-zero estimates for

φ and more accurate estimations of τ11. Another property to consider might be

the average minimum path between pairs of nodes on the visible layer before and

after taking the hidden layer into account. I would also like to explore whether

there is a way to estimate the number of infected nodes that will become infected

on the hidden layer before a hidden node infects a visible node. This will give

some indication of how far the infection spreads on the hidden layer before it

affects the visible layer. A rigorous relationship between these properties and the

accuracy of the MCMC results is currently out of reach, but it might be possible

to draw some general conclusions.

It is also worth noting that a lot of the work in this chapter assumes that we

have some reasonable estimates of the hidden layer structure and behaviour, and

working out how to make these reasonable estimates is an open question in itself.
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Chapter 6

Conclusions

6.1 Thesis review and discussion

Ultimately, the conclusions of this thesis tie into the idea of uncertainty in network

science, and how this changes our approach or limits what we can know. This

chapter will provide a brief review of the work and explain its consequences in

relation to this central theme. I will also discuss how this work might be used in

industry applications, particularly those involving social media network analysis,

motivated by my CASE PhD partnership with Jaywing Intelligence.

Chapter 2 focused on mean-field approximations of SIS dynamics. I intro-

duced mean-field approximation methods ahead of future chapters, and investi-

gated the accuracy of several different mean-field approximations. The results

of this investigation confirmed that, while approximations such as the hetero-

geneous mean-field and the individual-based mean-field approach (NIMFA) are

required to model SIS dynamics on networks with scale-free degree distributions,

for networks such as regular networks and Erdős-Rényi networks homogeneous

mean-field approximations are adequate. I demonstrated how systems such as

the approximate master equations lead to greater accuracy, but come with an

increased computational cost that sometimes renders them impractical. This

highlights how different approximations of dynamics on networks can vary hugely

in their accuracy and appropriateness based on the structure of the underlying

network. If we know all the information about the network, we can make an

informed decision as to which approximation to use. However, if we are looking
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at a problem with an unknown network, such as those referenced in Chapter 4,

choosing an appropriate approximation could pose a problem.

It is also true that, even if we can judge which approximation might be most

accurate, the precise approximation error is often unknown a priori. The approx-

imate lumping approach that I developed in Chapter 3 explores this problem.

I showed how we can use approximate lumping to look at a population model

for SIS dynamics, where the partitions correspond to the different levels of the

system. I also showed how, by choosing an infinitesimal generator for the lumped

system that minimises a quantity I refer to as the lumping error, we find that

the elements of this generator are in fact similar to the transition rates of the ho-

mogeneous mean-field approximation closed at the single level. This provides a

more rigorous mathematical motivation to the closure. I also expressed the error

of the homogeneous mean-field approximation in terms of the lumped generator

and related matrices. Unfortunately this error expression also relies on informa-

tion about the full exact solution. This points to a possible limit in how precisely

we can quantify the error of these approximations for most practical real-world

situations.

Chapters 4 and 5 shifted focus to look at inference on networks. The two-

layer system with a latent layer which is studied in Chapter 5 is an example

of a situation where there is a huge amount of missing information. My initial

investigation of simulating SIS dynamics on this system in Section 5.3 showed

how a lack of awareness that the hidden layer existed could lead to confusion

and erroneous conclusions regarding the dynamical parameters. This shows how

important it is to thoroughly consider all the possible connections and network

layers that could be at play in a network system before attempting analysis. It

also shows how tenuous conclusions can be in situations where the possibility of

further layers is unknown.

In Sections 5.5 and 5.6 I then attempted to infer the visible layer infection rate

parameter by retaining and studying only the simulated events happening on the

visible layer. I used two inference frameworks which both assumed an awareness

that the hidden layer existed. The first was a simple SISa model, which effectively

treated the hidden layer and any cross-layer infections as a constant background

infection rate. The other was a more complex ‘latent variable’ model that I
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developed, where I treated the hidden layer as a single node, attached to each of

the nodes on the visible layer. I demonstrated how, for situations where the effect

of the cross-layer infections from nodes on the hidden layer looked similar to a

constant background rate, the SISa model was able to recover the true infection

rate. I also showed how the latent variable model performed very similarly to the

SISa model in most situations, but could outperform it in at least one situation

that I managed to identify. On a practical level, this work shows that the SISa

model is often a more appropriate choice for this inference problem, since it is

computationally less expensive and often just as accurate as the latent variable

model. On a more general level, this work highlights how, for certain structures

and dynamical parameters, we can sometimes perform effective inference using

models that are much simpler than the actual process. However, the fact that

these models were accurate only in fairly specific situations shows how sensitive

inference problems of this kind are. It is clear that sometimes we have to make

large assumptions about the unknown behaviour on the hidden layer in order

to even practically attempt inference. We have to be careful, and be aware that

these assumptions, and therefore the inferred parameters, may not be accurate. If

we suspect that the hidden layer contributes to the visible layer infection patterns

in a more complex way, effective inference may prove to be out of reach.

To sum up, both approximating the dynamics and the presence of missing

information about the network structure leads to uncertainty. It is vital to un-

derstand and quantify that uncertainty as far as possible, in order to know when

specific approximations or models may be useful. One current example which

shows the pressing need for further research into the technical and mathemati-

cal foundations of this area is the range of results from different forecasts of the

COVID-19 epidemic. Different forecasts from different modelling teams show how

sensitive such predictions are to different models and assumptions regarding ho-

mogeneity, even when using simple compartmental models without detailed net-

work structure [137]. The results from these forecasts are particularly pertinent,

since the UK’s Scientific Advisory Group for Emergencies [138] lists stochastic

transmission models as modelling inputs.
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6.2 Industry applications and open questions

Social network analysis is used in advertising to study the spread of information

and identify influential individuals or groups of people [139]. This information

can then be used to more directly target products to certain people and to help

monitor and influence things like brand perception and product awareness. In

this section I am going to describe a few connections the work in this thesis

might have with social networks, information spreading, and online data. I will

also point to some difficulties and open questions in this area.

First, the work in Chapter 3 can be applied to SVT models used in social

contagion, to better study the spread of information and ideas between people.

For example, the Maki-Thompson (MT) rumour model can be formulated as

an SVT model where the recovery rate, as well as the infection rate, depends

linearly on the number of infected nodes [140]. This means that we could use the

methods in Chapter 3 to perform approximate lumping and create a population

model of the process, with the error of this model theoretically calculable. Mean-

field approximations for the MT model have been studied [48], but ultimately this

model does not benefit from the same wealth of research into these approximations

and their accuracy that SIS dynamics does. Being able to analyse the error of

a coarse-grained model of the dynamics using the methods from Chapter 3 is

therefore a significant contribution.

There are also several questions around data collection and data quality when

trying to measure information spreading online, which connect to the discussion

in Chapter 4 on missing information. One problem is how we measure whether

people are ‘infected’ with a rumour (actively spreading it) or not infected, i.e.

‘susceptible’ (not currently spreading the rumour). It is perhaps easier to see

through an individual’s posts when they become aware of a subject matter, brand

or product. We might track which users are using certain keywords or phrases

in their posts to find ‘infected’ individuals [141], or observe conversations and

message exchanges between different users to observe spread [142]. This can

show clear current interest, but how do we judge that an individual is no longer

interested or aware of something? And how do we account for users who are more

bystanders than active participants, and may be following a discussion closely
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but without contributing in any noticeable way themselves? This links into the

questions of who to include in the network, and how to sample the network in

question. As explained in Chapter 4, if we sample the accounts connected to a

given user using a non-probability sampling method, we lose the ability to use

certain inference tools. However, it may only be useful or practical to sample

in this way. As Lermand and Ghosh note [143], a large number of studies of

social networks involve following a flow of information or connections between

users rather than sampling a network and then observing the dynamics. For

example, a common way of sampling data from Twitter is by forming the Twitter

follower graph through identifying active users who are discussing the relevant

content, and then sampling their followers [144, 145]. In this situation a directed

edge exists between two users if one follows the other. Whether the edge should

be directed towards the user that is being followed, or towards the follower, is

dependent on the context of the problem. We might also trace a hashtag or

phrase through a social network [141], or sample users who ‘retweet’ each other

(share each others’ posts) [146].

The work in Chapter 5 is relevant, as multilayer networks are rife in social

structures [147]. There are a multitude of different social media websites that

an individual can be active on, including websites such as Facebook, Twitter,

Instagram, TikTok and Snapchat. People will often interact with the same people

across different social media websites. The specific two-layer framework with one

hidden layer that is studied in Chapter 5 might occur within a social network if we

have access to data from a collection of users interacting on an online network, but

no information about their offline connections. Likewise, we might have access

to data from one social media website, but not from another. If we find that the

connections on the hidden layer can be modelled effectively by using an ambient

background infection rate as part of an SISa model as in Section 5.5, or by

using the LV model described in Section 5.6, then we do not need to worry about

collecting any further information relating to this extra behaviour. If we can avoid

further data collection, we can save both time and money. It is also worth noting

here that the work in Chapter 5 involved exclusively undirected networks. This

is helpful for certain social connections, such as a mutual friendship connection

on Facebook or a mutual co-worker relationship in real life, but is not as precisely
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applicable to situations such as the directed Twitter follower network. I have at

least allowed some flexibility by defining τ12 separate to τ21, which would allow

different spreading rates on edges directed from layer 1 to layer 2 and edges

directed from layer 2 to layer 1. Accounting for directed edges would require

changing the Gillespie algorithm to simulate the dynamics, and the inference

schemes would need to take into account the directed edges when calculating the

different rates of each kind of event. Extending this work to directed edges seems

possible but was ultimately beyond the scope of this thesis.

A lot of the work in Chapter 5 also presumes that we have some general idea

about the structure of the networks on each layer. In the context of social inter-

actions, we can use information about common social network structures to make

some assumptions about the case study in this context too: for example, social

networks are rarely structured like random Erdős-Rényi networks, and are much

more likely to feature degree distributions that display a heavy-tailed distribution

[32]. More detailed observations are available through in-depth studies on spe-

cific social media websites, such as those looking at the structure of Twitter [148]

and Facebook [149]. We might also be able to judge ahead of time whether the

two layers are likely to have a large overlap (for example, someone’s contacts on

Snapchat and Facebook, where people tend to connect with their informal peers),

versus low overlap (for example, someone’s TikTok and LinkedIn contacts, where

the former involves sharing mostly informal content and the latter centres on

professional connections). This highlights the importance of studies looking at

the structure of these kinds of networks.

These are just some of the possible applications of this work, in an ever-

growing area of research. I hope that this work can help researchers to make

careful approximations and inference, as well as prompting further developments

and discussions around the idea of missing information in social network analysis.
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Appendix A

Appendix 1 - Design-based

inference matrix is ill-conditioned

The condition number κ(A) of a matrix A is defined as

κ(A) = ‖A‖‖A−1‖,

where ‖A‖ is the norm of matrix A [150] . If the condition number of a matrix is

large, then the matrix is said to be ill-conditioned, and the solution of the linear

system of equations represented by the matrix is prone to large numerical errors.

We are interested in the condition number of the matrix A involved in the

naive estimate of the population degree distribution, given the sampled subgraph

degree distribution, from section 4.1.1. This matrix has elements

Aij =

(
i

j

)
αj(1− α)i−j.

We define the norm as

‖A‖∞ = maxi

D∑
j

|aij|.

For a matrix B,

‖B‖∞ = maxi

D∑
j

|bij| ≥ maxi|bii|.

169



Now let’s set B = A−1. Since A is an upper triangular matrix, B is also an upper

triangular matrix with diagonal elements bii = 1
aii

. Therefore

maxi|bii| = maxi

∣∣∣∣ 1

aii

∣∣∣∣ =
1

mini|aii|
.

So with

‖A‖∞ = maxi

D∑
j

|aij| ≥ maxi|aii|,

and

‖A−1‖∞ = ‖B‖∞ ≥
1

mini|aii|
,

the norm becomes bounded:

κ(A) = ‖A‖‖A−1‖ ≥ maxi|aii|
mini|aii|

.

Since the value of maxi|aii| = 1 and the value of mini|aii| = αD, where D is the

maximum degree of the network:

κ(A) ≥ 1

αD
.

This means that as α is decreased, and D increased, the matrix A becomes more

ill-conditioned.
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trality – is there an underestimated epidemic impact of network peripheral

173



REFERENCES

nodes?,” The European Physical Journal B, vol. 86, no. 10, pp. 1–13, 2013.

10

[29] P. Laflin, A. V. Mantzaris, F. Ainley, A. Otley, P. Grindrod, and D. J.

Higham, “Dynamic targeting in an online social medium,” in International

Conference on Social Informatics, pp. 82–95, Springer, 2012. 10

[30] G. Ferraz de Arruda, A. L. Barbieri, P. Mart́ın Rodriguez, Y. Moreno,

L. da Fontoura Costa, and F. Aparecido Rodrigues, “The role of centrality

for the identification of influential spreaders in complex networks,” ArXiv

e-prints, pp. arXiv–1404, 2014. 10

[31] X. F. Wang and G. Chen, “Complex networks: small-world, scale-free and

beyond,” IEEE Circuits and Systems Magazine, vol. 3, no. 1, pp. 6–20,

2003. 12

[32] A.-L. Barabási and E. Bonabeau, “Scale-free networks,” Scientific Ameri-

can, vol. 288, no. 5, pp. 60–69, 2003. 12, 168

[33] A. D. Broido and A. Clauset, “Scale-free networks are rare,” Nature Com-

munications, vol. 10, no. 1, pp. 1–10, 2019. 12

[34] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”

Science, vol. 286, no. 5439, pp. 509–512, 1999. 13

[35] R. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen, and K. Kaski, “A
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