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Abstract 

A method of intelligent filter curve estimation from signal spectra is investigated to 

assess its viability of blending the perceived timbres of two signals together.  By influencing 

the spectrum of a source signal with that of a modifier, its magnitude spectrum will be 

reshaped to resemble the modifier signal and reflect some of its timbral characteristics more 

closely.  A system of transplanting the time-domain signal envelope of a signal onto a host is 

also presented in a combined system.  The intended purpose of such a system is in the 

development of a hybrid acoustic-electric instrument where the timbral products of an 

expressive performance may be used to manipulate the spectrum and envelope of musical 

signals.  A bass guitar is studied as the source instrument given the wide range of 

expressive techniques that may be executed on the instrument.  Further analysis of spectra 

gathered from bass guitar performance techniques are used to provide deeper insight into 

performance techniques that may be performed on the instrument. 
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Part I – Review of literature 

 Historically, there has been extensive research in the field of harmonics and timbre, 

often concerned with the analysis of speech (Zahorian and Hu 2008, Ying, Jamieson and 

Michell 1996, Talkin 1995).  From a musical perspective, research into timbre has largely 

been concerned with data retrieval from musical signals (Fritz, Blackwell, Cross, Woodhouse 

and Moore 2012, Peeters, Giordano, Susini, Misdariis and McAdams 2011, Wake and Asahi 

1998); instrument recognition and computer assisted transcription programs have been 

developed in response.  Furthermore, instruments have been modelled digitally, allowing for 

some semi-realistic string timbres to be synthesized (Karplus and Strong 1983, Karjalainen, 

Valimaki and Tolonen 1998, Sullivan 1990).  All these viewpoints are considered in the 

research summarised here, which forms the basis of analysing spectra and estimating an 

ideal filter curve using modified Yule-Walker equations.  Being the subject instrument of this 

research, the electric bass guitar will be related to in examples concerning musical 

information retrieval in preparation for the original research to come in part II. 

Exposing the spectral characteristics of bass guitar performance methods is 

important to musicians outside of a technological environment.  A deconstruction of the 

timbral effects of common playing techniques can provide valuable insight into the phases a 

note will travel through in its lifetime.  Musicians may come to a more intimate understanding 

of their instruments through uncovering the physical behaviours of the sounds it produces 

and how they may be manipulated.  Within music technology, this understanding aids further 

work in synthesis and digital instrument modelling, as realistic synthesis of (electro) acoustic 

instruments requires extensive documentation of their spectra. 
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1. Development of the electric bass guitar 

1.i. Instrument classification 

 To understand the future development of a hybrid instrument using timbral blending 

systems, an overview of the historical development of the bass guitar is beneficial.  Many 

electronic instruments have been developed in modern times modelled on the contemporary 

electric guitar, borrowing aspects such as shape and means of performance.  Over centuries 

of progressive development, the humble box-lute metamorphosised into the electroacoustic 

pickup-driven instrument that is familiar to musicians globally today (Jahnel 2000).  

Furthermore, as performance technique and timbral outcome of the instrument is crucial to 

the research presented in this paper, it would be helpful to refer to a system of instrument 

classification to assess where a hypothetical hybrid instrument would fit in amongst its 

predecessors.  Guitars (and bass guitars by extension) are classified as chordophones by 

Hornbostel and Sachs (1914) in the widely used instrument categorisation system that bears 

their names.  The authors define chordophones as instruments with one or more strings held 

taut between fixed points, placing guitars within the same greater family as most other 

stringed instruments.  Hornbostel and Sachs greatly expand on their definition of 

chordophones by sub-categorising a guitar as a ‘[lute] whose body is built up in the shape of 

a bowl [and is] classified as bowl lute’.  Each category of the Hornbostel-Sachs system is 

assigned a number for cataloguing purposes, derived from the steps that must be taken 

through the system to arrive at the category in question.  Take the example of an acoustic 

guitar.  From first to last digit, guitars are chordophones (assigned the category number 3) 

with the sound being amplified by resonating in its body (subcategory 2).  The strings on a 

guitar are suspended above the body running in parallel with its surface (sub-subcategory 1).  

With this information, we can deduce that an acoustic guitar is indeed a form of lute and so 

the primary category, 321, is produced.  These qualities are all shared with other stringed 
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instruments that are held by the performer such as lutes and violins but rules out larger 

stringed instruments like pianos.  To further refine the definition, a guitar can be described as 

having a neck of simple construction which the strings contact when pressure is applied (3), 

shaped like a flat plane (2).  Finally, its physical construction is box-like, with a flat front and 

back face (2).  This new number, 322, is written after the first number separated by a period 

to arrive at the final catalogue number of 321.322.  Other necked box lutes include violins 

and banjos, demonstrating that the system is not too granular as to separate every 

instrument into its own category.  Further refinement may be specified; for example, guitars 

and banjos may be reduced even further to 321.322-5, the final digit expressing the 

conventional method of play (plucked strings using fingers or plectrums).  

 Hornbostel and Sachs’ definition has been challenged recently, perhaps due to the 

questionable grouping of instruments with little practical relation, or the persistence of vague 

terminology within their classification system (Weisser and Quanten 2011, Kartomi 1990).  

The comparisons between guitars and banjos are immediately obvious as both are 

performed using similar techniques and share traits in construction, such as both 

instruments being fretted.  However, the comparisons between a guitar and a violin are 

much less apparent.  Much like the guitar and banjo, a violin can further be classified as 

321.322-71, indicating that it is primarily a bowed instrument.  A flaw with the Hornbostel-

Sachs method becomes evident here.  Given that the final digits (indicating playing methods 

in this instance) may be omitted, and that in the preceding six digits there is no indication as 

to the sound or performance style of the instrument, it may be argued that the system is 

overly concerned with the physical construction of the instrument and negates other 

important aspects of its being, including but not limited to its sound (or timbre), method of 

play and cultural heritage.  Weisser and Quanten (2011) propose a modular approach to 

musical instrument classification in response to the strange groupings of instruments that the 

original system may be subject to.  In their criticism of Hornbostel and Sachs’ method, they 

note that the proposed framework of instrument classification is too restrictive by design and 

that it ignores much of the essential qualities of an instrument, resulting in erroneous or 
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culturally unacceptable classifications of instruments.  Although instruments that produce 

sound via electronic means were developed long after the proposal of the Hornbostel-Sachs 

method, many revisions have included electrophones since the first revision of the system by 

Sachs (1940), who identified electrophones as a fifth group of musical instruments.  In that 

time however, electrophones were rudimentary in their designs and instruments were limited 

to simple devices such as the Theremin or instruments amplified by electronic means 

(Glinsky 2000).  It can be argued that this definition is haphazard and vague, clumping 

instruments that share almost every quality with their unamplified counterparts together into 

one disorganised group (Kartomi 1990).  As any instrument may be amplified electronically 

in some capacity, the amplified electrophones may logically include a variation of every 

acoustic instrument in existence equipped with a microphone, rendering it effectively 

useless.  More recent revisions of the Hornbostel-Sachs system provide clearer definitions 

for electrophonic instruments and amplified devices.  In reaction, a revision was proposed by 

the organisation Musical Instrument Museums Online (MIMO, 2011) offering extensive sub-

categorization for electronic and amplified instruments.  To illustrate, Sachs’ 1940 revision 

had one subcategory (53) for instruments that produce their sound via electrical means but 

specifically by using oscillators, leaving no clear means to place digital synthesizers in the 

system.  Furthermore, all electrically amplified instruments are grouped under category 52 

with no regard for the characteristics of the device being amplified.  In the MIMO revision, 

electric guitars are placed in subcategory 513 (electroacoustic chordophones) and digital 

synthesizers are assigned subcategory 541, demonstrating the need for granularity as 

instrument design continues to evolve with technology. 

The modern guitar 

Antonio de Torres Jurado, a Spanish luthier, created an instrument that is often 

recognised as the first modern acoustic guitar design around 1850 (Heck, 2001).  Of note to 

musicologists is the fan-braced construction Torres Jurado built into the guitar’s body, 

reinforcing it and altering how the body resonates.  His design was largely popularised by a 
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wave of Spanish guitarists who rose to prominence during and succeeding his lifetime.  

Ultimately then, the apparent standardisation of guitar design was dictated by the 

instruments the musicians of the era chose.  The implications of this are something to 

consider - it is hard not to wonder how different the guitar could be today had history 

favoured a slightly different method of construction or had a more Moorish design taken hold 

in middle-age Spain rather than the Latin style that prevailed.  For the benefit of this paper, it 

also provokes thought on the future of guitar construction.  Here, the purpose for creative 

applications of technological concepts becomes clear.  Technology and musical instrument 

design are in a symbiotic relationship - a stride taken in one discipline pulls the other 

forward. 

 One such creative technological application, the electric guitar pickup, revolutionised 

the design of the instrument (O’Connor, 2016).  A type of specialised magnetic pickup, the 

concept is simple; fine enamelled copper wire is wound around a magnetised core 

thousands of times.  When metal guitar strings are plucked and vibrate adjacent to the 

pickup an electrical current is generated (Lawing 2017).  This signal may then be amplified 

to artificially boost the sound produced by the guitar, allowing the performer to have greater 

control over the volume of their instrument by adjusting the amplifier gain.  The electric guitar 

is no longer required to have a resonant body so it can be constructed of any solid material 

at an arbitrary size.  Further experimentation using amplification technology led to creative 

uses of manipulation of sound using electronics, which in turn birthed new performance 

techniques informed by this newfound control over timbre (Herbst 2019).  The cyclical nature 

of breakthrough from creative experimentation as previously introduced surfaces here once 

again as the musicians of the 20th century place technological development on a trajectory 

to suit their artistic needs. 

Finally, the electric bass guitar, the subject instrument of this paper, can be 

discussed.  Bass guitar construction is fundamentally related to guitar construction and as 

such, both instruments share a great deal of similarities (Brewer 2003).  There are several 

construction hallmarks that one may expect to find exclusive to a bass guitar, however.  



6 
 

Perhaps most notably, a bass will usually have fewer strings than a guitar, with four-string 

designs being predominant.  Four-string basses are typically tuned in fourths one octave 

below a standard guitar, with the lowest string being E and the highest being G.  As a result, 

a four-string bass guitar in such a tuning will be able to produce notes with fundamental 

frequencies between approximately 40Hz to 400Hz.  Any number of strings may be added 

above the typical four-string standard to extend the range of the instrument (Roberts 2019). 

1.ii. The place of a timbral blending system in a progressive 

bass guitar design 

 Finally, the matching filter and envelope systems investigated in this paper can be 

married to an electric bass guitar to propose a hypothetical electrophonic instrument, 

progressing on the established design of the guitar.  This instrument would utilise a timbral 

blending system to alter the output signal of the bass guitar informed by an excitation (or 

“modifier”) signal.  Digital signal processing occurs to reshape (time-domain) note and 

spectral envelopes present in the bass guitar signal.  The modified signal is then sent to an 

output jack for amplification.  Ideally, the matching system should influence the timbre of the 

bass guitar to resemble that of the modifier signal whilst retaining key characteristics of the 

source timbre, such as transients from the string being plucked represented as high-energy 

noise in the frequency domain.  It should be noted that a modified bass guitar connected to a 

larger desktop computer for digital signal processing in this way can still be classified as a 

single instrument as the bass guitar would depend on the computer to render its processed 

sound. 

Placing such an instrument in the MIMO-revised Hornbostel-Sachs system is slightly 

difficult, as the instrument retains key components of both electroacoustic chordophones and 

digital synthesizers.  Categorising the guitar-like electronic instruments such as the Kitara 

(Misa Digital, n.d.) and Stepp DG-1 (Gilby 1987) is simple by comparison – they are both 

digital synthesizers assuming a different form to the more commonly seen keyboard 
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interface.  Others such as the SynthAxe (Stansfield 2013) and Ztar series (StarrLabs, n.d) 

would not appear in the Hornbostel-Sachs method at all as the instruments do not produce 

their own sounds but control devices using MIDI instead.  In these instances, the device 

(presumably a synthesizer of some description) would be the sound generator and therefore 

the instrument to be classified.  For the bass guitar augmented with the matching filter, we 

are left with three options for classification, of which there appears to be no ideal candidate.  

Firstly, subcategory 541, a digital synthesizer, could be considered as the modifier signal 

sent to the matching system is sourced from a synthesizer in this example and is therefore 

integral to the final sound produced.  However, no method of synthesis is involved in the 

actual rendering of the signal, rather it is just informed by a signal which happens to be 

synthesized.  Secondly, it may be classified as an electric bass guitar, subcategory 321.322.  

This reasoning is based on conventional methods of processing bass guitar signals by 

means of amplification, distortion or any other method of effects processing.  Essentially, the 

matching filter is an audio effect applied to the output bass guitar signal, so it could be 

argued that it does not meaningfully alter the construction of the bass guitar or the 

performance techniques used.  Lastly, if the MIMO adaptation is being adhered to, the 

modified bass could be categorised as an electroacoustic chordophone, subcategory 513, 

upon the same basis that the bass guitar has not underwent enough alteration in its 

fundamental design to warrant recategorisation. 
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2. Timbre deconstructed 

2.i. What is timbre? 

Approaching timbre from a technical standpoint often makes for a challenging task.  

When someone who is assessing musical subjects from such an objective angle is asked 

about pitch or loudness, they will often insist that the discussion is focussed on frequency or 

amplitude instead.  Such is the result of a disconnect in language between a creative source 

and an academic source, the former expressing their ideas through subjective language and 

the latter preferring the objective.  Pitch is our perception of fundamental frequency in a 

sound (Plack, Oxenham, Fay and Popper 2005).  Loudness is derived from our perception of 

sound pressure, which in turn is based upon the amplitude of the subject signal (Goldstein 

2010, Raichel 2011).  However, both parties are expressing the same general concepts of 

sound so despite this minor disconnect both can communicate their ideas clearly.  Difficulty 

arises when timbre, an elusive property of sound, must be discussed from an objective 

standpoint.  Adopted from modern French, there is no single word in English that can be 

used to express the concept of timbre accurately in a musical context.  Therefore, the word 

is frequently in its original French form in English texts.  The German word ‘klängfarbe’ 

(literally ‘sound colour’) was proposed as a German translation (Helmholtz, 1885); its use 

continues today as synonym of timbre.  The English translation by Ellis (1885) interprets 

‘klängfarbe’ as ‘quality of tone’ (or ‘tone quality’), an understandable derivation from two 

possible translations from French, ‘tone’ and ‘quality’. 

 Ellis objected to the usage of ‘timbre’, instead preferring to convey the idea of 

musical quality through ‘tone’.  Nonetheless, ‘timbre’ was adopted into the modern musical 

lexicon over the course of the early 20th century.  A formal definition of ‘timbre’ was provided 

by the American National Standards Institute (ANSI, 1960): 
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‘Timbre is that attribute of auditory sensation in terms of which a listener can judge 

that two sounds similarly presented and having the same loudness and pitch are 

dissimilar’.  (ANSI, 1960). 

  

The ANSI definition is frequently referenced in texts on timbre and makes for an 

accurate, if evasive, description of the property.  Timbre here is portrayed as an attribute of 

sound, distinct from perceived pitch and loudness, that contains the character or quality of 

the sound, the complex property that gives the emitter its unique sonic properties.  The ANSI 

definition has faced criticism in more recent years.  Houtsma (1997) takes issue with the lack 

of specificity surrounding the definition of timbre itself, highlighting that ANSI definitions of 

pitch and loudness refer to our perceptions of fundamental frequency and sound pressure 

respectively.  In contrast, the definition of timbre is merely every aspect of a waveform apart 

from pitch and loudness.  From this perspective, the ANSI definition can be critiqued as 

being inadequate as it leaves much of the subject’s actual definition for the reader to deduce 

by reduction.  Bregman (1990) suggested that an alternate system must be developed to 

articulate timbre as our current language and definitions are too restrictive to properly 

articulate its complex nature. 

Despite the back and forth between academics, the concept of timbre existing as a 

third property of sound perceptible by humans separate from pitch and loudness has been 

supported and upheld from early discussions on timbre (Helmholtz, 1885) to contemporary 

discourse in musicology (Kanno, 2001).  Perhaps the clearest way to illustrate the meaning 

of timbre is to apply it to a musical scenario.  Ask the participant to picture two different 

instruments, say a piano and a clarinet, playing the same note at the same loudness.  Even 

though the perceived pitch and loudness of both instruments are equal to the observer, they 

may still distinguish between the two sounds based upon the sonic qualities possessed by 

each.  The unique sounds produced by the piano, clarinet, or any instrument, as a result of 

its construction and form, can be defined as its timbre.  By extension, any sound (musical or 

otherwise) can be described as having a certain timbre, which as Bregman critiqued, is often 
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defined using vague and colloquially understood terms.  To illustrate, descriptors such as 

‘muffled’ and ‘bright’ are commonly used to summon a reference to a sound in the head of 

the observer (Darke 2005).  Even with little prior musical education, this observer can make 

an informed guess on what timbre a muffled sound may have as the adjective stimulates the 

imagination, evoking a general idea of its properties in the process.  This simple method of 

translating sound to its quality as perceived by the listener is appreciated by scholars 

(Smalley 1994). 

The audio spectrum 

Observations into what physical property of sound could produce timbre continued 

throughout the early 20th century.  Seashore (1938) recognised timbre to be related to 

spectral content.  He follows on to say: 

 

’In general, we may say that, aside from accessory noises and inharmonic elements, 

the timbre of a tone depends upon (1) the number of harmonic partials present, (2) 

the relative location or locations of these partials in the range from the lowest to the 

highest, and (3) the relative strength or dominance of each partial.’ 

 

 Fourier (1878) demonstrated the link between waveform shape and its harmonic 

content in the Fourier series.  At last, we are given a physical indication as to what timbre is, 

therefore allowing it to be observed, measured and deconstructed.  It can be assumed that 

the further a waveform diverges from a sinusoidal shape it will contain more apparent 

spectral content alongside the fundamental frequency.  Therefore, timbre is informed by both 

time and frequency-domain information as defined by the shape of the waveform concerned.  

With this knowledge, it is possible to appreciate the sheer scale of what constitutes the 

timbre of a sound, perhaps contributing to what makes it so difficult to define.  Given that the 

definition of timbre arrived upon previously is everything besides the perceived pitch and 
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loudness of a musical note, it can be deduced that timbre is defined by the presence of any 

other spectral components in the signal and their trajectories over time.   

 A common way to portray a signal in the frequency-domain, and a concept that will 

recur frequently in this paper, is to plot its magnitude spectrum.  Fig. 2.1 shows the spectrum 

of a bass guitar note and presents a typical means of graphing spectral data, with the X and 

Y axes representing frequency and amplitude respectively.  Individual harmonic elements 

and their place in series can be seen clearly across the length of the graph.  Spectra are 

obtained from signals by using mathematical transforms on sampled waveforms, a concept 

explained further in chapter 3. 

 

Figure 2.1 - spectrum of a frame of audio.  Its harmonic content is displayed as peaks at varying magnitudes on 

the X axis.  Data was obtained using a 16,384-point FFT.  The X axis is scaled logarithmically for readability. 
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2.ii. Timbral results of bass guitar performance methods 

The techniques analysed in this research constitutes fingerstyle playing, using a 

plectrum, using the thumb (or ‘thumbing’), slapping and popping notes.  Playing styles 

described here are amongst those noted and defined in other studies involving bass guitar 

timbre and spectra (Abesser, Lukashevich and Schuller 2010, Kramer, Abesser, Dittmar and 

Schuller 2012).  Though there are limitless ways to perform on a bass guitar, as there is on 

any instrument, these techniques have been selected specifically due to their ubiquity in 

contemporary bass guitar recordings across a wide variety of musical genres (Brewer, 

2003).  Yasuda and Hama (2006) provide a detailed analysis of bass guitar timbre, detailing 

the spectra obtained from bass guitar signals.  Their aim was to resynthesize the timbre of a 

bass guitar using their findings as a guideline; the outcomes of their experiments were 

promising.  Significant contributions have been made in modelling the behaviour of plucked 

strings, allowing for a general understanding of how harmonic structures (and timbre by 

extension) are formed when a string is plucked (Karplus and Strong 1983, Sullivan 1990, 

Karjalainen, Valimaki and Tolonen 1998).   

Performance techniques 

Fingerstyle playing is a typical plucking-hand performance technique on a bass 

guitar.  A bassist will typically use the index and middle finger to pluck the strings at any 

point on the body.  The thumb can rest on the pickup of the bass or on the string adjacent to 

the one being played to mute it, preventing unwanted resonance or notes being struck 

accidentally.  The exact style of fingerstyle playing varies between performers, with some 

using just one finger to maintain a consistent timbre, whilst others incorporate their ring 

fingers to increase the speed of their playing.  A common observation in playing techniques 

is the timbre largely depends on the surface contacting the string.  Fingerstyle playing often 

produces a rounded, warm timbre due to the softness of a fingertip although callouses will 

likely form on the fingers after a while, making them tougher and producing more high 
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frequency content and inharmonic sinusoidal components.  Softer surfaces such as 

fingertips will often see a reduction in high frequency content produced as the string can 

‘ease’ back into its resting position as it rolls off the surface.  Dynamically, there can be 

some variance between notes as it is more difficult to recreate this technique consistently, 

especially when playing quickly, as each finger inherently has differing physical strengths.  

Chords can be performed by ‘raking’ a finger up or down the strings whilst holding a shape 

on the neck, or by using multiple fingers to pluck more than one string at the same time in a 

technique like what may be performed on a guitar. 

Just like a guitar, a plectrum may be used on the bass guitar in place of the 

performer’s fingers.  Playing using a plectrum can allow the bassist to play faster or perform 

complex rhythms with less physical strain when compared to fingerstyle playing.  As a result, 

the dynamics produced by this method are often more even than what would be expected 

from a fingerstyle performance.  As a demonstration of the importance of timbre to 

musicians, plectrums are sometimes favoured bassists who desire a different tone (Vega, 

2020).  It is therefore characterised as a dynamically consistent method of performance 

which produces a bright timbre. 

Plucking the string using the thumb of was a technique developed early in the life of 

the bass guitar as it began to replace the upright bass in jazz bands (Brewer, 2003).  Some 

performers would elect to use their thumb to replicate the warm, acoustic sound of an upright 

bass on the bass guitar.  The technique is performed by resting the heel of the right hand on 

the bridge of the bass and plucking the string using the knuckle or pad of the thumb.  The 

thumb is generally the softest finger on the hand as it is more resistant to hard callouses 

forming as a result of playing.  In contrast to using a plectrum, which would increase the high 

frequency content produced by the instrument due to its hard surface, little inharmonic and 

high frequency content is produced by thumbing.  The performer can elect to use the 

knuckle of their thumb to pluck rather than the pad which would counteract this effect 

slightly.   Due to the relative strength of the thumb compared to the other fingers, it may be 

easier for the performer to produce notes with more accurate dynamics when compared to 
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playing fingerstyle, though this dynamic consistency may be lost should the bassist need to 

play quickly. 

Slapping and popping are two techniques often used in conjunction with one another.  

The lower strings on the bass guitar are usually slapped, whilst the higher ones are popped.  

To perform a bass slap, the wrist is held perpendicular to the body of the bass with the 

thumb extended away from the other fingers.  The wrist is then flicked or twisted to collide 

the bony part of the thumb near the knuckle against the string.  A pop is performed by pulling 

the string away from the body of the bass before releasing it, causing the string to bounce 

against the neck (Oppenheim, 1981).  Slapping and popping are two inherently loud 

techniques due to their percussive natures and both techniques are characterised by bright 

timbres.  Bass popping is sometimes compared to the crack of a snare drum - just like how 

the metal snares snap against the skin of the drum, the string of the bass rattles against the 

neck producing a similar timbre.  The sound of a bass slap could be described as sounding 

woody and resonant with a distinctive transient peak as the note is first played.  Spectrally, 

these techniques carry a lot of mid and high frequency excitation and complex harmonic 

structures as the strings are treated so violently.  The percussive qualities of these 

techniques also create inharmonic and noisy content in bass guitar signals, an effect that 

may also be produced through selectively muting strings. 
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3. Fourier analysis 

The frequency-domain analysis of a series of data such as a musical signal can be 

described as Fourier analysis.  The namesake is derived from the work of Fourier (1878) 

which detailed how a waveform could be represented as a sum of sine and cosine functions 

known as the Fourier series.  When somebody talks about performing a ‘Fourier transform’, 

they likely refer to the discrete or fast Fourier transform (DFT and FFT), two frequently used 

mathematical transformations used to obtain spectral information from a signal (Oppenheim, 

Buck and Schafer, 1999).  The DFT is simply the Fourier transform applied to a discrete 

(finite) series of evenly spaced samples from the time domain to retrieve a data series from 

the frequency domain.  Eq. 3.1 describes the DFT algorithm on a dataset x[n] of length N. 

 

Equation 3.1 - the DFT formula.  The DFT is a slow algorithm due to the complex multiplication using e.  

 

Due to the DFT’s lengthy computing time, it is used infrequently on larger datasets in 

this unmodified form.  In fact, the DFT is so inefficient it will almost always be substituted for 

another derivative function capable of processing data far quicker.  The number of 

calculations that must be performed by the DFT increases exponentially as the input sample 

size increases, making the DFT unsuitable for use with data sets aside from the very 

smallest in most applications. 

The fast Fourier transform, or FFT, was developed in response to these needs 

(Cooley and Tukey, 1965).  It serves the same function as the DFT but can be used more 

efficiently on larger sample sizes as the number of calculations that must be performed 

increases logarithmically rather than exponentially.  The trade-off is a small degree of 

accuracy, although the errors produced by the FFT operation are negligible in most 

scenarios (Gentleman and Sande, 1966).  There are two approaches to performing an FFT, 
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the most common of which is known as decimation in time, the other being decimation in 

frequency (Ramirez 1985).  The main difference between both approaches is in their 

organisation and processing order of data.  Decimation in time methods firstly separate odd 

and even indices of the input data set for calculation, whilst decimation in frequency methods 

handle half the data set first using progressively smaller DFTs, before computing the 

remaining half.  Whilst both techniques manage their input data differently, the strategy of 

the FFT is exemplified in both decimation of time and frequency; that is to break the long 

data set down into 2-point calculations that can be processed easily by the DFT to avoid 

lengthy computation times.  It must be stressed that there are countless approaches to the 

FFT, each best suited for a different (and possibly obscure) application based upon these 

two approaches to decimation. 

3.i. Analog to digital conversion 

The number of calculations required of the Fourier transform restricts it to being used 

practically solely on computers, so any waveform to be transformed must be provided in the 

form of a series of sampled points along its period.  As can be expected of any analog to 

digital conversion procedure, there will be issues of noise and distortion to contend with due 

to data quantisation (Bennett, 1948).  Crucially, the sample rate of the data, or the number of 

samples that are taken from the analog waveform during the length of the sampling period, 

must be appropriate for a musical signal.  When a waveform is sampled, its amplitude is 

recorded at points spaced s = t / r along the time axis, where s is the spacing between 

points, t is the length of the sample in seconds and r is the sample rate.  Lower sample 

rates mean fewer calculations must be performed by the Fourier transform as there is less 

data to process, although the highest frequency that can be resolved from the data produced 

will be artificially low in accordance with Nyquist sampling theorem (Nyquist 1928, Shannon 

1949).  It is generally accepted that the upper threshold of human hearing is around 20kHz 

(Plack et al. 2005).  In musical signals, the sample rate is usually increased to resolve up to 
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this bandwidth.  This comes at the expense of computational power, although raising it past 

a certain point (above 40kHz) could be redundant as the resolvable band width exceeds the 

frequency range of human hearing.  The length of the sample must also be considered - 

whilst sampling at 44.1kHz for 0.5ms in an application may be acceptable, it would be too 

much to compute if the sample was 500ms long and the results were required quickly.  

When choosing a sampling rate, it is therefore necessary for the developer to balance the 

computational resources available to them with the highest sampling fidelity affordable to 

allow for workable frequency range. 

3.ii. Effects of periodicity 

 In part II of this paper, the Fourier transform will be used to gather spectral data from 

sampled electric bass guitar signals for the purpose of interpreting timbral information (refer 

to the discussion on timbre in chapter 2).  Therefore, in this application, there will be ever-

changing, non-periodic signals to process.  Regardless, the Fourier transform interprets the 

provided data set as being periodic - contrary to the data that must be transformed.  The 

question of periodicity is therefore more complicated than what is suggested by its definition 

and sometimes one has little choice as to how the input data will be handled in an 

application.  Ramirez (1985) illustrates the importance of periodicity by using a sine wave 

oscillator as his example: 

 

‘When we turn on the oscillator and look at its output with an oscilloscope, we see 

something that certainly looks like a sine wave and keeps repeating itself in a 

periodic fashion.  And when the oscillator is turned off, the output ceases.  ...  We 

have a circuit that generates a periodic waveform, a sine wave.  Right?  Wrong!  Not 

if we are going to stay with the purely mathematical definition of periodicity.  We 

turned the oscillator on, watched the output repeat itself for a while, then turned it off.  

The oscillator’s output didn’t repeat itself over all time from minus infinity to plus 
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infinity.  … “But,” you might say, “theoretical definitions aside, it’s periodic as far as 

I’m concerned - at least for the time I looked at it.”  And that’s a good point of view.  

It’s a practical point of view.’ 

 

 Ramirez’s observations on periodicity in this scenario makes perfect sense.  His sine 

wave generator can be safely assumed to produce a waveform shape at a given amplitude 

and frequency consistently for as long as it remains powered.  However, the sound produced 

by a bass guitar cannot be assumed to share this property.  The essence of real-time timbral 

detection implies that the target waveform must be ever-changing in its composition, each 

cycle differing in spectral content.  If the waveform were to be treated as if it is non-periodic, 

timbral detection becomes impossible in real-time because the whole waveform must be 

analysed from start to finish.  The system being developed then changes in nature to 

become a recording analysis tool, a treatment to be applied after the moment the music is 

made and, therefore, finds little use in the development of a performable musical instrument 

such as the one detailed in chapter 1.  Even if this long, non-periodic sample is Fourier 

transformed, it will still be treated as periodic by the function and the consequences of this 

assumed behaviour will still occur.  

Spectral leakage is caused by a non-integer number of waveform cycles being 

sampled and provided to the Fourier transform (Harris, 1978).  Unless the waveform phase 

is synchronised with the window position and range (that is, the window has captured a 

whole number of waveform cycles) then it will likely contain discontinuities caused by points 

at both ends of the time axis, each with different amplitudes, meeting as the cycle repeats. 
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Figure 3.1 - a rendering of a discontinuity in a signal.  The ripple at the peak of the wave is the Gibb’s 

Phenomenon overshoot (Hewitt and Hewitt, 1979). 

3.iii. Windowing 

 One way of handling spectral leakage is by windowing the sampled data (Harris 

1978).  We have in fact already windowed the waveform once as data was sampled.  The 

window we applied was rectangular in shape, as the waveform appears described in time 

with no tapering at either end.  A specialised window function such as the Hamming or Hann 

window may be used to treat apparent spectral leakage.  Window functions are applied to a 

sampled waveform by multiplying each point in the signal by the corresponding value 

returned by the window function.  Values are tapered towards zero at either end of the time 

axis to reduce the impression of discontinuities (Smith III, 2010a).  Like most other functions 

explored so far, there is no ideal windowing function.  Windows fundamentally alter the 

shape of the target waveform, leaving its impression on the spectrum and introducing its own 

distortion whilst eliminating that caused by discontinuities.  Even a rectangularly-windowed 

waveform, one that is merely sampled in time and left untreated by further windowing 

functions, introduces spectral distortion.  The relative distortion is visible as lobes and side-
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lobes when the windowing function is represented in the frequency domain (Smith III, 

2010b). 

Other trade-offs must be considered when selecting a windowing function.  There will 

be some further degradation of the transformed data depending on the length of the tapers 

on either side of the window.  Should the windowing function be too extreme, and the overall 

waveform be weighted towards zero to an excessive degree, the loss in data resolution may 

outweigh the damage caused by the spectral leakage it is intent on preventing (a problem 

that becomes quickly apparent if the sample rate is especially low).  Salvatore and Trotta 

(1988) detail the results of the flat-top window on a pulse wave in their study, illustrating its 

effects on complex signals and noting its ability to prevent data degradation due to its wide 

main lobe.  For the purposes of this research, the Hann window will be used to mitigate 

discontinuities; its mathematical expression is given below (eq. 3.2). 

 

 

Equation 3.2 – the Hann window (Harris 1978). 
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4. Digital filter design 

 When we talk of filtering a waveform, we are referring to the process of modifying an 

input signal to produce an output more suited for the application it is intended for (Rader and 

Gold, 1967).  This may involve the restriction of the frequency spectrum range to eliminate 

undesirable frequency content in the signal (Butterworth 1930), or to boost or attenuate the 

amplitude of a range of frequencies in the case of an equaliser (Massenburg 1972).  One 

result of this action that is sometimes overlooked in filtering and equalisation is the 

manipulation of timbre, an expected occurrence whenever the frequency components in a 

signal are affected by some means. 

 There has already been plenty of discussion on the concept of a ‘matching filter’ in 

this paper, one that reacts to incoming spectral information by analysing the amplitude of the 

source frequency components.  For illustrative purposes, matching filters may be more 

intuitively thought of as a method of equalisation, rather than a simple filter with a defined 

bandstop where frequencies above or below a threshold may be attenuated.  To understand 

how the matching filter works, it is helpful to personify it as a studio technician, one who 

prefers a mix sounding a certain way based on a song they heard.  The technician sets the 

equaliser parameters accordingly based on what they consider to be ideal.  In the real 

matching filter system, the song heard by the technician is a musical signal and their thought 

processes leading to their preference is replaced by algorithmic calculation of an ideal filter 

curve based on its spectrum.  Should a matching filter be applied to a playable musical 

instrument, a crucial aspect must be that it is functional in real-time; in Perez-Gonzalez and 

Reiss (2009) such an equalizer was proposed.  A finite impulse response (FIR) filter was 

designed that estimates an ideal curve of the magnitude spectrum of a source musical 

signal.  The filter is applied to a target signal in real-time with acceptable latency for musical 

performance purposes, whilst maintaining the average loudness of the pre-equalised signal.  

Their findings were that the system was most accurate in the upper frequency ranges and 

lost accuracy as the frequency decreased.  The method was expanded upon by Ma, Reiss 
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and Black (2013) to improve on the method’s accuracy, now using an infinite impulse 

response (IIR) filter. 

Filters described in this section are linear and time-invariant (LTI).  Linear filters 

introduce no additional sinusoids into the spectrum by means of distortion or modulation 

(Smith III 2007a).  A final point to include is on the principle of convolution in the time domain 

affecting the spectra of a signal in the frequency domain.  If signals x[n] and y[n] are 

convolved in the time domain, the spectrum of the resulting signal S[f] will be the product of 

spectrum X[f] multiplied by Y[f] (Zölzer and Dutilleux 2002). Crucially, convolution in the 

time domain is equivalent to multiplication in the frequency domain, and vice versa 

(Oppenheim et al. 1999). 

4.i. FIR and IIR digital filter designs 

  As suggested, digital filters may be finite and infinite impulse response in design.  

Each approach exhibits properties that differentiate one from another which may be 

exploited to suit a specific purpose.  Filter accuracy improves by increasing the filter order as 

the equation has more memory of the signal to refer to in cascaded buffers, allowing for 

more accurate prediction of the filter outcome (Oppenheim et al. 1999).  Ideal filters cannot 

be created in the real world as it would require an infinitely long impulse response to remove 

all frequency components above the stopband, therefore requiring an infinitely long buffer 

(Smith III 2007b).  Instead, an ideal filter is approximated from a reasonable filter order with 

the trade-off being calculation time against filter efficiency. 

 

 

Equation 4.1 – FIR filter represented as a list of terms and simplified. 
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 FIR filters are less common in design for numerous reasons.  Analog IIR filters are 

considerably easier to implement than their FIR counterparts, largely restricting their 

functionality to the digital domain, but more crucially a large filter order is required to achieve 

results close to the ideal filter (Rader and Gold 1967, Tabassum, Amin and Islam 2016). 

The FIR design can be transformed into an IIR filter by causing the impulse response 

to continue indefinitely (Oppenheim et al. 1999).  IIR filters are not linear-phase; the filtered 

signal will be shifted forward in time.  A practical method of negating phase distortion is by 

reversing the filtered signal and passing it through the filter again, undoing the phase offset 

produced by the first iteration of the filter by shifting the reversed samples back in time by 

the same degree (Kormylo and Jain, 1974).  Other qualities produced by this behaviour are 

the effective doubling of the filter order as specified by its coefficients and the squaring of the 

magnitude response of the filter transfer function. 

 

Equation 4.2 – IIR filter expressed as a difference equation. 

 

 It is left to define how these filter coefficients are produced.  Approximating fitting the 

frequency response of the filter to an arbitrary curve in the time domain is made possible 

using an autoregressive moving average (ARMA) model (Friedlander and Porat 1984).  

ARMA models themselves are comprised of an autoregressive (AR) part and a moving 

average (MA) part that can be solved for the filter denominator and numerator respectively. 

AR and MA models 

 Moving average models are used to predict future values for a series y[n] purely 

from past values of a provided dataset x[n] (Wold, 1938).  Eq. 4.3 represents the moving 

average model y[n] where ω[n] is Gaussian white noise representing stochastic error 

terms with a history of length q and a mean distribution of zero.  White noise is used to 
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represent a dataset of random variables, stimulating different responses from the process as 

i increments (Friedlander and Porat, 1984).  Its similarity to the FIR filter should be also be 

evident; the function is essentially a FIR filter applied to stochastic noise.  MA models may 

be notated as MA(q), where q implies the order of the model. 

 

Equation 4.3 – moving average model. Note its similarity to 4.1, the FIR filter, which is being applied to white 

noise ω[n]. 

 

 Autoregressive models are also predictive functions that serve a similar purpose to 

their moving average counterparts.  Just as MA processes are FIR filters by design, AR 

processes are a specialised type of IIR filter.  Functionally, the AR and MA models reflect the 

differences between FIR and IIR filter designs.  This fundamental difference can be 

exemplified if a ‘shock’ or sudden peak is supplied somewhere in the time domain data.  The 

MA model has a recollection of a number of samples corresponding the length its order q so 

a shock will be ‘forgotten’ if it is at least q+1 samples from the present sample n.  AR models 

refer to all samples provided to the system from zero time, so a shock anywhere in the 

dataset will have repercussions, great or small, for any value estimated in the future.  It can 

be expected that shocks far enough back in time will affect future values so little that their 

effect can be almost indistinguishable but never zero.  Like MA models, AR models can be 

specified as AR(p), where p refers to the order of the system.  The autoregressive model is 

given in eq. 4.4, displaying the effective IIR filter applied to the noise error terms fulfilling the 

same criteria established previously.   

 

Formula 4.4 – autoregressive model used to produce white noise from an input sequence. 
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ARMA models and Yule-Walker equations 

The ARMA model provides a powerful means of estimating coefficients (b, a) in the 

time domain from a limited dataset.  Predictions of coefficients a and b can arise from 

solving modified Yule-Walker equations.  The MATLAB function yulewalk is used for filter 

curve estimation from coefficients in later in this paper.  This function is an implementation of 

a Yule-Walker method of ARMA spectral estimation proposed by Friedlander and Porat 

(1984).  Eq. 4.5 portrays an ARMA process y[n] with orders of (p, q) where p ≥ q.  ω[n] 

represents the stochastic white noise process described previously.  The autoregressive part 

is to the left of the addition sign. 

 

Equation 4.5 – ARMA process.  The autoregressive and moving average parts can be seen on the left and right 

respectively.  These parts resemble equations 4.3 and 4.4. 

 

 Modified Yule-Walker (MYW) equations are often solved using a technique proposed 

by Prony (1795) to estimate coefficients (b, a) from a dataset of linearly spaced samples.  

Friedlander and Porat (1984) note that Prony’s method is preferred for its direct handling of 

the dataset rather than sample correlation coefficients and that it can be adapted to produce 

sets of overdetermined equations.  Mehra (1971) notes that using highly overdetermined 

sets yields more accurate estimations of coefficients.  This property makes it a 

computationally efficient function at the potential cost of data accuracy.  It is assumed that 

the condition number of the sample covariance matrix is equal to that of the data matrix 

squared.  Should this requirement be unfulfilled, the quality of AR coefficient estimations will 

be significantly reduced. 



26 
 

Exponential moving average filters 

 A final method of filtration is needed to smooth the produced filter curves in the whole 

matching filter system.  Moving average filters, previously used in conjunction with an 

autoregressive function, are frequently used to smooth datasets of time-domain information, 

effectively reducing the apparent variance of the signal (Wold, 1938).  Moving average filters 

may be also be applied in the frequency domain, as the smoothing process is effective on 

any data series that can be represented as points on a plane.  Unlike the FIR moving 

average filter, the exponential moving average (EMA) filter described here is an IIR system 

with an order of one (Ma et al. 2013).  Much like the AR function, the characteristic impulse 

response produced by the system is caused by the function referencing the product x to the 

right of the equals sign.  The effect on a time-domain signal is analogous to that of a lowpass 

filter, smoothing out jagged ripples in the waveform which correspond to high frequency 

content in the frequency domain.  In the frequency domain, where the points in the dataset 

represent the magnitude of the filter curve at a given frequency, the effect of the EMA filter 

applied to points within a single frame is a reduction in resonances caused by sudden peaks 

in the filter curve.  Eq 4.6 is an example of an EMA filter as used in development of a 

matching filter system (Ma et al. 2013). 

 

 

Equation 4.6 – exponential moving average filter (bottom) applied to a signal Y(n).  For calculating the value of α, 

e equals Euler’s constant, fs equals signal sample rate and τ is a user-adjustable parameter to control the 

degree of smoothing. 

4.ii. Discussion on matching filters 

As would be expected, the audible effects of the matching filter become more 

pronounced the further the estimated filter curve deviates from a flat line.  Hence, filter 
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performance improves with filter order as the information provided to the ARMA process is 

allowed more historic information from the time-series sequence.  A more general factor 

affecting filter performance is the structure of frequency components in the matched signal.  

Complex spectra consisting of partials dispersed across the frequency range will invariably 

result in smooth ideal curves as the spectrum concerned will resemble some sort of noise 

process.  Consider the dataset provided to the matching filter implemented by Ma et al. 

(2013).  Spectra were obtained from hundreds of commercial musical recordings from the 

UK and United States music charts over a span of decades and combined into one to 

compute the ideal filter curve.  The combination of spectra from highly processed musical 

signals, themselves comprising of multiple musical instruments with their own partial 

structures, provides a great deal of data to the matching filter for the estimation of the ideal 

filter curve.  In the application discussed here, where the matching filter is applied solely to 

the output signal of a bass guitar, it can be assumed that the performance of the filter will not 

be as accurate as the one implemented by Ma et al.  The spectral information that can be 

gathered from a frame of audio from the bass guitar is markedly limited in comparison with 

far fewer sinusoidal components and providing less opportunity for deviation by extension.  

Ultimately, the research presented in this paper concerns the performance of such a filter on 

a particularly limited data source. 

One further property that is presented by the matching filter presented here is its 

adaptation to the changing bass guitar signal.  For the filter to function effectively, it should 

not only produce an accurate filter curve for each frame analysed but the curve of each 

frame should be congruent with the last.  This factor is vital for the outcome signal to retain 

its musical qualities and sound like a convolution of signal timbres as a result.  Should the 

ideal curve produced for each frame sound entirely independent from the last, the applied 

filter will sound “step-like” over the course of several frames and introduce undesirable non-

musical traits to the signal.  The dependent factors here are the magnitude and rate of 

spectral change over time and the effectiveness of the FFT to represent the spectrum 

accurately.  Given a high rate of change for the ideal curve over time and the periodic 
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assumptions made by the FFT, the likelihood of false frequency components being reported 

by the transform is relatively high even with adequate windowing of the signal.  Furthermore, 

little can be done to smooth the produced filter curve between frames excessively as 

smoothing inherently reduces the accuracy of the curve for the frame in question, deviating 

from the ideal curve of the modifier signal.  
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Part II – A matching filter and envelope 

system 

 Discussed here is the development, implementation and evaluation of a matching 

filter and envelope system based upon principles and techniques discussed in part I.   

Method of research 

 Recordings were taken of a bass guitar to function as the various source signal 

states throughout testing.  Single notes were recorded at pitches of C2 and C3 (where f0 

equals approximately 65.4Hz and 110.8Hz respectively).  Notes were performed using 

numerous techniques, the details of which were outlined in chapter 2.  These were 

fingerstyle, picked (using a plectrum), thumbing, slapping and popping.  Additional samples 

were recorded of one octave G-major scales on the bass guitar, with root notes of G2 and 

G3 to assess system performance on signals consisting of multiple notes.  Scales were 

recorded at 120bpm, with each note lasting one crotchet beat (equating to notes of 0.25 

seconds in length).  The bass guitar was recorded at a sample rate of 48kHz and a bit depth 

of 24.  The signal was sent from the bass guitar pickups to a DI box, then into an audio 

interface for capture. 

 Corresponding samples were produced of an acoustic piano and a synthesized bass 

pluck to serve as the modifier signals, matching the pitch and duration of the bass guitar 

counterparts.  Acoustic piano samples were taken from a Native Instruments Kontakt library.  

Although the samples were triggered using MIDI, the sound produced by the digital 

instrument relies on recordings of a physical grand piano.  All post-processing available in 

the library was disabled so only the raw recordings of the piano were triggered.  Kontakt was 

used to produce the piano modifier signals for several reasons.  Crucially, facilities were 

unavailable to record an adequate piano signal independently at the time of research.  
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Moreover, having MIDI control over triggering the piano samples allowed for precision; each 

note is aligned to a grid spacing them evenly apart, with dynamics consistent between notes.  

It is not expected that the use of a sample library will have an adverse effect on the results of 

signal processing as the instrument in question is in no way synthesized.  Instead, a ‘best 

case’ scenario is presented, where each note is performed perfectly on beat. 

The synth pluck was created using XFer Serum, a VSTi synthesizer loaded inside 

Ableton Live.  Fig. 5.1 depicts a screenshot of the synthesizer interface; the settings used for 

the synth patch are displayed.  The patch is built using single square wave oscillator, 

modified by a lowpass filter with a low base cutoff frequency.  Filter cutoff and resonance is 

modulated over the decay of the note to fall towards the base levels seen in fig. II.1.  The 

acoustic result is a transient burst of high frequency content at note onsets, which is quickly 

muffled into a low sub-bass rumble as the note progresses.  Note loudness is also 

modulated to fall to zero over time, following a similar trajectory to the filter cutoff and 

resonance envelope.  Like the piano signals, no post-processing or effects were used to 

produce the synth plucks. 
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Figure II.1 – Serum interface displaying the synth patch used for the bass pluck samples.  Filter, waveform and 

loudness envelope settings can be seen in the top right, top left and bottom left areas respectively. 

 

The synth and piano signals were then edited to be the same length as the bass 

guitar signals.  As the bass guitar was performed live in contrast to the MIDI triggering of the 

piano and synth notes, the signal had to be edited slightly to align each note onset with that 

of the modifiers.  It was predicted that the signal processing chain employed in the timbral 

blending system would be sensitive to note onsets.  In particular, the envelope matching 

function relies on source and modifier note onsets to be aligned for an accurate replication of 

modifier note envelopes to be produced in the processed signal.  Editing was accomplished 

using Ableton Live to time-stretch the bass guitar notes into place.  The time stretching 

algorithm was set to preserve note transients and notes were aligned to the grid.  In the 

process, it was observed that some notes were shorter than a crotchet beat.  Rather than 
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estimate new data to fill the remaining length of the note, the time stretching algorithm was 

set to fade to silence after the end of existing data.  This was done to avoid any additional 

signal processing introduced by data interpolation that could be harmful to the performance 

of the system.  All samples were finally exported at a sample rate of 48kHz and a bit depth of 

24. 

Results were gathered by loading the appropriate signals required for a test into the 

system and assessing the acoustic outcome of the processed signal.  Initially, results were 

obtained using a set of default values for user adjustable parameters.  These default values 

were found to be roughly appropriate for most musical signals.  From there, parameters 

were altered and the outcome noted.  This process was repeated for each adjustable setting 

until it was decided that the acoustic result could not be improved.  Finally, the produced 

signal was analysed and presented in the following chapter. 
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5. MATLAB implementation 

To review, the system being implemented is a dynamic filter designed to match an 

ideal curve obtained from magnitude spectra alongside a time-domain envelope matching 

function.  The filter is applied to a source signal to attenuate frequency components in the 

source spectrum to shape it to fit that of the modifier.  Reshaping the signal in the time 

domain is necessary to counter the distortion introduced to the waveform by the filter and to 

reproduce the envelopes of notes in the modifier signal.  The techniques used for this 

implementation are intended to be transferrable to a real-time system with some slight 

modifications, however the prototype presented here will function offline to assess the 

viability of the system first.  The timbral blending system was implemented as a MATLAB 

application to calculate the relevant coefficients for filter and time-domain envelope 

matching, apply these functions using the variables generated and produce charts for 

visualisation and analysis. 

 This section concerns the implementation and rationale behind signal processing 

techniques employed for the matching filter progress with appropriate code from the system 

provided for context.  An example screenshot of the application interface can be seen in fig. 

5.1.  The data on the left-side of the application window can be changed between several 

layouts demonstrating the filter attributes, signal waveforms and spectral information as 

desired.  The right side of the interface is for specification of variables to tailor the filter 

performance according to the signals loaded into the program.  Changing these variables is 

necessary to attain optimal filter performance for different signals; the precise effect of these 

variables on the filter architecture will be detailed in the following section concerning filter 

results.  Signal properties, such as sample rate and total number of samples are also 

displayed on the right-hand side of the window.  It is assumed that all signals loaded into the 

system have a minimum sample rate of 44.1kHz to cover the whole spectrum of human 

hearing.  Furthermore, the source and modifier signals must be the same length as the 

matching filter system was designed with no predictive functionality to estimate the spectral 
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and amplitude envelopes of signals into the future.  A final requirement is that the signals 

loaded are normalised so no sample exceeds 1 or -1.  Ensuring the signals loaded occupy 

as much dynamic range as possible without clipping provides a standard for comparison and 

parameter estimation so more accurate results can be produced from the system. 

 

 

Figure 5.1 – application waveform view.  The source and modifier signals (top and middle) signals were loaded 

prior to signal processing.  The outcome signal is displayed on the bottom.  User controls and signal information 

are located in the right-hand panel.  Signal envelopes are traced in blue and magenta crosses for the positive 

and negative parts of the signal respectively.  The envelope reported for the filtered signal is before time-domain 

envelope matching. 
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Figure 5.2 – Simplified flow diagram representing signal processing in the matching filter and envelope system. 

 

Loading signals 

Signals are processed by the system using a frame-by-frame approach.  As such, 

signals must be buffered into matrices with each frame consisting of a constant number of 
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samples n.  Each frame is then windowed using an n-point Hann function to avoid spectral 

leakage in Fourier transforms.  Amplitude peaks are also produced for the modifier signal 

when it is loaded; this function and its purpose will be described later in this section. 

Signals are loaded and the right channel is discarded using the following MATLAB 

commands.  Global variables for sample rate (app.Fs) and signal length in samples 

(app.signalSize) are also set, where sig equals the loaded source or modifier signal. 

 

% load signals 
[sig, app.Fs] = audioread(loc); 
app.signalSize = length(sig); 
sig = sig(:,1); 
 
 

A single-channel signal is now stored in memory which can now be split into frames 

and buffered into global variables for processing, accessible by all functions in the program.  

The provided code executes when the modifier signal is being loaded.  The loaded signal 

sig is stored in a global variable app.modSignal, which is then buffered into frames using 

the buffer command.  This operation takes an input signal and a frame size in samples 

(defined by the user) and proceeds to portion the signal into frames of that size using a 

sliding window.  An overlap of n/2 is also specified, meaning sample 1 to n/2 of each frame 

corresponds to samples n/2+1 to n of the preceding frame.  Global variable app.numFrames 

is set to equal the size of the second dimension of the frame matrix, which is equal to the 

signal length in samples divided by n, rounded up.  The source signal is loaded in a similar 

way to the modifier; instances of app.modSignal are replaced by app.srcSignal, and 

app.modFrame is replaced with app.srcFrame. 

 

 

% buffer 
app.modSignal = sig; 
n = app.frameSize.Value; 
app.modFrame = buffer(app.modSignal,n,n/2,'nodelay'); 
buf = app.modFrame; 
app.numFrames = size(buf,2); 
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Each frame can now be windowed using the n-point Hann function and stored in a 

separate set of buffers.  Similarly, the code below is executed when the modifier signal is 

loaded and related global variables can be substituted for their source signal equivalents.  

 

% window 
w = hann(n); 
for i = 1 : app.numFrames 

for j = 1 : app.frameSize.Value 
app.modWinFrame(j,i) = w(j) * app.modFrame(j,i); 

end 
end 

Matching filter 

Once the source and modifier signals are loaded into the system and buffered as 

above, the matching filter process can be executed.  As previously discussed, the filter 

operates on a framewise basis, therefore the following procedure is applied to each frame 

successively.  Firstly, the RMS loudness of the source and modifier frames is taken.  If either 

returns an RMS value below 0.0001 the processed frame is assumed to be silent and the 

filter coefficients from the previous frame are reapplied to the active frame.  This precaution 

was taken to avoid dividing by zero errors further on in the filtering process.  A similar 

approach using a Hysteresis noise gate was utilised by Ma et al. (2013) for the real-time 

implementation of their matching filter system.  Ultimately, by removing silent frames from 

processing, unnecessary spectral artefacts are mitigated and computing time is improved at 

virtually no acoustic cost. 

Assuming the active frame is not silent, the filter will then obtain the normalised 

magnitude spectra of the source and modifier frames.  This is done using an m-point FFT, 

where m is a user specified variable denoting the resolution of the transformed signals.  The 

absolute value is taken from the spectra to return real numbers for processing.  Transformed 

frames are then divided by the frame length n to return actual magnitude values for the 

transformed spectra.  Normalisation occurs by dividing the whole dataset by the highest 
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magnitude value of each respective signal.  The result of this normalisation is two spectra, 

one for the source frame and one for the modifier, with similar apparent magnitudes.  

Spectral normalisation is important here as relative loudness for each frame can be 

effectively ignored, providing the means for accurately estimating the difference in spectra in 

the form of a transfer function.  Lastly, the transformed spectra must be made single-sided, 

as the FFT also returns redundant negative frequency information, assumed to be 

symmetrical around zero.  As the negative frequency information is a mirror image of its 

positive counterpart, it serves no purpose in this application and can be trimmed to reduce 

processing time.  The variable res in the provided MATLAB code represents FFT resolution, 

and frameSize is the total number of sample points in each frame buffer. 

 

% get magnitude spectra 
cs = abs(fft(app.winFrame(:,no), res))/frameSize; 
cs = cs(1:res/2); 
cm = abs(fft(app.modWinFrame(:,no), res))/frameSize; 
cm = cm(1:res/2); 
 
% normalise magnitude spectra 
maxs = max(cs); 
maxm = max(cm); 
for i = 1 : res/2 

cs(i) = cs(i) / maxs; 
cm(i) = cm(i) / maxm; 

end 
 

The spectral envelopes of the frames are then estimated from their respective 

magnitude spectra.  Spectral envelopes are representative of the whole spectrum at that 

point in time and describe its general shape.  Were the raw spectra to be used for filter curve 

estimation as detailed in this section it can be assumed that the curve would be a poor 

representation of its ideal trajectory.  Resonances and scalloping can interfere with transfer 

function estimation as frequency information is misrepresented by the FFT.  These 

resonances can be removed from the spectra by detecting individual meaningful peaks in 

the signal and interpolating between the identified points in frequency space, producing a 

curve fitting the shape of the magnitude spectra (Zhivomirov, 2020).  Piecewise cubic 
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Hermite interpolation polynomial (or PCHIP) smoothing was used for interpolation as the 

method avoids overshoots when fitting a non-oscillatory curve, preventing destructive 

interpolation of the spectrum.  Should an inadequate number of peaks be detected for 

interpolation (the minimum number required being 2), the system will use the spectral 

envelope produced for the previous frame, or a set of zeroes if there is no other envelope 

that can be used in its place.  The spectral envelopes are optionally smoothed using a 

moving average filter with a sample span of s1 and an order of s2. Spectral envelopes are 

normalised within the range [0, 1] so the weakest and strongest magnitude responses for 

each spectrum are balanced.  Normalising the spectral envelopes in this way accounts for 

rapid fluctuations in apparent signal energy caused by framewise processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

% spectral envelope extraction 
% adapted from Zhivomirov (2020) 
f = linspace(0,app.Fs/2,res/2); 
[pksCs, locsCs] = findpeaks(cs); 
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[pksCm, locsCm] = findpeaks(cm); 
fpksCs = (locsCs-1)*(f(2) - f(1)); 
fpksCm = (locsCm-1)*(f(2) - f(1)); 
 
             
% use env of previous frame or zeros if not enough peaks 
if length(pksCs) < 2 

if no == 1 
Cs = zeros(1,res/2); 

else 
Cs = app.envs{no-1}; 

end 
else 

Cs = interp1(fpksCs, pksCs, f, 'pchip'); 
for i = 1 : s2 

Cs = smooth(Cs, s1); 
end 
Cs = rescale(Cs); 

end 
             
if length(pksCm) < 2 

if no == 1 
Cm = zeros(1,res/2); 

else 
Cm = app.envs{no-1}; 

end 
else 

Cm = interp1(fpksCm, pksCm, f, 'pchip'); 
for i = 1 : s2 

Cm = smooth(Cm, s1); 
end 
Cm = rescale(Cm); 

end 
 
 

Lastly, low-energy components are removed from the spectral envelopes using a 

thresholding technique.  These components are usually found in the high-frequency range of 

a spectrum and can be the product of signal noise.  As the difference between these 

components can vary wildly between signals, erratic filter curves may be produced if they 

are not removed from the relevant spectra.  By setting these values to zero for both the 

source and modifier spectral curves, the filter curve produced will level out, leading to some 

loss of transfer function accuracy with respect to the unmodified spectra.  This loss of 

accuracy can be justified by the apparent reduction in signal distortion and consequently the 

more appealing acoustic properties of the final filtered signal. 
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% remove low energy components 
for i = 1 : res/2 

if Cs(i) < 0.0001 && Cm(i) < 0.0001 
Cs(i) = realmin; 
Cm(i) = realmin; 

end 
end 
 

Transfer function estimation can now be performed.  A function representing the 

difference between source and modifier spectral envelopes for every point in the matrices is 

returned.  The MATLAB function tfestimate is given three arguments, with the first two 

comprising the modifier and source spectral envelopes, representing the transfer input and 

output signals respectively.  A third argument f is also passed to the function.  f is a linear 

scalar between 0 and 1 with res/2 sample points acting as a normalised frequency vector.  

The transfer function is evaluated at each normalised frequency point, returning a dataset 

txy with a length of res/2.  Absolute values are taken from the transfer function estimated 

to avoid processing complex numbers; the imaginary part returned from the transfer function 

estimation can be safely discarded. 

 

% transfer function estimation 
f = rescale(1:res/2)'; 
 [txy, ~] = tfestimate(Cm, Cs, [], [], f); 
tf = abs(txy); 
L = length(tf); 
 

The transfer function itself (and by extension the produced filter curve) should then 

be smoothed, this time using exponential moving average (EMA) filter functions.  Smoothing 

of the filter curve should occur to eliminate remaining apparent resonances that are reported 

by the transfer function and to provide a means to relate a predicted curve to the previous in 

its series.  Hence, the curve is first smoothed internally to quash resonances before it is 

passed through the filter again to match the curve slightly to that of the preceding frame, the 

transfer functions of which are buffered to the cell array app.Tf.  This intra-frame smoothing 

is required to avoid excess noise being introduced to the filtered signal.  As each filter curve 
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produced is initially independent from the last, there can be a great deal of noise introduced 

by the filter if the curve for each frame varies wildly from the last.  By smoothing the 

generated curve between frames, the filter becomes less responsive to sudden changes in 

spectral energy between frames but can also appear more sonically pleasing.  Given the 

sensitivity of the EMA filters, variables t1 and t2 are left for the user to define to optimise 

filter performance according to the loaded signals.  EMA filters perform more suitably here 

than the MA filter implemented for spectral envelope smoothing.  Aside from being more 

computationally efficient, the EMA filter is self-referential and is receptive to shocks from the 

first supplied index onwards suggesting its ability to reliably predict future values. 

 

% EMA filter 
E = -1/t1; 
al = exp(1)^E; 
             
% apply EMA filter to transfer function within 1 active frame 
for i = 2 : L 

tf(i) = al*tf(i-1)+(1-al)*tf(i); 
end 
              
% smooth overall filtering curves between frames 
if no > 1 

E = -1/t2; 
al = exp(1)^E; 
tf = al*app.Tf{no-1}+(1-al)*tf; 

end 
 

Filter numerator coefficients b and denominator coefficients a can be estimated from 

the normalised transfer function m and the previously defined linear frequency vector f using 

modified Yule-Walker equations.  The MATLAB function yulewalk estimates the 

denominator using modified Yule-Walker equations and the numerator from a least-squares 

fit of the calculated filter impulse response, an implementation of the methods proposed by 

Friedlander and Porat (1984).  The final stage of the matching filter progress is applying the 

IIR filter to the active source frame using coefficients a and b.  Filtering is implemented 

through the MATLAB filtfilt function to mitigate comb distortion in the final combined 

signal.  Usually when filtering a signal frame-by-frame, the final filter conditions can be taken 
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as the initial conditions for the following frame, resulting in a continuous stream of points 

forming the complete signal.  However, the filter curve in this matching filter system is 

dynamic, rendering the final filter conditions of the preceding frame largely meaningless to 

the active frame.  Through experimentation through the development process, it was 

discovered that the shifting in time produced by typical IIR filtering resulted in significant 

amounts of distortion and comb artefacts after the whole signal was rebuilt from its 

overlapping frames.  Therefore, an alternative system of filtering is required that leaves 

phase intact, which is typically shifted in time by the IIR filter.  Phase can be preserved by 

reversing the filter outcome and passing it through the filter again, doubling the effective 

order of the filter and shifting the phase back in time, negating the initial shift.  Comb 

artefacts are reduced considerably by using zero-phase filtering at the expense of filter 

accuracy.  A continuous stream of filtered data buffered into frames cannot be returned by 

using the above technique as each filter curve produced from estimated coefficients is 

independent.  There is no handling of final and initial filter conditions given the properties of 

dynamic filter curve generation, producing a discontinuous stream of data when 

reassembled frame by frame. 

 

% yule-walker of transfer func 
m = rescale(tf); 
[b,a] = yulewalk(app.Order.Value,f,m); 
 

% apply filter and copy to buffer 
flt = filtfilt(b,a,app.frame(:,no)); 
for i = 1 : frameSize 

app.fltFrame(i,no) = flt(i); 
end 
 

Note envelope matching 

As filtered frames cannot be stitched neatly together to reassemble a whole 

continuous signal, another method of reassembly is required.  Recall that signals were 

buffered so each frame overlaps the previous by half its length.  By windowing each filtered 
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frame with the Hann function and piecing them together in an inverse manner to how the 

overlapping frames were buffered, a complete signal can be produced. 

 

% assemble signal 
w = hann(sz); 
app.fltSignal = zeros(1,app.signalSize); 
for i = 1 : lim 

% window 
for j = 1 : sz 

app.fltWinFrame(j,i) = w(j) * app.fltFrame(j,i); 
end 
for j = 1 : sz 

offset = (i-1)*(sz/2); 
if offset+j > app.signalSize 

break; 
             end 

if (i == 1 && j < sz/2+1) || (i == lim && j > sz/2) 
app.fltSignal(offset+j) = app.fltFrame(j,i); 

             else 
app.fltSignal(offset+j) = app.fltSignal(offset+j) + 

app.fltWinFrame(j,i); 
             end 

end 
end 
 

Time-domain envelope matching can now take place on the filtered signal.  As will be 

detailed further in the results section of this paper, it was discovered that the amplitude 

envelope of a signal contributes significantly to its spectral characteristics.  Should the notes 

constituting the assembled signal be left untreated in terms of their shape the filter will not 

appear to sufficiently blend the timbre of signals; in fact, the aggressive filter operations 

applied in the previous stage could render the signal unrecognisable and musically abstract.  

The time-domain envelope matching function attempts to rebuild note envelopes to reflect 

that of the modifier, manipulating the attack and decay of the filtered note as it proceeds 

through its lifespan.  Zero crossings in the signal are preserved using the implemented 

method, allowing for great control over the envelope of the filtered signal with no opportunity 

for distortion to be introduced from a phenomenon such as amplitude modulation. 

Firstly, its envelope must be estimated from local maxima detected over the length of 

the signal.  A function was produced to return arrays containing signal peaks and their 
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locations in a provided signal.  Signal envelope estimation is performed after signal 

reassembly in the filtering process, but also when the modifier signal is initially loaded to 

estimate the target envelope.  Positive and negative signal envelopes are estimated 

independently, so four datasets are returned from the function for positive and negative 

peaks and locations respectively.  The function first isolates each pole of the signal and 

stores the two divided signals in variables pos and neg.  Peak value estimation is performed 

on a framewise basis, however there is no buffering of frames as in previous examples.  

Rather, the function searches for the highest value in the user defined sample span 

peakVal.  The number of frames nF is calculated from the signal length and peakVal to loop 

through pos and neg to find the local maxima in the sliding window.  If the portion of the 

signal is entirely silent, a value of 0 is returned with the corresponding location being 

sig(((i-1)*peakVal)+1, where sig represents either pos or neg.  The code for the 

getPeaks function is provided below. 

 

 

 

 

 

 

 

 

 

function [pksP, locsP, pksN, locsN] = getPeaks(sig) 
% isolate positive and negative parts of signal 
pos = sig; 
for i = 1 : app.signalSize 

if pos(i) < 0 
pos(i) = 0; 

end 
end 
neg = sig; 
for i = 1 : app.signalSize 
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if neg(i) > 0 
neg(i) = 0; 

end 
end 
             
% get envelope matching frame size 
peakVal = app.peak.Value; 
nF = floor(app.signalSize/peakVal); 
pksP = zeros(1,nF); 
pksN = zeros(1,nF); 
locsP = zeros(1,nF); 
locsN = zeros(1,nF); 
 
% find peaks in range 
for i = 1 : nF 

[pksP(i), I] = max(pos(((i-1)*peakVal)+1:((i-1)*peakVal)+peakVal)); 
locsP(i) = (i-1)*peakVal+I; 

  [pksN(i), I] = max(abs(neg(((i-1)*peakVal)+1:((i-
1)*peakVal)+peakVal))); 

locsN(i) = (i-1)*peakVal+I; 
end 
             
% set return values 
for count = 1 : 2 

if count == 1 
pks = pksP; 

else 
pks = pksN; 

end 
                 

if count == 1 
pksP = pks; 

else 
pksN = -pks; 

end 
end 
end 
 

Datasets containing an equal number of peak values and their locations across the 

signal have now been produced for the modifier signal and the filtered signal.  The time-

domain signal envelopes can now be estimated by interpolating between the positive and 

negative points reported by the getPeaks function, returning sets of peaks and locations that 

extend the length of the signal.  PCHIP interpolation is used once again to avoid 

overshooting.  Coefficients are then calculated for the positive and negative halves for every 

point in the signal from the envelopes representing the modifier and filtered signals (difMP, 

difMN, difFP and difFN).  When each sample in the filtered signal is multiplied by the 
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corresponding coefficient from the relevant array for its pole, the waveform is reshaped to 

roughly fit the envelope of the modifier.  Coefficients greater than 2 (or less than -2) are 

restrained to 2 (or -2) to prevent extreme spikes in amplitude caused by errors in the 

estimation process.  The code for interpolating the peaks and location arrays, estimating and 

applying amplitude coefficients to the filtered signal is provided below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

% get envelopes of pos and neg parts of modifier and filtered signals 
vec = 1:app.signalSize; 
difMP = pchip(app.locsMP, app.pksMP, vec); 
difMN = pchip(app.locsMN, app.pksMN, vec); 
difFP = pchip(app.locsFP, app.pksFP, vec); 
difFN = pchip(app.locsFN, app.pksFN, vec); 
 
% estimate positive amplitude coefficients 
coeffP = zeros(1,app.signalSize); 
for i = 1 : app.signalSize 



48 
 

coeffP(i) = 1 + (difMP(i) / difFP(i)); 
if isnan(coeffP(i)) || isinf(coeffP(i)) 

coeffP(i) = 0; 
end 

end 
 
% estimate negative amplitude coefficients             
coeffN = zeros(1,app.signalSize); 
for i = 1 : app.signalSize 

coeffN(i) = 1 + (difMN(i) / difFN(i)); 
if isnan(coeffN(i)) || isinf(coeffN(i)) 

coeffN(i) = 0; 
end 

end 
 
% match signal envelope 
for i = 1 : app.signalSize 

if app.fltSignal(i) > 0 
coeff = coeffP(i); 

elseif app.fltSignal(i) < 0 
coeff = coeffN(i); 

end 
 

if app.fltSignal(i) * coeff > 2 
app.fltSignal(i) = 0; 

elseif app.fltSignal(i) * coeff < -2 
app.fltSignal(i) = 0; 

else 
app.fltSignal(i) = app.fltSignal(i) * coeff; 

end 
end 
 
 

The final stage in the signal processing chain is to normalise the filtered and 

reshaped waveform.  The code below amplifies the signal around zero so its highest or 

lowest sample does not exceed 1 or -1 respectively.  This stage is required as the input 

samples are expected to be normalised in the same manner, so the processed signal should 

abide by the same rules for meaningful comparisons between the signals to be made. 

 
% maximise range without clipping 
if abs(min(app.fltSignal)) > max(app.fltSignal) 

mx = abs(min(app.fltSignal)); 
mn = min(app.fltSignal); 

else 
mx = max(app.fltSignal); 
mn = -max(app.fltSignal); 

end 
for i = 1 : length(app.fltSignal) 

app.fltSignal(i) = 2 .* app.fltSignal(i) ./ (mx - mn); 
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end 
 
 

At this point, the various plots and information panels around the application are 

updated to include data from the processed signal, which may also be exported as a .wav 

file for further investigation in external applications. 
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6. Analysis of results 

6.i. Investigation into spectra of bass guitar signals 

General observations and trends in bass guitar signals 

 In chapter 2, various methods of performance on the bass guitar were detailed, each 

characterised by a distinctive timbral outcome.  It is therefore necessary to investigate the 

spectral composure of signals produced using commonly utilised performance techniques to 

evaluate how they may be affected by the matching filter system.  Fig. 6.1 illustrates the 

magnitude spectrum of a C2 note played on the bass guitar fingerstyle.  It was previously 

established that fingerstyle performance produces a relatively soft, round timbre when 

compared to many other techniques typically utilised by a bassist, an observation that is 

reflected in the magnitude spectrum of the signal.  Much of the spectral information of the 

signal is condensed into the low to middle range frequency bands whilst spectral information 

in the higher range is largely limited to noise-like partials produced by the note transient. 

 

Figure 6.1 – the magnitude spectrum a single C2 note played on the electric bass guitar using the finger-style 

performance technique. 
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 In contrast, plucking the strings of the bass guitar with a plectrum can be expected to 

produce a harder, cutting sound characterised by the striking medium being constructed of a 

tougher material (plastic rather than skin).  Fig. 6.2 portrays the spectrum of the same note 

sounded using a plectrum rather than fingers.  When compared to the spectrum of the note 

produced using the fingerstyle technique, differences can be observed in its partial structure 

that are responsible for its apparent difference in timbre.  In the higher frequency ranges, the 

fingerstyle spectrum appears less erratic and noise-like in its construction, reflecting the 

relative softness of its timbre against the plectrum-sounded signal.  Harmonic components 

also appear more pronounced and clearer with deeper troughs between them as can be 

seen in the lower frequency ranges.  Again, this can be attributed to differences in striking 

mediums; a finger, being thicker than the plectrum, contacts the string for a longer period of 

time as the string rolls around its surface. 

 

 

Figure 6.2 – spectrum of a C2 note played using a plectrum (blue).  The fingerstyle example from 6.1 is in red. 
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Such an observation may also be made when the spectrum of a note sounded with 

the pad of the thumb as is shown in fig. 6.3.  If the three performance styles introduced so 

far are compared directly on a scale of timbral “softness”, it can be surmised that fingerstyle 

playing falls between thumbing and using a plectrum.  This observation is reinforced by the 

trends detailed in the spectra so far with regards to the sounding mediums used for each 

example.  The thumb, when used to stroke down on the string, sounding the note using the 

flesh and knuckle on the digit, exaggerates the timbral roundness perceived when using the 

fingerstyle technique.  This is due to the larger, softer pad on the thumb making even more 

contact with the string as the note is played, dampening the string.  High frequencies 

reported in its spectra are far less pronounced. 

 

 

Figure 6.3 – spectrum of a C2 note sounded using the thumb (blue).  6.1 is again pictured in red. 
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 Striking the string with the thumb in a percussive manner, known as slapping, 

produces a note with a timbre distinct from typical thumbing.  When compared to fingerstyle 

playing, a higher concentration of partial components in the high frequency range are 

reported indicating the note transient, like the spectrum of the plectrum-sounded note (fig. 

6.4).  The lower frequency components are relatively high in magnitude, indicating a 

powerful note transient occupying the same frequency range one would typically expect of a 

kick or snare drum (fig. 6.5). 

 

 

Figure 6.4 – spectrum of a slapped C2 note, sounded by the thumb impacting on the string (blue).  The spectra of 

6.2 is pictured in red, showing a similar erratic partial structure in the high frequency band. 
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Figure 6.5 – waveforms of a slapped note (top) and a note played fingerstyle (bottom).  Both signals have been 

peak normalised.  The apparent transient and subsequent complex dispersion of sinusoidal energy in the 

frequency domain are identifiable as differences in waveform shape in the time domain. 

 

Observations concerning performance pitch and velocity 

Similar observations are made regardless of the note played on the bass guitar, with 

some minute fluctuations at the highest note registers when string tension and pickup 

response are considered.  Fig. 6.6 represents the magnitude spectra of fingerstyle notes 

played one and two octaves higher than the previous examples on the bass guitar.  Similar 

spectral behaviour can be observed regardless of the left-hand position on the instrument, 

suggesting that the spectra produced by the bass guitar, and by extension its timbre, are 

heavily influenced by the manner of excitation applied to the strings. 
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Figure 6.6 – spectra of C3 and C4 bass guitar notes in red and blue respectively, sounded fingerstyle.  Similar 

harmonic trends are observable between both examples and in figure 6.1, with variations attributable to string 

tension, gauge, the “shifting” of harmonic components further up the frequency axis and signal noise below the 

fundamental frequency. 

 

 Striking the string softly produces similar partial structures in the magnitude spectrum 

as a hard strike would but with less apparent intensity in the high frequency ranges.  The 

timbre of the softer note retains the quality of the striking medium but sounds less bright; this 

is reflected in the magnitude spectra presented in fig. 6.7.  It can be deduced that a less 

apparent transient at the onset of the note, responsible for much of the high frequency noise-

like partials, results in a warmer timbre through the reduction of these spectral elements in 

signals.  
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Fig. 6.7 – spectra of a C2 note sounded with a plectrum softly (blue) and the high-velocity sample from 6.2 (red).  

The noise-like spectral components in the high frequency range present in 6.2 are here as well, reflecting the 

striking medium.  However, they appear much less chaotic and prominent than in the previous example.  

 

It may be concluded that the transient of the note heavily shapes its acoustic 

properties whilst the steady sinusoids defines the perceived pitch of the note.  This indicates 

the importance of not only spectra but note envelopes in timbral manipulation.  It may also 

be remarked that the series of harmonics produced by the vibration of the string shape the 

‘body’ of the perceived timbre of the note, providing the bulk of its lasting resonant 

properties.  
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6.ii. Effects of variables on filter performance 

 For the following investigation into filter performance, two zero-mean stochastic white 

noise processes were used for the source and modifier signals unless specified otherwise.  

The source signal utilised the unmodified white noise process, whilst a pre-filtered copy of 

the noise process was used for the modifier.  White noise was filtered using a lowpass filter 

at 1000Hz with a 96dB/octave roll-off, producing a noise signal with a sharp slope after the 

cutoff frequency.  These signals were chosen for filter testing as complex amplitude 

envelopes and spectral information are absent to allow for testing in an idealised 

environment.  System parameters were initially set as follows, with alterations depending on 

the function being described: 

 

• FFT resolution: 16,384 points 

• Frame size: 256 samples 

• Envelope matching peak detection window size: 750 samples 

• Envelope matching on 

• Filter order: 48 (effectively 96) 

• Interframe filter curve smoothing: 100 

• Intra-frame filter curve smoothing: 148 

• Spectral envelope MA filter sample size: 80 samples 

• Spectral envelope MA filter order: 5 

Envelope matching 

 As the filter curve is dynamic, changing frame by frame, it is highly likely for the 

envelope of the purely filtered signal to be altered beyond recognition in the process.  This 

can only be avoided by using a mostly static filter, forced into effect by using a large degree 

of smoothing between frames and largely defeating the purpose of the matching filter 
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system.  Therefore, it is recommended that envelope matching is used in every application 

of the system unless troubleshooting.  Fig. 6.8 illustrates the effect of envelope matching on 

a filtered musical signal.  The top example, with no envelope shaping, has an erratic note 

envelope leading to a poor acoustic representation of the modifier signal.  This can be 

controlled by manipulating the envelope of the signal to match that of the modifier as seen in 

the bottom example.  Here, the filtered signal was manipulated to resemble the modifier 

signal the system was provided with, restoring musical quality to the affected signal. 

 
Figure 6.8 – the effects of envelope shaping on a filtered signal.  Top is without shaping post-filtering; bottom is 

the same signal with envelope matching applied. 

 

 The envelope detection system functions using a sliding window.  The sample range 

of this window is defined by the user.  Two peak values are reported per chunk for the 

positive and negative poles of the system respectively.  Therefore, decreasing this value 

causes more peak values to be reported, improving the resolution of the envelope vectors 

used for amplitude coefficient estimation.  However, specifying too low of a value will result 

in erroneous peak values being reported, resulting in an improper estimation of the signal 

envelope.  This problem will be explored in further detail later in this chapter. 
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Frame size 

 To arrive at a sensible estimation when determining the optimal length in samples for 

frame-based processing, some vital considerations must be made.  Firstly, the quasi-real-

time functionality of the system should be reflected by selecting a frame length that will 

minimise apparent latency and react to changing spectral information speedily.  Choosing a 

reasonably small frame length should be prioritised in instances where the timbral quality of 

the signal fluctuates rapidly or when multiple notes are triggered in succession.  Causing the 

system to operate too quickly limits the accuracy of mathematical processes that estimate 

the dynamic filter curve by reducing the information available to the system.  Specifying too 

high of a frame size causes the filter to operate too slowly to replicate intricate timbral details 

on the source signal. 

FFT resolution 

 Invariably, the resolution of the magnitude spectra used for the calculation of filter 

parameters has the greatest effect on the signal quality produced by the system.  Using a 

high number of samples per frame increases the data available to the system, which 

improved spectral matching accuracy even with a smaller-point FFT.  It was discovered that 

using a larger-point FFT will always produce more acoustically pleasing results at the 

expense of processing time.  This property remains true even in cases of extreme zero 

padding, where the signal frame length is transformed using an exceptionally high point FFT.  

No further information can be obtained from the frame without increasing its length, so there 

is no reporting of unseen or hidden sinusoidal components in the magnitude spectrum.  

Rather, there is more room for interpolation between the existing spectral components, 

producing a finely sampled spectral curve.  From here, the principle is simple; the longer 

FFT bins allow for more points of analysis when obtaining filter coefficients, increasing the 

number of calculations to be performed but improving filter accuracy.  Fig. 6.9 portrays a 

processed signal in magenta against the input signals used to produce it.  The higher FFT 
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resolution used in the second example provided an improved fit to the modifier signal 

spectrum in blue.  For all experiments performed in this chapter, an FFT resolution of 16,384 

was used unless specified otherwise.  Increasing the FFT points beyond this value produced 

little noticeable improvement. 

 

Figure 6.9 – the results of variating the FFT resolution in signal processing.  The first example used a 512-point 

FFT, whilst the second used a 16,384-point transformation. 
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Spectral envelope estimation 

 Spectral envelopes are extracted from the magnitude spectra of frames using a 

moving average filter applied to a vector of apparent peaks, removing resonances in the 

spectra in the process whilst retaining the general shape of the underlying magnitude 

spectrum.  The MATLAB function findPeaks was used to identify high-magnitude samples 

in the signal spectra.  It was then smoothed using the MA filter function smooth.  The MA 

filter takes two parameters; the sample size for the sliding window and the MA filter order, 

specifying the number of iterations the filter must perform.  Increasing these parameters will 

increase the degree of smoothing applied to the dataset.  By lengthening the window sample 

size, the filter becomes more efficient at evening out resonances spaced further apart as the 

algorithm is allowed a greater scope for averaging, demonstrated in fig. 6.10.  Increasing the 

filter order amplifies the effect of the filter but does not necessarily smooth the peaks if the 

sampling range is not wide enough to capture significant spectral peaks within its 

boundaries.  Fig. 6.11 portrays the 10th order MA filter applied to the same frame of audio 

with variable sampling ranges.  Despite the high filter order, the MA filter is unable to 

eliminate resonant peaks from the spectral envelope if the sampling range is too small.  It 

can be concluded that the length of the sampling window is the key factor to producing an 

acceptable model of a spectral envelope in this application.  Furthermore, the user can 

estimate a sensible sampling range from their knowledge of the harmonic structure of the 

signals loaded and scale their prediction according to the specified FFT resolution. 
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Figure 6.10 – spectral envelopes affected by a first-order MA filter.  The first used a window sample length of 8 

samples, whilst the second was assigned a length of 256. 
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Figure 6.11 – 10th order MA filter applied to frame spectra with variable sampling range.  The first demonstrates a 

range of 8 samples, and the second 256 samples. 

 

For the white noise signals, it was found that a window length of 80 samples and an 

order of 5 was enough to produce an accurate estimation of spectral envelopes.  A well-

estimated envelope should fit the general shape of the signal provided.  In the lower 

example of fig. 6.11, the spectral envelope of the lowpassed noise signal (blue) was 

extracted very accurately.  The estimation of the source signal spectral envelope (red) was 

poorer, owing to the concentration of erratic spectral components in the white noise signal.  

The sampling range of 80 was ideal for de-noising the spectra enough to avoid artefacts in 

the estimated filter curve whilst being restricted enough to retain key spectral information.  
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Increasing the order beyond 5 began to erode the remaining peaks too far to estimate an 

accurate filter curve.  Fig. 6.12 illustrates the estimated spectral envelopes, the filter curve 

produced as informed by these estimates and the effect of the filter on a frame of audio. 

 

 

Figure 6.12 – effect of the matching filter on a frame of audio using optimal settings for spectral envelope 

estimation. 
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Matching filter order and smoothing 

 Recall that the native zero-phase filtering function in MATLAB functions by passing 

the signal through the filter once, then reverses the filtered signal before passing it through 

again to negate the phase shifting introduced by IIR filters.  Therefore, the filter order 

specified by the user is half that of the effective order.  Almost invariably, increasing the filter 

order improves the performance of the filter, with no significant sonic improvements if the 

order exceeds 64 (effectively 128).  Likewise, reducing the order of the filter below 32 

hinders filter performance, with especially low values failing to accurately replicate the 

spectral curve of the modifier signal.  Fig. 6.13 illustrates the spectral performance of the 

filter with an order of 4. 

 

Figure 6.13 – effect of the matching filter on white noise signals with an order of 4.  The modifier spectrum is 

modelled poorly when using a lower filter order. 
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Setting the filter order too high can often be detrimental to the output signal and will require 

different degrees of interframe filter curve smoothing to temper the extra detail introduced to 

the curve.  Fig. 6.14 illustrates this behaviour; the apparent scalloping in the filter curve is 

reduced as the smoothing parameter is adjusted to be higher.  The effect of altering this sole 

smoothing parameter to compensate for the higher filter order is profound and leads to 

impressive matching filter results as illustrated in fig. 6.15.  The second example with the 

compensated smoothing setting approaches the modifier spectral curve to a considerably 

greater degree.  Acoustically, the filtered sound is more pleasing to listen to as the filter 

curves produced are less erratic overall with a reduced fluctuation in filter curve shape over 

time. 
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Figure 6.14 – filter curves produced for a frame of audio.  The first was produced with an order of 64 and an 

interframe smoothing setting of 64 samples.  The second example uses a smoothing value of 256. 
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Figure 6.15 – spectra produced for the noise signals.  Similarly, the first example took a filter order of 64 and an 

interframe smoothing setting of 64 whilst the second uses a smoothing setting of 256. 

 

  It can be surmised that a balance must be found between the amount of interframe 

filter curve smoothing and filter order to suit the needs of the source and modifier signals.  

For the white noise signal and its low-passed counterpart, an order of 48 (effectively 96) and 
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an interframe smoothing value of 128 was found to be ideal.  Fig. 6.16 depicts the spectra of 

the filtered signal in magenta, fitting the curve of the modifier signal (blue) snugly.  The 

filtered sound is comparable to the modifier signal in its character with slight discernible 

differences between the two.  Ultimately, balancing the relationship between filter order and 

interframe smoothing is crucial to producing a clearly filtered musical signal retaining 

properties of both the source and modifier samples. 

 

 

Figure 6.16 – spectra produced for the noise signals using optimal interframe smoothing and filter order.  The 

cutoff frequency (around 1000Hz) of the lowpassed noise sample is matched effectively. 

 

  A second degree of transfer filter smoothing, dubbed intra-frame smoothing, is also 

required to further control the dynamic filter curve generation.  As a unique filter curve is 

produced for each frame, it can be expected that their shapes will fluctuate wildly between 
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frames as there is no handling of final or initial filter conditions in the system.  Should each 

filter curve deviate significantly from the curve of the preceding frame, it is highly likely that 

the filtered signal will appear distorted as partials in the spectra are aggressively over-

manipulated.  By smoothing filter curves between frames, the persistence of the generated 

filter curves can be controlled, effectively reducing the distortion introduced by the dynamic 

filter curve system.  A hypothetical “distortion free” scenario would be to use a static filter 

curve which would fail to react to the spectral envelope of the modifier signal.  In contrast, a 

system with no intra-frame smoothing at all would most accurately model the required filter 

curve for each frame but introduce an unacceptable level of distortion to the signal.  

Therefore, the user must choose to trade off system reflexes for increasingly acoustically 

pleasing results.  Fig. 6.17 portrays the spectrum of the processed signal with no intra-frame 

smoothing applied.  Distortion and excess noise introduced to the signal are clearly visible 

above 1000Hz, above the lowpass cutoff of the modifier signal. 

Finding an appropriate value to use for intra-frame smoothing is largely dependent on 

the eccentricity of spectra as they appear for every frame.  Should the spectra of frames 

deviate significantly from one another over the length of the entire buffer, a higher degree of 

smoothing will most likely be needed.  This is a common occurrence in musical signals as 

will be investigated later in this section.  For this example of a lowpassed white noise signal, 

little intra-frame smoothing is required as the filter cutoff applied to the modifier remains 

constant throughout the sample.  Real musical signals can be expected to have more 

complex signal envelopes and spectral shapes, hence the requirement for greater intra-

frame filter curve smoothing. 
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Figure 6.17 – Matching filter applied with no intraframe smoothing.  The acoustic results are poor, owing to the 

noise-like dispersion of frequencies reported in the high frequency range. 

6.iii. Filter performance concerning musical signals 

 The performance of the filter has been demonstrated on simple noise signals, which 

provide optimal conditions for the filter to operate.  Musical signals are notably more complex 

however; unlike the noise samples used in section 7.ii, musical notes are subject to spectral 

changes over time as sinusoidal components in the signal decay.  It is known that the 

matching filter can estimate a filter curve to reliably fit the spectrum of a subject signal to that 

of another when provided with acceptable parameters by the user.  To be established in this 

section is the performance of the filter when complex variables such note envelopes and 

complex spectral fluctuations are concerned. 
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 For the following examples, one of two musical signals were used as the modifier 

signal in the matching filter system to produce the filtered output, whilst the bass guitar is 

defined as the source signal.  The modifier signals created for these demonstrations consist 

of a synthesized square-wave bass note and a grand piano, each possessing spectral and 

temporal qualities quite different from bass guitar signals. 

Bass guitar with piano modifier signal 

 Piano signals were used as modifier signals to influence the time and frequency 

domain qualities of source bass signals.  Fig. 6.18 illustrates three signals in the time domain 

loaded by the system, each representing a single note.  The fingerstyle bass guitar note is 

pictured in the top plot, used as the source signal in processing.  The piano note is pictured 

in the middle plot with its envelope outlined in blue and magenta crosses.  The processed 

signal occupies the bottom plot with its envelope outlined in crosses before it was reshaped 

to fit the modifier.  Time-domain envelope matching performance of the system on these 

samples was excellent as the filtered signal matches the shape of the modifier very closely.  

Upon closer inspection, the system has attempted to match the envelope of the filtered 

signal to the noise floor of the modifier signal after the note itself has died off after roughly 

0.9 seconds.  This behaviour is encouraging as it signifies the envelope matching algorithm 

can manipulate the shape of a musical note extensively and adjust to extreme changes in 

envelope shape reliably.  However, it also indicates that the system begs for more granular 

control as the portion of the filtered signal being matched to the signal noise is part of a 

sustained note.  The acoustic result is not residual background noise after the note is 

released but an extreme alteration in the trajectory of the note decay.  Slow-moving 

sinusoidal components comprising pitch and timbral information are retained in the signal 

when they should be absent for a truly accurate match in signal envelopes.  Despite this 

observation, the acoustic performance of the envelope matching system is good as the 

unique attack and note envelope of the piano is effectively replicated on the filtered signal 

whilst musical qualities of the bass guitar are retained.  Sliding window size local maxima 
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detection was set to 750 samples in this example, so one peak and its corresponding 

location is reported for the modifier and processed signals every 750 samples which is in 

turn used for envelope estimation.  It can be observed that there are few noticeable errata in 

the location of crosses on the modifier signal, indicating that the envelope estimated for the 

signal is relatively true to the actual waveform shape.  It can also be observed that the zero 

crossings of the signal have been preserved and amplitude modulation has been avoided 

entirely, producing an acoustically clear processed signal.  By checking the RMS loudness of 

the three signals, it can be confirmed that the envelope matching algorithm has matched the 

energy of the modifier signal well.  The source signal returns an RMS value of 0.312, the 

modifier returns 0.119 and the processed signal returns 0.117; for comparison, the filtered 

signal without envelope matching (fig. 6.19) returns an estimated RMS loudness of 0.264. 
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Figure 6.18 – C2 bass guitar note (source) filtered and shaped to take spectral and temporal qualities from a C2 

piano note (modifier). 

 

Figure 6.19 – filtered note processed in the same manner as 6.19 but without envelope matching.  The shape of 

the waveform is greatly distorted by the filtering process and bears little resemblance to the source or modifier 

signals. 
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 Spectral results of the system are also encouraging.  In fig. 6.20, the shape of the 

source waveform has been heavily reshaped to fit the shape of the modifier.  The most 

noticeable change in waveform shape can be observed beyond 1000Hz, where the source 

spectrum has been altered quite dramatically, bringing it roughly in line with the modifier 

curve.  In general, the shape of the source spectrum has been matched to the modifier well 

until around 5kHz, where the processed signal appears to deviate wildly and report high 

frequency content surpassing both unprocessed signals.  This can largely be attributed to 

smoothing of the filter curve culling high-end detail, omission of low-energy points during 

filter calculation (typically found in the highest end of the frequency spectrum) or distortion 

introduced from reassembling the signal from independently filtered frames.  The processed 

signal matches the timbral qualities of the piano note reasonably well overall, as much of the 

low-end is substituted for mid-range “bite”, although a noticeable buzzy quality is introduced 

to the signal by the filter.  The effect is incredibly slight, but present in neither the source or 

modifier signals and is assumed to be distortion.  Fig. 6.21 portrays an average filter curve 

produced for this example and pictures little attenuation in the frequencies concerned, 

therefore it can be surmised that the filter is operating poorly in the highest frequency ranges 

of the signal.  Altering user definable settings did not significantly change the performance of 

the filter in this area, nor did disabling the omission of low-energy frequency components 

from filter coefficient calculation.  
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Figure 6.20 – spectra of the C2 bass guitar note (red), C2 piano note (blue) and processed signal (magenta). 

 

 

Figure 6.21 – average filter curve produced for a frame from 6.21, taken from roughly halfway through the signal. 
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 The fingerstyle bass guitar signal defined as the source was then swapped for a note 

sounded using a plectrum and the signal processing was reapplied.  System performance 

was similar in both the time and frequency domain, although it can be noted that the acoustic 

result appeared closer to that of the piano modifier signal.  This could be due to the 

spectrum of the plectrum-sounded source signal being closer in shape to the modifier before 

signal processing than the fingerstyle sample was.  Fig. 6.22 illustrates the time-domain plot 

of the processed signal, which fits the envelope of the modifier well.  One noticeable error 

can be observed just after 1.4 seconds where a slight bump has formed in the time domain 

representation of the signal that is not present in the modifier, although the bulk of the 

sample before the piano note is released is matched accurately. 

 

 

Figure 6.22 – signal processing applied to a C2 bass note sounded with a plectrum.  Similar high frequency 

distortion is observable here as in 6.20. 
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Figure 6.23 – time-domain plot of the processed signal, using a C2 plectrum-sounded bass guitar note as the 

source and a piano C2 note as the modifier.  Note the “bump” around 1.4 seconds. 

 

 This process was repeated for a slapped bass guitar note to trial the processing on a 

note with a pronounced transient.  Some tweaking of system parameters was required to 

produce an acoustically acceptable signal, namely reducing the degree of filter curve 

smoothing.  With these adjustments made, the system produced a signal of comparable 

quality to the previous examples, with some notable quirks.  In fig. 6.24, it can be observed 

that once again the system effectively managed to reshape the waveform to match the 

modifier signal envelope.  However, it can also be seen that the pronounced transient of the 

source signal is crushed during the envelope shaping process resulting in a noise-like burst 

of sound at the beginning of the processed signal rather than a percussive hit.  That is not to 

say all acoustic properties contained in the bass guitar transient are lost, but dramatically 

altered to the point where it is not immediately clear that the unprocessed signal was a 

slapped bass guitar note.  Furthermore, qualities of the piano transient and note envelope 

were imprinted on the timbre of the signal just as in the previous examples.  Overall, the 

effect of the signal processing on the slapped bass guitar note has provided an intriguing 

example where the acoustic properties of the processed signal lie somewhere between that 

of the source and modifier.  Although the processed signal still bears considerable 

resemblance to the source signal and it could not be mistaken for a piano, this particular 

example stands as a promising proof of concept of sorts, demonstrating that significant and 
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meaningful replication of timbral qualities can be executed through manipulation of a signal 

in the time and frequency domains.    

 

 

Figure 6.24 – time-domain plots of the slapped C2 bass guitar note, the C2 piano note and the outcome signal.  

The “crushing” of the slapped bass transient can be observed at the start of the processed waveform. 

 



80 
 

 

Figure 6.25 – magnitude spectra of the signals in 6.25.  Characteristic high-frequency distortion is present here 

as in all other previous examples, whilst the rest of the spectra is matched to the modifier with reasonable 

accuracy. 

 

 Processing was repeated, this time using samples recorded an octave higher than 

the previous examples.  Unlike the previous examples, results here were less encouraging 

and subject to more extreme acoustic artefacts.  For an acoustically pleasing signal to be 

produced, filter curve smoothing between frames needed to be drastically reduced to combat 

pops and crackles orders of magnitude higher than the musical content of the signal.  

However, by decreasing the degree of intra-frame smoothing, each successive filter curve 

generated by the system deviates more in its shape from that of its predecessor.  

Consequently, when the filtered signal is reassembled, a greater amount of distortion is 

introduced to the signal caused by the overlap-add formulation used for signal assembly 
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used in conjunction with discontinuous frames of data.  Fig. 6.26 illustrates the relatively 

poor effect of the envelope matching system on the higher note; not only have several 

audible pops been introduced towards the end of the signal, the overall shape of the 

processed signal envelope is only faintly reminiscent of the modifier envelope.  This was 

remedied somewhat by making the sampling range for envelope estimation finer, as 

portrayed in fig. 6.27, where local maxima were located within a frame size of 375 samples 

rather than the 750-sample span used for 6.26.  Audible pops were also eliminated by 

refining the sampling span, although the overall shape of the note is still lacking in 

comparison to the modifier signal envelope.  The RMS loudness of the processed signal was 

also closer to that of the source, with the source RMS being 0.167, the modifier RMS being 

0.128 and the processed RMS being 0.151. 
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Figure 6.26 – time domain representations of a C3 bass note sounded fingerstyle, a C3 piano note and the 

outcome processed signal.  Audible pops can be observed towards the end of the processed signal. 

 

Figure 6.27 – processed signal produced in the same means as 6.27, but with a finer sampling range for peak 

detection to occur. 

 

Spectrally, the results of the system on the higher notes appears quite impressive in 

comparison to the earlier examples.  It can be observed in fig. 6.28 that the processed signal 
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spectra fit that of the modifier across the entire length of the frequency spectrum with less 

apparent high-frequency distortion.  Acoustically however, the processed signal appears 

duller than it was when applied to samples recorded an octave lower.  Very few timbral 

qualities of the piano have been carried over to the bass guitar overall.  The note attack has 

been replicated quite faithfully although the manner of decay sounds little like a note 

sounded by a piano, but more like a heavily processed bass guitar.  What is of note here is 

that the performance of the filter and envelope matching algorithms were reversed when 

compared to the previous C2 examples – where they struggled to replicate spectra 

accurately, the system appears to handle the spectra of higher notes with greater accuracy.  

Likewise, whilst the C3 examples managed to replicate note envelopes faithfully, the system 

is struggling to do the same with notes an octave higher.  When the acoustic outcome of the 

signal is considered however, it is the lower examples that bear more resemblance to their 

modifier signals rather than the C3 examples.  This suggests that the envelope of a note is 

of greater importance than spectral detail when it comes to human perception of timbre. 
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Figure 6.28 – spectra of a C3 fingerstyle bass guitar note (source), C3 piano note (modifier) and the processed 

outcome.  The processed signal can be seen matching the shape of the modifier spectrum much more closely 

than in previous examples. 

 

Once again, the fingerstyle bass sample was substituted for that of the same note 

sounded with a plectrum and processing was reapplied.  Just like the example pictured in fig. 

6.28, there was little difference in the quality of results between the higher-register 

fingerstyle and plectrum-sounded samples.  There was little to no discernible difference in 

acoustic plausibility between the C3 fingerstyle and plectrum samples when affected by the 

piano modifier signal, so the source signal was exchanged for a note sounded by popping.  

When the signals are viewed in the time domain, the popped note can be compared to the 

slapped example by the presence of a powerful transient defining much of its timbral 

character.  System performance on the popped note was perhaps the strongest of all the 
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higher-register examples.  As illustrated in fig. 6.29, the envelope matching process 

produced accurate results as the processed signal has taken on the envelope of the modifier 

reasonably well, although not as well as in the lower C2 examples.  A noticeable spike can 

be seen in the negative pole of the processed signal just before 1 second elapses and 

another can be observed just after the transient has dispersed.  Like the slapped example, 

the transient of the pop has been crushed to fit the modifier envelope although the acoustic 

effect here is much less desirable.  The timbral quality of the pop is still largely present but 

has been exaggerated, making the processed note sound noisy and unpleasant.  Despite 

this aesthetic consequence, it can still be argued that the system performed adequately in 

this instance in comparison to other samples auditioned in this register.  Signal spectra for 

the popped example are portrayed in fig. 6.30.  It can be observed that spectral performance 

was poorer here than in previous tests, although the overall timbral blending effect intended 

by the system is more pronounced in this experiment than other C2 examples.  Again, this is 

an allusion to the importance of note envelopes in perception of timbre over spectral detail in 

a situation such as the one demonstrated here. 
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Figure 6.29 – time-domain representations of a popped C2 bass note (source), a C2 piano note (modifier) and 

the resulting processed signal. 
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Figure 6.30 – spectra of a popped C2 bass note (source), C2 piano note (modifier) and the processed signal 

produced.  Spectral matching here is far less accurate than other examples in this register. 

 

Longer musical passages of bass and guitar signals were then processed and 

analysed.  A recording of a one-octave G major scale played on the bass guitar was loaded 

into the system as the modifier whilst a piano playing the same scale was used as the 

modifier.  The root note for each of these scales was G2.  The challenge faced by the 

system here is processing notes in series, rather than an isolated single note, which makes 

for a more challenging endeavour as note onsets may arrive at any point in the signal and 

present variable fundamental frequencies.  This greatly increases the complexity of the 

signals to be analysed and processed and can indicate system performance over an 

extended period of musical expression.  
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Envelope matching performance was found to be acceptable when applied to the 

example of the G major scale.  In fig. 6.31, it can be observed that each note in the source 

signal, occupying roughly half a second per note, have been shaped individually by the 

algorithm to mirror the shape of the modifier envelope post filtration.  Several discrepancies 

can be observed in the processed signal however; note transients appear to be 

exaggerated, perhaps caused by misalignment of envelope matching coefficients.  By 

observing the reported RMS loudness for each signal, it can be confirmed that the envelope 

matching process has nonetheless matched the modifier signal energy well.  RMS loudness 

reported for the source signal was 0.19, the modifier was 0.211 and the processed signal 

was reported as 0.215. 

 

 

 

  

Figure 6.31 – G major scale, one octave, performed fingerstyle on bass guitar (source) and piano (modifier).  The 

processed signal is also pictured. 
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Performance of the matching filter on the spectral components of the signal was 

peculiar.  Spectral results, pictured in fig. 6.32, are encouraging upon first sight.  Conforming 

with results obtained from prior investigations, the processed signal has managed to match 

the curve of the modifier signal reasonably well, with areas for improvement identifiable 

around and past 2kHz as the spectrum deviates from the ideal curve.  However, when the 

audio sample is replayed, the dynamic filter can be heard “lagging”, producing a morphing 

timbre that bulges and swells in its spectrum over time.  The effect is a warm, rounded 

timbre towards the beginning of the sample which becomes more brittle sounding as time 

progresses.  This quality cannot be credited to a change in timbre of the modifier signal over 

time, which remains consistent throughout the whole sample.  Instead, this behaviour can be 

explained by the frame size used for matching filter estimation and the effects of smoothing 

the produced filter curves.  Adjusting each of these variables independently has little effect 

on system performance.  When both are lowered significantly however, spectral results 

worsen despite the theoretically quicker system response time.  Acoustically, the signal 

becomes muddied as the filter curve changes drastically between frames, losing much of the 

musical information of the source signal in the process.  This behaviour suggests the system 

cannot be expected to perform exceptionally no matter the extent to which parameters are 

adjusted.  There appears to be a limit to the quality of the outcome signal.  Attempting to 

compensate for unsatisfactory acoustic results by forcing the system to operate on smaller 

datasets or reducing filter curve deformation from smoothing destroys the musical 

characteristics of the source signal entirely in the process.  Even poorer spectral results 

were observed when the source and modifier inputs were transposed an octave higher as 

illustrated in fig. 6.33.  This is in line with the middling results observed for the lengthier 

musical signal and the degradation in output signal quality consistent with using higher 

pitched samples. 



90 
 

 

Figure 6.32 – spectral results of 6.31. 

 

Figure 6.33 – same as 6.32, except all signals are transposed one octave higher.  

Bass guitar with synthesizer modifier signal 

The experiments were then repeated using a synthesized signal as the modifier, in 

place of the piano signals used for the previous examples.  Using synthesized signals 
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presents some new challenges for the system to overcome.  In comparison to the piano 

signals, the synthesized “pluck” sounds being used as the modifier signals here have much 

simpler timbres.  Comparatively, the piano signals used previously are spectrally rich with a 

great deal of harmonic activity that changes dynamically as the note decays.  The 

synthesized notes here use a single square wave oscillator in contrast to the complex 

acoustic systems that generated the piano waveform.  A stark difference in spectral 

composition is the near absence of even-numbered harmonics in the synthesized signal as a 

perfect square wave is composed solely of odd harmonics.  Secondly, the envelope of the 

waveform is more uniform than that of the piano signals.  Recall the longer piano sample 

used as the source signal in fig. 6.31.  It can be observed that each note is asymmetric in 

shape and has a differing local maximum, whilst the synthesized signals used here will have 

consistently symmetrical note envelopes and local maxima.  Logically, this suggests that the 

envelope matching system may perform well on the synthesized signals given their simpler 

envelopes.  In practice however, this quality may be negated by the simpler shape of the 

waveforms.  As the envelope detection system is in no way predictive, simpler envelope 

shapes are no more difficult for the system to estimate than the most complex.  The 

relatively simple waveform shape could detract from the envelope detection system as there 

are fewer prominent peaks for the algorithm to detect.  If the envelope detection sensitivity is 

set to a number that does not reduce to an integer number when divided by the fundamental 

frequency of the note, the algorithm is subject to detecting multiple or no peaks per 

oscillation.  This property does not present a problem when the subject signal is sufficiently 

complex in its shape, such as the piano signals.  For a relatively simple shape, such as a 

square wave-derived synthesized note, the system begins to lose accuracy, increasing in 

severity as the signal approaches sinusoidal.  Fig. 6.34 illustrates the same synthesized 

signal with detected peaks marked with crosses.  The bottom example, with a smaller 

sample range for peak detection, produces a considerable number of errata, inaccurately 

representing the signal envelope. 
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Figure 6.34 – peak detection on a synthesized pluck waveform.  The top example uses a peak detection sample 

width of 750 whilst the bottom uses a width of 375. 

 

Finally, the synthesized notes have a clear, technically definable timbre that should 

be replicated in the processed signal.  The lowpass filter applied to the square wave 

provides a knocking, resonant quality to the synthesized notes as the cutoff is reduced over 

the decay of the note.  This behaviour can be observed in the signals themselves as the 

lowpass filter causes the signal to become more sinusoidal as the note decays.  This is 

represented in fig. 6.35. 
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Figure 6.35 – 512-sample frames of audio from the synthesized pluck signal.  The top frame is taken from the 

start of the signal, capturing the instant the note is initiated.  The bottom frame is taken several hundred frames 

later, after the note has decayed considerably. 

 

 Like previous experiments, a C2 fingerstyle bass note was loaded as the source 

signal, this time with an accompanying C2 synthesized bass pluck and processing was 

applied.  The lack of spectral richness in the modifier signals is immediately evident in the 

results produced by the system.  Spectral results (fig. 6.36) were reasonable in this instance, 

with the processed signal spectrum lying roughly between the source and modifier spectra.  

Likewise, the results of envelope matching to the modifier signal (fig. 6.37) were acceptable.  

The system appears to have taken the shape of the modifier signal well until around 0.4s, 

when the synthesizer note had mostly decayed.  The envelope matching system appeared 

to struggle with the particularly low-energy portion of the signal, a trend that will establish 

itself in the following examples.  Despite scepticism about envelope detection on the modifier 

signal, the algorithm detected the peaks well with a sample width of 750 points.  The actual 

shape of the processed signal is lacking in comparison to that of the modifier.  This is likely 

due to the arrangement of the peak locations being misaligned; during peak detection, 
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locations for modifier and processed signal peaks are detected independently and may not 

necessarily align.  During amplitude coefficient estimation, it is assumed that peaks do align, 

therefore if either signal produces a set of regularly spaced peaks (such as the synth pluck) 

it is likely that the accuracy of envelope estimation and matching will be reduced.  This 

behaviour can also be mitigated by using a tighter sample range for peak detection; 

however, such an option is inappropriate for simple waveform shapes given the behaviour 

detailed previously. 

 

 

Figure 6.36 – spectra of a fingerstyle C2 bass note (source), a C2 synthesized pluck (modifier) and the output 

signal produced. 
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Figure 6.37 – waveforms of the signals specified in 6.36. 

 

 The fingerstyle bass note, loaded as the source signal, was exchanged for a note 

sounded with a plectrum.  Results here were markedly poorer in both the time and frequency 

domains.  Once again, the last moments of the note was not shaped properly by the 

envelope matching process leading to a steep (but not discontinuous) drop in signal power 

as the note is released.  Fig. 6.38 pictures the waveform of the processed signal.  Compared 

to the processed waveform in 6.36, it can be observed that the note envelope was generally 

matched to the modifier signal better than the fingerstyle sample was.  On the other hand, 

spectral results were poor.  Theoretically, the system should have performed much better 

than it did as the spectra of both the source and modifier signals are similar.  In fig. 6.39, the 

processed spectrum deviates significantly from both the source and modifier spectra, 

ultimately resembling neither.  This is most likely caused by the few source spectrum peaks 

that surpass the modifier peaks in the same area (around 250 to 2,000Hz).  Therefore, 

despite the partials in the modifier signal being denser in that band than in the source signal, 

it is nonetheless recognised as having more effective band power than the modifier.  Whilst 
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estimating filter coefficients, the system will produce an ideal filter curve based on the 

difference between these spectral envelopes and will incorrectly assume the source signal 

should be attenuated around that band, rather than boosted.  Fig. 6.40 portrays a typical 

filter curve produced for this plectrum-sounded example. 

 

 

Figure 6.38 – waveform of signal produced using a plectrum-sounded bass guitar note as the modifier. 

 

 

Figure 6.39 – spectral results of the waveform produced in 6.38 overlaid with the plectrum-sounded C2 bass note 

(source) and the C2 synthesized pluck. 
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Figure 6.40 – typical filter curve produced for the signals used in 6.38 and 6.39. 

 

 Acoustically, both the fingerstyle and plectrum examples failed to replicate the unique 

timbral properties of the modifier signal onto the source.  There was a general notion of 

timbral blending caused by the envelope shaping, although the dynamic filter failed to match 

the evolving timbre of the synthesized notes.  As previously detailed, the modifier signal has 

a knocking timbral quality caused by the lowpass filter cutoff falling as the note decays.  No 

comparable resonant quality was replicated by the filtering process when using a signal 

frame size of 512 samples and an intra-frame smoothing value of 75.  The system was 

forced to react more quickly to signal data by reducing the frame size to 256 samples and 

the smoothing value to 30.  As expected, acoustic results were worse as computational 

accuracy fell off due to the limited data that can be retrieved from the smaller frame size.  

Reducing the degree of intra-frame smoothing, forcing the filter curve to deviate more 

between frames, also served to further deform the waveform shape making envelope 

matching difficult.  The waveform of this signal is pictured in fig. 6.41, whilst its spectrum is 

represented in 6.42. 
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Figure 6.41 – processed waveform produced using a frame size of 256 samples and an intra-frame smoothing 

size of 30. 

 

 

Figure 6.42 – spectrum of the waveform pictured in 6.42, overlaid with the spectra of a C2 plectrum-sounded 

bass guitar note (source) and C2 synthesized pluck (modifier). 

 

A slapped C2 bass guitar note was then loaded into the system as the source signal 

and processing was reapplied.  As illustrated in fig. 6.43, the matching envelope system 
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performed on par with the previous examples in this section.  However, the transient of the 

slapped note was destroyed in the process, reflected in its spectrum (fig. 6.44).  The loud, 

noise-like impulse forming the transient of the slapped note is forcibly reshaped to the point 

of distortion.  Fig. 6.45 represents the same spectra, but with no envelope shaping applied to 

the output signal after filtering.  Whilst the lack of envelope matching provides an inherently 

poor representation of timbral blending, this plot does confirm that the distortion present in 

fig. 6.44 is caused by the matching envelope process.  

 

Figure 6.43 – waveforms of a slapped C2 bass note (source), C2 synthesized pluck (modifier) and the processed 

signal. 
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Figure 6.44 – overlaid spectra of the signals detailed in 6.43.  The spectrum of the filtered signal is greatly 

deformed by the aggressive time-domain envelope shaping. 

 

Figure 6.45 – spectra produced using the same processes as 6.43, but with envelope matching disabled.  The 

filtered signal no longer appears deformed. 
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Acoustically, both the fingerstyle and plectrum examples failed to replicate the unique 

timbral properties of the modifier on the source signal.  The vague notion of timbral blending 

is present given the decent performance of the envelope matching algorithm.  However, the 

system was unable to act fast enough to replicate the travelling filter cutoff of the 

synthesized signal.  The slapped signal provided the closest representation of the modifier 

signal timbre, despite the distortion introduced by the envelope matching algorithm.  Upon 

closer analysis, this could be due to the source signal already containing a prominent 

transient which, when distorted in the process of envelope matching, somewhat replicates 

the timbre of the synth pluck.  As this behaviour is dependent on the source signal and, 

given the performance of the system on the other examples here, it is fair to say that the 

system produced consistent, middling results on all the examples here.  These observations 

appear to reinforce the earlier speculation on system performance concerning simple 

synthesized signals.  Furthermore, it supports the observation made when analysing the 

results concerning piano signals, in that there is a limit to the speed at which the filter can 

operate.  Reducing the sample size of frames and increasing the precision of filter curve 

estimation beyond 512 and 40 samples respectively appears to degrade results to the point 

where any improvements in system response time are negated. 

The experiments were repeated using samples one octave higher (C3).  Contrary to 

the previous results of testing higher-pitched samples, the system performed better on 

average than it did on the C2 samples.  As can be seen in fig. 6.46, the envelope matching 

system performed well on the higher-pitched samples, capturing the shape of the waveform 

well.  Some errors in estimation can be seen towards the end of the processed note, likely 

due to the possibility of peak misalignment when estimating envelope amplification 

coefficients.  These errata occur around wide spaces in the peaks, lending credence to this 

theory.  Unlike the previous C2 examples, the envelope matching process has captured the 

final decaying moments of the note accurately, tapering it to a point just like the modifier 

signal.  Spectral results (fig. 6.47) were mixed; the system appeared to affect the spectrum 
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of the source signal very little at zero, with matching accuracy improving as the axis 

approaches the Nyquist frequency.  For consistency, the C3 fingerstyle bass note was 

exchanged for one sounded with a plectrum and processing was repeated.  System 

performance was consistent with established trends – the quality of the results pictured in 

figures 6.48 and 6.49 were of a similar standard to the fingerstyle examples. 

 

Figure 6.46 – waveforms of a C3 fingerstyle bass note (source), C3 synthesized pluck (modifier) and the outcome 

signal.  

 

 

Figure 6.47 – spectra produced for the signals described in 6.45. 
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Figure 6.48 – waveform of processed signal produced using a C3 plectrum-sounded bass note as the source 

signal. 

 

 

Figure 6.49 – spectra of the C3 plectrum-sounded bass note (source), the C3 synthesized signal (modifier) and 

the processed signal. 

 

Finally, the source signal was replaced with a popped C3 note and processing was 

reapplied.  The performance of the system here was poor, again caused by aggressive 

reshaping of a waveform that carries a prominent transient.  In the time domain, the 

waveform appears distorted over its lifespan with a sharp peak immediately as the note 

initiates (fig. 6.50).  This spike at the start of the note contributes significantly to the distortion 

present in its magnitude spectrum (fig. 6.51).  Just as in 6.45, this distortion is absent if 
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envelope matching is disabled.  The actual shape of the note envelope is accurate aside 

from the initial spike, which causes the rest of the signal to be reduced in amplitude as the 

signal is normalised. 

 

Figure 6.50 – waveforms of a popped C3 bass note (source), the C3 synthesized pluck note (modifier) and the 

resulting processed signal. 
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Figure 6.51 – spectra of the signals detailed in 6.50.  Similar deformation to that in 6.44 is apparent. 

 

Acoustically, the C3 examples with the synthesized pluck were an improvement over 

their lower-pitched counterparts but ultimately failed to produce a plausible instance of 

timbral blending.  As in previous experiments where the filter had failed to perform 

adequately, any timbral blending occurring is mostly the product of the envelope shaping 

process capturing the shape of the note somewhat accurately.  The actual effect of the filter 

was also unpredictable, sometimes attenuating high frequencies effectively to match the 

rounded thump of the synth note.  In other situations, the lower frequencies would appear to 

be smothered by the filter producing a raspy, brittle timbre that would subside as the note 

decays.  This could be an attempt to reproduce the falling filter cutoff of the synth note, 

however the filter lacks the precision and reaction time to generate a convincing acoustic 

result. 



106 
 

The last experiments performed with the system concerned longer musical signals, 

just as performed with the earlier piano samples.  A fingerstyle G-major one octave scale 

was loaded into the system as the source signal, whilst an equivalent synthesized signal was 

loaded as the modifier.  Signal processing was then applied.  As illustrated in fig. 6.52, the 

envelope matching system performed well generally but stumbled when matching note 

transients.  Clear spikes in the time-domain plot can be seen at the onset of several notes, 

caused by faulty multiplication of points in the signal to match the modifier signal envelope.  

Again, it is likely that these distortions were caused by misalignments in peak location 

detection prior to amplitude coefficient estimation.  The spectra of the signals portrayed in 

6.52 is given in fig. 6.53.  Immediately, the results of the process look poor and the general 

acoustic result left much to be desired.  Interestingly however, the timbre of each note in the 

processed signal appeared to change as the signal played through.  The bass frequency 

band appeared to swell as the signal progressed and the high-end bite of the bass guitar 

was dulled.  This suggests that the system was failing to perform fast enough to provide an 

accurate real-time depiction of timbral blending, which was not improved by forcing the 

system to operate more regularly using smaller frame sizes.  This is consistent with other 

results obtained by limiting the frame size of signals in this section.  Processing was 

repeated using samples transposed an octave higher and similar results were observed 

(figs. 6.54 and 6.55).  Like the other higher pitched C3 samples covered in this section, the 

system appeared to perform marginally better on the higher G-major scales analytically.  The 

timbre of notes appeared to morph as the signal progressed, just like the lower-pitched 

scales auditioned previously.  



107 
 

 

Figure 6.52 – waveforms of G-major scale signals (root note G2).  Source is the bass guitar signal; modifier is the 

synthesized pluck. 

 

Figure 6.53 – spectra of the signals detailed in 6.52.  Some matching appears to be achieved around 1000Hz. 
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Figure 6.54 – waveforms of signals used in a similar experiment to 6.52, with a root note of G3. 

 

Figure 6.55 – spectra of the signals detailed in 6.54.  Spectral matching was poor overall. 

 

 In summary, the matching filter and envelope systems appeared to struggle with 

processing the synthesized signals, more so than it did with the piano examples.  These 
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results lend credibility to the speculation on system performance with simpler musical signals 

earlier in this chapter.  Furthermore, it is suggested that the performance of the filter is 

largely dependent on how spectrally rich both the source and modifier signals are.  White 

noise examples, being the most spectrally dense of any examples auditioned in this section, 

had their spectra matched well, whilst the square-wave synthesizer was frequently 

misrepresented in its spectral behaviour.  It was also discovered that such a system of 

filtering using a dynamic filter curve was subject to numerous trade-offs, each in turn 

affecting the acoustic quality of the outcome signal.  The filter could not be made to operate 

fast enough to capture minute timbral detail and replicate it on a host signal, nor had it the 

accuracy to model such fluctuations in timbre over time.  This is exemplified by the tests 

using synthesized modifier signals; the defining resonant pluck of the synth notes was 

impossible to replicate accurately no matter the tweaking of user parameters.  Further 

supporting evidence exists in the results of processing longer musical signals comprising of 

several notes.  The evolving timbre as the signal progressed is a smeared representation of 

the rapidly changing apparent timbre caused by the triggering of new notes.  The system 

had no means of identifying the onset of a new note, causing individual notes and musical 

passages to be treated the same.  The system did perform well on single notes with little 

timbral evolution as they decay, such as the C3 piano note examples which were matched 

well in both the time and frequency-domains. 

 Signal envelope matching performed well overall on most signals but was subject to 

similar flaws as the signal.  Most crucially, as illustrated by numerous examples in this 

section, note onsets are subject to distortion caused by erroneous multiplication of signal 

amplitudes, greatly hampering the acoustic plausibility of the signal.  It also appears that the 

method of tracking peak locations in signals was inadequate and could lead to misshapen 

note envelopes in the case of one signal containing regularly occurring peaks, or if the signal 

subject to envelope shaping contains multiple notes.  Envelope matching worked the best on 

signals consisting of single notes with irregularly spaced peaks, such as the earlier C2 and 

C3 piano examples.  It also managed to match asymmetrical signal envelopes and did not 
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introduce any amplitude modulation in the process.  This indicates that the concept behind 

the envelope shaping algorithm is functionally sound, but in need of refinements to handle 

more types of modifier signals. 
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7. Conclusions and further work 

 Having tested the matching filter and envelope algorithms on a wide variety of bass 

guitar samples with corresponding modifier signals, it can be concluded that the matching 

filter is inadequate for replicating timbre in this manner.  This result can be largely attributed 

to a key fault in its working, that being a window length too small for effective analysis and, 

subsequently, estimation of filter coefficients quickly enough to produce the illusion of timbral 

blending.  In contrast, the window length was also too large to create the illusion of 

replicating aspects of an ever-changing signal, instead producing step-like artefacts at 

extreme values that only somewhat reflect the modifier signal.  Previously, the matching filter 

system implemented by Ma et al. (2013) was used as an example on the importance of 

sample data quality.  Now, it is more evident as to why the filter presented here struggled in 

comparison.  Firstly, the frame size of the signal to be filtered is relatively small – 64 samples 

long in the original design as opposed to the optimal value of 256 used to test the system in 

chapter 6. 

Compared to the datasets retrieved used in the original implementation, the data 

obtained from the bass guitar was miniscule.  Ma et al. (2013) produced an ideal curve 

determined by amalgamating spectra obtained from nearly 800 songs that appeared in the 

UK and US charts from 1950 onwards and smoothing the combined curve.  This produced a 

smooth curve that covered the entire frequency spectrum with no sudden or isolated peaks, 

demonstrating the scaling effectiveness of the FFT operation when applied to longer 

datasets.  In their work, the matching filter was also intended for use on other fully mixed 

musical signals comprising of multiple instruments resulting in a greater density of detail in 

the magnitude spectrum.  The combination of short window lengths and limited spectral 

information in the source signals resulted in poor and inaccurate estimations of filter 

parameters, ultimately failing to capture meaningful timbral qualities of the modifier signal. 

The performance of the matching envelope system was more encouraging, perhaps 

due to the relatively simple techniques employed in its development.  It was discovered that 
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there is still significant room for improvement, largely concerning the misalignment of 

detected peaks resulting in erratic amplitude coefficient estimations.  This was most evident 

when signals containing multiple notes were processed.  The performance of the matching 

envelope system on individual notes was more promising, although the issue of erroneous 

estimations was rarely avoided entirely.  The matching envelope system also appeared to 

struggle on the simpler synthesized waveforms, suggesting that a more intelligent peak-

finding system is required.  Effects on higher-pitched notes were inconsistent as some 

envelopes were detected and replicated well whilst other signals were destroyed in the 

process.  This inconsistency suggests the algorithm is sensitive to minute changes in signal 

composition.  It can be concluded that the matching envelope system works in an ideal 

environment and functions as a proof of concept but requires further development for 

practical use as a musical tool. 

 On a fundamental level however, it could be argued that filters themselves are not 

appropriate for combining the timbral characters of two signals as a filter only modifies an 

existing signal, as opposed to synthesizing a signal.  Filters can be thought of as devices 

that alter a sound from the top down; they manipulate spectra after the signal has already 

been produced.  This contradicts how sounds are produced in the real world, from vibrating 

mediums creating variations in pressure which propagate as waves through the surrounding 

material until they reach our ear drums (Goldstein 2010).  Synthesizing a signal is a 

substitute for the vibrating medium in this model, whereas a filter would merely affect the 

wave shape of the signal after it has already been created. 

7.i. Sinusoidal modelling synthesis 

An ideal timbral blending system should produce a signal that sounds convincing to a 

listener, as if a physical instrument could have created the sound even if it had been 

synthesized artificially.  Take for example the Stroviol, an acoustic instrument shaped 

constructed similarly to a violin, with four strings running perpendicular to a fretless 
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fingerboard (University of Edinburgh, n.d.).  Instead of sound being amplified through the 

bridge and hollow body of the instrument, it is projected through a metal horn, much like a 

trumpet in its design.  The sound produced by the Stroviol can be described as a curious 

mixture of a violin and a trumpet, as if a conventional violin had inherited the typical brassy 

overtones of a horn.  The Stroviol makes for an excellent test subject for future research into 

timbral blending as a violin source signal influenced by a trumpet modifier signal should 

equate to a product sound comparable in its timbre to the Stroviol. 

Another existing timbral blending device is the vocoder, a tool used to synthesize a 

signal based upon the spectral characteristics of two inputs.  Prior to synthesis, the source 

signal is decomposed into at least two components – the steady-state sinusoids and the 

noise parts (Flanagan and Golden 1966).  These components can be expected to exhibit 

differing spectral behaviours.  Sinusoids define the tonal information of a signal and change 

frequency and amplitude slowly over time.  Tonal information for speech is produced by 

controlled vibrations of the vocal cords in the larynx and is important to determine the tone or 

implication of a speaker.  This information is removed in the synthesis step by some early 

vocoders which simply modulated the amplitude of a buzzer to replace the complex 

sinusoids produced by the larynx, making them comparatively difficult to understand 

(Dudley, 1940).  Even as vocoder technology improved and modifier input signals became 

accepted for modulation over primitive buzzers, the recognisable human trait of voice 

modulation is often obliterated in favour of the timbral details of the modifier as defined by 

the behaviour of its slow-moving sinusoids. 

Noise components are much the opposite and are chaotic in frequency and 

amplitude.  Naturally, noise cannot be traced as a peak in the frequency domain, the product 

of a single sinusoid moving in frequency and amplitude over time.  Rather, the noise 

component defines the spectral details of the signal (Taylor, 2009).  In speech, noise as 

produced by our mouths can constitute the plosives of hard consonants and hisses of soft 

consonants alike.  Further distinctions may be made between the impulsive plosive sounds 

of “T” and “P” from softer noisy sounds “s” and “c”.  These impulsive dispersions of 
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sinusoidal energy can be identified as transients with distinct behaviour from other noise in a 

signal, perhaps produced by external factors from the instrument such as microphone hiss or 

feedback.  Therefore, a musical signal can consist of three identifiable parts – its sinusoids, 

transients and noise. 

By this reasoning, a sinusoidal modelling synthesis technique could be more suitable 

for the blending of signal timbres.  Based on the performance of the matching filter in this 

application, filters do not offer an acceptable level of accuracy for such a purpose, so a 

sensible path to take this research down is to investigate the feasibility of constructing an 

acoustically plausible signal from the ground up.  One such method of signal analysis and 

decomposition using the sines-transient-noise (STN) model has been proposed (Verma and 

Meng, 1998).  A musical signal is taken and is first decomposed frame by frame for 

segmented processing like other techniques detailed in this paper.  Sinusoidal modelling can 

be achieved using a matching pursuits approach (Mallat and Zhang 1993, Pati et al. 2002).   

7.ii. Application of matching pursuit-based cross-synthesis for 

creative purposes  

Decomposition of the source signal into its STN components yields three distinct 

signals that faithfully recreate the source signal when combined.  Multiple signals, when 

decomposed in such a manner, could theoretically be convolved and reassembled to blend 

the timbres of existing samples.  Alternatively, the decomposed components could be 

analysed and parameterised to alter their acoustic properties.  Any manner of signal 

processing could be applied to the components before they are reassembled.  Time-

stretching, envelope shaping and simple gain control could be used to drastically alter the 

timbre of musical signals at a more granular level than the timbral blending system 

presented in chapters 5 and 6. 

 Perhaps the greatest benefit of decoding spectral information this way would be to 

gather information on a handful of parameters that can be expected to be in most musical 
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signals – note attack, decay, vibrato and so on.  Any number of musical characteristics and 

the degree to which they occur can be estimated from a signal with accuracy increasing 

alongside the length of the input signal (effectively, the dataset for analysis).  From there, the 

system could ‘learn’ how an instrument sounds based on its spectral activity and how 

performance variables, such as dynamics and attack, affect the changing spectrum of a note 

over its lifetime.  Given an input signal, note onsets may be extracted by transient detection 

and the same musical characteristics may be determined of it just like the modifier signal.  

Ultimately, as the final signal is up for synthesis based upon the two inputs, the synthesizer 

will refer to the expected behaviour of the modifier signal and estimate how the note for 

resynthesis would take on this new behaviour.  This is an example of the promises of 

sinusoidal modelling synthesis for creative timbral blending and manipulation as the precise 

spectral qualities of an instrument, as defined by its construction and performance, may be 

decoded and used to synthesize an acoustically plausible but physically absent instrument. 
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