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Abstract

A physical quantity that is positive in classical physics can become negative in quantum
physics, but it may be bounded. Quantum inequalities are lower bounds on averages
of these physical quantities. In the case of energy densities of a quantum field, it is
called a quantum energy inequality. In the case of the probability current density of
right-moving states, it is called the quantum backflow effect.

This thesis is concerned with various aspects of the quantum backflow effect in the
presence of defects. The backflow effect states that a particle moving towards a reference
point with positive momentum may have the probability of being found at the right
of the reference point decreased with time. Defects represent a way of implementing
generalised point interactions without necessarily having an explicit potential function
to be added to the Hamiltonian of a physical system and are described by sewing
conditions defined at the defect location. Starting from the Dirac δ-distribution, which
can be regarded as a potential function but also as a point defect, we extend the analysis
to the jump-defect, a discontinuous and purely transmitting integrable defect allowing
conservation of total energy and momentum. In this thesis, we will examine how the
backflow is affected in the presence of different defects giving special focus on the
jump-defect, which does not have a backscattering contribution to the backflow constant
and makes our analysis compatible with conservation laws. Beyond the Schrödinger
equation, we will introduce and analyse backflow with defects in the Dirac equation,
which takes into account the spin contribution to the probability current. The existence
of bound states are shown to be relevant for the bounds on backflow, and numerical
results will support that. Furthermore, we will investigate how the backflow constant
in the presence of defects differs from the interaction-free situation.
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1

Introduction

Quantum theory certainly has different mathematical formulations, and there are
significant conceptual differences between quantum mechanics and quantum field theory
that go beyond a mere relativistic extension [2]. Nevertheless, quantum theory shares
some basic ideas such as Heisenberg’s uncertainty principle among any of its formulations
or extensions. Effects related to the uncertainty principle may arise as inequalities. For
example, the “quantum energy inequalities” in quantum field theory [3, 4], which are
lower bound restrictions on the fluxes and energy densities of physical systems, and the
quantum backflow phenomenon [5] for the probability current in quantum mechanics. A
more extensive list of references to backflow will be provided in section 2.1. The general
picture of a quantum inequality is the statement that a positive physical quantity in
classical physics can be negative in quantum physics, but it is bounded below.

Backflow happens by the superposition of states with only positive momentum.
In particular, a quantum particle moving in one dimension and described by this
superposition of right-moving states has a positive expectation value of its momentum
operator. However, locally, the probability flux can assume negative values. This
leads to the immediate question on the existence of limitations on the magnitude and
duration of negative probability fluxes. In interaction-free situations, the limitations
do exist, and its temporal extent is characterized by a dimensionless constant that
was first numerically calculated [6] to be ∆BM ≈ 0.038. For that, Bracken and Melloy
concentrated on the problem of a quantum mechanical particle in one dimension with
a normalized state ψ and corresponding probability flux jψ. Then they showed that
the increase in the probability P (t) of finding a right-moving particle in the negative

15



16 Chapter 1. Introduction

half-line (−∞, 0), during a time interval [0, T ], obeys the inequality

P (T ) − P (0) = −
∫ T

0
jψ(0, t)dt ≤ ∆BM . (1.1)

That constant was numerically calculated subsequently [7, 8] with more accuracy
to be ∆BM ≈ 0.0384517. Similarly to the quantum energy inequalities, which are
limitations on the magnitude and duration of negative energy densities (obtained
from expectation values of a stress-energy tensor), the backflow inequality can be
stated in its time-averaged or spatial-averaged version. The total energy of a physical
system being bounded below is a fact related to the existence of a stable ground state.
Nonetheless, there is an incompatibility between positive energy density conditions and
local quantum fields [9]. The lower bound on the backflow effect, however, does not
seem to have an immediately clear physical interpretation. Consideration of both effects
in a common framework such as a free relativistic theory may provide some insight on
their relationship. In fact, whilst most of the work on quantum backflow considered
only the non-relativistic situation without any internal degree of freedom, the case of a
free Dirac particle with spin-1

2 was studied in [10], for instance. Moreover, as the energy
is usually considered in connection with a conservation law, it is reasonable to do the
same for the backflow analysis and associate a conservation law with it when possible.

Interaction-free situations present a playground for numerous discussions, but more
realistically one has to consider the effect of interaction. In [11], the backflow effect was
extended to scattering situations in short-range potentials. It reinforced the universality
of quantum backflow beyond a free theory and also stated that the existence of a
lower bound, the constraint on how negative it can be, is stable under the inclusion of
interaction. Although their work has proved the existence of lower bound estimates for
a particular class of short-range potentials, they also noticed that a very short-range δ
potential, although formally outside the validity of their theorem, has a backflow effect
of finite magnitude. A special particularity of the δ is that it can be seen as a potential
function, but it can also be seen as a point defect that is characterised by some sewing
conditions at the defect location. Knowing that, we ask ourselves about the possibility
of including other type of point defect described by a set of sewing conditions in the
discussion of the quantum backflow effect.

This thesis will be particularly concerned with the backflow effect in the presence
of defects. We extend the quantum backflow effect to this less restrictive situation,
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in which the interaction is represented by a set of sewing conditions describing some
discontinuity rather than having to specify an explicitly known potential function.
Defects were previously considered in scattering situations [12], and integrable defects
are generally categorised as purely transmitting [13]. In an integrable field theory, the
introduction of boundaries and defects can, in general, spoil the integrability of the
theory. As integrability is related to the existence of conservation laws, we shall look
for the possibility of introducing an integrable defect in order to have both total energy
and momentum conserved. In fact, general point interactions constructed by means
of self-adjoint extensions of the Hamiltonian operator have the probability conserved,
but the momentum, for instance, is not guaranteed to be conserved, and that is exactly
the case of the δ-defect. As with a non-constant potential function, a defect also
breaks space translation invariance since it has a specific location. Surprisingly, it is
possible that the defect conditions compensate for the lack of translation invariance,
and momentum is conserved. Note that the reflection coefficient in the case of the δ
depends (with a phase factor) on the position where it is placed on the real line, and it
does not seem possible to conserve momentum. Nonetheless, there is a specific defect
with the attributes we would like to analyse in connection with the backflow effect. In
particular, we consider a jump-defect [14, 15] that is purely transmitting in the context
of non-relativistic quantum mechanics in one spatial dimension. In this respect, the
jump-defect is similar to the Pöschl-Teller potential [16] given by

V (x) = −µ(µ+ 1)
2 cosh2 x

, µ > 0. (1.2)

However, the latter is only reflectionless when the parameter µ is taken to be an integer,
while the jump-defect is always purely transmitting. The jump-defect is ‘halfway’
between the Pöschl-Teller and the δ potential, but there are two relevant features that
make it very different from the δ. Because it is purely transmitting, all contributions
towards the negative probability fluxes come solely from the superposition of positive
momentum states rather than a mixture of backscattering and the superposition of
positive momentum states. It also allows us to keep conserved quantities that were
conserved in the free case, such as the total energy, momentum (related to probability
flux) and probability. As point defects, both of them involve some kind of discontinuity.
But while the δ has a discontinuous first derivative of the wavefunction, the jump-
defect has a discontinuous wavefunction describing it. Specifically, the wavefunction
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discontinuity requires a treatment that involves distinct pair of domains rather than
a single domain. More generally, these can involve multiple one-dimensional domains
when several defects are placed at junctions of a network [17]. We remark that the
jump-defect has the form of a Bäcklund transformation applied to a particular point in
space rather than the entire real line, a ‘frozen’ Bäcklund transformation.

We will analyse the backflow for the discontinuous and transparent jump-defect,
considering both the non-conserved probability current and the conserved probability
current, and show that the backflow effect has a finite spatial extent, or a lower bound. In
considering the adjusted conservation of momentum, the need for an extra contribution
term to the backflow will be remarked. We will also extend the previous analysis [11] for
the δ-case by scanning different values of the parameters and unveiling some structure
in the attractive case. It is known that the δ-impurity can be, in some situations, used
to model various different interactions in condensed matter, many-body theory and
atomic physics, for instance. In particular, we mention the band theory of metals with
Dirac comb potential or Dirac-Kronig-Penney model, one-dimensional version of the
hydrogen atom and hydrogen molecule ion, a Bose gas and a gas of electrons; see [18,
19, 20, 21, 22] and references therein. Beyond one single δ-defect, a double δ-defect,
described by a pair of deltas, will also be considered and have its backflow compared
to the results of the single δ-defect. Although the double δ-defect has some structure
not supported in a single δ-defect such as the existence of scattering resonances, for
example, the presence of reflection is an almost unavoidable feature of this interaction.
In fact, the double δ-defect can be transparent but in very limited circumstances that
are energy-dependent. The situation in which there is total transmission and, therefore,
no backscattering contribution mixing with the backflow effect is not possible for an
interaction described by a δ potential function, but a jump-defect provides us with that
possibility. Furthermore, their bound states seem to be relevant for the backflow and
will be investigated.

Quantum inequalities can be formulated as an eigenvalue problem that has to be
solved for the lowest eigenvalue of a given operator. In fact, this is not only the case of
the probability current in the backflow effect but also of the energy density in energy
inequalities. In [23], Fewster and Teo reformulated the quantum energy inequalities, for
free massless scalar fields in even dimensional Minkowski space, in terms of finding the
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lowest eigenvalue of a self-adjoint operator H. Specifically, the inequality reads

⟨g|Hg⟩ ≥ 0, ∀g ∈ C∞
0 (I) (1.3)

with test function g supported on the interval I ⊂ R, and H is a generalized Schrödinger
operator on L2(I) that has its potential term replaced by a given energy density ρ.
Hence, the positivity of H can be equivalently formulated as the problem of finding
the lowest eigenvalue of H. This formulation provides a test as to whether a given
energy density is compatible with the quantum energy inequalities and an intuitive
understanding of the so-called quantum interest conjecture [24] by an analogy with the
quantum mechanics of a particle moving on the real line: negative energy densities
(loans) become potential wells and positive energy densities (repayments) become
potential barriers. It is very interesting that similar formulation works in the backflow
for a spatially smeared probability current density in the free case [7]. In particular,
the equivalent positive Schrödinger operator has its potential term replaced by the
probability current density of a given right-moving state. Despite the formulation as an
eigenvalue problem, an optimal analytical bound on the backflow effect is not known in
the interaction-free case. When interaction is taken into account, an eigenvalue problem
is generally unlikely to be solved analytically, but perturbation theory can be used to
attempt to solve the given problem in terms of the simpler problem, namely, the free
case. Thus, the backflow constant in the presence of interaction could be treated as
a deviation from the constant in the free case. Analytic perturbation theory may be
useful to study the behaviour of the backflow constant, but it might be difficult to know
whether the approximations converge for a given set of parameters and estimate the
error involved by neglecting higher orders of approximation. This thesis will, at least for
the lowest order, look into the numerical results of perturbation theory applied to the
cases where the interaction is described by a δ-defect or a jump-defect in the Schrödinger
equation. These are exactly solvable models, and resorting to approximation methods
is not required. In spite of that, these models can be used to check the plausibility of
the perturbation results in comparison with the exact backflow results.

While the maximum amount of spatially averaged backflow is bounded in one
dimension, that is unlikely to be generally true in three-dimensional Euclidean space.
This expectation comes from results of quantum energy inequalities although backflow in
three dimensions was not defined or even considered in previous works. Energy densities
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can be made arbitrarily negative at a point. While timelike smearing yields averaged
energy densities that are bounded below, spatial smearing is, in general, not enough to
produce a state-independent quantum energy inequality [25]. Backflow was not analysed
in higher dimensions yet, but we can similarly expect that the probability current has
to be averaged in space and time (or time) in order to obtain a state-independent
lower bound that restricts the backflow phenomenon. Incidentally, the form taken
by the probability current for a charged particle, with mass m and charge q, in an
electromagnetic field and described by the Schrödinger equation with wavefunction Ψ
in three dimensions

J = ℏ
2mi (Ψ⋆∇Ψ − Ψ∇Ψ⋆) − q

m
AΨ⋆Ψ, (1.4)

with vector potential A, is very common in physics and is also present in the conserved
current expression for particles with spin. Let us just mention the particular examples
of the current for a spin-0 scalar particle in the Klein-Gordon equation and a spin-1

2

particle in the Dirac equation (Gordon decomposition [26]), respectively, given by

Jµ = i (ϕ⋆∂µϕ− ϕ∂µϕ⋆) − 2qϕ⋆ϕAµ, (1.5)

Jµ = i

2m
(
ψ̄∂µψ − (∂µψ̄)ψ

)
+ 1
m
∂α
(
ψ̄Σµαψ

)
− q

m
ψ̄ψAµ, (1.6)

where, in quantum field theory, the spatial components of these expressions are inter-
preted as the electromagnetic current associated with the particles in the presence of the
vector-potential Aµ, Σµα are generators of Lorentz transformations and ϕ and ψ are a
scalar field and a Dirac spinor, respectively. Although they are not probability currents,
the first term in each expression above is the convective part of the flux, responsible
for the movement of charges. Evidently, while a negative movement of charges can be
interpreted as the positive flux of particles with negative charge, the same interpretation
applied to a negative probability flux would imply the existence of negative probability,
a concept first introduced by Dirac, who believed that negative energy and negative
probability always occur together and suggested that, “like a negative sum of money”,
should not be considered as nonsense [27]. Perhaps this financial analogy motivated
the quantum interest conjecture about local negative energy densities. Feynman [28]
also suggested possible interpretations for making sense of negative probabilities. Nev-
ertheless, we will not discuss negative probabilities but take the view of backflow as
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the existence of negative probability fluxes for right-moving states. Motivated by this
relation in which the electric current density for a charged particle is proportional to the
probability current density, Bracken and Melloy [6] suggested a possible experimental
setup where the existence of backflow could be confirmed by measuring the electric
current of that particle initially prepared in right-moving states.

Similarly to the electromagnetic current that has not only influence from the mass
of the particle but also from the spin, the probability current can be affected [29, 30]
by orbital angular momentum and spin (e.g., spin-orbit interaction). As the relativistic
Dirac equation takes the spin of the particle into account, we will analyze the backflow
effect for a spin-1

2 particle in the presence of δ-defects described by the Dirac equation.
It is worth noting that the consideration of a δ-defect in the Dirac equation does not lead
to a unique possibility but rather to different sets of sewing conditions. In particular,
we will look into the case of an electrostatic δe-defect as well the case of a mass-like δm-
defect and make a comparison with the results of a δ-defect in the Schrödinger equation.
Moreover, a δ-defect in the Dirac equation causes a discontinuity in the wavefunction
solution and, consequently, is already a type of jump condition. It cannot, however,
be considered a jump-defect, since it does not classify as an integrable defect. Then, a
natural further step would be including a jump-defect in the (one-dimensional) Dirac
equation. The first-order nature of the Dirac equation requires the sewing conditions to
involve its two spinor components ψ1 and ψ2 instead of derivatives of the wavefunction
as it happens for general point interactions in the Schrödinger equation. The possibility
of including a jump-defect will be considered as we reflect on the use of a suitable
Bäcklund transformations in order to find the required sewing conditions.

Thesis Outline
This thesis is composed of seven chapters and two appendices. In chapter 2, we present
the quantum backflow effect in the interaction-free case and in the case of scattering
for short-range potentials. Then, we extend the discussion of the backflow to situations
where the interactions are described by defects. Chapter 3 considers the quantum
backflow effect in the presence of a δ-defect as well a double δ-defect and a δ′-defect
obtained from the double δ-defect in the zero-range limit where the distance between
the pair of deltas tends to zero. Chapter 4 focuses attention on the backflow effect in
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the presence of the purely transmitting jump-defect in the linear Schrödinger equation.
The main purpose of the chapter is to examine the possibility and the consequences
of considering the backflow effect in the presence of a defect that is, at the same time,
a point defect and transparent. Additionally, it aims at exploring the similarities and
differences between the δ and the jump-defect with regard to the backflow. Chapter 5
considers the analytical perturbation theory of the probability current operator in
order to expand the backflow constant in power series of the interaction strength. In
Chapter 6, we examine the relativistic backflow effect in the setting of the first-order
Dirac equation for a particle of spin-1

2 . More specifically, we consider the relativistic
backflow in the presence of an electrostatic δe-defect and in the presence of a mass-like
δm-defect. Chapter 7 has a final discussion and summarises the results presented in
the thesis as well possible directions for further investigation in the future. Numerical
results are provided alongside the discussion presented in each chapter and are composed
of two-dimensional and three-dimensional plots displaying the lowest eigenvalue of the
probability current operator against the position of measurement x0, which is the
center of a positive test function, and against the strength of the different interactions,
or defect coupling, considered in this work. With the exception of the appendices,
all numerical results are averaged with the same Gaussian function that has a fixed
width. Appendix A shows results of the backflow constant in the Pöschl-Teller potential
for various values of the parameter µ. These provide some further evidence to make
a conjecture about bound states in chapter 7. Finally, Appendix B considers the
calculation of the backflow constant spatially averaged with different choices of weight
functions in the case of a jump-defect.
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Quantum backflow

2.1 negative flow of probability

In non-relativistic quantum mechanics, the continuity equation for the probability
density in one space dimension is

∂tρ = −∂xj , (2.1)

where ρ = |ψ|2 is the probability density, j is the probability current density [30]
(or probability flux) and ψ the square-integrable wavefunction of the system. The
Schrödinger equation for the wavefunction of a quantum system is simply

iℏ∂tψ = Hψ , (2.2)

where H is the self-adjoint Hamiltonian operator associated with the system. The state
vector is commonly denoted by |ψ⟩ ∈ H, as an abstract vector in the Hilbert space H

of the physical system. Not all solutions of this equation are elements of the space of
(equivalence classes of) square-integrable functions L2(R), but these solutions are crucial
for scattering theory. As a consequence of the Schrödinger equation for a particle of
mass m, in the free case, one has the probability flux at position x given by

jψ(x) = iℏ
2m (∂xψ⋆(x)ψ(x) − ψ⋆(x)∂xψ(x)) := ⟨ψ, J(x)ψ⟩, (2.3)

where now the ψ-dependence is explicitly indicated, and jψ(x) can be expressed in
terms of the associated quadratic form J(x). The space average of (2.3) with a test
function, generally f ∈ S(R) in Schwartz-class 1 is given by

1Such functions are nice for having a Fourier transform and they include the space of smooth
functions of compact support i.e. C∞

0 ⊂ S.

23
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jψ(f) = ⟨ψ, J(f)ψ⟩ =
∫
dx f(x) jψ(x) , (2.4)

and is understood as the spatial-averaged probability current measured by a spatially
extended apparatus. The corresponding smeared operator is the integration J(f) =∫
f(x)J(x)dx, understood in the sense of quadratic forms. This operator is Hermitian

for a real function f and is written as

J(f) = 1
2m

(
P̂ f(X̂) + f(X̂)P̂

)
, (2.5)

with position operator X̂ and momentum operator P̂ = −iℏ∂x. Similarly, in particular,
it is common to write J(x) in terms of the generalized position eigenvector |x⟩, and it
has the following symmetric form

J(x) = 1
2m

(
|x⟩ ⟨x| P̂ + P̂ |x⟩ ⟨x|

)
. (2.6)

From a square-integrable wavefunction, the probability density can then be defined in
terms of position probability density |ψ(x)|2 or momentum probability density |ψ̃(k)|2

by means of the Fourier transform 2 (Fψ)(k) = ψ̃(k) = (2π)−1/2 ∫ dx e−ikxψ(x).
The effect that, for a particle with positive momentum (k > 0), the probability of

finding it to the right of some reference point may decrease with time is called quantum
backflow effect. This means that given a wavefunction ψ̃ with support in momentum
space restricted by supp

(
ψ̃
)

⊂ R+, right-moving wavefunction, it is not guaranteed at all
that the probability current density fulfills the positivity condition jψ(x) > 0 with x ∈ R.
That effect was initially discovered and studied in the context of the time of arrival
in quantum mechanics by Allcock [5]. Later on, Bracken and Melloy [6] investigated
the effect in greater detail analysing the temporal extent of the effect as an eigenvalue
problem for a free quantum particle. Their results were also extended to the case where
the particle is moving under a constant force [31], and again the probability flows, for a
finite period of time, in the opposite direction to the momentum. It is important to
highlight the fact that quantum backflow has no classical analogue effect and it is not
a spreading of a Gaussian wave packet as previously suggested [32], and subsequently
clarified in [33] by showing that the Wigner function associated with this Gaussian

2Omitted limits of integration are assumed to be the full real line R.
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wave packet is positive at all times. That the effect can be reproduced by a simple
superposition of two plane waves was illustrated in [6] and similarly for a superposition
of two Gaussians wave packets [34], where the authors show that, despite Gaussian wave
packets having support on both positive and negative momentum, the negativity of the
current cannot be explained by the very small probability of having negative momentum
which comes from the Gaussian state. Quantum backflow was also related, in the
phase-space, to another interference effect called quantum reentry where position rather
than momentum is constrained [35, 36]. Following that interesting relation, a particle
escaping through a Dirac δ barrier was analysed in [37] and compared to the evolution of
a free particle. The backflow was also considered in the case of a system with spin-orbit
coupling in [38], in the rotational motion of a particle in a ring [39]. Relativistic effects
on the backflow of a free particle were examined in [10, 40, 41]. Being a quantum
phenomenon augmented by certain “backflow states” (states in which backflow occurs)
[42], its level of non-classicality can be compared to the required negativity of the
Wigner function, as was done in [43], where it was stated that the negativity of the
Wigner function is only a necessary prerequisite for the occurrence of backflow. After
Allcock, the effect was shown to be relevant for the discussion of quantum events and
the meaning of arrival-time distribution [44, 45]. However, not only the temporal
extent, as originally discovered, of backflow has attracted attention in the literature. In
fact, by focusing on the shape of backflowing regions, therefore considering its position
dependence, backflow was shown to be closely related to superoscillations [46]. It was
also considered for the case of an electrically charged particle in a constant magnetic
field [47, 48]. An analogue optical effect was observed in [49]. Furthermore, the spatial
extent of backflow was analysed considering the spatial-averaged probability current
[7, 11] rather than its temporal-averaged version. In its spatially averaged version, the
backflow has similarities to the quantum energy inequalities [7, 4] in quantum field
theory. This thesis will focus on the spatially averaged version of the backflow effect.

2.2 free case

In interaction-free situations, the maximal amount of backflow, spatially averaged with
a positive test function f , i.e. the lowest bound, is defined [11] by

β0(f) := inf ⟨E+J(f)E+⟩ψ , (2.7)
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where the infimum is understood as

inf ⟨A⟩ := inf
∥E+ψ∥=1

⟨ψ, Aψ⟩ ∈ (−∞,∞) ,

for all ψ ∈ D(A), the domain of an operator A, with square-integrable ψ ∈ L2(R).
According to the minimax principle [50], β0(f) is the minimum eigenvalue of the averaged
current evaluated in right-moving states, E+J(f)E+. The orthogonal projection E+

of the momentum operator makes sure that the momentum is positive (k > 0). In
particular, if ψ is a right-mover, E+ψ = ψ. The question of how negative this quantity
β0(f) can be, and if it is actually bounded below, was answered by Eveson, Fewster
and Verch in the following theorem [7]

Theorem 1. For every positive test function f ∈ S(R), ∃ Cf ⩾ 0 such that the inequality
⟨J(f)⟩ψ ⩾ −Cf holds true, where ψ is taken to be normalised and right-moving, i.e.
ψ ∈ R = {ψ ∈ L2(R)| ψ̃(k) = 0 for k < 0 and ψ′ continuous and square-integrable}.

Thus, β0(f) > −∞, as Cf is a finite constant. More precisely,∫
dx f(x)jψ(x) ≥ − ℏ

8πm

∫
dx |g′(x)|2 > −∞, (2.8)

where f = g2 for some real g ∈ S(R), and prime denotes derivative with respect to
position variable. The inequality (2.8) has origin in the following estimations. Define a
multiplication operator by (Mfψ)(x) = f(x)ψ(x), and write the spatial average as∫

dx f(x)jψ(x) = Re⟨ψ, Mf P̂ψ⟩
m

= Re⟨ψ, MgP̂Mgψ⟩
m

= ℏ
m

∫
dk

2πk
∣∣∣(M̃gψ)(k)

∣∣∣2 , (2.9)

where Mf P̂ was substituted in terms of the commutator [Mg,MgP̂ ]. The Fourier
transform of the product (M̃gψ)(k) is given by the convolution theorem

(M̃gψ)(k) =
∫ ∞

0

dk′
√

2π
g̃(k − k′)ψ̃(k′) (2.10)

which has the integration limits restricted to k′ > 0 because ψ is a right-moving state.
Then, there are two estimations used in the derivation of the theorem. The first, and
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more important, is a bound by comparing the integral with its part arising from k < 0∫
dx f(x)jψ(x) ≥ ℏ

m

∫ 0

−∞

dk

2πk
∣∣∣(M̃gψ)(k)

∣∣∣2 = − ℏ
m

∫ ∞

0

dk

2πk
∣∣∣(M̃gψ)(−k)

∣∣∣2, (2.11)

and the second estimation comes from applying the Cauchy-Schwarz inequality to the
expression

∣∣∣(M̃gψ)(k)
∣∣∣2 that is given by means of (2.10). Then, it follows that

∣∣∣(M̃gψ)(−k)
∣∣∣2 ≤

∫ ∞

0

dk′

2π |g̃(k + k′)|2 , (2.12)

using also the fact that ∥ψ∥ = 1 and that |g̃(−k)|2 = |g̃(k)|2 because g is a real function.
Combining that with the previous estimation (2.11) gives∫

dx f(x)jψ(x) ≥ − ℏ
m

∫ ∞

0

dk

2π

∫ ∞

0

dk′

2π k |g̃(k + k′)|2

= − ℏ
m

∫ ∞

0

dξ

4π2 |g̃(ξ)|2
∫ ξ

0
dk k

= − ℏ
m

∫ ∞

−∞

dξ

16π2 ξ
2 |g̃(ξ)|2

= − ℏ
8πm

∫
dx |g′(x)|2 ,

(2.13)

which is obtained by making a change of variables such that ξ = k + k′, using the
evenness property of the integrand |g̃(ξ)| and and the Parseval-Plancherel identity.

Theorem 1 describes a quantum inequality that is state-vector independent. More-
over, whilst the operator E+J(f)E+ is bounded below it is unbounded above, for
positive f , exactly as the corresponding non-smeared version E+J(x)E+. Note, how-
ever, that the lower bound depends on the choice of test function f that is related to
the measurement apparatus. Effectively, the unboundedness is a high momentum effect
[11]. In the context of the Weyl-Wigner quantisation, it was also shown in [7] that the
backflow effect for the spatially smeared flux jψ(f), as a quantum inequality, can be
seen as a direct consequence of the sharp Gårding inequalities [51] in the theory of
pseudo-differential operators, although it is not possible to determine the magnitude of
the bound Cf from that. Interestingly, a strong improvement of the Gårding inequality
was derived from considering the consequences of the uncertainty principle for the
theory of pseudo-differential operators [52, 53].
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2.3 interaction in scattering situations

For scattering situations, we consider the effect of an interaction with a potential term
V , external and time-independent for simplicity, added to the free Hamiltonian so that

H = P̂ 2

2m + V (X̂). (2.14)

As a physical requirement, the potential is Hermitian. While the concept of right-movers
is clear in a free case, the time evolution associated with an interacting Hamiltonian does
not commute with the projector E+, meaning that the space of right-movers E+L

2(R)
is not invariant under time evolution transformations. As an alternative equivalent
concept, we adopt the asymptotic right-movers in the sense of scattering theory, as used
before in [11]. In this way, we consider a state such that its incoming asymptote is a
right-mover. The incoming Møller operator is given by

Ω(IN) = ΩV := s-lim
t→−∞

e+iHte−iH0t , (2.15)

with s-lim denoting the strong operator limit and H0 the free Hamiltonian. Our quantity
of interest is now dependent on the potential and defined as

βV (f) := inf
〈
E+Ω†

V J(f)ΩVE+

〉
ψ
, (2.16)

which is called the “asymptotic backflow constant” [11] and it is the lowest eigenvalue
of the operator E+Ω†

V J(f)ΩVE+. In general, βV (f) has a contribution from scattering
as a result of the interaction, with the exception of special cases in which there is no
reflection. Moreover, it has physical units of ℏ/(mℓ2), with a length scale ℓ as the unit
of length. In the future, we will refer to this operator as the “(asymptotic) probability
current operator” or simply the “interacting current”.

To ensure the applicability of the scattering theory, we usually work with potentials
that vanish sufficiently fast at spatial infinity. This is based on the fact that the fall-off
properties of the potential are related to smoothness properties of the scattering data.
Specifically, it is usual to require the fulfillment of the condition [54]

∥V ∥1
1 :=

∫ +∞

−∞
dx (1 + |x|) |V (x) |< ∞ , (2.17)
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and we say that V ∈ L1
1(R). In the stationary scattering theory, one has the time-

independent Schrödinger equation (TISE) for a wavefunction φ(x)(
− ℏ2

2m
∂2

∂x2 + V (x)
)
φ(x) = (ℏk)2

2m φ(x), (2.18)

for which the scattering solutions x → φk(x) with k > 0 have asymptotics of the form

φk(x) =

TV (k)eikx + o(1) as x → ∞,

eikx +RV (k)e−ikx + o(1) as x → −∞ ,
(2.19)

with transmission TV (k) and reflection RV (k) coefficients. In the scattering context,
the Schrödinger equation together with boundary conditions (2.19) is equivalent to a
Lippmann-Schwinger equation [55]

φk(x) = TV (k)eikx +
∫
dy Gk(x− y)U(y)φk(y), (2.20)

with U = (2m/ℏ2)V . For this choice of complementary function (the inhomogeneous
term of the integral equation), the Green’s function for the free TISE, which is a solution
of the equation G′′

k(x) + k2Gk(x) = δ(x), is

Gk(x) = −sin(kx)
k

θ(−x), (2.21)

where θ is the Heaviside function: θ(x) = 0 for x < 0 and θ(x) = 1 for x > 0.
For situations where the interaction is exactly solvable, we do not need to make

use of Green’s functions in the Lippmann-Schwinger equation. Later in our discussion,
chapter 5, we will consider and apply some analytic perturbation theory for the
probability current operator, and Green’s function will be essential in our analysis.
Either working with perturbation approximations or the exact solution, a key ingredient
for analysing the backflow effect in scattering situations is the expansion of the Møller
wave operator in the following integral form; see, for example, [56] for the Lemma below.

Lemma 1. Let V ∈ L1
1(R). Then the operator ΩV defined in (2.15) exists. Further, the

solution x 7→ φk(x) (k > 0) of (2.18) with the asymptotics (2.19) exists and is unique,
and for any ψ̃ ∈ C∞

0 (R),

⟨x| ΩVE+ |ψ⟩ = (ΩVE+ψ)(x) = 1√
2π

∫ ∞

0
dk φk(x)ψ̃(k) . (2.22)
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By the use of some estimates, e.g., [54, 57], the following theorem [11] is a result on the
existence of backflow in scattering situations and also on its lower bound.

Theorem 2. Let the potential function V be a L1
1(R)-class potential, i.e.

∥V ∥1
1 < ∞ . For any f ∈ C∞

0 (R), with f ⩾ 0, ∃ CV,f > 0 such that

⟨ψ|E+Ω†
V J(f)ΩVE+|ψ⟩ ⩾ −CV,f for ∥ψ∥ = 1. (2.23)

Hence, the asymptotic backflow constant is finite, βV (f) > −∞. The existence of
backflow and the boundness (below) of backflow are stable under the addition of a
scattering potential to the Hamiltonian. This means that, even in the presence of
reflection, the effect is bounded below. Henceforth, we denote the expectation value of
the interacting operator in a general (normalized) state vector |ψ⟩ by

⟨JV (f)⟩ψ := ⟨ψ|E+Ω†
V J(f)ΩVE+ |ψ⟩ . (2.24)

Moreover, the expansion of this expectation value with respect to scattering states φk
in position space relies on the use3 of the Lemma 1.

As is the case for the Hamiltonian, we expect that the asymptotic current operator
has a spectrum composed of pure point and absolutely continuous parts. Thus, we
have some eigenvalues, with the lowest one denoted by βV (f), and at some point a
continuum of generalized eigenvalues. That is justified on the basis of the evidences
provided by the numerical calculations, which will be explained in section 4.5. It is
important to stress our interest in this lowest eigenvalue in the context of quantum
inequalities.

2.4 backflow in the presence of a defect

In the next two subsequent chapters of the present work, Chapter 3 and Chapter 4,
we will, in more details, address the concept of defects by introducing some particular
defects into the Schrödinger equation. Following that, the backflow effect will then be
analysed in the presence of these defects. More specifically, the single δ-defect, the double
δ-defect and the jump-defect, respectively. Moreover, Chapter 6 will also consider the

3The Lemma 1 requires ψ̃ to be smooth of compact support ψ̃ ∈ C∞
0 . However, C∞

0 (R) is dense in
L2(R) and through the use of Friedrichs extensions [58] the discussion applies to a general ψ in the
domain D(JV (f)) of our operator.
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presence of defects but in the Dirac equation instead. Before the backflow calculations
that will be carried out later once the interactions are explicitly particularised, we need
to set out the general structure of our quantities of interest, namely the probability
current operator and its lowest eigenvalue taking interaction into account.

A mathematically oriented discussion on the introduction of singular perturbations
of partial differential operator, particularly in the context of Hilbert spaces and the
Schrödinger equation, started in [59]. These authors considered the perturbation of a
Hamiltonian with a delta potential function using the extension theory of symmetric
operators. The theory of self-adjoint extensions of symmetric operators, based on the
fact that a symmetric operator can be extended to a self-adjoint operator when its
deficiency indices are equal, was very important in the development of exactly solvable
models in quantum mechanics specially because of the Laplacian operator or kinetic
energy operator. The literature is vast but some of the earliest references can be
mentioned [60, 61, 62, 63, 64, 65, 66, 67]. Since the deficiency indices play an important
role in the existence of self-adjoint extensions, let us recall the following result [58]

Definition 1. Let A be a symmetric operator with domain D(A) and adjoint A†. Its
deficiency indices are the pair of numbers n+, n−, given by

n+ := dim
(
ker(A† − i)

)
,

n− := dim
(
ker(A† + i)

)
.

(2.25)

Then, there are three possibilities

(i) If n+ = n− = 0, A is either self-adjoint or has a unique self-adjoint extension and
is said to be essentially self-adjoint.

(ii) If n+ = n− = n ≥ 1, there exist self-adjoint extensions of A, which are
parametrized by a unitary n× n matrix, a n2-parameter family of such extensions.

(iii) If n+ ̸= n−, then A has no self-adjoint extension.

These self-adjoint extensions can be described in terms of matching conditions
relating the value of a wavefunction and its derivatives. In particular, for point
interactions, the conditions are defined at these interaction sites. Physically, point
interactions, or zero-range potentials, are understood as sharply localised potentials
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but they are mathematically special in the sense that they are singular perturbations
with support of zero measure of the free Hamiltonian H0 = − ℏ2

2m∂
2
x for a free particle of

mass m. Thus, for the Hamiltonian with a point interaction (located at the origin, for
convenience), its self-adjoint extension differs from H0 just by including the appropriate
matching conditions describing the particular interaction of interest. To consider a
simple case, let us denote the densely defined operator L = −∂2

x, D(L) = C∞
0 (R \ {0}),

all C∞
0 (R) functions having compact support separated from the origin, and, from that,

we have ⟨ϕ, Lψ⟩ = ⟨L†ϕ, ψ⟩ for ϕ ∈ D(L†) and ψ ∈ D(L) where L† is the adjoint of
L. In addition, L has deficiency indices (2, 2). The self-adjointness conditions on L,
for square-integrable functions ϕ and ψ without support at the origin4, require that
the operator and its adjoint have the same domain and L is a symmetric operator,∫∞

−∞ ϕ⋆(x)(Lψ)(x) dx =
∫∞

−∞(Lϕ⋆)(x)ψ(x) dx, that can be expressed in the form

−
∫ ∞

−∞

(
ϕ⋆∂2

xψ −
(
∂2
xϕ

⋆
)
ψ
)
dx =

[
ϕ⋆∂xψ − (∂xϕ⋆)ψ

]0+

0−
= 0, (2.26)

which can hold true in the simplest case where the functions and their derivatives are
continuous at the origin. Nevertheless, there are other possibilities and the case of a δ
interaction is the known example where the function is continuous at the origin but its
derivative is not. That is described by the following conditions: ψ(0+) = ψ(0−) = ψ(0)
and ∂xψ(0+) − ∂xψ(0−) = 2λψ(0) with λ ∈ R, see (3.1) in Chapter 3. Equally
conceivable, a discontinuous function can also hold (2.26) true. An example of such
more severe discontinuity is obtained in the case the interaction is represented by the
derivative of a delta, known as the δ′(x). Unfortunately, it seems that the admissibility
of discontinuities in the wavefunction is not well explored in the textbook literature
on quantum mechanics. There are, however, numerous physical situations or models
where these discontinuities are realizable. Some examples in the literature include the
mass jump, which describes a physical system with an abrupt discontinuity of the
mass at one point that happens for a quantum particle moving in a media formed
up by two different materials, the problem of the connection rules in semiconductor
heterostructures, junctions and the short-range limit of a two-body interaction [69,
70, 71, 72, 73, 74]. While the existence of a self-adjoint Hamiltonian operator and a
finite average kinetic energy for a quantum particle are physical requirements, there is

4In particular, ψ belongs to the Sobolev space W 2
2 (R \ {0}) [68].
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no physical reason to rule out the presence of discontinuities in the wavefunction. In
Chapter 4, we will present the jump-defect as another special example of a discontinuous
wavefunction that is associated with a finite kinetic energy. Defects or impurities on
the real line are modeled by point interactions, and we will make interchangeable use
of these terms in this thesis. Because of the singular nature of these interactions, it
is not always convenient or possible to have an analytical expression for a potential
function representing them. In that sense, defects provide us with more possibilities
that go beyond the addition of a zero-range potential function to the Hamiltonian of a
physical system. Furthermore, the self-adjoint extensions of the Hamiltonian can be
used to construct general point interactions [75, 76, 77, 78, 79] that, in the case of a
single interaction center in one dimension, are characterized by a four-parameter family
matching conditions as follows [80](

φk(0+)
φ′
k(0+)

)
= eiθ

(
a b

c d

)(
φk(0−)
φ′
k(0−)

)
, (2.27)

where φ′
k denotes the spatial derivative, the coefficients a, b, c, d ∈ R and θ ∈ [0, π) are

restricted by the condition ad − bc = 1, which is called the non-separated condition
because the regions x < 0 and x > 0 are connected. The case where there is no trans-
mission, effectively an infinite wall, is called separated type and its matching conditions
are called separated conditions. The case of a single δ-defect can be reproduced by
taking a = 1, b = 0, c = 2λ, d = 1 and θ = 0. Interestingly, self-adjoint extensions
of the Hamiltonian operator are equivalent to enforcing probability conservation or
that probability current is continuous across the discontinuity, that is at the defect
position [81, 82, 83]. Specifically, for stationary solutions φk, the condition requires that
∂xjφk

= 0, where jφk
is obtained from (2.3) by the substitution of ψ for φk. Taking into

account the real line excluding the origin, this means that

jφk
(0+) = jφk

(0−), (2.28)

to be understood in the limiting sense. We remark that, although the wavefunction
might be discontinuous, the Hamiltonian operator can be self-adjoint and probability
conserved. These general point defects described by self-adjoint extensions, however,
do not exhaust all possible point interactions. In fact, the case of a δ′ interaction, see
Chapter 3, shows that we may have to use additional assumptions such as symmetry
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properties of the interaction, and different assumptions can result in different point
interactions. All that discussion is not limited to the one-dimensional case or even to
the Schrödinger equation only and it can be extended [84, 85]. The conservation of
probability was also used to create different matching conditions including the case of
a particle moving on the circle with a point interaction [86, 87]. For that inclusion,
the matching conditions characterizing the self-adjoint extensions of the Hamiltonian
(which has deficiency indices (2, 2)) relate the family of point interactions conserving
probability to a 2 x 2 unitary matrix U ∈ U(2) as follows

(U − I)
(
φk(0+)
φk(0−)

)
+ iL0(U + I)

(
φ′
k(0+)

−φ′
k(0−)

)
= 0, (2.29)

where L0 ̸= 0 is an arbitrary constant and I is the identity matrix in U(2).
A defect in one-dimensional configuration space, therefore, can be viewed as a

type of point interaction implemented into the physical system with sewing conditions
connecting the pair of regions separated by the defect position on the real line. Thus,
we consider here the effect of a generic interaction in the context of the Schrödinger
equation. It is also convenient here to set ℏ = m = 1 by a suitable re-scaling of the
length and time units. In the presence of a general non-trivial interaction term, at
least of short-range type, we can write the expectation value (2.24) of the interacting
probability current, in position space, as follows

⟨ψ| JV (f) |ψ⟩ =
∫
dx

∫
dx′(ΩVE+ψ)⋆(x′) [J(f)(x′, x)] (ΩVE+ψ)(x), (2.30)

with the kernel J(f)(x′, x) in position space. In order to simplify this equation, we
need a general expression for J(f)(x′, x), which can be obtained from the expectation
value ⟨ψ| J(f) |ψ⟩ substituting the unbounded operator J(f) in terms of position and
momentum operators using (2.5) as

⟨ψ| J(f) |ψ⟩ = 1
2 ⟨ψ| P̂ f(X̂) + f(X̂)P̂ |ψ⟩

= − i

2

∫
dy ψ⋆(y)

(
f(y)∂ψ(y)

∂y
+ ∂

∂y
(f(y)ψ(y))

)
,

(2.31)

which can be rewritten in the form

⟨ψ| J(f) |ψ⟩ = − i

2

∫
dy ψ⋆(y)

[∫
dy′ f(y)∂δ(y − y′)

∂y
ψ(y′)

+ ∂f(y)
∂y

δ(y − y′)ψ(y′) + f(y)∂δ(y − y′)
∂y

ψ(y′)
]
,
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where we have used the trick of rewriting the wavefunction ψ(y) =
∫
δ(y − y′)ψ(y′)dy′.

Hence, since ⟨ψ| J(f) |ψ⟩ =
∫
dy
∫
dy′ψ⋆(y′) [J(f)(y′, y)]ψ(y′), we obtain

J(f)(y, y′) = − i

2

[
2f(y)∂δ(y − y′)

∂y
+ ∂f(y)

∂y
δ(y − y′)

]
. (2.32)

In abstract Dirac notation, we write the general structure of the interacting operator
current JV (f). From (2.22), it follows that the resolution of the operator ΩV can be
written in the abstract form

ΩV =
∫ ∞

−∞
dk |φk⟩ ⟨k| , (2.33)

where |k⟩ is the generalized momentum eigenvector (in the sense of rigged Hilbert
spaces), and the dual eigenvector (linear functional) ⟨q| is such that δ(q−k) = ⟨q|k⟩. In
particular, a plane wave has the normalization convention given by ⟨x|k⟩ = eikx/

√
2π.

It is not difficult to derive, by comparison with (2.30), the abstract operator

JV (f) = E+Ω†
V J(f)ΩVE+ =

[
E+

∫
dq′ |q′⟩ ⟨φq′ | J(f)

∫
dq |φq⟩ ⟨q|E+

]
. (2.34)

The expression (2.34) is the interacting operator expanded in terms of the interacting
state vector and it highlights how JV (f) differs from the free operator E+J(f)E+.
Obtaining an expression for that linear operator is also the starting point from where
some analytical perturbation theory can be applied to the analysis of the backflow
constant in Chapter 5. For a practical calculation such as obtaining the lowest eigenvalue
of the operator JV (f), we will work with stationary scattering states and momentum
space wavefunctions of the Hilbert space. Back to the expectation value expression
(2.24), it can, therefore, be written in terms of φk as

⟨ψ| JV (f) |ψ⟩ = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′ψ̃⋆(k′)ψ̃(k)

∫
dx

∫
dx′φ⋆k′(x′)J(f)(x′, x)φk(x),

(2.35)
where we will denote the spatial inner integrals by

L(k′, k) =
∫
dx

∫
dx′φ⋆k′(x′)J(f)(x′, x)φk(x). (2.36)

Having a defect located at the origin (x = 0) of the real line, the line is split into two
regions, left of the defect (x < 0) and right of the defect (x > 0). In the presence



36 Chapter 2. Quantum backflow

of defects, we will clearly distinguish solutions by denoting the stationary scattering
solution uk for the left region and vk for the right region. As for the square-integrable
wavefunctions solutions of the time-dependent Schrödinger equation, they are denoted u
and v, respectively. Because φk is in general discontinuous at the origin, it is necessary
to split the spatial integrals in (2.36) accordingly. Alternatively, the stationary solution
φk can be expressed as

φk(x) = θ(−x) uk(x) + θ(x) vk(x), (2.37)

where, for solutions continuous at the origin, the Heaviside function can take the value
at the origin given by θ(0) = 1/2. For φk discontinuous at the origin, that is not a
possible choice and the value at the origin φk(0) is not specified, but always understood
in the limiting sense through the use of the sewing conditions only.

As a matter of finding the lowest backflow eigenvalue expression, we need to take
the minimum of the expression (2.35) obtained from

βV (f) = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′ J̃∗(k′)J̃(k)L(k′, k), (2.38)

where we tacitly assume the existence of the lowest eigenvector |Jmin⟩ of the operator
JV (f), for which the associated wavefunction, in momentum space, is denoted by
J̃(k). That assumption is supported by the numerical analysis, which is explained in
section 4.5. At the present moment, however, an explicit analytical solution for the
lowest eigenvector is not known even in the free case. That is also the case for the
temporal version of the backflow [8, 34].
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Backflow in the presence of δ-defects

3.1 backflow in the presence of a δ-defect

We first review the backflow calculation in the presence of a δ-defect [11] because of
its importance and as a stepping stone towards the jump-defect case that is the topic
of discussion in the next Chapter 4. It shall be said that the δ can be seen as a Dirac
delta potential term V (x) = λδ(x), with λ ∈ R the strength of the potential, but also as
an impurity or a point defect in the real line that is implemented by a set of matching
or sewing conditions and is denominated δ-defect. After considering a single δ-defect,
we take a further step and analyse the backflow in the presence of the double δ-defect.
The latter is an interaction of physical interest and will be discussed in section 3.3. An
important and direct consequence of that discussion will be the inclusion of the singular
δ′-defect that has a discontinuity similar to that of the purely transmitting jump-defect.
The δ′-defect will be obtained from the double δ-defect in the zero-range limit.

Although the δ potential function is not a L1
1(R)-class potential (it is not a locally

integrable function), it was shown in [11] that one can have a (rough) estimate of the
lowest backflow eigenvalue, and the numerical results show that the δ potential is indeed
a special case that also has a lower bound for its βV (f). Here we add to the numerical
results and the analytical expression for (2.36) of the work contained in [11]. The aims
for this are twofold: the lowest backflow eigenvalue displays a different behaviour for
defect parameter values |λ| < 1 and the analytical calculation of (2.36), in the δ-defect
case, highlights the differences with respect to the discontinuous jump-defect case. For
the moment, let us introduce the following notation without further justification as

37
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it will be further discussed in Chapter 4. The delta impurity (as a local defect) has
matching conditions defined at a point, and its wavefunction in one spatial dimension
can be split into left part (x < 0), denoted u, and right part (x > 0), denoted v, such
that

u(0) = v(0) = ψ(0), vx(0) − ux(0) = 2λψ(0), (3.1)

where the evaluation of the wavefunction ψ, solution of the time-dependent Schrödinger
equation, at zero is understood in the right and left limit sense. These are well-known
consequences from the continuity of the wavefunction at the defect’s location and the
discontinuity of its spatial derivatives or slopes. More precisely, without focusing on
issues of self-adjoint extensions, we shall mention that V (x) = λδ(x) is a point interaction
with wavefunction ψ, as a function in the domain of a self-adjoint Hamiltonian H, that
belongs to the Sobolev space W 2,2(R \ {0}) = H2(R \ {0}), the space of all ψ ∈ L2(R)
whose first and second order (distribution) derivatives belong to L2(R), where

Hm(R \ {0}) =
{
ψ ∈ L2(R)| ∂αψ ∈ L2(R), ∀α, |α| ≤ m

}
(3.2)

is the Sobolev space of order m, and m is a nonnegative integer. Note that the
distributions and their derivatives are to be understood here with respect to test
functions in C∞

0 (R \ {0}). We are interested in the Sobolev space H2(R \ {0}) of
functions that admits a finite jump at the origin because defects discontinuities can
be accommodated in this space. For that, we remark that an alternative definition
of Sobolev spaces can be used on R \ {0} in which H2(R \ {0}) is the completion of
{ψ ∈ C2(R \ {0}) | ∥ψ∥2,2 < ∞} with respect to the appropriate Sobolev norm, which

is ∥ψ∥2,2 =
(∑

|α|≤2 ∥∂αψ∥2
2

)1/2
, and ∥.∥2 is the usual L2-norm. Moreover, as the origin

is removed from the domain, the conditions (3.1) are the set of conditions connecting
the value of the wavefunction ψ and its derivatives at the origin.

Let φk denote the solution for the TISE in the presence of a δ-defect. We can
work with derivatives in the weak sense as both φk and its derivative ∂xφk are both
locally integrable functions φk ∈ L1

loc(R), ∂xφk ∈ L1
loc(R). The full square-integrable

time-dependent solution to the Schrödinger equation is denoted by

φ(x, t) = 1√
2π

∫ ∞

0
dk g̃(k) exp(−iwt)φk(x)

= 1√
2π

∫ ∞

0
dk g̃(k) exp(−iwt) (θ(−x)uk(x) + θ(x)vk(x)) ,

(3.3)
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where g̃ ∈ C∞
0 (R) is an arbitrary not identically zero and smoothly varying function

used for producing the wave packet as a proper square-integrable L2(R)-solution. As we
established before, we denote the solution at the left of the defect by u and at the right
by v. The time-independent scattering (from the left) states in position basis (2.19),
compatible with the sewing conditions (3.1), are

uk(x) = exp(ikx) + λ

ik − λ
exp(−ikx) x < 0,

vk(x) =
(

ik

ik − λ

)
exp(ikx) x > 0, (3.4)

where the reflection coefficient R(k) and the transmission coefficient T (k) for the δ-defect
are explicitly written. In particular, for the δ-defect, φ ∈ H1(R) ∩H2(R \ {0}) as it is
continuous at the origin. We want to concentrate our attention on the time-independent
part φk(x) composed of (3.4) and, for that, the inner integral (2.36) reads

L(k′, k) =
∫
dx

∫
dx′ [(θ(−x′)u⋆k′ + θ(x′)v⋆k′) J(f)(x′, x) (θ(−x)uk + θ(x)vk)] . (3.5)

Since the expression (2.32) for J(f)(x′, x) has a factor of −i/2, we absorb it by working
with 2iL(k′, k) instead. Each term is expanded by the insertion of the J(f)(x′, x) and
simplified after integration. Let us focus only on the spatial integrals, namely the
kernel 2iL(k′, k). First, we recall that a locally integrable function φ ∈ L1

loc(R) can
be associated with a linear functional, a distribution, by ⟨φ, ϕ⟩ =

∫
dx φ(x)ϕ(x) with

ϕ ∈ C∞
0 (R). The derivative of that distribution is defined by ⟨∂φ, ϕ⟩ = − ⟨φ, ∂ϕ⟩. In

this weak sense, the derivative (with respect to test functions in C∞
0 (R)) of of our

function φk is
∂φk = (vk(0) − uk(0)) δ0 + φ′

k , (3.6)

where φ′
k denotes the (piecewise defined) strong derivative of φk that is undefined at

the origin, and δ0 is the Dirac delta distribution concentrated at the origin x = 0,
⟨δ0, ϕ⟩ = ϕ(0). Also, the values of the functions uk and vk at the origin are understood
in the limiting sense, uk(0) = lim

ε→0−
uk(ε) and vk(0) = lim

ε→0+
vk(ε). Because we know

that the gap vk(0) − uk(0) is actually zero for the δ-defect, the weak and the strong
derivatives coincide outside the origin with the strong derivative undefined at the origin.
The kernel can be written as the smearing with the test function f of the following



40 Chapter 3. Backflow in the presence of δ-defects

quantity involving φk and its first derivative

2iL(k′, k) =
∫
dx′f(x′)

(
φ⋆k′(x′)∂φk(x

′)
∂x′ − ∂φ⋆k′(x′)

∂x′ φk(x′)
)
, (3.7)

and the derivatives of φk are understood in the strong sense. It follows immediately
that the integral can be split in two parts in terms of the functions uk and vk as

2iL(k′, k) =
∫ 0

−∞
dx′f(x′)

(
u⋆k′(x′)∂uk(x

′)
∂x′ − ∂u⋆k′(x′)

∂x′ uk(x′)
)

+
∫ ∞

0
dx′f(x′)

(
v⋆k′(x′)∂vk(x

′)
∂x′ − ∂v⋆k′(x′)

∂x′ vk(x′)
)
,

(3.8)

where the derivatives are understood in the strong sense.
Finally, we can write down the lowest backflow eigenvalue as

βV (f) = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′J̃∗(k′)J̃(k)L(k′, k),

with the Hermitian kernel

2L(k′, k) = (k + k′)
∫ 0

−∞
dx′f(x′) exp(ix′(k − k′))

+ λ(k′ − k)
(ik − λ)

∫ 0

−∞
dx′f(x′) exp(−ix′(k + k′))

− λ(k − k′)
(ik′ + λ)

∫ 0

−∞
dx′f(x′) exp(ix′(k + k′)) (3.9)

+ λ2(k + k′)
(ik′ + λ)(ik − λ)

∫ 0

−∞
dx′f(x′) exp(−ix′(k − k′))

− kk′(k + k′)
(ik′ + λ)(ik − λ)

∫ ∞

0
dx′f(x′) exp(ix′(k − k′)),

which is obtained by the use of equation (3.4). Thus, the kernel is composed of
contributions located at either the left (−∞, 0) of the defect or the right (0,∞) of the
defect, and there is no contribution purely supported at the defect position.

In section 4.1.2, we will check conservation of energy, momentum and probability
in the presence of a δ-defect and compare with the equivalent analysis applied to a
situation described by a jump-defect. Then, the possibility of finding contributions
to these physical quantities that are located precisely at the defect position will be
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investigated. Such extra terms are regarded as contributions coming purely from the
defect. Particularly, we will find that, provided they exist, these terms are finite and do
not cause, for example, undesirable infinite energies despite the defect discontinuities.
For the calculation of the lowest backflow eigenvalue βV (f), as the eigenfunction J̃(k)
is not analytically known, we need to rely upon numerical calculations in order to plot
the result. Some graphs for the δ-defect case can be found in section 3.2 along with a
discussion of the results.

3.2 numerical results

Details on the numerical analysis can be found in section 4.5, including the definition
of all parameters involved in the calculations. The backflow calculation in the presence
of a δ-defect was analysed in section 3.1, and the corresponding kernel was analytically
simplified to expression (3.9). Here, we present additional numerical results to those
reported in [11], where the defect parameter was restricted to |λ| = 1. All the graphs refer
to the probability current operator smeared with a Gaussian test function. Specifically,
the graphs show the lowest backflow eigenvalue βV (f) against the center x0 of the
averaging Gaussian function f . Attractive refers to the case λ < 0, and repulsive to the
case λ > 0. See the following figure 3.2 and figure 3.3 where we vary the parameter λ
for displaying its behaviour under the strengthening or weakening of the interaction. In
particular, in the limit λ → ±∞, it becomes a purely reflecting situation, equivalent to
a boundary theory. Naturally, when λ → 0 the interaction-free case is obtained. For the
free case, the lowest eigenvalue is represented by the line β0(f) ≈ −0.241. As shown by
figure 3.2, there is a maximum of the lowest eigenvalue, in the attractive case, close
to the defect’s location when |λ| < 1. Moreover, the maximum seems to peak when
the defect parameter is λ = −1/2. Despite not being included in this thesis, a few of
other parameters around λ = −1/2 (λ = −0.40,−0.45,−0.55,−0.60) were explored
and suggested that the maximum indeed peaks at λ = −1/2. This is a new observation.
We do not have a physical explanation for it, but it is worth exploring in the future.
Changing the width of the Gaussian causes the maximum to peak at different values of
λ, but that is somehow expected as different widths also modify the backflow eigenvalue
even in the interaction-free situation. Finally, sufficiently increasing its absolute value
(|λ| > 1) causes the attractive and repulsive cases to approach each other.
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Classically, the intuition underlying the different behaviours between λ > 0 (re-
pulsive) and λ < 0 (attractive) is that the particle velocity is lower in the former
case and higher in the latter case when compared with the free case. Hence, in the
attractive case the backflow effect is weaker than in the repulsive case. From the point
of view of quantum mechanics, the difference is more subtle. Note that the pole of the
transmission and reflection coefficients in (3.4) is at k = −iλ. In the complex energy
plane, bound states have imaginary part Im k > 0 and virtual states (or antibound
states) have Im k < 0. Then, in the case of the δ-defect, while positive values of λ yield
virtual states, negatives values of λ yield physical bound states. There are, therefore,
two important factors determining the behaviour of the backflow constant at the left of
the defect: backscattering and bound states. In the transmission region at the right of
the defect, the situation in both cases is similar to the free case. In contrast to the left
region, the right region has no superposition of incoming and reflected waves but only
transmitted wave, which can shift away the backflow lowest eigenvalue from the free
case, but βV (f) is still represented by a constant line. That is why the two curves, blue
(λ > 0) and red (λ < 0), merge at the right of the defect.

Additionally to the two-dimensional plots, we have varied the parameter λ over
a wide range for displaying three-dimensional pictures, figure 3.4 and figure 3.5, to
illustrate how the lowest backflow eigenvalue βV (f) is affected in the presence of the
δ-defect. This can be compared to the results of the double δ-defect in section 3.4 and
to the results of Chapter 4 where the jump-defect parameter α varies, figures 4.9, 4.10,
4.12 and 4.13 in section 4.4. The only difference between figure 3.4 and figure 3.5 is
that the former is plotted over a larger range of λ to show global aspects and the latter
covers a smaller range of the parameter in order to exhibit local features around the
defect’s location. In particular, figure 3.5 shows very clearly that the peak at λ = −1/2
where βV (f) ≈ −0.081. All these results are stable against increasing the number N of
discretization steps and the momentum cutoff Pcutoff.
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Figure 3.1: Lowest backflow eigenvalue of the current operator, for which (a) |λ| = 0.03
(b) |λ| = 0.1.
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3.3 the double δ-defect

While the δ-defect always describe a situation where the reflection coefficient R(k) is
non-zero, it can also be seen as a particular case from the more general double δ-defect.
Given two δ impurities, each one located at a different point in the real line, the single
δ-defect is obtained in the limit that these two defect’s positions are the same. In
that sense, the double delta case is more general and has additional features that are
not present in the single delta case. For instance, the number of bound states can
change up to two instead of a single bound state, the presence of resonances and the
possibility of having a zero reflection coefficient, in other words a situation where the
defect is transparent. In terms of applications in physical situations, the double delta
can model, for example, the diatomic hydrogen gas molecule [21, 88] or the pair of
plates in the Casimir effect [89, 90, 91]. Moreover, what would describe the derivative
of a Dirac-δ as a quantum mechanical potential, or as a defect called δ′-defect, can be
obtained from the double δ-defect in a limiting process where the deltas approach each
other. Consequently, other more general situations as the double δ-δ′-defect can also be
explored in the context of the Casimir effect and nuclear physics [92, 93]. Here we are
interested in how the double δ-defect defers from the single δ-defect in regard to the
quantum backflow effect. Most of the calculations related to the double delta are similar
to those in the case of a single delta. Hence, we will rely on previous sections to present
the results of this sections not in a detailed and lengthy exposition but highlighting
some important points without significant losses.

For that purpose, the potential is now considered in its general form as V (x) =
λ1δ(x−a1)+λ2δ(x−a2), with real parameters λ1 and λ2, the potential strengths, and a1

and a2 the positions where the impurities are located in the real line such that a1 < a2.
Exactly as before, the sewing conditions are defined only at the defect’s location, a1

and a2, expressing the fact that the wavefunction is continuous at these two points
and that there is a discontinuity of the slopes at the same points. Thus, in evident
similarity to (3.1), the sewing conditions are

u(a1) = w(a1) = ψ(a1), wx − ux = 2λ1w(a1),

w(a2) = v(a2) = ψ(a2), vx − wx = 2λ2v(a2),
(3.10)

where u,w, v correspond to the pieces of the wavefunction located at the left of the
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first delta, (x < a1), in the middle between the two deltas (a1 < x < a2), and at the
left of the second delta (x > a2), respectively. The time-independent scattering states
compatible with (3.10) can be shown to have the following form

uk(x) = exp(ikx) +R(k) exp(−ikx) x < a1,

wk(x) = A(k) exp(ikx) +B(k) exp(−ikx) a1 < x < a2,

vk(x) = T (k) exp(ikx) x > a2,

(3.11)

with k > 0, and the corresponding coefficients given as follows

A(k) = k2 + ikλ2

k2 + ik(λ1 + λ2) − λ1λ2

(
1 − β2

α2

)
B(k) = −ikβ2λ2

k2 + ik(λ1 + λ2) − λ1λ2

(
1 − β2

α2

)
T (k) = k2

k2 + ik(λ1 + λ2) − λ1λ2

(
1 − β2

α2

) (3.12)

R(k) = −ik (α2λ1 + β2λ2) − λ1λ2(β2 − α2)
k2 + ik(λ1 + λ2) − λ1λ2

(
1 − β2

α2

) ,

where T (k) is the transmission coefficient and R(k) is the reflection coefficient and we
have set α := exp(ika1) and β := exp(ika2). In particular, if a1 = −a and a2 = a, with
a > 0, the potential is symmetrical when λ1 = λ2 = λ, and the interaction is entirely
repulsive or entirely attractive. Similarly, the particular case where a1 = −a and a2 = a

with λ1 = −λ2 = λ corresponds to the antisymmetric situation composed of a mixture
of attractive and repulsive interactions.

Alternatively to the use of sewing conditions to obtain the coefficients (3.12), one
can write the solution to the time-independent Schrödinger equation in terms of the
Lippmann-Schwinger (2.20) in the form

φk(x) = exp(ikx) + 2λ1

∫
Gk(x− y)δ(y − a1)φk(y)dy

+ 2λ2

∫
Gk(x− y)δ(y − a2)φk(y)dy

= exp(ikx) + 2
∑
J

λJGk(x− aJ)φk(aJ),

(3.13)
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with index J = 1, 2 corresponding to a1 and a2, respectively, and the integral kernel

Gk(x− y) = 1
2ik e

ik|x−y| . (3.14)

The evaluation of φk(x) at x = aI , with index I = 1, 2, is given as follows

φk(aI) [1 − 2λIGk(aI − aI)] − 2λJGk(aI − aJ)φk(aJ) = exp(ikaI), (3.15)

with I ̸= J . That can, more generally, be written in the matrix form(
M11 M12

M21 M22

)(
φk(a1)
φk(a2)

)
=
(

exp(ika1)
exp(ika2)

)
, (3.16)

where the components of the complex matrix M are expressed by

MIJ =
{

1 − 2λIGk(aI − aI) I = J,

−2λJGk(aI − aJ) I ̸= J.
(3.17)

As a result, at the defect’s location, φk(aJ) is

φk(aJ) =
∑
I

(
M−1)

JI
exp(ikaI), (3.18)

and, the scattering solution φk(x) can be expressed

φk(x) = exp(ikx) +
2∑

J=1

2∑
I=1

λJ
eik|x−y|

ik

(
M−1)

JI
exp(ikaI). (3.19)

In particular, the reflection coefficient R(k), for example, can be obtained from that
when we consider x < a1, and the transmission T (k) in the region x > a2.

The backflow analysis in the presence of finitely many δ impurities follows very simi-
larly from the simpler case in the presence of a single one. In particular, the expression
(2.36) will split into three regions of integration determined by (−∞, a1), (a1, a2) and
(a2,∞) corresponding to u, w and v, respectively. The asymptotic backflow constant
in the presence of a double delta defect interaction is given by equation (2.38) with a
kernel expression, to be compared with (3.9) and that can be calculated in a similar
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manner as was done in the single delta case, given by

2L(k′, k) = (k + k′)
∫ a1

−∞
dx′f(x′) exp(ix′(k − k′))

+ (k′ − k)R(k)
∫ a1

−∞
dx′f(x′) exp(−ix′(k + k′))

+ (k − k′)R⋆(k′)
∫ a1

−∞
dx′f(x′) exp(ix′(k + k′))

− (k + k′)R⋆(k′)R(k)
∫ a1

−∞
dx′f(x′) exp(−ix′(k − k′))

+ (k + k′)A⋆(k′)A(k)
∫ a2

a1

dx′f(x′) exp(ix′(k − k′)) (3.20)

+ (k′ − k)A⋆(k′)B(k)
∫ a2

a1

dx′f(x′) exp(−ix′(k + k′))

+ (k − k′)B⋆(k′)A(k)
∫ a2

a1

dx′f(x′) exp(ix′(k + k′))

− (k + k′)B⋆(k′)B(k)
∫ a2

a1

dx′f(x′) exp(−ix′(k − k′))

+ (k + k′)T ⋆(k′)T (k)
∫ ∞

a2

dx′f(x′) exp(ix′(k − k′)).

As previously executed, the same numerical calculations are used in order to obtain
the lowest eigenvalue βV (f), from (2.38), with the only difference being the number
of interaction centers considered. It is easy to check that the backflow analysis in the
general case of finitely many δ-defects immediately follows from the particular case
of the double δ-defect. Because each delta represents a zero-range interaction or a
point-defect, the asymptotic behaviour of the solution to the Schrödinger equation is
greatly simplified, although the calculations quickly become laborious with the increase
of the number of impurities. The case of infinitely many delta interactions, also known
as Dirac comb, will not be considered here, but it can be treated as a limiting case
where the number of impurities tends to infinity. In particular, the expression (3.19)
would involve infinite sums corresponding to the infinitely many interaction centers.
Furthermore,the double δ-defect can already be quite singular. The zero-range limit
a1 → a2 → 0 turns the interaction into a more severe discontinuity that represents what
will be called a δ′-defect and discussed in the next section.
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3.4 numerical results for the double δ-defect

The numerical analysis for the backflow effect in the presence of a double δ-defect is
presented here in the form of graphs displaying the lowest eigenvalue βV (f) of the
probability current operator as a function of the position of measurement x0 that is the
center of the positive test function f , chosen to be a Gaussian function. The reader can
find the relevant details on the numerical analysis in section 4.5. Additionally, some
three-dimensional plots, in terms of βV (f), position x0 and potential strength λ, are
included in this section.

Some of the particular choices we make when computing the backflow constant are
here described. The more known case, well-covered in the literature, is the special case
when the the defect’s locations in the real line are −a1 = a2 = a and with strength
λ1 = λ2 = λ, the symmetric case, or λ1 = −λ2 = λ, the antisymmetric case. The
symmetric one will be referred as a pair of identical deltas and the antisymmetric one
will be referred as a pair of opposite deltas. These were considered in the present work,
and the respective results provided below. Keeping the positions fixed, −a1 = a2 = a,
one can also consider the case in which the strengths are related as λ1 = cλ2, where
c ∈ Z is a constant of proportionality between the impurities. That possibility was
contemplated in the numerical calculations with some few values chosen as reference
and depicted in the plots therein. In accordance to what was done in the previous case
of a single δ-defect, λ assumes positive and negative values in this section. To cover
the various possibilities regarding the choice of signs and magnitudes, the results are
organized in subsections as follows: identical pair of deltas 3.4.1, opposite pair of deltas
3.4.2 and general pair of deltas 3.4.3.

3.4.1 The case of identical double δ-defect

The pair of identical deltas is specially characterized by the condition that λ1 = λ =
λ2. The terms attractive and repulsive refer to the sign of the potential strengths
corresponding to the first and the second deltas in the double δ-defect. Attractive,
therefore, represents the situation where both deltas have negative strengths, λ1 < 0
and λ2 < 0. Repulsive represents the pair of deltas where both deltas have a positive
strength, λ1 > 0 and λ2 > 0. Here we consider the positions of each delta fixed with
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−a1 = a2 = 0.5. Because it is an identical pair of deltas, the limiting case where they
approach each other, a1 → a2, is trivial in the sense that the result is effectively a single
δ-defect with total strength twice the value of the individual strengths. Although we did
not include here the results when a1 → a2, we can confirm that the previously mentioned
maximum peak, at λ = −1/2, for the backflow constant βV (f) in the presence of a
single delta is reproduced setting −a1 = a2 = 0.01 and λ1 = λ2 = −0.25, as we may
have expected from the results of section 3.2.

In evident similarity to the case of a δ-defect, the pair of identical deltas for very small
perturbations, figure 3.6, shows that the attractive case has a less negative backflow
constant than the repulsive case of opposite strength for almost the entire region at the
left of the interaction centers. As in the previous single δ-defect case, backscattering
and bound states are important factors determining the behaviour of the backflow
constant at the left of the defects. However, in the middle region between the defects
(a1 < x0 < a2), βV (f) depends critically on the coefficients A(k) and B(k) from (3.12)
that are connecting both defects, and an intuitive description of how βV (f) changes is
not straightforward in the general case. In contrast to the case of a single δ-defect, the
red and blue curves do not merge anymore in the transmission region at the right of the
defects (x0 > a2). To understand this behaviour, note that, although βV (f) is given by
a constant line in that region, the transmission coefficient T (k) has different magnitudes
depending on whether the pair of defects is attractive or repulsive. In the absence of
reflection, we can expect a symmetric situation in which the backflow constant is the
same far away at the left and at the right of the defects. It is also expected that the
presence of bound states becomes more relevant without the backscattering contribution
to the backflow. In particular, points of maxima of βV (f) should appear exactly at
the defect position. In fact, these expectations will be met in the case of a purely
transmitting jump-defect.

With the increase of the potential strength, represented by figures 3.7 and 3.8,
the appearance and development of two peaks of maximum for negative values of the
strength occur until a certain point where the peaks start to contract. In particular,
while the highest peak in the backflow constant does not seem to be achieved for
λ = −1/2 with a = 0.5, the two distinct peaks in the attractive case are connected by a
minimum in between. After that, as the interaction becomes much stronger, the second
interaction center looks as a totally reflecting wall while the first center has partial
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transmission, figure 3.9. For a three-dimensional graph displaying all these features,
see figure 3.10 and compare with the previous δ-defect in figure 3.4. Because the local
features corresponding to small values |λ| are less noticeable when considering a large
range of the parameter λ, figure 3.11 shows a better representation of what happens for
when the interaction is limited to |λ| ≤ 1. That can be compared to figure 3.5 noticing
the difference on the peaks in the attractive region where λ < 0.
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Figure 3.6: Lowest backflow eigenvalue of the current operator in the presence of a pair
of identical deltas, a1 = −a2 = −0.5. (a) |λ| = 0.01 (b) |λ| = 0.03.
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Figure 3.7: Lowest backflow eigenvalue of the current operator in the presence of a pair
of identical deltas, a1 = −a2 = −0.5. (a) |λ| = 0.1 (b) |λ| = 0.25.
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Figure 3.8: Lowest backflow eigenvalue of the current operator in the presence of a pair
of identical deltas, a1 = −a2 = −0.5. (a) |λ| = 0.4 (b) |λ| = 0.5.
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Figure 3.9: Lowest backflow eigenvalue of the current operator in the presence of a pair
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3.4.2 The case of opposite double δ-defect

The pair of opposite deltas is specially characterized by the condition that λ1 = λ = −λ2.
The terms “attractive-repulsive” and “repulsive-attractive” refer to the pair of signs of
the strengths corresponding to the first and the second deltas in the double δ-defect.
Attractive-repulsive, therefore, represents the situation where the first delta has strength
λ1 < 0 and the second has strength λ2 > 0, and vice versa.

Differently from the identical pair of deltas, the opposite pair does not reduce to
the case of a single delta when a1 → a2 → 0. In fact, that limit is interesting as it
reproduces a different interaction, located at the origin, known as the derivative of
the Dirac delta δ′(x) = dδ(x)/dx with corresponding potential V (x) = µδ′(x), µ ∈ R.
Due to the discontinuous nature of that interaction, there was a controversy as to
what is the correct way of implementing it. More specifically, the product δ′(x)ψ(x)
is ill-defined for a wavefunction ψ discontinuous at the origin. In summary, there are
distinct interactions called δ′ in the literature [94, 95, 96, 97, 98, 99, 80, 67, 100, 101,
102, 103, 104, 105, 106]. There are two distinct sets of sewing conditions called δ′,
and that caused confusion for some time. Although they both have a discontinuous
wavefunction solution, one has continuous derivative at the defect’s location and the
other has in general a jump discontinuity in the derivative of its wavefunction. The
former is characterized by the following pair of sewing conditions [95, 67]

v(0) − u(0) = 2µψx(0),

vx(0) = ux(0) = ψx(0),
(3.21)

which is invariant under a parity transformation (x 7→ −x) and, therefore, incompatible
with the δ′(x) that is an odd (generalized) function of x. Hence, the interaction
represented by (3.21) does not describe a Hamiltonian perturbed by the derivative of a
Dirac delta potential. The latter, differently, can be expressed by the pair of sewing
conditions [98, 80]

v(0) = 1 + µ

1 − µ
u(0),

vx(0) = 1 − µ

1 + µ
ux(0),

(3.22)

and is, in fact, a matching condition widely used in the literature to represent the
interaction corresponding to the derivative of a Dirac delta potential. The respective
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reflection and transmission coefficients are

R = −2µ
1 + µ2 ,

T = 1 − µ2

1 + µ2 ,

(3.23)

which are k-independent. Note that µ = ±1 corresponds to a situation of zero trans-
parency, purely reflecting, while µ → ∞ causes the reflection coefficient to approach
zero, a purely transmitting case. For most values of the potential strength µ, there
is a partial transmission. We remark that expressions (3.21) and (3.22) are matching
conditions that do not explicitly refer to any regularization process of the singular
δ′. Differently from that, however, Šeba’s work [94] analysed the δ′ potential function
in terms of a pair of opposite deltas, also called a point dipole interaction. The δ′ is
obtained by the dipole interaction in the zero-range limit that

δ′(x) = lim
ε→0

(
1
2ε

)
[δ(x+ ε) − δ(x− ε)] , ε > 0, (3.24)

but Šeba proved some general results considering a family of regularized potentials
Vν,ε,µ in the zero-range for the Hamiltonian [94]

Hν,ε,µ = −1
2
d2

dx2 + lim
ε→0

( µ

2εν
)

[δ(x+ ε) − δ(x− ε)] , ν > 0, (3.25)

which can be achieved from our notation on the double δ-defect by effectively setting
λ1 = µ/(2εν) and λ2 = −µ/(2εν) together with a1 = −ε and a2 = ε. That interaction
can be classified in three different situations depending upon the value of the parameter
ν when ε → 0. If ν < 1/2, the interaction reduces to a purely transmitting case where
the transmission coefficient T (k) → 0. If ν = 1/2, the interaction is equivalent to
a single delta, which is partially transparent, with the relation λ = −µ2/2. Finally,
for ν > 1/2, the interaction becomes a totally reflecting wall causing the half-lines
(−∞, 0) and (0,∞) to become completely disjoint. That result seems to show that
the δ′ interaction (ν = 1) is not of a physical interest. However, changing the limiting
process [102] in which that interaction (3.24) is obtained, specifically by considering a
family of regularizing potentials with the inclusion of a second regularizing parameter
in addition to the parameter ε, allows two distinct situations as a result. The first
one is purely reflecting, in agreement with [94], and the other, depending on the value
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of the parameter µ, can be either purely reflecting (for most values of µ) or partially
transparent (for a countable resonance set Γ =

{
µ | tan √

µ = tanh √
µ
}

). In terms of
sewing conditions, these can be stated as [107]

v(0) = θ(µ)u(0)

vx(0) = θ−1(µ)ux(0)
(3.26)

with coupling function θ : Γ → R given

θ(µ) = cosh
√

|µ|
cos
√

|µ|
, µ ∈ Γ. (3.27)

Otherwise, when µ ̸∈ Γ, the totally reflecting wall is obtained with the Dirichlet
boundary condition at the origin, u(0) = v(0) = 0. As a consequence, the corresponding
reflection and transmission coefficients are

R = 1 − θ2(µ)
1 + θ2(µ) for µ ∈ Γ,

T = 2θ(µ)
1 + θ2(µ) for µ ∈ Γ.

(3.28)

Alternatively, when µ ̸∈ Γ, the coefficients are R = −1 and T = 0, representing the
totally reflecting wall. Note that again, similarly to (3.22), these do not depend on
k. This result, in disagreement with [94], means that a model for the δ′ interaction
contains hidden parameters [108, 107]. In other words, the operator obtained in the
zero-range limit from a family of short-range potentials depends on the choice of the
regularization, and, therefore, different approximating families of potentials produce
different results.

Taking together all the facts described in this section, there is a discrepancy between
the results for a δ′ interaction depending on whether the results are derived from the
sewing conditions (3.22) or from a regularization process of this singular interaction.
The problem is essentially related to the fact that the product δ′(x)ψ(x) is ill-defined for
ψ discontinuous at the origin. Similar situation will be the main topic of the discussion
of the backflow in the presence of a jump-defect in the next Chapter 4. The way in
which we approximate our results to describe the backflow effect in the presence of a
δ′-defect is by using the sewing conditions (3.10) for a pair of opposite deltas in the limit
that a → 0. The backflow results for a pair of opposite deltas in the zero-range limit are
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results for a point dipole interaction. Physically, a point dipole interaction corresponds
to a situation where a small region of large repulsive interaction is immediately followed
by a small region of large attractive interaction. Possible technological applications
where this interaction is explored include, for example, nanodevices in semiconductor
physics [109]. Because of the numerical limitations in our analysis, we restricted the
distance a to a few values: a = (0.5, 0.1, 0.01).

Starting from the case where a = 0.5, the results show that, for small values of
the potential strength λ, figure 3.12, there is not much difference between the cases
attractive-repulsive and repulsive-attractive in positions sufficiently distant from the
interaction centers. That is different from the previous subsection with an identical
pair of deltas where attractive and repulsive are easily distinguished by their lowest
backflow eigenvalue even for sufficiently distant positions x0, as can be seen in figures 3.6
and 3.7. As the potential strength increase, that distinction starts to be noticeable,
figure 3.13. In particular, the attractive-repulsive case starts to develop a peak before the
first interaction center and the repulsive-attractive case develops its peak immediately
before the second interaction center, as expected from our previous results describing
the behaviour of the backflow constant for attractive and repulsive interactions; see
figure 3.14. For very large values |λ|, figure 3.15, the totally reflecting wall is achieved but
with an almost constant βV (f) in the region between the pair of deltas (a1 < x0 < a2).
In figure 3.16, with a smaller a = 0.1, the result shows small bell-shaped bumps near to
the origin with a backflow constant βV (f) ≈ β0(f) for sufficiently far from the origin
positions x0. Interestingly, this is very similar to the case of the purely transmitting
jump-defect for small values of |α|, figure 4.2 in Chapter 4. As the potential strength
increases, figure 3.18, the bumps distort into a situation of partial transmission where
the previous apparent symmetry between far left (x0 << 0) and far right (x0 >> 0)
positions is broken. Very strong potential strengths, shown in figure 3.19, cause the
split of the real line into separate regions (−∞, 0) and (0,∞). Finally, for the smallest
a = 0.01, the presence of bell-shaped bumps, starting from very weak non-zero potential
strengths, figure 3.20, persists for a larger range of λ, see the case of |λ| = 1 in figure 3.21.
As before, there seems to be some distortions implying a situation of partial transmission,
but these happen in a smaller range of λ if compared to previous cases where a = 0.5
or a = 0.1. As the potential strength increases, the bumps swiftly disappear and
become a wall with partial transmission until the point where there is no transmission,
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corresponding to a total reflecting wall with Dirichlet boundary condition at the origin
that effectively cause the probability current to be zero at the origin, figure 3.22.

The results presented in this section do not show an indication that there is a
particular non-zero and finite value of the potential strength µ that will turn the
interaction into a purely reflecting situation as implied by the set of sewing conditions
(3.22). Moreover, for a fixed but small distance a = ε, successively increases of |λ|,
which also implies the increase of µ, has the effect of approximating the interaction
to a completely reflecting wall so that R → 0. In that sense, the behaviour is more
similar to what is predicted by the regularization process leading to (3.28), namely
the complete separation of the regions (−∞, 0) and (0,∞) characterized by a zero
probability current at the origin. Although our results show a partial transmission
obtained from a continuous range of values of the parameter µ, rather than from a
discrete range of values, this range seems to shrink as the distance a becomes smaller.
Evidently, our analysis was restricted by the smallest distance considered that was
a = 0.01, which may not be enough to simulate the limiting process in which the dipole
interaction becomes a δ′-defect. Nevertheless, the presence of partial transmission
indicates that, in contrast to [94], the δ′-defect is not simply equivalent to a totally
reflecting potential wall.

In addition to the plots of the backflow constant against the position of measurement
x0, three-dimensional plots, including the variation on the potential strength λ, for the
case where a = 0.5 and a = 0.1 are presented below. In figure 3.23, for a = 0.5, the
region in between the pair of deltas (a1 < x0 < a2) reveals some structure that does
not appear to be present in figure 3.24 where the pair of deltas is much closer to each
other, a = 0.01. The latter seems to glue together two different behaviours, as for the
backflow constant, represented by the the regions x0 < 0 and x0 > 0. That difference
can be highlighted when compared to the pair of identical deltas in figure 3.11. It is also
worth comparing these results to the three-dimensional plots corresponding to the case
of a single δ-defect, 3.5, which shares some similarities to figure 3.23 and figure 3.24
in terms of the shape of the graph, specially for points x0 far from the origin and for
larger values of |λ|. However, the single delta case connects the regions x0 < 0 and
x0 > 0 in a smoother manner for λ < 0 where there is the presence of a maximum peak
around λ = −1/2, as discussed before.
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Figure 3.12: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.5. (a) |λ| = 0.01 (b) |λ| = 0.03.
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Figure 3.13: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.5 . (a) |λ| = 0.1 (b) |λ| = 0.25.
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Figure 3.14: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.5 . (a) |λ| = 0.4 (b) |λ| = 0.5.
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Figure 3.15: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.5. (a) |λ| = 1.0 (b) |λ| = 10.0.
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Figure 3.16: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.1. (a) |λ| = 0.01 (b) |λ| = 0.03.
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Figure 3.17: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.1. (a) |λ| = 0.09 (b) |λ| = 0.25.
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Figure 3.18: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.1. (a) |λ| = 0.4 (b) |λ| = 0.5.
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Figure 3.19: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.1, for which (a) |λ| = 1.0 (b) |λ| = 10.0.
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Figure 3.20: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.01, for which (a) |λ| = 0.03 (b) |λ| = 0.5.
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Figure 3.21: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.01, for which (a) |λ| = 1.0 (b) |λ| = 2.0.
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Figure 3.22: Lowest backflow eigenvalue of the current operator in the presence of a
pair of opposite deltas, a1 = −a2 = −0.01, for which (a) |λ| = 4.0 (b) |λ| = 10.0.
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3.4.3 The case of general asymmetric double δ-defect

The pair of general asymmetric deltas is characterized by the extra freedom of allowing
the condition that |λ1| ≠ |λ2|. In particular, we consider the case where one strength is
not much larger than the other (|λ2| = 2|λ1|) and the case where one of the strengths
is much larger than the other (|λ2| = 10|λ1|). In the legends, the terms attractive
and repulsive have the same meaning denoted in the previous subsections, namely the
description of the pair of deltas as to whether the strengths have negative or positive
value, respectively. Similarly, attractive-repulsive corresponds to the condition that
λ1 < 0 and λ2 > 0, and repulsive-attractive corresponds to λ1 > 0 and λ2 < 0. As for
the position of the impurities, we restrict to the case where a = 0.5.

When the asymmetric double δ-defect is composed of impurities which are not much
stronger or much weaker relatively to each other, in a balanced mixture of strengths,
βV (f) is not much perturbed from what one would expect after considering the results
of the previous subsections. In contrasting difference, taking into account an imbalanced
mixture of interaction strengths where the impurities are much weaker or much stronger
to each other, the final result for the backflow constant is considerably affected by the
strongest interaction center. These asymmetric cases share some features with previous
case, as for the presence of peaks for certain negative values of the strength, for example,
figures 3.25, 3.27, 3.29, 3.30 and 3.31. On the other hand, figures 3.26, 3.28 seem to
sum up opposite (attraction and repulsion) effects leading to a combined total effect
forming bumps in the neighbourhood of x0 = −0.5. That is not possible with a single
delta and is likely due the result of balance between strong and weak attraction and
repulsion as well the appropriate distance between the interaction centers. When the
interaction strength is very weak for the opposite pair of deltas, figures 3.27 (a) and
3.31 (a), it does not seem that the attractive-repulsive case has less backflow than
the repulsive-attractive case in the regions before the first interaction site. However,
that is not the case, and the reason is that our range x0 ∈ (−2, 2) is not enough to
show that behaviour. In fact, subfigures (b) of the mentioned figures show that the red
curve (attractive-repulsive) and the blue curve (repulsive-attractive) cross each other
closer to the interaction centers for stronger strengths. Finally, figure 3.32 shows that
the presence of a maximum for the attractive-repulsive case in the region immediately
before the first impurity is retained, even for strong values such as λ1 = −1, and the
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behaviour in the middle region (−0.5 < x0 < 0.5) can be quite intricate.
The main features presented here are the clear distinction between the behaviour of

attractive and repulsive interactions, the existence of maxima, the number of them and
their location with respect to the defect position. In the next chapter, where a purely
transmitting defect is studied, there will be no backscattering affecting the backflow
constant, and the analysis can be more precise (by comparison with what happens in a
general scattering situation) in the sense that the backflow effect will be isolated.
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Figure 3.25: Lowest backflow eigenvalue of the current operator in the presence of a
pair of deltas, a1 = −a2 = −0.5, λ1 = λ and λ2 = 10λ1, for which (a) |λ| = 0.05
(b) |λ| = 0.1.
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Figure 3.26: Lowest backflow eigenvalue of the current operator in the presence of a
pair of deltas, a1 = −a2 = −0.5, λ1 = λ and λ2 = 10λ1, for which (a) |λ| = 0.5
(b) |λ| = 1.0.
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Figure 3.27: Lowest backflow eigenvalue of the current operator in the presence of a
pair of deltas, a1 = −a2 = −0.5, λ1 = λ and λ2 = −10λ1, for which (a) |λ| = 0.05
(b) |λ| = 0.1.
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Figure 3.28: Lowest backflow eigenvalue of the current operator in the presence of a
pair of deltas, a1 = −a2 = −0.5, λ1 = λ and λ2 = −10λ1, for which (a) |λ| = 0.5
(b) |λ| = 1.0.
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Figure 3.29: Lowest backflow eigenvalue of the current operator in the presence of a
pair of deltas, a1 = −a2 = −0.5, λ1 = λ and λ2 = 2λ1, for which (a) |λ| = 0.05
(b) |λ| = 0.25.
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Figure 3.30: Lowest backflow eigenvalue of the current operator in the presence of a
pair of deltas, a1 = −a2 = −0.5, λ1 = λ and λ2 = 2λ1, for which (a) |λ| = 0.5
(b) |λ| = 1.0.



3.4. Numerical results for the double δ-defect 87

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

β
V
(f

)

x0

Backflow in double delta defect: N = 1000, Pcutoff = 100, |λ| = .05

attractive-repulsive
repulsive-attractive

(a)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

β
V
(f

)

x0

Backflow in double delta defect: N = 1000, Pcutoff = 100, |λ| = .25

attractive-repulsive
repulsive-attractive

(b)

Figure 3.31: Lowest backflow eigenvalue of the current operator in the presence of a
pair of deltas, a1 = −a2 = −0.5, λ1 = λ and λ2 = −2λ1, for which (a) |λ| = 0.05
(b) |λ| = 0.25.
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Figure 3.32: Lowest backflow eigenvalue of the current operator in the presence of a
pair of deltas, a1 = −a2 = −0.5, λ1 = λ and λ2 = −2λ1, for which (a) |λ| = 0.5
(b) |λ| = 1.0.
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Backflow in the presence of a jump-defect

4.1 integrable defects

Either in classical or quantum theory, partial differential equations come in useful to
describe the dynamics of the systems we want to study. The same physical idea can be
implemented in different ways, depending on what one wants to describe. Integrable
defects [12, 110, 13, 111, 112, 14, 113, 114, 115, 116] can be treated both in classical and
quantum contexts in linear and nonlinear theories. In a linear theory, integrability is
certainly redundant, but the underlying motivation is the same: to preserve conservation
laws. Boundaries and defects are additional structures that can be added to the theory,
but, generally, they spoil the integrability of the theory. Nevertheless, there are special
types of defects that preserve integrability. This chapter will focus on one of such
examples.

In the Schrödinger equation for a square-integrable wavefunction φ, one explicitly
writes down a potential term, usually a function of the position, in the Hamiltonian
of the system. In case the potential is only a function of the space coordinate (and
possibly of time), but not of φ itself, the equation is still a linear partial differential
equation. Additionally to working with an explicit potential term, there is another way
of implementing interactions in the presence of point-like impurities or defects, a kind
of internal boundary at a point. Rather than written as an external potential function,
the defect can be described by a set of sewing conditions. In 1 + 1 dimensions, these
conditions relate the field and its derivatives on the left to the field and its derivatives
on the right of the defect’s location. The δ-type defect has the pedagogical advantage

89
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of allowing both descriptions; it can be written as the usual delta potential δ(x) or
as a set of two sewing conditions. In particular, for the δ-type defect, one condition
is a statement of the continuity of the field at the defect location and the other one
describes the discontinuity of the spatial derivative of the field, as discussed in the
previous chapter. Although interesting and more familiar, the δ-type of impurity may
spoil the integrability of a nonlinear integrable system. For instance, that is the case
for the sine-Gordon equation [117]. However, some years ago it was shown that there
exist two types of defects that are integrable, proved by constructing Lax pairs, and
they were categorised as type I and type II [116, 118]. The former is simpler in the
sense that only the field has dynamics, and the latter is a generalization with an extra
function defined on the defect; it has an extra internal degree of freedom. Moreover,
these defects can move with constant speed and are able to scatter [15].

In this thesis, we focus on the type I integrable defects. While the δ-type defect
has continuous solutions at the defect location, we can have a defect that allows a
discontinuity of the field at the same location. Such a defect, with a particular set of
sewing conditions, is called a ‘jump-defect’. In the context of fluid mechanics, such
defects are very similar to shock waves, for example, which have sewing conditions
expressed by the Rankine-Hugoniot conditions [119].

4.1.1 Jump-defect in a non-relativistic context

Although a Lagrangian description is not the only way for setting up the situation we
are interested in, we can start from a Lagrangian in 1 + 1 dimensions. By conveniently
setting a length scale ℓ as the unit of length and mℓ2/ℏ as the unit of time, equivalently
setting ℏ = m = 1, the Lagrangian density [120] is

L[ψ] = i

2 (ψ⋆ψt − ψ⋆tψ) − |ψx|2

2 , (4.1)

and the Euler-Lagrange equation gives the linear Schrödinger equation

2iψt + ψxx = 0, (4.2)

with time and spatial derivatives of function ψ denoted by ψt and ψx, respectively. The
defect can be placed at the position xD = 0 on the real line, for example. This means
that the bulk region, −∞ < x < ∞, will effectively split in two parts, as in figure 4.1.
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xD = 0u v

Figure 4.1: Locating a defect on the real line.

The field on the left of the defect (x < 0) will be denoted u = u(x, t) and the field on
the right (x > 0) will be denoted v = v(x, t). The values of the fields at x = xD do not
match and v(xD, t) − u(xD, t) ̸= 0, representing a jump discontinuity. Specifically, the
fields are evaluated at xD in the following limiting sense

u(xD, t) = lim
ε→0

u(xD − ε, t), v(xD, t) = lim
ε→0

v(xD + ε, t),

ux(xD, t) = lim
ε→0

ux(xD − ε, t), vx(xD, t) = lim
ε→0

vx(xD + ε, t),
(4.3)

with ε > 0. From the nonlinear Schrödinger model considered in [114], we particularise
to the linear case, where u and v obey the linear Schrödinger equation, with a Lagrangian
density composed of three contributions coming from u, v and the defect

L = θ(xD − x)L[u] + θ(x− xD)L[v] + δ(x− xD)B[u, v] , (4.4)

where the Heaviside function is θ(x) = 0 for x < 0 or θ(x) = 1 for x > 0 and

B[u, v] = α

[
i

4α2 ((u− v)(u⋆ − v⋆)t − (u− v)t(u⋆ − v⋆)) + 1
4(u+ v)(u⋆ + v⋆)

]
(4.5)

with a real parameter α. That particular choice will ensure conservation of the quantities
discussed in section 4.1.2. The full action taking into account the contributions from
the bulk and from the defect itself has the following form

A =
∫
dt

[∫ xD

−∞
dxL[u] +B[u, v]

∣∣∣∣
x=xD

+
∫ ∞

xD

dxL[v]
]
, (4.6)

from where the defect conditions follow from the variation of the action, accordingly to
the stationary action principle, and are given by

ux = − i

α
(u− v)t + α

2 (u+ v)
∣∣∣∣
x=xD

,

vx = − i

α
(u− v)t − α

2 (u+ v)
∣∣∣∣
x=xD

, (4.7)
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which can immediately be rearranged as

ux − vx = α(u+ v)|x=xD
,

vx + ux = −2i
α

(u− v)t
∣∣∣∣
x=xD

, (4.8)

both valid at the defect’s position x = xD = 0. The first thing to notice is that the
difference of the spatial derivatives is proportional to the average (arithmetic mean)
value of the fields meeting at the defect’s location, and the parameter α works as a
strength of that difference. The second is the discontinuity at the defect, namely we can
have u ̸= v. For reference and comparison, we shall refer to the matching conditions
(3.1), called sewing conditions for the δ-defect, simply as

u = v, (vx − ux) = 2λu, (4.9)

both evaluated at the defect’s position x = xD = 0, and with λ the associated defect
parameter. Note also the similarity to the Bäcklund transformations [121] for the linear
Schrödinger equation. More specifically, suppose that the sewing conditions (4.7) are
valid everywhere on the full real line and take the second order space derivatives as
follows

uxx + vxx = −2i
α

(ux − vx)t ,

ux − vx = α(u+ v) ,

resulting in the Schrödinger equation for their sum u+ v in the form

2i(u+ v)t + (u+ v)xx = 0. (4.10)

Doing similar calculations to their difference u− v, we obtain

2i(u− v)t + (u− v)xx = 0, (4.11)

hence both u and v obey the Schrödinger equation independently, as expected for a
Bäcklund transformation. The sewing conditions (4.7) would, therefore, be a Bäcklund
transformation if the relations were valid for all positions instead of being defined
only at the defect’s location. In that sense, conditions (4.7) are ‘frozen’ Bäcklund
transformations. When discussing general point interactions in section 2.4, we mention
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that the δ-defect can be represented by a more general set of conditions (2.27) in
consequence of the theory of self-adjoint extensions for the Hamiltonian operator or,
equivalently, the conservation of probability implying the continuity of the probability
current density at the defect’s location. The case of the potential described by the
derivative of a delta, namely, the δ′ interaction is not that simple; one needs to take
into consideration other factors such as its symmetry under parity transformations, for
instance, in order to properly specify the interaction as previously discussed. We may
ask if the jump-defect can also be completely characterized by this set of conditions.
If we apply (4.8) to the square-integrable wavefunctions u and v constructed as wave
packets from stationary scattering states uk and vk, the sewing conditions are shown to
be energy-dependent, meaning that the constants a, b, c and d of (2.27) would have to
depend on k. Alternatively, starting from conditions of the form (2.27) for the stationary
scattering solution, the corresponding square-integrable solution would not have exactly
the same form because the relation between these two involves the integration in k of an
arbitrary function g̃ ∈ C∞

0 (R), similar to the previous expression (3.3) in the δ-defect
case. More specifically, the conditions upon the square-integrable solution would involve
not only space derivatives but also time derivatives. In fact, the four-parameter family
of defects described by (2.27) can accommodate sewing conditions in the same form as
(4.8) for scattering solutions uk and vk, but then the square-integrable solutions u and
v would not have the same set of sewing conditions. We remark that, in order to keep
conserved total momentum, energy and probability, the set of sewing conditions is really
about the square-integrable functions evaluated at the defect’s position. Physically, it
is clear that defects constructed from self-adjoint extensions enforce only probability
conservation while the jump-defect enforces the conservation of three physical quantities,
including the probability. Therefore, conditions such as (2.27) do not automatically
provide a model of the jump-defect that we propose to examine in this chapter and
they are not energy-dependent conditions.

At the moment, it is unknown if there is a physical system (approximately) described
by these sewing conditions (4.7). However, they have a physical motivation based on
energy, momentum and probability conservation, which will be discussed in the next
section, and on the fact that discontinuities are ubiquitous in natural processes. As
mentioned before in section 2.4 and at the beginning of this chapter, there are numerous
situations where a defect, as a discontinuity, is a common phenomenon. Hydraulic
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jumps, shock waves, a dislocation within a crystal and a mass jump are particular
examples. In all cases, there is a discontinuous physical quantity while others remain
continuous, and that is determined by some conservation laws. In the case of a defect
with discontinuous wavefunction, conservation of probability imposes a continuous
probability flux across the defect position as exactly expressed before in equation (2.28).
In particular, the presence of a defect located at a particular position x = xD breaks
space-translation invariance, and the conservation of momentum is a surprise. Before
that discussion, we shall mention that the sewing conditions (4.7) allow the following
pair of traveling wave solutions [114]

uk(x) = u0 exp(−iωt+ ikx), vk(x) = v0 exp(−iωt+ ikx), v0 = k + iα

k − iα
u0, (4.12)

where k is real, u0 is a constant amplitude, and the frequency ω = k2/2 obeys the
usual quadratic dispersion relation from the non-relativistic theory. These stationary
scattering states do not span the entire Hilbert space as bound states are not taken into
account. In the particular case of a δ-defect, it is possible to construct a complete set
of (generalized) energy eigenfunctions [122]. More generally, the self-adjoint property of
the Hamiltonian operator is not enough to guarantee asymptotic completeness, and
the Hamiltonian cannot have a continuous singular spectrum. The spectral properties
of the Hamiltonian critically depend on the type of interaction considered, and there
are important theorems to that effect of asymptotic completeness that are relevant to
the case of general point interactions, see [123], Theorem XI.9. A general study of the
scattering theory for finite rank perturbations can be found in [124].

As our analysis will be restricted to the linear case, we directly look at conservation
laws as our guiding principle for the construction of the jump-defect. Specifically, the
jump-defect is designed in order to keep valid some conservation laws that are true in
the free case. In other words, we ask that the implementation of the jump-defect does
not cause a breakdown of the conservation laws we have in the free Schrödinger theory.

4.1.2 Conservation laws

In the free Schrödinger case, we know that quantities such as energy, probability and
momentum are conserved. For that, we check how a point-defect may affect these
conservation laws, and how (if possible) the sewing conditions can modify the quantity
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so that it remains conserved in the presence of the defect. A similar analysis [114] was
applied to a nonlinear model in the presence of defects. In particular, we compare the
δ-defect to the jump-defect and analyse energy, momentum and total probability.

Taking only the u contribution defined at the left region x < 0, the energy density
derived from the Lagrangian density given by (4.1) is

E = |ux|2

2 , (4.13)

and similarly for v that is defined at the right region x > 0. The total energy carried by
the fields u and v, either calculated as the expectation value of the Hamiltonian or as
the spatial integral of the energy density, has to be split up into contributions from two
domains when we have one single point-defect. Each domain is separately described by
a Schrödinger equation, and the defect glues together these two regions by the sewing
conditions at the defect’s location. In fact, for cases where the wavefunction and its
derivatives are continuous over the whole domain, breaking the full real line into disjoint
halves does not make a difference to the dynamics at the middle point, but we want
to include the jump-defect, and discontinuities can make a difference to the dynamics
coupling the left half-line with the right half-line. That coupling is exactly determined
by the set of sewing conditions. For instance, the discontinuity of the wavefunction
derivative in the case of a δ-defect can be severe enough (Dirichlet boundary condition)
to produce a totally reflecting wall disconnecting the left region from the right one. The
same applies for all other physical quantities of interest, such as the total contribution
from the fields u and v to the momentum density and to the probability density. The
total contribution of the fields to the energy is therefore

E = 1
2

∫ 0

−∞
u⋆xuxdx+ 1

2

∫ ∞

0
v⋆xvxdx, (4.14)

where we have split up the integral taking into consideration that the defect is located
at the origin x = 0. For checking conservation, we calculate the time derivative

Et = 1
2

∫ 0

−∞
(u⋆xtux + u⋆xuxt)dx+ 1

2

∫ ∞

0
(v⋆xtvx + v⋆xvxt)dx

= 1
2 (u⋆tux + u⋆xut) |x=0 − 1

2 (v⋆t vx + v⋆xvt) |x=0,
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where we used the Schrödinger equation and ignored the zero contributions at ± infinity
as usual. For the δ-defect, using (4.9) we obtain

Et = −λu⋆tu+ λu⋆ut

= −λ ∂
∂t

(u⋆u)
∣∣∣∣
x=0

,

which may not be zero, but we can guarantee the total energy (including a contribution
from the defect itself) is conserved when suitably modified. That means the adjusted
conserved energy is

Ec := E + λu⋆u|x=0 . (4.15)

Note that the total energy carried by the fields is slightly modified so that the revised
total energy Ec is conserved, as expected. Furthermore, note that (4.15) is equivalent
to the quadratic form of the Hamiltonian operator with a δ potential function; see [125].
For the jump-defect, we can check that the choice (4.7) produces

Et = 1
2

[
u⋆t

(
−i
α

(u− v)t + α

2 (u+ v)
)

+ ut

(
i

α
(u⋆ − v⋆)t + α

2 (u⋆ + v⋆)
)]

x=0

− 1
2

[
v⋆t

(
−i
α

(u− v)t − α

2 (u+ v)
)

+ vt

(
i

α
(u⋆ − v⋆)t − α

2 (u⋆ + v⋆)
)]

x=0

= α

4
∂

∂t
((u+ v)(u⋆ + v⋆))

∣∣∣∣
x=0

,

which depends on the parameter α and may not be zero, but we can guarantee the
conservation by modifying it with the following redefinition of the energy

Ec := E − α

4 |u+ v|2
∣∣∣
x=0

. (4.16)

As already remarked, expressions evaluated at the origin have to be understood in
the limiting sense of (4.3). Hence, the energy Ec is conserved. The time-translation
invariance in both cases was preserved because the total conserved energy is composed of
contributions coming from the bulk and also from the defect. Different from the case of
a δ-defect, where one could directly calculate the quadratic form of the full Hamiltonian
by means of the corresponding potential function, there is no explicitly known potential
function to describe the jump-defect. Quadratic forms of the Hamiltonian (or energy
forms) can also be used to work with singular interactions [126, 127, 128]. Recall that a
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quadratic form q is a mapping Q(q) ×Q(q) → C : (φ, ψ) → ⟨φ|H |ψ⟩, where Q(q) is a
dense subspace of the Hilbert space H known as the form domain that is the largest
domain on which q can be defined [129]. In particular, the quadratic form q associated
with a Hamiltonian H has domain Q(q) = Q(H), where Q(H) is called the the form
domain of H. It is worth remarking that the form domain Q(H) in the case of a δ-defect
is the Sobolev space H1(R), but it is given by the direct sum H1(R−)

⊕
H1(R+) in the

case of a jump-defect, with R− = (−∞, 0) and R+ = (0,∞). It is also worth noting that
the defect contribution to the conserved energy Ec appears on-shell in the sense that
the Schrödinger equation has to be used. Note that a discontinuity at the origin does
not automatically imply that there is an unphysical infinite kinetic energy. That will
be more clear in the next section 4.2 with a discussion of the jump-defect discontinuity.

Now, let us analyse the momentum. It is worth recalling the well-known fact that
the momentum operator P̂ has no self-adjoint extension over L2(0,∞) [130], that is,
on the semi-infinite line, because P̂ has deficiency indices (1, 0). In spite of that, it is
possible to have self-adjoint extensions of the momentum operator on L2(R−)

⊕
L2(R+),

see, for example, the account of [131]. In fact, for the case of a defect at the origin, P̂
has deficiency indices (1, 1), and its self-adjoint extensions are parametrized by U(1).
This means that the field on the left of the defect is related, at the origin, to the field
on the right of it by a phase factor eiθ, where θ ∈ R. Indeed, the sewing conditions at
the defect location represent a choice of self-adjoint extension. The momentum density
associated with the field u is given by

P(u) = i

2 (u⋆xu− u⋆ux) , (4.17)

so that the total contribution of the fields to the momentum is

P = 1
2

∫ 0

−∞
i (u⋆xu− u⋆ux) dx+ 1

2

∫ ∞

0
i (v⋆xv − v⋆vx) dx. (4.18)

We take the time derivative

Pt = 1
2

∫ 0

−∞
i(u⋆xtu+ u⋆xut − u⋆tux − u⋆uxt)dx+ 1

2

∫ ∞

0
i(v⋆xtv + v⋆xvt − v⋆t vx − v⋆vxt)dx

= 1
4 [−(2u⋆xux) + (u⋆uxx + uu⋆xx)]x=0 − 1

4 [−(2v⋆xvx) + (v⋆vxx + vv⋆xx)]x=0 ,
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where we used the Schrödinger equation and ignored the zero contributions at ± infinity.
For the δ-defect, with (4.9),

Pt = 1
4 [(−2(v⋆x − 2λv⋆)(vx − 2λv) + (−2iv⋆vt + 2ivv⋆t )) + (2v⋆xvx) − (v⋆vxx + vv⋆xx)]x=0

=
(
λ(vv⋆)x − 2λ2vv⋆

)∣∣
x=0 ,

which cannot be written as a time derivative by the use of the sewing conditions. Hence,
we are not able to fix this conservation law without any other extra considerations. The
momentum P highlights the difference between the δ and the jump-defect because the
same calculation applied to the jump-defect, using (4.7), yields

Pt = −1
4

[
2
(

+ i

α
(u⋆ − v⋆)t + α

2 (u⋆ + v⋆)
)(

− i

α
(u− v)t + α

2 (u+ v)
)

−
(
u⋆
(

− i

α
(u− v)xt + α

2 (u+ v)x
)

+ u

(
+ i

α
(u⋆ − v⋆)xt + α

2 (u⋆ + v⋆)x
))]

x=0

+ 1
4

[
2
(

+ i

α
(u⋆ − v⋆)t − α

2 (u⋆ + v⋆)
)(

− i

α
(u− v)t − α

2 (u+ v)
)

−
(
v⋆
(

− i

α
(u− v)xt − α

2 (u+ v)x
)

+ v

(
+ i

α
(u⋆ − v⋆)xt − α

2 (u⋆ + v⋆)x
))]

x=0
,

which can be simplified to

Pt = − i

2

[
∂

∂t
(u⋆v − v⋆u)

]
x=0

,

which may not be zero, but we can guarantee conservation of the total momentum
(including a contribution from the defect itself) with a suitably adjusted momentum
defined by

Pc := P + i

2(u⋆v − v⋆u)
∣∣∣∣
x=0

. (4.19)

Then, the total momentum Pc is conserved. While it is not surprising that the energy
is conserved, since the Hamiltonian generates the dynamics of a physical system,
conservation of momentum is surprising because it will not be generally conserved, as
shown by the example of a δ-defect.

The probability density for the field u is given by

N(u) = u⋆u, (4.20)



4.1. Integrable defects 99

so that the total contribution of the fields to the probability is

N =
∫ 0

−∞
N(u)dx+

∫ ∞

0
N(v)dx =

∫ 0

−∞
u⋆udx+

∫ ∞

0
v⋆vdx. (4.21)

To examine its conservation, we consider

Nt =
∫ 0

−∞
(u⋆tu+ u⋆ut)dx+

∫ ∞

0
(v⋆t v + v⋆vt)dx

= 1
2 (−iu⋆xu+ iu⋆ux) |x=0 − 1

2 (−iv⋆xv + iv⋆vx) |x=0 ,

where we used the Schrödinger equation and ignored the zero contributions at infinities.
For the δ-defect, using (4.9),

Nt = 1
2 (−iu(v⋆x − λu⋆)|x=0 + iu⋆(vx − λu)|x=0 − (−iv⋆xv + iv⋆vx) |x=0)

= 1
2 (−iv⋆x(u− v) + i(u⋆ − v⋆)vx))

∣∣∣∣
x=0

= 0,

which means this is automatically conserved. For the jump-defect, with the choice (4.7)

Nt = 1
2

[
u(u⋆ − v⋆)t + u⋆(u− v)t)

α
+ iα

2 (u⋆(u+ v) − u(u⋆ + v⋆))
]
x=0

− 1
2

[
v(u⋆ − v⋆)t + v⋆(u− v)t)

α
− iα

2 (v⋆(u+ v) − v(u⋆ + v⋆))
]
x=0

= 1
2α

[
∂

∂t
((u− v)(u⋆ − v⋆))

]
x=0

,

which depends on the parameter α and may not be zero. However, we can guarantee
conservation of the total probability (including a contribution from the defect itself)
with the following suitably modified total probability

Nc := N − 1
2α |u− v|2

∣∣∣∣
x=0

. (4.22)

Hence, the total probability Nc is conserved.
According to the textbook’s definition of quantum observables, one can associate any

physical quantity A with an observable Â that is a self-adjoint operator in the Hilbert
space. In the interaction-free situation, a particle on the real line has a self-adjoint
momentum operator and self-adjoint Hamiltonian. The presence of a defect may affect
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the self-adjointness property of some operators, although it is possible that there are
self-adjoint extensions. The way we introduce a defect is by adjusting the free operators
with a contribution from the defect itself, and that is found by means of the sewing
conditions, which represent a choice of self-adjoint extension. Moreover, the existence
of different self-adjoint extensions corresponds to the existence of different physics, see,
for instance, [58], page 143. From a physical point of view, conservation laws relate to
physical quantities. In particular, it is expected that the energy and probability of a
physical system are conserved. Depending on the model under consideration, it is often
the case that momentum is not conserved.

We have shown how both the δ and the jump-defect affect some conservation laws
and we have seen how we can fix these conservation laws by redefining quantities
with an extra contribution which comes from the defect. However, it is clear that the
jump-defect can exchange both energy and momentum with the fields u and v to either
side of it in a way that is compatible with their conservation, but the δ-defect does
not have this compatibility. When we treat these defects in the context of quantum
mechanics, the momentum P is actually related to the probability current. In particular,
the momentum density P plays the role of the probability current density in natural
units with ℏ = m = 1. The exact relation is appropriately expressed in the next
section. Moreover, we will see how this extra term associated with the defect affects the
calculation of the quantum backflow and how it significantly differs from the δ-defect
case. Strikingly interesting, in the jump-case, is that the fixing term, to restore the
conservation of P , has a substantial contribution to the lowest backflow eigenvalue
βV (f).

4.2 backflow in the presence of a jump-defect

Now we consider the backflow calculation for the the jump-defect. However, we have
to keep in mind that now our wavefunction φk has a jump discontinuity at the origin.
Specifically, in the δ-defect case, the wavefunction and its derivative are locally integrable,
that is φk ∈ L1

loc(R) and ∂xφk ∈ L1
loc(R), with a wavefunction that is continuous on

the full real line. In the jump-defect case, just the wavefunction is locally integrable
φk ∈ L1

loc(R) but not its derivative because ∂xφk is given by (3.6), and the Dirac
δ0 is a singular distribution that is not represented by a locally integrable function.
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Such discontinuities may cause the presence of undefined terms when multiplied by
distributions. By avoiding the origin, we avoid this undesirable problem.

Given that now φk denotes the the scattering solution for the TISE in the presence
of a jump-defect. Let us write the full square-integrable φ ∈ L2(R) and time-dependent
jump solution to the Schrödinger equation as

φ(x, t) = 1√
2π

∫ ∞

0
dk g̃(k) exp(−iwt)φk(x) (4.23)

with g̃ ∈ C∞
0 (R) an arbitrary non-zero smoothly varying function, and the time-

independent scattering (from the left) states in position basis are given by

φk(x) =


uk(x) = exp(ikx), x < 0

vk(x) =
(
k + iα

k − iα

)
exp(ikx), x > 0,

(4.24)

where the reflection coefficient R(k) = 0 and the transmission coefficient T (k) for the
jump-defect is explicit. From the theory of self-adjoint extensions of the Hamiltonian
with a general point interaction at the origin, the free Hamiltonian is self-adjoint with
domain D(H) = H2(R \ {0}) together with a a suitable set of sewing conditions defined
at the origin. As mentioned before, a function in the Sobolev space H2(R \ {0}) is
absolutely continuous except at the origin, where a finite jump discontinuity may be
allowed. While the jump-defect connects the theory on the left of the origin (x = 0)
with the theory on the right, we do not assign a definite value for the wavefunction at
the defect’s position because our wavefunction is φ ∈ H2(R \ {0}), although the right
and left limits, in which u is evaluated at points approaching the origin from below and
v from above, exist. From the definition of Sobolev spaces, it is not difficult to see that
the weak derivative ∂xφ is such that ∂xφ ∈ H1(R \ {0}) and it is defined with respect to
test functions that are smooth functions ϕ of compact support separated from the origin,
ϕ ∈ C∞

0 (R \ {0}). Some of our physical quantities of interest, such as momentum and
energy, involve derivatives of the wavefunction, and the first weak derivative in (3.6) has
a term proportional to the Dirac distribution δ0, which is not identified with a function
in L1

loc(R), provided that vk(0) ̸= uk(0). However, because the distributional derivative
∂xφ ∈ H1(R \ {0}) has to be defined in terms of ϕ ∈ C∞

0 (R \ {0}), the weak and the
strong derivatives coincide outside of the origin (noting that the strong derivative is
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undefined at the origin) since ϕ is zero in the neighbourhood of x = 0. Hence, ∂xφ is
locally integrable on R \ {0}.

We concentrate our attention to the time-independent scattering state φk given by
expression (4.24). A similar calculation to that of section 3.1, where we have to give a
meaning to the derivatives in the inner kernel

L(k′, k) =
∫
dx

∫
dx′ [(θ(−x′)u⋆k′ + θ(x′)v⋆k′) J(f)(x′, x) (θ(−x)uk + θ(x)vk)] ,

shows that the spatial integrals can be split into two regions of integration, a left part
(−∞ < x < 0) and a right part (0 < x < ∞), corresponding to contributions purely
from u and purely from v, respectively, as follows

2iL(k′, k) =
∫ 0

−∞
dx′f(x′)

(
u⋆k′(x′)∂uk(x

′)
∂x′ − ∂u⋆k′(x′)

∂x′ uk(x′)
)

+
∫ ∞

0
dx′f(x′)

(
v⋆k′(x′)∂vk(x

′)
∂x′ − ∂v⋆k′(x′)

∂x′ vk(x′)
)
.

Moreover, the derivatives can be understood in the strong sense, and there are no
undefined terms that could appear from the product of singular distributions. In fact,
the first contribution term gives

i(k + k′)
∫ 0

−∞
dx′f(x′) exp(ix′(k − k′)), (4.25)

and the second contribution in terms of the transmission coefficient T (k) is

i(k + k′)
∫ ∞

0
dx′f(x′)T ⋆(k′)T (k) exp(ix′(k − k′)). (4.26)

Finally, we can write the lowest backflow eigenvalue of the operator JV (f) as

βV (f) = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′J̃∗(k′)J̃(k)L(k′, k),

with the kernel

2L(k′, k) = (k + k′)
∫ 0

−∞
dx′f(x′) exp(ix′(k − k′))

+ (kk′ + iα(k′ − k) + α2)
(k′ + iα)(k − iα) (k + k′)

∫ ∞

0
dx′f(x′) exp(ix′(k − k′)), (4.27)
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which is a Hermitian kernel, and J̃(k) is the normalised eigenfunction, in momentum
space, associated with the lowest eigenvalue of the integral operator JV (f). This
expression (4.27) was worked out for the non-conserved situation where we have not
introduced any fixing term to conserve the probability current. In physical situations,
we are interested in conserved quantities, and our jump-defect was specially devised for
allowing conservation laws.

In section 4.1, we have established the condition for having a conserved total
momentum Pc associated with a particular momentum density. The probability current
is intimately related to the total momentum since∫

jψ(x)dx = ⟨P̂ ⟩ , (4.28)

where we have set ℏ = m = 1, and P̂ is the momentum operator. We can, therefore,
interchangeably, refer to either momentum density or, equivalently, probability current
density. In particular, Eq. (4.19) determines the adjusting term for obtaining a
conserved probability current. The adjustment needs to be written in terms of a kernel,
in momentum space, such that it can be added to the kernel L(k′, k) in (2.36). From
(4.23), we can write the time-independent solution at the left of the defect as

u(x) = 1√
2π

∫
g̃(k)uk(x)dk,

u⋆(x) = 1√
2π

∫
g̃⋆(k′)u⋆k′(x)dk′,

(4.29)

and similarly for the solution v at the right of the defect. Hence, after introducing the
required projectors E+ for right-movers, the adjustment expression is

i

2E+(u⋆v − v⋆u)E+

∣∣∣∣
x=0

= i

4π

∫ ∞

0

∫ ∞

0
dk′dk g̃⋆(k′)g̃(k)

(
2iα(k + k′)

(k − iα)(k′ + iα)

)
. (4.30)

Note, section 4.1 has a discussion about conservation of physical quantities without
making use of the smearing process with a positive test function f for producing
spatial averaged quantities as introduced in our discussion of the quantum backflow
in section 2.1. The test function has to be taken into account when considering the
probability current operator. With our test function being a function only of the position,
rather than time, the spatial averaged term corresponding to the defect contribution is
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exactly what needs to be added to the expectation value ⟨JV (f)⟩ψ, from (2.24), to give
the expectation value of the total adjusted probability current operator

⟨JcV (f)⟩ψ = ⟨JV (f)⟩ψ + i

4π

∫ ∞

0

∫ ∞

0
dk′dk ψ̃⋆(k′)ψ̃(k)

(
2iα(k + k′)

(k − iα)(k′ + iα)

)
f(0),

(4.31)
which is now actually related to the conserved probability current. Here the term
⟨JV (f)⟩ψ only includes the kernel’s contributions (4.27) which do not come from the
defect. The defect’s contribution is only taken into consideration when we impose the
conservation of the probability current associated with the physical system we want to
describe, which does not include the defect a priori. Finally, the expression (4.31) can
be written as

⟨JcV (f)⟩ψ = 1
2π

∫ ∞

0

∫ ∞

0
dk′dk ψ̃⋆(k′)ψ̃(k)

[
(k + k′)

∫ 0

−∞
dx′f(x′) exp(ix′(k − k′))

+(kk′ + iα(k′ − k) + α2)
(k′ + iα)(k − iα) (k + k′)

∫ ∞

0
dx′f(x′) exp(ix′(k − k′))

−
(

α(k + k′)
(k − iα)(k′ + iα)

)
f(0)

]
. (4.32)

From this one only needs to take the infimum over the functions ψ, normalised with
supp

(
ψ̃
)

⊂ R+ and suitably decaying as in (2.7), in order to obtain the lowest backflow
eigenvalue βV (f) = inf ⟨JcV (f)⟩ψ of the probability current operator JcV (f) in the
presence of the jump-defect. Once we have simplified the kernel, we again need to rely
upon the numerical calculations as the eigenfunction J̃(k) is not analytically known.

Clearly, the calculations in the previous section 4.1.2 are fully justified now that
we emphasised the properties of the jump-defect wavefunction as an element of the
appropriate Sobolev space, noting that the weak derivatives coincide with the strong
ones. Particularly, given that φ ∈ H2(R \ {0}) ∼= H2(R−)

⊕
H2(R+),

u = φ|R− ∈ H2(R−) ⊆ C1(R−),

v = φ|R+ ∈ H2(R+) ⊆ C1(R+),
(4.33)

where C1 is the space of continuously differentiable functions. Also, as discussed in
the previous section, the energy E is finite despite the wavefunction discontinuity. It
follows from φ ∈ H2(R \ {0}) that the derivative ∂xφ ∈ H1(R \ {0}) ⊂ L2(R). Thus,
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the energy is given by the following finite L2-norm

E = 1
2∥∂xφ∥2

L2(R) = 1
2

∫
|∂xφ(x)|2 dx, (4.34)

where the integral is understood as the sum of the integrals in (−∞, 0) and (0,∞).
To prove that φ ∈ H2(R \ {0}) is a true statement indeed, it is convenient to use
an equivalent characterization of the Sobolev spaces Hm of order m, defined by the
expression 3.2, in terms of the Fourier transform as follows

Hm(R) =
{
ψ ∈ L2(R)

∣∣∣ ∫ (1 + |ξ|2
)m |ψ̃(ξ)|2 dξ < ∞

}
, (4.35)

where ψ̃ is the Fourier transform of ψ, and ξ ∈ R. From the equations (4.23) and (4.24),
φ can be conveniently expressed as

φ(x, t) = θ(−x)φ−(x, t) + θ(x)φ+(x, t), (4.36)

where φ− and φ+ are extensions of u and v, respectively, to the full real line. That is

φ−(x, t) = 1√
2π

∫
g̃(k) exp(−iwt+ ikx) dk ∀x ∈ R,

φ+(x, t) = 1√
2π

∫
g̃(k)T (k) exp(−iwt+ ikx) dk ∀x ∈ R

(4.37)

are functions in H2(R), and the function g̃ is such that g̃(k) = 0 for k < 0 and an
arbitrary compactly supported bounded function for k ≥ 0. Thus, as an inverse Fourier
transform, φ has the form

φ(x, t) =


φ−(x, t) = (F−1g̃t) (x), x < 0

φ+(x, t) = (F−1 (T g̃t)) (x), x > 0,
(4.38)

with the time dependence rewritten in terms of g̃t := g̃ exp(−iwt). Note also that the
Heaviside function is essentially bounded, particularly |θ(x)| ≤ 1, and the exponential
exp(−iwt) and the reflection coefficient T (k) are bounded as well. Finally, because g̃
is compactly supported and bounded, the products (1 + |ξ|2) g̃t and (1 + |ξ|2)T g̃t are
square-integrable funcions, and, therefore, it is true that φ ∈ H2(R \ {0}). In summary,
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the following inequalities hold true

∥φ∥2
L2(R) ≤ ∥u∥2

L2(R) + ∥v∥2
L2(R) < ∞,

∥∂xφ∥2
L2(R) ≤ ∥∂xu∥2

L2(R) + ∥∂xv∥2
L2(R) < ∞,∥∥∂2

xφ
∥∥2
L2(R) ≤

∥∥∂2
xu
∥∥2
L2(R) +

∥∥∂2
xv
∥∥2
L2(R) < ∞,

(4.39)

where the derivatives can be understood in the strong sense as discussed, and the kinetic
energy E given by (4.34) is finite.

As we mentioned, non-removable discontinuities pose difficulties to the products
with the Dirac measure δ, which is a Radon measure rather than a locally integrable
function. In particular, a distributional product such as

⟨φδ, f⟩ = ⟨δ, φf⟩ = φ(0)f(0),

with a function φ discontinuous at the origin and test function f , is undefined since
there is no consistent way to define φ(0). However, the wavefunctions of interest here
are in Sobolev spaces separated from the origin, where a defect is placed. That is
compatible with our physical picture in which the wavefunction φ does not assume a
particular value at the origin. In the Lagrangian (4.4), we have made it clear that what
is defined only at the defect’s position is a contribution purely from the defect itself
rather than the theory of the left or the theory of the right semi-infinite lines.

4.3 numerical results

For a purely-transmitting defect, for which the reflection coefficient R(k) is identically
zero at all energies, the solution φk with an asymptotic incoming right-mover maintains
itself as a right-mover also after scattering off the defect. This is not the case for the
δ-defect that has a mixture of right-movers and left-movers as a result of being scattered
by the defect. In this sense, the reflectionless Pöschl-Teller potential is more similar
to the jump-defect than the δ. However, for the Pöschl-Teller potential, the backflow
effect is smaller inside the interaction region than in the free case [11]. That this is
not true in the jump-case can be seen from the figures in this section. In fact, at the
defect’s location, the effect can be either smaller or bigger depending on the magnitude
of the parameter α.
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Several graphs of the backflow lowest eigenvalue in the presence of the jump-defect
were plotted below. All the graphs refer to the probability current operator smeared
with a Gaussian test function f . Specifically, as mentioned in the δ-defect case, the
graphs show the lowest eigenvalue against the position of measurement x0 where f
is centered. Our main freedom to be tuned is the parameter α corresponding to the
strength of the defect. Unlike the Dirac δ-defect, or other explicit potential functions,
the jump-defect has a parameter that can not be clearly distinguished as attractive
or repulsive according to its sign, being either positive or negative, respectively. As
particular cases, α = 0 gives the expected free case represented by a constant horizontal
line β0(f) ≈ −0.241 and the limiting cases α → ±∞ also approach the free backflow
eigenvalue βV (f) → β0(f). We already expected this as the solutions φk for the limiting
cases α → ±∞ are related to the free case by only a global phase, but the probability
current density has products of the solution wavefunction with its complex conjugated
spatial derivative. Thus, in the limit, their lowest backflow eigenvalue is the same as
the free case.

Initially, for small absolute values of the parameter α, the lowest backflow eigenvalue
has some symmetry between the positive and negative parameter values, figure 4.2.
Slightly increasing |α|, βV (f) of the associated conserved probability current starts
to show a distinctly different behaviour between the positive and the negative values
of α, see figure 4.5. As its absolute value increases, the graphs become more similar
in terms of the magnitudes of the lowest backflow eigenvalue. However, as indicated
by the plots, both positive α > 0 and negative α < 0 seem to unveil some stationary
points, and, in some cases, while a positive parameter shows three of these points, the
corresponding negative parameter can show up to five stationary points, figure 4.6.
With successive increases of the parameter’s absolute value |α|, the graphs tend to
become more similar again. In particular, both positive and negative values show the
same number of stationary points, though when one has a minimum the other one has
a maximum and vice-versa, figure 4.7. Whilst the non-conserved current develops a
persistent trough for both positive and negative parameters, the conserved one develops
a mixture of troughs and bumps as shown by Figs. 4.5, 4.6 and 4.7. As numerical results
for the rectangular potential in [11] suggest, bound states might contribute towards
these bumps. It is worth mentioning that, from (4.12), it is possible to see the existence
of bound states associated with the jump-defect for either k = iα or k = −iα. The
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respective bound states can then be described by the following solutions

u = 0, v = v0 exp
(
iα2t/2 − αx

)
, (k = iα),

u = u0 exp
(
iα2t/2 + αx

)
, v = 0, (k = −iα),

(4.40)

which are clearly square-integrable solutions (provided α > 0) [114].
Additionally to the two-dimensional plots, we have varied the parameters to display

a three-dimensional picture of how the lowest backflow eigenvalue βV (f) is affected in
the presence of the jump-defect. For comparison, we have plotted both cases: βV (f) for
the non-conserved probability current operator, figure 4.9 and figure 4.10, and for the
conserved probability current operator, figure 4.12 and figure 4.13. All these can be
found in section 4.4 below.
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Figure 4.2: Lowest backflow eigenvalue of the current operator. Red/blue refer to the
non-conserved probability current. Yellow/green refer to the conserved one.
(a) |α| = 0.01 (b) |α| = 0.05.
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Figure 4.3: Lowest backflow eigenvalue of the current operator. Red/blue refer to the
non-conserved probability current. Yellow/green refer to the conserved one.
(a) |α| = 0.06 (b) |α| = 0.1.
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Figure 4.6: Lowest backflow eigenvalue of the current operator. Red/blue refer to the
non-conserved probability current. Yellow/green refer to the conserved one.
(a) |α| = 9.0 (b) |α| = 10.0.
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4.4 3d plots

Here we present three-dimensional plots displaying the lowest eigenvalue βV (f) of the
corresponding probability current operator as the defect parameter and the position of
measurement x0, which is the center of the averaging Gaussian function f , change. For
the jump-defect, both the non-conserved, figures 4.9, 4.10 and 4.11, and the conserved
probability current, figures 4.12, 4.13 and 4.14, were considered. In each case, we have
plotted different versions that run over larger ranges of the defect parameter and another
one that runs over a smaller range (α ∈ [−1, 1]) for capturing some local details.

While the δ-defect inevitably embodies the presence of a reflection term as the result
of an incoming right-moving asymptote being scattered at the origin, the jump-defect,
which is a non-trivial interaction preserving integrability, provides a purely transmitting
situation where the states are always right-movers and not only initially. Despite the
evident loss of space-translation variance caused by its presence, the jump-defect is a
topological defect in the sense that the corresponding sewing conditions do not explicitly
depend upon where it is located. Thus, in the presence of a jump-defect, the backflow
constant βV (f) for asymptotic regions far from it is approximately the value found in
interaction-free situations, namely, βV (f) ≈ β0(f), see figures 4.9 and 4.12, in clear
contrast to the δ-defect in figure 3.4. A similar effect occurs when α → ±∞ with
βV (f) ≈ β0(f) while the δ-defect becomes a purely reflecting wall for λ → ±∞. To
compare some local features of the backflow constant in the jump-defect with those in
the δ-defect, refer to figure 3.5 and figures 4.11 and 4.14. The jump-defect exchanges
momentum and energy with the fields on either side of it and, in consequence, it is
possible to conserve not only probability but also energy and momentum. Before
imposing these conservation adjustments, as explained in section 4.1.2, the lowest
eigenvalue of the probability current manifests the presence of two global minima, one
for positive α and the other for negative α. After taking into account conservation, the
lowest eigenvalue has a drastic change where the global minimum is manifested only for
positive values of the parameter α. A curious fact is that regardless of which situation
is being considered, whether the probability current is the non-conserved one or the
conserved version, the lowest eigenvalue is symmetrical with respect to the position of
measurement x0 for all values of the parameter.
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4.5 details on the numerical calculations

We have adapted the basic numerical methods of [11] (where one can find the essential
numerical description with a Java program) for a FORTRAN 90 program with some
changes in regards to the method of integration and the calculation of the lowest
eigenvalue of a complex Hermitian matrix M . The discontinuities due to the defects are
also taken into account in the numerical integration. For that, the libraries used were
QUADPACK [132] and EISPACK [133], respectively. In particular, the FORTRAN
subroutine ‘CH’ [133] was used to find the lowest eigenvalue of interest, but this
subroutine can be used to find all the eigenvalues and all the eigenvectors of M and, for
that, it calls the recommended sequence of subroutines from EISPACK. The algorithm
to find eigenvalues has two basic steps: it reduces a complex Hermitian matrix to a
real symmetric tridiagonal matrix using unitary transformations and determines the
eigenvalues of the original matrix from the real symmetric tridiagonal matrix [134].

Here is a summary of the meaning of each relevant variable to understand the
plots presented in this work. For the numerical calculations, the discretization of an
infinite-dimensional operator T on L2(R+, dk) with kernel K given by

K(k′, k) = 1
2πL(k′, k) = i

4π

∫
dxf(x) (∂xφ⋆k′(x)φk(x) − φ⋆k′(x)∂xφk(x)) (4.41)

into a N×N-matrix M is characterized by the parameter N, the number of equally
spaced steps which divide the momentum interval [0, Pcutoff], where the upper-limit
cutoff of the integrations (2.35) in k and k′ is denoted by Pcutoff. The components of
such a matrix can be written as

Mij = ⟨ψi, Tψj⟩ =
∫
dk′
∫
dk ψ̃i(k′)K(k′, k)ψ̃j(k) ≈ Pcutoff

N
K(ki, kj), (4.42)

where ψ̃i (i ∈ N | i = (0, . . . , N − 1)) are orthonormal step functions supported on the
corresponding interval, and mid-points ki = (i+ 1/2) (Pcutoff/N). The adoption of a
cutoff Pcutoff is consistent with the fact that the lowest backflow eigenvector decays at
large momentum.

The positive test function chosen for the spatial average of the probability current
was a Gaussian

f(x) = 1
σ

√
2π

exp
(

−(x− x0)2

2σ2

)
, (4.43)



124 Chapter 4. Backflow in the presence of a jump-defect

with width σ = 0.1 centered at the position x0 of measurement where a spatially
extended detector is located and cut off to the interval x ∈ [x0 −8σ, x0 +8σ] . Therefore,
for each x0 we have a matrix M for which the lowest eigenvalue needs to be calculated.
We have restricted our position of measurement to x0 ∈ [−2, 2] in the case of the
delta-defect and to x0 ∈ [−1, 1] in the jump-defect case because, as we move away
from the jump-defect location, the lowest eigenvalue approaches the free case value
β0(f) ≈ −0.241 for this particular choice of test function. That same Gaussian test
function is used throughout this thesis to obtain the numerical results presented in the
form of graphs, with the only exception of Appendix B that considers different choices
of functions: the squared Lorentzian and the rectangular function.

Although essentially the same, the numerical analysis done for the conserved prob-
ability current involves an extra step, which is the addition of a fixing term to the
non-conserved one such that the fixing term allows the conservation law to hold.
Specifically, the fixing term in the presence of a jump-defect,

− 1
2π

α(k + k′)
(k − iα)(k′ + iα)f(0), (4.44)

is added to K(k′, k) to compose a new kernel denoted by Kc(k′, k), which is associated
with a conserved quantity. The discretization process now involves that new kernel, and
the FORTRAN program, with the same subroutines, is asked to calculate the lowest
eigenvalue βV (f) of the corresponding N×N-matrix M .

The numerical results also suggest that the lowest eigenvalue is isolated at the
bottom of the spectrum with the next eigenvalues (in ascending order) clustered about
the zero and followed by a continuum of generalized positive eigenvalues. In fact, for
N = 1000, Pcutoff = 100 in the free case, the second lowest eigenvalue denoted ‘w(2)’ is
w(2) ≈ −0.00012. Same result was obtained for N = 2000, Pcutoff = 200.



5

Analytic perturbation theory for the probability current

Previously, we analysed the exact calculation of the backflow constant βV (f) in the
presence of two distinct exactly solvable models, namely, the δ-defect and the jump-
defect. Because these two interactions have known explicit solutions, it is worth
comparing how satisfactory are the approximations provided by perturbation theory.
In fact, perturbation theory may be the better alternative in other cases where the
explicit solution is not known. Here we proceed by studying previous cases as a result
of the analytic perturbation, a general treatment due to Kato [50] (especially chapters
2, 3, 5 and 7), of the probability current operator. The results of this analysis will be
presented at the end of the chapter.

5.1 analytic perturbation theory

This section presents a brief summary of the case of operators defined on a finite-
dimensional vector space. Let B be an operator defined on a finite-dimension space.
The general perturbation of this operator, in powers of λ, is a formal power series. Let
µ be one of the eigenvalues of B with algebraic multiplicity m, the perturbed weighted1

mean µ̂(λ) can also be written as a formal power series in the form

B(λ) = B +
∞∑
n=1

λnB(n) , (5.1)

µ̂(λ) = µ+
∞∑
n=1

λnµ(n) , (5.2)

1The weight is the multiplicity of the particularly chosen µ, which is also the sum of the multiplicities
m1 +m2 + . . .+mr for the µ-group eigenvalues µ1(λ), µ2(λ), . . . , µr(λ).

125
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where B(λ) denotes the perturbed operator and B = B(0) is the unperturbed operator.
As a result of the perturbation, the eigenvalue µ will in general split into several
eigenvalues of B(λ), for λ ̸= 0, namely, the µ-group (the totality of the eigenvalues of
B(λ) generated by splitting from the same unperturbed eigenvalue µ). We anticipate
that for our case of interest, the lowest eigenvalue of the probability current operator,
the algebraic multiplicity will be considered m = 1, leaving no chance for splitting such
that the µ-group consists of a single eigenvalue µ(λ) and, consequently,

µ̂(λ) = µ(λ). (5.3)

That assumption is justified by the numerical analysis that indicates this is indeed
the case. Given a linear operator B ∈ L(X), the space of all linear operators from a
finite-dimensional vector space X of dim(X) = N to itself, it can be represented by

B = S +D, (5.4)

where S is a diagonalizable operator and D is a nilpotent commuting with S. Let
µ1, . . . µs be different eigenvalues of B, and P1 . . . Ps its eigenprojections and D1 . . . Ds

the eigennilpotents. Then, the spectral representation of the operator B is written as

B =
s∑

h=1

µhPh +
s∑

h=1

Dh, (5.5)

which leads to the Jordan canonical form (or normal form) of B.

Definition 2. The eigenvalue µh of B is called semisimple if the associated eigennilpo-
tent Dh is zero. The eigenvalue µh is called simple if mh = 1 (algebraic multiplicity).
In particular, mh = 1 implies Dh = 0.

Definition 3. B is diagonalizable if and only if all of its eigenvalues µh are semisimple.
B is called simple if all its eigenvalues µh are simple, in which case B has N eigenvalues.

In quantum theory, a Hermitian operator is defined on a special vector space of
interest, namely, the Hilbert space H, in which is defined an inner product with a
natural choice of norm defined in terms of the inner product, (v, v)1/2 = ∥v∥, for any
vector v ∈ H. Because we are evidently interested in quantum theory, we will consider
operator B to be Hermitian. The spectral representation is then simplified because
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these eigennilpotents Dh are all zero. Additionally, we also reasonably consider that the
perturbed operator B(λ) is Hermitian. In that sense, we are restricting the discussion
to Hermitian perturbations.

Theorem 3. If the holomorphic family B(λ) is Hermitian, the eigenvalues µh(λ) and
the eigenprojections Ph(λ) are holomorphic on the real axis, whereas the eigennilpotents
Dh(λ) vanish identically2.

The basis of our analysis depends crucially on the properties of the unperturbed
operator B that represents here a finite-dimensional version of the probability current
operator. Following these initial considerations, we particularize the general method,
which is based on the study of the resolvent of B, to our case of interest.

5.1.1 Analytic perturbation theory for Hermitian operators

Some references for this section can be found in [50, 135, 136]. Given a Hermitian
operator B, ξ is an eigenvalue of B if there is a vector u ̸= 0 such that

Bu = ξu, (5.6)

then ξ is a, generally complex, eigenvalue and u ∈ X is the associated eigenvector of B.
The operator-valued function R(ξ), called the resolvent of B, is given by

R(ξ) = R(ξ, B) = (B − ξ)−1 (5.7)

and is defined for ξ in the resolvent set of B, that is ξ ∈ ρ(B).

Definition 4. The resolvent set of B, denoted by ρ(B), is the set of complex values for
which R(ξ) exists and, therefore, (B − ξ) is injective.

From the resolvent set, immediately follows the definition of the spectrum set of B

Definition 5. The complement of the resolvent set ρ(B) is the spectrum σ(B) of B

σ(B) = C\ρ(B), (5.8)

which contains all eigenvalues of B.
2However, this does not need to be the case if λ is an exceptional point, where the number of

eigenvalues is not preserved [50].
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In the finite-dimensional case, the spectrum set is called the point spectrum set,
because there is no further decomposition of the spectrum. In fact, the continuous
spectrum is quite different from the discrete spectrum. From the resolvent expression
(5.7), given ξ1, ξ2 ∈ ρ(B), one can write

R(ξ1) = R(ξ1)(B − ξ2)R(ξ2)

R(ξ2) = R(ξ1)(B − ξ1)R(ξ2),
(5.9)

which can be subtracted one from the other to give the first resolvent equation or
Hilbert’s identity

R(ξ1) −R(ξ2) = (ξ1 − ξ2)R(ξ1)R(ξ2). (5.10)

Two direct consequences of Hilbert’s identity are first that

R(ξ1)R(ξ2) = R(ξ2)R(ξ1), (5.11)

and second that the resolvent is holomorphic in the set ρ(B) with the following properties

d

dξ
R(ξ) = R(ξ)2, (5.12)

dn

dξn
R(ξ) = n!R(ξ)n+1 n = 1, 2, 3 . . . (5.13)

Hence, the Taylor expansion of the resolvent at ξ0 ∈ ρ(B) has the form

R(ξ) =
∞∑
n=0

(ξ − ξ0)nR(ξ0)n+1 = (1 − (ξ − ξ0)R(ξ0))−1 R(ξ0), (5.14)

which is convergent at least for |ξ − ξ0| < ∥R(ξ0)∥−1. That expression is called the first
Neumann series of the resolvent. Additionally, for large values |ξ|, we can expand the
resolvent expression (B − ξ)−1 by writing

R(ξ) = (B − ξ)−1 = (1 −Bξ−1)−1(−ξ−1) = −
∞∑
n=0

Bn

ξn+1 , (5.15)

which is convergent if and only if |ξ| > spr(B), thus R(ξ) is holomorphic at ξ = ∞, and
equal zero there. In particular, the spectral radius of an operator T , denoted by spr(T ),
is defined as

spr(T ) = lim
n→∞

∥T n∥1/n. (5.16)
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From the eigenvalue equation (5.6), if ξ is an eigenvalue the operator (B − ξ) is
singular. If, however, ξ is not an eigenvalue of B, then ker(ξ −B) = {0} with (B − ξ)
invertible. The condition for singularity is called the characteristic equation, namely,
det(B − ξ) = 0. The characteristic polynomial of B is χ(ξ, B) := det(ξ −B) and has
degree N = dim(X). The resolvent, as an inverse, is a rational operator-valued function
of ξ that can be written as

R(ξ) = 1
χ(ξ, B)MN−1(ξ), (5.17)

where MN−1(ξ) is a polynomial operator-valued function of degree at most (N − 1).
That can be seen from the use of Cramer’s rule to calculate the inverse (B − ξ)−1

in terms of the adjugate matrix of (B − ξ), which is a polynomial in ξ of degree at
most (N − 1). Hence, the eigenvalues of B, denoted by µh, are at most poles of the
resolvent R(ξ), rather than removable singularities that would imply a trivial R(ξ) = 0
by Liouville’s theorem. The degeneracies of the eigenvalues are very important in the
discussion of the perturbation analysis. There are two concepts, the algebraic and the
geometric multiplicity of a given eigenvalue. The former is a multiplicity as a root
of the characteristic polynomial and the latter is the number of linear independent
(L.I) eigenvectors associated with that same eigenvalue. In general, the geometric one
cannot exceed the algebraic, but B is diagonalizable if and only if these two different
concepts of multiplicity coincide for all its eigenvalues. As in our case of interest B is
diagonalizable, we can safely refer to ‘multiplicity’ without the need for being more
specific. As our eigenvalue of interest (the lowest one) is considered to be nondegenerate,
the associated projection is one-dimensional, and the resolvent has a pole of order one
at this particular eigenvalue. It is possible, therefore, to write a Laurent expansion for
the resolvent

R(ξ) =
∞∑

n=−1

An(ξ − µ0)n (5.18)

in the neighbourhood of ξ = µ0, where µ0 is an eigenvalue, and the coefficients are

An = 1
2πi

∫
Γ

1
(ξ − µ0)n+1R(ξ)dξ, (5.19)

with Γ a positively-oriented (counterclockwise) simple closed contour of integration
sufficiently small and centred at µ0 but excluding any other eigenvalue of B. An
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important integral greatly used in this analysis is the Cauchy-Riesz integral from the
holomorphic functional calculus. This calculus was applied and generalized to functions
of infinite-dimensional linear operators by Dunford and Schwartz [137].

Definition 6. Let f be a (complex) function holomorphic on σ(B), holomorphic in small
discs enclosing the eigenvalues. Since in general the spectrum has multiple connected
components, f(ξ) is only piecewise holomorphic. Let Γ be a system of positively-oriented
simple closed contours that consists of regular points, not intersecting σ(B), and lie
inside the region where f(ξ) is holomorphic with the eigenvalues inside theses countours.
Then, the associated operator-valued function is

f(B) = − 1
2πi

∫
Γ

f(ξ)R(ξ, B)dξ.

Particularly, the Riesz eigenprojection is one example of such integrals given by

f(B) := Ph = − 1
2πi

∫
Γh

R(ξ, B)dξ, (5.20)

where Ph is called the (Riesz) projection associated with the µh-eigenvalue, the curve
Γh encloses µh but no other eigenvalue of B and

f(ξ) =

1 |ξ − µ0| < δ, δ > 0,

0 otherwise.
(5.21)

The basic property of eigenprojections that, for different eigenvalues µh, the summation∑
h

Ph = 1

is obtained with the integration contour Γ enclosing all the eigenvalues of B. Now, back
to the coefficients (5.19), in our Hermitian case, one has that for n = −1

A−1 = 1
2πi

∫
Γ

R(ξ) dξ = −P0 (Riesz eigenprojection), (5.22)

As a consequence of the properties from the product AnAm of these coefficients, one
obtains in the case m = n = −1 that A2

−1 = −A−1, confirming that indeed −A−1
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satisfies an idempotent relation, and A−1Am = AmA−1 = 0 for m = 0, 1, 2, . . . Let us
denote the A0 coefficient as

A0 = 1
2πi

∫
Γ

1
(ξ − µ0)

R(ξ) dξ = S0. (5.23)

It holds true then that An = An+1
0 = Sn+1

0 for n = 0, 1, 2, . . . such that P0S0 = S0P0 = 0.
Hence, the Laurent expansion of the resolvent around ξ = µ0 takes the form

R(ξ) = − P0

ξ − µ0
+

∞∑
n=0

(ξ − µ0)nSn+1
0 . (5.24)

The principal part of this Laurent series is finite due to the fact that the degree of the
pole does not exceed its multiplicity. Since R(ξ) is meromorphic and holomorphic at
infinity, it has a decomposition into a sum of partial fractions

R(ξ) = −
s∑

h=1

[
(ξ − µh)−1Ph

]
, (5.25)

where µh denotes all the s eigenvalues of B, and Ph are the corresponding eigenprojec-
tions. Henceforth, we will omit the explicit µ0-dependence of Ph by simply writing P
as the the projection associated with the lowest eigenvalue µ of B, and similarly for all
associated quantities. Note also that S0 will be denoted by S. Considering that our
eigenvalue of interest µ is not degenerate and has multiplicity m = 1, as mentioned
before, the resolvent of B has a Laurent series in the neighbourhood of ξ = µ given by

R(ξ) =
∞∑

n=−1

(ξ − µ)nS(n+1), (5.26)

where S(0) = −P , S(n) = Sn, for n ≥ 1. Additionally, these coefficients S(n+1) of the
Laurent series obey the commutation relation: PS = SP = 0. The S in the expression
(5.26) is simply the value at ξ = µ of the reduced resolvent of B, namely, S(µ).

Definition 7. The holomorphic part of the the Laurent series (5.26) is called reduced
resolvent of B with respect to µ and it has the form

S(ξ) =
∞∑
n=0

(−1)nSn+1(ξ − µ)n. (5.27)
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The name “reduced” resolvent for S(ξ) is justified by the fact that the operator
(B − ξ) is invertible in (1 − P )X and its true that

[(B − ξ) ↾ (1 − P )X]−1 = S(ξ) ↾ (1 − P )X, (5.28)

where ↾ (1 − P )X means restriction to the subspace (1 − P )X. Therefore,

S(ξ) ↾ (1 − P )X = R (ξ, B ↾ (1 − P )X) , (5.29)

the reduced resolvent of B can be seen as the resolvent of B restricted to the subspace
(1−P )X. This fact is important to understand that S(ξ) may be written as a summation
series involving all the others orthogonal projection operators Ph different from the
projection P that is associated with our lowest eigenvalue µ. We remark that the
reduced resolvent of B with respect to a general eigenvalue µh can be written as the
summation over the eigenprojections of the others eigenvalues µl different from µh as

Sh(ξ) = −
∑
l ̸=h

[
(ξ − µl)−1Pl

]
. (5.30)

5.1.2 Eigenvalue expansion

As it happens that B(λ) and µ(λ) are holomorphic at λ = 0, the total projection P (λ)
associated with µ is also holomorphic at λ = 0 and can be expanded in a formal power
series of λ

P (λ) =
∞∑
n=0

λnP (n), P (0) = P. (5.31)

The eigenvalue problem is restricted to the subspace P (λ)X which contains the eigen-
value µ. In that particular subspace, the eigenvalue problem for B(λ) is equivalent to the
eigenvalue problem for the operator P (λ)B(λ) = B(λ)P (λ) = P (λ)B(λ)P (λ), where
we used the spectral representation and that BP = PB. The perturbed eigenvalue µ(λ)
of the perturbed operator B(λ), considering there is no splitting of µ, which is true for
nondegenerate eigenvalue, is given by the trace

µ(λ) = Tr (B(λ)P (λ)) = µ+ Tr ((B(λ) − µ)P (λ)) . (5.32)

Note that dim(P (λ)) = dim(P ), which is determined by the multiplicity of the eigenvalue
µ, as a consequence of [50], Lemma I-4.10. As the numerical calculations on backflow
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indicates and we consider that the lowest eigenvalue of the probability current operator
is nondegenerate, we are interested in the case where the total projection is actually
the projection for the single eigenvalue µ(λ) of B(λ) that lies inside the the closed
positively-oriented curve Γ. Thus, the projection

P (λ) = − 1
2πi

∫
Γ

R(ξ, λ) dξ, (5.33)

is the perturbed projection associated with µ(λ), and the existence of the resolvent
R(ξ, λ) = (B(λ) − ξ)−1 for ξ ∈ Γ implies that the curve Γ does not cross any eigenvalue
of B(λ). In particular, the case P (0) = P , when we set λ = 0, represents the
eigenprojection for the unperturbed eigenvalue µ of B.

In the calculation of (5.32), we need to work out the trace of the operator

(B(λ) − µ)P (λ) = − 1
2πi

∫
Γ

(ξ − µ)R(ξ, λ) dξ (5.34)

using properties of the resolvent as well the cyclic property of the trace. As a result,
the following general expression, refer to Kato [50] for more details, establishes an
explicit way of calculating the perturbation series, order by order in λ, for the perturbed
eigenvalue µ(λ) taking into account our assumptions

µ(n) =
n∑
p=1

(−1)p
p

∑
ν1+...νp=n

α1+...+αp=p−1
αj≥0; νj≥1

Tr
(
B(ν1)S(α1) . . . B(νp)S(αp)) , (5.35)

where S(αj) with αj > 1 are powers of the value of the reduced resolvent (5.30) at
ξ = µ, and, in particular, S(0) = −P , similarly as (5.26). Thus, for our (simple) lowest
eigenvalue, the perturbation expressions up to the third order, for instance, can be
found by taking the trace of operators as follows

µ(1) = Tr
(
B(1)P

)
, (5.36)

µ(2) = Tr
(
B(2)P −B(1)SB(1)P

)
, (5.37)

µ(3) = Tr
(
B(3)P −B(1)SB(2)P −B(2)SB(1)P

+B(1)SB(1)SB(1)P −B(1)S2B(1)PB(1)P
)
,

(5.38)
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where S(0) = −P = − |B(0)
min⟩ ⟨B(0)

min|. Since our eigenvalue of interest is the lowest one,
the associated eigenprojection P projects a vector onto the lowest eigenvector of the
unperturbed operator B, namely, |B(0)

min⟩. For higher order perturbations, the number
of possible combinations of operators, and consequently the number of terms, rapidly
increases as can be seen from the expression of the fourth order perturbation

µ(4) = Tr
(
B(4)P −B(1)SB(3)P −B(2)SB(2)P −B(3)SB(1)P

+B(1)SB(1)SB(2)P +B(1)SB(2)SB(1)P +B(2)SB(1)SB(1)P

−B(1)S2B(1)PB(2)P −B(1)S2B(2)PB(1)P −B(2)S2B(1)PB(1)P

−B(1)SB(1)SB(1)SB(1)P +B(1)S2B(1)SB(1)PB(1)P

+B(1)SB(1)S2B(1)PB(1)P +B(1)S2B(1)PB(1)SB(1)P

−B(1)S3B(1)PB(1)PB(1)P
)
.

(5.39)

Note that the presence of of the projection P is shared among all these combinations of
operators in the above expressions determining the different orders of the perturbations.
In fact, that observation makes the calculations of the trace manageable, as the range
of P is finite-dimensional. In particular, it is one-dimensional in our case.

5.2 infinite-dimensional setting

In the previous section, we stated the most relevant results we need in the case
of an operator B defined on a finite-dimensional vector space. Essentially the same
machinery can be used in our case of interest that is the perturbation of the (unbounded)
operator J(f) defined on an infinite-dimensional Hilbert space. In particular, now the
unperturbed operator is E+J(f)E+ (instead of B) and the perturbed operator J(f)(λ)
(instead of B(λ)) is the asymptotic current operator E+Ω†

V J(f)ΩVE+. Similarly to the
finite-dimensional case where the spectral theorem for Hermitian matrices simplifies
the discussion, the probability current operator J(f) is Hermitian J(f) = J†(f), and
the discussion is simplified in the sense that all nilpotent operators D are zero. We will
focus on the interacting current E+Ω†

V J(f)ΩVE+ that is also Hermitian, as long as we
consider an Hermitian potential and a real parameter λ, and can be seen as the result
of a perturbation to the interaction-free current. In particular, the spectral projection
E+ of the momentum operator is also Hermitian and was previously introduced in
chapter 2. In that sense, we say this is an Hermitian perturbation.



5.2. Infinite-dimensional setting 135

When our perturbation analysis happens in a Banach space such as an infinite-
dimensional Hilbert space, the analytic perturbation theory is more complicated than in
finite-dimensional spaces, but the concepts of eigenvalue and resolvent are essentially the
same. Let us, for convenience, omit in this chapter the f -dependence of our probability
current operator such that we will denote it by J . The resolvent set of J , denoted
by ρ(J), is the set of complex values for which R(ξ) exists with (J − ξ) injective, is a
bounded linear operator and is densely defined. In particular, if the domain of R(ξ) is
not dense in the space, ξ would be an element of the residual spectrum [55]. In regards
to the spectrum, the spectrum set of an infinite-dimensional Hermitian operator can
be decomposed into: pure point spectrum (eigenvalues), absolute continuous (crucial
for scattering theory) and singular continuous, result that follows from a refinement of
Lebesgue decomposition [129], Theorem I.13 and Theorem I.14. Despite some subtle
differences between finite and infinite-dimensional cases, we consider the particular
case of a perturbation theory applied to a single isolated eigenvalue µ of σ(J) with
finite multiplicity, and that makes possible to extend perturbation theory’s results from
finite-dimensional to infinite-dimensional cases. Hence, we now give emphasis to the
concept of isolated eigenvalues.

Definition 8. A point µ ∈ σ(J) is called discrete if µ is an isolated eigenvalue with
eigenprojection P whose range is finite-dimensional.

A useful theorem for the perturbation analysis, see [50, 138], states that, given a
linear closed operator A in a general Banach space X, assume that the set σ(A) can
be decomposed in two isolated parts σ1 (bounded) and σ2 such that the simple closed
piecewise smooth curve Γ in the resolvent set ρ(A) contains σ1 in its interior, and σ2 in
the exterior. Then, it follows a decomposition of the Banach space given by

Theorem 4. Let σ(A) = σ1 ∪ σ2 and Γ ⊂ ρ(A) be a simple closed piecewise smooth
(positively oriented) curve separating the bounded part σ1 from the unbounded one. If

P = − 1
2πi

∫
Γ

(A− ξ)−1dξ ∈ B(X) , (5.40)

then the decomposition X = M1 ⊕ M2, where M1 = PX and M2 = (1 − P )X, yields
a decomposition of A into the associated parts AM1 ∈ B(M1) and AM2 that can be
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generally unbounded, with σ(AM1) = σ1 and σ(AM2) = σ2. Furthemore,

PA ⊆ AP = − 1
2πi

∫
Γ

ξ(A− ξ)−1dξ ∈ B(X), (5.41)

where B(X) denotes the set of all bounded operators on X to itself.

As a particular case of this theorem is when µ is the only point of the spectrum
of the bounded operator AM1 . For that, let σ1 represent a single isolated eigenvalue
µ of σ(A), then σ(A) = {µ} ∪ (σ(A)\{µ}) is a decomposition into two isolated parts.
Moreover, similar reasoning applies to the case of a finite system of eigenvalues, namely,
the decomposition of the spectrum set into finitely many parts. Note that the theorem
requires Γ to be a curve around µ with sufficiently small radius r, that is 0 < r < ϵ.
The analytic perturbation theory for an isolated eigenvalue in the spectrum of a closed
operator under a small perturbation is, therefore, handled very similarly for both finite
and infinite-dimensional cases. In the next section, we shall find the perturbation for
the backflow constant βV (f), the lowest eigenvalue of the probability current operator.

5.3 perturbation of the interacting current

It is often the case in quantum mechanics that the Hamiltonian H of a system is
perturbed by an interaction such that H can be decomposed in the form H = H0 + λV ,
where H0 is the free Hamiltonian operator and λ is a small real parameter that represents
the strength of the potential V and, therefore, λV is treated as a small perturbation.
Evidently, the free case is included by setting λ = 0. In this chapter, we will treat the
potential strength as the parameter for the expansion of the formal power series in the
perturbation analysis. Note that the Dirac delta potential function, for instance, will
be denoted by V (x) = δ(x) instead of what we have previously considered, namely,
V (x) = λδ(x). That change is a suitable choice when we are thinking of the interaction
as a perturbation. However, we are not interested in expanding the energy eigenvalues
in powers of the perturbation parameter λ but the lowest eigenvalue of the interacting
probability current operator. We remark that, while the perturbation to the Hamiltonian
is represented by a single term linear in λ, the perturbation to the probability current
operator will be described by an infinite series in a sense that will be made more precise
later. For our purposes, it is enough to consider time-independent perturbations only.
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The starting point of our analysis is the expectation value of the probability current
operator in a general state vector |ψ⟩ ∈ H written in the following form

⟨J(λ)⟩ψ := ⟨ψ|E+Ω†
V J(f)ΩVE+ |ψ⟩ . (5.42)

The expansion of the eigenvalues in power series of λ is obtained by expanding the
Møller wave operator and relies on the use of the Lemma 1 making explicit use of a
choice of asymptotics for the Lippmann-Schwinger equation (2.20). Let us modify our
previous choice of Green’s function and rewrite that equation as

φk(x) = gk(x) + λ

∫
dyGk(x− y)U(y)φk(y), (5.43)

where gk(x) = exp(ikx) is chosen as the complementary function, plane wave solution
in the interaction-free situation (λ = 0), or simply the incident wave [139, 140]. This
particular choice makes the analysis easier when we group together the power series
terms corresponding to the same power in the potential strength λ in the iterative
process described below. Given the boundary conditions (2.19), we employ a different
Green’s function from (2.21) such that

Gk(x− y) = eik|x−y|

2ik , (5.44)

which gives the transmission amplitude

TV = 1 + λ

∫ +∞

−∞
dy

e−iky

2ik U(y)φk(y),

and the corresponding reflection amplitude

RV = λ

∫ +∞

−∞
dy

eiky

2ik U(y)φk(y).

More specifically, this choice of Green’s function corresponds to the +iϵ prescription on
the poles of the resolvent of the free Hamiltonian, that is

lim
ϵ→0

(H0 − (Ek + iϵ))−1 = G(Ek + iϵ) ≡ Gk , (5.45)

where the Green’s function is the kernel of the Green’s operator. That is traditionally
written as ⟨x|Gk |y⟩ = Gk(x, y) in the literature [141]. The Lippmann-Schwinger
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equation is one example of an inhomogeneous Fredholm integral equation of the second
kind. It provides an integral representation for the scattering solution φk(x) of the
Schrödinger equation in the presence of interaction rather than a closed-form solution.
Through an iterative process in which φk(y) in (5.43) is substituted by the entire
expression represented by φk(x) of that same equation, we can generate a series with
successive higher power terms in λ. The iterative process will give rise to an infinite
Neumann series for the integral equation. We describe the iterative process in abstract
notation as follows. Given an inhomogeneous integral equation

fk(x) = gk(x) + λ

∫
dyKk(x, y)fk(y), (5.46)

it has a formal solution in the form

|fk⟩ = (1 − λKk)−1 |gk⟩ . (5.47)

The operator (1 − λKk)−1 can be formally expanded as

(1 − λKk)−1 =
∞∑
n=0

λnKn
k , (5.48)

for a linear bounded operator Kk ∈ B(H) provided that there exists a positive constant
Λ with |λ| < Λ to guarantee the convergence, in the sense of the operator norm, of this
series. In fact, Λ is essentially given by Λ = 1/|γmax|, where γmax is the eigenvalue of
the operator Kk with the largest magnitude. For unbounded Kk, the series may not
converge. The solution for |fk⟩ is, therefore, given by the formal power series

|fk⟩ =
∞∑
n=0

λnKn
k |gk⟩ . (5.49)

Kn
k are integral operators whose corresponding kernels are denoted by (Kk)n(x, y) :=

⟨x| (Kk)n |y⟩. For instance, taking n = 2 for the second order kernel in λ, we obtain

(Kk)2(x, y) =
∫
dzKk(x, z)Kk(z, y), (5.50)

and similarly for higher orders in which n > 2. The power series for the scattering
solution is called Neumann series and it has the form

fk(x) = gk(x) +
∞∑
n=1

λn
∫
dy(Kk)n(x, y)gk(y). (5.51)
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Returning now to the average value of interest in regard to the backflow (5.42) and
making use of (2.22) together with its corresponding adjoint, the expectation value of
the interacting current operator for a general state vector |ψ⟩ becomes

⟨ψ|E+Ω†
V J(f)ΩVE+ |ψ⟩ =

∫
dx

∫
dx′(ΩVE+ψ)⋆(x′) [J(f)(x′, x)] (ΩVE+ψ)(x).

(5.52)
That can be equivalently written in terms of Green’s functions

1
2π

∫ ∞

0
dk

∫ ∞

0
dk′ψ̃⋆(k′)ψ̃(k)

∫
dx

∫
dx′
(
g⋆k′(x′) + λ

∫
dy′ U(y′)G†

k′(x′ − y′)φ⋆k′(y′)
)

× J(f)(x′, x)
(
gk(x) + λ

∫
dy Gk(x− y)U(y)φk(y)

)
.

(5.53)
The expansion of this expression up to the first order is given by the Born approximation
in which we approximate the φk(y) (and similarly for φ⋆k(y′)) in the integrand by the
incident plane wave gk(y) to obtain

⟨J(λ)⟩ψ = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′ψ̃⋆(k′)ψ̃(k)

[∫
dx

∫
dx′g⋆k′(x′)J(f)(x′, x)gk(x)

+ λ

∫
dx

∫
dx′g⋆k′(x′)J(f)(x′, x)

∫
dy Gk(x− y)U(y)gk(y)

+ λ

∫
dx

∫
dx′
∫
dy′ U(y′)G†

k′(x′ − y′)g⋆k′(y′)J(f)(x′, x)gk(x)
]

+ O(λ2),

(5.54)

where the first term corresponds to the interaction-free case independent of λ. That
expression will be useful for the approximation of the lowest eigenvalue perturbation up
to first order. In abstract notation, we can find the general structure of these operators
for all orders in λ in a more convenient manner. For that, let us first write the solution
(5.43) in the form

|φq⟩ = |gq⟩ + λGqU |φq⟩ (5.55)

for an arbitrary momentum variable q, and use the resolution (2.33) of the Møller wave
operator ΩV to expand the expectation value of interest (5.52) as follows

⟨J(λ)⟩ψ =
∫ ∞

0
dq′ ⟨ψ| |q′⟩

(
⟨gq′| + λ ⟨gq′|K†

q′ + λ2 ⟨gq′| (K†
q′)2 + . . .

)
× J(f)

∫ ∞

0
dq
(

|gq⟩ + λKq |gq⟩ + λ2(Kq)2 |gq⟩ + . . .
)

⟨q| |ψ⟩ ,
(5.56)
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where the infinite sum is being indicated by ‘. . .’ for the moment, and we set the
product GkU = Kk. It is also known that the chosen complementary function gq is an
exponential such that ⟨x|q⟩ = eiqx/

√
2π = ⟨x|gq⟩ /

√
2π. Thus, in power series of λ, the

operator E+Ω†
V J(f)ΩVE+ has the form

J(λ) =
∫
dq′ |q′⟩

(
⟨q′|

∞∑
n=0

λn(K†
q′)n
)
J(f)

∫
dq

(
∞∑
n=0

λnKn
q |q⟩

)
⟨q| . (5.57)

Particularly, the spectral projection of the momentum operator E+ enforces that q and q′

are positive, and, if we strictly consider only right-moving wavefunctions (E+ψ = ψ), the
projection E+ acts simply as an identity operator. The first two terms of that infinite
perturbation expansion, namely, the zero order, corresponding to the unperturbed
probability current operator, and the first order perturbation λJ (1) are such that

J(λ) = J (0) + λJ (1) + O(λ2), (5.58)

with J (0) and J (1) given by

J (0) = E+J(f)E+ (0th order), (5.59)

J (1) =
∫ ∞

0
dq′ |q′⟩ ⟨q′| (Gq′U)†J(f)

∫ ∞

0
dq |q⟩ ⟨q|

+
∫ ∞

0
dq′ |q′⟩ ⟨q′| J(f)

∫ ∞

0
dq(GqU) |q⟩ ⟨q| (1st order).

(5.60)

Note that the operator J (0) is in agreement with the unperturbed current operator
firstly mentioned in chapter 2, and J (1) is the operator read from the kernel expression
(5.54) that contributes with a linear term of the form λJ (1), the first correction to the
free case taking into account the Green’s operator Gq. A single general power series
expression for the probability current operator is obtained by combining the two power
series as follows

J(λ) =
∫ ∞

0
dq

∫ ∞

0
dq′ |q′⟩ ⟨q′|

(
∞∑
m=0

(
λK†

q′

)m
J(f)

∞∑
n=0

(λKq)n
)

|q⟩ ⟨q|

=
∫ ∞

0
dq

∫ ∞

0
dq′ |q′⟩ ⟨q′|

(
∞∑
m=0

∞∑
n=0

λm+n(K†
q′)mJ(f)(Kq)n

)
|q⟩ ⟨q| ,

(5.61)

which can be relabeled by setting m+ n ≡ d and m ≡ t. Hence, we obtain
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Proposition 1. The general interacting current, E+Ω†
V J(f)ΩVE+ = J(λ), written as

a power series in the parameter λ is given by the following expression

J(λ) =
∫ ∞

0
dq

∫ ∞

0
dq′ |q′⟩ ⟨q′|

[
∞∑
d=0

d∑
t=0

λd
(
K†
q′

)t
J(f) (Kq)d−t

]
|q⟩ ⟨q| . (5.62)

Note that the projection E+ is omitted when the limits of integration are restricted
to positive momentum values, and the projection-valued measures are crucial elements
in the definition of the current operator. From the expression of the operator J (1) and
(5.36), the first correction for the lowest eigenvalue of the probability current operator is

µ(1) = Tr
(
J (1)P

)
, (5.63)

where P is the eigenprojection associated with the lowest eigenvalue of J (0). In order
to take the trace of this operator, let us choose a particular basis, the eigenvectors of
the unperturbed operator J(f) denoted by |Ξj⟩, for instance. One of these eigenvectors
is the lowest eigenvector |J (0)

min⟩ whose associated momentum space eigenfunction is
denoted by J̃(0)(k). Thus, we obtain the first perturbation correction

µ(1) =
∑
j

⟨Ξj, J
(1)PΞj⟩ =

∑
j

⟨Ξj| J (1) |J (0)
min⟩ ⟨J (0)

min| |Ξj⟩ = ⟨J (0)
min| J (1) |J (0)

min⟩

= 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′J̃∗(0)(k′)J̃(0)(k)

(∫
dx

∫
dx′g⋆k′(x′)J(f)(x′, x)

×
∫
dy Gk(x− y)U(y)gk(y)

+
∫
dx

∫
dx′
∫
dy′ U(y′)G†

k′(x′ − y′)g⋆k(y′)J(f)(x′, x)gk(x)
)
.

(5.64)

We remark that the first approximation to the perturbed lowest eigenvalue reads
µ(λ) = µ + λµ(1) + O(λ2), with the perturbed eigenvalue µ(λ) = βV (f) and the
unperturbed µ = β0(f). Similarly to the Hamiltonian with a Coulomb potential,
for example, the operator J(f) has a mixed spectrum set composed of both pure
point spectrum and also continuous spectrum as previously mentioned. In such cases,
the expansion of a general state vector of the Hilbert space with respect to a self-
adjoint operator is given by a combination of sums over eigenstates and integrals over
generalized eigenstates which are not elements of the space or, in other words, the set
of eigenvectors will no longer span the whole Hilbert space, see e.g. [30, 142, 143]. In
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fact, the justification is provided by the spectral representation of self-adjoint operators.
Although the spectrum of the current operator is mixed, we stress that the perturbation
is applied to a non-degenerate discrete, therefore, isolated eigenvalue and not to the
whole spectrum. For an expository account of the perturbation of continuous Spectra,
see [144]. In that manner, taking traces of the combination J(λ)P (λ) = P (λ)J(λ) is
possible as long as P is an eigenprojection whose range is finite-dimensional. However,
in the presence of a mixed spectrum, the reduced resolvent with respect to µ can not be
exactly expanded as before in (5.30) with sums over the discrete part of the spectrum,
but it has also to include integration over the generalized eigenvectors corresponding to
the continuous part of the spectrum. The reduced resolvent of the unperturbed current
operator evaluated at ξ = µ is then

S =
∑
l ̸=0

Pl
(µl − µ) +

∫ 1
(µν − µ)dE(ν), (5.65)

where E(ν) denotes orthogonal projection operators associated with the continuous
spectrum part and ν takes a continuous range of values. We can now obtain the second
perturbation correction for the lowest eigenvalue

µ(2) = Tr
(
J (2)P − J (1)SJ (1)P

)
=
∑
j

⟨Ξj| J (2) |J (0)
min⟩ ⟨J (0)

min| |Ξj⟩

−
∑
j

⟨Ξj| J (1)

[∑
l ̸=0

Pl
(µl − µ) +

∫ 1
(µν − µ)dE(ν)

]
J (1) |J (0)

min⟩ ⟨J (0)
min| |Ξj⟩

= ⟨J (0)
min| J (2) |J (0)

min⟩ −
∑
l ̸=0

1
(µl − µ) ⟨J (0)

min| J (1) |J (0)
l ⟩ ⟨J (0)

l | J (1) |J (0)
min⟩

− ⟨J (0)
min| J (1)

∫ 1
(µν − µ)dE(ν)J (1) |J (0)

min⟩

= ⟨J (0)
min| J (2) |J (0)

min⟩ −
∑
l ̸=0

∣∣∣⟨J (0)
min| J (1) |J (0)

l ⟩
∣∣∣2

(µl − µ)

−
∫ 1

(µν − µ)d ⟨J (0)
min| J (1)E(ν)J (1) |J (0)

min⟩

= J
(2)
00 −

∑
l ̸=0

∣∣∣J (1)
0l

∣∣∣2
(µl − µ) −

∫ 1
(µν − µ)d ⟨J (0)

min| J (1)E(ν)J (1) |J (0)
min⟩ ,

(5.66)
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where, in the last line, we introduced a notation generally used in physics literature for
the expectation value of a perturbation to the lowest eigenvalue for the unperturbed
energy eigenstates. More specifically, in our case, we are referring to the unperturbed
J-eigenstates, and J

(2)
00 denotes the expectation value of J (2) with respect to the lowest

eigenvector |J (0)
min⟩ of the unperturbed current operator. While both the summation

term and the integral above have a negative contribution to µ(2), because µ is the lowest
eigenvalue and µl − µ > 0, the first term J

(2)
00 does not have a definite sign. However,

these factors (µl − µ)−1 become smaller for eigenvalues distant from µ and, therefore,
less important. As a matter of comparison between the minimum and the maximum
eigenvalues, we mention that numerical calculations in the case of a jump-defect for
the following parameters: N = 1000, Pcutoff = 100, α = 1, x0 = −2 give the lowest
egenvalue µ ≈ −0.24 and the maximum eigenvalue µ1000 ≈ 275.21. That explains the
difficulty in the numerical analysis concerning the problem of ill-conditioned matrices
[145] as a result of the discretization of an infinite-dimensional operator.

5.3.1 Perturbed and unperturbed lowest eigenvalue

Having found the power series expansion of the lowest eigenvalue of the probability
current operator under perturbation

µ(λ) = µ+
∞∑
n=1

λnµ(n), (5.67)

we gave particular emphasis to the first (5.64) and second (5.37) corrections. Each order
contributes with a term which has the form

〈
J

(0)
min

∣∣∣J (n)
∣∣∣J (0)
min

〉
, which is the expectation

value of the corresponding perturbation in the lowest eigenvector |J (0)
min⟩. Particularly,

the case n = 0 corresponds to the unperturbed µ. Hence, the perturbed eigenvalue can
be rewritten in the following alternative form

µ(λ) =
∞∑
n=0

λn
〈
J

(0)
min

∣∣∣J (n)
∣∣∣J (0)
min

〉
+ ˜̃µ(λ), (5.68)

where the term ˜̃µ(λ) represents the sum of all other terms. Note that these other terms
are second order in λ at least and all higher orders as well. From (5.35), we can see
that is true indeed, because it is always possible to obtain terms similar to the first
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order perturbation from the allowed combinations of the indices of the sum. Taking
into consideration that the perturbed operator takes the form (5.1), the summation
can be included in the definition of J(λ) as follows

µ(λ) =
〈
J

(0)
min

∣∣∣J(λ)
∣∣∣J (0)
min

〉
︸ ︷︷ ︸

(A)

+ ˜̃µ(λ)︸︷︷︸
(B)

, (5.69)

with part (A) representing all the expectation value expressions of the perturbed
operator in |J (0)

min⟩ and part (B) representing all the other terms. We can make use of
the minimax principle for analysing the sign of the (B)-contribution. Given that µ(λ)
is the lowest eigenvalue of some operator, namely, the operator J(λ) with associated
lowest eigenvector |Jmin(λ)⟩, the inequality

min
|ψ⟩

⟨ψ|J(λ)|ψ⟩ = µ(λ) ⩽
〈
J

(0)
min

∣∣∣J(λ)
∣∣∣J (0)
min

〉
(5.70)

holds because |J (0)
min⟩ is not the lowest eigenvector of J(λ), and that is one formulation

of the variational principle [146, 147]. In other words, the expectation value of an
operator in a vector which is not its lowest eigenvector gives an upper bound on the
lowest eigenvalue of that operator. Hence, we conclude that the (B)-contribution is
negative, ˜̃µ(λ) ⩽ 0. Furthermore, expression (5.69) can be further decomposed and
written in terms of the notation employed in the context of the backflow

βV (f) = β0(f) +
〈
J

(0)
min

∣∣∣ ∞∑
n=1

λnJ (n)
∣∣∣J (0)
min

〉
︸ ︷︷ ︸

(A)

+ ˜̃µ(λ)︸︷︷︸
(B)

. (5.71)

In view of that, the question on whether βV (f) is larger or smaller than β0(f) depends
largely on the sign of the

∑∞
n=1 λ

n
〈
J

(0)
min

∣∣∣J (n)
∣∣∣J (0)
min

〉
, and investigations on that direc-

tions require a choice of a particular potential function V in order to calculate the first
and the second order perturbation approximations, for instance.

Alternatively, considering that the perturbed lowest eigenvalue µ(λ) is an non-
degenerate isolated eigenvalue of the probability current operator J(λ) with correspond-
ing normalized lowest eigenvector denoted as |Jmin(λ)⟩, it is given by

µ(λ) = ⟨Jmin(λ)|J(λ)|Jmin(λ)⟩ . (5.72)
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Under the appropriate assumptions of differentiability for J(λ), µ(λ) and |Jmin(λ)⟩,
sufficiently smooth functions of λ, it follows that

dµ(λ)
dλ

∣∣∣∣
λ=0

=
〈
J

(0)
min

∣∣∣ dJ(λ)
dλ

∣∣∣∣
λ=0

∣∣∣J (0)
min

〉
=
〈
J

(0)
min

∣∣∣J (1)
∣∣∣J (0)
min

〉
(5.73)

gives the first order approximation µ(1) to the lowest unperturbed eigenvalue from
the first derivative of µ(λ) with respect to λ. That is the equivalent version of the
Hellmann-Feynman theorem for the Hamiltonian operator. However, upon taking a
second derivative before setting λ = 0, we can show (see, for instance, the account of
[148] in the case of the Hamiltonian operator) that the second derivative is

d2µ(λ)
dλ2 = ⟨Jmin(λ)|d

2J(λ)
dλ2 |Jmin(λ)⟩ − 2

(
⟨J ′

min(λ)|J(λ)|J ′
min(λ)⟩ − µ(λ)

)
, (5.74)

where the vector |J ′
min(λ)⟩ denotes the first derivative of |Jmin(λ)⟩ with respect to λ;

thus |J ′
min(λ)⟩ := d |Jmin(λ)⟩ /dλ. It follows from the variational principle, therefore,

that
d2µ(λ)
dλ2 ≤ ⟨Jmin(λ)|d

2J(λ)
dλ2 |Jmin(λ)⟩ , (5.75)

which implies that µ(2) ≤
〈
J

(0)
min

∣∣∣J (2)
∣∣∣J (0)
min

〉
= J

(2)
00 in agreement with expression

(5.66). These arguments provide upper bounds on the perturbed lowest eigenvalue and,
combined with lower bounds estimates, could narrow βV (f) to certain intervals. As
previously mentioned, (2.23) provides lower bounds, but these are rough estimates as
shown in [11]. In section 5.4, devoted to present the numerical results in the case of a
single δ-defect, the first order approximation perturbation seems to be a much sharper
lower bound. The case of a general double δ-defect, which depends on two parameters,
namely, λ1 and λ2, requires a generalization of the analytic perturbation theory because,
even if the operator J(λ1, λ2) is holomorphic in the two variables, total differentiability
is a subtle concept, and the eigenvalues might have complicated singularities [50, 149].
As for the jump-defect, it cannot be classified as a potential in L1

1(R) because it is not
even described in terms of an explicit potential function V , and, therefore, there is
no lower bound estimate in terms of (2.23). Nonetheless, the first order perturbation
results for the jump-defect is presented in section 5.5.

The exact relation between the perturbed and the unperturbed lowest eigenvalue
is given in (5.71), and we might check how approximations of low order compare to
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the exact calculation when the solutions are explicitly known. For any finite order n,
using the general expression for the expansion of the lowest eigenvalue (5.35) together
with the general perturbation to the probability current operator (5.62), we have the
perturbation corrections to the lowest eigenvalue

µ(n) =
n∑
p=1

(−1)p
p

∑
ν1+...+νp=n

α1+...+αp=p−1

Tr
(
J (ν1)S(α1)J (ν2)S(α2) . . . J (νp)S(αp)) , (5.76)

with αj ≥ 0 and νj ≥ 1. We remark that the presence of the Green’s function (5.44) in
the one-dimensional scattering problem causes an infrared or low-momentum divergence
(at k = 0) in the perturbations series. It is also worth remarking that the Green’s
function used before in (2.21) would not have been a more suitable choice because the
complementary function in the Lippmann-Schwinger equation (2.20) depends on T (k),
which is a power series in λ, and it would be difficult to keep track of the perturbation
series in λ. As its known that the exact backflow calculations are not divergent, that
divergence is artificially produced by our choice of asymptotics in the scattering analysis.
Formally, a small positive constant cutoff ϵ could be used for restricting the limits of
integration in momentum space to k ∈ (ϵ,∞). However, a solution to this issue will not
be attempted in this thesis. Finally, note that J (νj) in the expression (5.76) are integral
operators. The trace operation is evaluated by inserting complete sets of generalized
eigenvectors and taking the trace inside the integrals. Now we come to the general
expression of the perturbation corrections to the backflow constant βV (f).

Proposition 2. The nth order perturbation correction µ(n) in the parameter λ to the
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lowest eigenvalue of the probability current operator in the parameter λ is given by

µ(n) =
n∑
p=1

(−1)p
p

∫ ∞

0
dq1

∫ ∞

0
dq′

1

∫ ∞

0
dq2

∫ ∞

0
dq′

2 . . .

∫ ∞

0
dqp

∫ ∞

0
dq′

p

×
∑

ν1+...+νp=n
α1+...+αp=p−1
αj≥0; νj≥1

Tr
(

|q′
1⟩ ⟨q′

1|

[
ν1∑
t1=0

(
K†
q′

1

)t1
J(f) (Kq1)ν1−t1

]
|q1⟩ ⟨q1|

× S(α1) |q′
2⟩ ⟨q′

2|

[
ν2∑
t2=0

(
K†
q′

2

)t2
J(f) (Kq2)ν2−t2

]
|q2⟩ ⟨q2|

× S(α2) . . . |q′
p⟩ ⟨q′

p|

 νp∑
tp=0

(
K†
q′

p

)tp
J(f)

(
Kqp

)νp−tp

 |qp⟩ ⟨qp| S(αp)

)
.

(5.77)

As a matter of reordering the sums, that expression can also be written in the
following alternative form

µ(n) =
n∑
p=1

(−1)p
p

∫ ∞

0
dq1

∫ ∞

0
dq′

1

∫ ∞

0
dq2

∫ ∞

0
dq′

2 . . .

∫ ∞

0
dqp

∫ ∞

0
dq′

p

×
∑

ν1+...+νp=n
α1+...+αp=p−1
αj≥0; νj≥1

∑
(0≤tj≤νj)

Tr
(

|q′
1⟩ ⟨q′

1|
[(
K†
q′

1

)t1
J(f) (Kq1)ν1−t1

]
|q1⟩ ⟨q1|

× S(α1) |q′
2⟩ ⟨q′

2|
[(
K†
q′

2

)t2
J(f) (Kq2)ν2−t2

]
|q2⟩ ⟨q2|

× S(α2) . . . |q′
p⟩ ⟨q′

p|
[(
K†
q′

p

)tp
J(f)

(
Kqp

)νp−tp
]

|qp⟩ ⟨qp| S(αp)

)
.

(5.78)

In the next two sections, we will apply that perturbation correction to the cases of
the backflow in the presence of δ-defect and in the presence of a jump-defect. More
specifically, we will take into account the first order correction for small λ and compare
the results to the previous exact calculations depicted in the collection of plots.
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5.4 first order approximation in the presence of a δ-defect

Due to the fact that the free resolvent, and consequently the Green’s function, has
an infrared singularity at k = 0, the perturbation terms of orders higher than one
present additional difficulty for the numerical calculations. The first order correction is
manageable, but the second order is more singular and can radically affect the value
of the backflow constant βV (f). For that reason, we will not treat in this thesis the
second or any higher order perturbation corrections. However, resolving this issue would
certainly be a worthwhile task for the future.

For the calculation of the backflow constant, we shall take the infimum of the ex-
pectation value ⟨ψ|E+Ω†

V J(f)ΩVE+ |ψ⟩, which is achieved for the lowest eigenfunction
associated with the interacting probability current operator. Instead of finding the
exact result as we did in previous chapters and as a direct application of the analytic
perturbation discussed in the context of the backflow, we can calculate the first order
correction to the lowest eigenvalue of the probability current in the presence of the
δ-defect using the expression (5.64) to give

µ(1) = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′J̃∗(0)(k′)J̃(0)(k)

(∫
dx

∫
dx′g⋆k′(x′)J(f)(x′, x)

×
∫
dy Gk(x− y)2δ(y)gk(y)

+
∫
dx

∫
dx′
∫
dy′ 2δ(y′)G†

k′(x′ − y′)g⋆k(y′)J(f)(x′, x)gk(x)
)
,

(5.79)

where we particularized to our case of interest, namely, the delta impurity V (x) = δ(x).
We stress that the strength λ was conveniently put outside this expression and will
appear again when the entire first contribution λµ(1) is taking into account. Knowing
the Green’s function (5.44), the following integrals can be easily calculated∫

dy Gk(x− y)2δ(y) exp(iky) = exp(ik|x|)
ik

(5.80)∫
dy′ 2δ(y′)G†

k′(x′ − y′) exp(−ik′y′) = −exp(−ik′|x′|)
ik′ . (5.81)

Back to our expression for the first correction, let us denote by L1(k′, k) the kernel of
the operator J (1) associated with the first order approximation to the lowest eigenvalue

µ(1) = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′J̃∗(0)(k′)J̃(0)(k)L1(k′, k). (5.82)
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The first order probability current operator kernel L1(k′, k) in the case of a delta
impurity can be obtained after calculating the following expression

2iL1(k′, k) =
∫
dx′f(x′)

(
exp(−ik′x′) ∂

∂x′
exp(ik|x′|)

ik
− ∂

∂x′ (exp(−ik′x′))exp(ik|x′|)
ik

)
−
∫
dx′f(x′)

(
exp(−ik′|x′|)

ik′
∂

∂x′ exp(ikx′) − ∂

∂x′

(
exp(−ik′|x′|)

ik′

)
exp(ikx′)

)
.

(5.83)
Recall that φ ∈ H1(R) ∩H2(R \ {0}). The derivatives of φ are piecewise defined, and
the integrals on the real line split into two pieces corresponding to the left region x < 0
and right region x > 0. In fact, we even did not need to use Heaviside functions in the
calculations leading to the expression (5.83). It follows that the kernel can be simplified
leading to its final form with contributions to the left and right regions as

2iL1(k′, k) = k′

k

∫ 0

−∞
dx′f(x′) exp(−ix′(k + k′)) − k

k′

∫ 0

−∞
dx′f(x′) exp(ix′(k + k′))

+
∫ 0

−∞
dx′f(x′) exp(ix′(k + k′)) −

∫ 0

−∞
dx′f(x′) exp(−ix′(k + k′))

+ (k′ − k)(k′ + k)
k′k

∫ ∞

0
dx′f(x′) exp(ix′(k − k′)).

(5.84)
Note that the eigenvalue at first order µ(1), given by equation (5.82), is calculated in
terms of the eigenfunction at zeroth order J̃(0), which corresponds to the unperturbed
physical system. Now we may use that result to find the backflow constant βV (f) up
to the first order approximation in λ given by

βV (f) ≈ β0(f) + λµ(1). (5.85)

The following figures show the results for some small values of the potential strength.
In fact, the question on how small should be the parameter λ depends on the particular
potential in consideration. In figure 5.1, for example, |λ| = 0.3 and |λ| = 0.05 are very
satisfactory approximations as can be seen in comparison with the exact calculation.
For values |λ| > 0.1, figure 5.2, the results become compromised in the sense that the
first order approximation does not seem to be enough. In general, for larger values |λ|,
the first order results for βV (f) become even more negative. It is worth noting that,
in contrast to the exact calculations of section 3.2, k = −iλ is no longer a pole (and
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possibly bound state) of the kernel (5.84), and the first order results do not show the
presence of maxima, previously found in the exact calculations, that would peak in the
region at the left of the defect.



5.4. First order approximation in the presence of a δ-defect 151

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

β
V
(f

)

x0

Backflow in delta defect: N = 1000, Pcutoff = 200, |λ| = .03

attractive
repulsive

(a) Refer to Figure 3.1 (a) for exact calculation

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

β
V
(f

)

x0

Backflow in delta defect: N = 1000, Pcutoff = 200, |λ| = .05

attractive
repulsive

(b)

Figure 5.1: First order approximation - Lowest backflow eigenvalue of the current
operator, for which (a) |λ| = 0.03 (b) |λ| = 0.05.
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Figure 5.2: First order approximation - Lowest backflow eigenvalue of the current
operator, for which (a) |λ| = 0.03 (b) |λ| = 0.05.
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5.5 first order approximation in the presence of a jump-defect

In section 5.3, we used the time-independent solution φk(x) for finding the expressions
of the probability interacting current operator. In particular, we can apply our results
to the first order approximation in the parameter α.

Although we made a direct use of the Lippmann-Schwinger equation in the analytic
perturbation theory for the first order approximation of the lowest eigenvalue βV (f),
which has an explicit potential term, we are not able to proceed in exactly the same
manner as did in the presence of a δ-defect. Because the jump does not have an explicit
potential function to describe it but rather a set of sewing conditions, we will work out
an alternative way based on the fact that the jump is a exactly solvable model. That
means we shall use the exact scattering solution to provide information on the possible
different approximations. Let us combine the scattering solution of the jump-defect
(4.24) and the Lippmann-Schwinger equation (5.43) into the following expression

exp(ikx) + α

∫
dyGk(x− y)U(y)φk(y) =


exp(ikx) x < 0,(
k + iα

k − iα

)
exp(ikx) x > 0,

(5.86)

which can be equivalently written in the form

α

∫
dyGk(x− y)U(y)φk(y) =


0 x < 0,

2iα
k − iα

exp(ikx) x > 0.
(5.87)

Similarly, the adjoint part can also be written in the form

α

∫
dy′G†

k′(x′ − y′)U(y′)φ⋆k′(y′) =


0 x < 0,

−2iα
k′ + iα

exp(−ik′x) x > 0,
(5.88)

which makes manifest the dependence on α of the first-order approximation or any
order above. To find a linear term in α, we can expand

2iα
(k − iα) = 2iα

k

(
1 + iα

k
+ O(α2)

)
, (5.89)
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valid only for small values of the defect parameter, α << k. The first-order contribution
to the scattering solution of the jump-defect can be found using the Born approximation,
namely, φk(y) = exp(ikx) that results∫

dyGk(x− y)U(y)φk(y) = 2i
k
θ(x) exp(ikx), (5.90)∫

dy′G†
k′(x′ − y′)U(y′)φ⋆k′(y′) = −2i

k′ θ(x
′) exp(−ik′x′). (5.91)

As discussed in section 4.2, the wavefunction φ is discontinuous at the origin in the
case of a jump-defect. Because the wavefunction has piecewise defined derivatives, the
integrals on the entire real line are split into two pieces. Physically, the wavefunction is
not being defined at the origin, where the defect is placed, and the sewing conditions
determining the physics at this point, rather than the Schrödinger equation. The
solution uk at the left of the defect has zero first-order contribution and, therefore, zero
contribution to the first-order kernel L1(k′, k). The contributions associated with the
solution vk at the right of the defect are the combination of the Born approximation,
which is a zero-order term in α, with the first-order approximation given by equation
(5.90), both restricted to the right region x > 0 such that the kernel has the following
form

L1(k′, k) = 1
k

∫ ∞

0
dx′f(x′)

(
exp(−ik′x′) ∂

∂x′ exp(ikx′) − ∂

∂x′ (exp(−ik′x′)) exp(ikx′)
)

− 1
k′

∫ ∞

0
dx′f(x′)

(
exp(−ik′x′) ∂

∂x′ exp(ikx′) − ∂

∂x′ (exp(−ik′x′)) exp(ikx′)
)
.

(5.92)
Note that all the integrals have support in the appropriate right region because there is
no contribution from the left region. This can be simplified to a single term. Finally,
the contributions sum up to obtain

L1(k′, k) = −i(k2 − k′2)
kk′

∫ ∞

0
dx′f(x′) exp(ix′(k − k′)). (5.93)

This expression could also be derived by expanding the exact kernel in (4.27), but the
idea of this section is to find the results following use of the perturbative method. The
backflow constant in the presence of a jump-defect taking into account the first-order
perturbation approximation in α is given by

βV (f) ≈ β0(f) + αµ(1), (5.94)
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with the correction µ(1) calculated from the integrals

µ(1) = −i(k2 − k′2)
2πkk′

∫ ∞

0
dk

∫ ∞

0
dk′J̃∗(0)(k′)J̃(0)(k)

∫ ∞

0
dx′f(x′) exp(ix′(k − k′)).

(5.95)
In the case of the conserved probability current, where there is an extra contribution

included whose origin is purely from the defect, we shall take into account the first-order
approximation from this defect contribution as well. This term, given by (4.31), has
support defined only at the origin and can be expanded to first order(

2iα(k + k′)
(k − iα)(k′ + iα)

)
f(0) = 2iα(k + k′)

kk′ f(0) + O(α2), (5.96)

valid for small values of the parameter, α << k, k′. The backflow constant in the
presence of a jump-defect after considering the conservation of the probability current
operator is, up to first-order in α, given by the same expression (5.94) with the difference
that now µ(1) is adjusted taking into account the contribution from the defect itself

µ(1) = − 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′J̃∗(0)(k′)J̃(0)(k)

[
k + k′

kk′ f(0)

+ i(k2 − k′2)
kk′

∫ ∞

0
dx′f(x′) exp(ix′(k − k′))

]
.

(5.97)

With the first order approximations for both cases, without considering the conservation
of the current and after taking it into consideration, numerical calculations are used in
order to summarize the results in similar plots to those considered in previous chapters.

The following plots summarize the results for the backflow constant (up to first order)
in the presence of a jump-defect. First, figures 5.3 and 5.4 show the case of the non-
conserved probability current operator. For very small values, |α| = 0.01 in figure 5.3,
for example, the result is very satisfactory. However, for larger absolute values of the
parameter, the backflow constant is strongly changed at positions x0 > 0, at the right of
the defect, as can be seen in figure 5.4. Note that the defect is purely-transmitting and,
therefore, there is no reflection term being affected at the left of the defect position,
but the first order approximation of the transmission factor is causing this asymmetry
in contrast to the exact calculation. Then, we take into account the conservation of
the probability current and use (5.97) to produce the next set of plots, figures 5.5, 5.6
and 5.7. In particular, figure 5.5 shows the approximation to the backflow constant
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for |α| = 0.01 and |α| = 0.06, which are again satisfactory. The similar issue that
happens in the non-conserved case, where there is an asymmetry with respect to the
defect position, is shown for larger values of the parameter, in figure 5.6 and figure 5.7.
That was already expected because the distinction between the non-conserved and the
conserved probability current is only the extra defect contribution that has compact
support in the neighbourhood of x0 = 0. In order to check the first order approximation
from the defect contribution only, we adjust the expression (5.97) by removing the
second term and keeping only the first term that is proportional to f(0). The results
are plotted in figures 5.8, 5.9 and 5.10. From these, it is clear that the decrease
in βV (f), as |α| increases, for positions x0 > 0 is an effect with origin in the bulk.
Although not included in this thesis, we report that the first order defect contribution
for extremely large values of the parameter, |α| > 100, becomes progressively negligible
in comparison to the interaction-free value β0(f). These are results from the first order
perturbation and, therefore, it is a natural step to proceed by looking into the second
order perturbation corrections. To satisfactorily succeed on that, we understand that
the present scattering analysis of the backflow needs to be modified in the sense of
avoiding the infrared divergence previously mentioned. A possible way around that issue
is conveniently changing the incoming asymptote. However, that would also change the
value of β0(f) for the same test function f . We started to look into this possibility, but
did not progress enough in that direction to give a report in this thesis.
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Figure 5.3: First order approximation - Lowest backflow eigenvalue of the current
operator, for which (a) |α| = 0.01 (b) |α| = 0.05.
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Figure 5.4: First order approximation - Lowest backflow eigenvalue of the current
operator, for which (a) |α| = 0.1 (b) |α| = 0.5.
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Figure 5.5: First order approximation - Lowest backflow eigenvalue of the conserved
current operator, for which (a) |α| = 0.01 (b) |α| = 0.05.
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Figure 5.6: First order approximation - Lowest backflow eigenvalue of the conserved
current operator, for which (a) |α| = 0.01 (b) |α| = 0.05.
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Figure 5.7: First order approximation - Lowest backflow eigenvalue of the conserved
current operator, for which (a) |α| = 0.5 (b) |α| = 1.0.
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Figure 5.8: First order approximation - defect contribution to the lowest backflow
eigenvalue of the conserved current operator, for which (a) |α| = 0.01 (b) |α| = 0.05.
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Figure 5.9: First order approximation - defect contribution to the lowest backflow
eigenvalue of the conserved current operator, for which (a) |α| = 0.1 (b) |α| = 0.2.
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Figure 5.10: First order approximation - defect contribution to the lowest backflow
eigenvalue of the conserved current operator, for which (a) |α| = 0.5 (b) |α| = 1.0.
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Backflow and defects for the Dirac equation

When the quantum backflow effect was first discussed in Chapter 2, the discussion was
restricted to situations described by the Schrödinger equation. After that, in Chapter 3
we considered the backflow in the presence of δ-defects, but again without including the
spin of the particles. Here we devote the discussion to situations described by the Dirac
equation. The free case was firstly and previously considered in [10], and we extend that
introducing interactions with the view that a point interaction can be defined by a set
of sewing conditions at that point. In particular, we discuss the introduction of a point
defect in the Dirac equation, a first-order differential equation, how the conservation
laws are modified and the quantum backflow effect.

6.1 introducing a δ-defect

The δ-defect in the Dirac equation was previously studied in the context of solid-
state physics as the relativistic Kronig-Penney model, see [150] and references therein.
However, the presence of discontinuities lead to confusion and incorrect results in the
literature [151]. This section presents a brief summary of the Dirac equation and
review the proper treatment of a δ-defect in the one-dimensional Dirac equation. We
consider Dirac particles in one dimension and start from the interaction-free case.
For the quantum mechanical interpretation of the theory, we need a Hilbert space to
accommodate the action of 2x2-matrix differential operators. These operators act on
C2-valued functions of x ∈ R. We take the Hilbert space H = L2(R)2 = L2(R) ⊗ C2.
Because now we have 2-component column vectors ψ, with complex valued functions ψi

165
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as components, the inner product is

⟨ψ, ϕ⟩ =
∫
R

2∑
i=1

ψ⋆i (x)ϕi(x) dx =
∫
R

ψ†(x)ϕ(x)dx. (6.1)

The Dirac equation for a spinor ψ exhibits its relativistic covariance properties when
it takes the form

(iℏγµ∂µ −mc)ψ(x) = 0, (6.2)

for a particle of mass m > 0 and where the gamma γµ matrices obey the Clifford
relations

γµγν + γνγµ = 2gµν ,

where the metric tensor gµν on R1,1 has signature (+−), of the associated Clifford
algebra Cl1,1(R). The Dirac equation can be written in terms of the Dirac adjoint
ψ̄ = ψ†γ0, associated to the fermionic anti-particle, as

iℏ∂µψ̄γµ +mψ̄ = 0. (6.3)

We continue adopting the choice of units such that, effectively, ℏ = c = 1. The free
Dirac equation in (1 + 1) dimensions, choosing the Dirac representation of the gamma
matrices,

γ0 = σ3, γ1 = iσ2,

in terms of the Hermitian Pauli matrices, reads

(iσ3∂t − σ2∂x −m)ψ(x) = 0, (6.4)

which can be cast into a Hamiltonian form

i∂tψ = (−iσ1∂x +mσ3)ψ.

Because it is the free Dirac equation, we call the matrix operator

H0 = −iσ1∂x +mσ3 (6.5)

the free Dirac Hamiltonian in the Hilbert space H. H0 is an Hermitian (symmetric)
operator, and we also require it to be self-adjoint in order to have a unitary dynamics
described by the time evolution operator exp(−iH0t), which leaves the inner product
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(6.1) invariant. Thus, by Stone’s theorem, we have a well posed initial value problem
in the Hilbert space H. For that, one needs H0 to be defined on a dense domain of
H, usually taken to be the space of test functions C∞

0 (R)2, where H0 is essentially
self-adjoint. From where one takes an extension that is self-adjoint on the Sobolev
space W 1,2(R)2 = H1(R)2, the space of all ψ ∈ L2(R)2 whose first order (distribution)
derivatives belong to L2(R)2

H1(R)2 =
{
ψ ∈ L2(R)2| ∂ψ ∈ L2(R)2} . (6.6)

In particular, we have the following sequence of inclusions

C∞
0 (Rn) ⊂ H1(Rn) ⊂ L2(Rn).

Hence, a suitable domain of H0 is

D(H0) = H1(R)2 ⊂ H. (6.7)

Although the present work is not focused on self-adjointness issues, it is important to
stress that discontinuous wave functions naturally appear in boundary-value problems
for differential operators, and Sobolev spaces, having a Hilbert space structure, can
include these by considering relativistic point interactions in terms of wavefunctions in
the Sobolev space H1(R \ {0})2, that is, allowing a wavefunction to have a finite jump
discontinuity at the origin. That is similar to the treatment given to discontinuous
wavefunctions in the domain of Schrödinger operators. The key difference is that
Schrödinger operators are second order in space derivatives, and Dirac operators are
first order. Thus, the appropriate Sobolev space in the case of the Dirac equation
is larger than the one required in the case of the Schrödinger equation. It is worth
remarking that introducing a δ-defect in the Schrödinger equation does not cause a
discontinuous wavefunction solution at the origin, and the weak and strong derivatives
coincide in the sense explained in (3.6). From that perspective, introducing a δ-defect in
the Dirac equation is more similar to the previous case of a discontinuous jump-defect,
and the derivatives can also be understood in the strong sense for functions in the
Sobolev space H1(R \ {0})2, where the two notions of derivative coincide. Moreover, the
analysis of conserved quantities will follow the previous procedure done in section 4.1.2,
where the integrals can appropriately be split into left (x < 0) and right (x > 0) regions,
and the fields u and v are evaluated at the origin in a limiting sense.
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The Dirac operator H0 is also commonly described in momentum space L2(R, dp)2.
The Fourier transformation

(Fψ)(p) = ψ̃(p) = 1√
2π

∫
exp(−ipx)ψ(x) dx (6.8)

and its inverse F−1 allow us to switch between the Hilbert spaces L2(R, dp)2 and
L2(R, dx)2, transforming the matrix differential operator H0 into a matrix multiplication
operator in momentum space

(FH0F
−1)(p) =

(
m P̂

P̂ −m

)
, (6.9)

with momentum operator P̂ = −i∂x. The eigenvalues of this Hermitian 2x2-matrix
are E = ±

√
p2 +m2, corresponding to the positive and negative energy frequencies.

From this free theory, we consider the perturbation of the self-adjoint Hamiltonian by
introducing an interaction at a point of the real line.

There are a couple of ways to introduce an external potential in the Dirac equation:
an “electrostatic” potential or a “mass-like” potential, for example. More generally, the
external potential can be expressed [152] as a combination

V (x) = V0(x)1 + V1(x)σ1 + V2(x)σ3 + V3(x)σ1σ3,

which will be simplified here by taking V3 = 0 and further reduced to a simpler linear
combination of the identity matrix and σ3 only

V (x) = Ve(x)1 + Vm(x)σ3,

based on considerations of gauge symmetry: the potential is a function of the position
only, and V1 can be removed by a gauge transformation of the spinor ψ. We used the
terms Ve and Vm to emphasize their physical significance as a electrostatic term and
mass-like term, respectively. Let us introduce an electrostatic potential function V into
the Dirac equation, we write

(i∂t − V )ψ = (−iσ1∂x + σ3m)ψ, (6.10)

and we take V (x) = λδ(x)1, corresponding to the electrostatic Dirac potential function,
namely a δ-defect located at the origin with real parameter λ that will be called δe-defect.



6.1. Introducing a δ-defect 169

The usual procedure of integrating both sides of the equation, as it is done in the
Schrödinger equation, is followed

− iσ1

∫ ε

−ε
ψxdx+ σ3m

∫ ε

−ε
ψdx =

∫ ε

−ε
Eψdx− λ

∫ ε

−ε
δ(x)ψ(x)dx, (6.11)

and we take the limit ε → 0 to consider the integration in the neighbourhood of the
defect’s location at x = 0

−iσ1(ψ(0+) − ψ(0−)) = −λ
∫ ε

−ε
δ(x)ψ(x)dx. (6.12)

An important difference from the same situation in the case of a Schrödinger equation
being integrated over the range (−ε, ε) is that the solution ψ to the Dirac equation, in
the presence of a δ potential function, is discontinuous. The ψ-discontinuity does not
allow one to take the common arbitrary choice of using the mean value as∫ ε

−ε
δ(x)ψ(x)dx = 1

2(ψ(0+) + ψ(0−)), (6.13)

which is a wrong choice. That integral expression is equivalent to use that δ(x)θ(x) =
(1/2)δ(x), taking θ(0) = 1/2. However, the product δ(x)θ(x) is ill-defined accordingly
to the Hörmander’s criterion [153] on the product of distributions. In a nutshell, the
criterion requires that, given two distributions for which a product may be defined,
the sum of the two wave front sets does not intersect the zero section, that is, their
sum cannot contain zero covectors. In particular, these two distributions share the
same singular support (x = 0), both the δ(x) and the θ(x) have the same wave front
set (WF (θ) = WF (δ) = {(0, k), k ̸= 0}) and, therefore, Hörmander’s criterion fails.
Moreover, even if their product can be defined by other means, it may be that the
Leibniz rule fails. Instead, as presented in [151, 154], one needs to make sure that the
differential equation is respected. For that, we take a particular model for the δ in the
sense that it has the same properties of the δ in a suitable limiting process such as the
limit of the rectangular pulses

δ(x) = lim
ε→0

(
1 − θ(|x| − ε)

2ε

)
, (6.14)

with positive ε. In fact, any other choice of function, as the Gaussian, for example, will
lead to the same result, and the limit is independent of the particular model chosen.
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Back to the equation (6.11), it simplifies to

lim
ε→0

∫
ε

−ε

[
−i

(
0 1
1 0

)(
ψ1

ψ2

)
x

+
(
λ

2ε

)(
ψ1

ψ2

)]
dx = 0, (6.15)

and the first-order matrix differential equation(
ψ1

ψ2

)
x

= − iλ

2ε

(
0 1
1 0

)(
ψ1

ψ2

)
, (6.16)

valid for −ε < x < ε, has the following solution(
ψ1

ψ2

)
= exp

(
−iλx

2ε σ1

)(
η1

η2

)
, (6.17)

with η1 and η2 constants. The continuity of the solution at x = −ε(
ψ1(−ε)
ψ2(−ε)

)
= exp

(
iλσ1

2

)(
η1

η2

)
, (6.18)

and the continuity of the solution at x = ε(
ψ1(+ε)
ψ2(+ε)

)
= exp

(
−iλσ1

2

)(
η1

η2

)
, (6.19)

and taking the appropriate limit (ε → 0), allow us to relate the solution at the left
of the real interval (−ε, ε), that is for x < −ε, to its right side x > ε. For that, we
remember the result

eiασk = (cosα)1 + i(sinα)σk, (6.20)

where α is a complex number and σk is any one of the three Pauli matrices, and rewrite
the left continuity condition as(

ψ1(0−)
ψ2(0−)

)
=
[
cos
(
λ

2

)
1 + i sin

(
λ

2

)
σ1

](
η1

η2

)
, (6.21)

and the right continuity condition as(
ψ1(0+)
ψ2(0+)

)
=
[
cos
(
λ

2

)
1 − i sin

(
λ

2

)
σ1

](
η1

η2

)
. (6.22)
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From these expressions (6.21) and (6.22), it follows that(
ψ1(0+)
ψ2(0+)

)
=
(

cosλ −i sin λ
−i sin λ cosλ

)(
ψ1(0−)
ψ2(0−)

)
, (6.23)

the sewing condition for a δ-defect relating the solutions at the left of the defect’s
location (x = 0) and at the right of it.

We want to analyse the scattering of a positive energy electron in the presence of
a δe-defect. For that, we restrict our analysis to the one-particle theory of the Dirac
equation and work with the positive energy monochromatic plane wave solution of the
free Dirac equation

Φk(x, t) =
(
ϕ1(k)
ϕ2(k)

)
ei(kx−Et), (6.24)

meaning that E =
√
k2 +m2. In components, the Dirac equation splits into

(ψ1)t = −(ψ2)x − imψ1,

(ψ2)t = −(ψ1)x + imψ2,
(6.25)

from where the following relation, using that k2 = E2 −m2, holds true for the plane
wave solution (6.24)

ϕ1 = ik

i(E −m)ϕ2 = k(E +m)
(E2 −m2)ϕ2 = (E +m)

k
ϕ2. (6.26)

One possible choice is to take

Φk(x, t) = e−iEtΦk(x) =
(
m+ E

k

)
ei(kx−Et). (6.27)

A free particle wave packet solution ψ ∈ L2(R) ⊗ C2 with positive energy can be
constructed

ψ(x, t) = 1√
2π

∫ ∞

−∞
dk

g̃(k)√
2E(E +m)

exp(−iEt)Φk(x), (6.28)

with g̃ ∈ C∞
0 (R) an arbitrary non-zero smoothly varying function normalized by∫ ∞

−∞
dk g̃⋆(k)g̃(k) = 1, (6.29)
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and
(√

2E(E +m)
)−1

is a convenient normalization factor. When convenient, we will
write it in terms of a function E and denote E(k) =

√
2E(k)(E(k) +m).

Having the backflow analysis in mind, we are interested in considering the Dirac
δe-defect in a scattering situation described as follows. An incoming particle, with
positive momentum, comes from the left of the δe-defect and scatters off at the defect’s
position. In the stationary picture of the scattering theory, we consider the solutions
x 7→ φk(x) with k > 0, and the asymptotics described by the functions uk and vk.
Specifically, we denote the full solution at the left of the defect by u and at the right by
v, exactly as before when considering the Scrödinger equation. The time-independent
scattering states are then

φk(x) =


uk(x) =

(
m+ E

k

)
exp(ikx) +

(
m+ E

−k

)
R(k) exp(−ikx), x < 0

vk(x) =
(
m+ E

k

)
T (k) exp(ikx), x > 0,

(6.30)
where R(k) and T (k) are the reflection and the transmission coefficients for the δe-defect
located at the origin. They were not specified yet. By using the sewing condition (6.23)
together with the solution (6.30), we can obtain these coefficients from the relation

T (k)
(
m+ E

k

)
exp(ikx− Et)

∣∣∣∣∣
x=0

=
(

cosλ −i sin λ
−i sin λ cosλ

)
uk(x, t)

∣∣∣∣∣
x=0

. (6.31)

Because the time-dependence is the same for the entire equation, it simplifies to

T (k)
(
m+ E

k

)
=
(

cosλ −i sin λ
−i sin λ cosλ

)[(
m+ E

k

)
+
(
m+ E

−k

)
R(k)

]
, (6.32)

which can equivalently be written as

R(k)
(
m+ E

−k

)
=
[
T (k)

(
cosλ i sin λ
i sin λ cosλ

)
− 1
](

m+ E

k

)
. (6.33)

Equation (6.32) splits, after rearrangement, into two relations denoted by

(m+ E)T (k) = (m+ E)(1 +R(k)) cosλ− ik(1 −R(k)) sinλ, (6.34)

kT (k) = −i(m+ E)(1 +R(k)) sinλ+ k(1 −R(k)) cosλ. (6.35)
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Isolating R(k) from (6.34) and substituting into (6.35) gives the transmission coefficient

T (k) = k

k cosλ+ iE sin λ. (6.36)

For the reflection coefficient R(k), substitute the transmission coefficient T (k) back into
the (6.33), for example, to obtain

R(k) = − im sin λ
k cosλ+ iE sin λ. (6.37)

Note, in particular, these are related by

|R(k)|2 + |T (k)|2 = 1, (6.38)

which will ensure the conservation of probability.
A wave packet solution, taking into account the presence of a δe-defect at the origin,

ψ ∈ H1(R \ {0}) ⊗ C2 ⊂ H = L2(R) ⊗ C2 with positive energy can be constructed by

ψ(x, t) = 1√
2π

∫ ∞

0
dk

g̃(k)√
2E(E +m)

exp(−iEt)φk(x), (6.39)

with scattering states φk determined by (6.30) and g̃, an arbitrary non-zero smoothly
varying function, normalized by ∫ ∞

0
dk g̃⋆(k)g̃(k) = 1, (6.40)

together with the sewing condition (6.23) relating the right solution to the left solution

v1(0+) = cosλ u1(0−) − i sin λ u2(0−),

v2(0+) = −i sin λ u1(0−) + cosλ u2(0−),

where ui (vi) denotes the two components of u (v) for i = 1, 2. As in the previous
Schrödinger case, the Hamiltonian for the Dirac equation, with deficiency indices (2, 2),
has a four-parameter family of self-adjoint extensions [155] that are represented by sets
of sewing conditions. A defect connects the field u in the left region x < 0 to the field v
in the right region x > 0 by the sewing conditions at the defect’s location.
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6.2 conservation laws for the δ-defect

In the section 4.1.2, when we discussed the presence of defects in the Schrödinger
equation, we checked how a point-defect can modify the conservation laws by means
of using their sewing conditions. Here again we analyse some conserved quantities of
physical importance after the introduction of a δ-defect, but in the case of a system
described by the Dirac equation. In particular, the δe-defect, defined in (6.10) with
V (x) = λδ(x)1, will be used as a calculation model in this section, but the analysis is
essentially the same for a mass-like δ-defect or any combination of them, for instance.

Starting with the total contribution of the fields to the probability

N =
∫
ψ†ψ dx. (6.41)

For checking whether it is conserved, we take its time derivative

Nt =
∫

(ψ†
tψ + ψ†ψt)dx

=
∫ (

−ψ†
xσ1ψ + imψ†σ3ψ − ψ†σ1ψx − imψ†σ3ψ

)
dx

=
∫ (

−(ψ†σ1ψ)x
)
dx

=
∫ 0

−∞
−(u†σ1u)xdx+

∫ ∞

0
−(v†σ1v)xdx

= −(u†σ1u)|x=0 + (v†σ1v)|x=0,

(6.42)

where we used the Dirac equation and ignored the zero contributions at infinities. Now
we can make use the sewing condition (6.23) to obtain

Nt =
[

−v†

(
cosλ i sin λ
i sin λ cosλ

)(
0 1
1 0

)(
cosλ −i sin λ

−i sin λ cosλ

)
v + v†σ1v

]
x=0

= 0.
(6.43)

Thus, the total probability N (or electric charge) is conserved without any adjustment.
The second quantity we analyse is the energy. The total contribution of the fields

to the energy is given by

E =
∫

i

2

(
ψ†ψt − ψ†

tψ
)
dx. (6.44)
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To examine its conservation, we consider

Et =
∫

i

2

(
ψ†
tψt + ψ†ψtt − ψ†

ttψ − ψ†
tψt

)
dx (6.45)

and use the Dirac equation as

Et =
∫

i

2
[
(−ψ†

xσ1 + imψ†σ3)(−σ1ψx − imσ3ψ) + ψ†(−σ1ψx − imσ3ψ)t

− (−ψ†
xσ1 + imψ†σ3)(−σ1ψx − imσ3ψ) − (−ψ†

xσ1 + imψ†σ3)tψ
]
dx,

and use it once again to write that in terms of spatial derivatives

Et =
∫

i

2
[
∂x
(
ψ†ψx − ψ†

xψ
)

+ im∂x(ψ†σ1σ3ψ) + im∂x(ψ†σ3σ1ψ)
]
dx

= i

2

∫ 0

−∞
∂x
(
u†ux − u†

xu
)
dx+ i

2

∫ ∞

0
∂x
(
v†vx − v†

xv
)
dx

= i

2
[
u†ux − u†

xu
]
x=0 − i

2
[
v†vx − v†

xv
]
x=0 ,

ignoring the zero contributions at infinities. Now we use the sewing condition (6.23) to
rewrite the previous expression

Et = i

2

[
v†

((
cosλ i sin λ
i sin λ cosλ

)
ux − vx

)
−

(
u†
x

(
cosλ −i sin λ

−i sin λ cosλ

)
− v†

x

)
v

]
x=0

and use again the Dirac equation to substitute ux and vx as

Et = i

2

[
v†

(
−

(
cosλ i sin λ
i sin λ cosλ

)(
0 1
1 0

)
ut −m

(
cosλ i sin λ
i sin λ cosλ

)(
0 −i
i 0

)
u

)

−

((
−u†

tσ1 −mu†σ2

)( cosλ −i sin λ
−i sin λ cosλ

)
v + v†

tσ1v +mv†σ2v

)

+ v†σ1vt + v†σ1vt +mv†σ2v

]
x=0

.

(6.46)
Because the sewing relation

u(x, t)|x=0 =
(

cosλ −i sin λ
−i sin λ cosλ

)
v(x, t)

∣∣∣∣∣
x=0
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holds true for all time t, we can finally obtain, after simplification, the result
dE

dt
= 0.

Thus, the energy is conserved, as expected from a self-adjoint Hamiltonian.
Lastly, for the total contribution of the fields to the momentum, we know that

P = −
∫ 0

−∞

i

2
(
u†ux − u†

xu
)
dx−

∫ ∞

0

i

2
(
v†vx − v†

xv
)
dx, (6.47)

and its time derivative

Pt = − i

2

∫ 0

−∞

(
u†
tux + u†uxt − u†

xtu− u†
xut

)
− i

2

∫ ∞

0

(
v†
tvx + v†vxt − v†

xtv − v†
xvt

)
.

(6.48)

The Dirac equation can be used in each domain to write that as a total spatial derivative

Pt = − i

2

∫ 0

−∞
∂x
(
u†
xσ1u− u†σ1ux

)
− i

2

∫ ∞

0
∂x
(
v†
xσ1v − v†σ1vx

)
= − i

2
[
u†
xσ1u− u†σ1ux

]
x=0 + i

2
[
v†
xσ1v − v†σ1vx

]
x=0 .

(6.49)

The next step is to use the sewing condition (6.23) where possible

Pt = − i

2

[
u†
x

(
−i sin λ cosλ

cosλ −i sin λ

)
v − v†

(
i sin λ cosλ
cosλ i sin λ

)
ux

− v†
xσ1v + v†σ1vx

]
x=0

,

(6.50)

and rewrite ux and vx in terms of u, v, ut and vt with the use of the Dirac equation.
Note that the Dirac equation is not being used to relate u and v and, therefore, brings
no incompatibility with the sewing condition. Thus,

Pt = − i

2

[
u†
tσ1

(
−i sin λ cosλ

cosλ −i sin λ

)
v −mu†σ2

(
−i sin λ cosλ

cosλ −i sin λ

)
v

+ v†

(
i sin λ cosλ
cosλ i sin λ

)
σ1ut +mv†

(
i sin λ cosλ
cosλ i sin λ

)
σ2u

− v†
tv +mv†σ2σ1v − v†vt −mv†σ1σ2v

]
x=0

,

(6.51)
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and because the sewing condition holds true for all time t, we can relate ut to vt as
follows

Pt = − i

2

[
v†
t

(
1 − cosλ i sin λ
i sin λ 1 − cosλ

)
v + v†

(
cosλ− 1 i sin λ
i sin λ cosλ− 1

)
vt

+ 2mv†

(
i cos(2λ) − i sin(2λ)

− sin(2λ) i− i cos(2λ)

)
v

]
x=0

, (6.52)

and notice that one is not able to write the result as a total time derivative. The same
also happened when we tried to conserve the total momentum of a system described
by a δ-defect in the Schrödinger equation in section 4.1.2. In fact, we expect that a
defect breaks the spatial translation symmetry causing the total momentum not to be
conserved. Moreover, in this case, it does not seem to allow an adjustment either.

6.3 backflow in the presence of a δ-defect

As a consequence of the Dirac equation (6.2) and (6.3), the conserved current is

jµ = ψ̄γµψ, (6.53)

with continuity equation
∂tρ+ ∂xj = 0, (6.54)

where the non-negative 0-component is j0 = ρ = ψ†ψ and the probability current
density j is denoted by

jψ(x, t) = ψ†(x, t)σ1ψ(x, t) = ψ⋆1(x, t)ψ2(x, t) + ψ⋆2(x, t)ψ1(x, t), (6.55)

where we have explicitly indicated the ψ-dependence. Our backflow analysis will
concentrate on spatial averages, and we can leave the time-dependence out of discussion.
As before, our probability current operator is constructed from the smearing with
R-supported positive test function f. Our expectation value of interest is

jψ(f) = ⟨ψ, J(f)ψ⟩ =
∫
dx f(x) jψ(x) , (6.56)

with the probability current operator, in terms of the position operator, given by

J(f) = f(X̂)σ1 =
(

0 f(X̂)
f(X̂) 0

)
, (6.57)
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a 2x2-matrix differential operator. Following the same idea presented in Chapter 2,
the right-mover states are replaced by asymptotic right-movers in the scattering theory
setting. The relation between the full solution ψ and the freely moving asymptotic
right-moving incoming configuration Ψ is simply that

ψ → Ψ, t → −∞ .

The correspondence is made by the Møller wave operator (2.15), i.e., ΩV Ψ = ψ. Let us
write the incoming configuration in terms of (6.27) as

Ψ(x) = 1√
2π

∫ ∞

0
dk

g̃(k)
E(k)Φk(x). (6.58)

Because of the inverse Fourier transformation, Ψ can be written in momentum space

(FΨ)(k) = Ψ̃(k) = g̃(k)
E(k)

(
E(k) +m

k

)
. (6.59)

Moreover, the expression (6.39) is a result of applying the wave operator as follows

(ΩVE+Ψ)(x) = 1√
2π

∫ ∞

0
dk Mk(x)Ψ̃(k), (6.60)

where the diagonal matrix Mk(x) is defined by

Mk(x) =
{

exp(ikx)1 + σ3R(k) exp(−ikx), x < 0
T (k) exp(ikx)1, x > 0

(6.61)

We can now consider the expectation value of interest for the backflow. Similarly
to (2.24), the expectation value of the probability current operator in terms of the
asymptotic state Ψ is

⟨JV (f)⟩Ψ := ⟨Ψ|E+Ω†
V J(f)ΩVE+ |Ψ⟩ , (6.62)

with the positive momentum projection E+ to ensure a right-moving incoming. In
particular, the scattering state ψ shall be kept normalized, and the asymptotic incoming
Ψ is normalized and a right-mover. This expectation value can be expressed, including
the suitable normalization factors, in terms of integral kernel

⟨Ψ| JV (f) |Ψ⟩ = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′
∫
dx

∫
dx′

× Ψ̃†(k′)
(

M†
k′(x′)J(f)(x′, x)Mk(x)

)
Ψ̃(k),
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where the probability current integral kernel is

J(f)(x′, x) = δ(x′ − x)
(

0 f(x)
f(x) 0

)
. (6.63)

Previously, when we analysed the quantum backflow effect in the Schrödinger equation
in Chapter 3, our expectation value expression for the probability current operator was
given by expression (2.35). Because we will focus here on the solvable δe-defect case,
without recurring to the analytical perturbation theory, we do not need to make use of
expansions and Green’s functions. As we will not expand the plane wave solutions φk
as power series terms, the expectation value is better written in a simplified manner
after integrating out the Dirac delta

⟨Ψ| JV (f) |Ψ⟩ = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′
∫
dx f(x)Ψ̃†(k′)

(
M†
k′(x)σ1Mk(x)

)
Ψ̃(k). (6.64)

Alternatively, that can also be expressed in the form

⟨Ψ| JV (f) |Ψ⟩ = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′
∫
dx f(x) g̃

⋆(k′)g̃(k)
E(k′)E(k)

×
(
E(k′) +m, k′

)(
M†
k′(x)σ1Mk(x)

)(E(k) +m

k

)
.

(6.65)

The asymptotic backflow constant is given by the minimum eigenvalue of the
probability current operator

βV (f) = 1
2π

∫ ∞

0
dk

∫ ∞

0
dk′ J̃∗(k′)J̃(k)L(k′, k), (6.66)

where the inner kernel reads

L(k′, k) =
∫

dx f(x)
E(k′)E(k)

(
E(k′) +m, k′

)(
M†
k′(x)σ1Mk(x)

)(E(k) +m

k

)
, (6.67)

and, as before, we assume the existence of the wavefunction J̃(k) associated with the
lowest eigenvector of the operator JV (f), but its analytical expression is currently
unknown. We can, however, simplify the analytical expression of the inner kernel
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L(k′, k) using the definition (6.61) of the matrix M to obtain the following

L(k′, k) = (m+ E(k′))k + (m+ E(k))k′

E(k′)E(k)

∫ 0

−∞
dx f(x) exp(ix(k − k′))

− (m+ E(k′))k − (m+ E(k))k′

E(k′)E(k) R(k)
∫ 0

−∞
dx f(x) exp(−ix(k + k′))

+ (m+ E(k′))k − (m+ E(k))k′

E(k′)E(k) R⋆(k′)
∫ 0

−∞
dx f(x) exp(ix(k + k′))

− (m+ E(k′))k + (m+ E(k))k′

E(k′)E(k) R⋆(k′)R(k)
∫ 0

−∞
dx f(x) exp(−ix(k − k′))

+ (m+ E(k′))k + (m+ E(k))k′

E(k′)E(k) T ⋆(k′)T (k)
∫ ∞

0
dx f(x) exp(ix(k − k′)),

(6.68)
where the transmission T (k) and the reflection R(k) factors are given by (6.36) and
(6.37), respectively. This can be compared to the situation described by the Schrödinger
equation in equation (3.9). The results are presented in the next section, where, for all
practical numerical calculations, the mass will be effectively set to m = 1.

6.4 numerical results for the δe-defect

In [10], the authors showed that, in the interaction-free situation, the temporal extent of
backflow for Dirac particles is smaller if compared to the same interaction-free situation
in the non-relativistic Schrödinger equation. Our results show that the spatial average
backflow for Dirac particles is also smaller if compared to the non-relativistic case. In
particular, in the non-relativistic Schrödinger case, the asymptotic backflow constant
is β0(f) ≈ −0.24 while, in the relativistic Dirac case, it is even smaller approaching
the constant β0(f) ≈ −0.02. The results obtained in this section show quantitative
and qualitative differences in the quantum backflow effect upon systems described by a
δ-defect when considered in the Dirac equation in contrast to the equivalent situation,
when considered in the the Schrödinger equation, of Chapter 3. Moreover, all the results
in this section are concerned to the electrostatic δe-defect.

First, we note that one can not get rid of the backflow effect by any possible choice
of the parameter λ. The lowest eigenvalue of the probability current can be very small
at the right side (x > 0) of the defect, but it never hits zero. That is different from the
results in section 3.2 where the lowest eigenvalue approaches zero very quickly when
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|λ| increases. This happens because the transmission coefficient (6.36) can never be
zero and it is never purely reflecting. Second, the lowest eigenvalue is periodic in the
parameter λ with period π coming from the periodicity of the reflection and transmission
coefficients, as shown by figure 6.1. Third, considering λ ∈ S1, there can be an electron
bound states when the parameter is located in the second quadrant (π/2 < λ < π)
and a bound state also in the fourth quadrant (3π/2 < λ < 2π). These can be seen
from the purely imaginary positive poles k = iκ of the transmission coefficient T (k)
with real κ > 0. The poles are given by κ = −E tan λ, hence κ is only positive in
the second and fourth quadrants, κ = m sin λ and κ = −m sin λ, respectively. For the
energies, E = −m cosλ in the second quadrant and E = m cosλ in the fourth one.
It is exactly in these two regions where the backflow effect for negative values of the
parameter is smaller (less negative) than for positive values of the parameter, with
the negative parameter value determining the quadrant. For example, −π/3 is in the
fourth quadrant, hence it has less backflow if compared to π/3. As for −2π/3, it is in
the third quadrant and does not have less backflow than 2π/3, see figure 6.1. This was
the behaviour encountered in section 3.2, where positive parameters λ are associated
with repulsive interactions and negative λ are associated with attractive interactions.
Moreover, the values |λ| = π/2 and |λ| = 3π/2 both have κ = m and E = 0, therefore
are associated with zero mode solutions. The backflow effect does not distinguish these
values of the parameter, and these parameters set minimum and maximum values of the
lowest eigenvalue as can be seen from the figure 6.1. Smaller values of the parameter
are displayed in figure 6.2, starting from |λ| = π/7 and showing some intermediate
values up to |λ| = π/50. As expected, the lowest eigenvalue βV (f) gets closer to the
free backflow eigenvalue β0(f) ≈ −0.02 as |λ| becomes progressively smaller.
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6.5 the mass-like δm-defect

In the previous section, we considered the introduction of an electrostatic δe-defect
in the Dirac equation, where the potential was proportional to the identity matrix,
V (x) = λδ(x)1. The present section considers the situation where a mass-spike δ

disturbs the Dirac Hamiltonian. For that, the potential is now proportional to the
σ3 as V (x) = λδ(x)σ3. Note that we are using the same notation λ for the potential
parameter we used in previous sections. However, this mass-like impurity, denoted
δm-defect, has the effect of effectively changing the mass term m in the Dirac equation

i∂tψ = (−iσ1∂x + σ3M(x))ψ, (6.69)

where M(x) = m+ λδ(x) corresponds to an effective position-dependent mass.
Once again, we need to work out the sewing conditions that can describe this defect,

but we can take the advantage of using some results from the previous section. For
that, we follow the usual procedure of integrating the differential equation

− iσ1

∫ ε

−ε
ψxdx+ σ3m

∫ ε

−ε
ψdx+ σ3λ

∫ ε

−ε
δ(x)ψ(x)dx =

∫ ε

−ε
Eψdx, (6.70)

taking the limit ε → 0 to consider the integration in the neighbourhood of the defect
location at x = 0

−iσ1(ψ(0+) − ψ(0−)) + σ3λ

∫ ε

−ε
δ(x)ψ(x)dx = 0. (6.71)

As we have already discussed the implications of a discontinuity in ψ, our next step is
to make use of a model for the δ, which we adopted the sequence of rectangular pulses
in (6.14), and consider the following

lim
ε→0

∫
ε

−ε

[
−i

(
0 1
1 0

)(
ψ1

ψ2

)
x

+
(
λ

2ε

)(
1 0
0 −1

)(
ψ1

ψ2

)]
dx = 0, (6.72)

which comes from the first-order matrix differential equation(
ψ1

ψ2

)
x

= − iλ

2ε

(
0 1
1 0

)(
1 0
0 −1

)(
ψ1

ψ2

)
, (6.73)
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valid for −ε < x < ε. This differential equation has the following solution(
ψ1

ψ2

)
= exp

(
−λx

2ε σ2

)(
η1

η2

)
, (6.74)

with η1 and η2 constants. The continuity of the solution at x = −ε implies(
ψ1(−ε)
ψ2(−ε)

)
= exp

(
λσ2

2

)(
η1

η2

)
, (6.75)

and the continuity of the solution at x = ε implies(
ψ1(+ε)
ψ2(+ε)

)
= exp

(
−λσ2

2

)(
η1

η2

)
, (6.76)

where we take the appropriate limit (ε → 0) allowing us to relate the solution at the
left of the real interval (−ε, ε), that is for x < −ε, to its right side x > ε. It is known
that the relation

eασk = (coshα)1 + (sinhα)σk (6.77)

holds true for any complex number α and any one of the three Pauli matrices denoted
by σk. Thus, we rewrite the left continuity condition as(

ψ1(0−)
ψ2(0−)

)
=
[
cosh

(
λ

2

)
1 + sinh

(
λ

2

)
σ2

](
η1

η2

)
, (6.78)

and the right continuity condition as(
ψ1(0+)
ψ2(0+)

)
=
[
cosh

(
λ

2

)
1 − sinh

(
λ

2

)
σ2

](
η1

η2

)
. (6.79)

From these expressions (6.78) and (6.79), it follows that(
ψ1(0+)
ψ2(0+)

)
=
(

cosh λ i sinh λ
−i sinh λ cosh λ

)(
ψ1(0−)
ψ2(0−)

)
, (6.80)

the sewing condition for a mass-like δm-defect relating the solutions at the left of the
defect’s location (x = 0) and at the right of it. The knowledge of the sewing condition
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together with the time-independent scattering states (6.30) will determine the reflection
and transmission as follows. Starting from the general condition

T (k)
(
m+ E

k

)
exp(ikx− Et)

∣∣∣∣∣
x=0

=
(

cosh λ i sinh λ
−i sinh λ cosh λ

)
uk(x, t)

∣∣∣∣∣
x=0

, (6.81)

and because the time-dependence is the same for the entire equation, it reads

T (k)
(
m+ E

k

)
=
(

cosh λ i sinh λ
−i sinh λ cosh λ

)[(
m+ E

k

)
+
(
m+ E

−k

)
R(k)

]
, (6.82)

which can be rewritten in a more convenient form

R(k)
(
m+ E

−k

)
=
[
T (k)

(
cosh λ −i sinh λ
i sinh λ cosh λ

)
− 1
](

m+ E

k

)
. (6.83)

Upon solving the system of linear equations, one obtains the transmission coefficient

T (k) = k

k cosh λ+ im sinh λ (6.84)

and the reflection coefficient

R(k) = − iE sinh λ
k cosh λ+ im sinh λ. (6.85)

Note, in particular, these are related by

|R(k)|2 + |T (k)|2 = 1, (6.86)

which will ensure the conservation of probability as before. A wave packet solution for
the δm-defect is the same as in the previous electrostatic case, solution (6.39). However,
the difference is only that the new set of sewing conditions reads

v1(0+) = coshλ u1(0−) + i sinh λ u2(0−),

v2(0+) = −i sinh λ u1(0−) + cosh λ u2(0−),

where ui (vi) denotes the two components of u (v) for i = 1, 2.
The backflow analysis will rigorously follow the same process of the previous section.

In particular, equations (6.66) and (6.66) are equally valid for obtaining the minimum
eigenvalue of the probability current operator with the inner kernel (6.68) using, however,
the correct expressions of the transmission T (k) and reflection coefficients R(k) given
by (6.84) and (6.85), respectively.
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6.6 numerical results for the δm-defect

Here the results for the mass-like δm-defect are presented alongside the relevant plots.
The interaction-free situation, represented by setting λ = 0, is evidently the same as in
the electrostatic case, with the free asymptotic backflow constant β0(f) ≈ −0.02.

First, contrary to the δe-defect case, the δm-defect accommodates a purely reflecting
situation for sufficiently large values of the parameter λ, when T (k) approaches zero.
This can be seen from figure 6.3, for |λ| = 100 or |λ| = 10, for example. The same
happens in section 3.2 as mentioned before. Second, there is no periodicity in λ as the
coefficients (6.84) and (6.85) depend on hyperbolic functions rather than trigonometric
ones. Third, the bound states can be found again by looking at the purely-imaginary
poles with positive imaginary part of the transmission T (k), setting k = iκ with real
and positive κ. For the bound states, κ = −m tanh λ and only negative values of λ,
with energy given by E = m sechλ, are allowed. Hence, for each λ < 0, there is an
electron bound state. In particular, for these negative values of λ, there are maxima
(one for each attractive strength) of βV (f) that peak on the left of the defect, that is,
in the region x0 < 0. For sufficiently negative values of λ, however, the maxima become
less noticeable. That feature is also present in the previous case of a single δ-defect in
the Schrödinger equation. It is worth noting that the δm-defect has a backflow constant
more negative for the attractive case than for the corresponding repulsive case in most
of the negative positions x0, expect for a limited region close to the defect location
where the maxima occur.

Because the δm-defect shows more structure around the defect’s location at the
origin when compared to the δe-defect, figure 6.4 was plotted for a smaller range of the
position x0 in order to better display its behaviour around the origin. Note that the
number of bumps in the graphs, for certain values of λ, makes the result very distinct
from those in the δe-defect case. Moreover, as expected, sufficiently small values of the
parameter cause the lowest backflow eigenvalue to approach the free backflow eigenvalue
for the Dirac equation that is β0(f) ≈ −0.02.
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6.7 3d plots for the dirac equation

This section presents three-dimensional plots, in situations described by the δe-defect
and by the δm-defect in the Dirac equation, displaying the lowest eigenvalue βV (f) of the
corresponding probability current operator as the defect parameter λ and the position
of measurement x0, which is the center of the averaging Gaussian function f , change.
The plots of this section are also to be compared to figure 3.4, which corresponds to
the δ-defect in the Schrödinger equation. In order to better show some of the details
involved in the shape of the surface, each situation was plotted twice with the first plot
varying the defect parameter up to |λ| = 10 and the second up to |λ| = 50. The range
of the position of measurement x0 was kept unchanged.

While in the Schrödinger case the free backflow constant is β0(f) ≈ −0.24, in the
relativistic Dirac case the constant is smaller β0(f) ≈ −0.02. All situations described
by a δ-defect have the presence of reflection in the process of scattering and, therefore,
backscattering is inevitable. There is, however, a difference between the δe-defect and
the δm-defect regarding the backflow eigenvalue at positions on the left of the defect’s
location. Exactly as previously shown in figure 3.4, the results for the mass-like defect,
figure 6.7 and figure 6.8, show an increasingly backflow effect as |λ| increases. In the
electrostatic case, figure 6.5 and figure 6.6, because of the periodicity in the parameter
λ, increasing the strength of the interaction does not always cause the increase of the
backflow effect. The δm-defect is more similar to the δ-defect in the Schrödinger case as
for the lack of periodicity in λ and for achieving the value zero for the lowest eigenvalue
of the probability current, effectively becoming a potential wall, but there are notable
differences for small absolute values of the parameter λ that can be observed specially
in figure 6.7 in contrast to figure 3.4. With regard to the presence of electron bound
states, the δe-defect can have one bound state whenever the parameter λ is located
in the second trigonometric quadrant or in the fourth quadrant, independently of its
sign. From zero to 2π, for example, the presence or not of bound state alternates as the
parameter increases. Note that, in figure 6.5, there are two maximum cusps and two
minimum cusps in the range (0, 2π). Differently, the δm-defect has one electron bound
state for negative values of the parameter, λ < 0. Thus, the presence or not of bound
state is changed at λ = 0, where its sign changes. Note that, in figure 6.7, there is a
maximum cusp at λ = 0, where the number of bound states change.
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6.8 brief comments on the dirac conserved current

Some comments are in order about the one-particle probability density ρ and the
probability current density j in the Dirac equation. The probabilistic interpretation
has a direct connection with the problem of localization in quantum theory [156, 157,
158]. In quantum field theory, however, it is known that jµ = (cρ, j) is interpreted as
the source of the electromagnetic interaction.

There are two different notions of localization in quantum theory [2], the first, called
Born localization, is about position operators and projectors and is a concept from
quantum mechanics. The other one, called modular localization, underlying the causal
locality notion in quantum field theory, relates fields to local observables. Newton
and Wigner [159] adapted the Born probabilistic localization to relativistic quantum
mechanics, seeking self-adjoint position operators for elementary particles of any spin
leaving positive energy Hilbert subspaces invariant. However, not being covariant, the
Newton-Wigner position is plagued with superluminal effects when considered at finite
times rather than in the asymptotic limit of large times, where exact covariance is valid.

Any relativistic quantum mechanical notion of strict localisation in terms of particle
positions suffer difficulties with relativistic covariance and positivity of the energy
combined [160, 161, 162]. The notion of localization in local quantum theory field,
modular localization, is relativistic covariant. It is not about positions of particles, but
about local measurements of observables [163]. Even within this setting of local algebra
of observables A(O), attached to a space-time region O, it is accepted the existence of
objects localized on a semi-infinite space-like line, hence non-compact region, if one
takes the Wigner’s particle classification seriously [164]. Modular localization does
not exclude the Born localization for particle’s wavefunction, as quantum field theory
actually requires both notions for its physical significance [2].

The authors of [165, 166] use a notion of localization that is not an exact localization
in a region of compact support with positive energy generalized position eigenstates, but
an arbitrarily precise localization in terms of probability density and probability flux of
positive-energy state vectors in the Dirac one-particle theory. More precisely, a sequence
of positive energy state vectors (ψn)n∈N of the electron is constructed such that the
associated sequences of probability densities ψ†

n(x)ψn(x) and currents approach, in the
limit that n → ∞, δ(x−a) and vδ(x−a), respectively, where a is the prescribed position
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of localization and v is the mean value of the velocity operator. In that sense, although
there is no strictly localized states with positive energy (generalized eigenstates) and,
therefore, no self-adjoint position operator in the positive Hilbert subspace, arbitrary
small standard deviations of the Dirac position operator

∆X̂ =
√〈

X̂2
〉

−
〈
X̂
〉2

can be obtained for “localizing” states [167]. This is of course not a strict localization
in a compact region.

In relativistic theories, it is generally accepted that strict localization involves
arbitrarily high energies that can be accompanied by the creation of particles and,
therefore, invalidating the description in terms of one-particle theory. Because we
are analysing backflow in the relativistic one-particle Dirac theory, we adopt the view
that a quantum observable is associated with a more general positive operator valued
measure instead of a projection valued measure. The former corresponds to unsharp
observables [168, 169, 170], and the latter corresponds to sharp observables. In this
regard, by making use of observables smeared with a positive test function f when
analysing the spatial averaged backflow, we are working with unsharp measurements
and employing the interpretation of ρ(x) as a position probability density restricted to
positive energy one-particle systems. In summary, the one-particle interpretation of the
Dirac equation can be made physically sensible by considering unsharp observables and
smearing physical quantities with a suitable test function.

6.9 jump-defect for the dirac equation

In Chapter 4, we considered the jump-defect in the non-relativistic setting. It is natural
to ask whether it is possible to construct the equivalent in the relativistic setting of
the Dirac equation. In a very particular sense, the δ-defect discussed here in this
chapter is already a jump. More specifically, the sewing conditions (6.23) and (6.80) for
the δe-defect and δm-defect, respectively, represent a jump discontinuity in the spinor
solution of the Dirac equation at the defect’s location. However, the jump-defect in
Chapter 4 has a key feature not shared with any of these δ-defects: it is a purely
transmitting point defect. The search for transparent potentials in the one-dimensional
Dirac equations is not a new one. In [171, 172, 173], the authors, inspired by Kay and
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Moses [174], constructed static scalar and pseudo-scalar transparent potentials for the
Dirac equation exploring the relation between the Dirac equation and the Schrödinger
equation via supersymmetric quantum mechanics. More recently, time-dependent
transparent potentials were constructed for a combination of scalar and pseudoscalar
Dirac potentials [175], but they are not point defect as in the case of the δ-defect
and the jump-defect. Moreover, these transparent potentials are really constructed as
functions of fermionic state vectors and are related to nonlinear Dirac equations. Hence,
we would like to construct a type I jump-defect for the Dirac equation and consider its
backflow similarly to what was done for the Schrödinger equation.

Furthermore, in Chapter 4, the sewing conditions for the jump-defect were noted as
a frozen Bäcklund transformation for the Schrödinger equation at the defect’s location.
Similarly, we would like to construct the sewing conditions for the (1+1) Dirac equation
(6.2). The Dirac equation for a massive particle, however, is already an auto-Bäcklund
transformation for the second-order Klein-Gordon equation. It turns out that the
Dirac equation is a first-order differential equation and does not have an obvious
Bäcklund transformation to guide us on how to construct the set of sewing conditions
corresponding to a purely transmitting defect. Nevertheless, the jump-defect was shown
to conserve total momentum, together with energy and probability (or total number of
species in fields settings), in all previously studied cases. The first strategy is, therefore,
to force the conservation of these quantities and identify what are the requirements
on the set of sewing conditions that follow from the conservation laws. For that, we
make use of some expressions derived in section 6.2, starting from the probability
conservation.

The total contribution of the fields to the probability is again calculated by splitting
the limits of integration into two domains, and its time derivative

Nt =
∫

(ψ†
tψ + ψ†ψt)dx

= −(u†σ1u)|x=0 + (v†σ1v)|x=0

needs to be zero in order to have probability conserved or a total time-derivative that
can be used for defining an adjusted probability conserved. The Gordon decomposition,
see, for example, [176, 26] for details,

ψ̄γµψ = i

2m

(
ψ̄∂µψ − (∂µψ̄)ψ) + 1

m
∂ν
(
ψ̄Σµνψ

))
(6.87)
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of the Dirac current can be used to rewrite the above expression in a more convenient
form. The matrices Σµν represents generators of the Lorentz group and are given in
terms of the commutator

Σµν = 1
4 [γµ, γν ] .

In particular, for the one-dimensional spatial component (µ = 1), Nt reads

Nt = i

2m
[
u†σ3ux − u†

xσ3u− v†σ3vx + v†
xσ3v

]
x=0

+ i

4m
[
∂t(u†iσ2u− v†iσ2v)

]
x=0 .

(6.88)

One possible attempt is to write the sewing conditions as a general combination, similar
to (4.8) in the Schrödinger case, as

ux|x=0 = aut + bvt + cu+ dv|x=0,

vx|x=0 = eut + fvt + gu+ hv|x=0, (6.89)

with arbitrary constant matrices a, b, c, d, e, f, g, h as coefficients. Substituting these
into expression (6.88) gives, after some simplification,

Nt = i

2m

[
∂t(u†σ3au) − u†

tσ3au− u†
ta

†σ3u+ u†σ3cu− u†c†σ3u

+ ∂t(u†σ3bv) − u†
tσ3bv + u†

te
†σ3v + u†σ3dv + u†g†σ3v

− ∂t(v†σ3eu) + v†
tσ3eu− v†

t b
†σ3u− v†d†σ3u− v†σ3gu

+ ∂t(v†f †σ3v) − v†f †σ3vt − v†σ3fvt + v†h†σ3v − v†σ3hv
]
x=0

+ i

4m
[
∂t(u†iσ2u− v†iσ2v)

]
x=0 ,

(6.90)

which can be reduced to a total time derivative

Nt = i

4m
[
∂t(2u†σ3au+ 2u†σ3bv − 2v†σ3eu

+ 2v†f †σ3v + u†iσ2u− v†iσ2v)
]
x=0 ,

(6.91)

provided that a = −a†, c = c†, e = b†, g = −d†, f = −f †, h = h† and that they commute
with σ3, that is, [a, σ3] = [b, σ3] = [c, σ3] = [d, σ3] = [f, σ3] = [h, σ3] = 0. These are
conditions that must be met in order to obtain an adjusted total probability quantity
Nc that is conserved and given by

Nc := N − i

4m
[
2u†σ3au+ 2u†σ3bv − 2v†σ3eu

+ 2v†f †σ3v + u†iσ2u− v†iσ2v
]
x=0 .

(6.92)
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The next step is to impose conservation of energy and obtain new constraints on the
sewing condition’s parameters as a way of narrowing them down. For that, we recall
that the time derivative of the energy is

Et = i

2
[
u†ux − u†

xu
]
x=0 − i

2
[
v†vx − v†

xv
]
x=0 ,

and the substitution of the sewing conditions (6.89) into this expression will give

Et = i

2

[
∂t(u†au) − u†

tau− u†
ta

†u+ ∂t(v†f †v) − v†f †vt − v†fvt

+ ∂t(u†bv) − u†bv − u†
te

†v + u†cu− u†c†u− v†hv + v†h†v

+ u†dv + u†g†v − ∂t(v†b†u) + v†b†ut − v†eut − v†d†u− v†gu
]
x=0

,

(6.93)

which can be reduced to a total time derivative

Et = i

2
[
∂t
(
u†au+ v†f †v + u†bv − v†b†u

)]
x=0 ,

provided that a† = −a, c† = c, f † = −f, h† = h, b† = e, d† = −g. These conditions are
compatible with the ones just found with the conservation of probability. Thus, the
following adjusted total energy Ec is conserved and given by

Ec := E − i

2
[
u†au+ v†f †v + u†bv − v†b†u

]
x=0 . (6.94)

Lastly, the time derivative of the momentum in the presence of a defect located at the
origin was shown to be

Pt = − i

2
[
u†
xσ1u− u†σ1ux

]
x=0 + i

2
[
v†
xσ1v − v†σ1vx

]
x=0 ,

which, upon using the sewing conditions (6.89), can be written as

Pt = − i

2

[
∂t(u†a†σ1u) − u†a†σ1ut − u†

tσ1aut + ∂t(v†b†σ1u) − v†b†σ1ut

+ v†σ1eut + u†c†σ1u− u†σ1cu− v†h†σ1v + v†σ1hv + v†d†σ1u

+ v†σ1gu− ∂t(u†σ1bv) + u†
tσ1bv − u†σ1dv

− ∂t(v†f †σ1v) + v†f †σ1vt + v†σ1fvt − u†
te

†σ1v − u†g†σ1v
]
x=0

,

(6.95)

which can be reduced to a total derivative

Pt = − i

2
[
∂t
(
u†a†σ1u+ v†b†σ1u− u†σ1bv − v†f †σ1v

)]
x=0 , (6.96)
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provided that a† = −a, c† = c, f † = −f, h† = h, e† = b, g† = −d and that they commute
with σ1, that is, [a, σ1] = [b, σ1] = [c, σ1] = [d, σ1] = [f, σ1] = [h, σ1] = 0. With these,
the adjusted total momentum Pc is conserved and given by

Pc = P + i

2
[
u†a†σ1u+ v†b†σ1u− u†σ1bv − v†f †σ1v

]
x=0 . (6.97)

As before, all the adjustment terms are contributions evaluated at the origin and,
therefore, coming from the defect. However, the required conditions for conserving the
probability are in discordance with the required conditions for keeping the momentum
conserved. Imposing a matrix to commute with both σ3 and σ1 causes the matrix
to be proportional to the 2x2-identity matrix. Hence, the choice of (6.89) as sewing
conditions does not work to describe the proposed situation of a jump-defect in the
Dirac equation. Based on the case of the δ-defects, either (6.23) or (6.80), a second
attempt would be to consider that the following sewing condition

u|x=0 = Mv|x=0 , (6.98)

with M a 2x2-matrix depending on a single real parameter α. Upon checking the
conserved quantities as done before, we find the corresponding conditions restricting M .
For the total probability N , it is easy to show that

Nt = 0, (6.99)

provided that M †σ1M = σ1. While for the energy, one finds that

Et = i

2
[
−v†M †σ1Mvt + v†σ1vt − v†M †mσ2Mv +mv†σ2v

+ v†
tM

†σ1Mv − v†
tσ1v +mv†M †σ2Mv −mv†σ2v

]
,

(6.100)

which is equal to zero provided that M †σ1M = σ1. Hence, conservation of energy and
probability once again are compatible with each other. As for the total contribution of
the fields to the momentum, its time derivative is

Pt = − i

2

[
−v†

tσ1M
†σ1Mv + v†

tσ
2
1v −mv†σ2M

†σ1Mv +mv†σ2σ1v

+ v†M †σ2
1Mvt +mv†M †σ1σ2Mv − v†σ2

1vt −mv†σ1σ2v
]
x=0 .

(6.101)
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Now, if we use that M †σ1M = σ1, this expression is simplified to

Pt = − i

2

[
∂t(v†M †Mv − v†v) − v†

tM
†Mv + v†

tv

+mv†(M †σ1σ2M − σ1σ2)v
]
x=0

,
(6.102)

that can be set to zero for the conservation of the momentum provided that M †M = 1

and that M †σ2M = σ1. That is again an unfavourable conclusion as we are left with a
trivial sewing condition in the sense that the matrix M is defined as a global phase such
as M = eiα1. Evidently, that would not represent a jump-defect, and the particular
choice (6.98) of sewing condition is not suitable for our purposes.

Additionally to the type I defects, one could consider a type II jump-defect, which
includes an extra degree of freedom characterized by a dynamics determined by the
defect. For that, Bäcklund transformations involving an auxiliary variable seem to
provide the ideal setting for that kind of construction. This Bäcklund transformation
was, in fact, constructed in [177] for the massive Thirring model with field values in
a Grassmannian algebra and also for commuting field values in [178]. Based on that,
a jump-defect was obtained in [179, 180, 181] for the Grassmannian Thirring model
and in the context of the supersymmetric sinh-Gordon equation. The Thirring model
reduces to the Dirac equation when the coupling constant of the self-interaction term
in the model is set equal to zero. Thus, one could explore the quantum backflow in
the presence of that jump-defect in the Grassmannian Thirring model in the particular
situation describing the Dirac equation. However, any attempt in that direction is out
of the scope of the present work because the implementation of Grassmanian variables
would have to be carried over into the numerical analysis with Fortran. We considered
the possibility of taking the Bäcklund transformation for the Thirring model with
commuting field values [178, 182] as a guide to construct a type II jump-defect. For
that, we set the sewing condition defined at the defect’s location, chosen to be zero,

u1 = av1 + cχ x = 0,

u2 = bv2 + dχ x = 0,
(6.103)

with a, b, c, d nonzero complex constants, u1, u2, v1, v2 components of the spinors u and
v, respectively, and χ an auxiliary variable with dynamics. More specifically, choosing
the Weyl basis for the gamma matrices, γ0 = σ1 and γ1 = iσ2, the Dirac equation for a



202 Chapter 6. Backflow and defects for the Dirac equation

generic spinor ψ with components ψ1 and ψ2 reads

i(∂t + ∂x)ψ1 = mψ2,

i(∂t − ∂x)ψ2 = mψ1.
(6.104)

Then, the following additional sewing condition determining the dynamics of the
auxiliary variable and defined only at the defect’s location

∂tχ = −c⋆
(
u1 + v1

a⋆

)
+ d⋆

(
u2 + v2

b⋆

)
x = 0,

∂tχ
⋆ = −c

(
u⋆1 + v⋆1

a

)
+ d

(
u⋆2 + v⋆2

b

)
x = 0,

(6.105)

would allow the modified quantity

Nc := N + 1
2(χ⋆χ) (6.106)

to be conserved, provided that a⋆a = b⋆b = 1. For a modified momentum Pc to be
conserved, we could have a compatible choice of parameters such that a⋆a = b⋆b = 1,
a⋆b = −1 and cd⋆ = −dc⋆, but the dynamics described by the defect would need to be
slightly changed to

∂tχ = c⋆
(
u1 + v1

a⋆

)
+ d⋆

(
u2 + v2

b⋆

)
x = 0,

∂tχ
⋆ = c

(
u⋆1 + v⋆1

a

)
+ d

(
u⋆2 + v⋆2

b

)
x = 0.

(6.107)

As for the energy, the condition a⋆a = b⋆b = 1 is incompatible with the conservation
of a modified total energy Ec term in light of the aforementioned sewing conditions.
The result is that does not seem possible to have one single dynamics for χ that keeps
conserved the probability, total energy and total momentum altogether as requirement
for constructing a purely transmitting jump-defect in the Dirac equation.
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Discussion and outlook

7.1 part 1: final remarks

Even in the interaction-free situation, the required restriction of the wavefunction with
positive momenta, right-moving states, in the study of the quantum backflow effect
causes a dramatic change in the analysis of the probability current operator. Note
that the corresponding operator E+J(f)E+ with the spectral projection E+ is much
less trivial than the more usual J(f). In fact, suppose that |J⟩ is an eigenvector of
J(f) allowing both positive and negative momenta with associated eigenfunction J in
position space, then the eigenvalue equation would be

P̂ f(X̂) + f(X̂)P̂
2 |J⟩ = µ|J⟩, (7.1)

where µ is an eigenvalue of the probability current operator which depends on the
choice of the positive test function f . However, taking into account the restriction to
right-moving states only, the lowest eigenvalue equation in terms of the unbounded
integral operator on L2(R+, dk

′) is given by∫ ∞

0
dk′ (k′ + k)

2
√

2π
f̃(k′ − k)J̃(k′) = µ J̃(k), (7.2)

where µ now represents the lowest eigenvalue of the operator E+J(f)E+, and the
projection E+ is used to constrain the range of integration to k′ > 0.

Different from the energy, which has a global energy condition where the expectation
value of the Hamiltonian in any state ψ ∈ H obeys ⟨H⟩ψ ≥ 0, the expectation value
of the momentum operator ˆ⟨P ⟩ψ has no a priori global condition upon it. The fact

203
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that the total energy is non-negative and ⟨H⟩ψ = 0 when ψ is the vacuum state of the
theory, despite the possibility of negative energy density in localized regions, has the
physical importance of supporting stable quantum systems, but an equivalent condition
for the momentum, in general, lacks the same physical significance. However, there are
situations where the system may be restricted to positive momenta only, and the most
obvious is the interaction-free case where the particle moves with positive momentum.
Beyond a free theory, an asymptotic right-mover will have positive momentum until it
finds a region with a potential, or a defect, and undergoes scattering with reflection and
transmission. Evidently, the asymptotic right-mover is, in general, not a right-mover
after the scattering because the interaction with the scattering center. In that sense,
the asymptotic backflow constant βV (f) is associated with a mixture of contributions
from the backflow effect and backscattering as well unless there is no reflection as a
result of the scattering process. Although that is not the case for the δ-defect, the
jump-defect is precisely the example where total transmission is always possible without
any restriction upon the defect parameter or the incident energy.

For all interactions that are not purely transmitting, it would be very useful to
distinguish between negative probability fluxes due to backscattering and genuine
backflow from superposition of right-moving states. A very recent work [183] proposed
an “experiment-friendly” formulation of quantum backflow modifying the standard
criterion that asserts the existence of backflow, namely, jψ(x) < 0 for right-moving states.
The authors of the work claim that measuring a particular phase-space distribution gives
an equivalent criterion to the standard one while also more suitable for experimental
verification of the backflow effect. Instead of measuring jψ(a), their criterion uses a
lower bound estimation for the backflow at a particular point x = a as

jψ(a) − 1
m

∫ 0

−∞
dk k |Wψ,ϕ(a, k)|2 < 0, (7.3)

where Wψ,ϕ is a Wigner-Moyal transform [184] (also known as Fourier-Wigner transform
[185]) of functions ψ, ϕ ∈ L2(R) defined on phase space by

Wψ,ϕ(x, k) = 1√
2π

∫ ∞

−∞
dy e−ikyϕ⋆(y − x

2 )ψ(y + x

2 )

= 1√
2π

∫ ∞

−∞
dp eixpϕ⋆(p− k

2)ψ(p+ k

2)
(7.4)
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with ϕ representing the precision function of a measurement apparatus that has normal-
ization

∫∞
−∞ dx|ϕ(x)|2 = 1. The Wigner function Wψ is (up to scaling factors) simply

Wψ,ψ. Let us take ϕ to be a Gaussian function with a fixed width σ and given by

ϕ(x) = 1
π1/4√σ

exp
(

− x2

2σ2

)
, (7.5)

which has the following Fourier transform

ϕ̃(k) = 1
π1/4

√
σ̃

exp
(

− k2

2σ̃2

)
, (7.6)

where the width σ̃ is related to σ by σσ̃ = 1. Upon setting ϕ to be a Gaussian function,
|Wψ,ϕ(x, k)|2 becomes a Gaussian smoothing of the Wigner function Wψ, that is, a
function given by Wψ smoothed with a phase-space Gaussian. Such averages of the
Wigner function over phase-space are non-negative and denoted Husimi distribution
function Hψ on phase-space [186, 187]

Hψ(x, k) = 1
2π |⟨ϕxk|ψ⟩|2 , (7.7)

where |ϕxk⟩ is a coherent state with squeezing represented by σ̃ with momentum space
wavefunction [188, 189]

⟨p′|ϕxk⟩ = 1
π1/4

√
σ̃

exp
(

−(k − p′)2

2σ̃2 − ixp′
)
. (7.8)

Moreover, the proposed criterion (7.3) in [183] is discussed for the temporal extent of
the backflow, and the right-moving state ψ in momentum space has time-dependence

ψ̃(p, t) = e−ip2t/2ψ̃(p), (7.9)

and the corresponding position space wavefunction

ψ(x, t) = 1√
2π

∫ ∞

0
dp ψ̃(p) ei(xp−p2t/2). (7.10)

In [190], Barbier and Goussev made a numerical comparison of the criterion (7.3) with
the standard criterion in the situation of a free particle described by a right-moving
state that was first introduced by Bracken and Melloy in [6]. Their result shows that
the experiment-friendly criterion may fail to indicate the presence of backflow if the
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measurement apparatus is not sufficiently precise in momentum space. More specifically,
σ̃ has to be sufficiently small such that the experiment-friendly criterion can be in
agreement with the standard criterion. The reason for that can be seen from (2.9),
where the first estimation comes from the integration in the interval k ∈ (−∞, 0).
Note that the convolution with the test function g in (2.10) is related to the overlap
between ψ and the squeezed coherent state in (7.7), and both g and ϕ have same
normalization. Coherent states saturate the uncertainty principle ∆X̂∆P̂ = 1/2, but
squeezed coherent states saturate the uncertainty relation while reducing the uncertainty
in momentum and increasing the uncertainty in position. In fact, criterion (7.3) is using
the estimation obtained in (2.11) to reduce the negativity of the backflow. In both
cases, the inequalities involve the estimation of the portion of an integral arising from
k < 0. Specifically, the spatial smearing with the Gaussian function f = g2 plays the
role, in momentum space, of the overlap (7.7) between ψ and a coherent state with
squeezing represented by σ̃ and centered on x, k. As an illustrative example, we can
consider the particular right-moving state introduced in [6]

ψ̃(p) =


0 p < 0,

18p√
35K

(
e−p/K − 1

6e
−p/2K) p > 0,

(7.11)

where K is a positive constant that has physical dimension of momentum. The
corresponding wavefunction, at time t = 0, in position space is given by

ψ(x, 0) = 18
√

K

70π

(
1

(1 − iKx)2 − 2
3(1 − 2iKx)2

)
, (7.12)

and the probability current density at the origin

jψ(0, 0) = −36K2

35π < 0, (7.13)

all in natural units such that ℏ = m = 1. The probability flux can be made arbitrarily
negative at a particular point by suitably choosing the constant K. In a region of
backflow, it is, therefore, expected that jψ(a) <

∫
dxf(x)jψ(x) with the spatial Gaussian

test function centered at x0 = a and width σ. Using the first estimation (2.11), the
inequality, at t = 0, can be written in the following form

jψ(a) <
∫ 0

−∞

dk

2πk
∣∣∣(M̃gψ)(k)

∣∣∣2 ≤
∫
dx f(x)jψ(x). (7.14)
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In particular, setting a = 0 and noting that g is related to ϕ in (7.5) by a simple
substitution σ 7→ σ/

√
2, the term

∣∣∣(M̃gψ)(k)
∣∣∣2 is essentially the Husimi function (7.7)

Hψ(0, k) with the squeezed coherent state centered on 0, k. Thus, the above inequality
has an equivalent form in terms of the non-negative Husimi function

jψ(0) −
∫ 0

−∞
dk kHψ(0, k) < 0 ≤

∫
dx f(x)jψ(x) −

∫ 0

−∞
dk kHψ(0, k), (7.15)

where the first part of the inequality corresponds to the criterion (7.3). In the extreme
limiting case in which σ̃ → 0, the integral involving the Husimi function tends to
zero, and the experiment-friendly formulation reduces to the standard formulation
in which jψ(0) < 0. Note that, if σ̃ is not small enough, the proposed criterion can
fail to identify the presence of backflow for a given right-moving state ψ because the
integral becomes very negative. Nevertheless, the negativity of the probability flux
(7.13) could compensate the effect of σ̃ by choosing sufficiently large K such that jψ(0)
is even more negative. That is in agreement with the fact that βV (f) ≈ 0 when the
test function f has a sufficiently large width σ. Equivalently, as showed in [190], in
the limit that σ̃ → 0, the Bracken-Melloy bound ∆BM ≈ 0.038 is obtained because the
experiment-friendly criterion reduces to the standard criterion. Thereby, the issue with
(7.3) is that, although it can remove negative fluxes from backscattering, it also removes
genuine backflow from the superposition of right-moving states. In the scattering
situations in the presence of defects located at the origin, one can restrict ψ to the
wavefunction u because the backscattering is limited to the region x < 0, and the
region x > 0 has only right-moving states represented by wavefunction v. However,
u is composed of an (right-moving) incoming asymptote and a reflection part as well.
At the defect position, all contributions overlap, and it is not clear how to isolate the
genuine backflow contribution.

Let us take the example of a single δ-defect with kernel given by (3.9). The kernel has
five terms where just the last term, the fifth term, has support at the right of the defect,
x′ ∈ (0,∞), and the other terms have support at the left of the defect. In particular, the
first term is a contribution purely from the incoming asymptote that is a right-mover.
Hence, second, third and fourth contributions involve a reflection coefficient. If we
deliberately1 remove contributions from the backscattering, we can have a rough idea

1That could be represented by a complex potential function or an absorbing boundary. See [191,
44, 45] in connection with arrival times and backflow.
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on how the contributions are summed up together. For instance, for the case of a
δ-defect with λ = −0.5, we remove the fourth contribution, which arises entirely from
the reflection coefficient, to the Kernel and, separately, we remove the second and third
contributions that involve reflection and the right-mover incoming. The results for
βV (f) against the position of measurement x0 are plotted in figure 7.1 below. Note that

Figure 7.1: Lowest backflow eigenvalue of the current operator for the δ-defect. Red
refers to the full calculation without subtracting any term, blue refers to the result
without the fourth contribution, and green refer to the result without second and third
contributions. Parameters: Pcutoff = 60, N = 600, λ = −0.5.

the fourth contribution composed entirely from the reflection coefficient has a negative
contribution and it makes the backflow constant less negative when it is removed, while
the second and third terms in (3.9) can have a positive contribution to the probability
current. Clearly, in general scattering situations with reflection, adjusting the backflow
criterion so that it could be possible to distinguish backscattering contributions from
the (right-movers) backflow would be a primary goal of future work in this direction.
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7.2 part 2: conclusions

This thesis has explored the quantum backflow effect in the presence of defects. These
two topics were not previously examined in combination. For that, we mainly focused
on two point defects describing different situations: the δ-defect and the jump-defect.

Quantum backflow is an effect that was first discovered as a constraint on the
temporal extent of the probability current in interaction-free situations described by
the Schrödinger equation. Later, it was also shown to have bounded spatial extent.
Specifically, there are lower bounds on the temporal and spatial averages of the prob-
ability fluxes. The existence of lower bounds was extended to include backflow in
scattering situations with short-range potential functions V ∈ L1

1(R) in the Schrödinger
equation. While this phenomenon has origin in the context of wavefunctions from
quantum mechanics, its formulation in terms of time or space-averages with a non-
negative weight function is closely related to quantum energy inequalities in quantum
field theory that were established for several theories including scalar, spin-1

2 and spin-1
free fields in globally hyperbolic spacetimes. Nonetheless, for interacting theories, these
state-independent inequalities may not hold. More generally, all quantum inequalities
(backflow included) may well have origin in common grounds, such as the uncertainty
principle, and be related. Thus, understanding on the behaviour of the lower bounds in
interacting theories is certainly needed at the level of quantum fields and wavefunctions
as well. A general type of interaction that can possibly be implemented in any field
theory is a defect, which is a kind of internal boundary at a particular point xD linking
a field in the region xD < 0 with a field in the region xD > 0.

The main feature of any defect is the presence of a discontinuity that can be less
or more severe depending on the case of interest. In electromagnetism, for instance,
the normal component of the electric field has a jump discontinuity across a surface
charge. Discontinuities are ubiquitous in physical applications, and their inclusion into
mathematical models constitutes a vast arena for the discussion of many important
questions such as conservation laws.

δ-defects are very well-known as an interaction whose potential function V is given
in terms of Dirac δ-distributions although it has the alternative formulation in terms of
sewing conditions at a point. While equivalent, this formulation allows the inclusion of
more general interactions that are not described by an explicit potential function and is
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closely related to other structures such as boundaries and more general defects. In an
integrable model, the introduction of these additional structures will, in general, spoil the
integrability of the theory. That is the case of the δ-defect when considered, for example,
in the non-linear integrable sine-Gordon equation. Integrability is usually associated
with the existence of infinitely many conserved charges and it is trivial for linear theories,
such as the linear Schrödinger equation. However, even in linear theories, defects may
cause the breakdown of one or more conservation laws indicating that it is not an
integrable defect in the sense of preserving integrability. In particular, conservation of
total energy and momentum work as a good indicator of that. Requiring conservation of
momentum in the presence of a defect places strong constraints on the defect conditions
that are relatively equivalent to the restrictions imposed by integrability [116]. If
momentum and energy cannot be conserved in the presence of a defect, we expect that
it will generally spoil the integrability of a theory. In the case of the δ-defect, momentum
cannot be conserved neither in the Schrödinger equation nor in the Dirac equation, as
shown in previous chapters. In fact, the requirement of integrability for interacting field
theories poses strong constraints on the existence of such defects, and it was shown
that, when they exist, they are either purely reflecting (an integrable boundary) or
purely transmitting [12, 112]. The δ-defect, which is largely used to describe numerous
physical situations, has a mixture of reflection and transmission and also serves as a
model for other distinct defects that are constructed upon it, the Dirac-Kronig-Penney
model and the δ′-defect, for instance. An interesting new observation for the backflow
in the presence of a δ-defect is the existence of a maximum of the lowest backflow
eigenvalue βV (f) that seems to peak for the defect parameter λ = −1/2, figure 3.5
has a clear illustration of this behaviour. That indicates how the presence of bound
states may affect the backflow constant, and it is worth seeking an explanation behind
the existence and the location of maxima. Although bound states are very different
from scattering states, there are some connections. Levinson’s theorem, for example,
relates the number of bound states to the number of positive energy states lost in the
presence of interaction when compared to the free case, and to time delay [192]. The
other examples of defects analysed in this thesis give indeed more insight into that
matter. However, the absence of reflection makes it much clearer.

We also investigated the double δ-defect for distinct situations corresponding to the
symmetric (λ1 = λ2), anti-symmetric (λ1 = −λ2) and the more general asymmetric
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(|λ1| ≠ |λ2|) case, where λ1 refers to the first defect parameter associated with the first
delta and λ2 refers to the second defect parameter. Double δ-defects support resonances
and total transmission, although the total transmission does not occur for all energies.
In fact, the results (see chapter 3) for the backflow constant in the presence of double
δ-defects are more intricate. Firstly, we mention the case of a pair of identical deltas in
figure 3.11. Note that the the result in the region x0 > 0.5 is very similar to the case of a
single delta in the corresponding region x0 > 0, but there are two maxima in the region
x0 < 0.5 in correspondence with the possible existence of two bound states. Secondly,
the pair of opposite deltas depicted in figure 3.23 shows a very distinct behaviour in
the region between the defects (−0.5 < x0 < 0.5). Decreasing the distance between
the deltas, which can be seen in figure 3.24, suppress the complicated behaviour of the
backflow constant in the middle region whilst connecting the outer regions. We expect
that these are scattering effects interfering with the negative backflow currents. In order
to further explore that in section 3.4.3, we considered a general general asymmetric pair
of deltas when the second defect is stronger than the first (|λ2| = 2|λ1|) and when the
second dect is much stronger than the first (|λ2| = 10|λ1|). The results suggest that
strong effects from scattering can greatly change the behaviour one might expect solely
based on whether the interaction is attractive or repulsive. Also, very small or very
large values of the defect parameter do not result in very intricate behaviours. That
can be expected from the fact that very small values of the defect parameter are small
perturbations of the free case, and very large values become perfectly reflecting walls.

From a pair of deltas, we also discussed the δ′-defect as a point dipole interaction
and found, for small values of |λ|, a similar bell-shape, figure 3.16, of the backflow
constant to the case of a jump-defect with small |α| in figure 4.2. Moreover, despite the
discordance between the definitions of that interaction in the literature, we remarked in
section 3.4.2 that the backflow results do indicate a situation where partial transmission
is possible, rather than only a perfectly reflecting wall corresponding to a boundary.

The jump-defect, in contrast to the δ-defect, is a purely transmitting integrable
defect that allows the conservation of momentum and energy. In the context of
quantum mechanics, it does, after suitable modification, preserve the conservation of the
probability current, total energy and total probability. It is a topological defect in the
sense that it can be placed at any point of the real line and, when taking its contribution
into account, will neither cause a breakdown of the space-translation symmetry nor
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the time-translation symmetry. Nevertheless, jump-defects are not characterized by
any explicit known potential function term that can be added to the Hamiltonian of
a physical system, but they are described by a set of sewing conditions defined at a
point instead. An interesting fact is that these conditions have the form of frozen
Bäcklund transformations. While, at the moment, there is no known physical system
described by this set of conditions, the jump-defect has a very physical motivation as
a guiding principle, namely, the conservation of momentum, energy and probability.
Generalized point defects described by (2.27) can be obtained by considering self-adjoint
extensions of the Hamiltonian operator or, equivalently, the enforcement of probability
conservation. For the jump-defect, that is not enough, and the probability current has
also to be adjusted for the purpose of being conserved. We obtained the analytical
expression for the integral kernel of the operator current used for the numerical analysis
in the jump-defect and in the δ-defect as well, but the origin (x = 0) is a special point
where distinct discontinuities are represented by also distinct sets of sewing conditions,
and that was properly taken into account when the full real line was split into a pair
of domains. Moreover, the backflow effect is spatially constrained in the presence of a
jump-defect due to the existence of the lowest eigenvalue associated with the probability
current operator, even though a jump-defect has no explicit potential function to be
classified in the L1

1(R)-class. Because jump-defects are purely-transmitting, there is
no backscattering contribution to the backflow and, therefore, they provide an ideal
interacting model to isolate the backflow effect in contrast to the δ-defect, which has
an unavoidable backscattering contribution to the backflow constant βV (f). Indeed, we
explored in details the effect of a reflection term for the backflow constant in the case
of the δ-defect. Observe that βV (f) for x0 < 0 becomes increasingly more negative as
|λ| increases. In other words, βV (f) becomes progressively smaller than β0(f). In the
case of the jump-defect, for either the non-conserved current or the conserved current,
βV (f) is never very small for large values of |α| in comparison with the δ-defect case,
but becomes less negative when |α| is large enough. A surprising result is that the
backflow effect can be larger than in the free case at the defect location, even though
the jump-defect behaves similarly to an attractive potential (presence of bound states)
for both positive and negative values of α, while the (attractive) Pöschl-Teller has a
smaller backflow effect inside the interaction region. It is worth remarking that, for
all sets of parameters explored in section 4.3, the non-conserved probability current
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in the presence of a jump-defect has lowest eigenvalue bounded below by the bound
proved [7] in the interaction-free situation, namely, β0(f) ≥ −0.995 when weighted with
a Gaussian function f given by (4.43) with σ = 0.1. Although we do not expect this to
hold true for all possible sets of parameters in the numerical analysis, it shows that the
backflow in the case of the jump-defect does not deviate much from the interaction-free
case, yet it is non-trivial. In fact, even taking into account the contribution from the
defect for the conserved probability current, βV (f) does not become very negative
regardless of the value |α|. For making possible the comparison of our numerical results
of the non-conserved probability current with the case where its conserved, we modified
the integral kernel of the probability current operator by adding the contribution purely
from the defect, which has support only at the defect location. Although it does not
drastically change the magnitude of the backflow constant, it has the effect of developing
pronounced bumps in comparison to the non-conserved case, which can be seen, for
example, in the result illustrated by figure 4.6. Observe that a defect connects a field
in x < 0 (considering a defect located at the origin) to its Bäcklund transformed field
in x > 0. The adjustment term, which is proportional to the test function evaluated
at the defect location, in (4.31) is responsible for the conservation of the probability
current and it seems to be connecting the two bound state solutions at the origin. The
pair of bound states (4.40) is disconnected (either on the left or on the right of the
defect) at the origin, but the defect contribution to the total momentum of the system
is responsible for the extra term in (4.31), which has both poles and is proportional to
f(0) ̸= 0.

Another interaction that is reflectionless for all values of the incident energy is given
by the Pöschl-Teller potential (1.2) with integer µ, which is similar to the jump-defect in
this respect, although the former is extended and the latter is a point defect. Note that
the (transparent) Pöschl-Teller has its parameter µ constrained to be a positive integer,
whereas the jump-defect parameter α assumes positive and negative real values. Pöschl-
Teller has a finite number of bound states given by µ with energy En = −(µ− n)2/2,
n ∈ N, 0 ≤ n < µ. From our observations on both the δ-defect and the jump-defect,
we can conjecture that the number of maxima in the backflow constant is less or equal
to the maximum number of bound states supported in the corresponding interacting
theory. In particular, that conjecture is supported by the cases investigated in this
thesis. While the presence of backscattering can make the analysis more complicated,
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reflectionless interactions provide better examples to illustrate the point. To show
some further evidence for that, we look at the backflow constant averaged with the
same Gaussian function f against the position x0 of measurement for the Pöschl-Teller
potential, and these can be found in the Appendix A. Note that the plots are symmetric
with respect to x0 due to the total transmission for integer values of µ, and βV (f)
approaches β0(f) far away from the interaction region. For comparison, the non-integer
cases where µ = 1.5 and µ = 2.5 are provided as well. We remark that there is one
maximum for µ = 1 and two maxima for µ = 2. We show that the pattern repeats
for larger integer values of µ in figure A.3, where the number of maxima increase with
the number of possible bound states. However, as µ increases, two of these maxima
are distorted becoming more distant from the others that approach the value zero for
the backflow constant (more on that in Appendix A). Note that similar effect happens
in the case of the δ-defect, supporting a single bound state with energy E = −λ2/2,
when |λ| increases, and the single maximum becomes progressively less noticeable as
the backflow constant approaches zero for x0 > 0. In fact, the modified Pöschl-Teller
potential [30, 193, 194] given by V = −α2µ(µ+ 1)/2 cosh2(αx) is related to the Dirac
delta in the limit α → ∞, where the bound state energy for a Dirac delta potential is
obtained from the ground state of the modified Pöschl-Teller potential [195].

To look into more details in regard to the behaviour of βV (f) in relation to the
value of β0(f), analytic perturbation theory was applied in chapter 5 considering the
interaction as a perturbation in formal power series of the potential strength, λ in
the case of the δ-defect and α in the case of the jump-defect. In particular, the
first order perturbation correction to the backflow constant was calculated for small
values of the potential strength and compared to the exact calculation, which does
not involve any perturbation methods. As for the δ-defect, the result of the first
order approximation is very satisfactory for very small values of |λ| although it was
not possible to reproduce the maximum value of βV (f) that occurs in the attractive
case, for example at λ = −1/2. Despite the fact that the first order perturbation for
very small values of |α| satisfactorily reproduced the results of the jump-defect, the
backflow constant rapidly becomes negative when |α| increases in the region x0 > 0.
The same does not happen in the region x0 < 0 as there is no reflection coefficient to
be approximated by means of a perturbation method. The contribution term from the
defect was analysed separately in figures 5.8, 5.9 and 5.10 where this issue does not
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occur, and, therefore, the approximation of the term coming from the bulk x0 > 0 and
involving the transmission coefficient is responsible for causing that.

We restricted our analysis to the first order perturbation, but considering the
second order requires addressing an issue with the power series expansions in low-energy
scattering because the Born approximation is not reliable at low energies. More precisely,
the free resolvent of the Hamiltonian operator in one dimension has a singularity at
k = 0. This infrared divergence is not present in the exact calculation for the examples
explored in this thesis. The δ-defect has a transmission coefficient T (k) → 0 as k → 0,
and the jump-defect has T (k) → −1 as k → 0. Hence, this topic requires a proper
treatment. Some Hilbert space analysis of low-energy scattering was studied in [196,
197, 198, 199, 200] for short-range and medium-range real potentials in the Schrödinger
equation. More recently, an alternative treatment for low-energy scattering with short-
range potentials in one dimension was elaborated in [201]. However, these are Laurent
expansions around k = 0 for the transition operator and the scattering amplitude, and
the perturbation series aims at expanding a perturbation in terms of the potential
strength λ instead. Further work in this direction would be more enlightening in
establishing a relation between β0(f) and βV (f) by means of taking into account second
order perturbation terms. In practice, that could be helpful in optimizing lower bounds.

Another question examined in this thesis was how a particle with an internal degree
of freedom is affected with regard to the backflow effect in the presence of defects. The
backflow for a Dirac current was analysed before, but only in the free case and for
its temporal extent. More specifically, in chapter 6, we considered the Dirac equation
for a spin-1

2 particle with an electrostatic δe-defect and with a mass-like δm-defect.
As consequence of that, we found that a fermionic spin, understanding the Dirac
equation as the description of a massive particle of spin-1/2, reduced the negativity of
the backflow constant in interaction-free situations from β0(f) ≈ −0.24 to the value
β0(f) ≈ −0.02 with the same choice of test function f . Moreover, taking a very small
width σ = 0.001 increased the amount of backflow to β0(f) ≈ −0.06, but that is still
very limited, and it has to do with the fact that the speed of light is constant. Note
that |jψ(x, t)| ≤ cρψ(x, t), and we effectively set c = 1. The opposite, taking a larger
width σ = 1.0, decreased the amount of backflow to β0(f) ≈ −0.001, as expected. The
results for an electrostatic δe-defect, which is never purely reflecting, point to a periodic
probability current lowest eigenvalue in the defect parameter λ and can be seen in
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figure 6.5. The mass-like δm-defect shares more similarities with the single δ-defect
in the Schröndinger equation although a very distinct behaviour is worth noting: the
backflow constant βV (f) for the attractive case is, in general, more negative than the
βV (f) for the repulsive case in the left region x0 < 0, expect for negative values of x0

that are close enough to the defect location, where the attractive case rapidly becomes
less negative than the repulsive case as one would expect, see figures 6.4 and 6.7.

Despite our attempt in section 6.9, it was not possible to include a jump-defect in the
Dirac equation in order to compare with the results of a jump-defect in the Schrödinger
equation. The reason lies in the fact that it might be possible that the jump conditions
are too stringent on a first-order differential equation with commuting field variables.
Note that the Dirac equation is already a Bäcklund transformation for the Klein-Gordon
equation [202]. Considering the Grassmanian case is certainly a possibility for future
work, but that is perhaps more interesting in the context of supersymmetric quantum
mechanics. Other than a defect, transparent potentials constructed by means of an
inverse scattering problem [173] present a possible alternative way, beyond a free theory,
to enforce right-moving states in the Dirac equation .

There are several avenue for future work following the results discussed in this thesis.
Some are straightforward as including a double δ-defect in the Dirac equation and,
even more interesting, including a double jump-defect in the Schrödinger equation. We
investigated a type I jump-defect, constructing a type II jump-defect gives one more
parameter accounting for an internal degree of freedom of the defect and could bring
different aspects to the results on backflow. A combination of the double δ-defect with
a Pöschl-Teller potential in the middle would be very interesting as well, specially in the
regime of impenetrable walls represented by Dirichlet boundary conditions. Another
avenue would be the implementation of a jump-defect with Grassmannian variables in
the Dirac equation as we did not find a suitable set of sewing conditions with commuting
variables. That would provide a purely reflecting situation in the Dirac equation to
have its backflow analysed and compared to the results in the Schrödinger equation.

There are new directions as well to be considered. The probability current in
quantum mechanics with finite-dimensional Hilbert spaces was previously studied in
the context of the thermodynamics of open quantum system in [203]. It would be useful
to investigate the appearance of backflow in the discrete space setting and understand
how it relates to thermodynamic heat and work. Also, one can take this same direction
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further by making time discrete [204] and understanding how the phenomenon of
backflow changes with the structure of space and time.

The lack of optimal bounds, even in interaction-free situations, is an invitation
to the very useful task of finding optimal bounds for the backflow constant. If that
could be achieved with the analytic perturbation method applied in chapter 5, it is
unclear how bound state contributions would be accounted for. Nevertheless, the issue
of low-energy divergences in the perturbation power series has to be addressed in order
to properly characterize higher orders of approximation beyond that of a first order. An
experimental scheme to detect backflow was proposed in [205], yet it was not observed
experimentally. Lower bounds restricting the temporal and spatial extent of the effect
are known, at least in the free case, but a possible relation between them is missing.

Ultimately, the discovery of deeper connections between the different quantum
inequalities would be an ambitious achievement leading to a much clearer understanding
on the existence of negative lower bounds on classically positive physical observables.



A

Results in the Pöschl-Teller case

Plots of the backflow constant averaged with a Gaussian function against the position
of measurement x0 in the case of a Pöschl-Teller potential (1.2)

V (x) = −µ(µ+ 1)
2 cosh2 x

, µ > 0,

commonly used in molecular and solid-state physics, are provided below. For reference,
we reproduce the result from [11] corresponding to the value µ = 1 but also include other
values not previously published. All these can be calculated by numerically solving the
Schrödinger equation using their Java code. In all plots of this appendix, N = 1000
and Pcutoff = 100. Also, the Gaussian has a fixed width σ = 0.1. In the last chapter, it
was said that, as µ increases, two maxima are distorted moving away from the others
maxima. It is perhaps worth remarking that increasing the momentum cutoff Pcutoff

slightly moves these two distorted maxima towards the others. This observation was
not investigated enough and requires more data to be checked.

It is well-known that the Pöschl-Teller potential corresponds [206, 207] to multi-
soliton solutions of the Korteweg–de Vries equation (KdV) and that it is reflectionless
for integer values of the parameter µ > 0. It also has a finite number µ of bound
states with negative energy and a critically bound state [208, 209] with zero energy for
positive integer µ. See [210] for an interesting connection of group theory with both its
scattering and bound states.
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Figure A.1: Lowest backflow eigenvalue of the current operator
(a) µ = 1.0 (b) µ = 1.5.
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Figure A.3: Lowest backflow eigenvalue of the current operator from µ = 3 to µ = 8.
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Figure A.4: Lowest backflow eigenvalue of the current operator from µ = 9 to µ = 11.



B

Different choices of weight functions

We also illustrate the backflow constant in the presence of a jump-defect with different
choices of weight functions other than a Gaussian, which is given here again for
convenience of the reader. Specifically, our choices for the Gaussian, the squared
Lorentzian and the rectangular function are, respectively,

f(x) = 1
σ

√
2π

exp
(

−(x− x0)2

2σ2

)
, (B.1)

f(x) = 2σ3

π((x− x0)2 + σ2)2 , (B.2)

f(x) = [θ(x− x0 + a) − θ(x− x0 − a)]
2a , (B.3)

with widths a = 0.5, σ = 0.1 and center x0. Note that each of these functions has
unit integral, and we integrate the Gaussian and the squared Lorentzian in the interval
x ∈ [x0 − 8σ, x0 + 8σ]. The rectangular function is compactly supported, but it is
not C∞ (it is even not in the Sobolev space H1(R)), therefore, it is not really a test
function. Nonetheless, it corresponds to the uniform distribution and is considered in
the numerical analysis for comparison with the other weight functions.

The backflow constant averaged with the squared Lorentzian function has results,
figure B.1(a), B.2(a), B.3(a) and B.4(a), that are qualitatively similar to those obtained
in the case of averaging with a Gaussian without any change in the number of bumps.
In particular, the free value decreased to β0(f) ≈ −0.30, but this is to be expected
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with a different choice of test function. The squared Lorentzian centered at the origin
(x0 = 0) has Fourier transform

f̃(k) = 1√
2π

(1 + σ|k|) exp(−σ|k|), (B.4)

in contrast to the Fourier transform of a Gaussian centered at the origin

f̃(k) = 1√
2π

exp
(

−1
2k

2σ2
)
. (B.5)

For the rectangular function, figures B.1(b), B.2(b), B.3(b) and B.4(b), it is quite
noticeable the presence of some ripples, specially for higher values of |α|, in the graphs
depicting the behaviour of the backflow constant. In fact, these are consequence of
choosing a weight function f that is not continuous. Lorentz spatial averaging produces
similar results with steplike form in the context of electromagnetism [211]. In the case
of the conserved probability current, it does not seem to have the ripples, and the
reason may be that the extra contribution from the jump-defect, a term proportional
to f(0), counterbalance the discontinuities of f . Nonetheless, these edge effects are
unavoidable at |x0| = a = 0.5. The backflow constant in the free case was further
reduced in comparison with previous examples to β0(f) ≈ −0.63. The rectangular
function centered at the origin has Fourier transform

f̃(k) = 1√
2π

sin(ka)
ka

. (B.6)

In all examples provided, the momentum cutoff was set to Pcutoff = 200, but we have
to mention that the backflow constant spatially averaged with a rectangular function
further decreased when the cutoff was increased (Pcutoff = 250, Pcutoff = 300 and
Pcutoff = 500) in numerical results not included in this thesis. Hence, the results are not
stable, and the rectangular function is not a satisfactory weight function as expected
from its smoothness properties. It is known that the smoothness of a function is related
to the decay properties of its Fourier transform.



225

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-1 -0.5  0  0.5  1

β
V
(f

)

x0

Backflow in jump defect: N = 2000, Pcutoff = 200, |α| = .01

α < 0
α > 0
α < 0
α > 0

(a)

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-1 -0.5  0  0.5  1

β
V
(f

)

x0

Backflow in jump defect: N = 2000, Pcutoff = 200, |α| = .01

α < 0
α > 0
α < 0
α > 0

(b)

Figure B.1: Lowest backflow eigenvalue of the current operator with weight function f
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Figure B.2: Lowest backflow eigenvalue of the current operator with weight function f
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