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Abstract

The rapid development of Internet of Things (IoT) will offer great benefits for both individuals
and companies. However, as smart devices are widely deployed, they become attractive to
hackers. Some recent examples are the 25 critical vulnerabilities discovered, known as
“BadAlloc”, which allow the execution of Denial-of-Service (DoS) attacks, as well as the
existence of IoT malware such as Mozi which affect network operation. Therefore, new
solutions should be developed to protect the computationally-limited devices.

In this work, a new Security Framework for IoT-based networks (SRF-IoT) is proposed.
Our focus is on detecting and isolating attackers that exploit routing protocols which are used
in 6LoWPAN IoT networks for packet routing. Although, many works study the security of
routing protocols such as the IPv6 Routing Protocol for Low-Power and Lossy Networks
(RPL), they are still vulnerable to various attacks. We study the impact of well-known
routing attacks such as DoS, rank and blackhole attacks in IoT networks. To investigate the
impact of routing attacks, we design and develop the algorithms in ContikiOS, a popular
Operating System, and using Cooja simulator we simulate the different scenarios. The
obtained simulation results help us understand the characteristics of an RPL-based IoT
network under its normal operation and devise effective countermeasures against malicious
activity. The SRF-IoT framework contains a trust-based mechanism that identifies and isolates
malicious attackers with the help of an external Intrusion Detection System.

Evaluation is based on simulations on a new simulator tool called Whitefield framework
that combines both Contiki-NG and NS-3 simulator. This new simulator is used in this
project as it allows large scale (over 100 nodes) realistic simulations using real-world stacks
such as Contiki-NG. The analysis of the results showed the effectiveness of SRF-IoT in a
network under combined rank and blackhole attacks with 92.8% Packet Delivery Ratio, and
8.2% packets dropped. Moreover, parent switches are kept low, reaching almost a hundred.
Simulation results demonstrate that SRF-IoT is an efficient and promising solution to protect
an IoT network against routing attacks.
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Chapter 1

Introduction

1.1 Motivation

Recently, more and more smart devices are connecting to the Internet to improve our daily
lives. According to predictions, there will be over 75 billion Internet of Things (IoT) linked
devices operating by 2025 [1]. The growth of IoT will provide multiple benefits for companies
or individuals. Different domains such as smart homes, industrial control, health monitoring,
intelligent transportation, and smart grids are adopting IoT [2]. IoT devices are usually
resource-constrained, with low processing power, small batteries, limited memory and
processing resources. Nevertheless, they can support Internet connectivity, exchange small
pieces of data with each other or with a server, and perform lightweight computations. An
Operating System (OS) is responsible to manage energy, computing, communications and
storage resources of a device [3]. As smart devices have limited resources, IoT OSes should
be designed to efficiently manage devices’ available resources while providing an interface
for software developers to implement an energy-efficient software. An OS implements various
protocols that allow devices to communicate with others in a network. Some of them are
low-power Wi-Fi, Bluetooth, and IEEE 802.15.4. Using any of these links, IoT devices
connect with each other and create the so-called Low-Power and Lossy Network (LLN). As
devices in LLNs have limited resources, no existing routing protocol was suitable for those
networks. Therefore, new routing protocols have been developed specifically for LLNs. The
main routing protocol for LLNs introduced by IETF in 2012 was the IPv6 Routing Protocol
for Low-Power and Lossy Networks (RPL) [4].

As IoT becomes more popular, Things become attractive to malicious actors. Smart
devices have little to no security defences and, therefore, security issues start to appear [5].
For example, IoT devices use simple default passwords, connect to weak wireless networks,
and have outdated software. The lack of security protections in smart platforms allows
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attackers to easily exploit and use them in external attacks such as Distributed Denial of
Service (DDoS). Such attacks could severely impact the availability and integrity of large
scale networks like smart grids or industry-based networks.

Apart from external network attacks, malicious actors may attempt to cause damage in
internal networks. Attacks may occur at different levels of the IoT stack. The network or
communication layer is mostly concerned in this thesis. Some well-known attacks of this
level are Man-in-the-Middle (MitM), eavesdropping, routing attacks and Denial of Service
(DoS). These types of attacks usually aim at causing service disruption or leaking sensitive
information. Moreover, devices under attack might be unavailable, and routing information
could be exposed to bad actors.

Some real-world issues were discovered recently in several IoT devices. Microsoft’s
security researchers recently discovered and publicly warned for 25 critical vulnerabilities
in IoT devices, known as “BadAlloc” [6]. The vulnerabilities were found in the implemen-
tation of memory allocation of several OSs and Software Development Kits (SDKs). An
attacker could exploit these vulnerabilities to successfully execute malicious code or crash
the vulnerable device.

Another set of 33 vulnerabilities in TCP/IP stacks were found recently, affecting millions
of IoT devices of over 150 manufacturers [7]. Four open source TCP/IP stacks are affected
and found in multiple OSes such as Contiki and Nut/OS [8]. This set of new flaws is called
“Amnesia:33” from the fact that the number of vulnerabilities is 33, and most of them cause
memory corruption. Forescout researchers explain that in order “to exploit ‘Amnesia:33’
vulnerabilities, an attacker needs a communication path to a vulnerable device or a routed
path to an internal network” [9]. In other words, attackers need to send malformed packets in
order to exploit these vulnerabilities. Therefore, a suggested mitigation method is to monitor
network packets for malicious packets and try to block them. Another solution is the use of
internal Domain Name System (DNS) to avoid exploitation of DNS protocol. According to
Forescout’s data, IoT devices were the most affected by “Amnesia:33” bugs with 46%.

Another recent disclosure of multiple vulnerabilities from Forescout researchers is known
as “NAME:WRECK” [10], [11]. In this disclosure, researchers found DNS vulnerabilities in
open source TCP/IP stacks. These flaws were found in DNS parsing implementation, and
could give attackers control over affected devices, execute malicious code or launch DoS
attacks. The affected IoT devices were estimated to be over 10 billion [12].

Similar critical vulnerabilities have been found and disclosed by several researchers in
recent months, including “NUMBER:JACK” [13], [14], “Ripple20” [15] and “Urgent/11”
[16]. All these flaws could put in danger billions of devices. As mentioned by Samuel [17],
the discovered vulnerabilities might be exploited by the following attacks:
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• Remote Code Execution (RCE), in which attackers could remotely take full control of
a vulnerable IoT device.

• DoS attacks, in which attackers could stop the operation of the device or a whole
business.

• Information leak could allow unauthorised attackers to gather critical information
about a network from affected IoT devices.

• DNS cache poisoning, in which attackers could inject false information in DNS cache
to forward devices’ traffic to a malicious domain.

Some of the above real-world threats are studied and implemented in this thesis. For
instance, DoS and routing attacks impose serious threats for IoT networks. Therefore, our
research focuses on those threats to design and suggest new mitigation methods. Using a real-
world OS such as ContikiOS which is widely used by IoT manufacturers allows immediate
evaluation of the system in a real-world environment.

As already mentioned, smart devices might be used for further attacks in external net-
works. Botnets, for example, usually target IoT devices for carrying out complex attacks.
A recent real-world example is Mozi botnet [18] which targets IoT devices with poor or
default telnet passwords running Secure Socket Shell (SSH) service. Its goal was to subvert a
large number of devices and coordinate DDoS attacks to multiple targets. It combines the
power of three different malwares; Gafgyt, Mirai, and IoT Reaper. Mirai [19] was the first
IoT botnet that infected millions of devices (mostly IP cameras, home routers, and digital
video recorders) and used them for DDoS attacks. The novelty of Mozi is that it attempts to
form a peer-to-peer (P2P) botnet using the infected devices. Mirai and Gafgyt were using a
centralized command and control server. Taking down a decentralized botnet is much more
difficult than a centralized one. According to [20], Mozi infected over 15000 devices the last
four months.

Taking into account the previously mentioned reasons, IoT networks should be protected
from both internal and external attackers. It is important to safeguard smart devices as they
are deployed in critical networks without proper security measures. The majority of IoT
devices have limited computation power and operate using batteries. Thus, traditional security
approaches such as Intrusion Detection Systems (IDSes) and cryptographic mechanisms are
not always applicable [21]. As a consequence, many IoT devices are left with weak or no
security measures [5] and become targets of cyber-attacks. Such attacks have multiplied over
the last years [22].

As IoT networks consist of different devices that use multiple protocols and various
technologies, an IDS solution should handle data packets coming from smart devices and
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respond quickly to possible incidents. In addition, IoT devices have limited storage capacity,
and low processing power while IoT-based protocols are designed differently from conven-
tional ones. The data packet rate in IoT networks is higher than traditional networks due to
multiple applications running simultaneously. As a result, protecting an IoT environment
requires designing new security solutions that consider the resource-constrained nature of
smart devices.

All in all, the above-mentioned and other similar incidents indicate that many security
issues exist in IoT networks. Therefore, appropriate solutions should be developed to protect
businesses, consumers, and critical infrastructure. Taking into account the Confidentiality,
Integrity, and Availability (CIA) triad, the most important issue to address is to ensure data
availability and integrity. In this thesis, our motivation is to protect IoT networks from various
attackers and ensure that data obtained from sensors or other IoT devices is consistent, and
available when needed. Therefore, DoS and routing attacks should be prevented or eliminated
from creating problems to IoT devices and networks. For implementation and experimentation
with IoT devices, we chose to emulate the behaviour of a real-world hardware platform along
with an OS using a simulator tool. In this way, our designed solution will be evaluated using
different configuration and in several IoT environments prior to real-world evaluation.

1.2 Problem Overview

The main goal of this thesis is to propose a new security solution to protect IoT-based
networks from a combination of routing attacks. The detection of multiple combined routing
attacks is one of the novelties of our work. Usually in IoT environments, smart devices are
connected with each other to form a network. An IoT-based routing protocol is used to create
routes from nodes to the root of the network. As smart devices have limited capabilities,
routing protocols share knowledge and create routes in an efficient way. However, attacks
may occur in a device and the routing protocol could be exploited.

As the focus of this thesis is the IoT network layer, routing attacks affecting the re-
sources, network traffic and topology of the network are mostly considered. For example,
resource-based routing attacks such as DODAG Information Solicitation (DIS) and DODAG
Information Object (DIO) flooding attacks are mostly based on sending a large batch of
requests to flood the network with control packets [23]. Those types of flooding attacks
belong to the DoS attacks subcategory. Therefore, from this point and on we consider DoS
attacks as resource-based routing attacks that drain the device’s energy resources. Other
types of resource-based attacks including version number modification and local repair
attacks attempt to exhaust devices’ power resources by changing packet parameters which
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initiate further actions. In addition, attacks affecting network traffic such as decreased rank
attack may cause routing loops, increase end-to-end delay, and waste device’s energy [24].
Cyber-attacks targeting network topology are also important. For example, topology-based
attacks such as blackhole attacks may lead to unoptimised paths and disruption in network
operation.

In this thesis, routing attacks were chosen based on the following criteria:

• Limited number of research papers study them in the literature

• Type and impact in Availability, Integrity or Confidentiality of the network

• Limited or absence of mitigation method

• Ease of implementation

Having in mind the above criteria, the following routing attacks have been studied;
“Hello” or DIS flooding and version number modification from DoS-based routing attacks,
as well as blackhole and decreased rank attack from other routing attacks categories.

Therefore, the objectives of our thesis are the following:

1. Study the impact of DoS attacks and design a novel detection method.

2. Investigate the impact that a combined rank and blackhole attack has on a network,
and implement a new mitigation method.

3. Improve the designed detection methods by using Machine Learning models to detect
both known and unknown attackers.

According to [23], DoS attacks target WSN and affect the availability by flooding the IoT
network with data packets. Moreover, DoS attacks and especially “Hello” or DIS flooding,
which is an RPL-specific attack, have no mitigation method until today. This means, a
malicious actor can compromise a device and flood a network with packets to cause traffic
overhead and resource exhaustion. Although this is an RPL-specific attack, detecting attacks
targeting network resources is still a problem under research, and novel solutions need to be
proposed.

As long as topology and traffic-based attacks are concerned, a combination of blackhole
and decreased rank attacks is utilised. Blackhole attack may disrupt network topology while
decreased rank attack may use network traffic to impersonate root node leading to more
severe attacks. This combination creates a complex environment where network availability
and topology could be disrupted when the attack is initiated.
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Although some security mechanisms exist in IoT-based routing protocols, many attacks
cannot be mitigated with existing methods. For example, routing attacks such as blackhole
attack cannot be easily detected. Thus, an IDS is deployed in IoT networks to detect any
malicious attempts. A traditional IDS is not suitable for IoT networks as smart devices have
limited capabilities. Apart from that, the majority of state-of-the-art studies propose solutions
to detect one or more routing attacks. An IoT-based IDS is needed to secure smart devices
from internal and external attackers. Identifying those specific attacks using an IoT-based
IDS has already been extensively studied by research community. To our knowledge, none of
the available solutions in the literature can detect a combination of different routing attacks in
large scale IoT networks. Moreover, most of the solutions have centralised detection modules
or require complex firmware modifications. A proper mitigation scheme should be easy to
deploy and compatible with various devices and protocols. Last but not least, known and
unknown attacks should be detected to better protect the networks. These requirements are
taken into account before designing the proposed framework.

1.3 Proposed Solution Overview

A new solution that aims to mitigate a combination of routing attacks is proposed in this
thesis. Figure 1.1 shows the proposed solution that is developed in this thesis. The novel
Security Framework for IoT-based networks (SRF-IoT) can identify and isolate attackers
by using two main components; an Anomaly-based Intrusion Detection System (SRF-IDS)
and a Trust-based Objective Function (SRF-OF). The SRF-IDS is the main component that
contains multiple internal modules while SRF-OF is embedded into the routing protocol.

Looking at the SRF-IDS component, the Communication module is mainly responsible
for sniffing network traffic and communicating with neighbouring nodes. Specifically, it
interacts with other SRF-IDS devices, captures network packets, and communicates with
monitored nodes that use SRF-OF. Apart from that, it collects packets from different in-
terfaces and forwards them to the Preprocessor module. In this module, data packets are
organised together and decoded before further processing. After this step, the Trust Mon-
itoring (TM) module receives the packets for extracting useful measurements such as the
number of packets forwarded. The TM module sends trust metrics to monitored nodes via the
Communication module after decoding them in the Preprocessor module. Exported metrics
from analyses are passed to a critical component, the Detection module. This module is
responsible for identifying attackers using predefined thresholds and signatures obtained
from the Configuration module. Suspicious nodes’ details are forwarded to the Decision
module of the SRF-IDS root node, called SRF-IDS root, for final decision-making. The
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SRF-IDS root takes into account the behaviour history of a node and the information from
the Configuration module. If a malicious attacker is found by the SRF-IDS Decision module,
a firewall rule is automatically created for blocking suspicious node traffic. Moreover, an
alert is shown to the system administrator by the Alerting System module.

Fig. 1.1 Proposed solution overview

As regards to the SRF-OF component, it is an important module used by nodes to increase
SRF-IoT framework’s effectiveness. Trust concept is introduced in our work as an extra
security mechanism to enhance the detection capabilities of the suggested framework. Trust
score is a value indicating whether a device forwards received packets to next hop or not.
The calculation process is embedded into the routing protocol and is done in the Trust-based
Routing protocol module. Then, the Parent selection module executes an algorithm to choose
the best parent based on trust score value. Using this trust-based approach aims to detect
routing attacks such as blackhole and rank attacks as well as other complex attacks.

A Machine Learning (ML) approach is also explored by the SRF-IDS Detection module
in this thesis. Using ML algorithms will significantly enhance the detection abilities of
SRF-IDS as it will enable the detection of both known and unknown attacks after proper
training. Before deploying the module, received data will be provided as an input into the
model, and proper ML algorithms will be used to train the model. The output of the model
will indicate if a node is malicious or not. Another feature is that DIS or “Hello” flooding
can be detected from this module. Communication between SRF-IDS and deployed smart
devices is done with the help of special control messages sent from network layer. We assume
these packets are encrypted to avoid leakage of sensitive information.
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One of the novelties of our approach is that a combination of trust-based and IDS-based
method is achieved. Most studies propose mitigation schemes for various routing attacks
using the former or the latter. Combining the two approaches is a great innovation in the
field of IoT security as it enhances the detection performance and allows detecting attackers
faster. Furthermore, mitigation methods for additional routing protocol attacks can be easily
added. Apart from that, monitored nodes’ energy consumption is minimised. Nodes operate
normally without any watchdog mechanism as in other trust-based solutions, so no additional
energy is consumed. SRF-IDS detector nodes have embedded a watchdog mechanism to
monitor network and provide monitored nodes with trust metrics.

Another novelty of our approach is the deployment of SRF-IDS along with the normal
network. The SRF-IDS consists of a centralised router that hosts the configurations with
known signatures, thresholds, the Detection module, the Decision module, and acts as
a firewall. Apart from that, decentralised SRF-IDS detectors are responsible for traffic
monitoring, and local detection module. Alerting monitored nodes with trust metrics is
also the task of SRF-IDS detectors. In order to monitor neighbouring network without
interruptions, the SRF-IDS is deployed in a different RPL Instance than the normal network.
All components of SRF-IoT indicated in Figure 1.1 are implemented in this thesis except for
the firewall. We assume that a traditional network firewall can be deployed along with the
SRF-IDS, so that appropriate rules will be created to filter malicious traffic.

The three significant contributions of this thesis that address the objectives discussed in
Section 1.2 are the following:

a) An Anomaly-based IDS has been designed and developed using an overlay approach
to easily monitor and help IoT devices isolate malicious actors. Evaluation results
showed 100% True Positive rate when 9 detectors are deployed, less than 1% False
Positive rate, and low traffic overhead in scenarios under routing attacks such as DoS
attacks.

b) A novel Security Framework for IoT-based networks (SRF-IoT) has been designed and
proposed to avoid several routing attacks including DoS, rank and blackhole attacks.
The framework consists of the anomaly-based IDS, called SRF-IDS, and a trust-based
OF, called SRF-OF. It has been implemented in RPL protocol and evaluated under
routing attacks. Experimental results depict that SRF-IoT framework can effectively
detect and help nodes to avoid malicious nodes. Our proposed framework showed
92.8% Packet Delivery Ratio (PDR), 97 parent switches, and 8.2% packets dropped in
scenarios with active blackhole and rank attacks.
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c) An innovative ML-based detection module for SRF-IDS has been designed and evalu-
ated for detecting known and unknown attacks. It has been trained and tested using
simulation results generated by SRF-IoT evaluation phase. Results from evaluating the
ML model showed Precision of 93.3%.

As the proposed solution aims to protect IoT networks from malicious actors, the contri-
butions are achieved.

Regarding our published works, the papers “A signature-based intrusion detection system
for the Internet of Things” (2018) [25] and “Battery drain denial-of-service attacks and
defenses in the Internet of Things” (2019) [26] are related to Contribution (a), and paper
“Denial-of-Service Attacks and Countermeasures in the RPL-Based Internet of Things” [27]
is related to Contributions (a) and (b).

1.4 Project Methodology

In order to understand a problem and design a new solution, it is required to create a process
that will be followed and eventually will help mitigate the problem. In this section, processes
done in both general and adopted approaches are analysed and explained.

1.4.1 General Approach

As in many research studies, studying a problem and proposing the proper solution is a
multi-step task. Thus, many small tasks are required to be done before implementing and
evaluating a new system. Figure 1.2 shows the general methodology that is usually adopted
by researchers when studying an experiment-based project. As it is shown, the general
methodology is divided into five steps; defining the problem, studying the problem, designing
the solution, implementing the solution and evaluating the solution.

Fig. 1.2 General methodology of experiment-based projects

The first step is to define the research problem that researcher wants to study. In this
step, a literature review is done to study and identify exactly the problem. After this step, a
more detailed study of the identified problem is needed. Finding the aspect and proposed
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solutions for the problem are the important outcomes from this procedure. The next step
is to start designing a solution for the problem. Having in mind the weaknesses of current
solutions, researchers propose novel methods to mitigate the current problem. When the
design of the solution finishes, the implementation phase starts. In computer science research
field, implementation usually means coding or development of the suggested software in a
platform that was defined in the previous phase. Evaluating the developed solutions in the
final step and most important. This process shows if the suggested solution works as expected
and mitigates the problem that was initially studied. If the developed solution cannot be
evaluated in a real platform, performance can be tested using a simulator.

1.4.2 Adopted Project Methodology

The methodology followed in this project is very similar to the general methodology described
previously. Figure 1.3 shows the six defined steps; define the top IoT-based threats, study
selected attacks through simulations, analyse results from simulations, design the suggested
SRF-IoT solution based on previous results, implement the solution, and evaluate the solution.

Beginning from the first step, the initial goal was to define the most severe IoT threats.
This required extensively studying the literature so that the problem is identified. In our case,
the problem is IoT attacks that disrupt network operations. Specifically, version number
modification, DIS flooding, decreased rank attack and blackhole attacks were studied. After
finding the four most dangerous IoT-based attacks, the next task was to study their impact
through simulations. Many works in the literature have been simulating attacks to find out
how much damage they may cause in a network. Therefore, the same approach was adopted,
and an implementation of each attack was done in a real-world platform. Then, several
simulation scenarios were generated to simulate the behaviour of real-world devices using
various configurations. These scenarios contained different cases where both benign and
malicious devices were deployed.

Once simulations were finished, results were exported and analysed. Simulator tool
generated log files which were analysed to extract useful metrics, check nodes’ behaviour
once attacks launched, and investigate the type of transmitted packets. Moreover, network
topology was tested to ensure that attackers successfully deployed attacks as expected. The
next task was to design the proposed SRF-IoT solution based on the simulation results. The
components of SRF-IoT are the IDS, called SRF-IDS, and the trust-based routing protocol,
called SRF-OF. SRF-IDS was designed to detect DIS flooding attack as well as decreased
rank attack and blackhole attacks. Regarding DoS attacks, malicious attackers are detected
based on a threshold. The threshold value was extracted from the results of the previous
step. Moreover, analysis from previous step helped us define the normal and malicious
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Fig. 1.3 The methodology followed throughout this project

packet forwarding behaviour as well as a trust-based metric. These metrics are utilised by
SRF-IDS as detection method for rank and blackhole attacks. Specifically, SRF-IDS was
designed to interact with the trust-based SRF-OF so that rank and blackhole attackers can be
easily identified by individual monitored nodes. As a result, benign nodes in the monitored
network isolate attackers with the help of SRF-IDS. In addition, communication between
the two components is achieved by using special control messages in the routing protocol.
Further design decisions are explained in the following chapters. Implementing the actual
SRF-IoT scheme was the next procedure. The two components, SRF-IDS and SRF-OF, were
developed in a real-world OS. As IoT devices have limited capabilities, efficient coding
methods were used. Testing the developed software is a crucial step. SRF-IoT framework
was extensively evaluated using simulations of a real-world platform. The solutions were
tested to achieve the expected detection rates and results. Further simulations were done to
evaluate the performance of the solution in different network topologies.

1.5 Thesis Structure

The chapters of the thesis are the following:
In Chapter 2, some useful background information is provided. In Section 2.1, we

introduce the IoT reference model that is used throughout the thesis. OSes available for
IoT devices are discussed in Section 2.2. Moreover, in Section 2.3 we review and compare
simulators that are available for IoT research. Later in Section 2.4 we introduce the RPL
routing protocol that is available for IoT networks. Section 2.5 reviews the most significant
attacks in IoT networks. We analyse the attack vectors in each layer of IoT stack as well as
routing attacks such as blackhole and rank attacks. In Section 2.6 background information
about solutions to detect IoT attacks such as Intrusion Detection System (IDS) are discussed.
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Section 2.7, discusses supervised ML algorithms for IDS systems. In Section 2.8, the related
research work is presented. In Section 2.8.1 we briefly present recent works in the field of
RPL security. The latest studies in the field of routing attacks including DoS attacks and
prevention methods in IoT networks are described in Section 2.8.2. Trust-based IDS and RPL
protocol-based mitigation techniques are discussed in Section 2.8.3. In Section 2.8.4 we talk
about current IDS solutions for IoT networks. A chapter overview is given in Section 2.9.

In Chapter 3, we study and implement resource as well as traffic -based routing attacks
in IoT networks. Section 3.1 provides a brief description of the problem. Then, in Section
3.2 two popular types of IoT network layer-based DoS attacks are studied: “Hello” or DIS
flooding attack and version number modification. Both attacks may drain the batteries of IoT
devices. These attacks are implemented in ContikiOS and simulated using Cooja simulator.
We demonstrate how these attacks can impact the power consumption of IoT devices and
can constitute some devices unreachable. Following the presentation of simulation results,
in Section 3.3 we focus on RPL-specific DoS attack, called “Hello” or DIS flooding, which
is simulated in large networks. Mean packet interval and mean number of messages were
utilised to show the effects of the attack. Exported results are analysed and IDS thresholds are
defined to combat the IoT-specific attack. Section 3.4 discusses the implementation details of
other resource and traffic-based routing attacks such as rank and blackhole attacks. Malicious
devices attack the network by advertising false rank and dropping packets of child nodes.
The last Section 3.5 briefly summarises the chapter.

In Chapter 4, a novel Security Framework for IoT-based networks (SRF-IoT) is introduced.
Section 4.1 presents the operational details of the framework such as trust concept. Also,
a high-level architecture of SRF-IoT scheme is presented. The two main components of
SRF-IoT framework are introduced in Section 4.2. An external Anomaly-based Intrusion
Detection System (SRF-IDS) is the first main component that aims to detect attackers, and
provide smart devices with trust metrics. A Trust-based Objective Function (SRF-OF) which
is embedded into the routing protocol is the second component. This OF allows nodes
choose the most trusted parent to route packets, and avoid malicious actors in a network.
The modular Anomaly-based SRF-IDS for detecting DoS attacks is presented in detail in
Section 4.3. Initially, a brief discussion of current problem is given and then, the design
of SRF-IDS is discussed. SRF-IDS comprises a set of distributed lightweight detection
modules and a border router acting as a centralised detection module. The architecture
and several components of the proposed SRF-IDS are explained in detail. In Section 4.5,
implementation details of SRF-IDS communication module are presented. Moreover, Section
4.6 provides more information about SRF-OF and trust-based protocol implementation. The
development of detection module using thresholds is presented in Section 4.7. Design phase,
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and implementation of algorithms are explained with details. An initial version of detection
module is evaluated using Cooja simulator tool. Section 4.8 describes an improved version of
threshold-based detection module. The weaknesses of the first version are initially described.
Later, changes in the design as well as simulation scenarios are presented. Results from
evaluating the improved detection module are also illustrated. SRF-IoT design decisions as
well as algorithms for information collection, trust calculation, trust monitoring, and detection
procedure are explained in detail in Section 4.4. A brief summary of chapter information is
given in Section 4.9.

In Chapter 5, performance evaluation of SRF-IoT framework is presented for three
different cases. The first case described in Section 5.1, evaluates SRF-IoT framework when
rank and blackhole attackers are deployed in a medium-size network. As a second case, a
complex attack scenario is presented in Section 5.2. Specifically, the proposed scheme is
evaluated in a medium-size environment where malicious nodes attack the network using a
combination of blackhole, rank and DIS flooding attacks. In Section 5.3, SRF-IoT framework
is tested in large scale networks where the three routing attacks are launched together. Results
show that DIS flooding and other routing attackers are detected and isolated with the help
of SRF-OF. In each different case, the specific scenarios, configurations, and metrics are
analysed, and results are presented. Attack simulation was done in Whitefield framework;
a new simulator that combines Contiki-NG with NS-3 to allow faster simulations, easier
deployment of large scale scenarios with minimum effort, and more realistic results than
Cooja simulator. In Section 5.4, an ML model that is embedded into the Detection module of
SRF-IDS detectors is introduced. Initially, the aim of deploying an ML model into SRF-IDS
component is described. Then, the related design decisions are discussed. In addition, the
general approach followed from creating the dataset until training and testing the ML model is
described. The actual implementation steps taken for creating the datasets are also explained.
Configurations and metrics as well as experimental results are presented. The trained model
shows precision of 93.3% when is validated. In Section 5.5, observed results are discussed
and compared with other related works. Section 5.6 presents a brief summary of the chapter.

In the last Chapter 6, conclusions along with limitations and future steps are discussed.



Chapter 2

Background and Literature Review

It is important for the reader to understand the basic concepts of IoT networks before
proceeding to next chapters. The aim of this chapter is to describe the most important
concepts and definitions used in this thesis. First, the IoT reference model and the available
Operating Systems for smart devices are introduced. Then, simulators used for IoT research
as well as the RPL routing protocol are explained along with the potential attacks. The
definition of Intrusion Detection System (IDS) for IoT is given as well as the supervised ML
algorithms implemented in SRF-IDS are discussed. Last, the related state-of-the-art studies
are presented.

2.1 IoT Reference Model

In traditional networks, a reference model is a theoretical model that is used as a basis
for communication among various network systems. The same concept is used for IoT. A
number of different IoT reference architectures have been proposed for IoT [28]. Among
them, CISCO’s 7-layer model [29] provides sufficient level of detail and has been considered
in this study.

It consists of the following layers: Starting from Level 1 or the “edge level”, physical
devices are the smart devices and machines, which send or receive generated/censored data.
A device can be of any size and ,thus, the IoT reference model describes generally the basic
capabilities for devices. For example, a device should be able to convert signal from analog
to digital, and generate data.

Level 2 refers to the communication and connectivity between the devices, within the
same network or across different networks. In many implementations, IoT devices are able
to reliably transmit data using the existing network infrastructure. Apart from that, in this
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level routing, switching and translation between protocols occurs. So, most of Level 2
functionalities concern the communications within a network.

Level 3 activities include data analysis and transformation. In other words, network
packets are processed in that level to be understandable to the higher levels. Specifically, in
this level data are filtered, formatted and aggregated to reduce their size and be suitable for
storage. Moreover, as the processing is done per network packet, their content is inspected.
Generally, Level 3 functionalities focus on communication packets entering or leaving the
network.

Level 4 is where data are converted from data in motion to data at rest. In other words,
network packets or event-based data are formatted into database relational tables. This allows
application to use those data when needed. The size of data is also largely reduced by filtering
them.

In the next level, data abstraction occurs. This means that in Level 5, data gathered from
different sources can be combined and simplified for use in applications. Data abstraction
is achieved by creating schemas of data in a way that are useful for applications. Moreover,
techniques such as data filtering, projecting, and reformatting are used to transform data
into proper format for application use. In addition, proper data protection methods such as
authentication and authorisation are implemented in this level to secure data.

Level 6 is the application level and is the place where information is read by IoT applica-
tions. The latter can vary from analytics to system management and control. For example,
control applications and business intelligence applications are likely to use the data in various
ways. Applications in this level communicate with Level 5 and data stored in databases.

The highest level, Level 7, is where the end users and business processes live. Making
the IoT system and its generated data useful requires people to collaborate and use IoT
applications and their data.

In general, Levels 1-3 are called the “Edge-side layer”, Levels 4-6 are called the
“Server/Cloud-side layer”, and Level 7 is called the “User-side layer”. In this work, we
are mostly concerned with “Edge-side” layer or Layers 1-3.

2.2 Operating Systems in IoT

Many operating systems have been used in the IoT research field. An Operating System (OS)
is a vital component for a device in order to run applications and manage its resources [30].
For instance, OS is responsible for monitoring and managing energy consumption of the
device, executing instructions, and enabling the device to communicate with other devices.
IoT networks operate on resource-constrained devices. As discussed before, smart devices
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have limited storage capacity, low processing power, and operate on batteries. Customised
IoT-based OS have been designed to meet these constrains and enable programs to run on IoT
devices. There are two types of IoT OS; Linux-based and non-Linux based. LiteOS, Pyrix and
ARM Mbed are some examples of Linux-based OS, while ContikiOS/NG, TinyOS, RIOT
and Openthread are non-Linux OS [31, 32]. As this project focuses on resource constrained
devices, non-Linux OS are studied mostly.

One of the well-known OS in the literature for Wireless Sensor Networks (WSN) is Con-
tikiOS [33]. It has been under development since 2003, and follows a modular architecture.
In this type of architecture, applications can be loaded and unloaded dynamically during
runtime. Moreover, ContikiOS is based on Protothread which features multi-threading and
event-driven programming model. It also supports dynamic memory allocation, and full
TCP/IP stack via the uIP. ContikiOS is using C programming language for implementation.
It is a flexible OS and it has been integrated into many different hardware platforms. In 2017,
Contiki-NG [34] started as a fork of the original ContikiOS. Its goal is to focus on dependable
low-power communication, implement standard protocols such as IPv6/6LoWPAN, CoAP
and RPL, and improve the documentation. Moreover, Contiki-NG has an active community
which releases regular updates. Regarding RPL protocol, ContikiOS provides an implemen-
tation that is called ContikiRPL [35] while Contiki-NG implements a lighter version of
ContikiRPL, called RPL-Lite. The latter version of RPL removes support for storing mode
in favour of non-storing mode, and removes the complexity of handling multiple instances.
Usually, RPL-Lite shows better performance and has a considerably smaller ROM footprint
than ContikiRPL.

Another popular OS for constrained devices is TinyOS [36]. One of the difference with
other OS is that it follows a monolithic architecture. This means that all processes run in
kernel space and in case of application bug, the whole OS crashes. Another difference is
that memory is fixed and it is statically allocated. TinyOS applications run as independent
components which are written in NesC programming language and have an event-driven
execution model. Commands, Events and Tasks are three elements written in C that exist
in each component. Commands are usually queries to a component that demand something
to be executed. Events are signals sent from the component once a Command is finished.
Both Commands and Events are executed immediately while Tasks are not. If a program is
running and a new Task is created, the task will be added to the queue and executed later by
the scheduler, after the execution of the program is finished.

RIOT is a Real-Time Operating System (RTOS) for embedded smart devices [37]. It
is based on microkernel architecture with multi-threading. This means it has small kernel
size and a small number of context switches. This reduces the amount of memory needed
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by hardware devices. RIOT is organised in software modules that are combined together
during compile, and allows dynamic memory allocation. Low memory and power resources
are needed by devices because only required modules are compiled in the system. Various
stacks such as standard IP protocols, 6LoWPAN, IPv6, RPL are supported in RIOT. The
programming language for applications in RIOT is C.

FreeRTOS is another RTOS designed for embedded and devices with limited capabilities
[38]. It is deployed in many industrial/commercial environments and also used in many
research studies. It is an easy to use, small and portable OS that has been integrated into
many hardware platforms including IoT-LAB test-bed. Similarly to RIOT, it is based on
microkernel architecture and supports multi-threading programming model. In addition,
dynamic memory allocation is supported while third-party libraries are needed for Internet
communication. Applications are written in C programming language but C++ can also be
used.

In this project, an OS is used to help us design, develop and demonstrate the proposed
solution into a real environment. A comparison among the different IoT OSes is presented in
Table 2.1. As it is shown, ContikiOS/NG is better for IoT research as it supports both multi-
threading and event-driven approaches, and allows modular development of applications as it
has a modular architecture. Another advantage is that it can be easily emulated in a simulation
tool such as Cooja [39]. For these reasons, ContikiOS/NG is chosen for implementing the
proposed solution in our thesis.

Table 2.1 Comparison of IoT Operating Systems

Operating
System Architecture Programming

Model
Programming

Language
Memory

Allocation
TinyOS Monolithic Event-driven NesC Static

ContikiOS/NG Modular
Multithreading and

Event-driven C Dynamic

RIOT Microkernel Multithreading C Dynamic
FreeRTOS Microkernel Multithreading C and Assembly Dynamic

2.3 Simulators for IoT Research

When designing and testing new solutions, many researchers rely on simulation tools. In
recent years, a number of open-source simulators has been made available for WSN and IoT
research [40]. The following features should be supported by a simulator:
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• Generate Real Network Traffic: It is essential to have and use the actual traffic that the
network would have when it is implemented in order to study the attack impact. This
means, if simulator does not support a real software, it will not create real traffic but
will generate traffic patterns such as distributions.

• Simulate Real Software: Each simulated node should behave in the same way as a real
software. So, it is important to simulate real software using a simulator.

• Support IoT OS: Simulating a real-world OS running on IoT device is really important
because simulator can produce realistic results.

• Calculate Power Consumption: Estimating the energy consumption is a great metric to
have it in a simulator.

Two popular general-purpose simulators for computer networks are NS-3 [41] and
OMNeT++ [42]. Both are discrete-event simulators implementing many real-world network
protocols. They have been developed in C++ and can be embedded into existing projects
as libraries. Castalia [43] is an extension of OMNeT++ to support WSN simulations. It is
mainly used by researchers to study MAC and PHY layers as well as test algorithms in a
realistic wireless channel and radio model. TOSSIM [44] and Cooja [39] simulators are also
gaining popularity among WSN/IoT researchers. Both are particularly suitable for real-world
experiments, since the developed applications can be uploaded directly to real hardware.
TOSSIM is the simulator of TinyOS [45] and allows writing application in nesC language.
Cooja can be used to simulate the behaviour of ContikiOS [46] and is flexible in the sense that
nodes of the same network can run different software or have different underlying hardware
platforms.

A recent simulator that combines NS-3 and real-world OS is the Whitefield Framework
[47]. According to its author, Whitefield provides a simulation environment for WSNs by
combining realistic PHY/MAC layer simulation with the native mode use of popular IoT
Operating Systems. In our case, we use Contiki-NG as the OS which provides the network
layer and above, while NS-3 simulator provides the PHY/MAC/RDC layer. Moreover,
Whitefield generates log and pcap files for each simulation. This is really useful for monitoring
and auditing simulation results. The only drawback of using Whitefield is that deployed nodes
are native processes running in NS-3 and not emulated hardware. Therefore, monitoring
energy consumption or other hardware-specific metrics is not possible.

A comparison of the aforementioned simulators is presented in Table 2.2. As it can be
seen, most simulators do not generate real traffic by running real applications. Real network
traffic is created by Cooja, for example, as it is based on ContikiOS system. Other simulators,
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Table 2.2 Comparison of Popular Simulators for IoT

Simulator Main Usage Traffic
Generation

IoT
Devices

Support/ OS

Power
Consumption Limitations

Cooja Wireless sensors Real Yes/ ContikiOS
Yes with
Powertracker

Supports less
than 100 nodes

TOSSIM Wireless sensors
Statically or
Dynamically Yes/ TinyOS

Yes with
PowerTOSSIM

Restricted to TinyOS

OMNeT++ Internet protocols Events No/ - Yes
Lack of software
code

NS-3
Network and application
layers

Traffic
patterns No/ - Yes Lack of real traffic

Castalia Focus on radio models Real Yes/No Yes General Simulator
Whitefield Framework
(based on NS-3) Wireless sensors

Real/Traffic
patterns Yes/ Contiki-NG No

Lack of energy
consumption model

such as TOSSIM and NS-3, create dynamic traffic or using patterns such as exponential
distributions. Another important feature that is missing from the half of simulators is the
support of real-world OSes, and IoT devices. Simulating with a real OS will allow us to
generate realistic and accurate results regarding the impact of attacks in various IoT networks.
In addition, the proposed solution should be good to be implemented in an OS that can be
easily uploaded into a real hardware device.

Given the characteristics and capabilities of the above simulators, we have chosen Cooja
for implementing the developed IDS and the Whitefield Framework for evaluating the
SRF-IoT framework. Cooja simulator allowed us measure the energy consumption of our
initial experiments as it supported this feature. Moving into Whitefield framework, this
feature was not available anymore. Therefore, we changed our focus and we did not measure
energy consumption. However, we were able to experiment with large networks. Simulating
more than 30 nodes in Cooja was a limitation using our current setup but in Whitefield
we mitigated this problem. Cooja was the first choice to simulate ContikiOS in small
networks for evaluating IDS while Whitefield framework is used for more realistic, large
scale scenarios that are simulated without any memory or computing power limitations.
Simulating ContikiOS is preferred than TinyOS because the former is a dynamic system,
allows allocating resources in run-time, and supports the communication with external
networks using the TCP/IP protocol suite.

2.4 RPL Routing Protocol for IoT Networks

A routing protocol aims to achieve communication between devices belonging to a network
or in different networks. Nodes in IoT networks deploy different types of routing protocols
to exchange packets effectively with other devices [48].
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The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [4] is a standard-
ised lightweight routing protocol for 6LoWPAN networks. A Destination-Oriented Directed
Acyclic Graph (DODAG) is created between the nodes. One or more DODAGs can be
grouped together and form an RPL Instance. In an RPL Instance, all DODAGs share the
same RPL Instance Identification (RPL InstanceID). The RPL InstanceID must be included
in a field in data packets so that nodes can identify destination. Moreover, an instance may
include one DODAG with one root node or multiple DODAG with different root nodes.
However, a node can participate in one RPL Instance only at a time. A single 6LoWPAN
network may have many global RPL instances which may also include several local RPL
DODAGs.

An Objective Function (OF) is utilised in RPL protocol to select and optimise routes
within an RPL instance. Usually, OF is based on some metrics or constraints (e.g., energy,
latency, and throughput). The result of the function is the rank of the node, which is an
indication of the node’s distance from a DODAG root (hops from the root node). Two OFs
are supported by RPL; Zero Objective Function (OF0) and Minimum Rank with Hysteresis
Objective Function (MRHOF) namely. OF0 is based on hop count to calculate rank while
MRHOF uses the Expected Transmission Count (ETX). That is the expected number of
transmissions that a node needs to make to a destination in order to deliver a message
successfully. Rank increases with every hop from the root, thus root has the minimum rank.
This metric is also needed in the preferred parent selection process of a node. Nodes with
lower rank are preferred. Parents are nodes that forward packets from a child node. Parents
are by definition, closer to the root, which is translated to a lower rank.

RPL supports two modes; non-storing and storing. In non-storing mode, the root is
responsible for storing information about each node in the DODAG network. Each packet
has to go upwards to the root and then, the root calculates the routing path to the destination
based on the stored information. The root inserts this routing path in packet header and sends
it to the next node. When a node receives a packet, it forwards the packet to the next hop
node (as indicated in the packet header). In storing mode, each nodes maintains a list that
stores routing information about all nodes belonging to its sub-DODAG. When a packet
arrives, the recipient node finds the packet destination from the list and forwards it to the
next node. If the destination is not listed, the packet is forwarded to the preferred parent.

A number of ICMPv6 control messages are used in RPL. DODAG Information Option
(DIO) messages are sent by the root. These messages are needed to maintain the DODAG,
and contain information about the metrics used for routing, the rank of the broadcasting
node, and the identity of the DODAG. If a DIO message is received by a node, the node will
determine its rank, based on received rank, and the cost of getting to the node from itself.
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Fig. 2.1 RPL control messages

DIO messages are sent regularly from each node, triggered by a timer called trickle timer
[49]. Using a timer reduces the redundant transmissions of DIO messages.

DODAG Information Solicitation (DIS) messages are used to solicit a DIO from RPL
node. In other words, it is used as a neighbour discovery. When a new node joins the DODAG,
it multicasts a DIS message and waits to hear for a DIO. A Destination Advertisement Object
(DAO) message is sent to propagate information upwards, and to create downward routes.
Nodes send this message to the root, so the message is propagated or forwarded by parent
nodes until root node is reached. Then, a Destination Advertisement Acknowledgement
(DAO-ACK) is sent as an answer from the root node when receiving a DAO. The transmission
sequence of RPL control messages between a new node and an old one is shown in Figure
2.1.

Each node has a unique ID, based on its IPv6 address, and maintains a list of its DODAG
neighbours. A node has one or more parents, except for the root that has no parents. Addi-
tionally, RPL nodes use a rank-based system to indicate their position with respect to the
root, who has the lowest rank. The direction from root to other nodes is called downward
route, while the direction from other nodes to root is called upward route.

2.5 IoT Attacks

Attacks take place at different levels in the IoT infrastructure. The combination of routing
attacks such as DoS, rank and blackhole attacks is the novelty of our work. Those attacks as
well as other attack vectors are explained in this section. The content of this section is related
to Contributions (a) and (b).
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2.5.1 Attack Vectors

The majority of IoT devices have weak or no security at all making it easy for an attacker to
exploit them [5]. As a result, critical information can be stolen from devices or they can be
used to cause harm in other networks. Below, we briefly review the most significant attack
types against IoT devices in each layer of the IoT stack. For referencing purposes, Cisco’s
7-layer model is used [29].

At the Physical Devices layer, changing the firmware of a smart device with a malicious
one could permit an attacker to read data in transit or stored in the device. Another method of
hardware exploitation is the non-network side-channel attack. In that attack, electromagnetic
signals of the device are monitored by an attacker so as to expose the status of the device. DoS
attack constitutes another threat for smart devices. Resource exhaustion and battery draining
are some examples of DoS attacks [50]. In these attacks an attacker may prevent a device
from sleeping by periodically transmitting “Hello” messages or may drain the limited power
resources by submitting heavy computation tasks. Apart from DoS attacks, an adversary
could attack the network by cloning a node. This means, the node will normally participate
in the network but node will be controlled by the attacker. In this way, packets received by
the node could be redirected or modified.

At the Connectivity level, eavesdropping is a popular attack in which the goal of the
attacker is to export confidential information including usernames and passwords. Therefore,
the attacker can learn about the network infrastructure, enter and modify device’s data, or
steal important information. Also, at this level devices are vulnerable to MitM attack in
which attackers become the proxy between nodes and root, controlling all the communication.
Routing attacks are also well known in IoT networks. Usually, infected nodes redirect or
change routing paths of neighbouring nodes to disrupt network operation. Some routing
attacks examples are selective forwarding, sinkhole and blackhole attacks. Moreover, replay
attacks [51] can be very dangerous as attackers try to spoof and drop packets or even modify
routing information. This leads to network disruption. Another type of attack is device
spoofing. In this case, a malicious node impersonates a normal device to steal credentials
and gain unauthorised access to an IoT application. In addition, DoS attacks at the level
of Connectivity may have a negative impact on the performance of an IoT network. Some
examples of DoS attacks are packet flooding and signal jamming which have as a goal to
corrupt device’s communication signal. Last but not least, IoT devices can be exploited and
transformed into bots to carry out DDoS attacks against selected targets. Chalubo and Mirai
botnets are the most recent examples of this threat [52, 53].

At the Edge Computing level, servers could be exploited by injecting malicious input
into them and stealing important data. Similarly, attackers may try to leak information
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from a device or server in order to learn which services are used in a vulnerable IoT
network. Database warnings or errors, for example, provide valuable information to attackers.
Additionally, access control attack can cause significant damage to IoT network if is not
prevented. IoT applications utilising access control do not allow illegitimate users or devices
to access sensitive data. Once access control in a critical IoT application is compromised,
then anyone could get access to it.

2.5.2 Routing Attacks

Routing attacks may degrade the performance of IoT devices. Thus, extensive study is needed
to understand how they actually occur. Below, we present some background information
about routing attacks in IoT networks.

Fig. 2.2 IoT-based routing attacks overview. Blue colour: Attacks studied in this work, Yellow
colour: Attacks not studied in this work.

Figure 2.2 presents an overview of current IoT-based routing attacks. The figure was
created based on a combination of our own categorisation of routing attacks and the taxonomy
found in [54]. The main three categories of routing attacks (Resources, Traffic and Topology)
are adopted from [54] while the subcategories are modified to represent our main focus.
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For instance, in the category of Resources-based attacks we consider RPL-specific flooding
attacks as a sub-type of DoS attacks. The reason is that DoS attacks can be caused by either
flooding the network with packets or by making a modification in the network which will
cause nodes to send a large number of packets.

Attacks studied in this work are coloured in blue in Figure 2.2. As it is shown, routing
attacks can be classified to resource-based, topology-based and traffic-based. Resource-based
attacks such as Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks,
pose a threat to IoT networks. Malicious actors attempt to flood a system with millions of
packets using a large number of compromised devices. This may cause resource exhaustion
and network disruption making the targeted system unavailable.

Fig. 2.3 DIS flooding attack. Node 7 (red node) represents DIS Attacker. Red arrows show
transmitted DIS packets while DIO packets are sent from neighbours as reply to DIS requests.

In IoT networks, DoS attack may occur using various methods. For instance, version
number modification attack [55] is an RPL-specific DoS attack in which the malicious node
changes the DODAG version number of the received DIO packet. Then, it transmits to next
hop the DIO packet with the malicious version number causing a reset of node’s trickle
timer. The version number is usually used by root node to control the so-called “global
repairs” of the RPL network, and to ensure that the latest routes are available to nodes in the
DODAG. When the version number changes, root node initiates global repair to reconstruct
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the whole DODAG network. As a result, nodes are energy exhausted performing unnecessary
computations.

Another example of RPL-specific DoS attack is “Hello” or DIS flooding attack [23].
Normally, an RPL DIS control packet is sent from nodes initially to join the network.
However, DIS flooding attack occurs when a malicious node unicasts a batch of DIS requests
to neighbouring RPL devices. Nodes receiving DIS packets, have to process and acknowledge
the messages with DIO packets. Thus, node’s battery energy is wasted by replying all
incoming requests, network is congested, and nodes become unavailable. Figure 2.3 illustrates
an example network where RPL protocol is used and DIS flooding attack is launched. Node
7 represents the malicious attacker which sends a large amount of DIS requests. Then,
neighbouring devices reply to DIS requests with DIO control packets. As a result, attacker
affects network and devices’ availability.

In topology and traffic -based attacks, malicious actors target routing protocols and
attempt to change or advertise fake routing information to attract traffic. Sinkhole, selective
forwarding, rank and blackhole attacks belong to those two categories of routing attacks.
Sinkhole attack happens when a node advertises fake routing metric to attract traffic from
neighbouring nodes. This attack is used as the basis of launching other attacks. For instance,
after sinkhole attack, the selective forwarding attack can be launched in which only chosen
packets are forwarded. In this case, attacker will drop all data packets and forward only
control messages.

A severe attack that is studied through this project is rank attack. According to [24],
in rank attack a malicious node may intentionally advertise lower rank in order to attract
neighbouring devices to select it as preferred parent. A parent node is needed in order to
form the DODAG network and allow creation of routes reaching Border Router (BR). In
cases where networks are small, the best parent is the BR itself. In other cases, metrics
such as rank and ETX are used to select the best parent. If a malicious node manages to be
chosen as the best parent of several nodes, it can attack the network affecting its topology,
availability and integrity. As a result, the malicious node is a single point of failure of the
network. An example of rank attack is presented in Figure 2.4. Node 6 (red node) represents
the attacker which tries to attract neighbouring nodes. The network topology is formed using
RPL protocol. When the attack is launched, attacker sends multiple DIO control packets to
advertise a low rank value. Network under attack is shown on the top right figure, in which
the attacker (node 6) sends DIO packets (red arrows) to neighbouring devices which are
located inside the doted line rectangle. As can be seen from the illustration, a successful rank
attack leads neighbouring devices to choosing the malicious node as their best parent. Thus,
network topology is altered, and network performance is degraded.
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Fig. 2.4 Rank attack example. Node 6 (red node) represents the Attacker. Nodes inside the
doted line rectangle may be affected by the malicious node attack. Red lines symbolise RPL
DIO messages with a fake rank.

Another interesting routing attack is blackhole attack. In blackhole attack, the compro-
mised node drops all incoming traffic. Therefore, no packets are forwarded from this node,
and network disruption is achieved by the attacker. By dropping data packets, retransmission
rate of child nodes is increased and an internal DoS attack occurs. This attack could isolate
children nodes from the rest of the network, degrading the performance of the network. Figure
2.5 illustrates the result of blackhole attack in RPL network. Node 7 is the compromised
node which accepts incoming traffic but does not forwards any packet. The arrows in the
figure represent the packets sent while those with red crosses show the packets that attacker
node discards. This attack can be combined with rank attack to attract more child nodes and
achieve greater network disruption.
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Fig. 2.5 Blackhole attack example. Node 7 (red node) represents the Attacker. Arrows show
the communication between nodes. Red crosses symbolise blocked messages that the attacker
is not forwarding.

2.6 Intrusion Detection for IoT

As already discussed in previous section, IoT networks are vulnerable to many attacks.
Security attacks may cause severe damage to IoT devices and networks. Although security
attacks exist in these networks, solutions focusing on securing the IoT ecosystem have already
been developed. The analysis and discussion of existing security solutions for IoT networks
are under the goals of Contributions (a) and (b).

In recent years, IDSes have attracted the attention of security researchers and practitioners
for protecting IoT devices [56]. An IDS is a security technology that monitors networks
or systems for malicious activity or policy violations. In the literature, three types of de-
tection methods are typically distinguished, namely signature-based, anomaly-based, and
specification-based [57]. Hybrid approaches, that combine two or more methods, are also
gaining popularity.
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A signature-based IDS may detect an attack/intrusion if the attack’s signature is already
stored in a database. These systems can detect known attacks very accurately and this
is the reason why they are widely used in the industry. Anomaly-based detection tries
to recognise malicious behaviour by distinguishing it from normal/expected behaviour. It
needs the previous creation of profiles for defining the normal behaviour of users, hosts, or
networks. Such profiles may be pre-loaded or built in real time by collecting data during the
normal operation. Specification-based detection shares some similarities with anomaly-based
detection in that it is able to recognise attackers by distinguishing it from the expected
behaviour. However, the specification-based approach is based on manually creating the
specification of legitimate behaviour rather than using a machine learning method as happens
in anomaly-based detection. The disadvantage of this method it the time-consuming task of
creating a detailed specification for a device.

2.7 Supervised Machine Learning

Machine Learning (ML) is a trending research field that helps computers complete tasks
without human intervention. ML algorithms try to learn from existing data so that future
actions will be done based on the experience gained. This section explores the supervised ML
technique. ML-based detection methods are covered by Contribution (c). The use of ML
algorithms within SRF-IDS will be explored in later chapters. Supervised, semi-supervised,
and unsupervised learning are described [58]. These three categories are the most known
learning procedures in ML field.

A well-known data processing technique is supervised learning. In this category, the
model learns to map input variables (X) to an output (Y ) using a function f (Y = f (X)).
Both input and output datasets are labelled so that the model can learn the relation between
the two. During training, input data is provided along with their correct output so that the
algorithm learns the patterns. Learning procedure continues until a satisfactory level of
performance is reached. After training, the supervised learning algorithm is tested to evaluate
its performance. Specifically, unknown data is given as input to the model, and it tries to
predict the output value based on the relationships learned from training procedure. Two
main categories of supervised learning problems exist; regression and classification problems.
Regression problems have as output variable a real value, while classification problems have
a category as an output variable.

An example of classification algorithm that is also used in this work is the 2-class
Decision Forest [59]. The specific algorithm is a fast supervised ensemble learning model
that is usually used for predicting two outcomes. The ensemble approach is the one that
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numerous related models are created and merged in some way together to create a more
generalised model instead of depending on a single model. In this way, better results can be
obtained. Creating individual models and combining them together in an ensemble can be
achieved by multiple ways. The Decision Forest implementation used in this project builds
multiple decision trees and merges them together using Voting to produce more accurate and
stable results.

Another classification algorithm that is used in this project is the 2-class Support Vector
Machine (SVM) [60]. According to Yang and Li [61], SVM is one of the best classification
algorithms. It is a reliable algorithm which can achieve high accuracy on predicting the class
of unseen data. It is based on the principle of structural risk minimisation. This principle aims
in finding a hypothesis h for which one can be sure that the lowest error is observed while
other methods are using the empirical risk principle which tries to improve the performance
of the training set.

2.8 Related Work

The aim of this section is to discuss the latest related research work in the field of IoT
attacks and defences. RPL security related studies are presented in the first subsection while
IoT-based DoS attacks and mitigation techniques are described in the second subsection.
Then, solutions for detecting attackers in IoT networks are discussed. These are split into
two categories: IDS-based and trust-based solutions.

2.8.1 RPL Security

Even though IoT security is a field studied extensively, this section aims to summarise
state-of-the-art research in securing the RPL protocol. Studying the impact of attacks in
IoT, and mitigation methods are mostly related to Contributions (a), (b) and (c). Routing
attacks such as blackhole, sinkhole, rank, version number, selective forwarding, DIS and
DAO attacks are extensively studied in [22, 62, 63, 24]. Below, we briefly present recent
works in the field of RPL security in IoT networks.

A detailed study about RPL security is presented by Verma et al. in [64]. Authors provide a
comprehensive overview of RPL attacks, and categorise them based on their targets, including
resources, topology, and traffic. Moreover, they evaluate existing RPL security solutions for
several attacks, and compare their performance based on various metrics. Authors conclude
that specific IDS-based and RPL-based mitigation techniques are still in the early stages.
Thus, more research is needed to completely secure IoT networks.



30 Background and Literature Review

Another extensive study of RPL security attacks and their impact on network performance
is conducted by Wallgren et al. [65]. Authors implement well-known RPL routing attacks,
including rank attack, in ContikiOS and demonstrate that the protocol is vulnerable to these
attacks. A heartbeat protocol is also developed as a security mechanism to protect the IoT
network against selective-forwarding attack. However, their solutions works well only if
IPSec is used in the network because an attacker may choose to not filter ICMPv6 packets
and thus, avoid being detected.

Ribera et al. [66] studied blackhole and greyhole attacks in RPL network. Authors
analysed the impact of the attacks in Contiki-NG using metrics such as CPU, memory usage
and TX/RX rates. Then, a novel UDP-based heartbeat detection technique is implemented
and evaluated using the Cooja simulator. Results show high accuracy with low overhead in
terms of CPU usage and battery consumption.

Boudouaia et al. [24] discuss the latest works about RPL-based rank attack. The rank
property of the RPL protocol can be exploited and may cause poor network performance and
waste of energy. Mitigation methods as well as the damage caused on network parameters
are explained in their work. In addition, authors compare different attacks including rank
attack using the Friedman test, and emphasise on the importance of rank attack.

Secure mode for RPL protocol is studied by Raoof et al. [67]. RPL operates in Unauthen-
ticated mode by default. However, it can also operate in Pre-installed Secure Mode (PSM),
using pre-installed symmetrical encryption keys to secure RPL control messages. Another
mode is the Authenticated Security Mode (ASM) in which nodes utilise the pre-installed
keys to join the network. Authors compare the performance of RPL protocol using the
authenticated modes under blackhole, selective-forward, and neighbour attacks. Simulation
results indicate that RPL can protect network from external attackers. Yet, secure modes
require more memory and storage spaces than the unsecured mode, so it cannot work for all
smart devices.

All in all, many studies investigate the security and impact of routing attacks to RPL pro-
tocol. The protocol is still vulnerable to many attacks including a combination of blackhole,
rank and DIS flooding attacks. Moreover, existing solutions require more resources from IoT
devices.

2.8.2 Denial of Service (DoS) Attacks and Defences

The latest works in the field of DoS attacks and prevention methods in IoT networks are
described below. This subsection covers the objectives of Contribution (a).

Raoof et al. [23] present a comprehensive study of RPL attacks. They classify RPL attacks
into those inherited by Wireless Sensor Networks (WSN) and into RPL-specific attacks. The



2.8 Related Work 31

latest mitigation methods are also discussed and classified for RPL-based networks. Authors
report that while there are some IoT-based IDSes, RPL-specific attacks, such as DIS flooding
attacks, have no appropriate mitigation method to date. Moreover, the majority of studies do
not present complete implementations for the mitigation of the various RPL-specific attacks.

Islam et al. [68] discuss the security issues for IoT devices in the healthcare domain.
The authors analyse DoS attacks and focus on the permanent DoS attack in which the
functionality of the device is permanently affected due to the execution of specific Linux
commands. BrickerBot is the name of a bot that spreads the malicious code and transforms
IoT devices into “bricks” [69]. Raymond et al. [70] examined MAC layer denial-of-sleep
attacks on WSNs, where the power supply of a sensor is exploited. This type of attack can
have a disastrous effect in sensor’s lifetime.

A number of DoS prevention techniques for WSN have been suggested [70–72], which
could potentially be used in the IoT security domain. A recent work by Muna et al. [73]
focuses on detecting malicious activities in industrial IoT. Authors highlight the issue of
zero-day and DoS attacks in critical infrastructure and suggest an anomaly-based IDS. Their
solution uses deep learning models. It learns the TCP/IP traffic’s normal behaviour and
detects any abnormal behaviour automatically. It also aims to reduce false-positive rates.
Their system was evaluated using two well-known datasets and then compared to other
anomaly-based techniques.

Perakovic et al. [74] focus on DDoS attacks, which may negatively affect the quality
of service (QoS) and the Service Level Agreement (SLA) between end user and service
provider. The authors examined data from application layer attacks and they discovered that
the most popular attack involves the “HTTP GET” method. They also report that nowadays,
network and transport layers are exploited. Therefore, it is suggested that researchers should
study detection methods across different layers.

Regarding the detection of DDoS attacks in IoT, Misra et al. [75] suggest using Learning
Automata (LA) to build a prevention strategy by utilising the Service Oriented Architecture
(SOA). This strategy determines the packet sampling rate from the environment. Specifically,
it receives sampling rates as input from the environment and responds with the best action
based on the given inputs. Each device has a DDoS prevention mechanism. During the
detection phase, this mechanism counts the number of requests for each layer. If the requests
in a layer exceed the maximum number of requests that this layer can handle, an alert is
generated. Following the alert, devices record the IP addresses and flag the one with the most
requests as the attacking device. Then, an Attacker Information Packet (AIP) is spread among
the nodes, so that traffic is filtered and malicious packets are dropped. The best sampling rate
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is defined by LA component to reduce delay and power consumption during the sampling
stage. This process continues until packet interval falls below an acceptable threshold.

A multi-level DDoS detection framework was proposed by Yan et al. [76]. Authors use
traditional mechanisms in different levels including fog computing, edge computing and
cloud computing to defend against DDoS attacks. Bhuyan et al. [77] suggest an entropy-based
DDoS detection. This approach is one of the most effective in the literature because of the
low computing overhead.

Although many solutions have been proposed for detecting DoS/DDoS attacks in IoT,
there have been very few real-world implementations and tests. Moreover, most of the
works do not perform detailed simulations either. Anomaly-based IDSes require realistic
training data from IoT attacks. The lack of detailed datasets makes this task difficult. Another
limitation of current solutions is their energy efficiency. IDSes should not significantly affect
sensor’s battery performance. Last but not least, current solutions are usually designed to
detect a single type of IoT-based attacks and lack generality.

2.8.3 RPL and Trust-based Mitigation Methods

Many works exist in the literature implementing mitigation methods for RPL attacks. This
section discusses trust-based and RPL protocol-based solutions. This subsection covers the
objectives of Contribution (b).

A comprehensive survey by Airehrour et al. [78] discusses the security of RPL protocol.
Authors emphasize the lack of security mechanisms in the current IoT routing protocols
and study the various methods proposed to achieve secure and sustainable routing among
IoT devices. Among the various recommended security methods, embedding trust into the
routing protocol could aid in protecting IoT networks from malicious attacks.

A Metric-based RPL Trustworthiness Scheme (MRTS) for addressing RPL attacks is
introduced by Djedjig et al. [79]. In this scheme, every node evaluates the behaviour of its
neighbouring nodes based on indirect suggestions and direct observations. Then, nodes will
need to calculate the Extended RPL Node Trustworthiness (ERNT) for their neighbours. The
node with higher trust value, more energy and better link quality is selected as preferred
parent. MRTS uses the ERNT as a routing metric to form the network. Results show that
it helps nodes to avoid malicious nodes. In addition, it has low energy consumption and
high packet delivery ratio. However, nodes need to be in promiscuous mode to observe
neighbour’s behaviour.

Seyyed and Fereidoon [80] introduced a Dynamic and Comprehensive Trust Model for
IoT (DCTM-IoT). Authors utilise several metrics such as packet forwarding indicator, ETX,
energy and mobility in their scheme to calculate trust. DCTM-IoT supports direct and indirect



2.8 Related Work 33

observations from neighbouring nodes to determine trust value. Then, a new OF is used in
RPL to mitigate rank, sybil and blackhole attacks with mobility. Simulations were done using
MRHOF, OF0 and the new OF in RPL. Results show good performance in small networks.
In spite of good performance, DCTM-IoT needs to keep a record of the history of each node
to calculate trust, resulting to not so lightweight solution for IoT devices.

Glissa et al. present a Secure-RPL (SRPL) protocol [81]. The aim of the proposed
solution is to prevent malicious nodes from changing their rank multiple times, creating
fake topologies. SRPL introduces a threshold to limit the number of rank changes. A hash
chain authentication technique is also utilised to authenticate nodes when moving in the
DODAG and modifying rank values. Authors suggest that SRPL can be used to detect other
RPL attacks such as sinkhole, blackhole, selective forwarding attacks etc. For these attacks,
they recommend to deploy anomaly-based algorithms to improve detection rate. Simulation
results show that SRPL successfully protects the network from rank attacks. However, there
is an increase in RPL control messages.

Belavagi and Muniyal [82] study the different RPL attacks using simulations, and try to
identify multiple intrusions for varied network size by using an RPL-based IDS. Rank attack,
selective forwarding, wormhole and Denial of Service (DoS) attack are identified by the
algorithms discussed in their work. Cooja simulator with ContikiOS and ETX as objective
function is used for simulating scenarios of multiple attacks. Evaluation results show that as
the number of attackers increases, network performance is reduced. Therefore, a machine
learning approach will be more suitable to identify various RPL routing attacks.

A Secure RPL Routing Protocol (SRPL-RP) for identifying, and isolating rank and
version attacks is proposed by Almusaylim et al. [83]. Authors extend the works in [84, 85]
in which mitigation methods identify both rank and version attacks. For monitoring purposes,
all nodes have a monitoring table that store legitimate nodes including all their details. For
rank detection, if a node’s rank is greater than node’s parent rank, it is considered malicious.
Then, it is removed from monitoring table as a legitimate node and it is added in the blacklist
table. Then, an alert is sent to all DODAG nodes to avoid the malicious node and isolate
the attacker. For version attack, a similar threshold-based approach is followed. SRPL-RP is
implemented and simulated in Cooja with ContikiOS using various topologies. SRPL-RP
showed better detection and mitigation accuracy in comparison with other solutions.

Airehrour et al. [86] implemented the SecTrust-RPL protocol to overcome RPL routing
attacks such as rank and sybil attacks. The suggested secure framework enhances RPL
protocol by using a trust-based system to detect attackers. The concept is to have each node in
the RPL network to be in promiscuous mode and sniff neighbour packets. Then, they compute
direct and recommended trust values for each of its neighbours. Direct trust is calculated
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based on the packet forwarding behaviour of the neighbour of the node. Recommended
trust is given by another node and it is an estimation of how reliable and trustful is a node
located at 2-hops or more. Penalty is added in cases where a node misbehaves during
operation. Evaluation is based on Cooja simulator using ContikiOS, and test-bed experiments.
Comparing results with standard RPL protocol show that their solution protects against rank
and sybil attacks, is more reliable and consumes less energy than standard RPL protocol.

Perrey et al. [87] propose a Trust Anchor Interconnection Loop (TRAIL) scheme. It is a
topology authentication scheme that is used to identify and isolate rank and version attackers
in RPL networks. It aims to minimise control message overhead and power consumption.
Sink node plays the role of trust anchor while the rest of the nodes validate ranks of their
upward path to the root and drop invalid values. Validation is done using a round trip message.
Evaluation on RIOT platform shows that attackers are isolated and only a small number of
messages is exchanged.

Iuchi et al. [88] propose a secure parent node selection scheme. It aims to allow nodes
choose legitimate nodes only as parents and avoid attackers. In this scheme, nodes firstly
exclude the best candidate if more than one candidates exist. The reason for that is because
attackers usually claim better rank than normal nodes to attract neighbours. Every node
can decided if a node’s rank is legitimate or not based on the average obtained ranks from
neighbouring nodes. Therefore, nodes select parents that don’t have too low rank, and avoid
malicious nodes. Simulation results show that the proposed scheme avoids attackers and
network operates better than standard RPL protocol.

Generally, many studies focus on embedding trust into RPL protocol to detect routing
attackers. Yet, existing solutions have some limitations such as the requirement to have nodes
in promiscuous mode, detect only one or two attacks, and require big storage capacity. A
novel solution should be designed to address these issues.

2.8.4 IDS solutions for IoT

Over time IDSes have been considered by researchers as security measures for keeping
IoT networks secured. However, traditional network detection algorithms have different
requirements than those based on IoT. Thus, adapting traditional methods in IoT environments
is a challenging task. Certain IoT characteristics such as the limited processing power
of intelligent devices, different network structures and a variety of IoT device protocols,
introduce new challenges which an IoT-based IDS must take into account [56]. Below, we
present the latest IDS solutions for IoT. This subsection covers the objectives of Contribution
(a).
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A survey by Zarpelao et al. [56] discusses the latest intrusion detection approaches.
It compares the various studies that propose IDS for IoT in terms of detection method,
placement strategy, security threats, and validation strategy. Even though thera are many IDS
solutions, the research field is still developing. Among the several issues, they suggest to
investigate different detection methods as well as to detect more IoT attacks.

The first developed IDS that aims at protecting smart devices irrespective of specific IoT
protocol or application is Kalis [89]. Kalis is a network-based, hybrid signature/anomaly-
based, hybrid centralized/distributed, online IDS. The selected detection strategy depends on
the specific features of the protected network. Furthermore, Kalis obtains knowledge from
network-installed modules and tries to prevent intrusion by taking into account the current
topology of the network and by conducting traffic analysis. Moreover, it can be extended
to support new protocol standards and may improve detection performance by allowing
knowledge sharing between the nodes. It is implemented on routers using the OpenWRT
firmware [90]. Evaluation is done using 6 TelosB devices programmed in TinyOS [45].
Experimental results show that Kalis achieves 100% accuracy in detecting most of the attacks.
Thus, it has better detection performance than Snort [91] and other traditional IDS solutions.

Strainer-based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of Things
(SIEWE) is proposed by Patel and Jinwala [92] to detect blackhole attacks in RPL networks.
Blackhole attackers attract nodes by advertising a greater routing metric to neighbouring
nodes so it is selected as the preferred parent. SIEWE uses this fact and adds the nodes IDs in
a suspicious list. Then, smart devices which have suspicious nodes in their vicinity, analyze
the behaviour of these nodes and inform BR about their findings. Thus, SIEWE includes only
those nodes that have suspected nodes in their vicinity rather than requiring each node in
the network to process and check suspicious nodes. Evaluation results on Cooja simulator
indicate that SIEWE increases PDR of the network. A drawback of this approach is that only
RSSI is utilised as parent selection metric. Attackers could send with same signal power in
order to bypass detection mechanism.

Arshad et al. [93] propose the Collaborative Intrusion Detection for IoT (COLIDE)
for detecting DoS and botnet attacks. Their host-based IDS enables collaboration between
sensors and edge router to minimise energy consumption and improve detection performance.
In order to achieve that, they introduce a device-level and edge-router components. Devices
monitor traffic and run lightweight algorithms for detecting local attacks. Edge routers
receive traffic from IoT devices and determine if a malicious node exists or not in the
network. Moreover, smart devices need to join the network through one of the edge routers
to enable packet monitoring. Implementation and evaluation of the framework is done in
ContikiOS, showing effective and cost-effective collaboration. Although this solution seems
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promising, evaluation does not show the number of edge routers needed and its performance
in networks with more than 50 nodes.

A Le et al. [94] study the impact of RPL routing attacks in Cooja using ContikiOS. The
four studied attacks are rank, sinkhole, local repair, neighbour and DIS flooding attacks.
Results show that internal threats can degrade RPL network performance in many cases, by
reducing packet delivery ratio, increasing end-to-end delay or creating more control overhead.
Authors designed a mitigation method in [95] based on the results of their previous work [94].
A specification-based IDS is implemented and tested. The IDS uses a finite-state machine to
define the behaviour of RPL protocol and detect malicious activity. A benefit of using this
approach is that no additional control overhead is introduced in the network.

A Sink-Based Intrusion Detection System (SBIDS) is presented by Shafique et al. [85]
for detecting rank attacks in RPL networks. Authors use a rule-based approach to compare
node’s current rank with the node’s parent rank as well as the minimum rank of their siblings.
If a node advertises a greater rank than its parent, it is considered malicious. Evaluation of
the scheme showed that SBIDS achieves good detection performance of rank attacks.

SVELTE IDS is another interesting work in the field [96]. This is a anomaly- and
signature-based IDS, developed to prevent RPL-based routing attacks in IoT devices [4].
Some of the attacks considered include selective forwarding, sinkhole attack and spoofed
or altered information. Regarding node’s placement approach, SVELTE has a centralised
module, called 6LoWPAN Border Router (6BR), which carries out heavy calculations, and a
number of resource-restricted modules monitoring network devices. The 6BR consists of
three components. The first one is the 6LoWPAN Mapper, which gathers information from
sensors to regenerate the network. The second component is the detection system, which
uses the obtained information to detect possible intrusions. The third component is a mini
firewall that prevents the entry of malicious traffic into the network. In IoT devices, the first
and third components are integrated. Authors develop and evaluate SVELTE in ContikiOS.
Results indicate that SVELTE has a high True Positive (TP) rate but also some false alarms
during simulations. However, SVELTE shows high traffic overhead due to the reconstruction
of network initiated by the router.

Even though a few IoT-based IDSes have recently been developed, current solutions have
certain constraints. Kalis, for example, requires deployment of specific detection modules
per attack type. This could create a complex network resulting in poor detection performance.
Additionally, evaluation was done only with 6 real world devices. No results are available
for larger networks. SVELTE has also some limitations as it is a host-based IDS and thus,
sensor’s software must be modified. This, however, would be very challenging for larger
networks, which is a typical case in many IoT application domains. Another major issue is
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Table 2.3 Scientific works that study RPL attacks

Study Implementation Method Detected Attacks

SRPL-RP [83] RPL integrated with
threshold-based detection

Rank and version attacks

Secure-RPL (SRPL) [81] RPL integrated with
threshold-based detection

Rank attack

SecTrust-RPL [86] RPL integrated with trust
scheme

Rank and sybil attacks

Trust Anchor
Interconnection Loop

(TRAIL) [87]

RPL integrated with rank
authentication scheme

Rank and version attacks

Secure Parent Node
Selection Scheme [88]

RPL with integrated
threshold-based detection

Rank attack

Kalis [89] Signature/Anomaly-based
IDS

DoS attacks

SVELTE [96] Signature/Anomaly-based
IDS

Sinkhole, and selective
forwarding

Sink-Based Intrusion
Detection Systems

(SBIDS) [85]
Rule-based IDS Rank attack

Specification-based IDS
[95] Finite-state machine IDS

Rank, sinkhole, local
repair, neighbour and

DIS attacks
COLIDE [93] Host-based IDS DoS and botnet attacks
SIEWE [92] Anomaly-based IDS Blackhole

RPL-based IDS [82] Threshold-based IDS
Rank, selective

forwarding, wormhole
and DoS attacks

Our SRF-IoT RPL with trust scheme and
external IDS collaboration

Rank, blackhole, and
DIS attacks



38 Background and Literature Review

Table 2.4 Comparison of SRF-IoT features versus related works.
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SRPL-RP [83] ✓ - ✓ - ✓ - T - 20
SRPL [81] ✓ ✓ - - ✓ - T - 22

SecTrust-RPL [86] ✓ - - - - - A ✓ 30
TRAIL [87] ✓ - ✓ - - - T - 20

Secure Parent
Node Selection

Scheme [88]
✓ - - - - - T - 32

Kalis [89] - - - ✓ - E T - 6
SVELTE [96] - - - - - E A - 8/16/32
SBIDS [85] ✓ - - - - E T - 20

COLIDE [93] - - - ✓ - E A - 7
SIEWE [92] - ✓ - - - E A - Up to 50
RPL-based

IDS [82] ✓ - - ✓ - E T - 10/40/100

SRF-IoT ✓ ✓ ✓ ✓ ✓ S A ✓ 36/42/144
1 Type of IDS deployment. S: Separate RPL Instance, E: Embedded into existing devices.
2 Detection method. T: Threshold-based, A: Anomaly-based.
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that SVELTE has high false detection rate. This was proved by Matsunaga et al. [97] who
proposed a scheme to reduce false detection rate. However, further experiments are needed
to ensure that the solution is robust and scalable.

In conclusion, most of the suggested solutions are either IDS-based or protocol-based
utilising the features of RPL protocol. A new technologically enhanced method should
consider combining these two fields to achieve higher and better detection performance of
multiple attacks. Table 2.3 depicts scientific works that study and propose a mitigation method
for RPL attacks. As it is depicted, most studies implement an IDS solution or integrate the
IDS into RPL protocol for detecting various attacks. In this project, a collaboration between
RPL-based devices and IDS is achieved. Our aim is to identify and avoid routing as well
as other types of attacks by embedding trust concept into parent selection algorithm of
RPL protocol. This algorithm will allow nodes to securely select a parent. The trust-based
method works along with an external IDS that provides the monitored devices with useful
metrics. The aforementioned limitations have been taken into account during the design of
the proposed SRF-IoT scheme.

Table 2.4 compares existing solutions with the proposed SRF-IoT framework. As it is
shown, the different features supported by the related studies are compared. Specifically,
SRF-IoT framework is able to detect all the four routing attacks - rank, blackhole, version
number modification and DIS flooding - as well as a combination of them. Looking at the
IDS deployment feature, we refer with S to an IDS deployed in a Separate RPL Instance and
with E the IDS which is Embedded into existing devices. SRF-IoT framework is the only
solution that IDS is deployed in a separate RPL Instance. Another important feature is the
type of detection method. Usually, IDS systems detect attacks using a threshold-based (refer
with T) or an anomaly-based method (refer with A). Our framework uses a combination of
an anomaly-based IDS and a trust-based system to detect and isolate attackers. The total
number of deployed nodes during evaluation is another significant parameter. The maximum
number of simulated nodes in all the existing related works is 100 nodes. This number does
not include any additional IDS nodes. In the evaluation of SRF-IoT, a maximum of 144 nodes
are deployed excluding SRF-IDS detectors. It is the highest number of deployed nodes in a
network simulation.

2.9 Chapter Summary

The current chapter explains some useful concepts that help the reader understand the rest of
the thesis. The IoT reference model, the available OSes and simulators for IoT researchers
are presented. Then, routing protocols and current IoT-based attacks are explained in details.
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Some existing security solutions for IoT networks are discussed as well as machine learning
concepts are introduced to the reader. Current attacks and defence methods in IoT networks
are also presented. Existing suggested mitigation methods are divided into trust-based and
IDS-based. The main goal of this chapter is to give the reader some background information
for IoT networks, an overview of the current problems in those networks, and present the
state-of-the-art mitigation methods.



Chapter 3

IoT Routing Protocol Attacks

As the basic concepts and latest works are already discussed, the next step is to study the
impact of IoT-based attacks in the network. This chapter presents the design and implementa-
tion of IoT-based attacks in RPL protocol. Simulation results are also explained. Then, DIS
flooding attack is extensively studied in larger networks as it causes more impact. Evaluation
steps are described and a method of defence is defined.

3.1 Problem Statement

Nowadays, an increasing number of malicious actors target IoT devices to carry out large-
scale cyber-attacks. The reason for that is the limitations that IoT platforms have. Limited
processing power, capacity, and energy are some of the IoT constraints. Unfortunately, in
many cases the traditional solutions do not consider these limitations, and cannot protect
IoT networks effectively, leaving the devices unsecured. Apart from that, newly developed
protocols for IoT platforms introduce new vulnerabilities which can be exploited by malicious
actors. As already discussed in previous chapters, these attacks may disrupt IoT network
availability, confidentiality and integrity. In cases where smart networks are operating in
critical infrastructures such as Smart Grids, an attack may have severe impact in the infras-
tructure of the whole country. Therefore, solutions should be suggested to detect attacks and
prevent any future attacks in IoT devices.

Studying the impact of IoT attacks is the first step before designing and implementing
a defence method. As the focus of this work is on network layer, related attacks usually
target routing protocols. One of the most popular routing protocols for IoT devices is RPL.
Thus, a version of the RPL protocol is used in ContikiOS, an OS of real-world platforms, to
implement and check the actual impacts of these attacks.
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3.2 Battery Drain DoS Attacks

In this section, the details about designing and implementing RPL-specific DoS attacks
are presented. The goal is to study the impact of several attacks on each device and on
the whole network. After that, by launching attacks using various configuration parameters
and intensities, different detection methods can be implemented, tested, and enhanced.
Implementing and simulating RPL-based DoS attacks is a requirement to study the causes of
the attack to the network, and to achieve Contributions (a) and (b).

3.2.1 Design

As discussed in Chapter 2, RPL organises nodes along a DODAG [98]. The root node
initiates the creation of graphs by regularly generating DIO messages, which are advertised
via link-local multicasts. The “Hello” or DIS flooding attack in RPL occurs when a large
number of DIS messages are transmitted by malicious node to other nodes. This causes
the recipient nodes to reply by sending DIO messages. Consequently, network floods with
packets and node’s batteries are drained.

Similarly, in version number modification attack [55], the malicious node changes the
DODAG version number before forwarding the received DIO messages to the next hop. Nodes
receiving a malicious DIO message with the modified version number reset their trickle
timer, store the new version number in their memory and advertise it to their neighbours
via DIO messages. Note that root uses the version number to control the so-called “global
repairs” of the RPL network and to ensure that the latest routes are available to nodes in the
DODAG. Global repair is the repair mechanism that is initiated by the root to rebuild the
network. During this process, it increases the version number of RPL DODAG and the whole
DODAG is reconstructed. This method ensures a loop-free and optimised tree based on the
used objective function. Still, this makes the IoT nodes to perform useless computations
and waste their energy. Thus, modifying the version number will cause unnecessary global
rebuilds of the DODAG, create loops in the topology as well as exhaust the nodes.

3.2.2 Implementation

Two IoT-specific DoS attacks have been implemented in ContikiOS, namely version number
modification and DIS flooding (or “Hello” flooding) attacks. These attacks exploit the RPL
protocol’s features and affect the power consumption of IoT devices. Cooja provides an
implementation of the RPL protocol, called ContikiRPL [35].
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Algorithm 1 shows the DIS flooding attack implementation in ContikiRPL. Specifically,
the malicious node launches the attack by sending a batch of DIS packets to its neighbours.
This is implemented as a While loop which calls the dis_output(). The total_packets variable
defines the number of iterations. In this scenario, its value is 10. The dis_output() function,
called inside the loop, is responsible for building and transmitting DIS packets. Therefore, the
While loop calls the function 10 times to transmit 10 DIS packets. In this scenario, sending
just 10 DIS packets is enough to study and understand the effects of DIS flooding attack. In
future scenarios, this number is increased.

Algorithm 1 “Hello” or DIS flooding attack
1: int i← 0;
2: while i < total_packets do
3: i← i+1;
4: dis_output(NULL);
5: end while

Version number modification is also implemented in ContikiRPL. Algorithm 2 depicts the
code used to develop the attack. As shown, the function dio_output() which is responsible for
creating and sending DIO packets, is modified to increase the version number. The malicious
code is added in the function at a point where packet payload is prepared to be loaded into
packet buffer. Lines 2-6 is the initialisation of variables used in the specific function. Then,
in line 7 a buffer is created to insert packet payload. In line 10, DAG version is incremented
by one, and in line 11 the value is inserted into packet buffer. The version value is chosen to
be incremented by one because it only matters to have a different version number, and not a
specific value. Neighbouring nodes will receive a DIO packet with different version number
and this, will trigger global repair.

3.2.3 Scenarios and Topologies

Below are two scenarios, simulated in Cooja, which show the effects of the DoS attacks
mentioned above. Applications of the UDP client-server model are used on top of each node.
Seven Tmote Sky nodes [99] were simulated running ContikiOS. The network, depicted in
Fig. 3.1, consists of one server (root node with ID 1) and six client nodes with IDs from 2 to
7.

In the first scenario, no compromised nodes exist. Each node is configured to send
messages to the server at intervals. These messages contain various information about the
sending node, such as its battery indicator and temperature. In the second scenario, node 7 is
malicious/compromised and performs DoS attacks. Specially, node 7 has been configured to
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Algorithm 2 Version number modification attack

1: Function void dio_out put(rpl_instance∗ instance) : {Code added at the point where
payload is loaded into packet buffer}

2: unsigned char ∗bu f f er;
3: int pos;
4: int is_root;
5: rpl_dag ∗dag← instance.current_dag;
6: pos← 0;
7: bu f f er←UIP_ICMP_PAY LOAD;
8: bu f f er[pos]← instance.instance_id;
9: pos← pos+1;

10: dag.version← dag.version+1;
11: bu f f er[pos]← dag.version;
12: pos← pos+1;

transmit a big number of DIS messages to its neighbours. In addition, it changes the DODAG
version number so that global repairs are initiated.

3.2.4 Simulation Parameters

Cooja simulator [39] was used for testing and experimentation, which is becoming increas-
ingly popular among IoT researchers. It is also particularly suitable for experiments in
real-world, since the developed applications can be directly uploaded to real hardware. Cooja
can be used to simulate the behaviour of ContikiOS [33].

The node types and configuration used for each node is shown in Table 3.1. Server is
the receiver of all messages exchanged in the network. As a result, it is always powered on.
The Radio Duty Cycle (RDC) driver is responsible for saving as much as possible power for
the device. ContikiOS implements several RDC drivers, but the server uses NullRDC which
does not save power. The Medium Access Control (MAC) driver is responsible for reliably
transferring packets at the radio medium. If any collisions occur, it re-transmits the packets
until they are delivered. All nodes in our scenarios use the Carrier Sense Multiple Access
(CSMA) driver at the MAC layer to guarantee packet delivery. In contrast with benign and
malicious nodes, the server does not transmit DIS messages.

Benign nodes are sending data to the server. They are configured to send a DIS message
every 60 seconds until they successfully join the network. The malicious node broadcasts 80
DIS messages every second, thus launching the “Hello” or DIS flooding attack. Benign and
malicious nodes in this scenario are configured to use NullRDC as RDC driver and CSMA
as MAC driver. This setup will keep the devices always on.
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Fig. 3.1 Network topology of Cooja simulations

Various parameters can be configured in Cooja simulator. Firstly, the simulation time
in our experiments for each scenario is 10 minutes. Another feature provided by simulator
is mote startup delay. This parameters allow nodes to boot at random time and not all at
the same time. A startup delay of 1000 ms is configured by default in Cooja. An important
parameter is random seed. This value is chosen to be autogenerated by Cooja simulator during
the initialisation phase. Seed number affects nodes’ behaviour such as packet transmission
times.

Regarding radio medium, there are four propagation models in Cooja; constant loss
Unit Disk Graph Medium (UDGM), distance loss UDGM, Directed Graph Radio Medium
(DGRM), and Multipath Ray-tracer Medium (MRM), namely. Constant loss UDGM assumes
an optimal transmission range disk in which nodes inside the transmission disk capture
packets while those outside of it do not. Distance loss UDGM is the constant loss UDGM

Table 3.1 Node types and configuration

Node type Description Radio Duty
Cycle driver

DIS sending
interval

Server
Acts as a sink node. Receives messages
without doing any processing or
sending replies.

NullRDC N/A

Benign node
Uses RPL to create a mesh network
and sends data periodically to server.

ContikiMAC or
NullRDC 60 seconds

Malicious node
Uses RPL to broadcast DIS control
messages to neighbours (DIS attack).

ContikiMAC or
NullRDC 1 second
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version including radio interference. In that model, packets are sent with a probability of
“Success ratio TX” and received with a probability of “Success ratio RX”. The third model is
the Directed Graph Radio Medium (DGRM) in which user specifies RSSI and RX success
ratios for each link between motes. The last and most advanced model, MRM, calculates
receiver power using ray tracing methods such as the Friis formula. It also supports calculation
of diffractions, refractions and reflections along radio links.

Having in mind the above propagation models, we chose to use distance loss UDGM in
our Cooja simulations. The reason is that data loss caused by interference must be included
in our experiments because we will understand better the impact of attacks when interference
exist in simulation environment. Therefore, more realistic results will be exported. For the
experiments, simulator’s default transmission and interference range between nodes is 50m.
In our scenarios, we place nodes within the range of all other nodes.

3.2.5 Results

In the first scenario, the network topology is formed as shown in Fig. 3.2. The numbers
displayed on each link indicate the ETX. That is the expected number of transmissions that a
node needs to make to a destination in order to deliver a message successfully. For instance,
the ETX value of node 4 next to the server (node 1) is 8. In Fig. 3.2 we also note that node
7’s messages must be transmitted via nodes 3, 2 and 4 to get to the server. Note that node
7 is not malicious and runs the same code as all other nodes in this scenario. In Figure 3.3
the power consumption of each node is shown. Measurements have been gathered using the
PowerTracker tool in Cooja. As expected, all nodes are almost always on (average 99.87% of
the time) and have very low values of Radio TX and Radio RX. This is normal for small-sized
networks.

In the second scenario, nodes use the same RDC and MAC driver configuration as before.
Node 7 has, however, been modified to transmit 80 DIS messages and increase the DODAG
version number before transmitting the received DIO messages to the server. Changing the

Table 3.2 Simulation parameters

Parameter Value
Radio medium Unit Disk Graph Medium (UDGM): Distance Loss

Mote startup delay 1000 ms
Random seed Autogenerated

Range
Transmission range: 50 m
Interference range: 50 m

Duration 10 min
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Fig. 3.2 Scenario 1 (normal operation): Network topology

version number leads to global repair and the formation of two different DODAGs. Every
few minutes, global repair is triggered. As a result, the routes change quickly. The topology
of the network is therefore not stable and some nodes may be disconnected from the server
or other nodes. There is one such situation in Fig. 3.4, where at that particular moment
nodes 5 and 6 do not have a route to the server. The impact of the attack is demonstrated
in Fig. 3.5, which shows the measurements of power consumption. In adjacent nodes 3, 5,
and 6 the attack caused high Radio RX and for node 7 high Radio TX. As a result, both
malicious/compromised and neighbouring nodes are depleted with energy.

Fig. 3.3 Scenario 1 (normal operation): Power consumption measurements

In the previous scenarios, nodes used the same RDC and MAC drivers. However, using a
different RDC driver may produce different results. In ContikiOS, ContikiMAC is another
option for RDC driver. For this reason, the two scenarios were repeated using the ContikiMAC
RDC driver in benign and malicious nodes while keeping the same MAC driver. Starting with
the normal scenario, the nodes’ power consumption is shown in Fig. 3.6. As it is expected,
ContikiMAC enables sleep mode and this is clearly shown with the very low percentage
of the Radio On for all nodes except for the server. In addition, Radio TX is on average
0.45% which means that nodes sleep most of the time and send very few packets in the
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Fig. 3.4 Scenario 2 (attack): Network topology

network. Radio RX is even lower on average than Radio TX because packets have mostly as
destination the server. The corresponding network topology is shown in Fig. 3.7. As it can be
seen, all nodes communicate with the server by using their next hop.

Fig. 3.5 Scenario 2 (attack): Power consumption measurements

Fig. 3.6 Scenario 1 using ContikiMAC : Power consumption measurements

Using the same nodes’ configuration, the second scenario with a malicious node was
repeated. In this case, the power consumption of nodes is affected by the malicious node
as shown in Fig. 3.8. Although nodes should be sleeping most of the time, they are ON for
50% of the time, including the server. The difference with the normal scenario is about 35%,
which is significant. The reason for this behaviour is because the malicious node 7 broadcasts
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Fig. 3.7 Scenario 1 using ContikiMAC : Network Topology

DIS messages requiring a DIO reply from its neighbours. This is also the reason why nodes 3,
5 and 6 have the highest Radio RX percentage in comparison with other nodes. These nodes
are closer to node 7 and are more affected than the others. Furthermore, node 7 transmits all
the time and thus it has the highest percentage of Radio TX. Looking at the network topology
in Fig. 3.9, we can see that some links have unusually high ETX values. The reason for that
are the global repairs, which are initiated and assign different ETX values to links. Nodes
located near the malicious node have worse ETX value in their links in comparison with
other nodes. Moreover, the malicious node is not shown in the presented network topology
because it never joins the DODAG and, therefore, no information is sent to the server.

Fig. 3.8 Scenario 2 using ContikiMAC : Power consumption measurements

Fig. 3.9 Scenario 2 using ContikiMAC : Network Topology
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3.3 Flooding Attack in Large Networks

The current section provides an extensive study of DIS flooding attack using different
parameters and calculating more metrics to achieve Contributions (a) and (b). Specifically,
further simulations were made for “Hello” or DIS flooding attack. Scenarios with larger
networks were simulated to extract useful results. Later, exported results are analysed and
SRF-IDS algorithms are implemented to combat the IoT-specific attack.

3.3.1 Design

The goal of these simulations is to examine RPL-specific DoS attacks and export some useful
metrics that will help us design and implement mitigation algorithms. To this end, a detector
or sniffer node was designed to capture traffic exchanged in the network and store some
useful metrics for further investigation.

Detector operates in promiscuous mode to gather packets and calculates metrics every 5
seconds. Once a UDP packet or RPL control packet such as DIS, DIO, or DAO is captured,
detector stores node IP, number of packets captured, packet type, and packet interval. Then,
every 5 seconds, collected data are aggregated and printed in the console by detector, to allow
further processing. Data aggregation was configured at 5 seconds interval to allow us easily
inspect the differences in measurements before and after the launch of attack.

“Hello” or DIS flooding attack is configured as in the previous section. In this scenario,
ten DIS packets are transmitted by malicious nodes per second. Storing information in
detector such as packet interval, and the number of packets captured, will allow us to export
useful results. For example, when a network is under “Hello” or DIS flooding attack, we
expect a large number of packets to be exchanged, and high packet interval from malicious
nodes. Therefore, statistics provided by detector will help us define the behaviour that nodes
should have in normal and malicious scenarios.

3.3.2 Implementation

Attack implementation is discussed in this section. As “Hello” or DIS flooding attack is
studied in this section, implementation of the attack is the same as illustrated in the previous
Subsection 3.2.2. Malicious nodes are configured to send 10 DIS packets per second. The
development of detector required a structure to store important information of neighbouring
nodes. The structure implemented in detector for storing neighbour’s metrics is depicted in
Algorithm 3. As shown, detector creates a structure in memory for each node to store the IP
address of neighbour node, a counter for DIS packets received, a counter for DIO/DAO/UDP
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packets received, the type of last message type, packet intervals and timestamp of last received
packet of neighbour node. This information is kept until the end of simulation time.

Algorithm 3 Neighbour structure stored in detector

1: struct neighbour{
2: int address;
3: int counterMsg;
4: int counterDIS;
5: int msgtype;
6: unsigned long intervals;
7: unsigned long timestamp;
8: };

After collecting the measurements, detector has to calculate metrics using the Algorithm
4. The function Calculate_Metrics() is called by detector to process metrics. Specifically, it
starts by iterating over the list of neighbours and checks the statistics of each node. Root node
is excluded from calculations as it only receives packets. Each metric, such as packet interval
and counters for DIS and other messages, are updated with the latest value. Several checks
are made to ensure that values are correctly collected and aggregated. After aggregating
metrics, if the aggregated value of metric is above zero, the average value of it is calculated.
At the end of the algorithm, the average value of each metric is printed in the console. Later,
results will be analysed based on these values.

3.3.3 Scenarios and Topologies

Below, we demonstrate two main scenarios, normal and malicious, simulated in Cooja.
One of the goals is to examine the behaviour of sensors in an environment without a
malicious/compromised node. In addition, this behaviour is compared to a scenario where one
or more nodes are compromised. The obtained results have been used to design and implement
a detector for identifying malicious nodes and stopping DoS attacks. The application used in
IoT nodes/sensors is based on the UDP client-server model. The hardware used for each node
is Zolertia Z1 [100] running ContikiOS. In the normal scenario, each node regularly sends
messages to the root node. These messages contain various information about the sending
node, such as node ID and battery indicator. In the malicious scenario, one or more nodes are
malicious/compromised and have been modified to launch “Hello” or DIS flooding attack in
which a large number of DIS messages are sent to their neighbours. This causes IoT nodes to
perform unnecessary computations and consume energy.
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Algorithm 4 Calculation of metrics
1: Input: Neighbours array
2: Output: Average value of packet interval, DIS and other RPL messages.
3: Function Calculate_Metrics() :
4: for each node in Neighbours do
5: if node.address ̸= 1 then
6: if node.intervals ̸= 999 then
7: total_interval← node.intervals+ total_interval;
8: c_int← c_int +1;
9: end if

10: if node.counterDIS ̸= 0 then
11: total_dis← node.counterDIS+ total_dis;
12: c_dis← c_dis+1;
13: end if
14: if node.counterMsg ̸= 0 then
15: total_othermsg← node.counterMsg+ total_othermsg;
16: c_othermsg← c_othermsg+1;
17: end if
18: end if
19: end for
20: if c_int ̸= 0 then
21: AV G_T IME = total_interval/c_int;
22: end if
23: if c_dis ̸= 0 then
24: AV G_DIS = total_dis/c_dis;
25: end if
26: if c_othermsg ̸= 0 then
27: AV G_MSG = total_othermsg/c_othermsg;
28: end if
29: print (AVG_TIME, AVG_DIS, AVG_MSG)
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Each scenario uses a variable number of nodes. Table 3.1 describes most of node types
used in the experiments, while Table 3.3 below describes the configuration of the additional
Detector node. This node is configured to sniff network traffic from neighbouring nodes to
detect malicious nodes. Moreover, it is able to store information about packets exchanged
and packet intervals of each neighbour. As RDC driver, the NullRDC driver was used to have
always ON the node and monitor the network.

The number of nodes used in each scenario is depicted in Table 3.4. As it is indicated,
malicious motes are used only in the malicious scenario, while other nodes are used in
both scenarios. Specifically, in the normal scenario, we have one server, one detector, and a
varying number (2 to 8) of benign nodes. In the malicious scenario, we have one server, one
detector, and a varying number of benign (2 to 7) and malicious (1 to 6) nodes.

Concerning benign motes, three different cases were created. In the first case, one
malicious mote was used in each scenario while the number of benign motes varies. In the
second case, 3 benign motes were deployed while malicious motes range from 1 to 6. In the
third case, benign motes are fixed to 4 while again malicious motes vary from 1 to 6. The
total number of nodes for each scenario is shown in the last column of the table. Overall, we
performed 7 and 6 simulations for the normal and malicious scenarios, respectively. Each
simulation was repeated 25 times. In this way, a large sample is gathered for analysis.

The topology used in simulations is depicted in Figure 3.10. All scenarios use mesh
topology. The normal scenario in the shown topology consists of three client nodes with
IDs from 2 to 4, one detector with ID 5, and one server/root node with ID 1. A simple
malicious scenario is very similar to the normal one, with the exception that one benign node
is converted into a malicious one. Thus, two benign and one malicious node exist in the
malicious scenario. Nodes use RPL for multi-hop routing in order to build a single-parent
routing tree on top of the mesh. However, in both scenarios each node is placed within the
transmission range of other nodes so that packets are delivered directly to the destination.
Figure 3.10 has a “10m background grid”. This is useful because it displays a grid of 100 m2

squares in the background. The distance between benign nodes in both scenarios is 10m. In
the normal scenario, each node sends 1 DIS message per minute. This is the default sending
rate implemented in ContikiOS and was also used by Le et al. [95]. In contrast, the malicious
scenario has a malicious node which sends 10 DIS messages per second.

3.3.4 Simulation Parameters and Metrics

The configuration used in our simulations is the default of ContikiOS. Specifically, RPL
is configured in storing mode, using Minimum Rank with Hysteresis Objective Function
(MRHOF) as OF and ETX as metric. Simulation duration is set to 25 minutes and each
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Table 3.3 Additional node type

Node type Description Radio Duty
Cycle driver

DIS sending
interval

Detector

Sniffs traffic from neighbours in order
to detect malicious nodes. Stores
information about other nodes
(messages exchanged, packet interval).

NullRDC N/A

Table 3.4 Number of node types in each scenario

Servers Benign nodes Malicious nodes Detectors Total
Normal
scenario 1 2 to 8 - 1 4 to 10

Malicious
scenario 1

First case: 2 to 7
Second case: 3
Third case: 4

First case: 1
Second case: 1 to 6
Third case: 1 to 6

1
First case: 5 to 10
Second case: 6 to 11
Third case: 7 to 12

scenario is repeated 25 times. By repeating scenarios we get more accurate results and a
large sample for analysis. Apart from duration and number of repetitions, the rest simulation
parameters were kept the same as in Table 3.2.

In our scenarios, we place nodes within the range of all other nodes. Detector is in
promiscuous mode to gather packets and checks the network every 5 seconds. This means
that the total number of checks is 300 over the whole duration of each simulation.

Various metrics, described below, were utilised to understand the characteristics of a
normal sensor network. These metrics represent the average numbers taken from each
simulation over 25 repetitions. IDS root or server is not included in the calculations because
it receives packets only. The metrics and the equations used for each one are explained below:

• Mean packet interval: Indicates how often on average a node sends a packet, measured
in seconds.

• Mean number of DIS messages: Indicates the number of DIS messages sent by a node
on average.

• Mean number of other messages: Indicates the number of other messages sent by
a node on average, apart from DIS messages. These could be DIO, DAO, or UDP
messages.

Below we provide the equations for the aforementioned metrics. The mean packet interval,
E[Ipkt ], is measured in seconds and is given by:

E[Ipkt ] =
∑

m
i=1 ∑

n
j=1

pi j
n

m · r
(3.1)
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(a) Normal scenario (b) Malicious scenario

Fig. 3.10 Network topology used in simulations. Colours for node types: green = server,
orange = benign node, purple= malicious node, yellow = detector.

where: i is the i-th IDS code execution, m is the total number of IDS code executions, j
is the j-th neighbour, n is the total number of neighbours, pi j is the packet interval of j-th
neighbour at the i-th IDS code execution, and r is the total number of repetitions of each
simulation scenario.

The mean number of DIS messages, E[Ndis], is given by:

E[Ndis] =
∑

r
k=1 ∑

m
i=1 dki

r
(3.2)

where: k is the repetition number, and dki is the number of DIS messages detected during i-th
IDS code execution in the k-th repetition.

The mean number of other node’s messages, E[Nother], is given by:

E[Nother] =
∑

r
k=1 ∑

m
i=1 oki

r
(3.3)

where: oki is the number of other messages detected during i-th measurement in the k-th
repetition.

3.3.5 Results

In this section, we present the simulation results. Measurements were taken from the detector
which was in promiscuous mode and recorded packet intervals, DIS and other messages
(DIO, DAO, UDP) exchanged by network nodes. We reference to the first case of malicious
scenario with one malicious and 2 to 7 benign motes, the second case with 3 benign and 1 to
6 malicious motes, and the third case with 4 fixed benign motes and 1 to 6 malicious motes.
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Starting with the Mean packet interval metric, in normal scenarios (4 to 10 nodes) the
mean interval is 63.67 seconds. On the other hand, the first case of malicious scenario (5
to 10 nodes), the mean interval is 3.34. This big difference in packet interval is due to the
malicious node. This node sends DIS packet every second making other nodes to respond
and thus, reducing the packet interval of the simulation. Packet interval of second and third
cases of malicious scenario is depicted in Figure 3.11. The given graph outlines the trend
of both simulated cases. Both start with a mean interval of about 3 seconds having one
malicious node in the network. Then, as the number of malicious nodes increases, the interval
drops below 2 seconds. This happens because more and more malicious nodes send packets
frequently, reducing the overall packet interval.

Fig. 3.11 Mean packet interval in malicious scenario (cases 2 and 3)

Examining the Mean number of DIS messages, several conclusions can be drawn. First
of all, we found that in normal scenarios with one and two benign nodes we have an average
of 1 DIS message. Increasing the number of benign nodes leads to the increase of the mean
number of detected DIS messages up to 3.5 messages (i.e., some nodes send 3 or 4 DIS
messages). This is expected because nodes are configured to send 1 DIS message every
60 secs in case they do not find a parent. Therefore, as the number of nodes increases, the
chances a node needs to send a DIS message also increases.

On the other hand, the number of DIS messages in the malicious scenario (cases 1-3) is
rocketed as shown in Figure 3.12. The first case is depicted in Figure 3.12a while cases 2
and 3 are shown in Figure 3.12b. Looking at Figure 3.12a (1st case), it starts from almost
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(a) Malicious scenario (case 1)

(b) Malicious scenario (cases 2 and 3)

Fig. 3.12 Mean number of DIS messages
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3,000 messages and gradually falls to 2,850 while the number of benign nodes rises. The
lines of second and third cases as shown in Figure 3.12b upsurge dramatically as the number
of compromised nodes goes up. Specifically, they start from 3,000 and climb up to almost
14,000 messages. Considering that one malicious node sends 10 DIS messages per second,
this means that 15,000 DIS messages are sent during 25 minutes of simulation. As a result,
the detector cannot process this number of packets but it detects a reasonable number which
can be used later to detect the malicious node.

Another useful metric is the Mean number of other messages. The results presented in
Figure 3.13 are the average number of DIO, DAO and UDP messages in each simulation.
According to Figure 3.13a, the normal scenario starts with a very low number of DIO and
DAO messages, while UDP messages constitute the minority. This is an expected behaviour
because nodes setup the network without any interference from malicious node and send
UDP packets to the root. The average number of messages rise up to 269 at the scenario with
8 normal nodes. Thus, the more the nodes, the more messages are exchanged.

On the other hand, there is a significant rise in the number of other messages in the case
with one malicious node as depicted in Figure 3.13b. The same trend is followed by the rest
two cases of the malicious scenario as shown in Figure 3.13c. This is because malicious
nodes send a large number of DIS messages. This can also be confirmed from the chart,
where the DIO messages constitute the majority of the exchanged messages. Note that DIO
messages are sent as a response to DIS messages originated from the malicious node. This
demonstrates that a malicious node can degrade network performance and affect the operation
of benign nodes.

3.4 Traffic and Resource-based Attacks

In previous sections, the impact of IoT-specific DoS attack, namely DIS flooding, was exten-
sively studied. DoS attack is based on the RPL routing protocol and affects the availability
of the network. In this section, attacks affecting the traffic and resources of IoT devices are
examined. Specifically, a combination of rank and blackhole attacks is implemented in the
newer version of ContikiOS, called Contiki-NG. Moreover, measurements are gathered from
simple log collectors, called IDS detectors. Those detectors are configured to operate in
separate RPL Instance which has a separate root node, called IDS root, from Border Router
(BR). The current section is related to Contribution (b).
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(a) Normal scenario

(b) Malicious scenario with 1 malicious node (case 1)

(c) Malicious scenario with 3 and 4 benign nodes (cases 2 and 3)

Fig. 3.13 Mean number of other messages (UDP, DAO, DIO)
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3.4.1 Design

Apart from DoS attacks, we wanted to explore other IoT-based attacks. Rank attack is an
example of attack impacting the packets exchanged in IoT networks. According to [24],
in rank attack usually a malicious node may intentionally advertise a lower rank in order
to attract neighbouring devices to select it as preferred parent. A parent node is needed in
order to form the DODAG network and allow creation of routes reaching BR. In cases where
networks are small, the best parent is the BR itself. In other cases, metrics such as rank and
ETX are used to select the best parent. If a malicious node is chosen as the best parent of
several nodes, it can attack the network affecting its availability and integrity. As a result, the
malicious node will be the single point of failure of the network. Another severe attack is
Blackhole. A blackhole attacker can degrade the performance of the IoT network by dropping
all incoming packets. As a result, no packets are forwarded from this node.

Both attacks can cause severe problems to networks. For this reason, a combination of
blackhole and rank attacks is implemented and tested in our experiments. They are combined
to achieve the highest impact in the network by attracting neighbouring nodes and dropping
all packets. Specifically, malicious node launches rank attack after 2 minutes of simulation
by sending DIO packets advertising a fake low rank. Then, nodes will exchange control
packets and will select the malicious node as the best parent. Once parent is chosen, nodes
will start transmitting packets to BR through the attacker. However, all packets arriving to the
malicious device and need to be forwarded, will be dropped. This is the general idea of how
blackhole and rank attacks achieve network disruption. Attack is launched after 2 minutes to
allow nodes form the network. A special node, called udp-client-malicious, is configured to
execute these attacks in simulated scenarios.

The attacks are implemented in RPL-lite protocol which is supported by Contiki-NG.
RPL-lite protocol is a lightweight version of RPL protocol which removes some features so
that memory footprint is minimised. The transition of the project to the newer Contiki-NG
version was decided due to several factors explained in the next chapters.

3.4.2 Implementation

The implementation of rank attack is presented in Algorithm 5. As can be seen, the malicious
code is implemented inside the rpl_icmp6_dio_output function. This function is called when
DIO packet will be sent. After the packet is created, attacker advertises fake rank with value
129. The minimum default rank is 128 and it is assigned to root. Therefore, nodes will
consider attacker as a good parent to route their packets.
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Algorithm 5 Rank attack implementation
1: Input: IP address of neighbour
2: Function rpl_icmp6_dio_out put(ip_address) :
3: dio_packet← create_dio_packet(ip_address);
4: dio_packet.dag_rank← 129;
5: Send packet

Algorithm 6 shows blackhole attack implementation in Contiki-NG. All incoming packets
are dropped only if need to be forwarded, and after 2 minutes of simulation are passed.
The code is implemented inside an existing function of Contiki-NG source code called
uip_process. The function is called when a new packet arrived to the node.

Algorithm 6 Blackhole attack implementation
1: Input: Packet Pkti j
2: Function uip_process(Pkti j) :
3: next_hop← Pkti j.next_hop;
4: time_attack← 2;
5: if next_hop ̸= NULL and current_time≥ time_attack then
6: drop packet
7: end if

3.4.3 Scenarios

Two main scenarios were examined; normal and malicious. Nodes in normal scenario are
operating normally and no malicious attackers exist. Malicious scenario has one or more
attackers. This scenario is studied to understand the impact that rank and blackhole attacks
have in devices and network as a whole. Devices in both scenarios are using the default
MRHOF as OF to choose a parent.

There are 5 types of nodes in the scenarios; BR, IDS root, benign nodes, malicious nodes
and IDS detectors. BR and IDS Root form the two different networks, and play the role
of sink for both networks. IDS nodes have different RPL InstanceID than other nodes. In
addition, benign and malicious nodes are configured to join the network and start sending
UDP packets to BR once DODAG network is formed. However, malicious nodes start
attacking the network after 2 minutes.

Benign nodes are 30 in both scenarios while malicious nodes are 6 in the malicious
scenarios. A varying number of IDS detectors is deployed in the network to study and find
the optimised number of detectors to avoid the attackers. However, IDS nodes are deployed
in all scenarios only for capturing traffic and calculating metrics.
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3.4.4 Simulation Parameters and Metrics

The metrics used for studying the impact of the mentioned attacks are the following:

• Mean Packet Delivery Ratio (PDR): Indicates the ratio of the total number of unicast
packets received by BR up to the total number of unicast packets generated by all
benign and malicious nodes. It does not include UDP re-transmitted packets.

• Mean Parent Switch: Shows the number of parent switches that benign and malicious
nodes do during the simulation. A parent switch happens to select a better route to the
BR. Changing parent results to changing the rank of a node.

• Mean Packets Dropped: Percentage of packets dropped by the attackers during the
simulation. Malicious nodes drop all types of packets that should be forwarded to next
hop.

Below, the mathematical definitions for the metrics are provided. Let Sr be the packet
delivery ratio for repetition r. It is calculated by:

Sr =
Rcvd

∑
n
k=1 Pk

(3.4)

where Rcvd is the total number of packets received at BR, k is the k-th node, n is the total
number of nodes, and TPk is the total number of packets sent from node k. The Mean Packet
Delivery Ratio (PDR), E[DRpkt], is given by:

E[DRpkt] =
∑

m
r=1 Sr

m
(3.5)

where r is the r-th repetition, and m is the total number of repetitions for each simulation.
The Mean Parent Switch, E[PS], is given by:

PSr =
n

∑
k=1

Pk (3.6)

E[PS] =
∑

m
r=1 PSr

m
(3.7)

where Pk the parent switch of node k, PSr the sum of parent switches for repetition r, and
r the number of repetitions for each simulation.

The Mean Packets Dropped, E[Dpkt], is given by:

Dr =
Dropr

∑
n
k=1 TAk

(3.8)
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E[Dpkt] =
∑

m
r=1 Dr

m
(3.9)

where Dropr the total packets dropped in repetition r, TAk the total number of packets
transmitted from node k including multicast and unicast packets, Dr the percentage of packets
dropped in repetition r, and m the number of repetitions for each simulation.

Table 3.5 Simulation configurations

Parameter Value
Grid size 70x70
Topology Random

Simulation time 60 minutes
Seed number Random in each execution

Max MAC packet retries 3
Max buffered packets in MAC layer 20

Operating System Contiki-NG 4.4
Simulator Whitefield simulator

Configuring simulations was done using the Whitefield’s framework configuration file.
The file allows user to define several options. The options used are shown in Table 3.5. The
grid size is 70x70 while topology is random in each execution. Simulations run for 60 minutes.
Malicious scenarios are repeated 4 times while normal scenarios are repeated 10 times. IDS
detectors are used only to capture traffic and calculate metrics using the measurements taken.
Using more IDS detectors allow us to collect large sample for analysis. A parameter playing a
significant role in simulations is seed number. It affects the behaviour of the nodes regarding
processing and packet transmission times. Therefore, we use random seed in each repetition
so that Whitefield simulator produces random results in each run. Nodes are configured by
default to retry MAC packets up to 3 times while the maximum number of packets waiting in
the buffer in MAC layer is 20. As already mention in previous sections, Whitefield framework
combines the NS-3 simulator for running the actual simulations and uses Contiki-NG to
emulate the behaviour of a real world OS.

3.4.5 Results

The maximum values of mean PDR is shown in Figure 3.14. Normal scenarios have a
maximum averaged value of almost 95% while in BHR scenario this percentage drops almost
by 14%. As indicated, there is a standard error of 10% in each scenario. The difference
between the two scenarios shows that blackhole and rank attackers can actually degrade the
performance of the network.
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Fig. 3.14 Comparison of maximum values of Mean PDR for BHR and Normal scenarios

Figure 3.15 compares the maximum value of Mean Parent Switch of two cases; Normal
and BHR namely. Normal scenarios have maximum only 32 parent switches on average,
while attacking the network causes over 600 parent changes. Parent switch is vital as the
node basically chooses the best route to root. Having such as big difference in the two
scenarios means that malicious actors successfully attacked the network using rank and
blackhole attacks with great impact. The impact is translated into large energy consumption,
and increased traffic overhead.

The Mean Packets Dropped obtained by simulating the BHR scenario in various cases are
depicted in Figure 3.16. The bar chart shows only the results from deploying an even number
of IDS detectors. IDS detectors operate in passive mode for gathering data. Their operation
mode remains the same in all scenarios. As indicated, there are some scenarios where more
than 40% of the packets on average are dropped due to the attacks launched in the network.
This percentage gradually declines as more IDS detectors are deployed, reaching almost
34%. Therefore, blackhole and rank attackers may largely affect the network operation by
dropping almost 42% of packets sent in some cases.

3.5 Chapter Summary

In this chapter, the impact of IoT-based attacks was studied using several simulations. DoS
and other routing attacks were designed and implemented in RPL protocol of ContikiOS.
DoS attackers were simulated in small and larger network using various configurations.



3.5 Chapter Summary 65

Fig. 3.15 Comparison of maximum values of Mean Parent Switch

Fig. 3.16 Mean Packets Dropped for BHR scenario

Results showed that energy consumption increased in IoT devices. Moreover, packet sent
interval and other related statistics were studied to understand the impact of RPL-specific
DoS attack. Regarding other routing attacks, rank and blackhole attacks were implemented
in Contiki-NG. Simulation results showed a degraded performance of IoT network with
increased packet dropped and reduced PDR.



Chapter 4

Security Framework for IoT-based
Devices (SRF-IoT) Overview

The current chapter presents the design and implementation details of Security Framework
for IoT-based Devices (SRF-IoT). Firstly, the operational details such as trust calculations
and various components of the scheme are described. Then, each component of the SRF-IoT
framework is presented. The external Anomaly-based SRF-IDS is introduced and described
in detail. Additionally, the implementation steps followed to link SRF-IDS communication
component with SRF-OF are described. Apart from that, the implementation of SRF-IDS
detection module in both ContikiOS and Contiki-NG is described. Simulation details and
evaluation results are depicted. Last, the processes executed by SRF-IoT framework are
presented.

4.1 Operation Overview

SRF-IoT is a Security Framework designed for IoT RPL-based networks. It aims to support
the security of an IoT network by identifying and avoiding malicious devices. This is
achieved by embedding trust in RPL protocol for choosing the most trusted node as parent.
Additionally, an external IDS, called SRF-IDS, is used to shield the network from internal
attackers. SRF-IDS is presented in detail in Section 4.3. DIS flooding can be detected by
SRF-IDS. SRF-IoT framework is proposed as an extra security measure for RPL-based
networks. The combination of rank and blackhole attacks are mostly considered as those
attacks could severely disrupt network operation [78].
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4.1.1 Trust Concept

In IoT networks, smart devices provide services to their peer connected devices. Evaluating
the reliability of a device would enhance networks’ security and performance [48],[101].
Bearing this in mind, trust is used in our proposed solution to form a secure network by
avoiding malicious actors. According to [102], trust in wireless networks may be defined
as a degree of belief to forecast a node’s forthcoming actions which depend on its previous
experience and information gained from device’s behaviour. SRF-IoT uses trust concept to
evaluate the reliability of deployed nodes.

Trust value is calculated as the number of successfully forwarded packets between
the node and its neighbours for at least 5 seconds. As discussed in other trust systems
[86, 87, 79, 103], there are two types of trusts; direct and recommended trust. Direct trust is
calculated by the node after monitoring its direct neighbour’s packet forwarding behaviour
[86]. On the other hand, recommended trust can be seen as a recommendation from a third
party node. Basically, recommended trust is the trust value given by a third node that is 2-hops
away and it recommends its direct neighbour to other nodes. However, recommended values
cannot always be trusted, and a third-party node might provide with wrong information.
Therefore, only selected nodes can be used to provide nodes with trust recommendations.

In our work, we use direct trust for securing the RPL protocol. Each node computes
the trust value of its direct neighbours based on the information received from an SRF-IDS
detector. There is a trade-off between active network monitoring and saving energy in the
sense that smart devices have limited energy resources and cannot monitor network for long
time periods to detect attackers. The advantage of our approach is that monitored nodes do
not waste energy on monitoring neighbours. The SRF-IDS is used as an information collector
entity. Resulting trust value is used by each node to select the most trusted parent. Devices
with high trust value are selected as parents while those with lower trust values are avoided.
Nodes which fall below a trust threshold are blacklisted. The main goal is to secure the
network by: i) selecting a path in the network to send packets where nodes have high trust
score, and ii) avoid malicious nodes or nodes with low trust score. The proposed framework
consists of four procedures: gathering information from SRF-IDS, calculating trust, assessing
trust, and identifying malicious nodes.

Trust is utilised in this work to improve the RPL routing protocol. Although some security
mechanisms exist in RPL, attacks such as blackhole and rank attack may occur in a real-world
IoT network. Embedding trust in RPL will enable devices to learn their neighbours and
choose the best parent based on this value. This knowledge is gained through IDS, which
processes sniffed packets and sends various metrics to monitored smart devices. In the
monitored network, IoT devices get the data from SRF-IDS, and based on some algorithms



68 Security Framework for IoT-based Devices (SRF-IoT) Overview

they calculate the trust value. More weight is applied on the current behaviour of a node
than its history. This is to avoid cases where a malicious node has a high trust value initially,
and then starts to attack others. Ranking and selecting neighbouring nodes based on their
latest trust value helps to avoid malicious actors. Therefore, trust and SRF-IDS concepts are
utilised as a method of defence to detect and avoid these attacks.

4.1.2 Architecture Components

A high-level architecture of SRF-IoT framework is presented in Figure 4.1. On the left
side, the external IDS, called SRF-IDS, is shown along with the internal components. SRF-
IDS is responsible for packet sniffing, monitoring the behaviour of nodes, and updating
monitored nodes with trust metrics. The transfer of trust metrics from SRF-IDS to monitored
nodes is done by transmitting special control packets. These three procedures belong to the
TM module which is embedded into SRF-IDS detectors. Moreover, SRF-IDS root has an
embedded detection module for detecting attacks such as DIS flooding. A traditional firewall
is also used to block external attackers. On the right side, the basic functionality of SRF-OF
which is embedded into monitored nodes is represented. Basically, a monitored node receives
trust metrics from SRF-IDS. Then, it calculates the new trust values, and updates the blacklist
with suspicious nodes. The parent selection algorithm is based on the calculated trust value
of the specified node.

Fig. 4.1 SRF-IoT Framework high level architecture
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4.2 Components

In this section, the two main components of SRF-IoT framework are discussed in more detail.
The external SRF-IDS is the first component that helps the system to capture and analyse
traffic, while the SRF-OF is the second component which is embedded into the routing
protocol.

4.2.1 External Security Framework Anomaly-based Intrusion Detec-
tion System (SRF-IDS)

A main component of SRF-IoT scheme is the external Anomaly-based Intrusion Detection
System (SRF-IDS). It consists of two types of devices; SRF-IDS root and SRF-IDS detectors.
SRF-IDS root is actually a router responsible to take final decisions about malicious nodes,
while SRF-IDS detectors are sensor devices operating in promiscuous mode to gather infor-
mation from monitored network. SRF-IDS detectors are usually deployed near TX range of
monitored nodes to allow packet sniffing. Each device type contains several internal modules
such as communication, detection, decision and other modules. These modules are described
extensively in the next section. SRF-IDS has detection mechanisms for IoT-based DoS
attacks as well as topology and resource-based attacks such as rank and blackhole attacks.
The former attack can be identified by SRF-IDS without any intelligence from monitored
nodes. However, the latter attack can be detected only after gathering information such as the
number of packets forwarded from monitored nodes.

One of the features of SRF-IDS is its ability to operate independently in a different
RPL Instance without interfering with the monitored network. This is achieved by using a
unique RPL InstanceID in packets, only for SRF-IDS nodes. In addition, SRF-IDS has the
possibility to communicate with monitored network to update nodes with trust metrics. This
is achieved by implementing a packet parser in benign devices to export trust metrics, and
configuring the proper RPL InstanceID in packet header. Consequently, SRF-IDS network
and monitored network operate in different RPL Instances, while SRF-IDS nodes can send
packets to monitored nodes.

Moreover, SRF-IDS root’ decision module identifies malicious nodes both in a centralised
and distributed way. A centralised decision is taken for DoS attacks as the SRF-IDS root needs
to collect reports from several SRF-IDS detectors, analyses data and takes a decision. In case
of topology attacks such as rank and blackhole attacks, SRF-IDS detectors act individually,
and report to SRF-IDS root suspicious nodes for further actions. Actual detection of rank and
blackhole attackers happens by benign nodes and not SRF-IDS detectors. SRF-IDS detectors
in this case work as a source of intelligence for monitored network’ nodes.
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As a last security measure, our proposed SRF-IDS is designed to support a host-based
firewall to block malicious IPs in SRF-IDS root. Firewall rules are created by SRF-IDS root
once a malicious node is reported by SRF-IDS detectors. Attackers are blacklisted to stop
their communication to external networks. As our focus is on designing and developing the
SRF-IoT framework, the firewall module is not in the scope of this project. Therefore, reader
can deploy any typical firewall to block network traffic of malicious attackers.

4.2.2 Security Framework Objective Function (SRF-OF)

The second component of the SRF-IoT framework is the SRF-OF which uses trust concept,
and operates independently in each monitored node. It was designed to accomplish three
tasks: 1) gather intelligence about candidate parents from SRF-IDS, 2) evaluate candidate
parents by calculating trust value for each of them based on the information received, 3)
choose the most trusted node as the preferred parent of a node. All those operations are
required to protect IoT networks from attacks such as blackhole, rank and other types of
routing attacks. In other words, monitored nodes will receive information from SRF-IDS
about the packet forwarding behaviour of their neighbours. This metric will allow them to
calculate a neighbour’s trust and select the parent node with the highest trust value. The higher
the value, the more trustful it is. If all monitored nodes perform this procedure, nodes will
avoid blackhole and rank attackers as those drop incoming packets, and network will be more
secure. SRF-OF was implemented as an OF which can be executed by any node deployed in
the network. For this reason, SRF-OF is implemented as part of the routing protocol. In our
project, SRF-OF is embedded into RPL protocol so that it can be evaluated using simulations
with ContikiOS. Furthermore, SRF-OF was designed and implemented based on Minimum
Rank with Hysteresis Objective Function (MRHOF) except the implementation of selecting
the node’s best parent.

As the trust value is based on packet forwarding behaviour of a node, designing SRF-
OF required some important decisions. The first and most important issues that had to be
resolved was the time synchronisation between SRF-IDS and monitored nodes. Metrics
such as packets sent and forwarded from the monitored node are calculated by SRF-IDS
detectors for a time period, and then forwarded to monitored nodes for further processing.
This time period should be the same between SRF-IDS detector and monitored node so that
both nodes refer to the same time period, and consequently, calculate the trust value based on
the proper metrics. For this reason, a modification was made to calculate metrics and transmit
them from SRF-IDS detector to monitored nodes every 15 minutes. Then, statistics in both
ends will be reset. For instance, SRF-IDS detector will sniff packets sent and forwarded
from a monitored node. Then, every 15 minutes, these metrics will be transmitted to the
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monitored node. Once they are successfully received, monitored node will compare its own
metrics of packets sent with the packets counted from SRF-IDS detector. In cases where
a difference in metrics is found, proper calculations will be done to correct the values. An
example of such difference is when the packets captured by SRF-IDS detector are less than
the packets actually sent by the monitored node. That means, SRF-IDS detector missed
some packets sent by nodes. Those cases are detected by monitored nodes which assign their
own actual value for the specific metric. After evaluating the metrics received by SRF-IDS
versus monitored node’s own metrics, measurements and counters stored in both devices
will be cleared from memory so that storage requirements are minimised. In addition to that,
SRF-IDS detectors are designed and implemented with proper mechanisms to detect and fix
any problematic metrics such as receiving duplicate packets. In those cases, measurements
are updated accordingly without calculating duplicate packets.

The time period of 15 minutes was chosen to process metrics because after several
experiments, we found that benign nodes usually transmit data packets every minute. Thus,
in order to minimise the amount of space needed to store measurements of each neighbour, a
time interval was introduced for calculating and resetting recorded statistics. Apart from that,
processing overhead is kept in low levels because in a time period of one hour, the process
will be executed only four times. Reducing execution time interval would lead to lower
CPU and energy overhead. An additional feature that was designed and implemented to save
nodes’ processing resources is that no trust calculations are executed in case a monitored
node does not notice any difference between previous and new packet metrics received. In
this way, monitored node will compare the metrics received by SRF-IDS before proceeding
to a parent switch.

Another design decision that had to be made was to reduce storage requirements. Moni-
tored nodes should be able to store metrics of their neighbours. After careful investigation,
we found out that a node has an average two or three candidate parents to choose from. As
a result, the structure for storing metrics of candidate parents was configured to allow a
maximum of 5 nodes. This means that a node could store packet forwarding behaviour of
5 neighbouring nodes, which is not the usual case but was designed to fit the worst case
scenario.

The last issue that had to be solved was the packet parsing from SRF-IDS detectors.
Packets containing information about the packet forwarding behaviour of neighbouring
nodes, arrive to monitored nodes using special RPL control packets. Therefore, a parsing
process had to be designed and implemented so that information is exported from packets.
Our solution for this issue was to implement a packet parser that, after verifying packet
header to ensure packet is from SRF-IDS, the node exports the data from each packet field
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and stores it in a structure for each neighbour. Metrics and trust calculations are executed for
each neighbour using the data stored in the node itself.

4.3 Anomaly-based Intrusion Detection System (SRF-IDS)

This section presents in detail the external Anomaly-based SRF-IDS. The novelty of the
proposed SRF-IDS is that it can be deployed in a separate RPL Instance to monitor network
and detect routing attackers without interfering with monitored nodes. In the first section,
details about the design of SRF-IDS are given. Then, detection module implementation steps
in both ContikiOS and Contiki-NG are described. The last section presents simulations and
results of SRF-IDS evaluation.

4.3.1 Problem Statement

As already discussed in previous chapter, attacks may occur in different parts of a network.
For example, an attacker may compromise a Border Router (BR) to take control of the whole
network or may target internal devices to attack the network itself. Network layer is mostly
considered in this work. Several attacks such as eavesdropping, and various routing attacks
may cause severe disruption to network operation, or may leak sensitive information.

For the above reasons, a proper solution should be able to secure those IoT networks that
deploy thousands of smart devices. Compromising a single device in a critical network could
cause a chaos in the economy of a country. Therefore, solutions should be designed and
developed to protect those networks. Traditional IDSes are not applicable to IoT networks
as they have different requirements from current networks. Smart devices have constraints
in processing, memory and energy, making them vulnerable and easy target for attackers.
As a result, it is a challenge to suggest a solution that will protect IoT devices that operate
using multiple technologies and protocols. The proposed SRF-IDS should have the ability to
protect IoT networks by supporting different technologies, handling large amount of data
packets, and responding quickly to possible security events.

4.3.2 SRF-IDS Design

The design of SRF-IDS component is discussed in this section. The architecture and several
components of the proposed SRF-IDS are explained in detail in the following subsections.
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SRF-IDS Architecture and Components

In this subsection, the proposed SRF-IDS solution is described.
In addition to the typical sensor nodes, we consider two new types of devices: i) a router,

called SRF-IDS root, for running both the detection module and a firewall, and ii) sensor-like
devices, called SRF-IDS detectors, for monitoring and sending suspicious traffic to the router.
In a typical scenario of an IoT network, there will be one SRF-IDS root and up to 100
SRF-IDS detectors. The SRF-IDS root may also play the role of the BR of the network.

Fig. 4.2 IDS internal components

Figure 4.2 illustrates the two types of SRF-IDS devices along with their internal compo-
nents.Both devices have some components in common. Communication module is a common
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Fig. 4.3 High-level SRF-IDS architecture

and critical component for both SRF-IDS root and detectors. It is the entry point of a network
packet. It is responsible for sniffing network traffic, and communicating with other SRF-IDS
or monitored devices. In case SRF-IDS devices have multiple network interfaces, com-
munication module captures packets from all interfaces. Preprocessor is another common
component that processes packets arriving from multiple network interfaces. Specifically, it
exports useful data from packets and feeds next module with information such as source IP,
packet type and other useful metrics.

As depicted in the figure, each device has its own modules. In SRF-IDS detector, there
are two extra modules plus the configuration module that require small processing power.
Monitoring module was designed to be able to monitor nodes’ behaviour. This is done by
saving the metrics and data coming from Preprocessor into a temporary table for comparison
purposes. Then, metrics are forwarded to Detection module for further decision making. In
SRF-IoT, Monitoring module is evolved into a Trust-based Monitoring module which is also
responsible to monitor and assess trust. Detection module is the heart of SRF-IDS detector.
Here, the actual detection of suspicious nodes happens. Lightweight algorithms are executed
to identify malicious devices. Threshold values are provided by the Configuration module. If
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the algorithm result indicates that a node is malicious, immediately node’ details are sent
to SRF-IDS Root via communication module. The Configuration module is responsible for
providing and storing thresholds that are required to check during algorithm execution.

Looking at SRF-IDS Root, Decision module is an important component that identifies
malicious nodes using complex algorithms and data provided from multiple SRF-IDS detec-
tors. Preprocessor module and Configuration module provide the data input to the algorithms.
SRF-IDS Root’s Configuration module provides thresholds, signatures of known attacks and
other configurations needed for decision making. In contrast, the module in SRF-IDS detec-
tors provides only the predefined thresholds needed for executing the lightweight algorithms.
The values of those thresholds are defined from the experimental results of Chapter 3. The
output of Decision module is forwarded to the last two components of SRF-IDS Root, the
Firewall and Alerting System. If a node is identified as malicious, proper rules are created in
the Firewall to block traffic from specific IP. Moreover, an alert is generated by the SRF-IDS
Root to the system administrator to take further mitigation steps.

SRF-IDS detectors monitor sensors’ traffic to help in detecting malicious nodes. Compro-
mised devices may attempt to interrupt the network internally without having to communicate
with the BR or external networks. For such cases, SRF-IDS detectors will log network traf-
fic and, if a node’s behaviour resembles a known attack, the related information will be
forwarded to the SRF-IDS root for further analysis and decision making.

An example of high-level SRF-IDS architecture is shown in Figure 4.3. This is the first
version of our SRF-IDS architecture, in which the BR is designed to be the SRF-IDS root as
well. That means SRF-IDS detectors report to the same device, the BR/SRF-IDS root, as the
monitored nodes. As depicted, there are four Zolertia Z1 sensors and the SRF-IDS consists of
one SRF-IDS root or BR and two detectors. The BR/SRF-IDS root is connected to the Internet
and includes two components: a Firewall and a Decision module. These two components
help in protecting the network from both internal and external attacks. The Decision module
runs algorithms to help decide if a node is malicious or not, while the firewall creates and
enforces rules for blocking malicious sensor requests to external destinations. The detectors
are wired connected to the BR to avoid jamming or eavesdropping via a wireless channel.
Appropriate secure wireless communication scheme will be in place (e.g., [104]) if a wireless
channel between the BR and the detectors is necessary or desirable. For simulation purposes,
we assume that a secure wireless channel is established in the networks. So there is no need
to wired connection between SRF-IDS devices.

Any packet exchanged between the sensors is captured by the nearest detector. Afterwards,
a lightweight algorithm determines if traffic should be forwarded or not to the BR. We assume
that detectors will be devices with limited resources. Hence, algorithms that require heavy
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computations, would not be suitable. The combination of SRF-IDS root and detectors helps
in capturing traffic from both internal and external communications. For example, some
compromised devices may try to communicate with a remote server in order to download
commands. Other compromised devices may exchange traffic locally. Our design considers
all types of communications so that malicious nodes can be blocked. The BR/SRF-IDS root
captures traffic from both WiFi and IEEE 802.15.4 interfaces. The BR is also able to detect
attacks from Zigbee/6LoWPAN devices.

Communication Module

A critical component that allows IoT nodes to interact with others in the network is the
Communication module. This module is designed to transmit and receive raw packets from
other nodes using the network interface. Communication module is able to capture all types
of packets even from IoT devices that have multiple network interfaces. However, in the
case of SRF-IDS detectors, the module is configured to work in promiscuous mode so that
network packets are sniffed from all neighbouring nodes. Normal operation such as replying
to requests destined for SRF-IDS detector is unaffected. In SRF-IDS root, Communication
module operates in normal mode without any modification. Both SRF-IDS root and detectors
are able to communicate within the DODAG network using this module.

Preprocessor Module

Once a packet is received and disassembled at the Communication module of the node, packet
details are forwarded to the next component, the Preprocessor module. In this component,
an initial processing of incoming packets is done. Basically, packets received at multiple
network interfaces are combined, and useful data is exported. Exported information may
include source IP, next-hop node IP, final destination IP, packet type, timestamp and other
useful data. Minor changes are made in the Preprocessor module of SRF-IDS detectors which
sniffs network traffic. Specifically, the module in those detectors is responsible for properly
parsing packets destined for detector or any packet sniffed from the network. Therefore,
modifications were made in the parsing procedure so that no data is discarded in case a packet
is not the final destination for SRF-IDS detector. Once packets are processed and useful
metrics are exported, those metrics are forwarded to the next module for further processing.

Configuration Module

Detecting malicious attackers requires a special module to have in place the proper infor-
mation and configuration. In SRF-IDS, the Configuration module is responsible to keep
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and provide nodes with the proper configuration so that detection algorithms are executed
correctly. Both SRF-IDS devices have a Configuration module. SRF-IDS detector uses this
module to provide Detection module’s algorithms with thresholds that are needed to detect
suspicious nodes. On the other hand, SRF-IDS root uses Configuration module to provide the
Decision module with thresholds and attacks’ signatures. In both cases, provided thresholds
are used mostly for DoS attacks while other configurations are used during algorithm execu-
tion. Additional thresholds such as the number of reports to receive from SRF-IDS detectors
to classify a node as malicious, are utilised by SRF-IDS root. More details about thresholds
are given in the next sections. Signatures stored in root’s Configuration module are used
to compare and identify possible attack attempts from data received by SRF-IDS detectors.
SRF-IDS detectors use less configuration parameters than SRF-IDS root because they report
suspicious nodes only. Final decision making is done by the SRF-IDS root. For this reason, it
can have enough computational power to execute algorithms for detecting different types of
attacks.

Monitoring Module

Monitoring module is a vital component of SRF-IDS detectors. This module allows detectors
to monitor the behaviour of neighbouring nodes. After the initial processing of data packets
at Preprocessor module, metrics and exported data arrive at Monitoring module. Here,
information such as source IP, final destination IP, packet type, timestamp and other important
information are stored for each monitored node in a temporary table. Values from the table
are compared in specific time intervals to decide if the behaviour of a node is normal or not.
The normal behaviour means that a node sends or replies to requests as they are defined by
the routing protocol. In cases where the node behaves suspiciously such as sending a batch
of requests or sending packets in small time intervals, detector flags this node and forwards
information to Detection module for further actions.

As SRF-IDS needs to collaborate with SRF-OF in order to mitigate more routing attacks,
Monitoring module is evolved into a Trust-based Monitoring (TM) module. This means
that apart from monitoring a node’s packet sending behaviour, it also monitors the packet
forwarding behaviour of monitored nodes. Metrics such as the number of packets send and
forwarded by a node are also stored in a temporary table. Then, in specific time intervals,
SRF-IDS detectors send those metrics, called trust metrics, to monitored nodes so that they
are informed and calculate a trust value for each neighbour. At the end, a trusted parent
is selected to create routes from a node to root. Moreover, trust metrics are also reported
to SRF-IDS root for creating proper rules in the embedded firewall. As the goal is to help
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SRF-OF component of a monitored node to calculate trust of candidate parents, we renamed
this module to TM module.

Decision and Detection Modules

An important part of the proposed SRF-IDS is the Decision module within the SRF-IDS
Root. This module is responsible for classifying a node as malicious or not. The decision is
based on the individual information collected by SRF-IDS detectors for each node deployed
in the network. Decision module is designed to analyse reports received by SRF-IDS detec-
tors, aggregate measurements from various reports, and classify nodes based on thresholds.
The output result of Decision module is forwarded to Alerting system to warn the system
administration, and to the Firewall for creating the right rules if needed. In our project, the
result of the Decision module is taken as the result of SRF-IoT framework. That means, the
final classification of a node is based on the result of this module. For instance, if a node
sends too many packets to other nodes, or a node sends packets in smaller intervals than a
threshold, then this node may be considered as malicious. In that case, the node might be
removed from the network, its IP will be blacklisted, an appropriate firewall rule will be
created, and the network administrator will be alerted.

A similar module that has some differences from the previous, is the Detection module.
This component resides within SRF-IDS detectors. Detection module is also extensively in-
vestigated in this project so that right formulas and thresholds are defined to detect suspicious
nodes with high confidence. The difference of Detection module from the Decision module
is that Detection module runs lightweight algorithms on detectors using less thresholds than
in Decision module to decide if a node is malicious or not. In addition to that, Detection
module has an input the local measurements taken from Monitoring module while Decision
module considers reports sent from several detectors to take a decision. The output result of
the Detection module is forwarded to the Communication module to be sent to SRF-IDS root
for taking the final decision. The classification result of Detection module is not considered
as final result.

Alerting Module

The component responsible for alerting the system or network administrator for potential
attackers is the Alerting module. This module is located in SRF-IDS root, and its main goal
is to inform user about malicious nodes. As shown in Figure 4.2, it accepts the result of
Decision module and announces to the network administrator if any malicious node exists in
the network. In case that no malicious behaviour is detected, the Alerting module does not
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show any message. The user console of simulator tool is used to display warning messages
in our case because evaluation is done using simulations.

4.3.3 Routing Attacks Mitigation

The proposed SRF-IDS aims at detecting and preventing a wide range of routing attacks. For
example, DoS attacks such as DIS flooding attacks may occur inside IoT networks to achieve
resource exhaustion of the sensor nodes. In addition to that, blackhole attacks, sinkhole
attacks, selective forwarding, and clone ID are widely known traffic and topology -based
routing attacks [65, 105] which usually exploit the RPL protocol.

The above mentioned attacks can be mitigated using existing methods such as measuring
DIS message sending rate, the Received Signal Strength (RSS), packet interval, and packet
data drop rate [106]. Specifically, DIS message sending rate is used in this work to detect DIS
flooding attack. The packet rate of smart devices is usually very low. A device that behaves
abnormally and sends more packets than others, could be considered as a malicious one. The
rate of false positives must be kept sufficiently low to avoid generating many false alerts
[107].

Another promising metric is the packet interval. Each device is configured to sleep most
of the time. Malicious devices could exploit this feature and wake up the device to send more
requests in the network. Our proposed SRF-IDS detects this behaviour by taking into account
the sending intervals of all nodes in the network and calculating the average packet interval
which will constitute the “normal” behaviour. Thus, any node exceeding the packet interval
threshold will be considered as malicious. Those mitigation methods are implemented in
Detection and Decision modules of SRF-IDS. According to reports [5, 108], DIS flooding
attacks are the ones most commonly used and may affect the availability as well as the
integrity of IoT systems. Therefore, designing and developing an efficient SRF-IDS to protect
IoT networks from these attacks is currently an open problem.

As regards to other types of routing attacks, using SRF-IDS component alone cannot
achieve protection from these attacks. Blackhole, rank and other complex routing type attacks
require new methods of defence. For this reason, in our project SRF-OF component is
introduced and implemented to mitigate these attacks. As SRF-OF needs information to
operate, SRF-IDS was designed with the ability to collaborate with such components. SRF-
IDS detectors are added with the responsibility to inform neighbouring monitored nodes with
trust metrics collected by Decision module. Further details of how SRF-OF and SRF-IDS
operate together were discussed in Section 4.2.

As far as the scalability of the proposed SRF-IDS is concerned, even in large networks
good efficiency is expected. To ensure that, SRF-IDS detectors perform certain calculations
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(e.g., packet sending rate and packet interval) and only if the metric of interest is above a
threshold, node’s traffic will be forwarded to the BR for further investigation (e.g., decision
making).

4.3.4 Firewall and Other Design Decisions

The firewall inside the SRF-IDS root serves as an additional layer of protection. The firewall
contains rules for blocking IP addresses of malicious nodes. Nodes are blocked only if the
Detection module has information of malicious behaviour. In that case, a new rule with the
node’s IP is created and the node cannot send or receive data from the Internet.

As far as the placement strategy of SRF-IDS modules is concerned, a hybrid approach
has been adopted. The centralized node (i.e. BR) stores signatures, analyses traffic, and
detects attacks originating from the sensors or coming from the Internet. The decentralized
nodes (i.e., SRF-IDS detectors), perform lightweight tasks such as monitoring and reporting
network data to the BR. This placement strategy helps in capturing traffic and detecting
attacks from all network segments. Furthermore, deploying detectors in close proximity to
the sensors aims at detecting attack attempts faster and more efficiently rather than waiting
the attack traffic to pass via the BR.

4.4 SRF-IoT Processes

The proposed framework consists of SRF-IDS, and an improved trust-based version of RPL
protocol. The routing protocol is modified to consider trust values as method of evaluation
for parent selection. We define the following terms:

Monitored network: The network that is being monitored by the SRF-IDS.

Monitored nodes: The nodes that belong to the network that is being monitored by
SRF-IDS.

Neighbour: The node Nb is a neighbour of Na only if Nb is in transmission (TX) range
of Na. That means Nb could provide a route to sink/BR.

In the following subsections, design details of various SRF-IoT processes are described
in detail.
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4.4.1 Collecting Information From SRF-IDS

The first and most important process of the system is the network information collection.
SRF-IDS is responsible for this, using the deployed SRF-IDS detectors. Specifically, SRF-
IDS detectors capture network traffic from monitored network and save packet metadata in
a local database. Then, an algorithm runs to confirm if packets are forwarded or not to the
next hop. The outcome of the algorithm is communicated with the devices belonging to the
monitored network for further processing. Only monitored devices that are in TX range of
SRF-IDS detectors will receive the metrics. Operating SRF-IDS in promiscuous mode in a
different RPL Instance is a novelty that allows easy SRF-IDS deployment like a plug-n-play
system. Additionally, no extra energy is consumed from smart devices in the monitored
network to sniff any traffic. All the processing is done in SRF-IDS detectors and only useful
metrics are transferred to monitored network. It is important to note here that nodes in the
monitored network can be benign or malicious. SRF-IDS detectors will try to communicate
with any type of device in their TX range because it is impossible to know which node is an
attacker or not. We assume that SRF-IDS packets will be encrypted to avoid being exploited
by attackers.

4.4.2 Calculating Trust

The calculation of trust value of a node until time T, occurs in this process. The formula to
calculate the direct trust that device Da holds for device Db until time period T is given by
DT(Da,Db)T. The number of packets successfully transmitted between devices Da and Db

until time period T is given by PTab(T). The total number of packets forwarded by device Db

on behalf of device Da until time period T is given by PFba(T). Intuitively, the higher the
number of packets Db drops (i.e. PTab(T) - PFba(T)) the lower the trust Da has in Db should
be. In order to be able to compare between devices, we normalised this by dividing it to the
total number of packets that Db forwards. Therefore, now the higher the proportion of the
number of packets Db drops to the total number of packets forwarded by Db (i.e. [PTab(T)
- PFba(T)] / PFba(T)) , the lower the trust Da has in Db should be. The outcome of this
formula, i.e. [PTab(T) - PFba(T)] / PFba(T), ranges between 0 (if all packets are forwarded)
and infinity (if Da sends lots of packets, but none are forwarded). Normalisation was the
next step so that we get a value between 1 and 0, with 1 corresponding to the former case
(maximum trust) and 0 corresponding to the latter case (minimum trust). In order to achieve
it, the following function has been used:

f (x) =
1

(1+ x)
(4.1)
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The above function takes x=0 to f(x)=1 and x = ∞ to f(x)=0. The value achieved from
[PTab(T) - PFba(T)] / PFba(T) needs to be scaled to reflect varying degrees of trust in different
situations. For example, if a device is initially forwarding all packets it has high trust value.
In a later moment, if it behaves maliciously and drops the packets, its trust value should
be reduced. For this purpose, a weight factor w is added before applying the f function. A
weight factor is added to the equation to punish or reward nodes that may change packet
forwarding behaviour accordingly.

Based on the previous explanations, direct trust calculations are computed as follows:

DT (Da,Db)T =
PFba(T )

PFba(T )+w · [PTab(T )−PFba(T )]
(4.2)

which is the result of multiplying the numerator and denominator of initial formula f by
PFba(T). Weight factor w can take the following values:

w =



0.6, if node_verifiedT ≡ 0 and PFI(t)≡ 0

0.8, if node_verifiedT ≡ 0 and PFI(t) > 0

0.85, if node_verifiedT ≡ 1 and PFI(t)≡ 0

0.5, if node_verifiedT ≡ 1 and PFI(t) > 0 and PFba(T) >
minimum_fw

0.0, otherwise

where PFI(t) represents the number of packets forwarded, sniffed by SRF-IDS, for the
specified node at time t. To calculate the total number of packets forwarded until time T we
use:

PFba(T ) =
T

∑
n=1

PFI(n) (4.3)

The parameter node_verifiedT means that a node is verified by SRF-IDS that is behaving
normally until moment T. We use this indicator to increase the weight factor so that a
node is trusted by benign nodes, while an unverified node has a smaller weight. The fourth
case has a condition that w is smaller if node is verified, forwards packets, and the total
number of packets forwarded are greater than the minimum number of forwarded packets
(minimum_fw). The value of minimum_fw is 5, and it is used as an indicator to check if a
node keeps forwarding packets after the initial verification. If a node is verified but the total
number of forwarded packets are less than this parameter, weight becomes zero and trust
is 100%. This ensures that a verified benign node will be fully trusted until it reaches the
threshold minimum_fw. Then, weight is applied in the formula.
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Weight factor plays an important role because trust value depends on the obtained
behaviour of the node. The values were chosen after various experiments so that a fair and
balanced value is calculated for each node by the OF. The general idea of weight factor is
to use it in the OF formula so that high trust score is calculated for an unverified node that
behaves normally, keep the trust score at same levels if a node keeps forwarding packets
to avoid unnecessary parent switches, and assign low trust score once a node does not or
selectively forwards data packets. The verification of a node is done with the help of SRF-
IDS component. SRF-IDS detector keeps the following fields in a structure for a monitored
neighbour node:

PFba = the total number of packets forwarded from device Db on behalf of device Da.
ADa = a set of IP addresses that device Da is usually sending the packets. The value is

taken from the destination IP field in the packet.
verifiedIPa = a field indicating if the IP address of a node is verified or not. Initially, all

nodes are unverified until SRF-IDS verifies them. A node is verified if it forwards a packet to
next hop.

4.4.3 Assessing Trust

Keeping up to date the trust value is significant to avoid interruption of network operation
from malicious actors. Hence, SRF-IDS constantly evaluates the network and sends updated
metrics to the monitored nodes. SRF-IDS sends the updated metrics in two modes; interval-
based and trickle-based. Interval-based transmission occurs every 3 minutes from SRF-IDS
detectors to devices in monitored network so that malicious nodes are identified in short time.
Before packet transmission, SRF-IDS detectors verify that new metrics are actually available
to send to monitored nodes else they skip the procedure.

Trickle-based transmission is based on RPL trickle timer implementation for transmitting
DIO packets [49]. Trickle timer is a dynamic mechanism embedded into RPL that tries to
minimise the transmission of RPL control packets. SRF-IDS detectors send packets with
updated metrics each time trickle timer resets. Sending packets in two different modes
ensures that SRF-IDS packets arrive successfully and at the proper time to monitored nodes
to choose their best parent. Without any metrics, monitored nodes use MRHOF. Once a
benign monitored node receives a packet from SRF-IDS, it calculates candidate parent’s trust
value based on the new measurements. Metrics for monitored nodes are stored in SRF-IDS
detectors and they are reset every 15 minutes to avoid storage capacity problems.

Trust values have different scales as shown in Table 4.1. If trust falls below the min_threshold
(less than 26) then a device is considered malicious and it is blacklisted. In addition, RPL
local repair is triggered to allow nodes find new parents. In the opposite case, if a node is
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blacklisted and trust value is above 50, node is removed from the list of malicious nodes.
Initially, trust value 63 is assigned by default to all nodes joining the network. This is to
allow nodes choose the best parent using other metrics, such as rank, until trust metrics
become available. Lists with malicious nodes are stored locally in each benign node so
that parent selection algorithm avoids blacklisted nodes. In case that a node stops attacking,
the SRF-IDS will recalculate it’s trust value. However, weights are adjusted and node will
gradually become fully trusted.

Table 4.1 Trust scale

Values Explanation Actions
≥ 0 and ≤ 25 No Trust Avoid node
≥ 26 and ≤ 50 Low Trust Select only if no other option exist
≥ 51 and ≤ 75 Medium Trust Select only if other nodes are below this rank
≥ 76 and ≤ 86 High Trust Best candidate parent
≥ 87 and ≤ 100 Full Trust Ideal parent, select without comparisons

4.4.4 Identifying Malicious Nodes

In case a node starts attacking the network using blackhole and rank attacks, immediately the
SRF-IDS will notice this behaviour in the packet forwarding metric. Then, a packet is sent to
the monitored network so that nodes will assign a low trust value for these neighbours.

The algorithm used by SRF-IDS detectors to detect the various routing attacks is shown
in Figure 4.4. The procedure starts by enabling promiscuous mode in SRF-IDS detectors to
start sniffing network traffic. Once a packet is captured, its packet type is checked and proper
thresholds are used to determine if the network is under DIS flooding attack. Specifically,
if the packet interval is above the predefined thresholdDIS then SRF-IDS detector alerts the
network administrator for possible DIS flooding attack, the node is reported to SRF-IDS
root for blacklisting, and SRF-IDS detector continues packet sniffing. If packet interval is
at normal levels, the packet is checked if it needs to be forwarded by the received node.
This is done by checking the destination IP (dstIP) field to be different with the next hop
IP (next_hopIP). In case that dstIP is equal to the received node IP, the packet is discarded
and the procedure restarts. Otherwise, the dstIP is stored in a table for further checks.
SRF-IDS detectors continue to sniff packets in order to decide if the neighbouring node
actually forwards the packets. This is translated into the following condition: if the captured
packet source IP (srcIP) equals to next_hopIP then it means the neighbour (next hop) node
transmitted the packet. Next check is to validate destination node. If the stored packet IP
(stored_pkt_dstIP) equals to the new destination IP (dstIP) then the packet is forwarded
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Fig. 4.4 SRF-IDS detectors operation flow chart

correctly, and the node’s packet counter is increased by one point. In case srcIP equals to
next_hopIP but the dstIP is not the expected, it means packet is not forwarded, and SRF-IDS
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flags the device as possible malicious node. The last step is to discard the packet and continue
capturing network packets for other nodes.

4.5 SRF-IDS Communication Component

This section presents the implementation of other SRF-IoT components. The full SRF-IDS
and SRF-OF source code that has been developed as part of this work is available on Github
repository [109].

Communication and routing among devices is handled by the RPL-lite protocol. SRF-IDS
and monitored networks operate as usual in two different RPL instances. Nodes accept only
packets destined for their RPL instance. Therefore, a solution was needed to allow SRF-IDS
alert monitored devices about attackers. As discussed in Subsection 4.4.3, SRF-IoT scheme
works with the help of an external IDS. A first prototype of SRF-IDS is presented and
evaluated for detecting DIS flooding attacks in Section 4.7. However, an improved version
with additional features is also implemented and discussed in Subsection 4.8. The new
implementation includes the possibility of monitoring devices operating in a different RPL
instance, detecting packet forwarding behaviour of a monitored node, and communicating
with neighbouring devices. Apart from that, the detection mechanism for DIS flooding attacks
is not affected.

Allowing SRF-IDS to communicate with monitored nodes is essential to enable SRF-OF
calculate trust correctly. Trust is calculated by each node using the metrics received from
SRF-IDS detectors. To achieve this, we implemented a new ICMPv6 control message in
Contiki-NG. The implementation was done for SRF-IDS detectors and benign/malicious
nodes which could be monitored. SRF-IDS detectors are able to send special packets to nodes
in RPL Instance ID zero, and include the trust metrics mentioned in Subsection 4.4.2.

Algorithm 7 presents the actual implementation that is used by SRF-IDS detectors to
send packets to neighbouring devices. As it is shown, SRF-IDS detectors iterate over their
neighbours and create a buffer that contains the metrics. For each neighbour, SRF-IDS detec-
tors send the IP address of the node, the verifiedIP flag and the number of forwarded packets.
After adding the metrics into the buffer, SRF-IDS detector sends the ICMPv6 message using a
custom RPL code to the neighbouring device. Moreover, detector sends the same information
to SRF-IDS root for detecting potential blackhole attackers. If no information is available
for a device, SRF-IDS detector does not send any packets to neighbours. Custom ICMPv6
packets are parsed by benign/malicious nodes to extract metrics and calculate trust using the
appropriate formulas. We assume that these ICMPv6 packets are encrypted and only nodes
participating in the monitored network can read its contents. Although malicious nodes can
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receive and read packet contents, the metrics will be related to their parents. So, it will be
useful even for them to select a benign parent based on metrics.

Algorithm 7 SRF-IDS communication function

1: Function ids_out put_to_benign(ip_addr) :
2: for each N in nbr_table do
3: linkaddr ∗ lladr← nbr_table_get_lladr(nbr_table,N);
4: uip_ipaddr_t ∗ ipaddr2← NULL;
5: ipaddr2→ u8[0]← 254; {Add address prefix}
6: ipaddr2→ u8[1]← 128;
7: unsigned char ∗bu f f er←UIP_ICMP_PAY LOAD; {Create new buffer}
8: uint16_t pos← 0; {Set RPL instance ID}
9: bu f f er[pos++]← 0;

10: bu f f er[pos++]← N→ destParents; {Number of neighbours}
11: for int j = 0; j < N→ destParents; j++ do
12: bu f f er[pos++]← N→ destIP[ j];
13: bu f f er[pos++]← N→ veri f iedIP[ j];
14: bu f f er[pos+2]← N→ count_ f w_packets[ j];
15: N→ count_ f w_packets[ j]← 0;
16: N→ veri f iedIP[ j] = 0;
17: N→ destIP[ j] = 0;
18: end for
19: if N→ destParents > 0 then
20: uip_icmp6_send(ipaddr2, ICMP6_RPL, RPL_CODE_IDS_NORM, sizeof(buffer));
21: uip_ipaddr_t addr2;
22: if get_root_ipaddr(addr2)! = NULL then
23: uip_icmp6_send(addr2, ICMP6_RPL, RPL_CODE_IDS2, sizeof(buffer));
24: end if
25: else
26: print f ("No information available");
27: end if
28: end for

In cases where a monitored node receives metrics from multiple SRF-IDS detectors,
appropriate mechanism is in place to handle these cases. For example, let Ma be the monitored
node, IDSa and IDSb the SRF-IDS detectors, and Da a candidate parent. If IDSa sends a
packet with metrics to Ma for device Da that contains verifieda=1 and packets_forwardeda=5,
the Ma will store it normally. In a later moment, if IDSb sends another packet that contains
verifieda=0 and packets_forwardeda=0, node Ma will aggregate the knowledge and calculate
trust with the proper weight factor. Node Ma will consider its actual transmitted packets
to check if packets_forwardeda=0 is correct or not. A candidate parent is verified after
consecutive notifications arrive by multiple SRF-IDS detectors.
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4.6 Security Framework Objective Function (SRF-OF)

The trust concept is implemented as a new OF in RPL-lite protocol, called Security Frame-
work Objective Function (SRF-OF). The SRF-OF algorithm for choosing the best parent is
presented in Algorithm 8. Firstly, nodes check if neighbours are acceptable as parents. An
acceptable node has low link metrics or path cost. Then, checks are done to avoid blacklisted
and malicious nodes that were detected in previous attempts. A neighbour node with high
trust value and smaller rank than current node’s rank, is selected as parent (lines 17-20). In
case Algorithm 8 reaches the last condition (line 27), it returns the parent with the lowest ETX
value. The last condition as well as the whole SRF-OF implementation includes appropriate
mechanisms to achieve stability in parent selection and to avoid unnecessary parent switches.
It is important to have a stable network and minimise parent switches to reduce energy
consumption and packet overhead.

The trust value for each neighbour is computed in Algorithm 9 which is based on the
formula presented in Subsection 4.4.2. Specifically, monitored nodes receive the packet at
time T from SRF-IDS, extract metrics from the packet for a specific neighbour, and store the
measurements to the corresponding variables. For trust calculation, a node uses the formula
shown in Subsection 4.4.2 which takes into account the actual number of packets sent to the
neighbour until time T to the number of packets forwarded by neighbour and captured by
SRF-IDS detectors until time T.

SRF-OF utilises the following metrics during best parent calculations: trust value, rank
and ETX. A combination of these metrics would allow nodes choose the most trusted and
reliable parent. SRF-OF is implemented in Contiki-NG for both benign and malicious nodes.
SRF-IDS is using the default MRHOF as objective function while the rest nodes use SRF-OF.

4.7 Threshold-based Detection Module

The development of Detection module using thresholds is presented in this section. Firstly,
design decisions are discussed and then, implementation steps are explained. Moreover,
simulation configurations as well as metrics are introduced. An initial version of Detection
module is evaluated using a simulator tool, and results are presented.

4.7.1 Design

One of the most important decisions is to define the most appropriate threshold values for the
Detection module. In order to define the most suitable thresholds and identify DIS flooding
attacks, results from Subsection 3.3.5 were utilised. Specifically, two thresholds are going to



4.7 Threshold-based Detection Module 89

Algorithm 8 SRF-OF algorithm
1: Input:Neighbour nodes nbr1 and nbr2 from nbr table
2: Output:Best neighbour/parent to route packets
3: Function best_parent(nbr1,nbr2) :
4: int nbr1_is_acceptable← (nbr1! = NULL and nbr_is_acceptable_parent(nbr1));
5: int nbr2_is_acceptable← (nbr2! = NULL and nbr_is_acceptable_parent(nbr2));
6: if nbr1!=NULL and nbr1_is_acceptable and is_blacklisted(nbr1) then
7: if nbr2_is_acceptable then
8: return nbr2;
9: end if

10: return NULL;
11: else if nbr2!=NULL and nbr2_is_acceptable and is_blacklisted(nbr2) then
12: if nbr1_is_acceptable then
13: return nbr1;
14: end if
15: return NULL;
16: end if
17: if (((nbr1→ trust_value > nbr2→ trust_value) or (nbr2→ trust_value < 38)) and

(nbr1→ rank < current_rank)) then
18: return nbr1;
19: else if (((nbr2→ trust_value > nbr1→ trust_value) or (nbr1→ trust_value < 38))

and (nbr2→ rank < current_rank)) then
20: return nbr2;
21: end if
22: if nbr1≡ current_pre f erred_parent and within_hysteresis(nbr1) then
23: return nbr1;
24: else if nbr2≡ current_pre f erred_parent and within_hysteresis(nbr2) then
25: return nbr2;
26: end if
27: if nbr_link_metric(nbr1) < nbr_link_metric(nbr2) then
28: return nbr1;
29: else
30: return nbr2;
31: end if
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Algorithm 9 Trust calculation at time T
1: Input: Read buffer received from SRF-IDS
2: for each neighbour do
3: nbr← Get neighbour node details from SRF-IDS buffer
4: node_veri f iedT ← nbr→ veri f iedT
5: node_pkts_ f orwardedt ← nbr→ p f _ f rom_ids
6: if node_veri f iedT == 0 then
7: if node_pkts_ f orwardedt == 0 then
8: direct_trust ← (nbr→total_packets_ f w/(nbr→total_packets_ f w + 0.6 ∗

(nbr→total_packets_tx−nbr→total_packets_ f w)))
9: else if node_pkts_ f orwardedt > 0 then

10: direct_trust ← (nbr→total_packets_ f w/(nbr→total_packets_ f w + 0.8 ∗
(nbr→total_packets_tx−nbr→total_packets_ f w)))

11: else
12: direct_trust = 0
13: end if
14: else if node_veri f ied == 1 then
15: if node_pkts_ f orwardedt == 0 then
16: direct_trust ← (nbr→total_packets_ f w/(nbr→total_packets_ f w + 0.85 ∗

(nbr→total_packets_tx−nbr→total_packets_ f w)))
17: else
18: direct_trust ← (nbr→total_packets_ f w/(nbr→total_packets_ f w + 0.5 ∗

(nbr→total_packets_tx−nbr→total_packets_ f w)))
19: end if
20: end if
21: end for
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be used in the IDS; packet interval and number of DIS messages. The packet interval variable,
called thresholdtime, is defined to be 30 seconds while the threshold for the number of DIS
packets, called thresholdDIS, is defined to be 3 packets. Thresholds values were defined
by taking the measurements of each metric from the simulations of several attacks. The
thresholddetectors is defined to be 3 so that a node is reported by detectors at least 3 times.

Regarding DIS flooding attack, it was configured to be launched by compromised nodes
after 30 seconds so that the network is properly formed. Then, compromised nodes attack the
network by sending 10 DIS messages every 30 seconds.

4.7.2 Implemented Algorithms

Following the previous design considerations, an implementation of SRF-IDS was done
in ContikiOS and was tested using Cooja simulator. Particularly, SRF-IDS detector was
configured to collect information from nodes and forward suspicious traffic to SRF-IDS
root/BR. BR was programmed to receive reports from detectors and decide if malicious
sensors exist or not in the network based on thresholds.

The algorithms for detection, information collection and reporting are given in Algorithms
10, 11 and 12, respectively. In our experiment, a sensor configured as SRF-IDS detector
executed Algorithms 11 and 12, while a node configured as BR runs Algorithm 10. SRF-
IDS detectors run Algorithm 10 to capture and calculate the number of DIS packets, other
messages and packets interval from neighbouring nodes. Based on predefined thresholds, it
will decide if they should be forwarded to BR or not. Algorithm 12 shows the thresholds
used for deciding if a node will be reported to BR. This procedure is executed every 5
seconds by SRF-IDS detector. Based on the algorithm’s output, SRF-IDS detector forwards
a list with details of possible malicious nodes to BR. Algorithm 10 is executed by BR for
malicious node detection. It is repeated every 3 seconds so that malicious nodes are detected
fast enough. The detection algorithm considers a node as compromised if the reports sent by
different SRF-IDS detectors exceed the threshold detectors variable which is equal to 3. This
means a node is considered malicious if it is reported by detectors at least 3 times. In case
that a node is in range of only one SRF-IDS detector, BR will count the number of reports
sent by the specific detector to determine if a node is compromised or not.

4.7.3 Metrics

Simulations were created using the same configuration as described in Subsection 3.3.4. The
only difference is that each scenario is repeated 5 times for cross-validation. Moreover, the
DIS flooding attack was configured to be launched by compromised nodes after 30 seconds,
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Algorithm 10 Centralised detection module

1: Function CheckNodes(Monitored) :
2: Monitored[NumNodes]← array with monitored Nodes
3: for each node in Monitored do
4: node.countDetect ++;
5: if node.interval ≤ thresholdtime and node.totalDIS≥ thresholdDIS then
6: if node.countDetect ≥ thresholddetectors then
7: alarm Node compromised
8: end if
9: end if

10: end for

Algorithm 11 Local monitoring module: Updating metrics
1: On capturing a new packet:
2: for each node in Monitored do
3: if packet == DIStype then
4: node.totalDIS++;
5: else
6: node.otherMes++;
7: end if
8: node.interval = clockNow−node.timestamp;
9: node.timestamp = clockNow;

10: end for

Algorithm 12 Local monitoring module: Reporting to BR
1: Function ids_detector_output(Monitored):
2: count_suspicious_nodes=0;
3: for each node in Monitored do
4: if node.packet_interval ≤ thresholdtime and node.totalDIS≥ thresholdDIS then
5: count_suspicious_nodes+= 1;
6: suspicious_list.add(node);
7: end if
8: end for
9: send_report_to_BR(suspicious_list, count_suspicious_nodes);
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so that the network is properly formed. Then, compromised nodes attack the network by
sending 10 DIS messages every 30 seconds. The metrics used for SRF-IDS evaluation are
the following:

• True positive (TP) rate: Percentage of malicious nodes that are correctly detected as
malicious.

• False positive (FP) rate: Percentage of normal nodes that are incorrectly detected as
malicious.

• IDS incidents: Indicates how many times the SRF-IDS generated a warning for a
malicious node.

• Messages sent to SRF-IDS root: Indicates the number of messages sent to SRF-IDS
root by SRF-IDS detectors.

• Precision: A metric that presents the total number of malicious nodes that are correctly
classified as malicious (TP) divided by the total number of nodes classified as malicious.
It can be calculated based on (4.4).

Precision =
T P

T P+FP
(4.4)

Each metric is calculated after taking into account results from all the repetitions of
individual scenario.

4.7.4 Network Topology Selection

SRF-IDS should be able to detect compromised nodes in different environments. For this
reason, various scenarios were tested with the help of Cooja simulator.

Specifically, three topologies were generated; Ellipse, Random and Linear. In each
topology, 30 benign nodes, 4 SRF-IDS detectors, 6 malicious nodes and one SRF-IDS root
were deployed.

Figure 4.5 illustrates the topologies created along with the different types of nodes.
Benign nodes were deployed differently in each topology while rest nodes were in close
proximity. After repeating 15 times, results showed that Random topology had the highest TP
rate with 94.4% followed by Ellipse topology with 83.3% and Linear topology with 72.2%.
Although deploying nodes randomly had better detection rate, the FP rate was as high as in
Linear topology. Deploying nodes in ellipse had zero FP. Ellipse topology had the second
best detection rate, had no FP, and it was easier to form it in Cooja because nodes remain
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at fixed locations while in random topology nodes change location in every experiment
increasing the complexity of the network. As a consequence, Ellipse topology was chosen
for our experiments.

Fig. 4.5 Ellipse (upper left), Random (upper right) and Linear topologies. Colours for node
types: green = server, yellow = benign node, purple= malicious node, orange = detector

4.7.5 Scenarios and Configurations

Evaluating an SRF-IDS requires testing various topologies. DIS flooding attack was config-
ured to be launched by compromised nodes after 30 seconds so that the network is properly
formed. In other words, compromised nodes attack the network by sending 10 DIS messages
every 30 seconds. A large network with 30 benign nodes, a variable number of SRF-IDS
detectors, 6 malicious nodes and one SRF-IDS root was created. The number of malicious
nodes remains fixed, whereas the number of SRF-IDS detectors varies. Using a large num-
ber of sensors helps in evaluating the scalability of proposed IDS. Sensors were deployed
throughout the network as depicted in Fig. 4.6. SRF-IDS detectors increase by one in each
scenario. We created 10 scenarios that are repeated 5 times each for better accuracy. Each
scenario is simulated for 25 minutes.
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Fig. 4.6 Topology used in SRF-IDS simulations. Scenarios with 1,5 and 10 SRF-IDS detectors
shown. They increase up to 10. Colours for node types: green = server, yellow = benign node,
purple= malicious node, orange = detector

4.7.6 Evaluation Results

Results from 5 repetitions of each simulation are very encouraging. Figure 4.7(a) illustrates
the TP and FP rates using different SRF-IDS detectors. As it is expected, the TP rate is 100%
if 3 or more detectors are used in the network. This percentage falls to 97% and 83% when
detectors are one and two respectively. However, FP rate increases if detectors are 8 or more.
Looking more closely in the log files, we discovered that SRF-IDS detectors could be treated
as malicious by other SRF-IDS detectors. This is the reason that FP rate increases when more
SRF-IDS detectors are deployed in the network.

Figure 4.7(b) shows the number of warnings generated by SRF-IDS root. These warnings
are the output of the Detection module algorithms. As it is depicted, the number is below
2,500 when SRF-IDS detectors are less than 3. However, this number is rocketed to over
7,000 when 3 or more detectors are deployed. The number remains at similar levels when
detectors are between 5 and 8, with a small increase when 9 or more detectors exist in the
network.

In conclusion, the SRF-IDS achieves high detection rate in almost all cases. This means
that all 6 malicious nodes are detected even in large networks. Furthermore, results suggest
that more than 3 and less than 8 SRF-IDS detectors should be deployed for best performance
and low overhead. However, this could be different if more compromised nodes exist.



96 Security Framework for IoT-based Devices (SRF-IoT) Overview

Fig. 4.7 a) TP and FP rates for each scenario, b) Number of warnings generated by SRF-IDS
root

4.8 Improved Threshold-based Detection Module

An enhanced version of the Detection module is presented in this section. The problems
and disadvantages of the first version of this module are discussed. Then, several fixes and
features are added and explained. Also, scenarios and results are presented in the subsections
below.

4.8.1 Problem Statement

The first version of Detection module introduced several issues. Firstly, a vulnerability existed
in SRF-IDS detectors which could falsely treat other SRF-IDS detectors as malicious. Another
problem is that attackers could attack SRF-IDS by advertising false rank, forcing SRF-IDS
detectors to choose them as parents. This could disrupt the whole SRF-IDS operation and
block SRF-IDS traffic. Apart from that, an issue with benign nodes and SRF-IDS detectors
was discovered. SRF-IDS detectors could be selected as parents by monitored nodes requiring
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further communication overhead with other neighbouring nodes. As a result, SRF-IDS
detectors become part of the benign network, and while memory and storage resources are
used only for network operation and not for monitoring purposes such as packet capturing
and analysis that are needed by IDS.

4.8.2 Design Improvements

We have chosen to implement our threshold-based SRF-IDS along with DIS flooding attack in
Contiki-NG mostly because it has an improved version of RPL protocol, better documentation
and an active community which releases regular updates [34].

The SRF-IDS was implemented with the following extra functionalities:

1. Detectors were modified to always select SRF-IDS root as parent. Otherwise, mali-
cious nodes may become parents of some detectors and this will affect the detection
mechanism. This was achieved by setting a flag in DIS packet of RPL. In this way,
when SRF-IDS detectors send a DIS packet, SRF-IDS root would recognise it and
respond accordingly.

2. Detectors were configured to operate as leaf nodes in a DODAG network. A leaf node
is a node that never becomes a parent. This is to ensure that they communicate only
with BR.

3. A time-window concept is introduced to SRF-IDS. Measurements stored in detectors
are reset at configurable time intervals (e.g., every 3 minutes). This time-window is
expected to allow detection of multiple malicious nodes during simulation and to
reduce false alarms.

4. Detectors are in promiscuous mode and they were programmed to communicate only
with SRF-IDS root at intervals to keep communication link updated. This feature
ensures the SRF-IDS root that SRF-IDS detectors stay online during operation.

5. A security vulnerability discovered in previous experiments described in Subsection
4.8.1 was that SRF-IDS detectors could be treated as malicious by other SRF-IDS
detectors. Sending too many packets to SRF-IDS root may cause other detectors to
treat this as an attack. Hence, we introduced configurable time intervals for the message
reports and a new message code in the RPL protocol to distinguish traffic coming
from the SRF-IDS detector. In this way, we expect to reduce the traffic overhead and
minimize FP rate. We assume that packets are encrypted and the RPL message code
cannot be sniffed from attackers.
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6. Detectors were configured to begin detection after a certain time period (e.g., 1 minute).
This was done to allow time for the benign nodes to form the DODAG network.

7. SRF-IDS root was modified to take measures and avoid unnecessary computations.
Once a malicious node is detected, SRF-IDS root saves its IP address in the blacklist.
When a packet arrives from a node that exists in the blacklist, the SRF-IDS root drops
it. The blacklist can be reset at regular time intervals (e.g., every 10 minutes).

Regarding implemented code, Algorithms 11, 12 and 13 were implemented in Contiki-
NG. Algorithm 13 below is an improved version of Algorithm 10. We introduced a new
detected flag that is enabled once a node is detected. Additionally, the thresholddetectors

is decreased and set to 2. Experiments in ContikiOS showed that receiving reports from 3
detectors didn’t improve the detection rate. Thus, we decreased the value to enhance SRF-IDS
performance.

Algorithm 13 Centralised detection module
1: Monitored[NumNodes]←array with monitored Nodes
2: Function CheckNodes(Monitored):
3: for each node in Monitored do
4: node.countDetect++;
5: if node.packet_interval ≤ thresholdtime and node.totalDIS≥ thresholdDIS then
6: if node.countDetect ≥ thresholddetectors and node.detected == 1 then
7: alarm "Node compromised"
8: end if
9: end if

10: end for

With the introduction of the time-window on the metrics kept by the SRF-IDS detectors,
a change in the number of suspicious nodes reported in large networks is expected. For this
reason, the SRF-IDS root was modified to take decisions after receiving at least two reports
for a specific node. Algorithm 13 is executed every 20 seconds by the SRF-IDS root instead
of 3 seconds that was in the previous evaluation. Detectors execute the same Algorithm 11
when a new packet is captured. In addition, detectors report to SRF-IDS root, as shown in
Algorithm 12, every 10 seconds instead of 5 seconds to minimize traffic overhead.

4.8.3 Scenarios and Topologies

Regarding simulation scenarios, we kept the same scenarios and topologies as described in
Subsection 4.7.5. We also keep the same metrics to evaluate our system in both versions of
Contiki.
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4.8.4 Evaluation Results

Results from Contiki-NG simulation are illustrated in Figs. 4.8 and 4.9. According to Fig.
4.8, the TP rate for almost all scenarios is lower than before. A reason for that is because the
detectors report fewer incidents than before and some attacks are missed. As the number of
detectors increases, the TP rate increases as well. In regards to the FP rate, the highest value
is 0.87%, which is very low in comparison to 10% that we had ContikiOS. Looking at Fig.
4.9, we see fewer incidents to be reported by SRF-IDS root than previously. The reason is
that detectors report every 10 seconds to SRF-IDS root instead of 5 seconds. This minimized
the traffic overhead in the node’s network but lowered TP rate. Figure 4.10 compares the
precision between the SRF-IDS implementation in ContikiOS and its improved version in
Contiki-NG. Note that two implementations have similar precision in all scenarios. The only
difference is that the one in Contiki-NG has even higher precision in cases with 8 or more
detectors. That means that the SRF-IDS can handle traffic from more detectors and can detect
malicious nodes in medium to large scale networks. The precision metric was calculated
using (4.4).

Fig. 4.8 TP and FP rates for each scenario in Contiki-NG

4.9 Chapter Summary

In this chapter, the design and implementation details of SRF-IoT framework are discussed.
Firstly, an overview of trust concept as well as the high-level architecture of the two compo-
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Fig. 4.9 Number of incidents reported by BR in Contiki-NG

Fig. 4.10 Comparison of Precision between ContikiOS and Contiki-NG

nents, SRF-IDS and SRF-OF, are explained. Each component of the SRF-IoT framework
is presented. As our work is implemented in a real-world OS, high-level algorithms were
coded and explained in this chapter. Specifically, the communication protocol implemented
for linking SRF-IDS with the SRF-OF running in monitored nodes is described. Moreover,
the implementation of SRF-IDS detection module in both ContikiOS and Contiki-NG is
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described. Simulation details and evaluation results are depicted. At the end, each operation
done by SRF-IoT scheme is presented and discussed.



Chapter 5

SRF-IoT Performance Evaluation

In this chapter, the SRF-IoT framework is evaluated under three different cases. As a first case,
SRF-IoT along with rank and blackhole attackers are deployed in a medium-size network.
Then, a case with a combination of different routing attacks including rank, blackhole and
DIS flooding attacks is presented in again a medium scale network. As a last extreme scenario,
we tested SRF-IoT in a larger network in which the combination of the three routing attacks
are launched. In each case, the specific scenarios, tools and metrics are analysed, and results
are presented. Apart from those scenarios, new detection methods using ML models are also
explored. Supervised learning algorithms are trained and evaluated with the help of cloud
platforms. Evaluation results from ML model as well as the different scenarios are presented.
Finally, we compare our solution against the related works.

5.1 Evaluation in Medium Network Under Rank and Black-
hole Attacks

The proposed framework is evaluated under different environments and scenarios. The
following section explains the main scenarios as well as the configurations used throughout
simulations. Detailed information about deployed nodes and metrics is given.

5.1.1 Scenarios

We examined three main scenarios; normal, malicious using Minimum Rank with Hysteresis
Objective Function (MRHOF) as OF, and SRF-IoT using SRF-OF as OF. Specifically, normal
scenario is an environment without any attackers. Nodes are operating normally and are using
the default MRHOF to choose a parent. In the malicious scenario, one or more attackers
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exist, and all nodes are using the default MRHOF. This scenario is studied to understand the
impact that rank and blackhole attacks have in the network. The SRF-IoT scenario is similar
to the malicious one, but the difference is the OF that nodes are using. In that scenario, nodes
are using the new implemented objective function called SRF-OF, in an environment where
one or more compromised nodes exist. SRF-IDS operates in a different RPL Instance, and,
therefore, nodes are using the default MRHOF. SRF-IDS detectors capture metrics only and
do not help in parent selection in Normal and malicious scenarios.

Table 5.1 Node types and configuration

RPL
InstanceID Node type Description

0 Sink/BR
Acts as a sink node. Receives messages and
sends only UDP replies.

0 Benign node
Uses RPL-lite to create a mesh network
and sends data periodically to BR.

0 Malicious node

Uses RPL-lite to join the network and
advertises low rank (rank attack) and drops
all incoming packets (blackhole attack).Also,
it sends UDP packets like benign nodes.

1 SRF-IDS Root
Plays the role of sink in IDS and collects all
the information from SRF-IDS detectors.

1 SRF-IDS Detector
Sniffs traffic of monitored network to detect
malicious nodes. Stores information about
messages exchanged and packets forwarded.

The different types of nodes used in our simulations are shown in Table 5.1. As it can be
seen, SRF-IDS nodes have different RPL InstanceID than other nodes. In addition, Sink/BR
and SRF-IDS Root play the role of sink for both networks. Benign and malicious nodes are
configured to join the network and start sending UDP packets to Border Router (BR) once
DODAG network is formed. However, malicious nodes start attacking the network after 2
minutes.

The number of nodes deployed in each scenario is presented in Table 5.2. Benign nodes
are 30 in all scenarios while 6 malicious nodes are deployed in the malicious scenarios.
A varying number of SRF-IDS detectors is deployed on the network to study and find the
optimised number of SRF-IDS detectors to avoid the attackers. In normal and malicious
scenario with MRHOF, SRF-IDS detectors are deployed with TM module disabled. This
means, SRF-IoT framework is not operating as SRF-IDS does not provide monitored nodes
with trust metrics. SRF-IDS is deployed in these two scenarios only for comparison purposes,
and to gather measurements for generating results. The TM module, as mentioned in previous
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Table 5.2 Number of node types in each scenario

Sink/BR IDS
root

Benign
nodes

Malicious
nodes IDS Detectors Total

Normal scenario
with MRHOF 1 1 30 -

5 to 15, Trust
Module Disabled 37 to 47

Malicious scenario
with MRHOF 1 1 30 6 BH and Rank

5 to 15, Trust
Module Disabled 43 to 53

SRF-IoT scenario
with SRF-OF 1 1 30

5 to 15, Trust
Module Enabled

sections, is enabled only when SRF-IoT scheme is evaluated and thus, monitored nodes use
the SRF-OF.

5.1.2 Topology

IoT networks usually are deployed in mesh topology. Devices in mesh topology route packets
with each other directly. In our case, the topology is shown in Figure 5.1. This topology uses
the feature of RPL protocol that allows one DODAG network to have two different RPL
Instances. It is a different architecture from our initial topology shown in the first version of
SRF-IDS. This is because having two RPL Instances allows the operation of two networks
at the same time. The RPL Instance with ID equal to zero, is the one that is monitored for
suspicious activity and we call it monitored network. It has one sink/router that acts as BR,
and several devices that can be benign or malicious.

SRF-IDS forms a second network inside the DODAG with RPL InstanceID equal to
one, which contains the IDS root and IDS detectors. These two networks belong to the
same DODAG but are two different RPL Instances. This helps IDS to distinguish packets
coming from neighbour monitored network easily. Our approach takes advantage of RPL
specification that allows operation of one DODAG with two different RPL Instance IDs [4].
This is already supported in Operating Systems (OS) such as Contiki-NG that implement
RPL protocol, so no extra modifications are needed.

5.1.3 Configuration and Metrics

The settings and metrics utilised for evaluation purposes of SRF-IoT framework are discussed
in this subsection. The metrics used are the following:

• Median Packet Delivery Ratio (PDR): Indicates the median value of the ratio of the total
number of unicast packets received by BR up to the total number of unicast packets



5.1 Evaluation in Medium Network Under Rank and Blackhole Attacks 105

Fig. 5.1 Network topology used in simulations

generated by all benign and malicious nodes. It does not include UDP re-transmitted
packets.

• Median Parent Switch: Presents the median value of the number of parent switches that
benign and malicious nodes execute during the simulation. A parent switch happens to
select a better route to the BR. Changing parent results to changing the rank of a node.

• Median Packets Dropped: Shows the median percentage of packets dropped by the
attackers during the simulation. Malicious nodes drop all types of packets that normally
should be forwarded to next hop.

• Median IDS Packet Overhead: Indicates the median percentage of SRF-IDS detector’s
packets sent to SRF-IDS root and the monitored network during simulation. The value
is calculated from the number of packets exchanged in N repetitions.

Below, the mathematical definitions for the metrics are provided. Let
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Median(X) =


X (n+1)/2, if n is odd,

Xn/2 +X(n/2)+1

2
, if n is even

(5.1)

be the median value of parameter X for cases when n (the total number of parameters) is
odd or even number, and let X be a set of calculated values sorted from smallest to largest.
Also, let

Sr =
Rcvd

∑
n
k=1 Pk

(5.2)

be the packet delivery ratio for repetition r where Rcvd is the total number of packets
received at BR, k is the number of node sending the packets, n is the total number of nodes,
and Pk is the total number of packets sent from node k. The Median Packet Delivery Ratio
(PDR), E[DRpkt], is given by:

E[DRpkt] = Median(S) (5.3)

where r is the repetition number, m is the total number of repetitions for each simulation,
and Median(S) is the median value of the set S. Packet delivery ratio from all repetitions are
included in the set S to calculate the Median(S) value.

The Median Parent Switch, E[PS], is given by:

PSr =
n

∑
k=1

Pk (5.4)

E[PS] = Median(PS) (5.5)

where Pk the parent switch of node k, PSr the sum of parent switches for repetition r, r
the number of repetitions for each simulation, and Median(PS) is the median value of the set
PS. The set PS contains all parent switches for all repetitions so that the Median(PS) value is
calculated.

The Median Packets Dropped, E[Dpkt], is given by:

Dr =
Dropr

∑
n
k=1 TAk

(5.6)

E[Dpkt] = Median(D) (5.7)
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where Dropr the total packets dropped in repetition r, TAk the total number of packets
transmitted from node k including multicast and unicast packets, Dr the percentage of packets
dropped in repetition r, m the number of repetitions for each simulation, and Median(D) is
the median value of set D. The total packets dropped from all repetitions are included in set
D so that the Median(D) is calculated.

The Median IDS Packet Overhead, E[IDS], is given by:

Sentr =
n

∑
k=1

TAk (5.8)

Ir =
∑

b
a=1 IDSa

∑
m
r=1 Sentr

(5.9)

E[IDS] = Median(I) (5.10)

where k is the number of node sending the packets, n is the total number of nodes, TAk in
(5.8) is the total transmitted packets from node k including multicast and unicast packets,
Sentr is the sum of packets sent in repetition r, a is the number of SRF-IDS detector, b is
the total number of SRF-IDS detectors IDSa is the total number of SRF-IDS packets sent
from SRF-IDS detector a to SRF-IDS root, m is the total number of repetitions for each
simulation, Ir the SRF-IDS packet overhead percentage in repetition r, and Median(I) is the
median value of set I. The calculated values from all repetitions are added in set I to calculate
the Median(I) value.

Table 5.3 Simulation configurations

Parameter Value
Grid size 70x70
Topology Random

Simulation time 60 minutes
Seed number Random in each execution

Max MAC packet retries 3
Max buffered packets in MAC layer 20

Operating System Contiki-NG 4.4
Simulator Whitefield simulator

Regarding simulation configuration, the simulator called Whitefield framework provides
a configuration file in which proper settings were defined. In that file, various simulation
options can be defined by the user. The options used are shown in Table 5.3. Simulation
execution time is defined to 60 minutes. Malicious scenarios using MRHOF are repeated 4
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times while Normal scenarios are repeated 10 times because SRF-IDS is not active in parent
selection. SRF-IDS detectors in those two scenarios are used only to capture traffic and
calculate metrics using the measurements taken. Using more IDS detectors allow us to collect
large sample for analysis. In addition, SRF-IoT scenarios using SRF-OF are repeated 10
times. This allow us to collect large sample for analysis. The seed number plays a significant
role in simulations. It affects the behaviour of the nodes regarding processing and packet
transmission times. Therefore, we use random seed in each repetition so that Whitefield
simulator produces random results in each run. The simulator’s default configuration of MAC
packets retransmissions is 3 times while the maximum number of packets waiting in the
buffer in MAC layer is 20.

5.1.4 Evaluation Results

Evaluation results from simulating the SRF-IoT scheme are presented in this subsection.
From this point, we reference to malicious scenario using MRHOF as BHR scenario, normal
scenario using MRHOF as Normal scenario and malicious scenario using SRF-OF as SRF-
IoT scenario.

Starting with Figure 5.2, the Median Packet Delivery Ratio (PDR) of SRF-IoT framework
is presented for scenarios where 5 to 15 SRF-IDS detectors are deployed. Overall, PDR in
monitored network is kept at high levels with the help of SRF-IoT framework. This can be
clearly identified from the figure as the median PDR starts from 90.8% when 5 detectors
are deployed, then reaches the maximum of 92.8% in scenario with 7 detectors, and then
PDR declines as the number of detectors increases, reaching the minimum of 82.4% with
15 SRF-IDS detectors. This is expected because multiple SRF-IDS detectors generate extra
overhead in the network and monitored nodes may receive other nodes’ metrics, not related
to their direct neighbours. Therefore, monitored nodes drop more unrelated packets, reducing
the PDR metric.

A comparison of the Median PDR of different scenarios is shown in Figure 5.3. Normal
scenario has a median value of almost 95% in all simulated cases while in BHR scenario this
percentage drops more than 15%. This big difference shows how attackers can degrade the
performance of the network. Comparing the median number of PDR in SRF-IoT scenarios
versus Normal scenarios, we can see that a small difference of a minimum 5% and maximum
13% exist. This means that as more SRF-IDS detectors are deployed, SRF-IoT framework’s
performance declines. On the other hand, those results indicate that SRF-IoT framework can
assist nodes to avoid extra processing and energy overhead, and operate in the same levels as
in normal scenarios.
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Fig. 5.2 Median Packet Delivery Ratio (PDR) results in SRF-IoT scenario after deploying 5
to 15 SRF-IDS detectors

Fig. 5.3 Comparing Median Packet Delivery Ratio (PDR) per scenario after deploying 5 to
15 SRF-IDS detectors

Looking at the Median Parent Switch in Figure 5.4, results depict that our proposed
framework requires less than 200 parent switches when deploying less than 15 SRF-IDS
detectors. Specifically, the bar chart shows that SRF-IoT scheme has a median of 140 parent
changes with 5 deployed SRF-IDS detectors, declining to 97 changes with 7 detectors, and
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then going up to 258 when SRF-IDS detectors are 15. It is clear that having more than 12
SRF-IDS detectors, parent changes are almost doubled. An explanation is that as we increase
SRF-IDS nodes, multiple detectors monitor similar nodes, and they send multiple metrics for
the same monitored nodes. This could lead to high or low trust values which in turn leads to
parent changes. The normal scenario indicates that parent switch should occur less than 3
times per node on average.

Figure 5.5 compares the values of Median Parent Switch metric for three different
scenarios; SRF-IoT, BHR and Normal namely. Generally speaking, the scatter chart indicates
that SRF-IoT framework achieves low parent changes, with a small increase from the levels
of Normal scenarios. Looking more closely, using the SRF-OF, nodes change parents almost
3 times less than in BHR. Attacking the network causes approximately 600 parent changes
on average while in SRF-IoT we have less than 190 switches and in Normal scenarios we
have a median of 30 switches. The only exception is the case with 15 SRF-IDS detectors in
which SRF-IoT sees a surge in parent changes. The high parent switch number explains the
low PDR that we previously saw in that scenario. Assuming the selected parent is an attacker,
we expect to have more dropped packets, affecting the PDR metric. This means malicious
actors successfully affect the network performance using rank and blackhole attacks. Another
conclusion is that SRF-IoT scheme drastically reduces parent switches in almost all cases,
and even in the worst case it keeps the network more stable than in BHR scenario in which
both PDR and parent switches metrics are high.

Fig. 5.4 Median Parent Switch results in SRF-IoT scenario after deploying 5 to 15 SRF-IDS
detectors
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Fig. 5.5 Comparing Median Parent Switches per scenario after deploying 5 to 15 SRF-IDS
detectors

The Median Packets Dropped obtained after deploying 5 to 15 detectors in SRF-IoT
and BHR scenarios are displayed on Figure 5.6. Looking at BHR scenario, the median
percentage of packets dropped is initially 38.6% when 5 SRF-IDS detectors are deployed.
The percentage fluctuates around 40% until the scenario with 12 SRF-IDS detectors in which
the percentage declines at 35%. This is related to the previous parent switch metric because
in scenarios with higher packets dropped, more parent changes occur. Regarding SRF-IoT
scenario, it has an increasing trend of dropping packets as the number of SRF-IDS detectors
becomes bigger. A median of 14.2% of the packets are dropped when 5 SRF-IDS detectors
are deployed, falling to 8.2% with 7 detectors and then goes up to 16.5% with 8 detectors.
Then, the median value remains at the same level apart from the scenarios with 12 and
15 SRF-IDS detectors in which the median dropped packets climb up to 20.2% and 25%
respectively. Therefore, our framework may assist the network to avoid blackhole attackers
and reduce dropped packets.

As a last metric, the Median SRF-IDS Packet Overhead is illustrated in Figure 5.7. In all
scenarios, SRF-IDS generates less than 2.5% traffic overhead in the network. The only case
where the SRF-IDS packet overhead is relatively high is at the scenario with 15 SRF-IDS
detectors. The median value reaches 2.2% because the monitored nodes are trying to avoid
attackers - we have the highest median parent switches in this scenario- the number of
dropped packets is also increasing, and thus, SRF-IDS detectors attempt to help monitored
nodes by sending them trust metrics. All the previous metrics indicate that monitored network
is greatly affected by attackers in that specific scenario. Generally, the number of packets
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Fig. 5.6 Median Packets Dropped per scenario after deploying 5 to 15 SRF-IDS detectors

Fig. 5.7 Median SRF-IDS Packet Overhead in SRF-IoT scenario after deploying 5 to 15
SRF-IDS detectors

sent from SRF-IDS detectors depends on the number of monitored nodes. For example,
SRF-IDS detectors which are deployed near multiple nodes of the monitored network, send
more packets in order to update nodes with trust metrics. In our case, SRF-IDS nodes are
randomly deployed in the simulated scenarios. As depicted in the column chart, SRF-IDS
helps monitored nodes avoid attackers with very low packet overhead.
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In conclusion, the experimental evaluation of SRF-IoT framework against rank and
blackhole attackers showed higher PDR, lower packets dropped as well as lower parent
switches in comparison with the malicious scenarios that SRF-IoT has TM disabled. Results
indicate that the proposed framework can aid nodes to choose the proper nodes as parents
and avoid the compromised ones. According to the evaluation results, deploying 7 SRF-IDS
detectors in a network with at least 36 nodes generates the best results assuming the one sixth
of them might be compromised. On the other hand, results depicted that deploying 5 to 10
SRF-IDS detectors still helps the IoT network to isolate and avoid attackers.

5.2 Evaluation in Medium Network Under Combined Rank,
Blackhole and DIS Flooding Attacks

In this section, the evaluation of SRF-IoT framework in a complex attack scenario is presented.
Specifically, the proposed scheme is evaluated in a simulation environment where malicious
nodes attack the network using a combination of blackhole, rank and DIS flooding attacks.
The aim of this experiment is to explore and evaluate the system under complex attacks.

5.2.1 Scenarios and Configuration

Similarly to the previous section’s scenarios, Table 5.4 indicates the scenarios and the number
of nodes deployed in each scenario. Three different cases were studied; normal scenario
with MRHOF as OF, malicious using MRHOF as OF, and SRF-IoT using SRF-OF as OF.
Similarly to previous experiment, all three scenarios have 1 Sink/BR, 1 IDS root and 30
Benign nodes. The difference with the experiments in previous section is the addition of 6
DIS flooding attacker nodes in malicious and SRF-IoT scenarios. As the table indicates, those
nodes increase the total nodes deployed in those two scenarios. The rest number of deployed
nodes remain the same as in the previous section. Normal scenario is used just for comparison
purposes as it has the same configuration as before. DIS flooding attackers are configured to
broadcast a batch of 50 RPL DIS packets every 30 seconds. The DIS flooding configuration
is changed in comparison with the previous section because we wanted to increase the impact
of the attack to the network. The attack is launched after the first simulation minute is passed.

The malicious scenario in which nodes use the default MRHOF is studied to understand
and collect measurements regarding the impact of an attack that combines DIS flooding
with rank and blackhole attacks. Moreover, the level of difficulty increases as there are two
types of malicious attackers. SRF-IDS detectors are deployed to collect statistics, but TM
module is not enabled in this specific scenario. SRF-IoT scenario is simulated to evaluate the
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Table 5.4 Number of node types in each scenario

Sink/BR IDS
root

Benign
nodes

Malicious
nodes IDS Detectors Total

Normal scenario
with MRHOF 1 1 30 -

5 to 15, Trust
Module Disabled 37 to 47

Malicious scenario
with MRHOF 1 1 30 6 BH and Rank

6 DIS flooding

5 to 15, Trust
Module Disabled 49 to 59

SRF-IoT scenario
with SRF-OF 1 1 30

5 to 15, Trust
Module Enabled

implemented SRF-IoT framework that attempts to protect IoT devices from attackers using
the SRF-OF and SRF-IDS. Having two different types of routing attackers, DIS flooding and
rank/blackhole attackers, increases complexity of detection mechanism to identify and avoid
them. Thus, SRF-IoT framework is evaluated in a complex scenario with larger number of
attackers than any previous scenario. SRF-IDS detectors are deployed in fully a operational
state with TM module enabled in this scenario.

Generally, SRF-IDS operates in a different RPL Instance using the default MRHOF as in
previous experiments. Moreover, SRF-IDS is deployed in all scenarios but only in SRF-IoT
scenario the TM module is enabled. In other two scenarios, SRF-IDS does not operate as
part of SRF-IoT scheme, and therefore, SRF-IDS is deployed to allow us collect various
measurements.

As regards to the simulation settings and metrics, for all the scenarios we have used
almost the same configuration and metrics defined in Subsection 5.1.3. The difference with
the previous section’s experiments is the number of repetitions. In those new experiments,
SRF-IoT scenario with SRF-OF, malicious scenario with MRHOF, and normal scenario are
repeated 10 times.

5.2.2 Evaluation Results

Results from evaluating the SRF-IoT framework are discussed in this subsection. We utilise
the same notation as before; the malicious scenario using MRHOF is referenced as BHR
scenario, the normal scenario using MRHOF as Normal scenario and the malicious scenario
using SRF-OF as SRF-IoT scenario.

The Median Packet Delivery Ratio (PDR) of SRF-IoT scenario is depicted in Figure
5.8. Generally, SRF-IoT achieves high median PDR in all scenarios. As it is shown, the
median PDR starts with less than 90%, gradually rises up to 93% as the number of SRF-IDS
detectors increases and then falls down to 84% when 15 SRF-IDS detectors are deployed.
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Fig. 5.8 Median Packet Delivery Ratio (PDR) for combined attacks in SRF-IoT scenario

Fig. 5.9 Comparing Median Packet Delivery Ratio (PDR) for combined DIS flooding with
rank/blackhole attacks

A comparison of Median PDR for the three different scenarios is depicted in Figure 5.9.
As it can be seen, the median PDR values for SRF-IoT and BHR scenarios fluctuate around
80% and 90% as the SRF-IDS detectors increase, while in Normal scenario the median PDR
is steady throughout the different simulated cases. The cause of those fluctuations is the
randomness that simulator introduces in each simulation as well as the multiple attackers
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which cause a random behaviour of nodes. It is obvious that BHR scenario has the lowest
PDR in comparison with SRF-IoT and Normal cases. The highest difference in PDR between
BHR and SRF-IoT scenarios is 16% when 8 SRF-IDS detectors are deployed. The outcome
of this figure is that attacks clearly affect PDR of IoT network and by deploying SRF-IoT,
smart devices may successfully limit the impact of complex attacks.

Fig. 5.10 Comparing Median Packets Dropped in complex attacks scenarios

Results comparing the Median Packets Dropped in SRF-IoT and BHR scenarios are
depicted in Figure 5.10. It is clear that attackers in BHR scenario drop more packets than in
SRF-IoT scenario. The fluctuations observed in PDR metric, exist also in packets dropped
figures. In BHR scenarios where 7, 11, and 13 SRF-IDS detectors are deployed, the median
dropped packets are around 28%. Moreover, as expected, the median PDR for the scenarios
mentioned had the highest values. Looking at SRF-IoT scenario, in most cases the median
packets dropped are less than 20% which proofs the good performance of the framework.
The only case that SRF-IoT does not perform well is the one with 15 SRF-IDS detectors in
which the median packets dropped are about 26%.

Another important metric is the Median Parent Switch and is presented in Figure 5.11.
From an initial analysis, we observe that Normal scenario has a steady median parent switch
of 31, while SRF-IoT framework works well by keeping the number of parent switches under
200 in most cases. In BHR scenario, attackers have huge negative impact on the network by
dramatically increasing the number of parent switches by two and sometimes three times
of those occurring in SRF-IoT scenario. In the most cases of SRF-IoT scenarios, the parent
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Fig. 5.11 Median Parent Switch in complex attacks scenarios

changes are less or equal to 200. This means that the proposed framework can actually help
monitored nodes to have a stable network and avoid attackers.

Fig. 5.12 SRF-IDS Median Packet Overhead in complex attacks scenarios

The last metric depicted in Figure 5.12 is the Median Packet Overhead introduced by SRF-
IDS component during the various simulations. It is important to keep traffic overhead caused
by SRF-IDS in low levels so that it does not affect the performance of the neighbouring
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monitored network. The figure shows the overhead to climb up to a maximum median
of 0.18% in the case with 8 SRF-IDS detectors which is very low. This means SRF-IDS
component does not introduce extra traffic overhead. This happens because it sends the
special packets only when information is available for a monitored node.

In conclusion, results from simulating the SRF-IoT framework in a network with complex
routing attacks indicated that it can effectively improve network conditions. In comparison
with the scenarios that SRF-IoT is deployed with TM disabled, higher PDR, lower packets
dropped, and lower parent switches are recorded in all tested scenarios with 5 to 15 SRF-IDS
detectors. However, to achieve an optimised performance, based on the analysed results 8, 9
or 12 SRF-IDS detectors should be deployed in networks with at least 42 nodes.

5.3 Evaluation in Large Network under Combined Rank,
Blackhole and DIS Flooding Attacks

One of the challenges of a newly developed system is to deploy and evaluate it in multiple
environments. In this section, the evaluation of SRF-IoT framework in networks with a large
number of nodes is described. A scenario of over 120 nodes in a network that is attacked by
various attackers is explored and results are discussed.

5.3.1 Scenarios

Multiple scenarios were used to simulate and compare the performance of the proposed
system. Table 5.5 depicts the various scenarios along with the number of nodes in each
scenario. As it is depicted, normal with MRHOF, malicious with MRHOF, and SRF-IoT with
SRF-OF scenarios are created. Each scenario has 1 Sink/BR, 1 IDS root and 120 benign
nodes deployed. Regarding malicious nodes, in the malicious and SRF-IoT scenarios, we
deployed 12 blackhole and rank attackers as well as 12 additional nodes launching DIS
flooding attacks. We have increased the number of benign and malicious nodes so that a
larger network is simulated under multiple combined attacks. Following the same idea from
previous experiments, SRF-IDS detectors are deployed with TM module disabled in both
normal and malicious scenarios so that measurements can only be collected. In SRF-IoT
scenario, TM module is enabled on SRF-IDS detectors to allow SRF-IoT scheme operate
normally. The aim of those scenarios are to explore the behaviour and efficiency of our
proposed SRF-IoT framework in large scale networks where DoS as well as other routing
attacks are launched. This goal has been achieved with the use of Whitefield framework
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Table 5.5 Number of node types in each scenario

Sink/BR IDS
root

Benign
nodes

Malicious
nodes IDS Detectors Total

Normal scenario
with MRHOF 1 1 120 -

23 to 27, Trust
Module Disabled 145 to 149

Malicious scenario
with MRHOF 1 1 120 12 BH and Rank

12 DIS flooding

23 to 27, Trust
Module Disabled 169 to 173

SRF-IoT scenario
with SRF-OF 1 1 120

23 to 27, Trust
Module Enabled

simulator because it allows the simulation of large networks using real-world hardware
platforms.

The number of deployed detectors was defined based on the results from previous
experiments. Considering that an average of 7 SRF-IDS detectors were needed to achieve
good detection performance in previous experiments in Section 5.1 for a network with 36
nodes, we decided to deploy 23 to 27 SRF-IDS detectors for monitoring at least 144 nodes.
Specifically, after several experiments in medium scale networks we defined that the ratio of
monitored nodes to SRF-IDS detectors is 5:1. For this reason, we expect to see a similar ratio
pattern in the experiments with large number of nodes in order to achieve good results. DIS
flooding attackers are configured to send 50 DIS packets every 30 seconds. This configuration
is similar to the one presented in Subsection 5.2.1.

5.3.2 Configuration and Metrics

Simulation settings for testing the SRF-IoT framework remain the same as those presented
in Subsection 5.1.3. The only difference is the number of repetitions. Normal scenario with
MRHOF, malicious scenario with MRHOF, and SRF-IoT scenario with SRF-OF are repeated
four times in the experiments presented in the current section. The reason for reducing the
number of repetitions is the increase in processing time that was needed to simulate the large
number of nodes in each experiment.

Regarding the metrics, Subsection 5.1.3 describes most of them. Some additional metrics
are the following:

• True Positive (TP) rate: The percentage of malicious DIS flooding attackers that are
correctly detected as malicious, and reported by SRF-IDS nodes more than 2 times. The
reporting value is defined by the threshold_detectors variable which is implemented in
Section 4.8.

• False Positive (FP) rate: The percentage of benign nodes that are incorrectly detected
as malicious.
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The two metrics above are calculated as an average from the four repetitions per scenario.
Moreover, the two metrics are used for examining the performance of SRF-IDS for detecting
DIS flooding attackers in large networks. The mathematical definitions for above metrics are
described below. The True Positive (TP) rate, E[TP], is given by:

T Pi =
Detected_MN
Actual_MN

(5.11)

E[T P] =
4

∑
i=1

T Pi (5.12)

where i is the repetition number, Detected_MN is the number of malicious DIS flooding
attackers detected more than 2 times by SRF-IDS detectors, Actual_MN is the number of
actual DIS flooding attackers deployed in the scenario, and E[T P] the average TP percentage
that is calculated from the results of four repetitions. The False Positive (FP) rate, E[FP], is
given by:

FPi =
Detected_MN
Total_Nodes

(5.13)

E[FP] =
4

∑
i=1

FPi (5.14)

where Detected_MN is the number of incorrectly identified benign nodes as malicious
nodes, Total_Nodes is the total number of nodes deployed in the scenario, E[FP] is the
average FP percentage that is calculated from the results of four repetitions.

5.3.3 Evaluation Results

The results produced from the simulated scenarios are presented in this subsection. The same
notations are used to reference scenarios; malicious scenario using MRHOF is referenced
as BHR scenario, normal scenario using MRHOF as Normal scenario and the malicious
scenario using SRF-OF as SRF-IoT scenario.

Figure 5.13 presents the Median Packet Delivery Ratio (PDR) of SRF-IoT scenario. As it
is depicted, the highest median PDR value is 52% and is achieved when deploying SRF-IoT
framework along with 23 SRF-IDS detectors. As the number of SRF-IDS detectors increases,
the percentages slightly falls by 7% and then climbs up to 48%, maintaining the same levels
for 25 and 26 SRF-IDS detectors. In the last scenario with 27 SRF-IDS detectors, the median
PDR drops down to the same levels as the scenario with 24 SRF-IDS detectors.
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Fig. 5.13 Median Packet Delivery Ratio (PDR) in large networks for combined attacks

A comparison of Median PDR among the three different scenarios in which the number
of SRF-IDS detectors varies, is showed in Figure 5.14. It is clear that the the median PDR in
all cases falls below 80%, and in both SRF-IoT and BHR scenarios the recorded results have
no big difference. Looking more closely, Normal scenario maintains a steady median PDR
at around 74% in all scenarios. Regarding SRF-IoT scenario, the median PDR ranges from
45% to 52% which is very low in comparison with the Normal scenario. However, it shows a
slightly better performance in most cases if we compare it with BHR scenarios in which the
median PDR is around 41%. Two exceptions are observed in SRF-IoT scenarios; the scenario
with 24 and 27 SRF-IDS detectors in which the median PDR in both BHR and SRF-IoT
scenarios has less than ~1% difference. This means SRF-IoT fails to detect attackers and help
monitored nodes to avoid them in those scenarios. All in all, the best results for SRF-IoT
framework are observed in the scenario with 23 deployed SRF-IDS detectors, following the
scenarios with 25 and 26 SRF-IDS detectors.

The Median Packets Dropped metric of SRF-IoT and BHR scenarios is depicted in Figure
5.15. Overall, in BHR scenario the packets dropped are more than 48% and remain at similar
levels in all cases with slight increase. Regarding SRF-IoT scenario, the median remains at
lower levels than BHR scenario but there are some fluctuations. As it is shown, SRF-IoT
scenario starts with a median of 23%, declines dramatically to 9%, then surges to 24% and
after a fall of 9% it climbs again up to 30%. On the opposite side, BHR scenario starts with a
median of 40%, then slightly falls to 38% with 24 SRF-IDS detectors and then goes up to
40% in the rest cases. Therefore, in SRF-IoT scenarios we have less packets dropped in all
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Fig. 5.14 Comparing Median Packet Delivery Ratio (PDR) in different scenarios for combined
attacks

scenarios which means, if we consider also the PDR metric, the proposed framework works
as expected.

Fig. 5.15 Median Packets Dropped in large networks with complex attacks

Another important metric is Median Parent Switch. In Figure 5.16, the results from
the three scenarios is presented. From a first analysis, the number of parent switch in both
SRF-IoT and BRH scenarios is relatively high in comparison with Normal scenario. However,
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SRF-IoT shows a small decrease in the numbers which means the framework could help
nodes avoid attackers with the proper number of deployed detectors. In the Normal scenario,
a starting median of 274 parent changes occurs with 23 SRF-IDS detectors and after a small
increase to the metric using 24 detectors, the number remains at similar levels in the rest
cases. Looking at SRF-IoT scenario, the median parent switches start from 3567 using 23
SRF-IDS detectors, then the median reaches 4643 in the next case and in the next two cases
it declines until it reaches 3248 parent switches. The last case of SRF-IoT scenario with 27
SRF-IDS detectors shows a dramatic increase of 5277 parent switches. As regards to BHR
scenario, a significant rise in parent switches is depicted with a minimum median of 6655
and a maximum value of 8648. As already mentioned in previous sections, SRF-IoT does not
have TM enabled in BHR and thus, the fluctuations observed in the simulations is caused by
the random behaviour of the nodes. Summarising, SRF-IoT can still help an IoT network to
reduce parent switches and keep a network stable by deploying 23 to 26 SRF-IDS detectors.
This is proved by the results of median PDR, packets dropped and parent switches.

Fig. 5.16 Comparing Median Parent Switch of three scenarios under complex attacks

Results for the SRF-IDS Median Packet Overhead are shown in Figure 5.17. It is obvious
that SRF-IDS component of SRF-IoT framework produces very low traffic overhead in the
network during its operation. The median packet overhead is less than 0.25% in all cases
while in two cases the median value falls down to 0.07% and 0.12% when 24 and 26 SRF-IDS
detectors are deployed respectively. Hence, SRF-IoT framework does not generate too many
packets to interfere with the monitored network.
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Fig. 5.17 SRF-IDS Median Packet Overhead in large networks under complex attacks

The aim of SRF-IDS component of SRF-IoT framework is to identify DIS flooding
attackers as shown in Chapter 4. Thus, we find useful to evaluate the component in the
scenario with large scale network. A metric used to examine the performance of SRF-IDS
for detecting DIS flooding attackers is the TP and FP rates per scenario. Figure 5.18 presents
the average TP and FP rates obtained by examining the results from four repetitions. The TP
trend starts with an initial high value of 87.5% and then, as the number of SRF-IDS detectors
increases, the TP percentage declines, reaching a minimum of 50%. Regarding the FP rate, it
starts with a very low value of 1.4% and as the number of SRF-IDS detectors rises up, the
value reaches a maximum of 3.4%. Therefore, results indicate that SRF-IDS can effectively
detect DIS flooding attackers with an average TP of 87.5% and relatively low FP rate.

To sum up, the evaluation of SRF-IoT in a large network with over 120 nodes showed that
it can improve network performance and assist monitored nodes to avoid malicious actors.
Several metrics depicted that it is a challenge to avoid complex attacks in large networks and
thus, the improvement from BHR scenarios was minimised. However, the deployment of
less than 27 SRF-IDS detectors, and specifically 23 SRF-IDS detectors, showed that it can
actually detect DIS flooding attackers efficiently, and enhance PDR performance by avoiding
routing attackers with the minimum number of parent switched. Consequently, 23 SRF-IDS
detectors are needed to effectively detect attackers with SRF-IoT framework, defining the
ratio of monitored nodes to SRF-IDS detectors to be 6:1.
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Fig. 5.18 SRF-IDS TP and FP per scenario

5.4 Machine Learning SRF-IDS Detection Module

The latest advancement in SRF-IDS component is the addition of a Machine Learning (ML)
feature in the Detection module that will allow detecting unknown attacks. The novelty of
our ML approach is that ML model is trained using the datasets created from simulations
presented in previous sections. In this way, ML model is trained using more realistic data.
ML algorithms can be used to train a model for predicting and classifying network traffic.
Our main goal of creating an ML-based Detection module for SRF-IDS is to detect known
complex attacks such as rank and blackhole attackers as well as unknown attacks. As we have
seen in previous sections, simple routing attacks such as DIS flooding can be detected by
SRF-IDS component using thresholds. Moreover, other routing attacks such as blackhole and
rank attacks can be mitigated with the use of trust-based OF in SRF-IoT framework. However,
a combination of routing, flooding and other types of attacks may bypass our trust-based
SRF-IoT scheme and cause serious damage to the network. Therefore, having an embedded
ML module trained to detect complex attacks will significantly enhance SRF-IoT’s detection
performance.

Nowadays, many ML algorithms exist in the literature for training a model from existing
datasets. In this project, Google AutoML [110] and Microsoft Azure ML [111] are used to
train our ML model which will be embedded into SRF-IDS TM module. Google AutoML is
an automated and simple to use tool that provides researchers the opportunity to study and
deploy different ML approaches. It has the possibility to scale up an ML model based on the
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needs of the user. Moreover, it automatically chooses the most appropriate algorithm based
on the dataset available. A similar ML as a service provider is MS Azure ML. This service
allows users to generate and handle custom ML solutions. In addition, it assist users with
extending, and deploying their workloads to the cloud. An advantage of MS Azure ML is that
it gives the flexibility to the user to choose a specific ML algorithm from a list of well-known
supervised, unsupervised or semi-supervised algorithms. Both platforms are explored so that
the one with the best performance will be adopted in SRF-IoT framework.

5.4.1 Design

The SRF-IDS component of SRF-IoT scheme at its current design does not detect unknown
attacks. It was designed using threshold and trust-based mechanisms to detect DIS flooding,
rank and blackhole attackers. For this reason, an ML-based module would be a great feature
to add and improve its detection performance. Learning from the current behaviour of the
nodes will allow SRF-IDS to later identify known and unknown attacks, achieving high
detection rates. As we have already examined and evaluated SRF-IDS in several simulations,
the results obtained from the scenario with 30 benign nodes in Section 5.1 have been used as
the basis of the learning procedure for the ML-based module. Specifically, packet capture
(pcap) files generated by Whitefield framework for the referenced scenario were used. A
pcap file contains all network packets exchanged from a specific node. Creating a realistic
dataset would need realistic packet captures. Thus, only the pcap files of SRF-IDS detectors
were collected and analysed during the learning procedure. Any packet sniffed by a SRF-IDS
detector is recorded into its pcap file.

Through the learning procedure, it was discovered that configuration used for each
simulated scenario included specific IDs for each deployed node. For example, if node with
ID 3 is an attacker, ML model will learn that attacker is always the node with ID 3. In order
to avoid this problem and allow the ML model to intelligently detect malicious nodes based
on their behaviour and not based on their IDs, a different ID should be assigned at each
malicious node in the test and training datasets. If we had the same node ID in both training
and testing sets, the ML model would give wrong prediction results.

A new simulation configuration was created with the same parameters described in the
previous chapter. The only difference is that node IDs are randomly assigned to attackers
so that nodes have different IDs from the first configuration. Then, the new simulation
configuration was used in the Whitefield framework simulator to evaluate the SRF-IoT.
Scenarios were repeated 10 times; the same number of repetitions as in previous simulations.
The resulting pcap files from this experiment are used to create the testing dataset.
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5.4.2 General Approach

The approach followed for building the ML model is described in this section. All processes
described in the subsections below are depicted in Figure 5.19.

Dataset Creation

The first step before training and deploying an ML model, is to produce a dataset for training
the model. In order to create a dataset, we have used the network traffic produced during our
simulations explained in Section 5.1. Whitefield framework has the option to export pcap files
for each node of a simulation. Regarding SRF-IDS detectors, they had promiscuous mode
enabled in all the experiments so that every packet received in their RX range was recorded in
the pcap file. A large number of pcap files were generated during each simulation. The next
step is to collect only the pcap files of SRF-IDS detectors for each simulated scenario. This
was done because the general concept is to create an ML-based module for SRF-IDS using a
realistic approach. Achieving that, required us to collect data from devices that actually sniff
traffic, and avoid using the simulator’s functionalities. Therefore, the ML model is trained
and evaluated using the packets received by SRF-IDS detectors.

Pre-processing

After collecting pcap files from SRF-IDS detectors, all files had to be merged into one. For
each repetition of each simulated scenario, a pcap file per SRF-IDS detector is generated.
Therefore, all those files from different simulations were combined together so that a large
pcap file per scenario is created. Assuming, for example, that sim5-rep1IDS1.pcap is the
file of SRF-IDS detector 1 (IDS1) in the scenario with 5 SRF-IDS detectors (sim5) in first
repetition (rep1), and sim5-rep1IDS2.pcap is the file for SRF-IDS detector 2 in first repetition,
a new file called sim5-rep1Merged.pcap is created which contains the packets of all SRF-IDS
detectors, of the first repetition from the scenario with 5 SRF-IDS detectors. The output
of this process is one pcap file per repetition. Then, the same process is repeated to merge
together the pcap files of all repetitions of each scenario. The result of this task is one pcap
file per scenario.

Packet Classification and File Conversion

Once the dataset is formed, packet labelling or classification is the next step. Each packet
is classified as Malicious or Benign. Classification is done based on conditions that are
explained in the next sections. Packets contain several fields such as source IP, destination IP,
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Fig. 5.19 Procedure followed

protocol etc. An analysis was carried out on network packets to understand and choose the
packet fields that contain useful information. For example, rank field of RPL DIO packet was
selected to identify rank attack. Packets with rank 129, the rank value of malicious nodes,
were classified as Malicious. Regarding blackhole attackers, RPL packets with destination a
malicious node are classified also as Malicious. As for other attacks such as DIS flooding,
several simulations indicated that SRF-IDS was able to detect them with high detection rate.
Therefore, the ML model is designed to focus on complex attacks such as rank and blackhole
attacks. As a last step of this task, processed packets have to be merged together so that one
pcap file is created for all the simulated scenarios. The outcome of this process are two files
only, the training and testing datasets.

The next task is the file conversion from pcap format into Comma-separated values (CSV)
format. This was necessary as the ML tools allow only CSV files extensions as datasets.
Thus, the merged pcap files had to be converted into CSV files. At the end, we have a training
dataset and a testing dataset in CSV format.

Learning and Testing Phases

Learning procedure starts right after the datasets are created. Google’s Cloud Datastore and
Microsoft’s Azure Datastore are used to store the datasets in each platform in the cloud. It
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allows the user to manage, edit and analyse datasets before proceeding to any training task.
Once data pre-processing is finished, the learning procedure starts. Google AutoML handles
all training parameters so that it automatically adjust them to achieve the highest detection
performance. Testing dataset is used as the evaluation method. Results are exported and
analysed in the dashboard provided by the Google platform.

The same process is repeated in MS Azure ML. The difference is that in MS Azure ML
user has to design the experiment which includes defining the flow to be followed from
feature selection to evaluation model as well as configuring the actual parameters of the
deployed ML algorithms. The default parameters provided by the platform have been used
in AzureML. After the evaluation phase, MS Azure ML allows the user to visualise results,
check different metrics, and compare the performance of the deployed algorithms.

5.4.3 Implementation

The implementation steps for creating and validating the ML model are discussed in this
section. Dataset implementation procedure is explained in detail. Also, packet fields and
feature selection method are discussed.

Dataset Creation Process

Both training and test datasets are created from the experiments executed in Section 5.1.
In those scenarios, 30 benign nodes, 6 blackhole attackers, and a varying number of 5 to
15 SRF-IDS detectors are deployed. Basically, simulations of 11 scenarios are repeated 10
times and are analysed for creating the training set. Similarly, 110 simulations, 11 scenarios
repeated 10 times each, are analysed for generating the test set. We divided training and
testing datasets so that ML model is trained using the former, and tested using the latter. The
first 5 repetitions are used for the training set while the rest 5 are used for test set. Only pcap
files generated by SRF-IDS detectors are used to train and evaluate the ML model. This is to
verify that ML model will be as realistic as possible by using the packets captured actually
from the SRF-IDS detectors during the simulations.

After an analysis of the datasets, the number of Malicious packets are less than the Benign
packets. This is expected because the number of attackers deployed in the network is less
than benign nodes. Therefore, there is an imbalance in the created datasets which the selected
classification algorithms in the training phase will need to handle.

In order to create both training and testing datasets, a script was written in Python
language so that pcap files are parsed and analysed. A prerequisite for generating the datasets
is to export and parse pcap files created by the simulations explained in previous section.
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Algorithm 14 presents the steps involved in order to create training and testing datasets.
As both datasets follow the same procedure, the following describes the creation of training
dataset. Assuming pcap files are available, the first step as shown in Algorithm 14 is to merge
all pcap files of training set into one file by calling the merge_train_data_into_pcap() function.
Inside this function, the script iterates over each scenario to combine and merge pcap files
from the first 5 repetitions created by the simulated scenario. As already mentioned before,
only pcap files generated by SRF-IDS detectors were used for dataset creation procedure.

Algorithm 14 Dataset creation process
1: Input: Pcap files exported from simulations
2: Output: Training and test datasets as CSV files
3: merge_train_data_into_pcap();
4: merge_test_data_into_pcap();
5: for each sim in SCENARIOS do
6: create_training_csv(sim);
7: create_test_csv(sim);
8: end for
9: for each file in SCENARIOS_CSV do

10: merge_and_ f ilter_train_csv( f ile);
11: merge_and_ f ilter_test_csv( f ile);
12: end for

The output of this function is a pcap file per scenario that contains all packets captured
from SRF-IDS detectors. Next step is to call the create_training_csv() for each scenario to
rename packet fields, classify packets, filter packet types, and finally create a CSV file from
the pcap file. Specifically, this function renames packet headers for better understanding.
Then, it classifies packets into “Malicious” or “Benign”. This is very significant as it will
allow the ML algorithm to learn when a packet belongs to each category. We created a new
field in the CSV file called “Category”. This field indicates if a packet is “Malicious” if any
of the following conditions occurs:

• Rank field has a value equal to 129.

• Next-hop destination IP belongs to a rank/blackhole attacker.

The first condition means that a rank attacker advertises false rank while second condition
means that the next-hop node is a blackhole attacker. Packets that do not fulfil any of the
above conditions, they are treated as “Benign”. The last task of the function is to filter packets
so that only ICMPv6 and UDP packets are contained in the CSV file. This aims to remove
any unnecessary packets captured by devices The resulting file is a CSV file that contains
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Table 5.6 Packet fields

Field name Description
Rank DODAG rank value of the node sending the DIO packet
wpanDst MAC layer destination address in hexademical
wpanDst16Int MAC layer destination address in decimal
Src Source IP address of the sending node
Dst Destination IP address of the sending node
Parent Parent IP of the sending node
Code RPL message type
Flag Packet flags
wsInfo Additional information about the packet
ipv6Plen IPv6 packet payload length
Length Frame length
ipv6Nxt IPv6 packet next header
Time Absolute time when this frame was captured

DAOSequence
A sequence number incremented at each unique DAO message
from a node and echoed in the DAO-ACK packet

Reserved Reserved flag, must be zero
rplInstance Shows which RPL Instance the DODAG is part of

many useful information such as source IP, destination IP, protocol, timestamp and other
fields. As each scenario generated a different CSV file, we had to merge all CSV files into
one large file. This process is done by merge_and_filter_train_csv() function. The output of
this function is a CSV file with many fields available for training our ML model. As indicated
in the algorithm,the procedure described for creating the training dataset, it is repeated for
creating the test dataset.

Packet Processing

Each network packet sent by a node contains a large amount of fields from PHY, MAC,
6LoWPAN, network, transport and application layers. However, for our experiments a total
of 16 fields were chosen to be included in the datasets. The packet fields contained in both
training and testing datasets are shown in Table 5.6. As it is depicted, some fields contain basic
network information while some of them contain RPL-specific information. The selection of
those packet fields was based on detailed packet analysis. Several pcap files were analysed
to decide which fields contain critical information. Apart from that, the way of how routing
attacks work was considered to create the list of 16 packet fields. For example, the Rank
and ipv6Nxt fields are useful to attackers as they are usually modified by routing attackers to
advertise fake rank or route a packet to a blackhole node.
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5.4.4 Configuration and Metrics

The configuration and metrics used for evaluating the ML model are discussed in this
section. Transformation of data was used in both platforms to normalise data and make
them appropriate for the ML algorithms. Moreover, the threshold for the learning rate was
configured at 0.5 in both platforms. In MS Azure ML, several ML algorithms are available
to be chosen by the user in order to train and test the ML model. As the current task was to
classify packets into two categories, the decision for choosing the training algorithms was
based on accuracy and training time [112]. The first algorithm chosen is 2-class Decision
Forests which usually shows high accuracy but needs moderate training time [59]. The second
ML algorithm is the 2-class Support Vector Machine (SVM) [60] which is good at training
the model with large feature sets but usually shows less accuracy than DF.

Regarding Google AutoML, the user does not select any algorithm as Google uses its
own ML algorithms. Therefore, the only available configuration for the user is to choose the
structure of the data and set the input datasets.

In regard to the metrics, the following are used to evaluate the ML model:

• AUC: It is the Area under the Receiver Operating Characteristic (ROC) Curve. AUC
value ranges from zero to one and the higher it is, the better.

• Accuracy: It is the ratio of the number of true predictions to the total number of cases.

• Precision: It is the ability of a model to avoid labelling negative samples as positive.
Low precision indicates high FP rate.

• Recall: It is the ratio of correctly classified as positive samples divided by the total
number of positive samples. It is actually the TP rate.

• F1 score: It tells how precise and robust is the classifier. Actually, F1 score is the
harmonic mean of precision and recall metrics. It provides a fair representation of both
false positives and false negatives. However, true negatives are not taken into account
in the calculations.

5.4.5 Evaluation Results

Results obtained from the two ML platforms are presented in this section. Table 5.7 depicts
the three ML algorithms used in the experiments along with the calculated metrics. It is
obvious that Google AutoML algorithm shows superior performance in comparison with
2-class SVM and 2-class Decision Forest (DF). Evaluation showed a precision of 93.3% in
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Table 5.7 ML algorithms evaluation results

Metric 2-class SVM 2-class
Decision Forest Google AutoML

Accuracy 76.1% 92.2% -
Precision 3.5% 76.7% 93.3%
Recall 2.8% 62% 93.3%
F1 Score 3.1% 68.6% 93.3%
AUC 0.49 0.84 0.92

Google AutoML, followed by 76.7% and 3.5% in 2-class DF and 2-class SVM respectively.
Although Google AutoML does not provide Accuracy metric, the SVM achieves 76.1%
while DF’s is increased by 16.2%. The F1 Score is one of the most important metrics to look
for when a classification algorithm is evaluated because is a mean of Recall and Precision
metrics. The highest F1 Score is 93.3% achieved by Google AutoML, followed by 68.6% of
DF and the lowest one is 3.1% of SVM. Another metric is AUC which shows if the model can
discriminate between malicious and benign packets. Based on the results, Google AutoML
has 0.92 while 0.84 and 0.49 are recorded for DF and SVM algorithms respectively.

Another interesting figure generated by Google AutoML is the feature importance. As
depicted in Figure 5.20, Google AutoML analysed the dataset to find the most important
features after the training phase of the ML model. As illustrated, only 3 out of 16 features
are important to consider. Specifically, Rank feature is more than 80% important, wpanDst
field is less than 20% important and Dst has very low importance. Rank field is obviously
significant to have it as rank attack modified this specific packet field. For the other two fields,
further analysis should be made to determine if they are really useful for the training of ML
model. Although the rest fields seem to have low importance, some might be needed to avoid
data overfitting. Therefore, careful analysis of the features should be done before proceeding
to feature selection which will enhance ML model’s performance.

Generally, the low performance of SVM and DF algorithms could be due to the imbalance
datasets that were created for training purposes. The default settings of the ML algorithms
trained the model in a way that low performance is achieved as depicted by the metrics. On
the other hand, Google AutoML produced great results and handled the imbalanced dataset in
a way that it didn’t affect its performance. For this reason, the ML model created by Google
AutoML will be deployed as part of the SRF-IDS component of SRF-IoT framework.
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Fig. 5.20 List of features ordered by importance

5.5 Comparison with Related Works

This section focuses on the discussion and the comparison of the results obtained from the
proposed SRF-IoT framework with other similar studies.

Table 5.8 presents an overview of the results obtained from the evaluation of SRF-
IoT framework in the current chapter. As it can be seen, we have evaluated the SRF-IoT
framework in medium and large scale networks under blackhole, rank and DIS flooding
attacks. The first row represents the results of Section 5.1 in which SRF-IoT demonstrates a
PDR of 92.8%, while only 8.2% of packets are dropped and the overall parent changes are
just 97. The next results from Section 5.2 show high PDR of 93%, while 20% of packets
are dropped and nodes change on average 200 parents. Although, DIS flooding attackers
are added in those scenarios, SRF-IoT framework show good performance. The last results
from Section 5.3 depict a decrease in the metrics. This is due to the large network and the
challenges faces by SRF-IoT to keep the network stable when it is under attack. The analysis
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of results show 52% PDR, just 9% of packets are dropped and 3248 parent switches on
average. All the calculated metrics are median values.

Table 5.8 Summary of SRF-IoT framework results from the scenarios explored in the current
chapter. BH: Blackhole attack, Rank: Rank attack

Attacks Network size PDR Packets
Dropped

Parent
Switches

BH and Rank
Medium (30 BN nodes

plus 6 attackers) 92.8% 8.2% 97

DIS flooding,
BH and Rank

Medium (30 BN nodes
plus 12 attackers) 93% < 20% 200

DIS flooding,
BH and Rank

Large (120 BN nodes
plus 24 attackers) 52% 9% 3248

In Table 5.9, a comparison of our work with four similar works is presented. Specifically,
the evaluation results from the studies of MRTS [79], SRPL-RP [83], SecTrust-RPL [86],[83]
and RPL Pre-installed Secure Mode (PSM) [67] are compared with our proposed SRF-IoT
framework. The metrics used in the comparison are the PDR, parent switches and packets
dropped. In addition, the total number of nodes deployed in each experiment is compared.

The related works that are used for comparison purposes explore rank or blackhole
attackers in medium scale networks. As we wanted to have a similar basis for comparing
all the related studies, the results from Section 5.1 are referenced and used. That specific
section evaluates SRF-IoT framework in a scenario where 30 benign nodes are deployed and
6 nodes launch a combination of blackhole and rank attacks. Thus, simulations have similar
configurations with the other works.

As it can be seen from Table 5.9, most of the studies provide the PDR metric, while only
one of them provides the parent switch and another one the packets dropped metrics. In our
work, we provide all of the aforementioned metrics. Looking at PDR metric, the highest
PDR value is achieved by SRPL-RP with 98.48% in a small network of 16 nodes plus the 4
rank attackers. The second most higher PDR value is from our SRF-IoT framework which
achieves 92.8% in a network of 30 benign nodes plus 6 attackers that launch combined
blackhole and rank attacks. MRTS study follows with a PDR up to 90% in a network with 27
nodes plus the 3 blackhole attackers. The SecTrust-RPL and RPL PSM studies exhibit the
lowest PDR with a value of 80%. Both of them deploy 27 nodes but the former has 3 rank
attackers while the latter has only 1 blackhole attacker. Comparing the rest metrics, parent
switches of SRF-IoT framework are slightly more than the 80 switches observed in MRTS
work. Regarding packets dropped, our work keeps the percentage near 8% which is very low
in comparison with the 22-23% recorded in SecTrust-RPL study.



136 SRF-IoT Performance Evaluation

Table 5.9 Comparison of results with similar IoT-related studies. BH: Blackhole attack, Rank:
Rank attack

Study (Attack) PDR Parent
Switches

Packets
Dropped

Number of
nodes and attackers

MRTS (BH) up to 90% >80 -
27 nodes,

plus 3 attackers

SRPL-RP (Rank) 98.48% - -
16 nodes,

plus 4 attackers

SecTrust-RPL (Rank) 80% - 22-23%
27 nodes,

plus 3 attackers
RPL Preinstalled

Secure Mode (BH) 80% - -
27 nodes,

plus 1 attacker

Our proposed SRF-IoT
(Rank and BH) 92.8% 97 8.2%

30 nodes,
plus 6 BH+Rank

attackers

All in all, it is obvious that the proposed SRF-IoT is an effective solution that achieves
the best results among the current related studies that deploy less nodes and study only single
attacks. SRF-IoT was evaluated in a larger network than other works, using a combination of
blackhole and rank attacks and demonstrates superior performance in most cases.

5.6 Chapter Summary

In the current chapter, experimental evaluation of SRF-IoT framework was presented.In
the first case SRF-IoT was evaluated under rank and blackhole attacks in a medium scaled
network. The second case explored the performance of SRF-IoT under a combination of
different routing attacks including rank, blackhole and DIS flooding attacks. The last case
tests SRF-IoT framework in a large network in which the combination of the three routing
attacks are launched. The specific scenarios, tools and metrics are analysed for each of the
explored cases. New methods of intrusion detection using ML algorithms are also explored.
Specifically, various ML models are studied, trained and evaluated using the datasets created
from previous simulations. Evaluation results from both ML models and different scenarios
are discussed. A comparison of experimental results with other related works is also presented.
SRF-IoT showed improved performance along the different metrics for almost all scenarios.



Chapter 6

Conclusion and Future work

This chapter summarises the results of the research carried out in this project. In addition,
limitations and future improvements are proposed.

6.1 Conclusions

In this project, a novel security framework is proposed, called SRF-IoT, for protecting IoT-
based networks against network layer attackers. The main focus of our framework is to
detect and identify attackers that exploit routing protocols and especially the RPL protocol.
Assisting monitored nodes to avoid attackers, we minimise the impact of an attack in IoT
network. We studied the impact of some severe routing attacks in IoT networks including
“Hello” or DIS flooding, rank and blackhole attacks.

As our goal was to develop a solution with real-world impact, we have chosen to design
and implement the solution in a known OS, ContikiOS/NG that is being used by many
manufacturers. The Cooja simulator was used to simulate the initial scenarios and investigate
the characteristics of an RPL-based IoT network under its normal operation. Then, we
studied and implemented DIS flooding attack, and evaluate a network in Cooja under this
specific attack. Specifically, experimental results of “Hello” or DIS flooding attack showed an
increase in power consumption of deployed devices by 35%. This is due to the large number
of DIS packets exchanged in the network. Effective defence methods based on thresholds
were designed, implemented and tested in ContikiOS. Evaluation of the threshold-based
approach showed 100% True Positive (TR) rate when 3 or more detectors are used in the
network and less than 1% False Positive (FP) rate.

The next step was to explore other routing attack such as rank and blackhole attacks.
Those two routing attacks were implemented in Contiki-NG and their impact on network
performance was explored. Evaluation results depicted that blackhole and rank attackers may
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largely affect the network operation by reducing the mean Packet Delivery Ratio (PDR) by
14% while almost 42% of packets sent were dropped in some cases. Based on the obtained
results, we designed and developed a new security framework in Contiki-NG called SRF-IoT
for detecting RPL routing attackers. In this framework, a trust-based solution, called SRF-OF,
aims to identify and isolate traffic and topology -based routing attackers while an external
IDS, called SR-IDS, aims to detect resource-based routing attackers. The proposed SRF-OF
method is a trust-based system that makes use of the external SRF-IDS to get intelligence
and chooses the best route for network packets based on a trust score.

SRF-IoT framework is evaluated in a new simulator, called Whitefield framework, that
is able to run Contiki-NG on top of NS-3 simulator. Obtained results indicate superior
performance of SRF-IoT framework with 92.8% PDR, 8.2% packets dropped, and under 100
parent switches in a scenario under routing attacks. Moreover, in malicious scenarios with
SRF-IoT framework deployed, nodes change parents 3 times less than in malicious scenarios
where SRF-IoT framework is not deployed. Simulation results demonstrate that our proposed
SRF-IoT framework can efficiently protect devices against routing attacks in medium as well
as large networks. This is achieved by assisting nodes to select proper devices as parents so
that compromised nodes are avoided, reducing also the extra processing and energy overhead.

6.2 Limitations and Future Work

In this project, SRF-IoT framework has been designed and developed to protect IoT networks
against routing attackers. However, some limitations of our work are the following:

• Experiments through simulations are only used to evaluate the SRF-IoT framework.
The behaviour of the proposed solution is not evaluated in a real testbed, and it could
be different in a real-world scenario. Although the software is implemented in Contiki-
NG which is a real-world OS, the hardware platform might have constraints that in
simulations do not exist. Moreover, simulations do not have the possibility to emulate
exactly the functionalities of a real hardware platform. For instance, SRF-IDS detectors
are implemented in such way to operate in promiscuous mode and capture network
traffic from multiple interfaces. However, only specific real hardware devices might
support promiscuous mode or sniffing traffic from multiple wireless interfaces. These
issues should be explored when deploying the system in a real testbed.

• Only routing attacks have been explored in this project. A limitation of the project
is that only attacks affecting RPL routing protocol are studied. Therefore, SRF-IoT
framework protects IoT networks only from those types of attacks, leaving the network
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vulnerable to other kinds of threats such as application layer attacks. Althrough routing
attack can cause severe impact on IoT networks, the SRF-IoT framework cannot help
the network if attackers exploit the application that run on top of network stack.

• SRF-IDS detectors use a fixed number as a threshold to detect DIS flooding attackers.
The current implementation of DIS flooding detection algorithm works with the use of
predefined thresholds. Several metrics including the packet interval and the number of
packets sent from nodes have been studied to define the proper thresholds. However,
there is a security risk that malicious attackers could learn the value of the threshold
after some time. As a result, they can exploit the detection mechanism and avoid being
detected by changing their attack behaviour. At that point, SRF-IDS will be unable to
detect resource-based attacks such as DIS flooding attacks.

• SRF-IoT framework works mostly as reactive security measure. For example, routing
attackers are identified after the attack has already been launched. Therefore, SRF-
IoT tries to detect and minimise the impact from attackers by informing monitored
nodes. Even though the proposed security measure provides a level of security by
detecting and smartly isolating attackers, in cases that IoT network is part of a critical
infrastructure there is a risk that damage might have already be done by the attackers.

• If no SRF-IDS detector is in TX/RX range of a monitored node, SRF-IoT will not be
fully operational. There are cases in which SRF-IDS detectors are randomly deployed
away from a monitored node. This means SRF-IoT framework will not be able to
transmit trust metrics to a neighbouring node, and thus, MRHOF will be used in place
of SRF-OF by the monitored node. The risk is that in case a malicious node exist in the
network, the monitored node will not be able to avoid the attacker. These limitations
required the network administrator in real world environments to deploy SRF-IoT
nodes near the monitored network’s nodes.

Having in mind the previous limitations, further improvements on the framework can be
done. For future work, the author suggests the following:

• Extend the work by detecting a combination of routing and application layer attacks.
The research of more routing attacks could include sinkhole, wormhole and selec-
tive forwarding attacks. Those attacks can impose severe threat to an IoT network.
A combination of them should be also explored. Apart from network layer attacks,
some application layer threats such as SQL injection could be useful to study. The
implementation of SQL injection attack could be achieved by deploying of a Con-
strained Application Protocol (CoAP) server in Contiki-NG which will be intentionally
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vulnerable. Then, SRF-IoT nodes will attempt to find this vulnerability using several
known SQL injection commands. Initially, the attacks could be developed in Contiki-
NG, and the Whitefield framework simulator could be used to simulate and study the
impact of the attacks. Results from attack simulations should be analysed to develop
effective detection and mitigation methods. Then, implemented algorithms should be
evaluated using both simulations and real-world experiments. Detecting a combination
of network and application layer attacks using the SRF-IoT framework will make it
a great tool for protecting IoT networks at all layers. Moreover, mitigation methods
for each studied attack should also be developed so that the impact of attacks will be
minimised.

• Improve SRF-IDS detection algorithm for DIS flooding attackers so that it utilises
a dynamic-based threshold. Currently, SRF-IDS uses static thresholds to detect DIS
flooding attackers. An idea is to change the approach from static to dynamic so that
a threshold is defined after some period of time. This could be achieved by using an
SRF-IDS detector to sniff packets and monitor the behaviour of monitored network
for a specific time period. For example, metrics such as packet intervals and number
of messages exchanged during this time period could be recorded. Later, collected
metrics could be analysed and a formula could be used to determine the normal and
malicious thresholds. Those thresholds can be changed after some period of time so
that malicious nodes do not exploit this mechanism. A problem of this approach is
again the memory constrains of the node. A special node with better memory and
processing capabilities could be used to solve this issue. After data collection, the
special node could update SRF-IoT nodes with the new values, and therefore the
threshold will be updated dynamically.

• Performance of ML model can be improved by using a balanced dataset for training.
A drawback of the current produced dataset is that the scenario included 30 benign
nodes and 6 attackers, creating an imbalanced dataset. Having a small number of
attackers generates small number of malicious packets. Therefore, SRF-IDS detectors
capture mostly benign traffic. If the same number of malicious nodes is deployed,
the dataset will contain a similar number of benign and malicious packets, creating
a balanced dataset. Having a balanced dataset, will allow the ML algorithm to make
better predictions, avoiding data overfitting. Moreover, feature selection could be used
to choose only the important packet fields and then, evaluate the performance of ML
model.
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• Deploy the ML model for real-world use. The trained ML model could be deployed in
Google or MS cloud so that a prediction service will be available for use by SRF-IoT.
Specifically, SRF-IDS could interact with the deployed model using an API. The
request of SRF-IDS could contain the packet fields of a sniffed packet. Then, API will
response by predicting if a packet is malicious or not. A limitation of this approach is
that internet connection is required for SRF-IoT framework. In case having internet
connectivity is an issuse, the trained ML model can be deployed in a local server which
will server SRF-IoT with the prediction service.

• Enhance the SRF-IoT framework by adding some pro-active features that could im-
prove the security of IoT networks. In order to achieve that, a penetration testing
module could be designed and implemented in SRF-IDS detectors. For example, in-
stead of just updating monitored nodes with trust metrics, a penetration test could be
executed by SRF-IDS detectors against monitored nodes to check for exploitable vul-
nerabilities. In case a vulnerability is found, SRF-IDS detector could send the relevant
information to the Communication Module which will transmit them to monitored node
along with the trust metrics. However, one of the limitations of creating such a tool is
the limited memory of SRF-IDS sensors. In order to overcome the memory issues, a
custom network tool could be designed that will execute simple tests against known
network ports and known vulnerable web applications without requiring to store a lot
of information. Moreover, a check for sensitive data in the sniffed packets that already
captured by SRF-IDS detectors could be a useful feature for this penetration module.
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Glossary

BHR scenario : A scenario where blackhole and rank attacks are launched.

Blackhole attack : A routing attack in which the compromised node drops all incoming
traffic.

DIS f looding attack : An RPL-specific DoS attack in which an attacker transmits a large
batch of DIS control packets to a device preventing from sleeping.

DoS attack : A resource-based routing attack in which an attacker may prevent a device
from sleeping by periodically transmitting packets.

IDS incidents : Indicates how many times the IDS generated a warning for a malicious node.

Mean number o f DIS messages : Indicates the number of DIS messages sent by a node on
average.

Mean number o f other messages : Indicates the number of other messages sent by a node
on average, apart from DIS messages. These could be DIO, DAO, or UDP messages.

Mean packet interval : Indicates how often on average a node sends a packet, measured in
seconds.

Median IDS Packet Overhead : Indicates the median percentage of SRF-IDS detector’s
packets sent to SRF-IDS root and the monitored network during simulation.

Median Packet Delivery Ratio (PDR) : Indicates the median value of the ratio of the total
number of unicast packets received by BR up to the total number of unicast packets
generated by all benign and malicious nodes. It does not include UDP re-transmitted
packets.
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Median Packets Dropped : Shows the median percentage of packets dropped by the attack-
ers during the simulation.

Median Parent Switch : Presents the median value of the number of parent switches that
benign and malicious nodes execute during the simulation. A parent switch happens
to select a better route to the BR.

Messages sent to IDS root : Indicates the number of messages sent to IDS root by IDS
detectors.

Monitored network : The network that is being monitored by the SRF-IDS.

Monitored nodes : The nodes that belong to the network that is being monitored by SRF-
IDS.

Neighbour : The node Nb is a neighbour of Na only if Nb is in transmission (TX) range of
Na. That means Nb could provide a route to sink/BR.

Precision : A metric that presents the total number of malicious nodes that are correctly clas-
sified as malicious (TP) divided by the total number of nodes classified as malicious.

Rank attack : A routing attack in which a malicious node may intentionally advertise lower
rank in order to attract neighbouring devices to select it as preferred parent.

RPL− lite : A lightweight implementation of the IPv6 Routing Protocol for Low-Power and
Lossy Networks.

RPL InstanceID : A unique ID that is used to identify the RPL Instance that DODAG is part
of.

SRF− IDS : The Intrusion Detection System (IDS) that is part of the SRF-IoT framework.
It consists of SRF-IDS Detector and SRF-IDS Root.

SRF− IDS Detector : A sensor device deployed in SRF-IDS that operates in promiscuous
mode and gather information from monitored network.

SRF− IDS Root : The root node of SRF-IDS that is responsible to take final decisions for
malicious nodes.

SRF−OF : Security Framework Objective Function is an objective function used by SRF-
IoT to calculate neighbouring node’s trust.
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T M Module : Trust Monitoring Module is an internal component of SRF-IDS that is used
by SRF-IDS Detector to monitor and update neighbours’ trust.

Version number modi f ication attack : An RPL-specific DoS attack in malicious node changes
the DODAG version number before forwarding the received DIO messages to the
next hop. This causes unnecessary global rebuilds of the DODAG.

Acronyms / Abbreviations

6BR 6LoWPAN Border Router

6LoWPAN The IPv6 over Low -Power Wireless Personal Area Networks

AIP Attacker Information Packet

AODV Ad-hoc On Demand Distance Vector

ASM Authenticated Security Mode

AUC Area Under the ROC Curve

BH Blackhole topology attack

BR Border Router

CIA Confidentiality, Integrity and Availability

CoAP Constrained Application Protocol

COLIDE Collaborative Intrusion Detection for IoT

CSMA Carrier Sense Multiple Access

CSV Comma-separated values

DAG Directed Acyclic Graph

DAO Destination Advertisement Object

DAO−ACK Destination Advertisement Object Acknowledge

DCT M− IoT Dynamic and Comprehensive Trust Model for IoT

DDoS Distributed Denial of Service attack

DF Decision Forest
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DIO DODAG Information Object

DIS DODAG Information Solicitation

DNS Domain Name System

DODAG Destination-Oriented Directed Acyclic Graph

DoS Denial of Service attack

ERNT Extended RPL Node Trustworthiness

ET X Expected Transmission Count

FP False Positive

ICMP Internet Control Message Protocol

ICMPv6 Internet Control Message Protocol version 6

IDS Intrusion Detection System

IET F Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPSec Internet Protocol Security

IPv6 Internet Protocol version 6

LA Learning Automata

LLN Low Power and Lossy Network

MAC Media Access Control

MitM Man-in-the-Middle attack

ML Machine Learning

MRHOF Minimum Rank with Hysteresis Objective Function

MRT S Metric-based RPL Trustworthiness Scheme

MS Microsoft
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OF Objective Function

OF0 Zero Objective Function

OS Operating System

OSI Open Systems Interconnection

P2P Peer to peer network

PCAP Packet capture file

PDR Packet Delivery Ratio

PHY Physical layer

PSM Pre-installed Secure Mode

QoS Quality of Service

RCE Remote Code Execution

RDC Radio Duty Cycling

RERR Route Error

ROC Receiver Operating Characteristic

RPL The IPv6 Routing Protocol for Low-Power and Lossy Networks

RREP Route Reply

RREP_ACK Route Reply Acknowledgement

RREQ Route Request

RSS Received Signal Strength

RTOS Real-time Operating System

RX Radio receiver

SBIDS Sink-Based Intrusion Detection System

SDK Software Development Kit
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SIEWE Strainer-based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of
Things

SLA Service Level Agreement

SOA Service Oriented Architecture

SRF− IoT Security Framework for IoT-based devices

SRPL Secure RPL

SRPL−RP Secure RPL Routing Protocol

SSH Secure Socket Shell

SV M Support Vector Machine

T M Trust Monitoring Module

T P True Positive

T RAIL Trust Anchor Interconnection Loop

T X Radio transmitter

UDP User Datagram Protocol

WSN Wireless Sensor Networks



Notations

DT(Da,Db)T Direct trust that device Da holds for device Db until time period T.

E[Ndis] Mean number of DIS messages.

PFba(T) The total number of packets forwarded by device Db on behalf of device Da until
time period T.

E[Ipkt] Mean packet interval.

E[Nother] Mean number of other node’s messages.

PTab(T) The number of packets successfully transmitted between devices Da and Db until
time period T.

E[DRpkt] Mean/Median Packet Delivery Ratio (PDR)

E[PS] Mean/Median Parent Switch

E[Dpkt] Mean/Median Packets Dropped

E[IDS] Median IDS Packet Overhead.

E[TP] True Positive (TP) rate

E[FP] False Positive (TP) rate
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