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Abstract

Since its invention almost 50 years ago, laser cooling has become a

very powerful technique for cooling single atomic particles to very low

temperatures. Laser cooling has been an essential tool in many fun-

damental tests of quantum physics but also enabled a wide range of

quantum technologies. Unfortunately, laser cooling does not work for

macroscopic systems, since these have a continuum of phonon modes

and cooling all of them simultaneously becomes impossible without

also inducing heating processes. Some tricks have been found to trans-

fer atomic gases to very low temperatures, as needed for example for

the preparation of Bose-Einstein condensates. But these techniques,

like evaporative cooling have many disadvantages, and require for ex-

ample the removal of atoms from the trap.

Here we have a closer look at alternative techniques for cooling

atomic gases to very low temperatures. We propose to cool only a

single collective mode of the gas but then use energy transfer pro-

cesses due to thermalisation to lower the temperature of the remain-

ing modes. As we shall see below,these thermalisation processes occur

naturally in cavitating bubbles. Moreover, bubble collapse phases can

be used to establish a collective phonon mode, which can be cooled

very e�ciently.

In summary, this thesis discusses the collective laser cooling of

an atomic gas in cavitating bubbles. Moreover, we show that these

might have applications as quantum heat exchangers, which cool a

surrounding liquid for micro and nano technology applications. We

hope that our work helps to initiate novel quantum optics experiments

with cavitating bubbles.
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kB Boltzmann’s constant

kBT Thermal energy

~ Planck’s constant
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Chapter 1

Introduction

This thesis combines three di↵erent topics, namely, laser cooling of atomic sys-

tems, the thermodynamics of harmonic oscillators and sonoluminescence. Our

aim is to address a radically new model, integrating the quantum optics systems

with the thermodynamics framework. More concretely, the main result of this

thesis is a novel laser cooling scheme for an atomic gas which takes advantage of

atom-phonon interactions as well as thermodynamic equilibrium formation. The

main idea in our scheme is that, traditional laser cooling is a one step process. It

only has a cooling phase. However, cooling processes in classical thermodynam-

ics have usually many steps, like the Carnot cycle. Here we combine ideas from

classical thermodynamics and laser cooling and design a two step process (inter-

mittent cooling and thermalisation stages) to cool an atomic gas. This means,

we overcome some limitations of laser cooling of many atoms which cannot be

done in one step.

To implement the two-stage process we take advantage of the phenomenon of

sonoluminescence. The two-stage process of the many-body cooling in an optical

cavity has many similarities with the lifecycle of the single bubble, which is shaped

by thermalisation and atom cavity phonon interactions (Kim et al. (2018)).

The principal result of this thesis is the design of a novel cooling scheme

for many particles inside cavitating bubbles. As we shall see below, we use the

bubble collapse phase, when the atoms inside the bubble are strongly confined,

to implement laser cooling. However, between collapse phases, the atoms evolve

adiabatically and energy is exchanged according to the laws of thermodynamics.

18



1.1 Laser cooling of atomic systems

We also studied the single atom as a background to many body interactions in a

similar setup. We give an overview over the whole thesis in the next sections. In

what follows, we first introduce laser cooling of atomic systems in section 1.1. The

cavity-mediated laser cooling will be described in a more intuitive way in Section

1.2. The quantum sonoluminescence is outlined in Section 1.3. Moreover, the

structure of the thesis is highlighted in section 1.4.

1.1 Laser cooling of atomic systems

For quite some time laser cooling of atomic systems has been interesting. The

technology is very important and allows the atomic system to cool to very low

temperatures. A laser-cooled single atom is an outstanding way of realising a

system that can be described by the theoretical models in quantum optics (

Neuhauser et al. (1978)). This is the preferred subject for ultra-high precision

testing, which tests the foundations of quantum physics and of a single trapped

and laser cooled atom. From quantum metrology to quantum computing, laser

cooling applications vary.

Since its discovery in Hänsch & Schawlow (1975); Wineland & Dehmelt (1975),

laser cooling of individually trapped atomic particles has become a standard

technique in quantum optics laboratories world-wide (Neuhauser et al. (1978);

Wineland et al. (1978)). Rapidly oscillating electric fields can be used to strongly

confine charged particles, like single ions, for relatively large amounts of time.

Moreover, laser trapping provides unique means to control the dynamics of neu-

tral particles, like neutral atoms (Chu (1998); Phillips (1998)). To cool single

atomic particles, laser fields are applied which remove vibrational energy at high

enough rates to transfer them down to near absolute-zero temperatures (Leibfried

et al. (2003a)). Nowadays, ion traps are used to perform a wide range of high-

precision quantum optics experiments. For example, individually trapped ions are

at the heart of devices with applications in quantum technology, like atomic and

optical clocks (Flannigan et al. (2005); Ludlow et al. (2015)), quantum comput-

ers (Debnath et al. (2016); Leibfried et al. (2003b); Schmidt-Kaler et al. (2003);

Stephenson et al. (2020)), quantum simulators (Barreiro et al. (2011); Porras &

Cirac (2004) )and electric and magnetic field sensors (Maiwald et al. (2009)).
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1.2 Cavity-mediated laser cooling

1.2 Cavity-mediated laser cooling

Laser cooling is powerful but not very e↵ective at cooling multiple particles at

the same time (Maunz et al. (2004)). However, cooling di↵erent types of body

systems such as atomic gasses or condensates is essential for gaining insight into

ultracold atomic physics. For the study and understanding of quantum phe-

nomena like quantum phase transition, Bose-Einstein condensation, quantum

magnetism, or bosonic superfluidity, ultracold atom experiments are important

(Madison (2013)). Such experiments require a correct technology that would

produce very low temperatures and relatively quick cooling.

As a solution for the e↵ective cooling of a multi-body system, an atomic sys-

tem has been coupled with quantised vibrational mode in an optical cavity. First

signs of successful laser cooling mediated by a cavity in an experiment have been

found by Vigneron (1995). Later on, it was demonstrated repeatedly that cooling

processes could be greatly improved for single and multi-part system by adding

an optical cavity( Maunz et al. (2004); McKeever et al. (2003); Nußmann et al.

(2005)). The explanation of the cooling process, where cooling rate is positively

measured by the number of atoms in the system, is one of the outstanding prop-

erties of many system cooling (Domokos & Ritsch (2002)).

However it remains challenging to theoretically describe the cooling process

cavity-mediated for many body systems1. There have been a number of semiclas-

sical approaches to give a qualitative description, but even complete quantum me-

chanical models find it di�cult to explain the collective nature of cavity-mediated

laser cooling and the extremely low phonon numbers it provides.

1.3 Quantum sonoluminescence

Sonoluminescence can be defined as a phenomenon of strong light emission from

gas bubble collapses which contains many atoms which are acoustically confined

and periodically driven in a liquid by ultrasonic frequencies. For example, during

the collapse phase of a typical single-bubble sonoluminescence experiment, the

1The terms “atoms” and ”ions” are both used in the thesis interchangeably, since the charge

of the atomic particles does not matter for the cooling process.
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1.4 Structure of the thesis

bubble is considered to be thermally isolated from their surrounding particles.

The collapse phase is followed by the immediate emission of light which indicates

very high temperature inside the bubble. At the beginning of the following expan-

sion phase, the bubble oscillates about its equilibrium radius until it returns to

its stability. This process indeed regenerates itself with unusual precision. From

a quantum optics perspective, there are many similarities between ion trap and

sonoluminescence experiments (Gaitan et al. (1992); Lohse (2002)).

Though extensively investigated sonoluminescence, the origin of the energy

concentration remains a mystery during the final phase of the bubble collapse (

Putterman et al. (2001); Suslick & Flannigan (2008)). A valid theoretical model

can include a plasma formation mechanism and a mechanism that can further

increase the plasma temperature by at least one order of magnitude. It must be

possible for the mechanism to operate in a strong, state-like environment and on

a very small bubble radius length scale.

In order to measure the spectrum from the picosecond light flash at the end of

the collapse and associate the continuum behind the black-body or Bremsstrahlung

spectra, at least the temperature in the bubble indicates that the temperature

of at least the same is 103 � 104 K ( Barber & Putterman (1991); Didenko et al.

(2000); Suslick & Flannigan (2008)). Light emissions in the ultraviolet regime can

also be seen which indicate temperatures approximately 106 K, as Camara et al.

(2004) showed. It is noteworthy that the highly excited energy populations are

identified with noble gas and metal atoms, which are not thermally populated,

but which show the presence of a dense plasma. It should also be noted that

sharp lines of emission are found within an optical system (Brenner et al. (2002);

Flannigan & Suslick (2007); Suslick & Flannigan (2008)).

1.4 Structure of the thesis

Although the idea of laser cooling and also cavity mediated laser cooling are

not new ones, this thesis seeks to develop a new formalism which provides fur-

ther insights into the complex dynamics present when particle and cavity field

interact. In this thesis, we design a cooling scheme and provide a complete

quantum-mechanical description. The plan of this thesis is to discuss aspects
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1.4 Structure of the thesis

related to the similarities between quantum optics experiments with trapped ions

and cavitating bubbles. These suggest that both could be cooled to extremely

low temperatures. Cooling atoms in cavitating bubbles may have applications in

micro- and nanotechnology, which require very small volume cooling. We examine

the physical processes underlying the recently proposed quantum heat exchanger

and provide additional guidance for quantum optics experiments with cavitating

bubbles. Here, we assume that the bubbles will always remain transparent and

estimate the cooling rates that can be achieved. It is demonstrated that a cooling

laser can transfer a single collective phonon mode to extremely low temperatures

during the bubble collapse phase. Additionally, we see that the atomic dynamics

between collapse phases results in an e�cient redistribution of thermal energy.

This thesis contains two main parts: the first one consists of the background

of the laser cooling techniques and the second part of the thesis is original new

material. The details are as follows below:

Part 1, the first part mainly contains a specific review of concepts involved

and consists of three chapters. The purpose of Chapter 2 is to introduce an

overview of the features of laser cooling techniques. As we shall see later, these

techniques can be implemented more easily and are expected to be much more

e�cient for many atoms in cavitating bubbles. Chapter 3 outlines the theory

of quantum harmonic oscillators. Afterwards, Chapter 4 introduces an overview

of the sonoluminescence phenomenon and provides a more detailed idea of this

phenomenon.

Part 2 focuses on the intriguing phenomenon of sonoluminescence. In this

Part, di↵erent approaches will be discussed that introduce master equations de-

scribing the system e↵ectively on a coarse grained time scale. A toy-model is

proposed in order to explain the origin of the sudden energy concentration in

this phenomenon. The model is built on theories used in order to explain laser

cooling experiments and understands the sonoluminescence as an open quantum

system of strongly confined particles. The purpose of Chapter 5 is to provide

an introduction to the design of a quantum heat exchanger for nanotechnology

which converts heat into light on relatively short quantum optical time scales.

This scheme takes advantage of both heat transfer and collective cavity-mediated

laser cooling of an atomic gas inside a cavitating bubble. In Chapter 6 laser

22



1.4 Structure of the thesis

cooling of indistinguishable particles in cavitating bubbles is examined analyti-

cally. Chapter 7 will conclude with a discussion and possible quantum optical

enhancement schemes. Furthermore, it will outline some ideas for future work.
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Part 1: Background
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Chapter 2

Overview of laser cooling

techniques

This chapter introduces some background material on laser cooling. As we shall

see below, we first describe the principle of laser cooling. Afterwards, we introduce

a brief history of laser cooling as well as laser cooling of individually trapped

particles.

2.1 Laser cooling atoms

In the second half of the 20th century, laser cooling in ions played a major role

in the development of physics. It is an interesting opportunity to explore quan-

tum phenomena and provide a testing ground for theory to slow ions down and

spatially confine them with almost resonant light. Laser cooling is thus a major

factor in metrology, improving the accuracy of atomic clocks dramatically. The

first scalable quantum computing architecture that complies with many of the Di-

Vinzenco criteria was the Laser Cooling ( DiVincenzo (1995)), which also enabled

us to achieve the quantum degeneracy system (Cornell & Wieman (2002)).

2.1.1 The principle of laser cooling

Resonant laser light is an e�cient way to manage the motion of an atom. The

principle behind is very straightforward. When an atom of the mass m absorbs

25



2.1 Laser cooling atoms

a photon from an atomically transiently resonant light field, a momentum kick

is given to the laser beam (or the ~k - vector of light) in the direction of the

propagation. Upon absorption, the velocity of the atom decreases by the speed

of recoil �r = ~k/m. Before it again absorbs a photon, the atom must decay from

its excited state. However, a spontaneous emission, which has no net impact on

atomic motion is a spatially isotropic process. The atom is slowed preferably in

the direction of laser propagation after many spontaneous cycles of absorption.

The power the laser field exerts on atomic motion is the spontaneous or dispersing

power we will consider. In general, the laser frequency is slightly under the atomic

frequency of transition. Then, in order for the atom to absorb a photon, it must

move at a speed � to the laser beam that shifts it to the laser light resonance. This

results in a net force which is proportional to its velocity and is called ’Doppler

cooling’ against the atomic motion. This viscous force can be used to capture the

ions into a so-called ’optical molasses’ across all spatial dimensions.

2.1.2 A brief history of laser cooling

The interaction between atoms and light has been theoretically and experimen-

tally studied for a long time. Hänsch & Schawlow (1975) made the first attempts

to describe laser cooling, and Wineland & Dehmelt (1975) did so independently

for trapped ions. It was discovered that the scattering of light from single par-

ticles a↵ected the particles’ external motion. Such e↵ects resulted in significant

changes in the vibrational energy of massive particles. Several other laser cooling

techniques have been developed, allowing atoms and ions to be cooled to the mi-

cro and nanokelvin temperatures required for quantum coherence and degeneracy

(Chu (1998); Cohen-Tannoudji (1998); Phillips (1998)). Sisyphus cooling (Cohen-

Tannoudji & Phillips (1990) ) and evaporative cooling (Ketterle & Van Druten

(1996)) are two examples of these.

It is not surprising that laser cooling was shown first as it is located in space

with trapped ions. The first experiments to show the e↵ect of laser cooling

in neutral atoms sought to slow the atomic beam with the laser light, which

contradicts the atomic motion.
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2.1 Laser cooling atoms

2.1.3 Laser cooling of individually trapped particles

For laser cooling to be at its most e�cient, the confinement of individually trapped

particles should be so strong that the quantum characteristics of their motion is

no longer negligible. This means, their vibrational energy is made up of energy

quanta which have been named phonons. When this applies, an externally ap-

plied laser field not only a↵ects the electronic states of a trapped ion—it also

changes its vibrational state. Ideally, laser frequencies should be chosen such

that the excitation of the ion should be most likely accompanied by the loss of a

phonon. If the ion returns subsequently into its ground state via the spontaneous

emission of a photon, its phonon state remains the same. Overall one phonon

is permanently lost from the system which implies cooling. On average, every

emitted photon lowers the vibrational energy of the trapped ion by the energy

of one phonon. Eventually, the cooling process stops when the ion no longer

possesses any vibrational energy. This state was no vibration and energy which

corresponds to the stationary state of the system.

Currently, there are many di↵erent ways of designing and fabricating ion traps

(Goodwin et al. (2016); Stick et al. (2006)). However, the main requirements for

the e�cient conversion of vibrational energy into light on relatively short quantum

optical time scales are always the same (Blake et al. (2011b); Stenholm (1986)):

1) Individual atomic particles need to be so strongly confined that the quan-

tum character of their motion has to be taken into account. In the following,

⌫ denotes the phonon frequency and ~⌫ is the energy of a single phonon.

The thesis regularly refers to “frequencies” which are strictly angular fre-

quencies, as usually done in quantum optics.

2) A laser field with a frequency !L below the atomic transition frequency !0

needs to be applied. As long as the laser detuning � = !0 � !L and the

phonon frequency ⌫ are comparable in size,

� ⇠ ⌫ , (2.1)

the excitation of an ion is more likely accompanied by the annihilation of a

phonon than by the creation of a phonon. Transitions which result in the
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2.1 Laser cooling atoms

simultaneous excitation of an ion and the creation of a phonon are possible

but are less likely to occur as long as their detuning is larger.

3) When excited, the confined atomic particle needs to be able to emit a

photon. In the following, we denote its spontaneous decay rate by �. This

rate should not be much larger than ⌫,

⌫ � � , (2.2)

so that the cooling laser couples e�ciently to atomic transitions. At the

same time, � should not be too small so that de-excitation of the excited

atomic state happens often via the spontaneous emission of a photon.

Given these three conditions, the applied laser field results in the conversion of

the vibrational energy of individually trapped ions into photons. As mentioned

already above, laser cooling can prepare individually trapped atomic particles

at low enough temperatures for applications in high-precision quantum optics

experiments and in quantum technology.

Fig. 2.1(a) shows a single two-level atom (or ion) with external laser driving in-

side an approximately harmonic trapping potential. Most importantly, the atom

should be so strongly confined that its phonon states are no longer negligible. In

the following, ⌫ denotes the frequency of the energy quanta in the vibrational en-

ergy of the atomic particle and |mi is a vibrational state with exactly m phonons.

Moreover, |gi and |ei denote the ground and the excited electronic state of the

trapped particle with energy separation ~!0. Fig. 2.1(b) shows the energy level

of the combined atom-phonon system with the energy eigenstates |x,mi.
To lower the temperature of the atom, the frequency !L of the cooling laser

needs to be below its transition frequency !0. Ideally the laser detuning � =

!0 � !L equals the phonon frequency ⌫ (cf. Eq. (2.1)). In addition, the sponta-

neous decay rate � of the excited atomic state should not exceed ⌫ (cf. Eq. (2.2)).

When both conditions apply, the cooling laser couples most strongly, i.e. reso-

nantly and e�ciently, to transitions for which the excitation of the atom is accom-

panied by the simultaneous annihilation of a phonon. All other transitions are

strongly detuned. Moreover, the spontaneous emission of a photon only a↵ects

the electronic but not the vibrational states of the atom. Hence, the spontaneous
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2.1 Laser cooling atoms

Figure 2.1: (a) Schematic view of the experimental setup for laser cooling of a

single trapped ion. Here |gi and |ei denote the ground and the excited state of

the ion, respectively, with transition frequency !0 and spontaneous decay rate �.

The motion of the particle is strongly confined by an external harmonic trapping

potential such that its quantum nature can no longer be neglected. Here, ⌫

denotes the frequency of the corresponding phonon mode and !L is the frequency

of the applied cooling laser. (b) The purpose of the laser is to excite the ion, while

annihilating a phonon, thereby causing transitions between the basis states |x,mi
with x = g, e andm = 0, 1, . . . of the atom-phonon system. If the excitation of the

ion is followed by the spontaneous emission of a photon, a phonon is permanently

lost which implies cooling.

emission of a photon usually indicates the loss of one phonon. Suppose the atom

was initially prepared in a state |g,mi. Then its final state equals |g,m�1i. One

phonon has been permanently removed from the system which implies cooling.

As illustrated in Fig. 2.1(b), the trapped particle eventually reaches its ground

state |g, 0i where it no longer experiences the cooling due to o↵-resonant driving

( Blake et al. (2011b); Stenholm (1986)).

To a very good approximation, the Hamiltonian of the atom-phonon system

equals Blake et al. (2011b)

HI = ~g
�
�
�
b
† + �

+
b
�

(2.3)

in the interaction picture with respect to its free energy. Here g denotes the (real)

atom-phonon coupling constant, while �
+ = |eihg| and �

� = |gihe| are atomic

raising and lowering operators. Moreover, b and b
† are phonon annihilation and
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2.1 Laser cooling atoms

creation operators with [b, b†] = 1. To take into account the spontaneous emission

of photons from the excited state of the atom with decay rate �, we describe the

atom-phonon system in the following by its density matrix ⇢I(t) with

⇢̇I = � i

~ [HI, ⇢I] + �

✓
�
�
⇢I �

+ � 1

2
�
+
�
�
⇢I �

1

2
⇢I �

+
�
�
◆

. (2.4)

This equation can be used to analyse the dynamics of the expectation value

hAIi = Tr(AI⇢I) of observables AI, since it implies

hȦIi = � i

~ [AI, HI] + �

⌧
�
+
AI �

� � 1

2
AI �

+
�
� � 1

2
�
+
�
�
AI

�
. (2.5)

Here we are especially interested in the dynamics of the mean phonon number

m = hb†bi. In order to obtain a closed set of rate equations, we also need to study

the dynamics of the population of the excited atomic state s = h�+
�
�i and the

dynamics of the atom-phonon coherence k1 = i h��
b
† � �

+
bi. Using Eq. (2.5),

one can show that

ṁ = �g k1 ,

ṡ = g k1 � � s ,

k̇1 = 2g(m� s)� 4g ms� 1

2
� k1 (2.6)

when assuming that h�+
�
�
b
†
bi = h�+

�
�ihb†bi = ms to a very good approxima-

tion. Having a closer look at the above equations, we see that the system rapidly

reaches its stationary state with m = s = k1 = 0. Eventually, the atom reaches

a very low temperature. More detailed calculations reveal that the final phonon

number m of the trapped atom depends on its system parameters but remains

small as long as the ratio �/⌫ is su�ciently small Blake et al. (2011b). The above

cooling equations (2.6) also show that the corresponding cooling rate equals

�
standard
1 atom = g

2
/� (2.7)

to a very good approximation and that the cooling process takes place not on

mechanical but on relatively short quantum optical time scales.
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2.2 Cavity-mediated laser cooling

2.2 Cavity-mediated laser cooling

In this section, we first describe the principle of cavity-mediated laser cooling.

Afterwards, we introduce a brief history of cavity-mediated laser cooling, cavity-

mediated laser cooling of a single atom as well as cavity-mediated collective laser

cooling.

2.2.1 The principle of cavity-mediated laser cooling

For laser cooling of a single atom, two major regimes are distinguished. For

example, the final temperature is limited to T = ~�
2kB

in the limit of the weak

coupling, if the frequency ⌫ of the trap is below the natural line width � of the

optical transition of the atom. The Doppler cooling limit is commonly referred

to as a dazzle. However, when the trap frequency is higher than its natural line

width, as it is in the strong-binding limit and the atom develops well-resolved

sidebands of absorption. The cooling laser can therefore be tuned to one of the

sidebands and the atom can be cooled to its lowest vibration level. The whole

thing is known as sideband cooling. The cooling limitations in both Doppler

and sideband cooling were found experimentally and in good agreement with the

theory (Diedrich et al. (1989)).

During a lot of Quantum Optics experiments, laser sideband cooling was a

prime method, because of its ability to cool a single atom to very low temper-

atures. It also has certain drawbacks, such as not being able simultaneously to

cool large numbers of atoms e�ciently or to cool particles with complex level

structures, such as molecules (Lev et al. (2008)), as mentioned earlier. Propos-

als were made for alternative techniques. One suggestion is that the sideband

regime works while the atomic system is confined to an optical cavity. Thereto

the interaction between the system and the radiation field surrounding it strongly

enhances. Furthermore, cavity cooling does not depend on spontaneous atomic

emissions, and cavity geometries can be manipulated. However, as we shall see

below, laser cooling of many atoms results only in the cooling of one collective

mode.
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2.2 Cavity-mediated laser cooling

2.2.2 A brief history of cavity-mediated laser cooling

In Vigneron (1995), initial indications of cavity-mediated laser cooling were found

for atomic systems. McKeever et al. (2003) reported the successful cooling and

trapping of individual cesium atoms. In Maunz et al. (2004) cooling mechanisms

have been shown to lead to extended storage times and better location of the

atoms. In comparison with that observed in free air cooling, the cooling rate has

been estimated to be at least five times higher. Nußmann et al. (2005) showed

that the orthogonal laser cooling, laser and cavity-axis configuration lead to high

cooling e�ciency, low temperatures and relatively long trapping times. Wolke

et al. (2012) stated an atom-cavity system with a cavity bandwidth below the

recoil limit and cooling at densities and temperatures incompatible with con-

ventional laser cooling. A single atom cooling system in an optical cavity with

electromagnetically induced transparency was observed with the two-photon res-

onance at Kampschulte et al. (2010). In Chuah et al. (2013) the cavity cooling of

a single ion was investigated beyond the Lamb-Dicke system, showing a cooling

threshold below the Doppler temperature.

Mossberg et al. (1991) and Zaugg et al. (1993) stated that the use of an optical

resonator can greatly enhance atomic cooling. Domokos & Ritsch (2003) later

identified weak and strong coupling regimes, using the half-classical approach

and emphasized the importance of particle correlations. Hemmerling & Robb

(2011) demonstrated cooling using a blue-detuned driving light. Furthermore,

the number of atoms has enhanced the cooling rate within the configuration

of the atom pump while the cavity pump configuration is without e↵ect. The

addition of cavity, as shown by Murr (2006), leads in the Doppler limit to change

the Doppler force. Vuletić & Chu (2000) has proposed a laser cooling method for

low saturation atoms and high detuning.

Although the semiclassical approach can describe a number of phenomena of

laser cooling through cavity-mediated, Cirac et al. (1993) master equation ap-

proach provides for a complete quantum mechanical description of the cooling

process. The cooling of the cavity at very low temperatures where the quantum

e↵ects prevails over the system and semiclassical models can no longer be used (
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2.2 Cavity-mediated laser cooling

Domokos & Ritsch (2003)). This is particularly useful in cavity cooling. More-

over, master equation calculations are more precisely controlled than semiclassical

calculations. Afterwards, many authors used a master equation approach. Cirac

et al. (1995) have dealt with bad cavity and low saturation levels, showing that

even in strong containment conditions, an atom can be cooled in the trap ground

state.

Beige et al. (2005), in which the particles are coupled with the quantum field of

an optical cavities and driven by a red-detuned laser field, proposed a mechanism

for collective cooling for a large number of trapped particles. In Blake et al.

(2011a, 2012), the cavity-mediated laser cooling was compared to normal sideband

laser cooling. It showed that both the techniques exhibit striking similarities

within the range of validity of the Lamb-Dicke approximation. For instance, in

weak and strong containment regimes the mean number of phonon stationary

states are expressed in the same way. The cooling of many-body systems in

an optical cavity is much richer and more complicated compared to individual

particles. Later, it will be identified or understood much less than that. There

have been reports of multiple systematic experimental studies. Schleier-Smith

et al. (2011) showed the cooling, down to two phonons in a good agreement with

an Optomechanical Model, of the single collective vibrational mode of an atomic

ensemble. The rate of cooling was proportional to the ensemble’s total photon

spread rate which showed the light-inducing cooling method collectively.

2.2.3 Cavity-mediated laser cooling of a single atom

Suppose we want to cool a single atom whose transition frequency !0 is well above

the optical regime, i.e. much larger than typical laser frequencies !L. In this case,

it is impossible to realise the condition � ⇠ ⌫ in Eq. (2.1). Hence it might seem

impossible to lower the temperature of the atom via laser cooling. To overcome

this problem, we confine the particle in the following inside an optical resonator

(cf. Fig. 2.2) and denote the cavity state with exactly n photons by |ni. Using

this notation, the energy eigenstates of the atom-phonon-photon systems can be

written as |x,m, ni. Moreover, ⌫ is again the phonon frequency,  denotes the
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2.2 Cavity-mediated laser cooling

spontaneous cavity decay rate and !L and !cav denote the laser and the cavity

frequency, respectively.

In the experimental setup in Fig. 2.2, all transitions which result in the excita-

tion of the atom are naturally strongly detuned and can be neglected. However,

the same does not have to apply to indirect couplings which result in the di-

rect conversion of phonons into cavity photons (Blake et al. (2011a); Kim et al.

(2018)). Suppose the cavity detuning �cav = !cav�!L and the phonon frequency

⌫ are approximately the same and the cavity decay rate  does not exceed ⌫,

�cav ⇠ ⌫ and ⌫ �  , (2.8)

in analogy to Eqs. (2.1) and (2.2). Then two-step transitions which excite the

atom while annihilating a phonon immediately followed by the de-excitation of

the atom while creating a cavity photon become resonant and dominate the dy-

namics of the atom-phonon-photon system. The overall e↵ect of these two-step

transitions is the direct conversion of a phonon into a cavity photon, while the

atom remains essentially in its ground state (cf. Fig. 2.2(b)). When a cavity

photon subsequently leaks into the environment, the phonon is permanently lost.

To model the above described dynamics, we describe the experimental setup

in Fig. 2.2 in the following by the interaction Hamiltonian (Blake et al. (2011a);

Kim & Beige (2013))

HI = ~ge↵
�
bc

† + b
†
c
�
, (2.9)

where ge↵ denotes the e↵ective atom-cavity coupling constant and where c with

[c, c†] = 1 is the cavity photon annihilation operator. Since the atom remains

essentially in its ground state, its spontaneous photon emission remains negligible.

To model the possible leakage photons through the cavity mirrors, we employ

again a master equation. Doing so, the time derivative of the density matrix

⇢I(t) of the phonon-photon system equals

⇢̇I = � i

~ [HI, ⇢I] + 

✓
c⇢Ic

† � 1

2
c
†
c⇢I �

1

2
⇢Ic

†
c

◆
(2.10)

in the interaction picture. Hence, expectation values hAIi = Tr(AI⇢I) of phonon-

photon observables AI evolve such that

hȦIi = � i

~ [AI, HI] + 

⌧
c
†
AI c�

1

2
AI c

†
c� 1

2
c
†
cAI

�
, (2.11)
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2.2 Cavity-mediated laser cooling

Figure 2.2: (a) Schematic view of the experimental setup for cavity-mediated

laser cooling of a single atom. The main di↵erence between this setup and the

setup shown in Fig. 2.1 is that the atom now couples in addition to an optical

cavity with frequency !cav and the spontaneous decay rate . Here both the

cavity field and the laser are highly detuned from the atomic transition and the

direct excitation of the atom remains negligible. However the cavity detuning

�cav = !cav � !L should equal the phonon frequency of the trapped particle. (b)

As a result, only the annihilation of a phonon accompanied by the simultaneous

creation of a cavity photon are in resonance. In cavity-mediated laser cooling, the

purpose of the laser is to convert phonons into cavity photons. The subsequent

loss of this photon via spontaneous emission results in the permanent loss of a

phonon and therefore in the cooling of the trapped particle.

in analogy to Eq. (2.5). In the following, we use this equation to study the

dynamics of the phonon number m = hb†bi, the photon number n = hc†ci and

the phonon-photon coherence k1 = ihbc† � b
†
ci. Proceeding as described in the

previous subsection, we now obtain the rate equations

ṁ = ge↵k1 ,

ṅ = �ge↵k1 � n ,

k̇1 = 2ge↵(n�m)� 1

2
k1 . (2.12)

These describe the continuous conversion of phonons into cavity photons which

subsequently escape the system. Hence it is not surprising to find that the sta-

tionary state of the atom-phonon-photon system corresponds to m = n = k1 = 0.

Independent of its initial state, the atom again reaches a very low temperature.
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2.2 Cavity-mediated laser cooling

In analogy to Eq. (2.7), the e↵ective cooling rate for cavity-mediated laser cooling

is now given by Blake et al. (2011a); Kim & Beige (2013)

�1 atom = g
2
e↵/ . (2.13)

Due to the resonant coupling being indirect, ge↵ is in general a few orders of

magnitude smaller than g in Eq. (2.7), if the spontaneous decay rates  and � are

of similar size. Cooling a single atom inside an optical resonator might therefore

take significantly longer. However, as we shall see below, this reduction in cooling

rate can be compensated for by the collective enhancement of the atom-cavity

interaction constant ge↵ (Beige et al. (2005)).

2.2.4 Cavity-mediated collective laser cooling

In previous subsections, we had a closer look at a standard laser cooling tech-

nique for an individually trapped atomic particle (Blake et al. (2011b); Stenholm

(1986)). We also reviewed cavity-mediated laser cooling of a single atom (Blake

et al. (2011a); Cirac et al. (1993, 1995); Kim & Beige (2013); Uruñuela et al.

(2020)) and of an atomic gas (Beige et al. (2005); Kim et al. (2018)). Next we

introduce cavity-mediated collective laser cooling of an atomic gas inside an op-

tical resonator (Beige et al. (2005); Kim et al. (2018)). To do so, we replace the

single atom in the experimental setup in Fig. 2.2 by a collection of N atoms. In

analogy to Eq. (2.9), the interaction Hamiltonian HI between phonons and cavity

photons now equals

HI =
NX

i=1

~g(i)e↵

⇣
bic

† + b
†
i
c

⌘
, (2.14)

where g
(i)
e↵ denotes the e↵ective atom-cavity coupling constant of atom i. This

coupling constant is essentially the same as ge↵ in Eq. (2.13) and depends in

general on the position of atom i. Moreover bi denotes the phonon annihilation

operator of atom i with [bi, b
†
j
] = �ij. In order to simplify the above Hamiltonian,

we introduce a collective phonon annihilation operator B,

B =

P
N

i=1 g
(i)
e↵ bi

g̃e↵
with g̃e↵ =

 
NX

i=1

|g(i)e↵ |
2

!1/2

, (2.15)
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with [B,B
†] = 1. Using this notation, HI in Eq. (2.14) simplifies to

HI = ~g̃e↵
�
Bc

† +B
†
c
�
. (2.16)

Notice that the e↵ective coupling constant g̃e↵ scales as the square root of the

number of atoms N inside the cavity. For example, if all atomic particles couple

equally to the cavity field with a coupling constant ge↵ ⌘ g
(i)
e↵ , then g̃e↵ =

p
N ge↵ .

This means, in case of many atoms, the e↵ective phonon-photon coupling is

collectively enhanced ( Beige et al. (2005)).

When comparing HI in Eq. (2.9) with HI in Eq. (2.14), we see that both

Hamiltonians are essentially the same. Moreover the density matrix ⇢I obeys

the master equation in Eq. (2.10) in both cases. Hence we expect the same

cooling dynamics in the one atom and in the many atom case. Suppose all atoms

experience the same atom-cavity coupling constant ge↵ , the e↵ective cooling rate

of the common vibrational mode B becomes

�N atoms = Ng
2
e↵/ , (2.17)

in analogy to Eq. (2.13). This cooling rate is N times larger than the cooling rate

which we predicted in the previous subsection for cavity-mediated laser cooling of

a single atom. Using su�ciently large number of atoms N , it is therefore possible

to realise cooling rates �N atoms with

�N atoms � �
standard
1 atom . (2.18)

This suggests that the cooling rate of cavity-mediated laser cooling, i.e. the rate

of change of the mean number n of B phonons in the system, is comparable and

might even exceed the cooling rates of standard laser cooling of single trapped

ions.

However, the above discussion also shows that cavity-mediated collective laser

cooling only removes phonons from a single common vibrational mode B, while

all other vibrational modes of the atomic gas do not experience the cooling laser.

Once the B mode reaches its stationary state, the conversion of thermal energy

into light stops. To nevertheless take advantage of the relatively high cooling rates

of cavity-mediated collective laser cooling, an additional mechanism is needed
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Figure 2.3: Schematic view of the expected dynamics of the temperature of the

atomic gas during cavity-mediated collective laser cooling which involves a se-

quence of cooling stages (blue) and thermalisation stages (pink). During ther-

malisation stages, heat is transferred from the di↵erent vibrational degrees of

freedoms of the atoms into a certain collective vibrational mode B, while the

mean temperature of the atoms remains the same. During cooling stages, energy

transfer from the B mode into light. Eventually, the atomic gas becomes very

cold.

(Kim et al. (2018)). As we shall see in the next section, one way of transferring

energy between di↵erent vibrational modes is to intersperse cooling stages with

thermalisation stages (cf. Fig. 2.3). The purpose of the cooling stages is to rapidly

remove energy from the system. The purpose of subsequent thermalisation stages

is to transfer energy from the surroundings of the bubble and from the di↵erent

vibrational modes of the atoms into the B mode. Repeating thermalisation and

cooling stages is expected to result in the cooling of the whole setup.

2.3 Summary

This chapter has focused our attention on the material on laser cooling techniques.

As we shall see above, we described the principle of laser cooling. In addition, we

introduced a brief history of laser cooling as well as laser cooling of individually

trapped particles. In section 2.2, we reviewed cavity-mediated laser cooling of a

single atom (Blake et al. (2011a); Cirac et al. (1993, 1995); Kim & Beige (2013);

Uruñuela et al. (2020)) and of an atomic gas (Beige et al. (2005); Kim et al.
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(2018)). We introduced cavity-mediated collective laser cooling of an atomic gas

inside an optical resonator (Beige et al. (2005); Kim et al. (2018)).

39



Chapter 3

Quantum harmonic oscillators

3.1 Introduction

The quantum harmonic oscillator is one of the most basic and essential systems

in quantum mechanics. The theory used to solve a simple quantum harmonic

oscillator is crucial to understanding quantum mechanics. In this thesis, we focus

on cooling trapped particles that are confined to a harmonic potential. In this

environment, a full quantum description may be made of the cooling process, as

the cooling process can transfer the initial vibrational state of the particle to the

motional ground state. In this Chapter, we introduce the formalism that we will

use in the rest of the thesis: the theory of the quantum harmonic oscillators.

More detailed knowledge of the content can be found in the literature (Gerry

et al. (2005); Haroche & Raimond (2006)).

Section 3.2 develops the basis of the quantum approach to harmonic oscilla-

tors. The dimensionless creation and annihilation operators are first introduced.

We start with the quantisation of a harmonic oscillator and present the description

of its eigenstates, so-called number states, and energy levels in the quantisation.

Number states will be used to characterise the vibrational states of the trapped

particles and cavity radiation modes in the chapters that follow.

Section 3.3 is concerned with the theory for harmonic oscillators in the thermal

state. As the thermal state of a harmonic oscillator is indeed a mixed state,

a canonical density operator can describe it. We use the density operator to
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3.2 Quantisation of harmonic oscillator

calculate the thermal average of the number operator and link it to the vibrational

energy of the system (Blais et al. (2020)).

3.2 Quantisation of harmonic oscillator

A knowledge of the quantized level of energy initially introduced by Planck (1901)

is the most important finding concerning the quantum harmonic oscillators to

explain the spectral density of a black body through

Em = m ~⌫ with m = 1, 2, .... . (3.1)

This assumed the expression in Heisenberg’s matrix mechanics of the quantized

energy levels later, and this showed that they were given by

Em =

✓
m+

1

2

◆
~⌫ with m = 0, 1, 2, .... (3.2)

From a quantum mechanics perspective, the problem is to solve the eigenvalue

equation of the Hamiltonian. One option is to solve the second-order partial

di↵erential equation, i.e. a time-independent Schrödinger equation, the wave

mechanics picture of the equation. This approach requires some understanding

of the theory of partial di↵erential equations. The other option is to deduce

two new operators, the ladder operators, from the position and momentum of

Hermitian operators, which enable the eigenvalue equation of the Hamiltonian to

be readjusted easily.

Remember that the following Hamiltonian can describe a single one-dimensional

mass M oscillator in a harmonic trap with frequency ⌫ that is (Loudon (2000))

H =
p
2

2M
+

1

2
M⌫

2
x
2
, (3.3)

Where its momentum operator p and position operator x have the usual commu-

tator relationship,

[x, p] = i~ . (3.4)
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3.2 Quantisation of harmonic oscillator

When it is not important for the exact shape of the wave function of the harmonic

oscillator, the second quantisation and the ladder operators are introduced,

b =

r
M⌫

2~ +

✓
x+

i

M⌫
p

◆
,

b
† =

r
M⌫

2~ +

✓
x� i

M⌫
p

◆
. (3.5)

This refers to the b and b
† of the operators following the commutator relationship,

[b, b†] = 1 . (3.6)

Applying Eqs. (3.5), the Hamiltonian (3.3) is converted to

H = ~⌫
✓
b
†
b+

1

2

◆
. (3.7)

To help address the Schrödinger equation, consider an arbitrary eigenstate

|mi with relative eigenvalue Em. The Schrödinger equation then can be written

as

H|mi = ~⌫
✓
b
†
b+

1

2

◆
|mi = Em|mi . (3.8)

Multiplying both sides from the left by b
† gives

~⌫
✓
b
†
b
†
b+

1

2
b
†
◆
|mi = Emb

†|mi (3.9)

~⌫
✓
b
†
bb

† � 1

2
b
†
◆
|mi = Emb

†|mi (3.10)

~⌫
✓
b
†
b+

1

2

◆
b
†|mi = (Em + ~⌫)b†|mi . (3.11)

The last equation represents an expression of an energy eigenvalue equation with

the eigenstate

|m+ 1i = b
†|mi (3.12)
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3.2 Quantisation of harmonic oscillator

Figure 3.1: Configuration of energy levels for the quantum-mechanical harmonic

oscillator. In the case of the operators of creation b
† and the operators of destruc-

tion b, an amount ~⌫ will be respectively added or subtracted.

and the eigenvalue Em+1 = Em+~⌫. As it can be seen, there exists another level

greater than the first by the amount ~⌫. The energy level consists of a ladder

with equal spacing without a top limit, as shown in Fig. 3.1. The use of the

so-called creation operator b† to transfer the energy to an increasing level. In the

same way, the use of the destruction operator b shifts the energy level downwards,

H b|mi = (Em � ~⌫)b|mi , (3.13)

with respect to the state

|m� 1i = b|mi (3.14)

with the eigenvalue Em�1 = Em � ~⌫. There is, however, a lower boundary, as

kinetic and potential energies are positive quantities and the eigenvalues cannot
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3.2 Quantisation of harmonic oscillator

be negative. It is possible to describe the lowest or ground state, as |0i and

suppose that the only reliable solution to Hb|0i = (Em � ~⌫)b|0i is

b|0i = 0 . (3.15)

Since there are no lower eigenstates then the ground state. The Schrödinger

equation in this scenario recognises,

~⌫
✓
b
†
b+

1

2

◆
|0i =

1

2
~⌫|0i = E0|0i , (3.16)

which demonstrates that the energy of the ground state |0i is E0 = 1
2~⌫. As a

consequence, the whole spectrum of energies follows,

Em = ~⌫
✓
m+

1

2

◆
, (3.17)

where m is a positive integer or zero. The quantum number m thus indicates the

energy level of the harmonic oscillator or in other words the number of energy

quanta it possesses. Throughout the rest of this thesis, if the harmonic oscillator

is used to describe the vibrational energy of a particle, we shall refer to the energy

quanta as phonons.

The role of the ladder operators b and b
† in shifting the energy of the system by

the amount of ~⌫ is indicated in Figure 3.1. The eigenstates of the Hamiltonian in

Eq. (3.5) are simultaneous eigenstates to the number operator b†b and it’s obvious

from the Eqs. (3.7) and (3.17) that they satisfy

b
†
b|mi = m|mi . (3.18)

The states |mi are the number states or Fock states. It is better to normalise

the eigenstates so that

hm|mi = 1 . (3.19)

If the states are normalised, we need to modify their relationships. Eq. (3.14)

can be generalised to

b|mi = C|m� 1i , (3.20)
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3.2 Quantisation of harmonic oscillator

Where C an arbitrary constant. If we consider taking the Hermitian conjugate

of both sides, that means

hm|b† = hm� 1|C⇤
. (3.21)

Multipling Eqs. (3.20) and (3.21) indicates that

hm|b†b|mi = |C2|hm� 1|m� 1i ,

m = |C2| . (3.22)

The phase of the normalisation constant is usually considered to be zero and Eq.

(3.20) becomes

b|mi =
p
m|m� 1i . (3.23)

In analogy, it can be shown that

b
†|mi =

p
m+ 1|m+ 1i . (3.24)

It is worth noting that the condition of ground state (3.15) is included as

a special case in Eq.(3.23). Eqs. (3.23) and (3.24) are always better to use

than Eqs.(3.12) and (3.14) because of the normalisation. The various energy

eigenstates are orthogonal, so that the only non-vanishing matrix elements of

operators b and b
† are those of the form

hm� 1|b|mi =
p
m,

hm+ 1|b†|mi =
p
m+ 1 . (3.25)

Along with Eq. (3.2), this demonstrates that the eigenstates follow the orthonor-

mality condition

hm|ni = �mn , (3.26)

where �mn is the Kronecker delta. In terms of Eqs.(3.25), we can see straight

away that operators b and b
† are not Hermitian, even though every Hermitian

operator A satisfies

hi|A|ji = hj|A|ii⇤ (3.27)

with respect to arbitrary states |ii and |ji. However, it is worth noting that

operators b and b
† do not represent quantities that can be physically observed.

The convenience and representation of the algebra of the ladder operators in many

areas of quantum mechanics is highly appreciated.
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3.3 Thermalisation of an atomic gas with elastic collisions

3.3 Thermalisation of an atomic gas with elastic

collisions

In this section, we discuss a possible realisation of the thermalisation stages. More

concretely, we assume in the following that elastic collisions transfer the atomic

gas into its thermal state. It is shown that this re-distributes energy between all

the di↵erent vibrational modes of the atoms. For simplicity, we assume here that

the atoms do not see the cooling laser during thermalisation stages.

3.3.1 The thermal state of a single harmonic oscillator

We first consider a single trapped atom inside a harmonic trapping potential. Its

thermal state equals (Blaise & Henri-Rousseau (2011))

⇢ =
1

Z
e��H with Z = Tr(e��H) , (3.28)

where H is the relevant harmonic oscillator Hamiltonian, � = 1/kBT is the ther-

mal Lagrange parameter for a given temperature T , kB is Boltzmann’s constant

and Z denotes the partition function which normalises the density matrix ⇢ of the

atom. For su�ciently large atomic transition frequencies !0, the thermal state

of the atom is to a very good approximation given by its ground state |gi, unless
the atom becomes very hot. In the following, we therefore neglect its electronic

degrees of freedom. Hence the Hamiltonian H in Eq. (3.28) equals

H = ~⌫
�
b
†
b+ 1

2

�
, (3.29)

where ⌫ and b denote again the frequency and the annihilation operator of a

single phonon. Combining Eqs. (3.28) and (3.29), we find that (Blaise & Henri-

Rousseau (2011))

Z =
e�

1
2�

1� e��
(3.30)

with � = �~⌫. Here we are especially interested in the expectation value of

the thermal energy of the vibrational mode of the trapped atom which equals

hHi = Tr(H⇢). Hence using Eqs. (3.28) and (3.29), one can show that

hHi =
1

Z
Tr
�
He��H

�
= � 1

Z

@

@�
Z = � @

@�
lnZ . (3.31)
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3.3 Thermalisation of an atomic gas with elastic collisions

Finally, combining this result with Eq. (3.30), we find that

hHi = ~⌫
✓

e��

e�� � 1
+

1

2

◆
(3.32)

which is Planck’s expression for the average energy of a single quantum harmonic

oscillator. Moreover,

m =
e��

e�� � 1
, (3.33)

since the mean phonon number m = hb†bi relates to hHi via m = hHi/~⌫ � 1
2 .

3.3.2 The thermal state of many atoms with collisions

Next we calculate the thermal state of a strongly confined atomic gas with strong

elastic collisions. This situation has many similarities with the situation con-

sidered in the previous subsection. The atoms constantly collide with their re-

spective neighbours which further increases the confinement of the individual

particles. Hence we assume in the following that the atoms no longer experience

the phonon frequency ⌫ but an increased phonon frequency ⌫e↵ . If all atoms

experience approximately the same interaction, their Hamiltonian H equals

H =
NX

i=1

~
�
⌫e↵ + 1

2

�
b
†
i
bi (3.34)

to a very good approximation. Here bi denotes again the phonon annihilation

operator of atom i. Comparing this Hamiltonian with the harmonic oscillator

Hamiltonian in Eq. (3.29) and substituting H in Eq. (3.34) into Eq. (3.28) to

obtain the thermal state of many atoms, we find that this thermal state is simply

the product of the thermal states of the individual atoms. All atoms have the

same thermal state, their mean phonon number mi = hb†
i
bii equals

mi =
e��e↵

e��e↵ � 1
(3.35)

with �e↵ = ~⌫e↵/kBT , in analogy to Eq. (3.33). This equation shows that any pre-

viously depleted collective vibrational mode of the atoms becomes re-populated

during thermalisation stages.
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3.4 Summary

This chapter has focused our attention on the theoretical fact that we covered

the theory of a harmonic oscillator in the quantisation. The energy transfer be-

tween the states is represented by ladder operators b and b
†, and the system’s

eigenstates are represented by number states |mi. The treatment of a harmonic

oscillator becomes relatively simple and straightforward using this formalism.

The harmonic oscillator is used to define the vibrational energy levels of trapped

particles (called phonons) and the energy levels of a radiation mode (called pho-

tons). When dealing with trapped atomic systems in cavity-mediated cooling and

sonoluminescence, we’ll rely heavily on these explanations.

We examined a possible implementation of the thermalisation stages in greater

detail. More precisely, the following assumes that elastic collisions convert the

atomic gas to its thermal state. It is demonstrated that this re-distributes energy

between all of the atoms’ di↵erent vibrational modes. We have looked not only at

the theory of harmonic oscillator eigenstates but also at mixed states that arise

when a harmonic oscillator is placed in a thermal equilibrium. In considering

canonical density operators, we derived thermal average expressions from the

number operator b†b.
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Chapter 4

Sonoluminescence

4.1 Introduction

This chapter concentrates on sonoluminescence which is the fascinating phe-

nomenon of strong light flashes of small air bubbles in a fluid. The bubbles

are driven by an ultrasonic wave and need to be filled with noble gas atoms. The

approximation of the radiation from the emission of blackbody indicates very

high temperatures. Although sonoluminescence is studied extensively, there is

still some controversy about the origin of the sudden energy level in the bubble

collapse phase.

In what follows, we first introduce a brief history of sonoluminescence in sec-

tion 4.2. The dynamics of the bubbles will be described in a more intuitive way

in Section 4.3. A proposed heating mechanism is outlined in Section 4.4.

4.2 A brief history of sonoluminescence

Frenzel & Schultes (1934) discovered by accident a phenomenon which was later

described as multi-bubble sonoluminescence (McNamara et al. (1999); Walton &

Reynolds (1984)). They used ultrasonic waves in a tank with a photographic

flow to speed up the development process of the photographs. The results were

small imploding bubbles that emit low intensity light (Gaitan et al. (1992) ) were

able to produce a single bubble cavitation. Interest in this phenomenon increased
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4.3 Sonoluminescence

again in 1989. They created a stable bubble with a periodic change in radius to

optimise the experimental setup. The bubble collapses suddenly in each cycle

and emits a clear pulse of light. The phenomenon in its new form was called

the single-bubble sonoluminescence. Later, these experiments were perfected by

the Putterman group [Barber & Putterman (1991, 1992); Camara et al. (2004);

Hiller et al. (1992, 1994, 1998); Vazquez et al. (2001, 2002)] , Suslick Eddingsaas &

Suslick (2007); Flannigan & Suslick (2005, 2006, 2007); Flint & Suslick (1991)and

others ( Burdin et al. (1999); Ciawi et al. (2006); Hilgenfeldt et al. (1998, 2000);

Lauterborn & Koch (1987); Lee et al. (2005); Rae et al. (2005); Tsochatzidis et al.

(2001)). Luminescence of a cavitating bubble was even caused by pulsed laser

excitation (Ohl et al. (1998)).

4.3 Sonoluminescence

In Gaitan & Crum (1990a) and Gaitan & Crum (1990b), sonoluminescence was

initially reported. The width of the light pulse measured by Barber & Putterman

(1991) was less than 50 ps. This results showed that the light emission is cut o↵

from the bubble dynamics of the single-bubble sonoluminescence. While the

classical Rayleigh-Plesset equation can explain the radius of the bubble, the light

emission mechanism remains unknown(Brenner et al. (2002); Flannigan & Suslick

(2007); Suslick & Flannigan (2008)). A sensitive light-emitting dependence on

the type of gas in the cavity has also been found (Brenner et al. (2002); Hiller

et al. (1994)). A valuable theoretical model has to take these two phenomena

into account, which are not yet classically described.

4.3.1 Single-bubble sonoluminescence

There are two di↵erent classes of sonoluminescence: multi-bubble (Frenzel &

Schultes (1934); Walton & Reynolds (1984)) and single-bubble sonoluminescence

(Brenner et al. (2002); Gaitan et al. (1992)). Under appropriate situations, a

bubble can be balanced by the acoustic force, with acoustic levitation holding

a bubble stable in the liquid. Typically, such a bubble is quite small compared
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4.3 Sonoluminescence

Figure 4.1: Time dependence of typical single-bubble sonoluminescence cycle

depends on driving the sound pressure and bubble radius. Point A is the start of

the collapse phase in which the bubble is insulated thermally from the liquid. At

point B, the bubble has considerably higher temperatures and there is a strong

light flash. Point C refers to the beginning of the expansion phase in which the

bubble wavers over its balance radius until its stability recovers.

to an acoustic wavelength and can contain the trapped van der Waals gas’s par-

ticles close to their covolumes. A single, stable, oscillating gas bubble can be

driven into large amplitude pulsations under special conditions, which produce

sonoluminescence during each acoustic cycle.

Fig. 4.1 illustrates a typical single-bubble sonoluminescence cycle and shows

the corresponding time scales. Bubble acts isothermically most of the cycle.

The applied sound wave takes approximately 60µs. Dependence of time on the

bubble radius is well in accordance with the law of classical physics and can be

presented in the equations of Rayleigh-Plesset (Moss (1997)). The bubble radius

increases isothermally over most of the cycle. A quick collapse follows every

expansion stage. The accelerating bubble wall becomes so fast, near point A,

about 20ns before the minimum radius is reached, that the liquid is thermally

isolated. The bubble may be filled with up to 108 noble gas atoms close to its

minimum radius of about 0.5dµm, i.e. between points B and C. At this point,

the energy density is rapidly increased with the sudden light emission. The light

flash lasts approximately 40 ps in case of Argon atoms. Then begins a phase of
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re-expansion in which the bubble oscillate in its balance radius until it regains

stability.

4.3.2 Cavitation Heats up

In point B, the bubble’s temperature rises significantly with a heating rate of

1010 � 1011 K/s and a strong light flash which lasts around 40 ps. Detailed pi-

cosecond light flash spectra measurements have been carried out between the

points B and C of Fig. 4.1. The association with the radiation of black body

or Bremsstrahlung radiation of the continuum underlying these sound light spec-

trums indicates a minimum temperature of 103 � 104 K within the bubble (Barber

& Putterman (1991); Didenko et al. (2000); Hiller et al. (1992); Suslick & Flanni-

gan (2008); Vazquez et al. (2001, 2002)). Light emissions in the ultraviolet regime

can even be observed, which indicate about 106 K in temperatures (Camara et al.

(2004)). It is worth noting that the optical regime has discovered strong emission

lines (Brenner et al. (2002); Flannigan & Suslick (2007); Suslick & Flannigan

(2008)). These indicate the population of highly energised, thermally unpopu-

lated noble gas (Eddingsaas & Suslick (2007); Flannigan & Suslick (2005, 2006)

)and metal atoms (Flannigan & Suslick (2007)). These excitations demonstrate

the development of the opaque plasma core within the bubble and were observed

in multiple experiments on the single and the multi-bubble sonoluminescence(

Didenko & Gordeychuk (2000); Eddingsaas & Suslick (2007); Suslick & Flanni-

gan (2008)). There has already been a dense plasma within the bubble in recent

experiments (Eddingsaas & Suslick (2007); Flannigan & Suslick (2005, 2006)).

4.3.3 Sonoluminescence light emission

Because of their instability, the spectra are less reproducible in multi-bubble

sonoluminescence experiments than the spectra in single-bubble sonolumines-

cence. The light pulse is almost Gaussian in single-bubble sonoluminescence

experiment and contains a broad range of frequencies (Gompf et al. (1997)). The

pulse width and emission time have been confirmed to be indicative of the wave-

length of the light emitted (Hiller et al. (1998)). The temperature inside the

bubble is generally assumed to increase by thousands of kelvin during the phase
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of compression, and the collapse of the bubble phase creates conditions for plasma

formation. The light flash at the end of the bubble collapse phase has been at-

tributed to surface blackbody radiation (Hiller et al. (1992); Hopkins et al. (2005);

Vazquez et al. (2001, 2002)). Neutral and ion Bremsstrahlung (Moss (1997); Moss

et al. (1999); Wu & Roberts (1993); Xu et al. (1998)), collision-induced emission

(Frommhold (1998); Frommhold & Atchley (1994)), quantum vacuum radiation

(Didenko & Gordeychuk (2000); Schwinger (1992)), and other thermal (Hilgen-

feldt et al. (1999a,b); Hiller et al. (1998)) as well as non-thermal processes have

been considered (cf. Bernstein & Zakin (1995); Garcia & Levanyuk (1996); Willi-

son (1998)). Other authors assume a converging spherical shock wave in the

bubble’s plasma temperature (Moss et al. (1994); Wu & Roberts (1993)). All

these models qualitatively replicate the observed sonoluminescence spectra with

a single bubble. However, most of them fail to predict the independent width

and emission time of the wavelength.

4.4 Quantum optical heating in sonoluminescence

experiments

This section focuses on a quantum optical heating mechanism in sonolumines-

cence experiments. A quantum optical heating mechanism is discussed which

might contribute substantially to the sudden energy concentration in sonolumi-

nescence experiments. As mentioned earlier, a typical single-bubble sonolumi-

nescence cycle is illustrated in Fig. 4.1. The bubble reaches a critical radius as

it expands, at which point it rapidly collapses. The collapse is accompanied by

a flash of light, indicating extremely high temperatures inside the bubble. The

bubble oscillates around its equilibrium radius afterward until it regains stability.

The emission of light consists primarily of a continuum of radiation from

black body or Bremsstrahlung radiation. Detailed light spectrum measurements

show temperatures above 104 K (Barber & Putterman (1991); Hiller et al. (1992);

Vazquez et al. (2001)). Light emitting in the ultraviolet mode can even be noted,

which suggests a bubble driven at 1MHz at temperatures of around 106 K (Ca-

mara et al. (2004)). Transition line emissions from high energy noble gas atomic
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states which cannot be thermally populated (Flannigan & Suslick (2005, 2007))

point to an opaque plasma core formation (Suslick & Flannigan (2008)) . There

has also been evidence of a plasma core in sonoluminescence experiments with

multiple bubble (Eddingsaas & Suslick (2007)).

The theoretical understanding of the time dependence on the bubble radius

and its virtually adiabatic compression is certain when the minimum radius ap-

proaches (Brenner et al. (2002); Suslick & Flannigan (2008)). It remains contro-

versial what is the condition of the bubble during the last part of the collapse

phase and the conditions leading to these huge heating rates to very high tem-

peratures. Here we summarise the notion that heating occurs during fast bubble

deformations due to the presence of a highly inhomogeneous electrical field (Kurcz

et al. (2009b)). This field establishes a coupling between the movement of the no-

ble atoms and their electronic freedom. A quantum optical heating process may

occur when combined with spontaneous emissions from the atoms. The cooling of

ion trap experiment is based on very similar couplings (Leibfried et al. (2003a)).

4.4.1 The basic mechanism

In this subsection, we explain the basic idea behind the considered quantum

optical heating mechanism, essentially following the discussion in ( Kurcz et al.

(2009a,b)). The bubble is no longer in thermal equilibrium as it approaches

its minimum radius close to point B in Fig. 4.1. Suddenly, entropy increases

and the processes are highly irreversible. This causes a higher temperature than

thermodynamic heating processes can be causing (see Fig. 4.1). We answer two

questions in the following: Why do noble gas atoms have to fill the bubbles?

What is the main mechanism for focusing energy during the bubble collapse?

Near point B, the mean distance between noble gas atoms is so small that

Lennard-Jones potential can describe interactions between them. Indeed, a solid

state system becomes the physical condition of the bubble. The atoms are bal-

anced by the van der Waals interaction between repulsive, interatomic forces,

because the orbitals overlap and the attractive forces. Any significant tempera-

ture increase must therefore be driven by vibrational motion into the quantum

regime. The generation of light also requires an open quantum system.
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Figure 4.2: Level configuration of a single atom-phonon system which demon-

strates the immediate transitions when the atom is in its ground state initially

|0i and exactly has m phonons. ⌦ represents the coupling constant for phonon

conserving transitions to the excited atomic state |1i, while ⇤ is a coupling be-

tween the electronic and the motional states of the atom. In addition, � denotes

the level 1 spontaneous photon decay rate.

To model the resulting strong confinement of the atoms, we put each of these

into an approximately harmonic trapping potential. It allows us to quantize

the atomic motion just before maximum compression of the bubble during the

collapse phase. In this regard, phonons with frequency ⌫ are able to describe the

motion states of each atom.

To simplify this, we suppose that atoms are e↵ective two level systems with

ground state |0i and excited state |1i. The relating interaction Hamiltonian

contains terms that cause the excitation and de-excitation of each atom, followed

by the creation and the annihilation of a phonon. Also important is the presence

of a large spontaneous decay rate � of the excited state |1i that maintains the

atoms in their ground state. While these processes are very non-resonant, the

mean phonon number is changed considerably per atom and the temperature in

the bubble increases even in a few nanoseconds, by many orders of magnitude.

We therefore consider intuitive description of the proposed heating mecha-

nism. Assume that an atom is in its ground state initially and has m phonons,

this state is marked by |0,mi, as shown in Fig. 4.2. It is worth noting that

phonons are bosons with respect to their annihilation and creation operator b
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and b
†. Hence, as we have seen in the previous section,

b =
1X

m=0

p
m|m� 1ihm| ,

b
† =

1X

m=0

p
m+ 1|m+ 1ihm| , (4.1)

with the usual bosonic commutator relation [b, b†] = 1.

As a result, a transition from the state |0,mi to the |1,m + 1i takes place

with a rate proportional to
p
m+ 1, whereas the rate for a transition from |0,mi

to |1,m� 1i scales as
p
m. Since the atomic spontaneous decay rate is relatively

large, the most likely result of such a transition is a non-reversible and primarily

non-radiative transition into the atomic ground state. This transfers the atom

to either its initial state |0,mi, into |0,m� 1i, or into |0,m+ 1i. Since the final

population in the state with m+ 1 phonons is greater than the state population

with m�1 phonons, the net impact of the presented excitation and de-excitation

process are to increase the mean number of phonon by atom, that is, heating.

4.4.2 Single bubble sonoluminescence experiments

Sonoluminescence can be defined as a phenomenon of strong light emission from

collapsing bubbles in a liquid, like water (Brenner et al. (2002); Camara et al.

(2004); Gaitan et al. (1992)). As mentioned above, these bubbles need to be filled

with noble gas atoms which occur naturally in air. Alternatively, the bubbles can

be filled with ions from ionic liquids, molten salts, and concentrated electrolyte

solutions (Flannigan et al. (2005)). Moreover, the bubbles need to be acoustically

confined and periodically driven by ultrasonic frequencies. As a result, the bubble

radius changes periodically in time, as illustrated in Fig. 4.3. The oscillation of

the bubble radius regenerates itself with unusual precision.

At the beginning of every expansion phase, the bubble oscillates about its

equilibrium radius until it returns to its stability. During this process, the bubble

temperature changes adiabatically and there is an exchange of thermal energy be-

tween the atoms inside the bubble and the surrounding liquid. During the collapse

phase of a typical single-bubble sonoluminescence, i.e. when the bubble reaches
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Figure 4.3: Schematic view of the time dependence of the bubble radius in a

typical single-bubble sonoluminesence experiment. Most of the time, the bub-

ble evolves adiabatically and exchanges thermal energy with its surroundings.

However, at regular time intervals, the bubble radius suddenly collapses. At this

point, the bubble becomes thermally isolated. When it reaches its minimum

radius, the system usually emits a strong flash of light in the optical regime.

its minimum radius, its inside becomes thermally isolated from the surrounding

environment and the atomic gas inside the bubble becomes strongly confined.

Usually, a strong light flash occurs at this point which is accompanied by a sharp

increase of the temperature of the particles. Experiments have shown that in-

creasing the concentration of atoms inside the bubble increases the intensity of

the emitted light (Flannigan & Suslick (2005); Suslick & Flannigan (2008)). All

these observations are in good agreement with the heating mechanism described

in previous subsection.

4.4.3 A quantum optics perspective on sonoluminescence

The above observations suggest many similarities between sonoluminescence and

quantum optics experiments with trapped atomic particles (Beige & Kim (2015a);

Kurcz et al. (2009b)). When the bubble reaches its minimum radius, an atomic

gas becomes very strongly confined (Moss (1997)). The quantum character of

the atomic motion can no longer be neglected and, as in ion trap experiments

(cf. Section 2.1.3), the presence of phonons with di↵erent trapping frequencies ⌫
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4.4 Quantum optical heating in sonoluminescence experiments

has to be taken into account. Moreover, when the bubble reaches its minimum

radius, its surface can become opaque and almost metallic (Khalid et al. (2012)).

When this happens, the bubble traps light inside and closely resembles an optical

cavity which can be characterised by a frequency !cav and a spontaneous decay

rate . Since the confined particles have atomic dipole moments, they naturally

couple to the quantised electromagnetic field inside the cavity. The result can be

an exchange of energy between atomic dipoles and the cavity mode. The creation

of photons inside the cavity is always accompanied by a change of the vibrational

states of the atoms. Hence the subsequent spontaneous emission of light in the

optical regime results in a permanent change of the temperature of the atomic

particles.

A main di↵erence between sonoluminescence and cavity-mediated collective

laser cooling is the absence and presence of external laser driving (cf. Section

2.2.4). But even in the absence of external laser driving, there can be a non-

negligible amount of population in the excited atomic states |ei. This applies,

for example, if the atomic gas inside the cavitating bubble is initially prepared

in the thermal equilibrium state of a finite temperature T . Once surrounded by

an optical cavity, as it occurs during bubble collapse phases, excited atoms can

return into their ground state via the creation of a cavity photon (cf. Fig. 4.4).

Suddenly, an additional de-excitation channel has become available to them. As

pointed out in Refs. Beige & Kim (2015a); Kurcz et al. (2009b), the creation of a

cavity photons is more likely accompanied by the creation of a phonon than the

annihilation of a phonon since

B
† =

1X

m=0

p
m+ 1 |m+ 1ihm| ,

B =
1X

m=0

p
m |m� 1ihm| . (4.2)

Here B and B
† denote the relevant phonon annihilation and creation operators,

while |mi denotes a state with exactly m phonons. As one can see from Eq. (4.2),

the normalisation factor of B† |mi is slightly larger than the normalisation factor

of the state B |mi. When the cavity photon is subsequently lost via spontaneous

photon emission, the newly-created phonon remains inside the bubble. Hence the
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4.4 Quantum optical heating in sonoluminescence experiments

Figure 4.4: (a) From a quantum optics point of view, one of the main character-

istics of sonoluminescence experiments is that cavitating bubbles provide a very

strong confinement for atomic particles. This means, the quantum character of

their motional degrees of freedom has to be taken into account. As in ion trap

experiments, we denote the corresponding phonon frequency in this chapter by

⌫. Moreover, during its collapse phase, the surface of the bubble becomes opaque

and confines light, thereby forming an optical cavity with frequency !cav and

a spontaneous decay rate . (b) Even in the absence of external laser driving,

some of the atoms are initially in their excited state |ei due to being prepared

in a thermal equilibrium state at a finite temperature T . When returning into

their ground state via the creation of a cavity photon which is only possible dur-

ing the bubble collapse phase, most likely a phonon is created. This creation

of phonons implies heating. Indeed, sonoluminescence experiments often reach

relatively high temperatures (Flannigan & Suslick (2005); Suslick & Flannigan

(2008)).

light emission during bubble collapse phases is usually accompanied by heating,

until the sonoluminescing bubble reaches an equilibrium.

During each bubble collapse phase, cavitating bubbles are thermally isolated

from their surroundings. However, during the subsequent expansion phase, sys-

tem parameters change adiabatically and there is a constant exchange of ther-

mal energy between atomic gas inside the bubble and the surrounding liquid

(cf. Fig. 4.3). Eventually, the atoms reach an equilibrium between heating dur-

ing bubble collapse phases and the loss of energy during subsequent expansion

phases. Experiments have shown that the atomic gas inside the cavitating bubble
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can reach temperature of the order of 104 K which strongly supports the hypothe-

sis that there is a very strong coupling between the vibrational and the electronic

states of the confined particles (Flannigan & Suslick (2005); Suslick & Flannigan

(2008)).

4.5 Summary

In this chapter, we provided a basic introduction to the sonoluminescence phe-

nomenon. As well as this, we identified main heating properties of sonolumines-

cence of single cavitating bubbles. A quantum optical heating mechanism has

been described which may make a significant contribution to the sudden energy

level of the sonoluminescence experiments. The basic idea behind the consid-

ered quantum optical heating mechanism was explained. The reason for heating

stage is that phonon creating processes are more likely than phonon annihilating

processes.

As we shall see later, the thermalisation stage and the heating stage are closely

linked and both need to explain the sonoluminescence cycle. Heating takes place

during a lifecycle collapse phase, followed by an expanding phase of growth during

which the bubble radius gradually increases. During the collapse, the bubble wall

becomes opaque and within the radiation field closely resembles an optical cavity.

In an optical cavity, we treat the atomic system trapped inside the bubble, whilst

the collapse was modelled on the quantum optical approach.
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Part 2: New results
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Chapter 5

A quantum heat exchanger for

nanotechnology: Motivation and

basic ideas

5.1 Introduction

The main purpose of this chapter is to design a quantum heat exchanger which

converts heat into light on relatively short quantum optical time scales. Our

scheme takes advantage of heat transfer as well as collective cavity-mediated

laser cooling of an atomic gas inside a cavitating bubble. Laser cooling routinely

transfers individually trapped ions to nano-keflvin temperatures for applications

in quantum technology. The quantum heat exchanger which we propose here

might be able to provide cooling rates of the order of kelvin temperatures per

millisecond and is expected to find applications in micro and nanotechnology.

In this chapter, we ask the question whether laser cooling could also have

applications in micro and nanoscale physics experiments. For example, nanotech-

nology deals with objects which have dimensions between 1 and 1000 nanometers

and is well known for its applications in information and communication technol-

ogy, as well as sensing and imaging. Increasing the speed at which information

can be processed and the sensitivity of sensors is usually achieved by reducing

system dimensions. However, smaller devices are usually more prone to heating

as thermal resistances increase (Hsu (2008)). Sometimes, large surface to volume
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ratios can help to o↵-set this problem. Another problem for nanoscale sensors is

thermal noise. As sensors are reduced in size, their signal to noise ratio usually

decreases and thus the thermal energy of the system can limit device sensitiv-

ity (Kim et al. (2001)). Therefore thermal considerations have to be taken into

account and large vacuums or compact heat exchangers have already become an

integral part of nanotechnology devices.

Usually, heat exchangers in micro and nanotechnology rely on fluid flow

(Saniei (2007)). In this chapter, we propose an alternative approach. More

concretely, we propose to use heat transfer as well as a variation of laser cooling,

namely cavity-mediated collective laser cooling (Beige et al. (2005); Domokos &

Ritsch (2002); Kim et al. (2018); Ritsch et al. (2013)). As illustrated in Fig. 5.1,

the proposed quantum heat exchanger mainly consists of a liquid which contains

a large number of cavitating bubbles filled with noble gas atoms. Transducers

constantly change the radius of these bubbles which should resemble optical cav-

ities when they reach their minimum radius during bubble collapse phases. At

this point, a continuously applied external laser field rapidly transfers vibrational

energy of the atoms into light. If the surrounding liquid contains many cavitating

bubbles, their surface area becomes relatively large and there can be a very e�-

cient exchange of heat between the inside and the outside of cavitating bubbles.

Any removal of thermal energy from the trapped atomic gas inside bubbles should

eventually result in the cooling of the surrounding liquid and of the surface area

of the device on which it is placed.

In this chapter, we emphasise that cavitating bubbles can provide all of the

requirements (1) � (3) for laser cooling which we listed earlier in this thesis in

chapter 2, especially, a very strong confinement of atomic particles, like nitro-

gen (Beige & Kim (2015a); Kurcz et al. (2009b); Moss (1997)). In addition,

the surfaces of cavitating bubbles can become opaque during the bubble collapse

phase (Khalid et al. (2012)), thereby creating a spherical optical cavity (Daul &

Grangier (2005a,b) )which is an essential requirement for cavity-mediated collec-

tive laser cooling. To initiate the cooling process, an appropriately detuned laser

field needs to be applied in addition to the transducers which confine the bubbles

with sound waves. Although sonoluminescence has been studied in great detail

and the idea of applying laser fields to cavitating bubbles is not new (Cao et al.
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Figure 5.1: Schematic view of the proposed quantum heat exchanger. It consists

of a liquid in close contact with the area which we want to cool. The liquid should

contain cavitating bubbles which are filled with atomic particles, like Nitrogen,

and should be driven by sounds waves and laser light. The purpose of the sound

waves is to constantly change bubble sizes. The purpose of the laser is to convert

thermal energy during bubble collapse phases into light.

(2008)), not enough is known about the relevant quantum properties, like phonon

frequencies. Hence we cannot predict realistic cooling rates for the experimental

setup shown in Fig. 5.1. However, a crude estimate which borrows data from dif-

ferent, already available experiments suggests that it might be possible to achieve

cooling rates of the order of Kelvin temperatures per millisecond for volumes of

liquid on a cubic micrometer scale.

Sonoluminescence experiments are well-known for converting sound into rela-

tively large amounts of thermal energy, while producing light in the optical regime

(Brenner et al. (2002); Camara et al. (2004); Gaitan et al. (1992)). During this

process, the atomic gas inside a cavitating bubbles can reach very high temper-

atures (Flannigan & Suslick (2005); Flannigan et al. (2005)). These hint at the

presence of a very strong coupling between the electronic and the vibrational

degrees of freedom of the atomic gas. Moreover, cavitating bubbles already have

applications in sonochemistry, where they are used to provide energy for chemical

reactions (Suslick (1990)). Here we propose to exploit the atom-phonon interac-

tions in sonoluminescence experiments for laser cooling of solid state systems. As

we shall see below, in the presence of an appropriately detuned laser field, we
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expect other, usually present highly-detuned heating processes to become sec-

ondary.

There are two sections in this chapter. The purpose of Section 5.2 is to re-

view the main design principles of a quantum heat exchanger for nanotechnology.

As we shall see below, this technique is a variation of standard laser cooling

techniques for individually trapped atomic particles. We provide an overview of

the experimental requirements and estimate achievable cooling rates. Finally, we

summarise our findings in Section 5.3.

5.2 A quantum heat exchanger with cavitating

bubbles

As pointed out in Section 5.1, the aim of this chapter is to design a quantum

heat exchanger for nanotechnology. The proposed experimental setup consists of

a liquid on top of the device which we aim to keep cool, a transducer and a cooling

laser (cf. Fig. 5.1). The transducer generates cavitating bubbles which need to

contain atomic particles and whose diameters need to change very rapidly in time.

The purpose of the cooling laser is to stimulate the conversion of heat into light.

The cooling of the atomic particles inside cavitating bubbles subsequently aids

the cooling of the liquid which surrounds the bubbles and its environment via

adiabatic heat transfers.

To gain a better understanding of the experimental setup in Fig. 5.1, Sec-

tion 4.4.2 describes the main characteristics of single bubble sonoluminescence

experiments (Brenner et al. (2002); Camara et al. (2004); Flannigan & Suslick

(2005); Flannigan et al. (2005); Gaitan et al. (1992)). Section 4.4.3 emphasises

that there are many similarities between sonoluminescence and quantum optics

experiments (Beige & Kim (2015a); Kurcz et al. (2009b)). From this we con-

clude that sonoluminescence experiments naturally provide the main ingredients

for the implementation of cavity-mediated collective laser cooling of an atomic

gas (Beige et al. (2005); Kim et al. (2018)). Finally, in Sections 5.2.1 and 5.2.2,

we describe the physics of the proposed quantum heat exchanger and estimate

cooling rates.
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Figure 5.2: When the cavitating bubbles inside the liquid reach their minimum

diameters dmin, their walls become opaque and trap light on the inside. To a very

good approximation, they form cavities which can be described by spontaneous

decay rates  and by cavity frequencies !cav (cf. Eq. (5.1)). Suppose the diameters

of the bubbles inside the liquid occupy a relatively small range of values. Then

every integer number j in Eq. (5.1) corresponds to a relatively narrow range

of cavity frequencies !cav. Here we are especially interested in the parameter j

for which the !cav’s lie in the optical regime. When this applies, we can apply

a cooling laser with an optical frequency !L which can cool the atoms in all

bubbles. Some bubbles will be cooled more e�ciently than others. But as long

as the relevant frequency bands are relatively narrow, none of the bubbles will be

heated.

5.2.1 Cavity-mediated collective laser cooling of cavitat-

ing bubbles

The previous subsection has shown that, during each collapse phase, the dynamics

of the cavitating bubbles in Fig. 5.1 is essentially the same as the dynamics of the

experimental setup in Fig. 2.2 but with the single atom replaced by an atomic

gas. When the bubble reaches its minimum diameter dmin, it forms an optical

cavity which supports a discrete set of frequencies !cav,

!cav = j ⇥ ⇡c

dmin
, (5.1)

where c denotes the speed of light in air and j = 1, 2, ... is an integer. As

illustrated in Fig. 5.2, the case j = 1 corresponds to a cavity photon wavelength

�cav = 2dmin. Moreover, j = 2 corresponds to �cav = dmin and so on. Under
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5.2 A quantum heat exchanger with cavitating bubbles

realistic conditions, the cavitating bubbles are not all of the same size which is

why every j is usually associated with a range of frequencies !cav (cf. Fig. 5.2).

Here we are especially interested in the parameter j, where the relevant cavity

frequencies lie in the optical regime. All other parameters j can be neglected, once

a laser field with an optical frequency !L is applied, if neighbouring frequency

bands are su�ciently detuned.

In addition we know that the phonon frequency ⌫ of the collective phonon

mode B assumes its maximum ⌫max during the bubble collapse phase. Suppose

the cavity detuning �cav = !L�!cav of the applied laser field is chosen such that

�cav ⇠ ⌫max and ⌫max �  , (5.2)

in analogy to Eq. (2.2). As we have seen in Section 2.2.4, in this case, the two-step

transition which results in the simultaneous annihilation of a phonon and the cre-

ation of a cavity photon becomes resonant and dominates the system dynamics.

If the creation of a cavity photon is followed by a spontaneous emission, the pre-

viously annihilated phonon cannot be restored and is permanently lost. Overall,

we expect this cooling process to be very e�cient, since the atoms are strongly

confined and cavity cooling rates are collectively enhanced (c.f. Eq. (2.17)).

In order to cool not only very tiny but larger volumes, the experimental setup

in Fig. 5.1 should contain a relatively large number of cavitating bubbles. De-

pending on the quality of the applied transducer, the minimum diameters dmin

of these bubbles might vary in size. Consequently, the collection of bubbles sup-

ports a finite range of cavity frequencies !cav (cf. Fig. 5.2) so that it becomes

impossible to realise the ideal cooling condition �cav ⇠ ⌫max in Eq. (5.2) for all

bubbles. However, as long as the frequency !L of the cooling laser is smaller

than all optical cavity frequencies !cav, the system dynamics will be dominated

by cooling and not by heating. In general, it is important that the diameters of

the bubbles does not vary by too much.

Section 2.2.4 also shows that cavity-mediated collective laser cooling only re-

moves thermal energy from a single collective vibrational mode B of the atoms.

Once this mode is depleted, the cooling process stops. To e�ciently cool an

entire atomic gas, a mechanism is needed which rapidly re-distributes energy be-

tween di↵erent vibrational degrees of freedom, for example, via thermalisation
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based on elastic collisions (cf. Section 3.3). As we have seen above, between

cooling stages, cavitating bubbles evolve essentially adiabatically and the atoms

experience strong collisions. In other words, the expansion phase of cavitat-

ing bubbles automatically implements the intermittent thermalisation stages of

cavity-mediated collective laser cooling.

Finally, let us point out that it does not matter, whether the cooling laser

is turned on or o↵ during thermalisation stages, i.e. during bubble expansion

phases. As long as optical cavities only form during the bubble collapse phases,

the above described conversion of heat into light only happens, when the bubble

reaches its minimum diameter.The reason for this is that inert gas atoms, like

nitrogen, have very large transition frequencies !0. The direct laser excitation

of atomic particles is therefore relatively unlikely, even when the cooling laser is

turned on. If we could excite the atoms directly by laser driving, we could cool

them even more e�ciently (cf. Section 2.1.3).

5.2.2 Cooling of the surroundings via heat transfer

The purpose of the heat exchanger which we propose here is to constantly remove

thermal energy from the liquid surrounding the cavitating bubbles and device on

which the liquid is placed (cf. Fig. 5.1). As described in the previous subsec-

tion, the atomic gas inside the bubbles is cooled by very rapidly converting heat

into light during each collapse phase. Inbetween collapse phases, the cavitating

bubbles evolve adiabatically and naturally cool their immediate environment via

heat transfer. As illustrated in Fig. 5.3, alternating cooling and thermalisation

stages (or collapse and expansion phases) is expected to implement a quantum

heat exchanger which does not require the actual transport of particles from one

place to another.

Finally, let us have a closer look at achievable cooling rates for micro and nan-

otechnology devices with length dimensions in the nano and micrometer regime.

Unfortunately, we do not know how rapidly heat can be transferred from the

nanotechnology device to the liquid and from there to the atomic gas inside the

cavitating bubbles. However, any thermal energy which is taken from the atoms
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Figure 5.3: Schematic view of the expected dynamics of the temperature of a

confined atomic gas during bubble collapse stages (blue) and expansion stages

(pink). During expansion stages, heat is transferred from the outside into the

inside of the bubble, thereby increasing the temperature of the atoms. During

bubble collapse stages, heat is converted into light, thereby resulting in the cooling

of the system in Fig. 5.1. Eventually, both processes balance each other out and

the temperature of the system remains constant on a coarse grained time scale.

comes eventually from the environment which we aim to cool. Suppose the rele-

vant phonon frequencies ⌫max are su�ciently large to ensure that every emitted

photon indicates the loss of one phonon, i.e. the loss of one energy quantum ~⌫max.

Moreover, suppose our quantum heat exchanger contains a certain amount of liq-

uid, let us say water, of mass mwater and heat capacity cwater(T ) at an initial

temperature T0. Then we can ask the question, how many photons Nphotons do

we need to create in order to cool the water by a certain temperature �T?

From thermodynamics, we know that the change in the thermal energy of the

water equals

�Q = cwater(T0)mwater�T (5.3)

in this case. Moreover, we know that

�Q = Nphotons ~⌫max . (5.4)

Hence the number of photons that needs to be produced is given by

Nphotons =
cwater(T0)mwater �T

~⌫max
. (5.5)
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The time tcool it would take to create this number of photons equals

tcool =
Nphotons

Natoms I
, (5.6)

where I denotes the average single-atom photon emission rate and Natoms is the

number of atoms involved in the cooling process. When combining the above

equations, we find that the cooling rate �cool = tcool/�T of the proposed cooling

process equals

�cool =
cwater(T )mwater

Natoms I ~⌫max
(5.7)

to a very good approximations.

As an example, suppose we want to cool one cubic micrometer of water

(Vwater = 1µm3) at room temperature (T0 = 20 0C). In this case, mwater = 10�15 g

and cwater(T0) = 4.18 J/gK. Suppose ⌫ = 100MHz (a typical frequency in ion

trap experiments is ⌫ = 10MHz), I = 106/s and Natoms = 108 (a typical bubble

in single bubble sonoluminescence contains about 108 atoms). Substituting these

numbers into Eq. (5.6) yields a cooling rate of

�cool = 3.81ms/K . (5.8)

Achieving cooling rates of the order of kelvin temperatures per millisecond seems

therefore experimentally feasible. As one can see from Eq. (5.6), to reduce cooling

rates further, one can either reduce the volume that requires cooling, increase

the number of atoms involved in the cooling process or increase the trapping

frequency ⌫max of the atomic gas inside collapsing bubbles. All of this is, at least

in principle, possible.

5.3 Summary

In this chapter we point out similarities between quantum optics experiments

with strongly confined atomic particles and single bubble sonoluminescence ex-

periments (Beige & Kim (2015a,b); Kurcz et al. (2009b)). In both situations,

interactions are present which can be used to convert thermal energy very e�-

ciently into light. When applying an external cooling laser to cavitating bubbles,
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as illustrated in Fig. 5.1, we therefore expect a rapid transfer of heat into light

which can eventually result in the cooling of relatively small devices. Our esti-

mates show that it might be possible to achieve cooling rates of the order of mil-

liseconds per Kelvin temperature for cubic micrometers of water. The proposed

quantum heat exchanger is expected to find applications in research experiments

and in micro and nanotechnology. A closely related cooling technique, namely

laser cooling of individually trapped ions, already has a wide range of applications

in quantum technology (Barreiro et al. (2011); Debnath et al. (2016); Leibfried

et al. (2003b); Ludlow et al. (2015); Maiwald et al. (2009); Porras & Cirac (2004);

Schmidt-Kaler et al. (2003); Stephenson et al. (2020)). This chapter provided a

more qualitative description of a possible quantum heat exchanger. Next we in-

troduced the proposed scheme, while ignoring the presence of an optical cavity

for simplicity.
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Chapter 6

Laser cooling of indistinguishable

particles in cavitating bubbles

without cavity formation

6.1 Introduction

Optical cooling of solid state systems, even if it is only of very small volume

fractions, would immediately find a wide range of applications in quantum, nano

and micro technology. Motivated by this, in Chapter 5, we designed a collective

laser-cooling scheme for indistinguishable atoms in cavitating bubbles and showed

that these could act as the basic building blocks of quantum heat exchangers

(Aljaloud et al. (2020)). In this final chapter, we describe the underlying physical

processes and provide additional guidance for quantum optics experiments with

cavitating bubbles without cavity formation. For simplicity, we assume in the

following that the bubbles remain always transparent and show that it is, in

principle, possible to transfer an atomic gas inside a cavitating bubble to very

low temperatures.

The basic idea of laser cooling for atoms was first started by Hänsch and

Schawlow as well as separately for trapped ions by Wineland and Dehmelt (

Hänsch & Schawlow (1975); Wineland & Dehmelt (1975); Wineland & Itano

(1979)). Considering the light beam holds momentum and energy, a major
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Figure 6.1: Water contains a large number of cavitating bubbles which are filled

with atomic particles, like Nitrogen. The water should be driven by sounds waves

and laser light. The Bubbles have many atoms with strong collisions.

interesting point is that scattering beam on atoms can consequence consider-

able changes of the vibrational energy of enormous particles. Over the past few

decades, laser cooling techniques have been created which allow for the cooling

of atoms to very low temperatures. Applications of these very cold atoms range

from testing the foundations of quantum physics to the design of novel quantum

technologies. Due to their importance, cooling techniques attract a lot of interest

in the literature as we have seen in chapter 2.

Unfortunately, applying a cooling laser to many atoms simultaneously only

results in the cooling of a single collective phonon mode of a strongly confined

atomic gas. To nevertheless transfer an atomic gas to very low temperatures,

i.e. to remove phonons from all vibrational modes, a two-step cooling process is

required as described in the previous chapter. This process consists of cooling

stages and intermittent stages. The purpose of the cooling stages is to cool a

single collective phonon mode of the atoms very rapidly to very low tempera-

tures, while the intermittent stages are needed to re-distribute energy between

all the di↵erent collective vibrational modes, as illustrated in Fig. 6.1. Eventu-

ally, this process can result in the e↵ective cooling of an atomic gas to very low

temperatures. As one would expect, elastic collisions are a very e↵ective tool to

distribute energy between di↵erent collective vibrational modes of an atomic gas

via thermalisation. These collisions transfer the atomic gas into its thermal state

without changing the temperature of the atomic gas. In addition, their presence
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e↵ectively increases the frequency of the trapping potential. As a result, the laser

cooling of a collective mode of the atoms during the cooling stage becomes even

more e↵ective than it would be in the absence of these exchange interactions.

In order to implement the proposed cooling process, we need a strongly con-

fined atomic gas with strong elastic collisions inside an optical cavity with access

to laser driving. Aljaloud et al. (2020), we propose to implement the experi-

mental setup which contains all of the above components a liquid, like water,

as illustrated in Fig. 6.1. The overall aim of the proposed cooling process is to

lower the temperature of the liquid which surrounds , e.g. water, via sympathetic

cooling. In the following we assume that there is a constant exchange thermal

energy between the atomic gas and the liquid.

There are five sections in this chapter. Section 6.2 provides the experimental

setup and theoretical background. In Section 6.3, we discuss the laser cooling

of two indistinguishable atoms. A detailed analysis of the laser cooling of many

indistinguishable particles can be found in Section 6.4. Finally, we present an

overview of what is done, and summarise our findings in Section 6.5.

6.2 Experimental setup and theoretical back-

ground

In this section, we introduce the theoretical tools for the modelling of the ex-

perimental setup shown in Fig. 6.1 during the bubble collapse phase, when the

bubble reaches its minimum radius. We present the relevant Hamiltonians to

analyse system dynamics. The spontaneous emission of photons is, as usual,

taken into account with the help of quantum optical master equations. The the-

oretical models which we present in this section have already been widely used

to analyse the laser cooling and cavity-mediated laser cooling of single atoms.

6.2.1 Experimental setup

The experimental setup which we consider in this paper consists of a large number

of strongly confined atoms. The confinement should be strong enough, so that

the atoms constantly exchange vibrational energy between them. In the following
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Figure 6.2: Diagrammatic representation of the level configuration of the atoms

are based on ground |0i and excited state |1i. Here ⌫ and !L denote the frequency

of the corresponding phonon mode and of the cooling laser. The corresponding

trapping frequency of this atom is �. However the laser detuning � = !0 � !L.

The main purpose of the laser is to excite the atom, while annihilating a phonon,

If the excitation of the ion is followed by the spontaneous emission of a photon,

a phonon is permanently lost, which implies cooling.

we assume that they experience strong elastic collisions. E↵ectively, every atom

experiences a trapping potential which is due to external trapping lasers and due

to the presence of the surrounding atoms. For simplicity we assume here that all

atoms are essentially in the same situation and have the same phonon frequency

⌫. In order to cool the atoms, an external cooling laser with frequency !L is

applied which pumps energy directly into the electronic states of the atoms.

Fig. 6.2 shows the relevant frequencies and detunings. As we shall see below,

in order to cool the atoms, the laser frequency !L needs to be smaller than the

transition frequency !0 between the ground state |0i and the excited state |1i of
the atoms. In the following, we define the detuning � such that

� = !0 � !L . (6.1)

In the following section, we discuss how this detuning a↵ects the transport of

phonon energy out of a cavitating bubble.
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6.2.2 Interaction Hamiltonians

The total Hamiltonian of the experimental setup in Fig. 6.2 is of the form

H = Hatm +Hphn +Hint , (6.2)

as discussed in detail, for example, Blake et al. (2011a,b). The first two terms

denote the free energy of the atoms and their vibrational modes, while the final

term accounts for the laser interaction and elastic collisions between particles.

Using the same notation as in the previous chapter and assuming that all atoms

experience an approximately harmonic trapping potential, we find that

Hatm =
NX

i=1

~!0 �
+
i
�
�
i
,

Hphn =
NX

i=1

~⌫ b†
i
bi . (6.3)

Here �
+
i
= |1iiih0| and �

�
i
= |0iiih1| with
⇥
�
�
i
, �

+
i

⇤
= 1� 2�+

i
�
�
i
, (6.4)

denote the raising and the lowering operator of atom i, respectively, while the

operator bi with

[bi, b
†
i
] = 1 (6.5)

denotes the bosonic annihilation operator of a phonon in the motion of atom i.

The applied laser field is time-dependent and hence generates a time-dependent

interaction. To simplify our description of the experimental setup in Fig. 6.2 we

therefore now move into the interaction picture with respect to the free Hamilto-

nian

H0 =
NX

i=1

~!L �
+
i
�
�
i

(6.6)

and take advantage of the usual rotating wave approximations. Doing so, the

Hamiltonian H in Eq. (6.2) changes into the interaction Hamiltonian

HI = U
†
0(t, 0) (H �H0)U0(t, 0) . (6.7)
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which contains the interaction term

U
†
0(t, 0)Hint U0(t, 0) = Hlsr +Hcoll . (6.8)

The first term denotes the laser interaction and the second term describes an

exchange of vibrational energy due to elastic collisions.

Applying the rotating wave approximation and denoting the (real) Rabi fre-

quency of the laser field by ⌦, the laser interaction equals

Hlsr =
NX

i=1

1

2
~⌦
⇣
1 + ⌘ bi + ⌘

0
b
†
i

⌘
�
�
i
+H.c. (6.9)

to a very good approximation. This Hamiltonian simply assumes a linear coupling

between atoms and phonons, while ⌫ ⌧ !0. This is well justified, as long as ⌘

and ⌘
0 are two dimensionless parameters which are much smaller than one. For

example, in ion-traps this is usually the case. There ⌘ = ⌘
0 and both values are

known as the Lamb-Dicke parameter. For simplicity, we assume that the atoms

are very strongly confined thus that the distances between them are much smaller

than the laser wavelength. Hence all atoms couple equally to the laser field.

The first term describes atom-laser interactions without changes of vibrational

states. However, the second and the third terms describe transitions which are

accompanied by changes of the number of phonons in the system. In addition,

collisions between the atoms are taken into account by the Hermitian Hamiltonian

Hcoll =
NX

i=1

X

j 6=i

~J bib
†
j
, (6.10)

where J denotes a (real) coupling constant. Combining all of the above equations,

we see that the interaction Hamiltonian HI in Eq. (6.7) equals

HI =
NX

i=1

~� �
+
i
�
�
i
+

NX

i=1

~⌫ b†
i
bi +

NX

i=1

X

j 6=i

~J bib
†
j

+
NX

i=1

1

2
~⌦
⇣
1 + ⌘ bi + ⌘

0
b
†
i

⌘
�
�
i
+H.c. (6.11)

The above ansatz assumes that all atoms experience the same interactions which

is why the above Hamiltonian remains the same when exchanging two particles.

Most importantly, the Hamiltonian establishes a coupling between the vibrational

and the electronic states of the trapped particles.
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6.2.3 Spontaneous emission from the atoms

Another important ingredient for collective laser cooling is spontaneous photon

emission. Suppose all atoms couple equally to the free radiation field and are

essentially indistinguishable. In the following, � denotes the spontaneous decay

rate of a single atom in free space. Moreover, we describe our quantum system

by the density matrix ⇢I in the interaction picture. Its dynamics is given by a

master equation of Lindblad form,

⇢̇I = � i

~ [HI, ⇢I]

+
NX

i=1

NX

j=1

�

2

�
2��

i
⇢I�

+
j
� �

+
i
�
�
j
⇢I � ⇢I�

+
i
�
�
j

�
. (6.12)

For more details of the derivation of this equation see for example(Blake et al.

(2011a,b, 2012)).

Using density matrices, the expectation value of an observable AI in the in-

teraction picture equals hAIi⇢I = Tr(AI⇢I). To calculate the dynamics of this

expectation value, we use the master equation in Eq. (6.12) which implies that

hȦIi = � i

~ h[AI, HI]i

+
NX

i=1

NX

j=1

�

2

⌦
2�+

j
AI�

�
i
� AI�

+
i
�
�
j
� �

+
i
�
�
j
AI

↵
(6.13)

in the interaction picture. Like the interaction Hamiltonian in Eq. (6.11), both

equations (6.12) and (6.13) remain invariant under particle exchange.
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6.3 Laser cooling of two indistinguishable atoms

Before we introduce the collective dynamics of a laser-driven atomic gas inside

a cavitating bubble, we now study the dynamics of only two atoms. Although

this case might not be of any practical interest, it is simple enough for analytical

calculations. It also provides crucial insight into the cooling mechanism which

we consider in Section 6.4, where we use the calculations in this section to justify

approximations. For example, a closer look at the interaction Hamiltonian in

Eq. (6.11) and the master equations in Eq. (6.12) shows that both equations

are completely symmetric with respect to exchanging particles. In principle, we

should be able to use this observation to simplify calculations. However, this

applies only to a certain extent. As we shall see below, symmetric atomic states

couple to anti-symmetric atomic states, since the overall symmetry of the atom-

phonon system can be preserved by simultaneously coupling symmetric to anti-

symmetric phonon states. This complicates the dynamics of the system which we

consider here.

6.3.1 Basic idea

Nevertheless, it is advantageous to change notation and to introduce collective

operators which are either symmetric or anti-symmetric with respect to an ex-

change of atom 1 and 2. For example, in the following we consider the collective

phonon annihilation operators b± with

b± = (b1 ± b2) /
p
2 . (6.14)

Like b1 and b2, they obey bosonic commutator relations,

[b±, b
†
±] = 1 , [b±, b±] = [b±, b

†
⌥] = 0 . (6.15)

In addition, we introduce a complete set of symmetric and antisymmetric atomic

basis states,

|gi = |00i , |si = (|01i+ |10i)/
p
2 ,

|ai = (|01i � |10i)/
p
2 , |ei = |11i , (6.16)
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and atomic lowering and raising operators such that

�xy = |xihy| ,

�
�
+ = �gs + �se ,

�
�
� = ��ga + �ae . (6.17)

Using this notation, the interaction Hamiltonian in Eq. (6.11) can be shown to

equal

HI = ~�
�
�
+
+�

�
+ + �

+
��

�
�
�

+~(⌫ + J) b†+b+ + ~(⌫ � J) b†�b�

+
1

2
~⌦
⇣p

2 + ⌘ b+ + ⌘
0
b
†
+

⌘
�
�
+ +H.c.

+
1

2
~⌦
⇣
⌘ b� + ⌘

0
b
†
�

⌘
�
�
� +H.c. (6.18)

Moreover, Eq. (6.13) which describes the dynamics of expectation values simplifies

to

hȦIi = � i

~ h[AI, HI]i

+� h2 �+
+AI�

�
+ � AI�

+
+�

�
+ � �

+
+�

�
+AIi (6.19)

for N = 2. The spontaneous decay rate of the excited symmetric states |si and
|ei is collectively enhanced. It equals 2� which is twice the spontaneous decay

rate of a single atom. In contrast to this, the anti-symmetric state |ai of the

atoms does not emit photons.

In the following, we are especially interested in how the total mean number

of phonons m of the two atoms evolves in time. One can easily check that this

number is the sum of the mean phonon numbers of the b+ and the b� phonon

mode, i.e.

m = m
(+) +m

(�) (6.20)

with m
(±) = hb†±b±i. Although the interaction Hamiltonian HI in Eq. (6.18) does

not seem to contain any interactions between + and � operators, we cannot

analyse the dynamics of m(�) and m
(+) separately. The reason for this is that

the �
�
± operators in Eq. (6.17) both involve the atomic states |gi and |ei.
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6.3 Laser cooling of two indistinguishable atoms

Figure 6.3: Schematic view of the expected dynamics of m(+) and m
(�) during

alternating cooling (blue) and thermalisation stages(pink). During cooling stages,

m
(+) drops rapidly and becomes very small. The main purpose of the intermittent

thermalisation stages is to transfer energy from the b� into the now empty b+

phonon mode. Both phonon modes lose their energy and the two atoms become

eventually very cold.

However, as we shall see below, it is nevertheless advantageous to use the

above notation. In the following subsection, it is shown that the cooling laser only

reduces the mean number of phonons in the b+ mode, while the mean number

of phonons in the b� mode remains essentially the same during cooling stages.

This is illustrated in Fig. 6.3 which sketches the dynamics of m
(+) and m

(�)

during alternating cooling and thermalisation stages. During cooling stages, m(+)

drops rapidly and becomes very small. The main purpose of the intermittent

thermalisation stages is to transfer energy from the b� into the now empty b+

phonon mode. In this way, both phonon modes lose their energy and the two

atoms become eventually very cold.

Fig. 6.4(a) shows all atomic transitions which participate in the cooling process

of the b+ mode. As we shall see below, cooling only occurs on a time scale given

by the cooling rate

�cool =
(⌘0⌦)2

2�
. (6.21)

As usual, the cooling process is relatively slow. Our calculations in the next

subsection also show that only the atomic states |gi and |si participate actively
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Figure 6.4: Diagrammatic representation of the level configuration of the atoms

are based on ground |gi and first excited state |si. Here ⌫ and !L denote the

frequency of the corresponding phonon mode and of the cooling laser. The cor-

responding trapping frequency of this atom is �. However the laser detuning

� = !0 � !L . The main purpose of the laser is to excite the atom, while an-

nihilating a phonon, If the excitation of the ion is followed by the spontaneous

emission of a photon, a phonon is permanently lost, which implies cooling. (b)

In the cooling process, only the atomic states |gi and |si actively participate. (c)

The laser detuning � of the cooling laser from the 0 -1 transition of the atoms

equals ⌫ + J .

in the cooling process of the b+ mode (cf. Fig. 6.4(b)). Any population in the

two remaining atomic states, |ai and |ei, is essentially negligible. This means, the

cooling phase of laser cooling of two indistinguishable particles inside a cavitating

bubble has many similarities with the laser cooling of a single trapped particle

(Blake et al. (2011b)). As illustrated in Fig. 6.4(b), this equivalent particle would

have a ground state |gi and an excited state |si. Its spontaneous decay rate would

have to be twice the decay rate of a single atom, i.e. 2�, but its laser coupling

constant ⌘
0⌦ would be the same Blake et al. (2011b). The cooling process of

the b+ phonon mode is therefore not collectively enhanced, as one might naively

expect. To avoid the above described reduction of the cooling rate compared to

the laser cooling rate of a single trapped atom, the atomic gas needs to be placed

into an opaque cavitating bubble where the relevant spontaneous decay rate does

not depend on the number of atoms inside the gas (Aljaloud et al. (2020)).
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The most e�cient laser cooling of the two atoms occurs during the bubble

collapse phase when the phonon frequency ⌫ and the atom collision rate J assume

their maximum values, ⌫0 and J0. In order to maximise the cooling process, we

therefore propose to choose the laser detuning � of the cooling laser from the 0-1

transition of the atoms equals ⌫ + J at this point,

� = ⌫0 + J0 , (6.22)

at least to a very good approximation. As one can see from Eq. (6.18), in the

presence of collisions, ~(⌫0 + J0) equals the energy of a single phonon in the b+

phonon mode during the cooling phase. The above comparison with the laser

cooling of a single atom therefore suggests to choose � as in Eq. (6.22) and as

illustrated in Fig. 6.4(c). Moreover, e�cient laser cooling requires that the laser

detuning � is much larger than the laser Rabi frequency,

⌦ ⌧ � ⌧ � . (6.23)

In this case, the transfer of the atoms from |gi to |si is most likely accompanied

by the annihilation of a b+ phonon. All other excitation processes are strongly

detuned. When the atoms subsequently return from |si to |gi via the spontaneous
emission of a photon, this phonon is permanently lost. The mean number of

phonons in the system has been reduced by one which implies cooling. When the

cavitating bubble does not experience a collapse phase, the phonon frequency ⌫

and the collision rate J are too small for any atomic dynamics to occur which is

why e�cient cooling only takes place during the bubble collapse phase. Even if

we would reduce the laser detuning to keep cooling processes on resonance, the

cooling would become less e�cient, since also condition (6.23) must be met.

Finally, let us assume that the cooling laser reduces the mean number in the b+

phonon mode very e↵ectively and m
(+) is e�ciently zero at the end of the cooling

phase. To complete a single cooling cycle, the cooling phase is followed by a

thermalisation phase, as illustrated in Fig. 6.3. During each thermalisation stage,

both atoms eventually reach their thermal state which then adiabatically changes

as the phonon frequency ⌫ and the collision rate J change in time. For example,

if collisions between the atoms are negligible, then J = 0 and m
(+) = m

(�) at the

end of each thermalisation stage. This means, each cooling cycle halves the total
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phonon number. Hence, after M repetitions of cooling and themalisation stages,

we have

m
(+)(M�t) =

1

2M
m

(+)(0) . (6.24)

This means, the thermal energy of the atoms drops very rapidly. As we shall

see below, the same applies for J0 6= 0. If the common b+ phonon mode can be

cooled very e�ciently, then both atoms should eventually end up at a very low

temperature.

6.3.2 Cooling stages

Next we analyse the dynamics of m(�) and m
(+) during the bubble collapse phase,

when the conditions in Eqs. (6.22) and (6.23) apply. In order to get a closed set

of rate equations, we now describe the dynamics the expectation values of the

general form

d
(±)
xy

= i hb±�xy � b
†
±�yxi ,

f
(±)
xy

= hb±�xy + b
†
±�yxi (6.25)

with x, y = a, s, e. All of the above expectation values are real. Taking the

results of the previous subsection into account and substituting the interaction

Hamiltonian HI in Eq. (6.18) into Eq. (6.19), one can show that

ṁ
(+) =

1

2
⌘⌦ [d(+)

gs
+ d

(+)
se

] +
1

2
⌘
0⌦ [d(+)

sg
+ d

(+)
es

] ,

ṁ
(�) = �1

2
⌘⌦ [d(�)

ga
� d

(�)
ae

]� 1

2
⌘
0⌦ [d(�)

ag
� d

(�)
ea

] . (6.26)

In the remainder of this subsection, we calculate the expectation values on the

right hand side of this equation in zeroth order in ⌘ and ⌘
0.

1. Time evolution of m(�) in first order in ⌘ and ⌘
0

First let us describe the dynamics of the m
(�) phonons. Substituting the inter-

action Hamiltonian HI in Eq. (6.18) again into Eq. (6.19), while assuming that

84



6.3 Laser cooling of two indistinguishable atoms

⌘ = ⌘
0 = 0, we now obtain two sets of independent linear di↵erential equations.

More concretely, we find that

ḋ
(�)
ga

= (�+ ⌫0 � J0)f
(�)
ga

� ⌦̃ f
(�)
sa

,

ḟ
(�)
ga

= �(�+ ⌫0 � J0)d
(�)
ga

+ ⌦̃ d
(�)
sa

,

ḋ
(�)
ea

= �(�� ⌫0 + J0)f
(�)
ea

� ⌦̃ f
(�)
sa

� � d
(�)
ea

,

ḟ
(�)
ea

= (�� ⌫0 + J0)d
(�)
ea

+ ⌦̃ d
(�)
sa

� � f
(�)
ea

,

ḋ
(�)
sa

= (⌫0 � J0)f
(�)
sa

� ⌦̃[f (�)
ga

+ f
(�)
ea

]� � d
(�)
sa

,

ḟ
(�)
sa

= �(⌫0 � J0)d
(�)
sa

+ ⌦̃[d(�)
ga

+ d
(�)
ea

]� � f
(�)
sa

. (6.27)

In addition, one can show that

ḋ
(�)
ag

= �(�� ⌫0 + J0)f
(�)
ag

+ ⌦̃ f
(�)
as

,

ḟ
(�)
ag

= (�� ⌫0 + J0)d
(�)
ag

� ⌦̃ d
(�)
as

,

ḋ
(�)
ae

= (�+ ⌫0 � J0)f
(�)
ae

+ ⌦̃ f
(�)
as

� � d
(�)
ae

,

ḟ
(�)
ae

= �(�+ ⌫0 � J0)d
(�)
ae

� ⌦̃ d
(�)
as

� � f
(�)
ae

,

ḋ
(�)
as

= (⌫0 � J0)f
(�)
as

+ ⌦̃[f (�)
ag

+ f
(�)
ae

]� � d
(�)
as

,

ḟ
(�)
as

= �(⌫0 � J0)d
(�)
as

� ⌦̃[d(�)
ag

+ d
(�)
ae

]� � f
(�)
as

. (6.28)

Here the laser Rabi frequency ⌦̃ is defined such that

⌦̃ = ⌦/
p
2 . (6.29)

Suppose the two atoms do not experience any laser driving between cooling stages.

Hence, their state is given by the ground state |gi at the beginning of every

cooling state. As a result, all of the expectation values on the right hand side of

Eqs. (6.27) and (6.28) are initially equal to zero,

d
(�)
xy

= f
(�)
xy

= 0 , (6.30)

where x, y = g, s, a, e. Since the above equations are linear di↵erential equa-

tions without any constant terms, Eq. (6.30) remains valid throughout the whole

cooling process. Eq. (6.26) therefore shows that

ṁ
(�) = 0 (6.31)
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in first order in ⌘ and ⌘
0. If the b� phonon mode experiences cooling or heating,

this cooling or heating only occurs on a relatively slow time scale. Their cooling

rates are at least of second order in ⌘ and ⌘
0. To a very good approximation, m�

remains the constant during cooling stages.

2. Time evolution of m(+) in first order in ⌘ and ⌘
0

Next we describe the dynamics of the b+ phonon mode. Proceeding as above and

deriving rate equations for the d
(+)
xy and the f

(+)
xy variables, we find that

ḋ
(+)
sg

= �(�� ⌫0 � J0)f
(+)
sg

� ⌦̃[f (+)
eg

+ f
(+)
gg

� f
(+)
ss

]

��[d(+)
sg

� 2d(+)
es

] ,

ḟ
(+)
sg

= (�� ⌫0 � J0)d
(+)
sg

+ ⌦̃[d(+)
eg

+ d
(+)
gg

� d
(+)
ss

]

��[f (+)
sg

� 2f (+)
es

] ,

ḋ
(+)
es

= �(�� ⌫0 � J0)f
(+)
es

+ ⌦̃[f (+)
eg

� f
(+)
ss

+ f
(+)
ee

]

�2� d
(+)
es

,

ḟ
(+)
es

= (�� ⌫0 � J0)d
(+)
es

� ⌦̃[d(+)
eg

� d
(+)
ss

+ d
(+)
ee

]

�2� f
(+)
es

(6.32)

for ⌘ = ⌘
0 = 0. In addition, one can show that

ḋ
(+)
gs

= (�+ ⌫0 + J0)f
(+)
gs

+ ⌦̃[f (+)
ge

+ f
(+)
gg

� f
(+)
ss

]

��[d(+)
gs

� 2d(+)
se

] ,

ḟ
(+)
gs

= �(�+ ⌫0 + J0)d
(+)
gs

� ⌦̃[d(+)
ge

� d
(+)
gg

+ d
(+)
ss

]

��[f (+)
gs

� 2f (+)
se

] ,

ḋ
(+)
se

= (�+ ⌫0 + J0)f
(+)
se

� ⌦̃[f (+)
ge

� f
(+)
ss

+ f
(+)
ee

]

�2� d
(+)
se

,

ḟ
(+)
se

= �(�+ ⌫0 + J0)d
(+)
se

+ ⌦̃[d(+)
ge

� d
(+)
ss

+ d
(+)
ee

]

�2� f
(+)
se

. (6.33)

Moreover, proceeding as above, we obtain the di↵erential equations

ḋ
(+)
ge

= (2�+ ⌫0 + J0)f
(+)
ge

+ ⌦̃[f (+)
gs

� f
(+)
se

]� � d
(+)
ge

,
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ḟ
(+)
ge

= �(2�+ ⌫0 + J0)d
(+)
ge

� ⌦̃[d(+)
gs

� d
(+)
se

]� � f
(+)
ge

,

ḋ
(+)
eg

= �(2�� ⌫0 � J0)f
(+)
eg

� ⌦̃[f (+)
sg

� f
(+)
es

]� � d
(+)
eg

,

ḟ
(+)
eg

= (2�� ⌫0 � J0)d
(+)
eg

+ ⌦̃[d(+)
sg

� d
(+)
es

]� � f
(+)
eg

, (6.34)

while

ḋ
(+)
gg

= (⌫0 + J0)f
(+)
gg

+ ⌦̃[f (+)
gs

� f
(+)
sg

] + 2� d
(+)
ss

,

ḟ
(+)
gg

= �(⌫0 + J0)d
(+)
gg

� ⌦̃[d(+)
gs

� d
(+)
sg

] + 2� f
(+)
ss

,

ḋ
(+)
ss

= (⌫0 + J0)f
(+)
ss

� ⌦̃[f (+)
gs

� f
(+)
sg

� f
(+)
se

+ f
(+)
es

]

�2�[d(+)
ss

� d
(+)
ee

] ,

ḟ
(+)
ss

= �(⌫0 + J0)d
(+)
ss

+ ⌦̃[d(+)
gs

� d
(+)
sg

� d
(+)
se

+ d
(+)
es

]

�2�[f (+)
ss

� f
(+)
ee

] ,

ḋ
(+)
ee

= (⌫0 + J0)f
(+)
ee

� ⌦̃[f (+)
se

� f
(+)
es

]� 2� d
(+)
ee

ḟ
(+)
ee

= �(⌫0 + J0)d
(+)
ee

+ ⌦̃[d(+)
se

� d
(+)
es

]� 2� f
(+)
ee

(6.35)

in zeroth order in ⌘ and ⌘
0. One can easily check that Eqs. (6.32)-(6.35) form

a closed set of di↵erential equations which can be solved, at least in principle,

numerically and analytically.

When the cooling laser is turned o↵, the atoms might emit one or two more

photons but eventually they return into their ground state |gi. In following, we

therefore assume that all expectation values with d
(+)
xy and f

(+)
xy and initially zero,

with x = y = g being the only exception. However, d(+)
gg and f

(+)
gg denote the

average momentum and the average position of the two atoms inside the trap.

Since the atoms are trapped and as long as the trap is symmetric around its

center at x = 0, both variables are zero in the thermal state which implies that

d
(+)
gg

= f
(+)
gg

= 0 , (6.36)

at the beginning of every cooling phase (see next subsection for more details).

Hence the variables on the right hand side of Eq. (6.26) remain zero once the

cooling laser is turned on and the mean number of phonons in the b+ mode

remains the same.
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3. Time evolution of m(+) in second order in ⌘ and ⌘
0

To describe the expected cooling process we need to go a step further and terms

of the order ⌘ and ⌘
0 need to be taken into account, if we want to derive e↵ective

cooling rates. Even in zeroth order in ⌘ and ⌘
0, the above equations are hard

to solve analytically. However, in the following, we are especially interested in

the parameter regime where Eqs. (6.22) and (6.23) apply. In this case, the dy-

namics of all the variables in Eqs. (6.33) to (6.35) are strongly detuned. In the

following, we therefore assume that the variables in the indices gs, se, ge, eg, ss

and ee remain zero throughout the cooling process. Making this approximation,

Eq. (6.32) simplifies to

ḋ
(+)
sg

= �� d
(+)
sg

+ 2� d
(+)
es

,

ḟ
(+)
sg

= �� f
(+)
sg

+ 2� f
(+)
es

,

ḋ
(+)
es

= �2� d
(+)
es

,

ḟ
(+)
es

= �2� f
(+)
es

. (6.37)

Moreover, taking terms in first order in ⌘ and ⌘
0 into account and neglecting again

any variables with indices gs, se, ge, eg, ss and ee, we see that

ḋ
(+)
sg

= �1

2
⌦ [⌘ l(+)

gg
+ 2⌘0q(+)

gg
]� � d

(+)
sg

+ 2� d
(+)
es

,

ḟ
(+)
sg

=
1

2
⌘⌦h

(+)
gg

� � f
(+)
sg

+ 2� f
(+)
es

,

ḋ
(+)
es

= �2� d
(+)
es

,

ḟ
(+)
es

= �2� f
(+)
es

, (6.38)

where we defined

l
(+)
xx

= h(b2+ + b
†2
+ )�xxi ,

h
(+)
xx

= i h(b2+ � b
†2
+ )�xxi ,

q
(+)
xx

= hb†+b+�xxi . (6.39)

In zeroth order in ⌘ and ⌘
0, we find that l

(+)
gg evolves rapidly on the time scale

given by ⌫0 + J0. Moreover, the above calculations suggest that the two atoms

remain predominantly in their ground state |gi. This suggests that

l
(+)
gg

= 0 and q
(+)
gg

= m
(+)

. (6.40)
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6.3 Laser cooling of two indistinguishable atoms

Adiabatically eliminating d(+)
sg and f

(+)
es from the system dynamics by setting their

time derivatives in Eq. (6.38) equal to zero therefore yields

d
(+)
sg

= �⌘
0⌦

�
m

(+)
. (6.41)

The reason for this is that the above equations describe rapid damped oscillations

which result relatively quickly in a stationary state. While most variables remain

zero in first order in ⌘ and ⌘
0, the coherence d

(+)
sg assumes a value which is non-

zero.

Substituting the result in Eq. (6.41) into Eqs. (6.26), we finally obtain the

cooling equation

ṁ
(+) = ��cool m

(+) (6.42)

with the (positive) cooling rate to a very good approximation given by �cool in

Eq. (6.21). Eq. (6.42) can now be solved relatively easily. The standard solution

to this di↵erential equation is of course

ṁ
(+)(t) = e��coolt m

(+)(0) . (6.43)

The mean number of phonons in the b+ mode decreases exponentially. Given the

cooling stage is su�ciently long, all phonons are converted into atomic excitations

and leave the system via spontaneous photon emission, as described in Section

6.3.1.

In laser cooling of trapped ions, the minimum phonon number that can be

achieved during cooling stages is indeed very low. Trapped ions are routinely

cooled down to nanokelvin temperature . The only requirements for this to work

is that the phonon frequency ⌫0 of the trapped atomic particles is su�ciently large

when compared to the relevant spontaneous decay rate �. Without restrictions we

assume here that the conditions for cooling to very low temperatures hold. Being

a solid state and not a quantum optical system, we expect phonon frequencies ⌫0

to be much larger than in ion trap experiments, while the order of magnitude of

the spontaneous decay rate � of the trapped atoms should be about the same.

For more details, see Ref. Aljaloud et al. (2020)

The main problems of laser cooling indistinguishable particles inside cavitat-

ing bubbles are di↵erent in nature. While the parameter regimes which allow

89



6.3 Laser cooling of two indistinguishable atoms

reaching very low temperatures might be more readily available than in ion trap

experiments, cooling stages might be relatively short. Once the collapse phase

comes to an end and the bubble radius increases again, the phonon number ⌫ de-

creases rapidly and the collisions between the atoms with rate J disappear. The

cooling laser is therefore no longer in resonance with the above described cooling

processes and the cooling disappears until the next collapse phase. Moreover, the

cooling laser only reduces the mean number of phonons in the b+ mode. To re-

move all phonons from the system, another mechanisms is needed which transfers

vibrational energy from the b� into the b+ mode between cooling stages.

6.3.3 Thermalisation stages

As mentioned already earlier, this is exactly the purpose of the thermalisation

stages. Once the bubble radius increases again, the phonon frequency ⌫ and

the collision rate J of the atoms decreases significantly and the atoms no longer

experience the cooling laser. Instead they evolve according to the laws of ther-

modynamics and adiabatically exchange vibrational energy with each other and

their environment. For simplicity we ignore any heat exchange with the surround-

ing liquid in the following. In this case, the atoms assume thermal states which

change as their phonon frequencies and collisions rates change in time. Since we

are especially interested in the state of the atoms at the beginning of the next

cooling stage, we can assume that their Hamiltonian equals

HI = ~(⌫0 + J0) b
†
+b+ + ~(⌫0 � J0) b

†
�b� (6.44)

which is the Hamiltonian HI in Eq. (6.18) but with the laser Rabi frequency still

e↵ectively equal to zero (⌦ = 0). Moreover, we ignore the electronic states of the

atoms. For atomic transition frequencies !0 in the optical regime, the thermal

state of the atoms is to a very good approximation the same as the ground state

|gi. From Eq. (6.44) we see that we are e↵ectively looking for the thermal state

of two non-interacting harmonic oscillators whose total energy is the same as the

vibrational energy at the end of the previous cooling stage.
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6.3 Laser cooling of two indistinguishable atoms

The thermal state of two harmonic oscillators

Here we are especially interested in the thermal state of two atoms with elas-

tic collisions with their interaction Hamiltonian HI given in Eq. (6.44). During

thermalisation stages, the phonon frequency ⌫ and the collision rate J are still

relatively small and the applied cooling laser field is therefore in general strongly

detuned. This is why we can neglect any additional terms in the above equa-

tion and only need to consider the phonon states of the system, while assuming

that the atoms remain in their common ground state |gi. Unfortunately, the

above Hamiltonian automatically results in a thermal state with d
(+)
gg and f

(+)
gg

both equal to zero, as we assumed in Eq. (6.36) the previous subsection for a

symmetric trapping potential. Using Eq. (3.33), one can show that

m
(±) =

e��
(±)

e��(±) � 1
, (6.45)

where, the parameter � = �~!,

�
(±) = �~(⌫0 ± J0) (6.46)

and where � is defined as � = 1
kBT

. The temperature T of the two atoms at the

end of the thermalisation stage depends on their phonon energy at the end of

the previous cooling stage. During thermalisation, the phonon energy of the two

atoms remains the same.

6.3.4 Final phonon numbers of a two-step laser cooling

process

Suppose we alternate cooling states and thermalisation stages as shown in Fig. 6.3.

As we have seen in the previous subsection, each thermalisation stage results in a

transfer of some of the vibrational energy of the b� phonon mode of the atoms into

the b+ mode. As described in Section 6.3.2, this phonon mode is subsequently

emptied during a cooling stage. For simplicity, and also since it applies to a very
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6.3 Laser cooling of two indistinguishable atoms

good approximation, we assume in the following that the cooling stage is long

enough to cool the b
(+) mode until

m
(+) = 0 (6.47)

and neglect any possible heating transitions. As we have seen in Section 6.3.2, the

latter assumption is well justified. Eventually, this process will remove all energy

from all vibrational modes of the two atoms. This is illustrated in Fig. 6.3. In

this subsection, we now introducet how the temperature of the atoms changes

after M cooling and thermalisation stages.

Supposem(+)(0) is the mean number of phonons in the b+ phonon mode at the

beginning of the first cooling phase at t = 0. Using the equations in the previous

sections, we now calculate how this number changes from one cooling cycle to the

beginning of the next. Of course, the experimental parameters ⌫ and J change

a lot during thermalisation stages. However, here we are especially interested in

their maximum values ⌫0 and J which they assume during the bubble collapse

phase. In addition, we assume in the following that the absorption of energy

from the liquid surrounding the bubble remains negligible throughout the cooling

process. Taking this into account as well as the fact that the b+ mode is depleted

during the cooling stage, energy conservation implies that

~(⌫0 � J)m(�)(0) = ~(⌫0 + J)m(+)(�t)

+~(⌫0 � J)m(�)(�t) , (6.48)

where �t denotes the duration of a single cooling cycle. From Eq. (6.46), we see

that �(+)(�t) = A�
(�)(�t) with

A =
⌫0 � J

⌫0 + J
. (6.49)

Combining Eqs. (6.45) and (6.46) with Eq. (6.49) and calculating m
(+)(�t) as a

function of m(�)(�t), we hence find that

m
(+)(�t) =

m
(�)(�t)A

m(�)(�t)A � [m(�)(�t)� 1]A
. (6.50)

In principle, the above equations can be used to calculate how m
(�)(�t) depends

on m
(�)(0) which tells us, how the mean number of phonons in the b� mode

92



6.3 Laser cooling of two indistinguishable atoms

changes from one cycle of the cooling process to the next. Unfortunately, solving

the above equations is not straightforward, which is why we first describe the

simple case where A = 1.

In the absence of any collisions, we have J = 0. In this case, A = 1 and

m
(+)(�t) = m

(�)(�t). Hence, Eq. (6.48) shows that the mean number of phonons

in the b� modes is halved in every cooling cycle. After M repetitions, the mean

number of phonons in the b� mode which is the same as the mean number of

phonons in the b+ mode therefore equals m(�)(M�t) in Eq. (6.24). Under ideal

cooling conditions, there is thus nothing which stops the phonon modes from

emptying and eventually m
(+) and m

(�) reduce to zero. This means, the final

temperature of the atoms can be very close to zero. The only restrictions come

from highly-detuned o↵-resonant heating transitions which we neglected when we

analysed the cooling dynamics of the two atoms in Section 6.3.2.

In general, for J 6= 0, the cooling cycle stops and no longer reduces the mean

phonon number in the b� mode when m
(�)(0) becomes so small that

m
(�)(�t) = m

(�)(0) . (6.51)

Substituting this relation into Eq. (6.48), we immediately see that this condition

only applies once

m
(�) = 0 (6.52)

which is the stationary point of the above equation. For m
(�)(0) = 0, we au-

tomatically have m
(�)(�t) = 0. Under ideal cooling conditions, there is thus

nothing which stops the phonon modes from emptying and eventually m
(+) and

m
(�) reduce to zero.
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6.4 Laser cooling of many indistinguishable particles

Figure 6.5: Diagrammatic representation of the level configuration of the atoms

are based on ground |gi and first excited state |si.

6.4 Laser cooling of many indistinguishable par-

ticles

In the previous Section, we have seen that the cooling dynamics of two indistin-

guishable atomic particles is equivalent to the cooling dynamics of a single atom.

Even in the presence of additional atomic states, only the ground state and a

single excited state contribute to the cooling dynamics of the system on the rel-

atively fast time scale given by the cooling rate �cool in Eq. (6.21). The presence

of any other atomic states, even when they experience the cooling laser, can be

ignored. In the following this is taken into account when analysing the cooling

dynamics of many indistinguishable atomic particles inside a cavitating bubble.

The experimental setup with many atoms is very similar to the setup which we

described in pervious section and has already been introduced in Section 6.2, as

illustrated in Fig. 6.5. In this section, we first describe the interaction Hamilto-

nian HI in Eq. (6.11) of N indistinguishable laser-driven atomic particles inside

a cavitating bubble. We then identify the relevant states and relevant coupling

constants before discussing the proposed two-stage cooling process in some detail.
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6.4 Laser cooling of many indistinguishable particles

6.4.1 Basic idea

In analogy to the definition in Eq. (6.16), we denote the atomic state with all

atoms in the ground state in the following by |gi,

|gi = |00 . . . 0i . (6.53)

To see which excited state needs to be taken into account in the following discus-

sion, we apply the laser term in the interaction Hamiltonian HI in Eq. (6.11) of

N to |gi and find that

NX

i=1

1

2
~⌦�+

i
|gi =

1

2
~
p
N⌦ |si (6.54)

with the highly symmetric atomic state |si defined as

|si =
1p
N
[|0 . . . 01i+ |0 . . . 010i+ . . .

+|010 . . . 0i+ |10 . . . 0i] . (6.55)

To see which phonon mode is a↵ected most strongly by the cooling laser, we now

introduce the phonon operator

hs|HI|gi =
1

2
~⌦
hp

N + ⌘B
�
+ + ⌘

0
B

+
+

i
(6.56)

with the collective phonon mode annihilation operator B+ defined such that

B+ =
1p
N

NX

i=1

bi . (6.57)

Similar to what we have seen in the previous section, this shows that the cooling

laser removes energy e↵ectively only from a single collective phonon mode. This

collective phonon mode is symmetric with respect to exchanging the atomic par-

ticles and its annihilation operator obeys bosonic commutator relations due to

the normalisation constant
p
N .

Introduce an e↵ective Hamiltonian which is equivalent to a two-level system

with a cooling laser. Taking into account Eq. (6.4.2) and having a closer look at

the g-s subsystem dynamics, we find that this e↵ective Hamiltonian equals

He↵ = ~� |sihs|+ ~(⌫ + J)B†
+B+

+
1

2
~⌦
⇣p

N + ⌘B+ + ⌘
0
B

†
+

⌘
|gihs|+H.c. (6.58)
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6.4 Laser cooling of many indistinguishable particles

in analogy to Eq. (6.18). However, here we already neglected the terms which we

know do not contribute to the cooling dynamics of the atoms. Moreover, we have

seen in Section 6.2, that the spontaneous decay rate of the |si state is N times

as large as the spontaneous decay rate � of a single two-level atom.

Since N atomic particles have N independent phonon modes bi, they also

have N collective phonon mode operators which we denote Bi in the following

and which are superpositions of the bi operators such that they are all pairwise

orthogonal. Collective phonon modes can be defined in many ways. Here we

choose B1 = B+ and then define the remaining modes accordingly. Using this

notation, the average mean phonon number per atom equals

m =
1

N

NX

i=1

hb†
i
bii =

1

N

NX

i=1

hB†
i
Bii . (6.59)

Here m is normalised such that it doesn’t change significantly when atomic par-

ticles are removed or added to the trap. Notice that cooling the atoms to zero

temperature is equivalent to reaching the point where m = 0. This applies in the

presence and absence of collisions (J 6= 0).
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6.4 Laser cooling of many indistinguishable particles

Figure 6.6: Diagrammatic representation of the dynamics of the sympathetic

cooling process which consist of two stages :- thermalisation and cooling stages.

there are two modes which are b+ and b� we can cool one of them to an even

lower temperature and the final phonon number reaches the minimum value.

Figure 6.7: Diagrammatic representation of analytical model of the sympathetic

cooling process which shows the final phonon numbers of many trapped atoms.
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6.5 Summary

6.4.2 Cooling stages and thermalisation stages

In the previous section, we have seen that laser cooling can transfer a single col-

lective phonon mode of the atoms to very low temperatures. When alternating

cooling stages and thermalisation stages, we expect a constant transfer of vibra-

tional energy from all phonon modes of the atoms into the single collective mode

which is subsequently emptied during cooling stages. Eventually, this process

will remove energy from all vibrational modes of the atoms. This is illustrated in

Fig. 6.6 for the two-atom case and in Fig. 6.7 for the many atom case. Subsequent

displacement stages transferred energy from all collective phonon modes into the

B mode which can be cooled easily. Alternating both stages, the cooling process

eventually resulted in the transfer of all vibrational modes of the strongly-confined

atomic gas to very low phonon numbers.

Our two-step cooling scheme consists of cooling and thermalisation stages.

The radius of the bubble which confines the atoms oscillates relatively rapidly.

When it reaches its minimum radius, an optical cavity forms, cooling transitions

become resonant and a cooling stage takes place. When the bubble radius is

relatively large, the atoms do not see the cooling laser, they exchange energy

via collisions and eventually thermalise. Here we refer to this stage as a ther-

malisation stage. Once the atomic gas inside the bubbles is cooled to very low

temperatures, it could be used for sympathetic cooling of the surrounding liquid.

6.5 Summary

The many common characteristics between quantum optics experiments in cav-

itating bubbles with trapped ions and atoms suggest that the temperature can

become very low. Cooling atoms may, for example, be applied in micro and nan-

otechnology in cavitating bubbles requiring very little volume cooling. We ex-

amined more deeply what the physical processes of the quantum heat exchanger

are, and provide more guidance for quantum optics experiments with cavitating

bubble (Aljaloud et al. (2020)). For simplicity, we assume that the bubbles are

always transparent. This allowed us to derive cooling rates for the cooling of a

single collective phonon mode during the collapse of the bubble. We also see that,
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6.5 Summary

with the dynamics of the atoms between collapse phases, their thermal energy is

e�ciently redistributed.

We recently developed a model of a collective laser-cooling system to ensure

that indistinguishable atoms of caviting bubbles can serve as the basic building

blocks (Aljaloud et al. (2020)). In this chapter, we examined the physical pro-

cesses underlying this study in greater detail and provide further guidance for

quantum optics experiments with cavitating bubbles. For the sake of simplicity,

the bubbles are always transparent. The case of atoms inside a cavitating bubble

with cavity formation will be studied later.
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Chapter 7

Conclusions

7.1 Overview

We have now arrived at the end of our investigation, and now we would like

to organise everything we have learned throughout the project. In the present

thesis, we have developed and analysed a quantum mechanical model of a multi-

body atomic system for collective cooling and heating. In contrast to standard

laser cooling which is a one-phase process, our model is a two-phase process, and

uses quantum optical models in conjunction with the thermodynamic frameworks.

The entire process is divided into thermalization, of multiple particles and the

cooling phase, which reduces the temperature of a single collective phonon mode.

Taking into account the symbiosis of these two steps, the collective dynamics

of the multi-body atomic system are described appropriately. The quantum-

optical cooling model is based on applying the master atomic system equation.

In general, the system is expected to reach very low temperatures in alternating

cooling and thermalisation stages.

In addition, our two-stage model takes advantage of the sonoluminescence

mechanism. The bubble’s collapse during sonoluminescence is accompanied by

a period of growth of the bubble radius, and rapid increases in gas temperature

inside the bubble. During the bubble expansion phase, the dynamics of the atomic

gas inside the bubble can be described by the laws of thermodynamics. A rapid

exchange of energy occurs between all phonon modes. During the bubble collapse

phases and in the presence of a cooling laser, the system can be modelled by
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quantum optics. The growth phase and the collapse of the bubble lifecycle result

in naturally alternating thermalisation phases and cooling phases if a cooling laser

is applied.

In chapter 5 we have highlighted similarities with strongly confined atomic

particle experiments in quantum optics and single sonoluminescence bubble ex-

periments. There are interactions in both situations, which can be used very

e�ciently to transform thermal energy into light. Therefore, we expect a quick

transfer of heat to the light with the application of an external cooling laser to cav-

itating bubbles that may eventually lead to the cooling of small appliances. Our

estimates show that cooling rates in the order of milliseconds for cubic microme-

tres of water may be reached by Kelvin temperature. Applications are expected

in research testing and in micro and nanotechnology for the proposed quantum

heat exchanger. There are already a wide range of applications in quantum tech-

nology, a closely related cooling process, namely the laser cooling of trapped ions.

Our new findings and the general design of a quantum heat exchanger have been

published in Aljaloud, Peyman and Beige (2020).

Chapter 6 provides a more detailed analysis of the proposed quantum heat

exchanger (Aljaloud et al. (2020)). For simplicity, we assume here a bubble which

does not become opaque during the collapse phase and no cavity is formed. Al-

though optical cooling of solid-state systems is a very small volume operation,

it immediately opens up a plethora of applications in quantum, nano, and mi-

crotechnology. We examined in greater detail the physical processes underlying

this study and provide additional guidance for quantum optics experiments with

cavitation bubbles. More concretely, we assumed that the bubbles are always

transparent and that, in principle, atomic gas can be rapidly transferred to ex-

tremely low temperatures within a cavitating bubble. These conclusions will be

published in Aljaloud and Beige (2021).

7.2 Future work

In the coming months, we plan to further analyse the proposed cooling scheme.

For example, we still need to calculate a heat exchanger for bubbles with opaque

walls as well as we can look at cavity cooling of indistinguishable particles in
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cavitating bubbles in more detail. If the bubble forms an optical cavity, this

might result in collectively enhanced cooling rates. In the longer term, we plan

to introduce the role of entropy in the quantum thermodynamics of interacting

atoms. We also plan to use our experience to develop a better understanding

of sonoluminescence experiments. Potentially, these too can be controlled with

laser interactions. Increasing the achievable temperatures in sonoluminescence

experiments would have applications in sonofusion and sonochemistry.
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Hänsch, T.W. & Schawlow, A.L. (1975). Cooling of gases by laser radiation.

Optics Communications , 13, 68–69. 19, 26, 72

Haroche, S. & Raimond, J.M. (2006). Exploring the quantum: atoms, cavi-

ties, and photons . Oxford university press. 40

Hemmerling, M. & Robb, G. (2011). Cavity cooling using intense blue-

detuned light. Journal of Modern Optics , 58, 1336–1341. 32

Hilgenfeldt, S., Lohse, D. & Moss, W.C. (1998). Water temperature de-

pendence of single bubble sonoluminescence. Physical review letters , 80, 1332.

50

Hilgenfeldt, S., Grossmann, S. & Lohse, D. (1999a). A simple explanation

of light emission in sonoluminescence. Nature, 398, 402–405. 53

Hilgenfeldt, S., Grossmann, S. & Lohse, D. (1999b). Sonoluminescence

light emission. Physics of fluids , 11, 1318–1330. 53

Hilgenfeldt, S., Lohse, D. & Zomack, M. (2000). Sound scattering and lo-

calized heat deposition of pulse-driven microbubbles. The Journal of the Acous-

tical Society of America, 107, 3530–3539. 50

Hiller, R., Putterman, S.J. & Barber, B.P. (1992). Spectrum of syn-

chronous picosecond sonoluminescence. Physical Review Letters , 69, 1182. 50,

52, 53

Hiller, R., Weninger, K., Putterman, S.J. & Barber, B.P. (1994).

E↵ect of noble gas doping in single-bubble sonoluminescence. Science, 266,

248–250. 50

108



REFERENCES

Hiller, R.A., Putterman, S.J. & Weninger, K.R. (1998). Time-resolved

spectra of sonoluminescence. Physical Review Letters , 80, 1090. 50, 52, 53

Hopkins, S.D., Putterman, S.J., Kappus, B.A., Suslick, K.S. & Ca-

mara, C.G. (2005). Dynamics of a sonoluminescing bubble in sulfuric acid.

Physical review letters , 95, 254301. 53

Hsu, T.R. (2008). MEMS and microsystems: design, manufacture, and

nanoscale engineering . John Wiley & Sons. 62

Kampschulte, T., Alt, W., Brakhane, S., Eckstein, M., Reimann, R.,

Widera, A. & Meschede, D. (2010). Optical control of the refractive index

of a single atom. Physical review letters , 105, 153603. 32

Ketterle, W. & Van Druten, N. (1996). Evaporative cooling of trapped

atoms. Advances in atomic, molecular, and optical physics , 37, 181–236. 26

Khalid, S., Kappus, B., Weninger, K. & Putterman, S. (2012). Opacity

and transport measurements reveal that dilute plasma models of sonolumines-

cence are not valid. Physical review letters , 108, 104302. 58, 63

Kim, O. & Beige, A. (2013). Mollow triplet for cavity-mediated laser cooling.

Physical Review A, 88, 053417. 34, 36, 38

Kim, O., Deb, P. & Beige, A. (2018). Cavity-mediated collective laser-cooling

of a non-interacting atomic gas inside an asymmetric trap to very low temper-

atures. Journal of Modern Optics , 65, 693–705. 18, 34, 36, 38, 39, 63, 65

Kim, P., Shi, L., Majumdar, A. & McEuen, P.L. (2001). Thermal transport

measurements of individual multiwalled nanotubes. Physical review letters , 87,

215502. 63

Kurcz, A., Capolupo, A. & Beige, A. (2009a). Quantum optical heating

in sonoluminescence experiments. In AIP Conference Proceedings , vol. 1114,

31–36, American Institute of Physics. 54

109



REFERENCES

Kurcz, A., Capolupo, A. & Beige, A. (2009b). Sonoluminescence and quan-

tum optical heating. New Journal of Physics , 11, 053001. 54, 57, 58, 63, 65,

70

Lauterborn, W. & Koch, A. (1987). Holographic observation of period-

doubled and chaotic bubble oscillations in acoustic cavitation. Physical Review

A, 35, 1974. 50

Lee, J., Ashokkumar, M., Kentish, S. & Grieser, F. (2005). Determina-

tion of the size distribution of sonoluminescence bubbles in a pulsed acoustic

field. Journal of the American Chemical Society , 127, 16810–16811. 50

Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. (2003a). Quantum

dynamics of single trapped ions. Reviews of Modern Physics , 75, 281. 19, 54

Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M.,

Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband,
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