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Abstract

In Chapter 1, we give an introduction to all subsequent chapters in the thesis.

In Chapter 2, we first introduce the underlying stochastic process, notations and
some formulae used in the thesis. We then collect some classical results of opti-
mal stopping and free boundary problems, including the solution of the American
option pricing problem under the classical Black and Scholes model.

In Chapter 3, we consider the seller of a perpetual American put option who can
hedge her portfolio once, until the underlying stock price leaves a certain range of
values (a, b). We determine optimal trading boundaries as functions of the initial
stock holding, and an optimal hedging strategy for a bond/stock portfolio. Opti-
mality here refers to minimal variance of the hedging error at the (random) time
when the stock leaves the interval (a, b). Our study leads to analytical expres-
sions for both the optimal boundaries and the optimal stock holding, which can be
evaluated numerically with no effort.

In Chapter 4, we study pricing of American put options on the Black and Scholes
market with a stochastic interest rate and finite-time maturity. We prove that the
option value is a C1 function of the initial time, interest rate and stock price. By
means of Itô calculus we rigorously derive the option’s early exercise premium
formula and the associated hedging portfolio. We prove the existence of an optimal
exercise boundary splitting the state space into continuation and stopping region.
The boundary has a parametrisation as a jointly continuous function of time and
stock price, and it is the unique solution to an integral equation which we compute
numerically. Our results hold for a large class of interest rate models including
CIR and Vasicek models. We show a numerical study of the option price and the
optimal exercise boundary for Vasicek model.

In Chapter 5, we derive a change of variable formula for C1 functions U : R+ ×
Rm → R whose second order spatial derivatives may explode and not be inte-
grable in the neighbourhood of a surface b : R+ × Rm−1 → R that splits the state



space into two sets C and D. The formula is tailored for applications in problems
of optimal stopping where it is generally very hard to control the second order
derivatives of the value function near the optimal stopping boundary. Differently
to other existing results on similar topics we only require that the surface b be
monotonic in each variable and we formally obtain the same expression as the
classical Itô’s formula.

In Chapter 6, we provide sufficient conditions under which a two dimensional
(time-space) optimal stopping surface, arising from a general three dimensional
optimal stopping problem, is continuous. We require mild local regularity as-
sumptions on the coefficients of the dynamics of the underlying process, the gain
function and the value function. Further, we assume monotonicity of the optimal
stopping surface in each variable.
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Chapter 1

Introduction

Optimal stopping problems deal with finding the time at which stopping a stochastic dynamics
produces the largest reward or smallest cost according to a certain criterion. Such problems are
extensively studied in various research areas. In mathematical finance, a benchmark optimal
stopping problem is that of the optimal exercise of an American option. An American option
allows its buyer to exercise a certain right, typically by buying or selling the underlying asset,
at any time before a given maturity. Such flexibility has given American options popularity in
the financial market, but the corresponding pricing and hedging problems are challenging.

In this thesis, we study two problems related to pricing and hedging of American put op-
tions. The problems are formulated as optimal stopping problems for diffusion processes under
Markovian settings. We apply analytical and probabilistic methods to solve these problems
while also developing techniques to handle two challenging questions that arise in general
multi-dimensional optimal stopping problems. To be specific, under some mild assumptions,
we prove the joint continuity of a two-dimensional time-space optimal stopping boundary, and
we derive a change of variable formula for continuous differentiable (C1) value functions in
optimal stopping problems.

In the sequel, we give an introduction to the material covered in each chapter of this thesis.
We focus on the main contributions and leave the literature review to the introduction of each
individual chapter.

Chapter 2 contains background material needed in the subsequent chapters. We start with
an introduction to diffusion processes considered in Chapter 3 and Chapter 4. After presenting
some formulae and notations, we establish the convergence of diffusion’s hitting and entry
times to Borel sets under certain regularity conditions. We then collect key facts from optimal
stopping theory and explain the free boundary methods for solving optimal stopping problems.
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We finally illustrate the well-known free boundary techniques for pricing the American put
option under the classical Black and Scholes model.

In Chapter 3, we construct a hedging strategy in a Black and Scholes market for the seller of
a perpetual American put option, who holds a bond/stock hedging portfolio and can rebalance
her position only once, until the stock price leaves a predetermined interval (a, b) with 0 <

a < b < +∞. The aim of the trader is to minimise the variance of the hedging error at the
(random) time at which the stock leaves the above interval.

We reduce the problem to an optimal stopping problem corresponding to the timing of a
single rebalancing opportunity and an optimisation problem for the choice of the initial port-
folio. We prove the existence of two optimal trading boundaries. When the stock price reaches
either of the two optimal trading boundaries the hedging portfolio must be rebalanced; we give
an analytical formula for the optimal stock holding after the trade, which in general is differ-
ent from that prescribed by the classical Delta-hedging, i.e. stock holding is the Greek Delta,
which is the derivative of the Black-Scholes option value with respect to the underlying stock
price (see Chapter 2 Section 2.3.1).

The stopping boundaries can be calculated from analytical formulae up to a solution of
algebraic equations. Those algebraic equations cannot be solved explicitly and do not reveal
any further properties of the boundaries. Instead, we employ delicate probabilistic arguments
to show that those boundaries exhibit monotone and continuous dependence on the initial stock
holding.

We prove that the value function V of the stopping problem is a unique solution of a free
boundary problem associated with the optimal trading boundaries. We show that V is every-
where continuously differentiable with respect to the initial stock holding and the initial stock
price. Furthermore, discontinuities in the second order derivative with respect to the initial
stock price occur only at the optimal trading boundaries. We finally compare the performance
of our optimal hedging strategy to some frequently used ad-hoc strategies. Our optimal hedg-
ing strategy produces the variance of the tracking error which is up to 4 times smaller than the
other strategies.

In Chapter 4, we study the pricing of an American put option on a Black and Scholes market
with a stochastic interest rate and finite-time maturity. The stock price and the interest rate are
driven by (possibly) correlated Brownian motions and we make mild assumptions about the
dynamics of the interest rate under the pricing measure. It is worth noticing that CIR model,
which does not satisfy these conditions, is also included in our analysis.
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The American put option price is given by the value function of a related optimal stopping
problem. In our model, this optimal stopping problem has a 3-dimensional state space with
2-dimensional diffusive dynamics (stock price and interest rate) and time. The stopping set,
i.e., the set of points (t, r, x) for which it is optimal to exercise the option, is separated from
the continuation set, where it is optimal to hold (or sell) the option, by a single surface (the
stopping boundary). The value function is a classical solution to a second order parabolic PDE
in the interior of the continuation set, i.e., it is twice continuously differentiable in (r, x) and
continuously differentiable in t, whereas it coincides with the put payoff in the stopping set.

One of our technical contributions is to establish by means of probabilistic methods that
the value function is globally continuously differentiable in all variables. Then, the continuity
of the gradient of the value function permits the application of a change of variable formula
(a generalisation of Itô’s formula which we prove in Chapter 5) and a rigorous derivation of
a hedging portfolio. The hedging portfolio invests in three instruments: the money market
(savings) account, the zero-coupon bond with maturity equal to the maturity of the option and
the stock. We show that the holdings in the bond and the stock are given by partial derivatives
of the value function with respect to the interest rate and the stock price. As a further conse-
quence of the change of variable formula we also derive the decomposition of the American
option price as the sum of the price of a European put option with the same maturity and the
same exercise price, and an early exercise premium. This is known in the literature as the
early exercise premium formula, which corresponds to Doob’s decomposition of supermartin-
gales into a martingale and a non-increasing process (applied here to the Snell envelope of the
optimal stopping problem).

Our second contribution concerns the continuity properties of the stopping boundary in
our model, which have not been established in the literature. We are able to demonstrate that
the stopping boundary, when parametrised as a function of (t, x), is continuous. Apart from
being of interest in its own right, this enables a characterisation of the stopping boundary as
the unique continuous solution of an integral equation arising from the early exercise premium
decomposition. When a stopping boundary is known, efficient numerical methods are at dis-
posal for computation of the option price. We finally compute the optimal stopping boundary
surface numerically under the Vasicek interest rate model using an iterative scheme.

In Chapter 5, we develop a change of variable formula for C1 value functions in general
multi-dimensional optimal stopping problems. Our result complements existing generalisa-
tions of Itô’s formula. We have a function U : R+ × Rd → R which can be thought of as
the value function of an optimal stopping problem whose underlying stochastic process is a
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d dimensional diffusion X . We divide the state space R+ × Rd into two subsets C and D,
whose boundary ∂C would correspond to the optimal stopping boundary. Our focus is on ob-
taining a formula that resembles the classical Itô’s formula and does not involve either local
times or the quadratic covariation between the underlying process X and the spatial gradient
∇U(t,X). This is important, for example, when deriving the dynamics of hedging portfolios
for American options on multiple assets or integral equations for optimal stopping boundaries
(in the spirit of numerous examples in the book by Peskir and Shiryaev [114]). Since we want
to avoid using local times and quadratic covariation, we do require that the spatial gradient
∇U to be a continuous function. However, we require minimal regularity on the second order
spatial derivatives of U near the boundary ∂C and very mild monotonicity properties of the
boundary itself. Our assumptions are shown to hold naturally in a very broad class of optimal
stopping problems for which existing generalisations of Itô’s formula are either technically
more involved than ours or not applicable.

In Chapter 6, we prove the joint continuity of the stopping boundary surface for general
optimal stopping problems. Considering a finite horizon optimal stopping problem for a two di-
mensional diffusion, we prove that the optimal stopping boundary parameterised as a function
of time and a space variable is continuous. Due to some technical difficulties, our arguments
may not be extended beyond three dimensional time-space problems. Nonetheless, our work
adds to the many known results of this type that only address scenarios when the boundary is a
curve, i.e. a function of time or of a single state variable (e.g. [38], [113]). We take advantage
of the local nature of the infinitesimal generator by setting assumptions on an open subset U
of the state space and proving the continuity of the stopping boundary on U . We assume the
stopping boundary on ∂C ∩ U can be represented as a surface with certain monotonicity prop-
erties. Some mild and verifiable regularity assumptions of the coefficients of the SDE, the gain
function and the value function are required on U .
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Chapter 2

Optimal stopping problems and the
American put option

This chapter provides a theoretical background for optimal stopping problems as well as an
introduction to the American put option under the classical Black and Scholes model. Some
important properties and frequently used notations of the underlying stochastic process and
stopping times are presented first.

2.1 Properties of the state process

We first introduce the diffusion process as a solution of a Stochastic Differential Equation
(SDE). We point out its strong Markov property and the infinitesimal generator. The concept
of regularity for one-dimensional diffusions is given as well as an analytical expression of the
resolvent, which will be frequently used in Chapter 3. We then provide some useful facts of the
first entry and hitting times, which will be used in proving the continuously differentiability of
the value functions in Chapter 3 and Chapter 4.

2.1.1 The state process as a solution of SDE

Let Bt = (B1
t , ..., B

d̂
t ) be a d̂-dimensional Brownian motion on a complete probability space

(Ω,F ,P), we have a d-dimensional diffusion X := (X1, ..., Xd), which is a solution of the
following SDE with coefficients α : Rd → Rd and σ : Rd → Rd × Rd̂,

dXt = α(Xt)dt+ σ(Xt)dBt, X0 = x. (2.1)
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2.1 Properties of the state process

Each X i
t , i = 1, ..., d has dynamics

dX i
t = αi(Xt)dt+

d̂∑
j=1

σij(Xt)dB
j
t , X i

0 = xi. (2.2)

The process X takes values on O ⊆ Rd. The coefficients α, σ are assumed to be smooth
enough (e.g. Lipschitz continuous), so that (2.1) admits a unique strong solution. Denote by
(Ft)t≥0 the natural filtration generated byB satisfying the usual condition, i.e., (Ft)t≥0 is right
continuous and F0 contains all P-null sets. When it is needed, we useXx := (X1,x, ..., Xd,x)

to indicate that the process starts from x. We also often use notations

Px ( · ) = P ( · |X0 = x) , Pt,x ( · ) = P ( · |Xt = x) ,

the corresponding expectations are denoted by Ex, Et,x.

Definition 2.1.1. A Markov time τ with respect to filtration (Ft)t≥0 is random variable Ω →
[0,∞] such that {τ ≤ t} ∈ Ft. If τ <∞, P− a.s., we say τ is a stopping time.

It is well known that the diffusion X is a time-homogeneous strong Markov process (cf.
(2.4)) on the state space (O,B(O)), where B(O) is the Borel σ-algebra of O ([87, Ch. 5.4],
[119, Ch. V Sec. 4], [108, Ch. 7.2]). For a bounded measurable function f : O → R, we define

(Ptf)(x) := Ex [f(Xt)] . (2.3)

It follows that x 7→ (Ptf)(x) is B(O) measurable ([17, Ch. 1, Thm. 3.6]). The process X is
strong Markov, i.e.,

Ex [f(Xt+τ )|Fτ ] = (Ptf)(Xτ ) = EXτ [f(Xt)] , Px − a.s. (2.4)

for any stopping time τ .
Sometimes it is convenient to consider an equivalent Markov process on the canonical

space, so that a shift operator is well defined ([17, Ch. 1.3, 1.4]). Namely, consider a process
X̂ = (Ω̂, F̂ , F̂t, X̂t, θt, P̂x)x∈O, where Ω̂ = C([0,∞);Rd), X̂t(ω) = ω(t) for each ω ∈ Ω̂,
F̂ ⊃ Ĝ0 := σ{X̂t, t ≥ 0}, F̂t ⊃ Ĝ0

t := σ{X̂s, s ≤ t} and P̂x(X̂t ∈ E) = Px(Xt ∈ E) for
all E ∈ B(O). The space Ω̂ is equipped with a family of shift operator θt : Ω̂ → Ω̂, t ≥ 0,
such that

X̂t(θs(ω)) = X̂t+s(ω), ∀ω ∈ Ω̂. (2.5)

In most of applications in this thesis, the expression under expectation only depends on the
process, we hence assume, without loss of generality, the shift operator also applies to the
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2.1 Properties of the state process

processX in the same way as in (2.5). Using the shift operator θ, the strong Markov property
(2.4) can be expressed as

Ex [f(Xs) ◦ θτ |Fτ ] = EXτ [f(Xs)] , Px − a.s. (2.6)

More generally, we have
Ex [H ◦ θτ |Fτ ] = EXτ [H] . (2.7)

where H : Ω→ R is a bounded and FX
∞ -measurable random variable.

The infinitesimal generator ofX acting on a function f ∈ C2(O) takes form

LXf(x) =
1

2

d∑
i,j=1

βij(x)fxixj(x) +
d∑
i=1

αi(x)fxi(x), (2.8)

where βij(x) :=
∑d̂

k=1 σ
ik(x)σjk(x), and fxi , fxixj denote the first and second order partial

derivatives of f with respect to xi and xi, xj . In the one-dimensional case, derivatives are
denoted by fx or f ′, f ′′.

We now define some stopping times used in later chapters. Define τK as first entry time of
X to a Borel set K ⊂ O such that

τK := inf{t ≥ 0 : Xt ∈ K}.

As (Ft)t≥0 is right continuous and X is continuous and adapted to Ft, it follows that τK is a
stopping time (or Markov time) ([118, Ch. III, Thm. 2.17]). If σ is a stopping time, we have

τK ◦ θσ = inf{t ≥ 0 : Xt+σ ∈ K}.

The first hitting time to a setK ⊂ O is denoted by σK, and the first entry time to the interior
of K is denoted by σ̊K. That is for x ∈ O, we set

σK := inf{t > 0 : Xt ∈ K}, Px − a.s.

σ̊K := inf{t ≥ 0 : Xt ∈ int(K)}, Px − a.s.

The above definition includes the special case when K = {y}, y ∈ O, in which the first hitting
time is the first time X hits a point. When int(K) = ∅, we set σ̊K = ∞. The first exit time
from the set K is

τKc := inf{t ≥ 0 : Xt /∈ K}, Px − a.s.

7



2.1 Properties of the state process

We end this subsection by introducing some notations for function spaces.

C(U) := {f : U → R | f is continuous},

Ck(U) := {f : U → R | f is k times continuous differentiable},

Lp(U) := {f : U → R | f is Lebesgue measurable,
∫
U
|f |pdx <∞},

L∞(U) := {f : U → R | f is Lebesgue measurable, ess sup
U
|f | <∞},

W k,p(U) := {f ∈ Lp(U) : Dαf ∈ Lp(K),∀ |α| ≤ k},

where k ∈ N, 1 ≤ p <∞ and Dαf is the mixed weak derivative of f with multi-index α. See
e.g. [58, Ch. 5] for more detailed definition of Sobolev space W k,p and weak derivatives. We
will use notation “`oc” if the property holds locally, e.g. we write f ∈ Lp`oc(U) if f ∈ Lp(K)

for any compact subset K ⊂ U . We will also use notation Ci1,...,in to indicate the class of
functions that have ijth continuous derivative in the jth argument.

2.1.2 Linear diffusions

Let d = d̂ = 1 in (2.1) and let us restrict the state space to the interior of a possibly unbounded
interval O := (l, r). This gives us a so called linear diffusion, i.e., there are functions α : R→
R, σ : R→ R+ and a one-dimensional Brownian motion B, such that X follows

dXt = α(Xt)dt+ σ(Xt)dBt, X0 = x. (2.9)

The infinitesimal generator of X acting on f ∈ C2(O) is

LXf(x) =
1

2
σ2(x)fxx(x) + α(x)fx(x). (2.10)

The boundary points l, r are classified depending on the behaviour of the diffusion near the
boundary. In this thesis, if the boundary point can be attained, we assume it is exit-not-entrance
or reflecting. A full classification of boundary points can be found in [18, Ch. II].

Definition 2.1.2 ([119, Ch. V, (45.2)]). We say a linear diffusion X starting at x ∈ int(O) is
a regular diffusion if

Px(σ{y} <∞) > 0,

for any y ∈ O.
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2.1 Properties of the state process

We only work with regular linear diffusions in this thesis. The following conditions are
sufficient to guarantee that X is regular ([37], [88, p. 343-345])

∀ x ∈ O, σ2(x) > 0,

∀ x ∈ O, ∃ ε, such that
∫

(x−ε,x+ε)

1 + |α(y)|
σ2(y)

dy <∞.
(2.11)

Lemma 2.1.3 ([119, Ch. V, (46.1)]). For the regular diffusion X with X0 = x, the following
holds

(i)
Px (∃ ε > 0 such that Xt ≤ x, ∀ t ≤ ε) = 0, (2.12)

(ii) for a, b ∈ O, a ≤ x ≤ b, and all p > 0

Ex
[
(σ{a} ∧ σ{b})p

]
<∞.

Note that one can also show that (2.12) holds with Xt ≤ x replaced by Xt ≥ x. The
statement in Lemma 2.1.3 (i) indicates that for almost every ω, for any ε > 0, whenever
X0 = x we have

sup
t∈[0,ε]

Xt(ω) > x, inf
t∈[0,ε]

Xt(ω) < x.

As a direct consequence, any boundary point ∂K := {a, b} of an interval K := [a, b] with
a, b ∈ int(O) is regular in the sense that

Px (σKc > 0) = Px (̊σKc > 0) = 0, x ∈ ∂K. (2.13)

The diffusion X driven by (2.9) with coefficients satisfying (2.11) has speed measure with
density m′(x) and scale function s(x) given by ([118, Ch. VII, (3.20)]),

m′(x) =
2

σ2(x)s′(x)
, s(x) =

∫ x

c

s′(y)dy, s′(x) = e
−
∫ x
c 2

α(y)

σ2(y)
dy
, (2.14)

where c is an arbitrary constant on O. Using the speed measure and the scale function, for
any x ∈ I = (a, b) ⊂ O, and any bounded measurable function g : I → R, the following
expression holds (see [18, Ch. II, p. 19] and [3])

Ex

[∫ τIc

0

e−λug(Xu)du
]

= w−1

(
ϕ(x)

∫ x

a

ψ(z)g(z)m′(z)dz + ψ(x)

∫ b

x

ϕ(z)g(z)m′(z)dz
)
.

(2.15)
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2.1 Properties of the state process

Here w is the Wronskian (with the value independent of x)

w = ψ′(x)
ϕ(x)

s′(x)
− ϕ′(x)

ψ(x)

s′(x)
> 0,

and ϕ, ψ are decreasing and increasing fundamental solutions of

LXu(x) = λu(x),

with boundary conditions depending on the boundary behaviour of X . We will further explain
how to use this formula in Chapter 3.

2.1.3 Convergence of stopping times

In this subsection, we come back to the multi-dimensional case. We show that the first en-
try/hitting time of the state process to suitable sets are continuous with respect to the starting
point of the process. Similar results can be found in many textbooks, e.g., [48, p. 32-40],
[17, Ch. 1], however, it is convenient to gather them here to provide a direct reference for later
applications.

In finite horizon optimal stopping problems (as the situation in Chapter 4) we work with
the process (t + s,Xs)s≥0 on the state space Õ, where X is the time-homogeneous diffusion
in (2.2) and

Õ := [0, T ]×O,

T ∈ R+ is some fixed constant. In infinite horizon problems where the state variable is only
X (as the situation in Chapter 3), the following arguments can be repeated step by step and the
main results still hold with obvious changes.

Let K be a closed subset of Õ, i.e., K ∩ Õ = K. Let σK be the first hitting time to K and
σ̊K be the first entry time to the interior of K, that is, for (t,x) ∈ Õ, Px-a.s.

σK := inf{s > 0 : (t+ s,Xs) ∈ K} ∧ (T − t),

σ̊K := inf{s ≥ 0 : (t+ s,Xs) ∈ int(K)} ∧ (T − t).
(2.16)

Both σK and σ̊K are stopping times with respect to Fs. It is immediate to see that

σK ≤ σ̊K, Px − a.s. (2.17)

We write σK(t,x) and σ̊K(t,x) to indicate the starting point of the process.
Denote by A the complement of K in int(Õ): A := Kc ∩ int(Õ) (which is an open set).

We make two assumptions which will be verified in each specific case in later chapters.
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2.1 Properties of the state process

Assumption 2.1.4 (Regularity). For (t0,x0) ∈ ∂K, we have

Pt0,x0(σK > 0) = Pt0,x0 (̊σK > 0) = 0. (2.18)

Assumption 2.1.5 (Continuity of the flow). For any sequence (xn)n≥1 := (x1,n, ..., xd,n) in O
converging to x := (x1, ..., xd) ∈ O as n→∞, it holds that

lim
n→+∞

sup
0≤t≤T

‖Xxn
t −Xx

t ‖ = 0, P− a.s, (2.19)

where ‖·‖ is the Euclidean norm.

Note that (2.18) means the boundary ofA is regular for the setK with respect to the process
(t,X). As discussed in the previous subsection, (2.18) holds for regular one dimensional
diffusions as a consequence of Lemma 2.1.3. In multi-dimensional case, whether (2.18) holds
or not depends on both the geometry of the boundary and the process itself. We will prove a
boundary surface is regular for a two dimensional diffusion process in Chapter 4 under suitable
conditions. A broader discussion on this topic can be found in [87, Ch. 4].

Lemma 2.1.6. Under Assumption 2.1.4, Pt,x(σK = σ̊K) = 1 for all (t,x) ∈ Õ.

Proof. The equality is trivial for (t,x) ∈ int(K). Take (t,x) in its complement, i.e., in A ∩
Õ. Since (2.17) holds, we only need to show that Pt,r,x(σK < σ̊K) = 0. Let us argue by
contradiction and assume that Pt,x(σK < σ̊K) > 0. There exists δ > 0 such that Pt,x(̊σK ≥
σK + δ) > 0. By the strong Markov property we get

Pt,x(̊σK ≥ σK + δ) =Et,x
[
Et,x

(
1{σK+σ̊K◦θσK≥σK+δ}

∣∣∣FσK)]
=Et,x

[
Pt+σK,XσK

(̊σK ≥ δ)
]

= 0,

where the last equality follows by observing that (t + σK,XσK) ∈ ∂A, Pt,x-a.s. by the conti-
nuity of the path, and Assumption 2.1.4.

Lemma 2.1.7. Let Õ 3 (tn,xn) → (t,x) ∈ Õ as n → ∞. Then under Assumption 2.1.5
P-a.s. it holds

lim sup
n→∞

σ̊K(tn,xn) ≤ σ̊K(t,x).

Proof. For simplicity, we denote σ̊n := σ̊K(tn,xn) and σ̊K := σ̊K(t,x). For P-a.e. ω ∈ Ω we
have by (2.19)

(tn + s,Xxn
s )(ω)→ (t+ s,Xx

s )(ω), s ∈ [0, T − t]. (2.20)
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2.1 Properties of the state process

Fix ω ∈ Ω in the set of P-full measure for which the above holds. If σ̊K(ω) = T − t then
the result is obvious because σ̊n(ω) ≤ T − tn. Assume σ̊K(ω) < T − t. Take any δ <

T − t such that σ̊K(ω) < δ. By the continuity of paths and the openness of int(K), there is
δ′ ∈ (̊σK(ω), δ) such that (t + δ′,Xx

δ′)(ω) ∈ int(K). From (2.20) and the openness of int(K),
(tn + δ′,Xxn

δ′ )(ω) ∈ int(K) for all sufficiently large n, so lim supn→∞ σ̊n(ω) ≤ δ′. As the
above argument holds for any δ > σ̊K(ω) and for a.e. ω ∈ Ω, we obtain the claim.

Lemma 2.1.8. Let Õ 3 (tn,xn) → (t,x) ∈ Õ as n → ∞. Then, under Assumptions 2.1.4
and 2.1.5,

lim inf
n→∞

σK(tn,xn) ≥ σK(t,x), P-a.s. (2.21)

Proof. For y, z ∈ Õ we denote by d(y, z) their Euclidean distance and by d(y, ∂A) =

inf{d(y, z) , z ∈ ∂A}. Denote σn := σK(tn,xn) and σK := σK(t,x). To simplify nota-
tion we also set

ζs := (t+ s,Xx
s ) and ζns := (tn + s,Xxn

s ).

Fix ω ∈ Ω in a set of full P-measure on which trajectories of ζ are continuous and the limit
(2.19) holds. If σK(ω) = 0 then (2.21) holds trivially. Otherwise, we must have (t,x) ∈ A by
Assumption 2.1.4, so d(ζ0(ω), ∂A) > 0 since A is open. For 0 < ε < d(ζ0(ω), ∂A), define

δε = inf{s ∈ [0, T − t] : d(ζs(ω), ∂A) ≤ ε}.

Using the triangle inequality we get d(ζns (ω), ∂A)) + d(ζns (ω), ζs(ω)) > ε/2 for all s ∈ [0, δε].
Thanks to Assumption 2.1.5, d(ζns (ω), ζs(ω)) < ε/4 for all s ∈ [0, δε] and all sufficiently large
n, so d(ζns (ω), ∂A)) ≥ ε/4 for all s ∈ [0, δε] and all sufficiently large n. This gives

lim inf
n→∞

σn(ω) ≥ δε.

Using the continuity of t 7→ ζt(ω) and the fact that ζσK(ω) ∈ ∂A, we have limε→0 δε = σK(ω).
As this holds for a.e. ω ∈ Ω, the proof of (2.21) is complete.

Lemma 2.1.6, 2.1.7 and 2.1.8 imply the main result of this subsection

Proposition 2.1.9. Let Õ 3 (tn,xn)→ (t,x) ∈ Õ as n→∞. Then

lim
n→∞

σ̊K(tn,xn) = σ̊K(t,x), P− a.s.

lim
n→∞

σK(tn,xn) = σK(t,x), P− a.s.
(2.22)

12



2.2 Optimal stopping problems

Remark 2.1.10. The result in Proposition 2.1.9 means that for each (tn,xn) → (t,x), we
have σ̊K(tn,xn) → σ̊K(t,x), σK(tn,xn) → σK(t,x), P-a.s. One should note that the set of
full measure depends on the sequence chosen. The convergence is sometimes called “conti-
nuity” in later chapters. However, one should be careful that the first hitting time may be a.s.
discontinuous with respect to the starting point, as this is the case for Brownian motion (see
[118, Prop. 3.8]).

2.2 Optimal stopping problems

We now formulate an optimal stopping problem for diffusion processes and provide some
important results collected from the book of Peskir and Shiryaev [114]. We will elaborate on
free boundary methods in solving optimal stopping problems under the Markovian structure.
Notice that the processes and functions in the formulation are not as general as in [114], but
sufficient for the optimal stopping problems studied in later chapters.

An optimal stopping problem in infinite horizon has the following general form

V (x) := sup
0≤τ<∞

Ex [M(Xτ )] , (2.23)

where X = (X1
t , ..., X

d
t ) is a d dimensional diffusion on O ⊂ Rd driven by SDE (2.2), τ is a

(Ft)t≥0 stopping time. We assume that Ex [M(Xτ )] is well defined for every x and τ , and M
is continuous.

We also have the following finite horizon optimal stopping problem where the stopping
time is bounded by a constant

V (t,x) := sup
0≤τ≤T−t

Et,x [M(t+ τ,Xt+τ )] . (2.24)

In the main theorems below, we will only use the formulation (2.23) as the results also apply
to (2.24) if we consider the process Zt := (t,Xt), where Z has state space [0, T ]×O.

The function V is referred to as the value function, andM is referred to as the gain function
(we also call it payoff function in the context of option pricing). Let

C : = {x ∈ O : V (x) > M(x)}, (2.25)

D : = {x ∈ O : V (x) = M(x)}. (2.26)
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2.2 Optimal stopping problems

We call the set C the continuation set and its complement D the stopping set. In the case of
finite horizon, the corresponding continuation and stopping set are

C : = {(t,x) ∈ [0, T ]×O : V (t,x) > M(t,x)}, (2.27)

D : = {(t,x) ∈ [0, T ]×O : V (t,x) = M(t,x)}. (2.28)

For simplicity, throughout this section, we also assume that V is continuous. When the
underlying stochastic process is a diffusion and the gain function is (Lipschitz) continuous, we
can usually prove the value function is (Lipschitz) continuous. We will verify the continuity of
the value function in each specific case in later chapters. As a consequence of the continuity
of both V and M , the continuation set C is open and the stopping set D is closed.

Let
τD := inf{t ≥ 0 : Xt ∈ D}, (2.29)

be the first entry time of X into the set D, hence a stopping (Markov) time. We now discuss
the superharmonic property of the value function and the optimality of τD.

Definition 2.2.1 ([114, Ch. I, Definition 2.3]). A measurable function f : O 7→ R is a super-
harmonic function if for all bounded (Ft)t≥0 stopping times τ and all x ∈ O,

Ex [f(Xτ )] ≤ f(x).

Definition 2.2.2. For each x ∈ O, a (Ft)t≥0 stopping time τ is optimal for the problem (2.23)
if

V (x) = Ex [M(Xτ )] .

Theorem 2.2.3 ([114, Ch. I, Thm. 2.4]). Assume for every x ∈ O, there exists an optimal
stopping time τx∗ for problem (2.23), i.e.

V (x) = Ex

[
M(Xτx∗ )

]
.

Then the value function V is the smallest superharmonic function that dominates the gain
function M on O. Moreover, we have

(i) the stopping time τD defined in (2.29) satisfies τD ≤ τx∗ , Px − a.s., for every x ∈ O and
it is optimal for (2.23);

(ii) the stopped process (V (Xt∧τD))t≥0 is a continuous martingale under Px for every x ∈
O.

14



2.2 Optimal stopping problems

It is very often that we need to consider the following optimal stopping problem that con-
tains a running cost and a discounting factor:

Ṽ (x) := sup
0≤τ<∞

Ex

[∫ τ

0

e−ΛuH(Xu)du+ e−ΛτM(Xτ )

]
, (2.30)

where

Λu :=

∫ u

0

λ(Xs)ds, (2.31)

and H,λ are continuous functions. We now provide an analogue of Theorem 2.2.3 that applies
to problem (2.30).

Theorem 2.2.4. Assume for every x ∈ O, there exists an optimal stopping time τx∗ for problem
(2.30), i.e.

Ṽ (x) = Ex

[∫ τx∗

0

e−ΛuH(Xu)du+ e−Λτx∗M(Xτx∗ )

]
.

Then Ṽ is the smallest function that dominates M and such that the process

Yt :=

∫ t

0

e−ΛuH(Xu)du+ e−ΛtṼ (Xt)

is a supermartingale under Px. Moreover, we have

(i) the stopping time τD, where D := {x ∈ O : Ṽ (x) = M(x)}, satisfies τD ≤ τx∗ ,
Px − a.s., for every x ∈ O and it is optimal for (2.30).

(ii) the stopped process (Yt∧τD)t≥0 is a continuous martingale under Px for every x ∈ O.

While Theorems 2.2.3 and 2.2.4 summarise key properties of the value function and iden-
tify τD as the minimal optimal stopping time, we still need to justify the existence of an optimal
stopping time. The following corollary is a useful tool. In particular, it indicates that an optimal
stopping time always exists in finite horizon problems.

Corollary 2.2.5 ([114, Ch. I, Cor. 2.9]). For the infinite horizon problem (2.23), if for all
x ∈ O

Px(τD <∞) = 1,

then τD is optimal in (2.23). If Px(τD <∞) < 1, then there is no optimal stopping time.
For the finite horizon problem (2.24), the stopping time

τD := inf{s ≥ 0 : (t+ s,Xs) ∈ D} ∧ (T − t),

is optimal.
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2.3 The American put option with constant interest rate

An optimal stopping problem can be connected to a Partial Differential Equation. Consider
the following Dirichlet problem.

(LX − λ)U = −H, x ∈ C,

U = Ṽ = M, x ∈ ∂C,
(2.32)

where C is the continuation set of problem (2.30), H and λ are as defined in (2.30). If the
coefficients of X are sufficiently smooth, e.g. Hölder continuous, classical PDE results ([69,
Ch. 3], [75, Ch. 6]) give that, for any open ball K ⊂ C, the problem

(LX − λ)U = −H, x ∈ K,

U = Ṽ , x ∈ ∂K,
(2.33)

admits a unique solution U ∈ C2(K)∩C(K). Applying Itô ’s formula to U(X) stopped at τKc

and using the martingale property of the process Y in Theorem 2.2.4, one can show that U = Ṽ

on K (see the complete proof in Chapter 6 Lemma 6.3.2). As this holds for any K ⊂ C, we
can conclude that the value function Ṽ is the unique solution to (2.32) and Ṽ ∈ C2(C). This
fact characterises the value function in the continuation set. However, the PDE system (2.32)
is not sufficient to uniquely determine the optimal stopping boundary and the value function.
The so called smooth-fit principle should also hold, which means the value function should be
continuously differentiable at any point x0 ∈ ∂C:

lim
C3x→x0∈∂C

Ṽxi(x) = lim
D3x→x0∈∂C

Ṽxi(x) = lim
D3x→x0∈∂C

Mxi(x), i = 1, ..., d. (2.34)

The smooth fit condition plays a crucial role in uniquely determining the stopping boundary.
We will provide detailed proofs in later chapters. The smooth-fit condition (2.34) together with
the PDE system (2.32) form a free boundary problem, where the term “free” indicates that the
stopping boundary ∂C must be found as part of the solution.

This section just covers the fundamentals of an optimal stopping problem. More work is
needed to analyse the properties of the value function and characterise the optimal stopping
boundary as explicitly as possible. It turns out that methods for solving one and multidimen-
sional problems are significantly different. In the following part, we will use the well-known
American put option pricing problem to demonstrate the difference.

2.3 The American put option with constant interest rate

As the American option pricing problem under the classical Black and Scholes model is already
extensively studied in the literature, we only present the main results without giving proofs and
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2.3 The American put option with constant interest rate

focus on explaining the core ideas. An American put option written on an risky asset Xt struck
at K allows the buyer to exercise the option with payoff (K −Xt)

+ at any time before a given
maturity date T . We start with the perpetual American put option, i.e. the case when T = ∞.
Under the Black and Scholes model, the option price is defined by

P (x) := sup
0≤τ<∞

Ex

[
e−rτ

(
K −Xτ

)+
]
. (2.35)

Here X is a regular linear diffusion with state space R+ driven by the following SDE with
constant coefficients r, σ > 0,

dXt = rXtdt+ σXtdBt, X0 = x ∈ R+. (2.36)

This SDE admits an explicit solution given by

Xt = xe(r− 1
2
σ2)t+σBt , t ≥ 0. (2.37)

We proceed to solve problem (2.35) via the so-called “guess and verify” approach. Firstly,
it is evident that the option buyer should never exercise the option when Xt > K. Secondly, as
the stock price decreases below K, the payoff increases. However, because of the discounting
factor, the longer the buyer waits, the smaller the present value she finally obtains. It is then
reasonable to guess that the optimal strategy is to exercise the option at some level â < K.
Based on this guess, one conjectures the stopping set and continuation set of the form

D = {x ∈ R+ : P (x) = (K − x)+} = {x ∈ R+ : x ≤ â},

C = {x ∈ R+ : P (x) > (K − x)+} = {x ∈ R+ : x > â},

where â needs to be determined.
By Theorem 2.2.3, the corresponding optimal stopping time is the first entry time into set

D,
τ∗ = inf{t ≥ 0 : Xt ≤ â}. (2.38)

and the value function is given by

P (x) = Ex
[
e−rτ∗(K −Xτ∗)

+
]
.
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2.3 The American put option with constant interest rate

From the discussion around equations (2.32)-(2.34), we postulate that the value function P
should solve a free boundary problem. We need to identify a couple (U, a) solving

(LX − r)U(x) = 0, x > a,

(LX − r)U(x) ≤ 0, a.e. x ∈ R+,

U(x) ≥ (K − x)+, x ∈ R+

U(x) = (K − x)+, x ≤ a,

U ′(x) = −1, x = a.

(2.39)

The free boundary system (2.39) allows an explicit solution that reads

U(x) =


1
d
a1+dx−d, a ≤ x <∞,

K − x, 0 ≤ x ≤ a,
(2.40)

where d = 2r/σ2 and

a =
K

1 + 1
d

.

Notice that the first equation in (2.39) admits a fundamental solution of the form U(x) =

C1x
−d + C2x. As the value function P is bounded on R+, we can immediately deduce that

C2 = 0. The remaining equations in (2.39) are sufficient to determine C1 and a. The next step
is to verify that U in (2.40) is indeed the solution of the optimal stopping problem (2.35) and
â = a, which is done by the following verification theorem.

Theorem 2.3.1. The couple (U(x), a) uniquely solves the optimal stopping problem (2.35),
that is P (x) = U(x), â = a and τ∗ in (2.38) is the corresponding optimal stopping time.

Proof. see [114, Ch. VII, Thm. 25.1]

The key step of proving Theorem 2.3.1 is to apply Itô–Tanaka–Meyer formula to func-
tion U , then the optional sampling theorem and Fatou’s lemma to show that U = P . This
method only applies to one-dimensional problems and requires a simple enough gain function
whose properties can be easily analysed. Otherwise, it is difficult to guess the optimal stopping
boundary and further derive a candidate value function. This issue appears in Chapter 3.

For optimal stopping problems with one-dimensional diffusions, there is an efficient alter-
native method developed by Dayanik and Karatzas [37]. Based on the characteristics of linear
diffusions, they establish a direct relationship between the value function and the concave ma-
jorant of the gain function. In the context of the optimal stopping problem (2.35), let ϕ, ψ be
the decreasing and increasing fundamental solutions of

LXu(x)− ru(x) = 0,
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2.3 The American put option with constant interest rate

and F (x) := ψ(x)/ϕ(x). Then their results ([37, Proposition 4.2], [37, Proposition 4.3])
conclude that function P/ϕ is the smallest concave majorant of function

M̂(x) :=
(K − F−1(x))+

ϕ(F−1(x))
,

where F−1 is the inverse of F . The optimal stopping problem (2.35) is then reduced to a prob-
lem of finding a concave majorant of the function M̂ . This method, in general, is applicable
to any infinite horizon optimal stopping problem for one-dimensional diffusions. However, it
still requires the gain function to be simple enough after being transformed via function F . So
that its concave majorant can be derived. When the dimension of the state space of the prob-
lem is greater or equal than two, the stopping boundary is no longer constant and an explicit
candidate solution is no longer available. As a result, neither the “guess and verify” nor the
concave majorant characterisation in [37] are applicable.

We now move to the American put option with finite maturity T <∞. In the Black-Scholes
model, the option’s arbitrage free price at time t < T is given by

P (t, x) := sup
0≤τ≤T−t

Ex

[
e−rτ

(
K −Xτ

)+
]
, (2.41)

where K is the strike, X is the underlying stock price following Geometric Brownian motion
as in (2.36). Note that we still consider X starting at X0 = x in (2.41) because the discounted
payoff function is time-homogeneous. As Theorem 2.2.3 still applies, we have

C = {(t, x) ∈ [0, T ]× R+ : P (t, x) > (K − x)+},

D = {(t, x) ∈ [0, T ]× R+ : P (t, x) = (K − x)+},

and τ∗ = inf{s ≥ 0, (t+s,Xs) ∈ D} is the optimal stopping time. It is evident that τ∗ ≤ T − t
as P (T, x) = (K − x)+.

We summarize the results of this problem in the theorem below.

Theorem 2.3.2. The following results hold for the optimal stopping problem (2.41).

(i) P (t, x) is non increasing and convex in x, and continuous on [0, T ]× R+.

(ii) There exists a function b : [0, T ] 7→ (0, K] such that

C = {(t, x) ∈ [0, T ]× R+ : x > b(t)}, (2.42)

D = {(t, x) ∈ [0, T ]× R+ : x ≤ b(t)}. (2.43)
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2.3 The American put option with constant interest rate

(iii) b(t) is continuous, non-decreasing and limt↑T b(t) = K.

(iv) P (t, x) satisfies the spatial smooth fit condition at b(t):

lim
x↓b(t)

Px(t, x) = lim
x↑b(t)

∂x(K − x)+ = −1

(v) The value function P solves following free boundary problem:

P (t, x) ∈ C1,2(C) ∩ C1,2(D),

Pt(t, x) + (LX − r)P (t, x) ≤ 0, a.e. (t, x) ∈ [0, T ]× R+,

lim
x↓b(t)

Px(t, x) = −1,

P (t, x) = (K − x)+, (t, x) ∈ D,
P (t, x) ≥ (K − x)+, (t, x) ∈ [0, T ]× R+.

(2.44)

(vi) P (t, x) admits the so-called early exercise premium representation:

P (t, x) = rK

∫ T−t

0

e−ruPx (Xu < b(t+ u)) du+ Ex
[
e−r(T−t)(K −XT−t)

+
]
,

(2.45)

(vii) The stopping boundary b(t) is the unique solution of the following non-linear integral
equation in the class of continuous functions,

K − b(t)

= rK

∫ T−t

0

e−ruPb(t) (Xu < b(t+ u)) du+ Eb(t)
[
e−r(T−t)(K −XT−t)

+
]
.

(2.46)

Proof. see [114, Ch. VII, p. 379 - 392]

Contrary to the perpetual option case where we formulate the free boundary problem (2.39)
directly as a guess, in the finite maturity case, we must show that the value function and
the stopping boundary solve (2.44) from first principles. To achieve this, we first prove the
monotonicity and the continuity of P . Using the monotonicity of P in x, we can show that
(t, x1) ∈ C =⇒ (t, x2) ∈ C for any x1 < x2 and each t. As a consequence, we can param-
eterise the stopping boundary b as a function of time and characterise the stopping region as
in (2.43). After showing the spatial smooth fit holds at b (also see [80] and subsequent works
for the proof), the associated free boundary problem (2.44) can be established using the argu-
ments in the previous section. The early exercise representation (2.45) is obtained by applying
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2.3 The American put option with constant interest rate

a change of variable formula developed in Peskir [110] to the value function P . To further
analyse the stopping boundary b, we first prove its continuity and then derive the associated
integral equation (2.46) by letting x = b in (2.45). Once we justify the uniqueness of the solu-
tion to the integral equation (2.46), various numerical schemes are available to compute b. In
Chapter 4, we will adopt similar procedures but use more sophisticated probabilistic methods
to study the pricing problem under the stochastic interest rate model.

2.3.1 Delta hedging for American put options

It is worth mentioning that, in the Black and Scholes model, we can derive the hedging port-
folio for the American put option using the dynamics of the discounted option’s value. Letting
t = 0 and applying the change of variable formula [110, Thm. 3.1] to P (s,Xs), we have

de−rsP (s,Xs) = −e−rsrK1{Xs<b(s)}ds+ e−rsσXsPx(s,Xs)dBs. (2.47)

The option seller can perfectly hedge her position by continuously trading a self-financing
portfolio Πs with Π0 = P (0, x), and for s ∈ [0, T ]

Πs = Π0 +

∫ s

0

φ(1)
u dXu +

∫ s

0

φ(2)
u dξu − Cs,

where ξ is a risk-free money market account with dynamics

dξt = rξtdt, ξ0 = 1,

φ(1), φ(2) are the stock and money market account holding, C is a continuous non-decreasing
process that models consumption. The discounted portfolio dynamics reads

de−rsΠs = e−rsφ(1)
s σXsdBs − e−rsdCs. (2.48)

Comparing (2.48) and (2.47), we derive the stock holding and the consumption that replicate
the option’s payoff

φ(1)
s = Px(s,Xs), Cs =

∫ s

0

rK1{Xu<b(u)}du. (2.49)

Note that the hedging strategy is admissible as it can be shown that φ(1) = Px is bounded
between −1 and 0 ([114, p. 382]). We need consumption C in the hedging portfolio as the
discounted option value is a super-martingale. As indicated in [129, Ch. 8.3], the finance
intuition is that as long as the option buyer does not exercise her right when the stock price

21



2.3 The American put option with constant interest rate

is below the exercise boundary b(s), the seller’s portfolio always has value K −Xs, as Πs =

P (s,Xs) = K − Xs when Xs ≤ b(s). Then the seller can hold amount K in her money
market account and consume the interest rate. As the first derivative of the option value with
respect to the stock price is called Delta in the Black and Scholes model, the corresponding
hedging strategy in (2.49) is referred to as Delta hedging. In Chapter 3, we will illustrate the
Delta hedging strategy for the perpetual American put option. In Chapter 4, we will see how
the Delta hedging strategy changes under the stochastic interest rate model.

22



Chapter 3

Optimal hedging of a perpetual American
put with a single trade

3.1 Introduction
1In this chapter, we analyse an optimal hedging problem for the seller of a perpetual American
put option in a Black and Scholes market. We assume the following scenario. An option seller
sells a perpetual American put option and constructs a portfolio to hedge her position. The
portfolio consists of the underlying stock and a risk-free bond. Unlike the situation in the
Black and Scholes model where continuous trading is allowed, our option seller can rebalance
her hedging portfolio only once until the underlying stock price leaves a predetermined interval
(a, b) with 0 < a < b < +∞. Our goal is to develop a hedging strategy that minimises the
variance of the hedging error at the random time when the stock leaves (a, b). This involves
determining the stock holding before and after rebalancing the hedging portfolio and the time
at which the portfolio is rebalanced.

Continuous trading as prescribed by the classical delta-hedging strategy in the Black and
Scholes model is not viable due to various reasons, e.g. transaction cost. The question of re-
balancing portfolios with a limited number of trades has a long history and has been addressed
in various ways. In academia, an extensively studied approach is to develop hedging strategies
in discrete time models. Work in this area includes [66], [20], [21], [127], [105]. Another
approach is to incorporate a certain form of transaction cost and solve a singular stochastic
control problem to maximise utility. In this case, the trader only rebalances in the so-called ac-

1The results from this chapter form part of the article [28], which was published in SIAM Journal on Financial
Mathematics.
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3.1 Introduction

tion region. Important work of this kind includes [95], [36], [136]. Our setting is more similar
to [99] and [131], where the model is set up in continuous time but the trader is only allowed
to trade a given number of times. Practitioners have adopted a broad range of simple rules for
their rebalancing strategies, e.g., rebalancing at fixed times or rebalancing at fixed values of the
underlying asset’s price (see, e.g., [130]). The latter strategy, in particular, inspired our work:
we determine optimal values of the asset price at which a trade should be made and also an
optimal trade.

Of course, it would be desirable to extend our setting to allow the trader multiple trades
(not just one), as in, e.g., [99], [132] and [131], but such an extension inevitably leads to more
abstract results than ours. Indeed, the above papers aim for a general setup and obtain mostly
results on the existence of optimal strategies (via viscosity theory, in [99], and martingale
methods, in [132]). These results do not allow to determine analytically shapes of the trading
regions and to compute efficiently trading strategies. If rebalancing once in the entire lifetime
of the option is certainly too restrictive, our assumption of rebalancing once prior to the stock
price leaving a given interval (a, b) improves on real-life strategies, where traders set target
values of the stock price at which they reassess their position (our a and b). Considering a
perpetual option is convenient because it guarantees that the problem is time-homogeneous
and allows for explicit calculations. This is also a reasonable approximation for options far
from their maturity.

Using the variance of the tracking error as the optimisation criterion is a natural choice
in our setting, as we will show that the mean of the tracking error is zero. The variance, or
second moment, has been widely used as a minimisation target in the optimal hedging litera-
ture. From a mathematical point of view, it motivated important work on the approximation
of stochastic integrals. Since the variance of the tracking error for the hedging portfolio is an
L2-distance for stochastic processes, its minimisation is referred to as quadratic hedging. The
foundations of quadratic hedging for claims in incomplete markets were laid in the seminal
work by Föllmer and Schweizer [67]. As we mentioned earlier, developing hedging strate-
gies in discrete time models is one approach to avoid unrealistic continuous trading. In the
context of quadratic hedging, this involves approximation of random variables (representing
European claims at maturity) via stochastic integrals for discrete-time processes. The work of
Schweizer [127], Schäl [126] and Mercurio and Vorst [105] falls into this category. Although
we employ a similar optimisation criterion as in those papers, our work is built on the contin-
uous time Black and Scholes model, and we only limit the number of trades. More recently in
the mathematical literature we find numerous papers concerning the asymptotic optimality of
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3.1 Introduction

discrete-time hedging strategies as the number of hedging opportunities tends to infinity (see,
e.g., Fukasawa [71], Gobet and Landon [76], Rosenbaum and Tankov [120], Cai et al. [29]).
Those papers also approach the problem by approximating random variables with stochastic
integrals for discrete-time processes. Finally, Ekren, Liu and Muhle-Karbe [52] study optimal
hedging frequency in the asymptotic limit of small transaction costs for portfolio with multiple
assets. The methodology and the nature of the results in those papers are rather far from our
work.

In the finance literature we find work by Ahn and Wilmott [1], who illustrate numerically
the performance of various hedging strategies with finitely many hedging opportunities. They
numerically solve systems of PDEs for the mean and variance of the hedging portfolio with
the condition of minimising the variance at each rebalancing time. Given a fixed number of
rebalancing opportunities, they compare the performance of the strategy that rebalances at fixed
time intervals and the strategy that rebalances at optimised time intervals (the rebalancing times
become new variables in the model). Their results show that the variance reduction from the
optimised strategy is more pronounced for small numbers of rebalancing chances. In Section
3.7, we compare our optimal hedging strategy with other naive strategies. Our results show
that, given only one rebalancing chance, the strategy with the optimised rebalancing time can
significantly reduce the variance, which is consistent with Ahn and Wilmott’s finding.

Boyle and Emanuel [20] study the distribution of portfolio returns with discrete hedging.
Maštinsek [100] studies the error in piecewise constant hedging strategies as a function of the
time interval δt between trades in the presence of transaction costs. Mello and Neuhaus [102]
research the accumulated hedging error due to discrete rebalancing, extending the work by
Figlewski [63] to imperfect markets. The idea of allowing hedging at the time when fixed
relative changes in the stock price occur is explored in [116], where the price dynamic (in an
incomplete market) is a marked point process.

Finally, it is worth noticing that optimal multiple stopping has been studied in the context
of pricing of swing options in the energy market (see, e.g., Lempa [97] for a survey). In partic-
ular, optimal boundaries for options with a put payoff are studied analytically in Carmona and
Touzi [32] and Carmona and Dayanik [31] in infinite horizon, and De Angelis and Kitapbayev
[41] in finite horizon ([32] also consider finite horizon but only numerically). In models of op-
timal multiple stopping there is normally a minimum time-lag between subsequent admissible
stopping times. That is imposed as a constraint on the set of admissible stopping sequences
and guarantees that simultaneous use of all the stopping opportunities cannot occur. In the
case of discrete hedging, there is no need for such constraint: simultaneous use of all stopping
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3.2 Problem formulation and background material

times never occurs because, at each stopping time, the portfolio weights are adjusted and there-
fore each subsequent stopping problem is of a different nature. Moreover, the optimisation of
the portfolio weights leads to extremely convoluted analytical expressions for the subsequent
stopping problems, so that the resulting optimal multiple stopping problem is much harder to
tackle than those in [31], [32] and [41].

This chapter is organised as follows. In Section 3.2 we set the hedging problem in a rigor-
ous mathematical framework. In Section 3.3 we study the hedging problem for a fixed value
of the initial stock holding. We prove continuity and differentiability of the value function
with respect to the initial stock price (Theorem 3.3.11). We determine the existence of optimal
trading boundaries (Proposition 3.3.10) and we prove that the value function solves a suit-
able variational problem (Theorem 3.3.13). In Section 3.4 we prove that the optimal trading
boundaries are continuous monotonic functions of the initial stock holding (Theorems 3.4.3
and 3.4.4). Section 3.5 gives necessary first order condition which enable computation of an
optimal initial stock holding. The study is complemented with an extensive numerical analysis
of the properties of the optimal hedging strategies and of the corresponding hedging error.

3.2 Problem formulation and background material

Consider a Black-Scholes economy on a complete probability space (Ω,F ,P) with risk neutral
measure P. We have one risky stock X and a risk-free bond ξ, following the dynamics

dXt = rXtdt+ σXtdBt, X0 = x, (3.1)

dξt = rξtdt, ξ0 = 1, (3.2)

where B = (Bt)t≥0 is a Brownian motion, r > 0 is the risk-free rate and σ > 0 is the
stock’s volatility. Let F := (Ft)t≥0 be the natural filtration generated by B satisfying the usual
conditions.

An option trader sells one perpetual American put option written on the stock X with the
strike price K. Such option gives its holder the right but not the obligation to sell one share
of the stock X for the price K at any (random) time τ ∈ [0,∞]. It is well-known that, if the
initial stock price is x, the arbitrage-free price P (x) of the option is given by

P (x) = sup
τ

E
[
e−rτ (K −Xx

τ )+
]
, (3.3)
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3.2 Problem formulation and background material

where the supremum is taken over all F-Markov times τ and the payoff is defined as 0 when
τ =∞. The explicit form of P (x) is given by (see Chapter 2 2.3)

P (x) =


1
d
â1+dx−d, â ≤ x <∞,

K − x, 0 ≤ x ≤ â,
(3.4)

where d := 2r/σ2 and

â :=
K

1 + 1
d

(3.5)

is the exercise boundary; that is, the holder exercises the option optimally according to the
stopping rule

τâ := inf{t ≥ 0 : Xt ≤ â}. (3.6)

By a straightforward application of Itô-Tanaka’s formula we can derive the dynamics of
the discounted option price, that is

d(e−rtP (Xt)) = −e−rtrK1{Xt<â}dt+ e−rtσXtP
′(Xt)dBt, (3.7)

where 1{·} denotes the indicator function. It is immediate to verify that

t 7→ e−rtP (Xt) is a supermartingale and t 7→ e−r(t∧τâ)P (Xt∧τâ) is a martingale.

According to classical theory the seller of the option should use Delta hedging to construct
a replicating portfolio for the perpetual American put. The Delta of the option corresponds to
the first derivative

P ′(x) = max{−(â/x)1+d,−1},

which is an increasing function taking values in [−1, 0) and is strictly increasing on (â,∞).
Notice that the Delta appears in the stochastic integral of (3.7). This highlights that, under
the classical Black-Scholes model, if the option holder does not exercise the option at τâ, the
option seller gains instantaneous interests rK with her short position perfectly hedged.

In our problem formulation, we tacitly assume that the option holder exercises the option
optimally, hence as soon as Xt falls below â.

Our trader faces the following hedging scenario: after selling the option, she constructs a
self-financing (hedging) portfolio Π = (Πt)t≥0 with bond holding (mt)t≥0 and stock holding
(θt)t≥0, that is

Πt = θtX
x
t +mtξt, t ≥ 0;
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3.2 Problem formulation and background material

at time t = 0, she chooses an initial stock holding θ0 = h and bond holding m0 = P (x)− hx.
However, in contrast to the classical Delta hedging model, the seller is allowed to rebalance her
portfolio only once at a (stopping) time τ of her choosing before the stock price leaves a given
interval (a, b). Her goal is to find an admissible trading strategy (in a sense which will be made
precise in Definition 3.2.1) so that the variance of the tracking error is minimised (this will also
be clarified in a moment). The thresholds a, b can be interpreted as re-assessment price levels
set by the option seller. From a practical point of view, the option seller will choose those
levels on the grounds of subjective propensity to risk and operational/regulatory constraints.

Since we are assuming that the option holder exercises the option according to the stopping
rule (3.6), it is natural to only allow a ≥ â. We also assume that b <∞ and define I := (a, b)

and I := [a, b]. The (random) time horizon of our problem is given by

τxI := inf{t ≥ 0 : Xx
t /∈ I}.

Note that the first exit time from I should be denoted by τxIc following the definition in Chapter
2, but we will use τxI in this chapter for convenience. Other stopping time notations will still
follow the definitions in Chapter 2 unless specified. We often omit the superscript x if it
does not lead to ambiguity. For mathematical completeness the case of b = ∞ is discussed
separately in Section 3.6 as it presents some specific technical features.

In order to formally define admissible trading strategies, we need to introduce some nota-
tion. Given an initial stock price X0 = x ∈ I, we let

Tx := {τ : τ is a F-stopping time such that τ ≤ τxI , P-a.s.}

and for any τ ∈ Tx we define

Hτ := {h1 : Ω→ R : h1 is Fτ -measurable and E
[
(h1)2

]
<∞}. (3.8)

Since the seller’s optimisation problem ends at the time when the price process leaves the
interval I, it is natural to consider an initial stock holding θ0 which lies in the set

H := [P ′(a), P ′(b)],

where it is worth recalling that P ′(x) = −(â/x)1+d for x ≥ â.

Definition 3.2.1 (Trading strategy). For an initial stock priceX0 = x ∈ I, the set of admissible
trading strategies Ax consists of pairs (τ, θ), such that τ ∈ Tx and

θt :=

h, 0 ≤ t ≤ τ,

h1, τ < t ≤ τxI ,

where h ∈ H is the initial stock holding and h1 ∈ Hτ is the new stock holding after the trade.
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Given a trading strategy (τ, θ) ∈ Ax, the trader’s self-financing, hedging portfolio follows
the dynamics

dΠτ,θ
t = θtdXx

t +mtdξt, Πτ,θ
0 = hx+m0 = P (x). (3.9)

Then, combining (3.9) with (3.1)–(3.2), it is easy to verify that the discounted portfolio process
t 7→ e−rtΠτ,θ

t is a local martingale with the dynamics

d(e−rtΠτ,θ
t ) = θtd(e−rtXx

t ) = e−rtθtσX
x
t dBt. (3.10)

Finally, we can formulate the optimisation problem for the option seller. As mentioned
above, the seller wants to minimise the variance of the tracking error (i.e., the difference be-
tween the hedging portfolio and the option price) at the terminal time τI . It is worth remarking
that the choice of the variance is natural since the mean of the tracking error is completely
uninformative. Indeed

Ex
[
e−rτI

(
Πτ,θ
τI
− P (XτI)

)]
= 0 (3.11)

thanks to the optional sampling theorem, upon recalling that on the stochastic interval [0, τI ]

the price process X is bounded and (θt)t≥0 is a square integrable process (cf. (3.8)). Then,
given an initial price X0 = x we are interested in the problem

V(x) = inf
(τ,θ)∈Ax

Varx
[
e−rτI

(
Πτ,θ
τI
− P (XτI)

)]
(3.12)

= inf
(τ,θ)∈Ax

Ex
[
e−2rτI

(
Πτ,θ
τI
− P (XτI)

)2
]
,

where we use the notation Varx[ · ] = Var[ · |X0 = x] and the second equality follows from
(3.11).

Remark 3.2.2. It is assumed above that the option is sold for the price P (x) and the seller
invests the proceeds in the hedging portfolio, i.e., Πτ,θ

0 = P (x). However, the seller aware of
her trading constraints may sell the option at a premium over the Black-Scholes price, i.e., for
P (x) + δ with δ > 0. Denoting by (Πτ,θ;δ

t )t≥0 the associated hedging portfolio, for any trading
strategy (τ, θ) ∈ Ax it follows from (3.9) and (3.10) that Πτ,θ;δ

t = ertδ+ Πτ,θ
t for all t ≥ 0. The

mean tracking error equals (c.f. (3.11))

Ex
[
e−rτI

(
Πτ,θ;δ
τI
− P (XτI)

)]
= δ
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and consequently

inf
(τ,θ)∈Ax

Varx
[
e−rτI

(
Πτ,θ;δ
τI
− P (XτI)

)]
= inf

(τ,θ)∈Ax
Varx

[
e−rτI

(
Πτ,θ
τI
− P (XτI)

)
+ δ
]

= inf
(τ,θ)∈Ax

Ex
[
e−2rτI

(
Πτ,θ
τI
− P (XτI)

)2
]

= V(x).

Hence the problem simplifies to the one studied in this chapter.

One may argue that if all sellers on the market charge a premium on the Black-Scholes
price, then the tracking error should be computed accounting for such premium too. As shown
in the next remark, if we assume a multiplicative premium we can embed these models in our
set-up.

Remark 3.2.3. Due to trading frictions on real markets, the selling price of the option may
be higher than the theoretical Black-Scholes price. Assuming a multiplicative adjustment, the
option’s selling price is P (x)(1 + ε), where ε ≥ 0, and we denote by (Πτ,θ;ε

t )t≥0 the associated
hedging portfolio. The trader receives P (x)(1 + ε) at time 0 and tracks the selling price
P (Xt)(1 + ε) (so that she can close the position at time τI). In view of (3.11), the mean
tracking error is

Ex
[
e−rτI

(
Πτ,θ;ε
τI
− P (XτI)(1 + ε)

)]
= (1 + ε)Ex

[
e−rτI

(
Πτ,θ′

τI
− P (XτI)

)]
= 0,

where θ′t = θt/(1 + ε), t ≥ 0, is used along with (3.10) to obtain e−rtΠτ,θ;ε
t = (1 + ε)e−rtΠτ,θ′

t .
Therefore,

inf
(τ,θ)∈Ax

Varx
[
e−rτI

(
Πτ,θ;ε
τI
− P (XτI)(1 + ε)

)]
= (1 + ε)2 inf

(τ,θ)∈Ax
Varx

[
e−rτI

(
Πτ,θ
τI
− P (XτI)

)]
= (1 + ε)2V(x),

and the optimisation problem simplifies to the one studied in this chapter.

Using the integral forms of the dynamics (3.10) and (3.7) and Itô’s isometry we obtain a
more convenient problem formulation:

V(x) = inf
(τ,θ)∈Ax

Ex

[(∫ τI

0

e−ru(θu − P ′(Xu))σXudBu

)2
]

(3.13)

= inf
(τ,θ)∈Ax

Ex

[∫ τI

0

e−2ruf(Xu, θu)du
]
,

where
f(x, θ) := (θ − P ′(x))2σ2x2. (3.14)
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3.2 Problem formulation and background material

The final expression in (3.13) highlights the well-known fact that Delta hedging amounts to
controlling the difference between θt and P ′(Xt). In the absence of trading constraints the op-
timal trading strategy would be the Black-Scholes strategy θt = P ′(Xt), which would produce
no tracking error with certainty, i.e. V(x) = 0.

Notice that we can rewrite our problem as

V(x) = inf
h∈H

V (x, h), (3.15)

where

V (x, h) := inf
(τ,h1)∈Tx×Hτ

Ex

[∫ τ

0

e−2ruf(Xu, h)du+

∫ τI

τ

e−2ruf(Xu, h1)du
]
. (3.16)

In light of this observation we will first proceed with a detailed analysis of the function V (x, h)

and subsequently we will determine V(x). By doing this, we will also obtain an optimal control
(τ∗, θ

∗).
We close this section recalling some useful facts and some notation. The infinitesimal

generator of the process X is denoted by L, and defined by its action on functions v ∈ C2(R+)

as follows:
Lv(x) := σ2

2
x2∂xxv(x) + rx∂xv(x).

Recalling that d = 2r/σ2 we have that

q1 =
1− d+

√
(1− d)2 + 8d

2
> 0, q2 =

1− d−
√

(1− d)2 + 8d

2
< 0, (3.17)

are the roots of
q2 + (d− 1)q − 2d = 0.

To utilise the formulae of linear diffusion X in Chapter 2, we will need the functions ϕ and
ψ defined, respectively, as the unique (up to multiplication) decreasing and increasing funda-
mental solutions of the ODE

(L − 2r)v(x) = 0, x ∈ (a, b). (3.18)

As our process X is absorbed at boundary a, b, the boundary points are classified as exit-not-
entrance, hence ψ, ϕ satisfy boundary conditions (see [18, Ch. II])

ψ(a+) = 0, ψ′(a+) > 0, ϕ(b−) = 0, ϕ′(b−) < 0. (3.19)
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3.3 A one dimensional optimal stopping problem

The fundamental solutions are conveniently constructed as linear combinations of ϕ̂(x) := xq2

and ψ̂(x) := xq1 by taking (see, e.g., [3])

ϕ(x) = ϕ̂(x)− ϕ̂(b)

ψ̂(b)
ψ̂(x) and ψ(x) = ψ̂(x)− ψ̂(a)

ϕ̂(a)
ϕ̂(x). (3.20)

Finally, usingϕ andψ, recall the analytical expression of the resolvent for a one-dimensional
diffusion that we stated in (2.15). For the problem in this chapter, we have for any x ∈ I, and
any bounded measurable function g : I → R

Ex

[∫ τI

0

e−2rug(Xu)du
]

= w−1

(
ϕ(x)

∫ x

a

ψ(z)g(z)m′(z)dz + ψ(x)

∫ b

x

ϕ(z)g(z)m′(z)dz
)
,

(3.21)

where w is the Wronskian (with the value independent of x)

w = ψ′(x)
ϕ(x)

s′(x)
− ϕ′(x)

ψ(x)

s′(x)
> 0,

and s′(x) andm′(x) are the densities of the scale function and of the speed measure of (Xt)t≥0,
respectively. They are explicitly given by

s′(x) = c x−d and m′(x) = 2xd−2/c σ2, (3.22)

where c > 0 is the same constant in both expressions (s′ and m′ are uniquely defined up to
multiplication). For future reference, we notice that the Wronskian w can be also expressed
in terms of the Wronskian ŵ associated to ϕ̂ and ψ̂. In particular, it is not hard to check that
(recall that q2 < 0 < q1)

w = ŵ
(
1− (a/b)q1−q2

)
, (3.23)

where

ŵ := ψ̂′(x)
ϕ̂(x)

s′(x)
− ϕ̂′(x)

ψ̂(x)

s′(x)

This observation will be useful when we later consider fundamental solutions of (3.18) on
intervals I ′ 6= I.

3.3 A one dimensional optimal stopping problem

In this section, we study problem (3.16) for each fixed initial stock holding h ∈ H. First we
find the optimal stock holding h1 and reduce (3.16) to a standard one dimensional optimal
stopping problem, then we solve the optimal stopping problem via associated free boundary
problems.
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3.3 A one dimensional optimal stopping problem

3.3.1 Reduction to a Markovian optimal stopping problem

The first task is to show that it is sufficient to draw h1 ∈ Hτ from the class of Markovian
controls. To this end, we introduce the set of Markovian controlsHτ

m defined as

Hτ
m := {h1 ∈ Hτ : h1 = `(Xτ ) for some measurable ` : I → R}.

Consider an analogue of problem (3.16) but with the constraint of using Markovian controls
and denote its value by

Ṽ (x, h) := inf
(τ,h1)∈Tx×Hτm

Ex

[∫ τ

0

e−2ruf(Xu, h)du+

∫ τI

τ

e−2ruf(Xu, h1)du
]
. (3.24)

Next we show the equivalence of (3.16) and (3.24).

Proposition 3.3.1. For all (x, h) ∈ I ×H we have Ṽ (x, h) = V (x, h).

Proof. Since h1 is Fτ measurable, expanding the square in (3.14) and using the tower property
of conditional expectation, we can write (3.16) as

V (x, h) = inf
(τ,h1)∈Tx×Hτ

Ex

[ ∫ τ

0

e−2ruf(Xu, h)du+ h2
1Ex

(∫ τI

τ

e−2ruσ2X2
udu
∣∣∣Fτ) (3.25)

− 2h1Ex

(∫ τI

τ

e−2ruP ′(Xu)σ
2X2

udu
∣∣∣Fτ)

+ Ex

(∫ τI

τ

e−2ru(P ′(Xu))
2σ2X2

udu
∣∣∣Fτ)].

Notice that for any trading time τ , the expression under the expectation Ex is quadratic in h1.
Then the optimal stock holding h∗1 is

h∗1 =
Ex
(∫ τI

τ
e−2ruP ′(Xu)σ

2X2
udu
∣∣∣Fτ)

Ex
(∫ τI

τ
e−2ruσ2X2

udu
∣∣∣Fτ) =

EXτ
[∫ τI

0
e−2ruP ′(Xu)σ

2X2
udu
]

EXτ
[∫ τI

0
e−2ruσ2X2

udu
] , (3.26)

where the final equality follows from the strong Markov property of the process X . Therefore,
the optimal stock holding h∗1 is a measurable function of the stock price Xτ at time τ . Hence
it suffices to consider problem (3.24) instead of (3.16). Notice that a similar result was also
obtained by [99].

Thanks to Proposition 3.3.1, we can apply the strong Markov property of (Xt)t≥0 to trans-
form (3.16) into a canonical impulse control form:

V (x, h) = inf
(τ,h1)∈Tx×Hτm

Ex

[∫ τ

0

e−2ruf(Xu, h)du+ e−2rτM̂(Xτ , h1)

]
, (3.27)
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3.3 A one dimensional optimal stopping problem

Figure 3.1: Plots of the functions Γ(x) and P ′(x) using parameters r = 3%, σ = 30%,
K = 100 and b = 150. Notice that a = K/(1 + d−1) = 40.

where
M̂(x, ζ) := Ex

[∫ τI

0

e−2ruf(Xu, ζ)du
]
, ζ ∈ R, x ∈ I. (3.28)

Expanding the square in f yields the following representation for M̂

M̂(x, ζ) = ζ2γ1(x)− 2ζγ2(x) + γ3(x), (3.29)

where

γ1(x) = Ex

[∫ τI

0

e−2ruσ2X2
udu
]
, γ2(x) = Ex

[∫ τI

0

e−2ruP ′(Xu)σ
2X2

udu
]
,

γ3(x) = Ex

[∫ τI

0

e−2ru(P ′(Xu))
2σ2X2

udu
]
.

(3.30)

Direct calculations, using (3.21), lead to explicit formulae for γi, i = 1, 2, 3,

γ1(x) = −x2 + A1D2x
q1 + A2D1x

q2 , (3.31)

γ2(x) = −1

d
â1+dx1−d + A1C2x

q1 + A2C1x
q2 , (3.32)

γ3(x) = − 1

d2
â2+2dx−2d + A1B2x

q1 + A2B1x
q2 , (3.33)

where, using q1 and q2 given in (3.17),

Ai := [aqi−q3−i − bqi−q3−i ]−1, Bi := d−2
(
(â/a)2+2da2−qi − (â/b)2+2db2−qi

)
,

Ci := d−1
(
(â/a)1+da2−qi − (â/b)1+db2−qi

)
, Di := (a2−qi − b2−qi).
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3.3 A one dimensional optimal stopping problem

The expression (3.26) in the proof of Proposition 3.3.1 implies that the optimal stock hold-
ing after the rebalancing of the portfolio is a measurable function of the stock price at the
rebalancing time. It is a minimiser of ζ 7→ M̂(x, ζ) which, thanks to the representation (3.29),
is unique and given by

Γ(x) = arg min
ζ

M̂(x, ζ) =
γ2(x)

γ1(x)
, x ∈ I. (3.34)

Notice that the optimal stock holding Γ is defined only on I. If the trader trades at τI , her
choice of the stock holding becomes irrelevant for the optimisation problem.

Denoting

M(x) := M̂(x,Γ(x)) for x ∈ I, and M(a) = M(b) = 0, (3.35)

V (x, h) can be represented as

V (x, h) = inf
τ∈Tx

Ex

[∫ τ

0

e−2ruf(Xu, h)du+ e−2rτM(Xτ )

]
. (3.36)

While (3.36) defines a standard optimal stopping problem, the explicit expression of M is
extremely convoluted and makes the analysis of our problem very challenging. Indeed, it
immediately follows from (3.29) and (3.34) that

M(x) = −γ
2
2(x)

γ1(x)
+ γ3(x), x ∈ I. (3.37)

However, thanks to the analytical expressions we can easily assert the smoothness of Γ and M
in I and their behaviour at the boundary ∂I.

Proposition 3.3.2. The optimal stock holding Γ and the payoff function M belong to C∞(I).
Furthermore,

(i) Γ is negative, strictly increasing, with bounded first derivative on I. The limits of Γ at a
and b satisfy

Γ(a) := lim
x↓a

Γ(x) > P ′(a) and Γ(b) := lim
x↑b

Γ(x) < P ′(b). (3.38)

(ii) Limits of the derivatives M ′, M ′′ at a and b exist and are finite. Moreover,

lim
x↓a

M(x) = lim
x↑b

M(x) = 0. (3.39)
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3.3 A one dimensional optimal stopping problem

Proof. The smoothness of Γ and M on I can be checked directly from their explicit expres-
sions (3.34) and (3.37).

The monotonicity of Γ in (i) is hard to obtain directly from its analytical expression (3.34)
with γ1, γ2 as in (3.31)-(3.32). Instead we exploit the probabilistic formulae for γi’s given in
(3.30), combined with (3.21). It can be easily verified that

Γ(x) =
ϕ(x)p2(x) + ψ(x)p4(x)

ϕ(x)p1(x) + ψ(x)p3(x)
, (3.40)

where

p1(x) =

∫ x

a

ψ(z)σ2z2m′(z)dz, p2(x) =

∫ x

a

ψ(z)P ′(z)σ2z2m′(z)dz,

p3(x) =

∫ b

x

ϕ(z)σ2z2m′(z)dz, p4(x) =

∫ b

x

ϕ(z)P ′(z)σ2z2m′(z)dz.

From (3.40) using simple algebra, we obtain

Γ′(x) =
ws′(x)(

ϕ(x)p1(x) + ψ(x)p3(x)
)2

(
p1(x)p4(x)− p2(x)p3(x)

)
, (3.41)

where w is the Wronskian and in the calculations we have used

ψ(x)p′4(x) = −ϕ(x)p′2(x), ψ(x)p′3(x) = −ϕ(x)p′1(x).

Since P ′( · ) is strictly increasing, we have

p4(x) > P ′(x)

∫ b

x

ϕ(z)σ2z2m′(z)dz = P ′(x)p3(x),

p2(x) < P ′(x)

∫ x

a

ψ(z)σ2z2m′(z)dz = P ′(x)p1(x).

Therefore p1(x)p4(x) > P ′(x)p3(x)p1(x) > p2(x)p3(x), which implies that Γ′(x) > 0. Notic-
ing that

p1(a) = p2(a) = p3(b) = p4(b) = 0,

p′1(x)P ′(x) = p′2(x), and p′3(x)P ′(x) = p′4(x),

and using de L’Hospital’s rule for the right-hand side of (3.41), we can compute the limits

lim
x↓a

Γ′(x) =
w(p4(a)− P ′(a)p3(a))

ψ′(a+)p3(a)2
<∞,

lim
x↑b

Γ′(x) =
w(p2(b)− P ′(b)p1(b))

ϕ′(b−)p1(b)2
<∞,
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3.3 A one dimensional optimal stopping problem

lim
x↓a

Γ(x) =
p4(a)

p3(a)
> P ′(a) and lim

x↑b
Γ(x) =

p2(b)

p1(b)
< P ′(b),

which, together with (3.41), concludes the proof of (i).
Now we prove (ii). The boundedness of derivatives follows directly from the explicit

representation (3.37). Limits at a and b are deduced from (3.31)-(3.33).

We close this section by proving the Lipschitz continuity of the value function. Since M is
continuous on I, [109, Thm. 3.4] implies that V is continous and the smallest optimal stopping
time is in the standard form, i.e., the first hitting time of the set where V coincides with M
(see (3.48) below). However, in the particular case of the optimal stopping problem V (x, h),
the Lipschitz continuity, and, therefore, continuity, can be proven directly. Arguments below
rely on the Lipschitz continuity of f and M and not on their particular form. Notice that the
underlying process is absorbed at a and b which differentiates our setting from results found in
the literature.

Proposition 3.3.3. There exists a constant L such that for any (x, h) and (x′, h′) in I ×H

|V (x, h)− V (x′, h′)| ≤ L(|x− x′|+ |h− h′|). (3.42)

Proof. Take (x, h) and (x′, h′) in I × H. By definition of the value function, for any ε > 0,
there exists τ1 ∈ Tx such that

V (x, h) ≥ E

[∫ τ1

0

e−2ruf(Xx
u , h

′)du+ e−2rτ̃M(Xx
τ1

)

]
− ε,

τ1 is the so-called ε-optimal stopping time for V (x, h). Let τ̃ = τ1∧ τx
′
I , so that τ̃ ∈ Tx′ . Since

τ̃ is in general sub-optimal for V (x′, h′), we have

V (x′, h′) ≤ E

[∫ τ̃

0

e−2ruf(Xx′

u , h
′)du+ e−2rτ̃M(Xx′

τ̃ )

]
≤ E

[∫ τ1

0

e−2ruf(Xx′

u , h
′)du

]
+ E

[
e−2rτ1M(Xx′

τ1
)1{τ1≤τx′I }

]
,

where we used that f ≥ 0 and M(Xx′

τx
′
I

) = 0 by (3.39). Now, by direct comparison we obtain

V (x′, h′)− V (x, h) (3.43)

≤ E

[∫ τ1

0

e−2ru(f(Xx′

u , h
′)− f(Xx

u , h))du
]

+ E
[
e−2rτ1

(
M(Xx′

τ1
)−M(Xx

τ1
)
)
1{τ1≤τx

′
I }
− e−2rτ1M(Xx

τ1
)1{τ1>τx′I }

]
+ ε

≤ E

[∫ τ1

0

e−2ru|f(Xx′

u , h
′)− f(Xx

u , h)|du
]

+ E
[
e−2rτ1|M(Xx′

τ1
)−M(Xx

τ1
)|1{τ1≤τx′I }

]
+ ε.

37



3.3 A one dimensional optimal stopping problem

The map (x, h) 7→ f(x, h) is Lipschitz on K×H, with K ⊂ R+ any compact, and x 7→M(x)

is also Lipschitz by (ii) in Proposition 3.3.2. Since Xx
t∧τ1 ∈ I, for all t ≥ 0, then

Xx′

t∧τ1 = x′/xXx
t∧τ1 ∈ [a2/b, b2/a] =: Ka,b. (3.44)

Let L1, L2 be the Lipschitz constants for f(x, h) on Ka,b×H and for M(x) on I, respectively.
Then, using the explicit expression of Xx

t , we can bound (3.43) with

V (x′, h′)− V (x, h)

≤ E

[∫ τ1

0

e−2ruL1(|x− x′|X1
u + |h− h′|)du

]
+ E

[
e−2rτ1L2|x− x′|X1

τ1

]
+ ε

≤ (L1 ∨ L2)(|x− x′|+ |h− h′|)
(

1 +

∫ ∞
0

e−rudu
)

+ ε,

where we used E[e−rtX1
t ] = 1 for any t ≥ 0. Since ε > 0 is arbitrary, we conclude that

V (x′, h′)− V (x, h) ≤ (1 + 1/r)(L1 ∨ L2)(|x− x′|+ |h− h′|). A symmetric argument leads
to the reverse inequality and (3.42) is proven with L = (1 + 1/r)(L1 ∨ L2).

We note here for future use that

V (a, h) = V (b, h) = 0. (3.45)

Thanks to the reduction to a standard Markovian setup we can introduce the continuation
and stopping set of problem (3.36), denoted respectively by C and D, and defined as

C := {(x, h) ∈ I ×H : V (x, h) < M(x)}, (3.46)

D := {(x, h) ∈ I ×H : V (x, h) = M(x)}. (3.47)

Obviously, we have {a, b}×H ⊂ D due to (3.45). It is well known (see, e.g., [114, Ch. I, Cor.
2.9]) that the minimal optimal stopping time in (3.36) is

τ ∗x,h := inf{t ≥ 0 : (Xx
t , h) ∈ D}. (3.48)

For simplicity, in the rest of this chapter we also use the notation τ ∗h = τ ∗x,h under Px.
The slightly odd aspect of (3.48) is that the two dimensional process (X, h) is actually

constant in its second coordinate. This motivates introducing the sets

Ch := {x ∈ I : V (x, h) < M(x)},

Dh := {x ∈ I : V (x, h) = M(x)},
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3.3 A one dimensional optimal stopping problem

for each h ∈ H. In terms of these two sets, the optimal stopping time (3.48) reads

τ ∗x,h := inf{t ≥ 0 : Xx
t ∈ Dh}. (3.49)

Since functions M,V are continuous, the sets C and Ch are open whereasD andDh are closed.
Finally, letting

Y h
t := e−2r(t∧τI)V (Xt∧τI , h) +

∫ t∧τI

0

e−2rsf(Xs, h)ds (3.50)

we have that, for any (x, h) ∈ I ×H, the process (Y h
t )t≥0 is a Px-sub-martingale and

the process (Y h
t∧τ∗h

)t≥0 is a Px-martingale. (3.51)

3.3.2 A free boundary problem

It is expected that, for each h ∈ H, the stopping problem (3.36) be linked to an obstacle
problem

min {(L − 2r)u+ f,M − u} (x, h) = 0, a.e. x ∈ I, (3.52)

u(a, h) = u(b, h) = 0. (3.53)

This problem can be stated as the following free boundary problem

(L − 2r)u(x, h) + f(x, h) = 0, x ∈ {z ∈ I : u(z, h) < M(z)}, (3.54)

(L − 2r)u(x, h) + f(x, h) ≥ 0, a.e. x ∈ I, (3.55)

u(x, h) ≤M(x), x ∈ I, u(a, h) = u(b, h) = 0. (3.56)

It is also often postulated that the so-called smooth-pasting condition holds, i.e.,

∂xu(·, h) = M ′(·) on ∂{z ∈ I : u(z, h) < M(z)}. (3.57)

In the literature on one dimensional optimal stopping problems the obstacle problem (3.52)
is usually solved in its form (3.54)–(3.56) by first making an educated guess on the shape of
the set {z ∈ I : u(z, h) < M(z)} and then by solving the corresponding boundary value
problem (3.54). The solution of the resulting ODE can be often computed explicitly and the
smooth pasting (3.57) is used to determine the boundary ∂{z ∈ I : u(z, h) < M(z)}. The
latter normally relies on finding roots of nontrivial algebraic equations. Finally, one verifies
(3.55)-(3.56).
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3.3 A one dimensional optimal stopping problem

Since the payoff function M(x) has a very complicated form, the approach sketched above
is infeasible, particularly, the verification of (3.55)-(3.56) from the smooth-pasting condition.
Instead, we follow a mixed probabilistic/analytic approach. In this section we determine the
shape of the continuation set, while in Section 3.3.3 we prove the smoothness of the value
function and determine in what sense it solves the obstacle problem (3.52)-(3.53).

It is well-known that one can gain insights into the geometry of the stopping set D by
studying the sign of the function G : I ×H 7→ R defined as

G(x, h) := (L − 2r)M(x) + f(x, h), (3.58)

where LM is well-defined thanks to Proposition 3.3.2.

Lemma 3.3.4. For each h ∈ H,

{x ∈ I : G(x, h) < 0} ⊂ Ch. (3.59)

Proof. The proof of (3.59) is standard but we present arguments for the convenience of the
reader. For a fixed h, assume there is x̂ ∈ I such that G(x̂, h) < 0 and let

τ0 := inf{t ≥ 0 : G(Xt, h) ≥ 0} ∧ τI .

Then τ0 > 0, Px̂-a.s., by continuity of G and t 7→ Xt. Since M ∈ C2(I) with bounded
derivatives (Proposition 3.3.2 (ii)), by an application of Dynkin’s formula we have

V (x̂, h) ≤ Ex̂

[∫ τ0

0

e−2ruf(Xu, h)du+ e−2rτ0M(Xτ0)

]
= Ex̂

[∫ τ0

0

e−2ruG(Xu, h)du
]

+M(x̂) < M(x̂),

hence x̂ ∈ Ch.

The following lemma provides an explicit expression for G.

Lemma 3.3.5. For all (x, h) ∈ I ×H we have

G(x, h) = σ2x2
(

(h− P ′(x))2 − (Γ(x)− P ′(x))2 − (Γ′(x))2γ1(x)
)
. (3.60)

Proof. Using (3.37), we obtain

G(x, h) = (Γ(x))2(Lγ1 − 2rγ1)(x)− 2Γ(x)(Lγ2 − 2rγ2)(x) + (Lγ3 − 2rγ3)(x) (3.61)

+ σ2x2Γ′(x)(Γ(x)γ′1(x)− γ′2(x)) + σ2x2(h− P ′(x))2.
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3.3 A one dimensional optimal stopping problem

Recall the probabilistic expressions for γ1, γ2 and γ3 given in (3.34) and (3.33). Hence, for
i = 1, 2, 3,

(L − 2r)γi(x) = −gi(x), on I, (3.62)

where g1(x) = σ2x2, g2(x) = σ2x2P ′(x) and g3(x) = σ2x2(P ′(x))2. Furthermore,

Γ(x)γ′1(x)− γ′2(x) = −Γ′(x)γ1(x), (3.63)

since Γ(x) = γ2(x)/γ1(x). Finally, inserting (3.62) and (3.63) into (3.61) yields (3.60).

Next we proceed to prove that the continuation and the stopping sets have non-empty inter-
section with I (recall that {a, b} ∈ Dh). For any h ∈ H, it is convenient to define xp(h) ∈ I
as the unique root of the equation P ′(x)− h = 0, that is,

xp(h) = â(−h)−
1

1+d . (3.64)

Notice that for h ∈ int(H) we have xp(h) ∈ I.

Proposition 3.3.6. For each h ∈ H, we have Dh ∩ I 6= ∅ and Ch 6= ∅.

Proof. First consider h ∈ (P ′(a), P ′(b)). Then xp(h) ∈ I and it is immediate to see from
(3.60) that G(xp(h), h) < 0. Hence, (3.59) implies Ch 6= ∅. If h = P ′(a) then the expression
(3.60) and the fact that Γ(a) > P ′(a) (Proposition 3.3.2) imply G(a, P ′(a)) < 0. By the
continuity of G, there is x ∈ I with G(x, P ′(a)) < 0 and an application of (3.59) gives
Ch 6= ∅. A similar argument applies for h = P ′(b).

Assume now that Dh \ {a, b} = ∅ so that Ch = I. Then for any x ∈ I we have

M(x) > V (x, h) = Ex

[∫ τI

0

e−2ruf(Xu, h)du
]

= M̂(x, h) ≥ inf
l∈H

M̂(x, l) = M(x),

hence a contradiction.

The subsequent analysis will show that the roots of the map x 7→ G(x, h) for each h ∈ H
determine the shape of the continuation and the stopping sets. Due to the complexity of the
expression for G, it seems very hard to determine analytically the exact number of zeros of the
map x 7→ G(x, h). However, the exercise is trivial from a numerical point of view, thanks to the
fully explicit expression in (3.60). We performed extensive numerical tests and observed only
three possible situations displayed in Figure 3.2. It will also follow from the proof of Proposi-
tion 3.3.9 that the map x 7→ G(x, h) has at least one root if h ∈ [P ′(a),Γ(a)]∪[Γ(b), P ′(b)] and
it has at least two roots if h ∈ (Γ(a),Γ(b)). The following assumption provides a necessary
ingredient to determine the exact number of zeros of G and the shape of the stopping set.
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3.3 A one dimensional optimal stopping problem

Figure 3.2: Plots of the map x 7→ G(x, h) for different values of the initial stock holding h
using parameters r = 3%, σ = 30%, K = 100, b = 150, and a = â = K/(1 + d−1) = 40.

Assumption 3.3.7. For each h ∈ H, the equation G( · , h) = 0 has at most two roots in I.

Denoting the roots of G( · , h) = 0 on I by xG1 and xG2 (when they both exist) consider
the following three cases:

(A.1) G(x, h) > 0 for x∈ (a, xG1) and G(x, h) < 0 for x∈(xG1 , b), except possibly at xG2;

(A.2) G(x, h) > 0 for x ∈ (a, xG1) ∪ (xG2 , b) and G(x, h) < 0 for x ∈ (xG1 , xG2);

(A.3) G(x, h) < 0 for x ∈ (a, xG1) and G(x, h) > 0 for x ∈ (xG1 , b), except possibly at xG2 .

Remark 3.3.8. In (A.1) we mean that, if G( · , h) has two roots then it must be ∂xG(xG2 , h) =

0. The root xG2 may be on the right or on the left of xG1 . An analogous rationale holds in
(A.3).

It turns out that the above cases (A.1)-(A.3) are uniquely linked to the choice of the initial stock
holding h as the following proposition demonstrates.
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Proposition 3.3.9. Under Assumption 3.3.7, we have:

(i) Condition (A.1) holds if and only if h ∈ [Γ(b), P ′(b)];

(ii) Condition (A.2) holds if and only if h ∈ (Γ(a),Γ(b));

(iii) Condition (A.3) holds if and only if h ∈ [P ′(a),Γ(a)].

Proof. Assume (A.1) and h ∈ H. Then G(b, h) ≤ 0. Using γ1(b) = 0 in (3.60), we obtain

(h− P ′(b))2 − (Γ(b)− P ′(b))2 ≤ 0,

which yields h ≥ Γ(b) and completes the proof of the right implication in (i).
Consider now h ∈ [Γ(b), P ′(b)]. Directly from (3.60) we calculate G(a, h) > 0 since

h > Γ(a) > P ′(a) and γ1(a) = 0. For h > Γ(b) we have G(b, h) < 0, which combined
with Assumption 3.3.7 and the continuity of G proves (A.1). For h = Γ(b) we have to use a
different argument because G(b,Γ(b)) = 0. Rewriting (3.60) yields

G(x,Γ(b)) = σ2x2
(

(Γ(b)− Γ(x))(Γ(b) + Γ(x)− 2P ′(x))− (Γ′(x))2γ1(x)
)
.

The last term in the bracket is non-positive. We have Γ(b) + Γ(x) − 2P ′(x) < 0 for x ∈ I
sufficiently close to b, and, Γ(b)− Γ(x) > 0 by the monotonicity of Γ. Hence, G(x,Γ(b)) < 0

for x ∈ I sufficiently close to b, which immediately proves (A.1).
Assume now (A.2). Using arguments from the beginning of the proof, G(b, h) > 0 implies

h < Γ(b). Analogously, G(a, h) > 0 implies h > Γ(a). For the left implication in (ii), we note
that G(xp(h), h) < 0 for h ∈ int(H). The sign of G(x, h) at x ∈ {a, b} is determined by the
sign of

(h− P ′(x))2 − (Γ(x)− P ′(x))2 = (h− Γ(x))(h+ Γ(x)− 2P ′(x)).

Recalling that P ′(a) < Γ(a) < Γ(b) < P ′(b) (c.f. (3.38)), we have G(a, h) > 0 and G(b, h) >

0 for h ∈ (Γ(a),Γ(b)). As above, the continuity of G and Assumption 3.3.7 completes the
proof of the left implication in (ii).

The proof of (iii) is analogous to (i).

In light of the above proposition, we will refer to conditions (A.1)–(A.3) as determining the
ranges of h as well as the zeros of G(x, h). We now show that they are sufficient to determine
shapes of the continuation and the stopping sets Ch and Dh.

Proposition 3.3.10. Let Assumption 3.3.7 hold and take h ∈ H. Then we have

(i) under (A.1) there is x∗1 ∈ (a, xG1 ] such that Ch = (x∗1, b);
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(ii) under (A.2) there exist x∗1 ∈ [a, xG1 ] and x∗2 ∈ [xG2 , b] such that Ch = (x∗1, x
∗
2). Moreover,

at least one of x∗1, x
∗
2 is in I;

(iii) under (A.3) there is x∗2 ∈ [xG1 , b) such that Ch = (a, x∗2).

Proof. We only give a full proof of (iii) as the other claims follow by analogous arguments.
Assume (A.3) and that the root xG2 exists and is smaller than xG1 . Inclusion (3.59) implies
Dh ∩ I ⊆ {xG2} ∪ [xG1 , b). We will show that xG2 /∈ Dh. Indeed, for a small ε > 0, let

τε := inf{t ≥ 0 : Xt /∈ (xG2 − ε, xG2 + ε)}.

Since τε is sub-optimal for V (xG2 , h), we have

V (xG2 , h) ≤ ExG2

[∫ τε

0

e−2ruf(Xu, h)du+ e−2rτεM(Xτε)

]
= ExG2

[∫ τε

0

e−2ruG(Xu, h)du
]

+M(xG2) < M(xG2),

where the equality is an application of Dynkin formula for M(Xτε) and the final strict inequal-
ity holds because, under (A.3), we have G(x, h) < 0 on (xG2 − ε, xG2 + ε) \ {xG2} for a suffi-
ciently small ε and G(xG2 , h) = 0. This shows that xG2 /∈ Dh and thereforeDh∩I ⊆ [xG1 , b).
The latter inclusion trivially holds if xG2 > xG1 or when the second root xG2 does not exist.

Next we show that if x0 ∈ [xG1 , b) and x0 ∈ Dh, then [x0, b] ⊆ Dh. Arguing by contradic-
tion, assume there exists such an x0 and an open set U ⊂ (x0, b) such that U ⊂ Ch. For any
x ∈ U , we have

τ ∗x,h ≤ inf{t ≥ 0 : Xx
t ≤ x0}, P− a.s.

Applying Dynkin formula, we obtain

V (x, h) = Ex

[∫ τ∗h

0

e−2ruf(Xu, h)du+ e−2rτ∗hM(Xτ∗h
)

]
= Ex

[∫ τ∗h

0

e−2ruG(Xu, h)du
]

+M(x) ≥M(x),

where the final inequality is due to G(x, h) ≥ 0 on (x0, b). Hence a contradiction. Notice that
the existence of x0 ∈ [xG1 , b) such that x0 ∈ Dh is guaranteed by Dh ∩ I 6= ∅ (Proposition
3.3.6).

The above proposition shows that under (A.1) and (A.3) the shape of the stopping set is
unambiguously determined. Only under (A.2), the set Dh ∩ I may have one or two connected
components, depending on the choice of the parameters in the problem.
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3.3.3 Solution of the free boundary problem

Showing that the value function V is a solution to the free boundary problem (3.54)-(3.56) is
relatively easy. However, this provides little value unless one can further ascertain uniqueness.
This is done via a verification argument, which typically requires smooth pasting across stop-
ping boundaries. Smooth pasting is also required for efficient calculation of stopping bound-
aries via a solution of algebraic equations, see Subsection 3.3.4. In this section we first show
that the value function V of (3.36) satisfies V ( · , h) ∈ C1(I) for each h ∈ H (i.e., smooth
pasting), then we use this fact to prove that V solves (3.54)-(3.56) uniquely (Theorem 3.3.13).

We can immediately claim that V ( · , h) ∈ C2(I \ ∂Ch). Indeed, on Dh \ ∂Ch, V = M , so
the result is trivial by (ii) in Proposition 3.3.2. Instead, on Ch, the result follows by (3.51) and
a standard argument [87, Ch. 4.2] (see also [114, Ch. III, Sec. 7]). Hence, for any h ∈ H, V is
a classical solution of

(L − 2r)V (x, h) = −f(x, h), x ∈ Ch, (3.65)

with the boundary condition V (x, h) = M(x) for x ∈ ∂Ch.
We will show the regularity of the value function across the boundary. For that we will

revisit the convergence of the stopping time

τxK := inf{t ≥ 0 : Xx
t ∈ K}

in the sense of (3.68), where K is a closed subset of R+, i.e. K = int(K). Also define

σ̊xK := inf{t ≥ 0 : Xx
t ∈ int(K)}. (3.66)

Using analogous arguments as in Lemma 2.1.6 we have

P(τxK = σ̊xK) = 1, for all x ∈ R+. (3.67)

This fact together with Proposition 2.1.9, which can be adapted to the current setting, implies

τxnK → τx0K , P− a.s. (3.68)

when (xn)n≥0 ⊂ R+ converges to x0 ∈ R+ as n → ∞. In particular, under Assumption 3.3.7
and using Proposition 3.3.10, this implies that for any sequence (xn)n≥0 ⊂ Ch converging to
x0 ∈ ∂Ch as n→∞, we have

τ ∗xn,h → 0, P− a.s. (3.69)

This is the key tool to the next result, which makes use of an approach developed in [42].
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Theorem 3.3.11. Under Assumption 3.3.7 we have, for each h ∈ H,

V (·, h) ∈ C(I) ∩ C1(I) ∩ C2(I \ ∂Ch)

and for any x0 ∈ ∂Ch ∩ I

lim
Ch3x→x0

∂xxV (x, h) = 2(σx0)−2 (−rx0M
′(x0) + 2rM(x0)− f(x0, h)) . (3.70)

Proof. The continuity of V (·, h) follows from Proposition 3.3.3, whereas (3.70) can be ob-
tained from (3.65) provided that V (· , h) ∈ C1(I). Hence, it only remains to show that for any
x0 ∈ ∂Ch ∩ I it holds

lim
Ch3x→x0

∂xV (x, h) = M ′(x0).

Fix x ∈ Ch and denote τ ∗ := τ ∗x,h which is optimal for the problem V (x, h). Fix ε > 0 and
notice that the stopping time τ ∗ ∧ τx+ε

I ∈ Tx+ε is admissible for the problem V (x+ ε, h). We
get an upper bound

V (x+ ε, h) ≤ E

[∫ τ∗∧τx+εI

0

e−2ruf(Xx+ε
u , h)du+ e−2r(τ∗∧τx+εI )M(Xx+ε

τ∗∧τx+εI
)

]
.

Using this and the optimality of τ ∗ for V (x, h) we obtain

V (x+ ε, h)− V (x, h)

ε

≤ 1

ε
E

[∫ τ∗∧τx+εI

0

e−2ru
(
f(Xx+ε

u , h)−f(Xx
u , h)

)
du+ e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }

]

− 1

ε
E

[(∫ τ∗

τx+εI

e−2ruf(Xx
u , h)du+ e−2rτ∗M(Xx

τ∗)

)
1{τ∗>τx+εI }

]

≤ 1

ε
E

[∫ τ∗∧τx+εI

0

e−2ru
(
f(Xx+ε

u , h)−f(Xx
u , h)

)
du+ e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }

]
,

where in the first inequality we also use M(Xx+ε

τx+εI
) = 0, P-a.s., by (3.39), and the second

inequality follows from f ≥ 0 and M ≥ 0. The final term in the last inequality can be further
estimated by

E
[
e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }

]
= E

[
e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }∩{τ∗<τxI }

]
+ E

[
e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }∩{τ∗=τxI }

]
= E

[
e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }∩{τ∗<τxI }

]
+ E

[
e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }∩{τ∗=τxI }∩{Xx

τI=a}

]
,
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where we use {τ ∗ ≤ τx+ε
I } ∩ {τ ∗ = τxI } ∩ {Xx

τI
= b} = ∅ in the second equality. Notice that

on {τ ∗ ≤ τx+ε
I } ∩ {τ ∗ = τxI } ∩ {Xx

τI
= a} we have

M(Xx+ε
τ∗ )−M(Xx

τ∗) ≤ (Xx+ε
τ∗ −Xx

τ∗) sup
z∈[a,b]

|M ′(z)|

= ((1 + ε/x)a− a) sup
z∈[a,b]

|M ′(z)| ≤ ε sup
z∈[a,b]

|M ′(z)|.

Hence,

E
[
e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }

]
≤ E

[
e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
1{τ∗≤τx+εI }∩{τ∗<τxI }

]
+ ε sup

z∈[a,b]

|M ′(z)|P (τ ∗ = τxI ) .

Then we have

V (x+ ε, h)− V (x, h)

ε

≤ E

[∫ τ∗∧τx+εI

0

e−2ru
(
f(Xx+ε

u , h)− f(Xx
u , h)

)
ε−1du

]
+ E

[
e−2rτ∗

(
M(Xx+ε

τ∗ )−M(Xx
τ∗)
)
ε−11{τ∗≤τx+εI }∩{τ∗<τxI }

]
+ sup

z∈[a,b]

|M ′(z)|P(τ ∗ = τxI ).

From (3.68) we obtain that τx+ε
I → τxI , P-a.s., as ε→ 0. Thus, when ε→ 0 we have

1{τ∗≤τx+εI }∩{τ∗<τxI }
→ 1{τ∗<τxI }, P− a.s.

By the smoothness of f on Ka,b (defined in (3.44)) and of M on [a, b], we have∫ τ∗∧τx+εI

0

e−2ru |f(Xx+ε
u , h)− f(Xx

u , h)|
ε

du ≤ sup
z∈Ka,b

|∂xf(z, h)|
∫ τ∗

0

e−(r+ 1
2
σ2)u+σBudu,

e−2rτ∗ |M(Xx+ε
τ∗ )−M(Xx

τ∗)|
ε

1{τ∗≤τx+εI }∩{τ∗<τxI }
≤ sup

z∈[a,b]

|M ′(z)|.

Thus, letting ε→ 0 and applying the dominated convergence theorem we get

∂xV (x, h) ≤ E

[∫ τ∗

0

e−2ru ∂xf(Xx
u , h)X1

udu+ e−2rτ∗M ′(Xx
τ∗)X

1
τ∗1{τ∗<τxI }

]
(3.71)

+ sup
z∈[a,b]

|M ′(z)|P(τ ∗ = τxI ).
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Similar arguments, applied to the stopping time τ ∗ ∧ τx−εI , which is admissible for V (x−
ε, h), allow us to obtain

∂xV (x, h) = lim
ε→0

V (x, h)− V (x− ε, h)

ε
(3.72)

≥ E

[∫ τ∗

0

e−2ru ∂xf(Xx
u , h)X1

udu+ e−2rτ∗M ′(Xx
τ∗)X

1
τ∗1{τ∗<τxI }

]
− sup

z∈[a,b]

|M ′(z)|P(τ ∗ = τxI ).

Recall that τ ∗ = τ ∗x,h and then let Ch 3 x → x0 ∈ ∂Ch ∩ I. From (3.69) we get P(τ ∗x,h =

τxI ) → 0 and 1{τ∗x,h<τxI } → 1, P-a.s. Then using dominated convergence in (3.71) and (3.72)
we obtain

∂xV (x, h)→M ′(x0), as x→ x0,

which concludes the proof.

Remark 3.3.12. We could not infer smooth fit across the stopping boundary diectly from [42]
because our underlying process is killed at points a, b. Instead, we adapted the line of argu-
ments in the aforementioned and used the particular characteristics of our optimal stopping
problem.

Thanks to the regularity obtained in the theorem above we can rigorously connect the stop-
ping problem (3.36) to the obstacle problem (3.52)–(3.53) (equivalently to the free boundary
problem (3.54)–(3.57)).

Theorem 3.3.13. Let Assumption 3.3.7 hold. For each h ∈ H the value function V ( · , h) is the
unique solution, in the a.e. sense, of (3.52)–(3.53) (equivalently of (3.54)–(3.57)) in the class
of functions C(I) ∩ C1(I) whose second order partial derivative lies in L∞`oc(I).

Proof. From Theorem 3.3.11 we know that V ( · , h) has the right regularity. Moreover, we
have V ( · , h) = M( · ) onDh, where (L−2r)M ≥ −f by (3.59). Then, combining these facts
with (3.65) we conclude that for any h ∈ H

min{(L − 2r)V (x, h) + f(x, h),M(x)− V (x, h)} = 0, for x ∈ I \ ∂Ch

and clearly V (a, h) = V (b, h) = 0 (cf. (3.45)). The same argument guarantees that V ( · , h)

also solves (3.54)–(3.65).
Uniqueness of the solution follows by a standard verification argument. Let u be another

solution of (3.52)–(3.53) in C(I) ∩ C1(I) with u′′ ∈ L∞`oc(I) (for simplicity of notation we
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omit h ∈ H, given and fixed). Then, by Tanaka’s formula and using (L − 2r)u ≥ −f , we
obtain

Ex
[
e−2rτu(Xτ )

]
≥ u(x)− Ex

[∫ τ

0

e−2rtf(Xt, h)dt
]
,

for any stopping time τ ∈ Tx. Rearranging terms and using u ≤M we obtain

u(x) ≤ Ex

[∫ τ

0

e−2rtf(Xt, h)dt+ e−2rτM(Xτ )

]
.

Hence u ≤ V . To prove the reverse inequality it is sufficient to choose τ = inf{t ≥ 0 :

u(Xt) = M(Xt)} and all the inequalities above become equalities.

3.3.4 Analytical formulae

Thanks to Proposition 3.3.10 and Theorems 3.3.11 and 3.3.13, for h ∈ H, the value function
V ( · , h) is a classical solution of the system

(L − 2r)V (x, h) = −f(x, h), x ∈ (x∗1, x
∗
2),

V (x, h) = M(x), x ∈ [a, x∗1] ∪ [x∗2, b],

Vx(x
∗
1, h) = M ′(x∗1), if x∗1 > a,

Vx(x
∗
2, h) = M ′(x∗2), if x∗2 < b,

a ≤ x∗1 < x∗2 ≤ b,

(3.73)

where x∗1, x
∗
2 are the optimal stopping boundaries, i.e., Ch = (x∗1, x

∗
2). Conversely, under As-

sumption 3.3.7, we will prove that for a fixed h ∈ H, the solution of the above ODE system
also solves (3.52)–(3.53), hence the solution is unique. This is proved by Lemma 3.3.16-3.3.17
and Proposition 3.3.18.

To this end, let (v(·), x1, x2), x1, x2 ∈ R, be a solution of

(L − 2r)v(x) = −f(x, h), x ∈ (x1, x2),

v(x) = M(x), x ∈ [a, x1] ∪ [x2, b],

v′(x1) = M ′(x1), if x1 > a,

v′(x2) = M ′(x2), if x2 < b,

a ≤ x1 < x2 ≤ b.

(3.74)

Denote
vm(x) := M(x)− v(x), x ∈ I.
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Remark 3.3.14. (i) values of x1, x2 in (3.74) could be a and b respectively.

(ii) We need strict inequality x1 < x2 to prevent trivial solutions. Otherwise, v = M and
any x1 = x2 ∈ I solve (3.74).

We start from a study of properties of a solution to (3.74).

Lemma 3.3.15. v′ is absolutely continuous on I with v′′ ∈ L∞`oc(I).

Proof. From (3.74) we have that v ∈ C2(I \ {x1, x2}). Therefore, it suffices to check that v′′

is bounded in the neighbourhood of x1, x2 for x1, x2 ∈ I. For this, we check the directional
derivatives at x1, x2. System (3.74) gives

v′′(x−1 ) = M ′′(x1), v′′2(x+
1 ) =

2

σ2x2
1

(
−rx1M

′(x1) + 2rM(x1)
)
,

v′′(x+
2 ) = M ′′(x2), v′′2(x−2 ) =

2

σ2x2
2

(
−rx2M

′(x2) + 2rM(x2)
)
.

Proposition 3.3.2 gives that M ∈ C∞(I), so the above terms are finite. Hence v′′ ∈ L∞loc(I)

and the absolute continuity of v′ follows.

Proofs of the following two lemmas are based on the ideas from [122, Lemma 2.5 and
Lemma 2.6].

Lemma 3.3.16. Let y ∈ [x1, x2], if vm attains a local maximum at y and vm(y) ≥ 0, then
G(y, h) ≤ 0; if vm attains a local minimum at y and vm(y) ≤ 0, then G(y, h) ≥ 0.

Proof. Notice that for any x ∈ (x1, x2), function vm satisfies:

(L − 2r)vm(x) = G(x, h).

Integrate over (x, x+ ε) and (x− ε, x) for any ε > 0 and x+ ε, x− ε ∈ (x1, x2):

v′m(x+ ε) = v′m(x) +

∫ x+ε

x

2

σ2z2
(2rvm(z)− rzv′m(z) +G(z, h))dz, (3.75)

v′m(x− ε) = v′m(x) +

∫ x

x−ε

2

σ2z2
(−2rvm(z) + rzv′m(z)−G(z, h))dz. (3.76)

First assume that y is a local maximum and vm(y) ≥ 0. If y ∈ (x1, x2), we take x = y in
(3.75) and (3.76). Assume G(y, h) > 0. For all sufficiently small ε, we have

v′m(y + ε) =

∫ y+ε

y

2

σ2z2
(2rvm(z)− rzv′m(z) +G(z, h))dz > 0, (3.77)

v′m(y − ε) =

∫ y

y−ε

2

σ2z2
(−2rvm(z) + rzv′m(z)−G(z, h))dz < 0. (3.78)
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If y = x1 (or y = x2), then we only consider (3.75) ((3.76), respectively). AssumingG(y, h) >

0, we still obtain (3.77) ((3.78), respectively). In either cases, (3.77) or (3.78) contradicts that
y is a local maximum, so we must have G(y, h) ≤ 0.

Using the same argument for function −vm, one can prove the case when y is a local
minimum.

Lemma 3.3.17. Under Assumption 3.3.7.

(i) If (A.1) holds, we have x2 = b and x1 ≤ xG1 .

(ii) If (A.2) holds, we have x1 ≤ xG1 and x2 ≥ xG2 .

(iii) If (A.3) holds, we have x1 = a and x2 ≥ xG2 .

Moreover, in any of these three cases we have vm ≥ 0 on [x1, x2].

Proof. We focus on case (ii), as the same argument can be easily adapted to prove case (i) and
(iii). We first show that x2 ≥ xG2 when x2 < b (it is trivial if x2 = b). Argue by contradiction,
assume x2 < xG2 , then we have either (1) x1 ≤ xG1 < x2 < xG2 , (2) xG1 < x1 < x2 < xG2 or
(3) x1 < x2 ≤ xG1 . Figure 3.3 shows these three cases.

Recall that under (A.2), the sign of G(x, h) for each x is known if we know whether
x lies between the zero points xG1 , xG2 , and vice versa. We first study the sign of vm in
small neighbourhood of x1, x2, then show that the position of x1, x2 in each of cases above
contradicts the sign of vm. Since v′m(x1) = v′m(x2) = 0, for any sufficiently small ε > 0 we
have

v′m(x2 − ε) =

∫ x2

x2−ε

2

σ2z2
(−2rvm(z) + rzv′m(z)−G(z, h))dz, (3.79)

v′m(x1 + ε) =

∫ x1+ε

x1

2

σ2z2
(2rvm(z)− rzv′m(z) +G(z, h))dz. (3.80)

By (3.79), because vm(x2) = v′m(x2) = 0, we have v′m(x2 − ε) > 0 for any sufficiently small
ε > 0 once G(x2, h) < 0. Hence vm < 0 in (x2 − ε, x2) in the case G(x2, h) < 0. Similarly,
by (3.80), we have v′m(x1 + ε) > 0 for any small enough ε once G(x1, h) > 0, which implies
vm > 0 in (x1, x1 + ε) once G(x1, h) > 0.

In case (1), we haveG(x2, h) < 0, G(x1, h) > 0. Thus, we know that vm > 0 in (x1, x1+ε)

and vm < 0 in (x2 − ε, x2) for any small enough ε. Hence there exists z ∈ (x1, x2) such that
vm(z) = 0. Let y1 ∈ [x1, z], such that vm(y1) = supx1≤x≤z vm(x). Then y1 is a local maximum
and vm(y1) > 0. By Lemma 3.3.16, we have G(y1, h) ≤ 0 and therefore xG1 ≤ y1 < z. Let
y2 ∈ [z, x2], such that vm(y2) = infz≤x≤x2 vm(x). Then y2 is a local minimum and vm(y2) < 0.
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Figure 3.3: x1, x2 in case (1) (Top-left), case (2) (Top-right) and case (3) (Bottom)

By Lemma 3.3.16, G(y2, h) ≥ 0, and thus we have z < y2 ≤ xG1. But we just showed
xG1 ≤ y1 < z, a contradiction.

In case (2), G(x, h) < 0 for x ∈ [x1, x2], by the maximum principle, we know that vm > 0

for x ∈ (x1, x2). However, as shown above, we have vm < 0 in (x2−ε, x2) becauseG(x2, h) <

0, a contradiction.
In case (3), G(x, h) > 0 for x ∈ [x1, x2], by the maximum principle, we have vm < 0 for

x ∈ (x1, x2). This contradicts that vm > 0 in (x1, x1 + ε) since G(x1, h) > 0. Conclude all
three cases, we must have x2 ≥ xG2 . Apply the same argument above one can show x1 ≤ xG1 .

We now prove vm ≥ 0 for x ∈ [x1, x2] by showing that vm is decreasing in [xG2 , x2) and
increasing in (x1, xG1 ]. The monotonicity implies that vm(x) > 0 for any x ∈ (x1, xG1 ] ∪
[xG2 , x2). The rest is just an application of maximum principle for vm in (xG1 , xG2). Assume
vm is not decreasing on [xG2 , x2). By the previous proof, we know that vm > 0 in (x2− ε, x2).
Then there exists z ∈ (z1, x2) for some z1 > xG2 , such that vm(z) = supz1<x<x2 vm(x) > 0

is a local maximum. By Lemma 3.3.16, G(z, h) ≤ 0, contradicts that G(x, h) > 0 for x ∈
(xG2 , x2). With the same argument one can prove that vm is increasing in (x1, xG1 ].
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3.3 A one dimensional optimal stopping problem

Proposition 3.3.18. Under Assumption 3.3.7, for h ∈ H, the ODE system (3.74) admits a
unique solution (V ( · , h), x∗1, x

∗
2).

Proof. We show the proof in case (A.2). Cases (A.1) (A.3) are analogous. By the definition of
G in (3.58), we have

(L − 2r)v(x) =


−f(x, h), x ∈ (x1, x2),

G(x, h)− f(x, h), x ∈ [a, x1] ∪ [x2, b],

(3.81)

By Lemma 3.3.17 (ii), we have vm ≥ 0 on [x1, x2] and G(x, h) ≥ 0 on [a, x1] ∪ [x2, b], which
give us v(x) ≤ M(x) and (L − 2r)v(x) ≥ −f(x, h) on I. Together with v(x) = M(x) on
[a, x1] ∪ [x2, b], it is evident that (v(·), x1, x2) solves the variational inequality (3.52)–(3.53).
By Lemma 3.3.15, we also know that v′′ ∈ L∞`oc(I). Due to Theorem 3.3.13, we conclude that
(v(·), x1, x2) coincides with (V ( · , h), x∗1, x

∗
2). The uniqueness follows.

Remark 3.3.19. An alternative approach to the one we adopted in the section above, consists
in proving directly that there exists a (classical) solution (v, x1, x2) to the system (3.74). The
arguments given above imply that this solution is unique, it is the value function of (3.36),
and x1, x2 are the optimal stopping boundaries. Since solving v explicitly is infeasible due
to the complexity of the equations arising from the explicit form of the function M , we took
an alternative route: we used direct methods to obtain the properties of the stopping set and
the smoothness of the value function, getting, as a consequence, the existence of a solution to
(3.74).

Having established its existence and uniqueness, computing the solution of system (3.74)
is now straightforward. A general solution of the ODE in the first line of the system is of the
form

v(x) = C1x
q1 + C2x

q2 − x2(h− d−1(â/x)1+d)2, (3.82)

with d as in (3.4) and q1, q2 as in (3.17). The constants C1, C2 and the optimal stopping bound-
aries x∗1, x

∗
2 are determined by solving a system of algebraic equations derived from the re-

maining conditions in (3.74). The existence and uniqueness of those constants follows from
the earlier discussion in this subsection. We mention that we could not solve those algebraic
equations analytically, so all examples presented in this chapter involve numerical solution of
this system of algebraic equations.

Figure 3.4 displays three possible forms of the stopping set and corresponding value func-
tions. The stopping sets are identified by the values where the solid line (the payoff M(·))
coincides with the dashed line (the value function V (·, h)).
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3.4 Regularity of the stopping boundaries

Figure 3.4: Plots of the map x 7→ V (x, h) and M(x) for different values of the initial stock
holding h using parameters r = 3%, σ = 30%, K = 100, b = 150, and a = â = K/(1 +

d−1) = 40.

3.4 Regularity of the stopping boundaries

So far we have studied an optimal control problem for a fixed initial stock holding h ∈ H.
Optimal stopping boundaries x∗1, x

∗
2 from Proposition 3.3.10 obviously depend on h; denote

them by x∗1,h and x∗2,h with one of them possibly being equal to a or b. We will show that x∗1,h
and x∗2,h are non-decreasing and continuous in h. Apart from these results being of interest on
their own, they will be instrumental in studying the mapping h 7→ V (x, h) and, consequently,
in determining, in Section 3.5, an optimal initial stock holding h∗ in problem (3.13).

Recalling τ ∗x,h from (3.49) we introduce functions γ̂h,i, i = 1, 2, and Γ̂h, which are ana-
logues of those in (3.30) and (3.34):

γ̂h,1(x) := Ex
[ ∫ τ∗x,h

0

e−2ruσ2X2
udu
]
, γ̂h,2(x) := Ex

[ ∫ τ∗x,h

0

e−2ruP ′(Xu)σ
2X2

udu
]
,

γ̂h,3(x) := Ex

[∫ τ∗x,h

0

e−2ru(P ′(Xu))
2σ2X2

udu
]

and Γ̂h(x) :=
γh,2(x)

γh,1(x)
.

(3.83)
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3.4 Regularity of the stopping boundaries

If we fix the next trading time at τ ∗x,h, we can easily see that the value Γ̂h(x) minimises (3.36).
This leads to a fixed point, so that an optimal h∗ in (3.13) must satisfy Γ̂h∗(x) = h∗. We will
later show that Γ̂h∗(x) indeed determines an optimal initial stock holding.

Applying similar arguments as in the proof of Proposition 3.3.2 to Γ̂h with x∗1,h and x∗2,h in
place of a and b we obtain the next result.

Proposition 3.4.1. For any h ∈ H, we have Γ̂h is C∞ and strictly increasing on (x∗1,h, x
∗
2,h)

with

Γ̂h(x
∗
1,h) : = lim

x↓x∗1,h
Γ̂h(x) > P ′(x∗1,h),

Γ̂h(x
∗
2,h) : = lim

x↑x∗2,h
Γ̂h(x) < P ′(x∗2,h).

We now prove a technical lemma which is fundamental for showing the monotonicity of
the stopping boundaries. For h ∈ (Γ(a),Γ(b)), thanks to the monotonicity of Γ (Proposition
3.3.2) we have that there exists a unique point xΓ(h) ∈ I such that

Γ(xΓ(h)) = h. (3.84)

Moreover xΓ(h) ∈ Ch, because G(xΓ(h), h) < 0 by (3.60).

Lemma 3.4.2. Fix h ∈ H and let Assumption 3.3.7 hold.

(i) If x∗1,h > a, then h > Γ(x∗1,h) and h+ Γ(x∗1,h) ≥ 2Γ̂h(x
∗
1,h).

(ii) If x∗2,h < b, then h < Γ(x∗2,h) and h+ Γ(x∗2,h) ≤ 2Γ̂h(x
∗
2,h).

(iii) If h > Γ(a) and x∗1,h = a, then h+ Γ(x) > 2Γ̂h(x) for all x ∈ (a, xΓ(h)).

(iv) If h < Γ(b) and x∗2,h = b, then h+ Γ(x) < 2Γ̂h(x) for all x ∈ (xΓ(h), b).

The statement of the lemma has an intuitive financial interpretation. In (i), if the left stop-
ping boundary x∗1,h is non-trivial, then the optimal trade at x∗1,h is to increase the short position
in the stock (recall that Γ is negative). This is consistent with the Delta hedge P ′ being an
increasing function starting from −1 at â and increasing to 0 at ∞. Analogously, statement
(ii) says that if the right stopping boundary x∗2,h is non-trivial, the optimal trade at x∗2,h is to
reduce the short position in the stock. Statements (iii)-(iv) formulate a stronger version of the
previous two when the stopping boundaries are trivial.
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3.4 Regularity of the stopping boundaries

Proof of Lemma 3.4.2. Recall that xp(h) ∈ I and G(xp(h), h) < 0, where xp(h) is defined in
(3.64). Hence, it must be x∗1,h < xp(h) < x∗2,h for h ∈ H. The relative placement of x∗1,h, x∗2,h,
xp(h) and xΓ(h) will be central in this proof.

Proof of (i): If x∗1,h > a, then G(x∗1,h, h) ≥ 0 by (3.59) and

0 ≤ G(x∗1,h, h) < σ2(x∗1,h)
2
(
(h− P ′(x∗1,h))2 − (Γ(x∗1,h)− P ′(x∗1,h))2

)
= σ2(x∗1,h)

2(h− Γ(x∗1,h))(h+ Γ(x∗1,h)− 2P ′(x∗1,h)),
(3.85)

where the strict inequality comes from (3.60) upon noting that
(
Γ′(x∗1,h)

)2
γ1(x∗1,h) > 0 since

x∗1,h ∈ I. Recalling that x∗1,h < xp(h) and P ′ is strictly increasing, we have P ′(x∗1,h) < h, so

h+ Γ(x∗1,h)− 2P ′(x∗1,h) > Γ(x∗1,h)− h. (3.86)

If h−Γ(x∗1,h) < 0, combining (3.85) and (3.86) gives (h−Γ(x∗1,h))
2 < 0, which is impossible.

The equality h − Γ(x∗1,h) = 0 contradicts (3.85). Hence, h − Γ(x∗1,h) > 0, which is the first
claim in (i).

For the second claim we expand the square in f(Xu, h) and obtain

Ex

[∫ τ∗h

0

e−2ruf(Xu, h)du
]

= h2γ̂h,1(x)− 2hγ̂h,2(x) + γ̂h,3(x) (3.87)

with the notation introduced in (3.83). The explicit formulae for γ̂h,i, i = 1, 2, 3, can be derived
from (3.21) upon replacing a and b by x∗1,h and x∗2,h, and ϕ and ψ by ϕh and ψh. The latter are,
respectively, the decreasing and increasing fundamental solutions of the ODE

(L − 2r)u(x) = 0, x ∈ (x∗1,h, x
∗
2,h),

with the boundary conditions

ψh(x
∗
1,h+) = 0, ψ′h(x

∗
1,h+) > 0, ϕh(x

∗
2,h−) = 0, ϕ′h(x

∗
2,h−) < 0.

Again, these can be calculated explicitly using (3.20). Later we will also use that

γ̂′h,1(x∗1,h) = w−1
h ψ′h(x

∗
1,h)

∫ x∗2,h

x∗1,h

ϕh(z)σ2z2m′(z)dz > 0, (3.88)

where wh = ŵ
(
1− (x∗1,h/x

∗
2,h)

q1−q2
)

is the Wronskian (c.f. (3.23)).
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3.4 Regularity of the stopping boundaries

From (3.35) and (3.36) we can write the value function V and the stopping payoff M as

V (x, h) = Ex

[∫ τ∗h

0

e−2ruf(Xu, h)du
]

+ Ex

[∫ τI

τ∗h

e−2ruf(Xu,Γ(Xτ∗h
))du

]
(3.89)

= V1(x) + V2(x),

M(x) = Ex

[∫ τ∗h

0

e−2ruf(Xu,Γ(x))du
]

+ Ex

[∫ τI

τ∗h

e−2ruf(Xu,Γ(x))du

]
(3.90)

= M1(x) +M2(x),

where in V1, V2,M1,M2 we omit the dependence on h ∈ H which is fixed. Thanks to the
explicit formulae for ψh and ϕh, (3.21) and Γ ∈ C∞(I) (Proposition 3.3.2) it is not hard to
verify that M1, V1 ∈ C1([x∗1,h, x

∗
2,h]). For V2, using the strong Markov property we have

V2(x) = M̂(x∗1,h,Γ(x∗1,h))Ex
[
e−2rτ∗1,h1{τ∗1,h<τ

∗
2,h}

]
+ M̂(x∗2,h,Γ(x∗2,h))Ex

[
e−2rτ∗2,h1{τ∗1,h>τ

∗
2,h}

]
,

where τ ∗1,h, τ ∗2,h denote the first entry time to [a, x∗1,h] and [x∗2,h, b], respectively. It is well-known
that the two expected values on the right-hand side of the equation above can be expressed in
terms of ψh and ϕh ([18, Ch. II, Par. 10]), hence proving V2 ∈ C1([x∗1,h, x

∗
2,h]). An analogous

argument applies for M2.
Since V = M at x∗1,h and the smooth-fit holds we have

V1(x∗1,h) + V2(x∗1,h) = M1(x∗1,h) +M2(x∗1,h), (3.91)

V ′1(x∗1,h) + V ′2(x∗1,h) = M ′
1(x∗1,h) +M ′

2(x∗1,h). (3.92)

Noticing that Px∗1,h(τ ∗h = 0) = 1 we have V1(x∗1,h) = M1(x∗1,h) = 0 and hence,

V2(x∗1,h) = M2(x∗1,h). (3.93)

Using the optimality of Γ(x) for M̂(x, ·) and the strong Markov property, for x ∈ (x∗1,h, x
∗
2,h)

we have

V2(x) = Ex
[
e−2rτ∗hM(Xτ∗h

)
]
≤ Ex

[
e−2rτ∗hM̂(Xτ∗h

,Γ(x))
]

= M2(x).

Hence, V ′2(x∗1,h) ≤M ′
2(x∗1,h). Inserting the latter into (3.92) we deduce

V ′1(x∗1,h) ≥M ′
1(x∗1,h). (3.94)

Our task is now to rewrite both sides of (3.94) using (3.87) and (3.37). For an arbitrary
x ∈ [x∗1,h, x

∗
2,h] we have

V ′1(x) = h2γ̂′h,1(x)− 2hγ̂′h,2(x) + γ̂′h,3(x)

M ′
1(x) = Γ2(x)γ̂′h,1(x)− 2Γ(x)γ̂′h,2(x) + γ̂′h,3(x) + 2Γ(x)Γ′(x)γ̂h,1(x)− 2Γ′(x)γ̂h,2(x).
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Inserting the above in (3.94) we obtain

(h2 − Γ2(x∗1,h))γ̂
′
h,1(x∗1,h)− 2(h− Γ(x∗1,h))γ̂

′
h,2(x∗1,h) ≥ 0. (3.95)

Since γ̂′h,1(x∗1,h) > 0 by (3.88) and we have shown above that h− Γ(x∗1,h) > 0, we can divide
both sides of (3.95) by (h− Γ(x∗1,h))γ̂

′
h,1(x∗1,h), thus obtaining

h+ Γ(x∗1,h) ≥ 2
γ′h,2(x∗1,h)

γ′h,1(x∗1,h)
= 2 lim

x↓x∗1,h
Γ̂h(x) =: 2Γ̂h(x

∗
1,h),

where the first equality follows from d’Hospital’s rule (see (3.83)). This concludes the proof
of (i).

Proof of (ii): This is analogous to that of (i), hence we omit further details.

Proof of (iii) and (iv): We give a full argument only for (iv) as the case of (iii) can be treated
analogously. Fix h ∈ H such that h < Γ(b) and x∗2,h = b.

First we notice that for all x ∈ I \ {xΓ(h)} we have

M(x) = Ex

[∫ τI

0

e−2ruf(Xu,Γ(x))du
]
< Ex

[∫ τI

0

e−2ruf(Xu, h)du
]
, (3.96)

where the strict inequality is due to the fact that for each x ∈ I, the mapping ζ 7→ M̂(x, ζ) is
strictly convex and attains its minimum at ζ = Γ(x).

Now fix an arbitrary point x̂ ∈ (xΓ(h), b). With the notation introduced in (3.90) we rewrite
(3.96) as

M1(x̂) +M2(x̂) < Ex̂

[∫ τ∗h

0

e−2ruf(Xu, h)du
]

+ Ex̂

[∫ τI

τ∗h

e−2ruf(Xu, h)du

]
=: V1(x̂) + Ṽ2(x̂).

(3.97)

Here we are again omitting the dependence of V1 and Ṽ2 on h and note that V1 is the same
as in (3.89), whereas Ṽ2 is not. Since x∗2,h = b, we have {Xτ∗h

= b} = {τ ∗h = τI}, so
{Xτ∗h

= x∗1,h} = {τ ∗h < τI}. Using this fact and the strong Markov property we obtain

Ṽ2(x̂)−M2(x̂) = Ex̂

[
e−2rτ∗hEXτ∗

h

[∫ τI

0

e−2ru
(
f(Xu, h)− f(Xu,Γ(x̂))

)
du
]]

= Ex̂
[
e−2rτ∗h1{τ∗h<τI}

]
Ex∗1,h

[∫ τI

0

e−2ru
(
f(Xu, h)− f(Xu,Γ(x̂))

)
du
]

= Ex̂
[
e−2rτ∗h1{τ∗h<τI}

] (
M̂(x∗1,h, h)− M̂(x∗1,h,Γ(x̂))

)
< 0, (3.98)
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where it remains to justify the final inequality. Since x̂ > xΓ(h) > x∗1,h, by the monotonicity
of Γ (Proposition 3.3.2), we have

Γ(x̂) > h > Γ(x∗1,h). (3.99)

Since the mapping ζ 7→ M̂(x∗1,h, ζ) is strictly convex and attains its minimum at Γ(x∗1,h), it is
strictly increasing for ζ > Γ(x∗1,h). Hence the inequality in (3.98) holds and Ṽ2(x̂) < M2(x̂)

upon noticing that Px̂(τ ∗h < τI) > 0.
Combining (3.97) with (3.98) implies V1(x̂) > M1(x̂). Rewriting this inequality in terms

of the functions γ̂h,i, i = 1, 2, 3, given in (3.83), we obtain

(h2 − Γ2(x̂))γ̂h,1(x̂)− 2(h− Γ(x̂))γ̂h,2(x̂) > 0. (3.100)

It is clear from (3.83) that γ̂h,1(x̂) > 0 since x̂ ∈ (x∗1,h, x
∗
2,h). Then, using also (3.99) we can

divide both sides of (3.100) by (h− Γ(x̂))γ̂h,1(x̂) < 0 to obtain

h+ Γ(x̂) < 2
γ̂h,2(x̂)

γ̂h,1(x̂)
= 2Γ̂h(x̂).

With Lemma 3.4.2 in place we can now show that the optimal stopping boundaries x∗1,h,
x∗2,h are non-decreasing in h.

Theorem 3.4.3. Let Assumption 3.3.7 hold. Then, the mappings h 7→ x∗1,h and h 7→ x∗2,h are
non-decreasing onH.

Proof. We only show that h 7→ x∗2,h is non-decreasing as the arguments for the monotonicity
of h 7→ x∗1,h are analogous. For the clarity of notation let us set x∗i (h) = x∗i,h for i = 1, 2.

Fix h < h̃ in H. If h̃ ≥ Γ(b) then x∗2(h̃) = b by Propositions 3.3.9 and 3.3.10, so trivially
x∗2(h) ≤ x∗2(h̃). Assume now that h̃ < Γ(b). We split the proof into two cases.

(Case 1). Let us first consider x∗2(h) = b (this can occur under (A.2); see Proposition
3.3.10). Arguing by contradiction we assume x∗2(h̃) < b. Then, we have

V (x, h̃) = M(x) > V (x, h), for all x ∈ (x∗2(h̃) ∨ x∗1(h), b). (3.101)

Taking τ ∗h optimal for V (x, h) and noticing that it is also admissible for V (x, h̃), it is easy to
check that (3.101) implies

Ex

[∫ τ∗h

0

e−2ruf(Xu, h̃)du
]
> Ex

[∫ τ∗h

0

e−2ruf(Xu, h)du
]

for all x ∈ (x∗2(h̃) ∨ x∗1(h), b).
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3.4 Regularity of the stopping boundaries

Both expected values above can be written using the functions γ̂h,i, i = 1, 2, 3, introduced
in (3.83) (see also (3.87)). This gives

(h̃2 − h2)γ̂h,1(x)− 2(h̃− h)γ̂h,2(x) > 0.

Dividing both sides by (h̃− h)γ̂h,1(x) > 0 we obtain

h+ h̃ > 2
γ̂h,2(x)

γ̂h,1(x)
= 2Γ̂h(x). (3.102)

Since xΓ(h̃) ∈ Ch̃ by (3.84) and Γ is strictly increasing, we have xΓ(h̃) < x∗2(h̃) and h̃ < Γ(x)

for x ∈ (x∗2(h̃) ∨ x∗1(h), b). Hence,

Γ(x) + h > h̃+ h > 2Γ̂h(x),

which contradicts (iv) in Lemma 3.4.2.

(Case 2). Let us now consider x∗2(h) < b. In this case we have Γ(x∗2(h)) < Γ(b), which
gives rise to two sub-cases.

(Case 2a). If h < Γ(x∗2(h)) ≤ h̃ < Γ(b), by monotonicity of Γ we obtain x∗2(h) ≤ xΓ(h̃).
Moreover, using that xΓ(h̃) ∈ Ch̃, it must be xΓ(h̃) < x∗2(h̃). Hence the claim.

(Case 2b). If h < h̃ < Γ(x∗2(h)) < Γ(b), we adapt arguments from Case 1 above. Assume,
by contradiction, that x∗2(h̃) < x∗2(h). Then, as in (3.102), we have h + h̃ > 2Γ̂h(x) for all
x ∈ (x∗2(h̃) ∨ x∗1(h), x∗2(h)). By assumption h̃ < Γ(x∗2(h)), hence

h+ Γ(x∗2(h)) > h+ h̃ ≥ 2 lim
x↑x∗2(h)

Γ̂h(x),

which contradicts (ii) in Lemma 3.4.2.

Theorem 3.4.3 allows us to prove the continuity of the optimal boundaries and the conti-
nuity of the optimal stopping time with respect to x and h (jointly). This is needed to prove
that ∂hV exists and it is (jointly) continuous, which will then allow to establish first order
conditions for a minimiser in (3.15).

Theorem 3.4.4. Let Assumption 3.3.7 hold. Then the mappings h 7→ x∗1,h and h 7→ x∗2,h are
continuous onH. Moreover, (x, h) 7→ τ ∗x,h is continuous on I ×H, P-a.s.

Proof. First we show continuity of the optimal boundaries and then continuity of the stopping
times. For the clarity of notation let us set x∗i (h) = x∗i,h for i = 1, 2.

(Continuity of the boundaries). We only give full arguments for the upper boundary x∗2
as the case of the lower boundary x∗1 can be handled analogously. First we show that x∗2 is
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3.4 Regularity of the stopping boundaries

left-continuous using a standard argument (see, e.g., [114, Ch. VII]). Fix h ∈ H and consider
an increasing sequence (hn)n≥1 ⊂ H such that hn ↑ h as n → ∞. For each n ≥ 1, we have
(x∗2(hn), hn) ∈ D and in the limit

lim
n→∞

(x∗2(hn), hn) = (x∗2(h−), h),

where the left limit x∗2(h−) is well-defined by the monotonicity of x∗2. Since D is closed it
must be (x∗2(h−), h) ∈ D and then x∗2(h−) ≥ x∗2(h). However, since x∗2(·) is increasing we
also have x∗2(h−) ≤ x∗2(h), so that left-continuity follows.

The proof of right-continuity of x∗2 follows ideas contained in [38]. If x∗2(h) = b the
claim is trivial. Consider the case x∗2(h) < b. Arguing by contradiction let us assume that
x∗2(h+) > x∗2(h). Then we can find xd and xu, such that x∗2(h) < xd < xu < x∗2(h+), and a
sufficiently small ε > 0 such that (xd, xu)× (h, h+ ε] ⊂ C. Recalling (3.65), we have

(L − 2r)V (x, h+ ε) = −f(x, h+ ε), for x ∈ (xd, xu). (3.103)

Take any Ψ ∈ C∞c ([xd, xu]) (the set of functions of infinitely differentiable with compact
support in [xd, xu]) with Ψ ≥ 0. Multiplying (3.103) by Ψ, integrating over [xd, xu] and using
integration by parts we obtain∫ xu

xd

V (z, h+ ε)(L∗Ψ− 2rΨ)(z)dz = −
∫ xu

xd

f(z, h+ ε)Ψ(z)dz, (3.104)

where L∗ is the adjoint of L:

(L∗ − 2r)Ψ(x) =
1

2

∂2

∂x2
(Ψ(x)σ2x2)− ∂

∂x
(Ψ(x)rx)− 2rΨ(x).

By the continuity of V , we have limε→0 V (z, h + ε) = V (z, h) = M(z) for all z ∈
(x∗2(h), x∗2(h+)). Then, using the dominated convergence theorem in (3.104) to pass to the
limit as ε→ 0 we get

−
∫ xu

xd

f(z, h)Ψ(z)dz =

∫ xu

xd

M(z)(L∗ − 2r)Ψ(z)dz =

∫ xu

xd

Ψ(z)(L − 2r)M(z)dz.

This is equivalent to
∫ xu
xd

Ψ(z)G(z, h)dz = 0. However, [xd, xu] is in the stopping region Dh,
so G(z, h) ≥ 0. Recalling that Ψ is arbitrary and non-negative, we conclude that G(z, h) = 0

for almost all z ∈ [xd, xu], which contradicts Assumption 3.3.7.

(Continuity of optimal stopping times). The idea is similar to the proofs in section 2.1.3
where we show the convergence of first hitting times (see also, e.g. [42], [103]). As indicated
in Remark 2.1.10, continuity here means for any (xn, hn) → (x, h), we have τ ∗xn,hn → τ ∗x,h,
P-a.s.
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3.4 Regularity of the stopping boundaries

Let
τ̂ ∗x,h := inf{t ≥ 0 : Xx

t /∈ [x∗1(h), x∗2(h)]}

and Ω0 = {τ ∗x,h = τ̂ ∗x,h}. By (3.67), we have P(Ω0) = 1.
Fix (x, h) ∈ I ×H and let (xn, hn)n≥1 be a sequence converging to (x, h) as n→∞. For

any ω ∈ Ω0, if τ ∗x,h(ω) = 0, then lower semi-continuity holds trivially. If τ ∗x,h(ω) > 0, then for
any t > 0 such that τ ∗x,h(ω) > t, there exists ε > 0 (depending on (t, x, h, ω)) such that

inf
0≤u≤t

d((Xx
u(ω), h), ∂C) ≥ ε > 0, (3.105)

where we use the standard Euclidean distance

d(y, ∂C) := inf
ŷ∈∂C

d(y, ŷ), for y ∈ I ×H.

By uniform continuity of (t, x) 7→ Xx
t (ω) on compact sets, for n sufficiently large we have

inf
0≤u≤t

d((Xxn
u (ω), hn), (Xx

u(ω), h)) ≤ ε/2. (3.106)

Combining (3.105) and (3.106) we obtain

inf
0≤u≤t

d((Xxn
u (ω), hn), ∂C) > ε/2,

for all sufficiently large n. Hence τ ∗xn,hn(ω) > t for all such n. Since t > 0 was arbitrary we
have

lim inf
n→∞

τ ∗xn,hn(ω) ≥ τ ∗x,h(ω).

To prove the upper semi-continuity we use τ̂ ∗x,h which is identical to τ ∗x,h on Ω0. Recall that
P(τ̂ ∗x,h < ∞) = 1 as τ̂ ∗x,h is the exit time of a geometric Brownian motion from a bounded
interval. For any ω ∈ Ω0, there is t > τ̂ ∗x,h(ω) which is arbitrarily close to τ̂ ∗x,h(ω) such that
Xx
t (ω) /∈ [x∗1(h), x∗2(h)]. By the continuity of x∗1(·), x∗2(·) and x 7→ Xx

t (ω), we have Xxn
t (ω) /∈

[x∗1(hn), x∗2(hn)] and τ̂ ∗xn,hn(ω) < t for sufficiently large n. Hence lim supn→∞ τ̂
∗
xn,hn

(ω) ≤
τ̂ ∗x,h(ω). Combined with the lower semi-continuity proved above, this implies the a.s. continu-
ity of (x, h) 7→ τ ∗x,h.

Figure 3.5 illustrates the optimal stopping boundaries x∗1,h and x∗2,h when h ∈ H is vary-
ing. We highlight points hα and hβ where the continuation region changes from (a, x∗2,h) to
(x∗1,h, x

∗
2,h) and from (x∗1,h, x

∗
2,h) to (x∗1,h, b), respectively. The three regimes (i)–(iii) of Propo-

sition 3.3.10 are clearly visible on the graph.
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h

P 0(a) h, h- P 0(b)

a

b

x$1;h
x$2;h

Figure 3.5: Plots of the optimal stopping boundaries x∗1,h, x
∗
2,h as functions of h using parame-

ters r = 3%, σ = 30%, K = 100, b = 150 and a = â = K/(1 + d−1) = 40.

3.5 Optimal initial stock holding

The existence of an optimal initial stock holding in (3.15) follows from compactness ofH and
continuity of h 7→ V (x, h). Here we show that the minimum of V (x, · ) is attained in the
interior ofH. Moreover, although an optimal h∗ cannot be obtained explicitly, we show that it
must solve a simple algebraic equation whose numerical solution is straightforward.

Proposition 3.5.1. Under Assumption 3.3.7, we have V (x, · ) ∈ C1(H) for all x ∈ I. More-
over, we have

∂hV (x, h) = Ex

[∫ τ∗h

0

e−2ru2(h− P ′(Xu))σ
2X2

udu
]
, (3.107)

and ∂hV ∈ C(I ×H).

Proof. The argument of proof is analogous to the one used to prove Theorem 3.3.11, so we
only provide a sketch. Let ε > 0 and denote by τ ∗x,h an optimal stopping time for V (x, h).
Since τ ∗x,h is admissible but sub-optimal for V (x, h + ε), an application of the mean value
theorem yields

V (x, h+ ε)− V (x, h) ≤ εEx

[∫ τ∗h

0

e−2ru2(hε − P ′(Xu))σ
2X2

udu
]
,

where hε ∈ [h, h+ ε]. Dividing both sides of the inequality by ε and letting ε→ 0, we obtain

lim sup
ε→0

V (x, h+ ε)− V (x, h)

ε
≤ Ex

[∫ τ∗h

0

e−2ru2(h− P ′(Xu))σ
2X2

udu
]
. (3.108)
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3.5 Optimal initial stock holding

For the lower bound we denote by τ ∗x,h+ε the optimal stopping time for V (x, h+ε) and arguing
as above we get

V (x, h+ ε)− V (x, h) ≥ εEx

[∫ τ∗h+ε

0

e−2ru2(hε − P ′(Xu))σ
2X2

udu
]
.

Dividing by ε both sides of the inequality, letting ε → 0 and recalling the continuity of the
map h 7→ τ ∗x,h (Theorem 3.4.4) we obtain

lim inf
ε→0

V (x, h+ ε)− V (x, h)

ε
≥ Ex

[∫ τ∗h

0

e−2ru2(h− P ′(Xu))σ
2X2

udu
]
. (3.109)

Combining (3.109) and (3.108) gives

∂+
h V (x, h) = Ex

[∫ τ∗h

0

e−2ru2(h− P ′(Xu))σ
2X2

udu
]
,

where ∂+
h denotes the right partial derivative. The same arguments can be applied to obtain the

same expression as above also for the left partial derivative ∂−h V , hence (3.107) holds.
Continuity of the map (x, h) 7→ ∂hV (x, h) is easily deduced from P-a.s. continuity of the

maps
(x, h) 7→ (h− P ′(Xx

u))σ2(Xx
u)2 and (x, h) 7→ τ ∗x,h,

and the dominated convergence theorem.

Finally, we give our result regarding an optimal initial stock holding h∗.

Theorem 3.5.2. Under Assumption 3.3.7, for each initial stock price X0 = x ∈ I,

arg min
h∈H

V (x, h) ⊆ (P ′(a), P ′(b)) = int(H).

Moveover, each minimiser h∗ ∈ arg minh∈H V (x, h) is a solution of the following equation

h∗ = Γ̂h∗(x), (3.110)

where Γ̂h was defined in (3.83).

Proof. Fix x ∈ I and let Cx :={h∈H : V (x, h)<M(x)}. We have Cx 6=∅ due to Proposition
3.3.6. Hence arg minh∈H V (x, h) ⊂ Cx given that V ≤M and M is independent of h.

Although it is possible that P ′(a) or P ′(b) are in Cx, we will show that the minimum of
V (x, ·) cannot be attained there. For that purpose, notice that

∂hV (x, h) = 2γ̂h,1(x)
(
h− Γ̂h(x)

)

64



3.5 Optimal initial stock holding

Figure 3.6: Top panel: 3-D plot of the value function (x, h) 7→ V (x, h). Bottom panel: plot of
optimal stock holdings x 7→ h∗(x), x 7→ Γ(x) and the Black-Scholes Delta x 7→ P ′(x) using
parameters r = 3%, σ = 30%, K = 100, b = 150 and a = â = K/(1 + d−1) = 40.

thanks to (3.107) and with the notation of (3.83). If P ′(a) ∈ Cx, the inequality Γ̂h(P
′(a)+) >

P ′(a) (see Proposition 3.4.1) implies that ∂hV (x, P ′(a)+) < 0. Hence the minimum of V (x, ·)
is not attained at P ′(a). Similarly, if P ′(b) ∈ Cx, then ∂hV (x, P ′(b)−) > 0, so the minimum
of V (x, ·) cannot be attained at P ′(b).

Consequently, each minimiser h∗ of V (x, ·) is in (P ′(a), P ′(b)) and must satisfy ∂hV (x, h∗) =

0, which is equivalent to (3.110).

We used the first order condition (3.110) to numerically compute the optimal initial stock
holding and it turned out that (3.110) admitted a unique solution in all examples we considered.

The top panel of Figure 3.6 displays the three dimensional plot of the value function V . The
bottom panel plots the optimal initial stock holding h∗(x), the optimal hedge Γ(x) at the rebal-
ance time and the benchmark Black-Scholes Delta P ′(x). Notice that the optimal stock holding
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3.6 Remarks on the role of the upper bound b

after rebalancing Γ(x) is flatter than the Delta P ′(x), thus the constrained trader under/over-
hedges, compared to the Black-Scholes benchmark, if the option is in-the-money/out-of-the-
money.1 This reflects the fact that no further trades are possible before τI . For example, if
rebalancing occurs when the option is out of the money (close to b), there is still a positive
probability of reaching the left boundary a before hitting b. Therefore, the optimal stock hold-
ing Γ(x) strikes a balance between optimal Black-Scholes hedges P ′(b) at b and P ′(a) at a.
This is unnecessary in the Black-Scholes setting because the portfolio can be rebalanced con-
tinuously reacting to changes in the underlying price. The optimal initial stock holding h∗(x)

exhibits similar flatter characteristics as Γ(x) close to boundaries a, b but is steeper than the
Black-Scholes hedge P ′(x) in the middle of the graph. The kinks in the map x 7→ h∗(x) corre-
spond to the points hα, hβ from Figure 3.5. They are the points at which the transition between
single and double boundaries is observed. The steep part of the graph of h∗(x) coincides with
the region where the rebalancing occurs at two boundaries.

3.6 Remarks on the role of the upper bound b

Before moving on to the numerical illustration, it is worth turning our attention to the question
of what happens if we take b = +∞.

In this case, τI = inf{t ≥ 0 : Xt ≤ a} =: τa and since Xt has a positive drift, we have
P(τa = ∞) > 0. The martingale (e−rtXt)t≥0 is not uniformly integrable and neither is the
one defined by (3.10), for a general admissible trading strategy (τ, θ). Then the derivation of
(3.12) via optional sampling is not possible (since (3.11) does not hold) and the whole problem
formulation becomes less transparent. We propose here two possible problem formulations and
their corresponding solutions. We note that such solutions appear to be structurally different as
a consequence of different mathematical ways in which we can interpret the event {τa = ∞}
in our model.

Thanks to the explicit dynamics of X we can easily derive limt→∞ e
−rtXt = 0, Px-a.s., for

all x ∈ (0,∞). Then, using a standard convention on the event {τa =∞}, we have

e−rτaXτa = e−rτaXτa1{τa<∞} + e−rτaXτa1{τa=∞} (3.111)

= e−rτaa1{τa<∞} + lim
t→∞

e−rtXt1{τa=∞} = e−rτaa1{τa<∞}.

Analogously, recalling that the put option price is bounded by K we also have

e−rτaP (Xτa) = e−rτaP (Xτa)1{τa<∞} = e−rτaP (a)1{τa<∞}. (3.112)
1We are grateful to an anonymous reviewer for this observation.
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3.6 Remarks on the role of the upper bound b

3.6.1 Zero-mean tracking

With the aim of retaining a zero-mean tracking error analogue to (3.11) we set

τn := inf{t ≥ 0 : Xt ≥ n}, for n ∈ [a,∞),

and, recalling that τI = τa, we study the problem

V(x) := inf
(τ,θ)∈A∞x

lim sup
n↑∞

Varx
[
e−rτa∧τn

(
Πτ,θ
τa∧τn − P (Xτa∧τn)

)]
, (3.113)

where A∞x is defined in the same way as Definition 3.2.1 with I replaced by (a,∞) and τxI
replaced by τxa . Notice also that we have h ∈ H = [P ′(a), 0]. With this approach the mean
tracking error can be computed as

lim
n→∞

Ex
[
e−rτa∧τn

(
Πτ,θ
τa∧τn − P (Xτa∧τn)

)]
= 0

by an application of optional sampling for each n ≥ a given and fixed. Clearly for b < ∞
problem formulations (3.12) and (3.113) are equivalent since τI = τI ∧ τn for all n > b.

As in Sections 3.2 and 3.3.1 (with a slight abuse of notation) we have

V(x) = inf
(τ,θ)∈A∞x

lim sup
n↑∞

Ex

[∫ τa∧τn

0

e−2ruf(Xu, θu)du
]

=: inf
h∈H

V (x, h), (3.114)

where

V (x, h) = inf
τ≤τa,h1∈Hτm

lim sup
n↑∞

Ex

[∫ τ∧τn

0

e−2ruf(Xu, h)du+ e−2r(τ∧τn)M̂n(Xτ∧τn , h1)

]
,

(3.115)

and
M̂n(x, ζ) := Ex

[∫ τa∧τn

0

e−2ruf(Xu, ζ)du
]
, ζ ∈ R, x ∈ I. (3.116)

First, we show that limn↑∞ M̂n(x, ζ) = ∞ for all ζ 6= 0. Then we will use it to argue that the
infimum in (3.115) is attained for h1 ≡ 0.

For each n > a and x ∈ (a, n) we have

Ex

[∫ τa∧τn

0

e−2ruf(Xu, ζ)du
]

(3.117)

= ζ2Ex

[∫ τa∧τn

0

e−2ruσ2X2
udu
]
− 2ζEx

[∫ τa∧τn

0

e−2ruP ′(Xu)σ
2X2

udu
]

+ Ex

[∫ τa∧τn

0

e−2ru(P ′(Xu))
2σ2X2

udu
]
.

67



3.6 Remarks on the role of the upper bound b

The first term on the right-hand side can be written using (3.21) as

Ex

[∫ τa∧τn

0

e−2ruσ2X2
udu
]

(3.118)

= w−1
n

(
ϕn(x)

∫ x

a

ψ(z)σ2z2m′(z)dz + ψ(x)

∫ n

x

ϕn(z)σ2z2m′(z)dz
)
,

where ψ and ϕn are, respectively, the increasing and decreasing fundamental solutions to
(3.18), with boundary conditions ψ(a+) = 0, ψ′(a+) > 0 and ϕn(n−) = 0, ϕ′n(n−) < 0,
while wn is the associated Wronskian. These quantities can be computed explicitly as in (3.20)
and (3.23), and they read

ψ(x) = xq1 − aq1−q2xq2 , ϕn(x) = xq2 − nq2−q1xq1 , wn = ŵ(1− (a/n)q1−q2),

where q2 < 0 < q1 are given in (3.17).
Clearly wn ↑ ŵ and ϕn(x) ↑ xq2 as n → ∞. Then, the first integral on the right-hand

side of (3.118) remains bounded as n → ∞. For the second integral we have, by monotone
convergence,

lim
n→∞

∫ n

x

ϕn(z)σ2z2m′(z)dz =

∫ ∞
x

zq2σ2z2m′(z)dz = +∞,

where the final equality can be easily obtained by recalling the expression ofm′(z) (see, (3.22))
and upon noticing that q2 + d+ 1 > 0. Using the same method one can check that the second
and third terms on the right-hand side of (3.117) remain finite as n → ∞, due to the damping
effect of P ′(x) as x→∞. Then, we have limn↑∞ M̂n(x, ζ) = +∞ unless ζ ≡ 0.

For any τ ≤ τa and h1 ∈ Hτ
m, using M̂n(n, h1) = 0 we obtain

Ex

[∫ τ∧τn

0

e−2ruf(Xu, h)du+ e−2r(τ∧τn)M̂n(Xτ∧τn , h1)

]
= Ex

[∫ τ∧τn

0

e−2ruf(Xu, h)du+ e−2rτM̂n(Xτ , h1)1{τ<τn}

]
.

Since τn ↑ ∞ as n → ∞, f ≥ 0 and M̂n is non-negative and increasing in n, we can apply
monotone convergence theorem to pass the limit under expectation. Hence,

lim sup
n↑∞

Ex

[∫ τ∧τn

0

e−2ruf(Xu, h)du+ e−2rτM̂n(Xτ , h1)1{τ<τn}

]
= Ex

[∫ τ

0

e−2ruf(Xu, h)du+ lim
n↑∞

e−2rτM̂n(Xτ , h1)1{τ<τn}

]
.
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Recalling that limn↑∞ M̂n(x, ζ) = +∞ for ζ 6= 0, we have that the second term above is
infinite unless h1 = 0, Px-a.s. It follows that the infimum in (3.113) must necessarily be
attained for h1 = 0, Px-a.s., and using the tower property we have

lim sup
n↑∞

Ex
[
e−2rτM̂n(Xτ , 0)1{τ<τn}

]
= Ex

[∫ τa

τ

e−2ru(P ′(Xu))
2σ2X2

udu
]

=: Ex
[
e−2rτM(Xτ )

]
.

In light of the above, the hedging problem becomes

V (x, h) = inf
τ≤τa

Ex

[∫ τ

0

e−2ruf(Xu, h)du+ e−2rτM(Xτ )

]
.

In this case, we have

G(x, h) = (L − 2r)M(x) + f(x, h) = σ2x2h(h− 2P ′(x)),

and it is easy to check that, for each h ∈ H, the map x 7→ G(x, h) has a unique root xG =

xp(h/2) on (a,∞) (see (3.64)). It follows that G(x, h) < 0 for x ∈ (a, xG) and G(x, h) > 0

for x > xG. By the same argument as in the proof of Proposition 3.3.10 we have that Ch =

(a, x∗h) for some x∗h ≥ xG that can be found explicitly by solving an analogue of (3.73). The
corresponding optimal hedging strategy prescribes to clear the stock position (i.e., h∗1 ≡ 0) as
soon as the stock price Xt enters the interval [x∗h,∞).

3.6.2 Non-zero mean tracking error

We can formulate the problem directly with the random time horizon τI = τa. With the same
notation as in Section 3.6.1, here we want to solve

V(x) = inf
(τ,θ)∈A∞x

Varx
[
e−rτa

(
Πτ,θ
τa − P (Xτa)

)]
,

and we will indeed produce explicit solutions.
Consider an admissible strategy

τ = 0 and h1 = P (a)a−1,

i.e., the rebalancing is immediate at t = 0 and the bond holding after the trade is m̄ =

P (x)−h1x. The discounted portfolio value associated to the above strategy is Π̂t := e−rtΠt =

P (a)a−1e−rtXt + m̄. Using (3.111) and (3.112) the tracking error at time τa is deterministic
and amounts to

e−rτa
(
Πτa − P (Xτa)

)
= m̄.
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3.6 Remarks on the role of the upper bound b

Hence, the associated variance is zero and the proposed strategy is optimal.
There is, however, a catch: the hedging portfolio under-replicates the claim. Indeed, recall-

ing the expression for m̄ we have

e−rτa
(
Πτa − P (Xτa)

)
= m̄ = P (x)− (x/a)P (a) < 0, Px-a.s.,

for all x > a, where we used that P (x) < P (a).
One can, however, construct a strategy with a non-negative tracking error (the portfolio

value Πτa dominates P (Xτa), Px-a.s.), but with non-zero variance. This strategy prescribes to
initially take a position h = P ′(a) in stocks (recall that P ′(a) < 0 so this is short-selling), and
buy m0 = P (x)−hx bonds. We will show that, on the one hand, if the stock price approaches
the boundary a, the value of this portfolio grows and allows us to rebalance to a perfect hedge
for the boundary a. On the other hand, if the stock price diverges to ∞ before rebalancing,
the discounted portfolio value converges to m0 thanks to (3.111); it follows from h < 0 and
P (x) > 0 that m0 > 0, so the tracking error is non-negative as required.

Before rebalancing the hedging portfolio evolves according to ertm0 + hXt. We choose
the rebalancing time so that a perfect hedge can be constructed. We set

τ = τ ∗ := inf
{
t ≥ 0 : ertm0 + hXt = XtP (a)a−1

}
, (3.119)

and h1 = P (a)a−1 so that the whole portfolio wealth ertm0 + hXt is invested in stocks. The
strategy is clearly self-financing and in order to show that it provides a hedge we first show
that τ ∗ < τa, Px-a.s., i.e., the rebalancing occurs before hitting the boundary a.

First of all the stopping time τ ∗ can be rewritten as the first time the discounted stock price
X̂t := e−rtXt falls below a certain threshold:

τ ∗ = inf

{
t ≥ 0 : X̂t ≤

m0

a−1P (a)− h

}
.

Using that a−1P (a) > x−1P (x) for all x > a by the monotonicity of y 7→ P (y), we have

m0

a−1P (a)− h
=
x−1P (x)− h
a−1P (a)− h

x < x = X̂0 = X0.

Therefore τ ∗ > 0, Px-a.s. Since the mapping y 7→ P (y) − hy is strictly increasing for y > a

(because P ′(y) > P ′(a) = h) we also have

P (x)− hx
a−1P (a)− h

=
P (x)− hx
P (a)− ha

a > a,
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so that X̂t = (P (x) − hx)/(a−1P (a) − h) implies Xt > a and therefore τa > τ ∗, Px-a.s., as
needed.

Denoting by Πt the portfolio value, we have Πτa = P (a) on {τa <∞}. Using (3.111) and
(3.112) the discounted tracking error at time τa amounts to

e−rτa
(
Πτa − P (Xτa)

)
= e−rτa

(
Πτa − P (Xτa)

)
1{τ∗=∞} = m01{τ∗=∞}, Px-a.s.

Hence, neither the associated variance nor the expectation is zero but the portfolio value dom-
inates the payoff at time τa.

The hedging strategies obtained in Section 3.6.2 seem economically unintuitive as they
prescribe to take a long position in the stock and null investment in bonds after the rebalance.
It should be clear that this is a mathematical artefact due to the infinite-time horizon.

3.7 Numerical comparisons

We assess the performance of our optimal hedging strategy against the performance of ad-
hoc strategies inspired by those often used in practice (see [130, Ch. 6]). The quality of each
strategy is measured in terms of the variance of the tracking error at τI .

We consider five hedging strategies:

(Strategy 1) Our optimal strategy (θ∗, τ ∗).

(Strategy 2) Start with an initial stock holding θ0 = P ′(x) and rebalance at the stopping time

ζ := inf
{
t ≥ 0 : Xx

t /∈
(

1
2
(a+ x), 1

2
(b+ x)

)}
,

with the classical Delta hedge θζ = P ′(Xx
ζ ); then hold until τI .

(Strategy 3) Start with an initial stock holding θ0 = P ′(x) and rebalance when the Delta of
the current stock price leaves a certain region. That is, let

ρ := inf
{
t ≥ 0 : P ′(Xx

t ) /∈
(

1
2
(P ′(a) + P ′(x)), 1

2
(P ′(b) + P ′(x))

)}
,

and rebalance at ρ with the classical Delta hedge θρ = P ′(Xx
ρ ); then hold until τI .

(Strategy 4) Start with θ0 = Γ(x) and hold the same amount of stock until τI .

(Strategy 5) Start with θ0 = P ′(x) and hold the same amount of stock until τI .
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3.7 Numerical comparisons

Figure 3.7: A simulation of stock price and the optimal hedging strategy 1 using parameters
r = 3%, σ = 30%, K = 100, a = 90, x = 100, b = 130.

An illustration of Strategy 1, which is the optimal one from our analysis, is given in Figure
3.7. Strategies with fixed thresholds, like Strategy 2 and 3 above, are popular in the finance
sector (see [130, p. 95]) and have an intuitive meaning: the trader makes the portfolio Delta-
neutral when the underlying stock price or the associated Delta diverge by a ‘fixed amount’
from their initial values. Such an ‘amount’ of course can be chosen in several different ways;
here we only display results for the specific choices made above. However, other specifications
of the intervals in the stopping rules ζ and ρ give results qualitatively consistent with those
presented in this section.

Strategies 4 and 5 are so-called static hedging strategies. In Strategy 4 the static hedging
is optimal in the sense that Γ(x) minimises the variance of the tracking error when no other
rebalancing is allowed.

We evaluate the performance of these five strategies by conducting three experiments: we
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Figure 3.8: Sample variance of the hedging error for different values of X0, with parameters
as in (3.120).

calculate the sample variance of tracking error with different values of initial stock price X0,
volatility σ and upper re-assessment boundary b, respectively, when other parameters are fixed.
In all experiments, the estimates are based on the same N = 1000 sample paths of the stock
price and model parameters are fixed as

r = 3%, σ = 30%, K = 100, X0 = 100, a = 90, b = 110. (3.120)

For the first experiment we consider 10 different values for the initial stock priceX0 evenly
spaced in the interval

[91, 109]

with all other parameters fixed as in (3.120). As shown in Figure 3.8 and Table 3.1, the variance
of the tracking error for Strategy 1 is at least 40% lower than the variance for the dynamic
strategies 2 and 3, and at least 15% lower than the variance for the static hedging strategies 4
and 5. It is worth noticing that the static strategy 4 outperforms the dynamic strategies 2 and 3.

In the second experiment, we take 10 values of the volatility σ evenly spaced in the interval

[20%, 40%]

with all other parameters fixed as in (3.120). Results are shown in Figure 3.9 and Table 3.2.
Our optimal strategy (Strategy 1) produces the variance of the tracking error which is about
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Table 3.1: Sample variance of the hedging error (%) for different values of X0 with parameters
as in (3.120).

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

X0 = 91 0.29 1.23 1.20 0.58 2.04
X0 = 93 0.98 2.55 2.49 1.61 3.44
X0 = 95 1.38 3.37 3.22 2.13 3.53
X0 = 97 1.69 3.35 3.26 2.26 2.63
X0 = 99 1.91 3.39 3.42 2.27 2.29
X0 = 101 1.72 2.93 2.98 2.17 2.21
X0 = 103 1.42 2.77 2.79 2.00 2.64
X0 = 105 1.28 2.50 2.62 1.88 2.85
X0 = 107 0.91 2.38 2.55 1.42 3.04
X0 = 109 0.41 0.99 1.01 0.68 1.60

30 − 40% lower than the variance for strategies 2 and 3, and about 15 − 20% lower than the
variance for strategies 4 and 5. The relative gap between different strategies does not vary
significantly as the volatility changes. Strategies 4 and 5 produce almost the same results; this
happens because X0 is taken as the middle point in (a, b) and therefore the difference between
P ′(X0) and Γ(X0) is very small (for example, when σ = 31.11% we have P ′(100) = −0.2110

and Γ(100) = −0.2115). Strategies 2 and 3 also give very similar results, but they are out-
performed by the static strategies.

The steep decline of all graphs in Figure 3.9 may seem at odds with the intuition that a high
volatility corresponds to a risky trading environment. However, a high volatility also causes
the option price to change slower as a function of the stock price: the difference P (a)− P (b)

is above 0.14 for σ = 20% and less than 0.05 for σ = 40%. A larger volatility makes the
tracked values closer to each other and, hence, the tracking problem easier. This intution was
confirmed by extensive numerical studies with representative results for in-the-money and out-
of-the-money options displayed on Figure 3.10.

The third experiment studies the effect of the upper boundary b. We take 10 values of b
evenly spaced in the interval

[105, 150]

with all other parameters fixed as in (3.120). The results are displayed in Figure 3.11 and
Table 3.3. For values of b close to X0, the variance of the tracking error for all strategies is

74



3.7 Numerical comparisons

V
ar

ia
nc

e 
(%

)

Figure 3.9: Sample variance of the hedging error for different values of σ with parameters as
in (3.120).

low because the stock price leaves the interval (a, b) quickly. Observe that when b is large,
the dynamic optimal strategy 1 produces the variance which is 40% lower than the second
best (Strategy 4). This gap shrinks to about 20% when b is small. This indicates that both
dynamic hedging and optimisation are important when one of the re-assessment boundaries is
far away fromX0. Quite remarkably, in all the above experiments, the optimised static hedging
(Strategy 4) gives a smaller variance of the tracking error than strategies 2 and 3, despite the
fact that the latter two allow for one rebalancing opportunity.
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Figure 3.10: Sample variance of the hedging error (%) for different values of σ with parameters
r = 3%,K = 100 and deep out-of-the-money option (left panel) and deep in-the-money option
(the right panel).

Table 3.2: Sample variance of the hedging error (%) for different values of σ with parameters
as in (3.120).

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

σ = 20.00% 6.48 11.10 11.03 8.03 8.03
σ = 22.22% 4.68 8.21 8.14 5.74 5.78
σ = 24.44% 3.55 5.98 6.17 4.49 4.50
σ = 26.67% 3.05 4.78 4.82 3.58 3.57
σ = 28.89% 2.77 4.00 4.20 3.38 3.38
σ = 31.11% 1.71 3.07 3.05 1.98 1.98
σ = 33.33% 1.30 2.09 2.09 1.58 1.58
σ = 35.56% 1.26 2.08 2.14 1.49 1.50
σ = 37.78% 0.94 1.55 1.58 1.20 1.20
σ = 40.00% 0.76 1.28 1.29 0.93 0.94
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Figure 3.11: Sample variance of the hedging error for different values of b with parameters as
in (3.120).

Table 3.3: Sample variance of the hedging error (%) for different values of b with parameters
as in (3.120).

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

b = 105 0.51 1.12 1.14 0.66 0.88
b = 110 1.84 3.10 3.21 2.20 2.20
b = 115 4.12 7.40 7.24 5.29 5.65
b = 120 5.85 13.26 13.06 8.11 10.03
b = 125 9.45 22.75 21.14 14.04 20.21
b = 130 13.23 35.68 32.63 20.69 33.07
b = 135 18.91 45.82 40.91 29.04 51.60
b = 140 21.58 68.40 61.91 38.00 72.40
b = 145 29.38 94.32 76.60 48.59 98.58
b = 150 37.14 111.93 106.53 68.92 127.93
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Chapter 4

The American put with finite-time
maturity and stochastic interest rate

4.1 Introduction
1Pricing of American options is a classical problem in mathematical finance which has at-
tracted continuous attention since the initial work of McKean in 1965 [101]. Its study has also
become a benchmark for methodological developments of optimal stopping theory and the as-
sociated free boundary problems. In this chapter we contribute to this strand of research by
studying the American put option on a Black and Scholes market with a stochastic interest rate
and finite-time maturity. The stock price and the interest rate are driven by (possibly) corre-
lated Brownian motions. We assume the interest rate dynamics either follows the CIR model,
or more generally has time independent and Lipschitz continuous coefficients.

American option pricing with stochastic interest rates has already attracted a lot of atten-
tion in the literature, mainly focussing on approximations and numerical methods. Lattice
(tree) based methods are employed by Appolloni, Caramellino and Zanette [6] to price options
in Black and Scholes model with CIR interest rate dynamics and by Battauz and Rotondi [12]
in a model with Vasicek interest rates. Geske and Johnson’s ([73]) approximation of discretely
exercised American options prices is adapted by Ho, Stapleton and Subrahmanyam [78] and
Chung [35] to a class of stochastic interest rate models that lead to log-normally distributed
bond prices. An alternative approximation is provided by Menkveld and Vorst [104]. A frame-
work for option pricing with Heath, Jarrow, Morton’s [77] bond market model is developed

1The results from this chapter form part of the article [26], which is currently under review.
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by Amin and Jarrow [5] with a binomial-tree-based implementation of pricing of foreign ex-
change options performed in Amin and Bodurtha [4].

Hedging underlies the success of mathematical finance in derivatives markets. A rigorous
theory that links hedging of American options with solutions of optimal stopping problems
was initiated by Bensoussan [15] using PDE methods and extended by Karatzas [86] to more
general models and payoffs thanks to the martingale theory of optimal stopping. A hedg-
ing strategy for an American option consists of an investment portfolio and a non-decreasing
cumulative consumption process which increases only when the state-time process is in the
stopping set. As shown in Chapter 2 Section 2.3.1, in the Black and Scholes model with con-
stant interest rate, the classical Delta hedge is known to replicate the option. Our work seems
to be the first to rigorously derive the hedging strategy for American put options on a market
with a stochastic interest rate. This is accomplished thanks to the C1-regularity of the value
function that we are able to prove and which did not appear in previous works.

A characterisation of an optimal stopping boundary as solution to a (system of) integral
equations has been known since the earliest works (see Van Moerbeke [133]). In more recent
works [33, 80, 89, 107] the stopping boundary for the classical Black and Scholes market with
constant interest rate is shown to be the unique solution to an uncountable system of integral
equations arising from the early exercise premium decomposition of the option price. A break-
through came with the work of Peskir [111] where he shows that the stopping boundary is
the unique continuous solution of a single integral equation. The key observation in [111]
is that the integral equation only needs to be satisfied for stock prices at the boundary while
earlier results required that it does so for all stock prices at and below the boundary. Peskir’s
[111] integral equation opens doors to side-stepping the computation of the value function
in the process of determining the optimal exercise strategy; see numerical methods designed
in [90, 98]. Our work extends Peskir’s [111] results to the market with a stochastic interest
rate and the optimal boundary being a two-dimensional surface. It is also the continuity of
the boundary that allows us to establish the uniqueness of solutions to the integral equation.
A closely related paper that furthermore motivated our numerical approach is [46] where the
authors solve an integral equation for Black and Scholes market with stochastic volatility.

The regularity of the value function in one-dimensional optimal stopping problems is often
phrased as smooth-fit. In Chapter 2 Section 2.3 and Chapter 3 Section 3.3.4, we have illustrated
the importance of the smooth-fit in uniquely determining explicit solutions to the optimal stop-
ping problems. In a Black and Scholes model with constant interest rate, as stated in Theorem
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2.3.2, the smooth-fit for American options with finite-time maturity is understood as continu-
ous differentiability of the value function with respect to the stock price, for each fixed value
of the time variable. That is a “directional” derivative and continuity is only considered with
respect to one variable. Sobolev space regularity is studied in [82] for American options on
multiple assets and deterministic, time-dependent discount rate under the assumption of uni-
form ellipticity of the associated second order differential operator. By Sobolev embedding it
is possible to determine continuous differentiability of the value function with respect to the
initial values of all the assets but not with respect to time. Continuous differentiability with
respect to time and stock price for the value of the American put with finite-time maturity and
constant interest rate is obtained in [42] along with other complementary findings about con-
tinuous differentiability of the value function for a large class of optimal stopping problems. In
this chapter, we refine the arguments from [42] removing global integrability conditions that
may not hold in our set-up.

The early exercise premium formula for American options is studied in great generality, in
non-Markovian problems beyond the setting of the American put option by Rutkowski [124]
with methods from martingale theory. The nature of the methods employed in [124] to derive
their main results is such that the emphasis is removed from the optimal boundary, which in
fact only appears in specific examples ([124, Sec. 3]) as a time-dependent function. Here
instead we derive the early exercise premium formula starting from the analysis of the optimal
boundary (and its regularity) as a function of time and one stochastic factor from our two-factor
model.

Rutkowski’s work [124] is later applied by Detemple and Tian [45], who study the pricing
of American call options in a general diffusive model with a d-dimensional Brownian motion.
They formulate assumptions under which there is a single exercise surface but without proving
its continuity. In a Black and Scholes market model with Vasicek interest rates, they justify
the existence of the optimal exercise boundary for the American call option. Using the general
early exercise premium formula in [124], they show that this exercise boundary solves an
integral equation of the same form as in this chapter. However, the uniqueness of the solution
to this integral equation is not discussed. To numerically compute the solution, they truncate
the domain of the interest rate and use step functions to approximate the exercise boundary. In
section 4.9, we will use a different method based on Picard iteration to compute the exercise
boundary for the American put option with Vasicek interest rates.

This chapter is structured as follows. Section 4.2 introduces the market model, main as-
sumptions and notation. In Sections 4.3 and 4.4, under the sole Assumption 4.2.1, we establish
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continuous differentiability of the value function v(t, r, x) (jointly in all variables), along with
its monotonicity in (t, r, x) and convexity in x. We also prove the existence and monotonicity
of an optimal exercise boundary and present two possible parametrisations of it. Then, in Sec-
tions 4.5—4.8, under a mild additional assumption on α and β (Assumption 4.5.1) we derive
continuity of the optimal exercise boundary (as a function of two variables) and an integral
equation that uniquely determines it (also under Assumption 4.5.3). We also obtain the early
exercise premium formula for the option price and the hedging portfolio that replicates the
option’s payoff at all times. Finally, a numerical study with interest rates following Vasicek
model is presented in Section 4.9 along with a sensitivity analysis.

4.2 Problem formulation

Let (Ω,F ,P) be a complete probability space carrying two correlated Brownian motions
(Bt)t≥0 and (Wt)t≥0 with E(WtBt) = ρ t for all t ≥ 0 and a fixed ρ ∈ (−1, 1) (here E( · )
is the expectation under P). We denote by (Ft)t≥0 the filtration generated by (B,W ) aug-
mented with the P-null sets. On this probability space we consider a financial market with
one risky asset (Xt)t≥0 and a bond. The asset and the risk-free (short) rate (rt)t≥0 take values,
respectively, in intervals R+ := (0,∞) and I ⊆ R, and follow the dynamics

dXt = rtXtdt+ σXtdBt, X0 = x, (4.1)

drt = α(rt)dt+ β(rt)dWt, r0 = r, (4.2)

with α, β : I → R specified below. The probability measure P is a risk neutral measure for
this market. We denote by T > 0 a fixed finite trading horizon.

Throughout the chapter we assume σ > 0 and I = (r, r) (with I possibly unbounded). The
right boundary r is unattainable in a finite time (it is a natural or entrance-not-exit boundary).
The left boundary r is either unattainable or reflecting. It will become clear later that the exact
behaviour of the interest rate process at this boundary is irrelevant for the majority of results
and their proofs. For the dynamics of the interest rate our benchmark example is the CIR
model, but, with a relatively small additional effort, our results cover other stochastic interest
rate models, e.g., Vasicek model. Therefore, we make the following standing assumption:

Assumption 4.2.1. The coefficients α and β in (4.2) meet one of the conditions below:

(i) (CIR model) For κ, θ, γ > 0 we have α(r) = κ(θ − r) and β(r) = γ
√
r.
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(ii) α and β are globally Lipschitz and continuously differentiable on bounded subsets of I
with β(r) > 0 for all r ∈ I, and r > 0 ≥ r. For any compact set K ⊂ I, and any
p ∈ [1, p′] for some p′ > 2 and T > 0, there is C1 > 0 (depending on T , p and K) such
that

sup
r∈K

E

[
sup

0≤s≤T
e−p

∫ s
0 rudu

∣∣∣r0 = r

]
≤ C1. (4.3)

The assumption that r > 0 cannot be relaxed without trivialising the pricing problem. A
strictly positive lower boundary r could, however, be of interest. For the clarity of presentation,
it is omitted but it can be studied with similar methods as those developed in this chapter.

The above assumptions are sufficient to guarantee that (4.2) admits a unique strong solution
defined on I. In the case of CIR model, we also have κθ > 0 which implies that the spot rate is
non-negative (but not necessarily strictly positive), see e.g. [83, Sec. 6.3.1], so the left boundary
r = 0 is reflecting (also non-attainable if κθ > σ2/2). Hence, the bound (4.3) is satisfied with
the constant C1 = 1. The linear growth of α and β in (4.2) guarantees that for each p ≥ 2 there
is C2 > 0 only depending on T and p, such that [93, Thm. 2.5.9]

E
[

sup
0≤s≤T

|rs|p
∣∣ r0 = r

]
≤ C2(1 + |r|p), for r ∈ I. (4.4)

Under Assumption 4.2.1, the solution of (4.1) may be expressed as

Xt = x exp

(
σBt +

∫ t

0

(
rs − σ2

2

)
ds

)
, for t ≥ 0, (4.5)

so that X depends on both initial values r and x. On the contrary, the dynamics of the interest
rate does not depend on the initial asset value. The coupling between the processes (rt)t≥0 and
(Xt)t≥0 stems from formula (4.5) and the correlation between the Brownian motions. To keep
track of the dependence of the processes on their initial values, in what follows we often use the
notation (rrt , X

r,x
t )t≥0 for the process started at rr0 = r and Xr,x

0 = x. Also we may sometimes
use the notation Pt,r,x( · ) = P( · |rt = r,Xt = x), Pr,x = P0,r,x, and Pr( · ) = P( · |r0 = r).

The rational price of an American put option with maturity time T , strike price K > 0,
written on the asset X and evaluated at time t ∈ [0, T ] is given by

v(t, r, x) = sup
0≤τ≤T−t

Er,x

[
e−

∫ τ
0 rtdt

(
K −Xτ

)+
]
, (4.6)

where r ∈ I and x ∈ R+ are, respectively, the values of the spot rate and of the asset at time t,
the function ( · )+ denotes the positive part and the optimisation runs over all (Ft)t≥0-stopping
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times bounded by T − t. The above is an optimal stopping problem with Markovian structure
and a 3-dimensional state space.

Since the process

t 7→ e−
∫ t
0 rsds

(
K −Xt

)+

(4.7)

is non-negative and continuous, and thanks to the integrability condition (4.3), we can rely on
standard optimal stopping theory (see, e.g., [88, Appendix D]) to conclude that the smallest
optimal stopping time for (4.6) is Pr,x-a.s. given by

τ∗ := inf{s ≥ 0 : v(t+ s, rs, Xs) = (K −Xs)
+}, (4.8)

where we note that τ∗ ≤ T − t since v(T, r, x) = (K − x)+. Clearly τ∗ = τ∗(t, r, x) depends
on the initial value (t, r, x) of the 3-dimensional state process (t+ s, rs, Xs)s≥0.

The form (4.8) of τ ∗ gives rise to the so-called continuation set C and its complement, the
stopping set D, that is

C := {(t, r, x) ∈ [0, T ]× I × R+ : v(t, r, x) > (K − x)+}, (4.9)

D := {(t, r, x) ∈ [0, T ]× I × R+ : v(t, r, x) = (K − x)+}. (4.10)

Upon observing the spot rate and the asset value, at each time the option holder must decide
whether to hold the option or to exercise it. She should wait (possibly trading the option on the
market) if (t, rt, Xt) ∈ C since the option value is strictly larger than the payoff of immediate
exercise. On the contrary, if (t, rt, Xt) ∈ D the option should be immediately exercised. Notice
that

{T} × I × R+ ⊆ D.

Remark 4.2.2. Setting

Ds := exp
(
−
∫ s

0

rudu
)
, Vs := v(t+ s, rs, Xs) and Ys := DsVs

(i.e., Y is the discounted option value process), we have that [88, Appendix D]

(Ys)s∈[0,T−t] is a right-continuous Pr,x-supermartingale, (4.11)

(Ys∧τ∗)s∈[0,T−t] is a right-continuous Pr,x-martingale. (4.12)

We will soon show (Proposition 4.3.3) that v is a continuous function, so that Y is a continuous
process.
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Notation. We set

O := [0, T )× I × R+, (4.13)

and denote by ∂C the boundary of C in O, i.e., ∂C := (C ∩ O) \ C.
For future frequent use we denote by L the infinitesimal generator of (rt, Xt)t≥0, which,

for any f ∈ C2(I × R) reads

Lf :=
σ2x2

2
fxx +

β2(r)

2
frr + ρσxβ(r)frx + rxfx + α(r)fr, (4.14)

where fr, fx and frr, frx, fxx denote, respectively, the first and second order partial derivatives
of f .

4.3 Optimal stopping boundary

In the classical Black and Scholes model with constant interest rate, the stopping set is deter-
mined by a boundary: it is optimal to exercise the option the first time when the stock price
drops below this boundary. A similar characterisation of the stopping region D can be de-
rived in our model with the difference that the stopping boundary is a surface. To this end, we
research monotonicity properties of the value function.

Proposition 4.3.1. The value function v is finite for all (t, r, x) ∈ O and it satisfies the follow-
ing conditions:

(i) t 7→ v(t, r, x) is non increasing for all (r, x) ∈ I × R+,

(ii) r 7→ v(t, r, x) is non increasing for all (t, x) ∈ [0, T ]× R+,

(iii) x 7→ v(t, r, x) is convex and non increasing for all (t, r) ∈ [0, T ]× I.

Proof. Finiteness of v follows by (4.3) and boundedness of the put payoff. Monotonicity in (i)

is also a trivial consequence of the fact that the discounted put payoff is independent of time.
For (ii) we argue as follows: since r 7→ rrt is increasing P-a.s. for all t ∈ [0, T ] (by uniqueness
of the trajectories) we get, for any ε > 0

v(t, r + ε, x) = sup
0≤τ≤T−t

E

[(
Ke−

∫ τ
0 rr+εt dt − xeσBτ−

σ2

2
τ
)+
]

≤ sup
0≤τ≤T−t

E

[(
Ke−

∫ τ
0 rrt dt − xeσBτ−

σ2

2
τ
)+
]

= v(t, r, x)
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where we took the discounting inside the positive part and used (4.5).
Finally, monotonicity in (iii) is a simple consequence of monotonicity of (4.5) with respect

to x and the fact that x 7→ (K − x)+ is decreasing. Convexity also follows by standard
arguments: fix λ ∈ (0, 1), take x and y in R+ and denote xλ := λx+(1−λ)y. By the convexity
of the put payoff, using thatXr,xλ = λXr,x+(1−λ)Xr,y and that sup(f+g) ≤ sup f+sup g,
it is not hard to verify that v(t, r, xλ) ≤ λv(t, r, x) + (1− λ)v(t, r, y).

The monotonicity in t and x and the convexity in x is the same as in the classical Black and
Scholes model and the proof is very similar. The dependence on r has financial explanation:
larger interest rate implies stronger discounting of future cash flows and, hence, lower present
value.

Remark 4.3.2. In the case T = +∞ (perpetual option) the discounted payoff process (4.7) is
still uniformly integrable and continuous. This implies that, letting v∞ denote the value of the
perpetual option, the stopping time

τ∞ = inf{t ≥ 0 : v∞(rt, Xt) = (K −Xt)
+}

is optimal by standard theory and (4.11)–(4.12) continue to hold in this setting (see, e.g., [128,
Ch. 3, Thm. 3]).

Moreover, the proof of Proposition 4.3.1 can be repeated step by step, upon also noticing
that

X̃t := e−
∫ t
0 rsdsXt , t ≥ 0

is a continuous martingale with limt→∞ X̃t = 0, P-a.s. So r 7→ v∞(r, x) is non-increasing and
x 7→ v∞(r, x) is convex and non-increasing.

From the general optimal stopping theory we expect that the value function v be continu-
ous. In our case, we can show that v is actually locally Lipschitz as presented in Proposition
4.3.3 (without relying on the form of the stopping set).

Proposition 4.3.3. (Lipschitz continuity). For any compact K ⊂ O there exists a constant
LK > 0 such that

|v(t1, r1, x1)− v(t2, r2, x2)| ≤ LK
(
|t1 − t2|+ |r1 − r2|+ |x1 − x2|

)
(4.15)

for all (t1, r1, x1) and (t2, r2, x2) in K.

Proof. We look separately at Lipschitz continuity in the three variables. Arguments for r and
x are quite standard while the main argument for the Lipschitz continuity in t goes back to [82,
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Thm. 3.6]. However, in our framework the interest rate is random and the coefficients of the
underlying process are state dependent, which results in some additional difficulties.

Continuity in x. Fix (t, r) ∈ [0, T )× I and take x1 ≤ x2 in R+. Let τ1 := τ∗(t, r, x1) and
note that it is admissible for v(t, r, x2). Using Proposition 4.3.1(iii), the explicit expression for
Xr,x in (4.5) and the Lipschitz property of the put payoff, we get

0 ≤ v(t, r, x1)− v(t, r, x2) ≤ E
[
e−

∫ τ1
0 rrsds

(
(K −Xr,x1)+ − (K −Xr,x2)+

)]
≤ E

[
eσBτ1−

σ2

2
τ1
]
(x2 − x1) = (x2 − x1),

where in the last equality we used Doob’s optional sampling theorem.

Continuity in r. Fix (t, x) ∈ [0, T ) × R+ and take r1 ≤ r2 in I such that (t, r1, x) ∈ K.
Denote, for simplicity, r1 := rr1 and r2 := rr2 and notice that r2

t ≥ r1
t for all t ≥ 0 P-a.s. Set

τ1 := τ∗(t, r1, x). From Proposition 4.3.1(ii) and simple estimates we obtain

0≤v(t, r1, x)−v(t, r2, x)≤KE
[
e−

∫ τ1
0 r1sds−e−

∫ τ1
0 r2sds

]
=KE

[
e−

∫ τ1
0 r1sds

(
1−e−

∫ τ1
0 (r2s−r1s)ds

)]
≤ KE

[
e−

∫ τ1
0 r1sds

∫ τ1

0

(r2
s − r1

s)ds
]
.

(4.16)
To complete the proof we consider separately cases (i) and (ii) in Assumption 4.2.1. Let us
start with (i): using that r1

t ≥ 0 for t ≥ 0, and the explicit form of the SDE in the CIR model,
we get

E
[
e−

∫ τ1
0 r1sds

∫ τ1

0

(r2
s − r1

s)ds
]
≤
∫ T−t

0

E
[
r2
s − r1

s

]
ds

=

∫ T−t

0

E
[
(r2 − r1) +

∫ s

0

κ(r1
u − r2

u)du
]
ds ≤ (T − t)(r2 − r1),

where we have used the integral equation for (rt) and that r2
t ≥ r1

t .
If Assumption 4.2.1(ii) holds instead, we apply Hölder inequality:

E
[
e−

∫ τ1
0 r1sds

∫ τ1

0

(r2
s − r1

s)ds
]
≤
(
E
[
e−2

∫ τ1
0 r1sds

]) 1
2
(
E
[( ∫ T−t

0

(r2
s − r1

s)ds
)2]) 1

2
(4.17)

≤ C
1/2
1

(
(T − t)

∫ T−t

0

E
[
(r2
s − r1

s)
2
]
ds
) 1

2
,

where C1 > 0 is the constant from (4.3) which depends on K. To conclude it is sufficient to
use moment estimates for SDEs [93, Thm. 2.5.9] which guarantee that

E

[
sup

0≤s≤T
(r2
s − r1

s)
2

]
≤ c′(r2 − r1)2 (4.18)
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for some c′ > 0 only depending on T and the coefficients in (4.2).

Continuity in t. For t ∈ [0, T ), define rT−tu := ru(T−t) and XT−t
u := Xu(T−t) for u ∈ [0, 1].

The couple (rT−tu , XT−t
u )u∈[0,1] is a strong solution to (see, e.g., [11, Ch. 1, Prop. 8.6])

dXT−t
u = (T − t)rT−tu XT−t

u du+ σXT−t
u dB̃u, XT−t

0 = x,

drT−tu = (T − t)α(rT−tu )du+ β(rT−tu )dW̃u, rT−t0 = r,

where (B̃u, W̃u)u∈[0,1] := (Bu(T−t),Wu(T−t))u∈[0,1]. Using these processes, we can rewrite (4.6)
as

v(t, r, x) = sup
0≤θ≤1

Er,x

[
exp

{
− (T − t)

∫ θ

0

rT−tu du
}(
K −XT−t

θ

)+
]
, (4.19)

where for any (Fs)s≥0-stopping time τ in [0, T − t] the random variable θ := τ/(T − t) is an
(Fu(T−t))u∈[0,1]-stopping time.

Since the process (Bu(T−t),Wu(T−t))u∈[0,1] is identical in law to

(
√
T − tBu,

√
T − tWu)u∈[0,1],

with a slight abuse of notation we can identify (rT−tu , XT−t
u )u∈[0,1] with the unique strong solu-

tion of

dXT−t
u = (T − t)rT−tu XT−t

u du+
√
T − tσXT−t

u dBu, XT−t
0 = x, (4.20)

drT−tu = (T − t)α(rT−tu )du+
√
T − tβ(rT−tu )dWu, rT−t0 = r, (4.21)

and take stopping times θ ∈ [0, 1] in (4.19) with respect to the filtration (Ft) generated by
(B,W ). In what follows we denote by θ∗ = θ∗(t, r, x) an optimal stopping time for (4.19).

Fix now 0 ≤ t1 < t2 < T and set r1 := rT−t1 , r2 := rT−t2 . Let θ1 := θ∗(t1, r, x) and for
i = 1, 2 denote also

Ri
u = (T − ti)

∫ u

0

risds and X̂T−t
u = exp

(√
T − t σBu − (T − t)σ

2

2
u
)
,

so that XT−ti
u = xe−R

i
uX̂T−ti

u . We remark that θ1 is also admissible for the problem in (4.19)
and the underlying dynamics (4.20)–(4.21) with t = t2, because it is an (Fs)s≥0-stopping
time in [0, 1]. Indeed the advantage of (4.19) with (4.20)–(4.21) is that the class of admissible
stopping times no longer depends on the initial time t.

Recalling Proposition 4.3.1(i) and using Lipschitz continuity of x 7→ (x)+ we have

0 ≥ v(t2, r, x)− v(t1, r, x) ≥ −Er
[∣∣∣(Ke−R2

θ1 − xX̂T−t2
θ1

)+

−
(
Ke−R

1
θ1 − xX̂T−t1

θ1

)+∣∣∣]
≥ −KEr

[∣∣∣e−R2
θ1 − e−R

1
θ1

∣∣∣]− xE[∣∣X̂T−t1
θ1

− X̂T−t2
θ1

∣∣].
(4.22)
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4.3 Optimal stopping boundary

Let us consider the second term on the right hand side of (4.22). By the fundamental
theorem of calculus and the explicit formula for X̂T−t

E
[∣∣X̂T−t1

θ1
− X̂T−t2

θ1

∣∣] = E
[∣∣∣ ∫ t2

t1

X̂T−t
θ1

(σ2

2
θ1 −

1

2
√
T − t

σBθ1

)
dt
∣∣∣]

≤
∫ t2

t1

E
[∣∣∣X̂T−t

θ1

(σ2

2
θ1 −

1

2
√
T − t

σBθ1

)∣∣∣]dt. (4.23)

For t ∈ (t1, t2), define a measure P̃ by dP̃
dP

:= X̂T−t
1 . Then B̃s = Bs−σs

√
T − t is a Brownian

motion under P̃ and

E
[∣∣∣X̂T−t

θ1

(σ2

2
θ1 −

1

2
√
T − t

σBθ1

)∣∣∣] = Ẽ

[∣∣∣θ1

2
σ2 − σ

2
√
T − t

(B̃θ1 +
√
T − tσθ1)

∣∣∣]

= Ẽ

[∣∣∣ σ

2
√
T − t

B̃θ1

∣∣∣] ≤ (Ẽ[ σ2B̃2
θ1

4(T − t)

])1/2

≤ σ

2
√
T − t

≤ σ

2
√
T − t2

=: c1,

where we applied Hölder inequality and used that θ1 ≤ 1. Inserting the above estimate into
(4.23) gives

E
[∣∣X̂T−t1

θ1
− X̂T−t2

θ1

∣∣] ≤ c1(t2 − t1). (4.24)

Next we address the first term on the right hand side of (4.22). This is performed separately
in cases (i) and (ii) of Assumption 4.2.1. We start by considering case (ii), i.e., α and β in (4.21)
are Lipschitz continuous. Fundamental theorem of calculus and Hölder inequality give

Er
[∣∣∣e−R1

θ1 − e−R
2
θ1

∣∣∣]
≤ Er

[
max
i=1,2

{
e−(T−ti)

∫ θ1
0 riudu

} ∣∣∣(T − t1)

∫ θ1

0

r1
udu− (T − t2)

∫ θ1

0

r2
udu
∣∣∣]

≤ Er

[
max
i=1,2

{
e−(T−ti)

∫ θ1
0 riudu

}(
(t2 − t1)

∣∣∣ ∫ θ1

0

r1
udu
∣∣∣+ (T − t2)

∣∣∣ ∫ θ1

0

(r2
u − r1

u)du
∣∣∣]

≤ 2c2

[
(t2 − t1)

(
Er
[

sup
0≤t≤1

(
r1
t

)2]) 1
2

+ (T − t2)
(
Er

[∫ 1

0

(r2
u − r1

u)
2du

]) 1
2

]
,

(4.25)

where, using (4.3),

c2 := sup
(t,r,x)∈K

(
Er
[

sup
0≤s≤1

e−2(T−t)
∫ s
0 r

T−t
u du

]) 1
2

<∞.

Thanks to (4.4), c3 := sup(t,r,x)∈K

(
Er
[

sup0≤s≤1

(
rT−ts

)2]) 1
2
< ∞, so it remains to estimate

the last term of (4.25). By [93, Thm. 2.5.9] there is a constant c4 depending only on K and the
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Lipschitz constant for α and β in (4.21) such that

Er
[

sup
0≤t≤1

(
r1
t − r2

t

)2
]

≤ c4 Er
[ ∫ 1

0

(
|(T − t1)α(r1

u)− (T − t2)α(r1
u)|2 + |

√
T − t1β(r1

u)−
√
T − t2β(r1

u)|2
)
du
]

≤ c4(t2 − t1)2 Er
[ ∫ 1

0

|α(r1
u)|2du

]
+ c4 (t2 − t1)Er

[ ∫ 1

0

|β(r1
u)|2du

]
,

where for the second inequality we used that
√
T − t1 −

√
T − t2 ≤

√
t2 − t1. Notice that by

(4.4) and the linear growth of α and β

c5 := sup
(r,t,x)∈K

Er
[ ∫ 1

0

|α(rT−tu )|2 + |β(rT−tu )|2du
]
<∞.

Inserting the above estimates into (4.25) we conclude that there is a constant c6 such that for
any (t1, r, x), (t2, r, x) ∈ K

Er
[∣∣∣e−R1

θ1 − e−R
2
θ1

∣∣∣] ≤ c6|t2 − t1|.

This and (4.24) feed into (4.22) so that

0 ≥ v(t2, r, x)− v(t1, r, x) ≥ −c|t2 − t1| (4.26)

for a suitable c > 0 that depends on K.
Finally, we must estimate the first term on the right hand side of (4.22) under the assump-

tion that (rt)t≥0 follows the CIR dynamics (Assumption 4.2.1(i)). Let r̂iu := riu/(T − ti) for
u ∈ [0, 1] and i = 1, 2. The dynamics for r̂i reads

dr̂iu = κ
(
α− (T − ti)r̂iu

)
du+ β

√
r̂iudWu, u ∈ [0, 1]. (4.27)

Since κ(α− (T − t1)r̂) < κ(α− (T − t2)r̂) for r̂ ≥ 0, and r̂1
0 = r/(T − t1) ≤ r/(T − t2) = r̂2

0,
comparison results for SDEs [87, Prop. 5.2.18] imply

r̂1
u ≤ r̂2

u for all u ∈ [0, 1], P-a.s. (4.28)

Using the integral version of (4.27) and the martingale property of the stochastic integral, we
obtain

Er
[
r̂2
u − r̂1

u

]
= r
( 1

T − t2
− 1

T − t1

)
+ Er

[∫ u

0

(
(T − t1)r̂1

s − (T − t2)r̂2
s

)
ds

]
≤ r

t2 − t1
(T − t1)(T − t2)

+ (t2 − t1)

∫ 1

0

Er
[
r̂1
s

]
ds+ (T − t2)

∫ u

0

Er
[
r̂1
s − r̂2

s

]
ds.
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Due to (4.28), the last term is non-positive, so

0 ≤ Er
[
r̂2
u − r̂1

u

]
≤ (t2 − t1)

( r

(T − t1)(T − t2)
+ q1

)
for all u ∈ [0, 1] (4.29)

where

q1 := sup
(t,r,x)∈K

1

T − t

∫ 1

0

Er
[
rT−tu

]
du <∞.

We use the inequalities (4.28)–(4.29) and the property that r̂iu ≥ 0, for i = 1, 2, to obtain
the following estimates

Er
[∣∣∣e−R1

θ1 − e−R
2
θ1

∣∣∣] = Er
[∣∣∣e−(T−t1)2

∫ θ1
0 r̂1udu − e−(T−t2)2

∫ θ1
0 r̂2udu

∣∣∣]
≤ Er

[∣∣∣e−(T−t1)2
∫ θ1
0 r̂1udu − e−(T−t2)2

∫ θ1
0 r̂1udu

∣∣∣]
+ Er

[∣∣∣e−(T−t2)2
∫ θ1
0 r̂1udu − e−(T−t2)2

∫ θ1
0 r̂2udu

∣∣∣]
≤ q1

(
(T − t1)2 − (T − t2)2

)
+ (T − t2)2

∫ 1

0

Er
[
r̂2
u − r̂1

u

]
du

≤ (t2 − t1)
(

2Tq1 + r
T − t2
T − t1

+ q1(T − t2)2
)
≤ c7(t2 − t1),

(4.30)

where the constant c7 > 0 depends only on K but not on a specific choice of t1, t2, r, x. Hence,
as in the case of Assumption 4.2.1(ii), we obtain (4.26).

The continuity of v means that the continuation set C is open and the stopping set D is
closed. In view of the monotonicity properties established in Proposition 4.3.1, we can show
that there is a surface splitting C and D.

Proposition 4.3.4. There exists a function c(t, x) on [0, T ]× [0,∞], such that

D = {(t, r, x) ∈ O : r ≥ c(t, x)} ∪
(
{T} × I × R+

)
, (4.31)

C = {(t, r, x) ∈ O : r < c(t, x)}. (4.32)

The function c(t, x) has following properties:

(i) For any (t0, x0) ∈ [0, T ) × R+, the mapping t 7→ c(t, x0) is right-continuous and non-
increasing and the mapping x 7→ c(t0, x) is left-continuous and non-decreasing.

(ii) c(t, x) = r for (t, x) ∈ [0, T )× [K,∞).

(iii) c(t, x) ≥ 0 for (t, x) ∈ [0, T )× R+, and limx↓0 c(t, x) = 0 for t ∈ [0, T ).
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Proof. The payoff does not depend on (rt) and v is non-increasing in r by Proposition 4.3.1.
Therefore, if (t, r1, x) ∈ D then (t, r2, x) ∈ D for for any r2 > r1. This allows us to represent
the stopping region D via (4.31) with

c(t, x) := inf{r ∈ I : v(t, r, x) = (K − x)+}, (4.33)

with the convention that inf ∅ = r. It is convenient to prove (ii) first.

(ii) Fix (t, r, x) ∈ [0, T ) × I × [K,∞). If we show that Pr,x(Xε < K) > 0 for some
ε ∈ (0, T − t], then v(t, r, x) > 0 = (K − x)+. This means that (t, r, x) ∈ C and c(t, x) = r.
Recall that ρ ∈ (−1, 1) is the correlation coefficient between the Brownian motions B and
W driving the SDEs for X and r, respectively. Then we can write Bt = ρWt +

√
1− ρ2B0

t

for some other Brownian motion B0 independent of W . Letting (FWt )t≥0 be the filtration
generated by W , using the explicit form of the dynamics of X we have

Pr,x(Xε < K)

= Er,x
[
Pr,x(Xε < K|FWε )

]
= Er,x

[
Pr
(

exp
(
σ
√

1− ρ2B0
ε

)
< (K/x) exp

(
− σρWε −

∫ ε

0

rtdt+ σ2

2
ε
)∣∣∣FWε )] (4.34)

= Er,x
[
Ψx

(
σρWε +

∫ ε

0

rtdt− σ2

2
ε
)]
,

where
Ψx(z) := P

(
exp

(
σ
√

1− ρ2B0
ε

)
< (K/x)e−z

)
and the final equality above holds by the independence of B0

ε from FWε and the fact that
(Wε,

∫ ε
0
rtdt) is FWε -measurable. Since ρ ∈ (−1, 1), then Ψx(z) > 0 for any z ∈ R and we

conclude that Pr,x(Xε < K) > 0.

(i) By the monotonicity of v in t, we have (t1, r, x) ∈ D =⇒ (t2, r, x) ∈ D for any
t2 > t1, hence c(t, x) is non-increasing in t.

Fix 0 ≤ x1 < x2 < K and let τ1 := τ∗(t, r, x1) be optimal for v(t, r, x1). Then, using that
Xr,x1 ≤ Xr,x2 and recalling (4.5), we obtain

v(t, r, x2)− v(t, r, x1) ≥E
[
e−

∫ τ1
0 rsds

((
K −Xr,x2

τ1

)+ −
(
K −Xr,x1

τ1

)+
)]

≥E
[
e−

∫ τ1
0 rsds

(
Xr,x1
τ1
−Xr,x2

τ1

)]
=x1 − x2 = (K − x2)+ − (K − x1)+.

Therefore, if (t, r, x1) ∈ C then (t, r, x2) ∈ C, which implies that c(t, x) is non-decreasing in
x.
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Fix arbitrary (t, x) ∈ [0, T ) × R+, let tn ↓ t0 as n → ∞, then c(tn, x) ↑ c(t0+, x) as
n→∞, where the limit exists by the monotonicity of t 7→ c(t, x). Since (tn, c(tn, x), x) ∈ D,
then also (t0, c(t0+, x), x) ∈ D by the closedness of D, hence c(t0+, x) ≥ c(t0, r) which
implies c(t0+, r) = c(t0, r). Taking xn ↑ x0, a similar argument yields c(t, x0−) = c(t, x0).

(iii) Under the CIR model, the positivity follows by the definition of c(t, x). Only under
Assumption 4.2.1 (ii) a proof is required. Assume that there exists (t0, x̂) ∈ [0, T ) × (0, K)

such that c(t0, x̂) < 0. Let 0 > r2 > r0 > r1 > c(t0, x̂) and 0 < x0 < x̂. Define a stopping
time

τ1 = inf{s ≥ 0 : (s, rr0s , X
x0,r0
s ) /∈ [0, T − t0)× (r1, r2)× (0, x̂)}.

By the monotonicity of c(t, x), we have (t0, r0, x0) ∈ D. Hence, τ1 is sub-optimal and

K − x0 = v(t0, r0, x0) ≥ Er0,x0

[
e−

∫ τ1
0 rsds (K −Xτ1)

+
]
≥ KEr0,x0

[
e−

∫ τ1
0 rsds

]
− x0,

(4.35)

where the last inequality follows from the optional sampling theorem and the fact that (K −
Xτ1)

+ ≥ K −Xτ1 . Since Px0,r0(τ1 > 0) = 1 and rs(ω) < r2 < 0 for s ∈ [0, τ1(ω)), we obtain

KEr0,x0

[
e−

∫ τ1
0 rsds

]
− x0 > K − x0,

which, in conjunction with (4.35), leads to a contradiction.
Finally, we show that c(t, 0+) := limx↓0 c(t, x) = 0 for any t ∈ [0, T ). Assume c(t, 0+) ≥

δ > 0 for some t ∈ [0, T ). By the monotonicity of c(t, x) and the openness of C there is
t̂ ∈ [t, T ) such that

[0, t̂)× (r1, r2)× (0,∞) ⊂ C,

where 0 < r1 < r2 < δ. Fix 0 ≤ t0 < t̂ and r0 ∈ (r1, r2). Take an arbitrary x0 > 0. Let

τ2 = inf{s ≥ 0 : (s, rs) /∈ [0, t̂− t0)× (r1, r2)}.

By construction Pr0,x0
(
(t0 + s, rs, Xs) ∈ C for s ≤ τ2

)
= 1, so τ2 ≤ τ∗(t0, r0, x0) Pr0,x0-a.s.

By the martingale property of the value function we obtain

K − x0 < v(t0, r0, x0) = Er0,x0

[
e−

∫ τ2
0 rsdsv (t0 + τ2, rτ2 , Xτ2)

]
≤ KEr0,x0

[
e−r1τ2

]
= KEr0

[
e−r1τ2

]
.

(4.36)

A contradiction is obtained by taking the limit x0 ↓ 0, since Er0 [e−r1τ2 ] is independent of X
and strictly smaller than 1.
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Notice that (ii) and (iii) above imply that it is never optimal to exercise the option out of
the money or if the interest rate is negative. This is in line with classical financial wisdom.

In models with constant interest rate, an optimal boundary is often defined as function of
time which provides a threshold for the process (Xt). An analogous representation of the
continuation and stopping sets is valid in our model. The following proposition whose simple
proof is omitted gives details of the re-parametrisation of the stopping boundary.

Proposition 4.3.5. Define

b(t, r) := inf{x ∈ R+ : c(t, x) > r}, (t, r) ∈ [0, T )× I.

The mappings t 7→ b(t, r0) and r 7→ b(t0, r) are right-continuous and non-decreasing for any
(t0, r0) ∈ [0, T )× I. For any t ∈ [0, T ) we have K > b(t, r) > 0 when r > 0, and b(t, r) = 0

when r < 0. Furthermore,

D = {(t, r, x) ∈ O : x ≤ b(t, r)} ∪
(
{T} × I × R+

)
,

C = {(t, r, x) ∈ O : x > b(t, r)}.

The parametrisation of the stopping boundary via the function c(t, x) will usually be more
convenient. In particular, due to technical reasons that will become clearer in later sections, we
will be able to prove the continuity of (t, x) 7→ c(t, x) jointly in both variables (t, x), but not
the joint continuity of b in (t, r). However, b is more convenient for numerical computations in
Section 4.9 as it admits values in a bounded interval [0, K].

An important consequence of Proposition 4.3.5 is that for ε ∈ (0, x)

(t, r, x) ∈ D =⇒ (t+ ε, r, x), (t, r + ε, x), (t, r, x− ε) ∈ D.

We immediately see that ∂C enjoys the so-called cone property [87, Def. 4.2.18]. Indeed,
for any (t0, r0, x0) ∈ ∂C, there is an orthant Ĉ0 with vertex in (t0, r0, x0) (hence a cone with
aperture π/4) that satisfies Ĉ0 ∩ O ⊆ D. This will be used to establish regularity of the
boundary ∂C in the sense of diffusions, which, has important consequences for the smoothness
of our value function v, as we shall see below.

Introduce the hitting time toD, denoted σD, and the entry time to the interior ofD, denoted
σ̊D. That is, for (t, r, x) ∈ O we set Pr,x-a.s.

σD := inf{s > 0 : (t+ s, rs, Xs) ∈ D},

σ̊D := inf{s ≥ 0 : (t+ s, rs, Xs) ∈ int(D)} ∧ (T − t).
(4.37)

Both σD and σ̊D are stopping times with respect to the filtration (Ft)t≥0. We will often write
σD(t, r, x) and σ̊D(t, r, x) to indicate the starting point of the process.
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4.3 Optimal stopping boundary

Proposition 4.3.6 (Regularity of the boundary). For (t0, r0, x0) ∈ ∂C, we have

Pt0,r0,x0(σD > 0) = Pt0,r0,x0 (̊σD > 0) = 0. (4.38)

Proof. The proof rests on Gaussian bounds for the transition density of a diffusion and ideas
from the proof of well-known analogous results for multi-dimensional Brownian motion, see
e.g. [87, Thm. 4.2.19]. It is also worth recalling that ∂C is the boundary of C in O, so that it
excludes {T} × I × R+.

Fix (t0, r0, x0) ∈ ∂C and defineR := [r0, r]× [0, x0], where we also recall that I = (r, r).
Since t 7→ c(t, x) is non-increasing, it is immediate to see that [t0, T ]×R ⊆ D. Recalling the
notation introduced in (2.16), set

σ̊R(r0, x0) := inf{s ≥ 0 : (rr0s , X
r0,x0
s ) ∈ int(R)}.

We have σ̊R(r0, x0) ≥ σ̊D(t0, r0, x0), P-a.s., and σ̊R(r0, x0) ≥ σD(t0, r0, x0) by the continuity
of the process (r,X). From now on we omit in the notation the dependence on (t0, r0, x0)

since the initial point is fixed throughout the proof.
Take a compact ball K ⊂ I × R+ centred at (r0, x0). Let Σ(r, x) denote the matrix of the

diffusion coefficient for (4.1)–(4.2), i.e.

Σ(r, x) :=
1

2

(
σ2x2 ρσxβ(r)

ρσxβ(r) β2(r)

)
.

Since the correlation coefficient ρ ∈ (−1, 1), there is γ = γK > 0 such that

1

γ
‖z‖2 ≤ 〈Σ(r, x)z, z〉 ≤ γ‖z‖2, z ∈ R2 \ {0}, (r, x) ∈ K, (4.39)

where 〈·, ·〉 denotes the scalar product in R2 and ‖ · ‖ the corresponding norm.
Define a new process (r̃, X̃) with the dynamics defined on R2

d X̃t = µK(r̃t, X̃t)dt+ σK(X̃t)dBt, X̃0 = x0 (4.40)

d r̃t = αK(r̃t)dt+ βK(r̃t)dWt, r̃0 = r0 (4.41)

such that the coefficients coincide with the coefficients of (4.1)-(4.2) on K, are Lipschitz con-
tinuous on R2 and satisfy the uniform ellipticity condition (4.39) with γ on R2. Denoting
τK := inf{t ≥ 0 : (rt, Xt) /∈ int(K)} and τ̃K := inf{t ≥ 0 : (r̃t, X̃t) /∈ int(K)}, by the
uniqueness of solutions for SDEs we get indistinguishable stopped paths:

(rt∧τK , Xt∧τK)t≥0 = (r̃t∧τ̃K , X̃t∧τ̃K)t≥0 Pr0,x0-a.s.
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4.3 Optimal stopping boundary

The uniform ellipticity condition (4.39) on R2 implies that the process (r̃, X̃) admits a
transition density p̃(t, (r, x), (r′, x′)) which satisfies the following Gaussian bound (see, e.g.,
[7, 59]): there exists m > 0 and Λ > 0 such that

p̃(t, (r, x), (r′, x′)) ≥ mt−1 exp

(
−Λ

(r′ − r)2 + (x′ − x)2

t

)
. (4.42)

LetR′′ be a closed cone with vertex (r0, x0) and non-empty interior contained in
[
(r0,∞)×

(−∞, x0)
]
∪ {(r0, x0)} . Put R′ = R′′ ∩ (I × R+). Denote by σ̊′R the entry time of (r,X) to

int(R′) and by σ̊′′R the entry time of (r̃, X̃) to int(R′′). The next estimate relies on analogous
results for multi-dimensional Brownian motion ([87, Thm. 4.2.9]); in particular the second
inequality below follows from (4.42):

Pr0,x0 (̊σ
′′
R ≤ t) ≥ Pr0,x0((r̃t, X̃t) ∈ R′′) ≥

m

t

∫
R′′

exp

(
−Λ

(r − r0)2 + (x− x0)2

t

)
dr dx.

We change variables to y := (r − r0)/
√
t and z := (x − x0)/

√
t and use that R′′ is invariant

under this transformation up to a shift of its vertex to the origin. Denoting R′′0 the cone with
vertex in the origin, we obtain

Pr0,x0 (̊σ
′′
R ≤ t) ≥ 2πm

∫
R′′0

1

2π
e−Λ(y2+z2)dy dz =: q > 0. (4.43)

For any t > 0, sinceR′ ⊂ R we have

Pr0,x0 (̊σR ≤ t)

≥ Pr0,x0 (̊σ
′
R ≤ t) ≥ Pr0,x0 (̊σ

′
R ≤ t, τK > t)

= Pr0,x0 (̊σ
′′
R ≤ t, τ̃K > t) ≥ Pr0,x0 (̊σ

′′
R ≤ t)− Pr0,x0(τ̃K ≤ t) ≥ q − Pr0,x0(τ̃K ≤ t),

where the last inequality is by (4.43). As t ↓ 0, we have Pr0,x0(τ̃K ≤ t) → 0 and Pr0,x0 (̊σR ≤
t) → Pr0,x0 (̊σR = 0), which implies that Pr0,x0 (̊σR = 0) ≥ q > 0. By the Blumenthal 0 − 1

law [87, Thm. 2.7.17] we obtain Pr0,x0 (̊σR = 0) = 1. Recalling that Pt0,r0,x0 (̊σR ≥ σ̊D) = 1,
and Pt0,r0,x0 (̊σD ≥ σD) = 1, we conclude Pt0,r0,x0 (̊σD = 0) = Pt0,r0,x0(σD = 0) = 1.

Remark 4.3.7. It is worth noticing that the arguments above show the existence of the transi-
tion density of the process (r̃, X̃) for any compact setK ⊂ I×R+ such thatK = int(K). This
implies that for each t ∈ [0, T ] also the law of (rt, Xt) is absolutely continuous with respect to
the Lebesgue measure on I × R+, when the boundary of I × R+ is unattainable by (rt, Xt).
Indeed, let N ⊂ I ×R+ be such that λ(N) = 0, with λ denoting the Lebesgue measure on R2.
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4.4 Smoothness of the value function

Let K ⊂ I × R+ be a compact set such that K = int(K). Then by the same construction as
above

Pr0,x0
(
(rt, Xt) ∈ N

)
= Pr0,x0

(
(rt, Xt) ∈ N, t ≤ τK

)
+ Pr0,x0

(
(rt, Xt) ∈ N, t > τK

)
= Pr0,x0

(
(r̃t, X̃t) ∈ N, t ≤ τ̃K

)
+ Pr0,x0

(
(rt, Xt) ∈ N, t > τK

)
≤ Pr0,x0

(
(r̃t, X̃t) ∈ N

)
+ Pr0,x0

(
τK < t

)
= Pr0,x0

(
τK < t

)
,

(4.44)

where the final equality uses that the transition law of (r̃, X̃) is absolutely continuous with
respect to λ. Now, letting K ↑ I × R+, using that 0 and +∞ are not attainable by X and r
and r are not attainable by r, we can make Pr0,x0

(
τK < t

)
arbitrarily small, which proves the

claim.

4.4 Smoothness of the value function

It is well-known that v satisfies (in the classical sense)

vt(t, r, x) + (L − r)v(t, r, x) = 0, (t, r, x) ∈ C,

v(t, r, x) = (K − x)+, (t, r, x) ∈ D,
(4.45)

where L is the generator of (r,X) defined in (4.14). Hence, standard arguments assert that v
is C1,2,2 in C ∩ int(D). Classical optimal stopping theory identifies the boundary of the set C
by imposing the so-called smooth-fit condition. In the American put problem with constant
interest rate this corresponds to proving that x 7→ v◦x(t, x) is continuous for each t ∈ [0, T )

fixed, with v◦ denoting the value function associated to the option price. In our setting we
prove a stronger result and show continuous differentiability of v across the stopping boundary
∂C, i.e., the global continuity of the gradient of v (as a function of all variables) in O. We
use ideas similar to those in [42] but we must refine arguments therein and use estimates with
‘local’ nature since we are not able to directly check the assumptions required in [42].

We start by establishing the following continuity properties of processes r and X .

Lemma 4.4.1. Let (rn, xn)n≥1 be a sequence converging to (r, x) ∈ I ×R+ as n→∞. Then

lim
n→+∞

sup
0≤t≤T

|rrnt − rrt | = 0, P-a.s. (4.46)

lim
n→+∞

sup
0≤t≤T

|Xrn,xn
t −Xr,x

t | = 0, P-a.s. (4.47)

Proof. Assume first that (rn)n≥1 is a monotone sequence. Define fnt := rrnt − rrt . Then for
a.e. ω ∈ Ω, t 7→ fnt (ω) is continuous and fnt (ω) converges to 0 monotonically as n → ∞ for
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4.4 Smoothness of the value function

all t ∈ [0, T ]. Hence the convergence is uniform on [0, T ] thanks to Dini’s theorem and (4.46)
holds.

For an arbitrary sequence (rn)n≥1 define monotone sequences r̄n = supk≥n rk and rn =

infk≥n rk. Since rrnt − rrt ≤ rrnt − rrt ≤ rr̄nt − rrt , we have

0 ≤ sup
0≤t≤T

|rrnt − rrt | ≤ sup
0≤t≤T

∣∣rrnt − rrt ∣∣+ sup
0≤t≤T

|rr̄nt − rrt | .

By virtue of the first part of the proof, the terms on the right-hand side converge to 0 as n→∞,
which proves (4.46). The verification of (4.47) is easy using the representation formula (4.5)
for X and (4.46).

Lemma 4.4.2. Let (tn, rn, xn)n≥1 be a sequence in C converging to (t, r, x) ∈ C∩O as n→∞.
Then

lim
n→∞

τ∗(tn, rn, xn) = τ∗(t, r, x), P-a.s.

Proof. The proof relies on known facts from the theory of Markov processes, which we sum-
marise in Chapter 2 Section 1.3. Proposition 4.3.6 and Lemma 4.4.1 imply that Assumptions
2.1.4 and 2.1.5 are satisfied for K = D ∩ O. It is also immediate to see that σD = σK P-a.s.
with σK defined in (2.16).

The continuity of trajectories of (r,X) means that the process cannot jump instantaneously
to the stopping set D when starting from C, so Pt̂,r̂,x̂(τ∗ = σD) = 1 for any (t̂, r̂, x̂) ∈ C. When
(t̂, r̂, x̂) ∈ ∂C, by construction we have τ∗(t̂, r̂, x̂) = 0, P-a.s., and, using Proposition 4.3.6,
σD(t̂, r̂, x̂) = 0, P-a.s. Recalling that C ∩O = C ∪∂C, the claim then follows from Proposition
2.1.9.

Next we provide gradient estimates based on probabilistic arguments.

Proposition 4.4.3. LetK ⊂ O be a compact set with non-empty interior. There is L = L(K) >

0 such that for any (t, r, x) ∈ (int(K) \ ∂C) we have

vx(t, r, x) = −Et,r,x
[
1{Xτ∗≤K}e

σBτ∗−σ
2

2
τ∗
]
, (4.48)

0 ≥ vt(t, r, x) ≥ −L Et,r,x
[
e−

∫ τK
0 rrsds1{τK≤τ∗}

]
, (4.49)

where τK := inf{s ≥ 0 : (t+ s, rs, Xs) /∈ int(K)}.

Proof. Fix (t, r, x) ∈ (int(K) \ ∂C). Recall that D ⊂ [0, T ]× I × [0, K]. If (t, r, x) ∈ int(D)

then (4.48) follows easily from v(t, r, x) = K − x and vt(t, r, x) = 0. Assume (t, r, x) ∈ C
and notice that τ∗ = σD, Pt,r,x-a.s. We split the proof into two parts.
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4.4 Smoothness of the value function

(Proof of (4.48)) For all sufficiently small ε > 0 we have (t, r, x + ε) ∈ C. From now on,
consider such ε. To simplify notation let σD := σD(t, r, x). Using that σD is admissible and
sub-optimal for v(t, r, x+ ε) we get

v(t, r, x+ ε)− v(t, r, x)

≥ E
[
e−

∫ σD
0 rrsds

((
K − (x+ ε)Xr,1

σD

)+ −
(
K − xXr,1

σD

)+
)]

≥ E
[
e−

∫ σD
0 rrsds1{Xr,x

σD≤K}
(
xXr,1

σD
− (x+ ε)Xr,1

σD

)]
= −εE

[
1{Xr,x

σD≤K}
eσBσD−

σ2

2
σD
]
.

Dividing the above expression by ε and taking limits as ε→ 0 we get

vx(t, r, x) = lim
ε→0

1

ε
(v(t, r, x+ ε)− v(t, r, x)) ≥ −E

[
1{Xr,x

σD≤K}
eσBσD−

σ2

2
σD
]
. (4.50)

For the reverse inequality we use that σD is admissible and sub-optimal for v(t, r, x− ε):

v(t, r, x)− v(t, r, x− ε) ≤ E
[
e−

∫ σD
0 rrsds

((
K − xXr,1

σD

)+ −
(
K − (x− ε)Xr,1

σD

)+
)]

≤ −εE
[
1{Xr,x−ε

σD ≤K}e
σBσD−

σ2

2
σD
]
≤ −εE

[
1{Xr,x

σD≤K}
eσBσD−

σ2

2
σD
]
,

where in the last inequality we used that Xr,x−ε
s < Xr,x

s , s ≥ 0. Divide the above expression
by ε and take limits as ε→ 0:

vx(t, r, x) = lim
ε→0

1

ε
(v(t, r, x)− v(t, r, x− ε)) ≤ −E

[
1{Xr,x

σD≤K}
eσBσD−

σ2

2
σD
]
. (4.51)

Now (4.50) and (4.51) imply (4.48).

(Proof of (4.49)) The upper bound vt(t, r, x) ≤ 0 follows from the monotonicity of v in
t (Proposition 4.3.1). For all sufficiently small ε > 0 we have (t + ε, r, x) ∈ K ∩ C and
τK := τK(t, r, x) ≤ T − t − ε. From now on, consider such ε. Denote σD := σD(t, r, x).
Thanks to the choice of ε, the stopping time η := σD∧τK is admissible for v(t+ε, r, x). Using
the (super)martingale property of v (see (4.11)–(4.12)) we get

v(t+ ε, r, x)− v(t, r, x)

≥ E
[
e−

∫ η
0 r

r
sds
(
v(t+ ε+ η, rrη, X

r,x
η )− v(t+ η, rrη, X

r,x
η )
)]

(4.52)

= E
[
e−

∫ τK
0 rrsds

(
v(t+ ε+ τK, r

r
τK
, Xr,x

τK
)− v(t+ τK, r

r
τK
, Xr,x

τK
)
)
1{τK<σD}

]
,

where the equality follows from v(t+ε+σD, r
r
σD
, Xr,x

σD
) = v(t+σD, r

r
σD
, Xr,x

σD
) = K−Xr,x

σD
on

{τK ≥ σD} since t 7→ b(t, r) is non-decreasing (Proposition 4.3.5). Let Kδ = {(t + s, r, x) :

(t, r, x) ∈ K and s ∈ [0, δ]}. Fix a sufficiently small δ > 0 so that this set is contained
in O and set L equal to the Lipschitz constant for v on Kδ (c.f. Proposition 4.3.3). Since
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(t + τK, r
r
τK
, Xr,x

τK
) ∈ ∂K, we have (t + ε + τK, r

r
τK
, Xr,x

τK
) ∈ Kδ for any ε < δ. Using the

Lipschitz continuity of v, we bound (4.52) from below by

−εLE
[
e−

∫ τK
0 rrsds1{τK<σD}

]
.

Dividing by ε and taking the limit ε→ 0 completes the proof of (4.49).

We are now ready to claim that the value function is globally continuously differentiable
on O.

Theorem 4.4.4. We have v ∈ C1(O).

Proof. It suffices to show that the value function has continuous partial derivatives across the
stopping boundary, that is

lim
n→∞

vt(tn, rn, xn) = lim
n→∞

vr(tn, rn, xn) = 0, (4.53)

lim
n→∞

vx(tn, rn, xn) = −1, (4.54)

for any sequence (tn, rn, xn) in C converging to (t0, r0, x0) ∈ ∂C as n → ∞. Fix such a
sequence and denote τn = τ∗(tn, rn, xn).

Convergence of vx. Note that Ptn,rn,xn(Xτn = K, τn < T − tn) = 0 (Proposition 4.3.4)
and Ptn,rn,xn(Xτn = K, τn = T−tn) ≤ Ptn,rn,xn(XT−tn = K) = 0 (the final equality can be
shown by arguments as in (4.34)). From Proposition 4.4.3 we therefore have

vx(tn, rn, xn) = −E
[
1{Xrn,xn

τn <K}e
σBτn−σ

2

2
τn
]
.

From Lemma 4.4.2, we obtain limn→∞ τn = 0 P-a.s. We know from (t0, r0, x0) ∈ ∂C that
x0 < K. Lemma 4.4.1 and the continuity of trajectories of (r,X) imply the convergence
1{Xrn,xn

τn <K} → 1{x0<K} = 1 as n → ∞. An application of the dominated convergence
theorem completes the proof of (4.54).

Convergence of vt. Let K be a closed ball centred on (t0, r0, x0) and contained in O. With
no loss of generality (by discarding a finite number of initial elements of the sequence) we
assume that (tn, rn, xn) ∈ int(K) for all n ≥ 1. Let

τnK := inf{s ≥ 0 : (tn + s, rrns , X
rn,xn
s ) /∈ K}, n ≥ 0

and notice, in particular, that P(τ 0
K > 0) = 1. The boundary ∂K is regular for O \ K and

(t, r,X) by the same reasoning as in the proof of Proposition 4.3.6. Repeating arguments from
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the proof of Lemma 4.4.2 shows that τnK → τ 0
K, P-a.s. Fix ε ∈ (0, 1). Since P(τ 0

K > 0) = 1,
there exists δ > 0 such that P(τ 0

K > δ) ≥ 1− ε. From inequality (4.49), we get

0 ≥ vt(tn, rn, xn) ≥ −LE

[
e−

∫ τnK
0 rrns ds1{τnK≤τn}

]
= −LE

[
e−

∫ τnK
0 rrns ds

(
1{τnK≤τn}∩{τ

n
K≥δ} + 1{τnK≤τn}∩{τ

n
K<δ}

)]
≥ −LE

[
e−

∫ τnK
0 rrns ds

(
1{τn≥δ} + 1{τnK<δ}

)]
.

(4.55)

Using that |rt∧τnK| is bounded by some constant rK for every n, we have

0 ≥ vt(tn, rn, xn) ≥ −LerKT (P (τn ≥ δ) + P (τnK < δ)) . (4.56)

Lemma 4.4.2 guarantees that τn → 0 P-a.s., so the first term converges to 0 as n → ∞ by the
dominated convergence theorem. Fatou’s lemma gives a bound for the second term:

lim sup
n→∞

P (τnK < δ) ≤ E
[

lim sup
n→∞

1{τnK<δ}

]
≤ E

[
1{τ0Kc≤δ}

]
≤ ε,

where we used that lim supn 1An = 1lim supn An and the convergence of the stopping times. We
obtain the convergence of vt in (4.53) by sending ε→ 0.

Convergence of vr. Consider a sequence (tn, rn, xn) ∈ C converging to (t0, r0, x0) ∈ ∂C.
Since ∂C is the boundary of C in O, without loss of generality we can assume that

{(rn, xn)} ⊂ int(K0), with K0 := [ra, rb]× [xa, xb] ⊂ (r, r)× R+.

Denote KT0 := [ta, tb]×K0. where ta = infn tn ≥ 0 and tb = supn tn < T .
We know that vr ≤ 0 on C (Proposition 4.3.1). We will now develop a lower bound for vr

on C∩KT0 , which will allow us to show that vr(tn, rn, xn)→ 0 as n→∞. LetKT = [t̄a, t̄b]×K
be a bigger compact, with K := [r̄a, r̄b]× [x̄a, x̄b] ⊂ (r, r)×R+, such that KT0 ⊂ int(KT ). For
(t, r, x) ∈ C ∩ KT0 we define

τK(t, r, x) := inf{s ≥ 0 : (rrs, X
r,x
s ) /∈ K} ∧ (T − t).

By the monotonicity of r 7→ rrs and the explicit expression (4.5) for Xr,x we have, for all
(r, x) ∈ K0,

rras ≤ rrs ≤ rrbs , and Xra,x
s ≤ Xr,x

s ≤ Xrb,x
s , P-a.s.

from which it is not hard to verify that for all (t, r, x) ∈ C ∩ KT0

τK(t, r, x) ≥ τ̂K := τK(tb, ra, xa) ∧ τK(tb, ra, xb) ∧ τK(tb, rb, xa) ∧ τK(tb, rb, xb), P-a.s.,
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and τ̂K > 0, P-a.s., as well.
Take (t, r, x) ∈ C ∩ int(KT0 ). There is ε > 0 such that (t, r + ε, x) ∈ C ∩ KT0 for all

ε ∈ (0, ε]. Denote by τ∗ the optimal stopping time for (t, r, x). For any ε ∈ (0, ε], we apply the
(super)martingale properties of the value function (4.11)-(4.12) with the stopping time τ∗∧ τ̂K:

0 ≥ v(t, r + ε, x)− v(t, r, x)

≥ E
[
e−

∫ τ∗∧τ̂K
0 rr+εs dsv

(
t+ (τ∗ ∧ τ̂K), rr+ετ∗∧τ̂K , X

r+ε,x
τ∗∧τ̂K

)
− e−

∫ τ∗∧τ̂K
0 rrsdsv

(
t+ (τ∗ ∧ τ̂K), rrτ∗∧τ̂K , X

r,x
τ∗∧τ̂K

)]
≥ E

[
1{τ̂K≤τ∗}

(
e−

∫ τ̂K
0 rr+εs dsv(t+ τ̂K, r

r+ε
τ̂K

, Xr+ε,x
τ̂K

)− e−
∫ τ̂K
0 rrsdsv(t+ τ̂K, r

r
τ̂K
, Xr,x

τ̂K
)
)]

+ E
[
1{τ̂K>τ∗}

(
e−

∫ τ∗
0 rr+εs ds(K −Xr+ε,x

τ∗ )+ − e−
∫ τ∗
0 rrsds(K −Xr,x

τ∗ )+
)]

=: E1 + E2,
(4.57)

where for the final inequality we used that v(t+τ∗, r
r
τ∗ , X

r,x
τ∗ ) = (K−Xr,x

τ∗ )+, P-a.s. Recalling
that rr+εs ≥ rrs and v is non-negative we have

E1 = E
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds

(
v(t+ τ̂K, r

r+ε
τ̂K

, Xr+ε,x
τ̂K

)− v(t+ τ̂K, r
r
τ̂K
, Xr,x

τ̂K
)
)]

− E
[
1{τ̂K≤τ∗}

(
e−

∫ τ̂K
0 rrsds − e−

∫ τ̂K
0 rr+εs ds

)
v(t+ τ̂K, r

r
τ̂K
, Xr,x

τ̂K
)
]

≥ −LE
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds

(
|rr+ετ̂K

− rrτ̂K|+ |X
r+ε,x
τ̂K

−Xr,x
τ̂K
|
)]

−KE
[
1{τ̂K≤τ∗}

(
e−

∫ τ̂K
0 rrsds − e−

∫ τ̂K
0 rr+εs ds

)]
,

(4.58)

where the second inequality comes from the local Lipschitz property of the value function
(L > 0 is the constant from Proposition 4.3.3), and the function v is bounded by the strike
price K from above.

We shall now use the differentiability of the diffusion flow (rrs) with respect to the param-
eter r in the sense of [93, Thm. 2.8.6]. Apart from other assumptions, this requires that the
coefficients are globally Lipschitz. As we only consider (r,X) in a compact set K, we con-
struct a two dimensional diffusion (r̃, X̃) whose coefficients coincide with the coefficients of
(r,X) onK, are globally Lipschitz, continuously differentiable and with a polynomial growth.
The process (r̃s, X̃s) is indistinguishable from (rs, Xs) on {s ≤ τ̂K}, i.e., on the set where it is
of interest for the estimation of E1 and E2, so for the sake of readability we will write (r,X) in
the estimates below (we use an analogous construction in the proof of Proposition 4.3.6, where
full details are available).
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4.4 Smoothness of the value function

By [93, Thm. 2.8.6], there is a measurable in (s, ω) process (yrs(ω))s≥0, depending on r,
such that for any q ≥ 1

lim
ε↓0

∥∥∥∥ sup
s∈[0,T ]

∣∣∣rr+εs − rrs
ε

− yrs
∣∣∣∥∥∥∥
q

= 0 and lim
ε↓0

∥∥∥rr+ε· − rr·
ε

− yr·
∥∥∥∗
q

= 0, (4.59)

where ‖Z‖q = (E[|Z|q])1/q and ‖Y·‖∗q =
(
E
[ ∫ T

0
|Ys|qds

])1/q.
Fix 1

p
+ 1

q
+ 1

w
= 1 for some p ∈ (1, 2]. Recalling that rr+εs ≥ rrs and using Hölder inequality

yields

1

ε
E
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds|rr+ετ̂K

− rrτ̂K|
]

≤ E

[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds

(∣∣∣1
ε

(
rr+ετ̂K
− rrτ̂K)− yrτ̂K

∣∣∣+ |yrτ̂K|
)]

≤ C
1/p
1 P(τ̂K ≤ τ∗)

1
w

(∥∥∥1

ε

(
rr+ετ̂K
− rrτ̂K

)
− yrτ̂K

∥∥∥
q

+ ‖yrτ̂K‖q
)
−−→
ε↓0

C
1/p
1 P(τ̂K ≤ τ∗)

1
w ‖yrτ̂K‖q,

(4.60)
where we used the estimate (4.3) in the last inequality and (4.59) to obtain the convergence.

To bound the last term on the right hand side of (4.58), we observe that

E
[
1{τ̂K≤τ∗}

(
e−

∫ τ̂K
0 rrsds − e−

∫ τ̂K
0 rr+εs ds

)]
≤ E

[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rrsds

∫ τ̂K

0

(rr+εs − rrs)ds
]
.

We then apply Hölder inequality and the second limit in (4.59):

1

ε
E
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rrsds

∫ τ̂K

0

(rr+εs − rrs)ds
]

≤ E

[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rrsds

∫ τ̂K

0

∣∣∣1
ε

(rr+εs − rrs)− yrs
∣∣∣+ |yrs |ds

]
≤ C

1/p
1 P(τ̂K ≤ τ∗)

1
w

(∥∥∥1

ε
(rr+ε· − rr· )− yr·

∥∥∥∗
q

+ ‖yr· ‖∗q
)
−−→
ε↓0

C
1/p
1 P(τ̂K ≤ τ∗)

1
w ‖yr· ‖∗q.

(4.61)
By the explicit formula (4.5), we have Xr,x

t = e
∫ t
0 r

r
sdsX̂x

t , where X̂x
t := xeσBt−

1
2
σ2t, and

0 ≤ Xr+ε,x
t −Xr,x

t ≤ e
∫ t
0 r

r+ε
s dsX̂x

t

∫ t

0

(rr+εs − rrs)ds.

We proceed similarly as in (4.61) to obtain

1

ε
E
[
1{τ̂K≤τ∗}e

−
∫ τ̂K
0 rr+εs ds|Xr+ε,x

τ̂K
−Xr,x

τ̂K
|
]

≤ ‖X̂x
τ̂K
‖p P(τ̂K ≤ τ∗)

1
w

(∥∥∥1

ε
(rr+ε· − rr· )− yr·

∥∥∥∗
q

+ ‖yr· ‖∗q
)

−−→
ε↓0
‖X̂x

τ̂K
‖p P(τ̂K ≤ τ∗)

1
w ‖yr· ‖∗q.

(4.62)
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4.4 Smoothness of the value function

Similar arguments as above enable us to derive a lower bound for E2:

1

ε
E2 =

1

ε
E

[
1{τ̂K>τ∗}

((
Ke−

∫ τ∗
0 rr+εs ds − X̂x

τ∗

)+

−
(
Ke−

∫ τ∗
0 rrsds − X̂x

τ∗

)+
)]

≥ −1

ε
K E

[
1{τ̂K>τ∗}

(
e−

∫ τ∗
0 rrsds − e−

∫ τ∗
0 rr+εs ds

)]
≥ −1

ε
K E

[
1{τ̂K>τ∗}e

−
∫ τ∗
0 rrsds

∫ τ∗

0

(rr+εs − rrs)ds
]

≥ −KC1/p
1 P(τ̂K > τ∗)

1
w

(∥∥∥1

ε
(rr+ε· − rr· )− yr·

∥∥∥∗
q

+
(
E
[ ∫ τ∗

0

|yrs |qds
])1/q

)
−−→
ε↓0
−KC1/p

1 P(τ̂K > τ∗)
1
w

(
E
[ ∫ τ∗

0

|yrs |qds
])1/q

,

(4.63)

where in the first inequality we used the Lipschitz property of z 7→ (z − X̂x
t (ω))+ for any

ω ∈ Ω.
Combining (4.60)–(4.63) gives a lower bound for vr on C ∩ KT :

0 ≥ vr(t, r, x)

≥ −LP(τ̂K ≤ τ∗)
1
w

(
C

1/p
1 ‖yrτ̂K‖q + ‖X̂x

τ̂K
‖p ‖yr· ‖∗q

)
−K P(τ̂K ≤ τ∗)

1
w C

1/p
1 ‖yr· ‖∗q

−KC1/p
1 P(τ̂K > τ∗)

1
w

(
E
[ ∫ τ∗

0

|yrs |qds
])1/q

.

(4.64)

By [93, Thm. 2.8.8] and standard diffusion estimates [93, Cor. 2.5.10] the norms of yr and X̂x

above are bounded uniformly for (t, r, x) ∈ KT ∩ C (recall that τ∗ = τ∗(t, r, x)). Now take
(t, r, x) = (tn, rn, xn) in (4.64). Since τ̂K > 0 P-a.s. and limn→∞ τ∗(tn, rn, xn) = 0 P-a.s. by
Lemma 4.4.2, the dominated convergence theorem gives that the first two terms of (4.64) tend
to zero as n → ∞ due to P(τ̂K ≤ τ∗(tn, rn, xn)) → 0 and the last term converges to zero
because

lim
n→0

E
[ ∫ τ∗(tn,rn,xn)

0

|yrns |qds
]

= 0

and the mapping r 7→ yr is continuous in the norm ‖ · ‖∗q , see [93, Thm. 2.8.6]. This concludes
the proof.

It is worth noticing that the proof of the above result combines a number of steps that may
be of independent interest. In particular, we prove local Lipschitz continuity of v (Proposition
4.3.3) and the regularity of the stopping boundary in the sense of diffusions. The latter gives
the continuity of optimal stopping times τ∗ as functions of the initial state, which plays a crucial
role in the proof of Theorem 4.4.4.
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4.5 Continuity of the stopping boundary and Dynkin’s formula

4.5 Continuity of the stopping boundary and Dynkin’s for-
mula

Preliminary right/left-continuity properties of the stopping boundary (t, x) 7→ c(t, x) illus-
trated above follow from its monotonicity and the closedness of the stopping setD (see Propo-
sition 4.3.4). However, thanks to the C1 regularity of the value function v, we can also prove
joint continuity of the stopping boundary in both variables. For this we require local Hölder
continuity of the derivatives of the coefficients in the dynamics of the short rate r.

Assumption 4.5.1. The functions α and β in (4.2) have first and second order derivatives,
respectively, Hölder continuous on any compact subset of I.

Note that this assumption is satisfied by CIR model. It strengthens Assumption 4.2.1(ii) by
requiring that the derivatives are not only locally continuous but also locally Hölder continuous.
This technical requirement is satisfied by many popular short rate models. The joint continuity
of optimal stopping boundaries depending on multiple variables has not been proved with
probabilistic techniques before, so the next result is of independent mathematical interest.

Proposition 4.5.2. Under Assumption 4.5.1, the function c : [0, T ) × R+ → [0,∞) is contin-
uous.

Proof. Since c(t, x) = r on [0, T ) × [K,∞), it remains to prove the continuity at (t0, x0) ∈
(0, T ) × (0, K]. It is known from Proposition 4.3.4 that t 7→ c(t, x0) is non-increasing and
right-continuous at t0, and x 7→ c(t0, x) is non-decreasing and left-continuous at x0.

We first show that x 7→ c(t0, x) is right continuous at x0. It is obvious for x0 = K since
c(t0, x) = r for x ≥ K. We proceed with an argument for x0 < K. Assume, by contradiction,
that c(t0, x0+) > c(t0, x0), so there exist r1, r2 such that c(t0, x0+) > r2 > r1 > c(t0, x0).
Let R := (r1, r2) × (x0, x1) for some x1 ∈ (x0, K) and R0 := (r1, r2) × {x0}. From the
monotonicity of c(t, x), we have {t0} × R ⊂ C and {t0} × R0 ⊂ D. Let u be a function
defined on R and satisfying

(L − r)u(r, x) = −vt(t0, r, x), (r, x) ∈ R,
u(r, x) = v(t0, r, x), (r, x) ∈ ∂R.

(4.65)

Thanks to [69, Thm. 10, p. 72] we know that (r, x) 7→ vt(t0, r, x) is C1 on R with Hölder
continuous derivatives. Since the coefficients of (4.14) have Hölder continuous first derivatives,
there is a unique classical solution u(r, x) of the above PDE (which is of elliptic type) and
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4.5 Continuity of the stopping boundary and Dynkin’s formula

u ∈ C3(R) ∩C(R) [69, Thm. 19 and 20, p. 87]. From (4.45), the function (r, x) 7→ v(t0, r, x)

satisfies (4.65), so, by uniqueness, u = v on R and u ∈ C1(R) by Theorem 4.4.4.
We differentiate the PDE in (4.65) with respect to r and obtain

1

2
σ2x2urxx(r, x) = −L1ur(r, x)−L2ux(r, x)−xux(r, x)−vtr(t0, r, x)+u(r, x), (r, x) ∈ R,

(4.66)

where

L1f :=
1

2
β2(r)frr + (β(r)β′(r) + α(r)) fr + (α′(r)− r) f

L2f :=ρσβ(r)xfrr + (ρσβ′(r) + rx) fr.

Let φ be a C∞ function with compact support on (r1, r2) such that
∫ r2
r1
φ(r)dr = 1 and for

x ∈ (x0, x1) define

Fφ(x) = −
∫ r2

r1

uxx(r, x)φ′(r)dr.

Multiply (4.66) by 2
σ2x2

φ(r) and integrate over (r1, r2):∫ r2

r1

urxx(x, r)φ(r)dr = −
∫ r2

r1

2

σ2x2
φ(r)

[
L1ur(r, x) + L2ux(r, x)

]
dr

−
∫ r2

r1

2

σ2x
φ(r)ux(r, x)dr −

∫ r2

r1

2

σ2x2
φ(r)vtr(t0, r, x)dr

+

∫ r2

r1

2

σ2x2
φ(r)u(r, x)dr.

Integration by parts gives

Fφ(x) = −
∫ r2

r1

2

σ2x2

[
ur(r, x)L∗1φ(r)dr + ux(r, x)L∗2φ(r)

]
dr −

∫ r2

r1

2

σ2x
φ(r)ux(r, x)dr

+

∫ r2

r1

2

σ2x2
φ′(r)vt(t0, r, x)dr +

∫ r2

r1

2

σ2x2
φ(r)u(r, x)dr,

(4.67)
where L∗1 and L∗2 are adjoint operators to L1 and L2, respectively. The expression above
involves only u and its first derivatives, which are continuous by Theorem 4.4.4. We take the
limit x→ x0 in (4.67) and notice that ur(r, x0) = vr(t0, r, x0) = vt(t0, r, x0) = 0, ux(r, x0) =

vx(t0, r, x0) = −1 and u(r, x0) = K − x0. Thus,

lim
x↓x0

Fφ(x) =

∫ r2

r1

2

σ2x0

φ(r)dr +

∫ r2

r1

2

σ2x2
0

φ(r)(K − x0)dr =
2K

σ2x2
0

> 0,
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4.5 Continuity of the stopping boundary and Dynkin’s formula

where we also use that
∫ r2
r1
L∗2φ(r)dr = 0. Since x 7→ Fφ(x) is continuous on (x0, x1) and

limx↓x0 Fφ(x) > 0, we have Fφ(x) > 0 on (x0, x0 + ε) for any sufficiently small ε > 0. Using
additionally that u is C1(R), we perform the following integration

0 <

∫ x0+ε

x0

∫ y

x0

Fφ(x)dxdy =−
∫ r2

r1

∫ x0+ε

x0

∫ y

x0

uxx(r, x)dxdy φ′(r)dr

=−
∫ r2

r1

∫ x0+ε

x0

(ux(r, y) + 1)dy φ′(r)dr

=−
∫ r2

r1

(u(r, x0 + ε)− (K − x0) + ε)φ′(r)dr

=

∫ r2

r1

ur(r, x0 + ε)φ(r)dr,

where we have used Fubini’s theorem in the first equality, ux(r, x0) = −1 in the second equal-
ity, u(r, x0) = K − x0 in the third equality, and the integration by parts in the last equality.
As the above inequality holds for an arbitrary smooth function φ with a compact support in
(r1, r2), we must have ur(r, x0 +ε) = vr(t0, r, x0 +ε) > 0 almost everywhere on (r1, r2). This
contradicts that r 7→ v(t0, r, x0 + ε) is a non-increasing function (see Proposition 4.3.1), hence
x 7→ c(t, x) is continuous.

We turn our attention to the left-continuity of t 7→ c(t, x0) at t0 (the right-continuity has al-
ready been established in Proposition 4.3.4). Assume, by contradiction, that the left-continuity
fails at t0. Since t 7→ c(t, x0) is non-increasing, there exist r1, r2 such that c(t0−, x0) > r2 >

r1 > c(t0, x0). By the continuity of x 7→ c(t0, x) at x0 and the monotonicity of c(t, x), there is
x1 ∈ (x0, K) such that r1 > c(t0, x1) ≥ c(t0, x0). Hence, for any sequence tn ↑ t0, we have

c(tn, x1) ≥ c(tn, x0) ≥ c(t0−, x0) > r2 > r1 > c(t0, x1) ≥ c(t0, x0),

so that

R : = (t1, t0)× (r1, r2)× (x0, x1) ⊂ C,
Rt0 : = {t0} × (r1, r2)× (x0, x1) ⊂ D.

Consider a PDE

wt(t, r, x) + (L − r)w(t, r, x) = 0, (t, r, x) ∈ R,
w(t, r, x) = v(t, r, x), (t, r, x) ∈ ∂pR,

(4.68)

where ∂pR denotes the parabolic boundary of R. By [69, Thm. 6, p. 65], Equation (4.68)
admits a unique classical solution w, which coincides with v on R. This also implies that
w ∈ C1(R) by Theorem 4.4.4.
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4.5 Continuity of the stopping boundary and Dynkin’s formula

Let φ1 be a C∞ function with compact support in (x0, x1) and φ2 be a C∞ function with
compact support in (r1, r2) such that

∫ x1
x0
φ1(x)dx =

∫ r2
r1
φ2(r)dr = 1. Fixing t = tn ∈ (t1, t0)

from the sequence tn ↑ t0, we multiply (4.68) by φ1(x)φ2(r) and integrate over (r1, r2) ×
(x0, x1): ∫ r2

r1

∫ x1

x0

φ1(x)φ2(r)
{
wt(tn, r, x) + (L − r)w(tn, r, x)

}
dxdr = 0.

Integration by parts gives∫ r2

r1

∫ x1

x0

φ1(x)φ2(r)wt(tn, r, x)dxdr +

∫ r2

r1

∫ x1

x0

w(tn, r, x)(L∗ − r)φ1(x)φ2(r)dxdr = 0,

(4.69)
where L∗ is the adjoint operator for L. When n → ∞, the first integral vanishes since w ∈
C1(Rt) and wt = vt = 0 on Rt0 . By the dominated convergence theorem, (4.69) reads

0 =

∫ r2

r1

∫ x1

x0

w(t0, r, x)(L∗ − r)φ1(x)φ2(r)dxdr =

∫ r2

r1

∫ x1

x0

φ1(x)φ2(r)(L − r)(K − x)dxdr

=

∫ r2

r1

∫ x1

x0

φ1(x)φ2(r)(−rK)dxdr =

∫ r2

r1

φ2(r)(−rK)dr

where we integrate by parts and use that v(t, r, x) = (K − x) on Rt0 for the second equality.
We obtain a contradiction because the last integral is strictly negative.

Having established the continuity in t and x separately, the monotonicity of c allows us to
conclude the continuity of (t, x) 7→ c(t, x) at (t0, x0) (see, e.g., [92]).

Summarising, we have v ∈ C1(O)∩C1,2,2(C)∩C1,2,2(D), and the optimal stopping bound-
ary c is continuous. This is not sufficient to apply the change of variable formula developed
in [112] which is often used in optimal stopping literature to establish Itô’s formula for the
value function. Indeed, since [112] deals with functions that are not necessarily C1, it requires
that t 7→ c(t,Xt) be a semi-martingale, so that the local time on the stopping boundary is
well-defined. While we were unable to prove it for our optimal boundary, we can instead take
advantage of the continuous differentiability of our value function and use a generalisation of
Itô’s formula from Chapter 5 which only requires the monotonicity of the boundary. Notice
that, interestingly, we need not control the second order spatial derivatives near ∂C in order to
apply results from [25]. We do however need to ensure that both boundary points of the set I
are non-attainable, because we have not proven that the derivatives vt(t, r, x), vr(t, r, x) and
vx(t, r, x), understood as the limit as r → r, are well-defined.

Assumption 4.5.3. The lower boundary point r is non-attainable by the process (rt). In par-
ticular, under Assumptions 4.2.1-(i) we require kθ > σ2/2.
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4.5 Continuity of the stopping boundary and Dynkin’s formula

We will first prove an auxiliary lemma whose assertions are used in the proof of Proposition
4.5.5, and also in Section 4.8 to show admissibility of the hedging strategy.

Lemma 4.5.4. For any compact set K ⊂ I × R+, and p ∈ [1, 2], we have

sup
(r,x)∈K

sup
t∈[0,T ]

Er,x
[

sup
0≤s≤T−t

e−
∫ s
0 ruduv(t+ s, rs, Xs)

]
<∞, (4.70)

sup
(r,x)∈K

sup
s∈[0,T ]

Er,x
[
e−p

∫ s
0 rudu

∣∣vx(t+ s, rs, Xs)
∣∣pXp

s

]
<∞, (4.71)

sup
(r,x)∈K

sup
s∈[0,T ]

Er,x
[
e−2

∫ s
0 rudu

(
vr(t+ s, rs, Xs)

)2
β2(rs)

]
<∞. (4.72)

Proof. From (4.6) we obtain an upper bound for the function v:

v(t, r, x) ≤ KEr
[

sup
0≤s≤T−t

e−
∫ s
0 rudu

]
. (4.73)

Using this bound, we have Pr,x-a.s.

e−
∫ s
0 ruduv(t+ s, rs, Xs) ≤ e−

∫ s
0 ruduKErs

[
sup

0≤u≤T−t−s
e−

∫ u
0 rvdv

]
= e−

∫ s
0 ruduKEr

[
sup

s≤u≤T−t
e−

∫ u
s rvdv

∣∣∣Fs]
≤ KEr

[
sup

0≤u≤T−t
e−

∫ u
0 rvdv

∣∣∣Fs] ≤ KEr
[

sup
0≤u≤T

e−
∫ u
0 rvdv

∣∣∣Fs],
where in the second equality we employ the Markov property of r. By Doob’s maximal in-
equality applied to the martingale Ys = Er

[
sup0≤u≤T e

−
∫ u
0 rvdv

∣∣∣Fs], we conclude

sup
(r,x)∈K

sup
t∈[0,T ]

Er,x
[

sup
0≤s≤T−t

e−
∫ s
0 ruduv(t+ s, rs, Xs)

]
≤ sup

(r,x)∈K
sup
t∈[0,T ]

K Er
[

sup
0≤s≤T−t

Ys

]
≤ sup

(r,x)∈K
K Er

[
sup

0≤s≤T
Ys

]
≤ sup

(r,x)∈K
2K
(
Er[Y

2
T ]
)1/2

= sup
(r,x)∈K

2K
(
Er
[

sup
0≤u≤T

e−2
∫ u
0 rvdv

])1/2

≤ 2K(C1)1/2,

where C1 is the constant from (4.3). This proves (i).
We now address (4.71). We have

e−p
∫ s
0 rudu

∣∣vx(t+ s, rs, Xs)
∣∣pXp

s =
∣∣vx(t+ s, rs, Xs)

∣∣pxpepσBs− p2σ2s ≤ xpepσBs−
p
2
σ2s,

where we use−1 ≤ vx ≤ 0 in the last inequality, which follows from (4.48). From here, (4.71)
is immediate.
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4.5 Continuity of the stopping boundary and Dynkin’s formula

It remains to prove (4.72). First we consider the case of Assumption 4.2.1(ii). From (4.16),
(4.17) and (4.18), we deduce(

vr(t, r, x)
)2 ≤ c1 Er

[
sup

0≤s≤T−t
e−2

∫ s
0 rudu

]
(4.74)

for some constant c1 > 0 depending only on T and the coefficients of (4.2) (notice in particular
that the expected value in the right-hand side above comes from the constant C1 in (4.17)).
Hence

e−2
∫ s
0 rudu

(
vr(t+ s, rs, Xs)

)2
β2(rs) ≤ e−2

∫ s
0 ruduc1 Ers

[
sup

0≤u≤T−t−s
e−2

∫ u
0 rvdv

]
β2(rs)

≤ c1 Er
[

sup
0≤u≤T−t

e−2
∫ u
0 rvdv

∣∣∣Fs]β2(rs),

where the last inequality is by the same argument as in the proof of (4.70). We take expectation
of both sides and apply Hölder inequality with q = p′/2 (p′ > 2 is defined in Assumption 4.2.1)
and q′ = q/(q − 1)

Er
[
e−2

∫ s
0 rudu

(
vr(t+ s, rs, Xs)

)2
β2(rs)

]
≤ c1

(
Er
[
Er
[

sup
0≤u≤T−t

e−2
∫ u
0 rvdv

∣∣∣Fs]q])1/q(
Er[β

2q′(rs)]
)1/q′

≤ c1

(
Er
[

sup
0≤u≤T−t

e−p
′ ∫ u

0 rvdv
])1/q(

Er[β
2q′(rs)]

)1/q′

≤ c1C
1/q
1

(
Er[β

2q′(rs)]
)1/q′

,

where the second inequality follows from Jensen’s inequality and C1 is the constant from (4.3).
Let L be the Lipschitz constant for β. Then, using triangle inequality for norms,(

Er[(β(rs))
2q′ ]
)1/q′

≤
(
Er
[∣∣β(0) + L|rs|

∣∣2q′])1/q′

=
((

Er
[∣∣β(0) + L|rs|

∣∣2q′])1/2q′)2

≤
(
β(0) + L

(
Er
[
|rs|2q

′])1/2q′
)2

≤
(
β(0) + L

(
C2(1 + |r|2q′

)1/2q′
)2

,

where the last inequality follows from (4.4) and 2q′ = p′ ≥ 2. Combining the above estimates
proves (4.72).

We address the case when r follows the CIR dynamics. From the non-negativity of the
process r and from (4.74) we obtain that

(
vr(t, r, x)

)2 ≤ c1 for any (t, r, x) ∈ O. Hence, we
write

Er,x
[
e−2

∫ s
0 rudu

(
vr(t+ s, rs, Xs)

)2
β2(rs)

]
≤ c1γ

2Er[|rs|],

where we used the explicit form of β. It remains to recall (4.4) to conclude (4.72).
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4.5 Continuity of the stopping boundary and Dynkin’s formula

Proposition 4.5.5. Under Assumption 4.5.3, for any (t, r, x) ∈ O and any stopping time τ ∈
[0, T − t], the value function satisfies the following Dynkin’s formula:

v(t, r, x) = Er,x

[∫ τ

0

e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du+ e−

∫ τ
0 rvdvv(t+ τ, rτ , Xτ )

]
. (4.75)

Proof. Let Kn be an increasing sequence of compact subsets ofO such that ∪n∈NKn = O and
define τn = inf{t ∈ [0, T − t] : (t + s, rs, Xs) /∈ Kn} ∧ (T − t − 1

n
) for n large enough so

that 1
n
≤ T − t. We apply a version of the change of variable formula from Chapter 5 Theorem

5.2.1 (also see [25]). We delay the verification of the assumptions required until the end of the
proof. Using that

(∂t + L − r)v(t, r, x) = 0, r < c(t, x),

(∂t + L − r)v(t, r, x) = (∂t + L − r)(K − x) = −rK, r > c(t, x),
(4.76)

we obtain that the dynamics of the discounted value function on [0, τn] is given by

e−
∫ s∧τn
0 rvdvv(t+ s ∧ τn, rs∧τn , Xs∧τn)

= v(t, r, x)−
∫ s∧τn

0

e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du+

∫ s∧τn

0

e−
∫ u
0 rvdvσXuvx(t+ u, ru, Xu)dBu

+

∫ s∧τn

0

e−
∫ u
0 rvdvβ(ru)vr(t+ u, ru, Xu)dWu.

(4.77)
Taking expectations and applying the optional sampling theorem we arrive at

v(t, r, x) = Er,x
[ ∫ τ∧τn

0

e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du

+e−
∫ τ∧τn
0 rvdvv(t+(τ ∧ τn), rτ∧τn , Xτ∧τn)

]
.

(4.78)

Using (4.3) and (4.4), Hölder inequality implies

Er,x

[∫ T−t

0

e−
∫ u
0 rvdv|Kru|du

]
<∞.

The majorant for the second term of (4.78) follows from (4.70) in Lemma 4.5.4. The dominated
convergence theorem proves (4.75), since τn ↑ T−t upon recalling that the boundary of I×R+

is assumed non-attainable by the process (rt, Xt).
It remains to verify assumptions of 5.2.1. Identifying X1

t = rt and X2
t = Xt, we have,

β1,1(t, r, x) = β2(r), β1,2(t, r, x) = β2,1(t, r, x) = σρβ(r)x, β2,2(t, r, x) = σ2x2.

By Assumption 4.2.1, βi,j is Lipschitz for i, j = 1, 2 on every compact set in O. Indeed, it
can be directly verified for the CIR process. In case (ii) of Assumption 4.2.1 we use Lipschitz
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4.6 Early exercise premium

continuity of β. The marginal distribution of the process (rt, Xt) has density with respect to
the Lebesgue measure (Remark 4.3.7), so (t, rt, Xt) /∈ ∂C, Pr,x-a.s. for any t > 0. This verifies
Assumption A.1 of 5.2.1. In the notation of Assumption A.2 in 5.2.1, using (4.76), we have

1

2
L(t, r, x) = −rxvx(t, r, x)− α(r)vr(t, r, x)− vt(t, r, x) + rv(t, r, x)− 1{(t,r,x)∈D} rK.

Since v ∈ C1(O) and the function α(r) is continuous (see Assumption 4.2.1), L is continuous
and bounded on Kn \ ∂C. We finally have that Assumption A.3 in 5.2.1 holds by Proposition
4.3.4.

In the proof of the above proposition, we show that the discounted value function satisfies
for any stopping time τ ∈ [0, T − t]

e−
∫ τ
0 rvdvv(t+ τ, rτ , Xτ )

= v(t, r, x)−
∫ τ

0

e−
∫ s
0 rvdvKrs1{rs>c(t+s,Xs)}ds+

∫ τ

0

e−
∫ s
0 rvdvσXsvx(t+ s, rs, Xs)dBs

+

∫ τ

0

e−
∫ s
0 rvdvβ(rs)vr(t+ s, rs, Xs)dWs.

(4.79)
This representation will play a fundamental role in deriving a hedging strategy for the Ameri-
can put option in Section 4.8.

4.6 Early exercise premium

Inserting τ = T − t in (4.75), we obtain a decomposition of the American option price into
a sum of the European option price ve and an early exercise premium vp (see [124] for a
derivation of this formula only using general martingale theory):

v(t, r, x) = vp(t, r, x;T, b) + ve(t, r, x;T ), (4.80)

where
ve(t, r, x;T ) = Er,x

[
e−

∫ T−t
0 rvdv(K −XT−t)

+
]
,

vp(t, r, x;T, b) = Er,x

[∫ T−t

0

e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du

]
= Er,x

[∫ T−t

0

e−
∫ u
0 rvdvKru1{Xu<b(t+u,ru)}du

]
.

(4.81)

The last equality follows from r > c(t, x)⇔ x < b(t, r) by construction of b as the generalised
inverse of c.
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4.7 Integral equation for the stopping boundary

4.7 Integral equation for the stopping boundary

Proposition 4.5.5 provides a characterisation of the optimal stopping boundary c(t, x). Indeed,
for any (t, x) ∈ [0, T )×R+ such that c(t, x) ∈ I, inserting τ = T − t and r = c(t, x) in (4.75)
yields an integral equation for c:

(K − x)+ = Ec(t,x),x

[∫ T−t

0

e−
∫ u
0 rvdvKru1{ru>c(t+u,Xu)}du+ e−

∫ T−t
0 rvdv(K −XT−t)

+

]
.

(4.82)
The condition that c(t, x) ∈ I is necessary as c can take values r and r which do not belong do
the state space I, and the interest rate process r may not be started from there. Notice also that
c(t, x) /∈ I when x ≥ K so the left-hand side of (4.82) can be replaced by (K − x). In line
with well-known results for American options with constant interest rate [111], it also turns
out that c is the unique solution of the integral equation.

Proposition 4.7.1. Under Assumptions 4.5.1 and 4.5.3, the function c is the unique function
Φ : [0, T )× R+ → [0, r] such that:

1. is continuous, non-decreasing in x and non-increasing in t, with Φ(t, x) = r̄ for x ≥ K,

2. Φ satisfies (4.82) (with c therein replaced by Φ) for all (t, x) ∈ [0, T ) × R+ for which
Φ(t, x) ∈ I.

Proof. The proof follows ideas originally developed in [111]. Assume there exists another
continuous function c̃ that satisfies conditions (1) and (2) in the statement of this proposition.
Define a function O 3 (t, r, x) 7→ ṽ(t, r, x) such that

ṽ(t, r, x) = Er,x

[∫ T−t

0

e−
∫ u
0 rvdvKru1{ru>c̃(t+u,Xu)}du+e−

∫ T−t
0 rvdv(K−XT−t)

+

]
,

ṽ(T, r, x) = (K − x)+, (r, x) ∈ I × R+.

It is not difficult to prove that ṽ is continuous by the continuity of c̃ and of the flow (s, r, x) 7→
(rrs, X

r,x
s ). By the Markov property of (r,X), one can also check that

Ṽs :=

∫ s

0

e−
∫ u
0 rvdvKru1{ru>c̃(t+u,Xu)}du+ e−

∫ s
0 rvdvṽ(t+ s, rs, Xs), s ∈ [0, T − t],

is a continuous Pr,x-martingale. Hence, for any (t, r, x) ∈ O and any stopping time τ ≤ T − t,
the optional sampling theorem yields

ṽ(t, r, x) = Er,x
[
Ṽτ
]

= Er,x

[∫ τ

0

e−
∫ u
0 rvdvKru1{ru>c̃(t+u,Xu)}du+ e−

∫ τ
0 rvdvṽ(t+ τ, rτ , Xτ )

]
,

(4.83)
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4.7 Integral equation for the stopping boundary

which is analogous to the formula for v in (4.75).
For an easier exposition of the arguments of proof we proceed in steps. In the first four

steps we show the equality c̃(t, x) = c(t, x) for all (t, x) ∈ [0, T ) × R+ such that c̃(t, x) ∈ I.
Then, in the final step we use monotonicity and continuity of c̃ and c to extend the equality to
all (t, x) ∈ [0, T )× R+.

Step 1. We first show that ṽ(t, r, x) = (K − x)+ for any (t, r, x) ∈ O such that r ≥ c̃(t, x).
Fix (t̂, r̂, x̂) ∈ O such that r̂ > c̃(t̂, x̂) (the claim for r̂ = c̃(t̂, x̂) follows by the continuity of
ṽ). Define a stopping time

τ1 := inf{s ≥ 0 : rr̂s ≤ c̃(t̂+ s,X r̂,x̂
s )} ∧ (T − t̂).

By the continuity of s 7→ c̃(t̂+ s,Xs) and s 7→ rs, and the fact that r and r are unattainable by
(rs), we have c̃(t̂+ τ1, Xτ1) ∈ I on {τ1 < T − t̂}. By assumption ṽ(t, c̃(t, x), x) = (K − x)+

and, consequently, ṽ
(
t̂+ τ1, c̃(t̂+ τ1, Xτ1), Xτ1

)
= (K −Xτ1)

+ since ṽ(T, r, x) = (K − x)+.
In combination with (4.83), this yields

ṽ(t̂, r̂, x̂) = Er̂,x̂

[∫ τ1

0

e−
∫ u
0 rvdvKrudu+ e−

∫ τ1
0 rvdv(K −Xτ1)

+

]
, (4.84)

where we use that ru > c(t̂ + u,Xu) on {u < τ1}. Applying Tanaka’s formula to (r, x) 7→
(K − x)+ and taking expectation, we get

(K − x̂)+

= Er̂,x̂

[∫ τ1

0

e−
∫ u
0 rvdvKru1{Xu<K}du+ e−

∫ τ1
0 rvdv(K −Xτ1)

+ +
1

2

∫ τ1

0

e−
∫ u
0 rvdvdLKu (X)

]
= Er̂,x̂

[∫ τ1

0

e−
∫ u
0 rvdvKrudu+ e−

∫ τ1
0 rvdv(K −Xτ1)

+

]
,

where LK(X) is the local time of the process X at K. The local time LK(X) is null until τ1

since ru > c̃(t + u,Xu) =⇒ Xu < K, recalling that c̃(t, x) = r̄ when x ≥ K. Compare the
right-hand side of the above expression to (4.84) to conclude that ṽ(t̂, r̂, x̂) = (K − x̂)+.

Step 2. The next step is to show that ṽ ≤ v for (t, r, x) ∈ O. Since we have already proved
ṽ(t, r, x) = (K−x)+ ≤ v(t, r, x) when r ≥ c̃(t, x), we take (t̂, r̂, x̂) ∈ O such that r̂ < c̃(t̂, x̂).
Define a stopping time

τ2 := inf{s ≥ 0 : rr̂s ≥ c̃(t̂+ s,X r̂,x̂
s )} ∧ (T − t̂).

Since ru < c̃(t̂+ u,Xu) on {u < τ2}, we obtain from (4.83)

ṽ(t̂, r̂, x̂) = Er̂,x̂
[
e−

∫ τ2
0 rvdv(K −Xτ2)

+
]
≤ v(t̂, r̂, x̂),
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4.7 Integral equation for the stopping boundary

where the first equality is by ṽ
(
t̂+τ2, c̃(t̂+τ2, Xτ2), Xτ2

)
= (K−Xτ2)

+ and the final inequality
holds by the definition of v.

Step 3. Now we show that c̃(t, x) ≤ c(t, x) for any (t, x) ∈ [0, T ) × (0, K) such that
c̃(t, x) ∈ I (it is immediate for (t, x) ∈ [0, T )× [K,∞) as c̃(t, x) = c(t, x) = r). Arguing by
contradiction, assume that there exists (t̂, x̂) ∈ [0, T )× (0, K) such that I 3 c̃(t̂, x̂) > c(t̂, x̂).
Let r̂ > c̃(t̂, x̂), and define

τ3 := inf{s ≥ 0 : rr̂s ≤ c(t̂+ s,X r̂,x̂
s )} ∧ (T − t̂).

By (4.75) and (4.83), we have

v(t̂, r̂, x̂) = Er̂,x̂

[∫ τ3

0

e−
∫ u
0 rvdvKru1{ru>c(t̂+u,Xu)}du+ e−

∫ τ3
0 rvdvv(t̂+ τ3, rτ3 , Xτ3)

]
,

ṽ(t̂, r̂, x̂) = Er̂,x̂

[∫ τ3

0

e−
∫ u
0 rvdvKru1{ru>c̃(t̂+u,Xu)}du+ e−

∫ τ3
0 rvdvṽ(t̂+ τ3, rτ3 , Xτ3)

]
.

Since ṽ(t̂, r̂, x̂) = (K− x̂)+ = v(t̂, r̂, x̂), ru > c(t̂+u,Xu) on {u < τ3}, and ṽ ≤ v, the above
two equations imply that

Er̂,x̂

[∫ τ3

0

e−
∫ u
0 rvdvKru1{ru>c̃(t̂+u,Xu)}du

]
≥ Er̂,x̂

[∫ τ3

0

e−
∫ u
0 rvdvKrudu

]
.

As the function c is non-negative, ru ≥ 0 on {u < τ3} and we conclude that

Er̂,x̂

[∫ τ3

0

1{ru≤c̃(t̂+u,Xu)}du

]
= 0. (4.85)

The dynamics of (r,X) is non-degenerate on I × R+, so the density of (ru, Xu) has a full
support (on I × R+) for u > 0 (this can be inferred by classical Gaussian bounds as those we
use in (4.42)). Hence, by the continuity of c̃ and c, for a sufficiently small ε > 0,

Pr̂,x̂
(
c(t̂+ u,Xu) < ru < c̃(t̂+ u,Xu) for some u ∈ (0, ε)

)
> 0.

Paired with the continuity of trajectories of (r,X), it contradicts (4.85).
Step 4. Next, we prove c̃ = c at all points such that c̃ ∈ I. Arguing by contradiction,

assume c̃(t̂, x̂) < c(t̂, x̂) for some (t̂, x̂) ∈ [0, T ) × (0, K) such that c̃(t̂, x̂) ∈ I. Let r̂ ∈
(c̃(t̂, x̂), c(t̂, x̂)) and define

τ4 := inf{s ≥ 0 : rr̂s ≥ c(t̂+ s,X r̂,x̂
s )} ∧ (T − t̂).

By (4.75) and (4.83), we have

v(t̂, r̂, x̂) = Er̂,x̂
[
e−

∫ τ4
0 rvdvv(t̂+ τ4, rτ4 , Xτ4)

]
,

ṽ(t̂, r̂, x̂) = Er̂,x̂

[∫ τ4

0

e−
∫ u
0 rvdvKru1{ru>c̃(t̂+u,Xu)}du+ e−

∫ τ4
0 rvdvṽ(t̂+ τ4, rτ4 , Xτ4)

]
,
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4.7 Integral equation for the stopping boundary

where in the first expression we used that 1{ru>c(t̂+u,Xu)} = 0 on {u < τ4}. Since c̃(t, x) ≤
c(t, x) for (t, x) ∈ [0, T ) × (0, K), we have ṽ(t̂ + τ4, rτ4 , Xτ4) = (K − Xτ4)

+ = v(t̂ +

τ4, rτ4 , Xτ4) by step 1. Then recalling that ṽ ≤ v and comparing the two equations above give
us

Er̂,x̂

[∫ τ4

0

e−
∫ u
0 rvdvKru1{ru>c̃(t̂+u,Xu)}du

]
≤ 0.

This is a contradiction since by the continuity of (r,X) and c̃ there is a random variable η > 0

such that
ru(ω) > c̃(t̂+ u,Xu(ω)) for all u ∈ [0, η(ω)).

Step 5. Here we show that c̃ = c on [0, T ) × R+. Let (tn, xn) be a sequence such that
c̃(tn, xn) ∈ I and (tn, xn) → (t0, x0) with c̃(t0, x0) = r̄ (respectively c̃(t0, x0) = 0). Since
c̃(tn, xn) = c(tn, xn) for all n’s, by the four steps above, by continuity we also get c(t0, x0) =

c̃(t0, x0) = r̄ (respectively c(t0, x0) = c̃(t0, x0) = 0). Then, by the monotonicity of both c and
c̃ we get c(t, x) = c̃(t, x) for all (t, x) ∈ [0, t0]× [x0,∞) (respectively (t, x) ∈ [t0, T ]× [0, x0]).
This implies, in particular, that

{(t, x) : c̃(t, x) ∈ I} = {(t, x) : c(t, x) ∈ I},

which concludes the proof.

The integral equation (4.82) has an analogue for the function b(t, r) from Proposition 4.3.5.
Indeed, for b(t, r) > 0, taking x = b(t, r) and τ = T − t in Proposition 4.5.5 and using
v(t, r, b(t, r)) = K − b(t, r) we see that b solves the integral equation:

K − b(t, r) = Er,b(t,r)

[∫ T−t

0

e−
∫ u
0 rvdvKru1{Xu<b(t+u,ru)}du

]
+ Er,b(t,r)

[
e−

∫ T−t
0 rvdv(K −XT−t)

+
]
,

(4.86)

where we use {Xu < b(t+ u, ru)} = {ru > c(t+ u,Xu)} which follows from x > b(t, r)⇔
r < c(t, x) by construction of b as the generalised inverse of c. This parametrisation of the
integral equation extends the one obtained in the classical American put problem with constant
interest rate to our two-factor set-up. Once again we can prove uniqueness of the solution to
the integral equation but without requiring continuity of b, which is a non-standard result for
this type of equations.

Corollary 4.7.2. Under the assumptions of Proposition 4.7.1, the function b is the unique
function Ψ : [0, T )× I → [0, K) such that:

1. t 7→ Ψ(t, r) and r 7→ Ψ(t, r) are right-continuous and non-decreasing,
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2. the generalised left-continuous inverse Φ(t, x) := inf{r ∈ I : Ψ(t, r) ≥ x} is continu-
ous in (t, x), non-decreasing in x and non-increasing in t,

3. Ψ satisfies (4.86) with (b therein replaced by Ψ) for all (t, r) ∈ [0, T ) × I such that
Ψ(t, r) > 0.

Notice that Φ(t, x) = r̄ for x ≥ K follows immediately from Ψ(t, r) < K.

Proof. We can repeat the same arguments as in the proof of Proposition 4.7.1, always using
x > b(t, r) ⇐⇒ r < c(t, x) to fall back into the exact set-up of steps 1–4 therein.

Integral equations (4.82) and (4.86) offer a method to compute the optimal stopping bound-
ary without using the value function v. We will demonstrate it in Section 4.9 where we design
a numerical method for solving such integral equations. Knowing the stopping boundary b, the
decomposition (4.80) can be employed to obtain an efficient numerical estimate of the option
value. This offers an alternative to numerical solution of the variational inequality for the value
function v, and, subsequently, extraction of the optimal exercise boundary.

4.8 Hedging portfolio

Thanks to the change of variable formula (4.79) we are also able to rigorously construct a hedg-
ing portfolio that (super)replicates the option payoff at all times. This is based on the classical
delta-hedging ideas in the Black and Scholes model but its rigorous mathematical derivation
requires smoothness of the option price function which was not previously established in the
literature.

Consider a market comprising three instruments: the money market account ξt := e
∫ t
0 rudu,

the risky stock with the dynamics (4.1), and a zero-coupon bond with maturity T . We will
construct a hedging portfolio for the American option on this market. We remark that the zero-
coupon bond can be replaced by any other financial instrument whose dynamics depends on
the Brownian motion W driving the interest rate, see Karatzas [86].

The risk-neutral price of the zero-coupon bond at time t ∈ [0, T ] is given by

R(t, r) := Er
[
e−

∫ T−t
0 rudu

]
, R(T, r) = 1. (4.87)

By standard arguments based on pathwise continuity of the flow (t, r) 7→ rrt (ω), one can easily
show that R is continuous on [0, T ] × I. Then, under Assumption 4.2.1, the classical PDE
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theory [69, Thm. 9, Ch. 4, Sec. 3] guarantees that R is the unique classical solution of the
boundary value problem

(∂t + Lr − r)u(t, r) = 0, (t, r) ∈ [0, T ]× (a, b),

u(t, r) = R(t, r), t ∈ [0, T ), r ∈ {a, b}

u(T, r) = 1, r ∈ [a, b],

where Lr = α(r)∂r +β(r)2/2∂rr and (a, b) ⊂ I is an arbitrary bounded interval. In particular,
by arbitrariness of (a, b) we have R ∈ C1,2([0, T )× I) and

(∂t + Lr − r)R(t, r) = 0, (t, r) ∈ [0, T ]× I.

Then, using Itô’s formula, the discounted bond price dynamics reads

de−
∫ s
0 ruduR(s, rs) = Rr(s, rs)β(rs)dWs. (4.88)

Denote by φ(1), φ(2), φ(3) the holdings in the stock, the bond and the money account, respec-
tively. Let C be a non-decreasing continuous process starting from 0 modelling consumption.
A self-financing portfolio starting at time 0 can be constructed by

Πs := φ(1)
s Xs + φ(2)

s R(s, rs) + φ(3)
s ξs, s ∈ [0, T ], (4.89)

and it holds that

Πs = v(0, r, x) +

∫ s

0

φ(1)
u dXu +

∫ s

0

φ(2)
u dR(u, ru) +

∫ s

0

φ(3)
u dξu − Cs, s ∈ [0, T ]. (4.90)

The portfolio is admissible if all integrals above are semimartingales. Taking the money-
market account as a numeráire, we obtain from equations (4.90) that the dynamics of the
discounted portfolio value reads

de−
∫ s
0 ruduΠs = φ(1)

s de−
∫ s
0 ruduXs + φ(2)

s de−
∫ s
0 ruduR(s, rs)− e−

∫ s
0 rududCs

= e−
∫ s
0 ruduφ(1)

s σXsdBs + e−
∫ s
0 ruduφ(2)

s β(rs)Rr(s, rs)dWs − e−
∫ s
0 rududCs.

(4.91)

This means that a self-financing portfolio is uniquely determined by the processes φ(1), φ(2)

and C.
Comparing (4.91) with (4.79), a candidate for the hedging strategy is given by

φ(1)
s = vx(s, rs, Xs), φ(2)

s =
vr(s, rs, Xs)

Rr(s, rs)
, Cs =

∫ s

0

Kru1{ru>c(u,Xu)}du. (4.92)

Thanks to Lemma 4.5.4, we can indeed prove that such portfolio strategy is admissible and
replicates the option’s payoff.
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Proposition 4.8.1. Under Assumption 4.5.3 the portfolio (φ(1), φ(2), C) is admissible and repli-
cates the payoff of the American put option.

Proof. The admissibility condition can be equivalently written as∫ T

0

e−2
∫ s
0 rudu

(
φ(1)
s σXs

)2
ds+

∫ T

0

e−2
∫ s
0 rudu

(
φ(2)
s β(rs)Rr(s, rs)

)2
ds <∞, Pr,x-a.s.

(4.93)
Estimates in Lemma 4.5.4 imply

Er,x
[ ∫ T

0

e−2
∫ s
0 rudu

(
φ(1)
s σXs

)2
ds+

∫ T

0

e−2
∫ s
0 rudu

(
φ(2)
s β(rs)Rr(s, rs)

)2
ds
]
<∞,

which is a stronger condition than (4.93). The fact that the portfolio replicates the option
follows from the construction and (4.92).

4.9 Numerical analysis

In the numerical analysis, we assume that the interest rate r follows Vasicek model. In partic-
ular, this means that I = R and

drt = κ(θ − rt)dt+ βdWt, (4.94)

whose explicit solution is given by

rs = rte
−(s−t)κ + θ(1− e−(s−t)κ) + βe−sκ

∫ s

t

eκudWu, s ≥ t ≥ 0. (4.95)

We first derive a numerical method for computing the optimal stopping boundary using the
integral equation from (4.86). Once the boundary is obtained, we use it to also compute the
value function via (4.80). Section 4.9.2 contains an analysis of the effect of parameters on the
stopping boundary and the value function.

4.9.1 Computational approach

With an abuse of notation, we denote by R(t, T ) = R(t, r, T ) the time-t price of a zero-
coupon bond with maturity T (c.f. (4.87)); the dependence on the initial state r is indicated in
the subscript of the expectation operator. Recall the integral equation (4.86) for the boundary
b: for (t, r) ∈ [0, T )× I such that b(t, r) > 0, we have

K − b(t, r) = vp(t, r, b(t, r);T, b) + ve(t, r, b(t, r);T ), (4.96)
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where ve and vp are stated in (4.81). With the last parameter b of vp, we emphasise the depen-
dence on the function b:

vp(t, r, x;T, b) = Er,x

[∫ T−t

0

e−
∫ u
0 rvdvKru1{Xu<b(t+u,ru)}du

]
.

In the numerical scheme below, we evaluate vp for consecutive approximations of b.
We can derive the following formulas for ve and vp using well-known properties of the joint

law of (rt, Xt):

ve(t, r, x;T ) = R(t, T )KN (d1)− xN (d2), (4.97)

vp(t, r, x;T, b) =

∫ T

t

KR(t, u)

[ ∫ ∞
−∞

1√
2π
e−

y2

2

(
q(t, u) + y

√
γ2(t, u)

)
N
(
φ(t, u, y; b)

)
dy

]
du,

(4.98)

where N (·) is the cumulative distribution function of the standard normal distribution and
other auxiliary quantities are given by (we suppress dependence on r and x for the sake of
simplicity):

d1(t, T ) : =
log
(
K P (t,T )

x

)
+ γ1(t,T )

2√
γ1(t, T )

, d2(t, T ) := d1(t, T )−
√
γ1(t, T ),

q(t, u) : = e−(u−t)κr + θ(1− e−(u−t)κ)− β2

2
g(κ, u− t)2,

φ(t, u, y; b) : =
log
(
P (t,u)
x

b
(
u, q(t, u) + y

√
γ2(t, u)

))
+ γ1(t,u)

2
−
√
γ1(t, u)ρ̃(t, u)y√

(1− ρ̃(t, u)2)γ1(t, u)
,

µ(t, u) : = rg(κ, u− t) + θ
(
u− t− g(κ, u− t)

)
,

γ1(t, u) : = (u− t)σ2 +
2ρσβ

κ

(
u− t− g(κ, u− t)

)
+
β2

κ

(
u− t− 2g(κ, u− t) + g(2κ, u− t)

)
,

γ2(t, u) : = β2g(2κ, u− t),

ρ̃(t, u) : =
ρσβg(κ, u− t) + β2

2
g(κ, u− t)2√

γ1(t, u)γ2(t, u)
,

g(a, u) : =
1− e−au

a
.

(4.99)
Now we give the detailed derivation of (4.97) and (4.98).
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Lemma 4.9.1. For a measurable bounded function ϕ : (0,∞) × R → R and s ≥ t, the
function

u(t, s, r, x) = Er,x
[
e−

∫ s−t
0 ruduϕ(Xs−t, rs−t)

]
has an explicit representation

u(t, s, r, x) = e−µ(t,s)+ 1
2
β2
∫ s
t g(κ,s−u)2du

∫
R2

ϕ
(
xeL(t,s)+

√
γ1(t,s))z, q(t, s) + y

√
γ2(t, s)

)
e
− 1

2(1−ρ̃(t,s)2)(z
2+y2−2ρ̃(t,s)zy) 1

2π
√

1− ρ̃(t, s)2
dzdy, (4.100)

where

L(t, s) = µ(t, s)− σ2

2
(s− t)−

∫ s

t

(
β2g(κ, s− u)2 + ρσg(κ, s− u)

)
du.

Proof. The proof follows the lines of similar computations in the literature, see [13] and [45].
Using the explicit expression of r in (4.95) and stochastic Fubini’s theorem [117, Theorem
IV.64], we compute∫ s

t

rudu = g(κ, s− t)rt + θ (s− t− g(κ, s− t)) + β

∫ s

t

g(κ, s− u)dWu (4.101)

= µ(t, s) + β

∫ s

t

g(κ, s− u)dWu.

Define Zt implicitly by
dBt = ρdWt +

√
1− ρ2dZt.

Then Z is a Brownian motion that is independent of W . Using the explicit expression of X
and (4.101), we write u as

u(t, s, r, x) = Er

[
e−µ(t,s)−β

∫ s−t
0 g(κ,s−t−u)dWuϕ

(
x exp

{
µ(t, s)− σ2

2
(s− t)

+ β

∫ s−t

0

g(κ, s− t− u)dWu +

∫ s−t

0

σ(ρdWu +
√

1− ρ2dZu)
}
, rs−t

)]
.

(4.102)
Define a new measure P̃ by the Radon-Nikodym density

dP̃

dP
:= e

−
∫ s−t
0 C

(1)
u dWu−

∫ s−t
0 C

(2)
u dZu− 1

2

∫ s−t
0

(
(C

(1)
u )2+(C

(2)
u )2

)
du
,

where C(1)
u = βg(κ, s− t− u), C

(2)
u = 0. Define process W̃ such that

dW̃u = dWu + βg(κ, s− t− u)du,
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then (W̃u, Zu)u∈[0,s−t] is a two-dimensional Brownian motion under P̃.
We write the explicit formula (4.101) for r in terms of W̃ :

rs = rte
−(s−t)κ + θ(1− e−(s−t)κ)− β2

2
g(κ, s− t)2 + β

∫ s

t

e−(s−u)κdW̃u.

Denoting by Ẽ the expectation under P̃ , we obtain from (4.102) (note that we use explicit form
of rs with s = s− t, t = 0)

u(t, s, r, x) = e−µ(t,s)+ 1
2
β2
∫ s
t g(κ,s−u)2duẼ

[
ϕ
(
xeL(t,s)+A(t,s), q(t, s) + Y (t, s)

)]
, (4.103)

where

A(t, s) : =

∫ s−t

0

(ρσ + βg(κ, s− t− u))dW̃u +

∫ s−t

0

σ
√

1− ρ2dZu,

Y (t, s) : = β

∫ s−t

0

e−(s−t−u)κdW̃u.

For each fixed t < s, the random vector (A, Y ) is multivariate Gaussian under P̃ with zero
mean, and variance and covariance given by

V arP̃(A(t, s)) = γ1(t, s), V arP̃(Y (t, s)) = γ2(t, s),

CovP̃(A(t, s), Y (t, T )) = ρ̃(t, s)
√
γ1(t, s)γ2(t, s).

Hence, we have an explicit integral representation of (4.103)

u(t, s, r, x)

= e−µ(t,s)+ 1
2
β2
∫ s
t g(κ,s−u)2du

∫
R2

ϕ
(
xeL(t,s)+z, q(t, s) + y

)
× e

− 1
2(1−ρ̃(t,s)2)

(
z2

γ1(t,s)
+ y2

γ2(t,s)
− 2ρ̃(t,s)zy√

γ1(t,s)γ2(t,s)

)
1

2π
√
γ1(t, s)γ2(t, s)

√
1− ρ̃(t, s)2

dzdy.

(4.104)
A change of variable yields (4.100).

We now apply the above lemma to derive formulae for R(t, T ), ve and vp. Taking ϕ ≡ 1 in
(4.100), we have

R(t, s) = Er
[
e−

∫ s−t
0 rsds

]
= e−µ(t,s)+ 1

2
β2
∫ s
t g(κ,s−u)2du = e−µ(t,s)+ β2

2κ2
(s−t−2g(κ,s−t)+g(2κ,s−t)).

(4.105)
This also implies that

eL(t,s) = eµ(t,s)− 1
2

∫ s
t β

2g(κ,s−u)2du e−
σ2

2
(s−t)− 1

2

∫ s
t β

2g(κ,s−u)2du−
∫ s
t ρσg(κ,s−u)du =

1

R(t, s)
e−

γ1(t,s)
2 .
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Insert this and (4.105) into (4.100) and let

z = ρ̃(t, s)y +
√

1− ρ̃(t, s)2ẑ.

This transforms the integral in (4.100) into an integral of two independent Gaussian variables

u(t, s, r, x) = R(t, s)

∫
R2

ϕ
( x

R(t, s)
e
− γ1(t,s)

2
+
√
γ1(t,s)

(
ρ̃(t,s)y+

√
1−ρ̃(t,s)2ẑ

)
,

q(t, s) +
√
γ2(t, s)y

)
e−

1
2

(ẑ2+y2) 1

2π
dẑdy. (4.106)

Now, letting ϕ(x, r) = (K − x)+ and ϕ(x, r) = Kr1{x<b(s,r)}, we obtain (4.97)-(4.98).
Equation (4.96) defines the boundary b as a fixed point of a non-linear mapping. To com-

pute it, we follow an iterative scheme motivated by [46]. We fix −∞ < rmin < rmax < ∞
and discretise the variables (t, r) as follows:

{(ti, rj) ∈ [t, T ]× [rmin, rmax]}, i = 1, ...,M, j = 1, ..., N.

We specify an initial approximation b(0) of the boundary:

b(0)(ti, rj) = K, ∀ i, j.

For each n ≥ 1, we compute the boundary b(n) at points (ti, rj)i,j by solving the algebraic
equation:

K − b(n)(ti, rj)− ve
(
ti, rj, b

(n)(ti, rj);T
)

= vp
(
ti, rj, b

(n−1)(ti, rj);T, b
(n−1)

)
. (4.107)

The right-hand side, which is difficult to compute, is independent of b(n), while the left-hand
side is known in an explicit form. We stop iterations when, for a pre-determined ε > 0,

max
i,j
|b(n−1)(ti, rj)− b(n)(ti, rj)| < ε.

The numerical evaluation of vp
(
ti, rj, b

(n−1)(ti, rj);T, b
(n−1)

)
requires that the boundary

b(n−1) be known for all points (t, r) in the state space while we compute it only on the grid
(ti, rj). We, therefore, use Matlab interpolation function with the Modified Akima cubic Her-
mite polynomials (‘makima’) interpolation method. Integrals are computed using Matlab func-
tions employing standard quadrature methods.

It should be remarked that the stopping boundary b may have a singularity (jump) at r = 0,
which corresponds to a horizontal part of the parametrisation c of the stopping surface: a
jump occurs when c−1({0}) 6= [0, T ) × {0}. Furthermore, b(T−, r) := limt↑T b(t, r) satisfies
b(T−, r) = 0 for r < 0 and b(T−, r) ≥ b(0, r) > 0 for r > 0, see Proposition 4.3.5. This
hints at a potential numerical difficulty around r = 0, particularly for times t close to maturity.
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Figure 4.1: Stopping boundary surface b(t, r).

4.9.2 Sensitivity analysis

Unless stated otherwise, numerical results are presented for the parameter values

T = 1, K = 100, σ = 0.4, κ = 0.3, θ = 0.05, β = 0.01, ρ = 0.5, (4.108)

and the convergence criterion with ε = 0.01. The magnitude of κ, θ and β is based on empirical
findings reported in the literature, c.f. [79, Chapter 31] and [61]. Although main currencies
have recently enjoyed much lower interest rates, our choice of θ means that the effects of
random interest rate and its parameters on the market dynamics and optimal stopping boundary
are more pronounced and graphs more transparent.

Figure 4.1 plots the stopping boundary b(t, r) using parameters (4.108). The optimal stop-
ping boundary increases as t tends to the maturity T and as the interest rate r grows (c.f.
Proposition 4.3.5). This behaviour is consistent with the one of the optimal exercise boundary
for the American put option in the Black and Scholes model with a constant interest rate [111].
Figure 4.2 illustrates the value function v(t, r, x) via sections in directions of t, r and x rooted
at the point (0, 0.0478, 82.11), which illustrates the findings of Proposition 4.3.1. In Panel (a),
the value decreases to the value of the immediate exercise as the option is purchased deep in
the money.
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(a) t 7→ v(t, 0.0478, 82.11) (b) r 7→ v(0, r, 82.11)

(c) x 7→ v(0, 0.0478, x)

Figure 4.2: Sections of the value function v(t, r, x) through the point (0, 0.0478, 82.11). The
dashed line displays the payoff (K − x)+.
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(a) (b)

Figure 4.3: The r-sections of the stopping boundary (left panel) and the value function (right
panel) for the mean-reversion parameter κ ∈ {0.1, 0.55, 1}.

Effects of the interest rate. The option price is significantly affected by the initial interest
rate (Panel (b)) because the maturity of the option is long (1 year). The effect depends on the
mean-reversion coefficient κ and it increases when the mean reversion parameter decreases.
Indeed, this tendency is clearly visible in Figure 4.3. A large mean-reversion speed (κ = 1)
means that the interest rate is quickly pulled towards θ = 0.05, diminishing the effect of the
initial value. Taking expectation on both sides of (4.95) gives that the expected interest rate at
the maturity T = 1 is

Er[r1] = re−κ + θ(1− e−κ),

which, for κ = 1, means Er[r1] ≈ 0.36 r + 0.74 θ. On the contrary, we obtain Er[r1] ≈
0.90 r+0.10 θ for κ = 0.1 and so the effect of the initial interest rate on the stopping boundary
(Figure 4.3a) and the value function (Figure 4.3b) is more pronounced. The optimal strategy
for κ = 0.1 prescribes to be more patient compared to larger values of κ when the interest rate
is near 0 and act faster when the interest rate is close to 1. Indeed, with a slow mean-reversion
the interest rate stays close to the current value for longer, so the observed behaviour of the
stopping boundary and the of value function is akin to that observed by a model with a constant
interest rate [22, 111].

Effects of the correlation coefficient. The sensitivity of the stopping boundary with re-
spect to the correlation coefficient ρ between Brownian motions driving the stock price and
the interest rate is displayed in Figure 4.4; the value function behaves accordingly and it is not
displayed. High positive correlation ρ = 0.8 implies that the interest rate and the stock price
tend to move together. The increase in the interest rate pushes the stock price up and vice versa,
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(a) (b)

Figure 4.4: The r and t-sections of the stopping boundary for the correlation coefficient ρ ∈
{−0.8, 0, 0.8}.

resulting in a more unstable environment and an earlier optimal stopping. On the contrary, a
strong negative correlation sees the stock price and the interest rate dampening the effect of
each other’s moves: an increase in the stock price brings a drop in the interest rate, therefore,
making longer waiting (lower stopping boundary) more desirable due to effect on the drift of
the stock price as well as on the discount factor. Naturally, this effect diminishes the closer one
gets to the maturity of the option, see Figure 4.4b.

Effects of the volatility of stock and interest rate. The effect of the diffusion coefficient of
the spot rate β on the stopping boundary and on the value function is negligible. We compared
results for β ∈ {0.005, 0.01, 0.015}, the range of values observed in empirical literature men-
tioned above. We noticed variations in the value function of less than 0.1% and in the stopping
boundary of less than 1%.

In line with the financial intuition, the value of American Put option is increasing in σ,
see Figure 4.5c and 4.5d. When σ = 0.1, the optimal stopping boundary is close to the
exercise price K (Figure 4.5a), so the option is immediately exercised for the initial stock
price x = 82.1053 presented on Panel (c), hence the flat graph. For other values of σ, the
exercise boundary is below the initial stock price and the effect of the interest rate is clearly
visible. The structure of results in Figure 4.5 is, as expected, in line with the findings for the
American Put option in the Black and Scholes model with constant interest rate [22, 111].
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(a) (b)

(c) (d)

Figure 4.5: Effect of the volatility of the stock price σ. Panels (a) and (b) display the r and
t-sections of the stopping boundary b(t, r) and Panels (c) and (d) show the r and x-sections of
the value function v for σ ∈ {0.1, 0.3, 0.5}.
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Chapter 5

A change of variable formula with
applications to multi-dimensional optimal
stopping problems

5.1 Introduction
1In this chapter, we provide a version of change of variable formula for the value function
U : R+ × Rd → R in a multi-dimensional optimal stopping problem. The result is applied
in the proof of Proposition 4.5.5 in Chapter 4. Our formula requires the value function to be
continuously differentiable, i.e. the spatial gradient ∇U is a continuous function. However,
we require minimal regularity on the second order spatial derivatives of U near the stopping
boundary ∂C and very mild monotonicity properties of the boundary itself.

We now review some of the main results in the field but without the ambition to give a
full account of the existing literature, which is vast and branches out in several specialised
directions. In order to avoid confusion with our own setting, below we use F to denote the
function to which the change of variable formula is applied in the literature that we discuss.

Various change of variable formulae have been developed that do not even require continu-
ity of first order spatial derivatives of F . Perhaps the best known is the so-called Itô-Tanaka-
Meyer formula (see, e.g., [117, Thm.IV.7.70]) which applies to functions F : R → R that
are a difference of convex functions (see also [8, Sec. 3] for an extension to F (t,Xt) with
X a one-dimensional Brownian motion). Relaxing the assumption of convexity is generally
difficult but a number of results are known in the literature. An early work in this direction is

1The results from this chapter form part of the article [25], which is currently under review.
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the one by Bouleau and Yor [19] who establish a formula for functions F : R → R which are
absolutely continuous with locally bounded first order derivative and for a fairly broad class
of càdlàg semi-martingales. The key idea in that work is that the semi-martingale local time
defines a measure on R via the mapping a 7→ Lat (see, e.g., [117, Thm. IV.7.77] and the sub-
sequent corollary for details). Föllmer and Protter [65] generalise those results to functions
F : Rd → R whose first order partial derivatives exist in the weak sense as functions in L2

and the underlying process is a d-dimensional Brownian motion. Analogous results in the one-
dimensional case had been previously obtained by Föllmer, Protter and Shiryaev in [68] (see
also Bardina and Jolis [10] for time-space extensions in the case of one-dimensional diffusions
with suitable transition density). Those works shift the focus from the use of semi-martingale
local times (as in Bouleau and Yor [19]) to the use of quadratic covariation of ∇F (X) and X .
Quadratic covariation appears also in work by Russo and Vallois [123], who require contin-
uous differentiability of the function F : Rd → R but develop change of variable formulae
for more general processes than just semi-martingales, thanks to notions of forward and back-
ward integrals they introduce in earlier papers (see also subsequent results by Errami, Russo
and Vallois [57]). Further results based on quadratic covariation of ∇F (X) and X are estab-
lished by Moret and Nualart [106] when F belongs to the Sobolev class W 1,p

`oc (Rd) and X is a
non-degenerate martingale, using Malliavin calculus techniques. In the case of diffusions as-
sociated to uniformly elliptic operators in divergence form Rozkosz [121] establishes a change
of variable formula for functions F in the class W 1,p

`oc (Rd), for p > 2 ∧ d, via Stratonovich
integrals.

The focus on properties of local times of semi-martingales is central in works by Peskir
[110] and [112], which are close in spirit to our work (see also [74] for further results and
links to other generalisations of Itô’s formula). In particular, in [110] Peskir studies a change
of variable formula for processes F (t,Xt) where X is a continuous semi-martingale, F :

R+ × R → R is such that F ∈ C1,2 on C and F ∈ C1,2 on D, with R+ × R = C ∪ D and
the sets are separated by the graph of a continuous function b : R+ → R of bounded variation.
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Peskir’s formula ([110, Thm. 2.1]) reads as follows.

F (t,Xt) = F (0, X0) +

∫ t

0

1

2
(Ft(s,Xs+) + Ft(s,Xs−)) ds

+

∫ t

0

1

2
(Fx(s,Xs+) + Fx(s,Xs−)) dXs

+

∫ t

0

1

2
Fxx(s,Xs)1{Xs 6=b(s)}d

〈
X,X

〉
s

+

∫ t

0

1

2
(Fx(s,Xs+)− Fx(s,Xs−))1{Xs=b(s)}dL

b
s(X),

(5.1)

where

Lbs(X) = P− lim
ε↓0

1

2ε

∫ s

0

1{b(r)−ε≤Xs≤b(r)+ε}d
〈
X,X

〉
r

(5.2)

is the local time of X at the curve b for s ∈ [0, t]. The local time is needed in the formula as
the spatial derivatives of F need not be continuous across the boundary ∂C = ∂D of the two
sets. In optimal stopping problems where C is the continuation set and F is the value function,
the assumption F ∈ C1,2 on C could be too restrictive, as the regularity is usually hard to
verify at the stopping boundary b. Taking this into account, in [110, Sec. 3], Peskir shows this
requirement can be weakened to hold only in the interior of the sets C and D, separately, if X
is a continuous diffusion:

dXt = α(t,Xt)dt+ σ(t,Xt)dBt. (5.3)

The regularity requirement for F in this case can be replaced by the following assumptions
([110, Thm. 3.1]),

P.1 F ∈ C1,2 on C and F ∈ C1,2 on D,

P.2 LF = Ft + αFx + 1
2
σ2Fxx is locally bounded on C ∪ D,

P.3 Fx(s, b(s)± ε)→ Fx(s, b(s)) uniformly for s ∈ [0, t] as ε ↓ 0,

P.4 sup0<ε<δ V (F ( · , b( · ) ± ε))(t) < ∞ for some δ > 0, where V (g)(t) denotes the total
variation of g on [0, t].

The change of variable formula becomes

F (t,Xt) = F (0, X0) +

∫ t

0

LF (s,Xs)1{Xs 6=b(s)}ds+

∫ t

0

(σFx)(s,Xs)1{Xs 6=b(s)}dBs

+

∫ t

0

1

2
(Fx(s,Xs+)− Fx(s,Xs−))1{Xs=b(s)}dL

b
s(X).

(5.4)
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Assumption P.2 is verifiable in optimal stopping. In the corresponding free boundary problem,
we often have LF = 0 on C and LF = LM on D where M is the gain function. Hence,
the assumption P.2 holds as long as LM is locally bounded on D. The second derivative of F
may explode when approaching the stopping boundary b from C, but the first integral in (5.4)
is well-defined because of the boundedness of function LF . Assumption P.3 and P.4 can be
verified by studying the monotonicity and the C1 regularity (smooth fit) of the value function
F . The idea that only having control over function LF instead of the individual second order
derivative Fxx inspired our work. We will explain this assumption further in Section 5.3.

In his other paper [112], Peskir extends the result to multi-dimensional, possibly discontin-
uous semi-martingalesX = (X1, . . . , Xd) ∈ Rd and in this case the sets C andD are separated
by the graph of a function b : R+ × Rd−1 → R that is continuous and such that the process
bX := b(X1, . . . Xd−1) is a semi-martingale. Let F : Rd → R be a continuous function and
F ∈ Ci1,...,in on C and F ∈ Ci1,...,in on D, where ij is 1 if Xj is of bounded variation and
2 if Xj is not. Then, if X is a continuous semi-martingale, the following change of variable
formula for F (Xt) holds ([112, Thm. 2.1]):

F (Xt) = F (X0) +
d∑
i=1

∫ t

0

1

2

(
Fxi(X

1
s , . . . , X

d
s+) + Fxi(X

1
s , . . . , X

d
s−)

)
dX(i)

s

+
1

2

d∑
i,j=1

∫ t

0

1

2

(
Fxixj(X

1
s , . . . , X

d
s+) + Fxixj(X

1
s , . . . , X

d
s−)

)
d
〈
X i, Xj

〉
s

+
1

2

∫ t

0

(
Fxd(X

1
s , . . . , X

d
s+)− Fxd(X1

s , . . . , X
d
s−)

)
1{Xd

s=bXs }dL
b
s(X),

(5.5)

where

Lbs(X) = P− lim
ε↓0

1

2ε

∫ s

0

1{−ε≤Xd
s−bX(r)≤ε}d

〈
Xd − bX , Xd − bX

〉
r

(5.6)

Lbs(X) is the local time of X on the surface bX . The formula can be extended to the discon-
tinuous case where X is a general semi-martingale with jumps ([112, Thm. 3.1, Thm. 3.2]).
Furthermore, similar to the one dimensional case, the regularity constraint on F in the closure
of C andD may be replaced by some easily verifiable conditions in the setting of free boundary
problems (see [112, Sec. 4]). However, it is still essential that bX = b(X1, . . . , Xd−1) has to
be a semi-martingale so that the local time is well-defined. This may be hard to verify directly
in applications to optimal stopping, because the boundary b is not given explicitly, and it was
one of the main motivations for our own formula. Elworthy, Truman and Zhao [55] also obtain
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change of variable formulae for time-space processes where the spatial component is a one-
dimensional semi-martingale (for an extension to two-dimensional diffusions see [60]); they
require left-derivatives in time and space of the function F to have bounded variation.

Eisenbaum [51] developes change of variable formulae for multi-dimensional Lévy pro-
cesses when first order partial derivatives of the function F exist and are integrable, without
further assumptions on second order derivatives. She relies on a suitable notion of integrals
with respect to local time (a, t) 7→ Lat , understood as integrator in both variables, and connects
her results to all the papers we mentioned so far (see also [49] and [50] for earlier closely re-
lated work by the same author). More recently, Wilson [134] also studies integrals with respect
to local time as a map (a, t) 7→ Lat (building upon ideas from [51] and [74]). He then uses such
integrals in [135] to derive a change of variable formula for functions F : R+ × R2 → R
when the underlying process is a two-dimensional jump diffusion process whose jumps are of
bounded variation and with no diffusive part in the second component. Wilson’s assumptions
on F are in the same spirit as those by Eisenbaum but his change of variable formula draws
on [110] and [112]. However, [135] requires that either the boundary b : R+ × R → R be
Lipschitz continuous or bX := b(t,X) be of bounded variation. Both assumptions are gener-
ally difficult to check in applications to optimal stopping. Finally, under the assumption that
smooth-fit holds and with an analogue of our Assumption A.2 in place, [135] obtains a gener-
alisation of Itô’s formula without requiring bX of bounded variation (but still requiring X of
bounded variation).

It is worth mentioning that a number of interesting results on generalisations of Itô’s for-
mula developed in the early 2000 are collected in the book [47]. There we find for example
work by Kyprianou and Surya [94] on a change of variable formula with local times on curves,
for one-dimensional Lévy processes of bounded variation. Some of the work by Eisenbaum,
Peskir, Russo and Vallois are also contained therein.

In the the theory of stochastic control the most widely used extensions of Itô’s formula for
time-space diffusion processes (generally admitting smooth transition density), require F ∈
W 1,2,p
`oc (R+ × Rd) for p > 1 sufficiently large to also guarantee that the spatial gradient ∇F is

continuous thanks to Sobolev embedding (see, e.g., [16, Ch. 2.8], [93, Ch. 2 Sec. 10] or [64,
Ch. 8]). While our proof is inspired by those results, we remark that our function U does not
belong to the Sobolev class W 1,2,p

`oc (R+×Rd) because we do not require integrability of second
order spatial derivatives in neighbourhoods of the boundary ∂C.

In the context of applications to optimal stopping it is also worth mentioning the work by
Alsmeyer and Jaeger [2]. They prove a change of variable formula for functions F : Rd+1 → R
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that are continuously differentiable and whose derivative in its first variable (denoted Dx0F )
is absolutely continuous as a map z 7→ Dx0F (z, x1, . . . , xd) for all (x1, . . . , xd) fixed. Dif-
ferently from our set-up their result applies for processes X = (M,V 1, . . . , V d) where M
is a continuous semimartingale and (V 1, . . . , V d) is a continuous process of locally bounded
variation.

This chapter is organised as follows. In Section 5.2 we present our framework and state our
change of variable formula. In Section 5.3 we discuss the applicability of our result in optimal
stopping problems for multidimensional processes. In Section 5.4 we prove our change of
variable formula.

5.2 Setting and main result

On a filtered probability space (Ω,F , (Ft)t≥0,P) we consider a d̂-dimensional Brownian mo-
tionB := (B1

t , . . . , B
d̂
t )t≥0 and denote byX := (X1, ..., Xd) a solution in Rd of the stochastic

differential equation (SDE): for i = 1, . . . , d,

dX i
t = αi(t,Xt−)dt+

d̂∑
j=1

σij(t,Xt−)dBj
t + γi(t,Xt−)dAit, X i

0 = xi, (5.7)

whereA = (A1, ..., Ad) is a càdlàg process of bounded variation. Here we use boldface letters
to indicate vectors and denote

βij(t,x) :=
d̂∑

k=1

σik(t,x)σjk(t,x)

and fxi = ∂f
∂xi

, fxixj = ∂2f
∂xi∂xj

for all i, j = 1, . . . , d. The coefficients of the SDE are assumed
to be measurable and, for the sake of concreteness, we also assume for all t ≥ 0 that∫ t

0

d∑
i=1

∣∣γi(s,Xs−)
∣∣d|Ai|s +

∫ t

0

( d∑
i=1

∣∣αi(s,Xs)
∣∣+

d∑
i,j=1

∣∣σij(s,Xs)
∣∣2)ds <∞, P-a.s.,

where we denote by |Ai|s the total variation process associated to Ai.
We divide the state-space into two subsets, i.e., R+×Rd = C∪D, with C open andD closed.

We further assume that such subsets can be described in terms of a surface b1 : R+×Rd−1 → R
as

C = {(t,x) ∈ R+ × Rd : x1 > b1(t, x2, ...xd)}, (5.8)

D = {(t,x) ∈ R+ × Rd : x1 ≤ b1(t, x2, ...xd)}. (5.9)
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The main aim of this chapter is to prove a change of variable formula for functions U :

R+ × Rd → R whose second order spatial derivatives may explode along the boundary ∂C
arbitrarily fast.

Theorem 5.2.1. Assume the following:

A.1 The coefficients βij are locally Lipschitz and P((t,Xt−) ∈ ∂C) = 0 for a.e. t ≥ 0;

A.2 A function U : R+×Rd → R is such that U ∈ C1(R+×Rd) with U ∈ C1,2(C)∩C1,2(D).
Moreover, for any compact subset K ⊂ R+ × Rd the function

L(t,x) :=
d∑

i,j=1

βij(t,x)Uxixj(t,x) (5.10)

is bounded for (t,x) ∈ K \ ∂C. That is, for any compact K there exists cK such that

sup
(t,x)∈K\∂C

|L(t,x)| ≤ cK ; (5.11)

A.3 The mappings xi 7→ b1(t, x2, . . . , xd), i = 2, . . . , d, and t 7→ b1(t, x2, . . . , xd) are mono-
tonic.

Then, we have the change of variable formula:

U(t,Xt) = U(0,x)

+

∫ t

0

[(
Ut +

d∑
i=1

αiUxi

)
(u,Xu−) + 1

2

d∑
i,j=1

1{(u,Xu−)/∈∂C}
(
βijUxixj

)
(u,Xu−)

]
du

+
d∑
i=1

∫ t

0

Uxi(u,Xu−)dAc,iu +
∑
u≤t

(
U(u,Xu)− U(u,Xu−)

)
+

d∑
i,j=1

∫ t

0

Uxi(u,Xu−)σij(u,Xu−)dBj
u, for t ∈ [0,∞), P-a.s.,

(5.12)

where we used the decomposition Ait = Ac,it +
∑

s≤t ∆Ais with Ac,i the continuous part of the
process Ai.

Since the jumps of the process X only arise from the bounded variation process A, the
expression for the jump terms in (5.12) is equivalent to the usual one found in textbooks:

d∑
i=1

∫ t

0

Uxi(u,Xu−)dAc,iu +
∑
u≤t

(
U(u,Xu)− U(u,Xu−)

)
=

d∑
i=1

∫ t

0

Uxi(u,Xu−)dAiu +
∑
u≤t

(
U(u,Xu)− U(u,Xu−)−

d∑
i=1

Uxi(u,Xu−)∆Aiu

)
.
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It is worth noticing that Assumption A.2 says that the derivatives Uxixj are continuous in
the closed set D but they need not be continuous on the closure of C, i.e., the may explode
arbitrarily fast when approaching the boundary ∂C from inside C. Indeed, in general bounded-
ness of the function L in (5.10) is not sufficient for the boundedness of all second order spatial
derivatives.

The need to have some control over the functionL in (5.10) was already indicated by Peskir.
As presented in the previous section, in one-dimensional case, Assumption P.2 is essential to
guarantee the first integral in his change of variable formula (5.4) is well-defined. Peskir et
al. [56, Thm. 19] also employ a condition similar to (5.11) to obtain Dynkin’s formula (rather
than Itô’s formula) for a two-dimensional diffusion. Their proof requires different arguments
to ours as they need convexity/concavity of their function U and use estimates on the expected
value of local times.

Remark 5.2.2 (Degenerate processes). It is intuitively clear and it can be easily seen from the
proof of the theorem that if the i-th coordinate of the process X is of bounded variation (i.e.,
σij ≡ 0 for all j = 1, . . . , d) it is not necessary to require existence of the second order partial
derivatives Uxixj for j = 1, . . . , d in Assumption A.2.

Remark 5.2.3 (Absolutely continuous laws of the process). If the law of X is absolutely
continuous with respect to the Lebesgue measure on Rd, then we can relax Assumption A.2.
Indeed, the time-derivative and the second order spatial derivatives in (5.12) only need to
exist a.e. on R+ × Rd. For the proof of the theorem we then require U ∈ C(R+ × Rd), with
Ut ∈ L2

`oc(R+×Rd), Uxi ∈ C(R+×Rd) and Uxixj ∈ L2
`oc(C)∩L2

`oc(D) for all i, j = 1, . . . , d,
where f ∈ L2

`oc(C) ∩ L2
`oc(D) means that for any compact sets K1 ⊂ C and K2 ⊆ D we have∫

K1∪K2

|f(t,x)|2dt dx <∞.

Notice that K1 ∩ ∂C = ∅, whereas it may be K2 ∩ ∂C 6= ∅, since C is open and D is closed.
We also continue to require that for any compact K there exists cK such that

sup
(t,x)∈K\∂C

|L(t,x)| ≤ cK ,

with L as in (5.10). Notice that these assumptions are less stringent than the usual requirement
U ∈ W 1,2,2

`oc (R+ × Rd) since we do not require Uxixj ∈ L2
`oc(R+ × Rd) (in particular, Uxixj

need not be square integrable in a neighbourhood of the boundary ∂C).
The proof of our theorem remains unchanged: the derivation of (5.27) therein is justified

using the fundamental theorem of calculus for absolutely continuous functions; all remaining
arguments can be repeated verbatim.
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Remark 5.2.4 (Assumptions on the boundary). Assumption A.3 is much easier to verify in ap-
plications to multi-dimensional optimal stopping problems than the assumption on the bound-
ary ∂C made in Peskir’s work [112] (and more recently in [135] but only for two dimen-
sional processes). In his formula (5.5), X is a general semi-martingale and the process
bXt = b(t,X2

t , . . . , X
d
t ) must also be a semi-martingale (with b continuous). That is not true

in general if only monotonicity of the boundary is known. Of course, we are able to allow for
much less stringent conditions on the boundary because, differently to Peskir’s work, our focus
is not on the role of local times on surfaces and we assume continuous differentiability of the
function U .

Remark 5.2.5 (Reflecting diffusions). We chose to state our theorem including the bounded
variation process A in the dynamics (5.7) because we have in mind applications to problems
for reflecting diffusions and applications in singular stochastic control. In those cases, the
condition P((t,Xt−) ∈ ∂C) = 0 for a.e. t ≥ 0 in Assumption A.1 is generally satisfied by
Skorokhod’s construction of reflecting diffusions.

5.3 Applications in optimal stopping

Our main motivation for the development of a change of variable formula of the kind in Theo-
rem 5.2.1 is its applicability in optimal stopping problems. Indeed, letting G : R+ × Rd → R
be a measurable function and s 7→ Πt

s(X) an additive functional of the process (s,Xs)s≥t, one
is often interested in problems of the type

U(t,x) = sup
t≤τ≤T

Et,x
[
e−Πtτ (X)G(τ,Xτ )

]
, (5.13)

where T ∈ (0,∞] is a fixed horizon, t ∈ [0, T ], the supremum is taken over stopping times of
the underlying filtration (Ft) and the expectation Et,x is with respect to the measure Pt,x( · ) :=

P( · |Xt = x). In most examples the additive functional Πt arises from a discount rate, i.e.,

Πt
s(X) =

∫ s

t

r(u,Xu−)du, (5.14)

for some measurable functions r : R+ × Rd → R. However, there are examples in which Πt

may take the form, e.g., of a local time of the processX (see, e.g., [40]).
Under a set of fairly mild assumptions it is known that an optimal stopping time for the

problem above exists and it takes the form (see Chapter 2 Section 2.2, also [114])

τ∗ = inf{s ∈ [t, T ] : U(s,Xs) = G(s,Xs)}.
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From this stems the interest for the study of the continuation and stopping sets, denoted by C
and D, respectively, and defined as

C = {(t,x) : U(t,x) > G(t,x)} and D = {(t,x) : U(t,x) = G(t,x)}.

In particular, parametrisations of the continuation and stopping sets as those presented in (5.8)
and (5.9) are widely studied in the literature as they often enable a detailed theoretical analysis
of the problem at hand.

Together with the probabilistic results on optimality of τ∗ and the super-harmonic property
there is also an analytic formulation of problem (5.13), in terms of a free boundary problem
(see Chapter 2 Section 2.2). For simplicity let us take γi ≡ 0 in (5.7) and Πt as in (5.14). Then
the free boundary problem solved by the value function reads

Ut + 1
2

∑
i,j

βijUxixj +
∑
i

αiUxi − rU = 0, in C,

Ut + 1
2

∑
i,j

βijUxixj +
∑
i

αiUxi − rU ≤ 0, in D,
(5.15)

with terminal condition U(T,x) = G(T,x). It is possible to prove (see [42]) that if ∂C is
regular in the sense of diffusions for the interior of the stopping set, then U ∈ C1([0, T )×Rd).
Moreover, it is clear that U = G on D. If for example G ∈ C1,2(D), then U inherits such
regularity and we have

Ut + 1
2

∑
i,j

βijUxixj +
∑
i

αiUxi − rU = Gt + 1
2

∑
i,j

βijGxixj +
∑
i

αiGxi − rG, in D.

So, by the free boundary formulation we see that the function L from Assumption A.2 reads

L(t,x) =

{
2(rU −

∑
i α

iUxi − Ut)(t,x), (t,x) ∈ C,∑
i,j β

ij(t,x)Gxixj(t,x), (t,x) ∈ D.
(5.16)

It is immediate to see that in this context the bound on L required by Assumption A.2 is
satisfied as soon as αi and r are continuous functions and G ∈ C1,2(D), provided also that U
is continuously differentiable once (which would be implied by regularity of ∂C in the sense of
diffusions). This brief discussion shows that in optimal stopping, it is potentially rather easy to
prove that Assumption A.2 holds, whereas obtaining bounds on each of the second derivatives
Uxixj could be extremely difficult. Likewise, proving geometric properties of the boundary
∂C beyond the existence of a surface b1 as in (5.8) and its monotonicity in each variable,
is prohibitively difficult in the majority of examples in the literature on multi-dimensional
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optimal stopping problems. However, monotonicity is often sufficient to prove regularity of ∂C
in the sense of diffusions (see, e.g., [26]) and therefore continuous differentiability of the value
function. This discussion shows that our change of variable formula is tailored for applications
to the value function U of optimal stopping problems like (5.13).

Remark 5.3.1 (Continuous differentiability of U ). It may appear that the requirement U ∈
C1(R+×Rd) be much stronger than the usual smooth-fit condition in optimal stopping. How-
ever, the smooth-fit condition is normally proved relying upon convergence of τ∗ to zero in the
limit as the initial point X0 = x of the underlying process approaches ∂C along a direction
parallel to the x1-axis (in the parametrisation of (5.8)). Such convergence is essentially equiv-
alent to the concept of ‘regularity’ of ∂C in the sense of diffusions, which would also imply
continuous differentiability of U as shown in [42].

Optimal stopping problems on multi-dimensional underlying processes are appearing with
increasing frequency in the literature and here we briefly review specific examples that fit
within our framework. In the previous chapter ([26]), we study the classical American put
option problem under stochastic discounting and we apply directly results from this chapter.
A general study of optimal stopping boundaries for multi-dimensional diffusions can be found
in [34]. In the context of quickest detection problems, multi-dimensional situations arise for
example in [84], [72] and [54]. In problems of singular control (that can be linked to optimal
stopping) solved via free boundary methods we find the contributions [44], [9], [62], among
others.

5.4 Proof of the main Theorem

We first prove our result in Section 5.4.1, in the case when

b1 is non-decreasing in t and in xi, for i = 2, . . . , d. (5.17)

The remaining cases in Assumption A.3 will be discussed later, in Section 5.4.2, as they only
require minor changes to the arguments of proof.

5.4.1 Proof under (5.17)

Proof. We regularise our function U to obtain an approximating sequence

(Un)n≥1 ⊂ C1,2(R+ × Rd)
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defined by

Un(t,x) : = nd
∫ x1+1/n

x1

...

∫ xd+1/n

xd

U(t, z1, . . . , zd)dz1 . . . , dzd

= nd
∫

Λn(x)

U(t, z)dz,

(5.18)

where Λn(x) :=×d

k=1
[xk, xk+1/n]. To keep the notation simple, below we write Λn = Λn(x)

whenever x is fixed. Since U ∈ C1(R+ × Rd) it is clear that Un ∈ C1,2(R+ × Rd) and its
derivatives read

Un
t (t,x) = nd

∫
Λn

Ut(t, z)dz, (5.19)

Un
xi

(t,x) = nd
∫

Λn

Uxi(t, z)dz, (5.20)

Un
xixj

(t,x) = nd
∫

Λ−in

[
Uxj(t, xi + 1/n, z−i)− Uxj(t, xi, z−i)

]
dz−i (5.21)

= nd
∫

Λ−jn

[
Uxi(t, xj + 1/n, z−j)− Uxi(t, xj, z−j)

]
dz−j,

for any i, j ∈ 1, . . . , d, where we use the notations

Λ−in :=
( i−1×
k=1

[xk, xk + 1/n]
)
×
( d×
k=i+1

[xk, xk + 1/n]
)

and z−i := (z1, . . . , zi−1, zi+1, . . . , zd).

(5.22)

Although Uxixj fails to be continuous at the boundary ∂C, for each (t,x) /∈ ∂C there is a large
enough n such that

Un
xixj

(t,x) = nd
∫

Λn

Uxixj(t, z)dz.

Consequently, for i, j = 1, ..., d, and for any compact K ⊂ R+ × Rd we have

lim
n↑∞

sup
(t,x)∈K

(∣∣Un − U
∣∣(t,x) +

∣∣Un
t − Ut

∣∣(t,x) +
d∑
i=1

∣∣Un
xi
− Uxi

∣∣(t,x)
)

= 0,

lim
n↑∞

Un
xixj

(t,x) = Uxixj(t,x), for all (t,x) ∈
(
R+ × Rd

)
\ ∂C.

(5.23)

For δ > 0, let us set
V δ := [0, 1/δ]× [−1/δ, 1/δ]d, (5.24)

and
τδ := inf{t ≥ 0 : (t,Xt) /∈ V δ}. (5.25)
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Applying Itô’s formula to Un(t,Xt∧τδ), we obtain

Un(t ∧ τδ,Xt∧τδ) = Un(0,x)

+

∫ t∧τδ

0

[(
Un
t +

d∑
i=1

αiUn
xi

)
(u,Xu−) + 1

2

d∑
i,j=1

1{(u,Xu−)/∈∂C}
(
βijUn

xixj

)
(u,Xu−)

]
du

+
d∑
i=1

∫ t∧τδ

0

Un
xi

(u,Xu−)dAiu+
∑
u≤t∧τδ

(
Un(u,Xu)−Un(u,Xu−)−

d∑
i=1

Un
xi

(u,Xu−)∆Aiu

)
+

d∑
i,j=1

∫ t∧τδ

0

Un
xi

(u,Xu−)σij(u,Xu−)dBj
u, for t ∈ [0,∞), P-a.s.

having also used P((t,Xt−) ∈ ∂C) = 0 for a.e. t ≥ 0 by Assumption A.1. Since the jumps
of the process X only arise from the bounded variation process A, we can also simplify the
expression above by writing

d∑
i=1

∫ t∧τδ

0

Un
xi

(u,Xu−)dAiu +
∑
u≤t∧τδ

(
Un(u,Xu)− Un(u,Xu−)−

d∑
i=1

Un
xi

(u,Xu−)∆Aiu

)
=

d∑
i=1

∫ t∧τδ

0

Un
xi

(u,Xu−)dAc,iu +
∑
u≤t∧τδ

(
Un(u,Xu)− Un(u,Xu−)

)
,

by using the decompositionAit = Ac,it +
∑

s≤t ∆Ais withAc,i the continuous part of the process
Ai. Letting n → ∞ (possibly along a subsequence) all terms involving only Un and its first
derivatives (including the stochastic integral and the jump terms) converge to their analogue for
the function U , thanks to the uniform convergence in (5.23). Notice indeed that (u,Xu−) ∈ V δ

for u ∈ [0, t ∧ τδ] and we use pointwise convergence for the single term Un(t ∧ τδ,Xt∧τδ) in
the sum of jumps.

If we can justify the use of dominated convergence to pass limits under the integral for the
terms involving the second order spatial derivatives, then using the second limit in (5.23) we
obtain (5.12), upon also letting δ ↓ 0 at the end.

Since U is twice continuously differentiable in space at all points off the boundary ∂C and
given that P((t,Xt−) ∈ ∂C) = 0 for a.e. t ≥ 0, it is enough to to prove that there exists a
constant Cδ > 0 independent of n, such that

sup
(t,x)∈V δ

∣∣∣∣∣
d∑

i,j=1

βij(t,x)Un
xixj

(t,x)

∣∣∣∣∣ ≤ Cδ. (5.26)

We accomplish our task in two steps.
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Step 1. We show that for any (t,x) ∈ V δ \ ∂C and n fixed, Un
xixj

(t,x) admits the represen-
tation:

Un
xixj

(t,x) =nd
∫

Λn

Uxixj(t, z)1{z1≥bε1(t,z2,...,zd)}dz

+ nd
∫

Λn

Uxixj(t, z)1{z1≤b1(t,z2,...,zd)}dz + F n,ε
ij (t,x), ∀ε > 0

(5.27)

for any i, j = 1, ..., d, where F n,ε
ij is a remainder that we will show converges to zero and

bε1 : R+ × Rd−1 7→ R is defined as

bε1(t, z2, . . . , zd) := b1(t+ ε, z2 + ε, z3 + ε, . . . , zd + ε) + ε. (5.28)

Recall the compact notation z−i from (5.22). Since we are currently assuming that b1 is non-
decreasing in all variables, the limit:

b0+
1 (t, z−1) := lim

ε↓0
bε1(t, z−1),

exists and b0+
1 (t, z−1) ≥ b1(t, z−1). Using that D is closed then

D 3
(
t+ ε, bε1(t, z−1)− ε, z2 + ε, . . . , zd + ε

)
→
(
t, b0+

1 (t, z−1), z2, . . . , zd
)
∈ D,

as ε ↓ 0 and, therefore, b0+
1 (t, z−1) ≤ b1(t, z−1) ≤ b0+

1 (t, z−1) by definition of the set D. The
reason for introducing the function bε1 is that the set

Cε1 := {(t,x) ∈ R+ × Rd : x1 > bε1(t,x−1)} (5.29)

is such that its closure is strictly contained in C for all ε > 0, i.e.,

Cε1 ⊂ C. (5.30)

The latter fact will be used several times, along with the fact that Uxixj ∈ C(Cε1).
Let us start with i = 1 (or j = 1) and using the expression in (5.21), let us re-write the

integral by considering separately the cases in which the interval [x1, x1 + 1/n] overlaps with
the interval [b1, b

ε
1]. To that aim and recalling the notations Λ−id and z−i, it is useful to observe

that

Λ−1
n (x) = Θε

n(x1) ∪ Γεn(x1) ∪ Σε
n(x1), (5.31)

where the sets

Θε
n(x1) := {z−1 : x1 ≥ bε1(t, z−1)} ∪ {z−1 : x1 + 1

n
≤ b1(t, z−1)},

Γεn(x1) := {z−1 : x1 + 1
n
≥ bε1(t, z−1)} ∩ {z−1 : b1(t, z−1) ≥ x1},
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and

Σε
n(x1) :=

{
z−1 : x1 + 1

n
≥ bε1(t, z−1) > x1 > b1(t, z−1)

}
∪
{
z−1 : bε1(t, z−1) > x1 + 1

n
> x1 > b1(t, z−1)

}
∪
{
z−1 : bε1(t, z−1) > x1 + 1

n
> b1(t, z−1) ≥ x1

}
=: Σε

n,1(x1) ∪ Σε
n,2(x1) ∪ Σε

n,3(x1)

are disjoint. So the integral (5.21) can be written as

Un
x1xj

(t,x) = nd
∫

Λ−1
n

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, x1, z−1)

]
dz−1

= nd
∫

Θεn(x1)

(∫ x1+
1
n

x1

Ux1xj(t, z1, z−1)dz1

)
dz−1

+ nd
∫

Γεn(x1)

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, x1, z−1)

]
dz−1

+ nd
∫

Σεn(x1)

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, x1, z−1)

]
dz−1,

(5.32)

where we also used that Ux1xj(t, · ) is continuous on [x1, x1 + 1
n
]×Θε

n(x1). In the first integral
(on the set Θε

n(x1)) we have

nd
∫

Θεn(x1)

(∫ x1+
1
n

x1

Ux1xj(t, z)dz1

)
dz−1

= nd
∫

Λ−1
n

1{x1≥bε1(t,z−1)}

(∫ x1+
1
n

x1

1{z1≥bε1(t,z−1)}Ux1xj(t, z)dz1

)
dz−1

+ nd
∫

Λ−1
n

1{x1+ 1
n
≤b1(t,z−1)}

(∫ x1+
1
n

x1

1{z1≤b1(t,z−1)}Ux1xj(t, z)dz1

)
dz−1.

(5.33)

In the second integral (on the set Γεn(x1)) we can add and subtract Uxj(t, b
ε
1(t, z−1), z−1)

and Uxj(t, b1(t, z−1), z−1) to obtain

nd
∫

Γεn(x1)

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, x1, z−1)

]
dz−1

= nd
∫

Γεn(x1)

(∫ x1+
1
n

bε1(t,z−1)

Ux1xj(t, z)dz1

)
dz−1

+nd
∫

Γεn(x1)

[
Uxj(t, b

ε
1(t, z−1), z−1)−Uxj(t, b1(t, z−1), z−1)

]
dz−1

+ nd
∫

Γεn(x1)

(∫ b1(t,z−1)

x1

Ux1xj(t, z)dz1

)
dz−1

(5.34)
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by using that Ux1xj is continuous in Cε1 and inD. In the third integral (on the set Σε
n(x1)) we can

also proceed in a similar way taking advantage of the decomposition over Σε
n,1(x1), Σε

n,2(x1)

and Σε
n,3(x1). In particular, that gives

nd
∫

Σεn,1(x1)

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, x1, z−1)

]
dz−1

= nd
∫

Σεn,1(x1)

(∫ x1+
1
n

bε1(t,z−1)

Ux1xj(t, z)dz1

)
dz−1

+ nd
∫

Σεn,1(x1)

[
Uxj(t, b

ε
1(t, z−1), z−1)− Uxj(t, x1, z−1)

]
dz−1

(5.35)

and
nd
∫

Σεn,3(x1)

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, x1, z−1)

]
dz−1

= nd
∫

Σεn,3(x1)

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, b1(t, z−1), z−1)

]
dz−1

+ nd
∫

Σεn,3(x1)

(∫ b1(t,z−1)

x1

Ux1xj(t, z)dz1

)
dz−1.

(5.36)

Let us notice that we can add up the first term on the right-hand side of (5.33), (5.34) and
(5.35), which gives

nd
∫

Λ−1
n

1{x1≥bε1(t,z−1)}

(∫ x1+
1
n

x1

1{z1≥bε1(t,z−1)}Ux1xj(t, z)dz1

)
dz−1

+ nd
∫

Γεn(x1)

(∫ x1+
1
n

bε1(t,z−1)

Ux1xj(t, z)dz1

)
dz−1

+ nd
∫

Σεn,1(x1)

(∫ x1+
1
n

bε1(t,z−1)

Ux1xj(t, z)dz1

)
dz−1.

The above expression is equal to

nd
∫

Λ−1
n

1{x1≥bε1(t,z−1)}

(∫ x1+
1
n

x1

1{z1≥bε1(t,z−1)}Ux1xj(t, z)dz1

)
dz−1

+ nd
∫

Λ−1
n

1
{x1+

1
n
≥bε1(t,z−1)>x1}

(∫ x1+
1
n

x1

1{z1≥bε1(t,z−1)}Ux1xj(t, z)dz1

)
dz−1

=nd
∫

Λ−1
n

(∫ x1+
1
n

x1

1{z1≥bε1(t,z−1)}Ux1xj(t, z)dz1

)
dz−1

=nd
∫

Λn

1{z1≥bε1(t,z−1)}Ux1xj(t, z)dz,

(5.37)
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where the first equality uses the fact that on {x1 + 1
n
< bε1(t, z−1)} the integral with respect to

dz1 vanishes. Similarly, we can now add up the second term on the right-hand side of (5.33)
and (5.36) with the third one on the right-hand side of (5.34), to obtain

nd
∫

Λ−1
n

1{x1+ 1
n
≤b1(t,z−1)}

(∫ x1+
1
n

x1

1{z1≤b1(t,z−1)}Ux1xj(t, z)dz1

)
dz−1

+ nd
∫

Γεn(x1)

(∫ b1(t,z−1)

x1

Ux1xj(t, z)dz1

)
dz−1

+ nd
∫

Σεn,3(x1)

(∫ b1(t,z−1)

x1

Ux1xj(t, z)dz1

)
dz−1

=nd
∫

Λn

1{z1≤b1(t,z−1)}Ux1xj(t, z)dz.

(5.38)

Finally, we gather the remaining terms from (5.34), (5.35), (5.36) and the one remaining inte-
gral from (5.32) (i.e., the one over Σε

n,2(x1)) and denote

F n,ε
1j (t,x) :=nd

∫
Γεn(x1)

[
Uxj(t, b

ε
1(t, z−1), z−1)−Uxj(t, b1(t, z−1), z−1)

]
dz−1

+ nd
∫

Σεn,1(x1)

[
Uxj(t, b

ε
1(t, z−1), z−1)− Uxj(t, x1, z−1)

]
dz−1

+ nd
∫

Σεn,2(x1)

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, x1, z−1)

]
dz−1

+ nd
∫

Σεn,3(x1)

[
Uxj(t, x1 + 1

n
, z−1)− Uxj(t, b1(t, z−1), z−1)

]
dz−1.

(5.39)

Combining (5.37), (5.38) and (5.39) we obtain (5.27) for i = 1. Before proving that indeed
F n,ε

1j vanishes as ε ↓ 0 while keeping n fixed, we prove (5.27) for a generic couple i, j.
Fix i 6= 1, j 6= 1 and recall that we are currently assuming b1 non-decreasing in all its

arguments. Then, in particular we can define the generalised (left-continuous) inverse of b1

with respect to xi:

bi(t,x−i) := sup{xi ∈ R : x1 > b1(t, x2, . . . , xd)}. (5.40)

It is not hard to check that x1 > b1(t,x−1) ⇐⇒ xi < bi(t,x−i), x1 7→ bi(t,x−i) is non-
decreasing, while xj 7→ bi(t,x−i) and t 7→ bi(t,x−i) are non-increasing for all j 6= {1, i}.
Thus, we can parametrise C and D as

C = {(t,x) ∈ R+ × Rd : xi < bi(t,x−i)},
D = {(t,x) ∈ R+ × Rd : xi ≥ bi(t,x−i)},

(5.41)
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and the analogue of (5.28) in this case is

bεi (t,x−i) := bi(t+ ε, x1 − ε, x2 + ε, . . . , xi−1 + ε, xi+1 + ε, . . . , xd + ε)− ε. (5.42)

It is important to notice that thanks to the monotonicity stated above for bεi , the limit:

b0+
i (t,x−i) := lim

ε↓0
bεi (t,x−i)

exists and an b0+
i (t,x−i) ≤ bi(t,x−i). Then, as in the case of bε1 above, since D is closed we

have
(t, x1, . . . , xi−1, b

0+
i (t,x−i), xi+1, . . . , xd) ∈ D,

Hence

b0+
i (t,x−i) ≤ bi(t,x−i) ≤ b0+

i (t,x−i). (5.43)

Furthermore, letting

Cεi := {(t,x) ∈ R+ × Rd : xi < bεi (t,x−i)} (5.44)

we have Cεi ⊂ C, for all ε > 0. Thus, repeating the same estimates as above we obtain

Un
xixj

(t,x) =nd
∫

Λn

Uxixj(t, z)1{zi≤bεi (t,z−i)}dz

+ nd
∫

Λn

Uxixj(t, z)1{zi≥bi(t,z−i)}dz + F n,ε
ij (t,x),

(5.45)

where

F n,ε
ij (t,x) :=nd

∫
Γεn(xi)

[
Uxj(t, bi(t, z−i), z−i)−Uxj(t, bεi (t, z−i), z−i)

]
dz−i

+ nd
∫

Σεn,1(xi)

[
Uxj(t, xi + 1

n
, z−i)− Uxj(t, bεi (t, z−i), z−i)

]
dz−i

+ nd
∫

Σεn,2(xi)

[
Uxj(t, xi + 1

n
, z−i)− Uxj(t, xi, z−i)

]
dz−i

+ nd
∫

Σεn,3(xi)

[
Uxj(t, bi(t, z−i), z−i)− Uxj(t, xi, z−i)

]
dz−i

(5.46)

and we have substituted the sets Γεn, Σε
n,1, Σε

n,2 and Σε
n,3 from (5.39) with their counterparts in

this case:
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Θε
n(xi) := {z−i : xi + 1

n
≤ bεi (t, z−i)} ∪ {z−i : xi ≥ bi(t, z−i)},

Γεn(xi) := {z−i : xi ≤ bεi (t, z−i)} ∩ {z−i : xi + 1
n
≥ bi(t, z−i)},

and

Σε
n(xi) :=

{
z−i : xi ≤ bεi (t, z−i) < xi + 1

n
< bi(t, z−i)

}
∪
{
z−i : bεi (t, z−i) < xi < xi + 1

n
< bi(t, z−i)

}
∪
{
z−i : bεi (t, z−i) < xi < bi(t, z−i) ≤ xi + 1

n

}
=: Σε

n,1(xi) ∪ Σε
n,2(xi) ∪ Σε

n,3(xi).

Since the sets {zi = bεi (t, z−i)} and {zi = bi(t, z−i)} have zero Lebesgue measure in Rd, it
is clear that we can take strict inequalities in the indicator functions in the integrals in (5.45).
Then we can also use the equivalences

zi < bi(t, z−i) ⇐⇒ z1 > b1(t, z−1)

and

zi < bεi (t, z−i) ⇐⇒ zi + ε < bi(t+ ε, z1 − ε, z2 + ε, . . . , zd + ε)

⇐⇒ z1 − ε > b1(t+ ε, z2 + ε, z3 + ε, . . . , zd + ε) ⇐⇒ z1 > bε1(t, z−1),

to rewrite (5.45) as

Un
xixj

(t,x) =nd
∫

Λn

Uxixj(t, z)1{z1≥bε1(t,z−1)}dz

+ nd
∫

Λn

Uxixj(t, z)1{z1≤b1(t,z−1)}dz + F n,ε
ij (t,x).

This proves (5.27) for arbitrary i, j.
Step 2. Now that we have derived (5.27) we are in a position to find the bound (5.26).
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Indeed, we have

d∑
i,j=1

βij(t,x)Un
xixj

(t,x)

= nd
∫

Λn

d∑
i,j=1

βij(t, z)Uxixj(t, z)1{z1≥bε1(t,z−1)}∪{z1≤b1(t,z−1)}dz

+ nd
∫

Λn

d∑
i,j=1

(
βij(t,x)− βij(t, z)

)
Uxixj(t, z)1{z1≥bε1(t,z−1)}∪{z1≤b1(t,z−1)}dz

+
d∑

i,j=1

βij(t,x)F n,ε
ij (t,x).

(5.47)

Thanks to Assumption A.2, there exists c1,δ > 0, depending only on the compact V δ in (5.24),
such that∣∣∣∣∣nd

∫
Λn

d∑
i,j=1

βij(t, z)Uxixj(t, z)1{z1≥bε1(t,z−1)}∪{z1≤b1(t,z−1)}dz

∣∣∣∣∣ ≤ nd
∫

Λn

c1,δ dz = c1,δ.

(5.48)

Moreover, recalling that D is closed, βij is continuous and U ∈ C1,2(D) we also have∣∣∣∣∣nd
∫

Λn

d∑
i,j=1

(
βij(t,x)− βij(t, z)

)
Uxixj(t, z)1{z1≤b1(t,z−1)}dz

∣∣∣∣∣ ≤ nd
∫

Λn

c2,δ dz = c2,δ,

(5.49)

for some other constant c2,δ > 0 only depending on V δ.
Next we find a bound for the second integral on the right-hand side of (5.47) on the indicator

of the set {z1 ≥ bε1(t, z−1)}. We provide the details for i 6= 1, j 6= 1, but it will be clear that the
same arguments apply for i = 1 and/or j = 1. Recalling (5.45) and the discussion following
that expression we have

nd
∫

Λn

(
βij(t,x)− βij(t, z)

)
Uxixj(t, z)1{z1≥bε1(t,z−1)}dz

= nd
∫

Λn

(
βij(t,x)− βij(t, z)

)
Uxixj(t, z)1{zi≤bεi (t,z−i)}dz

= nd
∫

Λ−1
n

1{xi≤bεi (t,z−i)}

(∫ bεi (t,z−i)∧(xi+
1
n

)

xi

(
βij(t,x)− βij(t, z)

)
Uxixj(t, z)dzi

)
dz−i.

(5.50)
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By Assumption A.2 we know there is a constant κδ > 0 such that supV δ
∑d

j=1 |Uxj | ≤ κδ.
Integrating by parts with respect to zi and recalling that βij is locally Lipschitz (hence Lipschitz
on V δ with constant Lβ,δ > 0 which can be taken independent of i, j gives∣∣∣∣∣
∫ bεi (t,z−i)∧(xi+

1
n

)

xi

(
βij(t,x)− βij(t, z)

)
Uxixj(t, z)dzi

∣∣∣∣∣
=

∣∣∣∣∣[(βij(t,x)− βij(t, z)
)
Uxj(t, z)

]zi=bεi (t,z−i)∧(xi+
1
n

)

zi=xi
+

∫ bεi (t,z−i)∧(xi+
1
n

)

xi

βijxi(t, z)Uxj(t, z)dzi

∣∣∣∣∣
≤ 2κδLβ,δ

√
d

n
+ κδLβ,δ

1

n
=: c3,δ

1

n
,

upon using that the Euclidean norm ‖x − z‖ ≤
√
d/n for all z ∈ Λn and, in particular,

|xi − bεi (t, z−i) ∧ (xi + 1
n
)| ≤ 1/n.

Pugging the above bound back into (5.50) we obtain

nd
∫

Λn

(
βij(t,x)− βij(t, z)

)
Uxixj(t, z)1{z1≥bε1(t,z−1)}dz ≤ c3,δ n

d−1

∫
Λ−1
n

dz−1 = c3,δ.

(5.51)
Thanks to (5.47), (5.48), (5.49) and (5.51) we have∣∣∣∣∑

i,j

βij(t,x)Un
xixj

(t,x)

∣∣∣∣ ≤ c1,δ + c2,δ + d2c3,δ +

∣∣∣∣∑
i,j

βij(t,x)F n,ε
ij (t,x)

∣∣∣∣, (5.52)

for all (t,x) ∈ V δ. Finally, letting ε ↓ 0 and using that U ∈ C1(R+×Rd) and the convergence
of bεi to bi for all i’s (recall (5.43)), we obtain

lim
ε↓0

F n,ε
ij (t,x) = 0.

Hence ∣∣∣∣∑
i,j

βij(t,x)Un
xixj

(t,x)

∣∣∣∣ ≤ c1,δ + c2,δ + d2c3,δ, for all (t,x) ∈ V δ.

The latter is equivalent to (5.26) with Cδ := c1,δ + c2,δ + d2c3,δ, since the constants are inde-
pendent of (t,x) ∈ V δ.

This completes the proof of the theorem in the case (5.17) holds.

5.4.2 Relaxing condition (5.17)

Proof. The case in which the boundary has different monotonicity in each variable (as allowed
by Assumption A.3) can be addressed by the same methods employed above up to some obvi-
ous changes. In order to illustrate the main points, fix 2 ≤ k̄ ≤ d and let us assume with no
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5.4 Proof of the main Theorem

loss of generality that t 7→ b1(t,x−1) and xi 7→ b1(t,x−1) are non-decreasing for 2 ≤ i ≤ k̄,
while xi 7→ b1(t,x−1) are non-increasing for k̄ < i ≤ d. Then, in the first part of step 1 in the
proof above we replace (5.28) by

bε1(t, x2, ...xd) := b1(t+ ε, x2 + ε, . . . , xk̄ + ε, xk̄+1 − ε, . . . , xd − ε) + ε,

so that bε1 is decreasing as ε ↓ 0 and its limit b0+
1 (t,x−1) equals b1(t,x−1) by closedness of

D and the same argument as in step 1. Also in this case (5.30) continues to hold and we can
repeat verbatim the estimates that lead to (5.27) for i = 1 in step 1 above. For the second part
of step 1, we need the generalised inverse bi for each i. In particular, for 2 ≤ i ≤ k̄ the same
definition of bi as in (5.40) and the parametrisation of C and D as in (5.41) continue to hold.
However, xj 7→ bi(t,x−i) is non-decreasing for j = 1 and k̄ < j ≤ d, while xj 7→ bi(t,x−i)

and t 7→ bi(t,x−i) are non-increasing for all 2 ≤ j ≤ k̄ with j 6= i. Then, setting

bεi (t,x−i) := bi(t+ ε, x1 − ε, x2 + ε, . . . xk̄ + ε, xk̄+1 − ε, . . . xm − ε)− ε

the functions bεi increase as ε ↓ 0 and in the limit b0+
i (t,x−i) equals bi(t,x−i). So we can

repeat the same arguments as in step 1 and obtain (5.27) for 2 ≤ i ≤ k̄ and any j. Finally, for
k̄ < i ≤ d, since xi 7→ b1(t,x−1) is non-increasing we define its (left-continuous) generalised
inverse as

bi(t,x−i) := inf{xi ∈ R : x1 > b1(t,x−1)}.

Then we have x1 > b1(t,x−1) ⇐⇒ xi > bi(t,x−i), t 7→ bi(t,x−i) and xj 7→ bi(t,x−i) are
non-decreasing for 2 ≤ j ≤ k̄, while x1 7→ bi(t,x−i) and xj 7→ bi(t,x−i) are non-increasing
for k̄ < j ≤ d with j 6= i. The sets C and D can be parametrised as

C = {(t,x) ∈ R+ × Rd : xi > bi(t,x−i)},
D = {(t,x) ∈ R+ × Rd : xi ≤ bi(t,x−i)},

and we can define the functions

bεi (t,x−i) := bi(t+ ε, x1 − ε, x2 + ε, . . . , xk̄ + ε, xk̄+1 − ε, . . . , xd − ε) + ε.

The latter decrease as ε ↓ 0 and converge to bi(t,x−i) by closedness of D. Since once again
Cεi ⊂ C, we can repeat the arguments from step 1 and arrive at (5.27) also for all j’s and i 6= 1.

This completes the analogy with step 1. Step 2 can be repeated verbatim. Thus the theorem
holds under the generality of Assumption A.3 concerning the boundary.

149



Chapter 6

Continuity of the optimal stopping surface

6.1 Introduction
1In this chapter, we provide sufficient conditions under which optimal stopping boundaries of
the form (t, y) 7→ x∗(t, y) are continuous. We set mild regularity assumptions on the gain
function and the value function of the optimal stopping problem, as well as on the coefficients
of the dynamics of the underlying process. The idea is similar to the proof of Proposition 4.5.2
in Chapter 4, but the argument is different as we now formulate the optimal stopping problem
in a more general setting.

There is a long history of studying the regularity of the free boundary in obstacle type
problems. Famous results derived from PDE methods in this area are found in [23], [24],
[30], [70], [125], [115], among others. In their work, the continuity, Lipschitz continuity and
even continuous differentiability of the free boundary can be established in certain classes of
obstacle problems. However, their results are not tailored for optimal stopping problems, hence
are somewhat difficult to apply and generalise. In optimal stopping, people still prefer to study
the regularity of the free boundary on a case-by-case basis. In two dimensional finite horizon
optimal stopping problems, where the space variable is a solution of one-dimensional SDE
and the stopping boundary is of the form t 7→ b(t), i.e. function of time, the continuity or the
differentiability of b can often be proved, as in [91], [133], [53], [80], [14], [96] among others.
It is also feasible to prove the continuity of the stopping boundary in some multidimensional
optimal stopping problems, when the boundaries are of the the form y 7→ b(y), where y is a
space variable (e.g. [41], [84], [85]). Our work extends those results to the case where the
stopping boundary depends on both time and another state variable.

1The results from this chapter form part of the article [27], which is currently under review.
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6.1 Introduction

Recently, more systematic approaches to study the regularity of the free boundary in op-
timal stopping problems have emerged. De Angelis [38] provides sufficient conditions under
which the free boundary curve in a general finite-horizon optimal stopping problem is contin-
uous. His work focuses on the problem with an underlying process solving a one-dimensional
SDE. The corresponding free boundary is characterised as a function of time b(t). The con-
tinuity of b(t) is proved by a contradiction argument utilising the local properties of the gain
function and infinitesimal generator near b(t). Some degree of smoothness of the coefficients
of the process is required, but the smooth-fit between the value function and the gain function
is not. Similar contradiction argument is also found in the early work of Lamberton and Mikou
[96], where they prove the continuity of the free boundary b(t) in the American put option
pricing problem in the exponential Lévy model. Peskir [113] establishes the continuity of the
optimal stopping boundary in the problem with a two-dimensional diffusion process whose
infinitesimal generator can be parabolic or elliptic. The stopping boundary in this case is still a
curve b(y), but it is not necessarily a function of time as the infinitesimal generator can be el-
liptic. In contrast to [38], the role of the smooth fit is emphasised in [113]. Using the boundary
and interior regularity results of PDE, he shows that discontinuity of first kind of b(y) leads to
a contradiction if smooth fit holds. On the other hand, using the local time space calculus, he
shows that the jump portion of b(y) implies the smooth fit. Thus b(y) is continuous as long as it
has no discontinuity of the second kind. Another work that tackles high dimensional problems
is done by De Angelis and Stabile [43], who show the local Lipschitz continuity of the stopping
boundary in an optimal stopping problem with state space [0, T ]×Rd. Their method relies on
a probabilistic representation of the derivatives of the value function and an application of the
implicit function theorem. The prominence of their work is that they do not need the uniform
ellipticity of the diffusive operator, which is needed in many PDE methods.

The spirit of our work is similar to [38], [96] and [113]. We still pursue a contradiction
arising from a jump portion in the stopping boundary, but we complement their work by ex-
tending their argument to cover three dimensional optimal stopping problems where the stop-
ping boundary is a surface parametrised as a function x∗(t, y). We prove our result under mild
assumptions exploiting the local nature of the infinitesimal generator. While we do require the
value function to be C1 in the neighbourhood of the stopping boundary, we have less restrictive
assumptions for the SDE coefficients than many PDE methods, e.g. uniform ellipticity is not
necessary in our work.

This chapter is organised as follows. In the first section, we introduce our state process
and formulate a generic optimal stopping problem. The optimal stopping boundary is then
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6.2 Settings

characterised. In the second section, we make the assumptions and present the main theorem
with the proof.

6.2 Settings

On a complete filtered probability space (Ω,F , (Ft),P) we consider a two-dimensional time-
inhomogeneous diffusion process (X, Y ). The process (X, Y ) is assumed to be the unique
solution of the stochastic differential equation

dXs = α1(s,Xs, Ys)ds+
√

2β1(s,Xs, Ys)dBs, Xt = x, (6.1)

dYs = α2(s,Xs, Ys)ds+
√

2β2(s,Xs, Ys)dWs, Yt = y, (6.2)

for s ≥ t, where W,B are correlated Brownian motions with correlation coefficient ρ ∈
[−1, 1], αi, βi are (deterministic) Borel-measurable functions. The Brownian motion (B,W ) is
adapted to (Ft) and if the solution only exists in the weak sense, then uniqueness is understood
in law. The state space of (X, Y ) is denoted by O ⊆ R2.

We avoid making specific (global) regularity assumptions on the coefficients αi, βi, i =

1, 2, but we will later require some local properties thereof. We use the notation Pt,x,y( · ) :=

P( · |Xt = x, Yt = y) and Et,x,y[ · ], for the expectation under Pt,x,y.
The infinitesimal generator L of (X, Y ) is defined via its action on any sufficiently smooth

functions f and it is given by

(Lf)(t, x, y) :=
(
β1∂xxf + β2∂yyf + 2β̄∂xyf + α1∂xf + α2∂yf

)
(t, x, y), (6.3)

with β̄(t, x, y) = ρ
√
β1(t, x, y)β2(t, x, y).

For future use we also introduce a second order differential operator G defined as

(Gf)(t, x, y) :=
(
∂xβ1∂xxf+∂xβ2∂yyf + 2∂xβ̄∂xyf (6.4)

+ ∂xα1∂xf + ∂xα2∂yf
)
(t, x, y),

whenever the partial derivatives in x of αi, βi, β̄, i = 1, 2 exist.
Letting T ∈ (0,∞] be the time horizon, for (t, x, y) ∈ [0, T ] × O we are interested in

optimal stopping problems of the form

v(t, x, y) = sup
t≤τ≤T

Et,x,y
[
e−
∫ τ
t r(s,Xs,Ys)dsg(τ,Xτ , Yτ )

]
, (6.5)
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6.2 Settings

where the supremum is taken over all (Ft)-stopping times. The discount rate r : [0, T ]×O →
R and the gain function g : [0, T ]×O → R are Borel-measurable functions and we will require
further assumptions later on as necessary.

We assume that the problem is well-posed, in the sense that the value function is finite for
all (t, x, y) ∈ [0, T ]×O, the stopping time

τ∗ := inf{s ∈ [t, T ] : v(s,Xs, Ys) = g(s,Xs, Ys)}, Pt,x,y − a.s.

is optimal for all (t, x, y) ∈ [0, T ]×O and the process (Zs)s∈[t,T ] defined as

Zs := e−
∫ s
t r(u,Xu,Yu)duv(s,Xs, Ys), Pt,x,y − a.s.

is a super-martingale, whereas the stopped process (Zs∧τ∗)s∈[t,T ] is a martingale for all (t, x, y) ∈
[0, T ] × O. Existence of an optimal stopping time and the (super-)martingale property of the
value process are discussed in Chapter 2 Section 2.2 (also see [88, Appendix D]), while finite-
ness of the value is generally easy to prove in specific examples (see [114]).

Remark 6.2.1 (Gain function and underlying dynamics). It will be clear from the analysis
below that adding a running cost/profit of the form∫ τ

t

e−
∫ s
t r(u,Xu,Yu)duh(s,Xs, Ys)ds

in the optimisation criterion leads to no additional difficulty. Moreover, this could always
be absorbed in the formulation of (6.5), by an application of Dynkin’s formula, as soon as
h = (∂t + L − r)g̃ for some g̃.

In some applications of optimal stopping (see, e.g., [9], [39], [40]) it may be necessary to
consider more general underlying dynamics of the form

dXt = α1(t,Xt, Yt)dt+
√

2β1(t,Xt, Yt)dBt + dAt, X0 = x,

dYt = α2(t,Xt, Yt)dt+
√

2β2(t,Xt, Yt)dWt + dCt, Y0 = y,

where the processes (At) and (Ct) are of bounded variation and take the form of additive
functionals of the triple (t,X, Y ) (e.g., local times). Likewise, we may add a running cost/profit
and a more general discount factor as in

v(t, x, y) = sup
t≤τ≤T

Et,x,y

[∫ τ

t

e−Λsh(s,Xs, Ys)d(s+Gs) + e−Λτ g(τ,Xτ , Yτ )

]
,

where Λs :=
∫ s
t
r(u,Xu, Yu)du + Hs and the processes (Gt) and (Ht) are again of bounded

variation and in the form of additive functionals of (t,X, Y ).
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6.3 The main theorem

In this case Theorem 6.3.3 continues to hold but we additionally require that dAt = dCt =

dGt = dHt = 0 a.s. in a neighbourhood of the stopping boundary (this is precisely the situa-
tion of [40], [42], [9]).

As usual we denote the continuation set by

C :=
{

(t, x, y) ∈ [0, T ]×O : v(t, x, y) > g(t, x, y)
}

and the stopping set by D =
(
[0, T ]×O

)
\ C. We assume that C 6= ∅ and D 6= ∅.

6.3 The main theorem

The operator L has a local nature that allows us to prove our results under mild assumptions
which are also of local nature. For that reason we will often use the notation U to indicate a
generic open bounded subset of [0, T )×O of the form

U = (t, s)× U (6.6)

where U ⊆ O is bounded open with a C1 boundary.
The main result of the section is the continuity of the optimal stopping boundary, i.e., ∂C,

in any subset U of the form above in which certain regularity conditions are verified. Letting
U be any such subset, we make four standing assumptions. The first one says that ∂C can be
locally represented as a surface with certain monotonicity properties, the second and third ones
clarify the regularity required for the coefficients of the SDE and the gain function, the fourth
one concerns regularity of the value function.

Assumption 6.3.1. Let U be such that v ∈ C(U), U ∩ C 6= ∅, U ∩ int(D) 6= ∅ and the
following conditions hold:

(i) (The boundary) There exists a function (t, y) 7→ x∗(t, y), such that

C ∩ U = {(t, x, y) ∈ U : x > x∗(t, y)} (6.7)

and both t 7→ x∗(t, y) and y 7→ x∗(t, y) are monotonic on their respective domains in U .

(ii) (Coefficients of the SDE) For the coefficients of the SDE and the discount rate it holds

αi, βi, r, ∂xαi, ∂xβi, ∂xr, ∂xxβi ∈ C(U),

for i = 1, 2. Moreover, β2 > 0 on U .
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6.3 The main theorem

(iii) (The gain function) We have g ∈ C1,2(U) and setting h := (∂t +L− r)g we have h 6= 0

on U , ∂xh ∈ C(U) and ∂
∂x

(h/β2) ≥ δ on U for some δ > 0.

(iv) (The value function) We have v ∈ C1(U) with ∂x(v− g) ≥ 0 on U . Moreover, v satisfies
the boundary value problem

(∂t + L − r)f = 0 in C ∩ U , with f = v on ∂(C ∩ U) (6.8)

and ∂xv satisfies

(∂t + L − r)∂xv = −(G − ∂xr)v in C ∩ U , (6.9)

with all derivatives understood in the classical sense.

Notice that if β1, β2 > 0 on U and ρ2 < 1 the operator L is uniformly elliptic U , so that we
can rely upon the next well-known lemma that guarantees (6.8).

Lemma 6.3.2. Let U ⊂ [0, T )×O be defined as in (6.6), assume that

α1, α2, β1, β2, β̄, r,

are Hölder continuous in U , β1, β2 > 0 in U and ρ ∈ (−1, 1). If v is continuous then v ∈
C1,2(C ∩ U) and it solves the boundary value problem in (6.8).

Proof. For any cylinder D := (t0, t1) × B ⊂ C ∩ U , where B is an open ball, consider a
terminal boundary value problem

(∂t + L − r)f = 0 on D, with f = v on ∂D, (6.10)

where ∂D := ([t0, t1]×∂B)∪({t1}×B) denotes the parabolic boundary. This problem admits
a unique classical solution (see [69, Ch. 3, Cor. 2, p. 71]).

Now, let (Dn)n∈N be an increasing sequence of cylinders contained in D and such that
Dn ↑ D as n→∞. Let τD be the first exit time of (t,X, Y ) from D and τDn the first exit time
from Dn. An application of Itô’s formula gives

f(t, x, y) = Et,x,y
[
e−
∫ τDn
t r(s,Xs,Ys)dsf(τDn , XτDn

, YτDn )
]
.

Let n→∞. Using the uniform ellipticity of L on D, we obtain that τDn ↑ τD almost surely as
n→∞. Since D is bounded and f is continuous, by the dominated convergence theorem we
obtain

f(t, x, y) = Et,x,y
[
e−
∫ τD
t r(s,Xs,Ys)dsf(τD, XτD , YτD)

]
= Et,x,y

[
e−
∫ τD
t r(s,Xs,Ys)dsv(τD, XτD , YτD)

]
= v(t, x, y),
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for all (t, x, y) ∈ D, where the second equality follows from (τD, XτD , YτD) ∈ ∂D and the
final equality is by the martingale property of the value function. Hence, v is a unique classical
solution of (6.10). As D is arbitrary in C ∩ U , we conclude that v solves (6.8).

Under Assumption 6.3.1 the function u = v − g solves(
∂t + L − r

)
u = −h, on C ∩ U , (6.11)

with boundary conditions

u = ∂tu = ∂xu = ∂yu = 0, on ∂C ∩ U . (6.12)

Taking the partial derivative with respect to x of (6.11) we obtain a PDE for ∂xu:(
∂t + L − r

)
∂xu = −∂xh−

(
G − ∂xr

)
u, on C ∩ U , (6.13)

Some comments on the assumptions above are in order. Continuity of the value function
(at least locally) is generally not difficult to prove and there are numerous papers addressing
this question in broad generality (see, e.g., [114]). If v ∈ C(U), then the well-posedness (in the
sense above) of the optimal stopping problem usually leads to higher smoothness of the value
function (e.g., as in Lemma 6.3.2). The existence of an optimal boundary is normally proved
on a case by case basis and it is known that there are several possible sufficient conditions that
guarantee it (see, e.g. [114], [81] ). Therefore, rather than providing an inevitably incomplete
list of such sufficient conditions we directly assume that the boundary exists. Also assuming
that the continuation set lies above the boundary is with no loss of generality and the results of
this chapter carry over to the case in which C lies below the boundary, up to obvious changes
to the arguments of proof. Requiring local monotonicity of the boundary is necessary to avoid
pathological examples of boundaries with infinite local variation. In practice, monotonicity is
also checked on a case by case basis and sufficient conditions are known that would imply it1.

Local regularity of the coefficients of the SDE, the discount rate and the gain function are
non-restrictive and hold in virtually all examples addressed in the optimal stopping literature.
The condition ∂x(h/β2) ≥ δ is slightly more technical but it is in line with the fact that C lies
above the optimal boundary. Indeed, notice that if ∂xβ2 = 0, the condition is equivalent to

1For example, if T <∞ and if g, r and the coefficients of the SDE are independent of time, one immediately
obtains that t 7→ (v − g)(t, x, y) is non-increasing. So, if (6.7) holds the boundary is increasing in time.
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6.3 The main theorem

∂xh > 0. In many cases the latter, is sufficient to prove ∂xv ≥ ∂xg which then implies the
existence of the boundary as in (6.7)1.

Sufficient conditions that guarantee v ∈ C1(U) are provided in [42] and numerous ex-
tensions have been developed in specific examples (see, e.g., [26], [9] and [84] for multi-
dimensional optimal stopping problems). It is not hard to check that the requirement ∂x(v −
g) ≥ 0 is equivalent to (6.7), since U can be chosen arbitrarily small around a point of the
boundary ∂C. Despite this slight redundancy we prefer to add the condition as part of our
assumptions for clarity of exposition. Finally, (6.8) and (6.9) hold under very mild conditions
that are satisfied in all examples we are aware of. There are many sufficient conditions on the
coefficients of the SDE that would guarantee (6.8) and (6.9) (see, e.g., Lemma 6.3.2 above) but
we decided to state the assumptions in broader generality to also cover some degenerate cases
as, e.g., β1 ≡ 0 (as in the American Asian option [114, Sec.27]) or even α1 = β1 ≡ 0 where
y only enters as a parameter in connection to singular stochastic control problems (see, e.g.,
[41]).

Theorem 6.3.3. Under Assumption 6.3.1, the optimal stopping boundary (t, y) 7→ x∗(t, y) is
continuous on its domain in U .

Proof. Since the maps t 7→ x∗(t, y) and y 7→ x∗(t, y) are monotonic it is sufficient to show
that they are also continuous. Then the map (t, y) 7→ x∗(t, y) is continuous by a simple result
from Calculus (see, e.g., [92]). In the rest of the proof we focus on showing continuity of
t 7→ x∗(t, y) and y 7→ x∗(t, y).

We start by proving our claim in the case when x∗ is non-decreasing in both t and y. By
continuity of v on U we know that C ∩ U is an open set and D ∩ U is closed relatively to U .
Then we can conclude that x∗(t, y) is right continuous in y for each t and right continuous in t
for each y. Indeed, fix (t, y) such that (t, x∗(t, y), y) ∈ U and let yn ↓ y as n → ∞. With no
loss of generality we may assume (t, x∗(t, yn), yn) ∈ U for all n’s. Then

D 3 lim
n→∞

(t, yn, x∗(t, yn)) = (t, y, x∗(t, y+)) =⇒ x∗(t, y+) ≤ x∗(t, y), (6.14)

1For example, take g ∈ C1,2([0, T ]×O) and r(t, x, y) ≡ r > 0 then by an application of Dynkin’s formula

(v − g)(t, x, y) = sup
t≤τ≤T

Et,x,y
[ ∫ τ

t

e−rsh(s,Xs, Ys)ds
]
.

Assume ∂xα2 = ∂xβ2 = 0 and that (X,Y ) is a strong solution. Denote by (Xt,x,y, Y t,x,y) the process with the
initial condition (Xt, Yt) = (x, y). For x′ > x we have, almost surely, Xt,x,y

s ≤ Xt,x′,y
s and Y t,x,ys = Y t,x

′,y
s

for all s ≥ t by pathwise comparison. If ∂xh > 0 then (v − g)(t, x′, y) ≥ (v − g)(t, x, y), which implies that the
mapping x 7→ (v − g)(t, x, y) is increasing.
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where the limit exists by monotonicity, it lies in D by closedness and the implication holds
by definition of the optimal boundary. Since x∗(t, yn) ≥ x∗(t, y) for all n’s we conclude that
x∗(t, y+) = x∗(t, y). An analogous argument holds for the right-continuity in time.

Next we prove left-continuity of y 7→ x∗(t, y). Let us fix (t0, y0) such that the boundary
point (t0, y0, x∗(t0, y0)) lies in U and, arguing by contradiction, let us assume x∗(t0, y0−) <

x∗(t0, y0). Then we can fix x∗(t0, y0−) < x1 < x2 < x∗(t0, y0) such that {t0} × [x1, x2] ×
{y0} ⊂ U . By the assumed monotonicity of the boundary we have

Σ := (t̃, t0)× (x1, x2)× (ỹ, y0) ⊂ C ∩ U and Σt0,y0 := {t0} × (x1, x2)× {y0} ⊂ D ∩ U

for some ỹ < y0 and t̃ < t0 sufficiently close to (t0, y0).
By (iii) and (iv) in Assumption 6.3.1 we have that u := v − g satisfies the PDE

(∂tu+ Lu− ru) = −h, in Σ.

In particular, since Σt0 := {t0} × (x1, x2)× (ỹ, y0) ⊂ C ∩ U we also have

(∂tu+ Lu− ru)(t0, x, y) = −h(t0, x, y), for (t0, x, y) ∈ Σt0 . (6.15)

Thanks to (6.9) in Assumption 6.3.1 and (6.13) we can also write[
(∂t+L−r)∂xu

]
(t0, x, y) = −

[
∂xh+

(
G−∂xr

)
u
]
(t0, x, y), for (t0, x, y) ∈ Σt0 . (6.16)

On the right hand side of (6.16) above we have a term of the form ∂xβ2∂yyuwhich, using (6.15)
we can express as

∂xβ2∂yyu = −∂xβ2

β2

[
h+ ∂tu+ β1∂xxu+ 2β̄∂xyu+ α1∂xu+ α2∂yu− ru

]
.

Plugging the expression above back into (6.16) and defining Γψ := ∂xψ − ∂xβ2
β2
ψ for any

ψ ∈ C(U) with ∂xψ ∈ C(U), we obtain[
(∂t + L − r)∂xu

]
(t0, x, y)

= −
[
Γh+ Γβ1 ∂xxu+ 2Γβ̄ ∂xyu+ Γα1 ∂xu+ Γα2 ∂yu− Γr u

]
(t0, x, y),

for (t0, x, y) ∈ Σt0 . Finally, we can express ∂yyxu that appears on the left-hand side of the
above equation as

∂yyx u(t0, x, y)

=− β−1
2

[
Γh+ Γβ1 ∂xxu+ 2Γβ̄ ∂xyu+ Γα1 ∂xu+ Γα2 ∂yu− Γr u

]
(t0, x, y)

− β−1
2

[
∂txu+ β1∂xxxu+ 2β̄∂xxyu+ α1∂xxu+ α2∂xyu− r∂xu

]
(t0, x, y)
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for all (t0, x, y) ∈ Σt0 .
Next, let us pick an arbitrary ϕ ∈ C∞c (x1, x2), with ϕ ≥ 0 and

∫ x2
x1
ϕ(x)dx = 1. Then,

from the expression above and using integration by parts we obtain

Fϕ(y) :=

∫ x2

x1

∂yyxu(t0, x, y)ϕ(x)dx (6.17)

= −
∫ x2

x1

β−1
2

[
Γh+ Γα1 ∂xu+ Γα2 ∂yu− Γr u− r∂xu

]
(t0, x, y)ϕ(x)dx

+

∫ x2

x1

[
∂x(ϕ

Γβ1
β2

) ∂xu+ 2∂x(ϕ
Γβ̄
β2

) ∂yu
]
(t0, x, y)dx

+

∫ x2

x1

[
∂x(β

−1
2 ϕ) ∂tu+ ∂x(ϕβ

−1
2 α1) ∂xu+ ∂x(ϕβ

−1
2 α2) ∂yu

]
(t0, x, y)dx

−
∫ x2

x1

[
∂xx(ϕβ

−1
2 β1) ∂xu+ 2∂xx(ϕβ

−1
2 β̄) ∂yu

]
(t0, x, y)dx

Letting y ↑ y0, we have (t0, x, y) → (t0, x, y0) ∈ Σt0,y0 ⊂ D ∩ U for all x ∈ (x1, x2). Hence,
∂xu, ∂yu, ∂tu, u→ 0 by C1 regularity of u. By dominated convergence we then obtain

lim
y→y0

Fϕ(y) =−
∫ x2

x1

Γh
β2

(t0, x, y0)ϕ(x)dx (6.18)

=−
∫ x2

x1

∂x(h/β2)(t0, x, y0)ϕ(x)dx ≤ −δ,

where the final inequality is by (iii) in Assumption 6.3.1, since ϕ ≥ 0 and integrates to one.
In particular, this shows that the function Fϕ ∈ C

(
[ỹ, y0)

)
admits a continuous extension to

[ỹ, y0].
Since δ > 0, there exists ŷ ∈ (ỹ, y0) such that

Fϕ(y) =

∫ x2

x1

∂xyyu(t0, x, y)ϕ(x)dx < −δ
2
, for all y ∈ [ŷ, y0].

Then, for any ε > 0, integrating over y twice and using Fubini’s theorem we have

− δ
4
(y0 − ε− ŷ)2 >

∫ y0−ε

ŷ

∫ y0−ε

y

∫ x2

x1

∂xyyu(t0, x, ζ)ϕ(x)dx dζ dy

= (y0−ε−ŷ)

∫ x2

x1

∂xyu(t0, x, y0 − ε)ϕ(x)dx−
∫ x2

x1

ϕ(x)
(
∂xu(t0, x, y0 − ε)−∂xu(t0, x, ŷ)

)
dx

= −(y0−ε−ŷ)

∫ x2

x1

∂yu(t0, x, y0 − ε)∂xϕ(x)dx

−
∫ x2

x1

ϕ(x)
(
∂xu(t0, x, y0 − ε)−∂xu(t0, x, ŷ)

)
dx.
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Letting ε→ 0 and using dominated convergence and the fact that ∂xu = ∂yu = 0 on Σt0,y0 we
obtain

− δ
4
(y0 − ŷ)2 ≥

∫ x2

x1

∂xu(t0, x, ŷ)ϕ(x)dx ≥ 0, (6.19)

where the final inequality is by (iv) in Assumption 6.3.1. Hence a contradiction and y 7→
x∗(t, y) is left-continuous (and therefore continuous).

We can now use continuity of the map y 7→ x∗(t, y) to prove that t 7→ x∗(t, y) is also
continuous. For (t0, y0) as above we argue by contradiction and assume that x∗(t0−, y0) <

x∗(t0, y0) and fix x∗(t0−, y0) < x1 < x2 < x∗(t0, y0). By continuity of y 7→ x∗(t0, y), we can
find ỹ < y0 and t̃ < t0 close enough to (t0, y0) such that

x∗(t0, y0) ≥ x∗(t0, ỹ) > x2 > x1 > x∗(t0−, y0) ≥ x∗(s, ζ), for all (s, ζ) ∈ (t̃, t0)× (ỹ, y0),

where the final inequality holds thanks to the monotonicity of x∗. Thus,

Σ = (t̃, t0)× (x1, x2)× (ỹ, y0) ⊂ C ∩ U ,
Σt0 := {t0} × (x1, x2)× (ỹ, y0) ⊂ D ∩ U .

Notice that without continuity of y 7→ x∗(t0, y) we would not have been able to guarantee the
inclusion Σt0 ⊂ D ∩ U , which is important for the rest of this proof.

Let us take two arbitrary functions ϕ ∈ C∞c (x1, x2) and ψ ∈ C∞c (ỹ, y0), such that ϕ, ψ ≥ 0

with
∫ x2
x1
ϕ(x)dx = 1 and

∫ y0
ỹ
ψ(y)dy = 1. We multiply (6.15) by ϕ(x)ψ(y) and integrate over

[x1, x2]× [ỹ, y0] to obtain, for all t ∈ (t̃, t0)∫ x2

x1

∫ y0

ỹ

ϕ(x)ψ(y) (∂tu+ Lu− ru) (t, x, y)dy dx

= −
∫ x2

x1

∫ y0

ỹ

ϕ(x)ψ(y)h(t, x, y)dy dx.

Using integration by parts for the terms of L involving second derivatives we get∫ x2

x1

∫ y0

ỹ

ϕ(x)ψ(y)
(
∂tu+ α1∂xu+ α2∂yu− ru

)
(t, x, y)dy dx

−
∫ x2

x1

∫ y0

ỹ

[
ψ
(
∂x(ϕβ1)∂xu+ 2∂x(ϕβ̄)∂yu

)
+ ϕ∂x(ψβ2)∂yu

]
(t, x, y)dy dx

= −
∫ x2

x1

∫ y0

ỹ

ϕ(x)ψ(y)h(t, x, y)dy dx,

for all t ∈ (t̃, t0). Letting t ↑ t0, by dominated convergence and the assumed C1 regularity of
u we obtain

0 =

∫ x2

x1

∫ y0

ỹ

ϕ(x)ψ(y)h(t0, x, y)dy dx.
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Since ϕ, ψ are arbitrary, the latter implies thatH(t0, x, y) = 0 for all (x, y) ∈ (x1, x2)×(ỹ, y0),
which contradicts (iii) in Assumption 6.3.1. Therefore t 7→ x∗(t, y) is continuous.

Next we consider a case with different monotonicity of t 7→ x∗(t, y) and y 7→ x∗(t, y). Let
us assume for example that t 7→ x∗(t, y) is non-decreasing and y 7→ x∗(t, y) is non-increasing.
By analogous arguments to those in (6.14) we conclude that y 7→ x∗(t, y) is left-continuous
and t 7→ x∗(t, y) is right continuous thanks to the monotonicity of x∗ and the closedness of D.
Then, arguing by contradiction we assume that x∗(t0, y0) > x∗(t0, y0+) and, slightly abusing
the notation, we consider

Σ := (t̃, t0)× (x1, x2)× (y0, ỹ) ⊂ C ∩ U and Σt0,y0 := {t0} × (x1, x2)× {y0} ⊂ D ∩ U

for some t̃ < t0 and ỹ > y0 sufficiently close to (t0, y0). Using (6.15) and (6.16) (with the
‘new’ Σt0) and repeating verbatim the arguments of proof employed above, when we let y ↓ y0

we obtain once again (6.18). Then, there exists ŷ ∈ (y0, ỹ) such that∫ x2

x1

∂xyyu(t0, x, y)ϕ(x)dx < −δ
2
, for all y ∈ [y0, ŷ].

Hence, integrating this expression twice we get

− δ
4
(ŷ − y0 − ε)2 >

∫ ŷ

y0+ε

∫ y

y0+ε

∫ x2

x1

∂xyyu(t0, x, ζ)ϕ(x)dx dζ dy

= (ŷ−y0−ε)
∫ x2

x1

∂yu(t0, x, y0 + ε)∂xϕ(x)dx

+

∫ x2

x1

ϕ(x)
(
∂xu(t0, x, ŷ)−∂xu(t0, x, y0 + ε)

)
dx.

Letting ε → 0 and using that ∂xu = ∂yu = 0 at ∂C we arrive to a contradiction with (iv) in
Assumption 6.3.1.

The remaining two cases, in which t 7→ x∗(t, y) is non-increasing and y 7→ x∗(t, y) is
either non-increasing or non-decreasing, can be treated analogously.
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processes. Stochastic Process. Appl., 69, 83–109. 129

[11] BASS, R.F. (1998). Diffusions and elliptic operators. Springer Science & Business Me-
dia. 87

[12] BATTAUZ, A. & ROTONDI, F. (2019). American options and stochastic interest rates.
Working Paper. 78

[13] BAXTER, M. & RENNIE, A. (1996). Financial calculus: an introduction to derivative

pricing. Cambridge University Press. 120

[14] BAYRAKTAR, E. & XING, H. (2009). Analysis of the optimal exercise boundary of
american options for jump diffusions. SIAM Journal on Mathematical Analysis, 41,
825–860. 150

[15] BENSOUSSAN, A. (1984). On the theory of option pricing. Acta Applicandae Mathe-

matica, 2, 139–158. 79

[16] BENSOUSSAN, A. & LIONS, J.L. (1982). Applications of variational inequalities

in stochastic control, vol. 12 of Studies in Mathematics and its Applications. North-
Holland Publishing Co., Amsterdam-New York, translated from the French. 132

[17] BLUMENTHAL, R. & GETOOR, R. (1968). Markov Processes and Potential Theory.
Academic Press, New York. 6, 10

[18] BORODIN, A.N. & SALMINEN, P. (2012). Handbook of Brownian motion-facts and
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