
Parallel-in-time Integration of
astro- and geo- physical flows;

application of Parareal to
kinematic dynamos and

Rayleigh-Bénard convection

Andrew Thomas Clarke

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

EPSRC Centre for Doctoral Training in Fluid Dynamics

August 2021

ii

Declaration

The candidate confirms that the work submitted is his own, except where work

which has formed part of jointly authored publications has been included. The

contribution of the candidate and the other authors to this work has been explicitly

indicated below. The candidate confirms that appropriate credit has been given

within the thesis where reference has been made to the work of others.

The work presented in Chapter 4 resulted in the following publication (Clarke et al.,

2020b)

• Clarke, A. T., Davies, C. J., Ruprecht, D., and Tobias, S. M. 2020b. Parallel-

in-time integration of kinematic dynamos. Journal of computational physics:

X.

Andrew Clarke incorporated the Parareal algorithm into the Dedalus code, per-

formed the simulations + analysis and wrote the article while Daniel Ruprecht,

Chris Davies and Steven Tobias undertook standard advisory roles.

The work presented in Chapter 5 resulted in the following publication (Clarke et al.,

2020a)

• Clarke, A., Davies, C., Ruprecht, D., Tobias, S., and Oishi, J. S. 2020a.

Performance of parallel-in-time integration for Rayleigh-Bénard convection.

Computing and visualization in science.

Andrew Clarke performed the simulations + analysis and wrote the article while

Daniel Ruprecht, Chris Davies, Steven Tobias and Jeff Oishi undertook standard

advisory roles.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledge-

ment.

The right of Andrew T. Clarke to be identified as Author of this work has been as-

serted by Andrew T. Clarke in accordance with the Copyright, Designs and Patents

Act 1988.

iii

Acknowledgements

Primarily I thank my supervisors Chris Davies, Daniel Ruprecht and Steven To-

bias, without whom this work would not have been possible. Daniel’s optimism

and enthusiasm for Parallel in time methods alongside Chris’s enthusiasm for the

geodynamo and comprehensive feedback provided ample motivation throughout the

project, whilst Steve’s vast knowledge and patience helped me to learn more than I

imagined possible.

I would like to thank Jeffery Oishi for his hospitality during my research visit to

Bates, and for many insights into the Dedalus code base. I would also like to thank

Robert Speck for his hospitality during my research trip to Jülich Supercomputing

Centre, and for sharing his time during many shared programming sessions. I’d

also like to thank Ian Halliday for encouragement and support offered to a recent

graduate interested in further study.

I acknowledge the EPSRC Centre for Doctoral Training in Fluid Dynamics (grant

number EP/L01615X/1) for the studentship which funded my studies and atten-

dance at a number of very interesting scientific conferences. In particular I would

like to thank Peter Jimack and Claire Savy for their support within the CDT. I

would like to thank ICIAM, ISC, Jülich Supercomputing centre and Culham Centre

for Fusion Energy for further funding towards travel on international conferences.

I would like to thank members of the Astro- geophysical fluid dynamics group and

Deep Earth research group for support with my work, and insights into many other

areas of research. I would also like to thank my fellow CDT students for their

friendship, support, and many interesting discussions, particularly Rob, Tom, Colin,

Andy, Eva, and Craig.

Last, and not least, I must thank my family and friends for their constant support.

My wife Haley, for supporting me throughout my studies, my children, Thomas

and Emily for keeping a smile on my face, David, Andy C, and Andy W et al. for

marching on together, and my parents for always believing in me.

iv

Abstract

The precise mechanisms responsible for the natural dynamos in the Earth and Sun

are still not fully understood. Numerical simulations of natural dynamos are ex-

tremely computationally intensive, and are carried out in parameter regimes many

orders of magnitude away from real conditions. Parallelization in space is a common

strategy to speed up simulations on high performance computers, but eventually hits

a scaling limit. Additional directions of parallelization are desirable to utilise the

high number of processor cores now available. Parallel-in-time methods can de-

liver speed up in addition to that offered by spatial partitioning but have not yet

been applied to dynamo simulations. This thesis investigates the feasibility of using

Parallel-in-time integration to speed up numerical simulations of dynamos.

We concentrate on applying the non-intrusive Parareal algorithm to two sub-problems

of natural dynamos: kinematic dynamos and Rayleigh-Bénard convection (RBC).

We perform real-world scaling tests on high performance computing (HPC) facilities

using the open source Dedalus spectral solver.

The kinematic dynamo problem prescribes a fluid flow and observes how the mag-

netic field changes over time. We investigate the time independent Roberts and

time dependent Galloway-Proctor 2.5D dynamos over a range of magnetic Reynolds

numbers. Speed ups beyond those possible from spatial parallelisation are found

in both cases. Results for the Galloway-Proctor flow are promising, with Parareal

efficiency found to be close to 0.3, while Roberts flow results are less efficient, with

efficiencies < 0.1. Parallel in space and time speed ups of 300 were found for 1600

cores for the Galloway-Proctor flow, with total parallel efficiency of 0.16.

Convective motions are thought to be the source of dynamo action in the Earth

and Sun. RBC is the archetypal problem for convection studies, and is also a

fundamental problem of fluid dynamics, with many applications to geophysical,

astrophysical, and industrial flows. We investigate Parareal for Rayleigh numbers

Ra = 105, 106 and 107, finding limited speed up in all cases for up to ∼20 processors,

whilst performance and convergence of Parareal degrades as Ra increases.

We summarise our results for the kinematic dynamos + RBC, and discuss their rele-

vance and implications on Parallel-in-time simulations for the full dynamo problem.

v

Contents

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1

1.1 Overview . 1

1.2 Parallel in time . 4

1.2.1 Parareal . 5

1.3 Dynamo problem . 10

1.3.1 Introduction/Overview . 10

1.4 The Kinematic Dynamo . 15

1.4.1 Numerical Considerations . 17

1.5 Rayleigh-Bénard Convection . 17

1.5.1 Introduction and definition of Problem 18

1.6 Discussion . 21

1.7 Aims and Objectives . 24

2 Literature Survey 25

2.1 Parallel-in-time . 25

2.1.1 Modifications to parareal . 25

2.1.2 Other Pint methods . 27

2.1.3 Applications of Parallel-in-time 29

2.2 Dynamo . 32

2.2.1 Geodynamo studies . 32

2.2.2 Astrophysical dynamo studies 34

2.2.3 Theoretical and Kinematic dynamo studies 36

2.3 Discussion . 42

3 Theory and Methods 43

3.1 Fluids and Magnetohydrodynamics 43

3.1.1 MHD . 43

vi

3.1.2 Kinematic Dynamo . 47

3.1.3 Rayleigh-Bénard Convection 49

3.2 Numerical Methods . 52

3.2.1 Spatial Discretisation - Pseudospectral Method 53

3.2.2 Time-Stepping . 56

3.2.3 Dedalus Code . 62

3.3 Parareal . 62

3.3.1 Algorithm . 62

3.3.2 Stopping Criteria, Accuracy 64

3.3.3 Speedup and performance . 65

4 Parareal Kinematic Dynamo 69

4.1 Description and Validation . 69

4.2 Accuracy measurement . 75

4.2.1 Fine solution . 76

4.2.2 Coarse Solver . 77

4.3 Scaling Results . 79

4.3.1 Roberts Flow . 80

4.3.2 Galloway Proctor Flow . 83

4.4 Discussion . 83

5 Parareal Rayleigh Bénard Convection 87

5.1 Description of Model . 87

5.1.1 Consistency Checks . 88

5.2 Validation of model . 90

5.2.1 Determining Accuracy of Fine Solution 91

5.2.2 Duration of Simulation . 94

5.2.3 Choice of Coarse Solver . 94

5.2.4 Determining Convergence in Parareal 96

5.3 Results . 96

5.3.1 Kinetic energy in the Parareal solution 96

5.3.2 Parareal convergence . 98

5.3.3 Scaling and Performance . 99

5.4 Conclusions . 103

6 Conclusions 105

6.1 Kinematic dynamos . 105

6.2 Rayleigh-Bénard convection . 106

6.3 Interpreting our results for the non-linear dynamo problem 107

6.4 Further Work . 108

vii

References 137

viii

List of Figures

1.1 Microprocessor Trend Data over 48 years to 2019 5

1.2 Processing time for CPU’s in Parareal 7

1.3 Graphical representation of Parareal 8

1.4 Temperature field snapshots of RBC 19

1.5 RBC temperature profiles at different Ra 20

2.1 Streamlines and vector plots of Roberts flow and magnetic field . . . 38

2.2 Growth Rates of Roberts and Galloway-Proctor Dynamos 40

3.1 Parareal compared to serial solver . 66

3.2 Effect of load imbalance on Parareal 66

4.1 Growth of magnetic field over time 71

4.2 Contour plots of magnetic field in kinematic dynamos 73

4.3 Growth rates of Roberts dynamo . 74

4.4 Validation of Roberts growth rates 74

4.5 Growth rates of Galloway Proctor dynamo 75

4.6 Spatial convergence of Roberts and Galloway Proctor dynamos 77

4.7 Comparison of timesteppers . 78

4.8 Timestep convergence for Roberts and Galloway Proctor dynamos . . 79

4.9 Error with time step size for different spatial resolutions for kinematic

dynamos . 80

4.10 Speed up and Parareal convergence for different Coarse solvers, kine-

matic dynamo . 81

4.11 Speed up and efficiency of Parareal for Roberts flow 82

4.12 Speed up and efficiency of Parareal for Galloway Proctor dynamo . . 85

4.13 Parareal efficiency for different Rm for kinematic dynamos 86

5.1 Viscous and thermal boundary layers for RBC at Ra = 105 91

5.2 Example temperature fields for RBC Ra = 105, 106, 107 92

5.3 Validation of RBC calculated Nusselt values 93

5.4 Spatial convergence of Nusselt number and L2 error, RBC 94

5.5 Kinematic energy for different Parareal iterations for RBC 97

5.6 Change in Nusselt number with Parareal iterations, RBC 99

ix

5.7 Convergence of Nusselt number and L2 error with Parareal iterations 100

5.8 Convergence of consistency checks with Parareal iterations, RBC . . . 101

5.9 Speed up for Parareal RBC at different Ra 102

x

List of Tables

1.1 Summary of Parallel-in-time methods 6

1.2 Typical time/length scales of the dynamo problem 12

1.3 Summary of selected dynamo studies 14

4.1 Parameters for kinematic dynamo simulations 80

5.1 Resolution required to meet RBC convergence tests 95

5.2 Numerical parameters of RBC Parareal simulations 96

xi

Nomenclature

Dimensionless numbers

Nu Nusselt Number

Pr Prandtl Number

Ra Rayleigh Number

Re Reynolds number

Rm Magnetic Reynolds Number

Constants and Parameters

NBL Number of grid points in Boundary Layer

ρc Charge Density

L Characteristic length scale

U Characteristic speed

ρ Density

Ω Mathematical Domain

µ Dynamic viscosity

σ Electrical Conductivity of fluid

g Gravity

h Height of convective domain

ν Kinematic viscosity

c Speed of Light

η Magnetic Diffusivity

xii

µ0 Magnetic Permeability

Nx, Ny, Nz Spatial resolution of x, y, z dimensions

ε0 Permittivity of free space

λ Thermal Conductivity

κ Thermal Diffusivity

α Coefficient of thermal expansion

τ Characteristic time scale

Mathematical Variables

Tn nth Chebyshev polynomial of first kind

t Time

x, y, z Physical Space dimensions

F Body Forces

P Buoyancy Production

qc Electric Charge

j Current Density

E Electric Field

ε Error/ defect

γ Dynamo Growth Rate

qT Heat Flux

kx, ky, kz Wave numbers in x, y, z direction

F L Lorentz Force

Lx, Ly, Lz Length of domain in x, y, z dimensions

B Magnetic Field

p Pressure

T Temperature Field

xiii

u Velocity Field

εU Viscous Dissipation

u, v, w Components of velocity in x, y, z direction

Operators

∆ Difference

FFT (u) Fourier transform of u

û Fourier transform of u

iFFT (û) Inverse Fourier transform of û

log Natural logrithm (base e)

〈u〉H Horizontal plane average of u

u Time average of u

〈u〉 Volume average of u

Parareal Notation

G Parareal Coarse solver

∆t Coarse time step size

T Simulation duration

EP Parallel Efficiency

F Parareal Fine solver

δt Fine time step size

k Parareal iteration number

NPParareal Parareal time slices/ available processors

RG Runtime coarse solver

RF Runtime fine solver

SP Parallel Speed up

∆T Length of Parareal time slice

φkn Parareal solution at timeslice n, iteration k

1

Chapter 1

Introduction

1.1 Overview

Naturally occurring magnetic fields are ubiquitous in our universe. They are present

in the Earth, other planets of the Solar System, our Sun, other stars, and in distant

galaxies. These magnetic fields are generated by the dynamo effect (e.g. Roberts

and Soward, 1992; Weiss, 2002; Rincon, 2019), which changes kinetic energy of a

conducting fluid into magnetic energy through complex dynamical motions. Our

understanding of the processes governing this effect are incomplete, in large part

due to the huge disparities of time and length scales present in these systems which

makes mathematical studies very difficult. For example, convection in Earth’s core

has length scales ranging from ∼0.1m to ∼7 × 106m (Matsui et al., 2016), and

time scales ranging from a day to millions of years (Biggin et al., 2012; Davies

et al., 2015). Despite the difficulty, much effort has been expended to gain insight

into these processes, as the applications are of great interest for both practical and

intellectual reasons.

Much work on understanding the behaviour of dynamo systems is done us-

ing numerical models, see for example the works by Glatzmaier and Roberts (1995b);

Gómez et al. (2005); Tobias and Cattaneo (2013); Matsui et al. (2016); Schaeffer

et al. (2017). Analytical study is incredibly difficult, due to the nonlinear nature and

highly turbulent flows, and experimental studies require large volumes of conducting

liquids to be given vast amounts of kinetic energy, a significant practical, engineer-

ing, and financial challenge; to date there have been only three successful dynamo

experiments (Gailitis et al., 2000; Stieglitz and Müller, 2001; Aumâıtre et al., 2008).

Because of the huge range of time and length scales, the spatial and temporal res-

2

olutions required to obtain simulations that operate at the physical conditions of

geophysical and astrophysical bodies/systems lead to tremendous computing costs,

for example a recent study by Schaeffer et al. (2017), used up to 10 million cpu hours

per simulation, only ran for a fraction of a magnetic diffusion time, and did not get

close to reaching Earth-like conditions. Numerical dynamo simulations are thus run

on massive parallel computers (Matsui et al., 2016). Challenges are anticipated for

current numerical codes running efficiently on exascale systems due to the require-

ment for global inter-processor communication in spectral methods (Wicht et al.,

2010), and more aggressive parallelization strategies than those in current use are

likely to be required (Davies et al., 2011) to make best use of the next generation of

high performance computing facilities.

Parallel-in-time (PINT) methods have been studied for the last 50 years

(Gander, 2015), and have been shown to increase scalability of numerical simulations

beyond saturation of spatial parallelisation (Croce et al., 2014). Interest in the area

was boosted by the creation of the Parareal algorithm (Lions et al., 2001). Since its

creation, the Parareal algorithm has been shown to speed up numerical simulations

in the areas of fluid flow (e.g. Fischer et al., 2005; Croce et al., 2014), plasma physics

(Samaddar et al., 2010), financial market derivatives (puts) (Bal and Maday, 2002),

simulations of the planetary mantle (Samuel, 2012), robotic manipulation (Agboh

et al., 2020) and simulation of an induction machine (Gander et al., 2019), among

many others. A number of other Parallel-in-time methods have also become popular

in recent years, including PFASST (Minion, 2011), ParaExp (Gander and Güttel,

2013), MGRIT (Friedhoff et al., 2013), and PITA (Cortial and Farhat, 2009). As the

method which sparked the recent interest in PINT, and as one of the most simple

to implement PINT methods, Parareal is a good choice for initial investigations into

new application areas, and its application to dynamo studies will be the focus of

this thesis.

The dynamo problem consists of finding or producing a fluid flow that has

inductive properties capable of sustaining a growing magnetic field (Charbonneau,

2020). The dynamo problem is very complex, both physically and numerically.

Because of this complexity, many studies are carried out which concentrate on just

one aspect of the problem, ignoring other physical effects. Two very important

examples are how fluid flows affect a magnetic field, and how such fluid flows are

generated. The first problem is called the kinematic dynamo problem, and prescribes

an arbitrary flow to investigate its effect on an initially infinitesimal seed magnetic

field (Rincon, 2019). The solar and planetary dynamos are thought to be convection-

driven (Busse, 2002; Jones et al., 2011); convection is thought to be present in the

Earth’s outer core due to the large Rayleigh number and loss of heat. Therefore,

3

investigation into the flows responsible for dynamo action should concentrate on

convective flows. Rayleigh-Bénard convection is the simplest and best understood

form of convective flow, and describes the buoyancy driven flow of a fluid heated

from below and cooled from above (Ahlers et al., 2009). It’s relative simplicity

and high level of analytical and numerical understanding makes Rayleigh-Bénard

convection a natural choice for investigation of any novel numerical methods in this

application area.

The large range of Parallel-in-time (PINT) methods available, coupled with

the immense computational task of completing a realistic dynamo simulation, make

the study of PINT methods for the dynamo problem a potentially very large area of

research. In order to make the problem more tractable, the research question must

be narrowed down somewhat. This thesis investigates the performance of one PINT

method - Parareal, when applied to two sub-problems closely related to dynamos -

the kinematic dynamo and Rayleigh-Bénard convection.

This thesis is laid out as: in the remainder of this chapter, we will introduce

Parallel-in-time methods, the dynamo problem and the specific problems of the

kinematic dynamo and Rayleigh-Bénard convection. In Chapter 2 we will survey

the recent literature in parallel-in-time methods, and numerical dynamo simulations.

Chapter 3 discusses the mathematical background of dynamos, convection, spectral

methods, timestepping and Parareal. In Chapter 4 we present results of Parareal

applied to the kinematic dynamo problem, Chapter 5 presents results of Parareal for

Rayleigh-Bénard convection, and Chapter 6 concludes the thesis with a discussion

of the results and possible future work.

4

1.2 Parallel in time

Moore’s law (Moore et al., 1965, 1975) and Dennard scaling (Dennard et al., 1974),

are two closely related predictions effectively stating that computing performance

would double around every two years, which held remarkably well for decades.

Whilst Moore’s law, that the number of transistors on a chip would double ev-

ery 18 months, has held so far, single processor performance via higher clock rates

has reached a technical limit due to power dissipation (Pankratius et al., 2010). In

order to continue improvements in computing speeds despite the plateau in CPU fre-

quencies, the extra transistors have increasingly been utilised in combining multiple

CPU cores on the same processor chip, (see for example Figure 1.1, Esmaeilzadeh

et al. (2011); Johnsson and Netzer (2016)). In order to maximise performance on

current and future computing platforms, applications must increasingly make use of

parallel programming paradigms.

As a result of this, supercomputing (large scale computing with fast inter-

processor communication ie. what we have described as HPC in this work) has

become so fundamental to scientific understanding that, in many fields, research de-

pends on it (Wilkinson et al., 2021). The subject of HPC is of such great importance

now and moving into the future, that the UK Government commissioned the report

on this subject by Wilkinson et al. (2021). The dominant method for achieving par-

allel speed-up in numerical simulations has been to parallelize in space using domain

decomposition (Schreiber et al., 2018). Nearly all parallel applications reach a point

of diminishing performance with increased processor counts, which can be derived

as a consequence of Amdahl’s law (Amdahl, 1967) that parallel gains are limited

by serial portions of code. Fixed cost serial portions of the code take up an ever

growing proportion of code runtime as the parallel portion is split among more and

more processors, whilst communication time between processors increases as some

function of the number of processors (dependant upon the communication model).

Actual and expected saturation in parallel performance of numerical simulations has

led to much research on improving parallel performance and efficiency (e.g. Frigo

and Johnson, 2005; Matsui et al., 2016; Burns et al., 2020).

When solving time dependent partial differential equations (PDEs), the

time direction is usually not parallelised (Gander, 2015). However, when paral-

lelisation in space saturates, the time direction offers itself as a further direction

for parallelisation (Gander, 2015). Parallel-in-time integration methods have been

studied for at least 50 years, (e.g. Nievergelt, 1964), can increase scalability of com-

puter simulations beyond saturation of spatial parallelisation (Croce et al., 2014),

5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

Figure 1.1: Microprocessor Trend Data over 48 years to 2019, by Rupp (2018).
Accessible at github.com/karlrupp/microprocessor-trend-data. Original data up to
year 2010 by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond,
and C. Batten.

and there are countless examples of parallel in time methods providing speed ups

(e.g. Speck et al., 2012; Schreiber et al., 2018; Samaddar et al., 2017).

In the following section, we describe the method which sparked the re-

cent uptake of interest in parallel in time methods, Parareal. We concentrate on

Parareal due to its widespread use in the literature, and because it can be seen as

the basis/special case of several other methods. We will give a brief overview of

the algorithm in this chapter, whilst further mathematical details can be found in

§3.3. A brief overview of some other parallel-in-time methods is shown in table 1.2,

with discussion and references in §2.1.2. We provide a review of recent studies in

§2.1.3, while a more in depth review of the subject was written by Gander (2015).

A comprehensive record of research in the area is maintained at parallel-in-time.org.

1.2.1 Parareal

Parareal is an iterative method for solving initial value problems (IVP’s), and con-

sists of a coarse method G (from the French grossièr, for coarse) and a fine method F .

F is the method that would be used in a time serial simulation, whilst G is a quicker,

computationally cheaper method which computes a less accurate approximation to

the solution. The simulation time domain is partitioned into NPParareal time slices,

https://github.com/karlrupp/microprocessor-trend-data
https://parallel-in-time.org/

6

Method Operation Notes

Parareal Iterative use of coarse + fine solvers,
linked through amplitude correction

Poor for advection dominated
problems. Efficiency limited by
1/k. Non-intrusive. ‘Works’ on
all problem classes.

MGRIT Adapts ideas of multigrid to time domain,
using F- and V- cycles, coarsening in time.
Full approximation scheme allows use in
nonlinear problems.

Similar properties to Parareal- 2
level MGRIT with FAS is equiv-
alent to Parareal. Non-intrusive.
‘Works’ on all problem classes.

PFASST Replaces timestepper with SDC. Iterates
sweeps of coarse and fine solvers, with FAS
allowing fine data to improve the coarse
correction.

Intrusive - have to replace time
stepper. Efficiency not limited
by 1/k. ‘Works’ on all problem
classes.

ParaEXP Overlapping time intervals, each com-
putes short amount of inhomogeneous
time stepping, then solves the rest of the
time domain by exponential integration
of the homogeneous simplified problem.
Sum of all results gives final state.

Only works well for linear prob-
lems. Intrusive - time stepper re-
placed.

REXI Parallelises computation of the matrix
exponential through rational approxima-
tion.

Only works for linear prob-
lems. Extension to non-linear not
straightforward. Intrusive.

RIDC Parallelises each timestep, by using modi-
fied SDC formulation such that all stages
can be computed in parallel. Similar idea
to parallel high-order Runge-Kutta meth-
ods.

Small scale parallelisation - on the
same machine. Intrusive - re-
places time-stepper.

Table 1.1: Summary of features for various Parallel-in-time methods. For more
details, discussion, and references, see §2.1.2.

7

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 Serial

To
ta

l R
un

ni
ng

 ti
m

e

Coarse Method
Fine Method

Figure 1.2: Processing time for each processor in Parareal (left) compared with
processing time for the same simulation carried out in serial (right). Note that here
we have two iterations, and the coarse stepper takes around half the time of the fine
stepper.

with each slice being computed by a single processor (or set of spatially parallelised

processors). The coarse method runs in serial, and is initially used to generate

initial conditions for each process. The computation then consists of alternating

between parallel runs of the fine solver, and serial runs of the coarse solver, which

communicates information through the time domain using the Parareal correction

φk+1
n+1 = G(tn+1, tn, φ

k+1
n) + F(tn+1, tn, φ

k
n)− G(tn+1, tn, φ

k
n), (1.1)

where φkn is the solution at time slice n and iteration k, and t is time. The coarse

sweep is the serial bottleneck in Parareal - each processor must wait for the previous

time step to complete its correction before carrying out its own coarse sweep. When

the change in the solution between two subsequent iterations is deemed small enough

(see §3.3 for details), the simulation is deemed to be converged, and stops. Figure

1.2 shows a rough sketch of how the computing time of each processor is spent

using Parareal compared to a serial computation, whilst figure 1.3 is a graphical

representation of communication between the coarse and fine solvers.

Gaining good performance in Parareal depends on finding a very accu-

rate coarse solver that allows for convergence in very few iterations (performance is

bounded by NPParareal/k), and a very cheap coarse solver that is much quicker to

compute than the standard serial solver (performance is also bounded by RF/RG,

where RF and RG are runtimes of the fine and coarse methods over the same du-

8

Figure 1.3: Graphical representation of the Parareal algorithm, with parareal cor-
rection updates shown in red. Reprinted from Berry et al. (2012), Copyright (2012),
with permission from Elsevier.

ration) (Gander and Vandewalle, 2007). These two factors often act in direct op-

position to each other, and so a balance must be found between performance and

accuracy of the coarse solver. A number of strategies have been employed for finding

a coarse solver. The most simple to implement is to simply increase the time step

(e.g. Croce et al., 2014; Aubanel, 2011), though this is often not possible due to

numerical stability. Changing the timestepping algorithm, such as replacing a high

order explicit scheme with a low order implicit scheme can facilitate much larger

timesteps (Blouza et al., 2011), though each step is typically more computationally

expensive. Using simpler physics in the coarse solver has also been investigated (e.g.

Baffico et al., 2002; Maday and Turinici, 2003; Maday et al., 2007). A further strat-

egy is to reduce the spatial resolution along with the time resolution, which allows

for relaxation of the CFL condition for the coarse step (e.g. Ruprecht, 2014; Lunet

et al., 2018). When using this latter approach, the method of spatial coarsening is

important. Lunet et al. (2018) found that low order interpolation and restriction led

to a higher number of iterations being required for Parareal to converge, compared

with higher order interpolation. Despite a number of investigations into convergence

criteria (e.g. Bal, 2005; Gander and Vandewalle, 2007), the effectiveness of a coarse

method is, in practice, determined by testing (Berry et al., 2012). This is com-

plicated by Parareal’s stability being more complicated than might be expected; a

stable coarse solver paired with a stable fine solver can lead to instability in Parareal

(Steiner et al., 2015), whilst Buvoli and Minion (2020) found that stability regions of

Parareal when using IMEX (see §3.2.2) time stepping were non-trivial for dispersive

problems.

Parareal has not been designed to achieve high parallel efficiency (Gander

9

and Güttel, 2013), rather, it is aimed at reducing time to solution where spatial par-

allelisation has already saturated. This is highlighted by the bound on Parareal’s

efficiency of the reciprocal of the number of iterations required (Gander and Vande-

walle, 2007). Parareal performs badly for purely hyperbolic systems (Steiner et al.,

2015) due to the Parareal correction step reducing defects in amplitude, rather than

defects in frequency or phase of the solution. Despite this, there are many examples

of Parareal being applied successfully to advection dominated problems such as high

Reynolds fluid flows (e.g. Croce et al., 2014; Eghbal et al., 2017), MHD plasma flows

(Samaddar et al., 2010, 2017), and convection (Samuel, 2012). This means that we

cannot say in advance how well Parareal will perform for the dynamo problem. The

dynamo problem is non-linear, so may suffer from poor performance as the Reynolds

number is increased and advection dominates, but as successful applications to MHD

and complicated systems have been reported, the method may still be of use.

Parareal can be useful as a tool to give insights into potential performance

of other Parallel-in-time methods (e.g. PITA, MGRIT, PFASST) due to it sharing

similar features (Kreienbuehl et al., 2015). For example, PFASST can be cast as a

combination of Parareal and Spectral Deferred Corrections (SDC), while MGRIT

with two levels is identical to Parareal (see table 1.2 and §2.1.2 for more details

of other PINT methods). Communication overhead in Parareal is minimal, as in-

formation need only be exchanged once every iteration (Aubanel, 2011), making it

scalable and highly suitable for the MPI parallel computing paradigm (Eghbal et al.,

2017). An advantage of Parareal over other PINT methods is that it is non-intrusive.

Parareal and MGRIT are the only time parallel algorithms that can be classed as

such (Friedhoff et al., 2019), which means that existing codes can be used without

major modification. Other algorithms can require substantial changes, for example

PFASST requires that the existing timestepping algorithm is replaced with spectral

deferred corrections. Parareal does not require modification of sequential application

code, and can be used as a wrapper around existing simulation software (Aubanel,

2011). The non-intrusiveness has been exploited with studies using a wide array of

different spatial discretisations in conjunction with Parareal, including finite differ-

ence (e.g. Croce et al., 2014; Lunet et al., 2018), finite volume (e.g. Steiner et al.,

2015), finite element (e.g. Fischer et al., 2005), spectral methods (e.g. Samaddar

et al., 2010), Monte-Carlo method (Samaddar et al., 2017), whilst Parareal has also

been used in conjunction with RANS turbulence models and detached eddy simula-

tions (DES) (Eghbal et al., 2017). We aim to make use of this non-intrusiveness in

our work, for two reasons. The main reason is that if Parallel-in-time methods are

to be useful to groups carrying out numerical dynamo simulations, the new methods

should not require current codes to be significantly changed. Secondly, it will allow

10

us to choose an efficient, established numerical solver for simulations in this thesis.

1.3 Dynamo problem

1.3.1 Introduction/Overview

The dynamo problem seeks to answer the question of where the magnetic fields

of the Earth, planets, Sun and stars come from. The idea that solar magnetic

fields were generated by the flows of conducting fluids was first put forward by

Larmor (1919). After the apparent setbacks to the theory caused by the work of

Cowling (1933) on anti-dynamo theorems, it was not until Backus (1958) that the

first working examples of fluid dynamos were found (Rincon, 2019). It is now widely

accepted that planetary and stellar magnetic fields are caused by dynamo action (e.g.

Braginsky and Roberts, 1995; Glatzmaier and Roberts, 1998; Cattaneo and Hughes,

2006; Gubbins, 2008; Tobias, 2021).

The equations governing dynamo action (e.g. Davidson, 2001; Tobias, 2021),

and Oberbeck-Boussinesq equations modelling convection (Chandrasekhar, 1961)

can be combined into the standard benchmark dynamo model (Jones, 2011; Chris-

tensen and Wicht, 2015), which will be used here to enable discussion of important

parameter spaces for natural dynamos and their simulations. The models and non-

dimensionalisations to be used in this thesis will be discussed in §3.1; we include the

following to aid discussion. The main equations are

Ek

(
∂u

∂t
+ u ·∇u

)
= −∇p+

1

Pm
(∇×B)×B

+ Ek∇2u + RamT
r

r0

− 2 (ẑ × u) , (1.2)

∂B

∂t
−∇× (u×B) =

1

Pm
∇2B, (1.3)

∂T

∂t
+ u ·∇T =

1

Pr
∇2T. (1.4)

Here, u is the velocity, t is time, p is the pressure, B is the magnetic field, r is

radial position vector, r0 and ri are the distances of the outer and inner radii, T is

the temperature, and ẑ is the unit vector in direction of rotation axis. Ek, Pm, Ram

and Pr are the Ekman, magnetic Prandtl, modified Rayleigh, and Prandtl numbers

11

respectively, defined by

Ek =
ν

ΩD2
Pm =

ν

η
Ram =

αg0∆TD

νΩ
Pr =

ν

κ
. (1.5)

Above, ν is the kinematic viscosity, Ω is the rotation rate, D = ro−ri is the thickness

between the inner and outer radii, η is the magnetic diffusivity, α is the coefficient

of thermal expansion, g0 is gravity at outer radius, ∆T is the temperature difference

between inner and outer radii, and κ is the thermal diffusivity. Some other non-

dimensional groups are common in the literature, as different formulations can be

found, an important one to note here is the magnetic Reynolds number

Rm =
UL

η
, (1.6)

where L = D is a characteristic length scale, and U is a characteristic velocity. Rm

measures the relative importance of magnetic advection and magnetic diffusion.

Equation (1.2) is the momentum equation, with the Lorentz Force

((∇×B)×B), thermally driven buoyancy (RamTr/r0), and Coriolis (2(ẑ × u))

terms included, (1.3) is the induction equation, and (1.4) is the temperature equa-

tion. When relevant boundary conditions are enforced (e.g. see §3.1.3), this system

sees a temperature difference drive convective fluid motions through the buoyancy

term. These fluid motions, if strong enough, can (though a number of conditions

need to be met, see §2.2.3) generate a magnetic field through the induction equation.

This magnetic field, once it has grown sufficiently, then affects the flow through the

Lorentz Force, which is an important factor in virtually all astrophysical dynamos

(Brandenburg and Subramanian, 2005). The three mechanisms described by the

buoyancy term, induction equation, and Lorentz force can be seen as the basis for

three major branches of study: fluid flow generation through convection, exponen-

tial growth of magnetic fields due to fluid motions (the kinematic dynamo problem),

and fully nonlinear dynamo action, where effects such as saturation (where growth

of the magnetic field is inhibited by nonlinear effects) become important factors.

Rotation is an extremely important factor in all three of these mechanisms, but will

be neglected in this work.

When tackling the problem of nonlinear magnetohydrodynamic dynamos,

Glatzmaier and Roberts (1998) state ‘numerical integration is generally the only way

forward’, and we will focus on numerical methods in this work. At the high Reynolds

numbers of most astro- and geo- physical bodies there are no analytical solutions.

The numerical problem itself is also incredibly difficult, however. As an example of

how difficult, Tobias (2021) reports calculations by P. Käpylä that show an accurate

12

Parameter Earth Sun Simulations

Length Scale ∼0.1m - 7× 106m ∼1cm− 7× 108m -

Time Scales 1 day - millions of years Hours - ∼109 years -

Ek ∼10−15 ∼10−15 − 10−13 10−7 - 10−8

Re ∼109 ∼1012 − 1014 ∼103 − 104

Pr ∼1 ∼10−7 ∼1

Rm ∼103 ∼106 − 1010 ∼103

Ra ∼1023 ∼1016 − 1020 ∼1012 − 1015

Table 1.2: Typical time/length scales of the dynamo problem, along with typical
values of nondimensional numbers in the Earth, Sun and simulations. References
can be found in the text. Ek, Re, Pr, Rm, and Ra are the Ekman, Reynolds, Prandtl,
magnetic Reynolds, and Rayleigh numbers, respectively.

simulation of our solar dynamo would require 1022 W, or the power output of a

small star. The problem is intrinsically difficult to simulate, due to the vast range

of length and timescales which are present in geo- and astro- physical dynamos.

The lengthscales relevant in the earth range from the thickness of boundary layers

(∼ 0.1m) to the diameter of the core (∼ 7× 106m) (Matsui et al., 2016), while

timescales range from the rotation period of one day, through the magnetic diffusion

time (around 25,000 years), the reversal timescale of a few hundred thousand years

(Davies et al., 2011), to the changes in reversal frequency which happen over millions

of years (Biggin et al., 2012). The sun also exhibits a vast range of timescales,

with the most well documented being the 11 (or 22) year cycle (Ossendrijver, 2003;

Hathaway, 2015; Tobias, 2021). The life time of solar granules and super granules

are of the order of hours (Muller et al., 1992; DeRosa and Toomre, 2004), whilst

the equatorial rotation period is 26 days (Priest, 1982), and the diffusive timescale

is ∼ 109 years (Tobias, 2021). The length scales of the sun range from it’s radius of

6.96×108m through to the typical width of a sunspot (3×107m (Priest, 1982)), the

size of granules and super granules (∼ 106 m, (DeRosa and Toomre, 2004)), down

to turbulent length scales, as the internal motions are highly turbulent (Brun and

Browning, 2017). The Kolmogorov scale in the bulk of the solar convection zone is

estimated to be ≈ 1cm (Kupka and Muthsam, 2017).

Because of numerical difficulties already mentioned, and because direct

numerical simulations remain probably the most important tool to further under-

standing of the process, they are run with non-dimensional parameters which are

far from those found in the systems we wish to study. The Ekman number, which

determines the importance of rotation, is thought to be ∼10−15 − 10−13 in the Sun

13

(Jones et al., 2010), and ∼10−15 in the Earth, far away from values of ∼10−7 found in

the most recent simulations (Schaeffer et al., 2017). Pm, which determines the rela-

tive importance of viscous/magnetic diffusion, is around six orders of magnitude too

large in simulations of the Earth. The Reynolds number (which measures the level

of turbulence) is ∼109−1014 in stars (Dubrulle, 2008, 2011), ∼1012−1014 in the Sun

(Jones et al., 2010), ∼109 in Earth’s core, and ∼103 in DNS simulations (King and

Buffett, 2013), though has reached ∼104 in quasi-DNS simulations (Aubert, 2019).

Pr, which compares the relative kinematic and thermal diffusivities, is thought to

be ∼10−7 in the Sun (Jones et al., 2010), ∼1 in the Earth, and ∼1 in simulations

(e.g. Matsui et al., 2016; Schaeffer et al., 2017). Rm is ∼106−1010 in the Sun (Jones

and Roberts, 2000), ∼103 in the Earth’s core (Davies et al., 2015) and 103 in global

simulations of the Earth/Sun, whilst more simplified studies have reached far higher

Rm in (for example) 2.5D simulations. The Rayleigh number determines how much

thermal driving is present, and is ∼1016−1020 in the Sun (Jones et al., 2010), ∼1023

in the Earth (Christensen and Aubert, 2006; Jones, 2007), and up to ∼1012 in state

of the art dynamo simulations, whilst pure Rayleigh-Bénard convection studies have

reached 1015 (Iyer et al., 2020). The above parameters are summarised in table 1.2,

a summary of some important numerical dynamo studies is included at table 1.3,

whilst a review and further details can be found in §2.2. The progression of dy-

namo studies over time seen in table 1.3 show an increase in resolutions due to extra

available computing power. These increases in resolution allow for more Earth-like

parameters to be simulated. Keeping long in-simulation durations for these studies

(in order to study long term behaviour) becomes a challenge as the timestep size

has to reduce with increased resolution, and very long runtimes are required, even

when thousands of CPU’s are employed.

In an effort to reduce the inherent difficulty in numerically simulating the

dynamo problem, methods have been used which aim to reduce the required nu-

merical resolutions. Hyperdiffusion replaces the diffusive terms of the momentum

and induction equations with terms of the form (∇2 − φ2∇4), which, for small con-

stant φ acts as a filter, damping the smallest scales (Jones, 2008). This raises a

number of issues; it is usually in practice applied only in specific directions, intro-

ducing artificial anisotropy (Christensen and Wicht, 2015), whilst it can also wipe

out small-scale behaviour, on which dynamo action can depend (Jones, 2008). It

is also argued that any misrepresentation of magnetic diffusion, such as hyperdif-

fusion, numerical fixes or using the kind of artificial numerical diffusion inherent in

(for example) finite difference schemes, should be avoided in dynamo calculations

14

Ref Spatial method Approx
Resolution

Selected Parameters

Glatzmaier
and Roberts
(1995b)

Spherical harmon-
ics and Chebyshev.
No inertia.

49 x 32 x 64 40,000 years, Pr = 5000, 2000
CPU-hours

Christensen
et al. (2001)

Various. 250 x 92 x 44 15 viscous diffusion times, Ek =
10−3, Pr = 1, Ra = 2RaC (Ra
modified for rotation).

Sreenivasan
and Jones
(2006)

Spherical harmon-
ics and finite differ-
ence.

60 x 48 x 60 Ek = 10−4, Ra = 750 (modified
Ra, using magnetic diffusivity)

Christensen
and Aubert
(2006)

Spherical Harmon-
ics and Chebyshev.

97 x 224 x
224

Ek = 3×10−6, 50 turnover times,

Kageyama
et al. (2008)

Yin-Yang finite dif-
ference.

511, 514,
1538

Ek = 2.3× 10−7, 4096 processors,
ran for 430 sound wave crossing
times,

Sakuraba
and Roberts
(2009)

Spherical harmon-
ics and Chebyshev.

255, 255,
160

Ek = 5× 10−7, Ra = 3.2× 1010.

Miyagoshi
et al. (2010)

Finite Difference,
yin-yang

511, 514,
1538

Ek = 2.3 × 10−7, 0.17 magnetic
diffusion times.

Matsui et al.
(2016)

Various. up to 512,
385, 769

Ek = 10−3, (modified) Ra = 100,
Pr = 1, Pm = 5.

Aubert et al.
(2017)

Spherical harmon-
ics and Chebyshev,
hyperdiffusion.

2496, 640,
640

Ek = 10−8

Schaeffer
et al. (2017)

Spherical harmon-
ics and finite differ-
ence, DNS.

1280, 1504,
2688

Ek = 10−7. Used up to 10 million
CPU-hours.

Earth -
Davies et al.
(2011)

- - Ek = 10−9, Ra = 103RaC , 13,392
days on 54,000 CPU’s for one
magnetic diffusion time.

Table 1.3: Summary of selected dynamo studies. Resolutions are for number of
points in radius, colatitude, and azimuth, respectively. For more details see §2.2.

15

as there is a strong chance it will lead to incorrect results (Tobias, 2021). Using

standard diffusion, rather than hyperdiffusion can ensure unbiased dynamics at all

scales (Schaeffer et al., 2017). The use of hyperdiffusion remains an open question

however, with recent studies suggesting restriction of hyperdiffusion to the highest

modes using a cut off give comparable results to pure DNS, as the smallest length

scale affecting dynamo action scales as Rm−1/2 (Aubert et al., 2017; Aubert, 2019).

Direct numerical simulations of dynamo systems with high spatial resolutions nev-

ertheless remain a highly active area of research and are ultimately the benchmark

for large eddy simulations.

The high spatial resolution required also affects the required time resolution

through (for example) the CFL condition (Courant et al., 1928) (see §3.2.2 for further

discussion). Higher spatial resolution requires smaller timestep sizes, the specific

form of this restriction changes with the numerical method, but as a general rule

the timestep must be small enough that variable properties do not cross more than

one grid point in a single timestep. In addition to the CFL constraint on timesteps,

the inherent large range of timescales present in geo- and astro- dynamo systems

require lots of small timesteps to accurately resolve the time dimension. A quick

calculation shows that one magnetic diffusion time of the earth with timesteps of a

single day would require around 9 million timesteps!

For dynamo simulations, time stepping does not seem to have gained the

same amount of attention as spatial discretisation in the literature. The work by

Livermore (2007) seems to be the exception to this rule, while most other studies

rarely comment on timestepping methods. For an example of this, the large scaling

study of Matsui et al. (2016) did not investigate the performance effects of time

stepping at all, using a fixed timestep even for codes where variable timestepping

was available. Rather, most numerical improvements have been sought by optimising

spatial discretisations or decompositions. This is understandable given the huge

parameter space in numerical dynamo studies, but it does leave a gap in knowledge

that it would be interesting and useful to study.

1.4 The Kinematic Dynamo

Due to computational difficulty of full dynamo studies, until recently, kinematic

dynamo modelling was the workhorse of solar dynamo modelling (Charbonneau,

2020). As an example of the motivation behind the simplifications used in many

of these simulations, pseudo-2D kinematic dynamos allow investigation into higher

16

Rm regimes by concentrating all numerical resolution and computing power into

just two spatial dimensions (Rincon, 2019) (this is further discussed in §2.2.3). We

begin by outlining the kinematic dynamo problem, before moving on to review some

important theoretical and kinematic dynamo studies. For a comprehensive review

of these subjects, see for example Rincon (2019) and Tobias (2021). The kinematic

dynamo problem has been defined in different ways in the literature. The term most

commonly refers to the problem of seeking pre-determined velocity fields (u) which

lead to a growing magnetic field (B) in the (non-dimensional) induction equation

∂B

∂t
= ∇× (u×B) +

1

Rm
∇2B (1.7)

∇ ·B = 0, (1.8)

where the magnetic Reynolds number Rm determines the relative importance of

magnetic advection/diffusion (Roberts, 1967). Kinematic dynamos have also been

used as the description of studies which include the fluid flow equations, but sets

the Lorentz force j ×B to zero. The early stage of fully non-linear dynamo studies

is also often described as kinematic (e.g. Jones and Roberts, 2000). During this

kinematic stage, magnetic energy is small compared to the kinetic energy of the

fluid, so that the Lorentz force has little influence on the flow and so the magnetic

field grows or decays exponentially, as in kinematic studies.

The induction equation is linear in B, so a given velocity field will cause

an initial small magnetic field to either grow or decay exponentially. The most

commonly studied kinematic case is for a steady u, so that, for a self-sustained

dynamo in a bounded domain, solutions of the form

B = B0 (x, y, z) eγt, B0 → 0 as x→∞ (1.9)

can be sought (Jones, 2008). If a mode with positive growth rate γ exists, then the

magnetic field will grow exponentially.

Further mathematical details of kinematic dynamos, such as a derivation

of the induction equation can be found in §3.1, non-dimensionalisation is shown in

§3.1.2. A review of recent kinematic dynamo literature, with details of anti-dynamo

theorems and simplifying assumptions, can be found in §2.2.3.

17

1.4.1 Numerical Considerations

There are two main strategies for numerically solving the kinematic dynamo,

timestepping and solving the eigenvalue problem directly. Both of these strate-

gies typically employ spectral methods (Jones, 2008). Eigenvalue solution is most

useful in the case of prescribed flows, whilst timestepping is more common in driven

flow dynamos. Simulations are most often carried out in either spherical or Carte-

sian geometry. Fourier series and polynomials such as Chebyshev are employed in

Cartesian geometry, whilst spherical harmonics are used for angular discretisation

in spheres. In radius, research has been carried out to investigate the optimal choice

of spectral basis (Livermore and Jackson, 2005; Livermore et al., 2007b), while Li

et al. (2010) investigated the use of the Galerkin method using jacobi polynomials

for the eigenvalue problem. Marti and Jackson (2016) investigated the use of Jones-

Worland polynomials for the radial expansion of full sphere magnetohydrodynamic

calculations, removing the artificial singularity found at the origin of similar discreti-

sations. Gómez et al. (2005) introduced a parallel solver for MHD simulations using

FFTW parallel transposes to allow high parallel efficiency, which has been used in

a number of subsequent studies (e.g. Alexakis, 2011; Dallas and Tobias, 2018). Liv-

ermore (2007) performed benchmark testing of a number of timestepping schemes,

concentrating on the implementation of the Exponential Time Differencing (ETD)

which solves the linear (and in MHD stiff) part of the problem exactly. He found

that the relatively small timestep size demanded by the nonlinear part of the prob-

lem meant that large accuracy gains were not realised, though ETD was thought

likely to be more competitive at higher than 2nd order. Recent developments include

Väisälä et al. (2021) who investigated the use of GPU’s to speed up simulations of

MHD flows, though this was used in conjunction with the finite difference PENCIL

code.

1.5 Rayleigh-Bénard Convection

The dynamos of the Earth and Sun are believed to be driven by convective fluid flows

(Busse, 2002; Jones et al., 2011), so a full understanding of the dynamo problem

requires investigation into convection. The simplest and most well understood prob-

lem in this field is Rayleigh-Bénard convection (RBC), which describes the buoyancy

driven flow of a Boussinesq fluid heated from below and cooled from above (Ahlers

et al., 2009). Convection is used as the driving force in geo- and astro- physical dy-

namo models (e.g. Glatzmaier and Roberts, 1995a; Christensen et al., 2001; Matsui

18

et al., 2016; Glatzmaier, 1985; Käpylä et al., 2012; Dietrich and Jones, 2018). In

order to better understand the underlying physical mechanisms behind convective

dynamo action, dynamos driven by Rayleigh-Bénard convection have been exten-

sively studied, for example see Childress and Soward (1972); Jones and Roberts

(2000); Stellmach and Hansen (2004); Cattaneo and Hughes (2017). The historical

and ongoing interest in dynamos driven by Rayleigh-Bénard convection further jus-

tifies starting investigations of novel numerical methods in dynamos with studies of

RBC.

1.5.1 Introduction and definition of Problem

In this section, we will first define and outline the problem of Rayleigh-Bénard

convection. We will introduce some of the important quantities applicable in the

area, before looking at some of the open questions and reviewing some recent studies

in the area. Mathematical details, such as non-dimensionalisation and details on

calculating relevant quantities will be shown in §3.1.3.

RBC describes the fluid flow of a liquid driven by the temperature difference

of two horizontal plates separated by a distance h. The bottom plate is ∆T hotter

than the top plate, and local density changes caused by the temperature gradient

cause convection to occur above a critical level, defined as the critical Rayleigh

number (Rac). Figure 1.4 shows some representative snapshots of the temperature

field in a typical 2D RBC flow, for a selection of Ra. The non-dimensional Oberbeck-

Boussinesq equations modelling non-rotating Rayleigh - Bénard convection can be

written as
1

Pr

(
∂u

∂t
+ u ·∇u

)
= −∇p+ RaT · ẑ +∇2u, (1.10)

∇ · u = 0, (1.11)

∂T

∂t
+ u ·∇T = ∇2T, (1.12)

with suitable boundary conditions required for velocity and temperature. Here, ẑ

is the unit vector in the vertical and Ra is the standard Rayleigh number

Ra =
αgh3∆T

νκ
. (1.13)

The Boussinesq approximation is made, which ignores the effects of variations in

19

0.0 0.5 1.0 1.5
x

0.4

0.2

0.0

0.2

0.4

z

0

0.2

0.4

0.6

0.8

1.0

(a) Ra = 2× 103

0.0 0.5 1.0 1.5
x

0.4

0.2

0.0

0.2

0.4

z

0

0.2

0.4

0.6

0.8

1.0

(b) Ra = 105

0.0 0.5 1.0 1.5
x

0.4

0.2

0.0

0.2

0.4

z

0

0.2

0.4

0.6

0.8

1.0

(c) Ra = 2× 106

0.0 0.5 1.0 1.5
x

0.4

0.2

0.0

0.2

0.4

z

0

0.2

0.4

0.6

0.8

1.0

(d) Ra = 107

Figure 1.4: Representative temperature field snapshots of Rayleigh-Bénard Convec-
tion at different Rayleigh numbers (Ra).

density except for in the buoyancy term (Bodenschatz et al., 2000). Chandrasekhar

(1961) used linear theory to calculate the critical Rayleigh number (Rac) required

for convection to occur, for a variety of boundary conditions, for example, with rigid

boundaries, Rac = 1707.762. The Nusselt number (Nu) measures convective heat

transport, which has a minimum of 1, representing purely conductive heat transfer.

Figure 1.5 shows the horizontally averaged temperature profile for the conductive

state (Ra < Rac), and for increasing values of Ra, showing that temperature gra-

dients become sharper at boundaries, with temperatures in the bulk of the fluid

becoming more mixed, as Ra is increased. The relationship between the heat trans-

fer (represented by Nu) and the amount of thermal driving (represented by Ra) is

a key question of convective studies. We give a brief insight into the issues here,

for more in depth discussion see for example Grossmann and Lohse (2000); Ahlers

et al. (2009); Plumley and Julien (2019). Relationships of the form

Nu ∼ RaγNu (1.14)

are sought, with values of the exponent γNu most commonly given as ≈ 2/7 (e.g.

Castaing et al., 1989; Shraiman and Siggia, 1990; Cioni et al., 1997) for moderate

Ra (6 1010, (Long, 2020)), with a transition to the classical scaling law Nu ∼ Ra1/3

for Ra > 1010, evidenced by theory (Malkus, 1954), experiment (e.g. Ahlers et al.,

2009), and numerical studies (e.g. Iyer et al., 2020).

20

0.0 0.2 0.4 0.6 0.8 1.0

Temperature

−0.4

−0.2

0.0

0.2

0.4

z

conductive

Ra=2×103

Ra=5×103

Ra=1×105

Ra=1×107

Figure 1.5: Horizontal- and time- averaged temperature profiles plotted against
vertical coordinate for different Ra, compared with the conductive background state.

Although we have approached the problem of RBC as a simplified subset

of the dynamo problem, RBC is a very active area of research with many open ques-

tions in its own right. One major debate is the point at which the ultimate regime

(Grossmann and Lohse, 2000) of convection will be reached, whereby the bound-

ary layers become fully turbulent and heat transfer is enhanced with Nu ∼ Ra1/2.

Simulations using upto 2.2× 1010 spatial mesh points were employed by Iyer et al.

(2020) in an attempt to shed light on this issue, highlighting the extreme compu-

tational requirements of state of the art RBC simulations. In order to definitively

find the point at which the ultimate regime is reached, simulations at higher and

higher Ra will be required. Increased Ra requires increased spatial resolution and

reduced timesteps, and so parallelisation in space and time would be useful tools

to help reach these more extreme parameter ranges. Finding increased performance

through Parareal for RBC simulations would thus be a useful result in its own right,

in addition to the requirements for dynamo studies.

Much work has been done to attempt to speed up simulations of RBC

flows, primarily to enable simulations at higher and higher Ra. A standard method

of speeding up simulations of RBC is to ‘bootstrap’ using the statistically steady

state of a simulation at a lower Ra as the initial condition for higher Ra studies

(e.g. Verzicco and Camussi, 1999; Johnston and Doering, 2009; Long et al., 2020).

This has the effect of reducing the ‘transients’ whereby the flow initially overshoots

after growing from small scale instabilities, and reduces the simulation duration

required to obtain a statistically stable state. This can reduce computational time

considerably, but has limitations. A configuration with more than one statistically

stable state may be forced into a particular state by the ‘imprinting’ of previous

lower energy solutions, whilst it may have reached a different state if started from

21

different initial conditions (Anders et al., 2018). Other methods to speed up studies

of convection include attempting to create initial conditions likely to be close to the

stable state of the system, by (for example) solving a simpler problem such as an

axisymmetric field in the case of a 3D cylinder (Verzicco and Camussi, 1999), or

linear eigenvalue solution in the case of a plane layer (Hurlburt et al., 1984). Anders

et al. (2018), extending ideas of Hurlburt et al. (e.g 1986), investigated techniques

to accelerate the evolution of simulations by adjusting the mean thermodynamic

profile within the domain. Kooij et al. (2015) investigated the speeds of different

numerical codes for studies of RBC. In Kooij (2017) work on making the parallel

in time algorithm Paraexp work in a nonlinear setting was carried out with hope

of eventually applying this method to RBC and similar flows. The Paraexp-EBK

(exponential block Krylov) method combined Paraexp with a waveform relaxation

method to allow non-linear PDE’s to be solved, and found that limited speedup is

possible.

Understanding of many aspects of RBC has been sought through studies

in the literature. The relevance of 2D RBC studies to more realistic 3D studies

was investigated by Schmalzl et al. (2004) and later by van der Poel et al. (2013),

who found that moderate to high Pr flows showed good agreement between 2D- and

3D- simulations, but that at lower Pr (< 1), significant differences emerged. The

effects of rotation have also been investigated thoroughly. King et al. (2013) looked

at three regimes, non-rotating, weakly rotating and rotationally constrained. They

found that even in weakly rotating fluids the viscous boundary layer thickness (gets

smaller/bigger) and horizontal length scales (get smaller) are affected by rotation.

In the rotationally constrained regime, the thermal boundary layer thickness, mean

temperature gradients, and flow speeds are also affected by rotation. Johnston and

Doering (2009) investigated the differences between fixed temperature and fixed flux

boundary conditions, finding that as Ra increases, the heat transfer, represented

by Nu became equivalent in both cases. Pandey et al. (2018) studied long-term

numerical investigations at very low prandtl number to resolve the highly inertial

turbulence properly using Nek5000. Stevens et al. (2018) investigated the generation

of thermal superstructures, by simulating a domain with very high aspect ratio,

reducing the chances of horizontal structures being limited by the domain size.

1.6 Discussion

We have identified that there is a need for more parallel performance for dynamo

simulations. We have further identified that the time domain would be a good place

22

to look, due to the combination of very short and very long timescales, along with

the CFL restriction becoming prohibitive as spatial resolution increases. We seek

to choose which Parallel-in-time method to use first as a prototype for the dynamo

problem. Further, we need to find a problem with enough characteristics of the

dynamo that results will give meaningful information for the full dynamo problem,

whilst being computationally cheap enough to run many simulations, and simple

enough that results can be analysed usefully.

One of most important things in choosing a PINT method is non-

intrusiveness (Friedhoff et al., 2019). In this regard, MGRIT and Parareal are

preferred options (over PFASST, which replaces the time stepper with SDC, and

RIDC, which replaces it with a parallel alternative). The applicability of the method

is also very important. Parareal, MGRIT, PFASST and RIDC are all quite general

methods, which can be applied to linear and non-linear problems, and have been

coupled with many types of spatial solver. REXI, ParaEXP and others, whilst

perhaps offering better performance in advection dominated problems, are only ap-

plicable to linear problems; until well tested non-linear versions of these algorithms

are available, their use for the dynamo problem will likely be limited. The po-

tential performance of a method should also be taken into account. However, no

comprehensive study, comparing performance of parallel-in-time methods has been

carried out, due to it’s inherent difficulty (see §2.1.2 for discussion). Since Parareal

is equivalent to MGRIT for nonlinear 2-level setups, the use of Parareal in the first

instance is justified, and if good performance is found, further testing with MGRIT

or PFASST would be a logical next step.

The full nonlinear dynamo problem would be a poor choice for a first inves-

tigation into parallel-in-time methods. The high degree of non-linearity, epitomised

by the problem of saturation (see §2.2.3 for details) means that it would be difficult

to pick a benchmark problem. There are also a large number of control parameters,

and observing how performance changed with each parameter would be very time

consuming. Simulations would also be very expensive, both in terms of CPU-hours

and in real time durations. Given a proper study will require multiple runs and

scaling tests, the simulations should be as cheap as reasonably possible. The kine-

matic dynamo is thus a good choice. Examples of 2.5D dynamos (introduced in

§2.2.3), which can be simulated in just two dimensions, reduces the computational

complexity, whilst complex behaviour of the magnetic field is still present.

RBC has been shown to be an interesting and difficult problem in its own

right. Much research has been carried out to find the best possible numerical meth-

ods, with a benchmark by Kooij et al. (2015), and work by (for example) Anders

23

et al. (2018) on finding quicker ways of obtaining thermally relaxed states. Assess-

ing the potential of parallel-in-time methods for Rayleigh-Bénard convection is thus

useful, and timely, given the current debate around the ultimate regime and recent

work on improved numerical methods. This is in addition to its strong link to the

dynamo problem. Convection is an important part of the dynamo problem, but

removes some of the complexity, such as the problem of saturation, and it can be

solved in fully 2D simulations, allowing for many scaling tests to be carried out in

a reasonable amount of CPU-hours and real time.

24

1.7 Aims and Objectives

The overall aim of this thesis is to see how much parallel speed up and efficiency can

be obtained when using Parareal to speed up simulations of the kinematic dynamo

and Rayleigh-Bénard convection.

The questions we seek to answer in this work are as follows:

1. Can Parareal speed up simulations of kinematic dynamos?

(a) Confirm that Parareal can accurately reproduce numerical results, e.g.

growth rates, magnetic field morphology.

(b) Investigate the amount of speed up and parallel efficiency that can be

obtained using Parareal for the kinematic dynamo.

(c) Investigate how Parareal performance changes with Rm - over what range

of values is Parareal useful?

2. Can Parareal speed up simulations of Rayleigh-Bénard convection?

(a) Confirm that Parareal can accurately reproduce numerical results, e.g.

nusselt number, growth rates, critical Rayleigh number.

(b) See how much speed up and efficiency can be obtained using Parareal for

Rayleigh-Bénard Convection.

(c) Investigate how Parareal performance changes with Ra - over what range

is it useful - will it help at very high Ra?

In Chapter 2 we provide a survey of recent literature in the areas of dynamo

simulations and Parallel-in-time methods. Chapter 3 explores the mathematical

background of dynamos, convection, spectral methods, timestepping and Parareal.

In Chapter 4 we report results of our work on the kinematic dynamo, and Chapter

5 contains results of our work on Rayleigh-Bénard convection. Chapter 6 provides

a discussion of our results and possible future work.

25

Chapter 2

Literature Survey

In this chapter, we give a comprehensive background of Parallel-in-time methods and

the dynamo problem. We do this through a review of recent literature, beginning

with Parareal and other parallel-in-time methods. We then review numerical studies

of the dynamo problem, in geo- and astro- physical settings, followed by theoretical

studies of dynamo action.

2.1 Parallel-in-time

We will begin by looking at modifications that have been made to Parareal, to

attempt to alleviate some of the shortcomings discussed in §1.2. We will then in-

troduce and describe a number of other parallel-in-time methods. Finally, we will

review a number of recent studies carried out using parallel-in-time methods, con-

centrating on reported speed-ups. To highlight the number of diverse applications

of Parallel-in-time methods, we organise the review in terms of application area.

2.1.1 Modifications to parareal

A number of modifications have been proposed to the Parareal algorithm. They can

be broadly split into two types: changes to the algorithm to make it more effective

for different types of problems, and optimisations to improve its performance. We

will first discuss the algorithm changes. Farhat et al. (2006) introduces Parallel

Implicit Time-integrator (PITA). Gander and Petcu (2008) uses a Krylov subspace

built from previous coarse iterations to speed up convergence, and shows that PITA

26

and Krylov-subspace-enhanced Parareal (KSE-Parareal) are equivalent for linear

problems. Ruprecht and Krause (2012) introduced a partially split method whilst

investigating the feasibility of using KSE-Parareal for numerical weather prediction.

Dai and Maday (2013) investigated a version of Parareal using projection on to

a manifold which allowed the method to remain stable for first and second order

hyperbolic problems. Gander et al. (2019) introduced Parareal with the ability to

converge for problems with discontinuities, while Maday and Mula (2020) investi-

gated adaptive Parareal accuracy, using low accuracy for early fine solvers, making

them cheaper.

For optimisation changes to Parareal, we begin with Aubanel (2011), who

introduced pipelined Parareal, allowing processors to start computing the fine so-

lution as soon as they had finished the coarse solution for their own time slice,

rather than waiting for the whole coarse run to be completed. Berry et al. (2012)

introduced IPS event-based Parareal. This method allows the number of time slices

to be different to the number of processors available for parallelisation in space.

Two benefits of this approach are for fine and coarse solvers of the same time slice

to compute concurrently, and reducing the amount of idle processor time. Nielsen

and Hesthaven (2016) examined fault tolerance in Parareal, extending the work of

Aubanel (2011). In Nielsen et al. (2018) the communication aware adaptive Parareal

method was introduced, to balance processor utilization and convergence. Eghbal

et al. (2017) used Parareal as an accelerator for CFD simulations, using a coarse

run to generated initial conditions, several Parareal iterations to reduce transients,

and a final fine run to find the statistically steady state.

PITA and KSE-Parareal offer some advantages over Parareal, however,

the results obtained in the literature rely on the use of an implicit coarse propa-

gator allowing for large coarse time-steps (Ruprecht and Krause, 2012), and the

nonlinear version of PITA relies entirely on using an implicit coarse solver. The

algorithm would thus require significant modification of existing codes that did not

already have the option of fully implicit time stepping, like dynamo codes, which

generally use IMEX timestepping methods, and would be very computationally ex-

pensive in (for example) spectral codes. A significant amount of time and effort has

been spent optimising the numerical codes used in dynamo simulations, and initial

studies of parallel-in-time methods should seek to be compatible with these codes,

if widespread usage is to be obtained. The use of pipelined Parareal is relatively

straightforward, and is now used in the majority of Parareal studies, and we use

this version in our work. IPS offers extra computational efficiency in Parareal, and

if initial studies of Parareal show promise, then switching to IPS for production

runs would be the optimal choice. Fault tolerance can be safely ignored for small

27

to moderate numbers of processors, and should only become relevant in production

runs at extremely high numbers of processors. The work of Eghbal et al. (2017) is

very interesting, and if Parareal shows good convergence properties for the problems

investigated, should definitely be investigated, as should the adaptive accuracy of

the fine solver described by Maday and Mula (2020).

2.1.2 Other Pint methods

There are a number of other Parallel in time methods in the literature, and we will

introduce a few below. For a more thorough history of Parallel-in-time methods,

see for example Gander (2015). Multigrid reduction in time (MGRIT) (Friedhoff

et al., 2012) uses the ideas of traditional multigrid solvers, using V- and F- cycles

which coarsen and relax the solution in time rather than in space. MGRIT can

be applied to non-linear problems by use of a full approximation scheme (FAS) to

move data between different levels. Using MGRIT with a FAS and only two levels is

equivalent to using the Parareal algorithm; Parareal can be seen as a special case of

MGRIT using only two levels. PFASST (e.g. Minion and Williams, 2008; Emmett

and Minion, 2012; Speck et al., 2012; Ruprecht et al., 2013) replaces the standard

time stepper with spectral deferred corrections (SDC). SDC treats a time step as a

Picard integral

φ(t) = φ0 +

∫ t

0

f (τ, φ(τ)) dτ, (2.1)

using spectrally determined quadrature nodes (e.g. Gauss-Lobatto nodes) to com-

pute accurate approximations to the time integral in an iterative process using a

calculation for the residual. PFASST can be seen as using Parareal with SDC

timestepping for both coarse and fine steppers, with the FAS used to couple the

different levels. PFASST also allows information from fine levels to improve the

coarse approximation. Intertwining the SDC sweeps on the different levels with the

outer iteration allows PFASST to achieve better parallel efficiency than Parareal.

ParaEXP (Gander and Güttel, 2013) can allow parallel time integration

for linear time stepping problems. Overlapping time intervals are used, and inho-

mogeneous problems are stepped through time in parallel over short time slices.

The result from these intervals are used as initial conditions for homogeneous sim-

plifications, which are computed to the end time very quickly using exponential

propagation. Due to linearity, the solutions of each process can be summed at the

end to obtain the full solution. A non-linear extension was proposed in Gander

et al. (2017), which performed well for small non-linear terms, but became less ef-

ficient as the non-linear term became larger and started to dominate, which would

28

make their use in the dynamo problem limited. Kooij et al. (2018) used a pres-

sure free projection of the Navier-Stokes equation to enable ParaEXP to be used,

and estimated that moderate parallel speed ups could be possible, if communica-

tion time was neglected. REXI (rational approximation of exponential integrators)

(Haut et al., 2015; Schreiber et al., 2018) seeks to solve time integration problems

by parallelising computation of the matrix exponential through a rational approx-

imation. The method is at present only applicable to linear hyperbolic systems

(e.g. rotating shallow water equations) and extension of the method to non-linear

equations is not necessarily straightforward. One proposed solution is to incorpo-

rate asymptotic Parareal (Haut and Wingate, 2014), which replaces G with a locally

asymptotic approximation of the original PDE. RIDC (Christlieb et al., 2010) and

parallel high-order Runge-Kutta methods (e.g. Van Der Houwen and Sommeijer,

1990; van der Houwen and Sommeijer, 1991; Sommeijer, 1993; Van der Houwen

and Sommeijer, 1993) allow for parallelisation on multicore architectures for single

timesteps. The usually sequential stages of (for example) Runge-Kutta integrations

are reformulated such that they can be computed in parallel. They allow for smaller

scale parallelisation on up to 12 processes in time (Ong and Schroder, 2020). A

similar approach was combined with PFASST in Schöbel and Speck (2020) to create

PFASST-ER (PFASST with Enhanced ConcuRency), which is parallelised over a

single time step and across the entire time domain.

It is incredibly difficult to directly compare performance of parallel in time

solvers - to the authors knowledge only one direct comparison of different PINT

methods has been published - Benedusi et al. (2020). In fact, it is difficult to accu-

rately determine the useful performance of even a single parallel-in-time method! A

recent paper, “Twelve Ways to fool the masses when giving parallel-in-time results”

(Goetschel et al., 2021) highlights a number of common problems. PINT speed ups

are not always benchmarked against the best serial solver, e.g, for many PFASST

studies, speed up is measured against serial SDC, when better serial timesteppers

may be available. Different PINT methods have different strengths and weaknesses,

so no suite of benchmark tests has been published in the area of parallel in time.

For this reason, we concentrated mainly on usability rather than performance when

choosing a parallel-in-time method in the first instance, making performance com-

parisons of different methods a secondary objective. A robust comparison of different

algorithms on a complex problem would be a useful addition to the field, however.

29

2.1.3 Applications of Parallel-in-time

Parallel-in-time algorithms have been used in many application areas, we will discuss

some of the highlights below, for recent review see for example Gander (2015); Ong

and Schroder (2020). Early studies concentrated on convergence properties rather

than speedups on high performance computers (HPC’s), such as Baffico et al. (2002),

who tested Parareal for a 32 particle molecular dynamics system. Satisfactory con-

vergence was found within 4 iterations. Blouza et al. (2011) studied chemical kinetics

in relation to ozone production, and found a speedup (how much quicker the parallel

simulation is than the serial simulation) of 31x with 170 processors. Bal and Maday

(2002) investigated the use of Parareal to speedup simulations of financial markets,

concentrating on the Black-Scholes equations for an American put. They found a

speedup of 6.25x using 50 processors. An investigation into European pricing op-

tions was carried out by Magoulès et al. (2018), finding a speedup of 3.5x with 64

processors. Parareal was applied to time-dependent Schrödinger equation in Ma-

day and Turinici (2003), with an application to quantum control. A computational

model estimated speedups of 10x would be possible.

Parallel-in-time methods have been applied in a diverse number of appli-

cations. Kreienbuehl et al. (2015) applied Parareal to the brick and mortar problem

as an analogue for skin transport, finding speed-ups of 6x with 32 processors. The

collapse of a black hole was successfully sped up by Parareal in Kreienbuehl et al.

(2017), finding speed-ups of 30x using 128 cores. The study found Parareal repro-

duces Choptuik’s black hole mass scaling law in an Einstein-Klein-Gordon system.

Static mechanics were studied in Hessenthaler et al. (2018), where the oscillations

of a linear beam attached to a wall were sped up by 5.25x with 192 processors using

the MGRIT algorithm. Optimal control problems have been studied using Parareal

(Maday et al., 2013), PFASST (Götschel and Minion, 2018), and MGRIT (Günther

et al., 2018), while Gander et al. (2020) created the ParaOpt algorithm, based on

Parareal, to deal with the same problem area. Simulations of a nuclear light water

reactor were attempted by Baudron et al. (2014), a speedup of 2x with 10 processors

was obtained using Parareal. Simulations used for robotic manipulations were sped

up by Parareal in Agboh et al. (2019) using a simplified physics model for the coarse

solver, whilst in Agboh et al. (2020) a deep neural network was used as the coarse

solver in the same problem, reducing its computational complexity.

MGRIT has recently been applied to speedup the training of machine learn-

ing algorithms. Schroder (2017) parallelized over training epochs, with a model pre-

dicting potential speed-ups of over 6x, whilst Gunther et al. (2020) parallelised over

30

the layers. They achieved a training performance similar to that of traditional meth-

ods, but with layer-parallelism, generating a speed-up of 16x using 512 cores on the

MNIST training data. Much work has been carried out on electrical systems. Gur-

rala et al. (2015) applied Parareal to simulations of the New England 10-generator

39-bus system, finding 7x speed-ups with 60 processors. Friedhoff et al. (2019) used

MGRIT with the eddy current model in a copper wire, finding 3x speed-up with

128 processors, while Bolten et al. (2020) used the same method for simulations of

a 2D induction machine, finding speed-ups of 21x with 256 processors. An N-body

particle simulation of a moving vortex sheet was simulated using PFASST in Speck

et al. (2012) and Speck et al. (2014), where the former found speedup of 6x over

32 time slices, allowing the spatially saturated PEPC Barnes-Hut tree code to scale

out to 262,144 cores of the Blue Gene computer system.

A number of studies have investigated the ability of Parallel-in-time meth-

ods to speedup simulations of fluid flow. Fischer et al. (2005) was the first application

of Parareal to the Navier-Stokes equations, looking at 2D flow past a cylinder at

Reynolds numbers of Re = 200 using finite elements and Re = 7500 using spectral

elements. In this work, convergence rather than speedup was measured, and conver-

gence in only 2 or 3 iterations was found. Croce et al. (2014) performed scaling tests

of Parareal for 3D cavity driven fluid flow at Reynolds numbers up to 1000, with

speedup of over 35 obtained using 2048 cores, with 32 time slices. This simulation

showed the potential of Parareal to provide additional speedup to problems after

spatial parallelisation gains had saturated. Steiner et al. (2015) found that perfor-

mance was reduced for lower viscosities in 2D fluid flow problems. The MGRIT

algorithm was used in Falgout et al. (2015) for a compressible fluid flow problem,

that of vortex shedding over a cylinder. The spatial discretisation was a finite vol-

ume CFD code using Spalart-Allmaras (a closure model designed to work well for

aerospace applications) Reynolds Averaged Navier Stokes (RANS) turbulence mod-

elling. Speedups of 7.53x were found using 4096 processors, reducing simulation

run time from 655 minutes to 87 minutes. Eghbal et al. (2017) coupled a RANS

Shear Stress Transport (SST) coarse solver with a detached eddy simulation (DES)

fine solver, in a novel non-traditional Parareal simulation. Instead of directly using

Parareal until convergence, Parareal was employed to reduce the time to steady-state

by generating initial conditions using the coarse state, and attempting to reduce the

transient computation time using Parareal corrections. After a number of Parareal

iterations, the fine solver was used in serial to obtain the final statistically steady

state. Speedups of up to 2.5x were found using 10 processors with Reynolds numbers

up to 50,000. Lunet et al. (2018) studied the Parareal algorithm for homogeneous

isotropic turbulence decay in direct numerical simulations (DNS). Performance was

31

modelled rather than tested on HPC, and attention was focussed on the factors that

affected convergence of Parareal. A key factor was found to be the method of inter-

polation/restriction between coarse and fine spatial grids. High order interpolation

methods were found to greatly increase convergence of Parareal over simple linear

interpolation.

The shallow water equations are often used as analogues for weather mod-

elling, and have gained much attention in the parallel in time community. Schreiber

et al. (2018) investigated the linear oscillatory partial differential equations using

the REXI algorithm, and was able to scale to 3586 cores for a problem which satu-

rated for a very low number of cores using only spatial decomposition. Speedups of

up to 1503x were found for a finite-difference discretisation, though much reduced

performance (118x speedup) was found when spectral discretisation was used. The

authors explained that this was due to the much higher accuracy of the spectral

discretisation, which required that REXI use more terms in order to fully represent

more time frequencies. The method was extended to the rotating sphere in Schreiber

and Loft (2019), where a potential wall clock speedup of 13.4x using 512 processors

was reported. Using REXI as the solver for the linear part of the full nonlinear shal-

low water equations was attempted in Schreiber et al. (2019), using Cauchy contour

integrals to reduce the number of terms required in the REXI approximations. This

was required as in the linear system, REXI can allow for extremely long time steps

to be taken with no loss of accuracy; in a nonlinear system this is no longer the case.

Hamon et al. (2020) examined the shallow water equations on a rotating sphere us-

ing the PFASST algorithm, and found speedups of up to 5.2x using 16 processors

in time.

The most relevant applications to our work are mentioned in the following

paragraph, though the fluid flow applications mentioned above are also of great in-

terest. Parareal has been studied in simulations of MHD plasma in fusion rectors.

In Samaddar et al. (2010) fully developed plasma turbulence simulations were sped

up by 8.8x with 88 processors. Reynolds-Barredo et al. (2012) investigated the re-

sults and found that high frequency modes, which are not transmitted by the coarse

solver, were quickly converged in the fine solver due to their non-linear interactions

with the low frequency modes. In Samaddar et al. (2017), edge plasma physics

simulations were sped up by Parareal. The Monte-Carlo fine solver was replaced by

a fluids neutrals model in the coarse solver, allowing speedups of 22 with 96 time

slices. Samuel (2012) used Parareal for convection of the Earth’s mantle, using an

infinite Prandtl convection model to find parallel in time and space speed-ups of 25

using 64 processors.

32

2.2 Dynamo

In the following section we will give a brief review of recent numerical dynamo

simulations. More in depth reviews can be found at for example Jones (2011),

Charbonneau (2020), Rincon (2019) and Tobias (2021). We begin with studies of

the geodynamo, then continue by reviewing solar/stellar dynamo studies, before

concluding with more fundamental studies of the underlying dynamo processes.

2.2.1 Geodynamo studies

The first example of geomagnetic field reversals was found in Glatzmaier and Roberts

(1995b,a). The computing resources of the time were such that this model did not

include the inertial terms (∂u/∂t + u ·∇u) of the momentum equation, so that

velocity was solved implicitly. The model used spherical harmonics to represent

variables in azimuth (longitudinal) and polar (colatitude) directions, whilst Cheby-

shev polynomials were used for radial expansion. The parameters were chosen such

that Pr = 5000, which is more relevant to the mantle than the outer core, whilst

a form of hyper-diffusivity was also employed. The number of grid points in ra-

dial (Nr), polar/colatitude (Nθ) and azimuthal (Nφ) directions were 49, 32, and 64

respectively. Despite the simplifications, low resolution and unrealistic parameter

space, this study required over 2 million time steps and 2000 CPU-hours for an

in-simulation duration of 40,000 years.

A benchmark numerical geodynamo (Christensen et al., 2001) followed,

which includes inertia and does not use hyper-diffusivity. In this study, Pr = 1

which is much more relevant to the Earth’s core, but the Ekman number Ek = 10−3,

around 6 orders of magnitude from the best case (i.e. highest) estimated value

in the Earth of 10−9. The Rayleigh number was Ra = 105 (Jones, 2011), while

the magnetic Prandtl number Pm = 5. Six codes were used, all using spherical

harmonics for polar and azimuth, while half used finite difference for radius, while

half used Chebyshev polynomials. Resolutions of up to Nr, Nθ, Nφ = 250, 92, 44 were

employed. Simulations were run for up to 15 units of viscous diffusion time, partly

in an effort to reduce required computational runtime. The solution accuracy was

found to be very sensitive to radial resolution in the finite difference codes, which

highlights the advantages of spectral accuracy. They also found that there was little

sensitivity for time step size. Sreenivasan and Jones (2006) studied the importance

of the inertial term, and found that as Pr and Pm were lowered below 1, the role

of inertia became important, and MAC balance between magnetic, buoyancy and

33

Coriolis forces was broken, leading to less Earth-like magnetic fields. Simulations

here had resolutions of (Nr, `max, mmax = 60, 60, 48) for Nr radial points and

spherical harmonics of degree ` and order m.

Christensen and Aubert (2006) ran simulations down to Ek = 3×10−6 using

resolutions of (Nr, `max,mmax = 97, 224, 224) whilst attempting to derive scaling laws

of the non-dimensional parameters. Resolutions of (Nr, Nθ, Nφ = 511, 514, 1538) and

scaling up to 4096 processors were reached using a finite difference code with over-

lapping Yin-Yang grid by Kageyama et al. (2008); Miyagoshi et al. (2010), who

reached Ek = 2.3 × 10−7 on the Earth Simulator. An alternate benchmark prob-

lem was devised by Jackson et al. (2014), with boundary conditions designed to be

more amenable to local spatial methods such as finite difference/volume/elements,

motivated in part by the large error (∼ 6%) these methods displayed when tackling

the Christensen et al. (2001) benchmark. Whilst accuracy for local methods was

improved, far higher resolutions were required than for spectral methods, and errors

of ∼ 1% were still present, while spectral codes converged to within a fraction of

1%. An important study by Matsui et al. (2016) examined the parallel performance

of 15 geodynamo codes when tackling the benchmark problems of Christensen et al.

(2001) and Jackson et al. (2014). They found most of the codes scaled effectively

up to 16,384 cores. However, greater scalability was closely linked to number of di-

rections of parallelization - 2D and 3D parallel codes scaled better than codes that

only parallelized in one direction. It was also reported that local methods were less

efficient than spectral codes; for the same accuracy and given the same number of

cores, they would need longer run times (due to the requirement for higher resolu-

tions). In spherical harmonic codes, those that use finite difference discretisations

for the radial direction required 3 times the radial resolution of codes using Cheby-

shev polynomials. Aubert et al. (2017); Aubert (2019) carried out simulations down

to Ek = 10−8 using a refined version of hyperdiffusivity, where the hyperdiffusion

only kicks in at a cut-off mode number, aiming to allow the smallest relevant length

scales to be fully resolved. Resolutions of (Nr, `max,mmax = 2496, 640, 640) were

used. Similar, but non-magnetic, work was carried out by Guervilly et al. (2019),

with resolution of (Nr, `max,mmax = 2016, 351, 319). Schaeffer et al. (2017) carried

out DNS simulations with no hyperdiffusivity at Ek = 10−7, with resolution up to

(Nr, Nθ, Nφ = 1280, 1504, 2688) using up to 8,192 cores and 10 million cpu hours

per simulation. Even with this extremely high use of computational resources, the

simulation duration was limited to 0.052 magnetic diffusion times for this most ex-

treme case, further highlighting the bottleneck that serial timestepping represents

for DNS geodynamo studies.

34

2.2.2 Astrophysical dynamo studies

Here we present a brief overview of astrophysical dynamo studies, more compre-

hensive reviews can be found in Brun and Browning (2017) and Nordlund et al.

(2009). The first stellar dynamo studies were carried out using similar Boussinesq

assumptions used in geodynamo studies (e.g. Gilman, 1975; Gilman and Miller,

1981). However, the large density gradients of the gas giants and stars, whereby

density at the centre is far greater than density at the outer radius, means that

use of Boussinesq models becomes rather dubious (Jones et al., 2011; Gastine and

Wicht, 2012). Fully compressible models, however, are extremely computationally

intensive, due to the very small time scales applicable to sound waves (Jones et al.,

2011). As convection in planets and stars is usually subsonic (Jones et al., 2011),

the anelastic approximation is used, which essentially filters out sound waves but

includes the overall density stratification (Brun and Browning, 2017).

Different types of numerical methods (spatial discretisations) are more fre-

quent in the literature for simulations of gas giants and stars than for geo-dynamos.

Many simulations have been carried out using high order finite difference discreti-

sation using for example the PENCIL code (e.g. Käpylä et al., 2011, 2012, 2013;

Warnecke et al., 2012, 2013), or the Yin-Yang grid (e.g. Kageyama and Sato, 2004;

Masada et al., 2013). These studies hope to overcome the difficulties in parallel scal-

ing encountered by spherical harmonic expansions (Masada et al., 2013) by using

local grid methods. Studies have been carried out with the EULAG implicit Large-

eddy Simulation (ILES) code (e.g. Racine et al., 2011; Beaudoin et al., 2013; Passos

and Charbonneau, 2014; Strugarek et al., 2017), which allows for solar-like dynamo

behaviour, for example cyclic activity similar to the 11 year cycle, to be observed

at relatively low resolutions. A major drawback of this particular approach is that

calculating or even estimating important non-dimensional parameters of these stud-

ies, such as Ra and Re is difficult, even a posteriori (Beaudoin et al., 2013). This

is due to dissipation being introduced at the algorithm level, rather than including

dissipation terms in the equations. Diffusivities are unknown, and change to keep

the solution stable when necessary.

Spectral codes remain popular for convection in main-sequence stars or

planets (Brun and Browning, 2017), with MagIC (Gastine and Wicht, 2012), the

Leeds Anelastic Spherical Dynamo Code (ALSD) (Jones et al., 2011), Anelastic

Spherical Harmonic code (ASH) (Clune et al., 1999; Miesch et al., 2000), and adap-

tions of the code from Glatzmaier (1984) all used to create a benchmark study (Jones

et al., 2011) in a similar fashion to the Christensen et al. (2001) benchmark. When

35

applied to solar-dynamos, in contrast with geo-dynamo models, these simulations

often employ some modelling for the smallest scales. The ASH code in Nelson et al.

(2013); Nelson and Miesch (2014); Brun et al. (2017) uses an LES Subgrid Scale

(SGS) model, whilst in Augustson et al. (2015) a slope-limited diffusion model was

tested. The Rayleigh MHD code has been used to simulate the solar dynamo by

making use of turbulent ‘eddy’ diffusivities, due to the inability to resolve the full

range of motion (Matilsky and Toomre, 2020), whilst in Featherstone and Hindman

(2016) it was simply noted that diffusivities were much higher than those found in

the sun, as in most geodynamo models.

The assorted simulations have been able to produce many features present

in the solar and other stellar dynamos, such as large-scale magnetic fields (e.g.

Gilman, 1983; Glatzmaier, 1985) cyclic magnetic activity similar to the 11 year

cycle (e.g. Racine et al., 2011; Käpylä et al., 2012), including equatorward migration

of sunspot activity (e.g. Käpylä et al., 2013; Augustson et al., 2015), and coronal

mass ejections (Warnecke et al., 2012). Significant deficiencies remain however, the

parameter ranges in these simulations remain far away from values found in the

Sun and other stellar dynamo’s, Ra ∼ 107 − 108 remain at the cutting edge, whilst

is thought to be ∼ 1014 in the Sun (Käpylä et al., 2013), and Re ∼ 100 found in

simulations is far away from the highly turbulent flows found in stars (Brun and

Browning, 2017). These limitations remain in spite of the computational resources

utilised by the simulations, which can take weeks to run (Dietrich and Jones, 2018)

and utilise tens of thousands of cores (Featherstone and Hindman, 2016).

The simulations reviewed above hightlight the trade off that has to be made

between long durations in simulation time, and high resolution in space and time.

The problem is twofold: the CFL condition (or similar constraint), reduces maximum

time step size for higher spatial resolution, whilst the higher resolution increases the

computational workload per time step. Simulations with very high spatial resolution,

such as ‘S3’ of Nelson et al. (2013); Nelson and Miesch (2014) with Re ∼ 104,Ra ∼
109, have durations of only a few years, while simulations investigating long term

behaviour of solar dynamo such as Augustson et al. (2015), have durations of ∼
100 years, but are limited to Re ∼ 300,Ra ∼ 105, using around a quarter the

number of grid points in each dimension. ILES simulations employ relatively small

spatial meshes to permit long time integration (Passos and Charbonneau, 2014), for

example Guerrero et al. (2019) simulates for ∼ 300 years with a grid of Nr, Nθ, Nφ =

64, 64, 128, whilst Passos and Charbonneau (2014) simulated 1650 years using a grid

of Nr, Nθ, Nφ = 128, 64, 47.

Dynamo action is also thought to be responsible for the magnetic fields of

36

the gas giant planets of the solar system (and beyond). In Jupiter (Jones, 2014) and

Saturn (Yadav and Bloxham, 2020), a convective layer of high pressure metallic (and

thus conductive) hydrogen is thought to surround the cores, with the outer layers

of the planets being made up of molecular hydrogen and helium. The ice giants

are thought to convect in their ice-rich mantle layers, made up of water, ammonia

and methane (Soderlund and Stanley, 2020). The Juno and Cassini missions have

sparked interest in the dynamos of Jupiter and Saturn, with studies by, for example

Gastine et al. (2014); Heimpel et al. (2016); Duarte et al. (2018); Glatzmaier (2018);

Wicht et al. (2019) using a variety of spherical codes. Saturn has also seen some

interest, with studies by e.g. Dietrich and Jones (2018); Yadav and Bloxham (2020).

Studies on the Ice Giants are less common, though some simulations have been

carried out e.g. Stanley and Bloxham (2004, 2006); Soderlund et al. (2013), with a

review of the subject written by Soderlund and Stanley (2020). A number of these

were high resolution DNS studies, such as Dietrich and Jones (2018) and Yadav and

Bloxham (2020), with the latter using over 3 million cpu hours over the course of

their simulations.

Our discussion has shown that current numerical methods cannot reach

the parameter ranges present in astrophysical objects. Obtaining simulations with

parameters closer to those found in planets and stars is an ongoing problem, with

many strategies employed in the literature. We believe that Parallel-in-time methods

should be explored as an option to help this search, especially where high spatial

resolution causes small time step sizes, which limit the in-simulation duration.

2.2.3 Theoretical and Kinematic dynamo studies

In this section, we will review numerical studies that have been primarily focused

on investigating the underlying mechanisms of dynamo action. We begin with the

first dynamo studies, which aimed simply to find evidence of dynamo action in

numerical experiments. It is here that we introduce the Roberts (1972) dynamo

which we study in Chapter 4. We then discuss the subject of fast/slow dynamos,

which is of particular relevance for astrophysical objects, and is where we introduce

the Galloway and Proctor (1992) dynamo, also studied in Chapter 4. Finally we

discuss the issues of saturation and large-scale dynamos, two areas of active research.

37

Anti-dynamo theorems, early successful dynamos

A number of anti-dynamo theorems rule out dynamo action for many simplified

scenarios. Cowling (1933) states that no axisymmetric magnetic field vanishing at

infinity can be maintained by dynamo action. Zeldovich (1957) states that a dynamo

in an infinite domain cannot be maintained by a planar flow

u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), 0) . (2.2)

It is further impossible to maintain a 2D magnetic field through dynamo action.

There are however various caveats to these theorems, and for example, a planar

flow in a sphere was found to act as a dynamo in Bachtiar et al. (2006), where

η was variable due to boundary constraints. In addition to these constraints on

dynamo action, Backus (1958) and Childress (1969) determined that dynamo action

cannot happen below a critical value of Rm, known as the critical magnetic Reynolds

number RmC , due to diffusion dominating over advection in the induction equation

(Jones, 2008). The Cowling (1933) theorem in particular is thought to have slowed

progress in dynamo studies (Rincon, 2019); it was not until the works of Parker

(1955); Herzenberg (1958); Backus (1958) that working dynamos were published.

An important early dynamo was the helical flow by Ponomarenko (1973),

which has a discontinuity at the outer boundary. A 2.5D flow which can be solved

on a 2D plane while evading the theorem of Zeldovich (1957) was studied by Roberts

(1972). This flow u = (cos y, sinx, sinx+ cos y) (see Figure 2.1 for visual represen-

tation of the flow and resulting magnetic fields) has 3 components of velocity, so is

not planar, but is chosen such that it does not vary in the z direction. The solution

can then be calculated on a plane, with solutions of the form B = B0(x, y)eγt+ikz ,

and the z wavenumber kz treated as a parameter. These early successful numerical

dynamos have strongly influenced the design of the first successful physical dynamo

experiments at both Riga (Gailitis et al., 2000) based on the dynamo of Pono-

marenko (1973) and Karlsruhe (Stieglitz and Müller, 2001) based on the dynamo of

Roberts (1972). Tilgner and Busse (1995) studied the Roberts flow dynamos in cases

where the spatial period of the magnetic field is different to that of the specified flow

field, work that was adapted by Plunian and Rädler (2002) to study the Karlsruhe

experiment, and found that Rm calculated purely for the axial component of the

flow had to be above a critical value in order for the dynamo to operate.

38

0 2 4 6
x

0

1

2

3

4

5

6

y

1.92

1.44

0.96

0.48

0.00

0.48

0.96

1.44

1.92

w

(a) u

0 2 4 6
x

0

1

2

3

4

5

6

y

(b) Rm = 4

0 2 4 6
x

0

1

2

3

4

5

6

y

(c) Rm = 4096

Figure 2.1: (a)Roberts flow: streamlines of u, v with contours of w. Positive w (red)
is directed out of the page, while negative w is directed into the page. (b,c) vector
map of Roberts magnetic field for different Rm. We can see that the length scale of
the magnetic field features are much smaller at higher Rm, while magnetic flux is
concentrated in the stagnation points.

Fast/slow dynamos - ABC and time dependent 2D

The dynamos previously mentioned are all ‘slow’ dynamos, operating on diffusive

timescales, where the maximum growth rate decays as Rm tends to infinity. Figure

2.2a shows how the maximum growth rate w.r.t kz reduces as Rm increases in the

Roberts flow, whilst Figure 2.2b shows the asymptotic behaviour of the Galloway-

Proctor growth rates for high Rm. Whilst slow dynamos may still allow for dynamo

action in (for example) the Earth, which has Rm ∼ 103 (Davies et al., 2015), for

astrophysical dynamos, such as in the Sun, Rm is expected to be much higher

at ∼106 − 109 (Weiss, 2001). This means that ‘fast’ dynamos, operating on the

timescale of the fluid flow turnover (Galloway and Proctor, 1992), with growth rates

becoming independent of Rm as Rm→∞ are required. Roberts and Soward (1992)

and Childress et al. (1990) reviewed the main candidates for fast dynamos, and

reported a number of 3D flows that were expected to act as fast dynamos. An

important example is the ABC (Arnold-Beltrami-Childress) flow

u = (C sin z +B cos y, A sinx+ C cos z, B sin y + A cosx) , (2.3)

where A, B and C are arbitrary constants, usually small integers. (The Roberts dy-

namo is a specific case of ABC flow with C set to 0, to give the required 2.5D spatial

dependence.) In the early 1990’s the computational expense of 3D dynamo calcu-

lations restricted investigations to Rm values too low to give compelling evidence

for the existence of fast dynamos (Galloway, 2012). Therefore the first convincing

numerical fast dynamos were time dependent variations of existing 2.5D dynamos.

The time dependence introduces chaos into the fluid flow, which is a necessary con-

39

dition of fast dynamo action (Hollerbach et al., 1995), and which is already present

in fully 3D ABC flows (Jones, 2008). The first two fast dynamos with smooth flows

(i.e. did not contain singularities or discontinuities) were published by Galloway

and Proctor (1992) and Otani (1993). Galloway and Proctor (1992) added a time

dependent ‘wobble’ to the Roberts (1972) flow, whilst Otani (1993) extended the

work of Bayly and Childress (1988) into a time continuous setting by modulating

the amplitude of the flow. These were the first fast dynamos to have physically

realizable analogues (Otani, 1993). Both of these dynamos showed magnetic growth

rates which became independent of Rm at the highest Rm simulated, though it

remains impossible to prove numerically that these time dependent flows are fast

(Tobias, 2021). Hollerbach et al. (1995) found evidence of fast dynamo action in a

spherical shell, with simulations carried out up to Rm = 105. The flow field here

was time dependent and axisymetric with circulation cells shaken back and forth

in radius (r). They used 512 angular modes in spherical harmonics and 1000 finite

difference grid points in radius. Reyl et al. (1996) found evidence for fast dynamo

action with growth rates collapsing onto a single positive growth rate at Rm upto

105 in a quasi-two-dimensional random fluid flow. A fully 3D model was studied by

Archontis et al. (2003), with ABC dynamos with different ratios of A : B : C. The

magnetic field in A : B : C = 1 : 1 : 1 dynamos appears as cigar like concentrations

of magnetic energy concentrated around the stagnation points in the flow. If A, B

and C are chosen such that there are no stagnation points, the cigars are replaced

by flux sheets, and the amplification mechanism is the constructive folding of flux

‘ribbons’.

Rotation and helicity are thought to be important to dynamo action due

to their symmetry breaking properties (Rincon, 2019). Llewellyn Smith and Tobias

(2004) investigated a dynamo generated by a helical forcing. The forcing, in a 2.5D

flow, causes an inverse cascade creating large coherent vorticity patches. This flow

is a good candidate for fast dynamo action, with Rm considered up to ∼ 5000.

Alexakis (2011) conducted a detailed survey of the dynamo properties of ABC flows

with different ratios of A,B and C, finding that Roberts type flows work at the lowest

Rm, and that A = B ≈ 2C/5 has the highest growth rate as Rm is increased. Jones

and Gilbert (2014) compared timestepping with directly solving for the eigenvalue in

a number of ABC flows, and found that it is sometimes preferable to use timestepping

methods even when an eigenvalue solution is possible. This can be considered a

somewhat surprising result, but comes from the ability for timestepping codes to

be parallelised more easily than eigenvalue solvers. This is relevant to our work,

as we will be timestepping the Roberts flow, which can be solved as an eigenvalue

problem. Seshasayanan and Alexakis (2016) studied turbulent 2.5D dynamos of

40

10 1 100

kz

0.00

0.05

0.10

0.15

0.20

Gr
ow

th
 R

at
e

Rm:4
Rm:8
Rm:16
Rm:32
Rm:64

(a) Growth Rates of Roberts dynamo for
different values of kz for increasing Rm

101 102 103

Rm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G
ro

w
th

 R
at

e

(b) Growth rates of Galloway-Proctor
dynamo with increasing Rm. See equa-
tion (4.6) for details of flow

Figure 2.2: Comparison of how growth rates change with increasing Rm for slow
(Roberts) and fast (Galloway-Proctor) kinematic dynamos.

flows without large scale fluid flow features, and found that helicity led to lower

RmC , and showed evidence of fast dynamo action. Despite the inability to prove

the existence of fast dynamos, that large number of computed dynamos which are

apparently fast, means their existence can be regarded as established (Galloway,

2012). Seshasayanan et al. (2017) found that RmC can be lower in rotating flows

than for comparable non-rotating flows. A 3D kinematic dynamo with random

turbulent flow with and without rotation was studied in Dallas and Tobias (2018),

and it was found that the growth rate is increased for flows with rotation.

Saturation and Large scale fields

Much attention in the recent past has been concentrated on the saturation

mechanism and the generation of large scale fields. These two problems, while

they may seem distinct and easy to study on their own, turn out to be quite

closely linked. In a talk at Kavli Institute for Theoretical Physics, F. Catta-

neo (http://online.kitp.ucsb.edu/online/dynamo c08/cattaneo) discussed the ‘gen-

eral wisdom’ of large scale dynamo theory. This wisdom is that reflectionally sym-

metric turbulence generates magnetic energy well, but on a small scale, and that

reflectionally non-symmetric (helical) turbulence generates magnetic flux well (lead-

ing to large scale magnetic field). The talk went on to discuss that there were flaws

in this general wisdom, as a number of recent results had failed to adhere to the

theory. For example, Livermore et al. (2007a) investigated a number of different

flows in a full sphere, and found that the flow that generated the largest-scale field

had zero net helicity, while flow with more helicity had smaller large-scale fields. In

41

Livermore et al. (2010), this work was extended into the nonlinear regime, and the

previous small scale fields gave way to large scale fields with a large mean compo-

nent, suggesting a strong link between saturation/nonlinear dynamo effects and the

problem of generating large-scale magnetic fields.

The mechanism by which dynamos saturate is not yet understood. It is

known that at a certain level of magnetic energy, the magnetic field affects the

fluid flow such that the dynamo effect is supressed, and the magnetic field either

stabilises or decays. However, exactly how the magnetic field changes the fluid flow

is not known, nor can we predict at what level of magnetic energy this will occur

in advance. For example Brummell et al. (1998) found a kinematic dynamo flow

which, when saturated, did not maintain the magnetic field at a stable level, but

allowed it to decay. The saturated fluid flow was stable to the forcing that generated

the initial flow, but was not the original flow, and this new saturated flow did not

act as a kinematic dynamo. A further surprising result was shown by Cattaneo and

Tobias (2009) who investigated the saturation of magnetic fields by running a fully

nonlinear dynamo calculation to saturation, and then using the Lorentz saturated

fluid flow to drive the growth of a new seed magnetic field. If dynamo saturation

is due to simple statistical properties or magnitude of the flow being changed by

the Lorentz force, the new magnetic field should be saturated (not grow) just as

the original magnetic field is. However, it is found that for any other ‘passive’ field

(that does not act back on the flow through the Lorentz force), the saturated flow

acts as a kinematic dynamo. This implies that magnetic field saturation is a very

nonlinear process, which relies on the coherence between the driving flow and the

magnetic field. Similar work was carried out by Tilgner and Brandenburg (2008),

but using a simpler case - that of Roberts flow with infinite magnetic prandtl number

leading to no inertial term in the momentum equation. They found similar results-

a passive field is grown exponentially by a saturated flow field. The work links into

large/small scale dynamo theory, as it is argued that in the nonlinear regime, the

ability to observe a small scale field depends on the relative saturations of the large

and small scale fields (Cattaneo and Tobias, 2014). Conversely, in the kinematic

regime it is proposed that if small scale dynamo action (characterised by strong

fluctuations unrelated to the mean field) could be avoided or suppressed, finding a

large scale field would be easier (Cattaneo and Hughes, 2006). Studies by Tobias

and Cattaneo (2013); Cattaneo and Tobias (2014), found a large scale magnetic field

was generated in the kinematic case if a large scale shearing flow were imposed on

underlying small scale dynamo flows. Large scale magnetic fields were generated

(at Rm up to 2500) along the regions of high shear and high helicity, and it was

determined that the large scale magnetic fields came about from the suppression of

42

the small scale dynamo action. The highly nonlinear nature of dynamo saturation

is further illustrated by the existence of sub-critical dynamos in convection (see

§3.1.3 for explanation/details on convective flows), where a magnetic field generated

by super-critical Rayleigh number (Ra) allows convection and dynamo action to

continue when Ra is reduced below its critical value (Stellmach and Hansen, 2004;

Cooper et al., 2020). Conversely, strong magnetic fields have been shown to suppress

convective motions (e.g. Cattaneo et al., 2003; Stein, 2012).

2.3 Discussion

In this chapter, we have carried out a survey of recent work in the fields of Parallel-

in-time and numerical dynamos. This has been done to help inform our choices of

specific algorithms and problems for initial studies. We also gave an overview of

Parallel-in-time methods, and discussed the challenges faced in the numerical dy-

namo simulations. We have shown that successful application of Parallel-in-time

methods to dynamos would be a useful tool in carrying out numerical simulations in

parameter regimes closer to those of the Earth, Sun, stars and planets. On parallel-

in-time methods, the non-intrusiveness of Parareal, coupled with the similarities it

shares with other parallel-in-time methods, make it a valid choice. For choice of

problem, the large resolutions, nonlinear dynamics, and high computational cost of

full dynamo simulations would be prohibitive to carrying out large numbers of scal-

ing simulations. The ability to run simulations in 2D is important in this regard,

and the Roberts and Galloway-Proctor dynamos are canonical 2D dynamo prob-

lems. They also have applications in recent work such as the Karlsruhe dynamo

experiment (Stieglitz and Müller, 2001) and in investigating the problems of large

scale magnetic field generation (Cattaneo and Tobias, 2014). In Chapter 3, we dis-

cuss the mathematical specifics of Parareal, dynamos, Rayleigh-Bénard convection,

and the pseudospectral method we use in our simulations.

43

Chapter 3

Theory and Methods

In this chapter, we will discuss the mathematical details and pre-requisites applica-

ble to this work. We will begin with a brief overview of the dynamo problem. We will

derive the equations of magnetohydrodynamics (MHD), starting from the equations

of electro-magnetism and fluid dynamics. We will then investigate the mathematical

properties of the kinematic dynamo problem and then Rayleigh-Bénard convection.

We will then investigate the numerical methods used to obtain simulation results of

these systems. We will describe spectral methods based on Fourier series and Cheby-

shev polynomials, and outline implicit-explicit (IMEX) timestepping. A description

of the Dedalus code, which implements these algorithms will follow. This chapter

then ends with an explanation and discussion on the properties of the Parallel-in-

time algorithm Parareal.

3.1 Fluids and Magnetohydrodynamics

The dynamo problem uses the equations of MHD, which combine the pre-Maxwell

equations with the Navier-Stokes equations. We will here show how the two sets of

equations can be combined for MHD.

3.1.1 MHD

The differential form of Maxwell’s equations in a vacuum are (from e.g. Davidson

(2001)):

∇ ·E =
ρc
ε0
, (3.1)

44

∇ ·B = 0, (3.2)

∇×E = −∂B
∂t

, (3.3)

∇×B = µ0j + ε0µ0
∂E

∂t
, (3.4)

and Ohm’s law for a moving conductor is

j = σ (E + u×B) , (3.5)

where E is the electric field, ρc is the charge density, ε0 the permittivity of free space,

µ0 the magnetic permeability, B the magnetic flux density, j the current density, u

the velocity, σ the conductivity of the fluid, and t is time. Equation (3.1) is Gauss’s

law for an electric field, that divergence of the electric field is proportional to the

charge density at a point, (3.2) is Gauss’s law for a magnetic field, that divergence of

the magnetic flux is always zero, which indicates there are no magnetic monopoles,

and all magnetic field lines are closed loops. Equation (3.3) is Faraday’s law of

induction, that a changing magnetic field produces an electric field, whilst equation

(3.4) is the Ampére-Maxwell law that a circulating magnetic field is generated by

electric current and by a changing electric field.

To derive the equations of MHD, we first note that for fluid flows much

slower than the speed of light c = 1/(ε0µ0)1/2, the last term of equation (3.4) can

be neglected by dimensional arguments, and because ρc is insignificant everywhere

except equation (3.1), Gauss’s law is also neglected (Davidson, 2001). We now

substitute (3.5) into (3.4), giving

1

σµ0

(∇×B) = E + u×B, (3.6)

which we then take the curl of:

∇× η (∇×B) = ∇×E + ∇× (u×B) , (3.7)

where η = 1/(µ0σ) is the magnetic diffusivity. Substituting (3.3) gives

∇× η (∇×B) = −∂B
∂t

+ ∇× (u×B) , (3.8)

which can be rearranged for constant η using the vector identity (for an arbitrary

field a) ∇× (∇× a) = ∇ (∇ · a)−∇2a, as

∂B

∂t
= ∇× (u×B) + η∇2B. (3.9)

45

This equation governs how the magnetic field evolves in time, and is dependent upon

the velocity of the fluid. We can make this equation more physically meaningful

through a little manipulation. If we use the vector identity ∇× (a× b) = b ·∇a+

(∇ · b)a−a ·∇b− (∇ · a) b (for an arbitrary vector pair a, b), and the solenoidal

nature of B, we can write the induction equation as

∂B

∂t
= B ·∇u− u ·∇B − (∇ · u)B + η∇2B. (3.10)

This can now be seen as an advection diffusion equation for the magnetic field, with a

couple of important additions. B ·∇u is the key extra term; it represents stretching

of the magnetic field lines by the velocity field, it is this effect that allows growth of

the magnetic field. (∇ · u)B represents the changes of B due to compressibility of

the flow, for incompressible flows this disappears.

Having derived the equations governing the evolution of the magnetic field,

we now move on to the fluid velocity. Conservation of mass and momentum in fluid

flow are expressed by the continuity equation:

∂ρ

∂t
+ ∇ · ρu = 0, (3.11)

and the momentum equation:

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ ρg + F + µ∇2u +

µ

3
∇(∇ · u), (3.12)

where ρ is the density of the fluid, u is the velocity, p is pressure, g is gravity,

F represents any other forces (here we will be concentrating on the Lorentz force)

and µ is the dynamic viscosity (Pedlosky et al., 1987). The left hand side of the

momentum equation is the mass per unit volume multiplied by the fluid accelera-

tion, while the right hand side collects all the forces acting on a unit volume; the

momentum equation is Newton’s law of motion for a fluid. Where ρ is not constant

and the fluid is compressible, we must invoke thermodynamics and find relationships

between pressure, density, and temperature. In astrophysical dynamo settings, such

as the Sun and stars, effects of compressibility are important and should not be ne-

glected (Jones et al., 2011) as the vertical scale of the flow is very large which causes

significant changes in density (Kundu et al., 2016). In the Earth’s core, however, it

is reasonable to invoke the Boussinesq approximation (Gubbins and Roberts, 1987).

In this approximation, density variations are deemed to be small, and are neglected

except for their effect on gravitational force. In this work, we are examining the

more simple cases first, as our aim is to find information on the performance of

numerical methods that have not been applied in this area before. Therefore, we

46

restrict ourselves to the Boussinesq case here. In the Boussinesq approximation,

density variations in the gravity term are assumed to be linear and of the form

ρ = ρ0 (1− α(T − T0)) , (3.13)

(e.g. Chandrasekhar, 1961; Kono and Roberts, 2002) where T is the temperature, ρ0

is the reference or background density found at the reference temperature T0, and α

is the coefficient of thermal expansion. Except in the gravity term, ρ is replaced by

ρ0. Ignoring internal sources of heat, and assuming a constant thermal diffusivity

κ, temperature is governed by the heat equation

∂T

∂t
+ u ·∇T = κ∇2T (3.14)

(Kundu et al., 2016). The Boussinesq approximation reduces equation (3.11) to the

form

∇ · u = 0. (3.15)

Using equations (3.13) and (3.15), dividing through by ρ0, and absorbing the static

gravity potential into the pressure term, the momentum equation can be re-written

as
∂u

∂t
+ (u ·∇u) = − 1

ρ0

∇p− α(T − T0)g +
1

ρ0

F + ν∇2u, (3.16)

where g is the force due to gravity and ν = µ/ρ0 is the kinematic viscosity.

The remaining body force is due to the magnetic field, and we will now

derive its form. The force on a particle due to a magnetic field is given by

F L = qc (E + u×B) , (3.17)

where qc is the charge of the particle. For a continuous charge distribution, this

becomes

F L = ρcE + j ×B. (3.18)

For fluid flow speeds much less than the speed of light, the first term is negligible,

and can be ignored (Davidson, 2001), so that the Lorentz force can be written as

F L = j ×B =
1

µ0

(∇×B)×B. (3.19)

For clarity, we now write down the full set of equations for incompressible,

47

non-rotating MHD which have been derived in agreement with (Davidson, 2001):

∂u

∂t
+ (u ·∇u) = − 1

ρ0

∇p− α(T − T0)g +
1

µ0ρ0

(∇×B)×B + ν∇2u, (3.20)

∂T

∂t
+ u ·∇T = κ∇2T, (3.21)

∂B

∂t
= ∇× (u×B) + η∇2B, (3.22)

∇ · u = 0, (3.23)

∇ ·B = 0. (3.24)

The above equations define the incompressible MHD problem once suitable bound-

ary conditions are defined for T , u, and B. We now move on to two simplifications

of this problem, the kinematic dynamo followed by Rayleigh-Bénard convection.

3.1.2 Kinematic Dynamo

The kinematic dynamo problem seeks pre-determined velocity fields (u) which lead

to a growing magnetic field (B) in the induction equation

∂B

∂t
= ∇× (u×B) + η∇2B, (3.25)

where the magnetic field is solenoidal:

∇ ·B = 0. (3.26)

This is a subset of the non-linear dynamo problem described by equations (3.20) -

(3.24), where generation of the fluid flow is ignored. The kinematic dynamo prob-

lem is studied as a more tractable analogue of the full dynamo problem, with less

computational requirements, and less physical effects to take account of. The draw

backs of this method include neglecting the effect of the magnetic field on the fluid

flow, and ignoring saturation of the magnetic field growth. Solutions are restricted

to either exponential growth or decline of the magnetic field strength. (see §1.4 for

a full discussion on the applicability of the kinematic dynamo approach). In this

section, we will first nondimensionalize the induction equation. We will then dis-

cuss a number of important restrictions on dynamo action, known as anti-dynamo

theorems. We will then look at strategies to overcome those theorems, and discuss

the type of results that can be found.

48

We first show the non-dimensionalisation of the induction equation, which

will be used throughout this work. We normalise the magnetic field B with a

characteristic field strength B, distance X with a characteristic length L, speed with

the characteristic flow speed U , and time with L/U . Non-dimensional quantities

are identified by a superscript ∗, so that for example dimensionless magnetic field

B∗ = B/B. Substituting into (3.25) gives

BU

L

∂B∗

∂t∗
=
UB

L
∇∗ × (u∗ ×B∗) +

ηB

L2
∇∗2B∗. (3.27)

This can be simplified to

∂B∗

∂t∗
= ∇∗ × (u∗ ×B∗) +

η

LU
(∇∗)2 B∗. (3.28)

The magnetic Reynolds number, which determines whether advection or diffusion

of the magnetic field dominates, is defined as

Rm =
UL

η
, (3.29)

which gives the non-dimensional induction equation

∂B

∂t
= ∇× (u×B) +

1

Rm
∇2B, (3.30)

once we drop the superscript ∗.

There are a number of anti-dynamo theorems, which rule out dynamo ac-

tion for common simplified models. We will briefly outline their consequences here,

for a more in depth discussion, see for example Gilbert (2003). The most famous

anti-dynamo theorem is that of Cowling (1933). This theorem states that an ax-

isymmetric magnetic field vanishing at infinity cannot be maintained by dynamo

action. The Zeldovich (1957) theorem is the analogue of the Cowling theorem ap-

plied to cartesian coordinates. It states that a dynamo cannot be maintained by a

planar flow u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), 0). A further anti-dynamo theo-

rem states that in Cartesian coordinates, it is impossible to maintain a 2D magnetic

field through dynamo action. We finally note that for dynamo action to occur, the

magnetic Reynolds number Rm must be greater than some critical value, depen-

dent upon the geometry of the problem, for dynamo action to occur (Backus, 1958;

Childress, 1969).

The anti-dynamo theorems of Zeldovich (1957) etc. rule out dynamo action

in certain simplified domains, such as purely 2D or purely axisymmetric fluid flow.

49

It is advantageous in numerical and computational studies to study problems on a

2D domain, as this allows greater resolutions and more simulations to be carried

out on the same computer hardware. To allow dynamo action to be investigated in

a 2D domain, a flow which depends upon only two of three spatial dimensions can

be used. This is commonly called the 2.5D approximation. Here, the flow u(x, y, t)

leads to magnetic field solutions of the form B(x, y, z, t) = B(x, y, t)eikzz, for which

the kz wave number can be treated as a parameter, which allows the problem to be

solved in a 2D plane (e.g. Jones, 2008; Rincon, 2019; Tobias, 2021).

As the induction equation is linear in B, if u is constant in time, then

solutions of the form

B = B0(x, y, z)eγt, (3.31)

can be obtained, where B0 is the initial state and γ is a growth rate. When combined

with the 2.5D approximation, we can look for solutions of the form B(x, y, z, t) =

B0(x, y)eγt+ikzz. The full solution is a sum over all possible eigenmodes, and the

largest eigenmode will dominate as t→∞. If a periodic time dependence is added

to the flow, then the problem can be treated in a similar manner, however the growth

rate is no longer constant, but a Floquet exponent (Jones, 2008).

3.1.3 Rayleigh-Bénard Convection

As discussed in chapter 1, it is believed that the solar and planetary dynamos are

convection-driven (e.g. Busse, 2002; Jones, 2011), so that investigation into the flows

responsible for dynamo action should concentrate on convection. Rayleigh-Bénard

convection is often used as a simplified analogue for astro- and geo- physical systems

such as planet and stars (e.g. Busse, 1978; Getling, 1998), and we take that approach

here.

Rayleigh-Bénard convection describes the motion of a fluid held between

two fixed horizontal plates separated by a distance h, heated from below and cooled

from above (Ahlers et al., 2009). We model RBC in a 2D Cartesian domain with

periodic horizontal boundaries and length Lx. Ignoring magnetic effects (thus setting

the Lorentz force to zero), equations (3.20) - (3.24) are reduced to the Oberbeck-

Boussinesq equations

∂u

∂t
+ (u ·∇u) = − 1

ρ0

∇p− α(T − T0)g + ν∇2u, (3.32)

∇ · u = 0, (3.33)

50

∂T

∂t
+ u ·∇T = κ∇2T, (3.34)

(e.g. Tritton, 1977; Kundu et al., 2016) where u is the velocity, ρ0 is the reference

density at reference temperature T0, p is pressure, α is the coefficient of thermal

expansion, g = −gẑ is gravity directed in the negative vertical direction, T is the

temperature, ∆T is the temperature difference between the top and bottom plate,

ν is the kinematic viscosity, and κ is the thermal diffusivity. Fixed temperature, no

slip boundary conditions on the top and bottom plates are given by

T |z=0 = Thot = Tcold + ∆T, T |z=h = Tcold, (3.35)

u|z=0 = u|z=h = 0. (3.36)

We describe below the non-dimensional scaling for RBC, we use a different

scaling than for the kinematic dynamo problem, as temperature and velocity are the

variables rather than the magnetic flux density. To find the non-dimensionalised

RBC equations, we set Tcold = T0 = 0, Thot = Tcold + ∆T , and normalise the

temperature with ∆T . We normalise distance X with h, t with the diffusion time

scale τ = h2/κ, and u with U = h/τ . The Rayleigh number determines how much

thermal driving is present in the system. We define the Rayleigh number as

Ra =
αgh3∆T

κν
, (3.37)

(e.g. Chandrasekhar, 1961; Grossmann and Lohse, 2000) and the Prandtl number

as

Pr =
ν

κ
, (3.38)

allowing us to write the non-dimensional Oberback-Boussinesq equations:

1

Pr

(
∂u

∂t
+ (u ·∇u)

)
= −∇p+ RaT · ẑ +∇2u, (3.39)

∇ · u = 0, (3.40)

∂T

∂t
+ u ·∇T = ∇2T, (3.41)

with vertical boundaries defined as

T |z=−0.5 = 1, T |z=0.5 = 0, (3.42)

u|z=−0.5 = u|z=0.5 = 0, (3.43)

and periodic horizontal boundaries.

51

Critical Rayleigh Number

The fluid layer heated from below and cooled from above found in Rayleigh-Bénard

convection studies is stationary when the temperature difference is small. Heat is

transported purely by conduction through the fluid. When the temperature dif-

ference is large enough, convective instability occurs and the fluid begins to move,

enhancing heat transport by advection of the fluid. What is meant by ‘small’ and

‘large enough’ temperature differences is defined by the critical Rayleigh number

(Rac). For a given set of boundary conditions, Rac is a fixed constant, that (in a

number of simple cases) can be derived from linearisation of the governing equa-

tions (e.g. Chandrasekhar, 1961). For fixed temperature, and rigid no slip boundary

conditions in a Cartesian domain (as will be studied in this work), Rac ≈ 1707.762

(Chandrasekhar, 1961). As Ra is increased above Rac, fluid motions increase in

magnitude and eventually become turbulent, and heat transfer is mostly achieved

by convection.

Nusselt Number

The Nusselt number is the total heat flux through a surface divided by purely

conductive heat flux of a system (Chandrasekhar, 1961). The heat flux of a purely

conductive system can be written as

qcond = λ∆T/h, (3.44)

where λ is the thermal conductivity. To determine the relative importance of con-

vective and conductive heat transfer, we normalise the total heat flux q by the

conductive heat flux λ∆T/h, which gives the Nusselt number

Nu = q/ (λ∆T/h) = qh/λ∆T. (3.45)

An expression for the Nusselt number can derived from the dimensionless temper-

ature equation (equation (3.41)). For a Boussinesq fluid the term u ·∇T can be

written as ∇ · (uT), since ∇ ·u = 0. The convective and diffusive terms can then be

combined as ∇ · (uT −∇T). If a time average over a suitable time period is taken,

then integration over the volume generates the volume-averaged Nusselt number

NuV =
1

V

∫ (
−∂T
∂z

+ wT

)
dV, (3.46)

52

where w is the vertical component of velocity, the subscript V denotes calculation

over the whole domain, ∂T/∂z represents conduction, and wT represents convection.

In numerical simulations, this can be approximated as

NuV =

〈
wT − ∂T

∂z

〉
(3.47)

where 〈. . .〉 indicates a volume average (King et al., 2012). The Nusselt number is

1 for any conductive state, as can be seen by setting w = 0 and observing that the

total non-dimensional height is 1 and the temperature difference is set to -1. As

convection begins to occur, the Nusselt number will begin to rise. For more detailed

derivations of the Nusselt number, and those using different dimensionless scaling,

see, for example, Moore et al. (1975); Siggia (1994); Grossmann and Lohse (2000);

Kerr and Herring (2000); Rieutord (2014). The heat flux is independent of z (Siggia,

1994) due to conservation of energy, which requires

Nu = NuV = Nub = Nut, (3.48)

where

Nub =

〈
−∂T
∂z

〉
H

∣∣∣∣
z=b

, Nut =

〈
−∂T
∂z

〉
H

∣∣∣∣
z=t

, (3.49)

are the Nusselt numbers at the bottom and top boundaries, respectively, with 〈· · ·〉H
denoting a horizontal average and overbar · · · denoting a time average. To test the

convergence of numerical convection studies, adherence to eq (3.48) is checked as

εNu =
max

(
|Nub − NuV |, |Nub − Nut|, |NuV − Nut|

)
NuV

. (3.50)

The standard test in the literature is for εNu to be lower than 1% (e.g. Stevens et al.,

2010; King et al., 2012; Mound and Davies, 2017).

3.2 Numerical Methods

As was discussed in §2.2, for Geodynamo studies there are clear accuracy bene-

fits for spectral discretisations when compared with competing methods such as

finite volume/element/difference. For the Christensen et al. (2001) benchmark, lo-

cal methods showed errors of ∼ 6%, while spectral methods were converged to under

1% at comparable resolutions. In the Jackson et al. (2014) benchmark, which was

specifically designed to allow better accuracy for local methods, they were still sig-

53

nificantly less accurate than spectral codes. In gas giants and solar/stellar dynamos,

spectral methods, whilst remaining popular (Brun and Browning, 2017), have a less

clear cut advantage, and many studies are carried out using different methods such

as finite difference (e.g. Käpylä et al., 2011; Kageyama and Sato, 2004) and Implicit

Local Eddy Simulations (e.g. Passos and Charbonneau, 2014; Guerrero et al., 2019).

Since spectral methods dominate the geodynamo literature, and are given significant

interest in solar/stellar dynamos, they will be used in this work.

3.2.1 Spatial Discretisation - Pseudospectral Method

Numerical computations require that a continuous domain x is discretised to a set of

points xn, and data on that domain φ(x) is approximately represented by the value

of the data at xn by φn = φ(xn). For spectral methods using Fourier series as a

basis function, the points xn are equidistant and scaled such that xn ∈ [0, 2π]. The

vector of values (φ1, . . . , φN)T can be transformed into its Fourier series coefficients

(φ̂1, . . . , φ̂N)T using the discrete Fourier transform (DFT)

φ̂k =
2π

N

N∑
n=1

e−ikxnφn, k = −N
2

+ 1, . . . ,
N

2
, (3.51)

where k is known as the wave number. In this form, the data is said to be in

spectral space. The data can be transformed back into its original form with the

inverse discrete Fourier transform

φn =
1

2π

N/2∑
k=−N/2+1

eikxnφ̂k. (3.52)

Certain operations are trivial to carry out when data is represented in spectral space.

Differentiation can be carried out with respect to x for each φ̂k as

∂φ̂k
∂x

=
∂

∂x

2π

N

N∑
n=1

e−ikxnφn = −ik
2π

N

N∑
n=1

e−ikxnφn = −ikφ̂k. (3.53)

Higher order derivatives ∂n

∂xn
simply require multiplication by (−ik)n.

The standard discrete Fourier transform for a vector of length N requires

O (N2) operations (Cooley and Tukey, 1965), which is comparable with standard

matrix multiplications. One of the major reasons for the widespread adoption of

spectral methods utilising Fourier series (and Chebyshev polynomial) basis func-

tions, is the Fast Fourier Transform by Cooley and Tukey (1965), which reduces the

54

computation to O (N logN) operations. This allows for differentiation operations

to be carried out in spectral accuracy at better than the standard O (N2) operation

count.

To multiply data in spectral space, a convolution is required. This is an

expensive operation to compute, and so where possible, multiplications are carried

out in grid space. This means that FFT’s are required in every time step, to trans-

form data back and forth between grid/spectral space. This limits the ability of

spectral methods to be used in fully implicit time stepping schemes, which will be

discussed in more detail in §3.2.2.

Chebyshev Polynomials

What follows is a brief description of the use of Chebyshev polynomials and the Fast

Fourier Transfrom to numerically solve partial differential equations, for a more in

depth discussion, see for example Trefethen (2000, Ch. 8) or Boyd (2001, Ch. 9,12).

Chebyshev polynomials of the first kind are found from the trigonometric identities

Tn(cos(θ)) = cos(nθ). (3.54)

A change of variable x = cos(θ) is used to convert these trigonometric relations into

a set of orthogonal polynomials Tn(x). These Chebyshev polynomials can then be

found from the recurrence relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x). (3.55)

When the change of variables is applied, an equidistant discretisation of θ ∈ [0, π]

into N points becomes a boundary clustered grid in x, defined by

xj = cos

(
jπ

N

)
. (3.56)

When data is sampled at these Chebyshev points, rather than at equidistant points

in x, spectral differentiation can be performed. This can be achieved by matrix

multiplication with a dense differentiation matrix, which offers spectral accuracy but

no speed benefit over standard methods, or by using the Fast Fourier Transform,

which allows similar performance to that found in Fourier based spectral methods.

55

Spectral differentiation using Chebyshev polynomials and the FFT can be

carried out as below, adapted from (Trefethen, 2000, Ch. 8, pp. 78).

With data φ0, . . . , φN at Chebyshev points x0 = 1, . . . , xN = −1, create

the extended vector V of length 2N by concatenating the vectors φ0, . . . , φN and

φN−1, . . . , φ1. The FFT is used to find

V̂k =
π

N

2N∑
n=1

e−ikθnVn. (3.57)

Define Ŵk = ikV̂k, except that ŴN = 0. The derivative with respect to θ can now

be calculated on the physical grid by using the inverse FFT.

Wn =
1

2π

N∑
k=−N+1

eikθnŴk, n = 1, . . . , 2N. (3.58)

The derivative of the original data with respect to x can now be found from the

chain rule by multiplying by − 1
sin(θn)

= − 1√
1−x2n

as

φ′n = − Wn√
1− x2

n

. (3.59)

At the end points, this is undefined, due to a divide by zero, so l’Hopital’s rule is

implemented as

φ′0 =
1

2π

N∑
n=0

n2V̂n, φ′N =
1

2π

N∑
n=0

(−1)n+1n2V̂n. (3.60)

As with Fourier spectral bases, multiplicative terms are best treated whilst

in grid space, with differentiation operations treated in spectral space.

Boundary Conditions

The major advantage of Chebyshev polynomials over other orthogonal polynomial

series, is that because of their origin as a cosine series with a change of variable,

they can be quickly computed by the FFT. The advantage of using Chebyshev

polynomials over Fourier series, is that arbitrary boundary conditions can be set,

using basis recombination, global coefficient adjustment, or modifying the value at

the boundary using either a low order finite difference approximation or the highest

chebyshev polynomial coefficient.

56

3.2.2 Time-Stepping

The subject of parallelizing a simulation in the time domain requires a thorough

understanding of time-stepping methods in general. In this section, we will give a

brief overview, and then discuss the problems of stability and stiffness. We will then

introduce Implicit-Explicit (IMEX) timestepping methods, concentrating on IMEX

Runge-Kutta methods, which are used in this work. Time stepping methods are

used to find an approximate solution to a problem of the form

∂φ

∂t
= f(t, φ), (3.61)

φ(t = 0) = φ0 (3.62)

for a variable φ, an arbitrary function f at any time t with initial condition given

by φ0. As we are using spectral spatial discretisations, φ contains the spectral

coefficients of the state variables. In the kinematic dynamo, this is B̂, (the spec-

tral coefficients of the magnetic field) whilst in Rayleigh-Bénard convection, it will

contain û and T̂ (the spectral coefficients of the velocity and temperature). f is

the right hand side of each discretised system of PDE’s, containing the advection,

diffusion and source terms etc.

Timestepping methods can be constructed by truncating Taylor expansions

of the time derivative about a set time point. The Euler forward method truncates

the Taylor series about the point t+ δt where δt is a small step in time

φ(t+ δt) = φ(t) + δt
∂φ(t)

∂t
+

(δt)2

2

∂2φ(t)

∂t2
+ ...+O((δt)n) (3.63)

to give

φ(t+ δt) = φ(t) + δt
∂φ(t)

∂t
+O((δt)2), (3.64)

where O(a) indicates a term of size ∼ a. Substituting in the original PDE (3.61)

gives

φ(t+ δt) ≈ φ(t) + δtf(φ(t)), (3.65)

(Chapra and Canale, 2011). Euler’s method is defined by taking the above approxi-

mation to be exact (Atkinson et al., 2011), so with timesteps defined by tn+1 = tn+δt,

and simplifying notation such that φn = φ(tn), Euler’s method is

φn+1 = φn + δtf(φn). (3.66)

The Euler backward method can be found by similar methods, and is

57

written as

φn+1 = φn + δtf(φn+1). (3.67)

Euler forward and backwards time stepping methods have local truncation errors

of O(δt2), and overall truncation errors of O(δt) (Atkinson et al., 2011). To reduce

the error of the solution, methods can be constructed using more terms from the

Taylor expansion for both explicit and implicit techniques. In effect, these methods

use slope information from inside the interval t+ δt (eg Runge-Kutta or multi-stage

methods) or from previous time steps (eg. Multi-step methods), to give a better

estimation of the solution. Well known timestepping methods, of 2nd order (global

error is O(δt2)) include the implicit Crank-Nicolson scheme

φn+1 = φn +
δt

2

(
f(φn+1) + f(φn)

)
, (3.68)

the explicit multi-step Adams-Bashforth method

φn+1 = φn + δt

(
3

2
f(φn)− 1

2
f(φn−1)

)
, (3.69)

and explicit 2nd order Runge-Kutta midopint method

K1 = f(φn), (3.70)

K2 = f(φn + δtK1), (3.71)

φn+1 = φn +
δt

2
(K1 +K2), (3.72)

where K1 and K2 are intermediate stages computed within each timestep. Note in

eq (3.69) the φn−1 term, meaning the method requires information to be stored from

previous timesteps. A consequence of this is that multi-step methods are unable to

start from initial conditions on their own, a number of steps of a different method

are required to generate the required data. The Runge-Kutta method described

above is one of many variations of two stage Runge-Kutta formulas. The general

58

explicit Runge-Kutta method is

K1 = f(tn, φn),

K2 = f(tn + c2δt, φ
n + δt(a21K1)),

K3 = f(tn + c3δt, φ
n + δt(a31K1) + δt(a32K2)),

...

Ki = f

(
tn + ciδt, φ

n + δt
i−1∑
j=1

aijKj

)
,

φn+1 = φn +
s∑
i=1

biKi. (3.73)

The coefficients a, b, and c are compactly written in notation known as a Butcher

Tableau
c1 a1,1

c2 a2,1 a2,2

...
...

.

cs as,1 . . . as,s−1 as,s

b1 . . . bs−1 bs

(3.74)

(e.g. Butcher, 2008), which can be used to define any Runge-Kutta method with s

stages. If diagonal entries, and those on upper right of the diagonal are zero, the

method is explicit. If the diagonal entries are non-zero, then the tableau describes a

diagonally-implicit Runge-Kutta method (DIRK), while a tableau containing non-

zero upper right entries describes a fully implicit Runge-Kutta method. In this form,

the RK2 method above is written as

0

1 1

1/2 1/2

(3.75)

as can be seen below

K1 = f(tn + 0δt, φn + 0),

K2 = f(tn + 1× δt, φn + δt(1×K1)),

φn+1 = φn +
1

2
K1 +

1

2
K2. (3.76)

Derivations and further examples of timestepping methods can be found,

for example, in Butcher (2008), Chapra and Canale (2011), and Atkinson et al.

(2011).

59

Stability and Stiffness

Time stepping methods can sometimes generate errors that grow exponentially with

time, which indicates that the timestepping method is unstable. Stability of a

timestepping method can be analysed by use of a scalar test problem

∂υ

∂t
= λυ, (3.77)

υ(0) = 1, (3.78)

where υ is a scalar variable, and λ is a complex constant (Atkinson et al., 2011).

The solution to this problem at time t is

υ(t) = eλt. (3.79)

For the solution to be stable, <(λ) < 0, so that small changes in initial conditions

do not cause exponentially large changes in the solution. This leads to

υ(t)→ 0 as t→∞. (3.80)

A timestepping algorithm should maintain this property so that the computed so-

lution υn at timestep tn satisfies

υn(tn)→ 0 as tn →∞. (3.81)

A timestepping method is absolutely stable, or A-stable if the above condition holds

for any δt. Explicit time stepping methods cannot be A-stable, so when the time

step exceeds a limit δtmax, that depends on the time stepping algorithm, the physics

underlying the problem, and the spatial resolution, the error grows exponentially

with time (Boyd, 2001). This error growth is called the CFL instability, named after

the authors of Courant et al. (1928). All explicit methods have finite δtmax, while

many implicit methods are stable (but not necessarily accurate) for any timestep size

(Boyd, 2001). The exact value of the maximum time step size must be calculated

for each combination of time and space discretisations and each specific problem,

but some ‘rules of thumb’ can generally be used. For advective terms, the CFL

condition is

δtmax ≤
δx

|u|
, (3.82)

where |u| is the local magnitude of the fluid velocity and δx is the smallest distance

between two adjacent grid points. The physical explanation of this condition is that

the time step size should be smaller than the time taken for fluid to flow from one

60

grid point to another. For diffusion terms the condition is of the form

δtmax ≤ C(δx)2 (3.83)

where C is a constant linked to the coefficient of diffusion, ν (as an example, for a

forward-Euler + 1st order finite difference scheme, C = 1/2ν). The dependence of

the time step size on (δx)2 rather than on δx is an example of numerical stiffness.

Increases in spatial resolution cause severe reductions in time step sizes, forcing

step sizes much smaller than necessary to obtain reasonable accuracy (Grooms and

Julien, 2011). This makes high resolution simulations extremely difficult to carry

out.

Implicit Explicit Time stepping (IMEX)

The problem of stiff equations can be alleviated by using implicit time stepping

methods, as many implicit methods are A-stable (though some higher order mulit-

step methods, for example, are not), meaning that large timestep sizes can be taken.

However, non-linear problems are generally very expensive to solve implicitly, requir-

ing iterative techniques to invert large systems (Grooms and Julien, 2011). In many

problems, the right hand side can be split into different types of terms, and different

timestepping procedures can be used on different terms. A key example of this is

the use of IMEX schemes to solve equations of the type

∂φ

∂t
= f(φ) + νg(φ) (3.84)

where f(φ) is non-linear, but not stiff, g(φ) is stiff but linear, and ν is a diffusion

constant. IMEX timesteppers can generally be split into those which combine ex-

plicit and implicit multistep methods, and those which combine explicit and implicit

Runge-Kutta methods. The most basic IMEX timestepper combines Euler forwards

with Euler backward. The Euler Forward Backward scheme is written as

φn+1 − δt g(φn+1) = φn + δt f(φn), (3.85)

which treats the non-linear, non-stiff term explicitly, and the linear, stiff term im-

plicitly. To solve each timestep, typically the right hand side is first evaluated.

Then the resulting linear system (1− δt g)φn+1 = [φn + δtf(φn)] is inverted to find

φn+1. The non linear terms being kept on the right hand side allows them to be

solved explicitly using data at tn, which requires only that function evaluations be

carried out. It is at this point that transforms from spectral space to real space,

61

and back again, are carried out in pseudospectral methods such as those used here.

The linear terms on the left hand side can be solved directly by inverting a differ-

entiation matrix, which in spectral space is trivial. One of the most popular IMEX

schemes is CNAB (Ascher et al., 1995), which combines the second order implicit

Crank-Nicolson (eq (3.68)) and explicit Adams-Bashforth (eq (3.69)) schemes. The

scheme is defined as

φn+1 − δt

2
g(φn+1) = φn +

δt

2

[
3f(φn)− f(φn−1)

]
+
δt

2
g(φn). (3.86)

Overall, this scheme is second order in time. Higher order multistep methods have

been created, with a number of examples investigated in Ascher et al. (1995). Mul-

tistep methods tend to have smaller stability regions as the order of timestepper

increases (Ascher et al., 1995, 1997), and require only one set of computations per

time step.

The other major type of IMEX time steppers is IMEX Runge-Kutta. An

IMEX Runge-Kutta scheme of stage s is defined a combination of the Butcher

Tableaux of the implicit and explicit schemes

cI1 aI1,1

cI2 a2,1 aI2,2
...

...
.

cIs aIs,1 . . . aIs,s−1 aIs,s

bI1 . . . bIs−1 bIs

cE1 0

cE2 aE2,1 0
...

...
.

cEs aEs,1 . . . aEs,s−1 0

bE1 . . . bEs−1 bEs

(3.87)

(e.g. Butcher, 2008). Here, E denotes the explicit part of the problem and I denotes

the implicit part of the problem. the nodes. The scheme is implemented by first

calculating KE
1 = f(φn), and then completing the following loop:

KI
i = g

(
φn + δt

i∑
j=1

aIijK
I
j + δt

i∑
j=1

aEi+1,jK
E
j

)

KE
i+1 = f

(
φn + δt

i∑
j=1

aIijK
I
j + δt

i∑
j=1

aEi+1,jK
E
j

)
(3.88)

for i = 1 to s, where KI is found by solving the implicit system. φn+1 is then found

by combining the intermediate stages as

φn+1 = φn + δt
s∑
i+1

bIjK
I
j + δt

s+1∑
i=1

bEj K
E
j . (3.89)

In effect, a number of intermediate stages K are calculated, in similar manner to

62

the explicit Runge-Kutta scheme introduced above (eq (3.70)). However, in this

case, the implicit stages depend on the explicit stages, and all bar the first explicit

stage depend on the preceding intermediate result. Equation (3.89) then collects the

intermediate results to complete the timestep. A number of IMEX Runge Kutta

schemes can be found in the literature (Spalart et al., 1991; Ascher et al., 1997;

Kennedy and Carpenter, 2003; Kassam and Trefethen, 2005).

The extra work carried out in each timestep for IMEX Runge-Kutta meth-

ods, when compared to IMEX multistep methods, is balanced out by the increased

time step size that is available, such that similar computation times are required

for each method. Therefore, when choosing a timestepper for Parareal, the need to

restart the solver repeatedly makes Runge-Kutta the preferred choice. Restarting

multistep IMEX solvers requires many small steps of a low order timestepper in

order to create the required information from previous timesteps.

3.2.3 Dedalus Code

Dedalus (Burns et al., 2020) is an open source spectral solver written in python. It

uses the FFTW (Frigo and Johnson, 2005) library to perform fast parallel transforms

between real and spectral space, and parallelizes in space over n−1 dimensions of an

n dimensional domain using the mpi4py library (Dalćın et al., 2005). A number of

different IMEX time stepping methods up to 4th order are implemented, consisting

of both Runge-Kutta and Multistep methods. There are a number of different spec-

tral bases implemented, with Fourier, and Sine/Cosine series for periodic domains,

and Chebyshev Polynomials, and Legendre/Hermite/Laguerre polynomials used for

setting more complicated boundary conditions. Linear terms are treated in spectral

space, whilst non-linear, and multiplicative terms are transformed into real space

for evaluation.

3.3 Parareal

3.3.1 Algorithm

In the following section we will describe the parallel-in-time algorithm Parareal,

describe its operation, and discuss some of its performance parameters. Parareal is

63

an iterative method for solving initial value problems (IVP’s) of the form

∂φ

∂t
= f (φ(t), t) , φ(0) = φ0, 0 ≤ t ≤ T (3.90)

where the right hand side of f typically comes from spatially discretizing a partial

differential equation (PDE). In this work, as discussed in §3.2.2, φ contains the

spectral coefficients of the various state variables: (û, T̂ , B̂). The time domain

is split into NPParareal time slices, and each slice is determined by the time-points

0 = t0 < t1 < · · · < tNPParareal−1 < tNPParareal
= T . Each time slice can be of

different length, but here we restrict to the case where each time slice is of equal

size, ∆T = T /NPParareal.

Parareal facilitates the parallelisation of computation in time by utilising

two different numerical solvers. The fine solver F is the equivalent of the standard

serial-in-time solver, with spatial resolution and timestep size δt required for desired

accuracy. The coarse solver G is a computationally cheaper approximation with

lower than the required accuracy, and timestep size ∆t.

A Parareal simulation begins with the coarse solver integrating from the

initial conditions at t = 0 through to t = T . This gives an approximation φk=0
n for

each time slice n = 0, 1, . . . ,NPParareal, where k denotes the Parareal iteration num-

ber and n the time slice. (Note that this is different notation than in §3.2.2, where

n was used to denote individual timesteps of a standard timestepping algorithm).

Using this notation, the initial conditions are φ0
0 = φ(0). Each processor (or set of

processors, if parallelisation is used in space as well as time) is responsible for inte-

grating the solution through one time slice. The initial coarse run can be performed

on a single processor, with the results for each time slice distributed afterwards to

the other processors, but more often each processor computes the coarse and fine

solutions for its own time slice. φ0
n+1 = G(tn+1, tn, φ

0
n) is the coarse result computed

on each time slice, and becomes the initial condition for the subsequent timeslice,

for both the fine and coarse solvers. The computation consists of taking a sufficient

number steps of a standard timestepping algorithm with the coarse timestep to move

from t = tn to t = tn+1 ie.

No. coarse steps =
∆T
∆t

. (3.91)

Each processor then computes F
(
tn+1, tn, φ

k
n

)
from its initial condition φkn, from

t = tn to t = tn+1 using timestep δt. The fine solver can use the same standard

algorithm as the coarse solver, but more often uses a higher order method. In either

case, ∆T /δt timesteps are computed. This fine stepping computation is the most

64

computationally expensive part of the algorithm, and can be run in parallel; each

processor only needs φkn in order to start computing the fine solution. A second run

using the coarse propagator is now started on the first processor, and the Parareal

correction iteration

φk+1
n+1 = G(tn+1, tn, φ

k+1
n) + F(tn+1, tn, φ

k
n)− G(tn+1, tn, φ

k
n) (3.92)

is used to communicate information from the fine solver to all subsequent processors.

This second coarse propagation has to run in serial, and is effectively the serial

overhead in Parareal. Each subsequent parallel fine computation, followed by a

serial coarse correction computation, makes up a Parareal iteration. Figure 3.1

shows a rough sketch of how the computing time of each processor is spent using

Parareal compared to a serial computation.

3.3.2 Stopping Criteria, Accuracy

As k → NPParareal, the solution φkn=NPParareal
converges to the solution that would

have been obtained by running the fine solver in serial for the full duration, F(t =

T , t = 0, φ0
0). The algorithm stops when the error between the Parareal solution

and the expected fine solution is of similar magnitude to the error inherent in the

fine solver (due to discretisation in time and space). However, the error is not

trivial to find, as in realistic applications, the fine solution will not be available. As

a proxy for this accuracy check, a common method of checking convergence is to

compare the solution at k with the solution at k−1. When the defect between these

solutions is of similar magnitude to error inherent in the fine solver, the solution is

deemed to be converged. It was proven in Gander and Vandewalle (2007) that when

k = NPParareal, the solution from the Parareal algorithm will be identical to the

solution obtained from the fine solver in serial. A brief description of how Parareal

converges at k = NPParareal follows. The main prerequisite is that both the fine and

coarse solvers are stable and always compute the same output for a given input.

On the first timeslice, φ0 is the initial condition for both the coarse and fine solver.

When the first Parareal correction sweep is computed, the coarse solver again uses

φ0 as the initial condition; φ1
0 = φ0

0. Therefore,

G(t1, t0, φ
1
0) = G(t1, t0, φ

0
0). (3.93)

65

This means that

φ1
1 = G(t1, t0, φ

1
0) + F(t1, t0, φ

1
0)− G(t1, t0, φ

0
0)

= F(t1, t0, φ
1
0) + G(t1, t0, φ

1
0)− G(t1, t0, φ

0
0)

= F(t1, t0, φ
1
0). (3.94)

In subsequent Parareal iterations, φk+1
1 = φk1, so does not change. This will be used

in all subsequent iterations as the initial condition for the second time slice, for

both the coarse and fine solvers. The coarse solver on the second time slice will then

also compute its result twice from the same initial conditions. The coarse results

in the Parareal correction (eq (3.92)) will cancel out, leaving only the result from

the fine solver. This will lead to the same behaviour in the third time slice on the

subsequent iteration, and so on and so on. Thus, with every iteration of Parareal,

the result of one additional time slice becomes the exact result of the fine solver.

When k = NPParareal, this has propagated through every time slice, so that

φk=NPParareal
NPParareal

= F(T , 0, φ0
0). (3.95)

Convergence in k = NPParareal iterations, however, would not lead to speed up, and

for speed up to be obtained, an acceptable solution must be found within a small

number of Parareal iterations, as will be discussed in the next section.

3.3.3 Speedup and performance

Parareal speed up can be estimated as runtime of the time-serial (likely to be paral-

lelised in space) method over the runtime of the time-parallel method. Some simpli-

fying assumptions are made in the following analysis. First, that all ∆T are equal.

Second, that fixed timestep sizes are used for both ∆t and δt. The communication

times are also assumed to be zero. Finally, due to these assumptions, it is assumed

that the load is balanced perfectly across the Parallel-in-time processors. The as-

sumption of equal ∆T size neglects any load imbalance, and this can be significant.

Fixed timestep sizes can also ignore the effect of load imbalance: for systems with

sudden physical changes, there could be large differences in the number of timesteps

taken by each processor. An example of how load imbalance can effect Parareal

performance is shown in figure 3.2. Neglecting communication times is not so prob-

lematic in Parareal. The serial portion of Parareal is relatively large: the coarse

solver. Typically, many coarse, serial time steps are computed on each processor in

every Parareal iteration, whilst only one communication is required for each pro-

66

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 Serial

To
ta

l R
un

ni
ng

 ti
m

e

Coarse Method
Fine Method

Figure 3.1: Processing time for each processor in Parareal (left) compared with
processing time for the same simulation carried out in serial (right). Note that here
we have two iterations, and the coarse stepper takes around half the time of the fine
stepper.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

To
ta

l R
un

ni
ng

 ti
m

e

(a) Load balanced

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

To
ta

l R
un

ni
ng

 ti
m

e

(b) Load imbalanced

Figure 3.2: Effect of load imbalance on Parareal. Example plot of two simulations
both converging in 2 iterations, with a fine/coarse runtime ratio of 3. The white
gaps showing on the imbalanced chart indicate processor idle time, due to waiting
for previous processors. Blue indicates fine computations, brown indicates coarse
computations, and pN represents the processor time slice.

67

cessor per iteration. Therefore, serial coarse timestepping is usually far more time

consuming than communication (Aubanel, 2011). There are however times where

this is not the case, and real world performance should always be measured using

real simulations on real systems where possible, so that all possible bottle necks

are accounted for (Goetschel et al., 2021). Under these assumptions, and with the

runtime of the fine method over a timeslice ∆T labelled RF , and the runtime of

the coarse method over the same interval labelled RG, the total runtime of a serial

simulation can be estimated as NPPararealRF . Total runtime of the Parareal solver

can be estimated as

NPParareal ×RG + k (RG +RF) . (3.96)

This gives the speed up as

SP =
NPParareal ×RF

NPParareal ×RG + k (RG +RF)
, (3.97)

which can be simplified to

SP =

[(
1 +

k

NPParareal

)
RG
RF

+
k

NPParareal

]−1

. (3.98)

It is evident from this equation that a larger ratio between the coarse and fine

runtimes leads to a larger speed up. It can also be seen that larger k leads to

smaller speed ups. From this estimate, a bound can be found for the speed up

SP ≤ min

{
NPParareal

k
,
RF
RG

}
(3.99)

(Gander and Vandewalle, 2007; Minion, 2011). This bound illustrates the trade off

which needs to be made to obtain good speed up from Parareal. The number of

iterations needs to be kept as low as possible, which means the coarse solver should

be close in accuracy to the fine solver. However, at the same time, the ratio of the

runtimes of the fine and coarse solver should be as large as possible, so the coarse

solver should be as computationally cheap as possible. Finding a good compromise

coarse solver, which is cheap ‘enough’ and accurate ‘enough’ is the key to speed up

in Parareal. The parallel efficiency of Parareal is found as

EP =
SP

NPParareal

=

[
RG
RF

(NPParareal + k) + k

]−1

, (3.100)

from which another bound can be inferred

EP ≤
1

k
. (3.101)

68

This highlights further the need for as low a number of iterations as possible, in

order to keep the parallel efficiency as high as possible.

69

Chapter 4

Parareal Kinematic Dynamo

In this chapter we present results from our work on speeding up simulations of

the kinematic dynamo using Parareal. We simulate two different dynamos, the

steady Roberts (1972) dynamo, and the time periodic Galloway and Proctor (1992)

dynamo. In Chapter 1 we introduced the kinematic dynamo and the Parareal algo-

rithm, and showed the motivation for this work. In Chapter 2 we performed a review

of recent studies in both these areas, whilst in Chapter 3 we examined the mathe-

matical details of the dynamo and Parareal. Here, we begin with a brief description

of the models used, before showing how the numerical models were validated. We

then discuss the accuracy levels required for numerical results, before reporting our

results. We finish with a short discussion. The work in this chapter was previously

published in Clarke et al. (2020b).

4.1 Description and Validation

Here, we briefly describe the model that we will be using, and provide more details

of the Roberts (1972) and Galloway and Proctor (1992) dynamos in particular. We

solve the induction equation

∂B

∂t
+ u ·∇B = B ·∇u +

1

Rm
∇2B, (4.1)

for magnetic field B with a pre-determined velocity u which is divergence-free

(∇ · u = 0), with magnetic Reynolds number Rm.

70

The Roberts (1972) flow is defined as

u = (B cos(y), A sin(x), B sin(y) + A cos(x)) , (4.2)

where A, B are arbitrary constants (set to 1 here). The domain is a periodic square

plane in x and y of side length 2π. The flow is 2.5D (as described in §2.2.3), with z

components, but no dependence on z. The magnetic field variation in the z direction

is then found through the wavenumber kz, which is treated as a parameter, so that

we seek solutions of the form B(x, y, z, t) = b(x, y, t)eikzz. Derivatives in z thus

reduce to a multiplication by ikz. Substituting the flow into the induction equation

gives

∂bx
∂t

+

(
cos(y)

∂

∂x
+ sin(x)

∂

∂y
+ (sin(y) + cos(x))ikz

)
bx =

− by sin(y) +
1

Rm

(
∇2 − k2

z

)
bx, (4.3)

∂by
∂t

+

(
cos(y)

∂

∂x
+ sin(x)

∂

∂y
+ (sin(y) + cos(x)) ikx

)
by =

bx cos(x) +
1

Rm

(
∇2 − k2

z

)
by, (4.4)

∂bx
∂x

+
∂by
∂y

+ ikzbz = 0, (4.5)

where bx, by, bz are the x, y, z components of the magnetic field, respectively.

The Galloway and Proctor (1992) flow is defined as

u =

uv
w

 =

C sin(z + sin(ωt)) +B cos(y + cos(ωt))

C cos(z + sin(ωt))

B sin(y + cos(ωt))

 (4.6)

where B = C =
√

3/2 and ω = 1 are arbitrary constants. The domain is a periodic

plane in y and z of length 2π, and the flow is also 2.5D, as there is no dependence

on x. The magnetic field is of the form B(x, y, z, t) = b(y, z, t)eikxx, so that kx is the

parameter rather than kz (as in the Roberts flow). Substitution into the induction

equation gives

∂by
∂t

+

(
uikx + v

∂

∂y
+ w

∂

∂z

)
by = bz

∂v

∂z
+

1

Rm

(
∇2 − k2

x

)
by, (4.7)

71

∂bz
∂t

+

(
uikx + v

∂

∂y
+ w

∂

∂z

)
bz = by

∂w

∂y
+

1

Rm

(
∇2 − k2

x

)
bz, (4.8)

ikxbx +
∂by
∂y

+
∂bz
∂z

= 0. (4.9)

For both the Roberts (1972) and Galloway and Proctor (1992) models,

initial conditions for B were set to random values ∼10−5, as in Archontis et al.

(2003). Time was measured in units of the turnover time for both cases. When the

simulation begins, there is an initial drop in magnetic field strength, as the random

field is not the optimal configuration for growth in either problem. After a short

time period (typically a few time units), the magnetic field begins to grow. For the

Roberts flow, the growth is exponential (showing as linear on a log-linear plot, see fig

4.1), whilst for the Galloway Proctor flow, the growth is exponentially growing and

periodic, but can be averaged out over a long enough period to give a single growth

rate. After the initial drop in magnetic field strength, the average field strength

grows until it is back above ∼10−5 of the initial conditions (for values of Rm with

positive growth rates). Calculation of the growth rate can be carried out by ignoring

the initial transient, and tracking the magnetic field strength after this period. In

this work, we ran all simulations to 50 time units to ensure that the field strength

was higher than initial conditions, and calculated the growth rate over the period

25-50 time units, to ensure that the initial drop in field strength was ignored. An

example plot showing how max(B) changes over time for the Roberts flow can be

found in figure 4.1.

0 20 40

t

1

2

3

M
ax

(B
)

×10−5

(a) Linear plot of B over time

0 20 40

t

10−5

M
ax

(B
)

(b) Log plot of B over time

Figure 4.1: Example plot of how B changes over time, in linear and log scales. The
gradient of the log scale graph can be used to find the growth rate.

Figure 4.2 shows the contours of the y-component of the magnetic field

for Rm = 3 and 3000 in the Galloway-Proctor flow, and Rm = 4 and 4096 in the

Roberts flow. Larger scale and more diffuse structures are present in the Rm = 3

72

and Rm = 4 simulations. Finer structures emerge in the Rm = 3000 and Rm = 4096

cases, showing the effect of the Rm
−1/2 scaling on the smallest structures. The

Galloway-Proctor magnetic field morphology changes over time, with the periodic

change in the velocity field, which leads to the more complicated pattern shown in

Figure 4.2d. For the Roberts flow, the magnetic field has a constant morphology

and simply grows exponentially in magnitude.

The (time serial) numerical model that we used in numerical tests was

validated by comparing the growth rates against results in the literature. Roberts

growth rates were compared with those reported by Plunian and Rädler (2002),

for different Rm and kz. We also calculated the growth rate for a range of kz, for

each Rm, and were able to reproduce the behaviour reported in Roberts (1972) and

Jones (2008), see figure 4.3. We first wrote a code using just Python mathematical

libraries, and then moved on to creating the same model in Dedalus (see §3.2.3 for

details), and growth rates were equal in the literature, Python code and Dedalus

model (see figure 4.4).

The Galloway Proctor model was validated against results from Galloway

and Proctor (1992) and analysis printed in Charbonneau and Steiner (2012), the

peak growth rate is found at kx = 0.57 for all Rm, and does not decrease with

increasing Rm, showing the expected fast-dynamo behaviour. See figure 4.5 for

details.

73

0 2 4 6
x

0

1

2

3

4

5

6

y

(a) Roberts flow, Rm = 4

0 2 4 6
x

0

1

2

3

4

5

6

y
(b) Roberts flow, Rm = 4096

0 2 4 6
y

0

1

2

3

4

5

6

z

(c) Galloway-Proctor flow, Rm = 3

0 2 4 6
y

0

1

2

3

4

5

6

z

(d) Galloway-Proctor flow, Rm = 3000

Figure 4.2: Contour plots of the y-component of the magnetic fields for the labelled
flows at time T = 50. The left hand side shows the low Rm field whilst the right
hand plots show the high Rm fields. Much finer structures are apparent in the high
Rm cases, due to the Rm

−1/2 scaling of the spatial structures. The Galloway Proctor
field shows more spatial variability, due to the time dependence of the flow. The
Roberts field stays effectively fixed in space, only varying in magnitude over the
course of the simulation, whilst the morphology and magnitude of the Galloway
Proctor field changes over time.

74

10 1 100

kz

0.00

0.05

0.10

0.15

0.20
Gr

ow
th

 R
at

e
Rm:4
Rm:8
Rm:16
Rm:32
Rm:64

Figure 4.3: Growth rate of the Roberts dynamo for different Rm over a range of kz.
Each Rm has a peak growth rate at a different kz, and for Rm > 8, these growth
rates fall as Rm increases, showing slow dynamo behaviour. Results match those
found in Roberts (1972) and Jones (2008).

101 102

Magnetic Reynolds Number

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Gr
ow

th
 ra

te
 o

f m
ax

 v
al

ue
 o

f B
x Dedalus

Plunian Growth Rates (2dp)
Python code

Figure 4.4: Comparison of peak growth rates calculated by Dedalus, simple python
code, and reported in the literature, for different Rm. Results from literature (Plu-
nian and Rädler, 2002) were reported to 2 decimal places.

75

101 102 103

Rm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G
ro

w
th

 R
at

e

Figure 4.5: Growth rates calculated for Galloway and Proctor (1992) dynamo at
kx = 0.57. Growth rate does not fall as Rm → ∞, and matches Charbonneau and
Steiner (2012).

4.2 Accuracy measurement

Determination of the level of accuracy in a Parareal simulation is crucial to mea-

suring performance accurately. Parareal is determined to have converged when the

error between consecutive iterations is below a given threshold. This threshold how-

ever should be linked to the error expected from the solution overall. This error is

equivalent to the error expected from the fine solver, if it were run in serial over the

whole time period. If the Parareal convergence threshold is set much higher or much

lower than the error inherent in the fine solver, then results will not be very mean-

ingful. Performance of the fine solver is also important. To obtain realistic speed

up measurements, Parareal must be measured against the optimum serial solver

for a given problem and accuracy. Dynamo calculations require high accuracy, as

under-resolved simulations can produce erroneous growing magnetic fields (Tobias,

2021), such as the solutions of Bullard and Gellman (1954). We denote φN as the

solution vector containing bx and by (for the Roberts dynamo), by and bz (for the

Galloway Proctor dynamo), in real space, with Nx, Ny, Nz collocation points in x,

y, z directions, respectively. We simplify notation by defining N = Nx = Ny = Nz,

the spatial resolution of a simulation. Errors are estimated by comparison with a

high resolution reference solution φreference in terms of the L2 norm

||φ− φreference||2 =

[
N∑
i

(φi − φreference
i)2

]1/2

, (4.10)

76

where φi represents the ith entry of the solution vector with N entries. The error

ε we report is the L2 norm of the error, normalised by the L2 norm of the solution

vector

ε =
||φ− φreference||2
||φreference||2

. (4.11)

Spectral interpolation is used to allow the computed solution to be compared to the

reference solution. Given the need for highly accurate results in dynamo simulations,

and our aim in this work to inform more complicated studies that could be carried

out in future, we aim for an accuracy of 10−5.

4.2.1 Fine solution

First, we need to fix the required spatial resolution for F . Convergence in space

was tested by running simulations at double the previous spatial resolution until

the normalised L2 difference between two solutions was ∼10−15 (machine precision).

At this point, the error from the spatial discretisation is of the order of machine

precision. The most highly resolved solution, was then used as the reference solu-

tion φreference to compute relative error of the solution computed with the solution

computed for each resolution φN . The results are shown in Figure 5.4, confirming

the expected spectral convergence behaviour. For each Rm, we set the fine solver

spatial resolution, NF , to the smallest value that gives a solution with error smaller

than 10−5 (indicated by the dashed red line). Because higher magnetic Reynolds

numbers produce smaller scale features, they require better spatial resolution to

match our error tolerance.

Next, we fix the time stepping method and time step. IMEX Runge-Kutta

methods were chosen, as they offer comparable performance to IMEX multistep

methods (see §3.2.2) but are able to start without recourse to another time-stepping

method. As Parareal requires each time slice to start from a new initial condition on

every iteration, for both fine and coarse solvers, this is an important factor. Creating

a reference solution with a temporal error of the order of machine precision proved to

be unfeasible, due to computational constraints, especially in the higher Rm cases.

Therefore, a result with error lower than 10−7 was used as a reference solution for

setting the time step of the fine solver, δt. This is two orders of magnitude smaller

than the desired result of 10−5 and should provide an accurate estimation of the error

due to time-stepping. A comparison of the Runge-Kutta time steppers available in

Dedalus is shown in Figure 4.7. Because RK443 reaches the required tolerance of

10−5 with the smallest number of evaluations of the right hand side function, it is

the most efficient choice. Similar results were found for other magnetic Reynolds

77

101 102 103

N

10 12

10 9

10 6

10 3

100

Rm

4
64
512
4096

(a) Roberts Flow

101 102 103

N

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100 Rm

3
300
3000

(b) Galloway Proctor Flow

Figure 4.6: Graphs showing spatial convergence of the solvers for the two flows
investigated. Spectral order of convergence is observed, with the decrease in error
ε accelerating as the number of spectral modes, N , is increased. The line at 10−5

shows the required level of accuracy in the solution. The number of modes required
for each Rm follows the predicted Rm1/2 scaling.

numbers. We therefore use RK443 for the fine method F throughout this work.

Figure 4.8 shows the dependence of the solution error on time step size

for a range of Rm for the Roberts and Galloway-Proctor flows. All simulations

were carried out with the optimal NF found from the spatial resolution study (fig

5.4) . We can see that smaller step sizes are required to meet a given level of

accuracy for the Galloway-Proctor flow than for the Roberts flow. This is likely

due to the Galloway-Proctor flow depending explicitly on time. In the case of the

Roberts flow, a δt small enough to satisfy the stability requirements for a given

NF is sufficient to also satisfy the accuracy requirement of 10−5, except for the most

simple case of Rm = 4. This affects the performance of Parareal through the ratio of

computational run times RF/RG because we have to use essentially the same time

step for both the coarse and fine method. In contrast, for the Galloway-Proctor

simulations, satisfaction of the stability requirement did not guarantee accuracy

within the required tolerance, and a smaller δt must be used for the fine solver,

leading to a better coarse-to-fine computation time ratio.

4.2.2 Coarse Solver

For each Rm, the NF and δt determined above are used in the fine solver. We

now discuss the different possibilities available for choosing a coarse solver. Using

the same spatial resolution with coarse time step ∆t > δt was not suitable for

78

103 104

number of evaluations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Solver
RK111
RK222
RK443

Figure 4.7: Work required for different time stepping methods to obtain solutions
of a certain accuracy, measured as the relative two-norm ε of the each solution
φδt and the solution obtained using the smallest timestep with the RK443 stepper
(φmin

δt). The number of evaluations required to compute from T = 0 to T = 1 are
shown. This number depends on δt and the number of stages in each time-stepping
method. For any degree of accuracy better than 10−2, the RK443 time-stepper
requires fewer evaluations than either RK111 or RK222. Results shown are for the
Galloway-Proctor flow with Rm = 300, NF = 256.

the Roberts flow, as δt was the largest stable time step for a given resolution. It

was also unsuitable for the Galloway-Proctor simulations, as the ratio of ∆t/δt

was not large enough to give meaningful speedup. Use of a fully implicit coarse

solver was rejected, as the spectral spatial discretisation meant that a dense matrix

solve would be required at each time step. This large increase in computational

complexity would reduce the difference in computations required between the fine

and coarse solvers, leading to smaller speed ups. There was little scope to attempt

to use reduced physics in this study, as we are already considering the simplest form

of dynamo problem. However, this strategy may be useful in further work on a

non-linear dynamo. Coarsening in both space and time was found to be the most

promising strategy. As time step stability is linked to spatial resolution, reducing

spatial resolution allows a larger time step to be taken, even where the fine solver

is at the largest stable time step. This means that coarse resolution NG < NF and

∆t > δt, opening up the possibility of a large difference in computational complexity

between the coarse and fine solvers. However, too aggressive coarsening will lead

to a very inaccurate coarse solver and slow convergence. The most efficient amount

of spatial coarsening was studied by carrying out Parareal simulations with a wide

range of coarse method spatial resolution.

Simulations were carried out for the Roberts flow with Rm = 512. This

is moderately high, whilst allowing relatively modest compute resources to be used.

79

10 3 10 2 10 1

t

10 11

10 9

10 7

10 5

10 3

Rm

4
64
512
4096

(a) Roberts Flow

10 4 10 3 10 2 10 1

t

10 11

10 9

10 7

10 5

10 3

10 1 Rm

3
300
3000

(b) Galloway Proctor Flow

Figure 4.8: Error ε with respect to time step size for the different flows and Rm
simulated. The Roberts flow, which is independent of time, shows high accuracy
for the highest stable time step for all simulations except Rm = 4. The Galloway
Proctor flow has a larger error for the same time step size. This is believed to
be because of the incorporation of time on the right hand side of the equations.
Galloway-Proctor flows therefore require smaller time step sizes to reach the desired
accuracy. Where the error goes past the top of the figure, the solver has diverged
and is unstable for this time step size.

The fine solver parameters were fixed, with NF = 160, and δt = 10−2, while the

coarse step ∆t was set to the highest stable step for the given NG. This was found

by estimating the error at different time steps for each resolution, as shown in

Figure 4.9a. A similar study was carried out for the Galloway-Proctor flow (Fig-

ure 4.9b). The number of Parareal time slices NPParareal was fixed at 10. Figure 4.10

shows that the peak speed up is acquired when NG = 0.5NF . When NG < 0.5NF ,

the speed up is reduced by the extra number of Parareal iterations required to con-

verge, and when NG > 0.5NF , the difference in computational complexity between

the coarse and fine solvers is insufficient.

4.3 Scaling Results

Scaling tests were carried out for both the Roberts flow and the Galloway-Proctor

flow. Simulations of the Roberts flow were carried out on the ARC 3 HPC facility

at the University of Leeds, made up of Intel Xeon E5-2650v4 (Broadwell) CPUs,

with a total of 6,048 cores. Simulations of the Galloway-Proctor flow were carried

out on the ARCHER HPC facility, made up of Intel Xeon E5-2697v2 (Ivy Bridge)

CPUs, with a total of 109,056 cores.

80

10 2 10 1

t

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 N
16
32
64
80
96
128
160

(a) Roberts Flow, Rm = 512

10 3 10 2 10 1

t

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 N
16
32
64
128

(b) Galloway-Proctor Flow, Rm = 300

Figure 4.9: Error ε vs. time step size δt for a range of spatial resolutions (N) for the
Roberts and Galloway-Proctor flows. Accuracy is constrained by spatial resolution,
until the finest resolution is reached in each case. As the resolution reduces, the
largest stable time step increases as expected. Error increases above 101 (off the
top of the graph) indicate that the method has become unstable at that time step.
Accuracy for a given resolution/ time step size is higher for the Roberts flow than
the Galloway-Proctor flow.

Table 4.1: Parameters for simulations. Rm: magnetic Reynolds number, kz: wave
number in z co-ordinate, kx: wave number in x co-ordinate, NF : number of modes
in fine propagator, NG: number of modes in coarse propagator, δt: time step for fine
propagator, ∆t: time step for coarse propagator, Growth rate indicates growth rate
of the magnetic field.

Flow Rm kz kx NF NG δt ∆t Growth Rate
Roberts 512 2.87 160 80 10−2 2× 10−2 0.11

4096 7.5 512 256 2.5× 10−3 5× 10−3 0.097
Galloway- 3 0.57 16 8 5× 10−3 10−1 0.15
Proctor 300 0.57 128 64 10−3 2× 10−2 0.3

3000 0.57 512 256 10−4 5× 10−3 0.3

A range of Rm were simulated to see the effect on Parareal performance

(see Table 4.1). Scaling performance was compared with pure spatial scaling of the

Dedalus solver. Fully parallel in space and in time simulations were also carried

out in order to show how Parareal can increase scalability beyond the saturation of

spatial scaling.

4.3.1 Roberts Flow

Scaling results for the Roberts flow are shown in Figure 4.11 for Rm = 512 (upper

figures) and Rm = 4096 (lower figures). For both values of Rm, both parallel scaling

81

0.2 0.3 0.4 0.5 0.6

Coarse Resolution/ Fine Resolution

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Sp
ee

du
p

(a) Speedup

1 2 3 4 5 6 7 8

k

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Coarse / Fine
0.20
0.25
0.40
0.50
0.60

(b) Convergence

Figure 4.10: (a) Speedup vs ratio of coarse, fine spatial resolutions for Roberts flow,
with Rm = 512, NF = 160, and δt = 10−2. Long run times are found for very low
coarse resolutions as the estimated solution is not accurate enough to allow quick
convergence. As NG increases, the run time reduces due to the reduced number of
Parareal iterations required to converge. The best performing coarse solver has a
resolution of 0.5NF . Further increasing the resolution of the coarse solver increases
the complexity of the coarse solver to a level close to that of the fine solver, reducing
any speed up possible. (b) Graph showing how defect to previous solution ε changes
with number of Parareal iterations (k) for different resolutions of the coarse solver.
Very low resolutions results in Parareal taking many iterations to converge, reducing
opportunity for speed up. High resolutions show quicker convergence.

and efficiency in space are superior to Parareal at low processor counts. As expected,

spatial scaling is better for the Rm = 4096 case with higher spatial resolution, due

to higher workload per processor. While Parareal alone is not competitive, in both

cases a combined space-time parallelization generates slightly more speedup than

a pure spatial parallelization. The theoretical maximum efficiency for Parareal is

1/3, indicated by a horizontal dashed line, due to the simulation requiring three

iterations to converge. However, because of the relatively expensive coarse solver,

Parareal’s observed efficiency is mostly substantially lower. As the efficiency of the

combined space-time parallelisation is the product of the parallel in space efficiency

and the parallel in time efficiency, it is low for high numbers of processors because

of the low efficiency of Parareal for the Roberts flow. Despite the larger overall

speedup, with efficiencies below 0.1, space-time parallelization using Parareal may

not be particularly attractive .

82

100 101 102 103

Total number of processors

100

101

Sp
ee

du
p

Parallelisation type
Parareal NS = 1
Parareal, NS = 16
Space
Ideal

(a) Speed up, Rm = 512

100 101 102 103

Total number of processors

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Parallelisation type
Parareal, NS = 1
Parareal, NS = 16
Space
1/k

(b) Efficiency, Rm = 512

100 101 102 103

Total number of processors

100

101

Sp
ee

du
p

Parallelisation type
Parareal NS = 1
Parareal, NS = 16
Space
Ideal

(c) Speed up, Rm = 4096

100 101 102 103

Total number of processors

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Parallelisation type
Parareal, NS = 1
Parareal, NS = 16
Space
1/k

(d) Efficiency, Rm = 4096

Figure 4.11: Speed up (a), (c) and parallel efficiency (b), (d) of the Parareal method
compared with spatial parallelisation for simulations of Roberts flow with Rm=512
(a), (b) and Rm=4096 (c), (d). Total number of processors is calculated as number
of processors in space (NPSpace, NS in graphs) multiplied by number of processors
for Parareal (NPParareal, NP in graphs). Speed up and efficiency are both poor for
low numbers of processors for Parareal, but as the parallelisation in space saturates,
further gains can be made from Parareal, although they are small. Parareal does
not offer any gain over parallelisation in space until parallel efficiency is less than
0.1, and does not come close to the theoretical maximum of 1/k, where k is number
of Parareal iterations.

83

4.3.2 Galloway Proctor Flow

Results for Rm= 3, 300 and 3000 for the Galloway Proctor flow are shown in Fig-

ure 4.12. Performance of Parareal is much better than for the Roberts flow. Parareal

speed up is competitive with spatial parallelisation at a relatively low number of

processors. In all of these cases, the number of iterations required to converge was

three, so that the efficiency is bounded by 1/3, and the efficiency of Parareal stays

close to this bound over a range of NPParareal, and does not fall much as the num-

ber of processors increases. The poor performance of Dedalus in parallelising the

Rm=3 case is attributable to the fact that there are only 162 spectral modes. In the

Rm = 3000 case using 32 processors in space, the results show that speed up above

that of spatial parallelisation alone is possible, with an efficiency around 0.16. In all

cases, Parareal has not yet reached saturation in its scaling performance, and has

almost ideal scaling behaviour, except for a constant offset due to the bounds on

Parareal scaling. This is shown in Fig. 4.13, where the efficiency of the method is

tracked over the different Rm. Efficiency is close to the bound of 1/3, and Parareal

efficiency does not fall with increasing Rm. Pure Parareal efficiency was estimated

in the Rm = 3000 case by dividing by the efficiency of the spatial parallelisation

found for that particular NPSpace (32). In that case, total parallel efficiency is lower

than for the other Galloway-Proctor cases due to the combination of the spatial and

temporal parallelisation, and is approximately the product of the two, as expected.

This reduction in overall efficiency is unavoidable, as parallel in space is more ef-

ficient than Parareal for lower numbers of processors, and Parareal only becomes

competitive after spatial efficiency falls away. Also shown on this Figure are the

efficiencies obtained at different Rm for the Roberts flow, highlighting the difference

in performance of the method for the two cases.

4.4 Discussion

The Parareal algorithm has been found to offer parallel speed up for kinematic

dynamo simulations beyond what can be achieved through spatial parallelisation

alone. In the case of the simpler steady Roberts dynamo, the speed up is modest

and parallel efficiencies are low. Here, owing to the steady nature of the imposed

velocity, the difference in computational complexity of the coarse and fine methods is

found to be too small for good performance of Parareal. The issue was that the time

step size was not a limiting factor on the accuracy of the fine solver; as long as the

time step was stable, it was within the accuracy required. Therefore, there was little

84

room to use a coarser resolution for the coarse propagator in Parareal. Performance

for the time-dependent Galloway-Proctor flow was better and the efficiency stayed

close to the theoretical limit over a wide range of magnetic Reynolds numbers, while

scaling well to large numbers of processors. In this problem, since evolution of the

magnetic field depends explicitly on the current time, the accuracy of the solution

depends more on the size of the time step. This means that a time step in the coarse

solver much larger than that of the fine step is possible, allowing for better Parareal

performance.

Fully coupled dynamic dynamo simulation is complicated, and has non-

linear dependencies, and so the accuracy of the fine solver is expected to behave

more like the Galloway Proctor flow. Therefore, the good performance of Parareal

for the Galloway-Proctor flow suggests that good performance may be possible also

for more complex dynamos.

The parallel efficiency of the Parareal algorithm applied to the Galloway

Proctor dynamo is close to the theoretical maximum of 1/k. This means that

the overheads due to communication are small, in comparison to the serial cost

of the coarse method, pointing to an efficient implementation of the algorithm.

Performance of the algorithm when applied to this problem does not appear to

degrade with increased Rm, as can be seen in Figure 4.13. Performance has remained

constant, with Parareal efficiency not much lower than 1/3 for Rm = 3, Rm = 300

and Rm = 3000. This is noteworthy since highly advective problems are thought to

cause problems with Parareal convergence, but this has not yet been found in the

the highly advective case with Rm up to ∼ 103.

The results we have found encourage us to look further at Parallel-in-time

methods for dynamo simulations. Two possible avenues seem promising. The perfor-

mance of other parallel-in-time methods for the Roberts and Galloway-Proctor flows

could be compared to that found here for Parareal. Conversely, the performance of

Parareal for a more complicated physical system could be investigated. Both of

these topics offer promising and interesting research questions, and we believe that

either would be a valid choice moving forward. However, due to the linearity of the

kinematic dynamo problem making it quite different to the full dynamo problem, we

believe that study of a non-linear system would be most informative for the dynamo

community, who we feel are the main audience for this work. It is for this reason

that we move on to study of Rayleigh-Bénard convection in the next chapter.

85

100 101

Total number of processors

100

Sp
ee

du
p

Parallelisation type
Parareal, NS = 1
Space
Ideal

(a) Rm = 3, Speed up

100 101

Total number of processors

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Parallelisation type
Parareal, NS = 1
Space
1/k

(b) Rm = 3, Efficiency

100 101

Total number of processors

100

101

Sp
ee

du
p

Parallelisation type
Parareal, NS = 1
Space
Ideal

(c) Rm = 300, Speed up

100 101

Total number of processors

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Parallelisation type
Parareal, NS = 1
Space
1/k

(d) Rm = 300, Efficiency

100 101 102 103

Total number of processors

100

101

102

Sp
ee

du
p

Parallelisation type
Parareal, NS = 32
Space
Ideal

(e) Rm = 3000, Speed up

100 101 102 103

Total number of processors

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Parallelisation type
Parareal, NS = 32
Space
1/k

(f) Rm = 3000, Efficiency

Figure 4.12: Speed up and parallel efficiency of the parareal method compared to
parallelisation in space for Rm of 3, 300, and 3000, Galloway Proctor flow. Total
number of processors is calculated as number of processors in space (NPSpace, NS in
graphs) multiplied by number of processors for Parareal (NPParareal, NP in graphs).
In the case of Rm=3000, parareal simulations were carried out with 32 processors
in space, as serial runs with one processor were time intensive. Spatial resolutions
required were 162, 1282, and 5122 respectively. Results here are more promising than
in the Roberts flow. Parareal becomes more efficient than spatial parallelisation
for smaller processor numbers, and keeps higher efficiency for longer, closer to the
theoretical maximum of 1/k (k: number of Parareal iterations). Scaling saturation
for parareal has not been reached even at 1600 processors in the Rm=3000 case.

86

101 102 103

Magnetic Reynolds number

0.0

0.1

0.2

0.3

0.4

0.5

Ef
fic

ie
nc

y

Total Efficiency G-P
Parareal Efficiency G-P
Parareal Efficiency Roberts
Theoretical Maximum (1/k)

Figure 4.13: Parallel efficiency vs Rm for Galloway-Proctor and Roberts dynamos.
Galloway-Proctor results show higher efficiency than the Roberts flow. Parallel
efficiency of the method does not appear to degrade with increasing Rm. There is
a reduction for total efficiency for Rm=3000, however, this is due to a combination
of the efficiency of the spatial parallelisation with the parareal efficiency. Efficiency
of parareal alone is comparable to the efficiency of the lower Rm simulations in the
Galloway-Proctor case.

87

Chapter 5

Parareal Rayleigh Bénard

Convection

In this chapter we present results on measuring the performance of the Parareal

algorithm when applied to the problem of 2D Rayleigh-Bénard Convection. We

investigate how the performance changes with increasing Rayleigh number, and

discuss how the results indicate whether Parareal should be investigated further as

an option for speeding up numerical simulations of dynamos. Chapter 1 introduced

the dynamo problem, parallel-in-time methods, and the problem of Rayleigh-Bénard

convection. Chapter 2 provided a review of recent parallel-in-time applications.

Chapter 3 discusses the mathematical details of both Parareal and Rayleigh-Bénard

convection. In the previous chapter, (Chapter 4) we reported results of our work

on Parareal and the kinematic dynamo problem, with some results leading us to

conclude that further work was warranted. We decided upon investigation of a

more complicated physical system, rather than other parallel-in-time algorithms for

the same system, leading to the work reported in this chapter. The work in this

chapter was previously published in Clarke et al. (2020a).

5.1 Description of Model

Rayleigh-Bénard convection describes movement of a fluid driven by a temperature

difference ∆T between two horizontal plates separated by distance h. We use the

Boussinesq approximation to the Navier-Stokes equations for fluid flow in a 2D

Cartesian domain. The non-dimensional Oberbeck-Boussinesq equations modelling

88

Rayleigh - Bénard convection can be written as

1

Pr

(
∂u

∂t
+ (u ·∇u)

)
= −∇p+ RaT · ẑ +∇2u, (5.1)

∇ · u = 0, (5.2)

∂T

∂t
+ u ·∇T = ∇2T, (5.3)

with vertical boundaries defined as

T |z=−0.5 = 1, T |z=0.5 = 0, (5.4)

u|z=−0.5 = u|z=0.5 = 0, (5.5)

and periodic horizontal boundaries. Here, u = (u,w) represents the horizontal and

vertical velocity of the fluid, T represents the temperature, t represents time and p is

pressure. The fundamental time scale is taken as a thermal diffusion time τ = h2/κ,

T is scaled by ∆T , and length is scaled by h. We use a domain of size (x = 2, z = 1),

where x is the horizontal direction, and z the vertical, giving an aspect ratio of 2.

We begin with a linear temperature profile with small perturbations and u = 0.

The Prandtl number is Pr = ν/κ while the Rayleigh number is

Ra =
αg∆Th3

νκ
, (5.6)

where ν is the kinematic viscosity, κ is the thermal diffusivity, α is the coefficient of

thermal expansion, and g is gravity.

5.1.1 Consistency Checks

The Reynolds number can be computed from the velocity of the fluid. A charac-

teristic speed U is determined as 〈u2 + w2〉1/2 where the overbar denotes the time

average and 〈〉 the volume average. Our parameters are chosen such that Re = U .

The heat transported due to convection is represented by the Nusselt num-

ber

NuV =
1

V

∫ (
−∂T
∂z

+ wT

)
dV, (5.7)

where the subscript V indicates that it has been calculated using a volume integral

over the domain. A Nusselt number of 1 indicates that all heat transport is due

to conduction, whilst Nusselt > 1 indicates advection is present. A larger Nusselt

number indicates more heat transport by advection.

89

In order to confirm the accuracy of our simulations, we carry out three

internal consistency checks. We calculate the Nusselt number in three ways. First,

integrated over the domain volume via Equation 5.7. Second, on the bottom plate

via

Nub =

〈
−∂T
∂z

〉
H

∣∣∣∣
z=−0.5

, (5.8)

where 〈a〉H = L−1
x

∫ x=Lx

x=0
a dx is a horizontal plane average. Third, on the top plate

via

Nut =

〈
−∂T
∂z

〉
H

∣∣∣∣
z=0.5

. (5.9)

Conservation of energy requires

Nu = Nub = Nut = NuV , (5.10)

(King et al., 2012). The standard test in the literature is for the Nusselt numbers

calculated at different heights of the domain to be within 1% of each other (Stevens

et al., 2010; King et al., 2012; Mound and Davies, 2017). In this work, the reported

values have been calculated from equation 5.7.

Thus, we calculate the maximum relative difference between the bulk Nus-

selt number and the Nusselt numbers at the top, bottom as well as the difference

between the top and bottom Nusselt number

εNu =
max

(
|Nub − NuV |, |Nub − Nut|, |NuV − Nut|

)
NuV

. (5.11)

As a second consistency check, we verify that buoyancy generation is balanced with

viscous dissipation. If we average over a sufficiently long time, the Du
Dt

term of the

momentum equation goes to zero. We then take the dot product of the momentum

equation with u and integrate to find the energy balance

|u · ∇2u| = |u · RaT ẑ| (5.12)

where the first term represents the viscous dissipation εU , and the second term

represents the buoyancy production P , not to be confused with p for pressure. The

standard test in the literature is for simulations to find these quantities within 1% of

each other (King et al., 2012; Mound and Davies, 2017). We check this by calculating

|P − εU |
P

. (5.13)

90

As a third test, we make sure that the boundary layers are resolved with a minimum

number of nodes. The thermal boundary layer can be defined using the peak value

of Trms, calculated as

Trms(z) =

〈√(
T − 〈T 〉H

)2
〉
H

(5.14)

as in King et al. (2013). Figure 5.1 shows the relationship between Trms and the

thermal boundary layers, and the relationship between the viscous boundaries and

the mean horizontal velocity magnitude. The thickness of the thermal boundary

layer δT is defined by the height at which the peak value of Trms occurs. The

boundary layer scales with the Nusselt number as

δT =
1

2
hNu−1, (5.15)

(see Grossmann and Lohse (2000)). The thermal boundary layers play a significant

role in the behaviour of Rayleigh-Bénard convection, and it is essential that they

are fully resolved in any numerical simulation (Shishkina et al., 2010). Amati et al.

(2005) showed that at least 4 grid points are required in the thermal boundary layer,

while Verzicco and Camussi (2003) stated that 6 points are needed. Stevens et al.

(2010) say that up to 7 points could be the minimum number of points required. In

this work, we specify that at least 6 points are in the boundary layer. The number

of points in the thermal boundary layer will be denoted as NBL.

Figure 5.2 shows example temperature fields for the cases we study, at

a snapshot in time after the flow has equilibriated. It also shows the different

temperature profiles found in these cases (bottom), and compares them to the linear

conductive state. We can see that as Ra increases, the profile becomes more uniform

in the bulk, with a steeper temperature gradient in the boundary layers.

5.2 Validation of model

The code was validated against the data in Johnston and Doering (2009), see Fig-

ure 5.3. Both fixed flux and fixed temperature boundary conditions were simulated.

We calculated a Rayleigh Nusselt scaling of Nu = 0.135Ra0.286 from our fixed flux

data, very close to the Nu = 0.138Ra0.285 reported in Johnston and Doering (2009).

The slightly higher Nusselt numbers obtained in Johnston and Doering (2009) for

fixed flux cases at low Rayleigh number were also replicated. Finally, we calcu-

lated the critical Rayleigh number by running multiple simulations near Rac (Chan-

drasekhar, 1961), and checking the growth rate of the kinetic energy. We found that

91

0.0 0.5 1.0 1.5 2.0
Temp Fluctuations 1e 1

0.4

0.2

0.0

0.2

0.4

z

Temp RMS
Flow Fluctuations
visc boundary
thermal boundary

050100150200
Flow Fluctuations

Figure 5.1: Rayleigh Bénard flow at Rayleigh number = 105. Temperature fluctu-
ations (left side of graph, bottom scale) denote the Trms of the temperature field
(defined in text), UMean (right side of graph, top scale) denotes the magnitude of the
horizontal component of the velocity. The thermal boundary layer is defined by the
height at which the peak Trms is found, and the viscous boundary layer is defined
by the height at which the peak Umean is found King et al. (2013).

it was in agreement with Chandrasekhar (1961) to within 0.1%,

5.2.1 Determining Accuracy of Fine Solution

We set a tolerance level of less than 1% for εNu defined in Equation 5.11 and |P −
εU |/P defined in Equation 5.13. We also require a minimum of 6 points in the

thermal boundary layers, that is NBL ≥ 6. At each Ra we start with a low resolution

((Nx, Nz) = (16, 8) for Ra = 105 and 106 and (32, 16) for Ra = 107) and then double

the resolution in both spatial directions until all three conditions are met.

For comparison, we also carry out spatial convergence tests for the L2

norm of the temperature field, comparing results obtained from the low resolution

simulations with those obtained from a high resolution simulation for each Ra. These

are not used to determine the spatial resolution. We calculate the relative difference

in the final state temperature field by taking the L2 norm with the high resolution

(double resolution of shown values for each Ra) final state. The second test is for

92

0.0 0.5 1.0 1.5

0.4

0.2

0.0

0.2

0.4

z

0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0.4

0.2

0.0

0.2

0.4

z

conductive
Ra=105

Ra=106

Ra=107

0.0 0.5 1.0 1.5

0.4

0.2

0.0

0.2

0.4

z

0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5
x

0.4

0.2

0.0

0.2

0.4

z

0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: Temperature field for flows with Ra = 105 (top), 106 (middle top), and
107 (middle lower) taken after a statistically steady state has been reached. The
bottom plate is fixed at T = 1, whilst the top plate is fixed at T = 0, and both
top and bottom plates are no-slip. There is steady flow for Ra = 105, with more
unsteady and smaller plumes at 106, and even more so at 107. At Ra = 107, there is a
small amount of entrainment of fluid into the base of the plumes. The bottom figure
shows temperature profiles for all three cases, compared to the purely conductive
case. Boundary layers get thinner as Ra increases.

93

103 104 105 106 107 108 109

Rayleigh Number

100

101

N
us

se
lt

N
um

be
r

Fixed Flux
Fixed Temperature
Nu = 0.138Ra0.285

Figure 5.3: Calculated Nusselt values (NuV) compared with the scaling found in
Johnston and Doering (2009). Scaling of 0.135 Ra0.286 was calculated from our data,
compared to 0.138 Ra0.285 found in Johnston and Doering (2009). Fixed temperature
and fixed flux boundary simulations collapse on to the same line at high Rayleigh
number, in agreement with Johnston and Doering (2009) (black line).

Nu, for which we calculate

εrel
Nu =

∣∣Nu− Nureference
∣∣

Nureference
, (5.16)

where Nureference is a reference solution obtained from a high resolution simulation.

Table 5.1 shows the resolution required to meet the consistency checks

discussed above. We can see that the resolution required for 6 points in the boundary

layer is higher than the resolution required for the other convergence tests, except

for the L2 error for Ra = 107. Figure 5.4 shows how the L2 error compares with

Nuint εNu. At Ra = 105, the resolution for a 1% L2 error is the same as the resolution

required for the 1% tolerance in the Nusselt numbers and buoyancy production and

only half the resolution needed to have at least six nodes in the boundary layers.

At Ra = 107, the L2 error is not yet below 1% even when all other tests are below

tolerance, showing a significant difference in the L2 error and the convergence tests

we have set. Given the tests set in the literature for Rayleigh-Bénard convection,

which do not generally include analysis of L2 error, if the internal checks and key

quantities are converged before the L2 error, then the lower resolution is deemed

sufficient. We will revisit this subject in Chapter 6, as L2 was used as the convergence

test for the kinematic dynamo in Chapter 4. The effect of timestep size on the

accuracy of the solution was also investigated. However, it was found that for a

given spatial resolution, the largest stable timestep was found to meet all of the

accuracy criteria.

94

8 16 32 64
Nz = Nx/2

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r

L2 defect to high res
Nu defect to high res
Tolerance

(a) Ra = 105

16 32 64 128
Nz = Nx/2

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r

L2 defect to high res
Nu defect to high res
Tolerance

(b) Ra = 107

Figure 5.4: Spatial convergence of Nusselt number NuV and L2 errors relative to
high resolution solution for Ra = 105 (left) and Ra = 107 (right). As expected,
higher resolution is required for both quantities to meet the 10−2 tolerance for the
higher Rayleigh number case. It can also be seen that the L2 error requires much
more resolution at higher Rayleigh number than the Nusselt number, where as at
Ra = 105, the resolution required to give good answers for the Nusselt number and
L2 error are similar. The shown Nusselt number is calculated by averaging over time
and space.

5.2.2 Duration of Simulation

We determined the duration of a simulation based on a fixed number of advec-

tive times. There are three main timescales for Rayleigh-Bénard flow which can be

found from dimensional arguments; the thermal diffusive timescale, thermal advec-

tive timescale, and the viscous timescale. Here we ignore the viscous timescale, as

we set Pr to 1. In the non-dimensionalisation we have chosen, the diffusive and

advective timescales are linked by τdiffusive = Re × τadvective. Following Mound and

Davies (2017), we run our simulations for a set number (in this case 100) of advective

times, after the initial transient has balanced out. However, in the Ra = 105 case,

we restrict the simulation to 1 diffusive time unit, since the solution is effectively

steady state.

5.2.3 Choice of Coarse Solver

There are several options for choosing a coarse solver for Parareal. These include

a lower order timestepper, a larger timestep, reduced spatial resolution, reduced

95

Table 5.1: Resolution required to meet various convergence tests. L2 of the tem-
perature field, εNu, εrel

Nu, and |P − εU |/P all have tolerance values of 1%. Ra is the
Rayleigh number, NBL denotes the resolution required for 6 points to be in the ther-
mal boundary layer, L2 denotes the defect of the end state temperature field to the
high res simulation, εNu shows max(|NuV −Nub|, |NuV −Nut|, |Nub−Nut|)/NuV , εrel

Nu

is the Nusselt number compared with the high resolution simulation, and |P−εU |/P
is the buoyancy/ dissipation internal consistency check.

Ra Resolution (Nx, Nz) for error ≤ 1%
NBL ≥ 6 L2 εNu εrel

Nu |P − εU |/P
105 (64,32) (32,16) (32,16) (32,16) (32,16)
106 (128,64) (64,32) (64,32) (64,32) (32,16)
107 (128,64) (-,-) (64,32) (64,32) (64,32)

physics, or a different method of solving the equations. In this work, we reduce

the spatial resolution and reduce the timestep. We tested different levels of spatial

coarsening to find the optimal amount for speedup. We tested coarsening factors

(CF) of 2, 4, and 8, where (Nx, Nz) of the coarse solver is equal to 1/CF (Nx, Nz) of

the fine method. A coarsening factor of 2 did not lead to a speedup. Convergence

was quick, but the runtime of the coarse solver was too close to the that of the

fine solver. A coarsening factor of 4 worked better, allowing for quick convergence

along with a significant difference in the cost of the fine/coarse solvers. A factor of

8 reduction showed slow convergence, and was not pursued further.

Coarsening in space requires a method to transmit information from coarse

grid to fine grid (interpolation), and back again (restriction). The order of operator

for interpolation has been found to be important for the convergence of Parareal

(Lunet et al., 2018); a high order method of interpolation helps the convergence of

Parareal. In this work we use spectral interpolation, both because of its convergence

properties, and because the use of spectral methods for spatial discretisation make

it a natural choice.

When choosing a coarse time step, we found situations where a Parareal

simulation could be unstable even when a stable coarse solver was combined with

a stable fine solver. This is likely due to the stability of Parareal itself, which

has its own stability criterion, separate to the individual solvers (see §3.3 or Staff

and Rønquist (2005) for further details). This leads to lower speedups as we had

to use smaller coarse time steps, making the coarse solver more costly. We also

investigated using lower order timesteppers for the coarse solver, along with the

reduced resolution. However, as the stability region of Runge-Kutta tends to increase

with the order, we found that reduced timestep sizes were required for lower order

coarse solvers. This cancelled out any speed increase from reduced computation,

96

Table 5.2: Spatial resolution (Nx, Nz), timestep size (in diffusion times τd), time-
serial runtimes (seconds), and simulation duration (in τd) for the coarse and fine
solvers at different Rayleigh number (Ra).

Resolution Timestep Runtime Duration
Ra Coarse Fine Coarse Fine Coarse Fine (τd)
105 (16,8) (64,32) 10−4 2× 10−5 95.4 300 1.0
106 (32,16) (128,64) 5× 10−5 2× 10−5 1062 2996 0.6
107 (32,16) (128,64) 5× 10−6 2× 10−6 5185 14,169 0.3

thus the higher order timestepper RK443 was used in both the fine and coarse

solver. Table 5.2 shows the resolutions, timesteps and runtimes of the coarse and

fine solvers used in this work.

5.2.4 Determining Convergence in Parareal

The most simple and widely used check for convergence in Parareal is to monitor

the defect between two consecutive iterations (Aubanel, 2011; Berry et al., 2012;

Samaddar et al., 2017). This has the benefit of being easy to implement, and can

be done whilst running the simulation. However, as discussed in §5.2.1, using the

L2 can lead to substantial over-resolution of the problem if one is interested only in

the averaged dynamics. Therefore, the typical online Parareal convergence test is

not suitable in this case. Since, at the moment, no termination criteria for averaged

dynamics has been published, we perform a fixed number of Parareal iterations

and assess convergence in post processing. While useful for benchmarking, this is

obviously not a reasonable approach for production runs. Research into alternative

and more application-oriented termination criteria for Parareal therefore seems to

be an area were further studies are urgently needed.

5.3 Results

5.3.1 Kinetic energy in the Parareal solution

Figures 5.5a, 5.5b show the kinetic energy against time, for Rayleigh numbers 105,

107, for different numbers of Parareal iterations k. The number of time slices was

kept constant at 10. For Ra = 105, an initial Parareal coarse run shows significant

differences from the subsequent Parareal iterations. The overall kinetic energy is

higher in the low resolution coarse solver, and varies over time periodically. This

97

increased kinetic energy in the coarse solver is due to dissipation of the system being

under resolved at the coarse resolution. The periodicity is not present in the fine

solution, and the effect can be seen to reduce in the subsequent iterations. The

kinetic energy quickly reduces to the correct level after the first iteration for each

time slice. Subsequent iterations still have a small ’bump’ in kinetic energy at the

correction time, but the overall level is in accordance with the fine solver. The kinetic

energy corrects quickly to the correct level (within tolerance of the fine method) at

the start of each time slice, so that the time averaged value falls within tolerance

values. The magnitude of the jump is also small, and does not grow significantly

beyond the difference between the coarse and fine solvers. The Ra = 107 case shows

problems with the Parareal convergence. The correction steps increase the error,

which can be seen in the large jumps at the time slice boundaries. This is the first

indication that Parareal has reached the limit of usability in this parameter space.

These jumps are of far larger magnitude than those found in the lower Ra case,

which is a further reason to suspect that the method is failing for Ra = 107, whilst

accepting that it is working for Ra = 105.

0.0 0.2 0.4 0.6 0.8 1.0
time

0

2000

4000

6000

8000

10000

12000

Ki
ne

tic
 E

ne
rg

y

k=0
k=1
k=2
k=3
k=11

(a) Ra = 105

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

Ki
ne

tic
 E

ne
rg

y

k=0
k=1
k=2
k=3
k=11

(b) Ra = 107

Figure 5.5: Dimensionless kinetic energy against time for different numbers of
Parareal iterations k for Ra = 105, 107. Time is measured in terms of the dif-
fusion time τd, duration was determined as ≈ 100 advective time units after the
transient settled. The coarse solver has 1

4
the number of modes in x and z as the

fine solver, the coarse timestep is ≈ 2× the fine timestep, and the simulation used
10 time slices (see table 5.2). The coarse solver for Ra = 105 shows higher kinetic
energy levels, along with periodic behaviour not present in the fine solution, which
is proven to be found when k > number of processors (k = 11 in this case). For
107, large jumps in the solution for k > 0 are due to the Parareal correction step.
The error at the jumps is growing, rather than shrinking, as the iteration number
increases, showing the inability of Parareal to converge in this parameter regime.

98

5.3.2 Parareal convergence

Figure 5.6 shows how the calculated Nusselt number changes with increasing Parareal

iterations. The Nusselt number found from the initial coarse solve is outside the ac-

curacy requirement with an error of around 10% rather than 1%. In the case of

Ra = 105, the Nusselt number converges to within the accuracy envelope after 1 it-

eration, but then in iterations 2-4 it falls back outside this region before converging

again from iteration 5. We believe this is due to the well known ‘hump’ that can

be seen for problems with dominant imaginary eigenvalues where the error does not

contract monotonically (Gander and Vandewalle, 2007). For Ra = 107, the Nusselt

number converges after a single iteration in this case of 10 time slices. For different

numbers of time slices, the Nusselt number sometimes takes more than one iteration

to converge - see figs 5.7 , 5.9.

Figure 5.7 shows the comparison of the L2 error with the error in Nusselt

number for Ra = 106, 107. In the smaller Ra case, there is smooth convergence

in both the L2 error and in the Nusselt error, although the Nusselt convergence is

slightly more erratic. In the Ra = 107 case, we see that the Nusselt number error

falls just underneath the tolerance threshold after the first iteration. This is followed

by a shallow decline in the error until the final iteration. The L2 error behaves very

differently, with a constant error of around 10% right up until the 9th iteration. We

see here the mismatch in the error with respect to time averaged quantities with

errors with respect to snapshots of the solution (L2).

Figure 5.8 shows the internal consistency errors (εNu, |P − εU |/P) for all

three Ra tested. In all three cases, the |P − εU |/P and εNu converge to within

the 1% tolerance after one iteration. However, the results for Ra = 107 show that

|P − εU |/P then returns above the tolerance level, and does not fall reliably until 8

iterations have been completed.

We have also carried out numerical experiments for different numbers of

time slices, from 5 to 32 time slices. Here, we would expect to see a trend where the

number of iterations required to converge slowly increases with the number of time

slices. In our results, we found that the number of iterations required did not behave

like this for Ra = 107. The number of iterations required increased and decreased

with no clear pattern up to 20 time slices. Beyond this the iteration count was

always higher than 1, and gradually increased with the number of time slices.

99

0 2 4 6 8 10
k

5.0

5.2

5.4

5.6

5.8

Nu
ss

el
t n

um
be

r

Nusselt number
+\- 1%

(a) Ra = 105

0 2 4 6 8 10
k

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

Nu
ss

el
t n

um
be

r

Nusselt number
+\- 1%

(b) Ra = 107

Figure 5.6: Changing Nusselt number NuV with Parareal iteration k. There is a
large error in the Nusselt number calculated from the coarse solver (k = 0), so that
at least one iteration is required to calculate the correct Nusselt number (within
1% - dotted red lines). For the Nusselt number alone, convergence behaviour is
encouraging, for Ra = 105 and Ra = 107. The simulation was carried out with 10
time slices.

5.3.3 Scaling and Performance

Figure 5.9 shows the scaling performance for simulations with Ra = 105, 106, 107.

We see standard scaling behaviour for both 105, and 106, where speedup increases

with processor count until the scaling limit is reached, and no further performance

gains are possible. This is due to an increase in the number of Parareal iterations

required at higher time slice count. We also see that performance is better at

106 than at 105, likely because the bigger problem size due to higher resolutions

improves scaling. However, the performance of Parareal at Ra = 107 is much more

mixed. This is in part due to the errors being very close to the tolerance level for

all iterations after k = 1, see Figure 5.7b. The error does not fall with increasing

iterations in the way it does for Ra = 105, 106, rather, it hovers very close to the

tolerance value. Convergence behaviour with number of time slices is unpredictable

in this case. For some numbers of time slices, such as in figure 5.7b, the Nusselt

error falls below tolerance after one iteration and remains there. In other cases, such

as five or 16 time slices, see Figure 5.7c, the error falls below the tolerance and then

rises back again.

100

0 2 4 6 8 10
Parareal Iteration

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r

Nu Defect to kmax
L2 Defect to kmax
Tol

(a) Ra = 106

0 2 4 6 8 10
Parareal Iteration

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r

Nu Defect to kmax
L2 Defect to kmax
Tol

(b) Ra = 107, 10 Time slices

0 2 4 6 8 10 12 14 16
Parareal Iteration

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r

Nu Defect to kmax
L2 Defect to kmax
Tol

(c) Ra = 107, 16 Time slices

Figure 5.7: Convergence of Nusselt number NuV and L2 error with Parareal iteration
for Ra = 106, 107, 10 time slices (a,b), 16 time slices(c). As kmax is greater than
number of timeslices, the solution at kmax perfectly represents the serial fine solution.
We can see that the L2 error at Ra = 106 behaves as expected for good Parareal
convergence, with a superlinear convergence behaviour. The Nusselt error at this
Ra also shows convergence, but is more erratic. At Ra = 107, we see much worse
convergence. The L2 error does not converge until the last iteration, when k is equal
to the number of time slices. The Nusselt number error behaves slightly better, but
does not decrease monotonically. Figure(c) shows Ra = 107 but with 16 time slices.
Here, it requires two iterations for the Nusselt number to reach the 1% tolerance.

101

0 2 4 6 8 10
k

10-6

10-5

10-4

10-3

10-2

10-1

In
te

rn
al

 B
al

an
ce

Tol
εNu

|P− εU|/P

(a) Ra = 105

0 2 4 6 8 10
k

10-6

10-5

10-4

10-3

10-2

10-1

In
te

rn
al

 B
al

an
ce

Tol
εNu

|P− εU|/P

(b) Ra = 106

0 2 4 6 8 10
k

10-6

10-5

10-4

10-3

10-2

10-1

In
te

rn
al

 B
al

an
ce

Tol
εNu

|P− εU|/P

(c) Ra = 107

Figure 5.8: Convergence of the internal checks carried out on the data of the Parareal
simulations, for Ra = 105, 106, 107, 10 time slices. The internal energy balance
(|P − εU |/P) takes longer to converge than εNu. The Nusselt number is convergent
for all three cases, but the internal energy balance is not convergent at the highest
Rayleigh number.

102

0 5 10 15 20 25 30
Num processors

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sp
ee

d
up

105

106

107

k > 1

Figure 5.9: Speed up vs number of timeslices/processors for Ra = 105, 106, and 107.
We can see that performance appears best for Ra = 106. Peak speedup is around
2 ∼ 2.4 for all Ra. For 105, and 106, performance is predictable, with speedup
increasing with number of cores until a scaling limit is reached. For 107, the scaling
behaviour is erratic, due to the errors being very close to the tolerance limit. This
leads to more iterations being required for convergence at some processor counts,
causing the smaller speedups (black triangles).

103

5.4 Conclusions

In this chapter, we aimed to progress from our work on the linear kinematic dynamo

problem to a more complicated physical system, encompassing some of the inherent

non-linearity of the full dynamo. To do this, we studied the ability of Parareal to

speed up simulations of Rayleigh-Bénard convection. This work has shown that the

Parareal algorithm allows for reliable speedup of simulations in a limited range of

Rayleigh numbers (up to 106) at finite Prandtl number. The algorithm converges

quickly with respect to averaged quantities like the Nusselt number and internal

energy balance. Although slower, Parareal also converges with respect to the L2

defect between subsequent iterations. Speedups of up to 2.4 are possible, with

around 20 processors, with parallel efficiencies of around 0.2 for Rayleigh numbers

as high as 106. However, in all cases, speedups were limited to at most 20 processors.

Beyond that, increases in the number of required iterations balanced out any gains

from using more processors.

At Ra = 107, we find that convergence of Parareal degrades substantially.

The errors in Nu do not fall monotonically with increasing iteration number. For

some simulations, the error falls below the tolerance level at a low number of it-

erations, only to increase in successive iterations. This erratic behaviour leads to

irregular scaling performance at 107; sometimes the simulation converges in one

iteration, sometimes it takes two or three. Parareal is not expected to be useful

for simulations of Rayleigh-Bénard convection at Rayleigh numbers above 107 as

we expect the performance to degrade further as the flow becomes more turbulent,

in line with previous results (Steiner et al., 2015). These findings are in contrast

to what Samuel (2012) found for Ra = 107 with infinite Prandtl number, where

he observed a small number of iterations independent of the number of time slices

being required for convergence and increasing speedup up to 40 processors. Clearly,

performance of Parareal is very different in the finite versus infinite Prandtl number

case, presumably due to nonlinearity in the momentum equation.

This difference in performance is caused in part by the well known general

degradation of Parareal with increasing Reynolds numbers (Steiner et al., 2015). It

is also caused by the choice of convergence criteria. The correction step of Parareal

depends on pointwise amplitude corrections at the boundary between time slices. In

Rayleigh-Bénard convection studies, the particular state of a given field at an instant

in time is not of primary concern, therefore we relaxed the accuracy conditions of the

fine solution, so that we did not enforce that the L2 error be below a threshold value.

In the cases of Ra = 105 and 106, the L2 error is of roughly the same magnitude

104

as the time- and space- averaged quantities (εNu, |P − εU |/P), used to determine

accuracy of the solution. In the 107 simulations, we can find a good level of accuracy

in the εNu and |P − εU |/P , whilst the L2 error is still high in spatial convergence

tests, (see Figure 5.4). As the Parareal algorithm effectively operates on the L2

error, Parareal convergence is slow.

For the dynamo problem, where high Ra convection is expected (see §1.3.1

and table 1.2), this is not encouraging. One of the main aims of dynamo simulations

is to get to more extreme parameters, and increasing the supercriticality of the

system (Ra/RaC) would be a significant part of that aim, meaning we would need

to simulate Ra much higher than in this work. Parareal is unlikely to be useful in

helping dynamo simulations reach more realistic parameter regimes. In the following

chapter (Chapter 6), we further discuss this issue, along with the other aims of the

thesis.

105

Chapter 6

Conclusions

In this thesis, we aimed to determine how useful Parareal could be for speeding up

simulations of kinematic dynamos and convection. This chapter discusses the key

results of this thesis, whilst considering the aims of the thesis from Chapter 1. We

then discuss avenues for future work.

6.1 Kinematic dynamos

In Chapter 4, we tested the performance of the Parareal algorithm for the Roberts

(1972) and Galloway and Proctor (1992) dynamos. These dynamos are 2.5D, so

they can be simulated on a 2D plane, allowing many simulations to be carried out

with a reasonable amount of time and computing resources. The Roberts dynamo is

generated by a steady flow, whilst the Galloway Proctor dynamo has a time depen-

dent flow. Convergence tests were carried out to determine the spatial and temporal

resolutions required to obtain solution accuracies of 10−5 in L2 error (ε), for each of

the different Rm investigated (ranging from 3 to 4096). These spatial and temporal

resolutions were used as fine solvers in Parareal. Spatial and temporal coarsening

were used to create the coarse solvers, with testing carried out to determine that

most speed up was generated when spatial coarsening of around a half was used.

Parareal was found to offer parallel speed up for all Rm tested, for both

Roberts and Galloway Proctor flows. Parallel in space and time speed ups were

higher than those found in purely spatial parallelisation cases. Parareal for the

Roberts dynamo offered only modest speed ups, with low parallel efficiency (< 0.1),

making it unattractive to use in real world simulations. Convergence in all cases was

found in three Parareal iterations, so the theoretical maximum efficiency was 1/3.

106

The difference between this maximum and the actual performance (parallel efficiency

< 10%) is due to the small difference in computational cost between the coarse and

fine solvers. At the spatial resolutions used, the largest stable time step of the fine

solver was sufficiently accurate to be used as the fine solution. The Galloway Proctor

results showed better performance. Parareal efficiency was above 20% for all but the

Rm = 3 case, where it was just below 20%. These efficiencies are much closer to the

bound of 1/3, indicating an effective implementation. The reason that performance

was better in this case was that due to time dependence of the Galloway Proctor

flow, smaller timesteps were needed in the fine solver to obtain the desired level of

accuracy. This created a larger difference in computational complexity between the

fine and coarse solvers than in the Roberts flow. We investigated Rm over 4 orders

of magnitude (from 3 to 3000), and found that there was no significant change in

Parareal performance as Rm increased.

6.2 Rayleigh-Bénard convection

In Chapter 5 we reported results of applying Parareal to 2D Rayleigh Bénard con-

vection. We used fixed temperature no-slip boundary conditions, and tested perfor-

mance for Ra = 105, 106, 107. Accuracy of the fine solver was determined by the

solution meeting a number of convergence tests: 6 points in the thermal boundary

layer, < 1% error in the balance between viscous dissipation and buoyancy pro-

duction, and < 1% difference in Nu calculated at different places in the domain.

The coarse solver was created by using solvers with reduced spatial and temporal

resolution, with testing determining that a spatial coarsening factor of 4 offered the

highest Parareal efficiency. Time step coarsening was limited by Parareal stability

conditions as we found cases where a combination of stable fine and stable coarse

solver were unstable, as discussed in Staff and Rønquist (2005).

We found that parallel speed up was possible for small numbers of Parareal

time slices. The performance was poor though, with a maximum speed up of only

2 for all Ra tested, and a scaling limit reached at 10 - 20 time slices. Above this

number of time slices, the number of Parareal iterations required to converge became

too large to obtain speed up. Performance of Parareal degraded with increasing Ra.

At 107, convergence was erratic and the error in Nu did not fall monotonically with

increasing iteration number. This change in performance as Ra increases is in part

explained by the general degradation of Parareal with increasing Re (Steiner et al.,

2015). The choice of convergence criteria was also a factor, as the L2 errors were

of similar magnitude to the errors in Nu and the energy balance at lower Ra (105,

107

106). At Ra = 107, however, the L2 error was significantly higher than the errors in

Nusselt and energy balance, and as the Parareal correction is effectively a point-wise

amplitude correction, the large L2 error caused slow convergence.

6.3 Interpreting our results for the non-linear dy-

namo problem

We showed that Parareal can offer speed up over and above saturation of spatial

scaling for the kinematic dynamo. We also showed that speed up was possible for

Rayleigh-Bénard convection at lower Rayleigh numbers. Parareal is not anticipated

to be competitive with spatial parallelisation for Rayleigh-Bénard convection, espe-

cially at higher Ra. Given that the highest Ra treated in simulations so far is ∼1015

(Iyer et al., 2020), having Parareal struggle at Ra = 107 would appear to rule out

its use in obtaining more extreme parameters. This contrasts with the results in

Samuel (2012), who found fair performance at Ra = 107, but in that case inertia

was ignored (due to infinite Prandtl number). As the Prandtl number is ∼1 in the

Earth (Matsui et al., 2016) and ∼10−7 in the Sun, this would not be relevant to

dynamo flows.

One reason for differences in performance seen between the kinematic dy-

namo and RBC is the different accuracy criteria. Accuracy requirements found

in the literature for Rayleigh-Bénard convection were found to be less strict than

those we imposed when studying the kinematic dynamo problem. Imposing stricter

accuracy on the RBC case may have left more scope to find a coarse solver with

good Parareal convergence properties whilst being significantly cheaper than the

fine solver, but we intended to ensure that our results would be relevant to current

practitioners of convection simulations. We also set different tests for Rayleigh-

Bénard convection than for the kinematic dynamo, with RBC tests concentrating

on statistically averaged values due to the standard tests in the literature, and the

kinematic dynamo concentrating on the point-wise L2 error as no standard tests

are found in the literature. For larger Rayleigh numbers in RBC, our tests show a

significant disparity between the instantaneous L2 error in a variable field such as

temperature and the error in statistically calculated quantities such as the Nusselt

number. In one example, Parareal reached a 1% error with respect to the Nusselt

number in 1 iteration while the L2 error stalled for 7 iterations and only fell below

1% after iteration 8. In a case like Rayleigh-Bénard convection, statistical quanti-

ties like the Nusselt number are typically the most informative for understanding

108

behaviour of the physical system and what domain scientists are interested in. The

accuracy levels and convergence criteria set for the kinematic dynamo problem were

quite different to those found in the literature for Rayleigh-Bénard convection. More

stringent accuracy requirements for a solution is known to increase performance for

Parareal (Goetschel et al., 2021). To fully understand this aspect in performance,

a study of how Parareal efficiency for the kinematic dynamo changed with different

specified accuracy levels would be an interesting avenue for further work.

Another reason for the differences in performance we found is due to the

different types of problems being studied. The Galloway Proctor flow is more com-

plicated than the Roberts flow, leading to smaller time steps being required to obtain

the desired level of accuracy. The Roberts flow fine solver is accurate with relatively

high timestep size (close to the stability limit). This means that the coarse solver

timestep is only a little larger (∼ 2 times) than the fine timestep. In the Galloway-

Proctor flow, the accuracy of the fine solver requires a timestep lower than the

stability limit – due to the time dependence of the driving flow. Therefore, the

coarse solver, which only has to be stable, can have a timestep ∼ 20 times larger

than the fine solver in this case. This leaves more potential for speedup. Conversely,

the far more complicated behaviour found in convection did not allow for better per-

formance in Parareal. The difference in behaviour of Parareal for different problems

studied in this thesis reinforces the view stated in Berry et al. (2012) that it is dif-

ficult to gauge performance of Parareal for a particular problem without carrying

out some numerical tests.

Whilst standard Parareal offered some positive results in terms of the kine-

matic dynamo, we believe that the poor performance offered in simulations of RBC

mean that it may be difficult to obtain useful performance increases for the full dy-

namo. Conversely, convection is suppressed by the presence of strong magnetic fields

(e.g. Cattaneo et al., 2003; Stein, 2012), so the full dynamo would be less chaotic

than pure RBC, possibly making simulations more amenable to good convergence

in Parareal.

6.4 Further Work

For the problem of the kinematic dynamo, investigations into different coarse solvers

could see improved performance. If a quicker coarse solver, using for example a dif-

ferent spatial discretisation, required a similar number of Parareal iterations, better

performance should be possible. Conversely, a coarse solver with similar computa-

109

tional complexity but higher accuracy could lead to convergence in fewer iterations.

It would also be instructive to compare performance of Parareal against different

parallel-in-time algorithms. If restricting ourselves to the kinematic dynamo, REXI

(Haut et al., 2015; Schreiber et al., 2018) and ParaEXP (Gander and Güttel, 2013)

would be very good choices, due to their high suitability for linear problems. It

would also be useful to examine the performance of these two methods in advance

of any further progress in applying these methods to nonlinear problems. If the

work was concentrating on applicability to the full dynamo problem, comparisons

between Parareal, MGRIT (Friedhoff et al., 2012), and PFASST (Emmett and Min-

ion, 2012) should be explored. PFASST would be of particular interest, as it removes

the 1/k bound on parallel efficiency. Since good performance was found in the case

of the Galloway Proctor flow, it would be insightful to see if further performance

could be obtained by utilising the IPS algorithm (Berry et al., 2012). IPS allows for

greater concurrency and less CPU idle time by allocating tasks to processors as the

data to perform those tasks becomes available, so that coarse and fine solutions of

time slices can be computed in parallel. It may also be useful to see how well this

performed for the Roberts dynamo.

Given the poor performance found using standard Parareal with Rayleigh-

Bénard convection, investigations into more specialist algorithms is likely the way

forward. This will have the major disadvantage of sacrificing non-intrusiveness, so

that current established codes would require significant modification in order to in-

vestigate the use of different parallel-in-time methods. Given how closely related the

methods of Parareal and MGRIT are (Gander and Vandewalle, 2007), it is unlikely

that there would be significant difference in performance between them for Rayleigh-

Bénard convection problem, especially at very high Rayleigh number. However, this

remains an open question, as there have been studies of advective problems where

MGRIT has converged for cases where Parareal failed (De Sterck et al., 2021).

PFASST offers another promising avenue for study, due to its applicability to non-

linear studies. REXI and ParaEXP are thought to be less likely candidates due

them being more suited to linear problems, though the nonlinear modifications of

these algorithms would be interesting to study further. Krylov-subspace-enhanced

Parareal would be another option to consider, though again this would sacrifice the

non-intrusiveness that makes Parareal so appealing.

Further work on Parareal could be carried out with the aim of improving

the coarse solver. Recent work by Aubert (2019) showed that hyperdiffusivity in

simulations can give comparable results to DNS simulations, when applied to the

end of the spectrum, and when applied only to the fluid, whilst leaving the magnetic

field fully resolved. They also found that using a statistically steady LES simulation

110

as the initial condition for a DNS simulation produced only small transients to be

generated. This points to a possible model simplification that could be used as

the coarse solver. The hyperdiffusivity would reduce the spatial resolution required

at a given parameter range, and allow for increased time step size. This could

allow for a larger difference in computational complexity between the coarse and

fine solvers in Parareal, which was the limiting factor in speed up for the Rayleigh-

Bénard convection simulations. This approach would lend itself to combination

with the strategy used by Eghbal et al. (2017), whereby Parareal is not used to fully

simulate the path from initial conditions to the simulation end time, but as a way

of accelerating a simulation to a converged statistically steady state. A coarse run

using hyperdiffusivity, followed by some iterations of Parareal using the end state of

the coarse solver as an initial condition offers a very interesting avenue for research.

As the hyperdiffusivity was applied only to the fluid, Rayleigh-Bénard convection

could be a useful testbed for this approach.

For the full dynamo problem, we believe that advancements in Rayleigh-

Bénard performance are a prerequisite to obtaining good performance, as this has

been identified as a problem area for Parareal. The results found for the kinematic

dynamo offer encouragement that if good performance can be found for convective

studies, it would be possible to add in the magnetic field without a major effect on

performance.

In a recent report on Supercomputing in the UK by Wilkinson et al. (2021),

the research goals of the UKRI research community were grouped into seven broad

themes. The work in this thesis aligns closely to two of them. The first is ‘Expanding

the frontiers of fundamental sciences’, which includes an aim for better understand-

ing magnetism of the solar system by investigating generation of the magnetic fields

in the Sun and planets. The work in this thesis also fits in with the stated aims of

‘Mathematics and Science of Computation’, more specifically, as this work crosses

the domains of specialists in physical applications and supercomputing algorithms,

it aligns with ‘Mathematics at Scale’, which seeks to do just that.

Currently, the most common parallelisation strategies are to spatially de-

compose a physical domain and, using either shared and/or distributed memory

parallelisation, compute each sub domain on a separate processor. Much innova-

tion is currently happening however, and Parallel-in-time algorithms are one novel

method that is currently growing in popularity. Other major advances are being

made in parallel computing, such as the use of graphics processing units for gen-

eral purpose computing (GPGPU) and specialist co-processor like hardware such as

field programmable gate arrays (FPGAs). On an algorithm level, ensemble averag-

111

ing and rare event algorithms allow for embarrassingly parallel simulations to utilise

the higher number of cores available, but don’t allow for increases in numerical res-

olution. Much research has also been recently carried out in machine learning and

Artificial Intelligence for partial differential equations, allowing for parallel compu-

tation on GPUs. We believe that parallel-in-time methods are a useful part of the

toolset for improving performance on exascale computers, gains have been shown

even in areas where they are deemed to have weaknesses. Examples of this include

the speed up gains seen in turbulent plasma simulations by Samaddar et al. (2010).

In this work, we focussed on using non-intrusive parallel-in-time algorithms,

which led to the choice of standard Parareal. The most important reason for this was

that the method could be relatively quickly adopted by researchers in the dynamo

area, without major modification to existing codes. However, in focusing on non-

intrusive methods, we may have limited the possible gains. More invasive methods

could have the potential to push the computational frontiers in dynamo modelling. If

a performant parallel-in-time method, possibly a variant of Parareal, could be found

for the dynamo problem, it could be of most use in allowing for investigation into

long time scale effects such as geomagnetic reversals. It could do this by allowing

the very large time domain to be split into chunks and computed in parallel on the

new generation of exascale computers. Work on improving Parareal for advective

problems could be key to this, such as that by De Sterck et al. (2021).

112

113

References

Citing pages are listed after each entry.

Agboh, W., Grainger, O., Ruprecht, D., and Dogar, M. 2020. Parareal with a

learned coarse model for robotic manipulation. Computing and Visualization in

Science. 23(1), pp. 1–10. Cited on pp. 2 and 29.

Agboh, W. C., Ruprecht, D., and Dogar, M. R. 2019. Combining coarse and

fine physics for manipulation using parallel-in-time integration. arXiv preprint

arXiv:1903.08470. Cited on p. 29.

Ahlers, G., Grossmann, S., and Lohse, D. 2009. Heat transfer and large scale

dynamics in turbulent rayleigh-bénard convection. Reviews of modern physics.

81(2), pp. 503. Cited on pp. 3, 17, 19, and 49.

Alexakis, A. 2011. Searching for the fastest dynamo: Laminar abc flows. Physical

Review E. 84(2), pp. 026321. Cited on pp. 17 and 39.

Amati, G., Koal, K., Massaioli, F., Sreenivasan, K., and Verzicco, R. 2005. Turbu-

lent thermal convection at high rayleigh numbers for a boussinesq fluid of constant

prandtl number. Physics of Fluids. 17(12), pp. 121701. Cited on p. 90.

Amdahl, G. M. Validity of the single processor approach to achieving large scale

computing capabilities. In: Proceedings of the April 18-20, 1967, spring joint

computer conference, pp. 483–485, 1967. Cited on p. 4.

Anders, E. H., Brown, B. P., and Oishi, J. S. 2018. Accelerated evolution of

convective simulations. Physical Review Fluids. 3(8), pp. 083502. Cited on pp. 21

and 22.

Archontis, V., Dorch, S. B. F., and Nordlund, Å. 2003. Numerical simulations of

kinematic dynamo action. Astronomy & Astrophysics. 397(2), pp. 393–399. Cited

on pp. 39 and 71.

114

Ascher, U. M., Ruuth, S. J., and Wetton, B. T. 1995. Implicit-explicit methods

for time-dependent partial differential equations. SIAM Journal on Numerical

Analysis. 32(3), pp. 797–823. Cited on p. 61.

Ascher, U. M., Ruuth, S. J., and Spiteri, R. J. 1997. Implicit-explicit runge-

kutta methods for time-dependent partial differential equations. Applied Numer-

ical Mathematics. 25(2-3), pp. 151–167. Cited on pp. 61 and 62.

Atkinson, K., Han, W., and Stewart, D. E. 2011. Numerical solution of ordinary

differential equations., volume 108. John Wiley & Sons. Cited on pp. 56, 57, 58,

and 59.

Aubanel, E. 2011. Scheduling of tasks in the parareal algorithm. Parallel Computing.

37(3), pp. 172–182. Cited on pp. 8, 9, 26, 67, and 96.

Aubert, J. 2019. Approaching earth’s core conditions in high-resolution geodynamo

simulations. Geophysical Journal International. 219(Supplement 1), pp. S137–

S151. Cited on pp. 13, 15, 33, and 109.

Aubert, J., Gastine, T., and Fournier, A. 2017. Spherical convective dynamos in

the rapidly rotating asymptotic regime. Journal of Fluid Mechanics. 813, pp.

558–593. Cited on pp. 14, 15, and 33.

Augustson, K., Brun, A. S., Miesch, M., and Toomre, J. 2015. Grand minima and

equatorward propagation in a cycling stellar convective dynamo. The Astrophys-

ical Journal. 809(2), pp. 149. Cited on p. 35.

Aumâıtre, S., Berhanu, M., Bourgoin, M., et al. 2008. The vks experiment: turbulent

dynamical dynamos. Comptes Rendus Physique. 9(7), pp. 689–701. Cited on p. 1.

Bachtiar, A., Ivers, D., and James, R. 2006. Planar velocity dynamos in a sphere.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences. 462(2072), pp. 2439–2456. Cited on p. 37.

Backus, G. 1958. A class of self-sustaining dissipative spherical dynamos. Annals

of Physics. 4(4), pp. 372–447. Cited on pp. 10, 37, and 48.

Baffico, L., Bernard, S., Maday, Y., Turinici, G., and Zérah, G. 2002. Parallel-

in-time molecular-dynamics simulations. Physical Review E. 66(5), pp. 057701.

Cited on pp. 8 and 29.

Bal, G. 2005. On the convergence and the stability of the parareal algorithm to

solve partial differential equations. In: Domain decomposition methods in science

and engineering. Springer, pp. 425–432. Cited on p. 8.

115

Bal, G. and Maday, Y. 2002. A “parareal” time discretization for non-linear pde’s

with application to the pricing of an american put. In: Recent developments in

domain decomposition methods. Springer, pp. 189–202. Cited on pp. 2 and 29.

Baudron, A.-M., Lautard, J.-J., Maday, Y., Riahi, M. K., and Salomon, J. 2014.

Parareal in time 3d numerical solver for the lwr benchmark neutron diffusion

transient model. Journal of Computational Physics. 279, pp. 67–79. Cited on

p. 29.

Bayly, B. and Childress, S. 1988. Construction of fast dynamos using unsteady flows

and maps in three dimensions. Geophysical & Astrophysical Fluid Dynamics. 44

(1-4), pp. 211–240. Cited on p. 39.

Beaudoin, P., Charbonneau, P., Racine, E., and Smolarkiewicz, P. 2013. Torsional

oscillations in a global solar dynamo. Solar Physics. 282(2), pp. 335–360. Cited

on p. 34.

Benedusi, P., Minion, M., and Krause, R. 2020. An experimental comparison of a

space-time multigrid method with pfasst for a reaction-diffusion problem. arXiv

preprint arXiv:2006.12883. Cited on p. 28.

Berry, L. A., Elwasif, W., Reynolds-Barredo, J. M., et al. 2012. Event-based

parareal: A data-flow based implementation of parareal. Journal of Computa-

tional Physics. 231(17), pp. 5945–5954. Cited on pp. 8, 26, 96, 108, and 109.

Biggin, A. J., Steinberger, B., Aubert, J., et al. 2012. Possible links between

long-term geomagnetic variations and whole-mantle convection processes. Nature

Geoscience. 5(8), pp. 526–533. Cited on pp. 1 and 12.

Blouza, A., Boudin, L., and Kaber, S. M. 2011. Parallel in time algorithms with re-

duction methods for solving chemical kinetics. Communications in Applied Math-

ematics and Computational Science. 5(2), pp. 241–263. Cited on pp. 8 and 29.

Bodenschatz, E., Pesch, W., and Ahlers, G. 2000. Recent developments in rayleigh-

bénard convection. Annual review of fluid mechanics. 32(1), pp. 709–778. Cited

on p. 19.

Bolten, M., Friedhoff, S., Hahne, J., and Schöps, S. 2020. Parallel-in-time simulation

of an electrical machine using mgrit. Computing and Visualization in Science. 23

(1), pp. 1–14. Cited on p. 30.

Boyd, J. P. 2001. Chebyshev and Fourier spectral methods. Courier Corporation.

Cited on pp. 54 and 59.

116

Braginsky, S. I. and Roberts, P. H. 1995. Equations governing convection in earth’s

core and the geodynamo. Geophysical & Astrophysical Fluid Dynamics. 79(1-4),

pp. 1–97. Cited on p. 10.

Brandenburg, A. and Subramanian, K. 2005. Astrophysical magnetic fields and

nonlinear dynamo theory. Physics Reports. 417(1-4), pp. 1–209. Cited on p. 11.

Brummell, N. H., Cattaneo, F., and Tobias, S. M. 1998. Linear and nonlinear

dynamo action. Physics Letters A. 249(5-6), pp. 437–442. Cited on p. 41.

Brun, A. S. and Browning, M. K. 2017. Magnetism, dynamo action and the solar-

stellar connection. Living Reviews in Solar Physics. 14(1), pp. 4. Cited on pp. 12,

34, 35, and 53.

Brun, A. S., Strugarek, A., Varela, J., et al. 2017. On differential rotation and

overshooting in solar-like stars. The Astrophysical Journal. 836(2), pp. 192.

Cited on p. 35.

Bullard, E. C. and Gellman, H. 1954. Homogeneous dynamos and terrestrial mag-

netism. Philosophical Transactions of the Royal Society of London. Series A,

Mathematical and Physical Sciences. 247(928), pp. 213–278. Cited on p. 75.

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., and Brown, B. P. 2020.

Dedalus: A flexible framework for numerical simulations with spectral methods.

Physical Review Research. 2(2), pp. 023068. Cited on pp. 4 and 62.

Busse, F. 1978. Non-linear properties of thermal convection. Reports on Progress

in Physics. 41(12), pp. 1929. Cited on p. 49.

Busse, F. 2002. Convective flows in rapidly rotating spheres and their dynamo

action. Physics of fluids. 14(4), pp. 1301–1314. Cited on pp. 2, 17, and 49.

Butcher, J. C. 2008. Numerical methods for ordinary differential equations., vol-

ume 2. Wiley Online Library. Cited on pp. 58 and 61.

Buvoli, T. and Minion, M. L. 2020. Imex parareal integrators. arXiv preprint

arXiv:2011.01604. Cited on p. 8.

Castaing, B., Gunaratne, G., Heslot, F., et al. 1989. Scaling of hard thermal

turbulence in rayleigh-bénard convection. Journal of Fluid Mechanics. 204, pp.

1–30. Cited on p. 19.

Cattaneo, F. and Hughes, D. W. 2006. Dynamo action in a rotating convective

layer. Journal of Fluid Mechanics. 553, pp. 401. Cited on pp. 10 and 41.

117

Cattaneo, F. and Hughes, D. W. 2017. Dynamo action in rapidly rotating rayleigh–

bénard convection at infinite prandtl number. Journal of Fluid Mechanics. 825,

pp. 385–411. Cited on p. 18.

Cattaneo, F. and Tobias, S. 2014. On large-scale dynamo action at high magnetic

reynolds number. The Astrophysical Journal. 789(1), pp. 70. Cited on pp. 41

and 42.

Cattaneo, F. and Tobias, S. M. 2009. Dynamo properties of the turbulent velocity

field of a saturated dynamo. Journal of Fluid Mechanics. 621, pp. 205. Cited on

p. 41.

Cattaneo, F., Emonet, T., and Weiss, N. 2003. On the interaction between convec-

tion and magnetic fields. The Astrophysical Journal. 588(2), pp. 1183. Cited on

pp. 42 and 108.

Chandrasekhar, S. 1961. Hydrodynamic and hydromagnetic stability. Courier Cor-

poration. Cited on pp. 10, 19, 46, 50, 51, 90, and 91.

Chapra, S. C. and Canale, R. P. 2011. Numerical methods for engineers., volume 2.

Mcgraw-hill New York. Cited on pp. 56 and 58.

Charbonneau, P. 2020. Dynamo models of the solar cycle. Living Reviews in Solar

Physics. 17(1), pp. 1–104. Cited on pp. 2, 15, and 32.

Charbonneau, P. and Steiner, O. 2012. Solar and Stellar Dynamos: Saas-Fee

Advanced Course 39 Swiss Society for Astrophysics and Astronomy. Saas-Fee

Advanced Course. Springer Berlin Heidelberg. Cited on pp. 72 and 75.

Childress, S. 1969. Théorie magnetohydrodynamique de l’effet dynamo. Report,

Department of Mechanics, Faculty of Science, University of Paris. Cited on pp. 37

and 48.

Childress, S. and Soward, A. 1972. Convection-driven hydromagnetic dynamo.

Physical Review Letters. 29(13), pp. 837. Cited on p. 18.

Childress, S., Collet, P., Frisch, U., et al. 1990. Report on workshop on small-

diffusivity dynamos and dynamical systems: Observatoire de nice 25–30 june

1989. Geophysical & Astrophysical Fluid Dynamics. 52(4), pp. 263–270. Cited

on p. 38.

Christensen, U., Aubert, J., Cardin, P., et al. 2001. A numerical dynamo benchmark.

Physics of the Earth and Planetary Interiors. 128(1-4), pp. 25–34. Cited on pp. 14,

17, 32, 33, 34, and 52.

118

Christensen, U. R. and Aubert, J. 2006. Scaling properties of convection-driven

dynamos in rotating spherical shells and application to planetary magnetic fields.

Geophysical Journal International. 166(1), pp. 97–114. Cited on pp. 13, 14,

and 33.

Christensen, U. R. and Wicht, J. 2015. Numerical dynamo simulations. Treatise on

Geophysics (Second Edition). 8, pp. 245–277. Cited on pp. 10 and 13.

Christlieb, A. J., Macdonald, C. B., and Ong, B. W. 2010. Parallel high-order

integrators. SIAM Journal on Scientific Computing. 32(2), pp. 818–835. Cited

on p. 28.

Cioni, S., Ciliberto, S., and Sommeria, J. 1997. Strongly turbulent rayleigh–bénard

convection in mercury: comparison with results at moderate prandtl number.

Journal of Fluid Mechanics. 335, pp. 111–140. Cited on p. 19.

Clarke, A., Davies, C., Ruprecht, D., Tobias, S., and Oishi, J. S. 2020a. Performance

of parallel-in-time integration for rayleigh bénard convection. Computing and

visualization in science. 23(1), pp. 1–13. Cited on pp. ii and 87.

Clarke, A. T., Davies, C. J., Ruprecht, D., and Tobias, S. M. 2020b. Parallel-in-time

integration of kinematic dynamos. Journal of computational physics: X. 7, pp.

100057. Cited on pp. ii and 69.

Clune, T. C., Elliott, J., Miesch, M., Toomre, J., and Glatzmaier, G. A. 1999. Com-

putational aspects of a code to study rotating turbulent convection in spherical

shells. Parallel Computing. 25(4), pp. 361–380. Cited on p. 34.

Cooley, J. W. and Tukey, J. W. 1965. An algorithm for the machine calculation of

complex fourier series. Mathematics of computation. 19(90), pp. 297–301. Cited

on p. 53.

Cooper, R. G., Bushby, P., and Guervilly, C. 2020. Subcritical dynamos in rapidly

rotating planar convection. Physical Review Fluids. 5(11), pp. 113702. Cited on

p. 42.

Cortial, J. and Farhat, C. 2009. A time-parallel implicit method for accelerating

the solution of non-linear structural dynamics problems. International Journal

for Numerical Methods in Engineering. 77(4), pp. 451–470. Cited on p. 2.

Courant, R., Freidrichs, K., and Lewy, H. 1928. Partial differential equations of

mathematical physics. Mathematische Annalen. 100, pp. 32–74. Cited on pp. 15

and 59.

119

Cowling, T. G. 1933. The magnetic field of sunspots. Monthly Notices of the Royal

Astronomical Society. 94, pp. 39–48. Cited on pp. 10, 37, and 48.

Croce, R., Ruprecht, D., and Krause, R. 2014. Parallel-in-space-and-time simulation

of the three-dimensional, unsteady navier-stokes equations for incompressible flow.

In: Modeling, Simulation and Optimization of Complex Processes-HPSC 2012.

Springer, pp. 13–23. Cited on pp. 2, 4, 8, 9, and 30.

Dai, X. and Maday, Y. 2013. Stable parareal in time method for first-and second-

order hyperbolic systems. SIAM Journal on Scientific Computing. 35(1), pp.

A52–A78. Cited on p. 26.

Dalćın, L., Paz, R., and Storti, M. 2005. Mpi for python. Journal of Parallel and

Distributed Computing. 65(9), pp. 1108–1115. Cited on p. 62.

Dallas, V. and Tobias, S. 2018. Rotationally induced coherence in turbulent kine-

matic dynamos. arXiv preprint arXiv:1805.02291. Cited on pp. 17 and 40.

Davidson, P. A. 2001. An Introduction to Magnetohydrodynamics. Cambridge Texts

in Applied Mathematics. Cambridge University Press. Cited on pp. 10, 43, 44,

46, and 47.

Davies, C., Pozzo, M., Gubbins, D., and Alfe, D. 2015. Constraints from material

properties on the dynamics and evolution of earth’s core. Nature Geoscience. 8

(9), pp. 678–685. Cited on pp. 1, 13, and 38.

Davies, C. J., Gubbins, D., and Jimack, P. K. 2011. Scalability of pseudospectral

methods for geodynamo simulations. Concurrency and Computation: Practice

and Experience. 23(1), pp. 38–56. Cited on pp. 2, 12, and 14.

De Sterck, H., Falgout, R. D., Friedhoff, S., Krzysik, O. A., and MacLachlan, S. P.

2021. Optimizing multigrid reduction-in-time and parareal coarse-grid operators

for linear advection. Numerical Linear Algebra with Applications. pp. e2367. Cited

on pp. 109 and 111.

Dennard, R. H., Gaensslen, F. H., Yu, H.-N., et al. 1974. Design of ion-implanted

mosfet’s with very small physical dimensions. IEEE Journal of Solid-State Cir-

cuits. 9(5), pp. 256–268. Cited on p. 4.

DeRosa, M. L. and Toomre, J. 2004. Evolution of solar supergranulation. The

Astrophysical Journal. 616(2), pp. 1242. Cited on p. 12.

Dietrich, W. and Jones, C. 2018. Anelastic spherical dynamos with radially variable

electrical conductivity. Icarus. 305, pp. 15–32. Cited on pp. 18, 35, and 36.

120

Duarte, L. D., Wicht, J., and Gastine, T. 2018. Physical conditions for Jupiter-like

dynamo models. Icarus. 299, pp. 206–221. Cited on p. 36.

Dubrulle, B. 2008. Course 5 turbulence and dynamo. Les Houches. 88, pp. 301–358.

Cited on p. 13.

Dubrulle, B. 08 2011. Turbulent dynamos. Proceedings of the International Astro-

nomical Union. 6, pp. 326–338. Cited on p. 13.

Eghbal, A., Gerber, A. G., and Aubanel, E. 2017. Acceleration of unsteady hy-

drodynamic simulations using the parareal algorithm. Journal of Computational

Science. 19, pp. 57–76. Cited on pp. 9, 26, 27, 30, and 110.

Emmett, M. and Minion, M. 2012. Toward an efficient parallel in time method

for partial differential equations. Communications in Applied Mathematics and

Computational Science. 7(1), pp. 105–132. Cited on pp. 27 and 109.

Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., and Burger, D. Dark

silicon and the end of multicore scaling. In: 2011 38th Annual International

Symposium on Computer Architecture (ISCA), pp. 365–376, 2011. Cited on p. 4.

Falgout, R. D., Katz, A., Kolev, T. V., et al. 2015. Parallel time integration

with multigrid reduction for a compressible fluid dynamics application. Lawrence

Livermore National Laboratory Technical Report, LLNL-JRNL-663416. Cited on

p. 30.

Farhat, C., Cortial, J., Dastillung, C., and Bavestrello, H. 2006. Time-parallel

implicit integrators for the near-real-time prediction of linear structural dynamic

responses. International journal for numerical methods in engineering. 67(5), pp.

697–724. Cited on p. 25.

Featherstone, N. A. and Hindman, B. W. 2016. The spectral amplitude of stellar

convection and its scaling in the high-rayleigh-number regime. The Astrophysical

Journal. 818(1), pp. 32. Cited on p. 35.

Fischer, P. F., Hecht, F., and Maday, Y. 2005. A parareal in time semi-implicit

approximation of the navier-stokes equations. In: Domain decomposition methods

in science and engineering. Springer, pp. 433–440. Cited on pp. 2, 9, and 30.

Friedhoff, S., Falgout, R. D., Kolev, T., MacLachlan, S., and Schroder, J. B. 2012.

A multigrid-in-time algorithm for solving evolution equations in parallel. Tech-

nical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United

States). Cited on pp. 27 and 109.

121

Friedhoff, S., Falgout, R. D., Kolev, T. V., MacLachlan, S. P., and Schroder,

J. B. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Par-

allel. In: Presented at: Sixteenth Copper Mountain Conference on Multigrid

Methods, Copper Mountain, CO, United States, Mar 17 - Mar 22, 2013, 2013.

URL http://www.osti.gov/scitech/servlets/purl/1073108. Cited on p. 2.

Friedhoff, S., Hahne, J., Kulchytska-Ruchka, I., and Schöps, S. 2019. Exploring

parallel-in-time approaches for eddy current problems. In: Progress in Industrial

Mathematics at ECMI 2018. Springer, pp. 373–379. Cited on pp. 9, 22, and 30.

Frigo, M. and Johnson, S. G. 2005. The design and implementation of FFTW3.

Proceedings of the IEEE. 93(2), pp. 216–231. Cited on pp. 4 and 62.

Gailitis, A., Lielausis, O., Dement’ev, S., et al. 2000. Detection of a flow induced

magnetic field eigenmode in the riga dynamo facility. Physical Review Letters. 84

(19), pp. 4365. Cited on pp. 1 and 37.

Galloway, D. 2012. Abc flows then and now. Geophysical & Astrophysical Fluid

Dynamics. 106(4-5), pp. 450–467. Cited on pp. 38 and 40.

Galloway, D. J. and Proctor, M. R. 1992. Numerical calculations of fast dynamos

in smooth velocity fields with realistic diffusion. Nature. 356(6371), pp. 691–693.

Cited on pp. 36, 38, 39, 69, 70, 71, 72, 75, and 105.

Gander, M. and Petcu, M. Analysis of a krylov subspace enhanced parareal algo-

rithm for linear problems. In: ESAIM: Proceedings, volume 25, pp. 114–129. EDP

Sciences, 2008. Cited on p. 25.

Gander, M. J. 2015. 50 years of time parallel time integration. In: Multiple shooting

and time domain decomposition methods. Springer, pp. 69–113. Cited on pp. 2, 4,

5, 27, and 29.

Gander, M. J. and Güttel, S. 2013. PARAEXP: A parallel integrator for linear

initial-value problems. SIAM Journal on Scientific Computing. 35(2), pp. C123–

C142. Cited on pp. 2, 8, 27, and 109.

Gander, M. J. and Vandewalle, S. 2007. Analysis of the parareal time-parallel time-

integration method. SIAM Journal on Scientific Computing. 29(2), pp. 556–578.

Cited on pp. 8, 9, 64, 67, 98, and 109.

Gander, M. J., Güttel, S., and Petcu, M. A nonlinear ParaExp algorithm. In: Inter-

national Conference on Domain Decomposition Methods, pp. 261–270. Springer,

2017. Cited on p. 27.

http://www.osti.gov/scitech/servlets/purl/1073108

122

Gander, M. J., Kulchytska-Ruchka, I., Niyonzima, I., and Schöps, S. 2019. A new

parareal algorithm for problems with discontinuous sources. SIAM Journal on

Scientific Computing. 41(2), pp. B375–B395. Cited on pp. 2 and 26.

Gander, M. J., Kwok, F., and Salomon, J. 2020. Paraopt: A parareal algorithm for

optimality systems. SIAM Journal on Scientific Computing. 42(5), pp. A2773–

A2802. Cited on p. 29.

Gastine, T. and Wicht, J. 2012. Effects of compressibility on driving zonal flow in

gas giants. Icarus. 219(1), pp. 428–442. Cited on p. 34.

Gastine, T., Wicht, J., Duarte, L., Heimpel, M., and Becker, A. 2014. Explaining

Jupiter’s magnetic field and equatorial jet dynamics. Geophysical Research Letters.

41(15), pp. 5410–5419. Cited on p. 36.

Getling, A. V. 1998. ”Rayleigh-Bénard Convection: Structures and Dynamics”.,

volume 11. World Scientific. Cited on p. 49.

Gilbert, A. D. 2003. Dynamo theory. In: Handbook of mathematical fluid dynamics.

Elsevier, pp. 355–441. Cited on p. 48.

Gilman, P. 1983. Dynamically consistent nonlinear dynamos driven by convection

in a rotating spherical shell. II-dynamos with cycles and strong feedbacks. The

Astrophysical Journal Supplement Series. 53, pp. 243–268. Cited on p. 35.

Gilman, P. A. 1975. Linear simulations of boussinesq convection in a deep rotating

spherical shell. Journal of Atmospheric Sciences. 32(7), pp. 1331–1352. Cited on

p. 34.

Gilman, P. A. and Miller, J. 1981. Dynamically consistent nonlinear dynamos driven

by convection in a rotating spherical shell. The Astrophysical Journal Supplement

Series. 46, pp. 211–238. Cited on p. 34.

Glatzmaier, G. A. 1984. Numerical simulations of stellar convective dynamos. I.

the model and method. Journal of Computational Physics. 55(3), pp. 461–484.

Cited on p. 34.

Glatzmaier, G. A. 1985. Numerical simulations of stellar convective dynamos. II-

field propagation in the convection zone. The Astrophysical Journal. 291, pp.

300–307. Cited on pp. 18 and 35.

Glatzmaier, G. A. 2018. Computer simulations of Jupiter’s deep internal dynamics

help interpret what juno sees. Proceedings of the National Academy of Sciences.

115(27), pp. 6896–6904. Cited on p. 36.

123

Glatzmaier, G. A. and Roberts, P. H. 1995a. A three-dimensional convective dynamo

solution with rotating and finitely conducting inner core and mantle. Physics of

the Earth and Planetary Interiors. 91(1-3), pp. 63–75. Cited on pp. 17 and 32.

Glatzmaier, G. A. and Roberts, P. H. 1995b. A three-dimensional self-consistent

computer simulation of a geomagnetic field reversal. Nature. 377(6546), pp.

203–209. Cited on pp. 1, 14, and 32.

Glatzmaier, G. A. and Roberts, P. H. 1998. Dynamo theory then and now. In-

ternational Journal of Engineering Science. 36(12-14), pp. 1325–1338. Cited on

pp. 10 and 11.

Goetschel, S., Minion, M., Ruprecht, D., and Speck, R. 2021. Twelve ways to fool

the masses when giving parallel-in-time results. arXiv preprint arXiv:2102.11670.

Cited on pp. 28, 67, and 108.

Gómez, D. O., Mininni, P. D., and Dmitruk, P. 2005. Parallel simulations in

turbulent MHD. Physica Scripta. 2005(T116), pp. 123. Cited on pp. 1 and 17.

Götschel, S. and Minion, M. L. Parallel-in-time for parabolic optimal control prob-

lems using PFASST. In: Bjørstad, P. E., Brenner, S. C., Halpern, L., et al. eds.

Domain Decomposition Methods in Science and Engineering XXIV, pp. 363–371,

Cham, 2018. Springer International Publishing. ISBN 978-3-319-93873-8. Cited

on p. 29.

Grooms, I. and Julien, K. 2011. Linearly implicit methods for nonlinear PDEs with

linear dispersion and dissipation. Journal of Computational Physics. 230(9), pp.

3630–3650. Cited on p. 60.

Grossmann, S. and Lohse, D. 2000. Scaling in thermal convection: a unifying theory.

Journal of Fluid Mechanics. 407, pp. 27–56. Cited on pp. 19, 20, 50, 52, and 90.

Gubbins, D. 2008. Implication of kinematic dynamo studies for the geodynamo.

Geophysical Journal International. 173(1), pp. 79–91. Cited on p. 10.

Gubbins, D. and Roberts, P. 1987. Magnetohydrodynamics of the earth’s core.

Geomatik. 2, pp. 1–183. Cited on p. 45.

Guerrero, G., Zaire, B., Smolarkiewicz, P., et al. 2019. What sets the magnetic field

strength and cycle period in solar-type stars? The Astrophysical Journal. 880

(1), pp. 6. Cited on pp. 35 and 53.

Guervilly, C., Cardin, P., and Schaeffer, N. 2019. Turbulent convective length scale

in planetary cores. Nature. 570(7761), pp. 368–371. Cited on p. 33.

124

Günther, S., Gauger, N. R., and Schroder, J. B. 2018. A non-intrusive parallel-

in-time adjoint solver with the XBraid library. Computing and Visualization in

Science. 19(3), pp. 85–95. Cited on p. 29.

Gunther, S., Ruthotto, L., Schroder, J. B., Cyr, E. C., and Gauger, N. R. 2020.

Layer-parallel training of deep residual neural networks. SIAM Journal on Math-

ematics of Data Science. 2(1), pp. 1–23. Cited on p. 29.

Gurrala, G., Dimitrovski, A., Pannala, S., Simunovic, S., and Starke, M. 2015.

Parareal in time for fast power system dynamic simulations. IEEE Transactions

on Power Systems. 31(3), pp. 1820–1830. Cited on p. 30.

Hamon, F. P., Schreiber, M., and Minion, M. L. 2020. Parallel-in-time multi-level

integration of the shallow-water equations on the rotating sphere. Journal of

Computational Physics. 407, pp. 109210. Cited on p. 31.

Hathaway, D. H. 2015. The solar cycle. Living reviews in solar physics. 12(1), pp.

4. Cited on p. 12.

Haut, T. and Wingate, B. 2014. An asymptotic parallel-in-time method for highly

oscillatory PDEs. SIAM Journal on Scientific Computing. 36(2), pp. A693–A713.

Cited on p. 28.

Haut, T. S., Babb, T., Martinsson, P. G., and Wingate, B. A. 06 2015. A high-

order time-parallel scheme for solving wave propagation problems via the direct

construction of an approximate time-evolution operator. IMA Journal of Numer-

ical Analysis. 36(2), pp. 688–716. Cited on pp. 28 and 109.

Heimpel, M., Gastine, T., and Wicht, J. 2016. Simulation of deep-seated zonal

jets and shallow vortices in gas giant atmospheres. Nature Geoscience. 9(1), pp.

19–23. Cited on p. 36.

Herzenberg, A. 1958. Geomagnetic dynamos. Philosophical Transactions of the

Royal Society of London. Series A, Mathematical and Physical Sciences. 250

(986), pp. 543–583. Cited on p. 37.

Hessenthaler, A., Nordsletten, D., Röhrle, O., Schroder, J. B., and Falgout, R. D.

2018. Convergence of the multigrid reduction in time algorithm for the linear

elasticity equations. Numerical Linear Algebra with Applications. 25(3), pp.

e2155. Cited on p. 29.

Hollerbach, R., Galloway, D., and Proctor, M. 1995. Numerical evidence of fast

dynamo action in a spherical shell. Physical review letters. 74(16), pp. 3145.

Cited on p. 39.

125

Hurlburt, N. E., Toomre, J., and Massaguer, J. M. 1984. Two-dimensional compress-

ible convection extending over multiple scale heights. The Astrophysical Journal.

282, pp. 557–573. Cited on p. 21.

Hurlburt, N. E., Toomre, J., and Massaguer, J. M. 1986. Nonlinear compressible

convection penetrating into stable layers and producing internal gravity waves.

The Astrophysical Journal. 311, pp. 563–577. Cited on p. 21.

Iyer, K. P., Scheel, J. D., Schumacher, J., and Sreenivasan, K. R. 2020. Classical 1/3

scaling of convection holds up to Ra=1015. Proceedings of the National Academy

of Sciences. 117(14), pp. 7594–7598. Cited on pp. 13, 19, 20, and 107.

Jackson, A., Sheyko, A., Marti, P., et al. 2014. A spherical shell numerical dy-

namo benchmark with pseudo-vacuum magnetic boundary conditions. Geophysi-

cal Journal International. 196(2), pp. 712–723. Cited on pp. 33 and 52.

Johnsson, L. and Netzer, G. The impact of moore’s law and loss of dennard scaling:

Are dsp socs an energy efficient alternative to x86 socs? In: Journal of Physics:

Conference Series, volume 762, pp. 012022. IOP Publishing, 2016. Cited on p. 4.

Johnston, H. and Doering, C. R. 2009. Comparison of turbulent thermal convection

between conditions of constant temperature and constant flux. Physical review

letters. 102(6), pp. 064501. Cited on pp. 20, 21, 90, and 93.

Jones, C. 2007. 8.05 - thermal and compositional convection in the outer core.

In: Schubert, G. ed. Treatise on Geophysics. Amsterdam: Elsevier, pp. 131–185.

Cited on p. 13.

Jones, C. 2014. A dynamo model of Jupiter’s magnetic field. Icarus. 241, pp.

148–159. Cited on p. 36.

Jones, C., Boronski, P., Brun, A., et al. 2011. Anelastic convection-driven dynamo

benchmarks. Icarus. 216(1), pp. 120–135. Cited on pp. 2, 17, 34, and 45.

Jones, C. A. 2008. Course 2 dynamo theory. In: Cardin, P. and Cugliandolo, L. eds.

Dynamos. Elsevier, pp. 45–135. Cited on pp. 13, 16, 17, 37, 39, 49, 72, and 74.

Jones, C. A. 2011. Planetary magnetic fields and fluid dynamos. Annual Review of

Fluid Mechanics. 43, pp. 583–614. Cited on pp. 10, 32, and 49.

Jones, C. A. and Roberts, P. H. 2000. Convection-driven dynamos in a rotating

plane layer. Journal of Fluid Mechanics. 404, pp. 311–343. Cited on pp. 13, 16,

and 18.

126

Jones, C. A., Thompson, M. J., and Tobias, S. M. 2010. The solar dynamo. Space

Science Reviews. 152(1-4), pp. 591–616. Cited on p. 13.

Jones, S. E. and Gilbert, A. D. 2014. Dynamo action in the abc flows using

symmetries. Geophysical & Astrophysical Fluid Dynamics. 108(1), pp. 83–116.

Cited on p. 39.

Kageyama, A. and Sato, T. 2004. “yin-yang grid”: An overset grid in spherical

geometry. Geochemistry, Geophysics, Geosystems. 5(9). Cited on pp. 34 and 53.

Kageyama, A., Miyagoshi, T., and Sato, T. 2008. Formation of current coils in

geodynamo simulations. Nature. 454(7208), pp. 1106–1109. Cited on pp. 14

and 33.

Käpylä, P., Mantere, M., Guerrero, G., Brandenburg, A., and Chatterjee, P. 2011.

Reynolds stress and heat flux in spherical shell convection. Astronomy & Astro-

physics. 531, pp. A162. Cited on pp. 34 and 53.

Käpylä, P. J., Mantere, M. J., and Brandenburg, A. 2012. Cyclic magnetic activ-

ity due to turbulent convection in spherical wedge geometry. The Astrophysical

Journal Letters. 755(1), pp. L22. Cited on pp. 18, 34, and 35.

Käpylä, P. J., Mantere, M. J., Cole, E., Warnecke, J., and Brandenburg, A. 2013.

Effects of enhanced stratification on equatorward dynamo wave propagation. The

Astrophysical Journal. 778(1), pp. 41. Cited on pp. 34 and 35.

Kassam, A.-K. and Trefethen, L. N. 2005. Fourth-order time-stepping for stiff PDEs.

SIAM Journal on Scientific Computing. 26(4), pp. 1214–1233. Cited on p. 62.

Kennedy, C. A. and Carpenter, M. H. 2003. Additive runge–kutta schemes for

convection–diffusion–reaction equations. Applied numerical mathematics. 44(1-

2), pp. 139–181. Cited on p. 62.

Kerr, R. M. and Herring, J. R. 2000. Prandtl number dependence of nusselt number

in direct numerical simulations. Journal of Fluid Mechanics. 419, pp. 325–344.

Cited on p. 52.

King, E., Stellmach, S., and Buffett, B. 2013. Scaling behaviour in rayleigh–bénard

convection with and without rotation. Journal of Fluid Mechanics. 717, pp.

449–471. Cited on pp. 21, 90, and 91.

King, E. M. and Buffett, B. A. 2013. Flow speeds and length scales in geodynamo

models: the role of viscosity. Earth and Planetary Science Letters. 371, pp.

156–162. Cited on p. 13.

127

King, E. M., Stellmach, S., and Aurnou, J. M. 2012. Heat transfer by rapidly

rotating rayleigh–bénard convection. Journal of Fluid Mechanics. 691, pp. 568–

582. Cited on pp. 52 and 89.

Kono, M. and Roberts, P. H. 2002. Recent geodynamo simulations and observations

of the geomagnetic field. Reviews of Geophysics. 40(4), pp. 4–1. Cited on p. 46.

Kooij, G. L. 2017. Towards parallel-in-time simulations of turbulent Rayleigh-Bénard

convection. University of Twente. Cited on p. 21.

Kooij, G. L., Botchev, M., and Geurts, B. J. 2015. Direct numerical simulation

of nusselt number scaling in rotating rayleigh–bénard convection. International

journal of heat and fluid flow. 55, pp. 26–33. Cited on pp. 21 and 22.

Kooij, G. L., Botchev, M. A., and Geurts, B. J. 2018. An exponential time inte-

grator for the incompressible navier–stokes equation. SIAM journal on scientific

computing. 40(3), pp. B684–B705. Cited on p. 28.

Kreienbuehl, A., Naegel, A., Ruprecht, D., et al. 2015. Numerical simulation of skin

transport using parareal. Computing and visualization in science. 17(2), pp.

99–108. Cited on pp. 9 and 29.

Kreienbuehl, A., Benedusi, P., Ruprecht, D., and Krause, R. 2017. Time-parallel

gravitational collapse simulation. Communications in Applied Mathematics and

Computational Science. 12(1), pp. 109–128. Cited on p. 29.

Kundu, P. K., Cohen, I. M., and Dowling, D. R. 2016. Chapter 4 - conservation

laws. In: Kundu, P. K., Cohen, I. M., and Dowling, D. R. eds. Fluid Mechanics

(Sixth Edition). sixth edition ed. Boston: Academic Press, pp. 109–193. Cited on

pp. 45, 46, and 50.

Kupka, F. and Muthsam, H. J. 2017. Modelling of stellar convection. Living Reviews

in Computational Astrophysics. 3(1), pp. 1–159. Cited on p. 12.

Larmor, J. 1919. How could a rotating body such as the sun become a magnet.

Rep. Brit. Adv. Sci. pp. 159–160. Cited on p. 10.

Li, K., Livermore, P. W., and Jackson, A. 2010. An optimal galerkin scheme

to solve the kinematic dynamo eigenvalue problem in a full sphere. Journal of

computational physics. 229(23), pp. 8666–8683. Cited on p. 17.

Lions, J.-L., Maday, Y., and Turinici, G. 2001. Résolution d’edp par un schéma

en temps �pararéel�. Comptes Rendus de l’Académie des Sciences-Series I-

Mathematics. 332(7), pp. 661–668. Cited on p. 2.

128

Livermore, P. 2007. An implementation of the exponential time differencing scheme

to the magnetohydrodynamic equations in a spherical shell. Journal of Compu-

tational Physics. 220(2), pp. 824–838. Cited on pp. 15 and 17.

Livermore, P., Hughes, D., and Tobias, S. 2007a. The role of helicity and stretching

in forced kinematic dynamos in a spherical shell. Physics of Fluids. 19(5), pp.

057101. Cited on p. 40.

Livermore, P., Hughes, D., and Tobias, S. 2010. Nonlinear generation of large-scale

magnetic fields in forced spherical shell dynamos. Physics of Fluids. 22(3), pp.

037101. Cited on p. 41.

Livermore, P. W. and Jackson, A. 2005. A comparison of numerical schemes to solve

the magnetic induction eigenvalue problem in a spherical geometry. Geophysical

and Astrophysical Fluid Dynamics. 99(6), pp. 467–480. Cited on p. 17.

Livermore, P. W., Jones, C. A., and Worland, S. J. 2007b. Spectral radial basis

functions for full sphere computations. Journal of Computational Physics. 227

(2), pp. 1209–1224. Cited on p. 17.

Llewellyn Smith, S. and Tobias, S. 2004. Vortex dynamos. Journal of Fluid Me-

chanics. 498, pp. 1–21. Cited on p. 39.

Long, R. S. 2020. Regimes and scaling laws for convection with and without rotation.

PhD thesis, University of Leeds. Cited on p. 19.

Long, R. S., Mound, J. E., Davies, C. J., and Tobias, S. M. 2020. Scaling behaviour

in spherical shell rotating convection with fixed-flux thermal boundary conditions.

Journal of Fluid Mechanics. 889. Cited on p. 20.

Lunet, T., Bodart, J., Gratton, S., and Vasseur, X. 2018. Time-parallel simulation

of the decay of homogeneous turbulence using parareal with spatial coarsening.

Computing and Visualization in Science. 19(1-2), pp. 31–44. Cited on pp. 8, 9,

30, and 95.

Maday, Y. and Mula, O. 2020. An adaptive parareal algorithm. Journal of Com-

putational and Applied Mathematics. pp. 112915. Cited on pp. 26 and 27.

Maday, Y. and Turinici, G. 2003. Parallel in time algorithms for quantum control:

Parareal time discretization scheme. International journal of quantum chemistry.

93(3), pp. 223–228. Cited on pp. 8 and 29.

Maday, Y., Salomon, J., and Turinici, G. 2007. Monotonic parareal control for

quantum systems. SIAM Journal on Numerical Analysis. 45(6), pp. 2468–2482.

Cited on p. 8.

129

Maday, Y., Riahi, M.-K., and Salomon, J. 2013. Parareal in time intermediate

targets methods for optimal control problems. In: Control and optimization with

PDE constraints. Springer, pp. 79–92. Cited on p. 29.

Magoulès, F., Gbikpi-Benissan, G., and Zou, Q. 2018. Asynchronous iterations of

parareal algorithm for option pricing models. Mathematics. 6(4), pp. 45. Cited

on p. 29.

Malkus, W. V. 1954. The heat transport and spectrum of thermal turbulence.

Proceedings of the Royal Society of London. Series A. Mathematical and Physical

Sciences. 225(1161), pp. 196–212. Cited on p. 19.

Marti, P. and Jackson, A. 2016. A fully spectral methodology for magnetohydro-

dynamic calculations in a whole sphere. Journal of Computational Physics. 305,

pp. 403–422. Cited on p. 17.

Masada, Y., Yamada, K., and Kageyama, A. 2013. Effects of penetrative convection

on solar dynamo. The Astrophysical Journal. 778(1), pp. 11. Cited on p. 34.

Matilsky, L. I. and Toomre, J. 2020. Exploring bistability in the cycles of the solar

dynamo through global simulations. The Astrophysical Journal. 892(2), pp. 106.

Cited on p. 35.

Matsui, H., Heien, E., Aubert, J., et al. 2016. Performance benchmarks for a next

generation numerical dynamo model. Geochemistry, Geophysics, Geosystems. 17

(5), pp. 1586–1607. Cited on pp. 1, 2, 4, 12, 13, 14, 15, 17, 33, and 107.

Miesch, M. S., Elliott, J. R., Toomre, J., et al. 2000. Three-dimensional spheri-

cal simulations of solar convection. I. differential rotation and pattern evolution

achieved with laminar and turbulent states. The astrophysical journal. 532(1),

pp. 593. Cited on p. 34.

Minion, M. 2011. A hybrid parareal spectral deferred corrections method. Commu-

nications in Applied Mathematics and Computational Science. 5(2), pp. 265–301.

Cited on pp. 2 and 67.

Minion, M. L. and Williams, S. A. Parareal and spectral deferred corrections. In:

AIP Conference Proceedings, volume 1048, pp. 388–391. American Institute of

Physics, 2008. Cited on p. 27.

Miyagoshi, T., Kageyama, A., and Sato, T. 2010. Zonal flow formation in the earth’s

core. Nature. 463(7282), pp. 793–796. Cited on pp. 14 and 33.

Moore, G. E. et al. Cramming more components onto integrated circuits, 1965.

Cited on p. 4.

130

Moore, G. E. et al. Progress in digital integrated electronics. In: Electron devices

meeting, volume 21, pp. 11–13. Maryland, USA, 1975. Cited on pp. 4 and 52.

Mound, J. E. and Davies, C. J. 2017. Heat transfer in rapidly rotating convection

with heterogeneous thermal boundary conditions. Journal of Fluid Mechanics.

828, pp. 601–629. Cited on pp. 52, 89, and 94.

Muller, R., Auffret, H., Roudier, T., et al. 1992. Evolution and advection of solar

mesogranulation. Nature. 356(6367), pp. 322–325. Cited on p. 12.

Nelson, N. J. and Miesch, M. S. 2014. Generating buoyant magnetic flux ropes in

solar-like convective dynamos. Plasma Physics and Controlled Fusion. 56(6), pp.

064004. Cited on p. 35.

Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., and Toomre, J. 2013.

Magnetic wreaths and cycles in convective dynamos. The Astrophysical Journal.

762(2), pp. 73. Cited on p. 35.

Nielsen, A. S. and Hesthaven, J. S. Fault tolerance in the parareal method. In:

Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale,

pp. 1–8, 2016. Cited on p. 26.

Nielsen, A. S., Brunner, G., and Hesthaven, J. S. 2018. Communication-aware

adaptive parareal with application to a nonlinear hyperbolic system of partial

differential equations. Journal of Computational Physics. 371, pp. 483–505. Cited

on p. 26.

Nievergelt, J. 1964. Parallel methods for integrating ordinary differential equations.

Communications of the ACM. 7(12), pp. 731–733. Cited on p. 4.

Nordlund, Å., Stein, R. F., and Asplund, M. 2009. Solar surface convection. Living

Reviews in Solar Physics. 6(1), pp. 1–117. Cited on p. 34.

Ong, B. W. and Schroder, J. B. 2020. Applications of time parallelization. Com-

puting and Visualization in Science. 23(1), pp. 1–15. Cited on pp. 28 and 29.

Ossendrijver, M. 2003. The solar dynamo. The Astronomy and Astrophysics Review.

11(4), pp. 287–367. Cited on p. 12.

Otani, N. F. 1993. A fast kinematic dynamo in two-dimensional time-dependent

flows. Journal of Fluid Mechanics. 253, pp. 327–340. Cited on p. 39.

Pandey, A., Scheel, J. D., and Schumacher, J. 2018. Turbulent superstructures in

rayleigh-bénard convection. Nature communications. 9(1), pp. 1–11. Cited on

p. 21.

131

Pankratius, V., Schulte, W., and Keutzer, K. 2010. Guest editors’ introduction:

Parallelism on the desktop. IEEE Software. 28(1), pp. 14–16. Cited on p. 4.

Parker, E. N. 1955. Hydromagnetic dynamo models. The Astrophysical Journal.

122, pp. 293. Cited on p. 37.

Passos, D. and Charbonneau, P. 2014. Characteristics of magnetic solar-like cycles

in a 3d MHD simulation of solar convection. Astronomy & Astrophysics. 568,

pp. A113. Cited on pp. 34, 35, and 53.

Pedlosky, J. et al. 1987. Geophysical fluid dynamics., volume 710. Springer. Cited

on p. 45.

Plumley, M. and Julien, K. 2019. Scaling laws in rayleigh-benard convection. Earth

and Space Science. 6(9), pp. 1580–1592. Cited on p. 19.

Plunian, F. and Rädler, K. 2002. Harmonic and subharmonic solutions of the roberts

dynamo problem. application to the karlsruhe experiment. Magnetohydrodynam-

ics. 38(1-2), pp. 92–103. Cited on pp. 37, 72, and 74.

Ponomarenko, Y. B. 1973. Theory of the hydromagnetic generator. Journal of

Applied Mechanics and Technical Physics. 14(6), pp. 775–778. Cited on p. 37.

Priest, E. R. 1982. Solar magnetohydrodynamics., volume 21. Springer Science &

Business Media. Cited on p. 12.

Racine, E., Charbonneau, P., Ghizaru, M., Bouchat, A., and Smolarkiewicz, P. K.

2011. On the mode of dynamo action in a global large-eddy simulation of solar

convection. The Astrophysical Journal. 735(1), pp. 46. Cited on pp. 34 and 35.

Reyl, C., Antonsen Jr, T. M., and Ott, E. 1996. Quasi-two-dimensional fast kine-

matic dynamo instabilities of chaotic fluid flows. Physics of Plasmas. 3(7), pp.

2564–2578. Cited on p. 39.

Reynolds-Barredo, J. M., Newman, D. E., Sánchez, R., et al. 2012. Mechanisms

for the convergence of time-parallelized, parareal turbulent plasma simulations.

Journal of Computational Physics. 231(23), pp. 7851–7867. Cited on p. 31.

Rieutord, M. 2014. Fluid Dynamics: An Introduction. Graduate Texts in Physics.

Springer International Publishing. Cited on p. 52.

Rincon, F. 2019. Dynamo theories. Journal of Plasma Physics. 85(4). Cited on

pp. 1, 2, 10, 16, 32, 37, 39, and 49.

132

Roberts, G. O. 1972. Dynamo action of fluid motions with two-dimensional pe-

riodicity. Philosophical Transactions of the Royal Society of London. Series A,

Mathematical and Physical Sciences. 271(1216), pp. 411–454. Cited on pp. 36,

37, 39, 69, 70, 71, 72, 74, and 105.

Roberts, P. H. 1967. An introduction to magnetohydrodynamics., volume 6. Long-

mans London. Cited on p. 16.

Roberts, P. H. and Soward, A. M. 1992. Dynamo theory. Annual review of fluid

mechanics. 24(1), pp. 459–512. Cited on pp. 1 and 38.

Rupp, K. 42 years of microprocessor trend data. In: GitHub, 2018. URL https:

//github.com/karlrupp/microprocessor-trend-data/. Cited on p. 5.

Ruprecht, D. 2014. Convergence of parareal with spatial coarsening. PAMM. 14

(1), pp. 1031–1034. Cited on p. 8.

Ruprecht, D. and Krause, R. 2012. Explicit parallel-in-time integration of a linear

acoustic-advection system. Computers & Fluids. 59, pp. 72–83. Cited on p. 26.

Ruprecht, D., Speck, R., Emmett, M., Bolten, M., and Krause, R. Poster: Extreme-

scale space-time parallelism. In: Proceedings of the 2013 Conference on High Per-

formance Computing Networking, Storage and Analysis Companion, SC ’13 Com-

panion, 2013. URL http://sc13.supercomputing.org/sites/default/files/

PostersArchive/tech_posters/post148s2-file3.pdf. Cited on p. 27.

Sakuraba, A. and Roberts, P. H. 2009. Generation of a strong magnetic field using

uniform heat flux at the surface of the core. Nature Geoscience. 2(11), pp.

802–805. Cited on p. 14.

Samaddar, D., Newman, D. E., and Sánchez, R. 2010. Parallelization in time

of numerical simulations of fully-developed plasma turbulence using the parareal

algorithm. Journal of Computational Physics. 229(18), pp. 6558–6573. Cited on

pp. 2, 9, 31, and 111.

Samaddar, D., Coster, D., Bonnin, X., et al. 2017. Temporal parallelization of edge

plasma simulations using the parareal algorithm and the solps code. Computer

Physics Communications. 221, pp. 19–27. Cited on pp. 5, 9, 31, and 96.

Samuel, H. 2012. Time domain parallelization for computational geodynamics.

Geochemistry, Geophysics, Geosystems. 13(1). Cited on pp. 2, 9, 31, 103, and 107.

Schaeffer, N., Jault, D., Nataf, H.-C., and Fournier, A. 2017. Turbulent geodynamo

simulations: a leap towards earth’s core. Geophysical Journal International. 211

(1), pp. 1–29. Cited on pp. 1, 2, 13, 14, 15, and 33.

https://github.com/karlrupp/microprocessor-trend-data/
https://github.com/karlrupp/microprocessor-trend-data/
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf

133

Schmalzl, J., Breuer, M., and Hansen, U. 2004. On the validity of two-dimensional

numerical approaches to time-dependent thermal convection. EPL (Europhysics

Letters). 67(3), pp. 390. Cited on p. 21.

Schöbel, R. and Speck, R. 2020. Pfasst-er: Combining the parallel full approximation

scheme in space and time with parallelization across the method. Computing and

Visualization in Science. 23(1), pp. 1–12. Cited on p. 28.

Schreiber, M. and Loft, R. 2019. A parallel time integrator for solving the linearized

shallow water equations on the rotating sphere. Numerical Linear Algebra with

Applications. 26(2), pp. e2220. Cited on p. 31.

Schreiber, M., Peixoto, P. S., Haut, T., and Wingate, B. 2018. Beyond spatial scala-

bility limitations with a massively parallel method for linear oscillatory problems.

The International Journal of High Performance Computing Applications. 32(6),

pp. 913–933. Cited on pp. 4, 5, 28, 31, and 109.

Schreiber, M., Schaeffer, N., and Loft, R. 2019. Exponential integrators with

parallel-in-time rational approximations for the shallow-water equations on the

rotating sphere. Parallel Computing. 85, pp. 56–65. Cited on p. 31.

Schroder, J. B. 2017. Parallelizing over artificial neural network training runs with

multigrid. arXiv preprint arXiv:1708.02276. Cited on p. 29.

Seshasayanan, K. and Alexakis, A. 2016. Turbulent 2.5-dimensional dynamos.

Journal of Fluid Mechanics. 799, pp. 246–264. Cited on p. 39.

Seshasayanan, K., Dallas, V., and Alexakis, A. 2017. The onset of turbulent rotating

dynamos at the low magnetic prandtl number limit. Journal of Fluid Mechanics.

822(R3). Cited on p. 40.

Shishkina, O., Stevens, R. J., Grossmann, S., and Lohse, D. 2010. Boundary layer

structure in turbulent thermal convection and its consequences for the required

numerical resolution. New journal of Physics. 12(7), pp. 075022. Cited on p. 90.

Shraiman, B. I. and Siggia, E. D. 1990. Heat transport in high-rayleigh-number

convection. Physical Review A. 42(6), pp. 3650. Cited on p. 19.

Siggia, E. D. 1994. High rayleigh number convection. Annual review of fluid

mechanics. 26(1), pp. 137–168. Cited on p. 52.

Soderlund, K. and Stanley, S. 2020. The underexplored frontier of ice giant dynamos.

Philosophical Transactions of the Royal Society A. 378(2187), pp. 20190479. Cited

on p. 36.

134

Soderlund, K., Heimpel, M., King, E., and Aurnou, J. 2013. Turbulent models of

ice giant internal dynamics: Dynamos, heat transfer, and zonal flows. Icarus. 224

(1), pp. 97–113. Cited on p. 36.

Sommeijer, B. P. 1993. Parallel-iterated runge-kutta methods for stiff ordinary

differential equations. Journal of Computational and Applied Mathematics. 45

(1-2), pp. 151–168. Cited on p. 28.

Spalart, P. R., Moser, R. D., and Rogers, M. M. 1991. Spectral methods for the

navier-stokes equations with one infinite and two periodic directions. Journal of

Computational Physics. 96(2), pp. 297–324. Cited on p. 62.

Speck, R., Ruprecht, D., Krause, R., et al. A massively space-time parallel n-body

solver. In: SC’12: Proceedings of the International Conference on High Per-

formance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE, 2012.

Cited on pp. 5, 27, and 30.

Speck, R., Ruprecht, D., Krause, R., et al. 2014. Integrating an n-body problem with

sdc and pfasst. In: Domain Decomposition Methods in Science and Engineering

XXI. Springer, pp. 637–645. Cited on p. 30.

Sreenivasan, B. and Jones, C. A. 2006. The role of inertia in the evolution of spherical

dynamos. Geophysical Journal International. 164(2), pp. 467–476. Cited on pp. 14

and 32.

Staff, G. A. and Rønquist, E. M. 2005. Stability of the parareal algorithm. In:

Domain decomposition methods in science and engineering. Springer, pp. 449–

456. Cited on pp. 95 and 106.

Stanley, S. and Bloxham, J. 2004. Convective-region geometry as the cause of

uranus’ and neptune’s unusual magnetic fields. Nature. 428(6979), pp. 151–153.

Cited on p. 36.

Stanley, S. and Bloxham, J. 2006. Numerical dynamo models of uranus’ and nep-

tune’s magnetic fields. Icarus. 184(2), pp. 556–572. Cited on p. 36.

Stein, R. F. 2012. Solar surface magneto-convection. Living Reviews in Solar

Physics. 9(1), pp. 1–51. Cited on pp. 42 and 108.

Steiner, J., Ruprecht, D., Speck, R., and Krause, R. 2015. Convergence of parareal

for the navier-stokes equations depending on the reynolds number. In: Numerical

Mathematics and Advanced Applications-ENUMATH 2013. Springer, pp. 195–202.

Cited on pp. 8, 9, 30, 103, and 106.

135

Stellmach, S. and Hansen, U. 2004. Cartesian convection driven dynamos at low

ekman number. Physical Review E. 70(5), pp. 056312. Cited on pp. 18 and 42.

Stevens, R. J., Verzicco, R., and Lohse, D. 2010. Radial boundary layer structure

and nusselt number in rayleigh–bénard convection. Journal of fluid mechanics.

643, pp. 495–507. Cited on pp. 52, 89, and 90.

Stevens, R. J., Blass, A., Zhu, X., Verzicco, R., and Lohse, D. 2018. Turbulent

thermal superstructures in rayleigh-bénard convection. Physical review fluids. 3

(4), pp. 041501. Cited on p. 21.

Stieglitz, R. and Müller, U. 2001. Experimental demonstration of a homogeneous

two-scale dynamo. Physics of Fluids. 13(3), pp. 561–564. Cited on pp. 1, 37,

and 42.

Strugarek, A., Beaudoin, P., Charbonneau, P., Brun, A., and Do Nascimento, J.-

D. 2017. Reconciling solar and stellar magnetic cycles with nonlinear dynamo

simulations. Science. 357(6347), pp. 185–187. Cited on p. 34.

Tilgner, A. and Brandenburg, A. 2008. A growing dynamo from a saturated roberts

flow dynamo. Monthly Notices of the Royal Astronomical Society. 391(3), pp.

1477–1481. Cited on p. 41.

Tilgner, A. and Busse, F. 1995. Subharmonic dynamo action of fluid motions with

two-dimensional periodicity. Proceedings of the Royal Society of London. Series

A: Mathematical and Physical Sciences. 448(1933), pp. 237–244. Cited on p. 37.

Tobias, S. 2021. The turbulent dynamo. Journal of Fluid Mechanics. 912. Cited

on pp. 10, 11, 12, 15, 16, 32, 39, 49, and 75.

Tobias, S. M. and Cattaneo, F. 2013. Shear-driven dynamo waves at high magnetic

reynolds number. Nature. 497(7450), pp. 463–465. Cited on pp. 1 and 41.

Trefethen, L. 2000. Spectral Methods in MATLAB. Software, Environments,

and Tools. Society for Industrial and Applied Mathematics (SIAM, 3600 Mar-

ket Street, Floor 6, Philadelphia, PA 19104). Cited on pp. 54 and 55.

Tritton, D. J. 1977. Physical fluid dynamics. Springer Science & Business Media.

Cited on p. 50.

Väisälä, M. S., Pekkilä, J., Käpylä, M. J., et al. 2021. Interaction of large-and small-

scale dynamos in isotropic turbulent flows from gpu-accelerated simulations. The

Astrophysical Journal. 907(2), pp. 83. Cited on p. 17.

136

Van der Houwen, P. and Sommeijer, B. 1993. Analysis of parallel diagonally implicit

iteration of runge-kutta methods. Applied numerical mathematics. 11(1-3), pp.

169–188. Cited on p. 28.

Van Der Houwen, P. J. and Sommeijer, B. P. 1990. Parallel iteration of high-order

runge-kutta methods with stepsize control. Journal of Computational and Applied

Mathematics. 29(1), pp. 111–127. Cited on p. 28.

van der Houwen, P. J. and Sommeijer, B. P. 1991. Iterated runge–kutta methods

on parallel computers. SIAM journal on scientific and statistical computing. 12

(5), pp. 1000–1028. Cited on p. 28.

van der Poel, E. P., Stevens, R. J., and Lohse, D. 2013. Comparison between two-

and three-dimensional rayleigh–bénard convection. Journal of Fluid Mechanics.

736, pp. 177–194. Cited on p. 21.

Verzicco, R. and Camussi, R. 1999. Prandtl number effects in convective turbulence.

Journal of Fluid Mechanics. 383, pp. 55–73. Cited on pp. 20 and 21.

Verzicco, R. and Camussi, R. 2003. Numerical experiments on strongly turbulent

thermal convection in a slender cylindrical cell. Journal of Fluid Mechanics. 477,

pp. 19–49. Cited on p. 90.

Warnecke, J., Käpylä, P. J., Mantere, M. J., and Brandenburg, A. 2012. Ejections

of magnetic structures above a spherical wedge driven by a convective dynamo

with differential rotation. Solar Physics. 280(2), pp. 299–319. Cited on pp. 34

and 35.

Warnecke, J., Käpylä, P. J., Mantere, M. J., and Brandenburg, A. 2013. Spoke-

like differential rotation in a convective dynamo with a coronal envelope. The

Astrophysical Journal. 778(2), pp. 141. Cited on p. 34.

Weiss, N. 2001. Turbulent magnetic fields in the sun. Astronomy & Geophysics. 42

(3), pp. 3–10. Cited on p. 38.

Weiss, N. 2002. Dynamos in planets, stars and galaxies. Astronomy & Geophysics.

43(3), pp. 3–9. Cited on p. 1.

Wicht, J., Stellmach, S., and Harder, H. 2010. Numerical dynamo simulations: from

basic concepts to realistic models. In: Handbook of geomathematics. pp. 779–834.

Cited on p. 2.

Wicht, J., Gastine, T., and Duarte, L. D. 2019. Dynamo action in the steeply de-

caying conductivity region of Jupiter-like dynamo models. Journal of Geophysical

Research: Planets. 124(3), pp. 837–863. Cited on p. 36.

137

Wilkinson, M., Lawrence, B., Prescott, A., et al. Jun 2021. UKRI supercomputing

science case. Cited on pp. 4 and 110.

Yadav, R. K. and Bloxham, J. 2020. Deep rotating convection generates the polar

hexagon on saturn. Proceedings of the National Academy of Sciences. 117(25),

pp. 13991–13996. Cited on p. 36.

Zeldovich, Y. B. 1957. The magnetic field in the two-dimensional motion of a

conducting turbulent fluid. Sov. Phys. JETP. 4, pp. 460–462. Cited on pp. 37

and 48.

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Overview
	Parallel in time
	Parareal

	Dynamo problem
	Introduction/Overview

	The Kinematic Dynamo
	Numerical Considerations

	Rayleigh-Bénard Convection
	Introduction and definition of Problem

	Discussion
	Aims and Objectives

	Literature Survey
	Parallel-in-time
	Modifications to parareal
	Other Pint methods
	Applications of Parallel-in-time

	Dynamo
	Geodynamo studies
	Astrophysical dynamo studies
	Theoretical and Kinematic dynamo studies

	Discussion

	Theory and Methods
	Fluids and Magnetohydrodynamics
	MHD
	Kinematic Dynamo
	Rayleigh-Bénard Convection

	Numerical Methods
	Spatial Discretisation - Pseudospectral Method
	Time-Stepping
	Dedalus Code

	Parareal
	Algorithm
	Stopping Criteria, Accuracy
	Speedup and performance

	Parareal Kinematic Dynamo
	Description and Validation
	Accuracy measurement
	Fine solution
	Coarse Solver

	Scaling Results
	Roberts Flow
	Galloway Proctor Flow

	Discussion

	Parareal Rayleigh Bénard Convection
	Description of Model
	Consistency Checks

	Validation of model
	Determining Accuracy of Fine Solution
	Duration of Simulation
	Choice of Coarse Solver
	Determining Convergence in Parareal

	Results
	Kinetic energy in the Parareal solution
	Parareal convergence
	Scaling and Performance

	Conclusions

	Conclusions
	Kinematic dynamos
	Rayleigh-Bénard convection
	Interpreting our results for the non-linear dynamo problem
	Further Work

	References

