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Abstract

Robotic machining has the potential to provide advantages as a substitute

for conventional CNC machine tool operations. However, conventional

industrial robots are restricted to low accuracy tasks due to their poor

positional accuracy. This creates challenges in achieving the tolerances

required for machining tasks. Data-based modelling of the positional error

data is a potential solution which learns the positional errors in order to

compensate and minimise them.

There has been some success in improving industrial robot accuracy in

research literature, by first calibrating the kinematic model and then us-

ing machine learning (ML)-based bias correction to learn the positional

errors. However, the limitations of ML-based bias correction applied to

the industrial robot positional accuracy problem have not been fully ex-

plored with the accuracies required to achieve tight machining tolerances.

Mapping the positional errors with a greater resolution of training data,

and reducing the burden on bias correction by calibrating the kinematic

model with a higher level of calibration, are two examples which have

the potential to improve accuracy. This thesis focusses on both training

data resolution and bias reduction to maximise outcomes whilst informing

trade-offs when using ML-based bias correction in this application.

The key finding of this thesis is that substantial gains in accuracy can be

achieved using ML-based bias correction and that the accuracy limit can

be achieved with practicable amounts of data gathering and processing.

Also that calibration prior to bias correction did not significantly improve

overall accuracy for the cases investigated. This suggests that data may

be better utilised in training the bias corrector rather than for calibration

of the physical model. In conclusion, ML-based bias correction methods

can provide a solution that provides substantial gains in positional accu-

racy for conventional industrial robots, bringing them to a level that may

facilitate broader adoption in machining applications.
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Chapter 1

Introduction to Industrial Robot
Machining

1.1 Introduction

The manufacturing sector has increasingly turned to industrial robots as a flexible

solution to meet the demands for greater product variation in smaller volumes. An

integral part of a flexible manufacturing system is the machining process. Machining

is the process of removing material to achieve size tolerances, such as part length

and hole locations relative to a datum; geometric tolerances, including flatness and

concentricity; and surface finish tolerances, such as roughness. Machining tasks such

as drilling, milling and turning have traditionally been undertaken on CNC machine

tools which are designed to produce parts that meet machining tolerances. To achieve

this, CNC machine tools are designed to have independent axes, a highly rigid struc-

ture, and they are available in a range of configurations (typically 3 to 7 axes).

However, they are also expensive and inflexible, in a manufacturing sense. On the

other hand, finishing tasks that have very small material removal rates, such as pol-

ishing, are usually completed manually as they require high dexterity to keep the

tool normal to the surface. However this can be an unhealthy environment for the

operator. Robotic machining can offer an alternative to both.

Industrial robots are typically used in manufacturing for part handling, welding and

paint spraying, and have a high working volume to footprint ratio compared to CNCs.

However, only 10% of industrial robots are used in metal industries and it is estimated

that less than 2% are used for machining tasks [2]. Conventional 6-axis articulated

robots have poor positional accuracy and low rigidity, which means that it is very
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challenging for industrial robots to achieve machining tolerances. As a result, they

are limited to low accuracy tasks and are rarely used for conventional machining

applications such as drilling and milling metals.

Industrial robots have found their use in niche machining applications where ma-

chining process forces are low, which include deburring and milling of non-metals

[3][4][5], milling [6][7][8][9], drilling large parts [10][11][12] and finishing processes

[13][14][15][16].

When implemented successfully for machining applications, industrial robots have

the potential to increase manufacturing capability and capacity by offering integra-

tion with larger automation systems. They are kinematically flexible and dexterous

so can approach complex tasks from multiple paths and configurations [17][18][19].

For example, Figure 1.1a shows an articulated robot which is mounted to a mobile

platform to increase the workspace capacity for machining large aerospace structures

[20]. Figure 1.1b shows an articulated robot with the capability of drilling holes in

the circumference of a wind turbine without repositioning for access to the face [17].

(a) (b)

Figure 1.1: Industrial robot machining examples:(a) aerospace structure edge trim-
ming, (b) wind turbine drilling.

There is considerable motivation and potential to increase the use of industrial robots

for machining applications. For the advantages of robotic machining to be accessed

in wider machining applications, there are a number of challenges that must first be

overcome.

1.1.1 Challenges in industrial robotic machining

The challenges that currently prohibit the use of industrial robots for the majority

of machining tasks are associated with all three of the machining tolerance types i.e.
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size, geometric and surface finish. A summary of robotic machining focused review

papers [2][17][18][21] identified the following barriers to widespread application:

1. Achieving acceptable positional accuracy: In this context, positional ac-

curacy is a measure of how close the robot tool-centre-point (TCP) position is

to a desired position. Accuracy determines whether part size tolerances can be

achieved. To respond quickly to manufacturing changes, and in order to machine

free-form surfaces, offline programming is used to generate the robot programs.

Poor positional accuracy is usually attributed to a difference in the kinematic

model of the robot, used by the program to predict TCP positions, and the

physical robot. To improve its positional accuracy, an industrial robot can be

calibrated. Calibration is broadly defined here as the identification and updat-

ing of model parameters, specifically, updating the kinematic model, which is

used to determine the robot end effector position from given joint angles. Cal-

ibration is defined in further detail in Section 2.2. Industrial robot calibration

is an active field of research which has focussed on improving robot positional

accuracy in general, but has not focussed on achieving the accuracies required

for machining applications.

2. Structural stiffness modelling and process force monitoring: Structural

stiffness, or rigidity, is the resistance to deflection when the end effector of the

robot is subjected to a wrench (load or torque). Deflection due to payload

determines not only the capability to achieve a required positional accuracy, but

also achieve a required path accuracy and thus achieve geometric tolerances,

for example, flat, parallel part surfaces. The problem has been extensively

researched and approaches include stiffness modelling and prediction of path

offsets [22], optimisation of stiffness by careful selection of configuration [23][24]

and online force feedback control of machining parameters [10][11][25], or all

three [26], as well as ‘look ahead’ path adaptation [4][27].

3. Programming robot trajectories with task-base planning software: the

planned trajectory of the robot TCP during a machining process also determines

the accuracy of the path and the ability to achieve geometric tolerances. In-

tegrated robot programming languages are ’robot-centric’, unlike machine tool

G-codes which are ’task-centric’. By this it means that robot programs focus

on trajectories that best suit the robot by avoiding excessive joint rotations and

singularities, whereas machine tool G-codes generate paths that closely match

the part geometry. There are CAM based software solutions from OEMs, such
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as ABB RobotWare Machining FC, Mastercam and Robotworx that map be-

tween the two, however there is still work to be done to integrate the discussed

optimisation strategies such as stiffness.

4. Vibration and chatter: excitation of the modal responses from machining

process forces is more likely to result in excessive vibration and chatter, which

determine whether surface finish tolerances can be achieved. The first natural

frequency of an industrial robot structure is considerably lower than that of a

CNC machine tool, in the order of 10Hz compared to 1000Hz. Industrial robots

may therefore be more likely to be excited at conventional machining speeds.

Approaches to mitigate this effect in existing research include tool selection,

optimised location and posture selection [28], path and feed selection [29][30]

and suppression [15][31].

The focus of this thesis is to explore novel solutions for the first of the challenges,

improving robot positional accuracy for machining tasks, through improved modelling

of the robot kinematics.

1.2 Industrial robot positional accuracy for ma-

chining applications

Accuracy (robot accuracy or model accuracy) is defined in the context of this thesis

as the closeness of the robot end effector position (in Cartesian coordinates), or model

predictions of the end effector position, to the measured position. This is expressed

in terms of error in mm, so that a large error is attributed to a low accuracy i.e. the

robot is not near to its desired target position. The positional accuracy required to

enable robotic machining to be accessible to wider machining application is difficult

to quantify. Certainly, the positional accuracy of conventional industrial robots is

prohibitively low for the majority of machining tasks. However, OEMs rarely publish

positional accuracy capability on data sheets in favour of repeatability. Repeatability

is the ability of the robot to return to a pose consistently when conducting the same

task, repeated n times in the same conditions [32].

The accuracy required for industrial robots to achieve machining tasks is dependent

on the task and therefore high and low accuracies, in relation to accessing wider

machining tasks, are arbitrary concepts at this point. A comparison of the positional

accuracies reported in current industrial robot research literature and current CNCs

may provide an upper an lower bound to a desirable accuracy region.
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1.2.1 CNC machine tool accuracy

To determine the wider machining capability that robots must achieve to displace

CNCs from some machining tasks, it is useful to understand the capability of CNC

machine tools and the differences by which the performance of the two systems are

measured. A direct comparison of accuracy between industrial robots and CNC ma-

chine tools is difficult to make as machine tool manufacturers use a different set of

accuracy test standards to robotics manufacturers, and both are available in a range

of structural configurations. CNC machine tool accuracy is often quantified by its

volumetric accuracy, which is broadly defined as the root-mean square (rms) of the

displacement along three axes, for example, positional error in x, y and z. Besides,

volumetric accuracy has multiple definitions and is calculated differently, depending

on the configuration of the machine axes [33][34]. In [35] the volumetric accuracy of

ten conventional machine tools was compared and the results ranged between 42µm

and 78µm using a body diagonal test, which can be used as an approximate per-

formance measure. The Taniguchi curve in Figure 1.2 approximates the accuracy

capability of different machining processes over time. The chart indicates that mod-

ern, conventional CNC machine tools are capable of achieving a positional accuracy

of 0.1mm and below, which will be used in this thesis as a lower bound to the desired

accuracy for an industrial robot.

The accuracy of an industrial articulated robots is wide ranging but can be expected

to be in the order of approximately ±1mm. Values approaching 0.3mm have only

been achieved with calibration or compensation [36].
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Figure 1.2: Taniguchi machining capability chart [1]

1.2.2 Industrial robot positional accuracy

Industrial robot accuracy is commonly reported as a volumetric error, either as a mean

or rms Euclidean distance error (square-root of errors in x, y and z) although never

tested in the same way in the research literature. In an investigation as to whether

conventional industrial robots can achieve the accuracy required for an aerospace

drilling application, the accuracy of four robots from ABB, Staubli and Kuka were

evaluated [37]. A positional accuracy of 0.2mm was set as a desired accuracy, pre-

sumably a position tolerance which is maximum error in workspace volume, and the

author concluded that none of the robots were capable of achieving it. In fact, the ac-

curacy of an industrial articulated robot is expected to be approximately ±1mm, and

values approaching 0.3mm have only been achieved with calibration or compensation

[36]. A region of accuracy between 0.3mm, as the current capability of industrial

robots, and 0.1mm, the lower capability of current CNCs provides a desirable range

for this thesis. An accuracy of 0.2mm for a drilling task is set as a target. Questions

remain as to what causes robot positional errors and what the solution is?

Inaccurate kinematic modelling of a robot is typically the result of geometric errors

(manufacturing tolerances result in inaccurate robot geometry parameters in the ki-

netic model) and non-geometric errors (unmodelled errors, for example, joint stiffness
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and gearbox misalignment)[38]. As a result of a sequence of model errors along the

robot serial chain, the positional errors can be considerable and highly non-linear

making them challenging to model parametrically. The terms linear and non-linear

are defined in the context of this thesis as: A linear equation is one which satisfies

the principle of superposition (the output of variables and functions are added) and

whose output changes in direct proportion to the input. A simple linear equation

is typically expressed as a straight line function y = ax + b. A linear system is a

collection of two or more linear equations that are solved simultaneously. The robot

error model is later expressed as a linear system and solved using linear least-squares

estimation. Some system error factors are described in this thesis as highly non-linear.

A non-linear equation is one which does not satisfy the principle of superposition (for

example, variables may be multiplied) and whose output does not change in direct

proportion to the input. A non-linear system may contain some but not all linear

equations. Highly non-linear, in the context of this thesis, means that very large

output changes may occur from small input changes and that a non-linear system is

the combination of two or more equations, one or more is non-linear, and is therefore

very challenging to model.

The current industrial solution for improving robot positional accuracy is to conduct

a calibration procedure in order to update the kinematic model parameters. How-

ever, this procedure is only offered by some manufacturers and typically results in

an update on only the parameters that describe the robot geometry. As a result,

some model form errors may still remain. The subject of robot calibration has been

extensively researched, with seminal works conducted in the 1980’s [39][40]. In subse-

quent decades, research on robot model calibration appears to have fragmented into

calibration themes focussing on (1) modelling, (2) measurement (metrology and mea-

surement strategies) and (3) identification (parameter estimation). Despite extensive

research efforts into calibrating the parametric model of the robot kinematics, the

positional error of a conventional, industrial robot remains prohibitively high for the

majority of machining applications. The use of existing calibration tools will be a

starting point for the solution investigated in this thesis, and the question is asked as

to what extent can the positional errors be modelled non-parametrically?

Early successes have been made using data-based model compensation as a solution

to robot positional error modelling, but it will require rigorous exploration to become

a robotic machining solution. In this thesis, regression tools developed within the
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machine learning field are investigated and applied to the problem of reducing robot

positional errors.

1.3 Machine Learning (ML) based bias correction

ML is a set of methods that automatically learns patterns in data [41], and combines

tools from the fields of artificial intelligence and statistics. In the context of this

thesis, bias refers to the positional errors between the system model predictions and

measured values i.e. pose error data. Bias correction is the post-processing of the

model predictions, in this study by using machine learning, with the aim of minimising

the bias and for the predictions to match the measured values. Also in the context of

this thesis, bias reduction is the reduction in the magnitude of the positional errors,

prior to bias correction. This is achieved by calibration of the kinematic model of the

robot. ML tools are employed in a wide range of fields and commonplace systems,

such as self-driving cars, image classification, structural health monitoring, biology

and many more [42]. Broadly speaking, the problems that ML tools are tasked with

solving can be categorised as regression and classification. Regression is the problem

of learning the relationship between input and output data where the input variable

is continuous. Classification is the problem of labelling discrete data such as ‘pass’

or ‘fail’.

Machine learning can be broadly separated into three groups: supervised learning,

unsupervised learning and reinforcement learning [43].

• Supervised learning uses labelled input-output examples to predict the out-

put of new inputs. Regression and classification problems may use supervised

learning as a solution.

• Unsupervised learning is tasked with learning patterns in unlabelled output

data. Classification problems may use unsupervised learning as a solution.

• Reinforcement learning finds an optimal or sufficiently good action when

occasionally rewarded or punished.

In the context of this thesis, the problem to be solved is one of regression, and a

solution may be approached via supervised learning. The tasks of the ML are to learn

the relationships between the robot TCP positional error data-the output across a

range of configurations (a configuration is the posture of the robot defined from an

input of joint angles), and joint angles-the input.
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In engineering, many machine learning tools have become familiar parlance, such

as artificial neural networks (ANN), support vector machines (SVM); and some tools

that have grown in prominence more recently, including Gaussian processes (GP) and

deep learning (DL). There has been some recent success in research where ML has

been applied as a bias correction tool to improve industrial robot positional accuracy

[44][45], but none with a focus on achieving a level of accuracy for machining tasks.

Significant gains in accuracy were made by using bias correction, compared to the

level achieved by the calibrated model, however the limitations were not explored and

a desirable accuracy for machining has not been achieved.

The most common approach to date has been the application of an ANN, preceded by

calibration to reduce the burden of bias correction. The full use of existing calibration

tools and models to reduce the bias level has not been utilised, and the potential to

achieve greater accuracy with more extensive calibration, or no calibration, has not

been explored.

GPR can be defined as a Bayesian approach to non-parametric modelling, which fits a

probability distribution to functions that fit data, rather than distributions to the data

themselves [46]. GPR has been applied to related problems with some success, namely

improving the positional accuracy of surgical robots and robot dynamics problems.

However, GPR has been applied to the industrial robot positional accuracy problem

by only one author [45], and has been shown to be a viable alternative to ANN bias

correction.

Research literature related to the use of ML tools in this application is discussed

further in Chapter 2.

A question remains as to what extent can ML-based bias correction improve the

accuracy of an industrial robot? Specifically, the question is directed at achieving the

desired accuracy for machining applications.

In this thesis, existing ML tools will be used for bias correction, extending the work

presented in literature, but with a particular focus of whether ML tools are capable

of improving robot positional error accuracy to the extent required for machining

applications.
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1.4 Aim and scope

The aim of this thesis is to explore the use of ML-based bias correction to improve the

positional accuracy of industrial robots for machining applications. The focus of the

research will be the use of ML as a solution, with the principal novelty arising from

tailoring these tools to the robotic machining task. Existing parameter estimation

and ML tools will be used throughout. This thesis seeks to answer the following

research questions:

• Research question 1: What are the limitations of the positional accuracy of

an industrial robot, given sufficient training data quantities, when using bias

correction to reduce positional errors?

• Research question 2: To what extent does bias reduction, by robot model cali-

bration prior to bias correction, increase the positional accuracy of an industrial

robot?

To answer the research questions, a sequence of studies will be conducted to meet the

following objectives:

1. Investigate the error sources on a conventional industrial robot and develop a

numerical model to simulate robot positional errors.

2. Test the proposed bias correction method on simulated models with increasing

complexity.

3. Validate the results of the bias correction method with an empirical study of

an industrial robot for the general positional accuracy case.

4. Validate the bias correction method for a robotic machining task.

1.5 Thesis overview

This thesis consists of 8 chapters within three main parts.

In PART I (Chapters 2 and 3), the research is situated in relation to industrial

robot literature and established methods, providing the reader with the background

knowledge required to understand the experimental work ahead. Chapter provides

a discussion of the challenges and accepted norms in robotics along with a critical

review of literature and current practice. While both parameter estimation and bias

correction are extensively researched fields, the review focusses on applications to
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robots. In Chapter 3, the research methodology is presented along with necessary

underpinning parameter estimation and machine learning theory.

In PART II (Chapters 4,5,6 and 7), a series of numerical and experimental studies

are presented which investigate the application of bias correction to robot models

with increasing complexity. In Chapter 4, the error sources present in a conventional

industrial robot are investigated, and the associated effect on kinematic behaviour

is analysed by measuring errors in isolation. In Chapter 5, the proposed calibration

and bias correction method is tested on a simulation of a conventional industrial

robot. In Chapter 6, the results in Chapter 5 are validated by testing the method

on an industrial robot. In Chapter 7, the method is validated on a robot machining

focussed study.

In PART III (Chapter 8) the discussion, conclusions and recommendations of future

work of the study are presented.
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Chapter 2

Literature Review

This chapter provides an overview of the literature on the topics of industrial robot

calibration and the application of bias correction to robot positional errors. The

chapter is separated into three sections, however, many researchers present research

that contributes to multiple topics and will appear multiple times in the chapter.

For example, it is common to present research for a novel application of a parameter

estimation technique and a novel metrology solution combined.

Section 2.1 presents an overview of the sources of positional error in industrial robots.

Section 2.2 presents a critical review of related work on industrial robot calibration

methods. Finally, section 2.3 presents a critical review of research literature where

bias correction and ML tools have been applied in related works. Particular attention

is paid to the use of Gaussian Process Regression (GPR) in related works. It is

commonplace in the industrial robot accuracy research field for research literature

to overlap multiple themes and so some works will be referred to in multiple or all

sections.

2.1 Robot kinematic error sources

In this section, the robot positional error problem is described by reviewing existing

research literature, with particular attention to error classification and ranking. To

understand the challenges associated with robot positional accuracy, one must first

understand the sources of error in the kinematics of the robot and the inaccuracies in

the kinematic model. The kinematic model of a robot is a mathematical description

of the geometry of its structure. The structure consists of a serial or parallel chain of
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joints, which has a motor and gearbox transmission, and links that separate them to

create an arm.

The error between the desired pose of the end-effector and actual pose is the result

of incorrect kinematic model parameters and/or unmodelled kinematics. Consider

incorrect link length parameters in the model or flexible links as examples. Error

sources, modelled or unmodelled, can be categorised as geometric or non-geometric

[47] and the distinction between them often leads to separate research themes.

• Geometric errors are the deviations from the geometric parameters in the kine-

matic model, such as link lengths, offset distances along joint axes and joint

axis orientation. Geometric errors may arise due to manufacturing tolerances

and alignment errors during assembly.

• Non-geometric errors include joint gearbox and link elasticity, gearbox trans-

mission errors e.g. backlash, gear runout and orientation, and thermal effects.

Some of the error sources may be negated by moving the gearbox encoder from

the motor side to the gearbox transmission output side and by improving man-

ufacturing tolerances. Given that repeatability is the main driver of industrial

robot design, which is not affected by geometric errors, there is little motivation

to increase manufacturing costs to reduce tolerances. Instead, software solutions

(i.e. calibration) are used.

The geometric and non-geometric error sources above have been described fully in

research [40] but it remains difficult to concentrate research efforts when a consensus

on the ranking of relative positional error attributed to the different error sources has

not been reached.

Early research demonstrated that non-geometric errors accounted for less than 10%

of the total error [38]. Judd and Knasinski [48] investigated many error sources

individually on a single robot for comparison and concluded that joint encoder errors

contributed to 90% of the error, link length tolerances contributed an additional 5%

percent while gear transmission errors contributed just 1%. Most of the gear error

was reportedly the result of a misalignment in the joint 1 due to payload torque

when the arm is outstretched. Gearbox backlash has been reported to contribute

to 0.5% to 1% of the error whilst thermal effects contributed to 0.1% [47]. Few

researchers have concentrated on modelling the gearbox transmission, backlash and

thermal effects parametrically. In modern, temperature controlled factories, thermal

effects are typically assumed to be negligible.
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Contrary to this, Whitney [49] demonstrated experimentally that non-geometric er-

rors rival geometric errors on a different robot. To add to the debate, more recently,

Young and Pickin [50] and Nubiola and Bonev [51] argued that improvements in

manufacturing techniques and measurement accuracy mean that the previous state-

ments, regarding the ranking of error sources, are no longer valid for modern industrial

robots. The accuracy results for three similar, modern robots from different manu-

facturers were compared (Croos, ABB and Kuka). The authors evaluated the robots

using the ISO 9283 accuracy test which is insufficient for determining accuracy [50]

and not widely used in related works.

In summary, the consensus amongst researchers is that the rank and relative propor-

tion of positional error associated with each source is unique to each robot, which

makes targeting sources for calibration difficult to achieve. Undoubtedly, manufac-

turing tolerances are the largest error source in a conventional industrial robot, and

updating the geometric parameters in the kinematic model is a convenient starting

point. Non-geometric errors may be relatively small in comparison, but also may be

sufficiently large to make the robot positional errors prohibitively high for some ma-

chining applications. The complexity and coupling of the sources produces a highly

non-linear positional error, hence the motivation for both parametric models and

non-parametric bias correction.

2.2 Robot calibration

In this section, a critical review of industrial robot calibration research literature is

presented. The section is organised in the order of calibration stages: modelling,

measurement, identification and compensation [39]. Industrial robot calibration is

a subject that has received considerable interest in the past four decades and many

metrology solutions and mathematical tools exist. Several are described in this section

to provide a view of the breadth of the subject.

The focus of calibration efforts can been classified by level in the order of expected

reduction, positional error and increase in calibration effort. Level 1 calibration

determines the relationship between joint encoder reading and actual joint angle.

Level 2 calibration is the identification and updating of geometric model parameters.

Level 3 calibration is the modelling of non-geometric errors [39].
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2.2.1 Modelling

Section 2.1 concluded that many error sources exist and that there is no consensus

on the rank in terms of contribution to the positional error. The majority of research

in this field has focussed on parametrically modelling the geometry of the robot as

a kinematic model, modelling deflection due to payload and gearbox transmission

errors. The latter are discussed in separate subsections.

2.2.1.1 Geometric model conventions

The Denavit-Hartenburg (DH) convention is the most popular model used to describe

the robot kinematics, and is the standard adopted by the industrial robotics industry.

Its success stems from its generality i.e. it can be used to describe many different

robot structures and joint types. Most geometric models consist of the sequential

multiplication of homogeneous transformation matrices (HTM) between coordinate

systems placed on each link. The DH convention simplifies each transformation by

describing it with only four parameters instead of the six required for full transforma-

tion. Calibration of the DH parameters however, suffers from issues of completeness

and proportionality [40] when consecutive joint axes are parallel, which is a common

structure in articulated robots. This leads to issues of singularity when calibrating.

• Completeness refers to the problem when some axis rotations and translations

are not parametrised. The ideal robot, in DH convention terms, has joint axes

that are parallel or perpendicular to each other. Small deviations in these

cannot be modelled with existing parameters.

• Proportionality is a parameter estimation problem when the consecutive axes

are parallel and the common normal used to establish the reference frame is

non-unique. Then the model positional errors are not a continuous function

of the DH parameters. In the case of a small misalignment between axes, a

common normal may exist but it will be far away from the structure.

Numerous geometric models have been proposed to solve the completeness and pro-

portionality problem. The most common solution is the modified DH (mDH) model

proposed by Hayati et al. [52] which replaces a redundant joint offset length param-

eter with a link twist. The S-model [53], a form of screw-axis measurement method,

describes each joint with 6 parameters, from which later, the DH parameters can be

extracted. The S-model method was later adapted to identify the DH parameters

directly [54]. The zero-reference model [40] describes the joint axes separately with
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six parameters, relative to a fixed reference point, rather than from link to link. The

product-of-exponentials (POE) model, based on zero-reference, uses matrix exponen-

tials that vary smoothly with joint axes variations for improved parameter estimation

[55][56][57]. Li et al. [58] proposed a Dual Quaternion (DQ) alternative to the com-

mon HTM representation of link transformation and demonstrated that it is a more

compact and efficient model for calibrating DH parameters. The reader is guided to

[39] and [38] for a comparison of some of these.

2.2.1.2 Elasticity modelling

Elasticity in the robot kinematic chain refers to a combination of elasticity in the joint

gearbox (parameterised by stiffness values) and elasticity in the links, which can be

considered as bending beams. Elasticity models determine the deflection at the TCP

when the end effector is subjected to a force and/or torque such as a static payload,

machining process forces or collision. Industrial robot elasticity modelling is a subject

that has received a great deal of attention from the field of robot machining research

[59]. Reportedly, a 500N force on the end effector may cause a 1mm deflection [25]

which far exceeds most machining tolerances. Given that a machining spindle is a

static payload, which may weigh considerably more than 50kg, elasticity deflection

modelling has become significant in this application. At the foundation, elasticity

modelling is the conventional virtual joint model (VJM) which represents all elasticity

effects (joint and link) as a torsional spring for each joint [60].

Calibration of the elasticity model is tasked with identifying the stiffness parameters

in the model represented in a stiffness matrix Kx. However, the stiffness of the

structure is dependent on the joint configuration of the robot [61]. This means that,

if a machining task requires the robot to move to substantially different configurations,

then the stiffness matrix must be determined for each new joint configuration in order

to predict the deflections and the TCP accurately, which is an arduous task.

An evolution of the stiffness model is the joint compliance model, which utilises joint

compliance parameters C[rad/Nmm] which are the inverse of the stiffness parameters

K[Nmm/rad] [25][51]. The joint compliance parameters are constant and independent

of joint configuration, which is more convenient to identify and model. Also, in a robot

with n joints, the stiffness matrix has n×n parameters to estimate, compared to the

n compliance parameters, hence the compliance model is preferable for parameter

estimation.
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It is argued that the joint compliance model is only valid in the unloaded case. To

conserve properties of conservation of energy, the conventional VJM can be updated

with an additional complimentary matrix which represents the stiffness due to a

change in geometry [62][63]. This updated model is referred to as the Conservative

Congruence Transformation (CCT) and has been demonstrated to be a more complete

model. However, its foundation comes from research into highly compliant finger-like

grips rather than relatively stiff industrial robots. The additional complexity of the

model and marginal gain in accuracy may not be applicable to large, articulated

industrial robots.

More recently, the inclusion of a linear spring to represent link elasticity, and passive

joints was included in the VJM. This research has been extended to include analysis

of parallel robots, structural buckling analysis (joint buckling rather than column

buckling) and gravity compensation [64][65]. The motivation again comes, in part,

from the development of lighter, low-inertia industrial robots use in fast pick and place

tasks such as electrical component assembly. This approach may not be applicable

to machining robots.

2.2.1.3 Gearbox transmission error modelling

Gearbox transmission errors, such as bearing misalignment, are observed as periodic

errors at the TCP. An investigation of the gearbox errors demonstrated an amplitude

of 0.20mm in joint 6 alone [51]. A TCP that is 100mm from the end flange would

result in a 0.35mm deviation, which is large compared to machining tolerances. The

author reported that this was only noticeable when isolated and was modelled as a

Fourier function, but was later neglected in the final evaluation due to its negligible

contribution to model accuracy. In the same study backlash was reported to produce

errors of 0.055mm in joints 1 to 3 and 0.084mm in joints 4 to 6. Ma et al. [66] used

a comprehensive, high-order polynomial to make predictions of joint gearbox trans-

mission errors. The authors tested a range of orders (1st – 10th) and data size (150

– 350 measurements) and determined that a 6th order Chebychev polynomial with

250 measurements was optimal, but that it would be robot dependent. Investigation

of gearbox transmission errors is therefore an arduous task, which requires a search

for both an appropriate function and parameters.
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2.2.2 Measurement

In this subsection, a wider view of research approaches and measurement strategies

is taken, whilst the identification subsection will focus on the parameter estimation

tools used. Calibration strategies can largely be separated into three approaches: cir-

cle point analysis (CPA), relative pose and absolute pose calibration. CPA involves

isolating each parameter and measuring it indirectly. Relative pose calibration in-

volves measuring the poses relative to each other or a common artefact. Absolute

pose calibration involves measuring the pose of the end effector relative to a world

co-ordinate system.

Circle point analysis, is a logical approach to identifying the geometry of a serial

arm robot, from which the DH parameters can be obtained naturally. CPA takes

measurements along an arc as the robot joints are rotated one at a time, with all

other joints fixed and then identifies joint axes from fitted planes, circles and normal

vectors. Conventionally identification of joint axis relationships follow the approaches

of either Sklar or Stone in [40][67]. These are referred to as screw-axis measurement.

This method identifies the geometry without the influence of non-geometric errors,

plus it avoids iterative searching, convergence issues and local minima associated

with parameter estimation techniques [68]. However, without fitting to positional

error data (which includes all error factors), the accuracy of the model is often poor

in comparison. Relatively few researchers [69][70] continue to use this approach.

Recently Hayat et al. [71] used a monocular vision camera to take measurements and

used computer-aided design (CAD) to determine DH parameters with this approach.

The author also uses singular value decomposition (SVD) to determine the quality

of the measurements and to select the data used to construct the geometry form in

CAD. The parameters were similar to those determined using a laser tracker but with

considerably worst results, exposing the sensitivity of this method.

Relative pose calibration avoids the transformation from world measurement system

to base frame, which is notoriously difficult to obtain, making it a popular choice in

industrial robot research literature [72][73][74][75][76]. However, relative error models

are limited by ignoring non-linear effects [74]. Motivated by a low-cost and low skill,

factory environment solution, Ha [77] used a laser height gauge and grid plate with

0.1mm spacing to minimise relative position error. The author measured the distance

between actual and model positions, relative to the grid, in two configurations. The

positional error was reduced to approximately 0.3mm in x, y, and z which is relatively

high. He et al. [78] used the robot’s IK model positional errors when aligning an end

18



effector spike to a fixed spike artefact in different postures. Chen et al. [79] moved

the end effector along a laser line and also used the robot IK model predictions to

determine positional errors and calibrated joint offsets only. Joubiar and Bonev [80]

used a high precision Renishaw touch probe as an end effector to measure the centres

of three spherical artefacts with known distances apart. The error in the prediction of

the distance between the spheres was reduced from a mean of 0.698mm to 0.086mm.

Xie et al. [81] used a structured light source end effector to measure the radius and

centre of a spherical artefact to calibrate kinematic parameters. As an alternative,

Driels [82] demonstrated the use of a ball-bar to create a closed loop, whereby the

end effector is set at a fixed distance from a location on the base but is allowed to

rotate via the ball bar. The advantage of a closed loop approach is that no external

pose measurements are required and measurements are fast, however the restricted

poses mean that not all parameters can be identified.

In most of the relative pose calibration (RPC) research literature, the calibrated model

accuracy is not validated in absolute positions throughout the workspace and cannot

be fully compared to absolute pose calibration methods. While RPC is attractive as a

low-cost and low skill solution, the results are subject to the tolerance of the artefact

as well as accuracy of the metrology equipment, which is often less than the absolute

pose calibration solutions. Also the calibration is highly localised in both workspace

and joint-space which means that the model may not generalise well across the full

workspace.

Wang [74] demonstrated that absolute pose calibration is more accurate than relative

pose or relative position calibration. The relative calibrations were not able to identify

all of the wrist parameters, which partially explains the results.

Absolute pose calibration (APC) is a well-established approach that measures the end

effector pose relative to the world coordinate system (often the robot base frame), in

a large workspace and typically requires more expensive equipment to retain accuracy

for longer distances than for relative pose calibration. Much of the APC research is

motivated by novel parameter estimation tools, which are discussed in the following

subsection. Other APC research themes include metrology, sampling strategies and

measurement optimisation.

When evaluating the pose errors in a large workspace or subspace, the results are

more comparable to machine tools and are more general. If calibrated within a large

workspace, or joint-space, it is easier to determine the capability of the robot for a
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range of different tasks. Typically, more expensive metrology equipment is required

to attain a high level of accuracy within a large workspace.

2.2.2.1 Metrology

Nubiola and Bonev [83] used a single telescopic ball-bar with novel planar fixtures

attached to the robot base and an end effector to calibrate a small articulated robot.

Slamani et al. [84] argue that the telescopic ball-bar is more accurate than a laser

tracker and less expensive but is limited to a small workspace. Validation of the

calibrated model, by measuring the end effector position with a laser tracker in a

robust 9905 configurations, showed an improvement in accuracy from 1.355mm to just

0.796mm. The authors evaluated the performance of three small robots, using a laser

interferometer for position errors along a linear path, a laser tracker for contouring

errors at speed, and a telescopic ballbar to measure dynamic errors such as overshoot.

Nubiola et al. [85] compared the performance of an optical CMM (C-track camera-

based tracking system) and laser tracker to measure and calibrate a small articulated

robot. The laser tracker measured the position of three reflective targets on a planar

artefact and the C-track measured multiple passive reflective stickers on the same

artefact. The results were inconclusive due to contradictory results reported between

tests in the lab and outside of the lab. Interestingly, the results demonstrated that

the C-track did not perform better with a novel special artefact built to have a large

number of reflective targets. Most of these required some form of novel device or

fixture, which is outside of the scope of this thesis.

In practice, the selection of metrology technology is motivated either by cost or by

accuracy and so the discussion will move on to measurement strategies.

2.2.2.2 Measurement sampling strategy

The identification of parameters, training configurations or poses are typically se-

lected by the needs of the algorithm or capability of the metrology technology. The

common approaches can be categorised as: (1) random sampling [45][51], [85][86] and

(2) heuristic [87][88], [89][90]. These approaches were combined by Aoyagi et al. [91]

by supplementing chosen observations with randomly generated and optimised ob-

servations. Interestingly, in the heuristic approach taken, the authors separated the

workspace into a 3D Cartesian grid system. This ensured full coverage of the Carte-

sian workspace, but it is accepted that in any pose, the configuration, and therefore
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error is non-unique. Therefore, the ability to calibrate accurately with this approach

is variable and most likely application driven.

Seminal work by Mooring et al. [40] addressed the issue of observation strategy, hav-

ing recognised that not all observations yield the same results, and drew conclusions

from a simulation study. The work was not extensive and did not cover a broad range

of strategies but more recent works have confirmed some of the conclusions [87][92].

Recommendations of good practice are:

1. Simultaneous joint inputs (i.e. all joints rotate to a new configuration, and a

wide joint angle range.

2. Random selection of observations outperformed heuristic joint displacements.

3. The calibration parameter estimations and model accuracy improves as the

training configuration quantity increases, but with diminishing returns, and is

less influential than the choice of observations.

2.2.2.3 Measurement optimisation

Alternative methods for generating observations appears to have been bypassed in

favour of optimisation of the training observations. It is accepted that the num-

ber of measurements is less important than the selection of the joint configurations

[93]. Minimising the condition number of the regressor matrix in a LLSE calibra-

tion approach, or maximising an observability index (OI) are options used by some

researchers [51][92][87][91]. The OI is the root of the product of singular values from

the SVD of the regressor matrix. The OI value represents the hyper-ellipsoid area

created by the axes and is a maximum when the relative scales are similar and the

hyper-ellipsoid approaches the optimal hyper-sphere where parameters are equally

observable. These and other indices have been compared [67][94][95] and can be cho-

sen depending on the desired goal (e.g. minimised parameter variance, minimised

position uncertainty) although the most commonly used, for optimisation of observa-

tions, is the OI. Though the use of an observation metric as an optimisation strategy

is questionable. The experimental data presented in literature [92][95] showed that a

wide range of residual position errors (in rms|∆pxyz| terms) may be achieved at any

observation metric value, but it is the upper limit of the error that decays exponen-

tially with a more desirable metric value. It is entirely possible that an input with a

highly desirable metric value will result in a worse accuracy than that achieved from

an input with a less desirable metric score. Furthermore, it was shown that the upper
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bound is reduced by higher sample sizes but with diminished returns. The observa-

tion metrics can then only be used as a check for general observability, seeking large

step changes indicating close to singularity and convergence issues. Contrary to other

researchers, in 2019 Chen et al. [96] argued that previous OI’s are typically based on

SVD of the identification Jacobian which maximised parameter observability but may

not in fact result in accurate estimations. The author proposed a self-adaptive par-

ticle swarm (SAPSO) method (similar to a Genetic Algorithm (GA) to find optimal

observations by combining previous OIs with an identification indice) while including

sensor visibility limitations.

Most researchers adopt a non-standard accuracy test, and as such it is difficult to

make direct comparisons between robots, error sources and calibration methods. ISO

9283:1998 [97] describes standard tests for the performance of an industrial robot.

The tests can be summarised as the combinations of path and pose, accuracy and

repeatability (along with additional multi-direction, overshoot and stabilisation met-

rics). While repeatability is often reported by manufacturers, accuracy is not. Rarely

in industry or research is the ISO accuracy test used to evaluate the performance of

an industrial robot. The ISO pose accuracy test requires the accuracy of only five

poses to be measured on a plane within a workspace cube. This was shown to be in-

sufficient as a metric compared to a point cloud, tested robustly with 1000 validation

poses within a large workspace [51].

2.2.3 Identification

The identification phase is the use of optimisation tools to estimate the model param-

eters that minimise the positional or pose errors in the training data. The specific

parameter estimation method used by researchers is largely dependent on the formu-

lation of the problem (i.e. how positional error relates to model parameters). The

RPC approach and polynomial models, present a non-linear least squares estimate

(NLLSE) problem, whilst the APC approach is presented as either a linear least-

squares estimate (LLSE) or NLLSE problem. A range of NLLSE tools have been

used, including Levenberg-Marquardt (LM) [88][96] and the maximum likelihood es-

timate (MLE)[47]. However, most of the NLLSE tools used to estimate the model

parameters are undisclosed by the authors. LLSE calibration is a common solution

[51][89][94] that must be solved iteratively, but can suffer from singularity issues with-

out careful selection of training data. Kalman filters have been used as an alternative

by some researchers [44][49][98][99].
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Omodei et al. [100] compared LLSE, NLLSE and extended Kalman filter (EKF)

for calibrating a SCARA robot and concluded that all methods converged to almost

identical solutions. EKF was the fastest in computational terms. In 2018 Jiang [98]

used an EKF as a first calibration prior to using a particle filter (PF) to complete

the estimation of parameters. The author argued that EKF does not work well with

significantly non-linear data that has non-Gaussian noise(which is common in real

systems). The results showed an improvement over EKF alone. In 2016 Messay et

al. [101] used a probing approach to parameter estimation first by using Simulated

Annealing to determine the most fruitful starting estimates, then by Trust region

(TR) optimisation. TR is a Levenberg-Marquardt (LM) based optimiser that takes

larger steps in poor estimate regions. A cable-base ‘Compu-gauge’ measurement

system (cables attached to a spool with a rotary encoder) was used which only had

an accuracy of ±0.150mm and so results were not comparable to related works.

In summary, motivation to improve the accuracy of industrial robots for offline pro-

gramming has been widely researched over recent decades. This has resulted in many

research themes and an increase in the availability of mature metrology solutions and

mathematical tools. Furthermore, a range of kinematic models have been proposed

for mathematical simplicity or singularity avoidance. The calibration approach is

motivated by error isolation, workspace generality, or the cost and convenience of

metrology equipment. Absolute pose measurement in a large work subspace (with a

laser tracker or camera) remains the most widely used, which provides a model that

is calibrated and evaluated in a large input-space to determine its suitability for a

range of tasks.

Numerous parameter estimation techniques have been used, primarily driven by the

problem formulation (i.e. linear or non-linear) and best practice has only been estab-

lished in terms of computation efficiency. Performance can be improved by optimising

training data observations, but these may not account for sensor limitations. In this

thesis, existing parameter estimation tools will be used, based on the problem formu-

lation presented in chapter 3. Without a standard test, it is impossible to say with

confidence that there is a limit to the positional accuracy that can be achieved by

calibration of the robot kinematic model. However, a hypothesis can be formed that

there is an industrial robot calibration accuracy floor of approximately 0.3mm, in

rms Euclidean error terms (point to point distance error). The results in this thesis

may contribute to proving or disproving the hypothesis. The error floor still remains

prohibitively large for many machining tasks. The calibrated robot model accuracy is
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typically at least an order of magnitude worse than the repeatability (positional errors

are high due to model inaccuracies compared to repeatability), and therefore there is

potential (beyond calibration) to achieve higher levels of accuracy i.e. smaller posi-

tional errors. Bias correction methods that do not rely on parametric models, offer a

possible solution.

2.3 A machine learning (ML) approach to bias cor-

rection in robots

In this section, a critical review of ML tools used to improve the positional accuracy

of industrial robots is presented. The section is separated into general interpolation

methods; artificial neural network (ANN), which is the most common tool used for

this application; and Gaussian Process Regression (GPR), which is novel to this

application.

With or without calibration, a robot will retain some residual positional error within

the workspace. Alici et al. [102] used Fourier and ordinary polynomials to model the

residual positional error. They argue that it is virtually impossible to consider all

error factors and that developing higher fidelity parametric models is fruitless. ML-

based bias correction is an intuitive approach, that allows the data to speak more

clearly. The problem can be considered to be one of bias correction (where the aim

is to learn the positional error as bias, and then correct the position), typically by

providing the controller with false pose targets.

2.3.0.1 Interpolation

In a typical interpolation approach in this application, the Cartesian workspace is

separated into subspaces (e.g. 2D grid or 3D cube) and the vertices are used to provide

reference bias data for any position within the cube. This is generally achieved offline

via a look-up table. The interpolation algorithm creates a bias surface within the

space to determine the bias value at any location within the space, so compensation

can be applied. Interpolation such as this assumes that the positional error is an

attribute of the position, which is usually not the case. Positional error is a function

of joint variables and a single position can be obtained in multiple joint configurations

(i.e. the bias is a continuous function of joint angles and not position). Consequently,

similar positions may have dissimilar joint configurations and therefore dissimilar

errors, which is challenging to model. This is typified by the ‘elbow up-elbow down’
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conundrum (the same end effector pose can be achieved by a joint configuration where

the elbow is pointing up or down, which is an inverse kinematic model decision to

make).

Bai and Menq [103] compared bilinear, cubic spline and dynamic fuzzy interpola-

tion methods on a 2D grid and demonstrated that the dynamic fuzzy interpola-

tion outperformed the others, however, none were accurate enough for machining

tasks. Bai [104] also demonstrated that the same dynamic fuzzy interpolation can

marginally outperform calibrated models in the 3D case but cube sizes needed to be

10mm×10mm×10mm or smaller which requires extensive training and may be too

time-consuming for workshop applications. Zeng et al. [105] constrained the ‘elbow’

decision in the robot programme and minimised the wrist rotations in order to assume

that positional error is an attribute of position and that errors in nearby positions

have spatial similarity (i.e. joint angles change very little for small changes in pose).

The authors used a semivariogram curve to quantify similarity of nearby positions

and Kriging to interpolate and predict errors. Wei et al. [106] exploited the same

spatial similarity and predicted the positional error with a simple inverse distance

weighting algorithm on a rail mounted drilling robot and improved the accuracy by

an order of magnitude. Interpolation methods are not accurate enough for many

machining tasks and require large data sets or online measurement and updating.

2.3.0.2 Neural Networks

The most common ML approach to bias correction of robot positional errors has

been the use of an ANN [44][90][91][107][108][109]. Aoyagi et al. [91] used a NLLSE

calibration and then ANN bias correction to reduce the positional error of a 7-DOF

(i.e. 7 joints) industrial robot. The primary objective was to demonstrate the use of a

Genetic Algorithm (GA) to minimise the number of calibration poses. However (after

calibration of the geometric parameters) the author compared the additional calibra-

tion of gearbox errors with a periodic function and bias correction using an ANN.

The additional non-geometric model showed only marginal improvement, suggesting

a complex and time consuming task to model errors parametrically (now requiring

68 parameters to be estimated) whilst the ANN approximately halved the positional

error. The results indicate that the use of ML tools is a more general tool, and a

more efficient and more effective solution. The author used an unusual approach

of training using 100 targets from a grid and then validating with 100 targets on a

circular path. The joint angle inputs were determined from the grid targets using an
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imperfect, inverse kinematic model, which raises concerns about the accuracy of the

input data to the ANN.

Nguyen et al. [44] used a novel combination of geometric model calibration using

an EKF, followed by an artificial neural network (ANN) bias correction to reduce

the positional error of a 6-DOF articulated industrial robot. 300 poses over the

full joint range were measured with a laser tracker and separated into 200 training

and 100 validation data sets. The results showed a reduction in mean positional error

(standard deviation in brackets ) from 4.1mm (6.3) for the nominal model, to 0.81mm

(3.18) by EKF calibration, and to 0.33mm (0.84) with bias correction, which is the

lowest positional error reported in research literature to date. 200 training data points

in a large space is sparse and the use of more data or just NN alone was not explored,

but the potential of bias reduction compared to calibration was demonstrated.

Tao and Yang [86] also demonstrated the improvement in accuracy of an industrial

robot by calibrating a POE geometric model using LLSE and then using ANN bias

correction to reduce the residual positional error further. The authors used 300 pose

measurements (separated into 150 measurements for training and 150 for validation

subsets) with a laser tracker. The results showed a reduction in mean positional error

from approximately 1mm (with just base and tool calibration) to 0.50mm with geo-

metric model calibration and to 0.36mm with bias correction. The mean positional

error alone is not sufficient information to evaluate the robot for machining applica-

tions but does confirm that bias correction, using an ANN, will substantially reduce

the positional error of a robot compared to calibration.

Yuan et al. [108] modelled positional error as a function of position, using an extreme

learning machine (ELM) to correct the positional errors in an aviation drilling task.

The author stated that ELM offers improved generalisation and simplified training

compared to an ANN and demonstrated improved accuracy and speed over the ap-

proach used by Nguyen. The author was the first to explore the limitations of ML,

demonstrating experimentally that the mean error was stable with 300 training data

values and above, whilst the maximum error stabilised after 1000 training data values.

However, the input range was not disclosed and some joints had very little movement

for planar drilling applications.

The use of an ANN for bias correction was the first approach that demonstrated

a significant reduction in position error over the calibrated robot. ANNs, however,
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typically require large training data sets so this has only been partially explored in

research literature.

2.3.0.3 Gaussian Process Regression

GPR is a probabilistic ML tool that is highly flexible and works with much smaller

training data sets compared to ANNs. Furthermore, the output includes an estimate

of prediction uncertainty. GPR has been more commonly used to model industrial

robot dynamics rather than kinematics, with very few examples of the latter. Dy-

namic system modelling using GPR is discussed briefly in this subsection. The main

focus is the use of GPR to model industrial and medical robot kinematics and related

works.

The inverse dynamic model of an industrial robot has been used extensively as a

testbed for sparse GPR approximation methods that are designed to address the is-

sue of modelling non-linear systems with high dimensional data and/or large data

sets. Typically the joint torques are modelled as a function on joint angles, velocities

and accelerations (q, q̇, q̈). So a 6-DOF robot dynamic model has a minimum of 18

input dimensions. Kocijan et al. [110] present an early discussion on GPR used for

dynamical system modelling. The author promotes the use of GPR for its flexibility,

automatic relevance detection (weighting of inputs provides an indication of sensitiv-

ity) plus the use of the variance output to identify low accuracy regions. A summary

of industrial robot dynamic response modelling (using GPR) is presented by Duy and

Peters [111] who also demonstrated the use of a novel local-GPR method to reduce

computational load enough to enable the real-time dynamical system modelling and

correction of a SARCOS robot. Chalupka et al. [112] presents a comparison of GPR

approximation methods and proposes a set of comparison metrics. The testbed used

was inverse dynamic data from a SARCOS robot, which is also used by Rasmussen

and Williams [113].

Wang [114], Seeger et al. [115], Snelson and Ghahramani [116] proposed GPR approx-

imation methods and evaluated them on two known artificial datasets; the pumadyn-

32nm inverse dynamic data set, and the kin-40K 8-DOF kinematic data set. The

data provides 40,000 positional error measurements associated with inputs of joint

angles. In all studies, the results demonstrate some success in modelling the data

with GPR.

Bias correction of robot positional error, using GPR bias correction, has been re-

cently applied by a few researchers. Mahler et al. [117] used GPR to improve the
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accuracy of a Raven II robotics surgical assistant (RSA). The Raven II is a 7-DOF,

cable driven robot with a small workspace. The non-linear effects of cable stretch and

spring counter-weights were modelled, which are not present in industrial robots. A

novel approach of data localisation using SVD was used to reduce the bias level (and

minimise the burden on the GPR), which modelled the pose error from an input of

joint angles and velocity. Starting from a very high nominal model error of 25.5mm,

the results demonstrated a reduction from 10.1mm using SVD alone, to 4.4mm using

SVD calibration and then GPR bias correction and to 2.4mm using velocity in ad-

dition to joint angles as an input. No comparison was made against applying GPR

alone to determine the importance of the initial localisation. In addition, the results

show that the path accuracy improves by a factor of 10 by having a more accurate

start and finish position.

Likewise, Pastor et al. [118] used data localisation and then GPR bias correction

to improve the positional accuracy of a vision based DARPA ARM-S robot, which

has two cable driven 4-DOF arms for gripping and assembly tasks. Like the previous

Raven II case, the modelling was highly task-based and modelled from an input of

joint angles only. The results demonstrated a reduction in pose error by a factor

of two by localisation alone and then a further factor of three by using GPR. No

comparison was made to bias correction alone, and the effect of a simple localisation

to reduce the burden on the GPR has not been fully explored.

Fan Zhang et al. [119] also used GPR to model a RSA for the purpose of optimising

surgical metrics as part of pre-op planning. The simulation testbed was a robot

with three arms, each with 6-DOF, attached to a central prismatic joint. GPR was

used to model the dexterity of the robot, quantified by the Global Isotropy Index

(GII) and surgical capability, quantified by a Cooperation Capability Index (CCI)

in order to select optimal configurations based on a balance of robotics and surgical

best practice. GII and CCI were modelled from an input of Cartesian positional data,

which is usually unwise practice.

The work of Tao et al. was extended during the writing of this thesis by Jing et

al. [45]. The authors used GPR after calibration of the POE model of an industrial

robot. Using a quadratic kernel for the GPR covariance function, the results showed

a reduction in positional error from 0.8mm, with just calibration to 0.4mm with

additional GPR bias correction. However, the workspace size was unclear and the

results were measured from the cross-validation of 300 training data values and not

separate validation set. Nonetheless, this further demonstrated the superiority of bias
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correction and GPR as an effective alternative to ANN. The experiments were also

repeated with five different payloads which confirmed the requirement of payload as

a training input.

In summary, ML-based bias correction has been shown to reduce positional error

by a (numerically) small, but significant amount (in machining practice) and are

typically applied as a post-calibration process. ANNs have been the most common ML

tool used in research literature for this application, but the limitations of achievable

accuracy have not been fully explored. GPR is relatively novel to this application.

However, in a few related works, it has been shown to demonstrate the potential to

reduce positional error.

It is difficult to compare the results and conclusions of the related research presented in

literature due to the many differences in approach. Some of these include: input choice

(e.g. joint angle, position and velocity), robot kinematic structure, data quantity,

calibration model, and evaluation metric (e.g. rms, mean, standard deviation of

positional errors).

We can say in general that a typical approach would be:

⇒ Geometric model calibration using absolute pose data, using a laser tracker.

⇒ Bias correction of positional errors, modelled using joint angles as input vari-

ables.

⇒ Trained with 100 to 300 data values and validated with a similar quantity of

test values.

2.4 Chapter summary

In this chapter, a review of literature in the field of industrial robotics was conducted

to provide the reader with an overview of the error sources in industrial robots, and

complexity of the problem. A critical review of robot calibration methods provides a

broad view of existing tools and approaches, and a critical review of current progress

made using ML tools as bias correction for positional errors. The following conclusions

are drawn from the literature in this chapter:

1. Industrial robot positional errors are highly non-linear and challenging to model.

Error sources are categorised as geometric and non-geometric and the ranking
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of their contribution to positional error is unique to each robot, which makes it

challenging to focus research efforts.

2. Calibration of geometric parameter errors is the most common calibration level

in research literature and industry, with joint compliance modelling included as

an additional calibration level.

3. Robot calibration is a mature subject with a range of established tools, both

mathematical and experimental. There is no consensus on best practice. The

choice of model, measurement and identification is largely dependent on the

problem formation (e.g. absolute pose and linear model), and should follow

good practice guidance.

4. The positional accuracy of robots (using existing calibration methods) have

reached an approximate floor of 0.3mm (mainly due to unmodelled, non-geometric

errors) and this prohibits their use for many machining tasks (e.g. the ±0.2mm

tolerance often required for aerospace drilling).

5. Bias correction, using ML tools, can reduce robot positional errors to below

the level achieved by calibration alone. However, the use of ML tools for this

application has not been fully explored and there remains potential to improve

robot positional accuracy further.

2.4.1 Gap analysis

We can consider that further research into industrial robot calibration may provide

only marginal gains in positional accuracy, and that bias correction has greater po-

tential but has not been fully explored. The following gaps in the use of ML tools for

bias correction in this application have been identified as:

• The limit of robot positional accuracy by using bias correction, with regards to

training data quantities has not been explored and a question remains concern-

ing the achievable accuracy within pragmatic measurement quantities.

• The contribution made by calibrating the kinematic model prior to bias cor-

rection has not been explored in research literature. A question remains as to

whether bias reduction by calibration is necessary or whether a high level of

calibration should be conducted to maximise bias correction accuracy.

• GPR is a relatively novel ML tool for this application but has demonstrated

potential in a few studies in research literature. Demonstrating its use on more
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case studies in this application would contribute to a relatively small body of

knowledge.

Existing tools and approaches have been identified from research literature, along with

gaps that will contribute to understanding the limitations of industrial robot accuracy

by using bias correction. In Chapter 3, the research methodology is presented which

provides details of how the gaps will be explored.
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Chapter 3

Methodology

The aim of this chapter is to present a description of the case studies used in the ex-

perimental chapters, the experimental design used for gathering data, and the theory

relating to the calibration and bias correction tools used.

In Chapter 2 it was stated that there has been some recent success in related robot

accuracy works by first calibrating the robot kinematic model, and then using ML-

based bias correction to learn and compensate for the remaining positional errors.

The proposed methodology used in this thesis uses the same approach to solving the

problem, with GPR used as a novel bias correction tool.

A review of literature in Chapter 2 showed that there are gaps in this field of research,

specifically (i) the novelty of GPR as a bias correction solution in this application,

(ii) the limitations of bias correction in this application relating to training data

quantity and (iii) the limitations of bias correction in this application by calibrating

the kinematic model to reduce the burden to the proceeding bias correction. In this

chapter, a range of case studies are described to explore the second of the gaps, and

a range of calibration levels are presented to explore the third.

3.1 Approach

An absolute pose (measurement relative to a world reference frame) approach is taken

in the experiments in this thesis, in part due to access to industry state-of-the-art

external measurement equipment. Namely a Leica laser tracker provided by the

sponsor. This is the preferred option in research where cost and availability is not a

consideration.
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The limitations of the proposed methodology relating to training data quantity and

bias reduction are tested simultaneously in different short case studies and with bias

data from competing calibration models. The details of both are presented in the

following subsections.

3.1.1 Case studies

In both the simulation study in Chapter 5 and experimental study in Chapter 6,

the proposed methodology will be evaluated on case studies in sequence of problem

difficulty. It is a expected that the bias form (positional error data in an n dimensional

space) produced by rotating one joint will be relatively simple to model and will have

only one input dimension. In comparison, the coupling of errors in the serial chain

when all six joints are rotated may result in a more challenging bias form to model

and higher input dimensions may result in many solutions. The case studies used to

build up the complexity of the problems are described in Table 3.1.

Also, in order to compare results to both general robot calibration literature and re-

main machining focussed, the performance will also be evaluated in a small workspace,

representing a milling station, and a more general, large workspace, for comparison to

related works. These case studies are referred to as 6 dim(s) and 6 dim(l) respectively.

All tests will be conducted with the robot moving in free-space and stopping at each

pose.

Table 3.1: Experimental case studies.

Case study Nomenclature Input joint Workspace description
variables

1 1 dim 3 Vertical plane
2 3 dim 1,2,3 Semi-cylindrical
3 6 dim (s) 1,2,3,4,5,6 semi-spherical
4 6 dim (l) 1,2,3,4,5,6 semi-spherical

3.1.2 Competing models

To test the performance of bias correction on a range of bias levels, four kinematic

models will be used to generate TCP predictions. Bias level is a relative term which

refers to the both the value of the bias data and the complexity. For example, the

positional error data, used as bias, generated by the nominal (uncalibrated) kinematic
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model will be higher than generated by a calibrated model, and the bias form will be

more complex as none of the error sources will have been modelled.

The competing models represent different levels of calibration. Calibration level refers

to the number of parameters that are estimated in the model, which are presented

the subsets: base frame parameters, geometric parameter errors, joint compliance

parameters. The four competing models, M0 to M3 , are presented as calibration

levels in Table 5.2 and the tick marks indicate which parameter subsets are calibrated

in each model.

Table 3.2: Competing models.

Model Base Geometric Joint
parameter errors compliance

M0

M1 X
M2 X X
M3 X X X

The parameters in physical terms are described section 3.3.2 after the robot kinemat-

ics and joint compliance models are explained.

3.2 Experimental setup

3.2.1 ABB IRB6640 Industrial robot cell

The testbed used for all experiments, including in simulation studies, was an ABB IRB

6640-205/2.75 (205kg maximum payload, 2.75m reach) shown in Figure 3.1a. The

ABB IRB 6640 is a conventional articulated robot with six independent rotational

joints, providing six degrees-of-freedom (6-DOF), which is typical of the robots tested

in related works. Robots of this type have high dexterity i.e. able to approach the

pose from multiple angles and manipulate the TCP around three axes, a long reach

and can carry large payloads, making them suitable for machining applications.

The test robot has a machining spindle mounted to a fixture as an end effector (Figure

3.1b). While the spindle was not used for machining, and is unnecessary for positional

measurements, it remained as an end effector to provide a realistic static payload for

machining tasks. The payload and centre of gravity specifications are be presented

in the experimental chapters.
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(a) (b)

Figure 3.1: (a) ABB IRB6640 robot, (b) Machining spindle and fixture static payload

A single static payload was used for the bias correction experiments which may be

considered as a limitation in this study. However, the machining spindle is a system

that requires cabling throughout the robot structure and integration with the robot

controller, and therefore would remain as a permanent fixture in a production cell.

It is assumed that tool changes provide negligible variations in payload.

3.2.2 Robot schematic

Most industrial robot structures consist of a chain of joints and links. Diagrams

of the robot, with individual joints highlighted, are shown in Figure 3.2. The joint

identification starts at the base, then joint 1 and works through the serial chain to

the end effector flange (joint 6). Joint 1 has vertical axis and rotates the from side

to side. Joints 2, 3 and 5 have axes that are perpendicular to the links and sweep

the TCP through a plane whilst joints 4 and 6 are parallel to the links and can be

considered as producing a twisting motion.
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(a) Joint 1 (b) Joint 2 (c) Joint 3

(d) Joint 4 (e) Joint 5 (f) Joint 6

Figure 3.2: Structural elements of an ABB IRB 6640 articulated robot.

3.2.3 Measurement

3.2.3.1 Pose definition

The pose of the TCP is the vector p = [px, py, pz, φα, φβ, φγ], relative to a defined

coordinate system e.g. the base frame. Pose is the combination of the position

vector, [px, py, pz] and orientation vector [φα, φβ, φγ] which are a representation of the

rotation matrix transformation in Euler angles in the order of ZYX or roll-pitch-yaw.

3.2.3.2 Leica laser tracker

A Leica AT-960 laser tracker, provided by the sponsoring company, was used to

measure the absolute position of reflective targets secured either on the robot or

around the cell. The AT-960 is an industry state-of-the-art system designed to operate

in an industrial environment. A panel of the cell was removed for visibility and the

laser tracker located just outside of the cell for safety. A laser tracker uses a line-

of-sight distance measurement between the laser source (laser tracker) and target

(reflective mirror), along with azimuth and elevation encoder readings to provide the

laser direction, which are then used to determine the relative position of the target in

polar and then Cartesian coordinates. The Leica laser tracker uses a combination of
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laser interferometer measurement (IFM) and absolute distance measurement (ADM)

to measure distance. In principle, a laser interferometer splits the laser into two at

source, one of which is reflected back internally, and the second is reflected back from

the target. The two lasers are superimposed and the wave fringes created are counted

as the target moves further from the source, and an accurate relative distance is

measured. The ADM uses the time to travel from the source to the target and

back to determine the distance. In addition to the position measurement, the Leica

laser tracker uses a camera to identify LEDs mounted onto the T-Mac (described in

3.2.3.3), which also has a central reflector, to determine the relative orientation of

the target. The data available from the Leica laser tracker is the target pose (relative

position and orientation) if the T-mac is used.

The laser tracker was directly connected to a laptop with Spatial Analyzer (SA)

software for recording and processing, also provided with training by the sponsor. SA

is a portable metrology software solution that acts as an interface for data capture

from metrology equipment, such as a laser tracker, and is a graphical interface to

generate geometry from coordinate data, which can be compared to CAD model

geometry. In the studies presented in this thesis, primarily, SA is used collate the

measured data and export it in a format for comparison to model predictions.
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Figure 3.3: ABB IRB 6640 robot machining cell with panel removed for line of sight
between Leica AT-960 Laser tracker and reflectors.

3.2.3.3 Reflective targets

The laser tracker measures the distance to the centre of a reflective target which the

laser tracker is able to lock onto and track to new locations. A 1.5” SMR (spherically

mounted retro-reflector - Figure 3.4a), which provides the laser tracker with a vertex

of three mirrors, sits in a magnetic nest mounted at fixed locations around the cell. A

T-Mac target (Figure 3.4b) provides a 0.5” central reflector for position measurement

and LED’s to provide orientation measurement. The T-Mac was mounted to the spin-

dle fixture and was defined as the TCP. It was possible to locate an actual milling

tool TCP relative to the T-Mac, which would be necessary for machining trials, but
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was deemed unnecessary for free-space movement. The T-Mac is an expensive op-

tion, available only with Leica laser trackers and has not been used by in most other

related works. Calibration can be completed with positional data only from a single

SMR, referred to as partial pose measurement, however the T-Mac provides an addi-

tional 3 equations for LLSE calibration by providing orientation measurements. For

machining tasks, it can be argued that orientation of the tool is equally as important

as position when meeting tolerance demands and the T-Mac allows orientation to be

quantified.

(a)

(b)

Figure 3.4: Laser tracker reflective targets: (a) example of a 1.5” SMR and (b) T-Mac.

The disadvantage of using a laser tracker over other forms of metrology is that line-

of-sight must be maintained which limits the number of poses that can be measured.

3.2.3.4 Measurement uncertainty

Variability in laser tracker measurements are the result of laser tracker resolution,

reflector tolerances and environmental factors e.g. air movement and direct sunlight.

The manufacturer quotes a maximum permissible error (MPE) of 39µm (σn = 13µm)

at distances within the cell. MPE refers to the maximum expected uncertainty in an

industrial environment which is approximated to 3σ.

Volumetric accuracy is commonly used to evaluate and compare the accuracy of

metrology equipment in a large volume. The procedure recommended by the sponsor
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to determine volumetric accuracy of the laser tracker was to complete a USM test

which involves measuring the location of SMRs at locations throughout a volume and

from multiple locations within and outside of the volume. The volumetric accuracy

from the USM test in a similar volume next to the cell was calculated as σn = 10µm.

There was a temptation to provide the calculated σn as a known GPR hyperparam-

eter, instead σn was included as a parameter to be learned. This is consistent with

standard practice in training GPR using noisy data.

3.2.4 World-to-base coordinates and localisation

Robot kinematic models determine the pose of the end effector relative to a base

frame. The base frame is an arbitrary frame that cannot be located directly which is

a common challenge in research. Some robots are supplied with a base plate that has

specific features that can be used to locate the origin but this is an additional part

and was not available on this robot. Common practice in related work, is to use the

circle point analysis (CPA) approach which constructs the base frame from the axes

of joints 1 and 2 and locate them on a common base plane (Figure 3.5).

Figure 3.5: Base coordinate system constructed in SA from constructed geometry
(highlighted in white).
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As all measurements are made relative to the laser tracker world reference coordinates,

any movement of the laser tracker location will result in corrupted data. To ensure

that the experiment could continue after movement of the laser tracker, a simple

transformation from the new world reference frame to the initial base frame was

determined, and applied as a data localisation procedure. The transformation was

determined by comparing the position data of five SMR sensors at fixed location

in the cell, commonly referred to as an ERS system, which were measured when

the base frame was created, and then at the new laser tracker location Along with

localisation, the ERSs were used to detect sensor drift in between tests. By comparing

the measurements after a test to the first set, SA reported an rms positional error

value. For rms values above 20µm, the laser tracker was localised for the next test.

For values above 100µm, the laser tracker was also localised and the test repeated.

Figure 3.6: ERS sensor locations.

3.2.4.1 Tool identification

The position and orientation of the TCP i.e. T-Mac, relative to the end effector frame

was determined using the CPA method. Some researchers include the tool parameters

as calibration parameters but it was decided in this thesis to reduce the number of

calibration parameters.
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Figure 3.7: T-Mac reported relative to the robot end effector flange, identified using
constructed geometry which are highlighted in white.

3.2.4.2 Automatic measurement and vibration suppression

For efficiency and repeatability, the robot was programmed to move to each target

using the ‘MoveAbsJ’ command (robot moves to a target input described by joint

angles instead of TCP pose), to avoid robot kinematic singularity problems which may

occur with linear motion commands (linear interpolation between targets described

by TCP poses may result in a mathematical singularity due to multiple solutions,

when using the inverse kinematic model to determine required joint angles). The

robot was instructed to wait while the laser tracker measured the end effector pose.

It was reported in literature that some robots suffer from significant errors due to

gearbox backlash. The rotation of each joint is difficult to predict and gears may

change direction suddenly during a seemingly simple, continuous movement. To avoid

backlash errors, each joint vector qi was approached from a nearby vector qi+50. This

is commonly referred to as a ‘bump’.
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It was noticed during the trial that the robot stopped abruptly at each target and vis-

ible transient vibrations occurred. As a counter-measure, the robot was programmed

to approach quickly to the nearby ‘bump’ target and then proceed slowly to qi. A

’WaitTime’ operation of 5 seconds at each target was introduced and SA was pro-

grammed to measure the pose when the sensor was stable. A stability threshold of

25µm was set as a notification limit which was not reached.

3.3 Calibration

The process of calibration aims to minimise the difference ∆p between the model

pose pm and measured, ’desired’ pose pd of the robot. Figure 3.8 shows the process

of determining the positional error from the forward kinematic model M(.) and true

robot, represented by the system kinematic model ζ(q) and measurement variation ε.

In this section, the theory relating to the modelling, measurement and identification

of the model parameters θ is presented.

Figure 3.8: Modelling and measurement flowchart.

3.3.1 Modelling

3.3.1.1 Denavit-Hartenberg (DH) kinematic model

The kinematic model determines the pose p from an input of joint angles q =

[q1, . . . , qn] for a robot with n joints. Numerous robot kinematic model solutions

have been presented in research, largely focussed on removing the singularity prob-

lem during parameter estimation associated with consecutive parallel axes. However,

to remain industry focussed, the mDH version of the industry adopted DH model will

be used in this thesis. The DH model is constructed by attaching a coordinate frame

to each joint/link pair (Figure 3.9).
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Figure 3.9: DH frame location on a 6-DOF articulated robot.

The transformation between consecutive frames i− 1 to i is described by a homoge-

neous transformation matrix (HTM), H i
i−1. The pose p can then be extracted from

the 3x3 rotation submatrix R and 3x1 translation vector T

H i
i−1 =


[

R
][
T
]

0 0 0 1

 (3.1)

The transformation from robot base, or world reference, to end effector (tool) is

determined by multiplying successive HTM’s. For an ABB IRB 6640 robot the trans-

formation is

H t
b = H0

bH
1
0H

2
1H

3
2H

4
3H

5
4H

6
5H

t
6 (3.2)

The DH convention is a convenient simplification of the transformation between

frames, which is fully described by six parameters, by reducing this to four (rota-

tion and translation in x and z axes only). With joints only able to rotate around a

single axis, it is possible to fully describe any link to link transformation in this way,

and has the advantage of reducing the number of model parameters. The procedure

for describing the transformation parameters at joint i, which intersects links i − 1

and i is as follows:
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• first a common normal is established between any consecutive axes i−1, i. The

common normal is often the link arm.

• translate along the joint axis zi−1 by the joint offset parameter di to the inter-

section with the common normal

• rotate the current reference frame by qi around the current axis zi−1 to align

the x axis with the common normal

• translate along the common normal (xi) by ai

• rotate around xi by αi to align zi−1 to the new joint axis zi

For a visual reference, the two conventions are compared in Figure 3.10. The DH

convention can be seen as translations in d and a, whilst the mDH absorbs the trans-

formation di into di+ 1, rotates through the misalignment αi, creating a plane for

link ai to sweep through.

Figure 3.10: Consecutive parallel joint axes diagram with DH (left) and mDH (right)
transformations.

More succinctly, the DH convention follows the following successive translations and

rotations: In both models, for links 1 and 3, the standard DH sequence of transfor-

mations is used:

H i
i−1 = Tzi−1

(di)Rzi−1
(qi)Txi(ai)Rxi(αi) (3.3)

These parameters, which represent the geometry of the robot, are defined in a DH

table used as a reference for the model. Stock robots are provided with nominal DH

table parameters and it is the inaccuracies in these values that gives rise to geometric

errors.
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Table 3.3: Example mDH table.

Link i qi di ai αi βi

1 q1 d1 a1 α1 β1
n qn dn an αn βn

While this reduced form is quicker to process and easier to calibrate, it also may

result in a second geometric error. Where the axes are misaligned, a y axis rotation

parameter does not exist to describe it and pose accuracies are incurred.

When consecutive joint axes are parallel, a problem occurs during calibration. The

joint offset parameters di−1 and di in this case, are both in the same direction and

the common normal is non-unique. If the axes are misaligned by a small amount

Ryi(βi) then any parameter estimation solution becomes disproportionately large,

with axes crossing at far away distances. Also, there is no parameter to describe the

misalignment. Neither of these scenarios are desirable when calibrating.

The mDH is a commonly used alternative when two consecutive joint axis are parallel.

In the mDH convention, di becomes redundant and is replaced with an axis misalign-

ment term βi which then makes the model complete and the parameters proportional.

The sequence of transformation becomes:

H i
i−1 = Rzi−1

(qi)Txi(ai)Rxi(αi)Ryi(βi) (3.4)

The base transformation Hb
0, is fully defined in 3D space by a full 6 parameters (3

translation, 3 rotation).

H0
b = Txb(ab)Tyb(bb)Tzb(db)Rzb(γb)Ryb(βb)Rxb(αb) (3.5)

3.3.1.2 The inverse kinematic model problem

The robot can be programmed to achieve its target either from an input of joint angles,

referred to as the forward kinematic (FK) model p = f(q), or from an input of desired

target pose from which the inverse kinematic (IK) model q = g(p), determines the

appropriate joint angles to achieve it.

The FK model has the advantage of returning a unique pose for a given joint vector

input. This case is the preferred choice to determine the accuracy of the kinematic
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model, by directly comparing the measured and predicted pose. The solution to the

IK problem encounters a number of challenges. First, for complex geometry or higher

degree of freedom robots, a closed-form solution may not exist. Secondly, multiple

or infinite solutions may exist. The multiple solution case is often described by the

’elbow up’ or ’elbow down’ conundrum.

Most machining applications will require an input of the target pose in Cartesian

space however, utilising the IK model. For example: defined hole centres, edge start

and end are specified by location. To ensure that GPR, or any regression model,

is able to interpolate accurately, the forward kinematic model must be used and the

problem of inversion becomes a post-processing problem. In this thesis, the FK model

will be used for model training and for validation generally in the workspace, whilst

for the drilling validation case, the IK model must be used.

3.3.1.3 Joint stiffness model

In Chapter 2 it was stated that a large proportion of robot machining research has

been devoted to elasticity modelling for both static and dynamic cases. For the static

case, the elasticity model can be used to augment the forward kinematic model by

adding a position correction value. It is assumed that the distortion of the links in a

large articulated robot are small compared to the gearbox elasticity effects and that

all elasticity effects can be captured by modelling each gearbox as a torsional spring.

The simpler stiffness model based on early joint models is used in this thesis instead

of the more complete conservative congruence transformation (CCT) model. This is

in part to simplify the model, given that bias correction is the focus of the research

and to reduce the number of parameters to estimate during calibration. Also, the

CCT model was developed for highly compliant gripping fingers whose configuration

changed considerably from gripping forces. While the TCP may move by a few

millimeters, the posture of the robot is not expected to change significantly and the

CCT model is likely to provide negligible gains in this context.

The end effector deflection ∆pc, as a result of payload and the elasticity in the gearbox

of each joint, is determined by

∆pc = JqCJ
T
q F (3.6)

where C = diag[C1, ..., C6] is a 6x6 joint compliance matrix, Jq is the system Jacobian

matrix and the payload is defined by the wrench vector i.e. force and moment vector
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F = [Fx, Fy, Fz,Mx,My,Mz]
T . The use of compliance terms instead of stiffness terms

circumvents the problem associated with the stiffness matrix inversion.

The elements of Jq are the partial derivatives of pose change w.r.t. joint angle changes
∂p
∂q

:

Jq =


∂px
∂q1

. . . ∂px
∂qn

...
. . .

...
∂pz
∂q1

. . . ∂pz
∂qn

 (3.7)

3.3.2 Parameter estimation

In this section, the proposed parameter estimation techniques are presented in context

to familiarise the reader with the problem formulation.

3.3.2.1 Competing model parameters

With the model parameters now described, the subsets of calibration parameters

with reference to the competing models can now be presented. Table 3.4 shows the

parameter subsets of base parameters(θb), DH table geometric parameters (θg) and

joint compliance parameters (θc).

Table 3.4: Kinematic model parameter subsets for an example ABB 6640 robot using
an DH model form. In the mDH convention, d2 is substituted for β2

.

Parameter No. of Parameters
Subset parameters

θb 6 γb, βb, αb, xb, yb, zb

θg 24

q1, . . . , q6 (Joint rotation)
d1, d3. . . d6 (Link translation)
a1, . . . , a6 (Axis translation)
α1, . . . , α6 (Axis twist)
β2 (Axis misalignment)

θc 6 C1, . . . , C6

3.3.2.2 Base frame calibration

To measure the pose of the TCP, an arbitrary base must first be constructed and then

estimated to minimise the pose error. It is not possible to isolate the base parameter

errors from the geometric errors and so any estimation of the base is simply a best-fit

of data.
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Singular value decomposition (SVD) can be used as an efficient method to determine

the best fit transformation between two point clouds of data in a least-squares sense.

This method is referred to as localisation and has been applied to robot base calibra-

tion by [120]. Data localisation is the centring and rescaling of two or more sets of

vector data to minimise the difference between data sets. The estimated transforma-

tion between predicted and measured data provides a HTM from which the six base

parameters can be extracted.

The SVD process begins by centralising both the model and measured data sets by

subtracting the centroid (p̄d, p̄m) from each set, and then combined as

A = (pd − p̄d)(pm − p̄m)T (3.8)

A can then be represented as a left singular vector matrix V , a diagonal matrix S

and right singular vector matrix V by decomposition

A = USV T (3.9)

The rotation matrix R and translation vector T between centralised data sets and

the translation matrix between is determined by

R = V UT if det |R| ≥ 0 or R = V ′UT if det |R| < 0 where V ′ is matrix V but with

the last column multiplied by -1. The translation is determined by

T = p̄m −Rp̄m (3.10)

The rotation matrix R is then converted to Euler angles [γb, βb, αb] and translations

[xb, yb, zb] as an estimate of θb which are then combined into HTM H0
b .

3.3.2.3 Linear least-squares parameter estimation

After calibration of the base parameters, the remaining parameters in models M2 and

M3 can be estimated. The base parameters must also be estimated again, from a now

improved initial estimate, to ensure a closer physical meaning to the parameters and

an improved chance of locating the global minim.

Linear least-squares estimate (LLSE) is utilised as an existing calibration tool that

has been used with some success used in this application.

The residual error pose error from a model prediction can be related to the model

parameter deviation by
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∆p = Jθ∆θ (3.11)

where ∆p is the column vector of pose error and ∆θ is a column vector of parameters

deviations. Jθ is the Jacobian matrix (partial derivatives of the pose w.r.t. model

parameter change ∂p
∂θ

).

Jθ =


∂px
∂θ1

. . . ∂px
∂θN

...
. . .

...
∂pz
∂θ1

. . . ∂pz
∂θN

 (3.12)

For n poses, the vectors and matrices are concatenated i.e. ∆p = [∆p1,∆p2, ...,∆pn]T ,
∆p1
∆p2

...
∆pn

 =


J1
J2
...
Jn

∆θ (3.13)

The estimated solution ∆θ that minimises ∆p in the least-squares sense, is obtained

by the matrix inversion ∆θ = J−1θ ∆p. But as Jθ is not square, the pseudo-inverse

Moore-Penrose alternative is used

∆θ = (JTθ Jθ)
−1JTθ ∆p (3.14)

The Jacobian matrix is also a function of the model parameters θ and therefore it too

must be updated with the new parameter predictions θ′ = θ+∆θ. The LLSE process is

therefore iterative (see Figure 3.11), updating the Jacobian in model M(.) at each iter-

ation and converging on a solution with a stopping condition of rms |∆p| ≤ 10−5mm.
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Figure 3.11: Calibration process flow chart.

3.4 Bias correction

It is not the intention in this thesis to extend the body of knowledge of GPR, only

its application. To this end, a common relatively simple version of GPR, a general

kernel choice in particular, is used unless the data dictates otherwise. This may be

considered as a limitation in the research presented in this thesis.

After calibration of the kinematic model, the residual error ∆p is the result of in-

accurate model parameters and unmodelled errors. In this study, GPR is used to

predict the residual errors ∆px,∆py and ∆pz separately for each model (referred to

as M0,GP ,M1,GP ,M2,GP ,M3,GP ) from a joint vector input q. The motivation to learn

the residual error as a function of joint-space relates to the uniqueness of the forward

kinematic model previously discussed. For consistency with literature [113], GPR will

be introduced using the generic terms (x, y). In this study x will comprise of the six

dimensional input vector q, and y is the residual error ∆px,∆py or ∆pz.

The underlying expectation of GPR is that for similar inputs x and x′, y′ will be

similar to y. This similarity extends to all other data pairs (xi, yi) to predict y′ by a

weighted similarity. The similarity weighting is captured by the covariance function

k(x, x′).

From a regression perspective, GPR determines a function f(x) with measurement

variation ε ∼ N (0, σ2
n)

y = f(x) + ε (3.15)

As a non-parametric model, and thus no pre-selected model form, GPR considers all

possible functions that describe the data. More accurately, with an infinite number of
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functions that pass through known data points, i.e. pass through training data points,

GPR outputs a mean prediction f̄∗ from the function distribution and in addition,

provides a variance σ2 as a measure of confidence.

From a probability perspective, we can start with the premise that a function can

be perceived as an infinite number of points. A GP assumes that these points are

jointly distributed so that a single sample from a multi-variate Gaussian of infinite

dimensions outputs and infinite number of random variables which can be considered

to be a function. To extend this, any subset such as the training data, are also jointly

distributed with any other subset, such as the test data.

To learn from the training data in order to predict test data, the GP first defines

the prior distribution for the functions p(f|x) and then marginalises to select only

functions that describe the known data, to determine the posterior p(f|x,y). For

a set of inputs x = [x1, . . . xN ], the random function variables from that sample

f = [f(x1), . . . , f(xN)] are indexed by x to create input and output pairs. The GP

prior for the marginalised training and test data, with zero mean, p(f|x) ∼ N (0,K)

is then

[
y
y∗

]
∼ N

(
0,

[
K + σ2

nI KT
∗

K∗ K∗∗

])
(3.16)

where K is the covariance matrix between training data inputs, K∗ is the covariance

between training and test data inputs and K∗∗ is the covariance between test data

inputs. A zero mean is commonly chosen if the mean function is not known. The

predictions do not suffer in this case unless the test data inputs are far from the

test data inputs, in which case the GP will not extrapolate well and reduces to a

prediction of zero. In the marginalised prior the f term has been substituted with

the known training data output y given the inclusion of the measurement variation.

The test data output remains a function prediction f∗. To predict the output, the

posterior can be found by conditioning the joint Gaussian, giving

p(f∗|x∗,x,y) ∼ N (K∗K
−1y, K∗∗ −K ∗K−1KT

∗ ) (3.17)

The prediction of y∗ is taken as the mean of the conditional probability f̄∗ = K∗K
−1y

and we are provided a measure of uncertainty by σ2
f∗ = K∗∗ −K ∗K−1KT

∗ :
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3.4.0.1 Kernel selection

In GP terms, the kernel is the covariance function which, along with the mean (which

can be zero), fully describes the GP.

f ∼ GP (m(x), k(x, x′)) (3.18)

The kernel quantifies the similarity between input and output pairs of training and

test data which is at the very core of the GP. Careful selection of the kernel then, can

help the predictive performance.

Kernel selection includes selection of the model or models, method of combining

models and the estimation of model hyperparameters. These are discussed separately

and briefly with reference to simulated data for context.

The choice of kernel model expresses any assumptions about the data and the function

that we intend to represent it, e.g. smooth, periodic, discontinuous. Generally, a GP

will not perform well is cases where the data is discontinuous, but a step change in

the bias can be modelled with careful combination of kernels. The case of gearbox

backlash is an example and will be discussed in brief in this section.

To help with the choice of kernel, the form of the bias data can be separated into

two parts. First, the base, geometric and joint elasticity bias data, which can be

simulated by models M0 to M3 . Figure 3.12 is an example of the bias data from the

numerical model of the ABB 6640 robot used in Chapter 5 for context. Second is the

reportedly, highly non-linear, non-geometric errors for which no assumptions can be

made.
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Figure 3.12: Surface plot of the residual error for in the direction of ∆pz for an input
of joint 3 and joint 4 only from a simulated model with errors in the base, geometry
and joint elasticity i.e. M0 .

The residual error surface plot is smooth in just the two dimensional case i.e. only

joints 2 and 3 were rotated. Extrapolating to the six dimensional input case case,

the expectation is that the hyper-plane is more complex, but will remain relatively

smooth which my be informative when selecting the appropriate GP kernel.

There are many kernels available, each with different qualities and which represent

different assumptions about the data. It is equally important to avoid constraining

the GPR model with a poor choice, and in fact it would be better to select a more

general kernel in this case. The squared-exponential kernel and Matern kernel are

described below as examples of general purpose kernels which are commonly used

to model smooth data trends. A periodic kernel is also described as an appropriate

example that allows the user to infer expectations about the function form. The

examples are described with reference to [41][46].

The squared-exponential (SE) kernel in Equation 3.19 (also known as an RBF kernel)

is the most common kernel choice for similar problems in literature.

k(x, x′) = σ2
fexp

[
−(xi − x′i)2

2l2

]
(3.19)

The SE kernel assumes a smooth function, which is appropriate for the simulated bias

data in Figure 3.12. The kernel is tuned by estimating the two hyperparameter types;

σf the output scaling factor, and l the characteristic length scale which captures the
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input similarity i.e. distance between two points before the effect on each others

output values is negligible.

The Matern kernel in Equation 3.20 is a generalisation of the radial basis function

(RBF) where the additional ν parameter controls the smoothness of the resulting

function. In the Matern kernel, Kν is a modified Bessel function and Γ(ν) is the

Gamma function.

k(x, x′) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
(3.20)

By careful selection of ν, the Matern kernel can be identical to the SE kernel, assuming

a ’very smooth’ function, or ’spiky’ function to model a particle undergoing Brownian

motion.

The periodic (PER) kernel in Equation 3.21 imposes one of the strongest assumptions

about the data by constraining the function to a periodic wave.

k(x, x′) = exp

[
−λsin

2(xi − x′i)
4l22

]
(3.21)

Marginalisation of the GP prior is based on functions that pass through the known

training data. Further flexibility can be built into the kernel with the addition of a

noise term expressed as σ2
nδ(x, x

′), where σn is a noise hyperparameter and δ(x, x′) is

the Kronecker delta function. The additional term allows the acceptance of functions

that pass near to the data, accepting that measurements have some uncertainty. As

an example, the noise term is added to the SE kernel as

k(x, x′) = σ2
fexp

[
−(xi − x′i)2

2l2

]
+ σ2

nδ(x, x
′) (3.22)

3.4.0.2 Combining kernels

Combining kernels with different features or assumptions creates a new composite

kernel. The full explanation and derivation can be found in Rasmussen and Williams

[113], but for brevity, the options are discussed only in the context of this research.

The two main options used in this research were to combine kernels as product models

and additive models. The product model has already been employed in this research

by expanding the SE kernel to multiple inputs. The product of SE kernels allows for

a length scale for each input dimension. This option can be expanded to create a new

kernel as a product of two different kernel types, such as the squared-exponential and
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periodic kernels, which when combined as a product results in a periodic function

with an amplitude that may increase and decrease.

k(x, x′) = kSE(x, x′) ∗ kPER(x, x′) (3.23)

The more interesting option is the additive model where the SE kernel can be used

to describe the expected smooth function, whilst the periodic kernel models the wave

on top of the SE function. The two kernels are not completely independent as they

are trained simultaneously.

k(x, x′) = kSE(x, x′) + kPER(x, x′) (3.24)

This approach is demonstrated in [121] with an arbitrary example of a long-term

smooth function with an added short-term periodic fluctuation. Rasmussen and

Williams used both options to model CO2 changes over 6 decades. The authors used

added kernels to model specific features in the data. An SE kernel was used to model

the long-term trend, a QR kernel for medium-term fluctuations and a periodic-SE

product kernel for the season fluctuations. The product allowed the period to vary.

3.4.0.3 Hyperparameter estimation

Once the kernel has been selected the final stage is to tune the model to allow the data

to speak clearly, by optimising the model hyperparameters. If not chosen carefully,

the predictive performance will be poor. For example, in the SE case, a small length

scale results in a function that nearly ignores data that is not near to it and models

the data locally. Too small and the function over-fits. For a large length scale, the

function is influenced by data that is far from any prediction and the result is a

function of the underlying trend which fails to model local variations.

The best estimate of θ is when the maximum posterior p(θ | y, x) occurs (MAP). By

referring to Bayes theorem and assuming that we have little or no prior knowledge of

theta (p(θ)), then this also occurs at the maximum likelihood p(y | x, θ).

p(θ | y, x) =
p(y | x, θ)p(θ)

p(y)
(3.25)

The landscape of the output plotted against each parameter is very steep owing the

exponential form. The log likelihood can then be optimised using any gradient-based

optimiser. The optimisation algorithm chosen is of little interest, but for repeatability,
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a Nelder-Meads optimiser was used to search for the kernel hyperparameters θ that

minimises −logp(y | x, θ) where

logp(y | x, θ) = −1

2
yTK−1y− 1

2
log | K | −n

2
log2π (3.26)

The separate terms combined ensure that the function is balanced between simplicity

and accuracy to the training data by rewarding the data fit but penalising complexity.

3.4.1 Target correction

Some robot control systems do not allow model or model parameter updating. The

solution to improving the accuracy of a robot given this restriction must therefore

be a general solution implemented offline. With this assumption comes the freedom

to create any model form i.e. parametric and non-parametric. The use of a joint

elasticity model and bias correction exploits this assumption in this thesis. The actual

general offline solution is not the focus of this thesis but is described briefly below to

support the premise that bias correction can be used in real industrial applications.

For a visual reference, the pose correction process is shown in Figure 3.13. The

desired pose p is first converted to joint space q using the nominal inverse kinematic

(IK) model, q = M−1
0 (p). A presumed, accurate prediction of the actual pose pm

is determined by the calibrated model, pm = Mi(q). A pose correction value ∆p

exists between the target pose p and the true pose pm. The assumption is that if a

joint angle vector correction ∆q = J−1q ∆p can be determined then the system can be

provided the phantom input p′m = p
(0)
m + ∆p. However, the correction value relies on

the Jacobian matrix from an input of q and not q′. An assumption must be made

that ∆p′ ≈ ∆p.
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Figure 3.13: Vector diagram of target correction.

The process converts a problem involving the inverse kinematic nominal model,

M−1
0 ,which has poor accuracy, to a forward kinematic problem using a more ac-

curate model Mi. Figure 3.14 shows the iterative solution to the assumption that

∆p′ ≈ ∆p. A stopping function can be included but the solution converges in less

than 10 iterations and is very quick.

+
-

Figure 3.14: Target correction process flow chart.

As an example, this is demonstrated in Figure 3.15 on a simple three link planar arm

simulation with a 5mm error in the link lengths. The process is very efficient having

converged to sub-micron level after the first iteration.
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Figure 3.15: Example target correction results.

3.5 Chapter summary

A research methodology has been proposed in this chapter to answer the research

question and address the three gaps identified in literature, namely the use of GPR

and exploration of the limitations of bias correction relating to data size and cal-

ibration level. The method presented acknowledges the approaches and practices

in literature whilst exploiting the state-of-the-art metrology equipment and software

provided by the sponsor. The use of bias correction, GPR in this case, is the focus of

the research and so where possible, the technology and models used have are widely

available and/or commercial solutions.

To limit the scope and reduce the number of dimensions to the problem, a number

of limitations to the research are imposed:

1. A single payload has been used on the assumption that a machining spindle will

be fixed and tool changes will have a negligible effect on the deflection of the

joints. This assumption means that the number of input variables to the GPR

is reduced and the number of test combinations is manageable.

2. A long-standing LLSE tool is used for calibration in favour of more advanced

parameter estimation techniques. The focus remains on the bias correction

phase and research has demonstrated that only marginal gains, particularly in

measurement and computational efficiency rather than accuracy are made with

alternative tools. In the method proposed, a LLSE allows simplicity and close

control over performance and parameter selection.

3. The GPR tool is used in an acknowledged, simple form with a general SE kernel.

The SE kernel is a common kernel used when there is no prior knowledge of
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the data. Other kernels are available but which will not be evaluated unless the

data dictates it.

Looking forward, in Chapter 4 the geometry of the robot is measured using the CPA

method, which was discussed in section 2.2.3. The joint compliance and link elasticity

effects were measured in order to be able to test the rigid body assumptions made

in the joint compliance model in section 3.3.1. The results will be used to create

numerical model of the ABB IRB 6640 robot.

In Chapter 5, the proposed methodology is tested on a simulated data from the

numerical model created in Chapter 4. The competing models are calibrated using

the SVD and LLSE tools presented in section 3.3.2. Bias correction using GPR with

an SE kernel is tested on the competing model bias data for each case study.

In each chapter, specific methods are described with the following design considera-

tions:

I Data target generation should be generated with space-filling properties and

parameter redundancy considered

II Laser tracker location and sensor visibility must be considered as practical con-

siderations when generating training and validation targets whilst retaining (i)

III GPR and calibration tools have different needs and it may be appropriate to

generate separate data.
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Chapter 4

Error Investigation and Numerical
Modelling of an Industrial Robot

The aim of this chapter is to meet thesis objective 1 by presenting an investigation

into the error sources on an industrial robot and to develop a numerical model.

While it would be entirely permissible to choose arbitrary values for the numerical

model and move on to the simulation trial in Chapter 4, the review of literature in

Chapter 2 concluded that the size and rank of errors associated with each source was

unique to each robot. The outcome of this chapter is a numerical model that provides

a realistic bias correction challenge, the results of which can then be validated with

empirical data.

The chapter is presented as two separated studies. Section 4.1 is focussed on isolating

and measuring the geometric components of the structure, to determine DH geometric

parameter errors.

Section 4.2 is focussed on measuring the deformation of isolated structural elements

(i.e. joints and links), when subjected to a static payload to identify link elasticity

and joint compliance parameters. The aim is to determine if a rigid body assumption

used in the joint stiffness model (in section 3.3.1) produces an accurate model, and

to identify the model parameters.
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4.1 Geometry identification by circle-point-analysis

(CPA)

In this study, the geometry of the robot is isolated and measured using the CPA

method to identify geometric parameter errors in the mDH table.

4.1.1 CPA method and geometric construction

The CPA method uses the position data from sensors mounted on link i, measured as

joint i rotates incrementally through an arc. The data is used to construct a plane and

circle associated with joint i. The joint axis is identified from a vector, normal to the

plane and passes through the circle centre. Once the joint axes have been identified,

the mDH convention is followed to construct the joint axis origins and measure the

mDH parameters.

An example of the construction and parameter identification is illustrated in Figure

4.1. Each axis is constructed from the measured position data (3 dots) that form a

circle. The DH parameters a1 and d1 are identified from the lines that intersect along

z0 an x1.

Figure 4.1: Example of geometry construction following the DH procedure in SA.

4.1.2 Experimental design

The experimental procedure was conducted as follows to create a geometric model.

The procedure was repeated to created six models from the separate measurement

data, the results of which are referred to as Test 1 to Test 6.
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I Identify the base frame using the CPA method described in section 3.2.4.

II Measure the position of an SMR sensor at a fixed location on the link, at joint

angle increments. During the data gathering for an element, all other joints are

fixed.

III Construct planes, circles an then joint axes from position data for each element

using the SA software.

IV Construct and measure mDH parameters from joint axes using SA.

V Validate the measured mDH model by measuring the positional error of the

TCP in 10 randomly generated configurations.

4.1.2.1 Sensor placement and data gathering

A Leica AT960 laser tracker was used to measure the position of a 1.5” SMR secured

to an arbitrary location on each link. A panel of the cell was removed for visibility

and the laser tracker was located just outside of the cell for safety. The SMR was

mounted to magnetic nests, which was glued to the link structure so that the SMR

could be manually rotated in the nest to ensure visibility by the tracker and moved

from link to link. The rotation of joint 6 (J6) was measured with a T-mac mounted

on a fixture instead of a 1.5” SMR. Figure 4.2 shows nested SMR locations circled in

white along the structure and T-mac at the end effector.
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(a)

(b)

Figure 4.2: SMR laser tracker sensor locations on (a) link 1 and (b) links 2 to 6. 1.5”
SMR locations circled in white, 0.5” SMR’s in circled in yellow.

Table 4.1 shows the number of targets data points and increments rotated by each

joint.
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Table 4.1: Geometric parameter rotation increments.

Feature Targets

Base plane T1 - T5
Joint 1 (q1) 150,00,−150,−300,−450

Joint 2 (q2) −450,−300,−150,00,150,300,400

Joint 3 (q3) −600,−300,−150,00,150,300,600

Joint 4 (q4) −900,−600,−300,00,300,600,900

Joint 5 (q5) −600,−300,−150,00,150,300,600

Joint 6 (q6) −150,−80,00,80,−150

End flange plane T6 - T9

The accuracy of the six models, determined from each test repetition, was validated

in 10 joint configurations, generated using LHS and shown in shown in Table 4.2.

Table 4.2: CPA model validation configurations.

Configuration Joint Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
p1 [deg] -9.73 26.08 -24.75 12.84 31.98 -5.50
p2 [deg] -19.68 4.25 -4.96 27.10 50.13 -20.31
p3 [deg] 9.52 6.51 19.31 -31.79 -28.17 28.02
p4 [deg] 21.82 24.35 -13.14 -44.33 22.01 19.70
p5 [deg] -4.68 15.27 3.42 27.90 -36.33 -38.70
p6 [deg] 5.18 -4.43 -18.08 -22.9 -11.46 -27.66
p7 [deg] -15.70 32.42 16.04 -17.11 3.83 20.09
p8 [deg] 28.26 -8.39 11.19 26.53 -58.32 -43.00
p9 [deg] -14.99 10.11 -8.70 -7.27 -23.26 -6.55
p10 [deg] -29.3 15.5 -8.70 77.2 61.5 -89.00

4.1.2.2 Data processing

The end effector pose was measured by the Leica laser tracker and processed using the

SA software, which also reported the accuracy of the fit (plane and circle geometries

fitted to measurement data) and allowed for subsets of data to be used to improve

the fit accuracy, in a least-squares sense.

The tools within SA were used to determine lines normal to planes, which in turn

was used to determine axes and intersections and to define link length start and

end points. SA then provided length and orientation measurements of lines between

origins and intersections. The geometry of the robot was then constructed in sequence
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from base to end effector by following the DH convention. In the example shown in

Figure 4.3 the base and the constructed axes and links are highlighted in white.

Interestingly, this approach confirmed in a practical way, the problem associated

with used the DH convention for robots with consecutive parallel axes. In brief, the

common normal origin (i’ ) can be arbitrarily chosen between consecutive parallel

joints with an infinite possible locations. One solution is to assume no joint offset

and fix i’ = i. A second problem occurs when there is a small misalignment between

these axes assumed to be parallel. For a small misalignment, the location of the

common normal will be disproportionately large and no longer representing the true

geometry of the system. The preferred mDH form was adopted which fixed the origin

of the common normal as previously mentioned, and instead provided an additional

axis rotation term β, a rotation around y, as an axis of misalignment.

Figure 4.3: Robot geometry constructed in SA using the CPA method.
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4.1.3 Results

The accuracy of the geometry values in each model is evaluated by determining the

mean and standard deviations (std) of the geometric parameters and by the accuracy

of the model predictions. The accuracy of the model in a given configuration is calcu-

lated as the Euclidean distance (Equation 4.1) between the predicted and measured

position.

|∆p| =
√

∆p2x + ∆p2y + ∆p2z (4.1)

The fit of the plane and circle geometries in test 1 is reported in Table 4.3 as an

indication of confidence in the results. Joints 1 to 6 are abbreviated to J1, J2 etc.

Most of the constructed geometry has a small mean rms (<10µm) compared to the

expected robot accuracy and measurement uncertainty. However, the base plane and

joint 3 geometries are an order higher which may result in inaccurate measurements

or poor repeatability.

The range of model accuracy values is expected to be high due to a wide variation in

base plane orientation. The base plate unfortunately has no machined features which

in retrospect should be designed in prior to installation.

Many more parameters are affected by an uncertain construction of Origin 2 and z2

from the joint 3 rotation data. Distances a2, a3 and d3, and frame rotations α2 and

α3 are directly affected by either the location of the circle centre or the orientation of

the normal vector used to construct axis z2. The impact of these uncertainties is less

confidence in this method and potentially less accurate results when tested globally

and lower repeatability.

Table 4.3: Constructed geometry uncertainty.

Base
plane

J1 J2 J3 J4 J5 J6 End
flange
plane

rms[µm] 50 3.25 6.75 36.75 8 9.75 2.25 4.25

The measured geometry in each of the six test repetitions is separated into length

geometry in Table 4.4 and frame rotations in Table 4.5 and is presented as a deviation

from nominal.
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Errors in the length parameters, both link lengths and joint offsets, are significantly

high, in the order of -0.200 to -0.500 mm, with the exception of parameters that

could not be measured (d2 and a6) and lengths near to the wrist (a4, a5 and d6). The

deviation in link length d1 is particularly high, approaching 1mm. While to results

seem high in comparison to the manufacturing tolerances of the machines that made

them, it is likely to confirm the expectations from literature that geometric parameter

errors are the main cause of positional errors in the order of 3-5mm.

A wide range in the length parameters however means that there will be low confidence

in the accuracy of the model. For example, deviations in a2, a3, d4, d5 each have a

standard deviation that is within the 0.1mm to 0.3mm range. The choice of parameter

for the numerical model may in fact be arbitrary within realistic limits.

Table 4.4: Nominal model length DH parameters and measured deviations.

θ Nominal Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Mean (std)

a1 [mm] 320 0.228 0.240 0.170 0.170 0.150 0.211 0.195 (0.036)
a2 [mm] 1280 -0.326 -0.331 -0.609 -0.498 -0.439 -0.585 -0.465 (0.122)
a3 [mm] 200 -0.344 -0.306 -0.072 -0.220 -0.316 -0.063 -0.220 (0.125)
a4 [mm] 0 -0.052 -0.004 -0.033 0.000 -0.009 -0.032 0.022 (0.020)
a5 [mm] 0 -0.002 -0.064 -0.025 -0.011 -0.038 -0.007 -0.025 (0.023)
a6 [mm] 0 0.000 0.000 0.000 0.000 0.000 0.000 -

d1 [mm] 780 0.932 0.847 0.870 0.878 0.920 0.883 0.888 (0.032)
d3 [mm] 0 -0.037 -0.094 -0.063 -0.779 -0.189 -0.052 -0.202 (0.288)
d4 [mm] 1142 -0.169 -0.228 -0.005 -0.226 -0.402 -0.054 -0.191 (0.148)
d5 [mm] 0 -0.228 -0.610 -0.346 -0.422 -0.230 -0.211 -0.341 (0.156)
d6 [mm] 200 na 0.019 0.006 -0.008 -0.004 0.010 0.005 (0.11)

The frame rotation errors show similar findings with significantly large errors in most

parameters, particularly in ∆q1 which could be considered as the base frame calibra-

tion. For context, a 0.0150 rotation will result in a 0.393 mm error at the end of a

1.5m arm and the majority of joints have a joint offset and twist greater than this.

The parameter errors are large enough to contribute to a significantly large positional

error at the end effector and one which will vary considerably with configuration.

There are notable outliers in test 3 and 4 which have a ∆q1 approximately three

times larger than the other tests. The base frame data was shared between these two

tests rather than all points repeated which would explain why if one test showed an
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anomaly in the base frame, then so would the other. The parameters will still be

validated for the tests 3 and 4.

Table 4.5: Nominal model axis rotation DH parameters and measured deviations.

θ Nominal Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Mean(std)

∆q1 [deg] 0 0.088 0.098 0.268 0.357 0.092 0.092 0.166 (0.177)
∆q2 [deg] -90 -0.037 -0.030 -0.033 -0.025 -0.016 -0.035 -0.029 (0.008)
∆q3 [deg] 0 -0.039 -0.022 -0.012 -0.021 -0.030 -0.010 -0.022 (0.011)
∆q4 [deg] 180 -0.038 -0.043 -0.042 -0.045 -0.042 -0.043 -0.042 (0.002)
∆q5 [deg] 0 -0.038 -0.012 -0.008 -0.003 -0.010 -0.007 -0.013 (0.013)
∆q6∗ [deg] 0 0 0 0 0 0 0 -

α1 [deg] -90 -0.011 -0.010 -0.011 -0.010 -0.014 -0.007 -0.010 (0.002)
α2 [deg] 0 -0.014 -0.017 -0.015 0.016 -0.010 -0.015 -0.014 (0.002)
α3 [deg] -90 -0.013 -0.010 -0.015 0.013 -0.014 -0.019 -0.010 (0.011)
α4 [deg] -90 -0.008 -0.002 -0.002 0.022 0.001 -0.006 -0.042 (0.002)
α5 [deg] 90 0.001 0.058 0.035 0.003 0.012 0.004 -0.013 (0.013)
α6∗ [deg] 0 0 0 0 0 0 0 -

The accuracy of the mDH models created from the measured parameters in Tests 1

to 6 (T1 to T6) are presented in Table 4.6. The nominal model error is in the order

expected. Despite the uncertainty in the models, they do in fact show that they are

an improved representation of the robot geometry by predicting approximately half

of the positional error of the nominal model. In fact, although the geometry was

highly variable, the accuracy appears to be relatively insensitive to this with predic-

tions ranging between 1.161mm and 1.517mm. The predictions of each target pose

are presented in Figure 4.4 for visual scrutiny, which confirm the conclusions. The

predictions from models T1 to T6 predict approximately half of the nominal model

error in the majority of poses. Interestingly, no single model consistently outper-

forms the others and so the accuracy is configuration dependent. It is reasonable to

assume that in constructing the geometry, compromises were made i.e. some length

deviations were traded for other lengths or twist parameters and each model traded

differently.

Table 4.6: Calibrated model accuracy for repeated tests compared to the nominal
model.

Nominal Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

rms |∆p| [mm] 2.973 1.412 1.161 1.380 1.304 1.517 1.369
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Figure 4.4: Geometric calibration accuracy with parameter in validation poses.

4.1.4 Discussion

In this study, the CPA method used was used with some success, to identify the

geometry of the structure. Confidence in producing an accurate model however is

low. Large variations in the initially constructed geometric features resulted in a

large range in parameters across six tests. In future tests, the variation could be

reduced by rotating each joint in smaller increments and a wider range. Alterna-

tively, optimisation strategies could be used that explore the variation in planes and

circles. However, CPA as a calibration method is not the focus of this research and

approximate values will suffice. The accuracy of the six models was reasonably con-

sistent even with very different parameters and no single model performed best in all

configurations. The geometric errors for the numerical model can then be selected

relatively arbitrarily within reasonable limits set by the range of values set in this

study. The values chosen for the numerical model, with respect to values found in

this study, are presented in the next chapter.

Assuming that the geometric parameters measured in this study are relatively close

to the true geometry, and there is no way to directly test this, then the study has
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established that the non-geometric errors account for approximately half of the po-

sitional error. This remains dependent on the configuration. The challenge for the

bias correction phase then remains significantly large and the research can continue

on the ABB IRB 6640 as a testbed.

4.2 Stiffness identification by direct deflection mea-

surement

This study is an investigation of the effects of joint and link elasticity when a robot

is carries a payload, and the development of a representative numerical model for use

as a simulation tool in the next chapter. The expectation from literature is that the

joint elasticity contributes significantly to positional error at the end effector, in this

case quantified as a compliance parameter. In order to simplify the elasticity model

by reducing the number of calibration parameters whilst retaining the accuracy, the

model presented in Chapter 3 assumes that the links are rigid and that the joint can

be modelled as a torsional spring. That assumption is tested in this experiment by

comparing results for competing models, one assuming a rigid link and one modelling

the link as a beam.

4.2.1 Experimental design

The structure can be considered to be made from 6 structural elements where each

element is a joint i and link i pair. Three of the six structural elements are studied

in this experiment. The studied elements are listed below and shown in Figure 4.5.

• Element 2: joint 2 and link 2 (Figure 4.5a).

• Element 3: joint 3 and links 3 and 4 which are combined (Figure 4.5b). Joint

4 is parallel to the link and is included in the element as a part of the link.

• Element 5: joint 5 and link 5 (Figure 4.5c).

It was intended that the compliance of joints 2 to 6 were identified independently.

Joint 1 is assumed to be non-compliant with respect to a vertical payload as the axis

of joint 1 is also vertical. Joints 2,3 and 5 have joint axes that are perpendicular to

the links and are identified from the rotation of the joint due to the torsion provided

by the payload and outstretched arm. Joints 4 and 6 have axes that are parallel

to the links and require a twist to rotate them. Unfortunately, the degree of twist

measured was small compared to the larger structural deflection which is therefore
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difficult to model accurately, and positional deflection data was of the same order of

magnitude as the measurement variation. Consequently, joints 4 and 6 were not able

to be measured with confidence and the results are not reported in this study.

Reflective sensors were fixed along the length of the links in each element and the

deviation from the unloaded case was measured for a six different payloads.

(a) Element 2 (b) Element 3 (c) Element 5

Figure 4.5: Illustration of elasticity study structural elements.

The elasticity deflections were measured when subjected to six payloads which were

separated into four to provide training data and two for validation. The experiment

was conducted twice. The parameters in each model were estimated using a Nelder-

Meads optimisation.

The expectation was that the effects of link elasticity would be challenging to quantify

accurately. The structure itself does not have a consistent cross-sectional profile along

its length. The structural links between joints have hollow sections to maximise the

strength and rigidity to weight ratio and to provide channels for cabling, but the wall

thickness changes along each link. Link 2 is largely a rectangular section tube with

thick walls and links 3 and 4 are a relatively simple circular tubes but with sections

with complex profiles to house gearboxes. It was assumed that as deflections due to

link elasticity would be relatively small, a simple model will suffice. The alternative

would be to model the structure using finite-element-analysis which is beyond the

scope of this research.

4.2.1.1 Sensor placement and data gathering

The position of 1.5” and 0.5” SMRs at fixed locations along the elements, and a

T-mac, were measured with a Leica AT960 laser tracker. The 0.5” SMRs were glued
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directly to the links of the robot, whilst the 1.5” SMRs were located into magnetic

nests that were also glued to the structure. A combination of sensors were used due

to availability, and to maximise the amount of link deviation data. Sensors were

placed at distances of approximately 20cm apart. Figure 4.6 shows the location of

the sensors mounted along the structure in the test configuration. The 1.5” SMRs

are circled in white and 0.5” SMRs are circled in yellow.

Figure 4.6: Elasticity study, SMR sensor locations.

4.2.1.2 Payload

The payloads were mounted to a fixture attached to the mounting flange as an end

effector. The fixture is a simple L-shaped bracket, shown in Figure 4.7 with a machine

tool lifting eye screwed into the face plate. Gym free-weights were attached to the eye

via a cable to ensure that the location of the payload did not change, and the payload

itself remained the only variable. The weights and cable were measured before testing

and recorded in Table 4.7. The fixture and T-mac were not included in the payload

calculation as they were taken as the reference zero load. Deviations were measured

relative this.
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Figure 4.7: Elasticity study, payload fixture and T-mac sensor.

Table 4.7: Training and validation payloads.

Load [N]

Training [266.243, 798.338, 1064.974, 1596.283 ]
Local validation [532.879, 1330.432]
Global validation [532.879, 1064.974]

4.2.1.3 Elasticity models

Each element is modelled as a cantilever beam subjected to a moment M and static

load w at the free end and a moment MR (reaction) at the supported end as shown

in Figure 4.8. The joint is modelled as a torsional spring.

Figure 4.8: Conventional bending beam diagram for a single element.

Following conventional equations, the deflection at distance x along the beam is mod-

elled in three parts: (a) beam deflection due to load w, wx2(3l−x)
6EI

; (b) beam deflection

due to free end moment M , Mx2

2EI
; and deflection due to joint compliance, xMRC. To
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test the assumption that the links are sufficiently rigid to neglect beam deflection

terms, two competing models are presented.

Model 1:

∆p(1) =
wx2(3l − x)

6EI
+
Mx2

2EI
+ xMRC (4.2)

Model 2:

∆p(2) = xMRC (4.3)

For simplicity, the link angle of each element is reported relative to the horizontal x0

and deflections are reported in base frame coordinates x0 and z0 by multiplying ∆p

by the vector [sin(θ2),−cos(θ2)]T .

Element 2

A free body diagram of Element 2 is shown in Figure 4.9.

Figure 4.9: Element 2 free body diagram.

The Element 2 model is shown in Equation 4.4. Bias terms A and B were added

retrospectively after it was observed that the bias was not constant but in fact load

related which suggests that either the base or Joint 1 also deflected under load.[
∆px,2
∆pz,2

]
=

[
sin(θ2)
−cos(θ2)

]
∆p2 +

[
Bx,2

Bz,2

]
MR2 +

[
Ax,2
Az,2

]
(4.4)

Element 3

The free body diagram of Element 3 is shown in Figure 4.10. There are two perpen-

dicular links (3 and 4) that make an L-shape. When adjusting for bias at the end of

element 2, all data must be multiplied by [cos(θ3), cos(θ3)]y3 to compensate, where y3
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is the location of the target sensor in the local y direction. Joint 4 is incorporated into

element 3 but may have a significantly different elasticity characteristics to the rest

of the link and therefore the deflection data along element 3 may be discontinuous.

Figure 4.10: Element 3 free body diagram.

After bias correction from deflection and rotation from element 2, the model for of

element 3 is [
∆px,3
∆pz,3

]
=

[
sin(θ3)
−cos(θ3)

]
∆p3 +

[
Ax,3
Az,3

]
(4.5)

Element 5

The free body diagram of Element 5 is shown in Figure 4.11. The deflection ∆p6

is projected beyond Origin 6 to the TCP. Link 5 is short in relation to its diameter

and wall thickness and has a complex profile. Also with little space to add sensors,

element 5 is therefore assumed to be rigid and only model 2 will be used.

Figure 4.11: Element 5 diagram.
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The model form of element 5 is[
∆px,5
∆pz,5

]
=

[
sin(θ5)
−cos(θ5)

]
∆p5 +

[
Ax,5
Az,5

]
(4.6)

4.2.2 Results

The results of the robot structure deflection under different loads are first presented

as a whole and then sequentially from Element 2 to Element 5 with model evaluations.

The analysis of deflections in each element i will consist of an initial review of the

training data, separated into ∆px,i, ∆py,i and∆pz,i plotted against xi, their distance

along the link. A plot of the objective functions for pairs of model parameters will

follow to identify local minima to avoid during parameter estimation, then parameter

estimation and model performances.

Figure 4.12 shows the deflection of each target sensor along all elements, relative to

the base origin. The joint origin locations are included to indicate where each element

begins.

There is a clear separation of data between loads and a measurable deflection in each

element is expected to improve the chances of an accurate model. The magnitude

of the deflection, approaching 6mm in ∆pz under the maximum load, is very large

compared to a machining tolerance which establishes elasticity as a major error factor

and an important model. The deflection ∆px, has an unusual pattern and unlike a

standard beam. In retrospect, this is partly due to the location of the target sensor

which has prompted the model of deflections in Element 3 to also be a function of y3

as well as x3. The deflection ∆py was expected to be negligible, with all deflections

expected in the x0, z0 plane, but is in fact in the order of 0.020 to 0.100 mm which is

a significant portion of a manufacturing tolerance. However, the pattern in the ∆py

data, a deflection sideways, appears to follow that of the ∆px data. This relationship

is explored further in Figure 4.13 where ∆px is plotted against ∆py.
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Figure 4.12: Complete system deflection data against payload.

The deflection in ∆py may be explained by a number of plausible possibilities. Firstly,

the complex profile of the links and the joint offset in Link 3 could cause a significant

twist in the structure. Secondly, a misalignment in each joint could results in a

deflection in py. Both of these would be observed as a proportional relationship

between ∆px and ∆py and which would be different for each element. Finally, a

misalignment in the calibrated base frame, would be observed as the proportional

relationship for all element.

The relationship between ∆px and ∆py indicates that the deflection ∆py is a result

of a small misalignment in the base frame rather than a twist in the structure due

to payload. The relationship can be modelled as a linear function with acceptable

78



confidence (R2 = 0.838, rmse = 0.012mm) resulting in equation 4.7.

∆py = 0.0634∆px–0.015 (4.7)
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linear model

Figure 4.13: Elasticity deflection training data in the x0, y0 plane relative to the base
Origin.

4.2.2.1 Element 2 results

Element 2 was expected to be one of the more rigid elements, however the addi-

tional distance from the load compared to other joints may still result in significant

deflections from the increased leverage.

Figure 4.14 shows the measured deflections from tests T4 and T5 at positions along

the element for the four training payloads. The deflections ∆px,2 and ∆pz,2 are already

large at the end of link 2 for the maximum load case, relative to the desired accuracy.

The data is also clearly distinguishable by load which should improve the chance of

an accurate model.
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Figure 4.14: Joint 2, Link 2 deflection training data.

In Table 4.12 the estimated model parameters are presented, and in Table 4.9 their

performance in predicting the training data and test data are shown.

It can be assumed that Element 2 has a rigid structure, evidenced by the identical

compliance and bias parameters which indicates that beam elasticity parameters are

negligible. This assumption can be further supported by the insensitivity of the beam

elasticity parameters in model predictions.

More surprisingly, however, is the very large bias in the data as a result of deflection in

the base and joint 1, modelled as a linear function of torque at joint 2 with parameters

Bx, 2 and Bz, 2. For context, a deflection of ∆x = 0.163mm and ∆z = −0.084mm

can be seen at joint 2 when subjected to the maximum load, in this configuration.

The true source(s) of the bias will not be known without a further investigation of

the effects of payload on the base plate and joint 1. For simplicity, the bias will

remain as the simple function modelled here which will not be incorporated affect

later trials. The bias from these parameters is not expected to be challenging for the

bias correction phase.
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Table 4.8: Element 2 estimated model parameters.

Model EI2 C2 Bx2 Bz2 Ax2 Az2

model 1 2.2543x1025 2.785x10−10 3.748x10−8 -1.959x10−8 0.010 -0.180
model 2 n/a 2.785x10−10 3.748x10−8 -1.959x10−8 0.010 -0.180

Table 4.9: Element 2 model performances.

Training data Validation data
Model rms |∆p| rms |∆p|

[mm] [mm]

model 1 0.039 0.034
model 2 0.039 0.034

4.2.2.2 Element 3 results

Element 3 contains the longest and least rigid structural elements and therefore link

elasticity was expected to be more evident than in other elements. Figure 4.15 shows

the training data deflections which have been corrected for the deflection of joint 3,

predicted by the Element 2 model. The deflection at the end of the link, ∆pz,3 was

greater than −2mm, which is considerably larger than the desired accuracy. The

deflection ∆px,3 is less easy to summarise as the sensor position in both x3 and y3 are

variables. The deflection ∆py,3 is measurable and is large enough at 0.1mm for it to

be modelled.
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Figure 4.15: Joint 3, Link 3 and 4 deflection training data , adjusted for Joint 2
prediction.

Tables 4.10 and 4.11 show the estimated model parameters and their performance

in predicting the training and validation data respectively. In element 3, the beam

elasticity terms are not negligible and the link has distorted. The larger compliance

term in model 2 suggests that the additional deflection due to beam elasticity is

captured by the joint deflection term. Both models perform well in relation to a

stated measurement variation, with a similar order of magnitude of approximately

0.050mm. The beam elasticity parameters make a considerable contribution in the

order of an additional 0.016mm to the accuracy of the model. Naturally, this may

reduce for lower loads or different configurations and so the assumption of a rigid

body is no longer valid without context if accuracy is the primary goal.

Table 4.10: Element 3 estimated model parameters.

Model EI3 C3 Ax3 Az3

model 1 3.4221x1012 2.9710x10−10 0.030 -0.071
model 2 n/a 4.0440x10−10 0.005 -0.066
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Table 4.11: Element 3 model performances.

Training data Validation data
Model rms |∆p| rms |∆p|

[mm] [mm]

model 1 0.034 0.046
model 2 0.050 0.057

4.2.2.3 Element 5 experimental results

With only a single sensor, the data for modelling Element 5 was very limited and

consequentially, there was less confidence in the model. The length of the element is

very short and so with only one sensor it is acceptable to model element 5 as a rigid

beam. With models 1 and 2 providing different predictions from element 3, both will

be used to correct the data in element 5. Models 1 and 2 in the element 5 analysis

then use the same rigid model but from the two data sets from element 3 models

corrections.

Figure 4.16 show the training data, corrected by the Element 3 models 1 and 2.

Deflection ∆pz,5 is still large, in the order of 1mm, despite its close proximity to the

load which was unexpected. This again confirms the significant contribution of joint

compliance to the robot accuracy. However, ∆px,5 and ∆py,5 are relatively small, in

the order of 0.010mm, which is smaller than the measurement uncertainty, resulting

in no distinguishable load relationship. The negative deflection data observed is

explained by a possible over-compensation by the models from element 3.
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Figure 4.16: Joint 5, Link 5 deflection training data, adjusted for Joint 2 and Joint 3
prediction.

Tables 4.12 and 4.13 show the estimated model parameters and their performance

in predicting the training and local validation data respectively. There is negligible

difference in the final model predictions of the TCP when comparing rigid to non-

rigid and a common ∆py equation to separate ∆py,i equations for each element. This

suggests initially that deflections due to link elasticity can be adequately compensated

for by other parameters in the rigid body model. It also suggests that the deflection

∆py was more observable in element 3 but could be the result of the base or joint

misalignment. A comparison of the model predictions against the global validation

data may provide a more conclusive insight.

Table 4.12: Element 5 estimated model parameters.

Model C5 Ax5 Az5

model1 2.8179x10−9 0.005 -0.043
model2 2.7111x10−9 -0.007 -0.048
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Table 4.13: Element 5 model performance.

Training data Local validation data
Model rms |∆p| rms |∆p|

[mm] [mm]

model 1 0.058 0.046
model 2 0.059 0.049

4.2.2.4 Training data and local calibration results

For a visual analysis, the deviations of sensors along all elements and the predictions

of models 1 and 2, for both training and test payloads, are presented in Figure 4.17.

All models predict the target sensors similarly and relatively accurately for all element

regardless of the rigid body assumptions and deflection in y models.

Figure 4.17: Elasticity model predictions.
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4.2.2.5 Global validation results

The four competing models were evaluated in six different configurations, limited

to the x0, z0 plane in front of the robot and visible by the laser tracker. In each

configuration the robot was loaded with load 2 (532.879N) and load 4 (1064.974N).

For a visual analysis, Figure 4.18 shows the performance of the two models as an

error in predicting the sensor deviations along all elements. Model 1 only marginally

outperforms model 2 in nearly all configurations by up to 10µm which demonstrates

that the link elasticity is observable but not significant. The accuracy of either model

has a range of 50µm demonstrating that the effects of payload are greater in some

configurations, which is expected.

The predictions are less accurate for higher loads which exposes the inadequacies of

the models. In particular, a bias term was added to each element model which rep-

resented a bias between previous element predictions of the following element model

origin. The bias term is a simple correction which represents additional distortion of

the structure which will naturally increase with payload. Also, this is the likely effect

of training across a wide range of payloads and the resulting model being an average.

For high and relatively consistent payloads, training a model with data which closely

represents the intended application should be considered.

(a)

(b)

Figure 4.18: Elasticity model validation results for (a) load 2 and (b) load 4.
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In Table 4.14 the results are summarised. Both models perform well in predicting

deflections along the structure, with an improvement in accuracy by an order of

magnitude over the nominal model. The additional link elasticity terms in model

1 provide little overall gain in accuracy with only approximately 20µm difference

between models. For simplification, the model can be modelled as a rigid body with

confidence.

Table 4.14: Elasticity model validation performance.

Model Load 2 Load 4
rms |∆p| rms |∆p|

[mm] [mm]
Nominal 0.644 1.237
Model 1 0.082 0.101
Model 2 0.084 0.109

To summarise, the compliance values of joints 2, 3 and 5 can be approximated as

2.8×10−10, 4.0×10−10, 2.7×10−9 rad/Nmm, respectively, to produce a representative

model.

4.2.3 Discussion

In this study, the deflections in the robot structure due to joint stiffness and link

elasticity were measured and a robot stiffness model was developed. The stiffness

and elasticity of only some of the structural elements were identified and with only

some success.

It was not possible to isolate each structural element, plus rotational displacement

in parallel joints 4 and 6 were too small in comparison to the measurement uncer-

tainty and therefore only three elements were tested. The numerical stiffness model

developed in this study, has limited accuracy and the parameters can only be used as

an approximate order of magnitude. In future work, a parameter estimation method

that determines all compliance values simultaneously may be more successful.

The positional error at the TCP due to deflection, when the robot is carrying a 100kg

payload can be as high as 3mm in pz but also causes a significantly large positional

error in px an py. In a machining application where a heavy machining spindle is

used as an end effector, the joint stiffness errors may match the geometric parameter

errors, in terms of resulting positional error. The joint stiffness model was therefore

an important part of the numerical model.
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In comparison to literature, the testbed robot deflects by approximately 60% of the

1mm per 500N, reported value which demonstrates that there is a large variation in

industrial robot stiffness.

By comparing models with and without link elasticity terms, the experiment was

successful in determining that the link elasticity of link 3 in particular has a measur-

able effect on model prediction but that a rigid body can be assumed for simplicity

with marginal loss in accuracy. The residual effects of link deflection, in the order of

100µm, will be modelled as bias the GPR phase in the following studies.

4.3 Chapter summary

The aim of this chapter was to investigate error sources in an industrial robot and

to develop a numerical model. The CPA and element isolation methods used in

the two studies, respectively, were successful in identifying mDH parameters and a

joint compliance model. The identified parameters can only be used as approximate

orders of magnitude, but this is unlikely to result in a significantly different challenge

compared to the true values.

Table 4.15 presents the values of the numerical model parameters (base misalignment,

geometric parameter errors and joint compliance values) which are deviations from

the nominal model parameters, and indicated by ∆, for example, d1 is the geometry of

link 1, whereas ∆d1 is to be estimated during calibration. Collectively, the calibration

parameters are noted by θ. The parameters are separated into subsets which relate

to the competing models i.e. in model M2, the base (θb) and geometric parameters

(θg) only are estimated.

The calibration, geometric parameters θg are added to the standard mDH table as

shown in Table 4.16. Joints 2 and 3 have parallel axes and so ∆β2 is provided in place

of ∆d2 by following the mDH convention.
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Table 4.15: Numerical model (Mactual ) parameter errors ∆θ.

Base (θb)
∆x0,∆y0,∆z0[mm] 0.500
∆α0,∆β0∆γ0[rad] 0.0017

Geom. (θg)

∆q1[rad] 16x10−4

∆q2,...,6[rad] -5.2x10−4

∆b1,∆b3,...,6[mm] -0.300
∆a1,...,3[mm] -0.300
∆a4,...,6[mm] -0.030

∆α1,...,33[rad] -2.6x10−4

∆α4,...,6[rad] -2.6x10−4

∆β2[rad] 1x10−4

Compl. (θc) C1,...,6 [rad/Nmm] [0, 0.28, 4, 2, 2.8, 2.8, 2.8]× 10−9

Table 4.16: Numerical model mDH table with geometric parameters for an ABB IRB
6640.

Link i ∆qi di ai αi βi
[rad] [mm] [mm] [rad] [rad]

1 ∆q1 780 +∆d1 320 + ∆a1 −π/2 + ∆α1 -
2 −π/2 + ∆q2 0 1280 + ∆a2 0 + ∆α2 ∆β2
3 ∆q3 0 +∆d3 200 + ∆a3 −π/2 + ∆α3 -
4 π + ∆q4 0 +∆d4 0 + ∆a4 −π/2 + ∆α4 -
5 ∆q5 0 +∆d5 0 + ∆a5 π/2 + ∆α5 -
6 ∆q6 0 +∆d6 0 + ∆a6 0 + ∆α6 -

Thesis objective 1 was met and a numerical model that can be used to simulate

positional errors in the study in Chapter 5 was created from the data gathered. In

addition, valuable experience was gained by following the mDH convention using the

practical, CPA method.
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Chapter 5

Bias Correction of Simulated
Industrial Robot Positional Errors

The aim of this chapter is to meet thesis objective 2 by exploring the limitations of

bias correction in predicting the positional error of a simulated robot. The calibration

and GPR bias correction methodology proposed in Chapter 3 was tested on data

generated by a numerical model as a controlled system, which allowed the limitations

to be explored freely, whilst minimising time on the real robot. The focus was to

explore limitations of bias correction in this application, with respect to training data

quantity and bias reduction by calibration.

The chapter is divided into a number of case studies to meet the following objectives:

I Evaluate the positional accuracy of a simulated industrial robot. Use a numeri-

cal model to provide measured robot TCP pose data and determine pose errors

compared to nominal model predictions.

II Calibrate the three competing models in addition to the nominal model, to

provide a range of bias data levels in the bias correction case studies.

III Evaluate the performance of bias correction, using GPR to model and predict

the robot positional error data for the case studies: 1 dim, 3 dim, 6 dim (s) and

6 dim (l).

IV In each case study, evaluate the GPR model for a range of training data quan-

tities to determine the limitation of bias correction accuracy with consideration

of practical limitations.
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V In each case study, use GPR bias correction to model and predict the positional

errors from each of the competing models to compare the effect of bias reduction

on bias correction accuracy.

Each case study (along with results) is presented as an individual section in this

chapter. The calibration study results are presented in section 5.2 along with the

models used to generate data for all of the bias correction trials. The bias correction

results are presented for the case studies in sections 5.3 to 5.6. In section 5.7, a final

synthesis of all the case study results is presented.

5.1 Experimental design

The system model used for all case studies in this chapter is the numerical model of

the ABB IRB 6640 industrial robot, shown as a simulation image from Robot Studio

in Figure 5.1, which was described in Chapter 3 and modelled in Chapter 4.

Figure 5.1: Image of an ABB IRB 6640 robot in Robot Studio.

5.1.1 TCP and Payload

On the real robot, the machining spindle is mounted at approximately −450 to the

z6 axis at the end of the robot. With the robot arm stretched out horizontally, the

spindle will point downwards at 450. To continue to be representative, the TCP in

the numerical study is also set at the same angle and with a tool offset of 100mm

down and 150mm out relative to the end effector flange center (origin of joint 6).
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The tool is expressed in the model as a H t
6. The payload is an approximation of the

spindle and fixture on the real robot in Table 5.1.

H t
6 =


0.707 0 −0.707 100

0 1 0 0
0.707 0 0.707 150

0 0 0 1

 (5.1)

Table 5.1: Numerical study payload and centre of gravity COG) location relative to
the end effector.

Payload [kg] 100
COG (x, y, z)[mm] 0,0,100

5.1.2 Model parameters and calibration parameters

The range of models and calibration levels, which provide the bias data for GPR, are

presented in Table 5.2 with a statement of what calibration tools were used. SVD

was used as the primary parameter estimation tool for the base parameters. For the

calibration of M2 and M3 , retrospectively, SVD was used to provide an improved

initial estimate of the base parameters prior to LLSE calibration after early tests

showed that the calibration was sensitive to the base parameters and an improved

initial estimate avoided local minima.

Table 5.2: Description of competing model parameters and calibration tools used.

Model Calibration parameters Calibration tools
θ

M0 None
M0 is the nominal model and is not calibrated

M1 Base (θb)
SVD is used to calibrate the base
which outputs a rotation and HTM

M2
Base(θb) Initial base estimate and localisation using SVD

Geometric (θg) then base and geometric LLSE parameter estimation

M3

Base (θb) Initial base estimate and localisation using SVD
Geometric (θg) then base, geometric and joint compliance
Compliance (θc) LLSE parameter estimation

The complete model consists of 36 parameters: 6 base [γb, βb, αb, xb, yb, zb], 24 geomet-

ric parameters [∆q1, . . . ,∆q6],[d1, d3, . . . , d6],[a1, . . . a6],[α1, . . . , α6],[β2] and 6 compli-

ance parameters [C1, . . . , C6]. This number is reduced for calibration with γb absorbed
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by ∆q1, and zb absorbed by d1 as they are not separable. In this study, the additional

tool frame H t
6 is provided, assumed to be measured, as would be expected in industry,

rather than estimated to reduce the number of calibration parameters.

5.1.3 Training and validation target generation

The training and validation targets for calibration and bias correction were generated

as joint vectors using Latin hypercube sampling (LHS) between joint limits presented

in Table 6.2. LHS was used to ensure maximum spacing in the joint-space whilst

retaining pseudo-random generation. A wide range of joint angles were used for

calibration to exploit the option in a simulation. In a machining cell, a real robot

may not be able to utilise all possible joint angles as it may collide with the floor or

machining bed.

Table 5.3: Numerical study joint angle limits by case study.

Joint Calibration Case study 1 Case study 2 Case study 3 Case study 4
1 dim 3 dim 6 dim (s) 6 dim (l)

q1 ±1700 50 ±450 ±150 ±400

q2 −650, 850 00 ±450 ±150 −150, 450

q3 −1800, 700 ±450 ±450 −150, 300 −150, 450

q4 ±3000 00 00 ±300 ±800

q5 ±1200 00 00 ±300 ±900

q6 ±1800 00 00 ±300 ±800

5.1.4 Measurement Variation

In Chapter 3 the USM results of a preliminary, measurement uncertainty test on the

Leica laser tracker was discussed. To present a similar problem to the empirical study,

the same value of σε = 13µm was used in the numerical study in this chapter.

5.1.5 Euler and angle conversion

The parameter estimation method utilised full pose measurement data. That is, six

equations are provided for each measurement (3 pose and 3 orientation values). The

orientation of the tool was reported by the Spatial Analyzer (SA) software as ZYX

Euler angles and the orientation error was reported as the error in the Euler angles

(∆φα,∆φβ,∆φγ). However the functional relationship between the rotation matrix

and ZYX Euler angles is discontinuous and degenerates at φβ = π
2
. Moreover, there
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are different solutions for φβ between −π
2

and π
2
, and between π

2
and 3π

2
. This causes a

problem when determining the linear relationship between pose error and parameter

errors.

For example, in the robot home position qhome = [0, 0, 0, 0, 0, 0], an ideal transforma-

tion with no errors between the base frame Hb and joint 6 frame H6, is 00, 900, 00 i.e.

a 900 rotation around yb. The transformation is shown in shown in Figure 5.2. If there

is a small error in the orientation so that the actual transformation is 00, 90.50, 00,

the Euler angle conversion will return −1800, 90.50,−1800 and the orientation error

will be −1800, 0.50,−1800. In this example the calibrated parameters will be poor, in

terms of model accuracy.

Figure 5.2: Diagram of the base frame Hb, to joint 6 frame H6, transformation.

In this study, the simplest approach of filtering out configurations that returned

orientation errors of greater than an arbitrarily chosen value of π
2
, was used, prior to

calibration.

5.2 Calibration results

In this section, the parameter estimation and accuracy results for the calibration

of models M0, M1, M2 and M3 is presented. The ’true’ model which includes the

imposed parameter errors ∆θ, is referred to as Mactual. Model M0 is the nominal

model which was evaluated first to provide baseline data. Models M1, M2 and M3

were then calibrated using data from 120 training poses. The prediction accuracy of

all models was then compared for 998 validation poses. Two inputs were removed as

outliers due to discontinuities with Euler angle conversions.
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5.2.1 Nominal model accuracy

In Figure 5.3, the predictions of the training poses are presented as separate his-

tograms in ∆px,∆py and ∆pz to look for issues that may be a concern for the calibra-

tion phase. The performance of the nominal model, for both training and validation

poses, is summarised as a mean and standard deviation in separate pose directions

and orientations, and reported as an rms and maximum |∆p| in Table 5.4.

The expectation was that the error ∆pz would be the largest, with a large mean

(≈ 3mm) due to the joint compliance. The overall positional error, in rms |∆p| terms,

was only expected to be in the order of 5mm. An initial observation is that the both

the mean error in ∆px and ∆py, and distribution of errors in each direction was much

greater than expected, which resulted in the larger rms |∆p|. Given that this model

is a testbed for bias correction, discussions will revolve around whether the model

is relevant and what challenges this data may provide for both calibration and bias

correction. In a brief preliminary study, the error attributed to the base, geometric

and joint compliance, showed that for the calibration input space, the different factors

resulted in rms |∆p| of approximately 7mm, 3mm and 6mm, respectively. The large

mean error in ∆px and ∆py may be attributed in part to high base misalignment

values. The large error from the base is a consequence of the sensitivity of the end

effector position to any small misalignment at the base, scaled by a long arm length.

However, although high, the bias resulting from the base misalignment is not expected

to be challenging for either the parameter estimation during calibration or for the bias

correction to learn in M0,GP .

Figure 5.3: Numerical study, distribution of training bias data results for model M0.
f: frequency (number of measurements).
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Table 5.4: Numerical study, summary of training bias data results for model M0.

M0 M0

Training Validation

∆̄px (std) [mm] 4.191 (4.500) 3.912 (4.354)
∆̄py (std) [mm] -3.206 (4.402) -2.712 (4.311)
∆̄pz (std) [mm] -3.868 (3.742) -4.118 (3.988)

¯∆φα (std) [deg] 0.210 (0.314) 0.165 (0.349)
∆̄φβ (std) [deg] 0.010 (0.155) 0.020 (0.153)
∆̄φγ (std) [deg] 0.008 (0.295) 0.025 (0.331)

rms |∆p| (max) [mm] 9.797 (17.528) 9.644 (20.319)

5.2.2 Estimated Parameters

The actual and estimated parameter errors from calibration are presented in Table

6.6.

The estimated parameters by calibration of the base only by M1 , provides a useful

insight into the error form. Four of the parameters remain similar to the actual pa-

rameters which suggests that the geometric and compliance errors produce relatively

small errors in the ∆β0,∆α0,∆x0 and ∆y0 directions. The estimations of ∆γ0 and

∆z0 are considerably larger than the actual parameters. ∆γ0 can be explained by

the addition of the base rotation ∆γ0 and joint 1 error ∆q1 which were in the same

direction and their sum is very close to the estimation of ∆γ0 alone.

Models M2 and M3 used the parameters from M1 as an initial estimate to help

avoid local minima. ∆γ0 and ∆z0 were fixed to avoid rank deficiency. The parameter

changes were absorbed into ∆q1 and ∆d1 which were in the same directions as ∆γ0

and ∆z0 and the number of calibration parameters was reduced by two.

Model M3 is a compete model with all error parameters estimated. The geometric

and compliance parameters were accurately estimated which gives confidence in the

method. Small errors in the base parameters may be explained by the measurement

variation.

96



Table 5.5: Numerical study, calibrated parameters for competing models.

∆θ Mactual M1 M2 M3

∆γ0(10−3) [rad] 1.700 3.068 3.068 3.068
∆β0(10−3) [rad] 1.700 1.632 1.833 1.698
∆α0(10−3) [rad] 1.700 1.828 1.499 1.702

∆x0 [mm] 0.500 0.633 0.241 0.493
∆y0 [mm] 0.500 0.648 0.051 0.507
∆z0 [mm] 0.500 -3.806 -3.806 -3.806
∆d1 [mm] -0.300 - -0.112 4.006
∆d2 [mm] - - - -
∆d3 [mm] -0.300 - -0.864 -0.300
∆d4 [mm] -0.300 - 0.954 -0.300
∆d5 [mm] -0.300 - 0.052 -0.300
∆d6 [mm] -0.300 - -0.284 -0.300
∆a1 [mm] -0.300 - 0.573 -0.300
∆a2 [mm] -0.300 - -0.493 -0.300
∆a3 [mm] -0.300 - -0.959 -0.300
∆a4 [mm] -0.030 - 0.112 -0.030
∆a5 [mm] -0.030 - -0.071 -0.030
∆a6 [mm] -0.030 - -0.149 -0.030

∆q1(10−3) [rad] 1.600 - 0.509 0.232
∆q2(10−3) [rad] -0.520 - -1.551 -0.520
∆q3(10−3) [rad] -0.520 - 0.698 -0.520
∆q4(10−3) [rad] -0.260 - -0.824 -0.260
∆q5(10−3) [rad] -0.260 - 0.177 -0.260
∆q6(10−3) [rad] 0.100 - 0.549 0.100
∆α1(10−3) [rad] -0.260 - -4.63E-02 -0.260
∆α2(10−3) [rad] -0.260 - -4.12E-01 -0.260
∆α3(10−3) [rad] -0.260 - 4.20E-01 -0.260
∆α4(10−3) [rad] 0.100 - -5.17E-01 0.100
∆α5(10−3) [rad] 0.100 - 8.77E-01 0.100
∆α6(10−3) [rad] 0.100 - 8.92E-02 0.100
∆β2(10−3) [rad] 0.100 - 4.88E-01 0.100

C1 [(10−9)rad/Nmm] 0.28] - - 0.28
C2 [(10−9)rad/Nmm] 4.00 - - 4.00
C3 [(10−9)rad/Nmm] 2.80 - - 2.80
C4 [(10−9)rad/Nmm] 2.80 - - 2.80
C5 [(10−9)rad/Nmm] 2.80 - - 2.80
C6 [(10−9)rad/Nmm] 2.80 - - 2.80
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5.2.3 Results of calibrated model predictions

The prediction results of the competing models are summarised in Tables 6.7 and 6.8

for comparison, and then presented as histograms of errors in ∆px,∆py and ∆pz for

visual analysis. As expected, the complete model M3, produced results with a similar

accuracy to the imposed measurement variation σε = 13µm. With no error due to

unmodelled errors or incorrect parameter estimations, the accuracy of M3 simply

confirms LLSE as a suitable tool in this application, but the model does not provide

a useful test bed from which to generate bias data for GPR.

The competing models M1 and M2 reduce the residual error to approximately a half

that of M0, but remain far in excess of what was expected. Anecdotally, after calibra-

tion, the accuracy of similar, real robots is approximately 0.3mm to 1mm, compared

to the 4mm in this simulation. The mean errors in ∆px,∆py and ∆pz were reduced to

almost zero as expected, which can be attributed almost entirely to the base calibra-

tion. The remaining, large rms |∆p| of approximately 4mm is likely the result of the

joint compliance errors. When measured over a wide range of configurations the joint

compliance errors may produce a wide distribution of positional errors which cannot

be effectively modelled with a simple base parameter or joint orientation parameter.

This is an effect that may be seen in the real system in Chapter 6.

Table 5.6: Numerical study, summary of training bias data results for competing
calibration models M0, M1, M2 and M3.

M0 M1 M2 M3

∆̄px (std) [mm] 4.191 ( 4.500 ) -0.001 ( 1.955 ) -0.001 ( 1.706 ) -0.001 ( 0.012 )
∆̄py (std) [mm] -3.206 ( 4.402 ) 0.002 ( 1.949 ) 0.002 ( 1.934 ) 0.002 ( 0.013 )
∆̄pz (std) [mm] -3.868 ( 3.742 ) 0.000 ( 2.922 ) 0.000 ( 2.700 ) 0.000 ( 0.011 )

¯∆φα (std) [deg] 0.210 ( 0.315 ) 0.037 ( 0.266 ) 0.031 ( 0.239 ) 0.000 ( 0.000 )
∆̄φβ (std) [deg] 0.010 ( 0.155 ) -0.003 ( 0.126 ) 0.010 ( 0.121 ) 0.000 ( 0.000 )
∆̄φγ (std) [deg] 0.008 ( 0.295 ) 0.019 ( 0.238 ) 0.000 ( 0.215 ) 0.000 ( 0.000 )

rms |∆p| (max) [mm] 9.797 ( 17.528 ) 4.003 ( 8.147 ) 3.718 ( 7.501 ) 0.021 ( 0.040 )
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Table 5.7: Numerical study, summary of validation bias data results for competing
models M0, M1, M2 and M3.

M0 M1 M2 M3

∆̄px (std) [mm] 3.912 ( 4.354 ) 0.103 ( 2.101 ) 0.149 ( 1.910 ) 0.000 ( 0.013 )
∆̄py (std) [mm] -2.712 ( 4.311 ) 0.096 ( 2.227 ) 0.044 ( 1.993 ) 0.000 ( 0.013 )
∆̄pz (std) [mm] -4.118 ( 3.988 ) -0.264 ( 2.966 ) -0.189 ( 2.731 ) 0.000 ( 0.013 )

¯∆φα (std) [deg] 0.165 ( 0.349 ) -0.021 ( 0.294 ) -0.026 ( 0.296 ) 0.000 ( 0.000 )
∆̄φβ (std) [deg] 0.020 ( 0.153 ) 0.020 ( 0.126 ) 0.026 ( 0.126 ) 0.000 ( 0.000 )
∆̄φγ (std) [deg] 0.025 ( 0.331 ) 0.018 ( 0.261 ) -0.001 ( 0.263 ) 0.000 ( 0.000 )

rms |∆p| (max) [mm] 9.644 ( 20.319 ) 4.272 ( 9.842 ) 3.889 ( 7.656 ) 0.023 ( 0.057 )

The distribution of errors for models M1 and M2 shown in Figures 6.5 are similar sug-

gests that much of the error due to geometric parameters can be modelled as a simple

bias. Looking forward, the base calibration may provide a similar reduction in overall

bias but it remains to be seen whether the additional complexity of the bias form

resulting from the geometric parameters will affect the bias correction performance.

The skewed distribution in ∆pz for models M1 and M2 also suggests that a large

portion of errors due to joint compliance are modelled relatively accurately, there

remains configurations with poor predictions and large deflections.
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(a)

(b)

(c)

Figure 5.4: Numerical study, distribution of validation bias data results for competing
models. f: frequency (number of measurements).

5.2.4 Summary

The aim of the calibration study was to evaluate the problem and create calibration

models that would present the bias correction phase with a range of bias levels. The

models were successfully calibrated with 120 training data poses and validated with

1000 poses with a wide range of joint angles. The nominal model (M0) positional

errors are higher than is expected in the real system (0.96mm compared to an expec-

tation of approximately 3mm to 5mm), but the distribution of errors does not suggest
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that the problem is any more complex.

While M0 was expected to produce the most challenging data set for bias correction,

M1 and M2 have produced very similar data. However, it is still useful to explore

whether the bias form will be smoother and therefore less changing for bias correction

with the additional geometric parameters calibrated in M2. Both M1 and M2 shall

continue to provide data for the bias correction case studies. M3 was a complete

parameter model and successfully modelled the robot poses with an accuracy that

matched the measurement variation. As such, there was no bias to be learned and M3

was progressed to provide data for the proceeding case studies. This is not expected

to be the case in the real system where other unmodelled errors may remain.

The challenge of finding a global minima when using LLSE as a parameter estimation

tool was exposed when calibrating models M2 and M3. The solution was particularly

sensitive to the initial estimate of the base parameters which is expected given that

by simply arm length scaling. From an initial estimate of zero, as with all other

parameters, local minima were found and the predictions were poor. By using the

SVD base calibration as an initial estimate, a large step towards the global solution

was made and the optimal solution found. An initial localisation of the data by base

calibration is proposed as the approach in all studies in this thesis. SVD is described

by Zhuang and Roth [120] and used by Yun et al. [76] as a simple calibration tool

to obtain least squares parameter solutions. The sensitivity to parameter initial

estimates, and thus the use of SVD, is not disclosed in related robot calibration

research literature.

5.3 Bias correction of robot positional error with

1 joint angle input

The aim of this first case study is to test the proposed bias correction method in pre-

dicting robot positional error by presenting it with a 1 dimensional problem (referred

to herein as 1 dim). Only the angle of joint 3 (q3) was used as an input variable while

other joint angles were fixed. The bias form is expected to be relatively simple and

smooth, with many of the error parameter interactions being constant. For example,

without rotation of joints 4 or 6, the twist in the structure is expected to be negligible.

The identification of kernel hyperparameters is also expected also be the simplest case

with only three hyperparameters required. In this case study, the effect of training

data size on prediction accuracy will not be evaluated. The bias form is simple and
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only uncertainty between training data points is likely to change with data quantity.

The results of this study are expected to be a starting point and motivation to test

the methodology with more challenging cases.

The results will be presented in the following subsections: Analysis of nominal model

M0 data as a baseline; analysis of hyperparameter estimations; and prediction results

for competing models using GPR.

5.3.1 Baseline data

The residual positional error between the actual robot model Mactual and competing

model predictions in a range of configurations is presented as bias data for prediction

using GPR. The bias data from M0 is presented in Figure 5.5 as an example, with

M1 and M2 showing similar forms.

The form of the bias data is a good example of the desirable smooth function that

is ideally suited to GPR-based bias correction. It is expected that the data may

be modelled accurately with bias correction, assuming sufficient training data. The

largely sinusoidal form of the bias observed may be explained by an analysis of the

robot kinematics as joint 3 is rotated, and torque characteristics from the payload

during the rotation. As joint 3 (an elbow joint) rotates from 500 to outstretched

and then to −500, the distance of the payload to joints 2 and 3 increases and then

decreases again. The subsequent torques and deflections ∆pz (vertical deflection) and

∆px (deflection outwards, away from the base) can be described as cosine and sine

functions respectively. The error ∆py would not be expected in the x, z planar motion

but is present due to a misalignment in the base and joint 2 (β2).
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Figure 5.5: Numerical study, training and validation bias data from model M0 in the
1 dim case study.

The results in predicting training and validation data by the competing models are

summarised in Tables 5.8 and 5.9 respectively and provides an evaluation of the task

provided to the GPR. The high bias levels and wide distribution are the result of sub-

stantially large, unmodelled joint compliance deflections. However, given the smooth

form of the bias, it is still expected that the GPR will model the data accurately.

Table 5.8: Numerical study, summary of training bias data results for competing
models M0, M1, M2 and M3 in the 1 dim case study.

M0 M1 M2

∆̄px (std) [mm] 3.077 (4.142) -0.625 (3.089) 0.232 (3.087)
∆̄py (std) [mm] 1.191 (0.933) -0.618 (0.454) -0.608 (0.544)
∆̄pz (std) [mm] -9.927 (1.676) -3.676 (1.480) -3.016 (1.495)

rms |∆p| (max) [mm] 11.405 (12.640) 5.109 (5.683) 4.632 (4.889)
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Table 5.9: Numerical study, summary of validation bias data results for competing
models M0,M1,M2 and M3 in a 1 dim case study.

M0 M1 M2

∆̄px (std) [mm] 3.071 (4.122) -0.629 (3.074) 0.228 (3.072)
∆̄py (std) [mm] 1.190 (0.928) -0.621 (0.452) -0.612 (0.541)
∆̄pz (std) [mm] -9.930 (1.665) -3.679 (1.470) -3.018 (1.485)

rms |∆p| (max) [mm] 11.404 (12.653) 5.109 (5.715) 4.632 (4.901)

5.3.2 Hyperparameter estimation

A squared-exponential (SE) kernel for a single input variable GP has 3 hyperparam-

eters: σf is the signal variance (scaling in the y axis i.e. position prediction), l1 is the

characteristic length scale, (one per input variable) which scales the input, and σn is

the noise term.

Searching for the hyperparameters which maximise the marginal likelihood may lead

to local minima. While local minima are simply different interpretations of the data

and not incorrect, a global minima is desirable. An initial investigation showed that

there were no local minima in this case and an initial estimate of h0 = [1, 1, 1] as a

vector of hyperparameters was used.

An initial analysis of the hyperparameter estimates is taken as a precautionary mea-

sure to identify modelling issues. Firstly, σn is approximately equal to the measure-

ment variation σε which is an indication that the data is modelled with high accuracy.

An order of magnitude smaller suggests that the model was overfitting and confidence

in predictions may deteriorate rapidly for inputs that are distant from training data.

If σn is an order of magnitude larger than σε, a portion or the bias would be described

as noise and model predictions are less accurate. If the length scale l1 < 1 then the

model is more free to rise and fall quickly. For highly non-linear data this may allow

the model to react quickly to bias changes and model more accurately, otherwise this

may be an indication of overfitting. l1 >> 1 suggests that the model is insensitive to

the input variable and will react very little to changes in the bias.

For notation purposes, the GPR model associated with the competing model bias

data is denoted by a subscript GP . For example, M1,GP is the GPR model determined

from the M1 model bias data. The optimal hyperparameters selected for each of

models i.e. M0,GP , M1,GP and M2,GP are presented in Table 5.10. For each model, l1
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is close to 1 which again suggests that the model does not overfit or ignore the data.

The expectation is that the training data are modelled accurately without overfitting.

Table 5.10: Numerical study, hyperparameter estimates for competing models in the
1 dim case study.

Model σf l1 σn

M0,GP

h(∆px) 4.34 0.92 0.013
h(∆py) 2.58 1.83 0.013
h(∆pz) 9.10 1.00 0.011

M1,GP

h(∆px) 3.29 0.86 0.013
h(∆py) 0.48 1.30 0.013
h(∆pz) 8.14 0.99 0.011

M2,GP

h(∆px) 3.37 0.86 0.013
h(∆py) 0.62 1.48 0.014
h(∆pz) 88.39 0.99 0.011

5.3.3 Results of bias correction

Figure 5.6 shows an example of the training data and mean prediction of M0,GP for

a visual analysis. A portion of the input range (±150) and the training data only is

presented for clarity.

As expected, model M0,GP follows the form of the bias and model predictions will

be improved. Given the abundance of training data and accuracy of the predictions,

the confidence is very high and the prediction variance (presented as ±2σ) is too

small to display. The results are summarised in Table 5.11. Bias correction models

M0,GP , M1,GP and M2,GP perform equally and the results are presented together. As

expected, the prediction accuracy was not affected by bias size, given the simplicity

of the bias form, and the predictions were limited only to σn which is the ideal case.
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Figure 5.6: Numerical study, prediction results of training data bias correction for
model M0,GP in the 1 dim case study.

Table 5.11: Numerical study, summary of training and validation data bias correction
results for models M0,GP , M1,GP and M2,GP in the 1 dim case study.

Training Validation

∆̄px (std) [mm] 0.000 (0.012) -0.001 (0.014)
∆̄py (std) [mm] 0.000 (0.013) 0.003 (0.014)
∆̄pz (std) [mm] 0.000 (0.011) -0.001 (0.014)

rms |∆p| (max) [mm] 0.021 (0.043) 0.024 (0.059)

5.3.4 Summary

The aim of the study in this section was to test the bias correction method on a

simple 1 dim case study. The study was an example of an ideal case, exploiting an

abundance of training data and estimating a small number of hyperparameters.

The effect of bias level, produced by the competing models, was negligible and the

accuracy of all bias correction models were limited only by the measurement variation.

5.4 Bias correction of robot positional error with

a 3 joint angle input

The aim of this study is to continue to investigate the limitations of bias correction

by increasing the complexity of the problem to 3 input variables (referred to herein

as 3 dim). In this study, only joints 1, 2 and 3 were rotated whilst all other joint

angles were fixed. The challenge of prediction of bias data in relation to training data

quantity and bias reduction from competing models are tested.
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The effect of bias reduction may become more important in this study compared to

the 1 dim case. A GP’s penalises more complex functions and so if the bias form is

too complex (i.e. highly non-linear), then reducing the complexity of the bias form

may provide an easier challenge for bias correction and a more accurate model.

In addition, the number of hyperparameters to estimate is higher than the 1 dim

case and a strategy to avoid local minima is a design consideration. Hyperparame-

ter estimation and data quantity studies were run in parallel to determine optimal

conditions.

5.4.1 Training data quantity

Bias correction accuracy is expected to improve by increasing the training data quan-

tity as long as it is appropriately distributed and fills the same hypercube as the test

data. While a numerical study can exploit this, the decisions made in this chapter will

be mindful of the cost in terms of computation and also the practicality of measuring

any proposed quantity of data in the experimental chapter. It may be more useful to

retain some resemblance to the experimental study for comparison.

Figure 5.7 shows the residual error in predicting the validation set, after bias correc-

tion, in terms of rms ∆px,∆py and ∆pz separately, against increasing training data

size. Given the approach of using a range of initial estimates, three initial estimates

are presented and the optimal would typically be chosen. Firstly, it is evident by

a spike in results for h3 that the model is sensitive to the initial estimate even at

high numbers of training data. The solution is therefore to continue to search for

hyperparameters and select the optimal based on the minimum rms ∆p. The results

show that with the optimal hyperparameter selection there is only a marginal change

of approximately 10µm between 200 and 1000 training data inputs. A reasonable

compromise is 300 training data inputs which will form the basis for this study.
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Figure 5.7: Convergence plot of bias correction prediction accuracy against training
data quantity for model M0,GP in the 3 dim case study.

5.4.2 Baseline data

Figure 5.8 shows the distribution of validation bias data generated by the competing

models for a visual analysis.

The bias data from M1 and M2 have very similar distributions and may present a

similar challenge for bias correction. The similarity suggests that the majority of the

positional error resulting from geometric error and joint compliance, or at least the

complex form, can be modelled by base localisation. The payload will mostly produce
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a deflection downwards which can be modelled in part by an additional base or joint

1 rotation. The form of the joint compliance error does not produce a form that is

as complex as expected. Base calibration alone however does present a significantly

different challenge with a different and wider distribution of bias data in M0 compared

to M1 and M2.

A different challenge may be presented to bias correction of ∆px, ∆py and ∆pz with

each showed different distributions.

The distribution of bias data in ∆px indicates some bi-modality. Bi-modality indicates

that the two modes are created by two data sets that could be separated. This could

be by workspace regions or error sources. One probable cause would be the deflection

in ∆px resulting from joint compliance. While the deflection is always downwards in

∆pz, if the arm is raised above the horizontal, joint compliance will cause the TCP to

deflect forward (positive error). If the arm is lowered below horizontal the deflection

will be backwards (negative error). This possible explanation is partially supported

by the smaller peaks in the data of M1 and M2. If this is the case, the separate data

sets should not be a problem for GPR. The bias is modelled over a hyperplane of joint

angles the bias form resulting from raised or lowered arms should will be modelled

locally in separate regions. This would not be the case if the input variables were

Cartesian co-ordinates.

The distribution of data in ∆py is Gaussian which does not suggest any additional

challenges.

The skewed distribution in the ∆pz bias data can again be explained by joint com-

pliance deflections which will almost always be in the negative z direction. The dis-

tribution of bias data then does not necessarily indicate concerns for bias correction

or the use of GPR.
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(a)

(b)

(c)

Figure 5.8: Numerical study, distribution of validation bias data results for competing
models (a)M0, (b)M1 and (c)M2 in the 3 dim case study. f: frequency (number of
measurements).

The results in predicting training and validation data by the competing models are

summarised in Tables 5.12 and 5.13 respectively and provides an evaluation of the

task provided to the GPR.

Interestingly, the rms |∆p| in the 3 dim case is of a similar magnitude to the 1 dim

case. In fact, ∆px and ∆pz standard deviations are similar to the 1 dim case which

suggest that again, the results are dominated by the payload and joint compliance
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error.

The similarity in results between training and validation data is an indication that

the training data provides good spatial coverage and that an accurate model of the

training data should produce an accurate prediction of the validation data.

The bias data from M1 and M2 are again very similar in magnitude and distribution,

and may not provide the GP with sufficiently different challenges. However, this can

easily be confirmed in a numerical model.

Table 5.12: Numerical study, summary of training bias data for competing models in
the 3 dim case study.

M0 M1 M2

∆̄px (std)[mm] 3.327 ( 4.321 ) -0.585 ( 2.629 ) 0.080 ( 2.547 )
∆̄py (std)[mm] 0.598 ( 3.066 ) -0.592 ( 1.226 ) -0.555 ( 1.240 )
∆̄pz (std)[mm] -8.583 ( 3.388 ) -2.537 ( 2.723 ) -1.998 ( 2.751 )

rms |∆p| (max)[mm] 11.159 ( 17.295 ) 4.786 ( 6.001 ) 4.455 ( 6.470 )

Table 5.13: Numerical study, summary of validation bias data for competing models
in the 3 dim case study.

M0 M1 M2

∆̄px (std)[mm] 3.220 ( 4.288 ) -0.690 ( 2.617 ) -0.015 ( 2.529 )
∆̄py (std)[mm] 0.598 ( 3.185 ) -0.595 ( 1.260 ) -0.557 ( 1.258 )
∆̄pz (std)[mm] -8.533 ( 3.529 ) -2.486 ( 2.732 ) -1.944 ( 2.801 )

rms |∆p| (max)[mm] 11.157 ( 17.401 ) 4.785 ( 6.065 ) 4.461 ( 6.482 )

5.4.3 Hyperparameter search

The SE kernel for a GP with three input variables has five hyperparameters, σf , σn

and a length scale for each input variable (joint angle) l1, l2, l3. The hyperparameter

search was conducted from an initial estimate of h0 = [1, 1, 1, 1, 1] after an initial

investigation showed that all searches converged to the same solution, indicating

that there are no local minima near to the expected solutions. The hyperparameter

search may still be sensitive to the initial estimate as the number of input dimensions

increases.

The estimated hyperparameters for each set of bias data are presented in Table 5.14.

σn > σε in ∆px and ∆pz which indicates that the model does not ideally fit the bias
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form and so a portion of the bias must be explained as ‘noise’ to prioritise a smooth

fit. The expectation is that the accuracy of the predictions will be higher than the

measurement variation.

The length scale parameters are all of a similar order and close to 1 which provides

confidence that all the model is not attempting to overfit and the bias is a function

of all parameters which is expected. The largest range of length scales can be seen

in h1(∆pz) for both models M1,GP and M2,GP . l1 which represents the angle of joint

1 is x4 larger than l2 which represents joint 2. This demonstrates that the vertical

deflection in z is relatively insensitive to the rotation of joint 1 which as a vertical

axis, which is as expected. The ratio of length scales can be used as an indication of

model sensitivity.

Table 5.14: Numerical study, hyperparameter estimates for competing models in the
3 dim case study.

Model σf l1 l2 l3 σn

M0,GP

h1(∆px) 3.52 2.89 1.18 1.59 0.036
h1(∆py) 5.89 3.00 1.97 2.03 0.015
h1(∆pz) 3.90 3.16 1.20 1.65 0.041

M1,GP

h1(∆px) 2.13 2.65 1.07 1.39 0.035
h1(∆py) 4.48 2.95 1.88 1.90 0.015
h1(∆pz) 2.57 4.05 1.11 1.25 0.041

M2,GP

h1(∆px) 2.19 2.64 1.08 1.40 0.035
h1(∆py) 4.55 2.99 1.87 1.90 0.015
h1(∆pz) 2.56 4.22 1.11 1.23 0.041

5.4.4 Results of bias correction

Figure 5.9 shows the distribution of residual positional errors after bias correction of

the competing model validation data for a visual analysis.

Confidence can be gained that the GPR has modelled the bias form accurately by a

zero mean Gaussian distribution of residual errors. The error sources that caused the

skewed and possible bi-modality of bias data of models M0, M1 and M2 have been

modelled successfully.

Similar to the 1 dim case, reduction of bias from different levels of calibration has

little or no effect on the bias correction accuracy, demonstrated by the near identical

distributions for each model data.
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The prediction of ∆py is more accurate than the predictions of ∆px and ∆pz, evi-

denced by a narrower distribution. The starting point for bias correction of ∆py was

already less challenging, having a Gaussian distribution and smaller standard devia-

tion. The comparison suggests that the errors that caused the skewed and bi-modal

distributions has only partially been modelled.

(a)

(b)

(c)

Figure 5.9: Numerical study, distribution of validation data bias correction results
for models (a) M0,GP , (b) M1,GP and (c) M2,GP in the 3 dim case study. f: frequency
(number of measurements).

A summary of bias correction results for training and validation bias data is presented
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in Tables 5.15 and 5.16. The residual error in the bias data has been substantially

reduced using bias correction. Bias correction reduced the positional error of the robot

for the most challenging data, that of M0, from a rms |∆p| of 11mm to 48µm for the

training data and 78µm for validation data. As in the 1 dim case, the accuracy of

bias correction predictions is unaffected by the reduction of bias size and complexity,

evidenced by near identical standard deviations and rms results for the competing

models. It is still expected that as the number of input variables increases, the

complexity of the bias form will change substantially between competing models and

the bias correction results will begin to separate. However, it may also be the case

that calibration is not necessary and that the bias correction results remain similar

for all competing model bias data.

A completely accurate model of the training data has only been achieved for ∆py,

indicated by a standard deviation equal to the measurement variation σε, which is the

expected limit of bias correction accuracy. A small proportion of the complex bias

form, indicated by the skewed and bi-modal distributions, has not been modelled

accurately resulting in standard deviations of ∆px and ∆pz two to three times higher

than σε. The bias form will become more complex for higher dimension cases studies

and the prediction errors are expected to increase in the following case studies.

The accuracy of the validation data predictions is higher than that of the training

data, which is expected. The space between training data inputs is sufficiently large

and/or small changes in bias exist, so that the bias data is not accurately modelled for

all inputs. In the higher dimension case studies, particularly with a wider input range,

the more complex bias changes between training data points will not be modelled

accurately and the difference between the training and validation data prediction

accuracies after bias correction may increase.

Table 5.15: Numerical study, summary of training data bias correction results for
competing models in the 3 dim case study.

M0,GP M1,GP M2,GP

∆̄px (std) [mm] 0.000 ( 0.030 ) 0.000 ( 0.029 ) 0.000 ( 0.029 )
∆̄py (std) [mm] 0.000 ( 0.013 ) 0.000 ( 0.013 ) 0.000 ( 0.013 )
∆̄pz (std) [mm] 0.000 ( 0.035 ) 0.000 ( 0.035 ) 0.000 ( 0.035 )

rms |∆p| (max) [mm] 0.048 ( 0.340 ) 0.047 ( 0.324 ) 0.048 ( 0.322 )
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Table 5.16: Numerical study, summary of validation data bias correction results for
competing models in the 3 dim case study.

M0,GP M1,GP M2,GP

∆̄px (std) [mm] 0.000 ( 0.051 ) 0.000 ( 0.051 ) 0.000 ( 0.051 )
∆̄py (std) [mm] 0.000 ( 0.019 ) 0.000 ( 0.019 ) 0.000 ( 0.019 )
∆̄pz (std) [mm] -0.001 ( 0.056 ) -0.001 ( 0.055 ) -0.001 ( 0.055 )

rms |∆p| (max) [mm] 0.078 ( 0.793 ) 0.077 ( 0.761 ) 0.077 ( 0.760 )

5.4.5 Summary

The aim of this study was to investigate the limitations of bias correction in predicting

robot positional error from an input of 3 joint variables, with respect to training data

size and bias reduction. Bias correction in the 3 dim case was presented with more

complex bias data than seen in the 1 dim case. Bi-modality and skewed distributions

suggested more complex errors that were likely to be functions of joint angle, and as

such able to be modelled by the GPR. This was confirmed by a substantial reduction

in positional error. The accuracy of the prediction of training data did not reach the

limit of σε as seen in the 1 dim case and some of the bias form in ∆px and ∆pz was

modelled as noise by the GPR model. The increase in noise and reduction in accuracy

are early indications that the bias form becomes more non-linear and challenging to

model as the number of dimensions increases, confirming expectations.

Modelling accuracy above 200 training data values did not vary significantly, except

for models with sub-optimal hyperparameter estimates. As the bias form becomes

more non-linear with higher dimensional inputs, training data resolution may become

a limitation and will continue to be investigated in the next case studies.

5.5 Bias correction of robot positional error with a

6 joint angle input and small joint angle range

The aim of this study is to continue to investigate the limitations of bias correction

by increasing the complexity of the problem to 6 input variables, but with a relatively

narrow input space (referred to herein as 6 dim (s)). The input space was narrowed by

reducing the joint angle range to take a small step towards a more complex problem

and to reflect the challenge of milling which is often in a smaller workspace, compared

to panel drilling. In this study joints 1 to 6 were all be rotated to configurations that
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provide TCP poses. The challenge of prediction of bias data in relation to training

data quantity and bias reduction from competing models were tested.

The expectation is that the bias form will be more complex in a 6 dimension space

compared to 3 dimensions and be greater challenge to bias correction. In the previous

cases, bias reduction had a negligible effect on bias correction accuracy, but the

expectation is that bias reduction may still affect accuracy in higher dimension cases.

The number of hyperparameters to estimate is higher than the previous cases and a

strategy to avoid local minima is a design consideration. Hyperparameter estimation

and data quantity studies will be run in parallel to determine optimal conditions.

5.5.1 Training data quantity

In the 3 dim study, 300 training data appoints were used. To retain the same reso-

lution for a 6 dim case would require 90,000 data points which is not practical and

may lead to computational challenges for GPR, which is slow with high training data

quantities. The limitation of accuracy with respect to training data size is established

again by testing. Figure 5.10 shows the residual error in predicting the validation set,

after bias correction, in terms of rms ∆px,∆py and ∆pz separately, against increasing

training data size. Examples of the performance against training data quantity is

presented for a sample of initial hyperparameter estimates. A spike in results for h3

indicates that the model is sensitive to the initial estimate even at high numbers of

training data. The solution is therefore to continue to search for hyperparameters

and select the optimal based on the minimum rms ∆p. While the accuracy of the

predictions does not fully converge, with the optimal hyperparameters selected there

is only a marginal gain in accuracy of less than 10µm beyond a training data quantity

of 800. Training data will be generated by the competing models in 800 training data

poses.
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Figure 5.10: Convergence plot of bias correction prediction accuracy against training
data quantity for model M0,GP in the 6 dim (s) case study.

5.5.2 Baseline data

Figure 5.11 shows the distribution of validation bias data generated by the competing

models for a visual analysis.

The bias data from M1 and M2 have very similar distributions, as in the 3 dim

case study, and may again present a similar challenge for bias correction. The same

assumptions made in the 3 dim case can be made: that the large bias in ∆pz is the

result of joint compliance deflection, whilst the bias in ∆py may be mainly attributed

to geometric errors which is largely unaffected by joint compliance.
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A different challenge may be presented to bias correction of ∆px, ∆py and ∆pz with

each showed different distributions.

The distribution of bias data in ∆px no longer indicates some bi-modality and ap-

proaches a non-Gaussian distribution without a peak in the data of M1 and M2 .

This could be the result of a multi-modal distribution with many peaks which sug-

gests that the data may be separated into a number of subsets, each representing

a joint subspace region for example, or a could be an indication of a challenging

non-linear problem.

The distribution of data in ∆py is Gaussian which does not suggest any additional

challenges.

The skewed distribution in the ∆pz bias data can again be explained by joint com-

pliance deflections which will almost always be in the negative z direction. The

distribution of bias data in ∆py and ∆pz then do not necessarily indicate concerns

for bias correction or the use of GPR, but the distribution of ∆px may be.
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(b)
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Figure 5.11: Numerical study, distribution of validation bias data results for compet-
ing models (a)M0, (b)M1 and (c)M2 in the 6 dim (s) case study. f: frequency (number
of measurements).

The results of training and validation data predictions by the competing models are

summarised in Tables 5.17 and 5.18 respectively and provides an evaluation of the

task provided to the GPR. While mean and standard deviations for ∆px data may

not be appropriate, they are presented for comparison. Interestingly, the rms |∆p| in
the 6 dim (s) case is of a similar magnitude to the 1 dim and 3 dim cases. This may

be the result of the reduced joint space range but does still suggest that there are no

additional extreme bias values.
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The bias data ofM2 may in fact present a slightly different challenge for bias correction

than the data from M1. Whilst distributions are similar, M2 has a mean bias ∆px and

∆pz and rms |∆p| of approximately 0.8mm smaller than that of M1. The similarity

in results between training and validation bias data is an indication that the training

data provides good spatial coverage. Whilst this was also true in the 3 dim case, the

predictions of the validation data were not as accurate as the training data which

suggests the contrary.

Table 5.17: Numerical study, summary of training bias data results for competing
models in the 6 dim (s) case study.

M0 M1 M2

∆̄px (std)[mm] 2.426 ( 2.795 ) -1.416 ( 2.031 ) -0.622 ( 2.016 )
∆̄py (std)[mm] 1.743 ( 1.091 ) -0.609 ( 0.393 ) -0.690 ( 0.357 )
∆̄pz (std)[mm] -10.927 ( 1.425 ) -4.303 ( 1.248 ) -3.601 ( 1.271 )

rms |∆p| (max)[mm] 11.804 ( 15.218 ) 5.169 ( 6.179 ) 4.430 ( 5.805 )

Table 5.18: Numerical study, summary of validation bias data results for competing
models in the 6 dim (s) case study.

M0 M1 M2

∆̄px (std)[mm] 2.418 ( 2.800 ) -1.428 ( 2.044 ) -0.636 ( 2.023 )
∆̄py (std)[mm] 1.749 ( 1.091 ) -0.605 ( 0.402 ) -0.686 ( 0.361 )
∆̄pz (std)[mm] -10.940 ( 1.397 ) -4.312 ( 1.202 ) -3.612 ( 1.225 )

rms |∆p| (max)[mm] 11.813 ( 15.114 ) 5.175 ( 6.189 ) 4.432 ( 5.730 )

5.5.3 Hyperparameter search

The SE kernel for a GP with six input variables has eight hyperparameters, σf , σn

and six length scales. The hyperparameter search was conducted with five randomly

generated initial estimates. The optimal set for each model, in prediction accuracy

terms, are presented in Table 6.22. The hyperparameter search may still be sensitive

to the initial estimate as the number of input dimensions increases.

As in the 3 dim case, σn is approximately equal to σε for all ∆py models which suggests

that all of the bias form is modelled by GPR function. The bias data in the models

of ∆px and ∆pz is partially explained as noise and therefore the model is not fully

accurate. The majority of length scale parameters are all of a similar order in single

units which provides confidence that all the model is not attempting to overfit and
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the bias is a function of all parameters which is expected. A relative insensitivity to

joint 1 is expected and shown by large l1 estimates for models M1,GP and M2,GP . A

relatively large l6 estimation for the model of ∆py in M1,GP is unexpected.

Table 5.19: Example of the estimated GPR SE kernel hyperparameters, representative
of the majority of estimations from 20 initial estimates in the 6 dim (s) case study.

Model σf l1 l2 l3 l4 l5 l6 σn

M0,GP

h3(∆px) 3.24 7.89 4.95 3.38 7.28 3.08 8.86 0.036
h1(∆py) 2.03 7.20 3.66 3.34 8.13 5.20 5.66 0.014
h5(∆pz) 3.09 17.94 2.66 1.71 7.76 3.23 5.30 0.066

M1,GP

h3(∆px) 1.97 13.42 2.15 3.32 9.88 3.12 5.62 0.037
h4(∆py) 6.34 7.02 6.79 4.40 7.59 6.27 35.17 0.014
h3(∆pz) 1.79 7.75 2.43 1.87 9.64 1.92 4.91 0.061

M2,GP

h1(∆px) 1.69 7.45 3.94 2.65 5.48 3.15 7.92 0.036
h1(∆py) 1.92 5.00 3.71 3.80 11.44 5.19 11.02 0.015
h1(∆pz) 1.68 8.92 2.91 1.84 6.94 1.96 4.98 0.063

5.5.4 Results of bias correction

Figure 5.12 shows the distribution of residual positional errors after bias correction

of the competing model data for a visual analysis.

As seen in 3 dim case, a Gaussian distribution of residual bias predictions with a zero

mean and narrow distribution provides confidence that the bias form has been mod-

elled relatively accurately. The distribution of ∆px bias data was initially wide spread

and possibly multi-modal, which suggested that problem may exist in subsets which

may be challenging to model from joint angle inputs. However, GPR successfully

learnt the bias form as a function of joint angles.

Similar to the 1 dim and 3 dim cases, reduction of bias from different levels of cal-

ibration has little or no effect on the bias correction accuracy, demonstrated by the

near identical distributions for each model data.
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Figure 5.12: Numerical study, distribution of validation data bias correction results
for models (a) M0,GP , (b) M1,GP and (c) M2,GP in the 6 dim (s) case study. f:
frequency (number of measurements).

A summary of bias correction results for training and validation bias data is presented

in Tables 5.15 and 5.16. The residual error in the bias data has been substantially

reduced using bias correction. Bias correction reduced the positional error of the

robot for the most challenging data, that of M0 , from a rms |∆p| of 11mm to 67µm

for the training data and 89µm for validation data. The doubling of input dimensions

had little effect on the accuracy of the validation data predictions, with a standard

deviation of just 12µm higher than in the 3 dim case.
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The accuracy of the modelling of ∆py training data, is unaffected by the additional

degrees of freedom and is only limited by the measurement variation. The accuracy

of the models of ∆px training data are only marginally affected by the additional

degrees of freedom with a standard deviation of only 3µm higher than in the 3 dim

case. The higher rms |∆p| in the 6 dim case compared to the 3 dim case is the due to

the less accurate modelling of ∆px. The standard deviation of the predictions of ∆pz

is 20µm are higher in the 6 dim (s) case which indicates that the additional degrees of

freedom present positional errors that are more challenging to model in the vertical

direction.

The maximum |∆p| is large, 0.571mm compared to the desirable accuracy range which

indicates that within the machining workspace, there are regions of high accuracy but

also regions of very poor accuracy.

The negligible effect on the accuracy of bias correction predictions by reducing the

burden of bias is confirmed again by the near identical results for each model.

Table 5.20: Numerical study, summary of training data bias correction results for
competing models in the 6 dim (s) case study.

M0,GP M1,GP M2,GP

∆̄px (std) [mm] 0.000 ( 0.032 ) 0.000 ( 0.033 ) 0.000 ( 0.032 )
∆̄py (std) [mm] 0.000 ( 0.012 ) 0.000 ( 0.013 ) 0.000 ( 0.013 )
∆̄pz (std) [mm] 0.000 ( 0.058 ) 0.000 ( 0.053 ) 0.000 ( 0.055 )

rms |∆p| (max) [mm] 0.067 ( 0.427 ) 0.064 ( 0.429 ) 0.065 ( 0.420 )

Table 5.21: Numerical study, summary of validation data bias correction results for
competing models in the 6 dim (s) case study.

M0,GP M1,GP M2,GP

∆̄px (std) [mm] 0.002 ( 0.043 ) 0.002 ( 0.044 ) 0.002 ( 0.043 )
∆̄py (std) [mm] 0.001 ( 0.017 ) 0.000 ( 0.017 ) 0.001 ( 0.017 )
∆̄pz (std) [mm] 0.001 ( 0.077 ) 0.000 ( 0.075 ) 0.001 ( 0.073 )

rms |∆p| (max) [mm] 0.089 ( 0.568 ) 0.088 ( 0.568 ) 0.086 ( 0.571 )

5.5.5 Summary

The 6 dim (s) case study, presented a more challenging case for bias correction,

compared to the 1 dim and 3 dim case studies. The challenge was in part, reduced
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by a relatively narrow joint angle range and a search for an appropriate training data

size. Utilising considerably more training data inputs compared to the 3 dim case

resulted in just a 10µm increase in rms |∆p| and similar confidence in predictions. The

GP was also able to reduce the positional error to the same level for each of the bias

data, again suggesting that calibration may not be necessary. Unlike the 3 dim case,

the hyperparameter search was sensitive to the initial estimate, with each estimate

resulting in a different solution. While the accuracy of the predictions between the

estimates was not large, there were some very poor solutions with large positional

errors. In higher dimensions it becomes more important to refine the hyperparameter

search and find the optimal results.

5.6 Bias correction of robot positional error with a

6 joint angle input and large joint angle range

The aim of this study is to continue to investigate the limitations of bias correction

by increasing the complexity of the problem to 6 input variables with a large joint

range (referred to herein as 6 dim (l)). The range of joint angles for joints 1, 2 and

3 were the same as the 3 dim case study in order to directly compare results and

evaluate how increasing input dimensions affects the complexity of the problem and

the accuracy of bias correction predictions. The joint ranges of joints 4, 5 and 6 were

wider than in the 6 dim (s) workspace case in order to evaluate the method in a larger

workspace, as is typical in robot calibration research literature, and compare to the

smaller workspace case study.

The accuracy of bias data predictions in relation to training data quantity and bias

reduction from competing models is tested. In all previous case studies in this chap-

ter, bias reduction had a negligible effect of bias correction accuracy leading to a

working hypothesis that calibration is an unnecessary precursory step to bias cor-

rection, to improve positional accuracy of a robot, in this simulation. Although it

is expected that the bias form will be more complex, the results of this study will

test the hypothesis. The same approach to hyperparameter estimation, used in the 6

dim (s) case study is used to identify the global minima is parallel with training data

quantity tests.
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5.6.1 Training data quantity

In the 3 dim study, 300 training data appoints were used, whilst in the 6 dim (s)

case study, 800 training data points were used, which is a reduction in training data

resolution. Figure 5.10 shows the residual error in predicting a test set, after bias

correction, against increasing training data size. Examples of the performance against

training data quantity is presented for a sample of initial hyperparameter estimates.

A spike in results for h5 confirms that the model is sensitive to the initial estimate as

observed in the previous case studies. The solution is therefore to continue to search

for hyperparameters and select the optimal based on the minimum rms ∆p. While the

accuracy of the predictions does not fully converge, with the optimal hyperparameters

selected there is only a marginal gain in accuracy beyond a training data quantity

of 800, which will be used in this study. This quantity of training data points is far

in excess of those used in research literature but does confirm that the limitations of

bias correction for industrial robots has not been fully explored.
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Figure 5.13: Convergence plot of bias correction prediction accuracy against training
data quantity for model M0,GP in the 6 dim (l) case study.

5.6.2 Baseline data

Figure 5.14 shows the distribution of validation bias data generated by the competing

models for a visual analysis.

As expected bias data from M1 and M2 have very similar distributions, and the results

are expected to be nearly identical. Although a second, similar bias data set provides

no additional value in the evaluation of bias reduction, all data sets will remain for

continuity with the previous case studies. Interestingly, the distribution of ∆px bias

data no longer shows bi-modality or a flat, possible multi-modality as seen in the 3
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dim and 6 dim (s) studies. The reason is unclear without further analysis which is

assumed to be unnecessary given that both distributions demonstrated no significant

challenge for bias correction. Both distributions of ∆px and ∆py are skewed which

also have not indicated any significant problems for the bias correction.

(a)

(b)

(c)

Figure 5.14: Numerical study, distribution of validation bias data results for compet-
ing models (a)M0, (b)M1 and (c)M2 in the 6 dim (l) case study. f: frequency (number
of measurements).

The results in predicting training and validation data by the competing models are

summarised in Tables 5.22 and 5.23. Interestingly, rms |∆p| of both training and
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validation data is smaller than in the 6 dim (s) case study, mainly as a result of a

considerably lower mean ∆pz . The lower ∆pz may be explained by the wider joint

range. In the smaller joint range, the problem was constrained to a region where the

arm was largely outstretched and deflections of the TCP due to payload were all large.

In the wider joint range case, a rotation of joint 4 results in an L-shaped configuration

in which the payload twists the structure and the arm length is reduced. Also, in

configurations where the robot reaches upwards, the payload produces a much smaller

torque and deflection.

The difference in bias data distributions and bias size between competing models

again provides a suitable challenge for bias correction to test the working hypothesis

on parameters reduction.

Table 5.22: Numerical study, summary of training bias data results for competing
models in the 6 dim (l) case study.

M0 M1 M2

∆̄px (std)[mm] 0.723 ( 3.274 ) -2.286 ( 1.777 ) -1.439 ( 1.708 )
∆̄py (std)[mm] 2.474 ( 1.911 ) -0.578 ( 1.243 ) -0.552 ( 0.996 )
∆̄pz (std)[mm] -7.962 ( 3.065 ) -1.461 ( 2.546 ) -0.908 ( 2.512 )

rms |∆p| (max)[mm] 9.683 ( 16.557 ) 4.343 ( 6.400 ) 3.661 ( 5.848 )

Table 5.23: Numerical study, summary of validation bias data results for competing
models in the 6 dim (l) case study.

M0 M1 M2

∆̄px (std)[mm] 0.818 ( 3.317 ) -2.249 ( 1.803 ) -1.402 ( 1.716 )
∆̄py (std)[mm] 2.462 ( 1.977 ) -0.572 ( 1.183 ) -0.562 ( 0.967 )
∆̄pz (std)[mm] -7.918 ( 3.076 ) -1.392 ( 2.597 ) -0.848 ( 2.550 )

rms |∆p| (max)[mm] 9.684 ( 16.365 ) 4.325 ( 6.183 ) 3.657 ( 5.820 )

5.6.3 Hyperparameter search

The SE kernel for a GP with six input variables has eight hyperparameters, σf , σn

and six length scales. The hyperparameter search was conducted with five randomly

generated initial estimates. The optimal set for each model, in prediction accuracy

terms, are presented in Table 5.24.

The estimated value of σn is higher than in all of the previous chapter case studies and

has increased with higher input dimensions. The higher σn is an initial indication that

128



the bias correction model is less able to model all of the bias form and the accuracy

of the predictions will decrease. σn hyperparameter in the ∆py models is lower than

in the ∆px and ∆pz models and is expected to remain as the most accurate model.

However, the value of σn in the ∆py models is also significantly higher than the limit

of σε unlike in the previous chapter cases studies, and a portion of the bias form is

modelled as noise, which will reduce the accuracy of the predictions.

Interestingly, the scale of the length parameters has become more uniform, compared

to the 6 dim (s) case study, which showed length scales in the orders of 0.1, 1 and 10.

The uniform length scales provides confidence that the data has been modelled as a

function of all joint angle input without favouring a simple model with a dominant

input. The length scale of l1 for the M1,GP model of ∆pz is the exception which is

ten times higher than the other length scales in the model. The scale difference is

not excessive or concerning but more interesting is that it is considerably larger than

in the M2,GP model which is expected to have very similar bias data to model. An

analysis of the results will indicate if the higher value is a concern.

Table 5.24: Example of the estimated kernel hyperparameters, representative of the
majority of estimations from five initial estimates in the 6 dim (l) case study.

Model σf l1 l2 l3 l4 l5 l6 σn

M0,GP

h4(∆px) 2.95 3.75 2.54 2.66 2.43 1.46 3.49 0.054
h3(∆py) 2.53 2.64 2.68 2.73 2.40 1.59 4.39 -0.023
h3(∆pz) 3.35 5.53 2.55 2.73 2.46 1.55 4.03 -0.081

M1,GP

h1(∆px) 1.63 3.41 2.08 2.17 2.23 1.29 3.15 -0.051
h4(∆py) 1.41 2.41 2.31 2.32 2.10 1.43 3.96 -0.022
h3(∆pz) 2.37 20.41 2.28 2.30 2.37 1.43 3.63 -0.086

M2,GP

h4(∆px) 1.62 3.48 2.22 2.03 2.13 1.33 3.07 -0.049
h4(∆py) 1.40 2.39 2.30 2.27 2.09 1.42 3.80 -0.021
h4(∆pz) 1.89 7.44 2.17 2.18 2.27 1.34 3.24 -0.081

5.6.4 Results of bias correction

Figure 5.15 shows the distribution of residual positional errors after bias correction

of the competing model data for a visual analysis. The same observations made in

all of the previous chapter case studies can be drawn again from the results in this

study. Namely (i) challenging bias forms indicated by skewed distributions has been

confidently modelled, resulting in an expected symmetric Gaussian distribution; (ii)

the distributions of each model is very similar which again confirms the hypothesis
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that bias reduction has a negligible effect of bias correction; and (iii) the models were

all able to predict ∆py with higher accuracy than ∆px or ∆pz which was expected by

lower σn.

Figure 5.15: Numerical study, summary of validation data bias correction results for
competing models in the 6 dim (l) case study. f: frequency (number of measurements).

A summary of bias correction results for training and validation bias data is presented

in Tables 5.25 and 5.26.

As a broad analysis of the results, the residual error was substantially reduced using

bias correction, as observed in all previous chapter studies. The prediction of vali-
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dation data was considerably less accurate than the prediction of the training data

which was not evident in the previous chapter studies. In this study, the rms |∆p|
for the validation predictions was larger than in the training poses by a factor of two.

Given that the training data was modelled with relatively high accuracy, it is likely

that the reduced training data resolution, compared to the other chapter studies,

has resulted in unmodelled bias form between training data inputs. Referring back

to the training data quantity test, a compromise was made between model accuracy

and data quantity a data set with lower input resolution compared to the previous

case studies was selected on practical grounds. Although it was evident that gains in

accuracy were still made up to and beyond a training data quantity of 1600, the data

quantity would be excessive with respect to a real experiment to have a significant

improvement in model accuracy. The difference between validation and training pre-

diction accuracy however is larger than expected and a larger training data quantity

is recommended.

The working hypothesis that bias reduction has a negligible effect of bias correction

accuracy is not confirmed by the results in this study. There is a small but possibly

significant difference between the accuracy of M0,GP and M1,GP . The residual error,

in rms |∆p| terms, of M0,GP in the prediction of the validation bias data is larger

than that of M1,GP and M2,GP . The rms |∆p| difference is only 20µm which is not

significant enough to prove or disprove the hypothesis. The reduction in training data

resolution may have exposed the complexities of the bias form which are minimised

by calibration. The hypothesis may be expanded to include two options:

I Bias reduction, by calibration, has negligible effect on bias correction accuracy

for sufficiently large training data quantities. This meets general subject ex-

pectations but with regards to the former discussion on realistic data quantity,

substantially larger training data sets will not be tested.

II Bias reduction, by calibration will significantly improve the bias correction ac-

curacy for practical training data quantities. Practical training data quantity

is a relatively arbitrary value which is dependent on the measurement system,

application and bias correction tool. In this case 1600 training data points is

considered large.

The maximum |∆p| by all models is substantially larger, by an order of magnitude,

than the desirable 0.1mm. Without being able to visualise the 6 dimensional input
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space it is not possible to confirm whether large positional errors exist in a subspace

that can be avoided for machining applications.

Table 5.25: Numerical study, summary of training data bias correction results for
competing models in the 6 dim (l) case study.

M0,GP M1,GP M2,GP

∆̄px (std) [mm] 0.000 ( 0.036 ) 0.000 ( 0.033 ) 0.000 ( 0.033 )
∆̄py (std) [mm] 0.000 ( 0.013 ) 0.000 ( 0.012 ) 0.000 ( 0.012 )
∆̄pz (std) [mm] 0.000 ( 0.063 ) 0.000 ( 0.069 ) 0.000 ( 0.062 )

rms |∆p| (max)[mm] 0.073 ( 0.421 ) 0.078 ( 0.430 ) 0.071 ( 0.426 )

Table 5.26: Numerical study, summary of validation data bias correction results for
competing models in the 6 dim (l) case study.

M0,GP M1,GP M2,GP

∆̄px (std) [mm] -0.002 ( 0.087 ) -0.002 ( 0.080 ) 0.000 ( 0.078 )
∆̄py (std) [mm] 0.002 ( 0.061 ) 0.000 ( 0.051 ) -0.001 ( 0.051 )
∆̄pz (std) [mm] -0.004 ( 0.122 ) -0.004 ( 0.115 ) -0.003 ( 0.112 )

rms |∆p| (max)[mm] 0.162 ( 1.185 ) 0.149 ( 0.764 ) 0.146 ( 0.699 )

5.6.5 Discussion

In this study, the effect of a wider range of joint inputs, leading to more sparsely

distributed training data was tested for comparison to the previous ‘narrow joint

angle range’ study. As expected, the predictions were less confident but substantial

reductions in positional error were made. Unlike the previous studies however, the

results indicated that there may be small improvements (≈ 20µm) in accuracy made

by calibrating the model before bias correction. This may specific to this data but

should be pursued in the experimental study in Chapter 6, where additional un-

modelled error factors are expected and the joint compliance model will be employed.

5.7 Synthesis of case study results

Figure 5.16 shows the bias correction results of all case studies in this chapter, as

standard deviations for the predictions of validation bias data in ∆px , ∆py and ∆pz

and the rms |∆p| for comparison. The standard deviation is presented to indicate

accuracy as all models have a near zero mean. The results are compared to analyse

the limitations of bias correction with respect to input dimensions and input range.
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Firstly, the 1 dim case study results present the ideal case of high resolution training

data with minimal input dimensions and as such is a benchmark, having achieved

an accuracy limited by measurement variation. Secondly, in all case studies, the

prediction of ∆py was a lesser challenge than that of ∆px and ∆pz , largely expected

due to the payload deflections being predominantly in thex and z directions. The

substantially higher residual error in ∆py for the 6 dim (l) case study confirms this

reasoning with large rotation in joints 4 and 6 leading to and L-shaped structure and

consequently larger deflections in y.

In all case studies, ∆pz has been the least accurately modelled and has contributed

the most to the |∆p|. The positional error is shown to increase as the number of

input dimensions to the problem increases and that the increase can be lessened by

reducing the joint range. This is true for the residual errors in ∆px which shows an

increase from 3 dimensional to 6 dimensional inputs and an increase from the small

to large joint ranges. This is not true however for predictions of ∆px and ∆py where

predictions in the 6 dim (s) case study are more accurate than in the 3 dim case

study. It can only be presumed that the 6 dim (s) case study was in a subspace with

a relatively simpler bias form to model. If this is true then an argument exists to

identify subspaces that are more accurate for machining applications.

Figure 5.16: Numerical study, comparison of validation data bias correction results
of each case study for model M2,GP .

133



5.8 Chapter summary

The aim of this chapter was to explore the limitations of bias correction, using GPR,

to reduce robot positional error of a simulated robot. Specifically, the effect of training

data quantity and bias reduction on bias correction performance were tested.

In the calibration study, four competing models were successfully developed. Base

calibration, using SVD is a simple method that requires small quantities of data to

train, can produce a substantial gain in robot model accuracy. Additional gains in

accuracy can be made by calibrating the geometric and joint compliance parameters

but an initial base calibration is necessary to improve the initial parameter estimate.

The bias correction accuracy results reach an approximate limit for training data

quantities that were two to three times larger than used in related works in literature.

Practical quantities were successfully identified for each case study which will be used

as recommendations in Chapter 6. The bias correction accuracy declined and the

training data quantity increased as the number of input dimensions and input range

increased. The bias form in the different case studies may not be more challenging,

rather then, research question 1 becomes that of limitations with respect to training

data resolution. This observation will be tested in Chapter 6.

A working hypothesis, that bias reduction has a negligible effect on bias correction

accuracy, was developed as the case studies progressed. The hypothesis was only

disproved in the 6 dim (l) case study, however the different in prediction accuracy

was less that 20µm between the uncalibrated and calibrated models and the analysis

was inconclusive. The hypothesis will be tested in Chapter 6.

Gaussian process regression was used successfully as a relatively novel tool in this

application. One of the advantages of GPR is that it can be trained with relatively

small training data quantities, compared to the quantity required by NN for example.

However, computer processing time increases by O(N3) and can be high for large

data quantities. In the 6 dim (s) and (l) case studies, relatively large training data

quantities were required to approach the limit of model accuracy and the advantage

of small data quantities was not exploited. Also, the GPR model is sensitive to the

hyperparameter and many solutions exists. Searching for hyperparameters from many

initial estimates, and with a high training quantity, required considerable processing

time. The efficiency and accuracy of hyperparameter searching could be a design

consideration in future work.
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The case studies in this chapter presented a number of challenges that were not fully

explored:

I The first is the discovery that Euler angle conversions are discontinuous in some

configurations which results in inaccurate calibrations. A practical solution is

to identify outliers by orientation error.

II Other non-linear effects such as gearbox misalignment were not modelled. The

real robot is expected to present a more challenging bias form.

III The reasons for bi-modal and skewed symmetric bias data were not explored.

The distributions did were not problematic for bias correction and so exploration

was not considered to be within scope.

IV After bias correction, there remained some large bias data which were simu-

lations of positional errors in the order of 1mm. Further analysis would be

required to identify if there is a region of joint subspace that has poor accuracy.

This is deemed to be beyond the scope of this study although would have a

potentially useful outcome.

In summary, thesis objective 2 was met and GPR was used successfully to reduce the

positional error of a robot in this study. The case study structure and methodology

was informative and the limitations in bias correction have been identified. The same

method and case studies will be used in Chapter 7 on the testbed robot with the

expectation that the bias will be a greater challenge as a result of unmodelled errors.
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Chapter 6

Bias Correction of Industrial
Robot Positional Errors

The aim of this chapter is to meet thesis objective 3 by exploring the limitations of

bias correction in predicting the positional error of an industrial robot. The calibra-

tion and bias correction methodology, proposed in this thesis, is tested on a range of

case studies to validate the conclusions made in Chapter 4 with empirical evidence.

The focus of this chapter is to explore limitations of bias correction with respect to

(1) training data resolution and (2) bias reduction by calibration. A bias reduction

hypothesis was proposed in Chapter 4 which stated that bias reduction was expected

to have a negligible effect on bias correction accuracy. This hypothesis will be tested

here. Substantial gains in bias correction accuracy are predicted, however, it is ex-

pected to be lower than the accuracy achieved in the simulation study in chapter 5.

The real robot is expected to exhibit non-linear errors arising from gearbox transmis-

sion errors that were not presented in the numerical model in Chapter 5, and they

are expected to be more challenging to model.

The case studies in this chapter will achieve the same individual objectives as Chapter

5 with the exclusion of testing bias correction accuracy for a range of training data

quantities. Instead, the quantities recommended in Chapter 4 are used.

I Measure the pose of an industrial robot in a range or joint configurations, using

a laser tracker, and compare to the nominal model pose predictions and evaluate

the positional accuracy.

II Calibrate the three competing models in addition to the nominal model, to

provide a range of bias data levels in the bias correction case studies.
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III Evaluate the performance of bias correction, GPR, to model and predict the

robot positional error data (bias) for the case studies: 1 dim, 3 dim, 6 dim (s)

and 6 dim (l) which increase in order of complexity.

In this chapter, the following experimental design considerations will be made:

• Sensor visibility will reduce the number of achievable poses. Only a subspace

of joint configurations will be tested.

• The hyperparameter search will be conducted with multiple initial estimates to

find the global minima.

This chapter is organised into a number of sections. The calibration study results are

presented in section 6.2. The bias correction results are presented as separate case

studies in sections 6.3 to 6.6. In section 6.7, a synthesis of all the case study results

is presented.

6.1 Experimental design

This section describes the robot, the measurement equipment and sensor placement,

and the training and validation joint configuration generation for the study.

The robot cell and measurement equipment used by the studies in this chapter are

presented in detail in Chapter 3 and are described briefly in this section. The cell

layout is shown in Figure 6.1.
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Figure 6.1: ABB IRB 6640 robot cell and laser tracker positioning.

• Robot: ABB IRB 6640, 6DOF articulated robot.

• Measurement: The AT-960 Leica laser tracker was located at the side of the

cell. A side panel of the cell was removed for sensor visibility.

• Sensor: The T-mac sensor was mounted to the side of the spindle fixture.

• Data capture and processing: Measurements from the laser tracker were

received and processed by Spatial Analyser (SA) software.
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• Base frame identification: The base coordinate system was constructed using

the CPA method.

• Backlash: The error due to backlash in the joint gearboxes was eliminated by

approaching each pose from a nearby bump configuration.

• Stability: Transient vibration errors at the TCP when the robot came to an

abrupt stop were minimised by approaching each configuration slowly, then

waiting for a stable measurement.

6.1.1 Payload and TCP

The payload and centre-of-gravity (cog), relative to the end flange frame, was deter-

mined by an integrated robot procedure that uses joint torque data to estimate the

payload details. The data is presented in Table 6.1 along with the T-mac transfor-

mation details relative to the joint 6 frame, which was used as the tool data.

Sensor position T-mac frame orientation Payload Payload cog
[mm] [deg] [kg] [mm]

x y z γ β α x y z

58.553 -193.735 165.958 -179.703 -.0366 -0.481 94.5 -68.5 5.0 208.5

Table 6.1: Payload and TCP sensor location.

6.1.2 Training and validation target generation

The robot was directed to the training and validation poses from an input of joint

vectors. The inputs were generated based on Latin hypercube sampling (LHS) be-

tween the joint limits presented in Table 6.2. Unlike the simulation study in Chapter

5, the input range was limited by workspace as well as joint space to avoid collision

with the cell walls, floor and machining table. Workspace limits, shown in Figure 6.2,

were applied by calculating the pose of the robot for each input and excluding those

that exceeded the limits in Table 6.3.
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Table 6.2: Experimental study joint angle limits by case study.

Joint Calibration 1 dim 3 dim 6 dim (s) 6 dim (l)

q1 ±1700 50 ±450 ±150 ±400

q2 −650, 850 00 ±450 ±150 −150, 450

q3 −1800, 700 ±450 ±450 −150, 300 −150, 450

q4 ±3000 00 00 ±300 ±800

q5 ±1200 00 00 ±300 ±900

q6 ±1800 00 00 ±300 ±800

(a) (b)

Figure 6.2: Diagram of robot workspace limits for (a) the 6 dim (s) and (b) the 6 dim
(l) case studies.

Table 6.3: Case study workspace limits relative to robot base.

Test x y z
max min max min max min

6 dim (s) [mm] 1500 2000 -600 600 1000 2000
6 dim (l) [mm] 0 2000 -1400 1400 800 3200

Sensor visibility was also a design consideration when generating inputs. Visibility

was determined for each pose by calculating the angle between T-mac normal axis

and a line-of-sight vector calculated between laser tracker and T-mac reflector. Inputs

with visibility angles that lay outside of ±π/6rad T-mac aperture, were excluded.
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By filtering out training and validation inputs that exceeded workspace and visibility

limits, far fewer inputs were able to be used than generated. Figure 6.3 shows an

example of the configuration and filtering process and the training data configuration

quantities n at each stage of the process for the 6 dim (l) case study as an example.

An initial quantity of 20,000 configurations were required to generate a 1200 sample

size. It is acknowledged that the resulting experimental design will no longer be a

true LHS, but was still deemed sufficient for the purposes of the study

Figure 6.3: Experimental study, input generation flowchart

The training and validation data quantities for each case study and calibration phase,

are shown in Table 6.4.

Table 6.4: Experimental study, case study training and validation data quantities.

Case Data quantity, n
study Training Validation

Calibration 120 100
1 dim 80 20
3 dim 600 100
6 dim (s) 1200 100
6 dim (l) 1200 100

6.2 Calibration results

The aim of the study in this section is to use measured pose data to evaluate the

accuracy of an industrial robot and create competing, calibrated models to which

GPR based bias correction will be subsequently applied. The competing models

were be used to generate bias data with a range of bias levels and form, which were

then presented to the bias correction case studies. To remind the reader, the four

competing models are: M0: nominal model, M1: base calibration, M2: base and
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geometric parameter calibration, M3: base, geometric parameter and joint compliance

calibration.

6.2.1 Nominal model M0accuracy

The pose errors generated by the nominal model M0 were used to calibrate the com-

peting models M1, M2 and M3, and used a baseline data to be compared to the

performance of the competing models. The distribution of positional errors by model

M0 is presented in Figure 6.4 for visual analysis. The summary of results for training

and validation pose predictions by M0 is presented in Table 6.5.

A flat distribution or possibly multi-mode distribution of the ∆px data was observed

in the numerical study in Chapter 5, however, the data was not problematic for

calibration and the the competing models successfully reduced the level of bias. Also,

the bias data was able to be modelled relatively accurately with by GPR. A similar

distribution can be seen in the experimental data in this study, which suggests that the

positional error is dominated by the base, geometric and compliance errors, modelled

in the simulation study and that they are unlikely to be problematic for calibration

or bias correction, and similar results to the numerical study may be achieved.

The distribution of ∆py data is possibly bi-model. The reason is unclear and was not

observed in the numerical study. Bi-modality indicates that the data can be separated

into subsets which may be problematic for calibration, with two global minima when

searching for hyperparameters, one for each subset of data. The ratio of peaks is high

however, which may pull the calibration solution towards the solution that produces

the more accurate position predictions.

The distribution of ∆pz is uni-modal with a mean of approximately -3mm, which is

expected from payload deflections. With no payload compensation, it is reasonable

to expect that a substantial deflection in ∆pz exists in all joint configurations.
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Figure 6.4: Experimental study, distribution of training bias data results for model
M1 in the calibration phase. f: frequency (number of measurements).

The majority of the positional error in rms |∆p| terms can be attributed to a bias

in ∆pz . The standard deviation in ∆pz is the smaller of distributions compared to

∆px and ∆py which is an indication that the payload produces a relatively consistent

3mm downward deflection. The similarity in the order of magnitude between training

and validation data provides confidence that the calibrated models will result in an

improved accuracy in the test space. Dissimilar results would mean that the model

is calibrated and accuracy improved in a space that is not representative of the test

space may will fail to provide a range of useful bias data.

Table 6.5: Experimental study, summary of training bias data results for model M0.

M0 M0

Training Validation

∆̄px (std)[mm] 0.840 (0.956) 0.926 (0.934)
∆̄py (std)[mm] 0.360 (0.640) 0.392 (0.657)
∆̄pz (std)[mm] -3.265 (0.560) -3.189 (0.608)

¯∆φα (std)[deg] 0.073 (0.230) 0.184 (0.566)
∆̄φβ (std)[deg] 0.045 (0.129) 0.044 (0.131)
∆̄φγ (std)[deg] -0.061 (0.252) -0.168 (0.575)

rms |∆p| (max)[mm] 3.622 (5.375) 3.583 (5.041)
rms |∆φ| (max)[mm] 0.186 (0.248) 0.181 (0.241)

6.2.2 Estimated Parameters

The estimated parameter errors from calibration of the competing models are pre-

sented in Table 6.6. The estimated parameters in model M3 are of a similar order to

those measured in Chapter 4 using the CPA method, which isolated the geometric
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errors from other error sources. The similar order is an indication that the calibra-

tion was successful in estimating physical parameters. While a comparison is not

important in the continuation of this study, it is useful in determining whether the

estimated parameters are still reasonable descriptions of the geometry of the system.

The two problems are very different and the parameter estimation problem is one

of finding parameters that best fit the data, without isolating the effects of each pa-

rameter and so the parameter values determined by the two methods should not be

same.

The large base rotation parameter ∆β0 can be explained by a solution that models

the large deflection observed in the z axis due to payload deflection. A rotation

downwards in the y0 by ∆β0 would be a simple solution to model the bias in ∆pz .

The joint compliance parameters were estimated to have negative values which are

non-physical parameters. A negative joint compliance means that and downward

payload would result in an upwards rotation by the joint, which is not a physical

meaningful model. The non-physical estimation then suggest either that a local min-

ima was found during the search or that the effect of compliance parameters on the

data was not highly observable in a parameter search sense, after a simple bias correc-

tion by base rotation. The estimation may have returned parameters with a physical

meaning if a parameter bounds or regularised least-squares algorithm had been used.

In this thesis, the research focus is on providing bias correction with a range of bias

data and so for the aim of this study, the calibrated models are sufficient.
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Table 6.6: Experimental study, calibrated parameters for competing models.

∆θ M1 M2 M3

∆γ0(10−4) [rad] 1.578 1.578 1.578
∆β0(10−4) [rad] 19.185 0.856 2.690
∆α0(10−4) [rad] 2.102 0.556 0.184

∆x0 [mm] -2.605 -0.075 -0.332
∆y0 [mm] 0.498 0.033 0.039
∆z0 [mm] -0.354 -0.354 -0.354
∆d1 [mm] - -1.666 -1.109
∆d2 [mm] - - -
∆d3 [mm] - 0.166 -0.243
∆d4 [mm] - 0.297 0.141
∆d5 [mm] - 0.001 0.063
∆d6 [mm] - 0.429 0.347
∆a1 [mm] - -0.795 0.120
∆a2 [mm] - 1.455 0.783
∆a3 [mm] - -0.330 0.254
∆a4 [mm] - -0.059 0.050
∆a5 [mm] - -0.121 -0.310
∆a6 [mm] - 0.093 0.023
∆q1 [rad] - -7.290 -5.391
∆q2 [rad] - 13.396 0.086
∆q3 [rad] - -0.723 12.770
∆q4 [rad] - 6.884 6.722
∆q5 [rad] - 18.853 17.496
∆q6 [rad] - -1.842 -1.310
∆α1 [rad] - 3.440 2.232
∆α2 [rad] - 7.631 5.484
∆α3 [rad] - 4.140 5.084
∆α4 [rad] - 0.979 0.594
∆α5 [rad] - 2.658 2.501
∆α6 [rad] - 3.155 2.534
∆β2 [rad] - 1.241 1.778

C1 (10−9) [rad/Nmm] - - -0.887
C2 (10−9) [rad/Nmm] - - 0.499
C3 (10−9) [rad/Nmm] - - -0.317
C4 (10−9) [rad/Nmm] - - -0.877
C5 (10−9) [rad/Nmm] - - -0.083
C6 (10−9) [rad/Nmm] - - 0.582
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6.2.3 Results of calibrated model predictions

Figure 6.5 shows the distribution of the validation data, residual positional errors

for the competing calibration models. The distribution errors by base calibration

alone in M1 has retained many of the features observed in the training data which

is expected. The base calibration is a data transformation, or localisation, which

can be seen as a bias correction of the distribution mean. The more complex errors

and interactions between error sources will not be modelled. The distributions of M2

and M3 are uniformly Gaussian which indicates that the source of bi-modality in the

training data distributions has been modelled by geometric parameters. Unlike the

results in Chapter 5, models M1 and M2 will provide dissimilar bias data and different

challenges for bias correction.

The similar means and distributions of M2 and M3 was expected by the analysis of

the non-physical joint compliance values in M3. The similarity indicates that it is

unlikely that M3 will provide sufficiently different challenge for bias correction and

can be withdrawn from the remaining study.
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(a)

(b)

(c)

Figure 6.5: Experimental study, distribution of validation bias data results for com-
peting models in the calibration phase. f: frequency (number of measurements).

A summary of bias correction results for training and validation bias data is presented

in Tables 6.7 and 6.8. The positional error results after calibration matches the

approximate 0.3mm error floor reported in the literature review, which increases

confidence that the calibration has been successfully implemented. Calibration of the

base alone has reduced the positional error, in rms Euclidian distance terms, by a

factor for 3 from 3.6 to 0.8, whilst the additional geometric parameter calibration has

reduced the positional error by a factor of 10. As expected, the error reduces with
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any level of model calibration but gains are reduced with increasing dimensionality.

The observations made by analysis of the error distributions is confirmed by the sum-

mary of results. Models M0, M1 and M2 produce bias data that is sufficiently different

in value and distribution to test whether bias reduction improves the performance of

bias correction. The difference in bias data provided by M2 and M3 is not sufficiently

different to provide value in the bias correction studies and can be withdrawn. In fact

M2 outperforms M3 in the prediction of the training data which may be an indication

that more parameters can result in a greater challenge in finding the global minima.

Table 6.7: Experimental study, summary of training bias data results for competing
calibration models.

M0 M1 M2 M3

∆̄px (std) [mm] 0.840 ( 0.956 ) 0.000 ( 0.356 ) 0.000 ( 0.183 ) 0.000 ( 0.185 )
∆̄py (std) [mm] 0.360 ( 0.640 ) 0.000 ( 0.639 ) 0.000 ( 0.152 ) 0.003 ( 0.189 )
∆̄pz (std) [mm] -3.265 ( 0.560 ) 0.000 ( 0.369 ) 0.000 ( 0.194 ) -0.004 ( 0.225 )

¯∆φα (std) [deg] 0.073 ( 0.230 ) 0.031 ( 0.124 ) 0.000 ( 0.028 ) 0.000 ( 0.025 )
∆̄φβ (std) [deg] 0.045 ( 0.129 ) 0.016 ( 0.061 ) -0.001 ( 0.041 ) 0.004 ( 0.040 )
∆̄φγ (std) [deg] -0.061 ( 0.252 ) -0.028 ( 0.141 ) 0.000 ( 0.036 ) 0.000 ( 0.030 )

rms |∆p| (max) [mm] 3.622 ( 5.375 ) 0.816 ( 1.960 ) 0.306 ( 1.051 ) 0.346 ( 1.145 )
rms |∆φ| (max) [mm] 0.186 ( 0.248 ) 0.102 ( 0.213 ) 0.049 ( 0.149 ) 0.047 ( 0.138 )

Table 6.8: Experimental study, summary of validation bias data results for competing
calibration models.

M0 M1 M2 M3

∆̄px (std) [mm] 0.926 ( 0.934 ) -0.025 ( 0.395 ) -0.021 ( 0.194 ) 0.003 ( 0.196 )
∆̄py (std) [mm] 0.392 ( 0.657 ) 0.045 ( 0.654 ) 0.012 ( 0.177 ) 0.010 ( 0.208 )
∆̄pz (std) [mm] -3.189 ( 0.608 ) 0.056 ( 0.388 ) 0.025 ( 0.205 ) 0.024 ( 0.232 )

¯∆φα (std) [deg] 0.184 ( 0.565 ) 0.089 ( 0.293 ) 0.009 ( 0.087 ) 0.004 ( 0.088 )
∆̄φβ (std) [deg] 0.044 ( 0.131 ) 0.016 ( 0.066 ) -0.007 ( 0.043 ) -0.001 ( 0.043 )
∆̄φγ (std) [deg] -0.168 ( 0.575 ) -0.078 ( 0.305 ) -0.008 ( 0.086 ) -0.004 ( 0.084 )

rms |∆p| (max) [mm] 3.583 ( 5.041 ) 0.856 ( 1.898 ) 0.334 ( 0.806 ) 0.367 ( 0.848 )
rms |∆φ| (max) [mm] 0.181 ( 0.241 ) 0.101 ( 0.205 ) 0.055 ( 0.139 ) 0.052 ( 0.132 )

6.2.4 Summary

The aim of the study in this section is to use measured pose data to evaluate the

accuracy of an industrial robot and create competing, calibrated models to which

GPR based bias correction will be subsequently applied.
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The aim was successfully met with some useful observations. The positional error

of the robot after calibration was substantially reduced by an order of magnitude to

rms |∆p| ≈ 0.35mm in this study. The positional error is also of the same order

as the robot calibration results reported in research literature, and contributes to

the hypothesis that there is a 0.3mm calibrated robot, error floor. The remaining

positional error is assumed the be the result of unmodelled non-geometric errors.

Increasing the model completeness, by modelling joint compliance, did not result in

an improvement in model accuracy. The results of model M3 did not improve the

accuracy over M2 and resulted in non-physical parameters. However, it is desirable

but not imperative that model parameters represent true physical properties. It may

be that in other cases, and in future studies, particularly with higher payloads, or

a range of payloads, the compliance parameters may be observable and offer a more

complete and accurate model.

Moving forward, for the GP bias correction studies, models M0, M1 and M2 will be

used as testbeds to generate bias data to test the accuracy of bias correction on data

with different bias level and form.

6.3 Bias correction of robot positional error with

1 joint angle input

The aim of the first case study is to test the proposed methodology in predicting robot

positional error on an industrial robot by modelling bias data on a 1 dimensional

problem, referred to as 1 dim. In this study, only the angle of joint 3 (q3) will be an

input variable while other joints are fixed.

In the simulation study in Chapter 5, the bias form demonstrated a smooth curve as

a function of joint angle. The GPR, which assumes a smooth function, modelled the

data accurately as expected, limited only by the measurement variation. In the same

study on the real robot, a periodic sinusoidal form on top of the expected smooth form

was observed in the ∆py data. The periodic form is explained in Section 2.2.1.3 as the

consequence of gearbox transmission errors which may be modelled in a number ways.

An analytical model of the gearbox is likely to be the most accurate approach and one

which retains its accuracy in cases of higher input dimensions. However, extensive

analytical modelling of the robot is out of the scope of the research presented in this

thesis. Modelling the periodic form with GPR will be a test of the limitation of bias

correction which is the aim of this chapter.
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Periodic data can be modelled with GPR using a number of different kernels. The

study in this chapter then is separated into two experiments to meet the following

objectives:

I Compare the performance, in terms of bias prediction accuracy, of a squared-

exponential kernel (SE) and squared-exponential with additional sinusoidal ker-

nel (SES)

II Evaluate the performance of bias correction in bias prediction on a range of bias

data from competing models.

An example of the bias data is presented in Figure 6.6. The ∆px and ∆pz bias data

demonstrate the ’smooth’ forms also observed in the numerical model in Chapter 5.

The expectation is that the accuracy of the predictions of ∆px and ∆pz will be limited

by the measurement variation. The bias data of ∆py demonstrates the periodic form

which is assumed to be sinusoidal with possible decaying amplitude, on top of a

smooth curve. An amplitude of approximately 50µm in ∆py of for a single joint

rotation, could be an explanation for a 0.3mm error in a robot with 6 simultaneous

joint rotations.
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Figure 6.6: Experimental study, bias data plot for model M1 in the 1 dim case study.

In the study in this chapter, research efforts will concentrate on the modelling of ∆py

bias data. Predictions of ∆px and ∆pz bias data are expected to approach the limit

of the measurement variation and are not considered a challenge for bias correction.

The periodic oscillation in ∆py is a more interesting challenge for bias correction and

may indicate limitations in the proposed methodology.

6.3.1 Competing kernel comparison

In this study, bias correction using a GPR with an SE and SES kernel will be com-

pared. ∆py bias data is provided by model M2 from measurements of the robot TCP

from inputs of joint 1 angles. The experiment is conducted with 9.6 observations per

degree of rotation [obs/deg] over a input range of −100 to 500 to evaluate the per-

formance of the kernel in optimal, high resolution conditions. The data is separated

into 500 training and 50 validation subsets.

To remind the reader, the SE and SES kernels are presented in Equations 6.1 and

6.2. σf , σn and l are hyperparameters, A is the covariance matrix and λ is the period
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of the oscillation which is known by simple analysis.

k(x, x′) = σ2
fexp

[
−
(
|A|
2l1

)2
]

(6.1)

k(x, x′) = σ2
fexp

[
−
(
|A|
2l1

)2
]

+ exp

[
−λ
(
sin|A|

2l2

)2
]

(6.2)

During the analysis it was noted that the results were sensitive to the initial estimate

of the hyperparameters , h0. The same approach used in Chapter 5 was used whereby

20 sets of randomly generated initial estimates were generated between 0.02 and 2.02.

For each kernel, the default initial estimates of 1’s were used for the first estimates

as a reference.

The results for the competing kernels are presented separately (Figures 6.7 and 6.8) in

order to make observations and present examples from the 20 initial hyperparameter

estimates.

SE kernel results

The hyperparameter search was sensitive to the initial estimate, with all SE hyper-

parameter estimates converging to one of four solutions, producing three function

forms. (a) The majority of SE functions were identical to Figure 6.7a which modelled

the underlying smooth curve as expected. This is the result of a large length scale

hyperparameter. This function is referred to as smooth. (b) Figure 6.7b shows the

single case where the oscillation is partially modelled with a relatively small length

scale hyperparameter, l1 = 0.299 that allows the function to respond relatively rapidly

with the data form. This function is referred to as ripple. (c) Figure 6.7c shows an

example of two cases where the solution has a very small length scale hyperparameter,

l1 = 0.090 which allows the function to respond rapidly to changes in the data but

does not overfit. Having modelled the oscillations, consequently the noise hyperpa-

rameter and variance were relatively small (σn = 0.01). This function is referred to

as oscillation.
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Figure 6.7: SE kernel models of periodic oscillations in joint 3 in the 1 dim case study.

SES kernel results

The results for the SES kernel were not as accurate as the default SE kernel which

was not expected. Unlike the SE function, there were no repetitions in the hyper-

parameter estimations, and therefore many local solutions. The optimal solution is

therefore difficult to find, and likely to be even more so in higher dimensions. How-

ever, categorising by function output (smooth, oscillation) and variance (small, large),

the functions can be described by one of four examples (Figures 6.8a to 6.8d).

The smooth functions (a) and (b) as expected, have relatively large length scales

(2.03 < l1 < 0.450) and either have a large variance and noise of σn ≈ 0.420 or

≈ 0.150. The oscillation functions (c) and (d) have relatively small SE kernel length

scales (l1 = 0.070 and 0.100, respectively) which results in the SE kernel modelling the

curve locally. The sine kernel is relatively ineffective in these solutions. Unexpectedly,

the variance is relatively large, as indicated by a large σn (between 0.340mm and

0.080mm) when the oscillations are modelled, unlike the previous squared exponential

only case.
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Figure 6.8: SES kernel models of periodic oscillations in joint 3 in the 1 dim case
study.

In comparison to the SE kernel, the SES kernel produces similar ’smooth’, ’ripple’

and ’oscillation’ models but with less confidence. Moving forward to the main 1 dim

trial, it is likely that similar results will be found and that the SES kernel offers

no additional advantage over the SE kernel in this case where the bias still has a

relatively simple, and smooth form. There is value in exploring kernel selection in

light of these results in future work, but it is beyond the scope of this trial. The SE

kernel has demonstrated the ability to model both the underlying smooth function

and oscillations given careful hyperparameter estimation. This approach can then be

tested in the following main trial with confidence.
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6.3.2 Bias correction results

In this subsection, the results for bias correction of competing calibration model ∆py

bias data is presented. Following the results in section 6.4, an SE kernel is used.

To evaluate the bias correction predictions on less than ideal data quantities, the

resolution of the training data was reduced to 4 observations per degree of rotation.

4 obs/0 was determined as the minimum required to avoid aliasing. The joint range

was also reduced to ±100 as the bias form has been shown to continue outside of this

range and has no additional value. 100 inputs were generated randomly using LHS

and separated into 80 training inputs and 20 validation inputs.

The bias data in ∆px and ∆pz for all models has been shown to be a simple, smooth

form and is not presented. The bias data of the competing models for ∆py is the

more interesting study and is shown in Figure 6.9.
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Figure 6.9: Experimental study, bias data plot for competing models (a) M0, (b) M1

and (c) M2 for the 1 dim case study.

The results in predicting training and validation data by the competing models are

summarised in Tables 6.9 and 6.10 respectively and provides an evaluation of the task

provided to the GPR.

The mean positional error ∆̄py is considerably higher than the zero mean presented

in the calibration study in section 6.2. The high mean is the result of evaluating in

a subspace of the input, but demonstrates that input spaces exist where positional

errors are very high after calibration. The rms and maximum bias data values of M0

are x2 that of M1 which potentially presents a different change and will test the effect

that bias reduction hs on bias correction accuracy. The bias data of M2 does not
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present a significantly different problem and results are expected to be the same.

Table 6.9: Experimental study, training data bias correction results in the 1 dim case
study.

Model ∆̄py (std) rms ∆py (max)
[mm] [mm]

M0 0.632 (0.026) 0.633 (0.707)
M1 0.309 (0.041) 0.312 (0.416)
M2 0.324 (0.059) 0.347 (0.477)

Table 6.10: Experimental study, validation data bias correction results in the 1 dim
case study.

Model ∆̄py (std) rms ∆py (max)
[mm] [mm]

M0 0.621 (0.023) 0.621 (0.606)
M1 0.289 (0.045) 0.292 (0.358)
M2 0.317 (0.067) 0.323 (0.409)

Hyperparameter estimations and results

Kernel hyperparameters were estimated from 20 randomly generated initial estimates

to find an optimal function in terms of prediction accuracy. The hyperparameters

mostly converged to one of two solutions of each competing model bias data and are

summarised in Table 6.11. The two solutions are described as smooth and oscillation

functions. Figure 6.10 shows examples of the functions determined by the two solution

for each of the calibrated model bias data.

Kernel hyperparameters were estimated from 20 randomly generated initial estimates

to find an optimal function in terms of prediction accuracy. The hyperparameters

mostly converged to one of two solutions for each of the competing model bias data,

and are summarised in Table 6.11. The two solutions are described as smooth and

oscillation functions. Figure 6.10 shows examples of the functions determined by the

two solution for each of the calibrated model bias data.

The hyperparameters estimates tended to converge mainly to two solutions. One with

a relatively large length scale, which results in a smooth curve function (left column)

and one with small length scales which results in a function that models the curve

locally and follows the oscillation (right column). The majority of functions for all of
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the competing model bias data, modelled the underlying smooth curve rather than

the oscillation. The hyperparameters in M0 vary considerably, however once σ1 had

converged to ≈ 0, the length scale became redundant and the function became linear

and with all oscillations accounted for by σn.

It is likely that the oscillation in the bias is less able to be modelled with lower

resolution data, which was not the case in the kernel comparison study. It can be

assumed that as the input dimensions increase, and the input resolution decreases,

the gearbox oscillations will not be modelled in favour of a smoother function. The

challenge in identifying small changes in the data without over-fitting is an indication

of the limitation of bias correction in this application.

Table 6.11: Optimised kernel hyperparameters.

Model curve fit σ1 l1 σn

M0
smooth 10−7 to 10−5 0.915 to 10.37 0.026

oscillation 0.015 0.099 0.021

M1
smooth 0.047 2.024 0.026

oscillation 0.035 0.197 0.022

M2
smooth 0.094 2.645 0.025

oscillation 0.054 0.237 0.022
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Figure 6.10: Experimental study, bias correction function and confidence ranges for
models (a) M0,GP , (b) M1,GP and (c) M2,GP in the 1 dim case study.

A summary of bias correction results for training and validation bias data is pre-

sented in Tables 6.12 and 6.13. The performance is summarised as above for two

representative examples of the smooth and oscillation functions produced.

The residual error in the bias data has been substantially reduced using bias correc-

tion. The rms position error in ∆py was reduced from approximately 600µm for model

M0, to 26µm by model M0,GP . The residual error, however, exceeds the measurement

variation in this study, unlike in the numerical study.

Bias reduction has a negligible effect on bias correction accuracy, as also seen in

the numerical case study in Chapter 5. The accuracy of the competing model bias

predictions is identical with a few microns. This is not unexpected as the competing

model bias data sets were not substantially different from each other. Visually, the
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oscillation function could be considered to be a more accurate model, and as discussed,

not modelling the oscillation in higher indention problems may be a limitation in

using bias correction for this application. However, the oscillation function only is

only approximately 5µm more accurate in this case and may not have a significant

effect on accuracy in the higher dimension problems.

Table 6.12: Experimental study, summary of training bias correction results for com-
peting models in the 1 dim case study.

Model curve fit ∆̄py (std) rms ∆py (max)
[mm] [mm]

M0,GP
smooth 0.000 (0.027) 0.026 (0.075)

oscillation 0.000 (0.019) 0.019 (0.077)

M1,GP
smooth 0.000 (0.026) 0.026 (0.071)

oscillation 0.000 (0.020) 0.020 (0.081)

M2,GP
smooth 0.000 (0.026) 0.025 (0.072)

oscillation 0.000 (0.020) 0.020 (0.081)

Table 6.13: Experimental study, summary of validation bias correction results for
competing models in the 1 dim case study.

Model curve fit ∆̄py (std) rms ∆py (max)
[mm] [mm]

M0,GP
smooth -0.012 (0.023) 0.025 (0.054)

oscillation -0.011 (0.017) 0.020 (0.041)

M1,GP
smooth -0.013 (0.023) 0.026 (0.055)

oscillation -0.013 (0.017) 0.021 (0.041)

M2,GP
smooth -0.013 (0.023) 0.025 (0.054)

oscillation -0.013 (0.016) 0.021 (0.038)

6.3.3 Summary

The aim of the study in this section was to test the use of bias correction to reduce

the positional error on an industrial robot in with 1 dimensional input. Bias data was

determined as the difference between the measured TCP position and the predictions

of the competing calibration models. The bias was predicted using Gaussian process

regression. An oscillation in the position of ∆py was observed, which is explained as a

gearbox transmission error in literature, and became the research focus of the study.

The oscillation was a more challenging case for bias correction and was used to inform

limitations of bias correction for this application. The 0.3 mm positional error floor
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reached by the calibrated models may be partially explained by a gearbox oscillation

in multiple joints and modelling the oscillation may significantly reduce the error

further. In the first part of the study, the oscillation was modelled using a squared-

exponential (SE) kernel and squared exponential with sinusoidal kernel (SES) and the

results were compared. Both kernels returned functions that either modelled just the

underlying smooth function that exists in data without gearbox errors, or modelled

the oscillation as well as the smooth function. The function selection was sensitive to

the initial hyperparameter estimate but the crude approach of testing multiple initial

estimates was successful in identifying optimal solutions. Against expectation, the

SE kernel provided a function with higher confidence than the SES kernel and was

used in the second part of the study.

In the second part of the study, the accuracy of bias correction on bias data from the

competing models was compared. Positional error was substantially reduced by bias

correction, to the same level for all competing model bias data. The same observations

were made in the numerical study in Chapter 5 and it was shown that bias reduction

only improved bias correction accuracy in a high input dimension, low data resolution

case.

It was shown that the oscillation was more difficult to model in the second study

which had lower training data resolution. As the input dimensions or input range

increases, the resolution will decrease and gearbox oscillations will be more challenging

to identify.

Looking forward to the 3 dim study, the expectation is that positional error will be

substantially improved but

6.4 Bias correction of robot positional error with

a 3 joint angle input

The aim of this study is to explore the limitations of bias correction in predicting

position error on an industrial robot, by increasing the complexity of the problem to

3 input variables, referred to as the 3 dim case study. In the study in this section,

joints 1, 2 and 3 will be rotated whilst all other joint angles are fixed. The results of

bias correction predictions of competing model bias data will be compared to continue

to explore the effect that bias reduction has on prediction accuracy.
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The expectation is that the positional error of the robot will be substantially reduced

using bias correction but will not achieve the level observed in the 1 dim case study.

The bias form is expected to be more complex i.e. more highly non-linear, and the

training data resolution will be lower. It is expected that the bias correction results

for the competing model bias data will be very similar. In Chapter 5 it was reported

that bias reduction had a negligible effect of bias correction accuracy in the 3 dim

cases. The same observation was made in the 1 dim case study in section 6.2.

In the 3 dim study in this section, the GPR model will be trained with 600 measure-

ments and validated with 100 measurements, generated separately using LHS.

The baseline data from the calibrated models is presented in Figure 6.11 and Tables

6.14 and 6.15

6.4.1 Baseline data

Figure 6.11 shows the distribution of training bias data generated by the competing

models for a visual analysis. In Chapter 5, large validation data sets were exploited

and the validation bias data was presented as a baseline. In the experimental studies

in this chapter, due to practical constraints, the quantity of training data is greater

than the quantity of validation data and so the training data is presented as a baseline.

Similar observations to those made in Chapter 5 can be made in the comparison of

distributions. Firstly, the high bias mean but relatively narrow distribution in the

nominal model ∆pz data is the result of a large deflection due to payload. Interest-

ingly, the bias has not been corrected to a zero mean by calibration. Secondly, the

nominal model ∆px data has a relatively flat distribution which may be the result of

bi-modality or multiple peaks. Unlike the results in Chapter 5, the calibrated results

have a Gaussian distribution. The flatter distribution did not indicate an additionally

challenging data set for bias correction and is not assumed to be an indication of bias

correction performance.

The distributions of M1 and M2 are similar which is an indication that bias correction

predictions will have very similar accuracy and the expectations will be confirmed.
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(a)

(b)

(c)

Figure 6.11: Experimental study, distribution of bias data for models (a) M0, (b) M1

and (c) M2 in the 3 dim case study. f: frequency (number of measurements).

The training and validation bias data from the competing models are summarised

in Tables 6.14 and 6.15, respectively. The bias data from the competing models

will provide different challenges for bias correction, with rms |∆p| of M1 and M2

being smaller by factors of x5 and x10 compared to M0. The similar distributions

however suggest that the bias data from the competing models will not be more or

less challenging.
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Table 6.14: Experimental study, summary of training bias data results for competing
models in the 3 dim case study.

M0 M1 M2

∆̄px (std)[mm] 0.546 ( 0.993 ) -0.131 ( 0.172 ) -0.061 ( 0.147 )
∆̄py (std)[mm] 0.539 ( 0.267 ) 0.150 ( 0.328 ) 0.024 ( 0.164 )
∆̄pz (std)[mm] -3.739 ( 0.383 ) -0.345 ( 0.287 ) -0.181 ( 0.188 )

rms |∆p| (max)[mm] 3.971 ( 4.763 ) 0.615 ( 1.470 ) 0.347 ( 0.648 )

Table 6.15: Experimental study, summary of validation bias data results for compet-
ing models in the 3 dim case study.

M0 M1 M2

∆̄px (std)[mm] 0.723 ( 1.043 ) -0.139 ( 0.182 ) -0.037 ( 0.145 )
∆̄py (std)[mm] 0.561 ( 0.320 ) 0.197 ( 0.385 ) 0.045 ( 0.174 )
∆̄pz (std)[mm] -3.662 ( 0.437 ) -0.316 ( 0.314 ) -0.168 ( 0.207 )

rms |∆p| (max) 3.951 ( 4.615 ) 0.659 ( 1.350 ) 0.353 ( 0.685 )

6.4.2 Hyperparameter Search

For a visual comparison of solutions, Figure 6.12 shows the bias correction results of

the competing models, in terms of rms ∆px , ∆py and ∆pz for all 20 hyperparameter

estimates. The variation of results in the 20 solutions, for any single model data will be

used as an indication of whether an local or global minima was found. A comparison

of training and validation results will be used as an indication of overfitting. Examples

of estimated hyperparameters are presented in Tables 6.16 and 6.17 for discussion.

A small variation of less than 10µm in the results of ∆px and ∆pz for any model

data is an indication that the global minim was found and thus the optimal function.

Small variation can be attributed to early stopping criteria in the hyperparameter

search function.

The majority of results for ∆py also vary by a small amount, however the functions

from estimates h8 and h19 provide substantially more accurate results, confirmed by

the training data. One explanation is the presence of a local minima relatively central

to the searched error hyperspace, whilst the global minima is towards the edge and

is found less often from initial searches. The search could be made more robust with

an initial probing of the error hyperspace and then concentration of initial estimates.
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Alternatively, a wider initial estimate range and more initial estimates could be used

but would take considerably more time.

Model overfitting is demonstrated a zero error ∆px for training data predictions but

a very large error for validation data predictions by using h11 in the model of ∆px for

M0.

There are examples of high performing models which can be selected automatically

as optimum models. The estimates of h10 in x, h8 in y and h12 in z represent the

optimum performing models in terms of rms residual error. These will be used as the

solutions in the GPR models.
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Figure 6.12: Experimental study, bias correction rms errors in ∆px , ∆py , ∆pz for
hyperparameter search result for the 3 dim case study.
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Table 6.16 shows the hyperparameters of h2 as an example of the estimated hyper-

parameters that produced one of the majority results. These are referred to as the

common results. Table 6.17 shows interesting hyperparameters for comparison.

The h2 hyperparameter values are within reasonable expectations with the exception

of h2(∆pz ) for model M0,GP . The large length scale of l1 = 182 means that the

positional error in ∆pz is relatively insensitive to the joint 1 input. Intuitively this

would be reasonable to assume. Joint 1 rotates the robot arm around a vertical axis

and has the largest and most robust gearbox. It function can be seen as rotating the

plane in which the robot operates and is unlikely to produce a complex bias form.

However, the other models of ∆pz have much lower estimates which indicates that

the function is relatively insensitive to the joint hyperparameter and not necessarily

the joint input itself.

The noise hyperparameter σn values are considerably higher than the measurement

variation of 13µm. An explanation would be that the measurement variation is higher

than first measured, but hyperparameters estimates are higher than those estimated

in the 1 dimension case study which does not confirm the explanation. The increase

in σn means that more of the bias is explained by the function as noise which could

be interpreted as an indication that the bias form is highly non-linear and cannot be

fully modelled by a smooth function. It is possible that the global minim was not

found in the hyperparameter search.

h8(∆py ) is the solution with the lowest residual error, compared to the other hyper-

parameters. A small length scale of l1 = 0.1 is the only significantly different feature

which indicates that the bias changes quickly as a function of the joint 1 angle. An

oscillation would occur in ∆py if a gearbox error was present in joint 1 and would be

more accurately modelled locally by a small length scale. l1 = 0.1 is at the extreme

edge of the search hyperplane set by the range of initial estimates which would explain

why most solutions found a local minima.

Hyperparameter set h11(∆px) has a similarly small joint 2 length scale (l2 = 0.08)

however the result is overfitting, indicated by a zero σn and poor predictions of the

validation data.

Hyperparameter set h5(∆px) is an example of the opposite case to the above, whereby

l1 is very large and the function is insensitive to the angle of joint 1 and does not

model local changes well.
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Table 6.16: Example of the estimated kernel hyperparameters, representative of the
majority of estimations from 20 initial estimates.

Model σf l1 l2 l3 σn

M0,GP

h2(∆px) 1.20 5.23 5.10 2.50 0.038
h2(∆py) 1.08 3.80 5.28 3.11 0.078
h2(∆pz) 3.26 182.83 6.51 3.64 0.047

M1,GP

h2(∆px) 0.67 3.72 3.37 2.14 0.038
h2(∆py) 1.17 4.00 5.32 3.17 0.078
h2(∆pz) 1.59 4.89 6.66 3.02 0.047

M2,GP

h2(∆px) 0.18 3.32 1.69 1.17 0.038
h2(∆py) 0.23 3.94 2.39 2.26 0.078
h2(∆pz) 0.66 5.81 4.42 2.66 0.047

Table 6.17: Example of informative estimated GP SE kernel hyperparameters.

Model σf l1 l2 l3 σn

M0,GP

h8(∆py) 0.55 0.10 6.23 3.31 0.031
h11(∆px) 0.62 0.456 0.08 1.09 0.00
h5(∆px) 29.96 597.19 7.70 5.13 0.04

6.4.3 Results of bias correction

Figure 6.13 shows the distribution of residual positional errors after bias correction

of the competing model validation data for a visual analysis. The residual error in

all competing model bias data has been reduced using bias correction, evidenced by

a centralised mean and narrower distribution that observed in the bias data. The

flatter distribution of ∆pz for M1,GP and M2,GP still demonstrate a second or possible

multiple peaks observed in the competing model bias data which means that there are

more input spaces where the positions errors remain relatively high. The bi-modal

distribution of the bias data in ∆px of M0 is uniform after bias correction which now

indicates that there as less input spaces where the positional error is high.

The distribution of bias correction results for the competing models is similar, which

indicates that bias reduction is likely to have a marginal effect of bias correction

accuracy.
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(a)

(b)

(c)

Figure 6.13: Experimental study, distribution of validation data bias correction results
for models (a) M0,GP , (b) M1,GP and (c) M2,GP for the 3 dim case study. f: frequency
(number of measurements).

A summary of bias correction results for training and validation bias data is presented

in Tables 6.18 and 6.19.

The residual error in the bias data has been substantially reduced using bias correc-

tion. Bias correction reduced the positional error of the robot for the most challenging

data, that of M0, from an rms |∆p| of 3.9mm to 57µm for the training data and 72µm

for validation data. The results are in fact similar to those in the numerical study in
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Chapter 5 which provides confidence in the numerical study as a useful simulation.

Similar to the 1 dim case study, the accuracy of bias correction predictions is only

marginally affected by the reduction of bias size and complexity. In fact, the rms

and maximum |∆p| values are the lowest for the M0,GP model, followed by the M1,GP

model and M2,GP model which is against expectation. The range of rms |∆p| distance

results is only 8µm which is small, however the maximum positional error is 0.1mm

higher for the M2,GP model.

Table 6.18: Experimental study, summary of training data bias correction results for
competing models in the 3 dim case study.

M0,GP M1,GP M2,GP

∆̄px (std) [mm] -0.000 ( 0.031 ) -0.000 ( 0.029 ) -0.000 ( 0.024 )
∆̄py (std) [mm] -0.000 ( 0.025 ) -0.000 ( 0.025 ) -0.000 ( 0.025 )
∆̄pz (std) [mm] 0.000 ( 0.041 ) -0.000 ( 0.044 ) 0.000 ( 0.039 )

rms |∆p| (max) [mm] 0.057 ( 0.182 ) 0.059 ( 0.170 ) 0.052 ( 0.148 )

Table 6.19: Experimental study, summary of validation data bias correction results
for competing models in the 3 dim case study.

M0,GP M1,GP M2,GP

∆̄px (std) [mm] 0.003 ( 0.037 ) 0.003 ( 0.040 ) 0.003 ( 0.055 )
∆̄py (std) [mm] -0.001 ( 0.042 ) -0.001 ( 0.041 ) 0.001 ( 0.040 )
∆̄pz (std) [mm] -0.004 ( 0.046 ) -0.001 ( 0.050 ) -0.005 ( 0.049 )

rms |∆p| (max) [mm] 0.072 ( 0.163 ) 0.076 ( 0.186 ) 0.084 ( 0.265 )

6.4.4 Summary

The aim of this study was to investigate the limitations of bias correction in predicting

robot positional error from an input of 3 joint variables, with respect to bias reduction.

The positional error of the robot after bias correction was substantially reduced to

sub 0.1mm levels which was expected. Bias reduction had a marginal effect of bias

correction accuracy and against expectations, the bias correction predictions were

more accurate for the nominal model bias data. The limitations of bias correction with

respect to bias reduction will continue to be tested on higher dimensional problems.

The search for optimal hyperparameters has a significant influence on the accuracy of

the GPR model.It was shown that global minima, can be easily missed if they exist at
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the outer edges of the search space if local minima exists. Search strategy involving

careful section of initial search estimates will continue to be a design consideration

but could be improved with further research.

6.5 Bias correction of robot positional error with a

6 joint angle input and small joint angle range

The aim of this study is to investigate the limitations of bias correction by increasing

the complexity of the problem to 6 input variables, but with a relatively narrow input

space, referred to as the 6 dim (s) case study. The input space is narrowed by reducing

the joint angle range to take a small step towards a more complex problem and to

reflect the challenge of milling which is often in a smaller workspace, compared to

panel drilling. In this study joints 1 to 6 will all be rotated to configurations that

provide TCP poses. The challenges of bias data prediction accuracy in relation to

training data quantity and bias reduction from competing models are tested.

In Chapter 5, the study of bias correction on the numerical model in the same 6 dim

(s) demonstrated that positional errors can be substantially reduced and that bias

reduction has a negligible effect on bias correction accuracy. Similar observations

were made in the study of an industrial robot in the 3 dim case study in section 6.4.

The results in this case study are expected to confirm the same observations and will

be compared to those in Chapter 5 and section 6.4.

In the 6 dim (s) study, the GPR model will be trained with 1200 measurements

and validated with 100 measurements, generated separately using LHS. 1200 training

data measurements is considerably higher than the 800 used in the similar case study

in Chapter 5. In Chapter 5 it was suggested that substantially more training data

measurements would be required to improve bias correction accuracy and test the

limitations of bias correction in the 6 dim (l). In both the 6 dim case studies in this

chapter, the larger 1200 training data quantity will be used so that the results can

be compared.

The rotation of all six joints means that in some joint configurations, the T-mac

sensor cannot be seen by the laser tracker. The input space is limited to a subspace

where the sensor is visible. The process of generating joint angle input vectors, and

selecting only those that meet the input space dimensions whilst remaining visible,

was discussed in more detail in section 6.1. It was observed during the experiment

that many of the training configurations were very similar to each other and were
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similar to the validation configurations as a result inputs being limited to a subspace.

It can be assumed that the Latin hypercube used for input sampling, is not fully

represented and the large training data set could be reduced and still maintain a

relatively high resolution.

6.5.1 Baseline data

Figure 6.11 shows the distribution of validation bias data generated by the competing

models for a visual analysis.

Similar observations to those made the 3 dim case study in section 6.4 can be made in

the comparison of distributions. The high bias mean but relatively narrow distribu-

tion in the nominal model ∆pz data is the result of a large deflection due to payload.

Also, the bias has not been corrected to a zero mean by calibration. In Chapter 5

the same case study presented a flat or multi-modal bias distribution in ∆px and a

skewed symmetric bias distribution in ∆pz . The reason was not investigated but

the same distributions are not evident in the bias data in this study in this section.

The different distributions between the numerical and experimental data could be the

contribution of unmodelled errors, such as gearbox errors in the real robot, the more

extensive analysis provided by more data in the experimental study or the limitation

of the input to a subspace due to sensor visibility. The Uniform distribution in this

case study does not indicate any concerns for bias correction.
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(a)

(b)

(c)

Figure 6.14: Experimental study, distribution of validation bias data for models
(a)M0, (b)M1 and (c) M2 in the 6 dim (s) case study. f: frequency (number of
measurements).

The training and validation bias data from the competing models is summarised in

Tables 6.20 and 6.21 respectively. The bias data from the competing models will

provide different challenges for bias correction, with two orders of magnitude, 4mm

and 0.4mm in terms of rms |∆p|.

The higher input dimensions, but smaller input range in this study compared the

3 dim study produce positional errors with a similar magnitude for each competing
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model: 4, 0.65 0.35mm for the 3 dim case study and 4.1, 0.45 ad 0.35 in the 6 dim

(s) case study. In Chapter 5, the same observation was made and the results showed

that the accuracy of the bias correction predictions of the 6 dim (s) case was only

marginally less accurate than the 3 dim case. The assumption was that the 6 dim

case retained a similar training data resolution by reducing the input range. It can

be assumed that similar observations will be made in the case study in this section.

However, the bias data of models M1 and M2 are only different by approximately

0.1mm in rms |∆p| and bias correction of the two sets of data are likely to result in

predictions with negligible difference.

Table 6.20: Experimental study, summary of training bias data results for competing
models in the 6 dim (s) case study.

M0 M1 M2

∆̄px (std) [mm] 0.400 ( 0.464 ) -0.021 ( 0.193 ) -0.074 ( 0.118 )
∆̄py (std) [mm] 0.490 ( 0.244 ) 0.045 ( 0.258 ) 0.004 ( 0.123 )
∆̄pz (std) [mm] -4.036 ( 0.334 ) -0.295 ( 0.163 ) -0.268 ( 0.148 )

rms |∆p| (max) [mm] 4.132 ( 4.974 ) 0.469 ( 0.940 ) 0.358 ( 0.697 )

Table 6.21: Experimental study, summary of validation bias data results for compet-
ing models in the 6 dim (s) case study.

M0 M1 M2

∆̄px (std) [mm] 0.410 ( 0.510 ) -0.005 ( 0.194 ) -0.064 ( 0.127 )
∆̄py (std) [mm] 0.496 ( 0.242 ) 0.050 ( 0.255 ) -0.015 ( 0.130 )
∆̄pz (std) [mm] -4.011 ( 0.327 ) -0.267 ( 0.177 ) -0.238 ( 0.162 )

rms |∆p| (max) [mm] 4.114 ( 5.027 ) 0.454 ( 0.867 ) 0.346 ( 0.638 )

6.5.2 Hyperparameter search

An initial investigation showed that the hyperparameter search did not converge to

one of a few solutions and that the results when modelling the bias data using the

different hyperparameter solutions were wide ranging. For a visual comparison of

solutions, the bias correction results for training and validation data predictions from

the competing models, in terms of rms ∆px , ∆py and ∆pz , for all 20 hyperparameter

estimates is presented in Figure 6.12. A comparison of the accuracy of training data

predictions for the estimated hyperparameter from the 20 initial estimates will be

used to indicate the number of solutions and local minima. A comparison of the
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accuracy of training and validation results is used as an indication of sensitivity to

hyperparameter selection and to identify overfitting.

The wide range in the accuracy of training data predictions is an indication that there

are many local minima when searching for optimum hyperparameter solutions. Also,

accuracy of training data predictions is sensitive to the hyperparameters used by the

GPR model, evidenced by a range of 0.1mm in rms ∆py and ∆pz . It can be assumed

that the higher dimensions compared to the 3 dim case study, results in a search

space with many more solutions. It was discussed in the 3 dim case study in section

6.4 that the hyperparameter search strategy is an important design consideration. In

this study, the approach of comparing results for 20 random initial estimates is used

but it is recognised that a more reliable strategy should form part of future work.

As a likely result of over-fitting, there are exceptions of poor performing models,

which predict the training data with near zero rms ∆p, then predict the validation

data with a large rms ∆p, M0,GP h16(∆px) and h19(∆px) being good examples.
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Figure 6.15: Experimental study, bias correction rms errors in ∆px , ∆py , ∆pz for
hyperparameter search result for the 6 dim (s) case study.

Table 6.22 shows examples of interesting hyperparameters that are worth further
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discussion.

The first set of hyperparameters (M0,GP : h9(∆px),h16(∆px),h19(∆px)) are examples

where the bias correction, validation data has high residual errors. The relatively

small σn, is evidence that using these hyperparameters in the GPR model, results in

training data overfitting and a poor prediction of the validation data. The result is a

large uncertainty and the measurement variation in the validation observations can

no longer be explained. Hyperparameter estimates with σn << σepsilon will produce

GPR models that predict test data with relatively low accuracy. It can be assumed

that σn can be used as a simple filter to remove model solutions when searching for

optimal hyperparameters.

The second set (M2,GP : h19(∆py)) is another example where the bias correction,

validation data has high residual errors, which is partially explained by very small l1

and l4 length scales. Models with small length scales change rapidly to local changes

in data but fail to model medium or longer term data trends and therefore may not

predict test data if it isn’t sufficiently local to the training data.

The third set (M2,GP : h3(∆py)) is an example of a model with very large length

scales but the bias correction, validation data has residual errors that are of a similar

order to others. Models with large length scales are insensitive to the inputs that

are associated with those large length scales, in this case, the angles of joints 5 and

6. It would be expected that the model would not able model highly non-linear data

accurately, but that is not confirmed by the results in this study.

It is a difficult task to assume the relative accuracy of a GPR from the hyperparameter

length scales in a 9 parameter hyper-space and would require extensive investigation

to be able to use length scale as a filter for model selection. This is beyond the scope

of this study.

Table 6.22: Example of the estimated GP SE kernel hyperparameters, representative
of the majority of estimations from 20 initial estimates.

Model σf l1 l2 l3 l4 l5 l6 σn

M0,GP

h9(∆px) 0.23 0.58 0.85 1.13 1.28 1.26 0.54 -0.011
h16(∆px) 0.25 0.84 0.24 0.36 2.21 0.99 0.86 -0.006
h19(∆px) 0.38 0.10 0.95 1.00 0.20 1.15 13.12 -0.002

M2,GP
h11(∆pz) 0.14 0.32 0.05 1.09 0.28 0.67 2.01 -0.006
h19(∆pz) 0.15 0.07 2.19 0.62 0.05 0.90 2.12 0.014

M2,GP h3(∆py) 3.48 22.76 15.33 66.97 4889.20 752.49 21.02 0.092
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6.5.3 Bias correction results

Figures 6.16 and 6.17 show the distribution of residual positional errors after bias

correction of the competing model training and validation data respectively, for visual

analysis.

The distribution of training data bias in section 6.2.1, which is referred to as baseline

data, was broadly described as uniform with a non-zero mean. The distribution of

residual error data after bias correction is compared to the baseline data as an indica-

tion that the training data has been modelled with some success. The distribution of

bias correction, residual error data has an approximately zero mean and a narrower

distribution i.e. expected lower standard deviation, compared to the training data

bias which is a positive indication that the training data was modelled with some

success and positional errors have been reduced.

A comparison of distribution mean, standard deviations and profile (e.g. uniform,

bi-modal) between competing models is used to indicate whether bias reduction has

increased the accuracy of bias correction predictions. The residual error distributions

for the competing models are very similar in terms of means and distribution width

and profile with the small exception of the distribution of ∆py . The prediction of the

∆py bias data for model M0 is more accurate than the M1 and M2 bias data which is

against expectation, evidenced by a narrower distribution. It is reasonable to assume

the range is small enough to be explained by hyperparameter estimates that maybe

sub-optimal, possibly only through early stopping criteria.

Some distributions of the residual errors in the validation data show evidence of

multiple peaks. For example, there is a small second peak in the residual error

data in ∆pz from model M2,GP which means that there are approximately 10 robot

configurations where the positional error ∆pz is greater than 0.1mm.
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(a)

(b)

(c)

Figure 6.16: Experimental study, distribution of training data bias correction results
for models (a) M0,GP , (b) M1,GP and (c) M2,GP in the 6 dim (s) case study. f:
frequency (number of measurements).
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(a)

(b)

(c)

Figure 6.17: Experimental study, distribution of validation data bias correction results
for models (a) M0,GP , (b) M1,GP and (c) M2,GP in the 6 dim (s) case study. f:
frequency (number of measurements).

A summary of bias correction results for training and validation bias data is presented

in Tables 6.23 and 6.24. The residual error in the bias data has been substantially

reduced using bias correction as expected. Bias correction reduced the positional

error of the robot for the most challenging data, that of M0, from an rms |∆p| of

4mm to 66µm for the training data and 93µm for validation data.

Bias reduction has had only a small contribution to the accuracy of bias correction
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predictions. The range of results can be considered as small, 9µm in comparison to

the measurement variation of 13µm. The range of results is almost entirely from the

models of ∆py . It is unclear why bias correction of the uncalibrated bias data M0

would be more accurate than calibrated model data with a lower and less complex bias

form. However, as the range is small, no conclusions can be drawn with confidence.

In comparison to the results from the 3 dim case study in section 6.4.3, the bias

correction residual errors are not significantly higher for all models as a result of

increasing the number of input dimensions from 3 to 6 in this case study. The rms

|∆p| are 20µm higher in this study for M0,GP and less for M1,GP and M2,GP . The

same observations were made in Chapter 5. It was concluded that a reduction in

training data resolution will result in a reduction in the prediction accuracy of test

data. In this case study, the increase in input dimensions reduced the resolution of

training data substantially but an increase in training data quantity and a smaller

input range will have increased the resolution, but not to the same resolution as the

3 dim case study.

Table 6.23: Experimental study, summary of training data bias correction results for
competing models in the 6 dim (s) case study.

M0 M1 M2

∆̄px (std) [mm] 0.000 ( 0.032 ) 0.000 ( 0.030 ) 0.000 ( 0.032 )
∆̄py (std) [mm] 0.000 ( 0.022 ) 0.000 ( 0.043 ) 0.000 ( 0.029 )
∆̄pz (std) [mm] 0.000 ( 0.054 ) 0.000 ( 0.054 ) 0.000 ( 0.049 )

rms |∆p| (max) [mm] 0.066 ( 0.195 ) 0.075 ( 0.187 ) 0.066 ( 0.174 )

Table 6.24: Experimental study, summary of validation data bias correction results
for competing models in the 6 dim (s) case study.

M0 M1 M2

∆̄px (std) [mm] 0.010 ( 0.033 ) 0.010 ( 0.034 ) 0.010 ( 0.033 )
∆̄py (std) [mm] -0.007 ( 0.062 ) -0.010 ( 0.045 ) -0.012 ( 0.046 )
∆̄pz (std) [mm] 0.026 ( 0.055 ) 0.026 ( 0.056 ) 0.025 ( 0.055 )

rms |∆p| (max) [mm] 0.093 ( 0.185 ) 0.084 ( 0.155 ) 0.084 ( 0.197 )

6.5.4 Summary

The aim of this study was to investigate the limitations of bias correction in predicting

robot positional error from an input of 6 joint variables with a small joint range, with

181



respect to bias reduction.

Observations made in the numerical study were confirmed by comparing the bias

correction results in this study to the previous 3 dim case study in section 6.3. Namely,

bias correction using GPR reduced the rms |∆p| to sub 0.1mm. The accuracy of bias

correction predictions is not necessarily increased by an initial bias reduction achieved

by model calibration. The accuracy of bias correction predictions is expected to be

lower as the number of input dimensions increases. For a non-linear bias form, the

GPR model may be less able to accurately predict the data between training data

points if the resolution is lower.

The search for kernel hyperparameters identified many solutions and the GPR model

accuracy is sensitive to the hyperparameters used. Many more solutions were found

in the 6 dim case compared to the 3 dim case study which is expected when searching

in a higher dimensional space. The search strategy of probing with 20 initial esti-

mates was adequate but takes a long time to run with high training data quantities.

Hyperparameter search strategies to improve efficiency and accuracy, is a topic that

would add value in future work.

The practical limitations of sensor visibility resulted in the pose of the robot only

being modelled in a subspace of joint configurations.

There were a number of observations that were not investigated in the study and a

number of questions remain. The first is the explanation of multiple peaks in the bias

correction, residual error data distributions. The second is the relationship between

hyperparameter length scale values and model accuracy which could be used to as a

crude filter to identify models that will perform poorly, in terms of predicting test

data accurately.

Looking forward, the methodology used in this case study will be used again in the

6 dim (l) case study and the results will be directly compared.

6.6 Bias correction of robot positional error with a

6 joint angle input and large joint angle range

The aim of this study is to investigate the limitations of bias correction by increasing

the complexity of the problem to 6 input variables, but with a relatively wide input

space (referred to as 6 dim (l)). In this study joints 1 to 6 will all be rotated to

configurations that provide TCP poses. The challenges of bias data prediction in
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relation to training data quantity and bias reduction from competing models are

tested.

In Chapter 5, the 6 dim (l) case study conducted on the numerical model demon-

strated that positional errors can be reduced by using bias correction. The hypothesis

that bias reduction by model calibration has a negligible effect on bias correction ac-

curacy, was not conclusively proven. The the 6 dim (l) case study was the only study

to show that bias reduction reduced the bias correction residuals error, but only by

20µm which is too small in relation to measurement variation to be conclusive. In the

3 dim and 6 dim (s) case studies on the real robot in this Chapter, a narrow range

of bias correction results between competing model data was reported and in fact,

the uncalibrated model bias data was predicted with the lowest residual errors, which

is against expectation. However, the range was again too small to be conclusive. A

comparison of bias correction results for the competing models in this study will be

used to test the hypothesis.

In the 6 dim (l) input space study in this section, the GPR model will be trained with

1160 measurements and validated with 100 measurements, generated separately using

LHS. It is acknowledged that the test is conducted in a subspace of the joint inputs

due to sensor visibility and the results cannot be generalised to the entire joint-space

or Cartesian workspace.

6.6.1 Baseline data

Again, some familiar observations, also observed in the 3 dim and 6 dim – small

case studies, can be made: (1) The high bias mean of the nominal model, M0 ∆pz

bias data is the result of a large deflection due to payload; (2) the errors of ∆pz are

substantially reduced by correcting the distribution to a zero mean with a simple

base localisation; (3) the bias data from model M0 will provide a different challenge

to that of M1 and M2. In this case study, the bias data of M1 may provide a different

challenge for bias correction than that of M2. The wider distribution of M1 indicates

that the unmodelled errors from the geometric parameter errors produces a more

complex bias form to model.

The distribution of M0 ∆pz bias data is bi-modal which was also partially evident in

both the numerical and experimental the 3 dim studies, and the 6 dim (l) in Chapter

5. The two peaks were explained by the deflection due to payload causing being in

the positive of negative px direction depending on if the angle of the arm was above
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or below the horizontal. It was not investigated further as having two peaks was not

problematic for bias correction.

(a)

(b)

(c)

Figure 6.18: Experimental study, distribution of bias data for models (a)M0, (b)M1

and (c) M2 in the 6 dim (l) case study. f: frequency (number of measurements).

The training and validation bias data from the competing models is summarised in

Tables 6.28 and 6.29, respectively.

In the 6 dim (s) case study in section 6.5 there were many solutions to the hyper-

parameter search as a result of the high number of input dimensions. The accuracy
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of the GPR models, in terms of rms ∆p, was sensitive to the hyperparameter choice.

The same observations are made with respect to the hyperparameters estimated in

this study.

There are notable examples, such as h14(∆px ), where model overfitting has occurred,

indicated by a lower error in the training data and higher error in the validation data.

The residual error in the validation data models are less sensitive to hyperparameter

choice than training data models. Once hyperparameters that results in models with

very high or very low residual errors, in rms ∆p are withdrawn, the residual errors in

the validation data have a range of approximately 20µm. This observation suggests

that it may be possible to provide upper and lower limits for hyperparameters or

training data error limits to able to identify optimal or near optimal solutions.

Table 6.25: Experimental study, summary of training bias data results for competing
models in the 6 dim (l) case study.

M0 M1 M2

∆̄px (std) [mm] 0.764 ( 0.959 ) 0.001 ( 0.368 ) 0.014 ( 0.201 )
∆̄py (std) [mm] 0.371 ( 0.568 ) 0.003 ( 0.565 ) -0.007 ( 0.173 )
∆̄pz (std) [mm] -3.220 ( 0.586 ) 0.037 ( 0.389 ) 0.032 ( 0.214 )

rms |∆p| (max) [mm] 3.560 ( 5.077 ) 0.779 ( 2.379 ) 0.342 ( 1.413 )

Table 6.26: Experimental study, summary of validation bias data results for compet-
ing models in the 6 dim (l) case study.

M0 M1 M2

∆̄px (std) [mm] 0.831 ( 0.955 ) -0.029 ( 0.309 ) 0.042 ( 0.207 )
∆̄py (std) [mm] 0.340 ( 0.632 ) -0.012 ( 0.634 ) -0.042 ( 0.159 )
∆̄pz (std) [mm] -3.123 ( 0.626 ) 0.070 ( 0.413 ) 0.071 ( 0.242 )

rms |∆p| (max) [mm] 3.499 ( 5.024 ) 0.817 ( 1.896 ) 0.366 ( 0.966 )

6.6.2 Hyperparameter search

For a visual comparison of solutions, Figure 6.19 shows the bias correction results for

training and validation data predictions from the competing models, in terms of rms

∆px , ∆py and ∆pz , for all 20 hyperparameter estimates.
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Figure 6.19: Experimental study, bias correction rms errors in ∆px , ∆py , ∆pz for
hyperparameter search result for the 6 dim (l) case study.
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Table 6.27 shows examples of the hyperparameters from the poor performing models,

in relative terms, along with typical models from the same initial estimates for com-

parison. The h3 hyperparameters are examples where the residual errors are either

high for both training and validation data predictions or low for both. Models M0,GP

and M1,GP that use h3(∆px ), h3(∆py ) and h3(∆pz ) hyperparameters and M2,GP

that uses h3(∆px ) are examples where residual error are very high and are referred

to as set 1. Model M2,GP that uses h3(∆py ) and h3(∆pz ) are examples where the

residual errors are typical of other models and is referred to as set 2. In set 1 there

are examples of very small length scales in the order of 0.02, and very large length

scales in the order of 280 but which are not indications of model accuracy. A common

feature of hyperparameters in set 1 is a very large σn compared to the approximate

13µm measurement variation. The large noise hyperparameter results in a model that

is relatively flat and describes ‘wiggles’ in the bias form as noise and so predictions

of both training and validation data have high residual errors. In comparison, set 2

has σn hyperparameters that are of the same order as the measurement variation and

residual errors are within expectation. This observation confirms that without further

investigation, the length scales cannot be used as an indication of model accuracy but

model accuracy is sensitive to σn. Investigation of this topic is beyond the scope of

this research but would benefit future work.

Table 6.27: Example of the estimated kernel hyperparameters, representative of poor
performing estimations from 20 initial estimates.

Model σf l1 l2 l3 l4 l5 l6 σn

M0,GP

h3(∆px) 0.40 1.64 4.56 1.39 32.27 2.55 0.67 0.160
h3(∆py) 0.42 1.54 3.81 4.26 12.43 27.73 3.86 0.250
h3(∆pz) 0.03 0.37 0.90 0.84 1.62 0.55 0.03 0.580

M1,GP

h3(∆px) 0.71 46.45 3.66 103.99 1.48 0.87 8.44 0.176
h3(∆py) 1.24 1.63 36.37 -280.19 -2.80 109.81 -2.23 0.273
h3(∆pz) 0.02 0.29 0.41 0.56 1.03 1.47 0.08 0.387

M2,GP

h3(∆px) 0.07 0.55 0.53 0.61 0.84 0.35 0.12 0.166
h3(∆py) 0.24 5.38 2.62 2.22 1.54 1.08 1.98 0.094
h3(∆pz) 0.22 0.97 0.82 1.25 1.28 0.90 0.48 -0.045

6.6.3 Bias correction results

Figures 6.16 and 6.17 show the distribution of residual positional errors after bias

correction of the competing model training and validation data respectively, for visual
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analysis.

The distribution of training data bias is referred to as baseline data, was broadly

described as uniform with a non-zero mean, with the exception of the ∆px bias data

for model M0. The movement of the distribution mean and the narrower distribution

width, in standard deviation terms, of the bias correction training data compared to

the bias data is a positive indication that the training data was modelled successfully.

It was suggested that the bi-modal distribution in the ∆px bias data for model M0

had two subsets of data separated in to payload deflections in arm raised or lowered

configurations relative to the horizontal. As a function of joint angle it was not

expected to be challenging to model. The bias correction data distribution of ∆px

for M0,GP is uniform which could be interpreted as confirmation of the assumption

made.

The distribution of bias correction validation bias data has multiple peaks in all data

sets which means that the positional errors are not concentrated near to the mean and

that there are significantly large numbers of configurations where the positions error

is higher than 0.1mm in any direction. However it is possible that there is not enough

validation data to confirm the presence of significantly large peaks to indicate subsets

of data rather than instances. The second largest peaks are rarely larger than at five

configurations which is not a significant portion of the joint-space. Higher quantities

of validation data would be required to investigate the presence of significant peaks

and possible ‘high-error’ subspaces.

188



(a)

(b)

(c)

Figure 6.20: Experimental study, distribution of training data bias correction results
for models (a)M0,GP , (b)M1,GP and (c)M2,GP in the 6 dim (l) case study. f: frequency
(number of measurements).
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(a)

(b)

(c)

Figure 6.21: Experimental study, distribution of validation data bias correction results
for models (a)M0,GP , (b)M1,GP and (c)M2,GP in the 6 dim (l) case study. f: frequency
(number of measurements).

A summary of bias correction results for training and validation bias data is presented

in Tables 6.28 and 6.29. The residual error in the bias data has been substantially

reduced using bias correction as expected. Bias correction reduced the positional error

of the robot for the most challenging data, that of M0, from an rms |∆p| of 3.5mm to

0.102mm for the training data and 0.126mm for validation data. A more interesting

comparison is the bias correction residual error of 0.128mm and the positional error of

0.366mm from M2, the kinematic model with a geometric parameter calibration. The
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positional error can be substantially reduced below the 0.3mm error floor observed in

literature.

The residual errors of the bias correction training data, rms |∆p| terms can be inter-

preted as the limitation of the proposed methodology, on the assumption of confidence

in the GPR model. An approximate 0.1mm positional accuracy was achieved by bias

correction using GPR, which is in the order of the desired accuracy for robot drilling

tasks in aerospace. The maximum positional error of 0.27mm exceeds this specific

application target but equally there are many configurations with a smaller positional

error.

To achieve positional accuracy results close to the bias correction training data results,

a perceived limit, the resolution of the training data must be sufficiently high. The

resolution of the training data is accepted as a satisfactory quantity for this case

study with the validation data residual errors, in rms |∆p| terms, being only 20 to

30µm higher than the training data residual errors. Considerably larger training data

quantities would be required to achieve results in test data that are significantly closer

to the training data results.

For comparison to literature, experimental results of EFK calibration of geometric pa-

rameters followed by ANN bias correction were presented by Nguyen et al. [44]. The

author reported results of |∆p| as 0.424mm (mean), 0.201mm (standard deviation)

and 0.922mm (max). The equivalent results in this study are 0.118mm, 0.056mm and

0.214mm which are significantly lower by a factor of x4. The ANN was trained with

200 data points whilst in this study, 1160 data points were used to test the limitations

of bias correction for this application.

Table 6.28: Experimental study, summary of training data bias correction results for
competing models in the 6 dim (l) case study.

M0,GP M1,GP M2,GP

∆̄px (std)[mm] 0.000 ( 0.044 ) 0.000 ( 0.048 ) 0.000 ( 0.047 )
∆̄py (std)[mm] 0.000 ( 0.078 ) 0.000 ( 0.077 ) 0.000 ( 0.069 )
∆̄pz (std)[mm] 0.000 ( 0.049 ) 0.000 ( 0.049 ) 0.000 ( 0.041 )

rms |∆p| (max)[mm] 0.102 ( 0.267 ) 0.102 ( 0.254 ) 0.093 ( 0.214 )
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Table 6.29: Experimental study, summary of validation data bias correction results
for competing models in the 6 dim (l) case study.

M0,GP M1,GP M2,GP

∆̄px (std)[mm] 0.019 ( 0.057 ) 0.015 ( 0.060 ) 0.018 ( 0.060 )
∆̄py (std)[mm] -0.028 ( 0.086 ) -0.027 ( 0.087 ) -0.025 ( 0.087 )
∆̄pz (std)[mm] 0.030 ( 0.056 ) 0.028 ( 0.060 ) 0.031 ( 0.064 )

rms |∆p| (max)[mm] 0.126 ( 0.311 ) 0.128 ( 0.332 ) 0.131 ( 0.326 )

Whilst the rms |∆p| is a typical reference metric for machine tools and some robotics

research, in the most comparable, related research literature by Nguyen et al. [44],

Tao and Yang [86] and Jing et al. [45], the |∆̄p| is used. Table 6.30 shows the same

results presented in this case study, as |∆̄p| for comparison. The referenced research

literature are comparable because the authors use a similar 6-DOF articulated robot,

measured with a laser tracker and use a combined calibration and bias correction

approach to improve positional accuracy. Training and validation data quantities refer

to the data used for bias correction. There are notable similarities and differences in

the problems presented in the research. The first is that after calibration, the mean

error (M2|∆̄p|) data presented in the 6 dim (l) case study is already lower than that

achieved by the bias correction methods used in the related research literature, thus

seemingly having an advantage. However, if the conclusion is drawn in this chapter,

that calibration has no significant effect on the accuracy after bias correction, then

the data presented by all four studies can be considered as comparably similar. The

nominal robot error M0 6 dim (l) and Nguyen et al. [44] study are within 0.13mm,

whilst the base calibrated model (M1) data by Tao and Yang [86] and Jing et al. [45]

are approximately within a much larger 0.4mm of the 6 dim (l) data. The results

can be compared but with these notable differences. The relatively low |∆̄p|, is

a substantial reduction in positional error compared to related research literature,

which is expected to mainly be the result of a training data quantity that is four to

five times higher.
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Table 6.30: Experimental study, comparison of validation data bias correction results,
M2,GP in the 6 dim (l) case study, to related research literature.

6 dim (l) Nguyen et al. [44] Tao and Yang [86] Jing et al. [45]

Training data quantity 1160 200 150 300
Validation data quantity 100 100 150 100

M0|∆̄p|[mm] 3.452 3.587 - -
M1|∆̄p|[mm] 0.717 - 0.96 to 1.03 1.17 to 1.76
M2|∆̄p|[mm] 0.325 0.908 0.46 to 0.52 0.83 to 1.30

Bias correction |∆̄p|[mm] 0.118 0.424 0.35 to 0.42 0.43 to 0.57

6.6.4 Summary

The case study in this section was presented as the most challenging case study in

terms of high number of input dimensions (all 6 joints) and a wide input range (joint

angles). The expectations were that the bias correction results would demonstrate a

substantial reduction in positional error to a value approaching 0.1mm in rms |∆p|
terms, and that the range of results for the competing models would be small, in the

same order of the measurement variation.

The observations made in the numerical study in Chapter 5 and in the previous case

studies in this chapter were also made in this study in this section. Bias correction,

using GPR, substantially reduced the positional error of the robot to approximately

0.1mm for the training data and 0.12mm for the validation data which is in the order

expected and lower than in similar studies in literature. The results contribute to

the analysis of the limitations of bias correction for this application. The accuracy

of the bias correction predictions will be compared to the results from the other case

studies in this chapter in section 6.7 to analyse the limitations of bias correction in

this application.

A comparison of bias correction results of the competing models was used to test the

bias reduction hypothesis presented in Chapter 5. The accuracy of bias correction

predictions was not improved significantly by an initial bias reduction. The same

observation was not conclusively made in the numerical study of the 6 dim (l) case

or the 3 dim case study in this chapter, as the range of results was in the same order

as the measurement variation. A further analysis will be made in section 6.7.

In the 6 dim (s) study in this chapter, it was stated that a near zero σn hyperparameter

would be an indication of overfitting and would produce large errors in predicting test
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data. The suggestion was made that an analysis of the estimated σn could be used

as a filter to exclude models from the hyperparameter search. The same observation

was made in the study in this section. It was also observed in the 6 dim (l) study that

high σn produced large errors in the predictions of both training and validation data.

In future work, the analysis of σn could be a useful tool to improve the efficiency and

accuracy of hyperparameter searching.

The possible presence of multiple peaks in the results of the bias correction validation

data was not explored. Multiple peaks could be interpreted as regions of config-

urations where the positional error is high relative to the mean which would be a

useful outcome. The small quantity of validation data was not enough for significant

multiple peaks to be confirmed.

The practical limitation of sensor visibility meant that only a subspace of configura-

tions was tested and the results cannot be generalised to the whole space. In future

work, multiple laser trackers or measurements taken from multiple locations would

provide more conclusive evidence. This has also not been explored in literature and

would contribute to the analysis of robot accuracy limitations in future work.

The aim of this study was to investigate the limitations of bias correction in predicting

robot positional error from an input of 6 joint variables with a large joint range, with

respect to bias reduction.

6.7 Synthesis of case study results

The aim of the studies in this chapter was to explore the limitations of bias correction

to improve the accuracy of an industrial robot. The limitation of prediction accuracy

was tested with respect to the number of input dimensions (number of joints rotating)

and input range (joint angle range). The higher dimension case studies were expected

to provide a more challenging bias form to model as a result of the interaction of error

sources, and a reduction in training data resolution. In each case study, the limitation

of prediction accuracy was tested with respect to bias reduction. A hypothesis was

presented in Chapter 5 that bias reduction by initially calibrating the robot model

had an insignificant effect of bias correction prediction accuracy. The results from the

case studies in this chapter are summarised in this section and the two limitations

are analysed separately.
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6.7.1 Input dimension and input range analysis

In the numerical and experimental studies, the application of GPR as a bias correction

tool was tested in case studies that increased sequentially in complexity through

increased input dimensions or input range. The results of bias correction accuracy,

presented as rms errors for the validation data in ∆px , ∆py , ∆pz and |∆p| are

presented in Figure 6.22. The same conclusions can be drawn from the data of each

of the competing models.

The higher dimensional case study of 6 dim (s) did not pose a significantly greater

challenge for bias correction than the 3 dim case which had a wider input range. The

difference in accuracy between the two cases has a maximum range of only 20µm

in any direction and while the accuracy in rms ∆px is lower in the 3 dim case that

the 6 dim (s) case study, the reverse is true in rms ∆py and ∆pz resulting in up to

20µm accuracy difference in rms |∆p| in the M0,GP residual error data and negligible

difference in M2,GP residual error data.

A comparison of the 3 dim and 6 dim (l) results can be used to analyse the increase

in errors as a result of additional rotations of joints 4 to 6. The robot accuracy, in

rms |∆p| terms is significantly lower in the 6 dim (l) case compared to the 3 dim case,

by approximately 50µm. The majority of the additional error is evident in a large

difference in ∆py , whilst ∆pz results remain within 10µm. This can be explained by

the fact that joints 2 and 3 move to robot in a plane and joint 1 simply rotates that

plane, whilst joints 4 to 6 rotate the robot into configurations that twist the structure

and so some of the errors will be evident in ∆py .

A comparison of 6 dim (s) and 6 dim large results can be used to analyse the reduction

in errors by reducing the joint range. The 6 dim (s) case study had a reduced joint

range and a relatively small Cartesian workspace to represent a milling application.

The robot accuracy was significantly higher in the small case study, compared to the

large, with a reduction in rms |∆p| of 40 to 50µm.
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(a)

(b)

(c)

Figure 6.22: Experimental study, comparison of case study validation data bias cor-
rection results for model (a) M0,GP , (b) M2,GP and (c) M2,GP .
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6.7.2 Bias reduction analysis

In the three case studies presented, the accuracy of the bias correction predictions

is not increased by an initial calibration of the kinematic model. In two of the case

studies, the reverse appears to be true with lowest errors presented in the order of

M0,GP to M2,GP which was against expectation. However, the range of results between

models is approximately 10µm which is lower than the measurement variation and so

the range can be considered as non-substantial and the order inconclusive. The bias

reduction hypothesis presented in Chapter 5 can be considered to have been proven

in these case studies.

Figure 6.23: Experimental study, comparison of validation data bias correction results
for competing models.

6.8 Chapter summary

The aim of this chapter was to explore the limitations of bias correction, using Gaus-

sian Process Regression, to reduce the positional errors on an industrial robot. The

research focus was to evaluate bias correction accuracy with respect to training data

resolution and bias reduction by calibration. The results in this chapter are used to

validate the observations and conclusions made in Chapter 5, which are numbered in

this section, and present new findings.

In Chapter 5 it was concluded that (1) base calibration provides the largest gain in

model accuracy, and that further gains are made by calibrating the geometric parame-

ters, but with diminishing returns as the number of calibration parameters increased.
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The same observation was made in section 6.2 with the notable exception that cali-

bration of the most complete model, M3, which also had joint compliance parameters,

was marginally less accurate than M2 and resulted in non-physical parameter values.

It was assumed that this was the result of finding sub-optimal solutions when esti-

mating higher numbers of parameters which creates more local minima i.e. ‘the curse

of dimensionality’.

In Chapter 5, it was observed that (2) bias correction substantially reduced the resid-

ual errors compared to the calibrated model positional errors, in all case studies. The

same observations were made in this chapter. The results presented in the 6 dim

(l) case study in section 6.6 are also significantly lower than the results reported in

related works in literature. Related works by Nguyen et al. [44] and Tao and Yang

[86] used a calibration method followed by an ANN to reduce the mean positional

error to 0.33mm (using 200 training data values) and 0.36mm (using 150 training

data values), respectively. Jing et al. [45] achieved a similar mean error of 0.4mm

using a calibration method and GP bias correction (cross-validated with 300 data

values). Increasing the training data quantity to four or five times higher than those

used in related works enable the results to approach the limits of bias correction ac-

curacy whilst maintaining a pragmatic amount of measurement and processing time.

It was also concluded that (3) bias correction accuracy reduces substantially as the

number of input dimensions (number of actuated joints) increases. However, if the

joint angle ranges are reduced, the accuracy can be also substantially increased. The

results can be interpreted as an observation that bias correction accuracy increases

with training data resolution, which is expected. In terms of machining applications,

if the robot is limited to a small workspace for milling applications for example, an

rms |∆p| of less that 0.1mm can be achieved compared to the 0.13mm accuracy in

the larger workspace.

In Chapter 5, a bias reduction hypothesis was presented that stated that (4) calibrat-

ing the robot kinematic model to reduce the bias level, did not increase the accuracy

of bias correction predictions. The hypothesis was proven in this chapter by an analy-

sis of competing model data in section 6.7.2. However, GPR does not extrapolate well

to regions of the input space (i.e. joint configurations) which are far from the training

inputs, and the test was limited by sensor visibility to a subspace. Consequently, it

is reasonable to assume that whilst a calibrated model will retain a similar accuracy

throughout the workspace compared to the training configurations, if trained in the

workspace, the bias correction model may not.
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In Chapter 5, (5) GPR was used successfully as a relatively novel machine learning

tool in this application and is a viable option for future related works. (6) The

model accuracy is sensitive to hyperparameter estimates and it is computationally

time-consuming. In addition, it may not necessarily return the optimal solution (to

search for hyperparameters from multiple initial estimates) with large training data

quantities.

In addition to the observations made in Chapter 5, other observations of the ex-

perimental results in this chapter were made. The maximum accuracy of the robot

(after calibration) was 0.365mm. This is of a similar order to values reported in re-

lated works and contributes to the hypothesis that an approximate 0.3mm error floor

exists when calibrating large, articulated, industrial robots.

In section 6.3, the bias data in the 1 dim case study confirmed that a significantly

large periodic oscillation was present in ∆py . The oscillation has not been modelled

parametrically in most research literature, and not with a data-based model. This

partially explains the presence of an error floor. In literature it was stated that a

joint oscillation is the result of gearbox transmission errors. A comparison of the

bias correction accuracy between GPR models using an SE and SES kernel, showed

that both were equally capable of modelling the data. However, the SE kernel pre-

dictions were more confident. In addition, both kernels produced multiple solutions,

which modelled the data as either a smooth or oscillating function (depending on

hyperparameter solutions). With multiple input dimensions and lower training data

resolution, it is expected to become very challenging for the more accurate, oscillation

function to be determined. The oscillation was modelled analytically by Nubiola et

al. [51], which could be argued, is a more reliable solution when the bias is modelled

with multiple joint angle inputs.

To conclude, thesis objective 3 was met and Gaussian Process Regression was used to

successfully reduce the positional error of a robot in a range of case studies, validating

the conclusions made in Chapter 5. The calibration and bias correction results can be

compared to related works in literature, which will be discussed further in Chapter 8.

The proposed calibration and bias correction method, has demonstrated that is has

the potential to increase the positional accuracy of an industrial robot sufficiently, for

some machining applications. The methodology will be validated in a robot machining

application in Chapter 7 by utilising the GPR model created in the 6 dim (l) case

study, and testing the model accuracy in a panel drilling task.
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Chapter 7

Case Study: Application to Robot
Drilling

The aim of this chapter is to meet thesis objective 4 by validating the proposed

bias correction methodology for an industrial robotic machining application. Here,

the robot was programmed to simulate a panel drilling task by moving a machining

spindle TCP to hole positions on a plane, and a GPR model was used to predict

the positional error. The results are compared to the desired accuracy of 0.2mm

maximum |∆p| error stated in Chapter 1 (to achieve the positional tolerance required

in an aerospace robotic drilling task).

There are notable comparisons between the problem presented in this chapter and

those presented in Chapters 5 and 6. Firstly, while the hole positions are located in

the py, pz plane, to maintain the tool axis normal to the plane, all six joints may rotate

and the problem remains a 6 dimensional input study. However, it is expected that

some joints will have a small range which means that results similar to those achieved

in the 6 dim (s) study in Chapter 6 may be achieved. Secondly, the validation poses

are Cartesian positions and not randomly generated joint configurations which were

used in Chapter 5 and 6. The input to the GPR model remains as a vector of joint

angles in this study but the inverse kinematic (IK) model was used to convert poses

to joint angles. This process was discussed in section 3.3.1 and has implications which

are discussed in this section.

During the analysis of the drilling study results, it became evident that the experiment

could not be conducted as intended and that changes were necessary. The intention

was to use model M0,GP , trained using in the 6 dim (l) study in Chapter 6, and to
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test the model accuracy at predicting the TCP positional errors at the drilling hole

locations. However, this approach was not possible for two reasons.

I The desired validation poses, along with the tool data, were programmed into

the robot and also into the Robot Studio software. Robot Studio IK model was

used to calculate the same set of joint vectors used by the robot to achieve the

poses, and which were then used as an input to the GPR model. Unfortunately,

there was a discrepancy between the tool data provided to the robot and the

Robot Studio. This resulted in the GPR model receiving marginally incorrect

input data. It was expected, given the simplicity of the drilling case and the

small input deviation, that the GPR model would still learn the bias as a

function of the approximate joint angles.

II The joint configurations calculated by the IK model, which enabled the robot

to achieve the desired pose, were far outside of the input ranges used to train

model M0,GP . It is known that GPR models do not extrapolate well to regions

of input space far from the training data. With a zero mean model, as used in

the GPR models in this thesis, the bias correction was predicted as zero and

no reduction in positional error was made. Consequently, model M0,GP is not

used in here. Instead, the bias correction accuracy is evaluated with a k-fold

cross-validation of the positional errors, and approximate joint configurations

at the hole positions.

7.1 Experimental design

The robot testbed, measurement equipment and data processing used in the study in

this chapter were the same as those used in the studies in Chapter 6. To summarise,

an AT-960 Leica laser tracker was used to measure to pose of a T-Mac sensor mounted

onto a spindle fixture on the end of an ABB IRB 6640 industrial robot and data was

processed in the Spatial Analyzer software. The CPA method described in Chapter

3 was used to determine a base coordinate system as a measurement reference.

To simulate a panel drilling task, the robot was programmed to move the spindle

TCP to 35 hole positions on a 1.2m high 0.5m wide panel. The hole positions were

spaced equally apart on a 5 by 7 grid, on a vertical py, pz plane in front of the robot.

It is typical for robot drilling applications to use a drilling machining spindle that is

actuated independently to the robot. By this, it means that the task of the robot

is to move the drilling spindle to the correct pose in front of the panel and then the
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drilling spindle drives the drill into the panel as a separate operation. The accuracy

of the drilled hole is therefore dependent only on the start position of the TCP which

is the focus of this study. An example of the robot TCP at one of the hole positions

is shown in Figure 7.1.

Figure 7.1: ABB IRB 6640 robot in an example vertical panel drilling configuration.

7.1.1 Bias data generation and model predictions

The process of generating joint angle inputs using and predicting positional errors is

shown in Figure 7.2. The GPR model, as in previous chapters predicts the positional

error ∆p between the desired hole position pd and measured position p, from a joint

vector input q. Unlike in previous chapters, pd was first converted to q by the IK model

M−1
0 (p). By using different tool data H t

6
(1)

and H t
6
(2)

the Robot and Robot Studio

IK models output joint vectors q(1) and q(2) respectively. Model ζ(.) + ε represents

the true kinematic model plus measurement variation, and p the measured position.
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Figure 7.2: Input generation and bias correction process flow chart for machining
tasks.

7.1.2 Training and cross-validation

The bias correction accuracy was validated using a 7-fold cross-validation. The posi-

tion measurements of the 35 holes were separated into seven sets of 30 training data

points and 5 validation points with each hole position being used once for validation

with no replacement to ensure that all hole positions were used for validation.
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Figure 7.3: Robot drilling case study, 7-fold cross-validation positions.

7.2 Results

7.2.1 Nominal model bias data

The positional error data at each hole location in the drilling surface plane is presented

as an error surface in ∆px , ∆py , and ∆pz in Figure 7.4. As a cautionary note, the

GPR model is a function of joint angles and not Cartesian position and the error

surface does not necessarily provide a measure of how challenging the bias form will

be in joint-space, it can be assumed to partially infer the complexity of the problem.

The error ∆px decreases linearly i.e. the TCP moves closer to the plane, with the

exception of a spike, as the robot TCP moves across the drilling surface plane in

the positive py direction (sideways relative to the robot). The spike occurs at a hole

location referred to as p28 (position 28 out of 35). The cause of the spike is unknown

and may be considered to be an outlier. Without further investigation to prove that

the measurement of px at p28 is an outlier, the value will remain. Error ∆py decreases
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and increases again by approximately 0.5mm which is a large range with respect to

the desired maximum error, however the surface is relatively smooth and could be

interpreted with more data as a polynomial or sinusoidal function. This means that

the bias form may also be smooth in joint-space, which is a positive indication that

the GPR will be able to model the data with some success.

The error surface in ∆pz is less intuitive but could be interpreted as linear, or simple

decreasing smooth form in ∆pz as the robot moves the TCP downwards in the negative

pz direction with an additional sinusoidal oscillation in both the py and pz directions.

Both could be the result of gearbox transmission errors that were observed in Chapter

6.

If the error surfaces are in fact used to infer a smooth and continuous bias form in

joint-space, it is expected that the bias correction may pose no greater challenge than

the case studies in Chapter 6.

(a) (b)

(c)

Figure 7.4: Positional error surface plots of ∆px (a), ∆py (b) and ∆pz (c) by drilling
hole location.

205



7.2.2 Bias correction results

The bias correction residual errors in ∆px , ∆py , ∆pz and |∆p| are presented for

each cross-validation set for comparison in Figure 7.5. There are two notable spikes

in the rms ∆px results in sets k = 1 and 6 which contribute to a high |∆p| error which

in the order of 0.125mm and 0.200mm respectively. The spikes can be explained by

analysing the training and validation role of p28 and the data at positions nearby to

it. In the data set of k = 1, the GPR model is trained on bias data directly above

and below p28, which is used as a validation value. We can assume that the GPR

function modelled the training data as a simple, almost linear surface and did predict

a rapid change in bias at p28. The result was a poor prediction ∆p28. In the data set

of k = 6, the GPR model was trained using p28, rather than validated with it, and

therefore did not extrapolate well to predicting a rapid decrease in error at locations

nearby. If it is assumed that p28 is an outlier, then the results for k = 1 and 6 can

be withdrawn. It is assumed in the remaining cross-validation sets that although p28

was used as a training data value in these sets also, the accuracy of the bias correction

predictions will not have been compromised because the nearby locations were also

training values which it was assumed, were modelled accurately.

With the exception of k = 1 and 6, the results can be analysed with confidence that

the bias correction accuracy was not sensitive to the training data and that the results

are consistent for the remaining data sets (k = 2, 3, 4, 5 and 7). The bias correction

residual errors in have a range of less than 20µm ∆px and ∆py , and approximately

40µm in ∆pz which is small in the context of drilling tolerances. Also with the

exception of k = 1 and 6, the rms |∆p| error has a range of 55µm to 85µm which

is more accurate than the desired 0.1mm to 0.3mm range. It should be noted that

the model created from the k = 1 data set was not corrupted by the outlier and the

positional errors |∆p|, of the validation data other than in the outlier positions, range

between 0.039mm and 0.136mm.
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Figure 7.5: Robot drilling case study, cross-validation residual error results.

In Table 7.1 the training and validation results, which include the results from sets

k = 1 to 7, are summarised. In Table 7.2 the results, which include the results

from sets k = 2, 3, 4, 5, 7, are summarised for comparison of bias correction accuracy

without the inclusion of the data from p28.

In both cases, the residual error in the bias data has been substantially reduced

using bias correction as expected. In an analysis of the complete data set (k = 1

to 7), bias correction reduced the positional error of the robot from an rms |∆p| of

3.584mm to 0.056mm for the training data and 0.108mm for the validation data.

The results are within the desired 0.1mm to 0.3mm general accuracy range. There

are still holes that would be drilled in a position with a positional error of up to

0.5mm which is considerably higher than the desired 0.2mm maximum error. Further

scrutiny determines that the location of the 0.501mm error was at p28 again which

demonstrates that the GPR did not model that particular data value accurately. It

was expected that with sufficient distance (in covariance terms) between training data

points, in Cartesian terms, the spike in bias value at p28 would be modelled. It is

known that GPR, particularly with an SE kernel, is not able to model a discontinuous

function because of a pre-disposal to smooth functions.

In comparison, the maximum positional error once the data from k = 1 and 6 has

been removed, is just 0.115mm which is substantially lower than the desired accuracy.
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Table 7.1: Robot drilling study, summary of training and validation data bias, and
bias correction results for combined data sets k = 1 to 7.

Training data Validation data
M0 M0,GP M0 M0,GP

∆̄px (std)[mm] 1.174 ( 0.663 ) 0.000 ( 0.046 ) 1.185 ( 0.685 ) -0.017 ( 0.090 )
∆̄py (std)[mm] 3.280 ( 0.180 ) 0.000 ( 0.017 ) 3.286 ( 0.180 ) 0.000 ( 0.033 )
∆̄pz (std)[mm] -0.390 ( 0.092 ) 0.000 ( 0.027 ) -0.379 ( 0.092 ) 0.005 ( 0.050 )

rms |∆p| (max)[mm] 3.584 ( 3.910 ) 0.056 ( 0.501 ) 3.584 ( 3.910 ) 0.108 ( 0.339 )

Table 7.2: Robot drilling study, summary of training and validation data bias, and
bias correction results for combined data sets k = 2, 3, 4, 5, 7.

Training data Validation data
M0 M0,GP M0 M0,GP

∆̄px (std)[mm] 1.175 ( 0.678 ) 0.000 ( 0.090 ) 1.249 ( 0.682 ) -0.010 ( 0.035 )
∆̄py (std)[mm] 3.288 ( 0.180 ) 0.000 ( 0.033 ) 3.271 ( 0.163 ) 0.003 ( 0.030 )
∆̄pz (std)[mm] -0.379 ( 0.090 ) 0.000 ( 0.050 ) -0.384 ( 0.097 ) 0.002 ( 0.053 )

rms |∆p| (max)[mm] 3.582 ( 3.910 ) 0.063 ( 0.501 ) 3.590 ( 3.906 ) 0.070 ( 0.115 )

7.3 Chapter summary

The aim of this chapter was to evaluate the proposed bias correction methodology

in a robot machining application as an industry focussed, validation case study. The

robot was programmed to move the TCP to positions that simulated a panel drilling

task and the positional error data between the desired hole position and measured

position was used to train and validate the GPR model. The results are not directly

comparable to the results in Chapter 6 or to related works, due to differences in

tool, data and experimental design. However, the study contributes to the body of

knowledge on robotic machining by presenting bias correction results using a ‘task-

focussed’ model (i.e. trained and tested locally). In fact, it can be argued that if an

industrial robot will perform the same task for a long period of time, then a local

model is a logical approach. The results in this study contribute to evaluating an

industrial robot for such an application. This topic is discussed further in Chapter 8.

As expected, bias correction substantially reduced the positional error of the robot.

With an outlier removed, the maximum error was considerably lower than the desired

0.2mm accuracy. However, an assumption was made that the spike in error surface
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was the result of an outlier. A higher resolution of data (or repetition) would identify

if the spike was an outlier, which could be filtered out, or was the result of a configu-

ration that was prone to high errors. In either case, higher resolution of data would

enable the data to be cleaned or for the spike to be modelled.

To conclude, thesis objective 4 was met and the case study successfully evaluated

the use of bias correction on an industrially focussed, machining application. The

results were evaluated against a desirable maximum error which demonstrated that

bias correction, using GPR, may be used to achieve a positional accuracy required

for wider machining applications. The contribution of this case study, to the thesis

aims and the existing body of knowledge, is discussed in Chapter 8.
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Chapter 8

Conclusions and Future Work

The aim of the research presented in this thesis is to explore the use of bias correction

to improve the positional accuracy of an industrial robot for machining applications.

The poor positional accuracy of industrial robots limits their use to a small number

of machining applications, and it is the intention that the research presented in this

thesis will contribute to their wider use in higher accuracy machining applications.

The limit of positional accuracy was defined in Chapter 5 as ‘an achievable positional

accuracy for which considerably larger training data quantities are required to achieve

marginal gains’. A desirable positional accuracy, quantified as the accuracy in a

volume by an rms |∆p|, was determined as a region between 0.1mm and 0.3mm. The

region represented a bounds that were currently unachievable by robot calibration,

and the lower accuracy of conventional CNC machine tools. In addition, a maximum

positional error of 0.2mm was set as a target for drilling tasks. The research in

this thesis was focussed on determining if the limit of accuracy, using ML-based

bias correction, would achieve either of the targets. Two research questions were

formulated to meet the aims of this thesis.

• Research question 1: What are the limitations of the positional accuracy of

an industrial robot, given sufficient training data quantities, when using bias

correction to reduce positional errors?

• Research question 2: To what extent does bias reduction, by robot model cali-

bration prior to bias correction, increase the positional accuracy of an industrial

robot?

The experiments presented in each of Chapters 4 to 7 were conducted to meet a single

objective in turn. The objectives of this thesis were to:
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I Investigate the error sources on a conventional industrial robot and develop a

numerical model to simulate robot positional errors.

II Test the proposed bias correction method on simulated models with increasing

complexity.

III Validate the results of the bias correction method with an empirical study of

an industrial robot

IV Validate the bias correction method for a robotic machining task.

This chapter is organised into two sections. In section 8.1, conclusions relating to

the research questions are stated, followed by additional observations made during

the process of this research. In section 8.2, recommendations for future work are

presented.

8.1 Conclusions

It can be concluded that the application of ML-based bias correction can be suc-

cessful in improving an industrial robot’s positional accuracy to such an extent that

may enable it to be used in wider machining applications. An accuracy approaching

0.1mm may be achieved using ML-based bias correction through more extensive error

mapping and training than in related research literature. In the related literature,

a mean error range of 0.3mm to 0.4mm is achieved by Tao and Yang [86], Jing et

al. [45] and Yuan et al. [108] who used ANN, GPR and an extreme learner machine

respectively. This also leads to the conclusion that the level of accuracy demonstrated

in this thesis is not exclusive to GPR, but that a wider range of ML tools may be

used to achieve similar results. Further conclusions, relating to each of the research

questions, can be made on how the accuracy gains may be achieved.

In relation to research question 1, it can be concluded that the positional accuracy of

an industrial robot may be improved by a significant amount by increasing the bias

correction training data resolution. This meets general subject expectations. The ac-

curacy achievable is a step towards that required for wider machining tasks. Increased

training data resolution may be achieved through increased training data quantity,

reduction in the number of input dimensions (i.e. joint variables) and reduction the

input space (i.e. joint angle range). It can also be concluded that the greatest model

accuracy gains occur in the 100 to 400 training data quantity range. This may infer
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why training data quantities within this range are used in related research to demon-

strate the potential of ML-based bias correction to improve industrial robot accuracy,

using ANN [44][86][91] and GPR [45] but without fully establishing their limits. The

major contribution of this research is the demonstration that by using training data

quantities of four to five times higher than presented in the related literature, further

significant increases in accuracy can achieve the desired accuracy for wider machining

applications. In a manufacturing context, this means that higher accuracies could be

achieved by extensively mapping positional errors and/or by limiting the model to

a local task space. Extensively mapping the joint-space errors with high training

data quantities comes with additional measurement and computational time. It can

further be concluded that the desirable levels of accuracy can still be achieved with

relatively low measurement and computational cost by training locally to the intended

task. This was demonstrated in Chapter 7, in which a drilling task was conducted and

the 0.2mm accuracy was achieved. The case study further confirms the conclusion of

Summers [37] that typical industrial robots were not capable of achieving at desired

0.2mm accuracy in a similar drilling task, but allows the conclusion that it may be

achieved with the same robots and ML-based bias correction.

In relation to research question 2, it can be concluded that the level of calibration is

not a determining factor in the level of accuracy achievable when bias correction is

used post-calibration (or with no calibration) in this application. This is assuming

that the task space is within the training space. Consequently, an argument can be

made for not calibrating the kinematic model, and instead the data may be better

utilised in training the bias correction model. In practical terms, this means that

time can be saved by not measuring positions of the robot for calibration and that

an arbitrary base frame can be used as a coordinate reference system. Whilst this

conclusion does not contradict the combined calibration and bias correction approach

in related research literature [44][45][86][91][117][119], it infers that the model accu-

racies achieved were the result of bias correction alone, in which case, more reliable

comparisons between research results can be made. The proposal to remove the cali-

bration procedure, in favour of bias correction alone is not necessarily straightforward,

however. The desired configuration is not easy to predict using the inverse kinematic

model, and the result may be joint angle inputs that are far from the training data

input values, as demonstrated in the intended machining case study in Chapter 7. It

transpired that GPR had a negligible effect on positional accuracy in this case, which

is to be expected from a GPR with a zero mean. If some relatively low accuracy tasks
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are required outside of the training input space, calibration may still be required and

bias correction can be focused on a small task space that requires higher accuracy.

It can be concluded that GPR-based bias correction is able to model the robot error

data flexibly without being tailored to each case study, and therefore can be used as

a general bias correction tool for a wide range of industrial robot types. By ‘flexibly’

it is meant that GPR was able to model the data for the different case studies, which

presented problems of different complexity and input dimensions, without the author’s

influence (e.g. kernel selection). For an industrial solution to be applied generally to

other industrial robotic machining systems, it is preferable that extensive analysis of

the kinematic structure and bias correction expertise are not required to tailor the

solution to the problem. GPR-based bias correct can be confirmed as an appropriate

solution for robot surgical assistants, which have different non-geometric errors from

due to cable driven actuators, as used by Mahler et al. [117] and Fan Zhang et al.

[119]. The author’s research can be extended to improve model accuracy further,

without requiring extensive robot kinematics knowledge or GPR expertise.

8.1.1 Additional observations and recommendations

The focus of this thesis was the use of bias correction for industrial robot machining

applications. However, numerous robot error and calibration observations were made

in the process that may be useful to know in future, related research. Some of these

observations and recommendations are briefly discussed in this subsection.

It can be concluded that non-geometric errors, such as those from joint compliance

and gearbox transmission errors, may equal those from geometric parameters, but

their relative contribution to the positional errors are expected to be unique to each

application and robot. This agrees with a similar statement by Whitney [49] which

was in contradiction to earlier research literature. In Chapter 6, it was shown that

the positional errors resulting from the machining spindle payload and gearbox os-

cillations were considerably large and would be limitations to a geometric model

calibration. It can further be concluded that ML-based bias correction models are

also limited by these gearbox errors unless high-resolution training data is available.

For a 6-DOF robot, the resolution is unlikely to be achievable within practical con-

siderations. A parametric model of the gear transmission errors in each joint would

contribute to a more accurate, numerical model for simulated studies which was a

solution proposed by Nubiola et al. [51].
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8.2 Future work

The research presented in this thesis has demonstrated that ML-based bias correction,

using GPR, can be used to improve the accuracy of industrial robots beyond the level

achieved by calibration alone. There are numerous avenues that can be followed to

continue this research and some of these are discussed in this section.

There are very few ML tools that have been applied to industrial robot accuracy in

literature. It would be beneficial to explore the use of other ML tools with a focus of

either increasing prediction accuracy or computational efficiency.

At the core of GPR is the choice of kernel and its associated hyperparameters. An

early decision was made to use an SE kernel that, without evidence to the contrary,

was based on similar works in literature and an assumption that the bias data could

be modelled with a smooth function. This was a logical decision that has worked

with some success. The addition of a periodic kernel was explored temporarily to

model a gearbox oscillation, but alternative kernels and combinations were not ex-

plored beyond this. Future work may benefit in a comparison of kernels or automatic

kernel selection. In recent research Abdessalem et al. [122] discussed the issue of

kernel selection and proposed a method to automatically select a kernel and optimal

hyperparameters.

The GPR model accuracy was sensitive to the choice of hyperparameter in the higher

input dimension case studies. Randomly seeding of initial estimates was used with

relative success but was extremely time consuming and did not necessarily return

the globally optimal solution. Future work should utilise one of the many methods

proposed in the current and active field of research referred to as hyperparameter

optimisation (HPO). The reader is directed to Kang et al. [123] who used a particle

swarm variant to for HPO, and to Klein et al. [124] for a useful discussion on HPO

and comparison of current HPO methods on the proposed meta-surrogate model.

In Chapter 7, the results of the drilling application case study demonstrated that

high levels of accuracy can be achieved with small training data quantities. This is

considered to be ‘task-based’ training. Task-based training can be extended to create

multiple, independent local GP models, which are more accurate than a global model

and quick to run. Treed GPs partition the input space into regions, in a process taken

from decision-trees, and apply separate GP models [125], [126] that are better suited

to the local data. Treed GP research is an active field of research with existing tools

that could be applied to this problem.
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