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Abstract 

Continental break-up is associated with the formation of complex margins, of 

which transform margins remain less understood due to their varied crustal 

architectures. This limits our understanding of the processes that accompany 

the fragmentation of supercontinents, which impacts the reliability of plate 

tectonic models. The Falkland Plateau (FP) is an example of a transform 

margin that developed along one of the most long-lived and long-offset 

transform faults on Earth. The evolution of the plateau is linked to south-

western Gondwana break-up and its present-day morphology has been 

associated with vertical-axis rotation of an extensive microplate (the Falkland 

Islands Microplate – FIM). Therefore, the FP represents an ideal example to 

improve our understanding of transform margin development, block rotation 

mechanisms, and early stages of Gondwana break-up. 

Here, the FP architecture and evolution is constrained by integrating seismic 

reflection and potential field data, and building rigid and deforming plate 

models. The results support an ~80° Middle-Late Jurassic FIM clockwise 

rotation. Rapid stress variations affected south-western Gondwana before and 

during the FIM rotation. The rotation was initiated by the East Antarctica 

southward drift, and resulted in continental crust extension, intrusion, 

underplating, and oceanic crust generation in the Falkland Plateau Basin. The 

resulting architecture displays similarities with other transform margins. 

Furthermore, the FIM structural network supports intra-block deformation 

during rotation, and shows that current deformation models are applicable to 

larger scales. This thesis emphasises a need for re-evaluating the deformation 

interpreted along South America during Gondwana break-up, and disproves 

recent interpretations of West Antarctic evolution. 

This study highlights the importance of integrating diverse datasets and 

methodologies in understanding tectonically complex areas. The updated 

interpretation of the FP provides more information about transform margin 

evolution and constraints on the pre-break-up Gondwana configuration, which 

will inform future research on resource distribution and climate evolution. 
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Figure 5.1 Bathymetric map (GEBCO Compilation Group, 2020) of 
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Figure 5.4 a) Free air gravity anomaly (Sandwell et al., 2014) across 
the Falkland Plateau along with gravity lineaments showing the 
variation in structural grain; stippled black lines - potential 
intra-plate fracture zones accommodating the rotation of the 
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fracture zones; inset showing the structural grain along the 
western margin of the Falkland Plateau Basin; black, thick 
stippled lines in (b) and (c) mark the potential boundaries of the 
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Figure 5.7 a) Morphology of the pre-rift topography; b) strike section 
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Figure 5.19 a) Variance timeslice across the Berkeley Arch showing 
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(b); b) edge detection attribute along an intra-Jurassic horizon 
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rectangle – inset in (e); e) edge detection attribute along an 
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orientation of the minimum horizontal stress for (c), (d) and (e); 
direction of arrows mark extension direction and their 
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facies of the inverted section; inverted normal fault is inferred; 
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Figure 5.21 Correlation between the position of the Falkland Islands 
and south-western Gondwana based on the orientation of σ3 
for a rotated reconstruction of the FIM; a) Middle Jurassic plate 
configuration showing the change in the regional orientation of 
σ3 from Early to Late Jurassic (right panel) and the structural 
features used for its estimation; b) NE-SW extension direction 
(Paton and Underhill, 2004) and plate configuration during Late 
Jurassic; c) NNE-SSW directed extension (Paton and Underhill, 
2004) marked by the emplacement of now N-S trending Early 
Cretaceous dykes on- and offshore the Falkland Islands; 
rotation of the FIM from Chapter 4 (after Stanca el al., 2019); 
Falkland Islands Microplate and the South American plate rotate 
clockwise with the remaining ~60° during the opening of the 
South Atlantic (Mitchell et al. 1986) to reach their present-day 
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Figure 5.22 Stress field evolution across the Falkland Islands 
Microplate (based on the structures from this chapter and 
literature, and the regional stress compilation in Figure 5.21) 
throughout the Jurassic and Early Cretaceous showing: a) Early 
Jurassic emplacement of dykes onshore the islands and 
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Basin and across the Berkeley Arch; b) extension along the 
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NE-SW trending dyke swarm onshore; c) reactivation of the 
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occurring in the Volunteer sub-basin area, followed by 
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networks after Lohr and Underhill (2015) and Stanca et al. 
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Chapter 1 Introduction 

1.1 Motivation 

Understanding how continents amalgamate, break-up and disperse is important 

from an economic point of view (i.e. resource distribution) but also for 

understanding the formation of oceanic basins (Macdonald et al., 2003; 

Donnadieu et al., 2016; Mueller and Jokat, 2017). Dispersal of supercontinents 

and changes in the configuration of the resulting continents have profound 

implications on oceanic connectivity and the development of oceanic current 

circulation, which in turn directly impact present-day climate (Barker and 

Thomas, 2004). Therefore, a better understanding of the processes related to 

the fragmentation of continents and supercontinents can provide more insights 

into how these influence the evolution of Earth’s geomorphology, biota, and 

climate. 

One of the consequences of continental break-up consists of the formation of 

continental margins. Numerous studies have been carried out on passive 

margins, due to their industrial importance; these have contributed to the 

development of continental break-up models (Biari et al., 2021 and references 

therein). Transform margins represent 16% of continental margins (Figure 1.1) 

and have been the topic of numerous studies since the 1970s. However, they 

remain less understood due to their complexity and variability (Rabinowitz and 

Labrecque, 1979; Scrutton, 1979; Mascle and Blarez, 1987; Mutter and Larson, 

1989; Lorenzo et al., 1991; Basile et al., 1993, 2013; Lorenzo, 1997; Sage et 

al., 2000; Berndt et al., 2001; Mercier de Lépinay et al., 2016; Nemčok et al., 

2016; Loncke et al., 2020), which has limited the development of models for 

their formation and evolution. This impacts their integration in plate 

reconstructions and the understanding of their pre-break-up morphology and 

configuration. In addition, this also results in uncertainties in current plate 

models that do not account for the pre-break-up extent and shape of transform 

margins. Nonetheless, recent efforts have been made to compile the available 

information for these margin types and their highly complex sub-types 

(transform marginal plateaus) (Basile, 2015; Mercier de Lépinay et al., 2016; 

Nemčok et al., 2016; Loncke et al., 2020). This compilation approach has 

allowed the structural and crustal architectures commonly identified along 

transform margins to be summarized. 
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Furthermore, continental break-up and the formation of continental margins 

(commonly transform margins) can be accompanied by large-scale wrenching 

which can result in fragmentation of the crust and lithosphere and the rotation 

of the resulting blocks around a vertical axis (Mascle and Blarez, 1987; Lorenzo 

et al., 1991). Although several models for the mechanism and deformation 

seen along these rotating blocks exist (Beck, 1976; Ron et al., 1984; England 

et al., 1985; Garfunkel and Ron, 1985; McKenzie and Jackson, 1986; Nelson 

and Jones, 1987; Sonder et al., 1994; Peacock et al., 1998), there are still a lot 

of uncertainties remaining about the applicability of these models at regional 

scale. 

 

Figure 1.1 Global distribution of transform margins and marginal plateaus 
(modified after Mercier de Lépinay et al., 2016 and Loncke et al., 
2020); 1. Morris Jesup Rise; 2: Yermarck Plateau; 3: NE Greenland 
Plateau;4: Vøring Plateau; 5: Faroe-Rockall Plateau; 6: Demerara 
Plateau; 7: Guinea Plateau; 8: Liberia; 9: Côte d'Ivoire - Ghana; 10: 
Potiguar Plateau; 11: Sao Paulo Plateau; 12: Walvis Plateau; 13: 
Falklands Plateau; 14: Agulhas Plateau; 15: Gunnerus Ridge; 16: 
Morondava Plateau, 17: Tasman Plateau; 18: Naturaliste Plateau; 19: 
Wallaby-Cuvier Plateau; 20: Exmouth Plateau; A.-A.- Australia-
Antarctic; A.-M.-A. - Africa-Madagascar-Antarctic; A.-S-A - Africa-
South America; B.Bay - Baffin Bay; Equ Atlantic - Equatorial Atlantic; 
G.I.-A. - Greater India-Australia; I.A. - India-Antarctic; L.Sea - 
Labrador Sea; N.Atl (N) - Northern North Atlantic; N.Atl(S) - Southern 
North Atlantic; T.Sea -Tasman Sea. 

This thesis is a contribution to the current knowledge base of transform margins 

by focusing on one such margin, the Falkland Plateau, offshore Argentina, and 

the way it relates to its conjugate, the Agulhas margin, offshore South Africa 
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(Figure 1.2). These two areas have developed along the Agulhas-Falkland 

Fracture Zone (AFFZ), which is a trans-Atlantic transform with one of the 

longest offsets on Earth (1200 km; Ben-Avraham et al., 1997). Both margins 

were active for ~50 Myrs (Lorenzo and Wessel, 1997) which classifies them as 

two of the most long-lived transform margins (Mercier de Lépinay et al., 2016). 

The Falkland side, which represents the topic of this thesis, is believed to have 

undergone far more deformation than its northern counterpart with some 

authors invoking vertical-axis rotation of the Falkland Islands (Adie, 1952a; 

Mitchell et al., 1986; Marshall, 1994; Thomson, 1998; Trewin et al., 2002; 

Macdonald et al., 2003). Furthermore, it has remained well preserved, except 

for the southern boundary, which is now further complicated by compression 

along the North Scotia Ridge. It therefore represents a pertinent example to 

improve understanding of these types of margins and the processes associated 

with their formation (e.g. block rotation). This in turn will add to the current 

understanding of the break-up of south-western Gondwana and of continental 

fragmentation and dispersal in general. 

 

Figure 1.2 Present-day configuration of the South Atlantic region showing 
the location of the Falkland Plateau and the extent of the Agulhas-
Falkland Fracture zone; ETOPO1 global relief model (NOAA National 
Geophysical Data Centre, 2009; Amante and Eakins, 2009) 
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1.2 Aim and objectives 

The Falkland Plateau has been the focus of several studies (Lorenzo and 

Mutter, 1988; Richards et al., 1996a; Lorenzo and Wessel, 1997; Richards and 

Fannin, 1997; Kimbell and Richards, 2008; Schreider et al., 2011; Baristeas et 

al., 2013; Lohr and Underhill, 2015; Schimschal and Jokat, 2017). However, its 

structural and crustal architecture remain the subject of numerous debates, 

which has resulted in different reconstructions and interpretations for the 

evolution of south-western Gondwana (Macdonald et al., 2003; König and 

Jokat, 2006; Muller et al., 2019; Eagles and Eisermann, 2020). This thesis aims 

to address the uncertainties related to the structure and evolution of the 

Falkland Plateau by carrying out a thorough analysis of the plateau with the 

following specific objectives: 

(a) to determine if a vertical-axis rotation of the Falkland Islands Microplate 

has occurred and, if so, to assess the amount and timing of rotation 

through correlative analysis between the structural frameworks on- and 

offshore (northern and eastern sedimentary basins) the islands and on- 

and offshore South Africa, South America, West and East Antarctica; 

(b) to document the crustal, structural, and stratigraphic architecture of the 

Falkland Plateau Basin and the Falkland Plateau in general, and to use 

the results to further constrain the position of the Falkland Islands 

relative to the Maurice Ewing Bank and South Africa prior to the break-

up of Gondwana; 

(c) to assess the impact of these results on processes and mechanisms that 

facilitate vertical-axis rotations, on our understanding of transform faults, 

and on the palaeogeographic reconstruction of south-western 

Gondwana. 

The study will contribute to our understanding of the evolution of the Falkland 

Plateau, which will add to current knowledge of processes occurring during the 

fragmentation of supercontinents by offering insights into the evolution of 

transform margins, and by constraining the pre-break-up plate configuration of 

south-western Gondwana. An integration of seismic reflection, gravity, and 

magnetic data, gravity modelling and inversion, and rigid and deforming plate 

models will be used to achieve this and answer the following research 

questions: 
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1. What are the implications of the reconstruction of the Falkland Islands 

Microplate on the fragmentation of south-western Gondwana and how 

do microplates control regional reconstructions?  

Rationale: Understanding the evolution of the Falkland Plateau is crucial for a 

better understanding of the break-up of Gondwana. The position and original 

extent of the plateau control how close together South America, Antarctica, and 

Africa were prior to the fragmentation of Gondwana. Uncertainties in the 

tectonic evolution of the plateau (i.e. rotation vs. no rotation of the Falkland 

Islands) translate into difficulties in reliably estimating the displacement that 

occurred during the intra-continental transform stage of the AFFZ, which affects 

the fit between South America and Africa. This in turn impacts the amount of 

deformation included in plate models for South America and results in vastly 

different fragmentations and configurations of the South American plate within 

Gondwana reconstructions (Figure 1.3; Macdonald et al., 2003; König and 

Jokat, 2006; Torsvik et al., 2009; Muller et al., 2019). Furthermore, the southern 

part of the Falkland Plateau was the conjugate of the Weddell Sea/West 

Antarctic region (Filchner-Ronne Shelf; Figure 1.3), but it was deformed during 

the Late Cretaceous - Cenozoic development of the North Scotia Ridge and 

opening of the Scotia Sea (Barker and Griffiths, 1972; Dalziel et al., 2013). 

Nonetheless, understanding the pre-break-up architecture of the Falkland 

Plateau and its tectonic evolution can provide insights into the configuration of 

the sub-blocks of the West Antarctic region where several pre-break-up models 

currently exist (e .g. Storey et al., 1992; Dalziel and Lawver, 2001; König and 

Jokat, 2006; Eagles and Eisermann, 2020).  

As the Falkland Plateau has developed at the junction between South America, 

Africa, East and West Antarctica (Figure 1.3), the deformation of the infill of its 

sedimentary basins and overall crustal architecture can provide information on 

the stress variations that preceded the break-up of Gondwana. Furthermore, 

developing a model for the structural and crustal evolution of the plateau and 

comparing and correlating it with the structural networks documented along 

Africa, South America, and Antarctica can help understand how the wrenching 

between these three major plates has affected the area between them. This will 

further constrain the plate models that currently exist for south-western 

Gondwana and the processes that accompanied the early stages of break-up. 
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Figure 1.3 Reconstruction of Gondwana at ~180 Ma (Müller et al., 2019) 
showing an example of fragmentation and configuration of the South 
American plate, West Antarctic region, and Falkland Plateau; AFFZ – 
Agulhas Falkland Fracture Zone; FPB – Falkland Plateau Basin; MEB 
– Maurice Ewing Bank 

2. How do blocks/microplates form, rotate, and deform in wrenching 

settings? 

Rationale: Currently there are several studies on the delimitation and release of 

microplates and multiple models for their rotation and intra-plate deformation 

(Beck, 1976; Ron et al., 1984; England et al., 1985; Garfunkel and Ron, 1985; 

McKenzie and Jackson, 1986; Nelson and Jones, 1987; Sonder et al., 1994; 

Peacock et al., 1998; Nemcok et al., 2016). However, it is unclear if areas the 

size of the Falkland Islands Microplate, which are interpreted to have 

undergone up to ~120° rotation (Adie, 1952a) abide by the rules invoked by 

these models.  

The fragmentation of previously documented rotated blocks (Martinez and 

Taylor, 1996; Peacock et al., 1998; Platt and Becker, 2013; Ingersoll and 

Coffey, 2017) is predominantly controlled by Riedel geometries (Ron et al., 

1984; Garfunkel and Ron, 1985; McKenzie and Jackson, 1986; Peacock et al., 

1998). More irregular fragments are invoked by Horst et al. (2018), whereas 

Szatmari and Milani (1999), Salamon et al. (2003), Nemcok et al. (2016), and 

Glerum et al. (2020) argue for a control of structural inheritance on the 
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geometry of the final blocks. However, more information is needed to 

understand the impact of pre-existing structures on the delimitation and release 

of blocks, particularly for areas like the Falkland Islands Microplate where the 

areal extent of the block reaches hundreds of thousands of km2 (e.g. as defined 

by Storey et al., 1999). 

In areas like California and Northern Iceland (Luyendyk et al., 1985; Horst et 

al., 2018), rotations comparable to, or larger than the one invoked for the 

Falkland Islands Microplate were documented and explained through 

previously published models (Ron et al. , 1984; Garfunkel and Ron, 1985; 

McKenzie and Jackson, 1986; Nelson and Jones, 1987; Sonder et al., 1994). 

The driving forces for documented rotations are represented either by drag 

along the edge of the blocks and/or basal drag either from a ductile lower crust, 

for crustal blocks (confined to the upper crust), or from the upper mantle, for 

microplates (Beck, 1976; Nelson and Jones, 1987; Schouten et al., 1993; 

Searle et al., 1993; Neves et al., 2003). The contribution of each of these forces 

can vary, and understanding the mechanism for the large potential rotation of 

the Falkland Islands Microplate can offer more insights into the importance of 

each of these forces on initiating and maintaining rotations of microplates. 

Furthermore, the behaviour of the blocks during rotation can vary (Beck, 1976; 

Ron et al., 1984; England et al., 1985; Garfunkel and Ron, 1985; Nelson and 

Jones, 1987; Peacock et al., 1998) and, where documented, the deformation 

can result in complex fault networks (Neves et al., 2003; Salamon et al., 2003; 

Horst et al., 2018) or more typical geometries predicted by published models 

(Martinez and Taylor, 1996; Peacock et al., 1998; Ingersoll and Coffey, 2017). 

However, it is unclear if larger blocks (microplates), such as the Falkland 

Islands Microplate behave rigidly during rotation or deform according to 

predicted geometries. 

Understanding the processes that led to the separation of the Falkland Islands 

Microplate and the timing and mechanisms that initiated vertical-axis rotation 

can help understand similar areas where large blocks have undergone 

significant rotations, such as the Ellsworth Whitmore Terrane (Watts and 

Bramall, 1981). Furthermore, better understanding the mechanics of these 

rotations can shed more light onto the complex processes that accompany 

continental break-up.  
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3. What crustal, structural, and stratigraphic architectures can be seen 

along transform margins?  

Rationale: Transform margins and marginal plateaus display significant 

variability in crustal, structural, and stratigraphic architectures due to the fact 

that the latter have commonly undergone several stages of deformation before 

the transform motion (Mercier de Lépinay et al., 2016; Loncke et al., 2020). 

This makes developing models to account for their evolution difficult. An 

understanding of the processes associated with the formation of these margin 

types can be gained from compilations summarizing common structural styles, 

crustal distribution, and stratigraphic geometries (Basile, 2015; Mercier de 

Lépinay et al., 2016; Loncke et al., 2020). 

The structural architecture documented along transform margins and transform 

marginal plateaus is complex, with normal and reverse faults superimposed by 

wrenching-related deformation and geometries (Basile et al., 1993; Benkhelil et 

al., 1995; Pryer et al., 2002; Attoh et al., 2004; Antobreh et al., 2009; McHarg et 

al., 2018; I’Anson et al., 2019). Furthermore, the distribution of crustal types 

along these margins can vary as well (Loncke et al., 2020). Although included 

in the category of continental margins, Loncke et al. (2020) showed that the 

crust underlying transform marginal plateaus can vary (Figure 1.4) from 

continental crust, which can be highly intruded and underplated and/or capped 

by volcanics, to igneous or thick oceanic crust (Lorenzo et al., 1991; Berndt et 

al., 2001; Klingelhöfer et al., 2005; Fromm et al., 2017; Planert et al., 2017; 

Schimschal and Jokat, 2019b). The volcanism and magmatism identified along 

these margins can be associated either with the transform margin development 

or with any of the deformational stages that preceded it (Loncke et al., 2020). 

During the transform margin development, vertical movements occur in the 

vicinity of the transform fault (Basile, 2015; Mercier de Lépinay et al., 2016). 

The processes associated with these uplifts can vary as well and each of their 

contribution and control remain uncertain (Le Pichon and Fox, 1971; Scrutton, 

1979; Mascle and Blarez, 1987; Lorenzo et al., 1991; Basile and Allemand, 

2002; Attoh et al., 2004). In order to easily separate which processes are 

commonly found along transform margins, more examples need to be 

documented and discussed against these published compilations. 

The Falkland Plateau is one such transform marginal plateau (Mercier de 

Lépinay et al., 2016; Loncke et al., 2020). Its evolution has been impacted by 

deformational stages preceding the break-up of Gondwana and has culminated 

with its separation from Africa along the AFFZ. Furthermore, the Falkland 
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Plateau is one of the most extensive and long-lived marginal plateaus (Mercier 

de Lépinay et al., 2016). Therefore it represents an ideal example to further our 

understading of the processes related to transform margin formation.  

 

Figure 1.4 Example of crustal architecture along transform marginal 
plateaus (modified from Loncke et al., 2020); numbers on location 
maps correspond to plateaus number identifiers in Figure 1.1 

1.3 Thesis structure   

This thesis is structured in seven chapters. Three of these comprise of results 

that answer the research questions mentioned in the previous section. Chapter 

2 consists of an overview of the concepts discussed and the geological 

background of the area of study. Chapter 3 presents the data available for this 

thesis and the methodology used. Chapter 4 is the first results chapter and 

presents a revised estimation of the Falkland Islands Microplate rotation based 

on a correlative analysis between the Southern North Falkland Basin and 

published data from the Outeniqua Basin. Chapter 5 discusses the interpreted 

structural framework from the western part of the Falkland Plateau Basin and 

structural styles from the western part of the Falkland Islands Microplate in the 

context of south-western Gondwana evolution. Chapter 6 discusses the crustal 

architecture of the Falkland Plateau as constrained by seismic reflection, 

gravity, and magnetic data, gravity modelling and inversion, and deforming 

plate modelling. Chapter 7 is the thesis discussion and summarises the findings 

from the three results chapters, presents updated reconstructions of south-
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western Gondwana that incorporate the Falkland Plateau revised architecture, 

and addresses the research questions posed in Section 1.2. 

As stated in the declaration, Chapter 4 has been published in the Journal of the 

Geological Society and subsequently incorporated in the thesis with several 

minor changes, and Chapter 5 has been accepted for publication in Gondwana 

Research and subsequently edited to be included in the thesis. 
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Chapter 2 Geological background 

Each results chapter (Chapters 4-6) will have a separate section on the 

geological background relevant to the topic analysed and discussed. This 

chapter will focus on the geological concepts used, regional geology, and 

details of the local geology not presented within the chapters themselves. 

2.1 Transform settings 

2.1.1 Transform margins 

Transform margins are defined as the transition between continental and 

oceanic crust across a transform fault (Mercier de Lépinay et al., 2016). 

Laterally, they are delimited by divergent margins and their meeting points are 

known as inner and outer corners (Figure 2.1). The initiation of the controlling 

transform fault can vary from margin to margin and can pre-date the formation 

of oceanic crust (Basile, 2015) or form simultaneously (Taylor et al., 2009). It 

was previously considered that these faults exploit areas of crustal weakness, 

developing along older structures as shown by examples in the Gulf of Aden, 

the Gulf of Suez, the East African Rifts (Bellahsen et al., 2013), and Nigeria 

(Wright, 1976), but there are numerous cases where the transform faults cut 

across previous structures (the Agulhas-Falkland Fracture Zone as shown by 

Ben-Avraham et al., 1993; fracture zones in the Equatorial Atlantic as 

described by Basile et al., 2005). 

The evolution of transform margins can be summarized in three stages: 1) 

intra-continental shearing, when anastomosing strike-slip faults develop 

(Scrutton, 1979; Benkhelil et al., 1995; Antobreh et al., 2009), which can be 

associated with rotation of continental blocks (Mascle and Blarez, 1987; 

Lorenzo et al., 1991; Figure 2.1a); 2) continent – ocean active transform 

faulting, or the active transform margin stage (Basile, 2015), when the 

spreading centre and further hot oceanic lithosphere is juxtaposed against cold 

continental lithosphere, resulting in thermal isostasy. This stage can also be 

accompanied by volcanism (magmatic intrusions and/or lava flows) (Lorenzo et 

al., 1991; Benkhelil et al., 1995; Berndt et al., 2001; Bird, 2001; Figure 2.1b); 3) 

continent – ocean contact across an inactive transform fault, or the passive 

transform margin stage (Basile, 2015), when both the continental and oceanic 

crust cool down, but at different rates, leading to differential subsidence 
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(Lorenzo and Wessel, 1997; Figure 2.1c). The amount of mechanical coupling 

between the adjacent continental and oceanic plates acts as a constraint for 

the thermal uplift and subsequent differential subsidence (Lorenzo and Wessel, 

1997; Lorenzo, 1997; Basile et al., 1998).  

 

Figure 2.1 Three stage model for transform margin formation (after 
Mascle and Blarez, 1987; Lorenzo, 1997); a) intra-continental 
shearing; b) continent-ocean active transform fault stage; c) passive 
transform margin stage 

During the evolution of transform margins, vertical movements on both sides of 

the transform fault can lead to a complex tectono-stratigraphy and the 

generation of marginal ridges (Basile, 2015; Mercier de Lépinay et al., 2016). A 

consensus on the formation of the latter is yet to be reached, but three potential 

mechanisms have been proposed:  

1. thermal uplift induced in the continental lithosphere by juxtaposition 

against the spreading ridge (Scrutton, 1979; Mascle and Blarez, 1987). 

However, there is little known on the stability of a ridge generated in this 

manner. Furthermore, Nemčok et al. (2013) argues that modelled 

thermal uplift is significantly less than what has been observed. This, in 

combination with the expected subsequent cooling stage of the 

lithosphere, raises questions around this process as the main 

mechanism of marginal ridge formation (Basile, 2015);  

2. flexural processes caused by erosion during the intra-continental and 

continent-ocean stages (Basile and Allemand, 2002), similar to uplift of 

rift shoulders due to unloading. The lack of response observed at the 

Moho level represents one of the drawbacks of this model (Basile, 
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2015). Furthermore, other studies argue against a significant flexural 

response to unloading along transform faults (Nemčok et al., 2016); 

3. crustal thickening due to transpression along the transform fault (Attoh et 

al., 2004) and/or underplating (Lorenzo et al., 1991), or the transport and 

juxtaposition of thicker continental blocks against the transform fault (Le 

Pichon and Fox, 1971). Most observations, however, do not support the 

presence of a thickened crust beneath the marginal ridges (Basile, 

2015).  

The volcanic activity associated with transform margins varies with location, 

and its timing in the transform evolution remains debated (Berndt et al., 2001; 

Loncke et al., 2020). Lava flows, magmatic intrusions, and underplating have 

been documented along some transform margins (i.e. Exmouth Plateau in 

Mutter and Larson, 1989; Lorenzo et al., 1991, Vøring Plateau in Berndt et al., 

2001; see Figure 1.1 for location). The uncertainties come from the 

interpretation of the effect of the cooler continental crust on the melt production. 

The dynamic model of Mutter et al. (1988) argues for the formation of 

secondary convection cells in the upper mantle due to the juxtaposition of hot 

oceanic crust against colder continental crust. This could lead to more melt 

production and emplacement on the continental side even in the later stages of 

transform margin evolution (Lorenzo et al., 1991), rather than only during rifting 

when melt is generated through decompression (Mutter and Larson, 1989). In a 

second interpretation, the thermal gradient occurring across the transform fault 

would result in a temperature decrease in the upper mantle and, thus, in lower 

melt production (Berndt et al., 2001). 

2.1.2 Transform marginal plateaus 

In some instances, transform margins are associated with deep and extensive 

submarine plateaus bounded to one side by the transform fault (e.g. Falklands, 

Agulhas, Vøring,  South Tasman Plateau/Rise, Walvis, Rockall, Demerara, 

Guinea, Exmouth; see Figure 1.1 for location; Mercier de Lépinay et al., 2016). 

These have been termed transform marginal plateaus (sensu Loncke et al., 

2020) and are normally associated with several deformational stages prior to 

transform margin formation (Mercier de Lépinay et al., 2016). The polyphase 

evolution of transform marginal plateaus results in even more complex 

structural and crustal architectures when compared to typical transform 

margins. Depending on their pre-transform deformation history, the plateaus 

can consist of extended continental crust with (Lorenzo et al., 1991; Berndt et 

al., 2001; Evain et al., 2015; Fromm et al., 2017) or without (Sage et al., 2000; 
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Parsiegla et al., 2007, 2009) significant magmatic additions, or a mosaic of 

continental and oceanic crust (Ewing et al., 1971; Evain et al., 2015; Fromm et 

al., 2017; Schimschal and Jokat, 2017). The volcanism associated with them 

can be varied, and can pre-date (be coeval with pre-transform rifting stages), 

be synchronous with, or post-date transform margin development (Lorenzo et 

al., 1991; Benkhelil et al., 1995; Berndt et al., 2001; Schimschal and Jokat, 

2017; Loncke et al., 2020). The fault networks documented along transform 

marginal plateaus show a marked variability due to their multi-stage evolution, 

but a common factor is represented by the wrenching component which can 

result in transpressional (e.g. folds, reverse faults), transtensional (e.g. normal 

faults, pull-apart basins), and en-échelon geometries (Basile et al., 1993, 2013; 

Benkhelil et al., 1995; Pryer et al., 2002; Antobreh et al., 2009; McHarg et al., 

2018; I’Anson et al., 2019). 

2.1.3 Intra-continental shearing 

The incipient stages of transform margin formation, represented by intra-

continental shearing, is of particular interest, as it is accompanied by significant 

deformation. Aside from leading to the development of transform margins, this 

style of deformation can occur in a variety of settings, along any lithospheric 

plates moving horizontally past each other (Basile and Allemand, 2002). 

Analogue settings can be found in areas like the San Andreas Fault and the 

Dead Sea Transform (Mascle and Blarez, 1987; Weber et al., 2009). The 

regions affected by shearing can be tens to hundreds of kilometres wide and, 

depending on the underlying structural grain of the affected regions, can 

comprise areas of releasing and restraining bands, and anastomosing faults, 

which give rise to separations of blocks that can undergo vertical-axis rotations 

during the lateral movement along the faults (Mascle and Blarez, 1987; 

Jackson and Molnar, 1990; Platt and Becker, 2013; Ingersoll and Coffey, 

2017). The deformation can be trans-crustal, as seen in the case of the Dead 

Sea Transform and the San Andreas Fault (Weber et al., 2004, 2009). The 

isolated blocks can vary in areal extent from tens to hundreds of thousands of 

km2 and be restricted to the upper, brittle crust (crustal blocks; Scrutton, 1979; 

Jackson and Molnar, 1990; Ingersoll and Coffey, 2017), or be bound by 

lithospheric structures and consist of completely separated microplates 

(Nemcok et al., 2016). The amount of vertical-axis rotation varies and, 

depending on the mechanistic explanation invoked for the rotation, can account 

for complex structural architectures as detailed in the next section. 
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2.2 Deformational models for blocks undergoing vertical-axis 

rotations 

Besides transform or strike-slip settings, tectonic vertical-axis rotations can 

occur in divergent and convergent environments as well (Lamb, 1987; Giorgis 

et al., 2004) but this section will mostly focus on wrenching-related motion. 

Several models have been proposed to explain the mechanism of the rotation 

in shear zones and the deformation expected within the rotated blocks and 

surrounding areas (Beck, 1976; Garfunkel and Ron, 1985; McKenzie and 

Jackson, 1986; Nelson and Jones, 1987; Peacock et al., 1998). These can be 

loosely grouped into three main categories: 

1. Discrete (rigid) models use the concept of bookshelf tectonics to explain 

block rotations in shear zones. The blocks are bounded by strike-slip 

faults of opposing kinematics to the main shear zone and behave rigidly 

during the rotation (Ron et al., 1984; Garfunkel and Ron, 1985; 

McKenzie and Jackson, 1986; Figure 2.2b). 

2. Continuous models consider that the lithosphere behaves like a viscous 

layer and no discrete faulting is accommodating the rotation (England et 

al., 1985; Nelson and Jones, 1987; Kimura et al., 2004; Kimura et al., 

2011; Figure 2.2c) 

3. Quasi-continuous models incorporate the rest of the models in which 

deformation within the upper and lower crust is accommodated 

differently during rotation or intra-block deformation is represented by 

discrete faulting (Figure 2.2d-f). These include: i) the small blocks model 

of Nelson and Jones (1987) and Sonder et al. (1994) where upper crust 

fragmentation and rotation due to ductile deformation of the substratum 

increases towards the shear zone, ii) the ball bearing model of Beck 

(1976) where rigid, rounded to sub-rounded blocks rotate freely between 

strike-slip faults above a ductile substratum, and iii) the model of 

Peacock et al. (1998) which shows similarities to the bookshelf tectonics 

but argues for a high degree of discrete small-scale intra-plate 

deformation accommodating large block rotations (Figure 2.2d-f).  
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Figure 2.2 Kinematic models for block rotation in strike-slip systems; a) 
undeformed state; b) discrete (rigid) model (after Ron et al., 1984; 
Garfunkel and Ron, 1985; McKenzie and Jackson, 1986); c) 
continuous model (after England et al., 1985; Nelson and Jones, 
1987); d) quasi-continuous model with deformation increasing 
towards the fault plane (after Nelson and Jones, 1987; Sonder et al., 
1994); e) quasi-continuous ball-bearing model (after Beck, 1976); f) 
quasi-continuous model showing four styles of discrete intra-block 
deformation (after Peacock et al., 1998) 

Although numerous studies demonstrate the applicability of each of these 

models (Figure 2.3; Peacock et al., 1998; Platt and Becker, 2013; Ingersoll and 

Coffey, 2017; Horst et al., 2018), it is unclear if they can be used to explain the 

rotation and deformation of microplates where the driving mechanisms may 

vary. Studies on rotating oceanic microplates, either in strike-slip or rift 

systems, show a predominance of the edge-driven mechanism, where coupling 

with the surrounding plates acts as the driving force for rotation (Schouten et 

al., 1993 and references therein; Searle et al., 1993). However, there are 

instances where basal drag from the upper mantle can affect this rotation, as in 

the case of the Easter microplate (Neves et al., 2003). Intra-plate deformation 

adhering to the mechanistic model of Ron et al. (1984) and Garfunkel and Ron 

(1985) has been documented in the Bismarck Sea (Figure 2.3a, b; Martinez 

and Taylor, 1996), but it is not certain if larger and/or continental microplates 

behave in the same way. The added force exerted by upper mantle drag, along 

with the crustal anisotropy expected along most continental microplates due to 

inheritance, can influence the way the deformation is accommodated during 

rotation (Glerum et al., 2020).  
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Figure 2.3 Example of block rotations; a) and b) show different stages of 
counter-clockwise rotation of the Manus Microplate (modified after 
Martinez and Taylor, 1996); c), d) and e) show different stages of 
clockwise rotation of the Eastern Transverse Ranges (modified after 
Ingersoll and Coffey, 2017); f) block fragmentation and clockwise 
rotations in Northern Iceland (modified after Horst et al., 2018) 

The sizes of the blocks and microplates mentioned in this section vary between 

several tens of km2 to 1.6 x 105 km2, and underwent rotations of up to 90° 

(Santa Catalina in Luyendyk et al., 1985; Martinez and Taylor, 1996; Neves et 

al., 2003; Ingersoll and Coffey, 2017) or even more for blocks under 10 km2 

(Horst et al., 2018). The rotations occurred (or still occur in some cases) in 

strike-slip, rift (but predominantly bounded by transform and strike-slip faults), 

or back-arc settings (between transforms accommodating back-arc rifting), and 

the driving mechanism along with the intra-plate/block deformation due to 

rotation for these examples can provide insights into the general processes that 

lead to microplate rotation and structures that accommodate intra-plate 

deformation.  

Understanding transform margins in general and the behaviour of smaller 

blocks or sub-plates is crucial in understanding the processes occurring during 

continental break-up. Vertical-axis rotations of blocks and microplates during 

transform margin development has been invoked for the fragmentation and 

dispersal of Gondwana, and the following section focuses on the area between 

South America, Africa, and Antarctica which, as will be evidenced, was the 

locus of extensive wrenching-related deformation. 
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2.3 The evolution of the south-western Gondwana  

Following the intermittent orogeneses along the southern margin of Gondwana, 

a pervasive structural fabric was generated, following the trends of Sierra de la 

Ventana (South America), Cape Fold Belt (Africa), D1 fold belt in the Falkland 

Islands, and Ellsworth and Pensacola Mountains (Antarctica) (Figures 2.4 and 

2.5; Du Toit, 1927; Hälbich, 1993; Trouw and De Wit, 1999; Curtis, 2001). 

These mountainous belts were part of the Permo-Triassic Gondwanide 

orogeny, controlled at depth by an intra-crustal mega-décollement (Paton et al., 

2006; Lindeque et al., 2011; Pángaro and Ramos, 2012; Stanca et al., 2019). 

On the South American side, the orogenesis was preceded by the accretion of 

several terranes throughout the Paleozoic: Pampia, Cuyania, Chilenia, 

Paracas, and Patagonia (Pankhurst and Rapela, 1998; Pankhurst et al., 2006; 

Ramos, 2008; Ramos et al., 2010). In Africa, several episodes of contraction 

and extension preceded the formation of the Cape Fold Belt, which included 

the Namaqua-Natal and Pan-African orogeneses (Shone et al., 1990; Hälbich, 

1993; Thomas et al., 1993; Veevers et al., 1994). The accretion of several 

terranes (Wilson, Bowers, Robertson Bay) prior to the Gondwanide Fold and 

Thrust Belt formation occurred in Antarctica as well during the Ross Orogeny 

(Trouw and De Wit, 1999; Collinson et al., 2006). The resulting structural fabric 

played an important role in the subsequent break-up and dispersal of 

Gondwana (Macdonald et al., 2003). 

The driving mechanism for the initiation of fragmentation of Gondwana, and 

supercontinents in general, is still disputed. The presence of mantle plumes 

impinging on continental lithosphere and far-field drag along subduction zones 

have been postulated by most studies (Sengör and Burke, 1978; Storey, 1995; 

Lovecchio et al., 2020). Extensive volcanism occurring in south-western 

Gondwana prior to and during its fragmentation (e.g. Karoo-Ferrar, Central 

Atlantic Magmatic Province, Chon Aike magmatic province, Paraná-Etendeka 

flood-basalt province; Figure 2.5; Encarnación et al., 1996; Pankhurst et al., 

1998; Marzoli et al., 1999; Trumbull et al., 2007; Hastie et al., 2014; Foulger, 

2018) has been related to rifting initiation. However, a control of far-field 

stresses (e.g. drag at the Panthalassa Ocean – SW Gondwana subduction 

zone) is considered by other authors to play an important part in the break-up 

of Gondwana (Storey, 1995; Peace et al., 2020). Here, the areas of interest are 

represented by the separation of East and West Gondwana and the opening of 

the southern South Atlantic. 
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2.3.1 The southern South Atlantic region 

The opening of the South Atlantic was a result of the Mesozoic fragmentation of 

south-western Gondwana. Continental break-up and generation of the first 

oceanic crust is believed to have occurred between the Barremian and 

Berriasian (126.5 – 138 Ma; Rabinowitz and Labrecque, 1979; Nürnberg and 

Müller, 1991; Channell et al., 1995; Jokat et al., 2003; Heine et al., 2013; Collier 

et al., 2017). The rifting that preceded passive margin formation propagated 

northwards (Rabinowitz and Labrecque, 1979), and the intra-plate deformation 

that accommodated the extension shows significant lateral variability and a 

strong pre-Jurassic tectonic inheritance (Heine et al., 2013; Paton et al., 2016). 

Early extension in the southern South Atlantic region was accompanied in the 

Jurassic by the emplacement of the Chon Aike magmatic province in Patagonia 

(Figure 2.5; Pankhurst et al., 1998) and followed an oblique to sub-

perpendicular trend to the subsequent mid-Atlantic ridge, believed to be related 

to the pre-existent structural fabric. A reactivation in an extensional regime of 

the Paleozoic to Triassic thrusts resulted in Triassic (?) to Early Cretaceous 

sedimentary basins, bounded by faults trending NW-SE to WNW-ESE, 

developing across South America (Uliana et al., 1989; Lovecchio et al., 2020) 

and southern Africa (Muntingh, 1993; Paton and Underhill, 2004). The control 

of the Gondwanide orogeny on the way extension was accommodated across 

the two major plates is readily visible in the changes in strike between the 

Colorado, Orange, and Outeniqua basins (Muntingh, 1993; Paton and 

Underhill, 2004; Pángaro and Ramos, 2012; Paton et al., 2016) occurring at the 

Colorado, Garies, Cape, and Port Elizabeth oroclinal bends of the Permo-

Triassic fold and thrust belt (Figure 2.4; De Beer, 1992; De Beer, 1995; 

Johnston, 2000; Pángaro and Ramos, 2012; Paton et al., 2016). Sedimentary 

basins following a more NNW-SSE trend formed along the western margin of 

South America (parallel to the south-western margin of Gondwana; Figure 2.4) 

and were related to retroarc extension (Lovecchio et al., 2020). A more N-S 

oriented trend developed along the western margin of southern Africa, which 

was controlled by the Pan-African fabric, and resulted in the Early Cretaceous 

opening of the South Atlantic (Uchupi, 1989; Maslanyj et al., 1992; Mohammed 

et al., 2017). The early stages of break-up in the southern South Atlantic are 

believed by several authors to have included clockwise rotation of the Falkland 

Islands of up to 180° (Adie, 1952a; Mitchell et al., 1986; Taylor and Shaw, 

1989; Marshall, 1994; Thomson, 1998; Storey et al., 1999; Trewin et al., 2002; 
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Macdonald et al., 2003), and of the Deseado and North Patagonia massifs by 

~20°-50° and ~25°-30°, respectively (Geuna et al., 2000; Somoza et al., 2008). 

 

Figure 2.4 Early-Mid Jurassic South Atlantic reconstruction showing main 
fault trends along the South American plate and the Gondwanide 
orogeny trend (modified after Lovecchio et al., 2020); AP – Antarctic 
Peninsula; AU – Austral Basin; Be – Bermejo; CA – Cañadón Asfalto 
Basin; Cu – Cuyo; DM – Deseado Massif; FPB – Falkland Plateau 
Basin; GFTB – Gondwana Fold and Thrust Belt; LR - La Ramada; Ma 
– Malvinas Basin; MEB – Maurice Ewing Bank; NPM – North 
Patagonian Massif; Nq – Neuquén basins; PSB - Patagonian 
Subcordilleran Batholith; Q-M - El Quereo-Los Molles basin; SJ – 
San Julian Basin; S Jo – San Jorge Basin; stars indicate locations 
with absolute ages for volcanic rocks; TPG – Trinity Peninsula Group 

The significant amounts of intra-plate deformation that affected the South 

American and African plates prior to and during the break-up of Gondwana 

have been integrated variously in numerous South Atlantic plate models, 

particularly when it comes to South America (Figures 2.5 and 2.6). Since the 

rigid reconstruction of Bullard et al. (1965), several ways of fragmenting and 

deforming the South American plate have been postulated (Lawver et al., 1999; 

Macdonald  et al., 2003; König and Jokat, 2006; Torsvik et al., 2009; Heine et 

al., 2013; Müller et al., 2019). A few of these reconstructions require the 

existence of a number of trans-continental strike-slip zones to account for a 

close fit between the southern part of South America and southern Africa 
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(Lawver et al., 1999; Macdonald et al., 2003; König and Jokat, 2006; Torsvik et 

al., 2009). The most controversial of these is the dextral Gastre Fault System, 

which was considered the onshore continuation of the Agulhas-Falkland 

Fracture Zone (Rapela and Pankhurst, 1992) along which South America 

drifted away from Africa. However, no evidence of Mesozoic dextral activity 

was found in subsequent studies (von Gosen and Loske, 2004).  

 

Figure 2.5 Early Jurassic Gondwana configuration; terranes in South 
America after Ramos et al. (2010) and Santos et al. (2019); cratons 
and orogens in Africa after Van Hinsbergen et al. (2011); cratons and 
orogens in Antarctica after Harley and Kelly (2007); Chon Aike after 
Pankhurst et al. (2000); Karoo-Ferrar large igneous province extent 
after Stone (2016); Gastre Fault and future Weddell Sea ridge 
positions after König and Jokat (2006); CA – Chon Aike; CB – 
Colorado Basin; DM – Deseado Massif; EWM – Ellsworth Whitmore 
Mountains; F – Ferrar; FP – Falkland Plateau; GFS – Gastre Fault 
System; K – Karoo; MEB – Maurice Ewing Bank; NPM – North 
Patagonian Massif; OB – Outeniqua Basin; OrB – Orange Basin; SB – 
Salado Basin; SJB – San Jorge Basin; Falkland Islands position [1] 
after Müller et al. (2019) and [2] after Trewin, et al. (2002); plate model 
after Müller et al. (2019); pre- and post-glacial palaeocurrent 
directions from Johnson (1991) and Trewin et al. (2002); ice flow 
directions from Frakes and Crowell (1967), Frakes and Crowel (1969) 
and Crowell and Frakes (1972) 

Besides extensional episodes related to the fragmentation of Gondwana across 

the South American plate (e.g. Colorado, Salado, San Jorge, San Julian 
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basins; Uliana et al., 1989; Fitzgerald et al., 1990; Homovc and Constantini, 

2001; Lovecchio et al., 2018, 2020), several compressional episodes were also 

documented throughout Jurassic and during the Cenozoic across Patagonia 

(Fitzgerald et al., 1990; Naipauer et al., 2012; Navarrete et al., 2016, 2019). 

This makes a plate model representation of the behaviour of South America 

more challenging. 

 

Figure 2.6 Examples of models for the fragmentation and configuration of 
South America and Weddell Sea; modified and/or drawn after König 
and Jokat (2006), Torsvik et al. (2009), and Eagles and Eisermann 
(2020); rectangle in middle inset – approximate extent of plate 
configuration after Eagles and Eisermann (2020); AFFZ – Agulhas 
Falkland Fracture Zone; ANP – Antarctic Peninsula; FI – Falkland 
Islands; FRS - Filchner-Ronne Shelf; GFS – Gastre Fault System; 
MEB – Maurice Ewing Bank; THU - Thurston Island 

2.3.2 The evolution of the Antarctic blocks 

The separation of eastern and western Gondwana, along with the events that 

led to it remain uncertain. There is a wide range of dates (between 165 Ma and 

183 Ma) for the drift initiation of Antarctica provided by several studies based 

on correlations of magnetic reversal isochrons, regional fracture zones, and 

magmatic and volcanic flow and intrusions analysis (Coffin and Rabinowitz, 

1987; Reeves and De Wit, 2000; Marks and Tikku, 2001; König and Jokat, 

2006; Jourdan et al., 2007; Eagles and König, 2008). However, early signs of 

this fragmentation occurred during the Early Permian formation of the Karoo 

rifts (Macgregor et al., 2018). Extensive volcanism occurred during the Early 

Jurassic (174-190 Ma; Riley et al., 2005; Jourdan et al., 2007; Klausen, 2009) 

resulting in the formation of the Karoo-Ferrar large igneous province (Figure 

2.5; Macdonald et al., 2003; Jourdan et al., 2007; Peace et al., 2020). This 

episode of magmatism led to the intrusion of several dyke swarms and lava 

flow emplacement onshore Africa and East Antarctica (Encarnación et al., 



 
 

23 

 

1996; Riley et al., 2005; Jourdan et al., 2007; Klausen, 2009; Hastie et al., 

2014). 

The subsequent Jurassic rifting did show some reactivation of the Permian 

structures (Papini and Benvenuti, 2008), although this was not the predominant 

case along the entire eastern margin of Africa (Macgregor et al., 2018). The 

drift of East Antarctica was preceded by intense deformation occurring between 

East and West Antarctica, in the Weddell region. The Ellsworth Whitmore 

(Mountains) Terrane (Figure 2.5) was interpreted to have undergone ~90° of 

counter-clockwise rotation before 180-175 Ma (Watts and Bramall, 1981; 

Grunow et al., 1987; Curtis and Storey, 1996; Martin, 2007). Extension 

between the Antarctic Peninsula and East Antarctica between ~178 and ~155 

Ma resulted in the formation of the Weddell Sea rift system and its two North 

and South Weddell Magnetic Provinces (SWMP, NWMP; Grunow, 1993; 

Jordan et al., 2017; Riley et al., 2020). Roughly N-S wrenching between East 

and West Gondwana (Figure 2.4; König and Jokat, 2006) is believed to have 

generated an area of weakness (dashed line along future Weddell Sea rift axis 

in Figure 2.5), potentially affecting the subducting Panthalassan plate from the 

south-west, that controlled the location of the subsequent rifting occurring 

between East Antarctica and SW Gondwana (Lovecchio et al., 2019). 

Continued extension in the Weddell region led to break-up and oceanic crust 

formation in the Weddell Sea at ~147 Ma (König and Jokat, 2006). A more 

recent study argues for a more complex tectonic evolution of the Weddell 

region where the southern part of the Antarctic Peninsula and the Weddell 

Embayment are part of a separate Skytrain plate (Figure 2.6) that started rifting 

away from the Falkland Plateau at the end of the Early Jurassic (Eagles and 

Eisermann, 2020). This model postulates a development of the South Georgia 

block along the boundary between the Skytrain plate and west Gondwana, 

which contrasts with previous interpretations of the island originating off the 

south-east coast of Tierra del Fuego (Dalziel et al., 1975, 2013, 2021; 

Macdonald et al., 1987). 

The configuration and timing of break-up and dispersal of south-western 

Gondwana remain uncertain despite numerous studies (Grunow et al., 1987; 

Curtis and Storey, 1996; Marks and Tikku, 2001; Jokat et al., 2003; König and 

Jokat, 2006; Eagles and König, 2008; Torsvik et al., 2009; Heine et al., 2013; 

Collier et al., 2017; Riley et al., 2020). Questions about the pre-break-up 

configuration of the South Atlantic (i.e. intra-plate deformation along South 

America, South America – Africa fit, movement along the AFFZ) and East-West 
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Antarctica remain, as evidenced by various current interpretations of their 

evolution (Macdonald  et al., 2003; König and Jokat, 2006; Torsvik et al., 2009; 

Heine et al., 2013; Müller et al., 2019; Eagles and Eisermann, 2020). The 

region sitting between Africa, South America, and Antarctica is represented by 

the Falkland Plateau and understanding its tectonic evolution is key to 

addressing these questions. 

2.4 Geological setting of the Falkland Plateau 

 

Figure 2.7 Mesozoic structural framework of the South American margin; 
offshore fault network for the Falkland Plateau compiled after 
Richards et al. (1996a), Richards and Fannin (1997), Cunningham et 
al. (1998), Galeazzi (1998), Tassone et al. (2008), and Ramos et al. 
(2017); the structure of the San Jorge and El Tranquilo basins and 
the Deseado Massif redrawn after Fitzgerald et al. (1990), Figari et al. 
(2015), and Moreira and Fernández (2015); Deseado Massif and North 
Patagonian Massif extents drawn after Ramos et al. (2017); main 
fracture and subduction zones in South America drawn after Rapela 
and Pankhurst (1992); AFFZ – Agulhas-Falkland Fracture Zone; DM – 
Deseado Massif; GFS – Gastre Fault System; NPM – North 
Patagonian Massif; NSR – North Scotia Ridge; SCT – Southern Chile 
Trench; SFB – South Falkland Basin 

The fragmentation and dispersal of south-western Gondwana resulted in the 

formation of numerous sedimentary basins and structurally complex regions. 

The Falkland Plateau (FP) is one of the most prominent areas in the South 

Atlantic that developed during the break-up of the super-continent. 
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Understanding its evolution can offer key insights into processes related to 

break-up of supercontinents but also the development of transform margins. 

The plateau is located east of Argentina and comprises, from west to east, the 

following provinces: the Malvinas Basin, the Falkland Islands (FI) with the North 

Falkland Basin to the north and the South Falkland Basin to the south, the 

Falkland Plateau Basin (FPB), and the Maurice Ewing Bank (MEB; Figure 2.7). 

The plateau stretches ~2000 km between the South America coast and the 

Georgia Basin (Figure 2.7). An escarpment represented by the dextral Agulhas 

- Falkland Fracture Zone (AFFZ) delimitates the plateau to the north whereas to 

the south it terminates against the Falkland Trough and the North Scotia Ridge 

(NSR; Ludwig, 1983).  

 

Figure 2.8 Early Jurassic palaegeographic reconstructions of the Falkland 
Islands along with the corresponding reconstruction of the South 
American Plate; plate model for East and West Antarctica in the main 
map after Müller et al. (2019); plate model for the West Antarctic 
region in inset after Eagles and Eisermann (2020); GFS – Gastre 
Fault System; GFTB – Gondwana Fold and Thrust Belt 

The current morphology of the FP has been significantly influenced by the 

break-up of Gondwana and the opening of the Atlantic Ocean in the Mesozoic 

(Late Triassic – Late Cretaceous). Its pre-break-up position remains 

controversial. Early reconstruction models placed the Falkland Islands between 
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South America and South Africa (Du Toit, 1927-37), whereas recent studies 

advocate for a position of the FP immediately adjacent to the south-eastern 

African margin, in the Natal Valley (Figure 2.8; Adie, 1952a; Mitchell et al., 

1986; Marshall, 1994; Curtis and Hyam, 1998; Lawver et al., 1999; Macdonald 

et al., 2003). The behaviour of the FP during the fragmentation of Gondwana 

remains controversial as well, some arguing that it was accompanied by the 

rotation of the Falkland Islands, whilst others support an E-W or NE-SW 

directed extension of the plateau (Figure 2.8; König and Jokat, 2006; 

Schimschal and Jokat, 2019b; Eagles and Eisermann, 2020). 

2.4.1 Geology of the Maurice Ewing Bank 

The Maurice Ewing Bank marks the eastward termination of the FP. It consists 

of ~29 km thick continental crust (Schimschal and Jokat, 2019a). The 

lithologies of the bank were constrained by five DSDP sites (327, 329, 330, 

511, 512) and consist of an igneous-metamorphic complex unconformably 

overlain by Middle (?) Jurassic to Cenozoic sediments (Barker, 1977; 

Beckinsale et al., 1977; Lorenzo and Mutter, 1988). The basement lithologies 

have been dated (Rb-Sr) at 399±10 Ma - 535±66 Ma and are similar in 

composition to the Cape Meredith Complex in southern West Falkland, their 

difference in age being interpreted as a result of re-crystallisation (Beckinsale 

et al., 1977; Tarney, 1977). More recent U-Pb and Lu-Hf zircon isotopic 

analysis confirmed the correlation with the Cape Meredith Complex and yielded 

ages of 1006±13 Ma – 1233±8 Ma (Chemale et al., 2018). Recent petrological 

and geochemical studies support affinities of the Maurice Ewing Bank to the 

Kalahari Craton in Africa and its origin in the Namaqua-Natal-Maud belt 

(Vargas et al., 2021). 

2.4.2 Geology of the Falkland Islands 

The FI represent the only area of FP situated above sea level, and their 

stratigraphy and structural features have been thoroughly studied by Curtis and 

Hyam (1998), Aldiss and Edwards (1999), and references therein. The 

sedimentary deposits cropping out onshore the islands are all Paleozoic. 

However, they are interpreted to underlie the sedimentary basins offshore the 

islands, and a short review of their distribution will aid with the analysis of the 

basins. Furthermore, the Paleozoic succession has been affected by Paleozoic 

and post-Paleozoic deformation, which has controlled to some degree the style 

of deformation seen offshore the islands (Richards and Fannin, 1997), and 

intruded by Jurassic and Early Cretaceous dykes (Taylor and Shaw, 1989; 

Mussett and Taylor, 1994; Stone et al., 2008) of importance in understanding 
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stress configuration during this period. A complete review of the Falkland 

Islands onshore geology has been done by Stone (2016). 

2.4.2.1 Stratigraphy 

The main stratigraphic units of the FI are represented by the Cape Meredith 

Complex, the West Falkland Group, and the Lafonian Supergroup (Curtis and 

Hyam, 1998; Aldiss and Edwards, 1999). The Cape Meredith Complex is 

represented by Proterozoic gneisses that only crop out at Cape Meredith in the 

southernmost West Falkland (Curtis and Hyam, 1998; Stone, 2015). The 

complex was dated at 980 – 1100 Ma using K-Ar and Rb-Sr methods 

(Cingolani and Varela, 1976; Rex and Tanner, 1982 in Curtis and Hyam, 1998). 

These gneisses are unconformably overlain by the West Falkland Group, which 

covers the rest of the West Falkland, the northern part of the East Falkland, 

and Beauchêne Island (Aldiss and Edwards, 1999; Stone, 2015). This Siluro-

Devonian group consists of the arkosic sandstones and quartz conglomerates 

of the Port Stephens Formation (Curtis and Hyam, 1998). These are overlain 

by sandstones intercalated with shales and siltstones comprising the Fox Bay 

Formation and covered by the sandstones and mudstones of the Port Stanley 

Formation (Curtis and Hyam, 1998).  

 

Figure 2.9 Simplified stratigraphy of the Falkland Islands (after Aldiss and 
Edwards, 1999) 

The Permo-Carboniferous Lafonian Supergroup covers southern East Falkland, 

crops out locally on the eastern coast of the West Falkland (Figure 2.9), and 

consists of two groups: the Lower and Upper Lafonian Groups (Curtis and 
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Hyam, 1998). The former is represented by the Bluff Cove Beds glaciomarine 

deposits, the Lafonian Diamictite Formation or the Fitzroy Tillite Formation, and 

the Port Sussex Formation consisting of the organic-rich mudstones of the 

Black Rock Member and the mudstone-sandstone sequence of the Shepherds 

Brook Member (Curtis and Hyam, 1998; Aldiss and Edwards, 1999). The 

Permian Upper Lafonian Group is represented by an alternation of sandstones 

and shales of the Brenton Loch and Bay of Harbours formations (Curtis and 

Hyam, 1998). The differences in the units along the West and East Falkland 

have been associated with the presence of a major, long-lived NE-SW trending 

fault (the Falkland Sound Fault; Figure 2.10). This structure may have 

controlled the thicker deposition of the Lafonian Supergroup on East Falkland 

(Marshall, 1994; Curtis and Hyam, 1998; Aldiss and Edwards, 1999). 

2.4.2.2 Deformation phases 

Five deformation phases (D1 to D5) were identified across the FI and described 

in detail by Aldiss and Edwards (1999). The first phase (D1) is characterised by 

structures trending E-W (Figure 2.10) and affecting strata of up to Early 

Permian age (Aldiss and Edwards, 1999; Stone, 2016). D2 structures (Figure 

2.11), such as the Hornby Anticline and the Coast Ridge (West Falkland), along 

with D3 (Figure 2.12), trend roughly NE-SW and were associated with dextral 

NE-SW transpression (Aldiss and Edwards, 1999; Curtis and Hyam, 1998). 

Movement on the Falkland Sound Fault (Figure 2.10) is interpreted to control 

this dextral movement between East and West Falkland (Marshall, 1994; Curtis 

and Hyam, 1998; Aldiss and Edwards, 1999). However, there are few 

constraints on the amount and age of lateral movement that has occurred along 

this speculated fault. The inferred displacements along it vary between 3.3 km 

and 300 km (Thomas et al., 1997; Curtis and Hyam, 1998; Aldiss and Edwards, 

1999). The time of activity has been considered coeval with the D2 and D3 

deformation stages (Thomas et al., 1997; Curtis and Hyam, 1998; Aldiss and 

Edwards, 1999) although there have been authors arguing for a Mesozoic 

activity or Cenozoic reactivation (Thomas et al., 1997; Lawrence et al., 1999). 

Richards et al. (1996a) have postulated a continuation of the Falkland Sound 

Fault to the south based on gravity data but no evidence for it was found on 

seismic. The same authors related some of the faulting in the North Falkland 

Basin with movement along the Falkland Sound Fault. However, no evidence of 

this has been reported in the northern sedimentary basins along the strike of 

the Falkland Sound Fault by more recent studies (Lohr and Underhill, 2015; 

Stanca et al., 2019). The fourth phase of deformation (D4) consists of WNW-
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ESE striking thrusts and folds (Figure 2.13) (e.g. the Pebble Island Thrust, 

Sand Grass Thrust) affecting strata of the Port Stephens Formation and cross-

cut by the last extensional deformation stage (D5; Figure 2.14) (Aldiss and 

Edwards, 1999).  

Regarding the timing of deformation, deposits as young as Permian are 

affected by the D1 deformation (Curtis and Hyam, 1998; Stone, 2016) whereas 

Ar-Ar dating on fault zone micas carried by Hodgkinson (2002) yielded Permian 

ages. Early Jurassic dykes seem to cross-cut D4 structures (Figure 2.13) 

suggesting an older age for the latter (Aldiss and Edwards, 1999; Stone, 2016). 

D5 faults are considered the youngest as they were documented to displace D4 

thrusts and Early Jurassic dykes (Aldiss and Edwards, 1999). Based on these 

observations, the D1-D4 deformation stages were considered coeval with the 

Permo-Triassic Gondwanide orogeny, whilst the D5 was interpreted as being 

generated during the Mesozoic fragmentation of Gondwana (Stone, 2016). 

 

Figure 2.10 D1 structures (after Aldiss and Edwards, 1999) 
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Figure 2.11 D2 structures (after Aldiss and Edwards, 1999) 

 

Figure 2.12 D3 structures (after Aldiss and Edwards, 1999) 
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Figure 2.13 D4 structures (after Aldiss and Edwards, 1999) 

 

Figure 2.14 D5 structures (after Aldiss and Edwards, 1999) 

2.4.3 Geology of the Falkland Plateau basins 

The area offshore the Falkland Islands consists of four sedimentary basins: 

North Falkland Basin, Malvinas Basin, South Falkland Basin, and Falkland 

Plateau Basin. Their Mesozoic to Cenozoic sedimentary infill records 

deformation and isostatic changes related to the break-up of Gondwana which 

makes their analysis key to understanding the evolution of the Falkland Plateau 

during the dispersal of Gondwana. 
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2.4.3.1 Falkland Plateau Basin 

The Falkland Plateau Basin has undergone less exploration compared to the 

northern and western sedimentary basins surrounding the Falkland Islands. 

The crust type distribution under this basin is still subject to debate. Continental 

crust is interpreted nearshore and along the Maurice Ewing Bank (Beckinsale 

et al., 1977; Schimschal and Jokat, 2017, 2019a) but the architecture within the 

basin itself is yet to be confirmed. Several studies on seismic reflection, 

refraction and gravity data pointed towards either thinned and underplated 

continental crust or thick oceanic crust (Ewing et al.,1971; Lorenzo and Mutter, 

1988; Kimbell and Richards, 2008). More recent seismic refraction and 

aeromagnetic data have been used to argue for an oceanic nature of the FPB 

(Schimschal and Jokat, 2019b; Eagles and Eisermann, 2020).  

The contentious crustal architecture of the FPB is covered by up to 12 km of 

Jurassic (or older) to Recent deposits as characterised by seismic reflection 

and refraction data, gravity modelling, available DSDP sites and exploration 

wells (Barker, 1977; Richards et al., 1996a; Del Ben and Mallardi, 2004; 

Schimschal and Jokat, 2017). The sediment infill is bounded to the west by NE-

SW trending normal faults (Figures 2.15 and 2.16a) and is affected by 

Permo(?)-Jurassic normal faults in the more distal parts of the FPB (Lorenzo 

and Mutter, 1988; Richards et al., 1996a). However, the ages of the 

deformation postulated in these studies remain speculative due to a lack of well 

constraints.

2.4.3.2 North Falkland Basin 

The present-day structure of the North Falkland Basin (NFB) is the result of two 

rifting events: a Jurassic one that resulted in the opening of the Southern North 

Falkland Basin (SNFB) and an Early Cretaceous extensional episode during 

which the North Falkland Graben formed (Lohr and Underhill, 2015). The North 

Falkland Graben and its secondary half-grabens are superimposed on the 

Jurassic rift system and are bounded by N-S striking normal faults (Richards 

and Fannin, 1997; Lohr and Underhill, 2015). These transition southward to the 

NW-SE normal faults of the SNFB (Richards and Fannin, 1997) (Figure 2.15). 

As suggested by their geometries and shallow dips, the Jurassic normal faults 

are considered to have exploited older Palaeozoic thrust planes, their strike 

being associated with the Gondwanide orogeny (Richards et al., 1996a; 

Richards and Fanning, 1997; Bransden et al., 1999; Hodgkinson, 2002). The 

infill of the basins is considered to start with Jurassic to Valanginian fluvio-

lacustrine deposits. These transition to lacustrine and deltaic deposits, which 
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are unconformably overlain by fluvial to marine mudstones (Figure 2.16b; 

Richards and Hillier, 2000; Lohr and Underhill, 2015). 

2.4.3.3 South Falkland Basin 

The FPB connects to the SW to the South Falkland Basin (SFB), which 

separates the former from the Malvinas Basin (Figure 2.15; Richards et al., 

1996a). The SFB is an asymmetrical basin, plunging to the south where it 

terminates against the NSR (Figure 2.16c; Richards and Fannin, 1997). The 

SFB is affected by E-W trending normal faults that downthrow northward. 

These are interpreted as predominantly Jurassic to Early Cretaceous in age 

(Richards et al., 1996a). This normal fault trend is further complicated by 

widespread thrusting occurring in the southern part of the basin as a 

consequence of oblique compression along the North Scotia Ridge (Bry et al., 

2004). 

 

Figure 2.15 Falkland Plateau and the fault network in its basins (based on 
Richards et al., 1996a, Richards, 2002, Cunningham et al., 1998, 
Galeazzi, 1998, and Stone, 2016); extent and infill age of the 
sedimentary basins after Richards et al., 1996a 

2.4.3.4 Malvinas Basin 

The Malvinas Basin lies between the Falkland Islands to the east and the Rio 

Chico High to the west (Figure 2.15; Richards et al., 1996a). It has a complex 

structure represented by the superimposition of two fault trends along NW-SE 

and NE-SW directions (Galeazzi, 1998; Ghiglione et al., 2010; Baristeas et al., 

2013). The generation of these faults was correlated with back-arc extension 
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and the opening of the Weddell Sea, respectively (Baristeas et al., 2013). 

These faults were overprinted by Cenozoic E-W trending normal, thrust, and 

strike-slip faults (Galeazzi, 1998) affecting a thick sedimentary infill represented 

by Triassic to Cenozoic volcanics and fluvial to marine deposits (Figure 2.16d; 

Richards et al., 1996a; Lovecchio et al., 2019). 

 

Figure 2.16 Representative sections through the four sedimentary basins; 
a) Falkland Plateau Basin (modified after Richards et al., 1996a); b) 
North Falkland Basin (modified after Richard and Hillier, 2000 and 
Stone, 2016); c) South Falkland Basin (modified after Stone, 2016); d) 
Malvinas Basin (drawn from Lovecchio et al., 2019); approximate line 
locations shown in Figure 2.15 

2.4.4 Volcanism 

Evidence of volcanism has been documented both on- and offshore the 

Falkland Islands and related to different stages in the fragmentation of 

Gondwana. An understanding of the distribution of volcanic and magmatic 

elements can give indications on stress configuration and other processes 

related to the dispersal of Gondwana. 

Several dyke swarms were identified onshore the Falkland Islands (Figure 

2.17) based on field observations and aeromagnetic data (Taylor and Shaw, 

1989; Mussett and Taylor, 1994; Aldiss and Edwards, 1999; Stone et al., 2009). 

These follow three main trends as observed on aeromagnetic data (Stone et 

al., 2009), although bigger variations in directions were observed locally in 

Cape Orford, south-west West Falkland (Aldiss and Edwards, 1999). K-Ar and 

Ar-Ar dating has yielded Early Jurassic ages for E-W trending dykes and one 
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dyke from Cape Orford. Ages spanning the Jurassic were obtained for NE-SW 

trending dykes, and Early Cretaceous ages for N-S trending dykes (Mussett 

and Taylor, 1994; Stone et al., 2008). The Jurassic dykes were related to the 

emplacement of the Karoo-Ferrar magmatic province based on their petrology 

and geochemistry (Mitchell et al., 1999; Hole et al., 2016), whilst the 

Cretaceous swarm was interpreted as being coeval with the opening of the 

South Atlantic (Stone et al., 2008; Hole et al., 2016). Offshore, volcanic 

edifices, lava flows and/or plutonic bodies, and sills were interpreted based on 

seismic reflection, gravity, and magnetic data (Lorenzo and Mutter, 1988; 

Richards et al., 1996a, 2013; Barker, 1999; Schimschal and Jokat, 2017). 

 

Figure 2.17 Distribution of volcanism on- and offshore the Falkland 
Islands; on- and nearshore dykes drawn after Richards et al. (2013); 
free air gravity anomaly map from Sandwell et al. (2014) 

2.5 Palaeogeographic reconstructions of the Falkland Islands 

The present-day architecture of the Falkland Plateau and its subsequent 

evolution are a direct consequence of the original configuration of the Falkland 

Islands. The break-up of Gondwana and the separation of South America and 

the Falkland Plateau from Africa are interpreted by some authors to have been 

accompanied by the rotation of the Falkland Islands (Adie, 1952a; Mitchell et 

al., 1986; Thomson, 1998; Trewin et al., 2002). However, this tectonic evolution 
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model of the plateau is not unanimously accepted (Lawrence et al., 1999; 

Ramos et al., 2017; Eagles and Eisermann, 2020; Lovecchio et al., 2020). Two 

end-model reconstructions of the Falkland Islands are currently incorporated in 

the South Atlantic plate models (Macdonald et al., 2003; König and Jokat, 

2006; Müller et al., 2019), which significantly affect the interpretation of the 

tectonic history of the plateau (Figure 2.8).  

2.5.1.1 Rotational model 

Similarities between the D1 fold belt onshore the Falkland Islands and the 

Cape Fold Belt in South Africa and Sierra Australes in South America were first 

documented by Du Toit (1927). In his model, the islands were reconstructed off 

the coast of Cape of Good Hope (south-west South Africa; Figure 2.8) so that 

the Sierra Australes, the D1 fold and thrust belt, and the Cape Fold Belt formed 

a continuous feature (Du Toit, 1927). Further stratigraphic and structural 

analysis confirmed a correlation between the Cape Fold Belt and the Falkland 

Islands (Adie, 1952a). However, similarities between the Lafonian Supergroup 

onshore the Falkland Islands and the Karoo Basin in South Africa and 

correlation between ice flow directions between the two landmasses led Adie 

(1952a) to put forward a novel reconstruction of the islands off the coast of 

south-east South Africa and rotated by ~180° (Figures 2.8 and 2.18). 

Palaeomagnetic analyses carried out on Jurassic dykes (Mitchell et al., 1986; 

Mussett and Taylor, 1994) and on sedimentary successions of the Lafonian 

Supergroup (Thistlewood and Randall, 1998 in Stone, 2016), one aeromagnetic 

study (Stone et al., 2009), palaeontological, stratigraphic, structural, and 

palaeocurrent data (Marshall, 1994; Curtis and Hyam, 1998; Trewin et al, 2002) 

were used in support of this hypothesis where the islands were located ~200 

km away from Ecca Pass in South Africa, at a palaeolatitude between 42±6°S 

and 47±5°S (Figure 2.18; Mitchell et al., 1986; Trewin et al., 2002). 

The basement lithologies and metamorphic fabrics of the Cape Meredith 

Complex onshore West Falkland were correlated with the Namaqua-Natal-

Maud belt extending across South Africa and East Antarctica after the rotation 

of the FI (Thomas et al., 1997; Thomas et al., 2000; Jacobs et al., 1999; Jacobs 

et al., 2003; Jacobs and Thomas, 2004; Vorster et al., 2016). Detrital zircons of 

the same age as the Cape Meredith Complex were documented in south-

eastern South Africa (KwaZulu Natal) and interpreted to have been sourced 

from the Falkland Islands when in a rotated reconstruction (Vorster et al., 

2016). Based on fossil assemblages and palaeocurrent data, Adie (1952b; in 

Marshall, 1994), Curtis and Hyam (1998), and Trewin et al. (2002) correlated 
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the Devonian deposits of the West Falkland Group to the Bokkeveld Group in 

South Africa. Palaeocurrent directions towards the SSW documented in the 

pre-glacial deposits in South Africa matched the rotated towards NNE flow 

recorded in the West Falkland Group (Figures 2.5 and 2.18; Scasso and 

Mendia, 1985; Johnson, 1991; Curtis and Hyam, 1998; Trewin et al., 2002). 

The Fitzroy Tillite Formation deposits from the Falkland Islands were correlated 

with the Dwyka Group from South Africa (Frakes and Crowell, 1968; Curtis and 

Hyam, 1998), both consisting of Permo-Carboniferous glacial deposits with 

archaeocyathan fauna (Stone and Thomson, 2005). Ice flow directions from W-

SW to E-NE in the Fitzroy Tillite Formation (Frakes and Crowell, 1967) are 

consistent with the striae in South Africa (Crowell and Frakes, 1972) after a 

180° rotation of the islands and suggest a clast provenance from the 

Shackleton Limestone in East Antarctica (Figures 2.5 and 2.18; Stone and 

Thomson, 2005). The overlying Permian deposits of the Upper Lafonian Group 

have been correlated with the Ecca and Beaufort Groups in South Africa based 

on stratigraphy, trace fossils, and sediment provenance (Figure 2.18; Trewin et 

al., 2002). Palaeocurrent directions for the post-glacial deposits show some 

variability compared to the ones recorded in South Africa oriented towards the 

NW, whilst in the Falkland Islands the documented flow was towards the WSW 

(Figure 2.5; Johnson, 1991; Trewin et al., 2002). The local variation of the 

sediment flow in the Falkland area was related to the presence of a depocentre 

related to an easterly downthrow of the Falkland Sound Fault (Trewin et al., 

2002). The structural style of the Falkland Islands and the vergence and ages 

of deformation are also in accordance with the ones in the Eastern Cape Fold 

Belt in South Africa prior to rotation (Adie, 1952a; Curtis and Hyam, 1998).  

The rotation of the Falkland Islands is interpreted to have occurred in stages: 

120o prior to the South Atlantic opening and 60o during the opening of the 

ocean (Mitchell et al., 1986). Taylor and Shaw (1989), Ben-Avraham et al. 

(1993), and Storey et al. (1999) suggested that the islands rotated only 105o 

before the Atlantic opening. The rotational model requires that the FI are part of 

a microplate that underwent isolated movements during the break-up of 

Gondwana (the Falkland Islands Microplate – FIM; the Falkland Platform of 

Marshall, 1994; the Falkland Islands Block of Storey et al., 1999; the Lafonia 

Microplate of Ben Avraham et al., 1993 and Dalziel et al., 2013). As mentioned 

in section 2.1.3, a microplate is bounded by trans-lithospheric structures (plate 

boundaries). The FIM is believed to be delimited to the north by the AFFZ 

(Marshall, 1994; Richards et al., 1996b), to the south by the North Scotia 

Ridge, and to the east by the NE-SW striking fault bounding the FPB to the 
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west (Richards et al., 1996b). The western extent of the micro-plate remains 

uncertain, although Marshall (1994) placed the limit between the FI microplate 

and Argentina along a high-velocity ridge described by Ludwig et al. (1968). 

Storey et al. (1999) and Macdonald et al. (2003) believe that the microplate is 

confined to the area of high free air gravity anomalies and does not reach the 

AFFZ in the north. Although there are uncertainties regarding the scale of the 

eastern and western boundaries, the area comprising the Falkland Islands will 

be referred to as microplate or microcontinent (a microplate consisting of 

continental crust) throughout the thesis. The term block will be used as a 

general term when the nature of boundaries is unknown (i.e. restricted to the 

upper crust or lithospheric). 

 

Figure 2.18 Rotated Early Jurassic reconstruction of the Falkland Islands 
showing stratigraphical correlations with onshore South Africa after 
Trewin et al. (2002); the PBOCB is based on gravity data and drawn 
after Lawver et al. (1999) and Macdonald et al. (2003); south-western 
Gondwana configuration after Müller et al. (2019) 

Another requirement of the rotational model which positions the FI offshore 

East London (South Africa) pre-rotation is the existence of a (south) 

Patagonian plate that was, prior to the break-up of Gondwana, closer to South 

Africa than the rest of the South America (Figure 2.8). The boundary between 

this Patagonian plate and South America could be represented by a right-

lateral shear zone located north of the North Patagonian Massif, along the 

Huincul Fault (Ben-Avraham et al., 1993; Pankhurst et al., 2006; Mosquera and 
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Ramos, 2006). Rapela and Pankhurst (1992) argue for a southern Patagonian 

plate separated by the North Patagonian Massif by a dextral strike-slip fault - 

the Gastre Fault System (GFS; Figure 2.8) - the onshore equivalent of the 

AFFZ. The latter has been a recurring element of more recent reconstructions 

of South America (König and Jokat, 2006; Torsvik et al., 2009). However, field 

observation carried out along the Gastre Fault System do not support its dextral 

nature (von Gosen and Loske, 2004). 

Few authors have inferred a separation between the East and West Falklands 

reconstruction in a rotational model along the Falkland Sound Fault believed to 

run between the two main islands (Figure 2.10; Thomas et al., 1997). However, 

the displacement and timing of activity along this major structure has been 

difficult to constrain (Marshall, 1994; Richards et al., 1996a; Thomas et al., 

1997; Curtis and Hyam, 1998; Aldiss and Edwards, 1999). 

2.5.1.1.1 Timing of rotation 

The timing of potential FIM rotation has been highly debated over the decades. 

Based on the preliminary analysis of palaeomagnetic measurements on 

Jurassic dykes, Mitchell et al. (1986) argues for a rotation of the FIM of 120o 

occurring during the early stages of Gondwana break-up with further 60o 

occurring during the opening of the Atlantic. The paleomagnetic analysis 

carried by Taylor and Shaw (1989) suggests a 500 km southward translation of 

the FIM and a clockwise rotation of ~100o interpreted as being related to the 

rifting between Africa and Antarctica between 200-125 Ma. Marshall (1994) 

supports the theory of rotation prior to 130 Ma but places it after the onset of 

extension in the Falkland Plateau Basin as the geometry inferred for the FIM 

would not have allowed for rotation happening while the Falkland Plateau was 

still adjacent to the Agulhas Plateau (AP). However, Scrutton (1973) pointed 

towards an oceanic nature of the AP, giving it an age of formation after the 

westwards drift of South America. This theory is confirmed by recent seismic 

refraction and reflection studies (Gohl and Uenzelmann-Neben, 2001). 

Thomson (1998) argued for a Valanginian rotation of the islands based on 

correlations between the North Falkland and Outeniqua basins. However, no 

evidence of rotation was documented in the adjacent basins (Richards et al., 

1996a), which has led emerging studies to favour a rotation preceding the 

opening of the sedimentary basins offshore the Falkland Islands, but after (or 

during) the emplacement of the Early Jurassic dykes onshore the Islands 

(Storey et al., 1999). Barker (1999) suggested that the rotation and formation of 

the Falkland Plateau Basin occurred simultaneously between 190 Ma and 165 -
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160 Ma. Recent reconstruction models of Gondwana support the completion of 

the FIM rotation by 165 Ma (Macdonald et al., 2003). Recent Ar-Ar dating of the 

NE-SW and N-S trending FI dyke swarms carried by Stone et al. (2008) gave a 

time frame for rotation constrained to the Middle Jurassic (post-178 Ma). 

2.5.1.1.2 Mechanisms for rotation 

Taylor and Shaw (1989) associated the rotation of the FIM with dextral strike-

slip movement occurring between Africa and Antarctica in their early stages of 

rifting. N-S trending folds onshore the Falkland Islands along with the Hornby 

Mountains Anticline were interpreted as proof for this dextral motion between 

West and East Gondwana (Storey et al., 1999). A more recent study invokes 

dextral-transtension occurring between Antarctica and the Falkland Plateau 

prior to the opening of the Weddell Sea, due to the velocity of the southward 

drift of Antarctica overcoming the velocity of south-westward drift of Patagonia 

(König and Jokat, 2006). Differential movement occurring along the Gastre 

Fault System and the AFFZ is proposed as an alternative driving force for 

rotation by Marshall (1994). A synchroneity and correlation between the 

causative events for the opposite senses of rotation for the FIM and the 

Ellsworth Whitmore Mountains was suggested (Macdonald et al., 2003) and 

explained through a ‘double-saloon-door’ model (Martin, 2007). 

Several studies invoke mantle flow as driving the rotation of the FIM (Ben-

Avraham et al., 1993; Storey, 1995; Storey et al., 1999). Ben-Avraham et al. 

(1993) discuss the possibility that the large rotations affecting the microplates 

between East and West Gondwana, including the FIM, might be driven by 

mantle suction forces generated along the subduction front of West Gondwana 

(Figures 2.4 and 2.5) due to slab rollback. Late Triassic to Late Jurassic 

differential rollback along the south-western margin of Gondwana is supported 

by recent studies on coeval trenchward migration of magmatism along 

Patagonia and rotation in the extension direction along south-western 

Gondwana (Echaurren et al., 2017; Lovecchio et al., 2019, 2020). Doming 

above the Karoo plume followed by movement on a viscous substratum is 

invoked by Storey (1995) as a facilitator for the rotation, much like the 

interpretation suggested by Molnar and Gipson (1994; in Storey et al., 1999) in 

southern California. 

2.5.1.2 Rigid model 

The rotation model, however, is not unanimously accepted. Field studies on the 

Gastre Fault System point towards a late Permian sinistral strike-slip rather 
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than a dextral movement synchronous with the break-up of Gondwana 

(Franzese and Martino, 1998 in Ramos et al., 2017, Von Gosen and Loske, 

2004). In the absence of a structure along which Patagonia is reconstructed in 

a tight position to Africa, a rotation of the FIM would result in space being 

generated between the microplate and South America (Ramos et al., 2017). 

Inconsistencies in the palaeomagnetic measurements (Richards et al., 1996a, 

Hodgkinson, 2002), the wide range of rotations estimated from the modelling of 

aeromagnetic anomalies (Stone et al., 2009), the lack of a mechanism for the 

large rotation of a microplate the size of the FIM, and the lack of documented 

evidence offshore the islands resulted in several studies favouring a non-

rotational evolution of the Falkland Islands in which the Falkland Plateau is 

fixed to the South America plate and it underwent a rotation of only 60o during 

the opening of the South Atlantic (Figure 2.8; Lawrence et al., 1999, Ramos et 

al., 2017; Lovecchio et al., 2019; Eagles and Eisermann, 2020). 

Evidence supporting this model consists of zircon analysis results, which 

correlates the West Falkland Group with the Sierra Grande quartzites, their 

common source being considered the Deseado Massif (Ramos et al., 2017). 

Furthermore, archaeocyaths were discovered in the Sauce Grande Formation 

diamictite of the Ventania System, Argentina (Gonzáles et al., 2013) which was 

suggested as being coeval to the Fitzroy Tillite Formation by Ramos et al. 

(2017). However, no equivalent of the Permian Upper Lafonian Group was 

documented on the Patagonian side. The opposite vergence of the thrusts and 

folds onshore the Falkland Islands compared to the Cape Fold Belt is explained 

through the existence of similar south-verging structures in the north-eastern 

North Patagonian Massif (von Gosen, 2003), which led Ramos et al. (2017) to 

disagree with the requirement for a rotation of the Falkland Islands. The almost 

orthogonal trends identified along the North Falkland Basin (Lohr and Underhill, 

2015) were related to the opening of the NW-SE trending sedimentary basins 

on- and offshore South America (e.g. El Tranquilo, San Jorge, Río Mayo 

basins) and the N-S trending Península Valdes and Rawson basins (Ramos et 

al., 2017). 

The debate about the contentious rotation of the Falkland Islands is ongoing 

and hugely impacts the overall evolution of the Falkland Plateau and, in turn, 

the reconstruction of the south-western Gondwanan plates. Chapters 4-6 will 

be looking into evidence for the tectonism along the plateau as seen in the 

sedimentary basins north and south of the Falkland Islands. 
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Chapter 3  Data and methodology 

3.1 Data 

This project was based on the analysis of open-source gravity data, magnetic 

data courtesy of the Alfred Wegener Institute, well and seismic reflection data 

courtesy of the Falkland Islands Government, and open-source well and 

seismic reflection data. 

3.1.1 Gravity data 

The gravity data consist of the V24.1 1-minute satellite altimetry free-air gravity 

anomaly grid of Sandwell et al. (2014). The dataset combines the altimeter 

information from Geosat, ERS-1, CryoSat-2, and Jason-1 to generate a gravity 

field with an accuracy of ~2mGal and a spatial resolution of down to ~6 km 

(Garcia et al., 2014; Sandwell et al., 2014). An ASCII XYZ file extending from 

69°W to 30°W and from 47°S to 57°S was extracted from the Satellite Geodesy 

research group at Scripps Institution of Oceanography, University of California 

San Diego website. This was further gridded in Geosoft’s Oasis Montaj using a 

2 km grid increment and the Minimum Curvature algorithm chosen in order to 

minimize the roughness of the interpolation (Figure 3.1). The free-air gravity 

anomaly for the southern part of South Africa was extracted in a similar manner 

(18°W to 29°E and 31°S to 38°S; Figure A.1 in Appendix). The following geotiff 

files were also downloaded from the same website: N0E0 and S40W60 for the 

two regions. 

 

Figure 3.1 Map of the free-air gravity anomaly of Sandwell et al. (2014) 
along the Falkland Plateau 
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3.1.2 Magnetic data 

The magnetic data consist of the AIRLAFONIA aeromagnetic survey acquired 

by the Alfred Wegener Institute over the Falkland Plateau Basin in 2017-2018 

(Figure 3.2). The survey comprises 25185 km of magnetic lines acquired at 

2000 ft (with some portions acquired at 1000-3000 ft) above sea-level, oriented 

E-W and NE-SW, and spaced at ~12 km. The grid, provided by the Alfred 

Wegner Institute, was further extended eastward and northward by using 

marine and helicopter legacy data levelled to the AIRLAFONIA survey in 

Geosoft’s Oasis Montaj. The data have been made available via PANGAEA.  

 

Figure 3.2 Total field magnetic anomaly along the Falkland Plateau Basin 
(Eagles, 2019) 

3.1.3 Seismic and well data 

The seismic reflection data used for this study comprise 2D and 3D survey data 

from 18 different vintages acquired between 1977 and 2014 (Figure 3.3). 

Survey details along with acquisition parameters (where available) can be 

found in Table 3.1. Seismic reflection data (with the exception of the Lamont-

Doherty Geological Observatory survey from 1978) have been made available 

through the Falkland Island Government. Data acquired by the Falkland Islands 

Government under Exploration Licences or Production Licences can be made 

available for exploration or academic purposes, under certain conditions 

(interested parties can contact the Department of Mineral Resources by email 

info@mineralresources.gov.fk). The Lamont-Doherty Geological Observatory 

mailto:info@mineralresources.gov.fk
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survey is available freely from the Marine Geoscience Data System 

(https://www.marine-geo.org/index.php). 

Table 3.1 Details for the used seismic reflection data 

Survey Year 
Survey 

type 

Line 

length 

(km) 

Area 

(km2) 

Shot 

point 

interval 

(m) 

Fold 

of 

cover 

Record 

length 

(s) 

Amerada 

Hess 
1997 2D 1738.56 N/A   6 

BIRPS 1980s 2D 1021.67 N/A 50 30 18 

Desire 1998 2D 2540.97 N/A   6.7 

Falkland Oil 

and Gas 
2007 2D 10349.87 N/A 25 120 8 

Geophysical 

Service 

Incorporated 

1977 2D 3281.15 N/A   6 

IPC Falklands 1996 2D 1600.33 N/A   8 

Lamont-

Doherty 

Geological 

Observatory 

1978 2D 8160.84 N/A 50  4-12 

Noble Energy 

FISA 
2013 3D N/A 5500   9 

Noble Energy 

FIST 
2013 3D N/A 1120   9.2 

Noble Energy 

FINA 
2013 3D N/A 5750   9.1 

Rockhopper 

Exploration 
2006 2D 871.85 N/A 25 120 8 

Rockhopper 

Exploration 
2008 2D 1965.61 N/A 25 120 8 

Spectrum 1993 2D 7427.37 N/A  90 8 

https://www.marine-geo.org/index.php
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Spectrum 1995 2D 3736.14 N/A  90 7 

Spectrum 1997 2D 3108.64 N/A  90 8 

Veritas DGC 2000 2D 1832.91 N/A 25 90 8 

WesternGeco 1993 2D 9999.83 N/A 40  9 

WesternGeco 1977 2D 6068.27 N/A   6 

For the entire plateau, 24 wells, located in the basins north, east, and south of 

the islands, were made available by the Falkland Islands Government (Figure 

3.3; see paragraph above for availability). To this, information from five deep 

sea drilling projects were added from the Deep Sea Drilling Project reports and 

publications website. Out of these, eight wells were located in the basins that 

underwent detailed analysis (25\05-1, 26/06-1, and 14/24-1 north of the islands, 

and 31/12-1, 42/07-1, 61/05-1, 61/17-1, and 61/25-1 east of the islands) and 

were directly tied to the seismic. Three of the DSDPs (327, 330, and 511) 

penetrated the Mesozoic section and were located near regional seismic lines 

and were tied to these to provide age constraints on the eastern margin of the 

Falkland Plateau Basin. 

Table 3.2 Summary of available wells; shaded wells have not been used in 
the seismic reflection data interpretation stage of this thesis 

Well name Location Operator Year TD (m) Formation at TD 

14/05-1A NFB Shell 1998 4525 Lower Cretaceous 

14/09-1 NFB 
Amerada 

Hess 
1998 2615 

Middle Jurassic - 

Devonian 

14/09-2 NFB 
Amerada 

Hess 
1998 2371 Lower Cretaceous 

14/10-1 NFB Shell 1998 3005 Lower Cretaceous 

14/10-2 NFB Rockhopper 2010 2744 Lower Cretaceous 

14/10-3 NFB Rockhopper 2011 2830 Lower Cretaceous 

14/10-4 NFB Rockhopper 2011 2800.7 Lower Cretaceous 

14/10-5 NFB Rockhopper 2011 2726.4 Lower Cretaceous 

14/10-6 NFB Rockhopper 2011 2706 Lower Cretaceous 

14/10-7 NFB Rockhopper 2011 2696 Lower Cretaceous 
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14/10-8 NFB Rockhopper 2011 2635 Lower Cretaceous 

14/13-1 NFB Lasmo 1998 1550.5 
Lower Cretaceous 

and Devonian (?) 

14/15-1 NFB Desire 2010 2877 Lower Cretaceous 

14/15-1Z NFB Desire 2010 3418 Lower Cretaceous 

14/15-2 NFB Desire 2010 3052 Lower Cretaceous 

14/19-1 NFB Desire 2010 3667 Lower Cretaceous 

14/24-1 NFB 
IPC 

Falklands 
1998 2938.9 Upper Jurassic (?) 

25/05-1 NFB Desire 2010 1697 Lower Cretaceous 

26/06-1 NFB Rockhopper 2010 2240 Jurassic (?) 

31/12-1 FPB FOGL 2012 5555 Lower Cretaceous 

42/07-1 FPB FOGL 2012 4043 Upper Cretaceous 

61/05-1 FPB BHP Billiton 2010 2476 

Middle (?) Jurassic 

– Upper Triassic 

(?)  

61/17-1 SFB 

Borders 

and 

Southern 

2012 4876 Lower Cretaceous 

61/25-1 SFB 

Borders 

and 

Southern 

2012 3060 Eocene 

DSDP327 FPB DSDP 1974 2880.5 Lower Cretaceous 

DSDP330 FPB DSDP 1974 3211.5 

Middle (?) to Upper 

Jurassic and 

Precambrian 

basement 

DSDP511 FPB DSDP 1980 3234 Upper Jurassic 
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Figure 3.3 Seismic reflection data and wells used in this project 

3.2 Methodology 

Each chapter provides an account of the used methodologies. The following 

sections cover a description of the holistic approach in the methodology 

undertaken throughout the project, general concepts, technical details, and 

particularities in the way the interpretation was carried out. 

3.2.1 Data integration 

The Falkland Plateau has been the subject of multiple studies largely due to 

continued interest in hydrocarbon exploration. However, despite the extensive 

seismic reflection and well data acquired along the plateau, there are still 

numerous uncertainties in its crustal architecture and structural network in 

areas with little seismic coverage. For this particular reason, the seismic 

reflection data interpretation carried out in this project was integrated with 

gravity and magnetic data interpretation and analysis. Crustal boundaries and 

structural trends were constrained with the aid of potential field data and 

compared against the seismic interpretation. Where uncertainties remained 

regarding the nature of the crust, 2D gravity modelling was undertaken along 

regional seismic reflection profiles. To evaluate the reliability of the modelling 

results in the context of a laterally varied plateau in terms of crustal and 

structural architectures, 3D gravity inversion was carried out for the Falkland 

Plateau Basin area. The inversion was constrained by: (a) a plateau-wide 

depth-to-Moho isostatically compensated model of the area available from 

literature (Kimbell and Richards, 2008); (b) a 2D seismic refraction profile 
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available from literature (Schimschal and Jokat, 2019b); and (c) open-source 

bathymetric data from soundings and gravity-derived (Smith and Sandwell, 

1997) and depth-to-basement from seismic reflection data interpretation. The 

distribution of crustal types along with the interpreted tectonic evolution were 

used as an input for plate reconstruction. Although the plate model was 

considered one of the main outcomes of the project, the deformable networks 

module of the reconstruction carried in GPlates was used iteratively as a 

validation tool for the crustal model generated from seismic, gravity, and 

magnetic data. Five scenarios for the evolution of the Falkland Plateau were 

considered and the results compared to the present-day configuration of the 

plateau as seen on seismic reflection and potential field data and as estimated 

from gravity inversion. 

3.2.2 Potential field data 

3.2.2.1 Data enhancement and interpretation 

Data enhancement and filtering of the gravity and magnetic data was 

undertaken to facilitate the interpretation stage. The magnetic data were 

reduced to the magnetic pole before any filters were applied (Baranov and 

Naudy, 1964). The total horizontal (Cordell and Grauch, 1985; Figure A.3 in 

Appendix; Chapter 5) and tilt derivatives (Miller and Singh, 1994; Verduzco et 

al., 2004; Oruç and Keskinsezer, 2008; Chapters 5 and 6) of the free-air gravity 

anomaly and the reduced to pole total field magnetic anomaly, the first vertical 

derivative (Evjen, 1936; Figure A.2) of the free-air gravity anomaly, and the 

analytic signal of the total magnetic anomaly (Roest et al., 1992; Figure A.4) 

were computed to enhance linear structures and block boundaries. The free-air 

gravity anomaly underwent Butterworth bandpass filtering in order to eliminate 

the effect of low and high extremes of source depths. The range of 

wavelengths and the filter order were chosen by trial, making sure known 

regional feature were enhanced whilst minimizing ringing artefacts produced by 

high filter orders. The cut-off wavelengths that yielded most favourable results 

were 5-70 km for a filter order of 8. The free-air gravity anomaly along the 

southern part of South Africa underwent only a Butterworth bandpass filtering 

with cut-off wavelengths of 10 and 85 km, chosen by trial to highlight the same 

structures as along the Falkland Plateau, present in South Africa at different 

depths. All the derivatives and filtered maps were computed in Geosoft's Oasis 

Montaj. A short description of each of the derivatives and filters can be found 

below. 
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The Total Horizontal Derivative enhances the edges of the magnetic source or 

gravity contrasts (e.g. block boundaries, faults), and its calculation is carried out 

using the following formula: 

𝑇𝐻𝐷 = √(
𝜕𝑓

𝜕𝑥
)
2

+ (
𝜕𝑓

𝜕𝑦
)
2

 

where f is the potential field used and 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 are the two horizontal 

derivatives of the field in the x and y directions (Cordell and Grauch, 1985). 

The First Vertical Derivative is used to sharpen anomalies and enhance the 

effect of local or shallow features (Evjen, 1936). 

𝑉𝐷 = 
𝜕𝑓

𝜕𝑧
 

Similarly, the Tilt Derivative is used to sharpen anomalies. Its benefit comes 

from the equalization of strong and weak amplitudes (Verduzco et al., 2004). 

𝑇𝐷𝑅 =  𝑡𝑎𝑛−1 (
𝑉𝐷

𝑇𝐻𝐷
) = 𝑡𝑎𝑛−1 (

𝜕𝑓/𝜕𝑧

√(𝜕𝑓/𝜕𝑥)2 + (𝜕𝑓/𝜕𝑦)2
) 

The Analytic Signal is a function of the derivatives along all the x, y, and z 

directions. It is independent of the magnetic field orientation and therefore its 

maxima normally correspond to the edges of the magnetic source (Roest et al., 

1992). 

𝐴𝑆 = √(
𝜕𝑓

𝜕𝑥
)
2

+ (
𝜕𝑓

𝜕𝑦
)
2

+ (
𝜕𝑓

𝜕𝑧
)
2

 

The Butterworth Bandpass Filter allows the pass of a predetermined 

wavenumber range (i.e. attenuates the effect of sources falling outside this 

range). 

𝐵𝑃 =

{
  
 

  
 

1

[1 + (𝑘/𝑘0)
𝑛]

𝑖𝑓 𝑘0 < 𝑘

𝑘1 − 𝑘

𝑘1 − 𝑘0
∙

(𝑘/𝑘0)
𝑛

[1 + (𝑘/𝑘0)
𝑛]
+
𝑘 − 𝑘0
𝑘1 − 𝑘0

∙
1

[1 + (𝑘/𝑘1)
𝑛]

𝑖𝑓 𝑘0 ≤ 𝑘 ≤ 𝑘1

(𝑘/𝑘1)
𝑛

[1 + (𝑘/𝑘1)
𝑛]

𝑖𝑓 𝑘 > 𝑘1 }
  
 

  
 

 

where 𝑘0 and 𝑘1 are the low and high wavenumber cut-offs in cycles/ground 

unit, and n is a positive integer which determines the degree of cut-off 

sharpness (Geosoft Inc., 2020). 
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The Bouguer anomaly was computed in Geosoft's Oasis Montaj along with its 

tilt derivative (Figure 3.4) in order to check the completeness of mapped 

features. However, the free-air gravity anomaly will be used throughout the 

thesis. This is because the filtering used to reduce the track noise introduced 

by the bathymetric data in the computation of the Bouguer anomaly minimised 

the gravimetric response of some of the features associated with faults on 

seismic data. 

 

Figure 3.4 Bouguer anomaly computed using formulas given by 
Heiskanen and Moritz (1967) and a 2.67 g/cc reduction density (top); 
the tilt derivative of the Bouguer anomaly (bottom); the linear track 
noise can be seen along both maps, particularly in the central part 

The interpretation of lineaments on the potential field data was carried out in 

ArcGIS and QGIS by mapping the zero-value contour on the first vertical and 

tilt derivatives and the maxima on the total horizontal derivative and analytical 

signal. Breaks or truncations of trends and changes in the magnetic and 

gravimetric signature were interpreted as tectonic or compositional crustal 

boundaries (Figure 3.5). The azimuth of the mapped lineaments was calculated 



 
 

51 

 

in ArcGIS and QGIS and further used to generate Rose Diagrams in Rick 

Allmendinger's Stereonet software. 

 

Figure 3.5 Example of lineaments mapping along the zero-value contour 
for the first vertical and tilt derivatives and along the maxima for the 
total horizontal derivative, and crustal boundary definition where 
potential field signature changes 

3.2.2.2 Gravity modelling and inversion 

For the 2D forward modelling and 3D inversion in GM-SYS and VPmg, 

respectively, inputs from seismic data interpretation and literature were used. 

Depth-converted horizon interpretations were converted to points in Petrel and 

exported as ASCII files (x, y, depth).  

During the preparation of the 2D models, interpretations were imported in 

databases in Geosoft’s Oasis Montaj and gridded using the minimum curvature 

algorithm and a grid increment of 15 km to obtain a good fit along the used 

profiles. The point distribution along the profiles was quasi-continuous, but 

sparser on either side of it. Therefore, a larger grid increment will be used 

during inversion when the entire horizon interpretation will be used. The grid file 

of the depth to Moho from Kimbell and Richards (2008) and bathymetry from 

Sandwell et al. (2014) were imported and gridded as well, using grid 

increments of 20 km. A mid-crust surface was generated at the mid-point 

between the top basement and the Moho using the Grid Math tool. The depth 

values for each of the used interfaces were extracted to separate databases 

along the modelled profiles using the Grid Profile tool in Oasis Montaj. The 2D 

models were built from map profiles, using the free-air gravity anomaly of 

Sandwell et al. (2014) as input. The horizons were added to the GM-SYS 
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model as depth surfaces. The depth converted seismic profiles were loaded as 

a backdrop to check the fit of the gridded horizons and add more interfaces, 

where needed, in the sedimentary succession. For the scenario using the Moho 

from Schimschal and Jokat (2019b) along the main modelled profile (Chapter 

6), the interface corresponding to the seismic refraction-derived Moho was 

digitised from the published sections loaded as backdrops in GM-SYS. The 

starting densities and optimisation of the models are described in the 

methodology of Chapter 6. 

For the 3D inversion, the ASCII files exported from Petrel or Oasis Montaj 

(digitised Moho from 2D model after Schimschal and Jokat, 2019b) were used 

as inputs for the layers and pierce points needed during the inversion process. 

A detailed overview of the methodology can be found in Chapter 6. Mira 

Geoscience’s Geoscience Analyst was used for visualisation purposes. The 

Moho resulted from geometrical inversion was exported as an .xyz file, loaded 

back into Oasis Montaj and gridded using a grid increment of 20 km. Crustal 

thickness maps were computed for the modelled scenarios using the Grid Math 

tool. Thinning factors were calculated using the following formula:  

𝛾 = 1 −
𝑡𝑓
𝑡𝑖

 

where tf is the modelled crust thickness and ti is the original crust thickness 

(Hellinger and Sclater, 1983), here considered 35 km. 

3.2.3 Seismic and well data 

3.2.3.1 Well ties 

A time-depth relationship (Figure A.5) for key formation tops was available for 

most wells and used to tie them to the seismic reflection data. These were the 

result of a conventional well tie workflow consisting of a calibration of the sonic 

logs using vertical seismic profiling (VSP) data and synthetic generation from 

the calibrated sonic and density logs. The reliability of the time-depth 

relationships was validated by repeating the well tying process in Petrel using 

the Seismic well tie module. Similar to the workflow of the provided data, a 

sonic calibration was carried out using the available VSP data. Prior to this, a 

conditioning of the sonic and density logs was done, consisting of de-spiking 

and interpolation (Figure A.6) along areas with missing measurements. The 

calibrated sonic and conditioned density logs were used as an input in the 

synthetic generation stage. An iterative analysis was applied to evaluate the 

type of wavelet to be used for the synthetic, with the deterministic method and 
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extended white algorithm yielding the best results (Figure 3.6). This method 

uses the seismic data around the well and the provided well logs to determine 

the characteristics of the wavelet (Oldenburg et al., 1981). 

 

Figure 3.6 Example of synthetic generated for well 26/6-1 

The DSDPs were tied to the seismic using the time-depth relationships 

provided by Barker (1977) and Ludwig et al. (1983) for key formation tops. 

3.2.3.2 Seismic quality control, enhancement, and interpretation 

The seismic reflection data were interpreted using Schlumberger’s Petrel 

Software. Prior to interpretation, the 18 survey vintages were analysed in 

Petrel’s Mis-tie manager. Vertical mis-ties were computed for a fixed interval (-

0.25 to -2.5 s) between intersecting surveys. The datum for the corrections was 

set to the datum of the 3D cubes. Constant corrections were applied to the 2D 

vintages to avoid the distortion of the seismic lines. Corrections were applied in 

turns, starting with the ones directly intersecting the cubes and then fixing the 

corrected ones and recomputing and correcting the mis-ties for the next 

intersecting survey. For the older datasets (1970-1980 vintages) with poorer 

resolution and lower quality, a structural smoothing filter (filter size: 1.5 traces x 

1.5 samples) was applied in order to increase the reflector continuity (Figure 

3.7). Major bounding surfaces were mapped based on stratal terminations of 

reflectors and internal geometries of seismic facies (Figure 3.8; Mitchum et al. 

1977; Hubbard et al. 1985a, b). Depending on the amplitude strength, each of 
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the mapped horizons were associated with either a peak or a trough. Both the 

2D and 3D datasets were interpreted using the loop tying principle. For the 

seismic cubes, seed-grids were generated during the interpretation and further 

used for 3D autotracking for the shallower and more continuous horizons. In 

areas of uncertainty, seismic facies analysis was used to separate between 

different stratigraphic sequences following the methodology of Mitchum et al. 

(1977). 

 

Figure 3.7 Example of seismic section before and after the application of 
a structural smoothing filter 

 

Figure 3.8 Reflector geometry and seismic facies terminology used (after 
Mitchum et al., 1977) 

Surfaces were generated for the picked horizons. The gridding was carried out 

in Petrel using the Minimum Curvature interpolation algorithm chosen by trial 

and error. This algorithm generated smoother surfaces with no unrealistic 

geometries (e. g. angular geometries) and in conformity with the input data.  

The parameters of the algorithm were set as half-cell influence radius and 

inverse distance squared point weighting. The dimensions of the grid varied 

depending on the density of the seismic coverage. The surfaces computed 

along the 3D cubes or locally, above half-grabens, where different 2D seismic 

surveys generated a dense network of seismic lines, had grid increments of 1 

km x 1 km. More regional surfaces along which the coverage of 2D lines varied 

had grid increments of 5 km x 5 km. 

The interpretation of faults was carried by identifying breaks and/or offsets in 

reflections or a decrease in amplitudes (Figure 3.9a, c). The sense of slip was 



 
 

55 

 

determining by using the seismic polygon ghost in Petrel which allowed for 

correlations of reflection packages across the fault plane – section intersection. 

The lateral fault plane extent was interpreted differently on the 2D compared to 

3D data. For the 2D seismic profiles, correlation of faults between different 

sections was done in two ways: (a) for areas where multiple faults were present 

and closely spaced together or a large spacing existed between adjacent 

seismic lines, faults were correlated based on fault plane geometry and/or fault 

throw, making sure their variation was geologically plausible; and (b) where 

available, using intersecting seismic lines and the loop-tying principle. For the 

3D seismic data, the lateral interpretation of fault planes was done either by 

looking at changes and offsets in amplitude along timeslices or, most 

predominantly, by making use of timeslices through a previously generated 

variance cube (Figure 3.9a, b). This is a volume edge-detection attribute 

emphasizing horizontal discontinuities in amplitudes. The variance was 

generated in Petrel as well, using iteratively chosen inline and crossline ranges 

of 3 traces, a vertical smoothing of 15 samples, and no dip correction. 

 

Figure 3.9 Example of faults on seismic on a) a timeslice; b) a timeslice 
with the variance attribute applied; c) on a seismic section 

3.2.3.3 Depth conversion 

Depth conversion was applied to specific sections for the purpose of 

comparison with the literature or as an intermediate step for gravity modelling 

and inversion using the Advanced Velocity Model module in Petrel. Several 

horizon-generated surfaces were used to separate units of different velocities 

(see individual chapter methodologies for details). For the sedimentary section 
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not penetrated by wells and for the acoustic basement, P-wave velocity values 

from literature were used. These were derived from seismic refraction studies 

(Ludwig et al., 1978; Schimschal and Jokat, 2017, 2019a, b) carried along the 

Falkland Plateau. For the shallower units, where well constraints were 

available, either average interval velocities or linear velocity functions were 

used (see individual chapter methodologies for details). These were obtained 

from the interval velocities derived from the calibrated sonic logs in Excel either 

by averaging them along the section between two horizons (Table 3.3) or by 

plotting the interval velocities against depth and fitting a linear trend through 

their distribution (Figure 3.10). The intercept and slope of the fitted line give the 

velocity at the datum (v0) and the velocity gradient (k) to be used as inputs in 

Petrel’s advanced velocity model (n.b. the velocity function used in Petrel 

comprised the velocity v0 at the top of the interval and the calculated velocity 

gradient). If multiple wells were used, an average between them was used. 

Table 3.3 Average interval velocities derived from the calibrated sonic 
logs for the Southern North Falkland Basin 

 Cenozoic Cretaceous Jurassic Well 

Average 
Interval 
Velocity 

(m/s) 

1741.23 2660.81 3889.23 14/24-1 

1813.14 2426.86  25/5-1 

2126.7 2769.96  26/6-1 

1893.69 2619.21 3889.23  

 

Figure 3.10 Example of the velocity analysis carried prior to depth 
conversion for a) well 25/5-1 (for the model, constant interval 
velocities were used for these sections); b) well 14/24-1 showing the 
calculation of the velocity gradient for the Jurassic section 
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3.2.4 Plate reconstruction 

The plate reconstruction was built on a modified version of the plate model of 

Müller et al. (2019) (see Chapter 6 for details). The Falkland Plateau was split 

into two subplates, and the plate IDs (an identification number unique for each 

plate) were modified accordingly in the rotation file. The finite rotations of the 

subplate corresponding to the Falkland Islands Microplate (FIM) were 

calculated relative to the San Jorge Plate (see Table 6.2 in Chapter 6 for the 

finite rotations; Figure 3.11) for the rotation scenario. When no rotation was 

invoked, the FIM was kept fixed to the San Jorge Plate. The finite rotations for 

the FIM during rotation were calculated using the Pole Manipulation section in 

GPlates to alter the position of the FIM so that in the pre-break-up position of 

the block the structural features north of the islands align with the ones offshore 

South Africa (after Stanca et al., 2019; Chapter 4) and gaps between plates are 

minimised. Finite rotations for intermediate positions were calculated in a 

similar way, aligning structural features along the FIM with their equivalent in 

south-western Gondwana (~150-155 Ma; see Chapter 5) or bringing the FIM in 

a post-rotation position relative to the San Jorge Plate (~145 Ma; see Chapter 6 

for rationale behind the timing of rotation). The visual fitting technique was 

preferred for this study due to the complexity of the tectonic evolution of the 

plateau. 

 

Figure 3.11 Plate hierarchy of the plate models presented in Chapter 6 
(finite rotations shown in Chapter 6 for each plate are relative to the 
plate on their left in this figure) 

The extent of the topological networks used during the deforming plate model 

construction was chosen by trial and error (see Chapter 6 for details). The 

boundaries were fixed to the surrounding plates by giving them the 

corresponding plate IDs. Points and rigid blocks were added to the interior of 

the topological network to constrain the deformation using the Topology section 
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in GPlates and the tools within to build and edit the topologies. The resulting 

reconstructed scalar coverages (crustal thickness distribution in this case) were 

exported as .xyz files, imported in databases in Oasis Montaj, and gridded 

using grid increments of 20 km. Residuals between the thicknesses resulted 

from the deforming plate models and the crustal thickness from the gravity 

models were computed using Grid Math. For the generation of images at 

different time instants, raster files consisting of maps and/or shapefiles with 

structural features were imported into GPlates at 0 Ma. The Assign Plate IDs 

tool was used to partition the raster files using the plate boundary polygons and 

assign the ID of the plate into which the structural features or partitioned raster 

fragments were located at 0 Ma. This would allow for the features within a 

specific plate boundary to stay fixed to that plate during the reconstruction. 

A secondary plate model which incorporated a more northern position of the 

FIM in line with previous studies was also generated (See Chapter 6). As this 

required a modification of the position of the southernmost part of South 

America (outside the area of study) to eliminate gaps between this plate and 

the FIM, its effect on the estimated crustal thickness represented the topic of 

discussion in Chapter 7. The comparison between a rotational and non-

rotational model from Chapter 6 was based on the reconstruction incorporating 

the South America fragmentation and reconstruction of Müller et al. (2019) for 

consistency. 

More details about when and how each of the methods were implemented can 

be found in the upcoming results chapters (Chapters 4-6). The integrated 

approach of the methodology used throughout this thesis was chosen to 

overcome the uneven coverage of the available data and to constrain 

tectonically complex areas more reliably.
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Chapter 4 A revised position for the rotated Falkland Islands 

Microplate 

Summary 

The early stages of transform margin formation are associated with crustal 

fragmentation and block rotation. The restricted size of the resultant 

microcontinental blocks precludes palaeogeographical reconstructions and 

reliable estimations of the amount of rotation they can undergo. An example 

considered here is the Falkland Plateau. This is located adjacent to the 

Agulhas–Falkland Fracture Zone and its westernmost province is the Falkland 

Islands microcontinent. The position of the plateau and the islands prior to 

Gondwana break-up remains contentious. This chapter integrates seismic 

reflection and gravity data to propose a revised position of the Falkland Islands 

microcontinent constrained by (1) the presence of a mega-décollement, 

controlling the Gondwanide Orogen, described north of the Falkland Islands 

and underneath South Africa and the Outeniqua Basin, and (2) the similar 

architecture of fault networks mapped north of the islands and in the 

northernmost Outeniqua Basin. This revised position requires a re-evaluation of 

the timing and rate of rotation of the Falkland Islands microcontinent and 

affects the expected crustal architecture adjacent to the islands. The model 

yields rotation rates between 5.5° and 8° Ma−1 and two potential times for 

rotation and predicts more unstretched crust beneath the basin east of the 

Falkland Islands than previous models. 

4.1 Introduction 

Transform margins are associated with a complicated tectono-stratigraphy 

(Scrutton, 1979; Basile and Allemand, 2002; Mercier de Lépinay et al., 2016) 

and a unified model for their evolution is yet to be established. Commonly, their 

incipient development stages can be associated with crustal fragmentation and 

block rotation (Mascle and Blarez, 1987). Typically, the resultant 

microcontinental blocks have a limited outcrop extent. This paucity of 

information hinders palaeogeographic reconstructions of these blocks, which 

are crucial for understanding the pre-break-up configuration of transform 

margins. A more reliably constrained palaeoposition of the transform-related 

microcontinental blocks can also bring insights into the amount of rotation that 

can affect these blocks and also on the architecture of the continental crust 

adjacent to them. 
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A pertinent example considered here is the Falkland Plateau transform margin 

(Figure 4.1). Its position prior to Gondwana break-up is highly dependent on the 

position of the Falkland Islands microcontinent. 

Reaching a consensus on reconstructions of the southern Gondwanan margin 

prior to the opening of the South Atlantic Ocean has been hampered by 

conflicting models that try to account for the position and orientation of the 

Falkland Plateau. Palaeogeographic reconstructions of Gondwana during the 

Permo-Triassic recognize a Gondwanide fold and thrust belt that extended from 

South America through South Africa to Antarctica (Du Toit, 1937; Trouw and 

De Wit, 1999; Dalziel et al., 2000). The first to recognize a link between this fold 

and thrust belt and the Falkland Islands was Du Toit (1927) while Adie (1952a) 

further argued for a positioning of the islands east of South Africa in a rotated 

position as an extension of the Cape Fold Belt. Subsequent studies (Mitchell et 

al., 1986; Marshall, 1994; Mussett and Taylor, 1994; Curtis and Hyam, 1998; 

Thistlewood and Randall, 1998 in Stone, 2016; Thomson, 1998; Trewin et al., 

2002) favoured this reconstruction but the associated uncertainties in 

interpretation and drawbacks of the model led also to the emergence of a rigid 

(non-rotational) model (Richards et al., 1996a; Lawrence et al., 1999; Ramos et 

al., 2017) with the islands and the Falkland Plateau fixed to the South American 

plate. 

Extensive work has been carried across the Falkland Islands (Curtis and Hyam, 

1998; Aldiss and Edwards, 1999) and their adjacent sedimentary basins 

(Ludwig et al., 1979; Lorenzo and Mutter, 1988; Platt and Philip, 1995; 

Richards et al., 1996a; Richards and Fannin, 1997; Thomson, 1998; Del Ben 

and Mallardi, 2004; Baristeas et al., 2013; Lohr and Underhill, 2015). However, 

deep crustal studies in the offshore region have not been equally widespread, 

being mainly focused on the Falkland Plateau Basin (Ewing et al., 1971; 

Lorenzo and Mutter, 1988; Lorenzo and Wessel, 1997; Schreider et al., 2011; 

Kimbell and Richards, 2008; Schimschal and Jokat, 2017). There is, 

nonetheless, a well constrained crustal model for the southern South African 

margin and its offshore basins (Dürrheim, 1987; Hälbich, 1993; Paton and 

Underhill, 2004; Paton et al., 2006). The offshore North Falkland Basin is well 

known only at the scale of its sedimentary infill. Therefore, a direct comparison 

between the Falkland Islands Microplate and the southern South African 

margin, at a crustal scale, is hard to accomplish. This scarcity of information 

regarding the deep structure also precludes a more accurate positioning of the 

islands prior to the break-up of Gondwana.  
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In this chapter, offshore seismic reflection and gravity data from the Southern 

North Falkland Basin (SNFB) are integrated to bring new insights into the 

crustal architecture of the Falkland Islands Microplate and better constrain its 

palaeoposition. The specific objectives are as follows: (1) to map the major 

tectonic features across the North Falkland Basin, (2) to compare the structural 

architecture of the SNFB and the Outeniqua Basin offshore South Africa, (3) to 

constrain the pre-break-up position of the Falkland Islands, and (4) to discuss 

the implications of the results.  

 

Figure 4.1 Present-day configuration and structural framework of the 
Falkland Plateau; offshore fault network for the Falkland Plateau 
compiled after Richards et al. (1996a), Richards and Fannin (1997), 
Cunningham et al. (1998), Galeazzi (1998), Tassone et al. (2008), and 
Ramos et al. (2017); the structure of the San Jorge and El Tranquilo 
basins and the Deseado Massif redrawn after Fitzgerald et al. (1990), 
Figari et al. (2015), and Moreira and Fernández (2015); Deseado 
Massif and North Patagonian Massif extents drawn after Ramos et al. 
(2017); main fracture and subduction zones in South America drawn 
after Rapela and Pankhurst (1992) 

4.2 Geological background 

4.2.1 General tectonic setting of south-western Gondwana 

The crustal evolution of the southern margin of Gondwana was characterised 

by repeated reactivation of older structural features in an extensional or 

compressional regime (Paton and Underhill, 2004). After passive margin 

conditions (1600–1200 Ma), compression ensued between 1200 and 900 Ma 
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(Hälbich, 1993; Thomas et al., 1993). This was accompanied by subduction 

either on a north-dipping (Tankard et al., 2009) or south-dipping (Lindeque et 

al., 2011) plane, leading to the obduction of oceanic crust and the generation of 

the Gondwana suture during the Namaqua-Natal Orogeny (Hälbich, 1993; 

Thomas et al., 1993). Reworking of this suture zone material resulted in the 

deposition of the Pre-Cape Group in basins that opened parallel to this suture 

from 900 to 600 Ma (Tankard et al., 1982; Hälbich, 1993; Paton and Underhill, 

2004). Between 600 and 450 Ma, the Pan African Orogeny led to basin 

inversion, north-verging thrusts, and a south dipping mega-décollement 

(Tankard et al., 1982; Shone et al., 1990; Hälbich, 1993). During the Ordovician 

to Carboniferous (450–300 Ma) the Cape Supergroup was deposited, followed 

by the Cape Orogeny (280–235 Ma; Tankard et al., 1982; Hälbich, 1993; Paton 

and Underhill, 2004); the latter was accompanied by the deposition of the 

Karoo foreland sequence (Hälbich, 1993; Veevers et al., 1994). This later 

collisional episode led to the formation of the Gondwanide orogen, which 

extended through the Sierra de la Ventana (South Argentina), Cape Mountains 

(South Africa), Falkland Islands, Ellsworth Mountains, and Pensacola 

Mountains (Antarctica) (Du Toit, 1937; Thomas et al., 1993; Trouw and De Wit, 

1999; Dalziel et al., 2000).  

Evidence of an updip continuation of the mega-décollement interpreted by 

Hälbich (1993) is presented by Lindeque et al. (2011). Their study documents a 

south-dipping interface beneath the Karoo Basin, lying between ~5 and 11 km 

depth and separating the deformed Karoo and Cape supergroup sequences 

from the Mesoproterozoic basement (Lindeque et al., 2011). This interface has 

been interpreted as an angular unconformity by Lindeque et al. (2011) but the 

fact that thrusts coalesce onto it suggests that it acted as a decoupling plane 

and its depth correlates with the depth of the mega-décollement interpreted by 

Hälbich (1993); this décollement is believed to have had been partially 

reactivated during the Cape Orogeny (Hälbich, 1993).  

During the Middle Jurassic to Early Cretaceous break-up of Gondwana many 

Cape Fold Belt structures were reactivated in an extensional regime (Paton and 

Underhill 2004; Paton, 2006). During this time, there were high rates of 

exhumation across southern South Africa (Richardson et al., 2017), with 

sediment supplied to offshore extensional basins such as the Outeniqua and 

Southern Outeniqua basins (Figure 4.2; Tinker et al., 2008). At the same time, 

offshore the Falkland Islands, the North Falkland Basin, the Falkland Plateau 

Basin, the South Falkland Basin, and the Malvinas Basin developed (Figures 
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4.1 and 4.3; Richards et al., 1996a; Macdonald et al., 2003). The extension was 

the result of the westward drift of South America along the dextral Agulhas-

Falkland Fracture Zone (AFFZ), away from Africa, and the opening of the South 

Atlantic (Ben-Avraham et al., 1997; Macdonald et al., 2003). 

4.2.2 Outeniqua Basin 

 

Figure 4.2 Map of South Africa and its offshore basins (after Paton et al., 
2006; Parsiegla et al., 2009); AFFZ – Agulhas-Falkland Fracture Zone 

Rifting in the broader Outeniqua Basin is thought to have occurred between 

Middle Jurassic and Valanginian with sedimentation into four depocentres: 

Bredasdorp, Pletmos, Gamtoos, and Algoa (McMillan et al., 1997). These are 

bounded by west-dipping normal faults (from west to east respectively: 

Plettenberg Fault, Gamtoos Fault, Port Elizabeth Fault, and St. Croix Fault) 

with displacements in excess of 10 km or by basement highs (Agulhas and 

Infanta Arches; McMillan et al., 1997; Figure 4.2). The dip angles of the 

controlling faults consistently increase towards the SW from 24° across the St. 

Croix Fault to 60° across the Plettenburg Fault (Paton et al., 2006) and 

coalesce onto a south-dipping mega-décollement (Hälbich, 1993; Paton et al., 

2006). This configuration results in a southward change in structural style from 

thin-skinned to thick-skinned (Paton et al., 2006). These depocentres are 

bounded to the south by the Southern Outeniqua Basin, which is in turn 
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separated from the AFFZ by the Diaz Marginal Ridge (Parsiegla et al., 2009; 

Figure 4.2). 

The basin-fill of each of these depocentres consists of Middle Jurassic to Early 

Cretaceous terrestrial and shallow marine sediments that unconformably 

overlie the Ordovician-Devonian Cape Supergroup onshore and offshore in the 

early rift stages, and show a transition to deep-water deposits offshore in the 

late rift stages (McMillan et al., 1997; Paton and Underhill, 2004; Paton, 2006). 

The post-rift sequence is represented by shallow marine deposits (McMillan et 

al., 1997). 

4.2.3 North Falkland Basin 

The structure of the North Falkland Basin (NFB) is controlled by the 

superimposition of two rift systems: the Late Jurassic Southern North Falkland 

Basin (SNFB) and the overlying Early Cretaceous North Falkland Graben (Lohr 

and Underhill, 2015; Figures 4.1 and 4.3). The SNFB is bounded by NW-SE 

striking normal faults, which are overprinted to the north by the N-S striking 

normal faults of the younger North Falkland Graben and its secondary half-

grabens (Richards and Fannin, 1997; Thomson and Underhill, 1999; Lohr and 

Underhill, 2015). The Jurassic normal faults have low dip angles, thought to 

suggest that they originated as thrust faults (Richards et al., 1996a; Richards 

and Fannin, 1997; Thomson and Underhill, 1999). Their strike is similar to the 

onshore structures associated with the Gondwanide orogeny (Richards and 

Fannin, 1997; Brandsen et al., 1999).  

The onset of post-rift sedimentation in the SNFB is interpreted as coeval with 

the deposition of syn-rift sediments in the North Falkland Graben and its 

subsidiary basins (Lohr and Underhill, 2015). The infill of the basins is 

considered to comprise Jurassic to Valanginian fluvio-lacustrine deposits 

passing to lacustrine and deltaic deposits during the post-rift phase of the North 

Falkland Graben and overlain by fluvial to marine mudstones of Late 

Cretaceous to Cenozoic age (Richards and Hillier, 2000; Richards et al., 2006; 

Lohr and Underhill, 2015).  
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Figure 4.3 Map of the Falkland Islands (after Aldiss and Edwards, 1999) 
and their offshore basins (based on Richards et al., 1996a); grey 
lines - the position of the 2D seismic reflection lines used in this 
chapter; red circles – wells used in this chapter; black circle – 
unused well 

4.2.4 Falkland Islands within Gondwana 

Du Toit (1927) first suggested that the Falkland Islands might represent a 

displaced segment of the Cape Fold Belt (CFB) and placed the islands 

between South America and South Africa. Adie (1952a) built upon that 

hypothesis and suggested that the islands rotated ~180° having originated from 

offshore east South Africa (Figure 4.4a). This assertion was based on 

stratigraphic correlations, fossil assemblages, ice flow directions, and structural 

similarities between the Falkland Islands and the South African margin. This 

hypothesis is further supported by more recent palaeomagnetic, aeromagnetic, 

stratigraphic, palaeontological, and structural data analysis (Mitchell et al., 

1986; Mussett and Taylor, 1994; Marshall, 1994; Curtis and Hyam, 1998; 

Trewin et al., 2002; Stone et al., 2009). The palaeomagnetic measurements 

were carried out on dykes identified onshore the Falkland Islands (Mitchell et 

al., 1986; Taylor and Shaw 1989; Stone et al., 2008) and on Permian 

sediments (Thistlewood and Randall, 1998 in Stone, 2016). The dykes trend E-

W to NE-SW and N-S and are of Early Jurassic to Early Cretaceous age, 

respectively (Mussett and Taylor, 1994; Thistlewood et al., 1997; Stone et al., 

2008; Richards et al., 2013). Their emplacement is related to the Karoo-Ferrar 
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magmatism in South Africa and Antarctica for the Jurassic dykes (Mitchell et 

al., 1999) and the opening of the South Atlantic for the Cretaceous swarm 

(Richards et al., 2013). Five deformation phases (D1 to D5) were identified by 

Aldiss and Edwards (1999) onshore the Falkland Islands; the first four were 

interpreted as being synchronous to the Permo-Triassic CFB in South Africa 

(Curtis and Hyam, 1998; Stone, 2016). The West Falkland Group, which crops 

out on West Falkland, the northern part of East Falkland, and Beauchêne 

Island (Aldiss and Edwards, 1999; Stone, 2015), has been correlated with the 

Table Mountain, Bokkeveld, and Witteberg groups in South Africa (Adie, 1952b 

in Marshall, 1994), whereas the Fitzroy Tillite Formation from the Falkland 

Islands is considered coeval with the Dwyka Group (Figure 4.5) of South Africa 

(Curtis and Hyam, 1998) based on ice flow directions (Frakes and Crowell, 

1967; Crowell and Frakes, 1972) and fossil assemblages from erratic clasts 

from the glacial diamictites (Stone and Thompson, 2005; Stone et al., 2012). 

The overlying Permian deposits of the Upper Lafonian Group have been 

correlated with the Ecca and Beaufort groups in South Africa based on 

stratigraphy, trace fossils, and sediment provenance (Trewin et al., 2002; 

Figure 4.5). 

These correlations led to the positioning of the Falkland Islands east of the 

south-eastern coast of South Africa (Curtis and Hyam, 1998; Trewin et al., 

2002; Figure 4.4a) with the Maurice Ewing Bank, now located at the eastern 

end of the Falkland Plateau (Figure 4.1), adjacent to the Durban Basin 

(Marshall, 1994). In this model, the Falkland Islands underwent a clockwise 

rotation of up to 180° during the break-up of Gondwana (120° prior to the 

opening of the South Atlantic and 60° during the drifting of the South American 

plate; Mitchell et al., 1986). 

As part of the rotational model, the Falkland Islands are considered to be part 

of a microplate that underwent vertical-axis rotation during the break-up of 

Gondwana. However, the northern and western boundaries of this microplate 

remain uncertain, whereas the southern and eastern boundaries are 

considered to coincide with the present-day North Scotia Ridge and the NE-SW 

striking fault bounding the Falkland Plateau Basin, respectively (Marshall, 1994; 

Richards et al., 1996b; Storey et al., 1999; Figure 4.1).  
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Figure 4.4 Two models for the palaeogeographic reconstruction of the 
Falkland Islands: (a) rotational and (b) non-rotational; [1] – Lawver et 
al. (1999), [2] – Macdonald et al. (2003), [3] – Trewin et al. (2002), [4] – 
Martin et al. (1981), [5] – Lawrence et al. (1999), [6] – Ramos (2008), 
PBOCB – pre-break-up ocean – continent boundary; the stratigraphic 
correlation and colour code are shown in Figure 4.5 
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Figure 4.5 Lithostratigraphy of the Devonian to Permian deposits of the 
Falkland Islands and South Africa along with the correlations 
(dashed lines) presented by Trewin et al. (2002); ages after Curtis 
and Hyam (1998) and Paton et al. (2006) 
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A further implication of this reconstruction of the islands consists of space 

issues, which require the presence of a right-lateral fault north of the North 

Patagonian Massif (Ben-Avraham et al., 1993) or south of it, along the Gastre 

Fault System (Rapela and Pankhurst, 1992; Figures 4.1 and 4.4a) to account 

for a more eastern position of Patagonia prior to the break-up of Gondwana. 

However, field observations along the Gastre Fault contradict its predicted 

dextral nature (Franzese and Martino, 1998 in Ramos et al., 2017; Von Gosen 

and Loske, 2004) and provide an additional argument against the rotational 

model. 

Furthermore, no deformation affecting the sedimentary basins offshore the 

Falkland Islands has been identified in previous studies (Richards et al., 

1996a), which led to the conclusion that the rotation occurred prior to the 

opening of these basins in the mid-Jurassic (Stone et al., 2008). However, 

there is little movement recorded along the AFFZ at this time (Broad et al., 

2006 in Tankard et al., 2009) in support of this hypothesis. In addition, the 

uncertainty around palaeomagnetic measurements (Richards et al., 1996a; 

Hodgkinson, 2002) and the absence of a pertinent mechanism to account for 

the rapid and substantial rotation of the islands resulted in numerous studies 

advocating a contrasting rigid (non-rotational) evolution of the Falkland Islands, 

in which the islands are part of a Falkland Plateau fixed to the South American 

plate (Figure 4.4b). In this scenario the Falkland Islands undergo a rotation of 

only 60° during the opening of the South Atlantic (Lawrence et al., 1999; 

Ramos et al., 2017). 

In the rigid model the opposite vergence of the thrusts and folds onshore the 

Falkland Islands compared to the Cape Fold Belt is explained through the 

existence of similar south-verging structures in the north-eastern North 

Patagonian Massif (Von Gosen, 2003; Ramos et al., 2017). The West Falkland 

Group is interpreted as being coeval with same age deposits from northern 

Patagonia, their common source being the Deseado Massif, whereas the 

equivalent of the diamictite in the Falkland Islands is interpreted as being the 

Sauce Grande Tillite of the Ventania System, Argentina (Ramos et al., 2017). 

Furthermore, the trend of the Jurassic Southern North Falkland Basin is 

correlated to basins along the South American margin (Figure 4.1), having the 

same trend and age (Ramos et al., 2017), their opening being associated either 

with back-arc extension along the southern margin of Gondwana or the 

southward movement of Antarctica and early extension in the Weddell Sea 



 
 

70 

 

(Uliana et al., 1989; Baristeas et al., 2013; Reeves et al., 2016; Ramos et al., 

2017).  

4.3 Data and methods 

This chapter was based on the analysis of open-source gravity data (Figure 

4.6) and seismic reflection and well data (Figure 4.3) courtesy of the Falkland 

Islands Government. 

The gravity data consist of the V24.1 1-minute satellite altimetry free-air gravity 

anomaly grid of Sandwell et al. (2014). The seismic reflection data used for this 

study comprise 2D lines from seven different vintages acquired between 1980s 

and 2008 by BIRPS, WesternGeco, Spectrum, Rockhopper Exploration, and 

Desire Petroleum. The shot point interval ranges from 25 m for the more recent 

datasets to 50 m for the regional traverse east of the islands, whereas the 

geophone coverage varies between 120-fold and 30-fold, respectively. The line 

spacing ranges from 2 to 30 km and the maximum record lengths between 6.7 

and 18 seconds TWT. All seismic sections have a vertical axis in two-way-time 

(TWT), a depth conversion being undertaken on type-sections post-

interpretation. Three wells, 26/06-1 (Rockhopper Exploration), 25/05-1 (Desire), 

and 14/24-1 (IPC Falklands), were used for this chapter with formation top 

markers and were tied to the seismic reflection data. Vertical seismic profile 

surveys were available for each well and provided velocity information that 

facilitated the subsequent depth conversion.  

The total horizontal derivative of the free-air gravity anomaly (Cordell and 

Grauch, 1985), first vertical derivative (Evjen 1936), and tilt derivative (Miller 

and Singh, 1994; Verduzco et al., 2004; Oruç and Keskinsezer, 2008) were 

computed (Figure 4.6) for edge detection and to enhance linear structures. The 

main gravity lineaments were mapped along the entire NFB (Figure 4.6) and 

show a close correlation with fault trends mapped on the seismic reflection data 

(Figure 4.8).  

Five key surfaces were mapped across the SNFB (Figure 4.7) based on stratal 

terminations of reflectors and internal geometries of seismic facies (Mitchum et 

al., 1977; Hubbard et al., 1985a, b), and used to define three mega-sequences: 

pre-rift, syn-rift, and post-rift. The latter sequence is separated into four 

packages by an intra-Lower Cretaceous reflector, the top Lower Cretaceous, 

and the base Cenozoic regional unconformity. Within the syn-rift sequence two 

unconformities, described in detail by Lohr and Underhill (2015), were mapped 
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along the extent of the basin-fills of the half-grabens (Figures 4.9, 4.10, and 

4.11). The SNFB pre-rift sequence is associated with a semi-transparent 

seismic facies capped by a high amplitude reflector that is onlapped by wedge-

shaped syn-rift deposits. These display a chaotic seismic character in the lower 

section and sub-parallel to parallel reflectors in the upper part. The Cretaceous 

post-rift sequence comprises wavy to hummocky and sub-parallel to divergent 

deposits overlain by the sub-horizontal Cenozoic post-rift sequence (Figures 

4.9, 4.10, and 4.11).  

 

Figure 4.6 Open-source gravity data (Sandwell et al., 2014) and the first 
vertical, total horizontal, and tilt derivatives for offshore Falkland 
Islands; gravity lineaments (dashed lines) interpreted based on the 
computed derivatives are superimposed on the free-air gravity 
anomaly; rectangle shows the extent of the map in Figure 4.8  

The oldest sediments penetrated by two of the used wells are represented by 

Upper (?) Jurassic volcaniclastic deposits. Deposits of potentially Middle 

Jurassic age have been penetrated by well 14/09-1 further north, in the NFB 

(Figure 4.3), and correlated by Lohr and Underhill (2015) with deposits 

associated with the SNFB syn-rift sequence. Across the faults, the Upper 

Jurassic reflector is correlated with the top syn-rift of the SNFB. This horizon is 

not continuous southward across the shoulders of the half-grabens. The age of 

the infill of the southernmost half-graben is inferred based on stratal geometries 

alone assuming coeval deposition across the SNFB.  
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Figure 4.7 Composite seismic section through the used wells showing the pre-rift (Paleozoic to Proterozoic; light 
pink), syn-rift (Jurassic; blue), and post-rift (Cretaceous-Cenozoic; green and yellow), and their variation in 
geometry from the Southern North Falkland Basin to the North Falkland Basin
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Faults at the SNFB pre-rift level were mapped (Figures 4.8–4.12) and 

superimposed onto the interpreted gravity features shown in Figure 4.6 for 

comparison and correlation. Two deep high-amplitude intervals were identified, 

the shallower (-3.5 s to -8.2 s TWT) being mapped across the entire SNFB 

(Figures 4.8, 4.13a, b, c, 4.14) on two of the vintages, whereas the deeper 

feature (-11 s to -12 s TWT) was interpreted only on the regional traverse east 

of the islands (Figure 4.13c, d). 

A regional cross-section was constructed perpendicular to the main structural 

grain of the basin to allow a direct comparison with published sections from 

onshore Falkland Islands and South Africa. To assess the geometry of the 

faults more reliably, the section was depth converted using velocity information 

from the borehole seismic surveys available for all wells. The Cenozoic and 

Cretaceous post-rift sequences were depth converted using interval velocities 

of 1900 and 2600 m/s, respectively. A v0-k function was used for the syn-rift 

deposits (v0 = 3000 m/s at the top of the formation and k = 0.6; derived from the 

available well data), whereas the pre-rift down to a depth of 8s TWT was depth 

converted using a constant velocity of 5200 m/s (averaged from Ludwig et al., 

1978 and Schimschal and Jokat, 2017). The same velocity model was used to 

depth convert type-section across the major WNW-ESE faults to estimate the 

thickness of the half-graben infills and the dips of the faults more accurately. 

4.4 Results  

The deformation in the SNFB was accommodated by three main NW-SE to 

WNW-ESE striking reactivated thrust faults (A to C in Figure 4.8), up to ~150 

km long, and with depocentres ~3000 ms TWT (~5 km) deep. The WNW-ESE 

trend of these faults can be tracked on the gravity data derivatives, where they 

are associated with linear anomalies (Figure 4.6). Further north, this WNW-

ESE trend of the gravity lineaments is overprinted by roughly E-W striking 

features, swinging through NE-SW to N-S on the west of the islands, and the 

N-S trend of the Early Cretaceous main graben (Figure 4.6). Sections through 

both the WNW-ESE trending faults of the SNFB and the main N-S trending 

faults in the NFB show a clear separation of the syn-rift deposits (Figure 4.9), 

although locally some indication of Jurassic activity along N-S trending faults 

was identified (Figure 4.9b). 
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Figure 4.8 Normal faults interpreted based on seismic reflection data in 
the SNFB superimposed on the TWT map of the mega-décollement; 
the faults are following the same orientation as the WNW-ESE gravity 
lineaments mapped across the SNFB; grey line network represents 
the seismic reflection profiles used for interpretation 

The WNW-ESE trending normal faults have low depth converted dips of 20-40° 

(with the exception of Fault A, which steepens up to 60o closer to the surface), 

dominantly with a downthrow to the NE, and are associated with splay faults 

and smaller-scale synthetic and antithetic faults within their hanging-walls 

(Figures 4.8 and 4.11).  

The syn-rift deposits associated with these faults reach a thickness of ~2000 

ms TWT but a greater thickness was likely to have existed as the southernmost 

half-graben infills have since been uplifted and eroded (Figure 4.10h). The syn-

rift sequence was deposited in three stages, separated by unconformities 

interpreted within the package (Figures 4.10 and 4.11). Lateral variations in the 

sediment thickness within these syn-rift packages have been identified (Figure 

4.10e-h). For the longest fault in the basin, Fault B, three main depocentres can 

be readily noticed on the pre-rift TWT map (Figure 4.10a). The isochron maps 

of the three syn-rift sequences show that these depocentres developed at 

different times (Figure 4.10e-g). The syn-rift most probably overlies the same 

formations that crop out onshore (Thomson and Underhill, 1999; Lohr and 

Underhill, 2015). Locally, high upper crust reflectivity was identified in the pre-

rift (Figure 4.10h), potentially related to the top of the crystalline basement 

known to crop out onshore the islands. The syn-rift sequence was further 

inverted and deformed into harpoon structures and gentle folds along with the 
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overlying Cretaceous post-rift units (Figure 4.11). The whole sequence is 

capped unconformably by Cenozoic deposits. 

 

Figure 4.9 Sections intersecting both the WNW-ESE trending faults of the 
SNFB and the N-S trending faults of the NFB showing the separation 
of their syn-rift deposits 
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Figure 4.10 a) TWT map of the SNFB pre-rift; rectangle – extent of maps in 
(b) – (g); b) TWT map of the top syn-rift 1 showing main depocentres 
along the WNW-ESE segments of Fault B; c) TWT map of the top 
syn-rift 2 showing main depocentres along the WNW-ESE segments 
of Fault B; d) TWT map of top syn-rift 3 (top Upper Jurassic) showing 
main depocentre towards the centre of Fault B; e) syn-rift 1 isochron 
showing maximum thickness along an E-W trending segment of 
Fault B; f) syn-rift 2 isochron showing maximum thickness along 
WNW-ESE trending segments of Fault B; g) syn-rift 3 isochron 
showing maximum thickness in the central part of Fault B; h) section 
along the strike of Fault B showing the lateral variation in the syn-rift 
thicknesses 
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Figure 4.11 Compilation of seismic sections across Fault B from west (a) 
to east (i) showing how the geometry of the syn-rift package varies 
along the fault; position of the lines is shown in Figure 4.8 

 

Figure 4.12 Sections across E-W trending features associated with (a) 
fracture zones generating structural lows and (b) half-grabens; 
sedimentary packages showing slight thickening into faults are 
shaded in grey; position of the lines is shown in Figure 4.8 

The roughly E-W trending features mapped on the gravity data (Figure 4.6) 

correlate with depressions and fractured zones within the seismic reflection 

data (Figure 4.12). A high amplitude reflector correlated with the top SNFB pre-

rift (Figure 4.12) can be mapped across these structures; the geometry of the 

strata overlying it shows a slight thickening south-westwards whereas further 

up the succession strata thicken north-eastwards (grey-shaded packages in 
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Figure 4.12a). The infill of these structural lows is unconformably overlain by 

Cenozoic deposits (Figure 4.12). 

Across the SNFB a high-amplitude north-dipping set of reflectors was 

interpreted between -3.5 s and -8.2 s TWT (-8 to -20 km; Figure 4.13a, b, c). 

The ‘surface’ can be mapped out to ~100 km from the coastline where the 

imaging becomes poorer and/or its depth exceeds the maximum recorded 

length of the data. Towards the south, the interface is visible nearshore Stanley 

where it shallows both southwards and south-eastwards, disappearing around 

51°42’S (Figure 4.8). This feature has been characterised as an interval of high 

amplitudes as it appears as a discrete interface only updip (Figure 4.13a). 

Further downdip, the area widens and becomes more convoluted, being 

characterised by an irregular top and the presence of lenticular features most 

likely generated through thrusting (Figures 4.13b, 4.14). East and NE of the 

islands another set of reflectors was picked between -11 s and -12 s TWT 

(Figure 4.13c, d); the two sets of reflectors seem to converge northeast of the 

Falkland Islands (Figure 4.13d, f).
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Figure 4.13 Seismic sections showing: (a), (b) the morphology of the shallower set of deep reflectors interpreted as a 
mega-décollement; (c), (d) the extent of the second set of deep reflectors correlated with Moho; (e) line drawing 
and interpretation of section in (b) showing the interaction between the reactivated thrust faults mapped across 
the SNFB and the mega-décollement along with their common sense of vergence; (f) line drawing and 
interpretation of section in (c) showing a potential merging between the mega-décollement and the Moho 
discontinuity; location of the profiles is shown in Figure 4.8 
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Figure 4.14 Seismic sections showing the morphology of the shallower 
set of deep reflectors interpreted as a mega-décollement (a, c) and 
their interpretation (b, d) emphasising the complex morphology of 
the mega-décollement; location of the profiles is shown in Figure 4.8 

4.5 Discussion 

4.5.1 SNFB fault geometry and formation 

The NW-SE to WNW-ESE normal faults mapped in the SNFB have low dip 

angles, are downthrown predominantly to the NE, and have a similar 

orientation to the D4 thrust faults described onshore the Falkland Islands by 

Aldiss and Edwards (1999). This suggests that they exploited pre-existing 

thrust planes (Richards et al., 1996a) developed during the Gondwanide 

orogeny much like the faults on the southern margin of South Africa (Paton et 

al., 2006; Paton, 2006). However, unlike its conjugate (Paton et al., 2006), the 

faults in the SNFB do not show a consistent steepening away from the 

deformation front, their mean depth converted dips being in the 20°–40° range 

(Figure 4.15a). The south-westward steepening of the faults in the Outeniqua 

Basin has been recorded across a wide area of over 200 km, which is in direct 

contrast to the narrow extent of the analysed SNFB (~60 km). It is possible that 

this limited extent does not cover the deep rooted, higher angle faults and that 

these may underlie the northernmost part of the NFB. 

The present-day preserved SNFB is therefore characteristic only of a narrow 

deformational domain. Its equivalent on the conjugate South African margin 

based on the range of dips could correspond to the transitional area between 

the thin-skinned and thick-skinned domains described by Paton et al. (2006), 

namely the area between the St. Croix Fault and the Gamtoos Fault (Figure 

4.15). 
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Figure 4.15 (a) Depth converted section across the SNFB extrapolated 
onshore based on published data from Aldiss and Edwards (1999) 
and Stone (2016); (b) section across the South African margin and its 
offshore basins showing the steepening of the faults south-
westwards (after Paton et al., 2006); dashed rectangle shows the 
extent of the South African equivalent of the section in (a); both 
sections are restored to the top syn-rift 

There are, however, basins along the South American margin (e.g. Cañadón 

Asfalto, San Jorge, El Tranquilo, San Julián, Río Mayo basins) that underwent 

rifting along the same NW-SE trend as the SNFB or have similar infills, 

suggesting a synchronous opening within the same stress field (Uliana et al., 

1989; Brandsen et al., 1999; Ramos et al., 2017). The normal faults bounding 

the grabens and half grabens in these basins situated along strike from the 

SNFB are nonetheless steeply dipping (Fitzgerald et al., 1990; Soares et al., 

2000; Echavarría et al., 2005) and point towards a different evolution prior to 

the Jurassic rifting.  

The similarities in trend between the SNFB and the South American basins 

have been previously invoked as an argument for the rigid (non-rotational) 

model (Ramos et al., 2017), but this does not explain the origin of the crustal 

anisotropy beneath the Falkland Islands and its northern basin. The south-

verging deformation documented by Von Gosen (2003) in the North Patagonian 

Massif was correlated with the accretion of Patagonia during Late Paleozoic 

(Ramos, 2008) and used to explain the present-day vergence of the Falkland 

Islands deformation front (Ramos et al., 2017). Evidence of south-verging 

thrusts can be seen up to 150 km away from the western coast of the Falkland 

Islands (Figure 4.13a; McCarthy et al., 2017), but there is however no 
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documentation of a south-verging fold and thrust belt further west to support a 

correlation with Patagonia. The opening of the SNFB due to the same stress 

regime as the one in the South American NW-SE trending basins is still a 

pertinent interpretation but does not preclude a rotation of the islands prior to 

this rifting event. 

The ~E-W gravity lineaments mapped across the NFB (Figure 4.6) are 

associated with fractured zones interpreted as extensional or transtensional 

features (Figure 4.12). The timing of activity on these faults is difficult to 

constrain because some of these features are not covered by the available 

seismic data, their infill was partly eroded, and well data cannot be extrapolated 

across the fault shoulders. The changes in the location of the depocentre along 

Fault B (Figure 4.10), which suggests that different oriented segments of the 

fault were active at different times, could give an indication of the timing of 

formation of these E-W trending faults. The isochron maps of the three syn-rift 

packages along Fault B point towards a fault activity switching between E-W 

and more WNW-ESE oriented segments of the fault (Figure 4.10e-g). The 

concentration of deformation on an E-W trending segment during the 

deposition of syn-rift 1 (Figure 4.10e) could indicate that the local stress 

configuration was favourable for the formation of the E-W trending structures 

identified across the NFB at this time. Along these E-W trending structures, the 

geometry of the strata overlying the interpreted top SNFB pre-rift shows a slight 

thickness variation (grey-shaded packages in Figure 4.12) suggesting a 

diachronous activity of the faults bounding the structures. However, because of 

the lack of well data on the platform and scarcity of seismic reflection data the 

timing of activity on these faults along with the sense of movement (dip-slip, 

strike-slip) remains speculative.  

The E-W trend of these lineaments changes to a more ENE – WSW orientation 

westwards (Figure 4.6). As this area is not constrained by seismic reflection 

data, the nature of these gravity lineaments remains unknown. Their formation 

can be simultaneous either with the event that generated the E-W trending 

features or with the Triassic – Late Jurassic opening of the San Julian Basin 

(Soares et al., 2000) where a NE – SW gravity trend is noticeable parallel to the 

eastern margin of the basin (Figure 4.6). 

4.5.2 Mega-décollement 

The north dipping high-amplitude interval mapped between -3.5 s and -8.2 s 

TWT (-8 to -20 km after depth conversion) is interpreted as a mega-

décollement onto which the major faults bounding the three half-grabens of the 
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SNFB coalesce (Figures 4.13e–4.15a). Further south the interface can be 

mapped until 51°42’S.  

Based on previous crustal studies carried out by Kimbell and Richards (2008) 

and Schimschal and Jokat (2017) on the Falkland Plateau, the Moho 

discontinuity is located at 34-36 km depth on the continental shelf east of the 

islands and shallows northwards to 30 km based on gravity modelling. Using 

the P-wave velocities published by Schimschal and Jokat (2017) for the 

continental shelf crust, the reflectors interpreted between 11 and 12 s TWT off 

the east coast of the Falkland Islands would be situated at a converted depth of 

33-36 km; this led to a correlation of the reflectors with the Moho discontinuity 

(Figure 4.13f). Taking into account the present-day depth distribution of the 

Moho north of the Falkland Islands as shown by Kimbell and Richards (2008) 

and the dip of the mega-décollement, it can be deduced that the latter emerges 

from the Moho between 48°S and 50°S (present-day coordinates; double line in 

Figure 4.16).  

The presence of a similar regional décollement dipping south has been inferred 

by Hälbich (1993) to be controlling the deformation in South Africa. Based on a 

deep seismic reflection profile along the Agulhas Bank (Dürrheim, 1987, [1] in 

Figure 4.16), the depth of this décollement would be -6.5 s or -18 km 

underneath the Outeniqua Basin (Hälbich, 1993), which is in the depth range 

estimated for the décollement under the SNFB. The interpretation of a more 

recent seismic reflection transect ([2] in Figure 4.16) acquired between Prince 

Albert and Slingersfontein (South Africa) shows the presence of a crustal 

interface that dips 3° southwards and separates the shallower thrusted 

sequence of the CFB and Karoo Basin from the Mesoproterozoic basement 

(Lindeque et al., 2011). Extrapolating this plane southwards, its estimated 

depth underneath the Agulhas Bank is ~20 km, which correlates it with the 

mega-décollement of Hälbich (1993). This depth variation of the mega-

décollement was also proposed by Paton et al., (2006). The detachment is 

located underneath the Cape Supergroup in the southern part of the Karoo 

Basin (Lindeque et al., 2011) and is thought to displace Proterozoic deposits 

further south (Paton et al., 2006; Figure 4.15b). 

The Moho for the South African margin shallows southwards from 50 km 

underneath the Karoo Basin to ~30 km near the coast and 25-26 km beneath 

the Agulhas Bank (Nguuri et al., 2001; Stankiewicz et al., 2008; Stankiewicz 

and de Wit, 2013). Taking into account the dip of the décollement (~3° based 

on Lindeque et al., 2011) and the present-day depth of the Moho offshore 
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South Africa, a merging of the decoupling plane with the Moho can be 

estimated to occur at ~35°S (dashed grey double line in Figure 4.16) which is in 

accordance with the interpretation of Hälbich (1993). 

4.5.3 South African connections 

Cross-sections across both the southern South African onshore to offshore 

margin and the Falkland Islands and their northern basin exhibit similar 

deformation styles (Figure 4.15). Given the uncertainty in the relative positions 

during the initial phases of rifting during the break-up of Gondwana, the terms 

foreland and hinterland will be used to refer to different parts of the cross-

sections. 

The foreland portion in both areas comprises Carboniferous to Permian 

deposits of the Karoo and Lafonia supergroups exposed onshore South Africa 

and Eastern Falkland, respectively (Figure 4.15). These are affected by open to 

isoclinal folds with symmetric to highly asymmetric limbs controlled at depth by 

thrusting (Aldiss and Edwards, 1999; Stone, 2016; Paton et al., 2006). 

Towards the hinterland, thrusts active during the Cape orogeny underwent 

negative structural inversion during the Mesozoic rifting event. Closer to the 

CFB deformation front, the extension resulted in low angle (20°–40°) listric 

normal faults that bound half grabens filled with Upper Jurassic terrestrial to 

shallow marine deposits across the SNFB and the South African Algoa and 

Gamtoos Basins (Figure 4.15). Away from the deformation front, the normal 

faults accommodating the extension steepen (Figure 4.15b) and it has been 

proposed that these originated as normal faults during the Cape Supergroup 

deposition and were further exploited during the subsequent compressional 

and extensional regimes (Paton et al., 2006; Paton, 2006). These steeply 

dipping faults were not identified offshore the Falkland Islands. The E-W 

trending features mapped north of the SNFB and the subsequent opening of 

the North Falkland Graben are most likely overprinting their effect. On both 

margins, at depth, the deformation is controlled by the presence of a mega-

décollement onto which the thrusts and normal faults coalesce (Figure 4.15).  

4.5.4 Palaeogeographic implications 

Existing palaeogeographic reconstructions of the Falkland Islands have 

associated drawbacks from the absence of a mechanism that explains the 

substantial rotation of the islands in the rotational model to the lack of 

continuation of a south verging fold and thrust belt east and west of the islands 

in the rigid (non-rotational) model.  
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Given the new observations in this study, the geometry of the normal faults 

bounding the SNFB half grabens could correspond to the deformation domain 

between the St. Croix and Gamtoos Faults, suggesting that the reactivated 

Paleozoic thrusts north of the Falkland Islands were an along strike 

continuation of the present-day Algoa Basin region. This translates in a change 

in trend of the Cape Fold Belt from WNW-ESE to NNW-SSE eastwards. This 

abrupt change in orientation is supported by the strike change of the St. Croix, 

Port Elizabeth, and Gamtoos faults (Figure 4.16), which has been referred to as 

the Port Elizabeth Antitaxis (Johnston, 2000). This strike variation has been 

related to the pre-existing crustal fabric developed during the Cape Orogeny 

rather than later movements along the AFFZ (Paton and Underhill, 2004). 

Similar oroclinal bends of the Ventana–CFB are seen in western South Africa 

and Argentina at the Cape and Colorado syntaxes, respectively (De Beer, 

1992; Pángaro and Ramos, 2012; Paton et al., 2016). The rotation expected to 

affect the Falkland Islands Microplate would be ~140° in this scenario (~80° if 

the rotation occurring during the opening of the South Atlantic is subtracted 

(Mitchell et al., 1986)). 

This repositioning of the Falkland Islands Microplate would mean that the 

points at which the mega-décollement branches off from the Moho are 

distributed along a trend similar to the trend of the CFB across the restored 

AFFZ (Figure 4.16) and has implications for the extension expected in the 

Falkland Plateau Basin.  

The available data do not allow for latitudinal constraints in repositioning the 

microplate, the extent of the Falkland Plateau Basin fitted between the Eastern 

Falkland and the AFFZ remaining uncertain. However, the revised position 

predicts more unstretched crust between the microplate and the Maurice Ewing 

Bank block, which is thought to have originated south of the Tugela Cone 

(Marshall, 1994). Therefore, less extension is required in order to achieve the 

present-day relative position of the two continental blocks. 
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Figure 4.16 Revised position of the Falkland Islands Microplate at ~180 
Ma; the depth of the mega-décollement in South Africa is 
constrained by two seismic lines: [1] (Dürrheim, 1987) and [2] 
(Lindeque et al., 2011) and extrapolated until it intersected Moho as 
modelled by Nguuri et al. (2001) and Stankiewicz and de Wit (2013); 
mega-décollement inferred on profile [3] (Paton et al., 2006) is used 
for comparison and validation; the mega-décollement underneath 
the SNFB was truncated at depths of 30-35 km (based on this study, 
Kimbell and Richards (2008), and Schimschal and Jokat (2017)); 
faults in the Outeniqua Basin are drawn based on Paton et al. (2006) 
and Parsiegla et al. (2009); GF – Gamtoos Fault, PEF – Port Elizabeth 
Fault, SCF – St. Croix Fault; faults in the SNFB are drawn based on 
the seismic reflection (grey lines) and gravity data available for this 
study; faults onshore Eastern Falkland are based on Aldiss and 
Edwards (1999); the position of the section in Figure 4.15a is shown 
onshore and offshore the Falkland Islands 

Regarding the timing of rotation of the Falkland Islands Microplate, two 

scenarios are available based on the stress regime that led to the opening of 

the SNFB.   

Considering a WSW-ENE extension direction during the opening of the SNFB 

similar to the Late Jurassic extensional episode inferred for the Gamtoos Basin 
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(Paton and Underhill, 2004), the SNFB/Falkland Islands Microplate should have 

been in a pre-rotation position in the Late Jurassic. Between the two rifting 

events that led to the formation of the SNFB and the North Falkland Graben, 

the microplate underwent a rapid clockwise rotation possibly exploiting the E-W 

to ENE-WSW lineaments described previously. Based on the detailed study 

carried out by Lohr and Underhill (2015) in the North Falkland Basin, the time 

interval between the two extensional episodes is ~10 Myr, although a longer 

time-frame is possible owing to the extensive Tithonian hiatus marking the end 

of the SNFB formation. A rotation rate of maximum 12° Myr-1 is estimated for 

this scenario for a rotation of 120° consistent with the existing rotational model. 

For the same time interval, the revised model yields a rotation rate of 8° Myr-1. 

The latter is closer to the range of rates documented for strike-slip-related 

vertical-axis block rotations (Little and Roberts, 1997; Ingersoll and Coffey, 

2017).  

However, if the SNFB opened simultaneously with the NW-SE oriented basins 

along the South American margin (Uliana et al., 1989; Baristeas et al., 2013; 

Ramos et al., 2017), the Falkland Islands Microplate should have already been 

in the rotated position in Late Jurassic when the SNFB was undergoing rifting. 

Based on the Ar-Ar dating carried out on one of the NE-SW dykes onshore the 

Falkland Islands, the microplate is thought to have rotated after 178 Ma (Stone 

et al., 2008). This would limit the time interval for the rotation to Middle Jurassic 

which, is in accordance with the time frame suggested by Stone et al. (2008), 

giving rotation rates of ~8.2° Myr-1 and 5.5° Myr-1 for the 120° and 80° 

scenarios, respectively. 

4.6 Conclusions 

The North Falkland Basin was affected by two rifting episodes during the break-

up of Gondwana, the older of which led to the formation of the Southern North 

Falkland Basin. This study reveals that the Paleozoic thrusts exploited during 

the opening of this basin emerge from a north-dipping mega-décollement, 

much like the faults in the Outeniqua Basin, offshore South Africa, which 

coalesce on a south-dipping mega-décollement. Based on the range of fault 

dips in the SNFB and the inferred latitude at which the mega-décollement 

merges with the Moho, a repositioning of the Falkland Islands Microplate is 

proposed so that the SNFB sat along-strike from the Algoa Basin prior to the 

break-up of Gondwana. The implications of the revised position of the islands 

are threefold: (1) the position is in agreement with the presence of an antitaxis 
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of the Cape Fold Belt at Port Elizabeth; (2) the amount of extension expected to 

have affected the Falkland Plateau Basin is reduced compared to previous 

rotational models; (3) the amount of rotation and the estimated rotation rate of 

the Falkland Islands Microplate are reduced, the latter being now comparable 

to block rotation rates in strike-slip systems. 

The orientation of the extensional regime that led to the opening of the SNFB 

can be either WSW-ENE and related to the separation between South America 

and Africa or NW-SE rifting related to the southward movement of Antarctica or 

back-arc extension. Based on these two scenarios, the timing of rotation is 

restricted to Tithonian–Berriasian or Middle Jurassic, respectively. 
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Chapter 5 The tectono-stratigraphic architecture of the 

Falkland Plateau Basin; implications for the evolution of the 

Falkland Islands Microplate 

Summary 

Commonly, intra-continental wrenching is associated with a high degree of 

crustal faulting and fragmentation. The resulting continental blocks can undergo 

vertical-axis rotations, which in turn can lead to the generation of intricate fault 

networks within and along their boundary regions. Investigations into these 

structural complexities can support understanding of when and how these 

continental blocks rotate, and what their position was prior to transform margin 

formation. In the case of the Falkland Islands Microplate (part of the Falkland 

Plateau transform margin), its position between South Africa, South America, 

and East Antarctica prior to the break-up of Gondwana is still debatable. This 

uncertainty affects the reliability of plate models for this region. In this chapter, 

an integration of gravity and 2D and 3D seismic reflection data from the eastern 

(west side of the Falkland Plateau Basin) and western margins of the 

microplate is used to provide insights into the tectono-stratigraphic architecture 

of this area from Jurassic onwards, and into the evolution of the Falkland 

Islands Microplate. The results provide evidence of a potential western 

boundary of the microplate. Furthermore, the findings show that the western 

part of the Falkland Plateau Basin is an integral part of the microplate, and it 

underwent deformation in a relatively fast-changing stress regime. Stress field 

configuration estimates across the Falkland Islands Microplate support an 

alternation between a NE-SW and NW-SE/WNW-ESE orientation of σ3 during 

the Jurassic and an ENE-WSW oriented σ3 during the Early Cretaceous. 

Correlations of this local stress configuration with the regional stress support a 

Middle to Late Jurassic rotation of the microplate in a predominantly 

extensional setting facilitated by the early fragmentation of south-western 

Gondwana.  
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5.1 Introduction 

Typically, intra-continental wrenching is associated with high degrees of crustal 

fragmentation and rotations of the resulting crustal and lithospheric blocks 

(Scrutton, 1979; Mascle et al., 1987; Nemcok et al., 2016; Ingersoll and Coffey, 

2017). This leads to structurally complex isolated blocks where smaller, 

secondary fault systems within and along their boundaries accommodate 

relatively large rotations (Ron et al., 1984; McKenzie and Jackson, 1986; 

Peacock et al., 1998; Platt and Becker, 2013). The analysis of these fault 

networks can offer more insights into the temporal variation in the stress regime 

that affected the blocks, which can be used to aid reconstruction models. The 

Falkland Islands Microplate (FIM) is an example of an isolated block formed in 

an intra-continental wrenching setting. The FIM is part of the larger Falkland 

Plateau transform margin that underwent intense deformation during the 

fragmentation of Gondwana and the opening of the South Atlantic in the 

Mesozoic due to wrenching between East and West Gondwana, and South 

America and Africa  (Rabinowitz and Labrecque, 1979; Lorenzo and Mutter, 

1988; Platt and Philip, 1995; Richards et al., 1996a, b; Richards and Fannin, 

1997; Bry et al., 2004; Del Ben and Mallardi, 2004; König and Jokat, 2006; 

Kimbell and Richards, 2008; Baristeas et al., 2013; Lohr and Underhill, 2015; 

Schimschal and Jokat, 2017, 2019a, b).  

Extensive work has been undertaken looking at the deformation affecting the 

FIM, which resulted in onshore to offshore fault network compilations and 

crustal architecture models (Ludwig et al., 1978; Lorenzo and Mutter, 1988; 

Platt and Philip, 1995; Richards et al., 1996a; Richards and Fannin, 1997; 

Thomson, 1998; Curtis and Hyam, 1998; Aldiss and Edwards, 1999; Bry et al., 

2004; Del Ben and Mallardi, 2004; Kimbell and Richards, 2008; Schreider et al., 

2011; Baristeas et al., 2013; Lohr and Underhill, 2015; Schimschal and Jokat, 

2019b). However, no detailed structural analysis has been published for the 

eastern boundary of the FIM (the western margin of the Falkland Plateau 

Basin). Furthermore, the location of the western boundary of the microplate 

remains uncertain (Marshall, 1994; Storey et al., 1999). This scarcity of 

information hinders attempts to generate a reliable reconstruction model for the 

microplate and the entire plateau. 

This chapter aims to document the western part of the Falkland Plateau Basin, 

and its constituent depocentres: the Volunteer and Fitzroy sub-basins. Their 

present-day tectono-stratigraphy reflects the complexities of transform margins 

and was in addition influenced by the development of the plateau between 
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South America, Africa, and East Antarctica. The chapter focuses on the area 

that would have sat between the Falkland Islands and South Africa in a 

rotational reconstruction model (Adie, 1952a; Mitchell et al., 1986; Marshall, 

1994; Curtis and Hyam, 1998; Thomson, 1998; Trewin et al., 2002; Stanca et 

al., 2019) by assessing the fault network and stratigraphic architecture of this 

region. The findings are integrated with data from the western boundary of the 

FIM which facilitates the delimitation of the FIM and the analysis of the nature 

of the deformation that occurs within and around the margins of a rotated 

microplate. Furthermore, the results are discussed in the context of south-

western Gondwana by comparing the local and regional stress regimes. 

5.2 Geological background 

5.2.1 Overview of the Falkland Plateau  

The Falkland Plateau (FP) is located east of Argentina, extending eastward 

~2000 km away from the Argentinian coast. It is bounded to the north by the 

dextral Agulhas - Falkland Fracture Zone (AFFZ) and to the south by the North 

Scotia Ridge (NSR) (Ludwig, 1983; Richards et al., 1996b) (Figure 5.1). The 

formation of the FP was associated with the break-up of Gondwana (Lorenzo 

and Mutter, 1988; Macdonald et al., 2003) and the opening of the Atlantic 

Ocean in the Mesozoic (Late Triassic – Late Cretaceous; Uliana et al., 1989; 

Heine et al., 2013) and was subsequently affected by oblique compression and 

transpression related to sinistral strike-slip movement during the development 

of the NSR (Cunningham et al., 1998; Eagles, 2000; Bry et al., 2004). The 

behaviour of the FP during the break-up remains controversial. Correlations 

between geological and geophysical data from the Falkland Islands and South 

Africa led to the development of the rotational theory which argues that the 

formation of the FP was accompanied by up to 120° rotation of the Falkland 

Islands (Adie, 1952a; Mitchell et al., 1986; Marshall, 1994; Mussett and Taylor, 

1994; Thomson, 1998; Curtis and Hyam, 1998; Storey et al., 1999; Trewin et 

al., 2002; Macdonald et al., 2003; Stone et al., 2009; Stanca et al., 2019). The 

lack of documented evidence for this rotation in the sedimentary infill of the 

basins surrounding the islands (Richards et al., 1996a), and the absence of a 

mechanism to accommodate this rotation led several authors to favour a non-

rotational model. In this model, the Falkland Islands were in a similar position 

relative to South America prior to the break-up of Gondwana as today 

(Lawrence et al., 1999; Ramos et al., 2017; Lovecchio et al., 2019; Eagles and 
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Eisermann, 2020), and the fragmentation of the supercontinent was recorded 

by extension in the sedimentary basins around the islands. 

Regardless of the movement of the Falkland Islands, the fragmentation of 

Gondwana and the initial rifting in the South Atlantic resulted in a series of 

structural and crustal provinces along the FP. These are, from west to east: the 

Malvinas Basin, the Falkland Islands (FI) with the North Falkland Basin to the 

north and the South Falkland Basin to the south, the Falkland Plateau Basin 

(FPB), and the Maurice Ewing Bank (Figure 5.1). The North Falkland Basin is 

further subdivided in the Jurassic Southern North Falkland Basin (SNFB) and 

the Late Jurassic - Early Cretaceous North Falkland Graben (Lohr and 

Underhill, 2015; Stanca et al., 2019). The FPB consists of the Volunteer sub-

basin to the north-west and the Fitzroy sub-basin in the west and south-west, 

the two being separated by the Berkeley Arch basement high (Rockhopper 

Exploration Plc., 2012; Dodd and McCarthy, 2016; Figure 5.1). 

 

Figure 5.1 Bathymetric map (GEBCO Compilation Group, 2020) of the 
Falkland Plateau (FP), overlain by the seismic reflection, exploration 
well, and Deep Sea Drilling Project (DSDP) data utilised in this 
chapter; the map shows the FP constituent basins (grey, dashed 
lines) and the regional structures bounding it (dextral and sinistral 
Agulhas – Falkland Fracture Zone and North Scotia Ridge, 
respectively, and the thrust front of the North Scotia Ridge); ocean 
bottom seismometer (OBS) position from Schimschal and Jokat 
(2019b); AFFZ – Agulhas-Falkland Fracture Zone; NSR – North Scotia 
Ridge 

5.2.2 Architecture of the Falkland Plateau Basin 

5.2.2.1 Structure 

The distribution of crustal types under the FPB is still uncertain. The Falkland 

Islands and the Maurice Ewing Bank were part of a continuous block, as 
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suggested by geochemical and isotopic analyses of their basement lithologies 

(Thomas et al., 2000; Chemale et al., 2018), which underwent extension and/or 

potential break-up during the fragmentation of Gondwana (Chemale et al., 

2018). Gravity modelling studies (Richards et al., 1996a; Kimbell and Richards, 

2008) and the interpretation of seismic reflection and refraction data (Ludwig, 

1983; Lorenzo and Mutter, 1988) show that the resulting basin is underlain by 

either thick oceanic crust or thinned and underplated continental crust. Recent 

studies have revealed more evidence on the presence of oceanic crust in the 

FPB (Schimschal and Jokat, 2017, 2019b; Eagles and Eisermann, 2020) but 

the extent of the oceanic domain remains uncertain. The results of the 

refraction study of Schimschal and Jokat (2017, 2019b) show the presence of 

high P-wave velocities indicative of oceanic crust along an E-W trending profile 

across the FPB (Figure 5.1), but with no constraints on the N-S extent of this 

potential oceanic domain. Similarly, Eagles and Eisermann (2020) present a 

crustal model of the FPB based on newly-acquired magnetic data where the 

entire FPB, with the exception of the AFFZ-adjacent area, is interpreted as 

oceanic or igneous crust. However, magnetic reversal isochrons indicative of 

typical oceanic crust are present only in the south-eastern part of the basin 

(Eagles and Eisermann, 2020). 

The FPB is bounded to the west by NE-SW trending normal faults that down-

throw to the south-east (Richards et al., 1996a, b), and to the east by the 

Maurice Ewing Bank. Most of the normal faults interpreted from seismic 

reflection data along the basin terminate at the top Jurassic (Lorenzo and 

Mutter, 1988). Rifting within the FPB was interpreted to have occurred either 

between Middle Jurassic and Early Cretaceous (Lorenzo and Mutter, 1988), 

during the Early Jurassic (Marshall, 1994; Richards et al., 1996a), or during the 

late Middle Jurassic (Ben-Avraham et al., 1993), although some authors argue 

for an earlier onset of rifting during the Permo-Triassic (Richards et al., 1996a). 

No wells penetrated the oldest syn-rift deposits, rendering the timing of rifting 

initiation speculative. 

5.2.2.2 Stratigraphy 

Gravity modelling and seismic reflection and refraction data interpretation 

revealed the presence of an up to 12 km thick sediment infill in the FPB 

(Richards et al., 1996a; Schimschal and Jokat, 2017). This sedimentary 

succession is constrained by well data on the western part of Maurice Ewing 

Bank (DSDP sites 327, 330, 511, 329, and 512) and east of the Falkland 

Islands (61/05-1, 31/12-1) (Figures 5.1 and 5.2). The remaining part of the 



 
 

94 

 

basin fill is interpreted on the basis of seismic facies analysis (Ludwig et al., 

1983; Del Ben and Mallardi, 2004). 

 

Figure 5.2 Chronostratigraphic diagram for the Falkland Plateau Basin 
based on well data (Western FPB), the interpretation of the seismic 
reflection profile I95167 from Del Ben and Mallardi (2004) (Eastern 
FPB), and DSDP information (Eastern FPB and Maurice Ewing Bank; 
Barker, 1977; Ludwig et al., 1980, 1983; Lorenzo and Mutter, 1988); 
main unconformities and nomenclature from [1] Lorenzo and Mutter 
(1988) and [2] Del Ben and Mallardi (2004); unconformities and 
formation ages along the Western FPB from BHP Billiton Petroleum 
(2010) and Falkland Oil and Gas Limited (2013); geometries of 
unconformities along the Eastern FPB redrawn after Del Ben and 
Mallardi (2004); correlation of unconformities along the Maurice 
Ewing Bank redrawn after Lorenzo and Mutter (1988); units are 
colour-coded to reflect their ages; FPB – Falkland Plateau Basin 
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The Middle to Upper Jurassic recorded a relative sea-level rise (Thompson, 

1977) that accounted for the deposition of open shelf deposits rich in 

terrigenous material. Middle Jurassic to Oxfordian sandstones, siltstones, and 

claystones interbedded with limestones (Barker, 1977) are overlain by Middle 

Jurassic non-marine sandstones and siltstones with lignitic intervals 

(Thompson, 1977). From the end of the Jurassic and throughout the Early 

Cretaceous up to late Aptian time, claystones and mudstones rich in organic 

matter and interbedded with micritic limestone were deposited in a restricted 

basin environment (Barker, 1977; Thompson, 1977; Ludwig, 1983). The Albian, 

Late Cretaceous, and the Cenozoic were associated with open marine 

conditions (Thompson, 1977) and the deposition of pelagic carbonates, zeolitic 

oozes and clays, and chalk. Throughout the Cretaceous, the western margin of 

the basin recorded the deposition of deltaic sandstones and sand-rich deep 

marine fans intercalated with claystones (Richards et al., 1996b; BHP Billiton 

Petroleum, 2010; Falkland Oil and Gas Limited, 2013). Paleocene to Early 

Oligocene sediment drift deposits are interpreted in the Cenozoic succession 

(Lorenzo and Mutter, 1988; Del Ben and Mallardi, 2004) overlain by Pliocene to 

Recent gravels, siliceous sands, and foraminiferal oozes (Barker, 1977; 

Ludwig, 1983) (Figure 5.2). 

Major uncertainty remains on the age of the oldest sediments in the FPB. 

DSDP 330 cored Middle Jurassic deposits resting on a Precambrian basement 

(Barker et al., 1977), but older sedimentary rocks are inferred from seismic 

velocities and gravity modelling with syn-rift deposition potentially starting in the 

Permo-Triassic (Richards et al., 1996a). 

Several regional unconformities have been identified on seismic reflection data: 

a Tithonian to Early Cretaceous unconformity spanning 30 Myr (‘U2’ in Lorenzo 

and Mutter (1988) and ‘J’ in Del Ben and Mallardi (2004)), a Middle Cretaceous 

unconformity marked ‘U3’ in Lorenzo and Mutter (1988), and an unconformity 

at the Cretaceous/Cenozoic boundary (‘U4’ in Lorenzo and Mutter (1988) and 

‘K’ in Del Ben and Mallardi (2004)) (Figure 5.2). 

5.2.2.3 Volcanism  

The break-up of SW Gondwana was associated with extensive volcanism and 

magmatism resulting in the formation of the widespread Karroo – Ferrar large 

igneous province (Encarnación et al., 1996; Macdonald et al., 2003). This event 

has been related to the emplacement of several dyke swarms identified 

onshore the Falkland Islands trending predominantly E-W and NE-SW although 

a higher variability in orientations has been observed across West Falkland 
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(Aldiss and Edwards, 1999; Mitchell et al., 1999; Stone et al., 2009; Hole et al., 

2016; Stone, 2016). E-W and NE-SW trending dykes yielded K-Ar and Ar-Ar 

ages of 188 ± 2 to 190 ± 4 Ma and 162 ± 6 to 178.6 ± 4.9 Ma, respectively 

(Mussett and Taylor, 1994; Thistlewood et al., 1997; Stone et al., 2008; Stone 

et al., 2009), although a maximum age of 193 ± 4 Ma was also obtained for a 

NE-SW trending dyke (Mussett and Taylor, 1994). A N-S trending dyke swarm 

varying in age from 121 ± 1.2 Ma to 138 ± 4 Ma (Stone et al., 2008; Richards et 

al., 2013) has been related to the early opening of the South Atlantic (Stone et 

al., 2009; Stone, 2016). N-S trending dykes have also been interpreted 

nearshore the Falkland Islands on magnetic data (Barker, 1999). 

Proof of volcanic activity has been invoked in the interpretation of seismic 

reflection data from the FPB in the form of volcanic edifices and dipping 

reflectors within the basement (Lorenzo and Mutter, 1988). The presence of the 

latter was supported by Barker (1999) and Schimschal and Jokat (2017) who 

correlated potential seaward-dipping reflector packages with velocities of over 4 

km/s. Positive magnetic and gravity anomalies along the western margin of the 

FPB were also interpreted as being generated by basaltic flows and/or the 

presence of plutonic bodies (Richards et al., 1996a; Barker, 1999) whereas 

seismic reflection data revealed the presence of sills intruded in the FPB 

sediment pile and interpreted as Early Cretaceous in age (Richards et al., 

2013).  

5.2.3 Falkland Islands Microplate – current reconstruction models  

The evolution and overall structure of the FPB is strongly correlated with the 

behaviour of the Falkland Islands during the fragmentation of Gondwana. 

Similarly, the pre-break-up structural grain of the Falkland Islands Microplate 

was inherited from the Permo-Triassic Gondwanide orogeny, which resulted in 

WNW-ESE trending folds and thrusts and NE-SW trending folds related to 

NNE-SSW compression and NE-SW dextral transpression, respectively (Curtis 

and Hyam, 1998; Aldiss and Edwards, 1999; Hodgkinson, 2002). 

Stratigraphic and structural correlations between the Falkland Islands and 

South Africa along with fossil assemblages, Late Paleozoic ice flow directions, 

and palaeomagnetic data analysis have been used to reconstruct a rotated 

position of the islands in a Gondwana pre-break-up configuration. The angle of 

rotation between the pre-Jurassic and current day position has been estimated 

between ~80° and 120°, with an additional ~60o occurring during the opening of 

the South Atlantic (Adie, 1952a; Mitchell et al., 1986; Marshall, 1994; Mussett 

and Taylor, 1994; Curtis and Hyam, 1998; Trewin et al., 2002; Stone et al., 
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2009; Stanca et al., 2019; Figure 5.3). This scenario positions the Falkland 

Islands off the south-east coast of South Africa, with the basement cropping out 

onshore the islands representing a fragment of the Namaqua-Natal-Maud belt 

extending across South Africa and East Antarctica (Thomas et al., 1997; 

Jacobs et al., 1999; Jacobs et al., 2003; Jacobs and Thomas, 2004; Vorster et 

al., 2016). A separation between the East and West Falkland reconstruction 

has been interpreted along the Falkland Sound Fault which has been inferred 

to run between the two main islands (Figure 5.4a; Thomas et al., 1997). 

However, the sense of movement, displacement, and timing of activity along 

this major structure has been difficult to constrain (Marshall, 1994; Richards et 

al., 1996; Thomas et al., 1997; Curtis and Hyam, 1998; Aldiss and Edwards, 

1999). 

The rotated reconstruction requires a fragmentation of the FP so that the 

islands are part of a separate microplate (the FIM) that underwent isolated 

clockwise vertical-axis rotation. Definition of FIM boundaries is still subject to 

debate. The microplate is considered to continue north all the way up to the 

Agulhas-Falkland Fracture Zone by some authors (Marshall, 1994) whereas 

others put the boundary further south, along the gravity positive anomaly 

corresponding to the Southern North Falkland Basin (Storey et al., 1999; Figure 

5.4b, c). Its western extent is interpreted to be marked by the arcuate positive 

gravity anomaly along the edge of the Malvinas Basin (Figure 5.4a-c) which 

corresponds in the northern part with a high-velocity ridge (Ludwig et al., 1968). 

This ridge was associated with a potential tectonic boundary between the 

Falkland Plateau and Patagonia (Marshall, 1994). The eastern boundary is 

thought to coincide with the NE-SW trending positive gravity anomaly (Storey et 

al., 1999; Figure 5.4a-c). The minimum southern extent corresponds to the 

NSR (Figures 5.1 and 5.4b, c). 

Studies favouring the rotation of the Falkland Islands argue for a more northern 

position of the islands relative to South Africa (Figure 5.3). This would require 

significant displacement along a right-lateral fault between Patagonia and the 

remainder of the South American plate (Rapela and Pankhurst, 1992; Ben-

Avraham et al., 1993) which has been challenged by subsequent studies (von 

Gosen and Loske, 2004; Franzese and Martino, 1998 in Ramos et al., 2017). 

More recent global and South Atlantic reconstructions achieve a closer fit 

between Patagonia (and the islands) and South Africa by taking into account 

intra-plate deformation of South America during the fragmentation of 

Gondwana (Heine et al., 2013; Müller et al., 2019). 
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Figure 5.3 Jurassic rotational ([1] and [3]) and non-rotational ([2]) 
reconstruction models of the Falkland Islands after [1] Trewin et al. 
(2002), [2] Ramos (2008), and [3] Chapter 4 and Stanca et al. (2019); 
the stratigraphy and correlation between the Falkland Islands and 
South African onshore sedimentary deposits is based on Trewin et 
al. (2002); the PBOCB for the rotational models is based on gravity 
data and drawn after Lawver et al. (1999) and Macdonald et al. (2003); 
the PBOCB for the non-rotational model is based on seismic and 
bathymetric data and drawn after Martin et al. (1981); inset in bottom, 
right corner shows the south-western configuration of Gondwana 
after Müller et al. (2019) with Africa fixed in its present-day position 

The lack of documented deformation in the sedimentary basin-fills offshore the 

islands (Richards et al., 1996a) that would support the rotation, along with the 

absence of a mechanism for it occurring at the FIM scale, led to several 

authors favouring a non-rotational evolution model. In this model, the Falkland 
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Islands remain fixed to the South American plate (Figure 5.3) throughout the 

Mesozoic, and the present-day morphology of the FP is either the result of 

extension coeval with the opening of the South Atlantic (Lawrence et al., 1999; 

Ramos et al., 2017; Lovecchio et al., 2019; Schimschal and Jokat, 2019b) or 

the plateau represents the conjugate to the Weddell Sea and undergoes 

extension related to the break-up and drift of the Antarctic plates (Eagles and 

Vaughan, 2009; Eagles and Eisermann, 2020). Arguments supporting these 

models are based on stratigraphic and structural correlations carried between 

the Falkland Islands and Patagonia (Lawrence et al., 1999; Ramos et al., 2017; 

Chemale et al., 2018; Lovecchio et al., 2019) and magnetic reversal isochrons 

and magnetic anomaly correlations between the FP on one side, and the 

Central Scotia Sea and the Weddell Sea on the other side (Eagles and 

Eisermann, 2020). 

5.3 Data and methodology 

5.3.1 Gravity data – availability and interpretation 

 

Figure 5.4 See next page for caption 
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Figure 5.4 a) Free air gravity anomaly (Sandwell et al., 2014) across the 
Falkland Plateau along with gravity lineaments showing the variation 
in structural grain; stippled black lines - potential intra-plate fracture 
zones accommodating the rotation of the FIM; an area-weighted rose 
diagram of the mapped features is also shown; white rectangles – 
seismic cubes; b) tilt derivative (TDR); black arrows - potential 
regional fracture zones; c) total horizontal derivative (THD); white 
arrows - potential regional fracture zones; inset showing the 
structural grain along the western margin of the Falkland Plateau 
Basin; black, thick stippled lines in (b) and (c) mark the potential 
boundaries of the FIM, white stippled line marks an alternative 
northern boundary of the FIM after Storey et al. (1999) and black 
question marks show uncertainties in the location of the western FIM 
boundary; thin stippled lines in (b) mark the extent of magnetic 
reversal isochrons from Eagles and Eisermann (2020) (oc. c. – 
oceanic crust); d) map-view of potential intra-block fault networks 
accommodating block rotation after Peacock et al. (1998); grey areas 
mark the regions gained and lost during block rotation assuming an 
original rectangular shape of the blocks; the change in shape is 
accommodated through intra-block faulting; potential fault patterns 
that may occur are drawn after Peacock et al. (1998) and are, from 
left to right: one fault network consisting of faults parallel to the 
block bounding faults, two fault networks parallel to the block and 
zone bounding faults, conjugate strike-slip faults in the corners 
where compression is expected, thrusts and normal faults occurring 
in the contractional (cc) and extensional (ec) corners, respectively; 
deformation exhibits a fractal behaviour and block widths vary 
between 10 mm and 100 km in the model of Peacock et al. (1998); 
AFFZ - Agulhas-Falkland Fracture Zone; NSR – North Scotia Ridge; 
FSF – Falkland Sound Fault  

The gravity data consist of the V24.1 1-minute satellite altimetry free-air gravity 

anomaly grid of Sandwell et al. (2014) for the entire FP. Total horizontal 

(Cordell and Grauch, 1985) and tilt derivatives (Miller and Singh, 1994; 

Verduzco et al., 2004; Oruç and Keskinsezer, 2008) were computed using 

Geosoft's Oasis Montaj software and used to map gravity lineaments across 

the entire FP (Figure 5.4). The nature of the interpreted structures was 

constrained using seismic reflection data. 

5.3.2 Seismic reflection data – availability and interpretation 

The seismic reflection data comprise 2D and 3D survey data (courtesy of the 

Falkland Islands Government) from seven vintages acquired between 1977 and 

2014 by Falklands Oil and Gas Limited, WesternGeco, Noble Energy, Lamont-

Doherty Earth Observatory, and Geophysical Service Incorporated (GSI) 

(Figure 5.1). The Falkland Oil and Gas Limited 2D survey from 2007 was the 

main 2D dataset used for the interpretation due to its resolution and coverage 
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of the western margin of the FPB. It consists of 154 lines with variable spacing 

on a grid predominantly orientated parallel (NE-SW to ENE-WSW) and sub-

perpendicular (WNW-ESE to NNW-SSE) to the shelf (Figure 5.1). The record 

length of this survey is 8 s TWT, with shot and receiver spacing of 25 m and 

12.5 m, respectively. The coverage of this dataset was complemented by 22 

lines from the 1993 WesternGeco survey (reprocessed in 2003). These have a 

record length of 9 s TWT and a shot and receiver spacing of 40 m and 10 m, 

respectively. Two 3D seismic cubes (FINA along the Berkeley Arch and 

Volunteer sub-basin and FISA in the Fitzroy sub-basin) aided with the 

interpretation of smaller scale faults and with the assessments of the 3D 

distribution of these fault networks and of the magmatic plumbing. The FINA 

and FISA cubes cover areas of ~5750 km2 and ~5500 km2, respectively, and 

have record lengths of ~9 s TWT. Older regional surveys (two lines from the 

RC2106 1978 Lamont-Doherty Earth Observatory survey, one line from the 

1978 GSI survey, and four lines from the 1977 Western survey) were used for 

correlations between the western margin of the FPB and the DSDPs on the 

eastern side. These have record lengths between 4 and 12 s TWT and a 

poorer data quality compared to the more recent surveys but provided regional 

information about the basement geometries and the main stratigraphic 

packages. Five wells (31/12-1, 42/07-1, 61/05-1, 61/17-1, and 61/25-1) and 

three DSDPs (327, 330, and 511) were tied to the seismic reflection data for 

the horizon interpretation stage. 

Four horizons were mapped across the Fitzroy and Volunteer sub-basins 

(western part of the FPB) and associated with mega-sequences based on 

stratal terminations and internal geometries of seismic facies (Mitchum et al., 

1977; Hubbard et al., 1985a, b). These horizons are: (1) the Upper Cretaceous 

Claystone and (2) Valanginian unconformity within the transitional to post-rift 

section, (3) near top Jurassic as the top syn-rift, and (4) near top Paleozoic as 

the top of the pre-rift sequence (Figure 5.5). Jurassic deposits were only 

penetrated by well 61/05-1 and DSDPs 330 and 511, reducing the reliability of 

correlation of Jurassic strata across the Berkeley Arch and into the Volunteer 

sub-basin. Volcanic rocks of Triassic (?) age were penetrated by well 61/05-1 

(Figure 5.2) but their extent remains uncertain. 
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Figure 5.5 a) and b) Uninterpreted seismic sections along the Fitzroy sub-
basin and the Berkeley Arch, respectively; c) and d) interpreted 
sections showing the sedimentary sequences, fault network, and 
evidence of magmatism; lines position shown in Figure 5.1 
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Figure 5.6 Uninterpreted and interpreted section parallel to the Falkland 
Islands eastern shelf and across the Berkeley Arch showing pre-rift 
reflectivity associated with pre-Mesozoic deformational stages and 
the distribution of the Cenozoic to Mesozoic sediment infill; deep 
reflectivity was associated with the Moho discontinuity; the shallow 
part of the Paleozoic-Proterozoic section (between the dashed and 
continuous magenta lines) correlates with the Permo-Carboniferous 
deposits in Figure 5.5c; line location shown in Figure 5.1 

Wavy low to high amplitude reflectors are readily observed within the pre-rift in 

the Fitzroy sub-basin and are truncated by a section of relatively constant 

thickness marked by subparallel to oblique reflectors and areas of transparency 

(Figure 5.5a, c). These deposits are associated with wavy to oblique 

discontinuous reflectors further north, across the Berkeley Arch and in the 

Volunteer sub-basin, where the upper part of the pre-rift is characterised by 

higher amplitudes and semi-continuous reflectors (Figure 5.5b, d), which make 

the differentiation from the Mesozoic sediments challenging. Regions of high 
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reflectivity have been identified in this area in the lower part of the pre-rift 

(Figure 5.5b, d). 

The main syn-rift phase was correlated with Jurassic and older deposits. The 

continuous reflectors within this mega-sequence have very low to high 

amplitudes and are disrupted in the Fitzroy sub-basin by sub-vertically stacked 

pockmarks. The deposits up to the Upper Valanginian unconformity record the 

transitional/sag phase. The latter two sections are crosscut by high amplitude 

saucer-shaped bodies. The younger Cretaceous section up to Campanian 

shows sigmoidal to oblique geometries with the Maastrichtian and younger 

deposits onlapping on the former (Figure 5.5). 

Isochron maps were computed in order to analyse the migration of the 

depocentres in the FPB as a response to the tectonic activity and sediment 

source/input (Figure 5.7). Faults were mapped across the Volunteer and Fitzroy 

sub-basins and the Berkeley Arch. The variance was the primary edge 

detection attribute used to identify small-scale discontinuities in the seismic 

reflection data related to normal or oblique-slip faults. 

The available wells did not allow for an extrapolation of the mapped horizons 

west of the Falkland Islands. Age constraints for near top Jurassic were added 

from Lovecchio et al. (2019) derived from well Salmon x-2 from the Malvinas 

Basin (Chapter 2, Figure 2.16d). Aside from this horizon, faults and changes in 

the seismic facies were also interpreted west of the Falkland Islands in order to 

assess the presence of the western FIM boundary and the deformation 

occurring along it. 

5.4 Structural and stratigraphic characteristics of the Falkland 

Plateau Basin from seismic and gravity data 

5.4.1 Basin depocentre migration during Mesozoic 

The pre-rift section of the western FPB has been interpreted as folded and 

faulted strata and correlated with the Siluro-Devonian deposits cropping out 

onshore the Falkland Islands and unconformably overlain by Permo-

Carboniferous deposits. Upper crust reflectivity (Figure 5.5b, d, 5.12a, e, and 

A.8a) has been correlated with the presence of crystalline basement. The 

stratigraphic architecture of the infill overlying the Paleozoic deposits was 

controlled by the tectonic activity affecting the plateau from Mesozoic and 

throughout the Cenozoic. The top pre-rift TWT map shows the two depocentres 

corresponding to the Volunteer sub-basin in the north and the Fitzroy sub-basin 
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in the central area separated by a basement high, the Berkeley Arch (Figure 

5.7a, b). The top pre-rift to Valanginian isochron shows a similar stratigraphic 

architecture, with sedimentation confined to the two sub-basins and little to no 

deposits above the Berkeley Arch. A southward migration of the Fitzroy sub-

basin depocentre is visible on the Valanginian-Campanian isochron. The Late 

Cretaceous recorded a progradation of the deposits from the south-west 

(Figure A.7) with the Cenozoic marking the merging of the two sub-basins in 

the larger FPB. Little sedimentation occurred at this point along the south-

western and northern margins of the basin (Figure 5.7c, d and e).  

Locally, the Berkeley Arch and Volunteer sub-basin show a higher variability in 

their stratigraphic architecture throughout the Jurassic and Cretaceous, which 

is related to tectonic structures present in the area (Figure 5.7f-i). The TWT 

map of the pre-rift shows fault-bounded WNW-ESE trending depocentres in the 

northern part of the Berkeley Arch and within the Volunteer sub-basin (Figure 

5.7f), and minor NNW-SSE striking depocentres in the central and southern 

part of the Berkeley Arch, deepening towards the east (Figure 5.7f). A similar 

distribution is observed for the Jurassic deposits with the Volunteer sub-basin 

as the main depocentre and little sedimentation occurring above the Berkeley 

Arch (Figure 5.7g). Thermal sag deposits that follow the trend of the underlying 

fault-controlled depocentres were eroded at the end of the Valanginian 

particularly in the north-eastern part of the area covered by the seismic cube 

(Figure 5.7h). The Lower Cretaceous sees the erosion of Valanginian deposits 

along a WNW-ESE direction potentially controlled by further sag along the 

WNW-ESE faults and/or uplift from the north, which focuses these deposits 

along the Jurassic depocentres (Figure 5.7i). During the Late Cretaceous, the 

accommodation space increases northwards with little sedimentation occurring 

along the Berkeley Arch (Figure 5.7d). From Maastrichtian onwards, the FPB is 

established as the main depocentre (Figure 5.7c). 

The structural control of the Fitzroy sub-basin is less apparent, the depocentre 

variation being similar to the one described for the entire western margin of the 

FPB. Local features characteristic of this sub-basin are represented by post-

Valanginian Early Cretaceous channel systems and shelf-incised canyon-fills 

(Figure 5.8).  
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Figure 5.7 a) Morphology of the pre-rift topography; b) strike section 
along the shelf showing the main mega-sequences and basins; c), 
d), e) thickness maps of the overlying deposits showing depocentre 
migration as a result of sediment input and tectonism; black 
rectangles – position of the two 3D seismic cubes; f) top pre-rift TWT 
map showing the Volunteer sub-basin, WNW-ESE fault-controlled 
depocentres, and the Berkeley Arch; g) thickness of Jurassic section 
showing fault controlled deposition; h) thickness of Valanginian-
Berriasian deposits showing extensive erosion and fault-controlled 
depocentres; i) thickness of the Lower Cretaceous section showing 
the uplift from the north controlling the sediment pathway into the 
basin; location of (f) - (i) shown in (e); black stippled lines – outlines 
of main depocentres 
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Figure 5.8 Evidence for shelf-incised canyons (a, b, d, e) and stacked 
channels (a, b, d) during the Early Cretaceous in the Fitzroy sub-
basin (southern rectangle in Figure 5.7); BCS – base channel 
system; palaeo-shelf surface in (c) and (e) corresponds to the 
palaeo-shelf (green dashed line) in (a), (b) and (d) 

5.4.2 Volcanism and magmatism 

Evidence for volcanic activity was identified in both the Volunteer and Fitzroy 

sub-basins. In the Fitzroy sub-basin, the correlation of vertically or sub-

vertically stacked pockmarks (Figure 5.9) resulted in a network of N-S trending 

features (Figure 5.14) showing no evidence of vertical or horizontal 

displacement. These features are consistent with an interpretation of igneous 

dykes following the rationale of Magee and Jackson (2019). 

Stacked saucer-shaped bodies with high amplitudes and step-like geometries 

were mapped across the extent of both sub-basins (Figures 5.12c, A.7, A.8a) 

but were particularly extensive in the Fitzroy sub-basin (Figures 5.10, 5.11). 

They are restricted to the Triassic (?) – Valanginian stratigraphic level and 

associated with deformation of the surrounding sedimentary deposits. Their 3D 

geometry and distribution as shown by the 3D seismic data in the Fitzroy sub-

basin can be seen in Figure 5.10. Their western extent, as constrained by the 

2D and 3D seismic reflection data, can be seen in Figure 5.14. These features 
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are interpreted as sills and their emplacement was associated with the force-

folding of the intruded sediments. The relative age for this volcanic event is 

constrained by onlapping geometries (Figure 5.11b, d). Folding of the 

Valanginian and Aptian-Albian markers and onlap geometries identified in the 

pre- and post-Valanginian successions indicate an emplacement spanning the 

Early Cretaceous (Figures 5.11, A.7b). These sills can also be identified above 

some of the dykes, and the emplacement of the two is interpreted here as 

coeval.  

 

Figure 5.9 Pockmarks interpreted as dykes (stippled lines) in the Fitzroy 
sub-basin; line position shown in Figure 5.1 
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Figure 5.10 3D opacity rendering of the south-eastern part of the FISA 
cube showing a) top view of the sills and lava flows and the control 
of the N-S trending structures on their distribution; b) view from the 
east and c) view from the south of the sills and lava flows 
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Figure 5.11 Sills and lava flow distribution and associated forced-folds in 
the Fitzroy sub-basin; a) uninterpreted strike line; b) interpretation of 
section in (a) showing lava flows and sill geometries and extent, and 
pre- and post-Valanginian evidence of forced-folding coeval with the 
sills emplacement; c) uninterpreted dip line; d) interpretation of 
section in (c) showing folding and truncation above the Jurassic 
marker and in the post-Valanginian section; e) uninterpreted strike 
line; f) interpretation of section in (e) showing erosional truncation 
and onlapping below and above the Aptian-Albian marker; lines 
position shown in Figure 5.10 
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Locally, the magma feeding the sills and dykes reached the surface resulting in 

lava flows (Figure 5.11b, d, f). These are more extensive in the south-eastern 

part of the seismic cube in the Fitzroy sub-basin (Figure 5.10) and their 

extrusion and distribution shows a N-S trending structural control (Figure 

5.10a), parallel to the trend of the interpreted dykes. Further evidence of 

volcanism along this margin of the FPB can be seen in the lower section of the 

Volunteer sub-basin as high amplitude reflectors (Figure 5.17a) interpreted as 

(pre-)Jurassic volcanic deposits. 

5.4.3 Structural architecture 

Three predominant structural trends were identified and mapped across the 

entire FP with the aid of free-air gravity anomaly data and its computed 

derivatives and seismic reflection data: 

• NW-SE to WNW-ESE: corresponding to the Jurassic SNFB faults, the 

western margin of the Maurice Ewing Bank and the northern part of the 

Berkeley Arch (Figure 5.4a); 

• NE-SW: reflecting the structural grain along the western margin of the 

FPB, the eastern Maurice Ewing Bank, and the area west of West 

Falkland; larger scale structures (stippled black lines in Figure 5.4a) 

following the same NE-SW trend were interpreted across the FPB, 

parallel to the Falkland Sound Fault inferred between the East and West 

Falkland; a potential continuation of the NE-SW trend of the Falkland 

Sound Fault can be seen on the gravity data east of the North Falkland 

Basin (Figure 5.4a);  

• N-S to NNW-SSE: comprising the Late Jurassic – Early Cretaceous 

North Falkland Graben, the coeval features in the main FPB and the 

area west and south-west of the Falkland Islands (Figure 5.4a). 

5.4.3.1 Western margin of the Falkland Plateau Basin 

This tridirectional structural distribution is evident along the eastern shelf of the 

FIM. WNW-ESE striking normal faults displace deformed Paleozoic deposits 

and, along the western margin of the FPB, were identified and mapped 

exclusively in the northern part of the Berkeley Arch (Figure 5.13). 
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Figure 5.12 a), b), and c) Dip sections across and d) and e) strike sections along the western margin of the Falkland 
Plateau Basin showing changes in faulting style from north to south and evidence of normal faulting affecting 
the whole margin; two of the used wells tied to the seismic are shown in (a) and (e)
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Figure 5.13 Compiled Jurassic structural map of the Falkland Islands on- 
and offshore areas ([1] Aldiss and Edwards, 1999; [2] Stone et al., 
2009; [3] Lohr and Underhill, 2015; [4] Stanca et al., 2019 and Chapter 
4, and this chapter) along with area-weighted rose diagrams for 
every deformational stage and fault network, showing extension 
directions throughout Jurassic assumed to be perpendicular on the 
onshore dyke swarms and offshore normal faults; ages of onshore 
dykes after [5] Mussett and Taylor (1994) and [6] Stone at al. (2008); 
arrows show extension direction and their orientation is equivalent 
to the orientation of σ3 
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Figure 5.14 Compiled Cretaceous structural map of the Falkland Islands 
on- and offshore areas ([1] Aldiss and Edwards, 1999;[2] Stone et al., 
2009; [3] Lohr and Underhill, 2015; [4] Stanca et al., 2019 and Chapter 
4, and this chapter) along with area-weighted rose diagrams for 
every deformational stage and fault network, showing extension 
direction during Cretaceous assumed to be perpendicular on the 
onshore dyke swarms and offshore normal faults and dykes; ages of 
onshore dykes after [5] Stone et al. (2008) and [6] Richards et al. 
(2013); arrows show extension direction and their orientation is 
equivalent to the orientation of σ3
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Figure 5.15 Relative ages of the WNW-ESE and NNE-SSW trending normal 
faults in the Volunteer sub-basin and along the Berkeley Arch 
showing a secondary separation of the same-strike faults based on 
their ages; motion on NNE-SSW trending faults occurs both before 
and after the formation on the WNW-ESE trending faults, but both 
sets are restricted to the Jurassic interval; line positions shown in 
Figure 5.14 

NNE-SSW striking normal faults affect the rest of the basement high, the 

Volunteer sub-basin, and are inferred to control the entire western margin of 

the Fitzroy sub-basin (Figures 5.12, 5.13). The syn-kinematic deposits 

associated with both fault sets are predominantly Jurassic (Figures 5.12a, b, 

5.15, 5.16c, A.8) and are consistent with an alternation between almost 

orthogonal extension directions resulting in the formation and reactivation of 

NNE-SSW and WNW-ESE striking faults (Figures 5.13 and 5.15). 

N-S to NNW-SSE trending normal faults are interpreted along the entire 

western margin of the FPB and are distributed in either a left- or right-stepping 

en-échelon geometry (Figures 5.12d, 5.13, 5.14, and 5.19a- e). The faults in 

this set have small displacements, with a few exceptions along the western 

margin of the Fitzroy sub-basin (Figure 5.12d). Their syn-rift deposits are 

restricted to either the Jurassic section along the Berkeley Arch (Figure 5.19f) 

or offset the Valanginian unconformity in the Fitzroy sub-basin and the northern 

part of the Berkeley Arch (Figures 5.12d, 5.16, and 5.19f, g). Although these 

normal faults are predominantly interpreted on the 3D seismic reflection data, a 

similar trend can be observed on the gravity data, at a larger scale, along the 
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western margin of the FPB (Figure 5.4c) and locally, albeit with more 

uncertainty, along the more eastern interpreted fracture zones (Figure 5.4a).  

 

Figure 5.16 Sections through the FINA cube showing evidence of Early 
Cretaceous faulting in the north of the cube (b, c) and Jurassic 
faulting in the NW of the cube (c); upper crust reflectivity and 
deformation can also be seen in sections (a)-(c) 

 

Figure 5.17 See next page for caption 
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Figure 5.17 Evidence for a) compression and b) positive inversion and 
cross-cutting relationships in the Volunteer sub-basin in the form of 
folds and reverse faults; sense of movement for the hanging-wall of 
the faults indicated; onlaps on folds shown as syn-kinematic 
indicators 

 

Figure 5.18 Evidence for positive inversion along a segment of a WNW-
ESE trending normal faults in the Volunteer sub-basin; sense of 
movement for the hanging-wall of the faults indicated; onlaps on 
folds shown as syn-kinematic indicators; compression increases 
westwards (from a to c); sections (b) and (c) are parallel to section 
(a) shown in the location map and west of it (distance between 
sections too small to reproduce on the map of the cube) 

Evidence of localized compression in the form of periclinal folds and WNW-

ESE trending reverse faults with lengths of up to 4 km can be seen in the 

Volunteer sub-basin and along the Berkeley Arch, respectively (Figures 5.17, 

5.18). These are restricted to the Jurassic level (Figures 5.17, 5.18b), albeit a 

small degree of deformation of the Valanginian marker is noticeable along 

some of the inverted fault segments (Figure 5.18c). Locally, reverse faults 

reactivate or displace Jurassic WNW-ESE trending normal faults, suggesting a 

younger relative age for the compression event (Figures 5.17b, 5.18).  

The post-Valanginian up to present-day section is relatively undeformed with 

the exception of polygonal faulting (Figures 5.5c, d, 5.15b, 5.16c). 
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Figure 5.19 See next page for caption 
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Figure 5.19 a) Variance timeslice across the Berkeley Arch showing the 
distribution of en-échelon faults; black polygon – inset in (b); b) edge 
detection attribute along an intra-Jurassic horizon showing right and 
left-stepping en-échelon fault networks; c) faults and dykes 
distribution on the 3D seismic in the Fitzroy sub-basin; black 
rectangle - inset in (d); d) en-échelon faults and the sense of shear 
estimated from their orientation; black rectangle – inset in (e); e) 
edge detection attribute along an intra-Jurassic horizon showing the 
complex fault and fracture network generated by sinistral wrenching; 
f) section through the en-échelon faults in (b); g) section through the 
en-échelon faults in (e); h) strain ellipse with the orientation of the 
minimum horizontal stress for (a) and (b); i) strain ellipse with the 
orientation of the minimum horizontal stress for (c), (d) and (e); 
direction of arrows mark extension direction and their orientation is 
equivalent to the orientation of σ3; position of timeslices in (a) and 
(c) shown in Figure 5.14 

5.4.3.2 Western margin of the Falkland Islands Microplate 

West and south-west of the Falkland Islands the tilt derivative of the free-air 

gravity anomaly shows a complex structure with an arched, roughly N-S 

trending linear anomaly on the westernmost part, ENE-WSW trending features 

between this and the islands, and N-S lineaments SW of West Falkland (Figure 

5.20 – map inset). The available seismic data do not cross the central and 

northern part of the arched anomaly. However, east of this structure the data 

image the mega-décollement controlling the deformation across the Falkland 

Islands Microplate described in Chapter 4 just west of the islands with folded 

Palaeozoic deposits in the upper section (Figure 4.13a in Chapter 4). Gentle 

folding can be seen just SW of the islands (Figure 5.20a) where a N-S pattern 

is distinguishable on the tilt derivative (Figure 5.20 – map inset). The semi-

continuous reflectors associated with the Palaeozoic succession cannot be 

followed west of this area where the gravity has a more chaotic character 

(Figure 5.20 – map inset). This region has semi-transparent seismic facies with 

discontinuous reflectors in the superior part and continues west into the Central 

Graben of the Malvinas Basin (Figure 5.20a). The infill of this graben is poorly 

imaged by the seismic data, showing evidence of deformation and 

progradational geometries from the shoulders of the graben (Figure 5.20a, b).
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Figure 5.20 Map - tilt derivative across western FIM showing the arcuate gravity anomaly and the position of the 
seismic sections in (a) to (h); a) seismic section showing a change from Paleozoic(?) deposits to the Central 
Graben infill; b) sediment geometry in the Central Graben; (c), (d), (e) the main normal fault associated with the 
arcuate gravity anomaly and inversion along it generating a harpoon structure; (f) transparent seismic facies of 
the inverted section; inverted normal fault is inferred; (g) growth strata associated with folding, with deeper 
reflectors pointing towards a potential truncation of the original normal fault; (h) erosional truncation of the 
inverted section suggesting a Jurassic (?) relative age for the inversion; deep thrusting domain from Chapter 4 
(Figure 4.13a); FSF – Falkland Sound Fault
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A wedge-shaped package was identified on most of the NE-SW striking seismic 

lines from this area and associated with the presence of an NNW-SSE normal 

fault down-thrown to the west (Figure 5.20c, d, e).  The uppermost section of 

the syn-rift shows evidence of inversion which becomes more prominent 

northwards where the feature resembles more a classical harpoon structure 

(Figure 5.20c-f). The folding is interpreted to decouple from the underlying fault 

further north (Figure 5.20g). Truncation of the folded deposits by a pre-top 

Jurassic surface (Figure 5.20h) and gentle folding of the near top Jurassic 

marker visible on the northernmost sections (Figure 5.20f-h) provide a relative 

age for the inversion. The inverted fault and the folded deposits coincide with 

the southern segment of the arched gravity anomaly (Figure 5.20 – map inset). 

5.5 Discussion 

5.5.1 The evolution of the western Falkland Plateau Basin 

The present-day morphologies of the Volunteer and Fitzroy sub-basins are the 

result of extension along the Falkland Plateau associated with the 

fragmentation of Gondwana and the opening of the South Atlantic. They are 

further influenced by the movement along the AFFZ and the formation of the 

NSR.  The contrasting structural frameworks and stratigraphic architectures of 

the two constituent sub-basins point towards different tectono-stratigraphic 

histories.  

The Volunteer sub-basin and the Berkeley Arch show extensive deformation of 

Paleozoic deposits with two sets of normal faults subdivided based on their 

orientation: one trending NE-SW and one WNW-ESE (Figure 5.13). The syn-rift 

deposits show that NW-SE directed extension both preceded and followed the 

formation of the WNW-ESE trending fault set (Figure 5.15), although an 

alternation between WNW-ESE and roughly NE-SW extension is more likely 

(Figures 5.21, 5.22). On the free-air gravity anomaly map (Figure 5.4a), the 

WNW-ESE trend correlates with the reactivated faults from the SNFB, 

suggesting a coeval rifting stage during the Jurassic (Lohr and Underhill, 2015; 

Stanca et al., 2019; Chapter 4). As the oldest SNFB syn-rift deposits have not 

been penetrated by wells, one can argue for an onset of extension 

synchronous to the emplacement of the Early Jurassic onshore E-W trending 

dykes (188 ± 2 to 190 ± 4 Ma; Mussett and Taylor, 1994; Ramos et al., 2017; 

Figure 5.22a). Extension perpendicular to the western NE-SW trending margin 

of the FPB potentially started during the Early to Middle Jurassic when dykes 

following the same trend were emplaced onshore the Falkland Islands (162 ± 6 
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to 178.6 ± 4.9 Ma; Thistlewood et al., 1997; Stone et al., 2008; Figures 5.21a, 

5.22b). Variations in the configuration of stress components are seen 

throughout the Jurassic, resulting in N-S trending en-échelon normal faults 

superimposed on the first generations of faults (Figure 5.19b), and suggestive 

of secondary sinistral and dextral shearing along NE-SW and WNW-ESE 

directions, respectively. Locally, evidence of (Late?) Jurassic compression and 

positive inversion are seen in the Volunteer sub-basin (Figure 5.17). Although 

the deposition of the Cretaceous and younger section shows some control of 

the underlying structures (Figure 5.7h, i), the only active faults at this level are 

polygonal (Figures 5b, d and 5.15b) with evidence of restricted WNW-ESE 

dextral shearing occurring in the northern part of the seismic cube from this 

area (Figure 5.19b, f) during the Early Cretaceous. 

In contrast, the Fitzroy sub-basin shows little faulting of the Paleozoic deposits, 

the depth of its depocentre pointing towards subsidence due to loading as a 

result of a high input of sediments rather than crustal thinning. Discrete faulting 

could occur basinward, underneath the sills where the seismic imaging is poor 

(Figure 5a, c). Localized evidence of Jurassic faulting is interpreted along the 

shelf (Figures 5.12d, 5.13). However, the faulting within the sub-basin is 

restricted to the Lower Cretaceous interval when N-S to NNW-SSE normal 

faults were generated with intrusion of dykes and extrusion of lavas that follow 

the same trend (Figures 5.10a, 5.19c-e and g). The en-échelon distribution of 

these faults suggests a sinistral strike-slip component. The extensive formation 

and filling of submarine canyons and channels in the Fitzroy sub-basin (Figure 

5.8) suggest an increase in sediment supply during the Hauterivian-Albian, 

and/or a relative sea-level fall (Covault, 2011) which might be related to a larger 

scale isostatic adjustment. 

Although small-scale faults control the stratigraphic architecture in the study 

area, the overall morphology of the FPB was strongly impacted by large-scale 

tectonism, such as movement along the AFFZ and the formation of the NSR. 

The wrenching and active transform motion period of the AFFZ, as documented 

on the South African side, occurred between 134 and 92 Ma (Valanginian - 

Turonian) and resulted in a gradual westward migrating uplift in the Outeniqua 

Basin (Baby et al., 2018). In the Volunteer sub-basin, the deposition of the 

Valanginian-Cenomanian sequence is focused along a WNW-ESE direction 

(sub-parallel to the AFFZ) and onlaps onto the Valanginian deposits, which 

could suggest uplift from the north, along the AFFZ (Figure 5.7i). A large-scale 

unconformity is interpreted along the South African margin during the Aptian-
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Albian (McMillan, 2003; Baby et al., 2018) and related to large scale tectonic 

events that could explain the canyon incision seen at this time along the 

western margin of the FPB (Figure 5.8).  

Compression and uplift along the NSR are thought to have started in the Late 

Cretaceous (Bry et al., 2004), which resulted in the southward tilt of the 

Falkland Plateau (Ewing et al., 1971). This is expressed as a south-eastward 

increase in accommodation space during this time in the FPB (Figure 5.7c). 

5.5.2 The structural evolution of the western margin of the Falkland 

Islands Microplate 

The region west and south-west of the Falkland Islands shows the highest 

degree of Mesozoic deformation occurring in the south-westernmost part, along 

the Central Graben of the Malvinas Basin (Figure 5.20a-h). The rifting in this 

part of the basin is believed to have started in Middle (?) Jurassic (Baristeas et 

al., 2013) or as early as Late Triassic (Lovecchio et al., 2019). The main fault 

bounding the Central Graben to the east undergoes increasing inversion 

northwards during the (Late?) Jurassic with the folding associated with this 

inversion following the trend of the linear gravity anomaly west of the Falkland 

Islands (Figure 5.20 – map inset, Figure 5.20c-h). The northern segment of this 

anomaly corresponds to the high-velocity ridge of Ludwig et al. (1968) and was 

associated with a potential suture zone between the Falkland Plateau and 

Patagonia (Storey et al., 1999; Marshall, 1994; Richards et al., 1996a, b). The 

age of this contentious suture is debatable, being either a result of the 

Mesozoic fragmentation of Gondwana or older, following the Carboniferous 

collision of Patagonia with south-western Gondwana as discussed by 

Pankhurst et al. (2006). The presence of a crustal scale structure would act as 

a weak zone during subsequent deformational events and would explain the 

localization of deformation in the Malvinas Basin along this boundary, in the 

Central Graben. The depth of the Central Graben (Figure 5.20) along with the 

inversion occurring along it (Figure 5.20c-h) points towards more complex 

tectonism than sole extension resulting in the opening of the Malvinas Basin. 

This style of deformation could be associated with wrenching between FIM and 

Patagonia. 

5.5.3 Mesozoic structural evolution of the Falkland Islands 

Microplate 

The seismic reflection data interpreted along the western boundary of the FPB 

does not show a crustal scale feature that could be associated with the eastern 
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boundary of the FIM (Figure 5.5). Furthermore, the deformation related to 

wrenching is relatively localised and suggests little sinistral displacement along 

what was interpreted to be the margin of the microplate (Figure 5.19). 

Therefore, the region comprising the Fitzroy and Volunteer sub-basins is 

considered here as part of the FIM, and the NE-SW trending gravity anomalies 

interpreted as fracture zones (Figure 5.4a, b and c) are interpreted to 

accommodate the intra-plate deformation during rotation of the FIM, with the 

easternmost fracture zone potentially acting as the eastern FIM boundary. 

Subsequent to the Gondwanide orogeny, which resulted in WNW-ESE trending 

folds and thrusts and NE-SW trending folds across the FIM (Curtis and Hyam, 

1998; Aldiss and Edwards, 1999), the incipient stages of continental 

fragmentation resulted in a complicated fault network affecting the microplate. 

Situated between three major plates, the microplate underwent faulting and 

dyke emplacement related to the undocking and drifting of East Antarctica and 

South America away from Africa (Figure 5.21).  

During the Early Jurassic, the early stage of Karoo-Ferrar magmatism was 

marked by WNW-ESE to W-E oriented dyke intrusion in the southern part of 

West Falkland (188-190 Ma). This was followed by NW-SE directed extension 

resulting in the emplacement of another dyke swarm (162-179 Ma) onshore the 

islands, assuming dyke intrusion occurred perpendicular to σ3. This stage was 

potentially synchronous with normal faulting in the Volunteer sub-basin and 

along the Berkeley Arch (Figure 5.22a, b) and extension in the main 

depocentre of the Malvinas Basin. The Middle (?) - Late Jurassic sees a 

rotation in the extension direction to NNE-SSW allowing for the reactivation of 

the Permo-Triassic thrusts in an extensional regime seen both in the Southern 

North Falkland Basin and the Volunteer sub-basin (Figure 5.22c, d). The 

structural inheritance given by the presence of older WNW-ESE trending 

thrusts does not require the extension direction to be perpendicular to these 

thrusts in order for them to reactivate. Experimental studies on oblique rifting 

show that pre-existing structures can reactivate with a predominantly normal 

dip-slip component for angles between 45° and 135° between their trend and 

the extension direction (Withjack and Jamison, 1986; Henza et al., 2010). For 

angles outside this range, oblique-slip or strike-slip faults tend to develop 

(Withjack and Jamison, 1986; Henza et al., 2010). The reactivated thrusts in 

the SNFB show predominantly normal displacements to oblique-slip suggesting 

an extension direction between NNW-SSE and NE-SW which would allow 
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multiple stages of movement along these faults throughout the Jurassic (Figure 

5.22a, c, and d).  

Jurassic en-échelon faulting along the margin of the FPB (Figure 5.19a, b) is 

consistent with sinistral and dextral wrenching generated by a NE-SW oriented 

σ3 (Figures 5.19h and 5.22c, d). However, the predominantly small 

displacements associated with these faults along with the lack of age 

constraints for the Jurassic section make their relative dating in the context of 

SNFB rifting difficult. From the end of the Jurassic and into the Early 

Cretaceous σ3 oscillates around a roughly E-W orientation, leading to the 

opening of the North Falkland Basin, normal faulting in the Fitzroy sub-basin, 

and the onshore and offshore emplacement of an Early Cretaceous generation 

of dykes between 121 ± 1.2 Ma to 138 ± 4 Ma (Figure 5.22e, f). Sinistral and 

dextral shearing occurs at this time locally, along the western margin of the 

FPB (Figure 5.19c, d, e) and in the northern part of the Berkeley Arch (Figure 

5.19b), respectively, potentially related to the onset of wrenching along the 

AFFZ (at 134 Ma; Baby et al., 2018). However, these right and left-stepping en-

échelon faults could be reactivated Jurassic structures that accommodated the 

FIM intra-plate deformation during its rotation, in a similar way to the NE-SW 

trending regional fracture zones (Figure 5.4a) but on a much smaller scale 

(Peacock et al., 1998; Figure 5.4d). 

5.5.4 Stress orientation variation across the FIM in the context of 

Gondwana 

5.5.4.1 Plate model considerations 

In the context of a pre-break-up configuration of south-western Gondwana, the 

stress variation interpreted across the FIM could help constrain the timing of 

microplate rotation. This can be done by comparing structures of similar age 

identified across south-western Gondwana with the aforementioned structural 

framework. To do this, a modified version of the South Atlantic reconstruction 

after Müller et al. (2019) with Africa fixed to its present-day position is used. 

The Falkland Plateau is considered to consist of two sub-plates: the FIM and 

the Maurice Ewing Bank region. The FIM is defined as the area bounded to the 

north, west, and south by the black stippled lines in Figure 5.4b, c, and extends 

eastward up until the magnetic stripes from Eagles and Eisermann (2020) (oc. 

c. region in Figure 5.4b, c). These were interpreted as magnetic reversal 

isochrons associated here with the presence of oceanic crust, although a more 

extensive oceanic domain has been interpreted by Schimschal and Jokat 

(2019b) based on P-wave velocities (black dots in Figure 5.1) and by Eagles 
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and Eisermann (2020) based on magnetic data. The Maurice Ewing Bank sub-

plate represents the remainder of the plateau. The amount of rotation for the 

Falkland Islands Microplate during the Early Jurassic is based on Chapter 4 

(after Stanca et al., 2019) but its exact location remains debatable. Here the 

islands are positioned further south than Stanca et al. (2019) and the 

reconstruction shown in Chapter 4 in order to eliminate the space between the 

FIM and South America in the Jurassic reconstruction while not invoking dextral 

movement along the Gastre Fault. A more northern position could be 

accomplished by further deformation of the South American plate. These 

scenarios are not addressed here; rather, the sole aim of the reconstruction is 

to carry out a qualitative comparison between the stress fields and structures 

across the FIM and south-western Gondwana. Similarly, Schimschal and Jokat 

(2017, 2019b) and Eagles and Eisermann (2020) interpreted oceanic crust 

underlying the whole Falkland Plateau Basin. Although the seismic data 

presented here show folded Paleozoic deposits indicative of a more extensive 

continental crust in the east of the FIM than suggested by these studies, this 

chapter does not refute the presence of oceanic crust in the eastern part of the 

Falkand Plateau Basin. This would change the extent of the two sub-plates of 

the Falkland Plateau, but it would not affect the fact that the structural features 

of the Falkland Islands, North Falkland Basin, and the Volunteer and Fitzroy 

sub-basins are part of the same microplate and underwent the same amount of 

rotation. Therefore, the extent of the sub-plates and the overall crustal 

architecture of the plateau should not have implications for the purpose of this 

comparison between the local (FIM) and regional (south-western Gondwana) 

stresses. In the following section, the orientation of the regional σ3 is mentioned 

relative to the fixed Africa (Figure 5.21), whereas the local orientation is relative 

to the present-day position of the Falkland Islands (Figure 5.22). 

5.5.4.2 Local vs. regional stress orientation 

The Early Jurassic E-W trending dyke swarm onshore the Falkland Islands is 

thought to have compositional affinities with the now N-S trending Rooi Rand 

basalts in Lebombo, SE Africa (Armstrong et al. (1984) in Mitchell et al. (1999)), 

which were in turn correlated with the early E-W rifting between Africa and 

Antarctica (Reeves, 2000; Figure 5.21a). However, more recent dating of the 

Rooi Rand dyke swarm yielded ages between 164.7 and 177.8 Ma (Jourdan et 

al., 2007; Hastie et al., 2014) and therefore younger than the Early Jurassic 

dykes onshore the Falkland Islands (188 ± 2 to 190 ± 4 Ma). Older dyke 

swarms that mark the beginning of the Karoo-Ferrar magmatism and early 
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stages of Gondwana fragmentation are the N-S striking dykes in the northern 

part of the Lebombo monocline in south-east Africa, although E-W regional 

extension might have started as early as 190 Ma with the emplacement of the 

ENE-WSW trending dykes from Ahlmannryggen region, Dronning Maud Land 

(Antarctica) (Riley et al., 2005; Jourdan et al., 2007; Klausen, 2009). The pre-

break-up position of the Falkland Islands, incorporating the rotation from 

Stanca et al. (2019), would result in a NW-SE to N-S orientation of the oldest 

Jurassic dyke swarm relative to Africa. This is sub-parallel to the North 

Lebombo and the reconstructed Dronning Maud Land dykes, suggesting that 

their emplacement could have occurred in a similar stress regime (Figure 

5.21a). The Early Jurassic dykes onshore the Falkland Islands show a more 

radial distribution (ENE-WSW swinging to WNW-ESE) which could suggest a 

continuation of their intrusion coeval with the Okavango and Save-Limpopo 

dyke swarms in Africa, discussed below, and a conjugate relationship with the 

NE-SW dykes onshore the Falkland Islands as suggested by Musset and 

Taylor (1994). 

The Jurassic NE-SW (present-day orientation) oriented dyke swarm (162 ± 6 to 

178.6 ± 4.9 Ma) has the same orientation as the Jurassic normal faults mapped 

along the Berkeley Arch and suggest a NW-SE to WNW-ESE orientation of σ3 

(Figure 5.22b). The regional stress orientation during Early Jurassic relative to 

a fixed Africa was controlled by NNW-SSE to N-S-oriented extension between 

East Antarctica and West Gondwana as inferred from field analysis of the 

Okavango and Save-Limpopo dyke swarms in Africa (Le Gall et al., 2002, 

2005; Jourdan et al., 2007; Klausen, 2009; Hastie et al., 2014). At this time, 

NNW-SSE, NNE-SSW, and NE-SW striking dykes were emplaced in the 

Straumsvola, Ahlmannryggen, and Vestfjella regions, respectively, on the East 

Antarctic side (Riley et al., 2005; Curtis et al., 2008). The variation in the 

orientation of the Dronning Maud Land dyke swarms is considered to be 

suggestive of radial intrusions around a plume head (Curtis et al., 2008) rather 

than controlled by the regional stress field but are shown here in the interest of 

completeness. Rifting in the Weddell Sea Rift System (~175-180 Ma) and 

across Patagonia and the Malvinas Basin (Figure 5.21a) is considered to have 

occurred during the Early to Middle Jurassic (Jordan et al., 2017; Lovecchio et 

al., 2019; Riley et al., 2020), which is consistent with a roughly NNW-SSE 

regional extension relative to Africa. A counterclockwise rotation of the FIM to 

its original position would align the Early to Late Jurassic dykes perpendicular 

to the regional extension direction (Figure 5.21a). However, the age range of 

these dykes is relatively wide and the age of the NE-SW trending normal faults 



 
 

128 

 

along the Berkeley Arch is poorly constrained. These are speculated to be 

synchronous to the dyke emplacement based on their orientation alone. Faults 

and dykes with a similar trend would be generated during stage 2 of the Middle 

Jurassic extension (Figures 5.21a) when the σ3 rotates to an NNW-SSE 

orientation as East Antarctica drifts southwards (at ~167.2 Ma; König and 

Jokat, 2006). This would align the now WNW-ESE to NW-SE trending dykes of 

Middle Jurassic age (~170 Ma) from northern Patagonia (Rapalini and Lopez 

De Luchi, 2000; López De Luchi and Rapalini, 2002) with the Early to Late 

Jurassic dyke swarm from onshore the Falkland Islands and relate them to the 

same extensional episode (stage 2 of the Middle Jurassic deformation in Figure 

5.21a). This switch in the extension direction could also have led to the 

undocking of the FIM from Africa. 

During the Late Jurassic, the thrust faults in the SNFB undergo negative 

structural inversion and NW-SE to WNW-ESE trending normal faults are 

generated along the Berkeley Arch. These suggest a NNW-SSE to NE-SW 

orientation of σ3 (Figure 5.22d). WSW-ENE directed extension is registered in 

the Outeniqua Basin (Paton and Underhill, 2004) related to the drifting of South 

America (Figure 5.21a). This would require the FIM to be in an intermediary 

rotated position during the Late Jurassic. The reactivated thrusts in the SNFB 

are in an orientation relative to the regional horizontal minimum stress that 

favours reactivation during the Early and Middle Jurassic as well when E-W 

extension occurs between Africa and Antarctica (Figure 5.21a) accompanied in 

the later stages by the emplacement of the Rooi Rand dykes (between 164.7 

and 177.8 Ma; Jourdan et al., 2007) and the formation of the Northern Weddell 

Magnetic Province (~155-175 Ma; Grunow, 1993; Riley et al., 2020; Figure 

5.21a). This would point towards multiple phases of thrust reactivation in an 

extensional regime as suggested by the multiple syn-rift packages associated 

with them (Lohr and Underhill, 2015; Stanca et al., 2019; Chapter 4). E-W 

striking faults (present-day orientation) documented in Chapter 4 and by Stanca 

et al. (2019) north of the Falkland Islands would be generated synchronously to 

extension in the SNFB. 

Little evidence for compression can be seen during this period in the north-

eastern (Volunteer sub-basin and Berkeley Arch; Figure 5.17) and south-

western (Malvinas Basin; Figure 5.20) corners of the FIM. This could be due 

either to clockwise rotation against the Maurice Ewing Bank and the South 

American plate, respectively, or related to the wrenching between eastern and 

western Gondwana. The compression identified in the FPB can also be related 
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to early wrenching between Africa and the Falkland Plateau. However, the 

small and localised scale of this compression suggests that the space into 

which the FIM rotated was in an overall extensional regime (i.e. the overall 

movement between Africa, South America, and Antarctica resulted in space 

being created at the same rate or faster than the FIM rotated, favouring the 

formation of predominantly extensional features over compressional or 

transpressional). 

 

Figure 5.21 See next page for caption 
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Figure 5.21 Correlation between the position of the Falkland Islands and 
south-western Gondwana based on the orientation of σ3 for a 
rotated reconstruction of the FIM; a) Middle Jurassic plate 
configuration showing the change in the regional orientation of σ3 

from Early to Late Jurassic (right panel) and the structural features 
used for its estimation; b) NE-SW extension direction (Paton and 
Underhill, 2004) and plate configuration during Late Jurassic; c) 
NNE-SSW directed extension (Paton and Underhill, 2004) marked by 
the emplacement of now N-S trending Early Cretaceous dykes on- 
and offshore the Falkland Islands; rotation of the FIM from Chapter 4 
(after Stanca el al., 2019); Falkland Islands Microplate and the South 
American plate rotate clockwise with the remaining ~60° during the 
opening of the South Atlantic (Mitchell et al. 1986) to reach their 
present-day position; onset of wrenching along the Agulhas – 
Falkland Fracture Zone after Baby et al. (2018); FI – Falkland Islands; 
MB – Malvinas Basin; NFB – North Falkland Basin; NLDS – Northern 
Lebombo dyke swarm; NWMP – Northern Weddell Magnetic 
Province; OB – Outeniqua Basin; oc. c. – oceanic crust (based on 
magnetic reversal isochrons from Eagles and Eisermann, 2020); ODS 
– Okavango dyke swarm; PSZ – Pagano Shear Zone; RRDS – Rooi 
Rand dyke swarm; SJoB – San Jorge Basin; SLDS – Save Limpopo 
dyke swarm; SWMP – Southern Weddell Magnetic Province; SWMP 
and NWMP framework from Jordan et al. (2017); South Africa 
simplified dyke network drawn after Gomez (2001); East Antarctica 
dykes drawn after Curtis et al. (2008); Falkland Islands onshore and 
nearshore dykes drawn after Stone et al. (2009); Outeniqua Basin 
fault network after Paton et al. (2006) and Parsiegla et al. (2009); 
SNFB and NFB fault networks after Lohr and Underhill (2015) and 
Chapter 4 (Stanca et al., 2019); South America fault network after 
Lovecchio et al. (2019);  Karoo lavas extent after Jourdan et al. 
(2007); Chon Aike lavas extent after Bouhier et al. (2017); DML-Ferrar 
lavas extent after Elliot (1992) and Elliot et al. (1999); arrows show 
extension direction and their orientation is equivalent to the 
orientation of σ3 
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Figure 5.22 See next page for caption 
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Figure 5.22 Stress field evolution across the Falkland Islands Microplate 
(based on the structures from this chapter and literature, and the 
regional stress compilation in Figure 5.21) throughout the Jurassic 
and Early Cretaceous showing: a) Early Jurassic emplacement of 
dykes onshore the islands and potential extension occurring in the 
Southern North Falkland Basin and across the Berkeley Arch; b) 
extension along the eastern shelf of the Falkland Islands and the 
emplacement of a NE-SW trending dyke swarm onshore; c) 
reactivation of the Southern North Falkland Basin faults and 
secondary shearing occurring in the Volunteer sub-basin area, 
followed by continued WNW-ESE directed extension in the Fitzroy 
and Volunteer sub-basins; d) reactivation of the faults in the 
Southern North Falkland Basin and continued shearing in the 
Volunteer sub-basin region; e) opening of the North Falkland Basin 
and extension along the eastern shelf of the Falkland Islands; f) 
Early Cretaceous emplacement of dykes on-and offshore the 
Falkland Islands and continued extension and wrenching in the 
offshore basins; NFB – North Falkland Basin; SNFB – Southern 
North Falkland Basin; onshore and nearshore dykes drawn after 
Stone et al. (2009); SNFB and NFB fault networks after Lohr and 
Underhill (2015) and Stanca et al. (2019); no onshore structural 
features besides dykes are shown for simplicity (see Figures 5.13 
and 5.14 for the detailed map); arrows show extension direction and 
their orientation is equivalent to the orientation of σ3 

The Late Jurassic to Early Cretaceous normal faults in the NFB and Fitzroy 

sub-basin and the Early Cretaceous (121 ± 1.2 Ma to 138 ± 4 Ma) on- and 

offshore dykes are consistent with a NE-SW regional extension direction (Paton 

and Underhill, 2004) related to the opening of the South Atlantic (Figure 5.21b, 

c). This indicates that, at this stage, the FIM was roughly in its present-day 

position relative to South America (Figure 5.21b, c).  

Jurassic to Early Cretaceous en-échelon normal faults in the Fitzroy sub-basin 

and along the Berkeley Arch suggest that some degree of sinistral wrenching 

occurred along the western NE-SW trending margin of the FPB during this time 

and WNW-ESE dextral shearing along the Berkeley Arch (Figures 5.4, 5.19). 

This is consistent with intra-plate deformation related to a clockwise rotation of 

the FIM throughout the Jurassic. Further plate reorganization and/or wrenching 

related to movement on the AFFZ occur as late as Early Cretaceous when 

evidence of WNW-ESE dextral shearing is identified along the Berkeley Arch 

and NE-SW sinistral wrenching is interpreted in the Fitzroy sub-basin (Figures 

5.4, 5.19). Large-scale NE-SW features (Figure 5.4a, b and c) were identified 

further east on the plateau which were interpreted as regional intra-plate 

sinistral shear zones that accommodated the rotation of the FIM with the small-

scale en-échelon faults allowing further deformation along and between these 
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features. Although geometries indicative of sinistral wrenching were identified 

on the gravity data (Figure 5.4a, c), the amount of horizontal displacement 

along these potential fracture zones remains difficult to constrain. 

Besides the NE-SW fault zones interpreted within the FPB, the Falkland Sound 

Fault, running between the West and East Falkland (Figure 5.4a), follows the 

same trend and one could argue for a common origin. Studies carried along the 

Falkland Sound Fault suggest that these shear zones might be long-lived 

basement structures with activity recorded as early as late Paleozoic (Aldiss 

and Edwards, 1999; Stone, 2016) and re-established as left-lateral faults during 

the Mesozoic. However, based on the current data, the amount of displacement 

along these potential fracture zones cannot be quantified. Dextral movement in 

the range of 3.3 – 300 km was interpreted along the Falkland Sound Fault 

during the Permo-Triassic or coeval with the break-up of Gondwana (Thomas 

et al., 1997; Curtis and Hyam, 1998; Aldiss and Edwards, 1999). However, no 

evidence of Jurassic or sinistral reactivation has been documented by more 

recent studies in the offshore sedimentary basins along-strike the Falkland 

Sound Fault (Richards et al., 1996a; Lohr and Underhill, 2015; Stanca et al., 

2019) which contributes to the uncertainty regarding the nature and age of this 

potential fracture zone. This precludes a correlation with the eastern fracture 

zones following the same trend and hinders a more detailed reconstruction of 

the microplate and an understanding of its overall geometry prior to the break-

up.  

5.5.4.3 Implications for the FIM rotation mechanism 

Invoking the kinematic models of Ron et al. (1984), McKenzie and Jackson 

(1986), and Peacock et al. (1998) for the rotation of the FIM is a novel 

explanation. The extent of the blocks/microplates that have undergone this 

style of deformation related to large amounts of rotations in transform margin 

settings is sparsely documented. Examples of large recorded rotations, 

comparable to the FIM case, include the Santa Catalina Island (~90°)  in South 

California (Luyendyk et al., 1985), albeit affecting a much smaller block 

(thousands versus hundreds of thousands of km2), and the Ellsworth-Whitmore 

Terrane (~90°) in Western Antarctica (comparable in areal extent to the FIM; 

Curtis and Storey, 1996). Instances where the deformation related to rotation 

was accommodated by strike-slip faults anthithetic to the main shear zone (Ron 

et al., 1984; McKenzie and Jackson, 1986) are reported in the eastern and 

western Transverse Ranges in Southern California (Platt and Becker, 2013; 

Ingersoll and Coffey, 2017), and the oceanic Manus microplate (Bismarck Sea) 
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in a back-arc spreading system (Martinez and Taylor, 1996). However, in none 

of these examples this style of deformation was both documented and led to 

>80° rotation of a microplate the size of the FIM. 

In this chapter, evidence of sinistral wrenching across the FIM is reported, 

potentially on several NE-SW striking shear zones (Figure 5.4a, b and c). This 

observation is consistent with the kinematic models of Ron et al. (1984) and 

McKenzie and Jackson (1986), considering that the rotation of the FIM occured 

in an overall dextral shear zone developed between Africa and Antarctica, and 

Africa and South America. Furthermore, fault networks that are several orders 

of magnitude smaller, and suggestive of conjugate dextral and sinistral 

shearing have been interpreted along the eastern shelf of the Falkland Islands 

(Figure 5.19). This is consistent with the model proposed by Peacock et al. 

(1998) where high degrees of block rotation can be accomodated through 

small-scale faulting and increased deformation within the block itself (Figures 

5.4a, d and 5.19). Although these models can be used to interpret the current 

structural architecture of the FIM, more data are required to constrain whether 

the microplate rotated as a whole, or whether the NE-SW shear zones are 

responsible for a further fragmentation of the FIM. Furthermore, the answer to 

why this particular transform margin has seen such high degrees of rotation 

affecting a microplate several hundred of kilometers wide remains elusive. 

Possibly this is a consequence of the origin of the microplate at a junction of 

multiple tectonic plates, where rapid variations in the stress configuration are 

expected, followed by its evolution along one of the most long-lived and long-

offset transform faults on Earth. Alternatively, it is the result of deeper 

processes that preconditioned this scale of rotation, and ultimately led to the 

break-up of Gondwana (Ben-Avraham et al., 1993; Storey, 1995; Dalziel et al., 

2000). Nonetheless, this study advocates testing the kinematic models of Ron 

et al. (1984), McKenzie and Jackson (1986), and Peacock et al. (1998) in other 

settings where comparable scales of microplates and amount of rotation 

require a mechanistic explanation (e.g. the Ellsworth Whitmore Terrane). 

5.6 Conclusions 

The western margin of the Falkland Plateau Basin recorded a series of rapid 

changes in the orientation of σ3 during the Jurassic and Early Cretaceous 

related to a vertical-axis rotation of the Falkland Islands Microplate. This 

rotation took place under a complex stress regime corresponding to the region 
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located between South America, Africa, and East Antarctica and the early 

stages of transform margin formation.  

The clockwise rotation resulted in the generation of NE-SW and WNW-ESE 

trending faults in the northern part of the margin (along the Berkeley Arch and 

in the Volunteer sub-basin) superimposed by N-S striking en-échelon normal 

faults extending into the Fitzroy sub-basin. When collated with information from 

the North Falkland Basin and onshore the Falkland Islands, the larger structural 

framework supports a complex tectonic history of the FIM. The orientation of 

the minimum horizontal stress across the FIM alternated between roughly NE-

SW and NW-SE/WNW-ESE during the Jurassic and switched to a NE-SW 

orientation during the Early Cretaceous. 

Interpretation of seismic reflection data along the eastern shelf of the FIM 

points towards a larger eastern extent of the microplate than previously 

constrained. The revised microplate comprises the region of the Volunteer and 

Fitzroy sub-basins. The western extent of the FIM is interpreted as following the 

high arcuate gravity anomaly bounding the Malvinas Basin to the east and 

along which evidence of Jurassic extension and inversion was identified. A 

comparison of the newly defined FIM local stress configuration with the regional 

stress in the reconstructed south-western Gondwana suggests that the rotation 

of the microplate started during or after the intrusion of the Jurassic NE-SW 

trending dykes onshore the Falkland Islands (during the drift initiation of East 

Antarctica in Middle Jurassic) and continued throughout the Late Jurassic. 

During the incipient stages of rotation, a small degree of compression occurred 

in the north-eastern and south-western corners of the microplate, but the 

predominant extensional structures suggest that the early fragmentation of 

Gondwana generated enough space during the clockwise rotation of the 

islands to limit the widespread occurrence of compression. 

  



 
 

136 

 

Chapter 6 Implications of the crustal architecture of the 

Falkland Plateau Basin for plate reconstructions in the 

South Atlantic: insights from gravity and deformable plate 

modelling 

Summary 

Continental break-up is commonly associated with intra-continental wrenching 

that can lead to the generation of transform margins. The wrenching phase is 

typically associated with complex processes (e.g. vertical-axis rotations of 

crustal blocks and microplates), which result in heterogeneous structural and 

crustal architectures. This high degree of complexity makes understanding the 

evolution of such tectonic settings difficult. The Falkland Plateau is such an 

area where regional wrenching accompanying continental break-up has 

resulted in a mosaic of crustal types underlying its largest basin: the Falkland 

Plateau Basin. The uncertainties in crustal boundaries have resulted in several 

models for the evolution of the plateau which hinder the development of a 

reliable plate model for this area. This chapter integrates seismic reflection, 

gravity, and magnetic data, gravity modelling and inversion, and deforming 

plate modelling to propose an updated crustal architecture of the Falkland 

Plateau Basin. The results show that the basin is underlain by extended 

continental crust in the west and north. The eastern and central part consists of 

a complex juxtaposition of intruded and underplated continental crust and thick 

oceanic crust, crosscut by shear zones. Furthermore, the deforming plate 

models show that a rotation of the Falkland Islands Microplate is more 

compatible with the present-day architecture of the plateau. 

6.1 Introduction 

Intra-continental shear zones formed during the incipient stages of transform 

margin formation or generally during continental break-up are associated with a 

complex tectono-stratigraphy and crustal architecture that reflects early-stage 

fragmentation of the crust and vertical-axis block rotation of the newly formed 

continental blocks (Scrutton, 1979; Basile and Allemand, 2002; Mercier de 

Lépinay et al., 2016; Nemčok et al., 2016). The resulting crustal provinces 

exhibit high degrees of faulting, volcanism, localized tectonic, thermal and/or 

flexural uplift (Scrutton, 1979; Mascle, Blarez, 1987; Basile and Allemand, 

2002; Attoh et al., 2004; Basile, 2015), and a high lateral crustal variability. 

Therefore, assessment of their evolution is challenging, and an integrated 



 
 

137 

 

approach to analysis is crucial to understand the structure of these 

environments. 

The Falkland Plateau is an example of a transform margin that formed at the 

junction between Africa, South America and Antarctica during the break-up and 

dispersal of Gondwana. Numerous studies, based on seismic reflection and 

refraction, gravity, and magnetic data, have documented offshore fault 

networks and developed stratigraphic and crustal models for the plateau 

(Ludwig et al., 1978; Lorenzo and Mutter, 1988; Bry et al., 2004; Del Ben and 

Mallardi, 2004; Kimbell and Richards, 2008; Schreider et al., 2011; Baristeas et 

al., 2013; Lohr and Underhill, 2015; Schimschal and Jokat, 2017, 2019a, b; 

Eagles and Eisermann, 2020). However, there are still uncertainties in the 

crustal architecture of the plateau, which impact the amount of deformation and 

extension interpreted along it. This limits the elucidation of the evolution and 

reconstruction of the Falkland Plateau Basin which in turn impacts the pre-

break-up plate configuration in south-western Gondwana. 

In this chapter, integration of regional 2D and 3D seismic reflection data, global 

open-source gravity data (Sandwell et al., 2014), and magnetic data (Eagles, 

2019) enables the assessment of the crustal architecture of the Falkland 

Plateau Basin. This is further constrained using 2D forward gravity modelling, 

3D inversion, and iterative stages of deforming plate modelling. The 

implications of the results on the overall crustal architecture of the Falkland 

Plateau and its evolution are discussed. 

6.2 Geological background 

6.2.1 Tectonic context of the Falkland Plateau 

The Falkland Plateau (FP) is a transform margin representing the eastward 

continuation of the continental shelf of South America (Kimbell and Richards, 

2008). The northern boundary of the plateau corresponds to the Agulhas - 

Falkland Fracture Zone (AFFZ) which accommodated ~1200 km of dextral 

offset during the opening of the South Atlantic (Ben-Avraham et al., 1997). To 

the south, the plateau is bounded by the sinistral North Scotia Ridge (NSR) 

(Ludwig, 1983), and to the east it merges with the Georgia Basin (Lorenzo and 

Mutter, 1988; Figure 6.1).  

The FP was generated during the break-up of Gondwana and was 

subsequently affected by the opening of the Atlantic Ocean in the Mesozoic 

and Late Cretaceous - Cenozoic oblique compression and transpression from 
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the south related to the development of the NSR (Lorenzo and Mutter, 1988; 

Cunningham et al., 1998; Eagles, 2000; Bry et al., 2004). The former 

predominantly extensional episodes resulted in a series of crustal and 

structural provinces along the plateau. The Falkland Islands Microplate is the 

most controversial domain and is surrounded by the Malvinas Basin to the 

west, the North Falkland Basin to the north, the South Falkland Basin (SFB) to 

the south, and the Falkland Plateau Basin (FPB) to the east. The easternmost 

province of the plateau is the Maurice Ewing Bank (MEB). The North Falkland 

Basin (NFB) is further subdivided in the Middle to Late Jurassic Southern North 

Falkland Basin (SNFB) and the Late Jurassic - Early Cretaceous North 

Falkland Graben (Lohr and Underhill, 2015; Stanca et al., 2019; Chapter 4). 

The FPB consists of the Volunteer sub-basin to the northwest and the Fitzroy 

sub-basin in the west and southwest; the two sub-basins are separated by the 

Berkeley Arch basement high (Rockhopper Exploration Plc., 2012; Dodd and 

McCarthy, 2016). 

 

Figure 6.1 Present-day extent of the Falkland Plateau showing the 
bounding fracture zones (dextral AFZ and sinistral NSR along with 
the NSR thrusting front) overlain by the available seismic reflection 
data and wells used in this chapter; AAFZ – Agulhas – Falkland 
Fracture Zone; NSR – North Scotia Ridge 

The nature of the crust underlying the Falkland Plateau remains subject to 

debate and is directly controlled by the evolution of the Falkland Islands 

Microplate during the fragmentation of Gondwana. Correlations between 

geological and geophysical data from the Falkland Islands and South Africa led 

to the development of the rotational theory which argues for rotation of the 

Falkland Islands Microplate of up to 120° (Adie, 1952a; Frakes and Crowell, 

1967; Crowell and Frakes, 1972; Mitchell et al., 1986; Marshall, 1994; Mussett 
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and Taylor, 1994; Thomas et al., 1997; Thomson, 1998; Curtis and Hyam, 

1998; Storey et al., 1999; Trewin et al., 2002; Macdonald et al., 2003; Stone et 

al., 2009; Dalziel et al., 2013; Stanca et al., 2019; Chapter 4). The lack of 

documented evidence for this rotation in the sedimentary infill of the basins 

surrounding the islands (Richards et al., 1996a), and the absence of a 

mechanism to accommodate this rotation led several authors to favour a non-

rotational model. In this model, the Falkland Islands were in a similar position 

relative to South America prior to the break-up of Gondwana as today 

(Lawrence et al., 1999; Ramos et al., 2017; Lovecchio et al., 2019), and the 

fragmentation of the supercontinent was recorded by extension in the 

sedimentary basins around the islands. 

6.2.2 Architecture of the Falkland Plateau 

6.2.2.1 Tectono-stratigraphy of the Falkland Plateau 

The tectono-stratigraphic architecture of the Falkland Plateau is the result of 

multiple tectonic events that started as early as the Permian and ended with the 

formation of the Scotia Sea (Cunningham et al., 1998; Hodgkinson, 2002; 

Stone, 2016). Evidence of the Permo-Triassic collisional episode, which 

resulted in the formation of the trans-Gondwanian orogen, seen today in the 

Sierra de la Ventana (South Argentina), Cape Mountains (South Africa), 

Ellsworth Whitmore Terrane / Ellsworth Mountains Block, and Pensacola 

Mountains (Antarctica), was recorded by the onshore geology of the Falkland 

Islands (Du Toit, 1937; Thomas et al., 1993; Trouw and De Wit, 1999; Dalziel et 

al., 2000), and influenced the architecture of the offshore Mesozoic 

sedimentary basins that formed during the break-up of Gondwana (Richards 

and Fannin, 1997).  

Currently, the only area of the Falkland Plateau above sea level are the 

Falkland Islands outcrops, which range in age from Neoproterozoic gneisses 

(Cape Meredith Complex) through Siluro-Devonian quartz-rich sandstones and 

conglomerates with intercalated siltstones and mudstones (West Falkland 

Group) to Permo-Carboniferous glacial deposits and mudstone-dominated 

successions (Lafonian Supergroup; Curtis and Hyam, 1998; Aldiss and 

Edwards, 1999). The architecture of the islands was strongly influenced by 

Permo-Triassic E-W/WNW-ESE and NE-SW trending folds and thrusts 

associated with N-S compression and NE-SW dextral transpression, 

respectively (Curtis and Hyam, 1998; Aldiss and Edwards, 1999; Stone, 2016). 

The inheritance of this structural grain played a major role in the formation of 

the northern and eastern sedimentary basins (Richards and Fannin, 1997; Lohr 
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and Underhill, 2015; Stanca et al., 2019; Chapters 4 and 5). During and 

following the fragmentation of Gondwana, the FP underwent extension which 

resulted in the formation of four sedimentary basins: the Malvinas Basin, the 

North Falkland Basin, the South Falkland Basin, and the Falkland Plateau 

Basin. 

The Malvinas Basin lies west of the Falkland Islands (Richards et al., 1996a). It 

has a complex structure which was the result of two extensional episodes that 

generated normal faults trending NW-SE and NE-SW, which were correlated 

with back-arc extension and the opening of the Weddell Sea, respectively 

(Galeazzi, 1998; Ghiglione et al., 2010; Baristeas et al., 2013). The North 

Falkland Basin (NFB) to the north of the islands is the result of two rifting 

events: a Jurassic one that resulted in the opening of the WNW-ESE trending 

Southern North Falkland Basin (SNFB), which reactivated Permo-Triassic 

thrusts, and a Late Jurassic - Early Cretaceous extensional episode during 

which the N-S trending North Falkland Graben formed (Richards and Fannin, 

1997; Richards and Hillier, 2000; Lohr and Underhill, 2015). South of the 

Falkland Islands lies the asymmetrical South Falkland Basin. This basin 

plunges southward where it terminates against the NSR (Richards and Fannin, 

1997). The deformation within it was accommodated by E-W striking normal 

faulting (Richards et al., 1996a) superimposed by thrusting related to 

movement along the North Scotia Ridge (Richards et al., 1996a). 

The Falkland Plateau Basin (east of the islands) is bounded to the west by a 

series of NE-SW trending normal faults (Richards et al., 1996a, b), and to the E 

by the Maurice Ewing Bank. Seismic reflection data interpretation showed that 

normal faults within the basin predominantly terminate at the top Jurassic 

(Lorenzo and Mutter, 1988). Based on this, FPB rifting between Early Jurassic 

and Early Cretaceous was interpreted (Lorenzo and Mutter, 1988; Marshall, 

1994; Richards et al., 1996a). There are studies supporting an earlier onset of 

extension during the Permo-Triassic (Richards et al., 1996a). However, no age 

constraints from well data exist for the oldest syn-rift deposits to verify this. New 

seismic reflection data, presented and interpreted in Chapter 5, show the 

presence of Jurassic NE-SW and WNW-ESE trending faults in the northern 

part of the margin (along the Berkeley Arch and in the Volunteer sub-basin). 

These faults are superimposed by Jurassic to Early Cretaceous N-S striking 

en-échelon normal faults extending into the Fitzroy sub-basin, suggesting a 

wrenching element associated with the Mesozoic break-up and extension. 
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The fragmentation of Gondwana was also associated with extensive volcanism, 

both onshore and offshore the islands. The Paleozoic succession cropping-out 

onshore was intruded by E-W and NE-SW trending Jurassic dykes, coeval to 

the Karoo-Ferrar large igneous province formation, and N-S striking Early 

Cretaceous dykes related to the opening of the South Atlantic (Mussett and 

Taylor, 1994; Mitchell et al., 1999; Stone et al., 2008; Richards et al., 2013; 

Hole et al., 2016; Stone, 2016). N-S trending Early Cretaceous dykes and sills 

have been interpreted nearshore and offshore the Falkland Islands, in the 

Fitzroy and Volunteer sub-basins (Barker, 1999; Richards et al., 2013; Chapter 

5). 

6.2.2.2 Crustal distribution along the Falkland Plateau 

The fragmentation of Gondwana associated with the rotation of the Falkland 

Islands Microplate (Adie, 1952a; Mitchell et al., 1986; Marshall, 1994; Mussett 

and Taylor, 1994; Thomson, 1998; Curtis and Hyam, 1998; Storey et al., 1999; 

Trewin et al., 2002; Macdonald et al., 2003; Stone et al., 2009; 2013; Stanca et 

al., 2019) resulted in a rapidly varying tectono-stratigraphy along the Falkland 

Plateau and a conflicting assessment of the crustal architecture. The basins 

surrounding the islands have been under exploration for decades and 

Paleozoic deposits, similar to the ones cropping-out onshore the Falkland 

Islands, were penetrated by wells in the North Falkland Basin (well 14/9-1, Lohr 

and Underhill, 2015) and in the western basins (well Cruz x-1, Galeazzi, 1998). 

These local constraints, correlated with seismic reflection data, support the 

continental nature of the sedimentary basins north, south, and west of the 

Falkland Islands (Galeazzi, 1998; Bry et al., 2004; Tassone et al., 2008; Lohr 

and Underhill, 2015; Lovecchio et al., 2019), but the crust underlying the 

eastern basin remains uncertain. 

The Falkland Plateau Basin is located between the Falkland Islands and the 

Maurice Ewing Bank. DSDP 330 cored metamorphic and igneous rocks on the 

western flank of Maurice Ewing Bank (Beckinsale et al., 1977) proving the 

continental nature of the block. The cored granites and gneisses are 

comparable with the ones cropping out in the western part of the FP, onshore 

the Falkland Islands at Cape Meredith (Beckinsale et al., 1977; Tarney, 1977), 

suggesting that the islands and the Maurice Ewing Bank originated from a 

continuous continental block that underwent extension and/or potential break-

up during the fragmentation of Gondwana. This is supported by geochemical 

and isotopic analyses of their basement lithologies (Chemale et al., 2018). 
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The seismic refraction study across the FP and Scotia Sea by Ewing et al. 

(1971) is amongst the first attempts to describe the nature of the crust under 

the FPB. Based on the obtained velocities, Ewing et al. (1971) interpreted 

oceanic crust under the Falkland Trough, continental crust in the central part of 

the FPB (profile CD in Figure 1 of Ewing et al., 1971), whilst the northern 

escarpment bounding the basin showed velocities corresponding to continental 

basement. The latter interpretation remains uncertain due to the existence of 

steeply dipping structures and intense faulting (Ewing et al., 1971). 

Further multichannel seismic reflections and sonobuoy reflection and refraction 

data were acquired during the cruises carried out by the Lamont-Doherty 

Geological Observatory. Analysis of these data suggested the presence of thick 

oceanic crust or highly attenuated continental crust underlying the FPB 

(Ludwig, 1983; Lorenzo and Mutter, 1988). Richards et al. (1996a), based on 

gravity modelling, interpreted a 16 km thick continental crust in the western part 

of the basin, and Barker (1999) placed the continent-ocean boundary along the 

NE-SW gravity high SE of the FI. Recent studies (Kimbell and Richards, 2008; 

Schimschal and Jokat, 2017, 2019b) brought new insights into the structure of 

the FPB. Based on gravity inversion and flexural modelling, Kimbell and 

Richards (2008) interpreted continental crust in the northern part of the FPB 

along the AFFZ, whereas the rest of the basin is interpreted as being underlain 

by thick oceanic crust or underplated thinned continental crust. Schimschal and 

Jokat (2017, 2019b) used wide-angle seismic data and potential field data 

modelling to confirm the presence of 35 km thick continental crust nearshore 

East Falkland, followed by a 90 km wide continent-ocean transition zone and a 

high velocity (up to 7.4 km/s) 11-20 km thick crust underlying the FPB, which 

was interpreted as thick oceanic crust. This led the same authors to postulate 

that the entire FPB is underlain by oceanic crust. Recent aeromagnetic data 

acquired along the Falkland Plateau Basin show the presence of magnetic 

reversal isochrons in the eastern part of the FPB (Eagles and Eisermann, 

2020). Based on this, and the information from the refraction study of 

Schimschal and Jokat (2017), a FPB completely underlain by oceanic crust 

was interpreted by these authors as well. However, the seismic refraction 

survey of Schimschal and Jokat (2017, 2019b) consisted of a single profile 

which was extrapolated across the entire FPB, whereas the study of Eagles 

and Eisermann (2020) indicated the presence of oceanic crust with certainty 

only in the south-eastern corner of the FPB. 
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6.2.3 SW Gondwana reconstructions and the palaeoposition of the 

Falkland Plateau 

The crustal architecture of the Falkland Plateau and the uncertainty around it 

are directly linked to its position and configuration prior to the break-up of 

Gondwana. The scarcity of data along the larger Falkland Plateau Basin 

hinders attempts to build a reliable crustal model and reconstruction of the 

area. The Falkland Islands Microplate (FIM) represents the contentious block of 

the plateau. Its position in a reconstructed Gondwana is controlled by the 

configuration of the larger plates of the supercontinent and has implications on 

the amount of extension that the Falkland Plateau Basin underwent and, in 

turn, on its crustal architecture. There are two main interpretations of the 

behaviour of the FIM during the fragmentation of Gondwana.  

The first interpretation is based on stratigraphic correlations, fossil 

assemblages, ice flow directions, and structural similarities between the 

Falkland Islands and the South African margin, and palaeomagnetic and 

aeromagnetic data analysis, and invokes a clockwise rotation of the microplate 

of up to 120° during the early stages of fragmentation (Mitchell et al., 1986; 

Marshall, 1994; Mussett and Taylor 1994; Curtis and Hyam 1998; Trewin et al., 

2002; Stone et al., 2009; Stanca et al., 2019; Chapters 4 and 5; Figure 6.2a). In 

this interpretation, the rotated Falkland Islands are located off the southeast 

coast of South Africa so that there is a correlation between the West Falkland 

Group and the Table Mountain, Bokkeveld, and Witteberg groups in South 

Africa (Adie, 1952b, cited by Marshall 1994), the Fitzroy Tillite Formation of the 

Falkland Islands and the Dwyka Group of South Africa (Curtis & Hyam 1998), 

the Upper Lafonian Group and the Ecca and Beaufort groups in South Africa 

(Trewin et al. 2002), and the Cape Meredith Complex and the Namaqua-Natal-

Maud belt extending across South Africa and East Antarctica (Thomas et al., 

1997; Jacobs et al., 2003; Jacobs and Thomas, 2004; Vorster et al., 2016). 

This model requires the FIM to be separate from the rest of the Falkland 

Plateau. Its boundaries correspond to the AFFZ or northern SNFB to the north 

(Marshall, 1994; Storey et al., 1999), the arcuate positive gravity anomaly 

(eastern margin of the Malvinas Basin; Marshall, 1994; Storey et al., 1999; 

Chapter 5) to the west, the NE-SW trending positive anomaly (western margin 

of the FPB; Richards et al., 1996b; Storey et al., 1999) or east of the Fitzroy 

and Volunteer sub-basins (Chapter 5) to the east, and the NSR to the south. 

The second interpretation of the reconstruction of the Falkland Islands keeps 

the microplate in the same position relative to the southern part of South 
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American plate as today (Figure 6.2a). In this model the FPB would be the 

result of extension between South America and Africa or the plateau would 

represent the conjugate to the Weddell Sea, and the FPB opened in response 

to extension between Antarctica and West Gondwana (Lawrence et al., 1999; 

Eagles and Vaughan, 2009; Ramos et al., 2017; Chemale et al., 2018; 

Lovecchio et al., 2019; Eagles and Eisermann, 2020). Variations of the non-

rotational model were favoured due to a lack of documented rotation-related 

deformation in the sedimentary basin-fills offshore the islands (Richards et al., 

1996a) along with the absence of a mechanism for it. Stratigraphic and 

structural correlations between the West Falkland Group and northern 

Patagonia, the Fitzroy Tillite Formation and the Sauce Grande Tillite of the 

Ventania System, and the thrusts onshore the Falkland Islands and the ones in 

the north-eastern North Patagonian Massif are considered supporting 

arguments for this model (von Gosen, 2003; Ramos et al., 2017) along with 

correlations between magnetic reversal isochrons in the Falkland Plateau and 

Central Scotia and Weddell seas (Eagles and Eisermann, 2020). 

The position of the plateau, and implicitly, the islands, in a Gondwana pre-

break-up configuration is controlled by the space available at that time between 

Africa, South America, and East Antarctica. Considering a fixed position for 

South Africa, variations in the reconstructions of South America and Antarctica 

are impacting the extent and distribution of this space.  

The fragmentation and fit of South America relative to Africa is of high 

importance as it can provide more constraints on the extension the plateau 

underwent, and the space that was available for a potential rotation of the FIM. 

A closer fit between the two major plates requires a pre-fragmentation of South 

America which has been achieved in various ways (König and Jokat, 2006; 

Torsvik et al., 2009; Müller et al., 2019). Its southern part (Patagonia) was 

reconstructed in a more eastern position by invoking the presence of a right-

lateral fault north of the North Patagonian Massif (Ben-Avraham et al., 1993) or 

south of it, along the Gastre Fault System (Rapela and Pankhurst, 1992; König 

and Jokat, 2006; Torsvik et al., 2009). Field observations along the latter 

disproved its dextral kinematic (von Gosen and Loske, 2004; Franzese and 

Martino, 1998 in Ramos et al., 2017). Whereas this attempt to obtain a tighter 

fit between South America and Africa is based on movement along the 

boundaries of pre-defined sub-plates, Heine et al. (2013) and Müller et al. 

(2019) achieve a close fit by considering intra-plate deformation affecting South 

America during the break-up (i.e. by closing the sedimentary basins along the 
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eastern margin of South America; Figure 6.2). This scenario, however, 

positions Patagonia in a more south-western position than the one invoking 

dextral movement along the Gastre Fault System, requiring a correction of the 

position of the Falkland Islands in the same direction to avoid unrealistic gaps 

between the islands and the South American shelf (see Chapter 2, Section 2.3 

for variations in the reconstruction of South America). 

 

Figure 6.2 Differences in the palaeogeographic reconstruction of 
Gondwana; a) plate model after Müller et al. (2019) showing the fit 
between Africa, Antarctica, and South America and the different 
reconstructions of the Falkland Islands; stippled grey lines around 
the Antarctic Peninsula – boundaries of the Skytrain Plate in (f); b) to 
e) difference in the fit between Africa and East Antarctica from 
various authors for the Jurassic (redrawn after Nguyen et al., 2016); 
f) alternative reconstruction of the Antarctic Peninsula; EWM – 
Ellsworth Whitmore; MBL – Marie Byrd Land; MD – Madagascar; 
NPM – North Patagonia Massif; SL – Sri Lanka; TC – Tugela Cone; TI 
– Thurston Island 

The reconstruction of East Antarctica, the smaller blocks of the West Antarctic 

region (Ellsworth Whitmore Terrane, Thurston Island, Marie Byrd Land), and 

the Antarctic Peninsula have implications on the position of the Falkland 

Plateau within Gondwana as well as on understanding its evolution. The now 
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eastern part of the Falkland Plateau (the Maurice Ewing Bank) is considered to 

have been connected to the southern part of the Tugela Cone (Figure 6.2) in 

the Natal Valley, offshore South Africa (Martin et al., 1982; Marshall, 1994) but 

there are reconstructions that position the MEB further north to achieve a 

tighter fit with East Antarctica (Storey et al., 1999; König and Jokat, 2006). This 

can increase the initial length of the Falkland Plateau and therefore decrease 

the amount of expected extension during the break-up of Gondwana (König 

and Jokat, 2006). Another importance of the reconstruction of the Antarctic 

blocks relates to the evolution of the now southern margin of the FP. This 

region would have been adjacent to West Antarctica (Figure 6.2) and was 

obscured during the formation of the North Scotia Ridge and opening of the 

Scotia Sea (Bry et al., 2004). Therefore, an understanding of the palaeoposition 

of East and West Antarctica could give us an indication of the architecture of 

this margin.  

Although thoroughly studied, there are still variations in the reconstruction of 

East Antarctica in a Gondwana pre-break-up configuration. These are primarily 

due to different interpretations of the continent-ocean boundary, different times 

for the onset of rifting and drifting, and different interpretations of the pathways 

followed by the block in the early stages of the break-up (Reeves and De Wit, 

2000; Marks and Tikku, 2001; König and Jokat, 2006; Eagles and König, 2008; 

Seton et al., 2012; Figure 6.2a-e). This has implications for the original length 

of the Falkland Plateau if using the reconstruction for the Maurice Ewing Bank 

after Storey et al. (1999). However, a more significant implication comes from 

the timing of the separation between East Antarctica and Africa as this marks 

the earliest time when both a driving force is present, and space generated for 

the Falkland Islands to rotate. Estimates of the timing of the East Antarctic drift 

onset varies from 165 Ma (Coffin and Rabinowitz, 1987; Marks and Tikku, 

2001) through 167.2 Ma (König and Jokat, 2006), 170 Ma (Reeves and De Wit, 

2000) to 183-177 Ma (Eagles and König, 2008). The rotation of the FIM is 

believed to have occurred relatively rapidly (Marshall, 1994; Stanca et al., 

2019), after 178 Ma (Stone et al., 2008) and before the Early Cretaceous 

(Barker, 1999; Storey et al., 1999; Macdonald et al., 2003; Chapter 5). 

Therefore, a variation in the timing of drift onset of East Antarctica of 18 Ma has 

major implications on the timing and driving forces behind the rotation of the 

FIM. 

One of the West Antarctic blocks crucial to understanding the evolution of the 

FP is the Ellsworth Whitmore (Mountains) Terrane (EWM in Figure 6.2), which 
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shares the same uncertainty in reconstruction as the FIM. The orientation and 

style of folding within the Ellsworth Whitmore Mountains have led to correlation 

of the deformation to the Gondwanide Orogen (Schopf, 1969 in Curtis and 

Storey, 1996), and its alignment with the Cape Fold Belt in Africa requires an 

anticlockwise rotation of ~90° (Curtis and Storey, 1996). This has been 

supported by subsequent palaeomagnetic data (Watts and Bramall, 1981; 

Grunow et al., 1987). The rotation is estimated to have occurred prior to 180-

175 Ma (Curtis and Storey, 1996; Martin, 2007) either during the Gondwanide 

orogeny or later, during the early fragmentation of Gondwana (Curtis and 

Storey, 1996). Some interpretations consider that the rotation of the Ellsworth 

Whitmore Terrane and the FIM were coeval and/or due to the same external 

driving forces (Macdonald et al., 2003; Martin, 2007). However, the pre-break-

up reconstruction of the Ellsworth Whitmore Mountains remains uncertain 

(Marshall, 1994; Curtis and Storey, 1996; Dalziel et al., 2000; Macdonald et al., 

2003; Martin, 2007), thus hindering our understanding of the effect of its 

movement on the evolution of the Falkland Plateau.  

The Antarctic Peninsula is another region from the Antarctic block that is 

closely related to the Falkland area. The peninsula is considered to represent a 

single block by most interpretations, being reconstructed south-west of 

Patagonia (König and Jokat, 2006; Seton et al., 2012; Müller et al., 2019; 

Figure 6.2a) prior to the break-up of Gondwana. Recent studies offer a different 

fragmentation of the West Antarctic region with the Graham Land as a separate 

plate in a more southern position than previously suggested for the Antarctic 

Peninsula (Eagles and Eisermann, 2020). The remainder of the Antarctic 

Peninsula (Palmer Land) is considered part of a larger new plate, Skytrain, 

along with the Weddell Embayment, and occupy a rotated position in the 

reconstruction, adjacent to the Falkland Islands (Eagles and Eisermann, 2020; 

Figure 6.2f). These two pre-break-up models of the peninsula suggest the 

Weddell Embayment and the Alexander Island and northern region of Palmer 

Land, respectively, as the conjugate to the southern part of the FP and have 

implications for the interpretation of the evolution of the plateau. 

6.3 Data and methodology 

6.3.1 Seismic reflection data and interpretation 

The seismic reflection data used for this chapter comprise 2D and 3D data from 

seven vintages acquired between 1977 and 2014 by Falklands Oil and Gas 

Limited, WesternGeco, Noble Energy, Lamont-Doherty Earth Observatory, and 
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Geophysical Service Incorporated (Figure 6.1). All seismic reflection data have 

a vertical scale in two-way-time (TWT), and the maximum recorded length 

varies between 6 and 12 seconds TWT for the 2D data and is equal to 9 

seconds TWT for the seismic cubes. 

Five exploration wells (31/12-1, 41/07-1, 61/05-1, 61/17-1, and 61/25-1) and 

three DSDPs (327, 330, and 511) were tied to the seismic data for the horizon 

interpretation stage. Seismic and well data, except for the open-source Lamont-

Doherty Earth Observatory 2D seismic reflection lines and the DSDP data, 

were provided courtesy of the Falkland Islands Government. 

The seismic data were used to build a map of the depth to basement, interpret 

the near top Jurassic for the entire plateau (see full description of interpretation 

methodology in Chapters 4 and 5), and intra-Cretaceous and Cenozoic mega-

sequences based on stratal terminations and seismic facies analysis (Mitchum 

et al., 1977; Hubbard et al., 1985a, b). 2D regional seismic reflection lines from 

the surveys acquired by Lamont-Doherty Earth Observatory, WesternGeco, 

and GSI were used for validating the crustal types distribution interpreted from 

gravity and magnetic data. This was carried out by evaluating changes in the 

seismic character across the Falkland Plateau and changes in amplitude 

considered a function of volcanism. 

For the gravity modelling and inversion, a depth conversion of the modelled 2D 

seismic sections and horizon interpretations was carried out. A constant 

velocity of 1500 m/s was used for the water column. For the sediment infill, a 

v0-k function (v = v0 + k(z-z0), where v0 – velocity at the top of the layer and (z-

z0) – the distance between the point of calculation and the top of the layer) was 

used, with v0 = 1600 m/s, based on Schimschal and Jokat (2017), and k = 0.6 

(averaged based on the P-wave velocities provided by the same study at 

different points in the basin). From the base of the sediments up until 15 s TWT 

depth, a constant velocity of 7000 m/s was used, the depth to Moho being input 

directly into the gravity modelling and inversion model from the calculations of 

Kimbell and Richards (2008) and Schimschal and Jokat (2019b), which were 

based on gravity modelling and isostatic analysis, and seismic refraction data, 

respectively. 

6.3.2 Gravity and magnetic data and interpretation 

The gravity data consist of the V24.1 1-minute satellite altimetry free-air gravity 

anomaly grid of (Sandwell et al., 2014) for the entire Falkland Plateau and for 

the southern part of South Africa. The magnetic anomaly data used for this 
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chapter are part of the AIRLAFONIA aerogeophysical survey (Eagles, 2019) 

acquired along the Falkland Plateau Basin by the Alfred Wegener Institute in 

2017 - 2018. The computation of derivatives and testing of filters were carried 

in Geosoft’s Oasis Montaj. Gravity and magnetic lineaments were mapped 

using the total horizontal (Cordell and Grauch, 1985) and the tilt derivatives 

(Miller and Singh, 1994; Verduzco et al., 2004; Oruç and Keskinsezer, 2008) of 

the free-air gravity anomaly and the reduced to pole total magnetic anomaly for 

the Falkland Plateau. A version of the free-air gravity data that underwent 

Butterworth bandpass filtering with cut-off wavelengths of 5-70 km (chosen by 

trial and error to resolve regional structures constrained by literature or seismic 

data) was used to enhance structural features and delineate areas with 

potentially different crustal types along the Falkland Plateau Basin. For South 

Africa a Butterworth bandpass filter with cut-off wavelengths of 10-85 km was 

chosen by trial to compare it against the one computed along the Falkland 

Plateau in order to facilitate the correlation of structural features. 

6.3.3 2D gravity modelling 

Geosoft Oasis Montaj GM-SYS Profile Modelling was used to generate 2D 

forward models (Talwani et al., 1959; Talwani and Heirtzler, 1964; Won and 

Bevis, 1987) along the 139 seismic reflection profile in Figure 6.1. This profile 

was considered suitable for the 2D gravity modelling stage because new 

seismic refraction data are available roughly along the same direction. The 

gravity data input was the free-air gravity anomaly grid of Sandwell et al. 

(2014). Two main models were considered based on the input for the depth to 

Moho. MKR-2D used the depths estimated by Kimbell and Richards (2008) 

from their isostatically compensated and forward gravity model, and MSJ-2D 

used the depths calculated based on seismic refraction data by Schimschal 

and Jokat (2019b), assuming that lines 139 and AWI-20130010 have a similar 

structure (Figure 6.1). The crust (from the base of the Mesozoic sediments to 

the Moho) was divided at its mid-point into an upper and lower crust. Lateral 

variations in density were accounted for by approximating the structure of the 

crust to a series of vertical prisms and/or by manipulating the boundary 

between the upper and lower crust in order to minimize the misfit between the 

observed and calculated gravity anomalies. A simplified model (with minimum 

lateral variations) was computed in the first stage to separate main crustal 

types. Iterative additions of details contributed to the understanding of the 

extent of areas with higher densities that might be indicative of intrusions.  
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The water density was set at 1.03 g/cc and the upper mantle at 3.33 g/cc (after 

Kimbell and Richards, 2008). The sedimentary cover was split into four layers 

with average densities (2.1 – 2.7 g/cc) based on Schimschal and Jokat (2017). 

The starting densities for the upper and lower crust were set at 2.75 g/cc and 

2.95 g/cc, respectively, based on Kimbell and Richards (2008) and iteratively 

modified during the modelling process. 

6.3.4 3D gravity inversion 

Due to high crustal and structural lateral variations across the Falkland Plateau, 

the density distribution obtained from the 2D forward modelling was compared 

with results from 3D inversion. This stage was carried out using the VPmg 

software from Mira Geoscience which allows for 3D modelling and inversion 

using models consisting of vertical prisms (Fullagar et al., 2000, 2004, 2008; 

Fullagar and Pears, 2007). 

The inputs were represented by the gravity-derived bathymetry of Smith and 

Sandwell (1997) which was considered a suitable approximation of the actual 

bathymetry for the scale of the study, and a depth-to-basement surface (Figure 

6.3) obtained from the seismic reflection data across the plateau 

(interpretations from Chapter 4, 5, and this chapter). As for the forward 

modelling, two scenarios were considered with Moho from Kimbell and 

Richards (2008; MKR-3D) and Schimschal and Jokat (2019b; MSJ-3D).  

 

Figure 6.3 Depth to basement map for the Falkland Plateau Basin based 
on seismic reflection data interpretation (Chapter 4, 5, and this 
chapter) 

A depth-to Moho surface based on an iteration of isostatically compensated 

modelling and forward gravity modelling of the area for the entire plateau is 

available from Kimbell and Richards (2008). In order to obtain a 3D surface of 

the Moho for the MSJ-3D scenario, two stages of geometrical inversion (using 

50x50 km and 20x20 km prisms, respectively) were carried, using the Moho 

depths along the AWI-20130010 profile as pierce points (kept fixed during the 

inversion). The average densities used for this stage were 1.03 g/cc, 2.3 g/cc, 
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2.8 g/cc, and 3.33 g/cc for the water, sediments, crust, and upper mantle, 

respectively (averaged from Kimbell and Richards, 2008 and Schimschal and 

Jokat, 2019b). The maximum relative change in the depth of the Moho was set 

at 2% per iteration. The resulting Moho was re-gridded in Petrel in order to 

obtain a smoother surface and further used as input during the property 

inversion.   

For this stage, a homogeneous inversion was used to obtain an estimation of 

the optimal starting density for the heterogeneous inversion for each layer. The 

widths of the model’s prisms were 20x20 km, and the maximum change in 

density per iteration was set at 0.02 g/cc. The density ranges for the 

sedimentary cover and the crust (pre-Mesozoic sediments and basement) were 

set as 1.9-2.7 g/cc and 2.58-3.05 g/cc, respectively (based on Schimschal and 

Jokat, 2017) with the starting densities set at the average values of 2.3 g/cc for 

the sedimentary cover and 2.8 g/cc for the undifferentiated crust. The water 

density was set at 1.03 g/cc and the upper mantle at 3.33 g/cc. The 

homogeneous inversion yielded average densities of 2.4316 g/cc and 2.8328 

g/cc, and 2.365 g/cc and 2.785 g/cc for the MKR-3D and MSJ-3D scenarios, 

respectively, for the sedimentary cover and crust, respectively. These are 

mentioned here as an aid for the following section. 

For the heterogeneous inversion, the E-W and N-S widths of the model prisms 

were 20x20 km. The starting densities for the sediments and crust were 2.4 

g/cc and 2.8 g/cc, respectively (as averaged for the 2 scenarios from the 

homogeneous inversion; see paragraph above) and the maximum absolute 

change in density per iteration was set at 0.05 g/cc. Prior to the heterogeneous 

inversion, a further vertical sub-celling of the sedimentary cover and crust was 

carried out, resulting in 5 km high cells within the vertical prisms. VPmg allows 

for three different types of weighting for the computed heterogeneous cells in 

order to prevent the concentration of densities near the surface of the model. 

Here a depth and a full distance weighting are used, and the results are 

compared. The depth weighting assumes that the gravitational effect decays 

with the inverse of the function squared (Li and Oldenburg, 1996, 1998), and 

the full distance weighting estimates the sensitivity of a cell to all data locations 

(Mira Geoscience, 2019; Figure A.9).  

The maximum number of iterations was set at 25, 100, and 50 for the 

geometrical, homogeneous, and heterogeneous inversion, respectively, and 

the absolute data uncertainty (error) was set at 2 mGal. The upper and lower 

boundaries of the models were represented by the sea-level and a depth of -50 



 
 

152 

 

km, respectively. Laterally, the model extended ~1483 km E-W (from East 

Falkland past the Maurice Ewing Bank) and ~256 km N-S, covering the 

Falkland Plateau Basin. The depth-to Moho obtained from geometrical 

inversion along with the one available from Kimbell and Richards (2008) were 

used to calculate the crustal thickness along the Falkland Plateau along with 

thinning factors using the methodology of Hellinger and Sclater (1983). 

6.3.5 Plate reconstruction 

The plate reconstruction model for the Falkland Plateau region was carried out 

in GPlates and built on the global deformable plate model of Müller et al. (2019) 

with some modifications. The location of the pre-rift continent-ocean boundaries 

for South Africa and southern South America (although to a lesser extent) were 

edited (Figure A.12) so that they correspond to the high-low gravity anomaly 

break as shown by the satellite gravity data set of Sandwell et al. (2014) in 

order to obtain a close fit between the reconstructed plates (Macdonald et al., 

2003). The initiation of westward movement of South America was set at 

~167.2 Ma after König and Jokat (2006) to account for space generated due to 

rifting in the basins along the eastern margin of South America during the Early 

to Middle Jurassic (Lovecchio et al., 2018, 2019). The motion of the Antarctic 

Peninsula is also based on König and Jokat (2006). The model of Müller et al. 

(2019) incorporates the positions of East Antarctica after König and Jokat 

(2010) as far back as 148.8 Ma, followed by the tight fit position of Eagles and 

König (2008) at 177 Ma. The reconstructed positions for chron M24 (155 Ma) 

and the Jurassic Quiet Zone are adapted from König and Jokat (2006). The 

southward drift of Antarctica with respect to Africa is set at 167.2 Ma after 

König and Jokat (2006) to account for the emplacement of seaward-dipping 

reflectors and oceanization in the Mozambique Basin at 168.6-166.15 Ma and 

164.1 Ma, respectively (Mueller and Jokat, 2017). The plate corresponding to 

the Falkland Plateau was split into two regions: Maurice Ewing Bank block 

(comprising the Maurice Ewing Bank and the south-eastern part of the Falkland 

Plateau Basin) and the FIM (comprising the Falkland Islands, North Falkland 

Basin, South Falkland Basin, area west of the islands up to the Malvinas Basin, 

and the western part of the FPB; Chapter 5). The starting position for the 

Maurice Ewing Bank was set to the southern part of the Tugela Cone (Durban 

Basin, Natal Valley; Marshall, 1994; König and Jokat, 2010). The onset of 

motion for the Maurice Ewing Bank was set at 140 Ma to account for 

Berriasian-Valanginian rifting and Late Valanginian oceanization in the Natal 

Valley (Baby et al., 2018) The boundary between the FIM and Patagonia was 
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set along the high gravity anomaly west of the Falkland Islands (Chapter 5) and 

northwards it was interpreted as separating the NE-SW trend of San Julian 

Basin from the North Falkland Basin (Figure 6.7). The model starts at 170 Ma, 

considering the rotation of the FIM did not occur prior to the Middle Jurassic as 

suggested by the analysis carried in Chapter 5. At this stage, the Ellsworth 

Whitmore Terrane was in its current-day position relative to West Antarctica 

(Curtis and Storey, 1996; Martin, 2007) and therefore its rotation is not 

accounted for in this model. The position of the FIM at 170 Ma is modified from 

Stanca et al. (2019) and Chapter 4 to eliminate the gaps between the islands 

and Patagonia while maintaining the fragmentation and deformation of South 

America from Müller et al. (2019). The rotation of the islands is modelled as 

ceasing at 145 Ma (based on Chapter 5). The rate of rotation is constrained by 

pre-set positions of the FIM at 155 Ma and 150 Ma so that the correlations 

between the local and regional σ3 described in Chapter 5 are respected (coeval 

structural features along the FIM and south-western Gondwana have roughly 

the same orientation). The rigid plate reconstruction accounts for the opening of 

the Rocas Verdes Basin as described by Calderón et al. (2013). The model 

does not consider the Antarctic Peninsula fragmentation of Eagles and 

Eisermann (2020) as this does not account for the South American origin of 

South Georgia (Dalziel et al., 1975; Macdonald et al., 1987; Stone, 2015; 

Dalziel et al., 2021), nor for the sinistral wrenching interpreted along the 

western margin of the Falkland Plateau Basin based on seismic reflection data 

(Chapter 5; see Chapter 7 for the full discussion). The reconstructions are 

relative to Africa fixed in its present-day position. The plate codes and total 

reconstruction poles for south-western Gondwana are shown in Tables 6.1 and 

6.2. 

Table 6.1 Plate codes for the plate reconstruction model (see Figure 6.24 
for plate extents and configuration) 

Plate code Plate name 

SAM South America Craton 

PRB Parana Basin Plate, South America 

NPM Colorado Subplate (North Patagonian Massif), South America 

DMB San Jorge Plate (Deseado Massif Block), South America 

SSJ Southernmost San Jorge Plate, South America 

FIM Falkland Islands Microplate 
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FP Maurice Ewing Bank and the eastern Falkland Plateau Basin 

SSP Salado (Sub-) Micro-plate, South America 

PMP Pampean Terrane, South America 

AFR Africa 

EANT East Antarctica 

ANTP Antarctic Peninsula 

Table 6.2 Finite rotations for the south-western Gondwana model 

Age 

(Ma) 

Moving 

plate 

Fixed 

plate 

Lat 

(deg) 

Long 

(deg) 

Angle 

(deg) 
Source 

0 PRB SAM 0 0 0 present-day 

180 PRB SAM 0 0 0 Müller et al. (2019) 

0 PMP SSP 0 0 0 present-day 

125 PMP SSP 0 0 0 Heine et al. (2013) 

150 PMP SSP 0 0 0 Heine et al. (2013) 

180 PMP SSP 0 0 0 Müller et al. (2019) 

0 SSP SAM 0 0 0 present-day 

124.1 SSP SAM 0 0 0 Heine et al. (2013) 

150 SSP SAM -33.02 -60.52 8.5 Heine et al. (2013) 

180 SSP SAM -33.02 -60.52 8.5 Müller et al. (2019) 

0 NPM SSP 0 0 0 present-day 

125 NPM SSP 0 0 0 Heine et al. (2013) 

167.2 NPM SSP -32.5 -59.58 4.9 
after König and Jokat 

(2006) 

180 NPM SSP -32.5 -59.58 4.9 
after Müller et al. 

(2019) 

0 DMB NPM 0 0 0 present-day 

125 DMB NPM 0 0 0 Heine et al. (2013) 

145 DMB NPM -41.11 -73.68 2.3 Heine et al. (2013) 



 
 

155 

 

180 DMB NPM -41.11 -73.68 2.3 Müller et al. (2019) 

0 SSJ DMB 0 0 0 present-day 

80 SSJ DMB 0 0 0 

positions estimated 

based on 

Calderón et al. (2013, 

2016) 
 

100 SSJ DMB 13.77 -144.21 -1.81 

120 SSJ DMB 13.77 -144.21 -1.81 

140 SSJ DMB 11.97 -148.23 -1.25 

154 SSJ DMB 0 0 0 

180 SSJ DMB 0 0 0 

0 FIM DMB 0 0 0 present-day 

140 FIM DMB 0 0 0 this study 

145 FIM DMB 28.09 -58.23 -0.69 this study 

150 FIM DMB -56.18 -58.0 14.56 this study 

155 FIM DMB -53.64 -58.27 30.73 this study 

167.2 FIM DMB -52.21 -57.09 77.76 this study 

180 FIM DMB -52.21 -57.09 77.76 this study 

0 FP SAM 0 0 0 present-day 

131 FP SAM 0 0 0 this study 

137 FP SAM 49.81 127.73 3.42 this study 

139 FP SAM 50.11 129.22 6.68 this study 

140 FP SAM 49.57 131.20 7.54 this study 

140 FP AFR 48.01 -34.45 56.161 this study 

180 FP AFR 48.01 -34.45 56.161 this study 

0 EANT AFR 0 0 0 present-day 

10.9 EANT AFR 8.2 -49.4 1.53 
Royer and Chang 

(1991) 

20.1 EANT AFR 10.7 -47.9 2.78 
Royer and Chang 

(1991) 

33.1 EANT AFR 12 -48.4 5.46 
Royer and Chang 

(1991) 
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47.9 EANT AFR 9.73 -40.67 8.82 Cande et al. (2010) 

55.9 EANT AFR 9.86 -45.24 10.49 Cande et al. (2010) 

67.7 EANT AFR 0.1 -45.56 11.7 

after Cande et al. 

(2010) and Bernard et 

al. (2005) 

76.3 EANT AFR -4.6 -40.6 14.39 Bernard et al. (2005) 

83.0 EANT AFR -0.45 -40.01 17.77 Nankivell (1998) 

100.0 EANT AFR -3.06 -33.49 26.15 
modified from Marks 

and Tikku (2001) 

120.6 EANT AFR 10.36 153.67 -41.56 Müller et al. (2008) 

124.1 EANT AFR 9.45 152.5 -42.91 Müller et al. (2008) 

125.7 EANT AFR 9.3 152.0 -43.71 Müller et al. (2008) 

127.8 EANT AFR -8.63 -28.97 44.47 
König and Jokat 

(2010) 

128.9 EANT AFR -8.5 -29.16 45.07 
König and Jokat 

(2010) 

130.8 EANT AFR -8.27 -29.42 45.9 
König and Jokat 

(2010) 

132.6 EANT AFR -7.97 -29.76 47.04 
König and Jokat 

(2010) 

136.6 EANT AFR -7.75 -30.02 47.91 
König and Jokat 

(2010) 

138.9 EANT AFR -7.81 -30.27 48.74 
König and Jokat 

(2010) 

143.4 EANT AFR -7.29 -31.13 49.8 
König and Jokat 

(2010) 

147.1 EANT AFR -6.16 -31.54 50.72 
König and Jokat 

(2010) 

148.8 EANT AFR -6.79 -31.78 51.26 
König and Jokat 

(2010) 

155.0 EANT AFR -6.62 -32.00 51.93 König and Jokat 



 
 

157 

 

(2006) 

167.2 EANT AFR -5.20 -33.66 56.32 
König and Jokat 

(2006) 

177.0 EANT AFR 7.8 146.00 -56.15 
Eagles and König 

(2008) 

180 EANT AFR 7.8 146.00 -56.15 
after Eagles and 

König (2008) 

0 ANTP EANT 0 0 0 present-day 

111.1 ANTP EANT 0 0 0 
König and Jokat 

(2006) 

147 ANTP EANT 0 0 0 
König and Jokat 

(2006) 

167.2 ANTP EANT -73.74 -49.49 23.13 
König and Jokat 

(2006) 

180 ANTP EANT -73.74 -49.49 23.13 
König and Jokat 

(2006) 

The reliability of the rigid reconstruction was tested using the GPlates 

deformable modelling methodology (Gurnis et al., 2018; Müller et al., 2019). 

The deformable area (resolved topological network) was chosen by trial and 

error aiming to avoid edge effects when calculating strain rates and 

stretching/thinning factors and minimizing the front of unrealistic deformation. 

The south-western boundary was fixed along the western extents of the 

Pampean Terrane and Colorado, and San Jorge plates (Figure 6.5). 

Northward, the model was delimited by the present-day shoreline of Africa, 

which allowed only for the Outeniqua Basin to deform (Figure 6.5). A scenario 

where onshore South Africa south of the Kalahari Craton was included in the 

network was tested. However, using the coastline as the northern boundary 

minimized the front of unrealistic compression along the rest of South America 

during rotation while not yielding any significant differences in the thickness 

estimations along the Falkland Plateau compared to when the southern part of 

the Kalahari Craton was used. To the east, the deformable network extended 

up to the continent-ocean boundary defined for East Antarctica and the 

Antarctic Peninsula (Figure 6.5). This segment of the boundary was fixed to 

East Antarctica during movement. From 167.2 Ma onwards, the boundary 

starts switching to the transform fault along which East Antarctica drifted away 
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from Africa (Middle to Upper Jurassic in Figures 6.5, 6.6).  After the onset of 

oceanic crust in the Weddell Sea at 147 Ma (König and Jokat, 2006), the 

eastern boundary completely switches to the southern extent of the Falkland 

Plateau as defined by Müller et al. (2019) (Lower Cretaceous in Figure 6.6). A 

rigid nucleus corresponding to the Falkland Islands was defined (Figures 6.5 

and 6.6) in order to minimize the Mesozoic extension of the region; its limits 

were based on the free-air gravity anomaly and simplified in order for it not to 

impact the deformation occurring around the islands. A set of points were 

generated along the western and northern (present-day orientation) boundaries 

of the FIM, each with specific total reconstruction poles (Table 6.3). These 

would act as a boundary between the FIM and the South American plate during 

rotation and would facilitate the extension of the FIM. Their pre-deformation 

position was set by approximating an initial extent of the FIM based on the 

thickness map of Kimbell and Richards (2008). An original crustal thickness of 

35 km was used based on the undeformed area from Kimbell and Richards 

(2008). Stretching factors estimated for the thickness corresponding to each of 

the points were used to approximate their Jurassic position, assuming mass 

conservation during deformation (see Figure 6.4 for an example of the 

calculations, and Figure 6.7a for an approximation of the Jurassic FIM western 

and northern extents). No points were generated for the eastern margin of the 

FIM in order to allow the area corresponding to the Falkland Plateau to extend 

freely (Figure 6.5). Crustal thickness points were generated for the entire 

deformable network for both the rotational (ROT) and non-rotational (NROT) 

scenarios (FIM fixed to the San Jorge Plate – finite rotation from Müller et al., 

2019) from 170 Ma to 130 Ma. The latest stage was compared to the thickness 

map from Kimbell and Richards (2008) and the geometrical gravity inversion 

results from this study (model MSJ-3D) taking into consideration that the model 

does not account for the formation of the oroclinal bend of Patagonia nor for the 

Andean orogenesis and the formation of the North Scotia Ridge (e.g. Dalziel et 

al., 2013). An initial crustal thickness of 35 km was assumed at 170 Ma (based 

on the thickness of the undeformed areas in Kimbell and Richards, 2008). The 

spacing of the crustal thickness points was set at 0.15625° (density level of 8 in 

GPlates) with 0% random offset. The points falling outside the network as the 

deformation progressed were deactivated. A natural neighbour interpolation 

was used for the deformed network and strain accumulations were calculated 

for each time step. For both models, a scenario with break-up and oceanic 

crust generation (ROT-OC and NROT-OC) at ~164-163 Ma was modelled as 
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well (Figure 6.4). The rationale behind the timing of break-up and the extent of 

oceanic crust will be explained throughout this chapter. 

 

Figure 6.4 Example of the approximation of the Early Jurassic position of 
the points along the northern and western FIM boundaries; t0 – 
unstretched crustal thickness; t1 and t2 – average extended crustal 
thicknesses within given isochores; x1 and x2 – lateral extent of 
thinned crust (parallel to the extension direction); Δx – difference in 
present-day and Early Jurassic position of a given point measured 
along the extension direction 

Table 6.3 Finite rotations for points along the northern and western FIM 
boundary (Figure 6.5 - ROT) relative to the rigid FIM 

Age 

(Ma) 

Moving 

point 

Reference 

plate 

Lat 

(deg) 
Long (deg) 

Angle 

(deg) 

0.0 1 FIM 0.880 -145.91 0.75 

140.0 1 FIM 0.880 -145.91 0.75 

162.0 1 FIM -13.29 -163.72 0.01 

170.0 1 FIM 0 0 0 

0.0 2 FIM 4.65 -143.99 0.737 

140.0 2 FIM 6.133 -141.66 0.93 

162.0 2 FIM -1.29 -151.62 -0.018 

170.0 2 FIM 0 0 0 

0 3 FIM 31.8098 -19.4383 -0.193 
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130 3 FIM 31.8098 -19.4383 -0.193 

152 3 FIM 25.6782 -116.15528 -0.0279 

170 3 FIM 0 0 0 

0 4 FIM 38.7355 -53.1861 -0.1719 

130 4 FIM 38.7355 -53.1861 -0.1719 

152 4 FIM 24.9376 -118.8701 -0.0045 

170 4 FIM 90 0 0 

0 5 FIM 35.7662 -37.7633 -0.1647 

130 5 FIM 35.7662 -37.7633 -0.1647 

152 5 FIM 6.5395 18.2674 0.0151 

170 5 FIM 90 0 0 

0 6 FIM 37.9529 -60.9896 -0.1924 

130 6 FIM 37.9529 -60.9896 -0.1924 

152 6 FIM 35.7168 -86.3676 0.0387 

170 6 FIM 90 0 0 

0 7 FIM 29.4649 -104.5248 -0.2032 

130 7 FIM 29.4649 -104.5248 -0.2032 

152 7 FIM 29.2026 -107.075 0.0081 

170 7 FIM 90 0 0 

0 8 FIM 27.0918 -107.2588 -0.0845 

130 8 FIM 27.0918 -107.2588 -0.0845 

152 8 FIM 29.9014 -23.3153 0.0226 

170 8 FIM 90 0 0 
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Figure 6.5 Deformable (resolved topological) networks for the rotational 
(ROT) and non-rotational (NROT) models; inset shows extent of rigid 
nucleus (black dashed line) overlain on the free-air gravity anomaly 
and the smoothed version incorporated in the deformable network 
(white dashed line); COB – continent-ocean boundary 

 

Figure 6.6 Evolution of the deformable (resolved topological) network for 
the rotational model with generation of oceanic crust (ROT-OC) at 
~164 Ma 

As the latitudinal position of the FIM for the rotation scenario was constrained 

by the space left available between the deformed South America, Africa, and 

Antarctica (i.e. in a more southern position than in previous reconstruction 

models incorporating a rotation of the FIM; Adie, 1952a; Mitchell et al., 1986; 

Trewin et al., 2002; Chapter 4), a plate model incorporating a more northern 

position was built as well (ROT-2) along with crustal thickness estimations. The 

constraints for the position were based on correlations between structures 

along the FIM and the rest of Gondwana, similar to ROT model above. The 

space between the FIM and Africa was based on the thinning factors derived 

from gravity inversion, as will be detailed later in the chapter, assuming mass 

conservation (changes in the thickness of the crust directly related to changes 

in lateral extent of the crust, similar to the methodology depicted in Figure 6.4). 
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The reconstruction of the San Jorge Plate was modified as well to minimize the 

gap between it and the FIM. Implications for these changes will be discussed in 

Chapter 7. The finite rotations differing from the main rotational model (ROT) 

are shown in Table 6.4. 

Table 6.4 Finite rotations for the FIM and the San Jorge Plate for an 
alternative northern position of the FIM 

Age 

(Ma) 

Moving 

plate 

Fixed 

plate 

Lat 

(deg) 

Long 

(deg) 

Angle 

(deg) 
Source 

167.2 DMB NPM -41.76 -65.75 10.79 this study 

180 DMB NPM -41.76 -65.75 10.79 this study 

155 FIM DMB -55.37 -58.07 26.169 this study 

167.2 FIM DMB -52.08 -56.152 69.43 this study 

180 FIM DMB -52.08 -56.152 69.43 this study 

6.4 Results 

6.4.1 Crustal type distribution in the Falkland Plateau Basin 

6.4.1.1 Variations in gravity and magnetic response, and seismic 

reflectivity 

6.4.1.1.1 Gravity data interpretation 

The bandpass filtered free-air gravity anomaly shows a mosaic of regions with 

different gravimetric signatures. West of the Falkland Islands a roughly N-S 

trending lineament describing an arc is interpreted as marking the western 

extent of the FIM (Chapter 5; Figure 6.7a). NE-SW striking anomalies are seen 

under the San Julian Basin, which here are correlated with its structural grain. 

These transition abruptly to the North Falkland Basin (NFB) region, which is 

characterised by N-S oriented lineaments that follow the main structural trend 

of the basin (Figure 6.7a).  
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Figure 6.7 a) Bandpass filtered free-air gravity anomaly showing the trend 
of the Cape Fold Belt equivalent (Southern North Falkland Basin, 
Chapter 4) and the NE-SW potential shear zones; white dashed lines 
– Falkland Plateau boundary; white dotted line – FIM northern and 
western Jurassic extent; b) changes in the gravity signature as 
shown by the tilt derivative; black stippled lines mark potential 
fracture zones/crustal blocks boundaries; white lines – seismic 
sections in Figures 6.9 – 6.11; CFB – Cape Fold Belt; SJB – San 
Julian Basin 

South of the NFB, an alternation of linear highs and lows follow a WNW-ESE 

strike underneath the Southern North Falkland Basin (SNFB). This is consistent 

with the trend of the half-grabens within this basin (the reactivated Cape Fold 

Belt (CFB) equivalent; Chapter 4; Figure 6.7a). This trend is mapped in the 

Volunteer sub-basin, ~300 km off the coast of East Falkland. The wavelength 

of the anomalies is relatively higher in this region which could be the result of 

an increase in the burial depth of the fold and thrust belt or related to larger 

scale variations in the basement topography and/or composition (Figure 6.7a). 

Underneath the Fitzroy sub-basin this trend is not as readily identified. This 

change in the gravimetric signature can be related to the sediment thickness, a 
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change in the nature of the crust or a change in the pre-Mesozoic distribution of 

the deformation. NE-SW oriented anomalies, cross-cutting the entire width of 

the FPB, are seen along the shelf break (F1) but also truncating the NW-SE 

trend of the Volunteer sub-basin to the east (F2; Figure 6.7a). These features 

have been interpreted as shear zones (Chapter 5). The rest of the Falkland 

Plateau Basin displays a chaotic distribution of gravimetric anomalies which 

transition to the east in the NW-SE and NE-SW lineaments-bounded domain of 

the Maurice Ewing Bank (Figure 6.7a). 

The tilt derivative displays a similar distribution to the band-pass filtered free-air 

gravity anomaly, but with a few additions. A third basin-wide break in the gravity 

response following the same NE-SW trend as F1 and F2 in Figure 6.7a is 

identified on this derivative (F3; Figure 6.7b). This results in a separation of the 

Falkland Plateau Basin in two narrow slivers to the west and a triangular 

domain to the east (Figure 6.7). Another characteristic readily visible on the tilt 

derivative is the negative, E-W trending anomaly in the northern part of the FPB 

(Figure 6.7), the nature of which will be addressed in the next sections. 

6.4.1.1.2 Magnetic data interpretation 

The available magnetic data are restricted to the Falkland Plateau Basin and 

show a high amount of variability in the magnetic response from west to east 

(Figure 6.8). The region from the eastern coast of the Falkland Islands to the 

hinge line (F1 in Figure 6.7a and b) shows N-S trending anomalies (Figure 

6.8a). These are interpreted as corresponding to the dyke swarm from Barker 

(1999). The hinge line itself displays isolated NE-SW striking linear magnetic 

anomalies (Figure 6.8) following the trend of the F1 gravity lineament in Figure 

6.7. The positive magnetic anomalies associated with F1 could suggest a 

potential magmatic enrichment along this deformed margin of the basin (Figure 

6.8a and b) as evidence of significant magmatism has been interpreted 

basinward (Chapter 5).  

East of F1, isolated negative anomalies are separated by a WNW-ESE striking 

positive magnetic anomaly (Figure 6.8a and b). These are interpreted as 

corresponding to the Volunteer and Fitzroy sub-basins and the Berkeley Arch, 

respectively. The areas east and south of the Fitzroy sub-basin show a high 

positive magnetic response (Figure 6.8). These correspond to the sill complex 

interpreted in Chapter 5 and to the magmatic and volcanic province defined by 

Richards et al. (2013; Figure 6.8). The magnetic anomaly corresponding to the 

Berkeley Arch is truncated eastwards by a magnetic lineament readily seen on 
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the tilt derivative (Figure 6.8b). Its location corresponds to the F2 in Figure 6.7a 

and b.  

 

Figure 6.8 a) Reduced to pole total magnetic anomaly overlain by 
magnetic lineaments; dots mark ocean bottom seismometers 
locations from Schimschal and Jokat (2019b) with the black ones 
marking locations where oceanic crust was interpreted by the same 
study; b) tilt derivative along with the on- and nearshore dykes after 
Barker (1999) and Stone et al. (2009) and offshore dykes from 
Chapter 5 and the distribution of volcanics and magmatics after 
Richards et al. (2013); white stippled lines mark the fracture zones 
based on gravity data; black stippled lines mark the crustal 
boundaries as interpreted from the magnetic data 
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The remainder of the basin shows two distinct domains separated by F3 in 

Figure 6.7. The first one, west of F3, shows medium to high positive magnetic 

anomalies and a chaotic distribution of magnetic lineaments, with trends 

ranging from NE-SW and N-S to NW-SE (Figure 6.8). The domain east of F3 

corresponds to the triangular zone delineated on gravity data west of the 

Maurice Ewing Bank (Figure 6.7). This region shows NW-SE to WNW-ESE 

magnetic stripes in the central and southern part of the domain (Figure 6.8) 

which are truncated to the west by F3. The northern part shows predominantly 

negative anomalies with weak NW-SE lineaments (Figure 6.8a). The magnetic 

lineations in the south-central part of this region are interpreted as magnetic 

reversal isochrons, consistent with the interpretation of Eagles and Eisermann 

(2020), characteristic of oceanic crust which transition to the north to potentially 

sheared (igneous?) crust or transitional crust (Figure 6.8a).  

6.4.1.1.3 Seismic reflection data interpretation 

Regional 2D seismic reflection data have been used to constrain the different 

crustal domains based on gravity and magnetic data. A seismic 

characterization of the F1 shear zone is reported in Chapter 5. Two near 

orthogonal seismic profiles crossing the F2-3 shear zones are shown in Figure 

6.9, with each one intersecting the triangular domain between F3 and the 

Maurice Ewing Bank in different points. The seismic lines show a change in the 

seismic character of the Falkland Plateau Basin crust between each pair of 

shear zones.  

Deformed sedimentary deposits of either Jurassic or Palaeozoic age are 

interpreted to extend up to 300 km offshore in the Volunteer sub-basin (Figure 

6.9a). Along the F2 and between it and F3 the seismic response is 

characterized by a high degree of normal faulting, which could represent highly 

faulted and potentially attenuated continental crust (Figure 6.9a). The 

remainder of the crust up to the Maurice Ewing Bank is strongly reflective and 

in an elevated position compared to the rest of the basin on the E-W striking 

seismic line (Figure 6.9a). The high amplitudes are interpreted to be the result 

of volcanic and magmatic additions, whereas the elevation could suggest 

underplating or a transition to thick igneous crust (Figure 6.9a). This segment 

corresponds to the northern part of the triangular domain in Figures 6.7 and 6.8 

which is associated with a negative magnetic response.  

The ~N-S trending seismic line crosses the F2-3 shear zones and terminates in 

the crustal domain characterized my magnetic stripes (Figure 6.9b). The 

architecture of the basin and the seismic character varies abruptly southwards 
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from a highly elevated, transparent crustal block juxtaposed against the AFFZ 

and interpreted as continental in nature, to a ~8s TWT deep sedimentary basin 

just south of it, and further to a crustal domain characterised by high amplitudes 

and covered by pre-Upper Jurassic (?) deposits bounded to the top by an 

erosional unconformity (Figure 6.9b). Similar to the E-W profile, the high 

reflectivity is interpreted to be related to volcanic and magmatic additions. This, 

collated with the information from the magnetic data, would suggest that this 

segment of the profile is transitioning to oceanic crust southwards. However, 

the continent-ocean boundary is unclear. Dipping reflectors identified in this 

domain (Figure 6.9b) have been interpreted as subaerial volcanic flows by 

Lorenzo and Mutter (1988). However, evidence of faulting is seen above these 

reflectors, suggesting a sedimentary growth package for the shallowest of 

them. To the south, the high amplitudes of the oceanic domain can be readily 

seen continuing under the accretionary prism of the NSR (Figure 6.9a). 

 

Figure 6.9 a) Seismic section showing the transition from 
Jurassic/Palaeozoic deposits to highly faulted crust and to an 
elevated, highly reflective domain; b) seismic section showing the N-
S variation in crustal architecture in the FPB with uplifted continental 
crust to the north, deep Jurassic depocentre, and oceanic crust to 
the south; lines location in Figure 6.8b; NSR – North Scotia Ridge 

Besides looking at the seismic characteristics of each of the three domains 

within the FPB, the area lying between F3 and the MEB shows some variation 

on the magnetic data and requires further analysis based on seismic data. Four 

additional regional lines crossing the magnetic lineaments interpreted as 

magnetic reversal isochrons were used for this analysis. These show a varied 

sediment architecture with no obvious continent-ocean transition (Figure 6.10, 

6.11).  
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Figure 6.10 Seismic sections across the northern and western regions of 
the magnetic lineaments showing older uplifted Jurassic deposits 
onlapped by younger sediments and potential volcanic edifices 
bounding the northern extent of the magnetic lineaments 

A Jurassic depocentre of ~0.8-0.9 s TWT thickness lies in the northern part of 

the triangular zone where negative magnetic anomalies were identified (Figures 

6.10, 6.11). The northernmost and easternmost regional seismic profiles show 

Jurassic and Lower Cretaceous strata onlapping on an older sediment section 

bound to the top by an erosional unconformity (Figure 6.10). This is relatively 

thick and narrow on the easternmost section (Figure 6.10a) where it resembles 

an inverted/uplifted depocentre with strata potentially older than Middle 

Jurassic and thins and extends across a wider region on the northern profile 

(Figure 6.10b). These deposits are the same for sections in Figures 6.9b and 

6.10b but it is unclear if they are related and coeval to the ones in Figure 6.10a. 
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No separation of these Jurassic deposits is seen on the two other seismic lines 

crossing the magnetic lineaments (Figure 6.11). However, the same onlap 

geometry of Lower Cretaceous strata onto the Jurassic section is identified in 

the S-SW of each section (Figure 6.11a and b), with an erosional truncation of 

the Jurassic sequence interpreted in the southern part of the profile in Figure 

6.11a.  

 

Figure 6.11 Seismic sections across the central part of the magnetic 
lineaments showing continuous deposition during the Jurassic and 
areas of high amplitudes (a) and dipping reflectors (b) within the 
acoustic basement 
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Figure 6.12 Seismic sections across the E-W trending negative gravity 
anomaly in the northern FPB showing Jurassic grabens and half-
grabens and a high degree of lateral structural variability along the 
AFFZ; evidence of several unconformities (a, b, d, e) and sediment 
deformation can be readily seen and have been related to movement 
along the AFFZ and proto-AFFZ (extension and wrenching between 
the FIM and South Africa); line drawings of sections in a-c are shown 
in d-f in order to highlight sediment architecture; AFFZ – Agulhas-
Falkland Fracture Zone 
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Gentle folding of the Cretaceous and Lower Cenozoic sections was identified 

locally (Figure 6.10a) suggesting further uplift from the south. On three of the 

four sections, the northern limit of the positive and striped magnetic domain 

corresponds to elevated features on the top basement of potential volcanic 

nature (Figures 6.10a, b and 6.11a). These are between 10 and 15 km wide 

and do not correspond to any isolated anomalies on the magnetic map. 

Jurassic strata thin above these features (Figures 6.10a and 6.11a) suggesting 

a coeval formation, although further folding and faulting of the Lower 

Cretaceous section is evidence of further growth (Figures 6.10a, b and 6.11a). 

Features resembling volcanic edifices are seen on the seismic reflection data in 

the negative magnetic anomaly domain as well (Figure 6.9a) where they relate 

to ridge-like structures on the magnetic map (Figure 6.8a). 

A narrow negative gravity anomaly running parallel to the AFFZ in the northern 

part of the FPB has been identified in sub-section 6.4.1.1.1. On seismic 

reflection data this area corresponds to a series of Jurassic grabens and half-

grabens overlying highly faulted crust interpreted here as continental (Figure 

6.12). Evidence of differential Cretaceous and Cenozoic uplift is seen in the 

form of erosional truncations of Jurassic to Cenozoic deposits (Figure 6.12a, b, 

d, e) most likely related to processes along the AFFZ.  

A summary interpretation of the crustal distribution as constrained by gravity, 

magnetic, and seismic data is shown in Figure 6.13. The seismic reflection data 

were not diagnostic for the nature of the crust in the distal part of the FPB or for 

the location of crustal type boundaries. Therefore, the crust underlying the 

Falkland Plateau Basin is subdivided into the following domains:  

• a continental crust domain comprising the FIM, the region between F1 

and F2, the crust adjacent to the AFFZ, and the MEB (1 in Figure 6.13); 

• a domain of faulted and potentially attenuated and underplated 

continental (?) crust or sheared oceanic (based on Schimschal and 

Jokat, 2017) crust between F2 and F3 (2 in Figure 6.13); 

• an uncertain domain comprising: 

o the northern region of the triangular zone (between F3 and the 

MEB; 3 in Figure 6.13) where the seismic reflection data suggests 

the presence of thicker (elevated) magma-enriched crust with a 

magnetic signature different than the interpreted oceanic crust to 

the south; 

o the central and eastern regions of the triangular zone (4 in Figure 

6.13) where magnetic lineaments were mapped indicative of 
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magnetic reversal isochrons and oceanic crust, but pre-Middle 

Jurassic inverted basins were mapped on the seismic data across 

these lineaments; 

• an oceanic domain corresponding to the southern magnetic reversal 

isochrons (5 in Figure 6.13). 

The nature and implications of the region marked as uncertain in Figure 6.13 

are discussed in Section 6.5. 

 

Figure 6.13 A model of the crustal type distribution and structure along 
the Falkland Plateau based on gravity, seismic reflection, and 
magnetic data overlain on the magnetic data, and type sections (a, b, 
c, and d, are line drawings of seismic sections in Figures 6.9, 6.10a 
and 6.11b; continental crust is considered to comprise the Maurice 
Ewing Bank, Falkland Islands with the Malvinas Basin, NFB, SFB, 
Volunteer and Fitzroy sub-basins, and the northern area along the 
AFFZ, with an uncertainty in the southern part of the Fitzroy sub-
basin where the seismic response at depth is obscured by the 
extensive sill complex (Chapter 5); the eastern sliver of the FIM and 
the northern part of the triangular central region are both grouped 
under sheared and attenuated crust due to their high degree of 
faulting and/or high amplitudes on the seismic data and more 
chaotic character on the magnetic data; the area with magnetic 
lineaments is split in an oceanic domain to the south and an 
uncertain region to the north and east 
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6.4.1.2 Crustal density distribution based on gravity modelling and 

inversion 

Subsequent to the interpretation of potential field and seismic reflection data, a 

lot of uncertainty remains in the nature and distribution of the crust under the 

FPB. Although seismic reflection data show folded Paleozoic deposits 

extending in the region between F1 and F2 (Figure 6.9a; Chapter 5), there is 

little seismic coverage further east in the basin with vintages of poor quality that 

makes a definitive characterization of crustal types difficult. Domains 2, 3, and 

4 in Figure 6.13 remain of particular interest, and gravity modelling and 

inversion is employed to constrain the density distribution in this area of the 

plateau. 

 

Figure 6.14 Uninterpreted and interpreted depth converted seismic profile 
139 along which forward gravity modelling was carried out; light 
yellow – sediment infill; dark yellow – undifferentiated crust; line 
position shown in Figure 6.1; detailed interpretation of the central 
section corresponding to the Falkland Plateau Basin shown in Figure 
6.9a 

6.4.1.2.1 2D forward modelling results 

The forward modelling results carried out along profile 139 in Figure 6.1 show 

different crustal architectures along the FPB based on the Moho model used as 

an input. For the MKR-2D model (depth to Moho from Kimbell and Richards, 

2008), the modelled Falkland Islands eastern shelf and the Maurice Ewing 

Bank show a similar layering, with densities between 2.74 g/cc and 2.9 g/cc for 

the upper and lower crust, respectively, with lower densities being modelled for 

the easternmost section of the Maurice Ewing Bank (Figure 6.15a and b). 

Underneath the FPB an increase in density is modelled for the upper crust 

towards the Falklands shelf where densities of up to 2.83 g/cc are reached, 

whereas the lower crust is modelled as a homogeneous layer of 2.92-2.93 g/cc 

density (Figure 6.15a and b).  
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The MSJ-2D model (depth to Moho derived from Schimschal and Jokat, 2019b) 

shows a more complex density distribution. The Falklands shelf and Maurice 

Ewing Bank share some similarities with the first scenario (Figure 6.16a), but 

lower densities are modelled in the upper crust along the Falklands shelf and 

throughout a larger area in the eastern section of the Maurice Ewing Bank 

(Figure 6.16a and b). A high-density lower crust body is modelled for the 

Maurice Ewing Bank where the input Moho suggests a thicker crust than the 

first scenario. Along the FPB, crustal thickness and densities are relatively 

higher than for the first scenario, with the upper and lower crusts reaching 

densities of 2.88-2.9 g/cc and 3.05 g/cc, respectively (Figure 6.16). 

 

Figure 6.15 MKR-2D model; a) Simplified gravity forward model along line 
139 showing little lateral variations in density between the Falkland 
Islands, Falkland Plateau Basin, and Maurice Ewing Bank; b) detailed 
gravity model showing isolated areas of higher densities along the 
shelf of the Falkland Islands; Moho based on Kimbell and Richards 
(2008); profile interpretation input for modelling shown in Figure 
6.14; line position shown in Figure 6.1 
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Figure 6.16 MSJ-2D model; a) Simplified gravity forward model along line 
139 showing and increase in densities for the upper and lower crust 
underlying the Falkland Plateau Basin compared to the Falkland 
Islands platform and Maurice Ewing Bank; b) detailed gravity model 
showing narrow areas of relatively lower and higher densities than 
the surrounding crust nearshore the Falkland Islands; Moho based 
on Schimschal and Jokat (2019b); profile interpretation input for 
modelling shown in Figure 6.14; line position shown in Figure 6.1 

6.4.1.2.2 3D inversion results 

Due to the abrupt N-S changes in crustal architecture interpreted based on 

gravity, magnetic, and seismic reflection data (Figures 6.7, 6.8 and 6.13), 3D 

gravity inversion was further carried out across the entirety of the FPB and 

sections across profile 139 were compared against the 2D forward gravity 

modelling results.  

A separation in the 3D density distribution across the FPB is observable 

between the two considered scenarios (MKR-3D and MSJ-3; Figure 6.17), 

which was due to the difference in crustal thicknesses. Although there are 



 
 

176 

 

many similarities between the proposed Moho morphologies from Kimbell and 

Richards (2008) and the one modelled after Schimschal and Jokat (2019b) 

(Figure 6.17a), there are differences in the depth to Moho, and consequently 

crustal thickness, underneath the FPB (Figures 6.18 and 6.19). The crust from 

Kimbell and Richards (2008) is thicker under the Fitzroy sub-basin, but thinner 

under the rest of the FPB compared to the inversion results for the MSJ-3D 

model (Figure 6.18, 6.19, 6.20). Largest differences occur in regions 3-5 where 

magmatic additions were inferred along with the presence of oceanic crust to 

the south (Figure 6.13), and under the Fitzroy sub-basin. The thickness of the 

3-5 domain is relatively high compared to average oceanic crust thicknesses 

(typically less than 10 km); the mean crustal thickness estimated from the two 

models is ~15-16 km. The maximum thicknesses resulting from the two models 

were ~18 km for the MKR-3D scenario, and ~20 km for the MSJ-3D (Figure 

6.18). This difference in thicknesses resulted in higher crustal densities being 

modelled during the heterogeneous inversion along the 3-4 regions for the 

MSJ-3D scenario (Figure 6.21b) when compared to the MKR-3D case (Figure 

6.21a), which correlates with the interpreted igneous nature/addition of this 

crustal region. For both models, the densities predicted in region 5 were 

relatively high, indicative of volcanic material accretion, but not reaching typical 

oceanic crust densities (~3 g/cc; Figure 6.21). Regarding the Fitzroy sub-basin 

region, high densities were obtained for the MKR-3D scenario compared to the 

MSJ-3D model. However, the crust underlying the basin consists of folded 

Paleozoic units (Chapter 5). Extensive dyke and sill complexes would account 

for the high densities (Figures 6.15b, 6.16b, 6.21) and positive magnetic 

anomalies (Figure 6.8) interpreted along the hinge zone. Within the 

sedimentary infill of the FPB, the inversion yielded lower densities in regions 3-

5 for MKR-3D when compared to the results from MSJ-3D (Figure 6.17).
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Figure 6.17 a) Morphology of the Moho from Kimbell and Richards (2008; MKR-3D) (left) and derived from Schimschal 
and Jokat (2019b; MSJ-3D) (right), and density distribution along the b) basement and c) sedimentary cover 
resulting from the 3D inversion
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Figure 6.18 a) Crustal thickness calculated using the depth to Moho from 
Kimbell and Richards (2008) and top basement picked during this 
project (MKR-3D model); b) crust thickness based on the depth to 
Moho from Schimschal and Jokat (2019b) and 3D geometrical 
inversion (MSJ-3D model); c) comparison of crustal thicknesses 
across the 3-5 regions; profile position shown in (a) and (b) 

 

Figure 6.19 Residual thickness map obtained by subtracting the 
thickness of MKR-3D from MSJ-3D 
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Figure 6.20 Thinning factors calculated from the crustal thickness 
estimated for a) the MKR-3D model (using the Moho model of 
Kimbell and Richards, 2008) and b) MSJ-3D model (using the Moho 
model derived from gravity inversion carried out in this chapter); 
thinning factor calculated as 1-tf/ti (where tf is the current thickness 
of the crust and ti is the original thickness assumed to be 35 km) 

 

Figure 6.21 The 3D basement density distribution along the Falkland 
Plateau Basin and Maurice Ewing Bank for the two modelled 
scenarios using the full distance weighting showing high densities 
along the Falkland Islands shelf and Maurice Ewing Bank and a) 
relatively lower densities for the central and eastern Falkland Plateau 
Basin reaching the highest values under the Fitzroy sub-basin; b) 
high densities in the east-central part of the Falkland Plateau Basin 
and decreasing westwards (under the Fitzroy sub-basin) 
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East-west slices through the 3D models were taken along profile 139 for a 

direct comparison with the results from the 2D forward modelling. The inversion 

resulted in some variability in the density distribution based on the type of 

weighting used, with the full distance weighting yielding more geologically 

plausible results (no concentration of lower densities in the lower crust as seen 

in Figure 6.22a and eastern part of 6.23a). For the MKR-3D scenario, the crust 

underlying the FPB yielded relatively lower densities than the adjacent Falkland 

Islands platform and Maurice Ewing Bank (Figure 6.22) which contrasts with 

the results from 2D modelling (MKR-2D; Figure 6.15). The MSJ-3D model 

resulted in higher densities along the FPB than MKR-3D. The central part of the 

basin reached values of up to 2.86 g/cc, comparable to the Falklands shelf and 

the central part of the Maurice Ewing Bank, but lower than the densities 

estimated from 2D modelling (MSJ-2D; Figure 6.16). Lower densities along the 

eastern section of the MEB were obtained during inversion as well (Figure 

6.23) compared to the 2D modelling (Figure 6.16).  

 

Figure 6.22 The results of the 3D gravity inversion (model MKR-3D) along 
line 139 using a) depth weighting and b) full distance weighting; 
Moho from Kimbell and Richards (2008); minimum-maximum 
estimated densities for sediments and crust across the Falkland 
Plateau Basin: (a) 2.226 – 2.569 g/cc and 2.58 – 3.05 g.cc, 
respectively; (b) 2.036 – 2.595 g/cc and 2.596 – 3.05 g/cc, 
respectively; line position shown in Figure 6.1 
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Figure 6.23 The results of the 3D gravity inversion (model MSJ-3D) along 
line 139 using a) depth weighting and b) full distance weighting; 
Moho from geometrical inversion constrained along AWI-20130010 
from Schimschal and Jokat (2019b); minimum-maximum estimated 
densities for sediments and crust across the Falkland Plateau Basin: 
(a) 2.234 – 2.545 g/cc and 2.58 – 3.05 g.cc, respectively; (b) 2.077 – 
2.613 g/cc and 2.63 – 3.05 g/cc, respectively; line position shown in 
Figure 6.1 

6.4.2 Plate model 

The crustal architecture across the FPB directly influences the plate 

reconstruction of the plateau and vice versa. Different plate configurations and 

evolutions of the plateau are considered in the following sections and 

compared and discussed against the observations from the gravity, magnetic, 

and seismic reflection data. The base of the plate reconstruction is shown in 

the rigid plate model, and four deforming plates scenarios are further 

considered (rotation of FIM with and without generation of oceanic crust and no 

rotation of the FIM with and without generation of oceanic crust) as a way to 

further validate the interpreted tectonic evolution of the plateau. 

6.4.2.1 Rigid model 

The rigid plate model shows the south-western Gondwana configuration at 170 

Ma, 167.2 Ma, 160 Ma, 150 Ma, 140 Ma, and 130 Ma. The FIM is defined as 

follows: the northern boundary corresponds to the AFFZ, the eastern boundary 
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is F3 in Figure 6.7, the southern boundary is the North Scotia Ridge, and the 

western boundary is defined along the positive gravity anomaly (Figure 6.7b; 

Chapter 5).  

The model starts at 170 Ma (after the rotation of the Ellsworth Whitmore 

Terrane - 180-175 Ma; Curtis and Storey, 1996; Martin, 2007) with the FIM 

rotated approximately 80° relative to southern South America, the Maurice 

Ewing Bank occupying the present-day position of the Tugela Cone, and 

Patagonia in a close fit to the Falkland Islands. The FIM starts in a more 

southern position than previous reconstruction models which is constrained by 

the fragmentation and deformation of the South American plate. This model 

uses the fragmentation and reconstruction suggested by Müller et al. (2019). 

This results in a more sinuous trend of the Gondwanide Fold and Thrust Belt 

(Figure 6.24 – Lower Jurassic stage) which, for the South Africa – Falklands 

region, was approximated using the reconstructed gravity trends along the FIM 

and South Africa (Figure 6.24 – top two maps). 

The onset of clockwise rotation of the FIM was modelled as occurring at 167.2 

Ma and here was related to the southward drift of East Antarctica (Chapter 5 

and further discussed in Chapter 7). The dextral wrenching between West and 

East Gondwana might have generated a network of synthetic and antithetic 

shear zones (the present-day NE-SW trending F1-F3 in the FPB and the 

western and northern FIM boundaries; Figures 6.7, 6.8) that resulted in the 

isolation of the FIM (Figure 6.24 – Middle Jurassic; see Chapter 7 for the full 

discussion). The eastward movement of Patagonia generated at this stage 

extension in the basins along the eastern margin of South America and space 

to accommodate the rotation (Figure 6.24 – Middle Jurassic to Upper Jurassic 

160 Ma). Correlations between the local and regional stress states suggest an 

intermediate rotated position for the FIM during the Late Jurassic (Chapter 5) 

when extension initiated between South America and Africa, in the Rocas 

Verdes Basin, and in the Weddell Sea (Figure 6.24 – Upper Jurassic 150 Ma; 

see Table 6.2 for the sources of each time-step). Generation of oceanic crust 

occurred in the Weddell Sea at 147 Ma (König and Jokat, 2006). The FIM was 

modelled to reach its present-day position relative to Patagonia at 145 Ma 

(Chapter 5). The Falkland Plateau reached its current extent at 130 Ma after 

the initiation of transform movement along the AFFZ (Baby et al., 2018; Figure 

6.24 – Lower Cretaceous), as constrained by the movement of the MEB and 

South America.  
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Figure 6.24 Butterworth bandpass filtered free-air gravity anomaly 
(Chapter 3) for the Falkland Plateau and South Africa and on- and 
offshore lineaments (top left); reconstructed trend of the Gondwana 
Fold and Thrust Belt (GFTB; top right); rigid plate reconstruction for 
south-western Gondwana (bottom six insets); AFFZ – Agulhas-
Falkland Fracture Zone; AP – future Agulhas Plateau; FIM – Falkland 
Islands Microplate; MEB – Maurice Ewing Bank; MR – Mozambique 
Ridge; (S)NFB – (Southern) North Falkland Basin; TC – Tugela Cone 
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The closure of the Rocas Verdes Basin started at 100 Ma (Calderón et al., 

2013, 2016), but is outside the time limits of this model. The overlapping area 

between the FIM and the eastern FPB and South Africa can be explained either 

through extension (pre-break-up, both the FIM and the plateau having smaller 

areal extents) or through the generation of oceanic crust. 

The plate model is introduced in this chapter as it represents the base for the 

deforming plate models presented in next section, but the evolution of the 

Falkland Plateau in the context of south-western Gondwana will be fully 

discussed in Chapter 7. 

6.4.2.2 Deforming plates model 

The deforming plates model is used to test the reliability of the reconstruction 

by looking at the predicted crustal thicknesses and thinning factors and 

comparing these results to a non-rotational model and to present-day 

observations of the structure and architecture of the plateau. 

The rotational model with no generation of oceanic crust (ROT) shows 

extension occurring in the Algoa and Gamtoos basins and the FPB during the 

Late Jurassic while the northern part (present-day orientation) of the FIM, the 

San Jorge Basin region, and the present-day Bredasdorp Basin were affected 

by compression due to the rotation of the FIM (Figure 6.25a). This 

compressional front migrated westward across the South American plate and 

eastwards in the Outeniqua Basin throughout the Late Jurassic and its extent 

and likely cause are discussed in Section 6.5.2. ENE-WSW extension (present-

day reference system) occurred in the FPB (Figure 6.26b). West of the islands, 

in the Malvinas Trough (Malvinas Basin), the initial NNE-SSW and N-S strain 

orientation was subdued by a NNW-SSE extension throughout the Jurassic 

(Figure 6.27b). At the end of Jurassic and during the Early Cretaceous, 

southern Patagonia was affected by extension. At this stage, the FIM was fully 

rotated and the extension in the FPB was complete. Post-rotation and 

formation of the FPB, across the FIM, crust thins southwards and south-

eastwards whereas on the Maurice Ewing side thinning occurs towards the 

south (Figure 6.25a – 130 Ma). Maximum thinning is seen under the South 

Falkland Basin, southern Fitzroy sub-basin, south-eastern FPB, and in the 

Malvinas Basin (Figures 6.25a – 130 Ma, 6.29b). 
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Figure 6.25 Deformable plate model for the Falkland Plateau showing the 
predicted crustal thickness for the rotational (ROT) and non-
rotational (NROT) models when only extension with no oceanic crust 
generation occurs (160-130 Ma); AB – Algoa Basin; BB – Bredasdorp 
Basin; FIM – Falkland Islands Microplate; GB – Gamtoos Basin; MB – 
Malvinas Basin; SFB – South Falkland Basin 



 
 

186 

 

 

Figure 6.26 Azimuth of the principal component of the total strain across 
the magnetic stripes in the Falkland Plateau Basin showing a) a 
switch from N-S (oblique) extension to NE-SW (perpendicular) 
extension for the NROT model occurring at ~154 Ma; b) and c) a 
consistent extension direction perpendicular on the magnetic 
lineaments throughout the Late Jurassic for the rotational ROT and 
ROT-OC models; main difference seen along the south-eastern 
margin of the Maurice Ewing Bank (MEB) where the extension 
direction changes from NNE-SSW to NW-SE between the ROT and 
ROT-OC; lengths of total strain arrows are proportional to its relative 
magnitude; present-day orientation of South America; oc. c. – 
oceanic crust 

For the second scenario (NROT), in which the FIM is part of the San Jorge 

Plate, the extension is initially concentrated south-east of the islands and along 

the MEB, migrating in the Outeniqua Basin and FPB throughout Late Jurassic 

and affecting the entire FPB and the NFB by the end of the Jurassic. Extension 

direction in the FPB changes from N-S to NE-SW throughout the Late Jurassic 

(Figure 6.26a). In the Malvinas Basin, a similar change in extension direction is 

seen as for the previous scenario (Figure 6.27a), but the relative strain 

magnitude is significantly lower. Compression affects the Pampean Terrane 
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and the Salado Microplate (Figure 6.25b – 150-130 Ma) and the likely cause is 

discussed in Section 6.5.2. The Early Cretaceous sees the end of FPB 

extension with most thinning occurring in the Fitzroy sub-basin. The crust thins 

towards the centre of the FPB across both the FIM and the Maurice Ewing 

Bank (Figures 6.25b – 130 Ma, 6.29a).  

 

Figure 6.27 Azimuth of the principal component of the total strain in the 
Malvinas Basin (black rectangle) for the three models showing 
predominantly NNE-SSW extension which is further superimposed 
by NNW-SSE extension; strain magnitude increases from (a) to (c); 
present-day orientation of South America 

The rotational model with generation of oceanic crust (ROT-OC) considers a 

maximum extent of the oceanic domain comprising regions 4-5 in Figure 6.13. 

The results show a regional thickness distribution similar to its continental crust 

counterpart. Differences are seen in the central part of the Falkland Plateau 

Basin where most thinning occurs for the oceanic crust generation scenario, 
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and across the Maurice Ewing Bank where, less extension is being modelled 

due to the Jurassic continental break-up (Figure 6.28, 6.29c). A non-rotational 

model with generation of oceanic crust (NROT-OC) was modelled as well 

(Figure A.13). This displays similarities with the NROT model (Figure 6.25b), 

but the results show a concentration of extension in the Volunteer sub-basin 

and along the AFFZ-adjacent portion of the FPB, with less extension modelled 

in the Malvinas Basin, Fitzroy sub-basin, and Maurice Ewing Bank. A summary 

of the results of the deforming plate models can be found in Table 6.5.  

 

Figure 6.28 Deformable plate model for the Falkland Plateau for the 
rotational case with generation of oceanic crust (ROT-OC); oc. c. – 
oceanic crust; MEB – Maurice Ewing Bank 

 

Figure 6.29 Thinning factors estimated for the deformable plate model for 
all three scenarios; FI – Falkland Islands; MEB – Maurice Ewing 
Bank; oc. c. – oceanic crust 
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Table 6.5 Summary of deformable plate reconstructions outcomes 

SCENARIO POSITIVE OUTCOMES NEGATIVE OUTCOMES 

No rotation 

(NROT and 

NROT-OC) 

✓ thinning in the Fitzroy 

sub-basin for the NROT 

comparable to gravity 

inversion results 

✓ extension occurring in the 

larger Outeniqua Basin from 

Late Jurassic 

✓ changes in extension 

direction in the Malvinas Basin 

consistent with seismic data 

 little extension in the 

Malvinas Basin 

 little extension in the 

Falkland Plateau Basin 

during the Jurassic when 

potentially break-up 

occurs (for NROT) 

 extension of the SW 

margin of the Maurice 

Ewing Bank not 

consistent with 

observations (present-day 

NW-SE trending faults) 

Rotation 

(ROT and 

ROT-OC) 

✓ extension along the 

western margin of the Maurice 

Ewing Bank consistent with 

faulting and lineations seen on 

seismic, gravity and magnetic 

data (ROT) 

✓ significant thinning 

occurring in the Falkland 

Plateau Basin during the 

Jurassic, allowing for potential 

break-up (ROT) 

✓ crustal thinning and 

shape of trough in the 

Malvinas Basin consistent with 

seismic data  

✓ changes in extension 

direction in the Malvinas Basin 

consistent with seismic data 

✓ extension of SE margin of 

the Maurice Ewing Bank 

consistent with observations 

(for ROT-OC) 

 compression 

generated in the northern 

part of the FIM, 

Outeniqua Basin, and 

across the South 

American plate 

 most extension 

modelled in the southern 

part of the Fitzroy sub-

basin and in the South 

Falkland Basin and not 

around the potential 

oceanic domain (ROT) 

 extension of the SW 

margin of the Maurice 

Ewing Bank not 

consistent with 

observations (present-day 

NW-SE trending faults; for 

ROT-OC) 

A rigid plate model, crustal thickness distribution, and thinning factors for a 

more northern position of the FIM (model ROT-2) were further built and 

generated (Figures 6.30, A.14). The position was based on the reconstruction 

in Chapter 4 and the thinning factors estimated between F1 and F3 from the 
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gravity inversion (Figure 6.20). Thinning factors of ~0.6-0.65 would translate in 

a change in length between the F1 and F3 from the current ~300 km to ~105-

120 km (Figure 6.30a, inset) which would fit between the Falkland Islands shelf 

(F1; what was believed to be the eastern extent of the FIM) and Africa. 

However, this position of the FIM results in a gap between the microplate and 

the South American plate as reconstructed by Müller et al. (2019) which 

requires adjustments in the reconstruction of the South American sub-plates 

(Figure 6.30a). The implications of changes in the latitudinal position of the FIM 

on the deformation of South America will be discussed in Chapter 7. The 

purpose of this secondary reconstruction is to show that the distribution of 

depocentres and overall morphology (thinning directions) of the Falkland 

Plateau obtained during rotation (Figures 6.25a - 130 Ma, 6.29b) are 

comparable for a tighter fit between the FIM and Africa and it will not impact the 

discussion in the following section. The main difference between ROT and 

ROT-2 arises from an overall thinner crust being estimated for the FPB 

(Figures 6.25a – 130 Ma, 6.30b). 

 

Figure 6.30 a) Alternative position for the FIM (model ROT-2) in a tighter 
fit to Africa and the changes needed along South America to 
accommodate this more northern position; rectangle shows extent 
of inset map; inset shows configuration from Figure 6.24 and the 
hatched area marks the eastern region of the FIM gained through 
extension; b) crustal thickness estimated for this more northern 
position; c) thinning factor across the deforming network; FIM – 
Falkland Islands Microplate; MEB – Maurice Ewing Bank 
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6.5 Discussion 

The integration of seismic, gravity, and magnetic data, and deformable plate 

modelling have brought a lot of insights into the crustal architecture of the 

plateau. However, several areas of uncertainty and unanswered questions 

remain, which are addressed in this section. These are as follows: 

1. the nature of the crust in the east-central part of the FPB (the region 

between F3 and MEB or areas 3-4 in Figure 6.13), and if not conclusive, 

the implications of each of the possibilities (Section 6.5.1.1); 

2. the tectonic processes that led to the present-day architecture of the 

Falkland Plateau (i. e. Would a rotational or non-rotational model better 

account for the crustal and structural complexities seen along the 

plateau?) (Section 6.5.1.2). 

6.5.1 Crustal architecture 

6.5.1.1 Distribution of crustal types in the east-central part of the FPB 

The nature of the crust under the Falkland Plateau Basin represents one of the 

obstacles in building a reliable reconstruction model of the South Atlantic that 

integrates the position of the Falkland Plateau. The lack of seismic reflection 

data that image the Mohorovičić discontinuity limited the use of gravity 

modelling and inversion but nonetheless insights can be gleaned from these 

methodologies when integrated with seismic facies and magnetic data analysis. 

The 2D forward gravity modelling and 3D gravity inversion for the two depth-to-

Moho scenarios yielded densities that span the continental and oceanic range. 

The implications of both in the context of the interpreted seismic reflection and 

magnetic data are discussed in this section. 

The models constrained with seismic refraction information from Schimschal 

and Jokat (2019b; MSJ-2D and MSJ-3D) yielded densities of up to 3.05 g/cc in 

the lower crust underneath regions 2 and 3 (Figure 6.13) of the FPB and a 

crustal thickness of up to 20 km which could be explained in two ways.  

The first interpretation of the high densities is the presence of oceanic crust as 

suggested by Schimschal and Jokat (2017, 2019b) based on P-wave velocity 

analysis. This study and the one of Eagles and Eisermann (2020) support the 

presence of oceanic crust under regions 1 to 5 in Figure 6.13 (between F1, or 

east of it, and the MEB; black dots in Figure 6.8a). However, an interpretation 

more consistent with the presence of continental crust under region 1 is 

suggested in this study (Chapter 5; Figure 6.9). Oceanic crust was mapped 
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with higher certainty on magnetic data only within region 5 (Figure 6.13) but the 

high densities would suggest an oceanic domain spanning regions 2 to 5. The 

gravity modelling and inversion yielded crustal thicknesses of up to 20 km for 

central and eastern part of the FPB (Figures 6.16, 6.18, A.10), which would 

raise the question of the potential existence of an oceanic plateau. These are 

areas of thick oceanic crust (~30 km) that form relatively fast due to 

decompression melting above mantle plumes (the Mantle Plume hypothesis) or 

due to plate tectonics (the Plate Boundary hypothesis) (Zhang et al., 2020) and 

generate elevated topographies (~2-3 km higher) relative to typical oceanic 

crust domains (Courtillot and Renne, 2003; Kerr, 2014). Two such regions have 

been documented just offshore South Africa: the Agulhas Plateau and the 

Mozambique Ridge (Figure 6.24 – 130 Ma). These both have thicknesses 

between 20 and 24 km with P-wave velocities between 3.5 and 7.6 km/s and 

were formed between 100 and 95 Ma and 140 and 120 Ma, respectively 

(Parsiegla et al., 2008; König and Jokat, 2010; Gohl, 2011; Fischer et al., 

2017). The two have been interpreted to be related to the migration of the 

Bouvet hotspot (Marks and Tikku, 2001; Parsiegla et al., 2008). However, the 

emplacement of the Agulhas Plateau has been estimated to have occurred 

after the Falkland Plateau cleared the coast of South Africa (Gohl and 

Uenzelmann-Neben, 2001). On the other hand, the model of emplacement for 

the Mozambique Ridge by Fischer et al. (2017) shows a migration of the 

eruption centres southwards where the ridge reaches its current southern 

extent by 130 Ma. Until this point, the ridge is located just east of the Maurice 

Ewing Bank (in a reconstructed model; Figure 6.24 – 130 Ma) and one can 

speculate that this magmatic province continued into the FPB. However, with 

the exception of an elevated region onto which Jurassic deposits onlap into the 

central part of the Falkland Plateau Basin (Figure 6.9b), the crust in the FPB 

seems to have formed before the end of the Jurassic (before ~145 Ma) section 

deposition (Figures 6.9a, 6.11). Prior to this, the large amount of magmatism 

and volcanism needed for the generation of an oceanic plateau occurred during 

the emplacement of the Karoo-Ferrar large igneous province (LIP) (174-184 

Ma) (Jourdan et al., 2007). The reconstruction model from this study (Figure 

6.24) suggests that not much extension occurred in the FPB prior to 170 Ma. 

However, back-arc extension associated with a high degree of underplating, 

magmatism, and volcanism occurred in the southern Weddell Sea at ~ 175 Ma 

(Jordan et al., 2017; Leat et al., 2018; Riley et al., 2020; see Chapter 5, Figure 

5.21 for Weddell Sea rift configuration) which could have accounted for some 

degree of extension to propagate into the southern part of the FPB (Marshall, 
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1994). Nonetheless, not enough space existed at this time between the FI and 

the MEB in order to generate an oceanic domain comprising regions 2 to 5. 

Furthermore, the crust underneath the Weddell Sea Rift System is considered 

to be extended continental crust (Jordan et al., 2017) so it is unlikely that the 

FPB underwent enough extension for oceanic crust to be generated during this 

period. If this stage of crustal thinning, which overlaps the emplacement of the 

Karoo-Ferrar LIP, resulted in extensive volcanism and intrusion of the 

continental crust in the FPB, the crust underlying the regions 2-5 (Figure 6.13) 

is maybe similar to what has been interpreted in the Weddell Sea Rift System, 

but further extended and sheared (region 2) during the main stage of rifting in 

the FPB. However, with the exception of region 2 that displays significant 

deformation, little evidence of faulting and extension of this igneous crust is 

seen on the seismic (Figures 6.9b, 6.10, 6.11). Furthermore, DSDP 330 cored 

Oxfordian-Middle Jurassic sediments (Barker et al., 1977). Although difficult to 

map and extrapolate across the sparse seismic data, there are areas where 

these deposits were not interpreted (Figure 6.11) which would suggest oceanic 

crust generation occurring after their deposition but before the end of the 

Jurassic (Figure 6.9a). If no mantle plume is invoked for the formation of thick 

oceanic crust in the FPB, a simpler explanation would be its proximity to plate 

boundaries. The main extension stage in the plateau is interpreted as starting 

at 167.2 Ma when East Antarctica drifts away from Western Gondwana (König 

and Jokat, 2006) and continued all the way up to the Early Cretaceous (~140 

Ma). If oceanic crust is generated in regions 2-5 during the end of Mid-Jurassic 

– beginning of Late Jurassic, the proximity of the plateau to the Weddell Sea 

spreading ridge, initiated at 147 Ma (König and Jokat, 2006), could account for 

additional volcanic material to be accreted to this crust. Intra-crust dipping 

reflectors and top crust topographical highs seen in the south-eastern part of 

the FPB (Figure 6.11) could be suggestive of lava flows and potential extrusion 

centres which are commonly associated with oceanic plateaus (Gohl and 

Uenzelmann-Neben, 2001). 
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Figure 6.31 Potential interpretation of profile 139 showing attenuated and 
underplated continental crust underlying the Falkland Plateau Basin; 
line position shown in Figure 6.1 

A second interpretation for the high densities from forward gravity modelling 

could be the presence of underplated continental crust (Figure 6.31). The P-

wave velocities of the 3.05 g/cc dense lower crust are 7.2 – 7.4 km/s 

(Schimschal and Jokat, 2019b) which are not dissimilar to velocities and 

densities seen at the crust-mantle boundary in several transform systems 

(Lorenzo et al., 1991; Berndt et al., 2001; Klingelhöfer et al., 2005; Planert et 

al., 2017) where these velocities are associated with magmatic underplating or 

serpentinization of the upper mantle. Densities more typical of continental crust 

were obtained for MKR-2D and MKR-3D (Figures 6.15, 6.21, and 6.22), but 

invoking underplating or pockets of lower density (serpentinized?) upper mantle 

would be necessary in these scenarios as well to explain the low P-wave 

velocities at the crust/mantle boundary documented by Schimschal and Jokat 

(2017, 2019b). The presence of bodies with densities lower than the upper 

mantle would also result in an increase in the estimated densities for the crust 

underlying the FPB (Figure A.11). For the MKR-3D model in particular densities 

lower than the adjacent crustal blocks were modelled (Figure 6.22) for the FPB 

which contrast with both interpretations of the basin being underlain by oceanic 

crust or extended continental crust similar in composition to the Falkland shelf 

and MEB. For the scenario in which the lower crust densities in the FPB are 

correlated with underplating, regions 2 and 3 (Figure 6.13) would be underlain 

by extended, intruded, and underplated continental crust transitioning to the 

south and south-east to thick oceanic crust. Two possibilities for the location of 

the continent-ocean boundary (COB) can be considered. If the COB lies 

between regions 3 and 4, then the area comprising regions 4 and 5 would be 

underlain by oceanic crust thickened due to its closeness to the Weddell Sea 

spreading ridge (see paragraph above for full explanation). If the COB is 

located further south, between regions 4 and 5, then the crust in region 4 would 

be continental as well.  
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This interpretation of a non-oceanic nature of region 4 is supported by the 

sediment distribution mapped across the area. Although magnetic lineations 

were identified in this region (Figures 6.8 and 6.13), which might point to 

magnetic reversal isochrons typical of oceanic crust as seen in region 5 and as 

interpreted by Eagles and Eisermann (2020), thick successions of pre-Middle 

Jurassic sediments were deposited on top of this crust and then deformed, 

uplifted, and eroded (Figure 6.10). This suggests a different evolution between 

regions 4 and 5, with 4 needing to be a fully formed domain significantly earlier 

than region 5. A more plausible interpretation of region 4 is that it consists of 

continental crust and the magnetic lineations readily seen along it (Figure 6.8) 

represent a continuation of the Early Jurassic linear magnetic pattern of the 

Weddell Sea Rift System (Southern Weddell Magnetic Province in Jordan et 

al., 2017 and Chapter 5). In this case, the depocentres identified in Figure 6.10 

would be coeval with the Weddell Sea Rift. It remains unclear if similar crust 

extends in regions 2 and 3. Region 3 exhibits a different magnetic signature 

than its southern adjacent domain. However, magnetic lineaments were 

mapped in this part of the FPB as well (Figure 6.8) but were locally associated 

with volcanic edifices on seismic data (Figure 6.9). The lineaments are sub-

parallel to the magnetic reversal isochrons in region 5 (i.e. sub-perpendicular to 

the rifting direction) which might suggest that they were generated during 

extension in the FPB and acted as conduits for magmatic material. The 

lineaments change their strike from NW-SE to WNW-ESE towards the west 

(Figure 6.8) potentially due to shearing along the F3. Region 2 shows evidence 

of significant deformation potentially due to shearing between F2 and F3 

(Figures 6.9a, 6.13) and P-wave velocities from Schimschal and Jokat (2017) 

point more towards the existence of oceanic crust although this is not clear on 

the seismic reflection data (Figure 6.9). The sliver between F2 and F3 could 

represent a mosaic of oceanic and highly deformed continental crust, sheared 

between the two fracture zones, with the oceanic component more 

predominant towards the south where region 2 is adjacent to 5 (Figure 6.13). 

The northern part of region 2 is overlain by relatively thick Jurassic deposits 

(Figure 6.9) which seem more suggestive of deposition above a thinned 

continental crust. 
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6.5.1.2 Implications of end-member reconstructions for the crustal 

architecture of the Falkland Plateau 

The crustal thicknesses estimated from the deformable plate models show a 

high variability depending on the starting position of the FIM and its Mesozoic 

evolution (Figures 6. 25, 6.28, and 6.32).  

Although oceanic crust was interpreted in the south-eastern part of the FPB 

(Figure 6.13), the most thinning estimated from the deforming plates 

reconstructions does not occur consistently in the vicinity of the oceanic domain 

(Figures 6.29 and 6.32). The presence of crustal heterogeneities or pre-existing 

structures would control the locus of deformation, but this is not accounted for 

by the model and could explain the discrepancies between the deformable 

plates modelling results and the interpretation of seismic, gravity, and magnetic 

data. More details on the limitations of this method are provided in the following 

section.  

Model NROT-OC will not be considered separately as it shares significant 

similarities with the NROT and ROT-OC (for central FPB and MEB) models 

which the discussion will cover in detail. The NROT model suggests that 

thinning occurred roughly on a E-W direction (present-day orientation), with the 

most of it recorded in the Fitzroy sub-basin followed by the remainder of the 

FPB (Figures 6.29a and 6.32b). In contrast, the ROT model yields most 

thinning in the Malvinas Trough, the Southern Falkland Basin, and the southern 

part of the Fitzroy sub-basin (Figures 6.28a, 6.29b, and 6.32c). The rest of the 

plateau thins south-eastwards from the eastern shelf of the islands, and south-

westwards from the MEB (Figure 6.32c). This results in a triangular zone of 

extension in the central part of the FPB. The ROT-OC model shows most 

thinning occurring in the Malvinas Trough and east and north-east of the 

oceanic domain in the FPB (region 2 in Figure 6.13; Figure 6.29c and 6.32d). 

Although extension was expected to occur on a similar orientation as for the 

ROT scenario, with the crust along the MEB thinning south-westwards (Figure 

6.32c), this trend is not similar for the ROT-OC case (Figure 6.32d). The 

direction of thinning, sub-perpendicular to the breakup axis, is believed to be an 

artefact of the modelling and will be discussed in the limitations section. 
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Figure 6.32 Crustal thickness across the Falkland Plateau from: a) 
Kimbell and Richards (2008); b) NROT model; c) ROT model; d) ROT-
OC model overlain by the magnetic lineaments in regions 3-4; black 
stippled line - western extent of Falkland Plateau Basin depocentres; 
white dashed lines – F1 to F3; white lines – boundaries of regions 3-
5; grey area in (d) – oceanic crust; AFFZ – Agulhas – Falkland 
Fracture Zone; NSR – North Scotia Ridge; SJB – San Julian Basin 
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All models predict that the thinning extends up to the predefined rigid block of 

the Falkland Islands (Figure 6.29 and 6.32). However, based on seismic 

reflection data (Chapter 5), significant crustal stretching does not occur west of 

the hinge zone (dashed black line in Figure 6.32). The deformation associated 

with the opening of the FPB consistently decreases towards the islands 

(Chapter 5). Defining the non-stretched area of the Falkland Islands as a rigid 

block during modelling concentrates the deformation along the boundaries of 

this block, which results in an underestimation of the crust thickness on the 

eastern shelf of the islands (Figure 6.32). This can be seen on the residual 

maps computed between the crustal thickness from MKR-3D and MSJ-3D, and 

crustal thickness from deforming plates modelling (Figures 6.34 and 6.35) as 

positive anomalies along the eastern shelf of the Falkland Islands.  

There are several discrepancies between the crustal thicknesses estimated 

from gravity inversion and the ones from deforming plates modelling depending 

on which evolutionary model is invoked. The next sections cover these 

differences as seen across the main sedimentary basins of the plateau in order 

to understand if the variations are due to the used methodologies or the result 

of erroneous assumptions (rotation vs. no rotation of the FIM). These 

comparisons are collated with principal strain direction information (Figures 

6.26, 6.27) from deforming plate modelling to constrain the validity of each 

model. The Southern Falkland Basin will not be included in the discussion as its 

present-day configuration was shaped by movement along the NSR which 

occurred outside the time limits of the deforming plates models. The crustal 

thicknesses estimated from the depth to Moho used in models MKR-3D and 

MSJ-3D will be referred to as the “gravity-derived thickness” for simplicity, 

although the depth to Moho in MKR-3D has been obtained through an iteration 

of isostatically compensated and forward gravity modelling (Kimbell and 

Richards, 2008). 

6.5.1.2.1 Malvinas Basin 

Little stretching occurs under the Malvinas Basin when the islands are kept 

fixed to Patagonia (NROT), comparable to the modelling results from MKR-3D 

(Figure 6.34a). However, when rotated, the FIM generates a thinned area 

similar in shape, albeit more northerly oriented, with the current basement 

trough in the Malvinas Basin (Figures 6.32c, d, 6.33 and 6.34b, c) where the 

greatest depths are estimated at ~11 km (Baristeas et al., 2013). When looking 

at the principal direction of the total accumulated strain along this trough, there 

is a change from NW-SE to NE-SW. The front of this change in the direction of 
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the total strain migrates northwards as the FIM rotates (Figure 6.27). This bi-

directional orientation has been documented by several authors (Galeazzi, 

1998; Ghiglione et al., 2010; Baristeas et al., 2013) and related to back-arc 

extension and the opening of the Weddell Sea and in this scenario the rotation 

of the FIM would be a contributor as well. NE-SW trending normal faults have 

been predominantly documented in the southern part of the basin (Baristeas et 

al., 2013) where the NW-SE extension is the most pronounced in the deforming 

plates model (Figure 6.27).  

 

Figure 6.33 a) Shape of the Malvinas Basin as resulted from deforming 
plate modelling for ROT model (solely due to FIM rotation although 
other far-field stresses have been invoked for its formation 
(Baristeas et al., 2013)); grey dashed lines - depth contours from 
Baristeas et al. (2013) for comparison of overall shape; FIM western 
boundary shown and position of Rio Chico High; b) depth of Middle 
Jurassic interface in Malvinas Basin (modified after Baristeas et al., 
2013); FIM – Falkland Islands Microplate 

6.5.1.2.2 North Falkland Basin 

The deforming plates models yield higher crustal thicknesses than the gravity-

derived ones for the NFB (Figure 6.34 and 6.35). The exception is represented 

by the westernmost and easternmost parts of the SNFB region along which 

thicknesses are underestimated by the deforming plates models compared to 

the gravity-based ones (Figure 6.34 and 6.35). For the deforming plates 

modelling stage, a constant thickness was assumed for the whole Falkland 

Plateau. The differences seen along the SNFB could be accounted for by 

assuming a higher initial thickness for the SNFB region. The basin is 



 
 

200 

 

interpreted as a segment of the Cape Fold Belt reactivated in an extensional 

regime (Chapter 4; Richards and Fannin, 1997). Therefore, a thickened initial 

crust underlying the SNFB would be a reasonable assumption. Thicker crust 

was estimated north of the NFB (Figures 6.34b, c and 6.35b, c) by ROT and 

ROT-OC models compared to the thicknesses calculated from MKR-3D and 

MSJ-3D. This relates to the way deforming plates modelling accounts for the 

rotation of the FIM and is further detailed in the section on the limitations of the 

method. As detailed in Section 5.5.4 in Chapter 5, the rotation of the FIM was 

accommodated by intra-plate shearing as seen in California and the Bismarck 

Sea (Martinez and Taylor, 1996; Platt and Becker, 2013; Ingersoll and Coffey, 

2017). The latter example shows less compression compared to what was 

expected for the rotation the microplate underwent, which was associated with 

material transport along the intra-plate shear zones from the compressed areas 

in the zones undergoing extension (Martinez and Taylor, 1996). This topic will 

be further discussed in Chapter 7. 

Higher thicknesses resulted from the MKR-3D and MSJ-3D models compared 

to NROT for the area of the Falkland platform located east of the NFB (Figures 

6.34a and 6.35a). This is due to the fact that the NROT model predicts early 

extension occurring in the now eastern part of the FIM (Figure 6.25b – 

Tithonian stage) with the end model showing a decrease in thinning towards 

the axis of the NFB (Figure 6.32b). This outcome is unsupported by seismic 

reflection data where maximum thinning corresponds to the NFB with little 

deformation affecting the eastern Falkland platform (area east of the NFB; 

Richards et al., 1996a; Lohr and Underhill, 2015). 

6.5.1.2.3 Falkland Plateau Basin 

There are many similarities between the thickness of the MEB blocks for the 

two methodologies used, with local underestimates by the deforming plates 

models (Figure 6.34 and 6.35). The crust under the FPB was predominantly 

overestimated by the deforming plates models when compared to the gravity 

derived ones (Figures 6.34 and 6.35) with few exceptions west and north-west 

of the oceanic domain (zones 2 and 3; Figures 6.34c and 6.35c). Underplating 

was interpreted in zones 2 and 3 which would not be accounted for by the 

deforming plates models where the final thicknesses are the result of tectonic 

thinning alone (i.e. later magmatic additions at the base of the crust are not 

modelled). This would account for the differences seen north and west of the 

oceanic domain in Figures 6.34c and 6.35c. More thinning is suggested to have 

occurred in the Fitzroy sub-basin by the gravity inversion results (Figures 6.34 
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and 6.35), particularly when looking at the MSJ-3D model (Figure 6.35). This is 

because a high volume of volcanism and magmatism is present within the 

Fitzroy sub-basin (Chapter 5) which would account for an increase in the global 

density of the crust and basin infill. Typical continental values were used for the 

geometrical gravity inversion, which resulted in over-thinned crust predicted 

under the sub-basin.  

 

Figure 6.34 Residual thickness maps computed between the crustal 
thickness from MKR-3D across the Falkland Plateau and the 
deforming plates model – derived crustal thicknesses for: a) non-
rotational (NROT); b) rotation without breakup (ROT); and c) rotation 
with breakup scenarios (ROT-OC); AFFZ – Agulhas – Falkland 
Fracture Zone; NSR – North Scotia Ridge 
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Along the Berkeley Arch and Volunteer sub-basin, the deforming plates models 

yielded higher thicknesses than the gravity-derived ones, particularly for the 

ROT model (Figure 6.34b and 6.35b). The Berkeley Arch is associated with a 

positive magnetic anomaly (Figure 6.8) which could suggest magmatic 

additions and higher densities than typical continental crust. This would result 

in more thinning to be estimated from gravity inversion. Furthermore, thickening 

associated with the rotation of the FIM is modelled during the plate 

reconstructions across this region, which would account for the difference as 

well (see limitations section for details). For the remainder of the FPB (region 

south-west of the MEB), the ROT model yielded smaller differences than NROT 

when compared to the thicknesses obtained from MKR-3D and MSJ-3D 

(Figures 6.34a, b and 6.35a, b). The ROT-OC model predicted thicknesses 

comparable to the NROT model between the MEB and region 5 (Figure 6.32b, 

d, 6.34a, c, and 6.35a, c). However, a thickness distribution and thinning 

orientation for the south-western margin of the MEB more similar to the ROT 

scenario (Figures 6.34b, 6.35b) is expected for this area when break-up occurs 

rather than the ROT-OC predictions (i.e. thinning perpendicular to the breakup 

axis). 

The break-up of Gondwana was a major contributor to the development of the 

Falkland Plateau, from the Early Jurassic onwards. However, other events 

contributed to its current morphology which are not accounted for by the 

deforming plate modelling. The movement on the AFFZ could have resulted in 

further uplift and faulting of the northern area of the FPB. Furthermore, the 

formation of the North Scotia Ridge might have resulted in the southward tilting 

and faulting of the Falkland Plateau with a lot of the predicted oceanic crust 

covered by the folds and thrusts formed at the boundary with the Scotia Sea 

(white regions between the NSR and the NSR deformation front in Figures 

6.34, 6.35). 

Taking this into account, the crustal thickness distribution along with the total 

strain direction information shows that a rotation of the FIM (models ROT and 

ROT-OC) can more readily explain the crustal and structural complexities seen 

across the Falkland Plateau than when no rotation (NROT) is invoked. Rotation 

of the FIM leads to a similar extension history and depocentre morphology in 

the Malvinas Trough as supported by seismic data (Figure 6.33; Galeazzi, 

1998; Baristeas et al., 2013), whereas very little extension occurs when the 

islands are fixed relative to Patagonia (Figures 6.25b, A.13). Little extension is 

suggested by the model of Kimbell and Richards (2008), but not supported by 
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seismic data (Baristeas et al., 2013; Chapter 5). Although back-arc extension 

and the opening of the Weddell Sea are considered the causes of the bi-

directional fault network in the Malvinas Basin (Baristeas et al., 2013), the 

trough morphology and strain direction evolution yielded by the rotation 

deforming plate model shows significant similarities for it to be considered 

coincidental. Although all deforming plates models show extension 

perpendicular to the magnetic reversal isochrons in the FPB at some point 

during the Late Jurassic (Figure 6.26), there is significantly less thinning 

occurring for the NROT scenario compared to the ROT and ROT-OC (Figure 

6.25 – Upper Jurassic). Furthermore, when the FIM is kept fixed to Patagonia, 

extension is only rotated perpendicular to the rift axis during the uppermost 

Jurassic (Figure 6.26a – 154Ma), and little extension and oriented obliquely 

occurs when oceanic crust is believed to be generated in the FPB (Figure 

6.26a – 160 Ma), which makes the break-up modelled in NROT-OC less likely. 

In addition, the amount of thinning decreases southwards (present-day 

orientation) when no rotation is modelled (Figure 6.25b – Tithonian) which 

makes the breakup and generation of oceanic crust in the southern part of the 

FPB less likely. WNW-ESE trending fault blocks (Figures 6.7 and 6.8) were 

identified on the western side of the MEB which support the thinning direction 

seen in the ROT model (Figure 6.32c).  

Model ROT-2 is considered separately as it includes modification of the South 

American sub-plate configuration not based on data analysed throughout this 

thesis but constrained by the expected northerly position of the FIM. A more 

comprehensive discussion on latitudinal changes of the FIM reconstruction can 

be found in Chapter 7. Here of importance is the similar thinning distribution 

between ROT-2 on one side and ROT and ROT-OC on the other when 

compared with MKR-3D and MSJ-3D in the Malvinas Basin, north of the 

Falkland Islands, and in the Volunteer sub-basin and along the Berkeley Arch 

(Figure 6.36). More thinning is estimated in the northern part of the FPB, along 

the AFFZ, and in the southern part of the Fitzroy sub-basin (Figure 6.36b). 

However, little faulting has been identified in the Fitzroy sub-basin (Chapter 5). 

Thinner crust is estimated west and north of the oceanic domain, similar to 

ROT-OC where the differences from the gravity-derived thicknesses were 

related to the presence of underplating. Along the MEB, the ROT-2 yielded 

more thinning than the gravity-derived models which is not supported by 

seismic data (Figure 6.31) and literature (Schimschal and Jokat, 2019a).  
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ROT-2 shows a fit to the present-day architecture of the western part of the 

plateau similar to ROT and ROT-OC. However, it overestimates the amount of 

thinning expected along the MEB. These inconsistencies will be addressed in 

Chapter 7. 

 

Figure 6.35 Residual thickness maps computed between the crustal 
thickness from geometrical gravity inversion (MSJ-3D) across the 
Falkland Plateau Basin and the deformable plate model – derived 
crustal thicknesses for: a) non-rotational (NROT); b) rotation without 
breakup (ROT); and c) rotation with breakup (ROT-OC) scenarios; 
AFFZ – Agulhas – Falkland Fracture Zone; NSR – North Scotia Ridge 
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Figure 6.36 a) Crust thickness yielded by deforming plate model ROT-2; 
residual thickness maps computed between the crustal thickness 
from b) MKR-3D and c) geometrical gravity inversion (MSJ-3D) and 
the deformable plate model – derived crustal thicknesses across the 
Falkland Plateau 

6.5.2 Limitations of the used methods 

6.5.2.1 Gravity modelling and inversion 

The density distribution along the Falkland Plateau Basin obtained from gravity 

modelling and inversion was used to constrain the nature of the crust 

underneath the basin. However, no control points were available from seismic 

reflection data for the Moho, the depth used in modelling and inversion being 

the result of gravity modelling and isostatic analysis (Kimbell and Richards, 

2008) and/or seismic refraction data (Schimschal and Jokat, 2019b). The 
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difference between the two used Moho surfaces resulted in a wide range of 

densities for the Falkland Plateau Basin (2.6 - 3.05 g/cc) which spans the 

density ranges of both continental and oceanic crust, particularly when looking 

at the 2D forward modelling results. The inversion shows a more restricted 

range of densities, from 2.6 g/cc up to 2.8 g/cc. This difference in estimated 

densities raises the question of differences in the algorithms used and their 

reliability, and/or the importance of the method used based on the complexity of 

the area of study.  

The structure of the Falkland Plateau is approximated with a simple three-layer 

model (Figure 6.37). The observed gravity is shown as well, but the purpose of 

this example is to compare the results of 2D and 3D modelling for an area with 

significant lateral crustal variations. During the 2D modelling, the geometry of 

this model is extruded laterally, and its gravimetric effect is calculated. The 2D 

gravity response of this in both GM-SYS and VPmg shows little difference 

(Figure 6.37). However, as soon as a lateral variation is introduced in the 

geometry of the interfaces (seabed, basement, Moho), the gravity response 

above the FPB is significantly different. As the density remains constant in each 

layer, this difference is most likely due to a laterally varying depth to basement 

and Moho which would have an effect on the response seen along profile 139. 

This off-section variation could result in an overestimation of the densities along 

profile 139 during 2D modelling. Whereas a difference is expected between the 

results of 2D and 3D gravity modelling, this example shows how drastic the 

differences can be and that a more critical approach should be adopted when 

choosing 2D gravity modelling over 3D. 

The 3D property inversion in sub-section 6.4.1.2.2 takes into account the effect 

of off-section density heterogeneities which results in a global decrease in the 

estimated densities along profile 139 compared to the 2D forward modelling. 

The seismic data shows a change in the seismic character of the crust from 

north to south, as a function of the present volcanism, whilst the magnetic data 

support the presence of oceanic crust in the south-eastern part of the FPB. 

Although higher densities were modelled for regions 3-5 for the Moho based on 

Schimschal and Jokat (2019b; Figure 6.21b), the densities within the oceanic 

domain are underestimated when compared to typical oceanic crust densities. 

Significant lateral crustal changes occur north (oceanic crust of the Argentine 

Basin) and south (the NSR accretionary prism and the oceanic crust of the 

Scotia Sea) of the FP, which were not included in the inversion and can 

account for these inconsistencies.  
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Figure 6.37 Gravity response of a three-layer model approximation of the 
Falkland Plateau; the 2D responses are similar for both used 
software; the 3D response shows an overlap above the Falkland 
Islands platform (where the crust does not show significant 
thickness variations laterally) and above the Maurice Ewing Bank; 
the 3D response diverges from the 2D ones on the western margin of 
the Maurice Ewing bank where the profile is between continental 
crust in the north and potentially oceanic crust in the south (Figure 
6.13), the biggest difference occurring along the Falkland Plateau 
Basin; a separation is observed east of the Maurice Ewing Bank and 
it is most likely associated with edge effects, the 3D model not 
extending laterally as much as the 2D ones 

The result of the geometrical gravity inversion showed some differences to 

observations from seismic reflection data. This was due to the heterogeneous 

density distribution within the continental crust of the FPB. Areas like the 

Fitzroy sub-basin and the Berkeley Arch, where significant volcanic additions 

were interpreted from seismic and magnetic data, were modelled as being 

underlain by overly thinned crust. However, this is not consistent with the 

seismic interpretation of the two areas (Chapter 5). 

6.5.2.2 Deforming plates 

The crustal thickness distribution along the plateau was predicted using the 

GPlates deformable modelling methodology. The setup of the model assumes 
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that the Falkland Plateau consisted of homogenous crust of constant thickness 

at 170 Ma, and that all deformation was not depth dependent. 

South-western Gondwana was affected by multiple stages of extensional and 

compressional episodes prior to the start time of this model (Halbich, 1993; 

Thomas et al., 1993; Trouw and De Wit, 1999; Dalziel et al., 2000; Paton and 

Underhill, 2004; Tankard et al., 2009), with the Permo-Triassic orogeny and 

Triassic and Early Jurassic rifting being the youngest. This would have resulted 

in crustal thickness variation and the presence of heterogeneities which would 

affect the way the Jurassic and Cretaceous deformation was accommodated in 

the plateau and which cannot be accounted for in the model.  

Another limitation of this methodology, as mentioned by Peace et al. (2019), is 

the presence of rigid boundaries both for the main deformable network but also 

for the pre-defined rigid blocks (i. e. the Falkland Islands block). These do not 

allow for the diffusion of the deformation in the surroundings of the network 

which results in increased or unrealistic compression/thickening against the 

boundaries of the model and in a concentration of the strain around the rigid 

blocks inside the deformable domain (Figures 6.25, 6.28). Similarly, for the 

models with generation of oceanic crust (ROT-OC and NROT-OC), the post-

break-up extension leads to the thinning front to impinge onto the MEB side 

(around the defined rigid continent-ocean boundary), resulting in a crustal 

thinning direction parallel to the break-up axis (Figure 6.32d). On the other 

hand, for the rotation without generation of oceanic crust (ROT and ROT-2), the 

thinning direction stays perpendicular to the rift axis (parallel to the extension 

direction) (Figures 6.32c and 6.36a). The plate movement and deformation 

stages are the same for the ROT/ROT-2 and ROT-OC models, but the 

continent-ocean boundary added in the model acts as a barrier to the 

deformation resulting in a geologically unplausible architecture for the break-up 

scenario. 

Furthermore, no constraints on the elastic thickness of the crust can be added. 

As a result, the deformation propagates unrealistically far from the source/the 

amplitude of the deformation is not geologically accurate (Figures 6.25, 6.28, 

6.30b). If an intra-plate accommodation of the rotation via shear zones is 

inferred (Chapter 5) this cannot be accounted for during the deforming plate 

modelling which, collated with the previous issues, results in overestimation of 

the crustal thickness in the northern and north-eastern parts of the FIM when 

rotation is invoked (Figures 6.34 b, c and 6.35b, c). The modelling also shows 

some limitations when multiples stages of deformation on different directions 



 
 

209 

 

are invoked. Although extension on a NE-SW direction is suggested when 

looking at the azimuth of the principal component of the total strain for the non-

rotational case (Figure 6.26a), the resulting crustal thickness reflects only the 

last E-W extension episode (Figure 6.32b).  

The results of the modelling are highly dependent on the geometry of the 

defined plates and microplates and their finite rotations so there is a degree of 

uncertainty related to the reliability of the input data as well. As observed by 

Peace et al. (2019), this methodology is not suitable for transpressional and 

transtensional areas like the region modelled here, but nonetheless offers 

some insight into how a rotating microplate might affect the crust around it. 

6.6 Conclusions 

The crustal architecture underlying the Falkland Plateau Basin shows a higher 

degree of complexity than previously envisaged. Its east-central region 

comprises a mosaic of crustal types that resulted from the fragmentation of 

Gondwana. Typical continental crust, with varying degrees of extension, 

underlie the whole Falkland Platform, from the Malvinas Basin to F2 shear zone 

within the FPB, the Maurice Ewing Bank, and the region just south of the AFFZ. 

A sliver of highly faulted and potentially attenuated and underplated continental 

crust is located between F2 and F3. The remainder of the FPB comprises the 

area most affected by its breakup. Magma-enriched and underplated 

continental crust underlies the north-central part of this region, transitioning to 

the south to a thick oceanic domain.  

A comparison between the present-day crustal thickness and architecture as 

constrained by gravity models, magnetic and seismic data, and the crustal 

thickness and architecture post-rotation, derived from deforming plate models, 

supports more similarities between the two when a rotation of the Falkland 

Islands Microplate is invoked. This process is associated with significant 

thinning in the Malvinas Trough and variations in the stress configuration 

affecting the basin, as the Falkland Islands Microplate reaches its current 

position relative to South America, and thinning along the Falkland Plateau 

Basin consistent with observation from seismic, gravity, and magnetic data.
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Chapter 7 Discussion and conclusions 

7.1 Introduction 

In Chapters 4 to 6 several arguments were presented that support rotation of 

the Falkland Islands Microplate (FIM). A correlation between the fault 

geometries in the Algoa and Gamtoos basins and the Southern North Falkland 

Basin (SNFB) showed that these regions represent segments of the 

Gondwanide Fold and Thrust Belt reactivated in an extensional regime 

(Chapter 4). The presence and depth of a trans-crustal mega-décollement 

controlling the deformation in the SNFB supported this correlation (Chapter 4) 

as a similar interface was identified in South Africa, and further west, in the 

Colorado Basin. This was related to a long-lived structure that accommodated 

the formation of the Gondwanide Orogen (Hälbich, 1993; Paton et al., 2006; 

Lindeque et al., 2011; Pángaro and Ramos, 2012). Non-rotational 

reconstructions of the FIM would imply the presence of a separate structure of 

this size unrelated to the Gondwanide Fold and Thrust Belt, at a high angle to 

it, and not present in the basins west of the islands, which is considered 

unlikely. Correlations between structures on- and offshore the Falkland Islands 

and on- and offshore South America, Africa, and Antarctica support a rotated 

palaeoposition of the FIM until the Middle Jurassic, and that rotation occurred 

from this point up until ~Late Jurassic (Chapter 5). Evidence of wrenching 

along the western margin of the Falkland Plateau Basin (FPB) is also 

consistent with intra-plate deformation during clockwise rotation (Chapter 5). 

The complex structural and crustal architectures of the FPB, in conjunction with 

the orientation of the magnetic reversal isochrons identified in the south-

eastern part of the basin, support a more complex evolution of the plateau than 

suggested by non-rotational models. Comparison between the estimated 

crustal thinning and strain orientation for both rotational and non-rotational 

models with present-day observations confirm a need for a rotation of the FIM 

to achieve a crustal architecture similar to that observed today along the 

plateau (Chapter 6).  

However, there are uncertainties in the Jurassic horizon picked across the 

Volunteer sub-basin and Berkeley Arch (Chapter 5) which might impact the 

relative ages estimated for the wrenching identified in this region. Shearing 

along similar directions as identified in Chapter 5 occur during movement along 
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the Agulhas-Falkland Fracture Zone (AFFZ). This could be argued as the only 

mechanism for the shearing, rather than rotation of the FIM. However, the rest 

of the evidence presented in this thesis supports rotation. Furthermore, when 

considered with previously published studies on palaeomagnetic data, 

structural, stratigraphic, palaeocurrent, and ice flow directions correlations 

(Adie, 1952a, b; Mitchell et al., 1986; Mussett and Taylor, 1994; Thomas et al., 

1997; Curtis and Hyam, 1998; Trewin et al., 2002; Stone et al., 2009), a rotated 

reconstruction of the FIM is the most compelling interpretation. 

In this chapter, the reconstruction and rotation of the microplate will be 

discussed in the context of south-western Gondwana evolution. Due to its 

significant extent and high amount of rotation compared to analogue areas 

(Luyendyk et al., 1985; Martinez and Taylor, 1996; Neves et al., 2003; Ingersoll 

and Coffey, 2017; Horst et al., 2018), the causes and mechanisms for the 

separation and rotation of the FIM will be covered in Section 7.3. Besides the 

rotation of the microplate, the Falkland Plateau features a lot of characteristics 

typically documented along transform margins and marginal plateaus, which 

will be further discussed. Finally, the benefits and impact of an increased 

understanding of the behaviour, architecture, and evolution of the FIM on 

refining plate models will be covered in the last section. 

7.2 The Mesozoic fragmentation of SW Gondwana; 

implications from the reconstruction of the FIM 

The structural information presented in Chapters 4 and 5, in addition to the 

insights gained from gravity and plate modelling in Chapter 6, facilitated the 

development of a model of evolution for the Falkland Plateau. The model 

includes the driving force for rotation initiation and an estimate of the age of the 

rotation of the Falkland Islands Microplate (Figure 7.1), which will be further 

discussed in the context of the SW Gondwana evolution. 

At the end of the Permo-Triassic, the Gondwanide Orogeny resulted in a trans-

continental fold and thrust belt extending from Sierra de la Ventana, through 

the Colorado and Orange basins, Cape Fold Belt, Algoa and Gamtoos Basins, 

onshore the Falkland Islands (D1) and in the Southern North Falkland Basin, 

and through the Ellsworth and Pensacola Mountains (Chapter 4; Figure 7.2; 

Hälbich, 1993; Curtis, 2001; Bry et al., 2004; Paton et al., 2016; Stanca et al., 

2019). The orogen was controlled by a trans-crustal mega-décollement 

interpreted to be a long-lived structure active throughout the tectonic history of 

Gondwana (Hälbich, 1993; Paton et al., 2006). Evidence of this décollement, or 
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a similar feature, has been reported under the Colorado, Karoo, Outeniqua, 

and SNFB basins (Chapter 3; Paton et al., 2006; Lindeque et al., 2011; 

Pángaro and Ramos, 2012; Stanca et al., 2019). 

 

Figure 7.1 Timeline of the main events affecting SW Gondwana from Late 
Triassic to Early Cretaceous; NWMP - Northern Weddell Magnetic 
Province; SWMP - Southern Weddell Magnetic Province; timing of 
dyke emplacement onshore the Falkland Islands after Mussett and 
Taylor (1994), Thistlewood et al. (1997), Stone et al. (2008), and Stone 
et al. (2009) 

Early signs that the supercontinent underwent break-up date from the Permian 

Karoo rifts and Triassic extension reported along South America (Uliana et al., 

1989; Macdonald et al., 2003; Lovecchio et al., 2018; Macgregor et al., 2018; 

Lovecchio et al., 2020). Extensive volcanism and magmatism occurred 

throughout the Early Jurassic across Patagonia, Antarctica, and Africa, leading 

to the emplacement of the Chon Aike and Karoo-Ferrar magmatic provinces 

(Figure 7.2; Encarnación et al., 1996; Pankhurst et al., 1998; Macdonald et al., 

2003; Riley et al., 2005; Jourdan et al., 2007). The Middle Jurassic southward 

motion of Antarctica from western Gondwana was preceded by alternating 

episodes of E-W and NNW-SSE extension (Chapter 5; Reeves, 2000; Le Gall 

et al., 2002; Paton and Underhill, 2004; Jourdan et al., 2007) that generated a 

complex network of structures in the Falkland – Weddell region and potentially 

a high degree of crustal fragmentation (Figure 7.2).  
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Figure 7.2 Early Jurassic configuration of south-western Gondwana along 
with active faults and synchronous dyke emplacement; blue and 
orange arrows show extension direction; fault colour matches the 
arrow colour of the phase they were coeval with; black faults – 
inactive faults; thick grey lines mark extent of Chon Aike and Karoo - 
DML (Dronning Maud Land) - Ferrar volcanics; EWT – Ellsworth-
Whitmore Terrane; FPB – Falkland Plateau Basin; GFTB – Gondwana 
Fold and Thrust Belt; MEB – Maurice Ewing Bank; NLDS – Northern 
Lebombo dyke swarm; ODS – Okavango dyke swarm; PSZ – Pagano 
Shear Zone; SJoB – San Jorge Basin; SLDS – Save Limpopo dyke 
swarm; SNFB – Southern North Falkland Basin; SWMP - Southern 
Weddell Magnetic Province; SWMP framework from Jordan et al. 
(2017); South Africa simplified dyke network drawn after Gomez 
(2001); East Antarctica dykes drawn after Curtis et al. (2008); 
Falkland Islands dykes drawn after Stone et al. (2009); SNFB faults 
after Lohr and Underhill (2015) and Stanca et al. (2019); South 
America faults drawn after Lovecchio et al. (2019);  Karoo lavas after 
Jourdan et al. (2007); Chon Aike lavas after Bouhier et al. (2017); 
DML-Ferrar lavas extent after Elliot (1992) and Elliot et al. (1999); 
plate configuration from Chapter 6  
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The first episode of E-W directed extension resulted in the emplacement of N-S 

trending dykes in Africa, East Antarctica, and the southern part of West 

Falkland (Chapter 5; Mussett and Taylor, 1994; Riley et al., 2005; Jourdan et 

al., 2007; Klausen, 2009). The offshore equivalent of the D1 belt onshore the 

Falkland Islands started undergoing reactivation in an extensional regime which 

resulted in the first stage of rifting in the SNFB with formation of half-grabens 

bounded by shallow-dipping listric faults (Chapters 4 and 5; Figure 7.2).  

Before, or during, the rotation of the regional extension direction to an NNE-

SSW orientation, the region between East and West Antarctica was affected by 

complex deformation as the Ellsworth Whitmore Terrane underwent ~90° of 

counter-clockwise rotation, although an older timing for this event has been 

postulated, coeval with the Gondwanide Orogeny (Curtis and Storey, 1996; 

Martin, 2007). As NNE-SSW extension occurred between East and West 

Gondwana, more dykes were intruded onshore Africa and the Falkland Islands, 

and normal faults affected the present-day western FPB (Volunteer and Fitzroy 

sub-basins), South America, and its offshore basins along a trend sub-parallel 

to the south-western margin of Gondwana or reactivating the older 

Gondwanide structures (Chapter 5; Figure 7.2; Mussett and Taylor, 1994; Le 

Gall et al., 2002; Jourdan et al., 2007; Lovecchio et al., 2018; Lovecchio et al., 

2020). Sinistral shearing along the Pagano Shear Zone and early rifting in the 

southern Weddell Sea (Jordan et al., 2017; Riley et al., 2020) occurred at this 

stage, potentially extending into the proto-FPB (between the FIM and the 

Maurice Ewing Bank; Chapter 6; Figure 7.2).  
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Figure 7.3 Middle Jurassic configuration of south-western Gondwana 
along with active faults and synchronous dyke emplacement;  blue 
and orange arrows - extension direction; fault colour matches the 
arrow colour of the phase they were coeval with (n.b. some faults in 
South America might have been active during both phases; here are 
shown as a unit for simplicity); black faults/dykes – inactive; thick 
grey lines - extent of Chon Aike and Karoo - DML (Dronning Maud 
Land) - Ferrar volcanics; FB – Fitzroy sub-basin; MB -  Malvinas 
Basin; MEB – Maurice Ewing Bank; NLDS – Northern Lebombo dyke 
swarm; NWMP – Northern Weddell Magnetic Province; OB – 
Outeniqua Basin; oc. c. – oceanic crust; ODS – Okavango dyke 
swarm; RRDS – Rooi Rand dyke swarm; SJoB – San Jorge Basin; 
SLDS – Save Limpopo dyke swarm; SNFB – Southern North Falkland 
Basin; SWMP - Southern Weddell Magnetic Province; VB – Volunteer 
sub-basin; SWMP from Jordan et al. (2017); South Africa dykes 
drawn after Gomez (2001); East Antarctica dykes drawn after Curtis 
et al. (2008); Falkland Islands dykes drawn after Stone et al. (2009); 
SNFB faults after Lohr and Underhill (2015) and Stanca et al. (2019); 
South America faults after Lovecchio et al. (2019);  Karoo lavas after 
Jourdan et al. (2007); Chon Aike lavas after Bouhier et al. (2017); 
DML-Ferrar lavas after Elliot (1992) and Elliot et al. (1999); Outeniqua 
Basin faults after Paton et al. (2006) and Parsiegla et al. (2009) 
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A third stage of dyke intrusion along eastern Africa occurred at the beginning of 

the Middle Jurassic as extension between East and West Gondwana switched 

back to an E-W orientation (Figure 7.3; Chapter 5; Jourdan et al., 2007). The 

second rifting stage identified in the SNFB (Chapter 4; Lohr and Underhill, 

2015) is interpreted to have occurred during this extensional episode, 

potentially in conjunction with early extension on the N-S trending fault 

segments in the Algoa and Gamtoos basins (NE Outeniqua Basin; Chapter 5; 

Figure 7.3). Extension was documented in the northern part of Weddell Sea 

Rift, cross-cutting the earlier rift-related structures (Figure 7.3; Jordan et al., 

2017; Riley et al., 2020). This second rift system is interpreted to have been 

active until ~155 Ma (Figure 7.4; Grunow, 1993; Jordan et al., 2017; Riley et 

al., 2020). 

At 167.2 Ma East Antarctica started drifting southward from western Gondwana 

(König and Jokat, 2006), leading to dextral wrenching between the Antarctic 

plate and the Falkland Plateau (Figure 7.3; König and Jokat, 2006). Sinistral 

strike-slip faults, antithetic to this dextral intra-continental fault zone and 

following the present-day orientation of the gravity lineaments/fracture zones 

(F1-F3) in the FPB (Chapter 6), contributed to the fragmentation of the Falkland 

Plateau (Figure 7.3). Motion along these fracture zones facilitated the 

delimitation and separation of the FIM from the surrounding plates and drag 

exerted by the southward movement of East Antarctica possibly initiated FIM 

rotation (Figures 7.3, 7.4).  

The undocking of the islands from South Africa during the Middle Jurassic, 

which accompanied this rotation, resulted in more extension occurring in the 

FPB (Chapter 5) and along the South American plate as it started drifting 

westward (König and Jokat, 2006; Lovecchio et al., 2020). The westward drift 

of South America led to reorientation of the extension direction in the southern 

South Atlantic region along a roughly WSW-ENE direction (Figure 7.4; Paton 

and Underhill, 2004). This is recorded in the syn-rift sections in the north-

eastern Outeniqua basin (Paton and Underhill, 2004) and the SNFB (Chapter 

4; Lohr and Underhill, 2015; Stanca et al., 2019). Faults that trend oblique to 

the SNFB (trending E-W in the present-day orientation of the FIM) were 

identified in the northern part of the FIM (Chapter 4) and are related to the 

regional ~E-W directed extension between East and West Gondwana (Chapter 

5). The ongoing rotation of the FIM away from the Maurice Ewing Bank was 

accommodated by extension along the proto-AFFZ and in the larger FPB, with 

break-up and generation of oceanic crust starting around Callovian to 
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Oxfordian times (Figures 7.1, 7.3), and sinistral shearing along the now NE-SW 

trending F1-F3 shear zones (Chapters 5 and 6; Figure 7.3). Evidence of 

magmatic enrichment has been interpreted along F1 based on magnetic data 

and gravity modelling (Chapter 6). The timing for it remains uncertain and it can 

be coeval with motion along the F1 or the Early Cretaceous volcanism 

interpreted in the Fitzroy sub-basin (Chapter 5). The dextral wrenching between 

East and West Gondwana (Figure 7.3) switched to rifting sub-perpendicular to 

the former wrenching direction during the Late Jurassic (Figure 7.4; Ghidella et 

al., 2002; König and Jokat, 2006). This led to the opening of the Weddell Sea 

(König and Jokat, 2006) and Rocas Verdes Basin (Calderón et al., 2013) and 

allowed for continued extension in the SNFB (Chapter 4; Ramos et al., 2017; 

Stanca et al., 2019) as the FIM completed its ~80° of clockwise rotation 

(Chapters 5 and 6; Figure 7.4). Continued rifting between South America and 

Africa resulted in the opening of the North Falkland Basin and the rest of the 

Outeniqua Basin (Figure 7.4; Chapter 5; Paton and Underhill, 2004), dyke 

emplacement onshore and offshore the Falkland Islands (Chapter 5; Figure 

7.5), and continued extension in the FPB (Chapter 5; Figure 7.5).  

This deformation in a rapidly changing stress configuration, along with the 

rotation of the FIM, could explain the complex crustal architecture across the 

FPB where sheared, attenuated, and underplated continental crust transitions 

to oceanic crust towards the south-eastern part of the FPB (Chapter 6; Figure 

7.5). Break-up and oceanic crust formation occurred south-east of the FPB, in 

the Weddell Sea at 147 Ma (Figure 7.4; König and Jokat, 2006), which 

potentially led to a high volume of volcanic material to be accreted to the newly 

formed oceanic crust of the FPB. This resulted in thicker-than-normal crust 

underlying the oceanic domain in the south-eastern FPB (Figure 7.5). Growth 

of volcanic edifices is seen throughout the Late Jurassic (locally up to Early 

Cretaceous) indicative of this volcanic enrichment (Figures 6.9a, 6.10, and 

6.11a in Chapter 6). The formation of the oceanic domain in the south-eastern 

part of the FPB was finalised before the end of the Late Jurassic, as evidenced 

by deposits of this age interpreted across the FPB (Figure 6.11 in Chapter 6). 

Soon after, the rotation of the FIM ceased at the end of the Jurassic and the 

microplate docked against the Patagonian plate. 
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Figure 7.4 Late Jurassic configuration of south-western Gondwana along 
with active faults and synchronous dyke emplacement; blue and 
orange arrows - extension direction; fault colour matches the arrow 
colour of the phase they were coeval with; black faults/dykes – 
inactive; thick grey lines - extent of Chon Aike and Karoo - DML 
(Dronning Maud Land) - Ferrar volcanics; FB – Fitzroy sub-basin; 
FPB – Falkland Plateau Basin; MB -  Malvinas Basin; MEB – Maurice 
Ewing Bank; NFB – North Falkland Basin; NLDS – Northern Lebombo 
dyke swarm; NWMP – Northern Weddell Magnetic Province; OB – 
Outeniqua Basin; oc. c. – oceanic crust; ODS – Okavango dyke 
swarm; RRDS – Rooi Rand dyke swarm; SJB – San Julian Basin; 
SJoB – San Jorge Basin; SLDS – Save Limpopo dyke swarm; SNFB – 
Southern North Falkland Basin; SWMP - Southern Weddell Magnetic 
Province; VB – Volunteer sub-basin; SWMP and NWMP from Jordan 
et al. (2017); South Africa dykes drawn after Gomez (2001); East 
Antarctica dykes drawn after Curtis et al. (2008); Falkland Islands 
dykes drawn after Stone et al. (2009); SNFB and NFB faults after Lohr 
and Underhill (2015) and Stanca et al. (2019); South America faults 
after Lovecchio et al. (2019);  Karoo lavas after Jourdan et al. (2007); 
Chon Aike lavas after Bouhier et al. (2017); DML-Ferrar lavas after 
Elliot (1992) and Elliot et al. (1999); Outeniqua Basin faults after 
Paton et al. (2006) and Parsiegla et al. (2009); question marks in the 
Falkland Plateau Basin oceanic domain - uncertain southern extent 
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Figure 7.5 Early Cretaceous configuration of south-western Gondwana 
along with active faults and synchronous dyke emplacement in the 
Falkland Plateau; blue arrows show extension direction; black faults 
– fault configuration at this time in south-western Gondwana; thick 
grey lines mark extent of Chon Aike and Karoo - DML (Dronning 
Maud Land) - Ferrar volcanics; EANT – East Antarctica; FB – Fitzroy 
sub-basin; FPB – Falkland Plateau Basin; MB -  Malvinas Basin; MEB 
– Maurice Ewing Bank; NFB – North Falkland Basin; NSR – North 
Scotia Ridge; NWMP – Northern Weddell Magnetic Province; OB – 
Outeniqua Basin; oc. c. – oceanic crust; RVB – Rocas Verdes Basin; 
SDR – seaward dipping reflectors; SJB – San Julian Basin; SJoB – 
San Jorge Basin; VB – Volunteer sub-basin; NWMP framework from 
Jordan et al. (2017); East Antarctica dykes drawn after Curtis et al. 
(2008); Falkland Islands onshore dykes drawn after Stone et al. 
(2009); SNFB and NFB faults after Lohr and Underhill (2015) and 
Stanca et al. (2019); South America fault network after Lovecchio et 
al. (2019);  Karoo lavas extent after Jourdan et al. (2007); Chon Aike 
lavas extent after Bouhier et al. (2017); DML-Ferrar lavas extent after 
Elliot (1992) and Elliot et al. (1999); Outeniqua Basin fault network 
after Paton et al. (2006) and Parsiegla et al. (2009); extension 
direction after Paton and Underhill (2004); question marks in the 
Falkland Plateau Basin oceanic domain mark its uncertain southern 
extent and relation to the Weddell Sea oceanic crust; brown shades 
mark the interpreted intruded and underplated continental crust in 
the Falkland Plateau Basin 
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The rift and drift of South America away from Africa led to the development of 

the dextral AFFZ (Figure 7.5), which facilitated the separation of the Falkland 

Plateau from Africa during the Early Cretaceous (Baby et al., 2018). The now 

NE-SW trending lineaments (F1-F3) from the FPB were likely to have been 

reactivated to some extent as antithetic sinistral faults during the active stage of 

the AFFZ when minor plate readjustments were interpreted (Chapter 5). The 

plateau reached its current day extent at 130 Ma (Chapter 6; Figure 7.5) and 

continued moving as part of the South American plate during the opening of the 

southern South Atlantic. Its present-day configuration has been further shaped 

by Late Cretaceous – Cenozoic oblique compression from the south during the 

opening of the Scotia Sea and the formation of the North Scotia Ridge (see 

Figure 7.5 for future position of the North Scotia Ridge; the region of the FPB 

east of this ridge in Figure 7.5 was obscured during the opening of the Scotia 

Sea). However, the post-Early Cretaceous evolution of the Falkland Plateau is 

outside the scope of this thesis. 

7.3 How do blocks/microplates form, rotate and deform in 

wrenching settings? 

The fragmentation of Gondwana and the evolution of the Falkland Plateau were 

highly influenced by wrenching between East and West Gondwana, and Africa 

and South America (Chapters 4-6). This resulted in rapid variation in the stress 

state (Chapter 5) and rotations of microplates caught between these major 

tectonic plates (Chapters 4 and 5; Adie, 1952a; Mitchell et al., 1986; Marshall, 

1994; Curtis and Storey, 1996; Trewin et al., 2002), which require a 

mechanistic explanation. 

The current models for the vertical-axis rotation of blocks in strike-slip systems 

typically invoke a fragmentation and deformation predominantly controlled by 

Riedel geometries (Ron et al., 1984; Garfunkel and Ron, 1985; McKenzie and 

Jackson, 1986; Peacock et al., 1998). However, for continental blocks and 

microplates the location of their boundaries can be highly affected by inherited 

structures as in the case of the Victoria microplate, Romanche transform 

blocks, the Seychelles, the Sergipe and Sinai microplates (Szatmari and Milani, 

1999; Salamon et al., 2003; Nemčok et al., 2016; Glerum et al., 2020).  

For the case of the FIM, it is unclear why the fragmentation occurred along its 

present-day boundaries and on such a large scale. The inferred boundaries 

align with syn- and antithetic faults associated with the wrenching between East 

and West Gondwana (Section 7.2). However, the pre-break-up extensional 
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episodes that led to the drift of East Antarctica and the faulting in the SNFB and 

western side of the FPB (Figures 7.2, 7.3) could have generated areas of 

crustal weakness that controlled the locus of nucleation of microplate 

boundaries in the Jurassic. The present-day western boundary of the FIM 

remains of particular interest (Chapter 5). The uncertainties behind its 

existence and exact location have been one of the main arguments used 

against the rotation of the FIM, and the reasoning behind its location could offer 

some insights into why this microplate is so extensive. Based on the Siluro-

Devonian faunal distribution across Brazil, Uruguay, Sierra Grande, South 

Africa, and the Falkland Islands (Clarke, 1913 and Baker, 1924 in Stone, 2016; 

Adie, 1952a; Pankhurst et al., 2006; Ramos et al., 2017), these terranes were 

part of Gondwana at this time. However, Patagonia is believed to have been 

accreted to the supercontinent during the late Paleozoic (Pankhurst et al., 

2006; Ramos, 2008), although there is still some uncertainty regarding the 

accretion of the southernmost Patagonia (Deseado Massif) and the North 

Patagonian Massif (Ramos, 2008). If the Falkland Islands were already part of 

Gondwana during the collision of southern Patagonia, then one would expect a 

late Paleozoic suture to exist between the islands and the South American 

coast. The presence of this suture could explain the arcuate positive gravity 

anomaly along the eastern margin of the Malvinas Basin (Chapter 5). 

Furthermore, this area could have acted as a zone of weakness as suggested 

by significant thinning estimated in the Malvinas Trough compared to the rest of 

the Falkland platform (Baristeas et al., 2013; Chapter 5) and could have 

facilitated a separation of the FIM from the South American plate during the 

Jurassic. 

In terms of the mechanism for rotation, several studies show that the coupling 

with the surrounding major plates can act as the main driving force for the 

rotation of a microplate (Schouten et al., 1993 and references therein; Searle et 

al., 1993; Glerum et al., 2020). However, there have been documented 

instances where mantle drag at the base of the microplate can be a contributor 

to its motion (Neves et al., 2003; Calais et al., 2006). The FIM represents a 

particular case due to its size and amount of rotation. It has formed and 

developed adjacent to the West Antarctic region in which major block 

readjustments have been documented throughout the Mesozoic (Watts and 

Bramall, 1981; Grunow et al., 1987; Curtis and Storey, 1996; Martin, 2007). 

The opposite sense of rotation, but of a comparable amount, of the Ellsworth 

Whitmore Terrane has led previous studies to correlate their rotations and 

assign them to the same event/process (Macdonald et al., 2003; Martin, 2007). 



 
 

222 

 

The initiation of FIM extension and rotation is difficult to pinpoint due to the lack 

of age constraints for the oldest syn-rift deposits. However, there is evidence 

that it was still ongoing during the Middle and Late Jurassic (Chapter 5 and 6), 

after the completion of rotation of the Ellsworth Whitmore Terrane at 175-180 

Ma (Grunow et al., 1987). However, the comparable extent and amount of 

rotation of the two microplates could suggest that the area in which they 

developed was characterised by geodynamic conditions favourable for such 

complex motions to occur. This idea was at the base of the double-saloon-door 

model of Martin (2007) for block rotations in Gondwana. Similar to the 

interpretation proposed by Martin (2006) for the Mediterranean, this model 

related the mirrored rotations of the FIM and Ellsworth Whitmore Terrane to 

slab rollback along the Panthalassa Ocean – SW Gondwana subduction zone 

(Figure 7.6). This mechanism is not dissimilar to the trench suction forces 

postulated by Ben-Avraham et al. (1993) as being responsible for the vertical-

axis block rotations documented in south-western Gondwana. 

Evidence of Late Triassic to Late Jurassic rollback and steepening of the 

subducted slab came from studies on the migration of the locus of magmatism 

along Patagonia (Echaurren et al., 2017) and the Antarctic Peninsula (Storey et 

al., 1992), and changes in the extension direction along the South American 

plate (Lovecchio et al., 2019, 2020). The perpendicular orientation of the 

Weddell Sea opening in the Late Jurassic compared to the subduction zone 

along the western margin of Gondwana (Figure 7.4) was explained through a 

slab tear of the subducted plate occurring along the wrenching zone between 

East and West Gondwana (Figure 7.3; Lovecchio et al., 2019). The tear would 

have accentuated a mirrored slab rollback decreasing westward along East 

Gondwana (Figure 7.6) and eastward across West Gondwana, and would have 

generated a thermal anomaly responsible for the break-up in the Weddell Sea 

during the Late Jurassic (Lovecchio et al., 2019). Numerical modelling of 

mantle flow under retreating trenches show an increase in the trench-directed 

flow above a slab undergoing rollback (Sternai et al., 2014). This can result in 

rotations in the overriding plate due to differential mantle drag at its base 

(Sternai et al., 2014; Figure 7.6).  

If this was the case in south-western Gondwana, then the interpretation of the 

counter-clockwise rotation of the Ellsworth Whitmore Terrane would have been 

driven by this differential rollback (increasing westward) of the Panthalassan 

plate as suggested by Martin (2007). However, the rotation of the FIM 

potentially occurred and continued after the rotation of the Ellsworth Whitmore 
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Terrane ceased. This was probably related to later tectonic delimitation of the 

microplate, during the successive extensional episodes that preceded the drift 

of East Antarctica (Chapter 5; Figures 7.2, 7.3). As the dextral wrenching 

between East and West Gondwana started (König and Jokat, 2006), the 

delimitation of the FIM reached its completion (Figure 7.3). The southward 

movement of East Antarctica was most likely responsible for drag along the 

margin of the FIM and initiated the rotation of the microplate, as originally 

speculated by Taylor and Shaw (1989). However, the dextral wrenching 

between East Antarctica and West Gondwana switched to rifting in the Late 

Jurassic with the opening of the Weddell Sea (Ghidella et al., 2002; König and 

Jokat, 2006; Figure 7.4). At this point any coupling between the FIM and East 

Antarctica would have ceased. The remainder of the FIM rotation would have 

been driven by mantle flow which, due to the differential rollback, would have 

increased eastward and maintained the clockwise rotation of the FIM (Figure 

7.6). It is unclear if ridge push from the Weddell Sea and the oceanic domain 

opening in the FPB (Figures 7.3, 7.4) contributed to the rotation as well.  

 

Figure 7.6 Jurassic configuration of SW Gondwana showing differential 
rollback and slab tear along the Panthalassan margin and a 
schematic depiction of differential mantle flow, increasing eastward 
and resulting in differential drag at the base of the Falkland Islands 
Microplate, which maintained the clockwise rotation; rough position 
of the inferred slab tear and hinge point for the slab rollback drawn 
after Lovecchio et al. (2019); the Ellsworth Whitmore Terrane is 
located in the region east of the Falkland Islands and the mantle flow 
under this region would be a mirrored version of the one shown 
below the Falkland Islands (increasing westward) 
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Another insight into the forces that drove microplate rotation comes from the 

behaviour of the FIM during the drift of South America away from Africa. The 

FIM rotation occurred during the wrenching and rifting phases between East 

and West Gondwana in the Middle to Late Jurassic, but it is affected by 

wrenching along the AFFZ only in the Early Cretaceous (Baby et al., 2018). 

Although evidence of shear is seen along the western margin of the FPB, 

similar to the deformation related to rotation, local and regional stress field 

correlations (Chapter 5; Stone et al., 2008), aeromagnetic modelling (Stone et 

al., 2009), and palaeomagnetic data (Stone et al., 2008) suggest that the 

rotation of the FIM had already ceased at this time. Therefore, the drag along 

the edge of the African plate was not sufficient to re-initiate rotation in the lack 

of a mantle flow component or there was little coupling between the FIM and 

Africa post-rotation for the latter to exert any significant drag during wrenching. 

Although some of the models for vertical-axis rotation support a rigid behaviour 

of the blocks (Ron et al., 1984; Garfunkel and Ron, 1985; McKenzie and 

Jackson, 1986), some degree of deformation is postulated by others (Dibblee, 

1977 in Peacock et al., 1998; Peacock et al., 1998). Complex fault networks 

have been interpreted and associated with intra-plate deformation during 

rotation in Northern Iceland and along the Easter and Sinai microplates (Neves 

et al., 2003; Salamon et al., 2003; Horst et al., 2018). Areas like California and 

Manus microplate show deformation more consistent with bookshelf tectonism 

(Luyendyk et al., 1985; Jackson and Molnar, 1990; Martinez and Taylor, 1996; 

Ingersoll and Coffey, 2017) where the rotating blocks are expected to behave 

rigidly during rotation (Ron et al., 1984; Garfunkel and Ron, 1985; McKenzie 

and Jackson, 1986). However, space issues have been raised for these types 

of models in the corners of the blocks where compression or extension would 

be expected (Dibblee, 1977; Peacock et al., 1998). In the example of the 

Manus microplate less compression than expected was identified in the corners 

of the blocks suggesting a transport from the compressed corners to the 

corners undergoing extension (Martinez and Taylor, 1996). In addition, along 

the San Andreas Fault observations along intra-block faults showed they die 

out towards the zone-bounding faults and the blocks underwent internal 

deformation (Dibblee, 1977 in Peacock et al., 1998). This would be more 

consistent with the interpretation of Peacock et al. (1998) with intra-plate strike-

slip zones and normal and thrust faults accommodating deformation (Figure 

7.7b). In the case of the FIM, significant deformation is seen at several scales 

on both seismic and gravity data. Although complex and suggestive of multiple 

superimposed deformation stages, the fault networks along the microplate 
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follow three distinct trends: NE-SW, WNW-ESE, and N-S (Chapter 5). The 

regional NE-SW fracture zones point toward an incipient fragmentation of the 

FIM during rotation which would result in a more classical bookshelf geometry 

(Figure 7.7). However, there is no indication from the available data that these 

fracture zones are trans-crustal and that much lateral movement occurred 

between the sub-blocks themselves. Normal faults on two almost orthogonal 

directions developed along the FIM during its Jurassic rotation. Although 

related to distinct regional extensional episodes (Chapter 5), the now NE-SW 

trending normal faults along the Berkeley Arch follow the same trend suggested 

by Peacock et al. (1998) for the extensional corners of their quasi-continuous 

model (Figure 7.7). Furthermore, shearing along conjugate directions (WNW-

ESE and NNE-SSW along the western margin of the FPB; Figure 7.7) has 

been interpreted along the FIM. This is consistent with the type of intra-block 

deformation suggested by Peacock et al. (1998). Moreover, wrenching 

identified at different scales was interpreted along the western margin of the 

FPB on the gravity and seismic data (Figure 7.8), which supports the fractal 

model for rotations of Peacock et al. (1998). 

 

Figure 7.7 a) Fault configuration along the FIM during the break-up of 
Gondwana; b) expected fault networks within rotating blocks (drawn 
after Peacock et al., 1998); note similarities in the types and trend of 
faults identified along the FIM and the model of Peacock et al. (1998); 
it remains unclear if the NE-SW trending faults fragment the FIM and 
act as the block-bounding faults in Peacock et al. (1998)’s model or 
merely as intra-block faults 
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Figure 7.8 Evidence of wrenching occurring at different scales along the 
western margin of the Falkland Plateau Basin 

7.4 Crustal, structural, and stratigraphic architectures along 

transform margins  

The Falkland Plateau is an example of a transform margin, currently bound by 

one of the longest-lived and highest offset transform faults on Earth, the 

Agulhas-Falkland Fracture Zone (Ben-Avraham et al., 1997; Mercier de 

Lépinay et al., 2016). The plateau represents a classic example of a transform 

marginal plateau (sensu Loncke et al., 2020) which has undergone a multi-

stage evolution during the fragmentation of Gondwana, and its study provides 

an excellent opportunity for gaining more detailed insights into the architecture 

of these tectonic settings. 

Transform motion along the AFFZ is believed to have initiated during the Early 

Cretaceous (Valanginian) although extension along a proto-AFFZ would have 

started in the Middle Jurassic (Baby et al., 2018). The findings presented 

throughout Chapters 4 to 6 support a rotation of a sub-plate of the plateau (the 

FIM) from Middle to Late Jurassic, which would require a proto-AFFZ along the 

now northern boundary of the FIM to have facilitated this rotation. The 

separation of the FIM and initiation of rotation was associated with early rifting 

and dextral wrenching between East and West Gondwana (Chapters 5 and 6; 

Section 7.2; Taylor and Shaw, 1989) and was responsible for the formation of 

the main crustal domains along the plateau and varied structural styles. 

Although the present-day configuration of the Falkland Plateau is not fully the 

result of movement along the AFFZ, its formation was highly impacted by intra-

continental wrenching (as documented in the early stages of transform 

formation), between East and West Gondwana, and South America and Africa. 

Therefore, its current architecture can be discussed in the context of current 
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understanding of transform margin development and transform marginal 

plateaus. 

7.4.1 Structural network  

Fault networks that formed along transform margins can be highly complex, 

particularly due to the early stages of intra-continental wrenching (Scrutton, 

1979; Mascle and Blarez, 1987; Benkhelil et al., 1995; Antobreh et al., 2009; 

Nemcok et al., 2016). The complexity increases when the transform margin is 

associated with a marginal plateau as the latter would have undergone at least 

one other stage of deformation prior to transform motion (Mercier de Lépinay et 

al., 2016).  

The pre-AFFZ deformation stage along the Falkland Plateau is related to intra-

continental wrenching, but between East and West Gondwana, and a rotation 

of the FIM (Chapters 5 and 6). Therefore, the present-day structural 

configuration shows the superimposition of two wrenching events combined 

with vertical-axis block rotation and followed by extension related to the 

separation from Africa along the AFFZ and the opening of the South Atlantic. 

This resulted in several fault networks with the following trends: NE-SW, WNW-

ESE, and N-S (Chapters 4 and 5).  

The formation of WNW-ESE trending normal faults predominantly reactivated 

Paleozoic compressional features north and north-east of the Falkland Islands 

during early stages of extension in SW Gondwana (Chapters 4 and 5). A 

control of inherited structures on the morphology and deformation along 

transform marginal plateaus has been documented along several plateaus, 

including Vøring, Exmouth, and Guinea (Benkhelil et al., 1995; Pryer et al., 

2002; I’Anson et al., 2019; Loncke et al., 2020). The present-day shape of the 

Vøring Plateau has been influenced by pre-existing Proterozoic structures 

(Loncke et al., 2020), and the Paleozoic and Mesozoic en-échelon normal 

faults across the Exmouth Plateau show a strong control of the Precambrian 

and Paleozoic fabrics, respectively (Pryer et al., 2002; I’Anson et al., 2019). 

Furthermore, a change from margin-parallel normal faults along the Guinea 

margin to a sub-perpendicular orientation has been related to pre-existing 

structures (Benkhelil et al., 1995). More evidence of structural inheritance can 

be seen in the predominant type of shears formed along the FIM during 

wrenching (P, R’, and P’ shears; Figures 6.24, 7.7), which form instead of 

typical R shears, similar to observations made in Equatorial Atlantic (Nemčok et 

al., 2016). 
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NE-SW trending normal faults and wrenching on the same direction were 

interpreted along the FPB and related to wrenching between East and West 

Gondwana and a rotation of the FIM (Chapters 5 and 6). N-S trending en-

échelon faults accommodated intra-plate shearing during rotation and during 

incipient motion along the AFFZ east of the Falkland Islands (Chapter 5; Figure 

7.9d-f). The presence of strike-slip faults and strike-slip related geometries (e.g. 

en-échelon and pull-apart geometries) are commonly identified along transform 

margins (Figure 7.9). Margin-parallel negative flower structures and normal 

faults related to oblique extension have been documented in the eastern part of 

the Côte d’Ivoire – Ghana margin (Antobreh et al., 2009). These transition to 

the south-west to a sheared domain of en-échelon strike-slip faults, adjacent to 

the transform fault bounding the margin, and switch to the north-west to a 

domain of sub-perpendicular normal faults formed in a pull-apart setting (Basile 

et al., 1993; Antobreh et al., 2009). Along the Exmouth Plateau Paleozoic en-

échelon normal faults are restricted near-shore, whereas the plateau itself 

shows a strong deformation related to the Mesozoic rifting with normal faults 

distributed in an en-échelon geometry (Figure 7.9a-c; Pryer et al., 2002; 

McHarg et al., 2018; I’Anson et al., 2019).  

Localised compression and inversion of the WNW-ESE trending faults was 

documented during the rotation of the FIM (Chapter 5). Where compressional 

features were identified along other transform marginal plateaus, they were 

more extensive and related to transpression along the transform-bounding 

fault. En-échelon compressional structures and inversion of pre-existent normal 

and strike-slip faults were documented along the Côte d’Ivoire - Ghana margin 

(Attoh et al., 2004). The conjugate Guinea and Demerara plateaus show a 

superimposition of extensional and compressional structural styles (Benkhelil et 

al., 1995; Basile et al., 2013). Margin parallel folds and inverted normal faults 

were reported along the Guinea margin due to a change from transtension to 

transpression along the transform-bounded margin (Benkhelil et al., 1995). On 

the Demerara side the compressional and extensional features are considered 

coeval and related to transform motion (Basile et al., 2013). However, on the 

Falkland Plateau side it is unclear if the compression is due to wrenching or the 

rotation of the FIM (Chapter 5). Furthermore, thrusting and folding are highly 

localised compared to the aforementioned examples. The scarcity of 

compressional features along the FIM was associated with generation of 

accommodation space between South America, Africa, and Antarctica at a 

faster rate than the rate of rotation and/or wrenching (Chapter 5). 
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Figure 7.9 Examples of fault networks along transform marginal plateaus; 
a) example from the Exmouth Plateau (compiled after McHarg et al., 
2018 and I’Anson et al., 2019) showing en-échelon fault distribution 
(b and c) similar to deformation identified in the Falkland Plateau 
Basin (d, e, and f) 

N-S trending normal faults along the FIM were also related to the opening of 

the South Atlantic. These overprinted the reactivated WNW-ESE Paleozoic 

structures north of the Falkland Islands, where they generated extensive 

grabens (Richards et al., 1996a; Lohr and Underhill, 2015) and contributed to 

the present-day complex structural architecture of the plateau. 
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7.4.2 Crustal architecture 

Juxtaposition of highly varied crustal types has been documented along several 

transform marginal plateaus including the conjugate Sao Paolo and Walvis 

plateaus and the South Tasman Rise (Royer and Rollet, 1997; Evain et al., 

2015; Fromm et al., 2017; Planert et al., 2017; Loncke et al., 2020). Similarly, 

the Falkland Plateau has been interpreted as a mosaic of continental and 

oceanic crust (Chapters 4-6), namely underlying the FPB (Chapter 6). Thinned 

continental crust was interpreted along the western and northern margins of the 

FPB, whereas thick oceanic crust underlies the south-eastern corner of the 

basin. The two domains are separated by sheared, intruded, and underplated 

continental crust (Chapter 6). Underplating of thinned continental crust with 

high volcanic and magmatic additions and/or serpentinization of the upper 

mantle (P-wave velocities higher than 7 km/s; densities of ~3-3.1 g/cc) have 

been documented under a number of transform marginal plateaus like Vøring, 

Rockall, Exmouth, and Walvis (Lorenzo, et al., 1991; Berndt et al., 2001; 

Klingelhöfer et al., 2005; Planert et al., 2017; Loncke et al., 2020). Similar 

velocities and densities have been reported at the crust/mantle boundary in the 

FPB (Schimschal and Jokat, 2017, 2019b). The oceanic domain interpreted in 

the FPB consists of thicker than normal oceanic crust (up to 20 km) and has 

been associated with magmatic and volcanic accretion due to closeness to the 

Weddell Sea rift axis (Chapter 6, Section 7.2) or to the presence of a localised 

mantle thermal anomaly (Schimschal and Jokat, 2019b). Although not as 

common, where documented (e.g. western part of the Walvis plateau), thick 

oceanic crust was related to the presence of a hotspot (Tristan Da Cunha 

hotspot; Fromm et al., 2017). 

7.4.3 Volcanism 

Widespread volcanism has been documented along transform margins and 

their associated marginal plateaus, either during transform margin development 

or during the deformation phases that preceded transform motion (Loncke et 

al., 2020). Along the Falkland Plateau several episodes of volcanism and 

magmatism have been identified. The first episodes (188 ± 2 to 190 ± 4 Ma and 

162 ± 6 to 178.6 ± 4.9 Ma; Mussett and Taylor, 1994; Stone et al., 2008, 2009) 

consisted of dyke intrusion and have been related to the emplacement of the 

Karoo-Ferrar large igneous province (Mussett and Taylor, 1994; Mitchell et al., 

1999). These were coeval to early extension documented along the FIM and 

potentially early stages of rotation of the FIM and wrenching between East and 

West Gondwana (Chapters 5 and 6; Section 7.2). Another episode (121 ± 1.2 
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Ma to 138 ± 4 Ma; Stone et al., 2008; Richards et al., 2013; Chapter 5) of 

dykes, sills, and lava emplacement was synchronous to the opening of the 

South Atlantic (Stone et al., 2009; Stone, 2016; Chapter 5) and the wrenching 

and active transform phase of the AFFZ, as constrained by Baby et al. (2018). 

Commonly, the timing of volcanism and magmatism along marginal plateaus 

can vary and be coeval to any of the deformational episodes that preceded the 

initiation of transform movement (Loncke et al., 2020). Similar to the Karoo-

Ferrar-related episodes of dyke emplacement onshore the Falkland Islands, the 

main volcanic activity of several transform marginal plateaus has occurred prior 

to transform motion (Loncke et al., 2020). This was due to early deformation 

coeval with, and adjacent to, the main volcanic events that affected Gondwana 

prior to and during its fragmentation (e.g. Karoo-Ferrar, Central Atlantic 

Magmatic Province, Paraná-Etendeka flood-basalt province; Encarnación et al., 

1996; Marzoli et al., 1999; Trumbull et al., 2007; Hastie et al., 2014; Foulger, 

2018; Loncke et al., 2020). Examples include the Sao Paulo – Walvis conjugate 

pair and the Tasman region (Storey, 1995; Elliott et al., 2009; Fromm et al., 

2017; Loncke et al., 2020). Regarding transform margin formation in general, 

their active stage of development has been related to volcanism (Benkhelil et 

al., 1995; Lorenzo, 1997; Lorenzo and Wessel, 1997). This is consistent with 

the timing of the last episode documented along the Falkland Plateau, which 

was synchronous to the opening of the South Atlantic and movement along the 

AFFZ (Stone et al., 2008; Richards et al., 2013; Chapter 5). 

7.4.4 Vertical movements 

Transform margins are frequently associated with marginal ridges/highs, the 

formation of which remains uncertain (Basile, 2015; Mercier de Lépinay et al., 

2016; Nemčok et al., 2016). Tectonic, flexural, and thermal processes have 

been invoked to explain their development. Each of these processes impacts 

the timing of the ridge formation in the transform margin development (during 

intra-continental and active transform stages for first two mechanisms and post-

transform for the latter; Le Pichon and Fox, 1971; Scrutton, 1979; Mascle and 

Blarez, 1987; Lorenzo et al., 1991; Basile et al., 1998; Basile and Allemand, 

2002; Attoh et al., 2004; Nemčok et al., 2013; Basile, 2015). It remains unclear 

which process is dominant in different regions and why. Unfortunately, the 

Falkland segment of the AFFZ is intersected by few seismic reflection lines with 

only six crossing the marginal ridge (as constrained by bathymetric and gravity 

data). Two of these sections do not have age constraints on the overlying 
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sediment cover and were not included here. However, some insight can be 

gained from the architecture of the other four (Figure 7.10). 

The northern part of the FPB consists of an E-W elongated Jurassic 

depocentre infilling tilted fault blocks (Chapter 6; Figure 7.10). Extensive 

erosional unconformities, stratal geometries, and changes in the bathymetry 

provide evidence for uplift occurring further north, along the AFFZ, with 

generation of basement highs (the Falkland Escarpment; Figure 7.10). This is 

similar to architectures documented along the Côte d’Ivoire – Ghana margin 

where the basement is uplifted and tilted away from the transform and 

underwent erosion and flexural uplift (Basile et al., 1998; Nemčok et al., 2013). 

However, similar tilting is observed only on the westernmost section (Figure 

7.10a) with two of the sections showing structures similar to horsts bounding 

the Jurassic grabens to the south (Figure 7.10b, c). Further east, north of the 

MEB, thick sections of sedimentary deposits were uplifted along the transform 

fault (Figure 7.10d), similar to regions along the Exmouth Plateau (Mercier de 

Lépinay et al., 2016) where they were related to thicker crust due to the 

addition of underplates at its base (Lorenzo et al., 1991). The basement 

underlying the uplifted Jurassic depocentre shows tilting towards the AFFZ 

(Figure 7.10d). However, the composition of the ridge alone along with the 

tilting direction are not enough to infer a mechanism for the uplift. Time 

constraints provided by the geometry of the overlying sediments are required 

from stratigraphic analysis (Mercier de Lépinay et al., 2016). 

However, along the Falkland segment of the AFFZ the timing of the uplift 

remains contentious. The westernmost two sections show Lower Cretaceous 

deposits either prograding down the slope created by the rising ridge or 

thinning towards the AFFZ before they are truncated (Figure 7.10a, b) 

suggesting a coeval initial uplift. Same timing for uplift from the north is 

interpreted in Chapter 5 (Figure 5.7h, i; Section 5.4.1) and would be related to 

wrenching or active transform motion along the AFFZ (Baby et al., 2018). This 

timing is more commonly related to tectonic or flexural (unloading related to 

erosion) processes (Mercier de Lépinay et al., 2016).  
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Figure 7.10 Interpreted sections across the Falkland Escarpment showing 
erosional truncations of Jurassic-Cenozoic strata and stratal 
geometries indicative of vertical movements along the marginal 
ridge 

Significant erosion can be inferred from the truncated reflectors in Figure 7.10a, 

which, when linked to the absence of evidence for compression along the AFFZ 

(Figure 7.10), might point to a flexural process. More data are required to 

constrain this. Towards the east, limited chronological constraints exist within 

the Cretaceous section (Figure 7.10c, d). Some degree of deformation occurs 

during this period, as suggested by onlapping geometries and erosional 

truncations (Figure 7.10c, d), but it is unclear during which stage of transform 

fault development it occurred. Furthermore, the Cretaceous section is 

significantly thinner than in the west, which might suggest a more elevated 

position during deposition or extensive erosion (Figure 7.10c, d). Some 

evidence of faulting under the folded Jurassic section in Figure 7.10d could 

point to tectonic thickening. This is very localised, and it is unclear if it 
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contributed significantly to the overall uplift. Underplating was interpreted 

further south in the basin (Chapter 6), but there is no evidence for its northern 

extent to argue for a similar cause of uplift as for the Exmouth Plateau (Lorenzo 

et al., 1991). Onlapping geometries can be observed in the Cenozoic section of 

the sedimentary infill (Figure 7.10c, d), which might point to a post-transform 

vertical movement, typically associated with thermal processes (Mercier de 

Lépinay et al., 2016). Section in Figure 7.10d also shows a downward warping 

of the margin with the Cenozoic deposits, thinning towards the AFFZ during 

their deposition, in a more subsided position, which would support thermal uplift 

occurring prior to this, followed by cooling and subsidence. 

7.5 Microplate control on regional reconstructions 

Unravelling the crustal and structural architecture of areas such as the Falkland 

Plateau, along with understanding their behaviour during supercontinent 

fragmentation, can provide significant insights into plate reconstructions. In this 

example, the evolution of the plateau offers constraints on the pre-break-up 

position of the FIM, which in turn can shed more light on the pre-break-up 

position of the major plates of south-western Gondwana.  

The plate model presented in Chapter 6 (and discussed in Section 7.2) is 

based on the fragmentation and reconstruction of South America, East 

Antarctica, and the Antarctic peninsula after König and Jokat (2006), Eagles 

and König (2008), König and Jokat (2010), and Muller et al. (2019). However, 

there have been different models for the fragmentation of the South American 

plate and the West Antarctic region, which explain the deformation associated 

with the break-up of Gondwana in various ways (Lawver et al., 1999; 

Macdonald et al., 2003; König and Jokat, 2006; Torsvik et al., 2009; Heine et 

al., 2013; Eagles and Eisermann, 2020). These strongly impact the space 

available for the reconstruction of the Falkland Plateau and its tectonic 

evolution in the context of Gondwana breakup. The pre-break-up position of the 

FIM postulated in this thesis along with the correlations carried between the 

FIM and the surrounding plates both in this thesis and in previous studies, can 

offer more constraints on the evolution of the southern South Atlantic and 

Weddell Sea regions. 

7.5.1 Deformation along the South American plate 

Several ways of representing deformation across South America and achieving 

a tighter fit between it and Africa have been proposed (e.g. Lawver et al., 1999; 
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Macdonald et al., 2003; König and Jokat, 2006; Torsvik et al., 2009; Heine et 

al., 2013; Chapter 2). Some of these models argue for the existence of trans-

continental shear zones splitting the South American plate into rigid sub-plates 

(Lawver et al., 1999; Macdonald et al., 2003; König and Jokat, 2006; Torsvik et 

al., 2009). Lateral movement of up to 500 km was invoked along the shear 

zone bounding Patagonia to the north in order to obtain a close fit between the 

sub-plate and Africa (Torsvik et al., 2009). However, no supporting evidence for 

this motion has been found onshore (von Gosen and Loske, 2004). More 

recent studies argue for a different fragmentation of the South American plate 

where intra-plate deformation is undertaken by small rotations of sub-plates 

occurring as the main basins across and offshore South America are opening, 

as demonstrated by Heine et al. (2013) and incorporated in a global plate 

model by Muller et al. (2019). These different interpretations of the deformation 

across South America result in different scenarios for the space available 

during the evolution of the Falkland Plateau, and the amount of lateral 

movement that occurred along the AFFZ in the early stages of its development. 

Without further constraints on these two elements, speculations will remain. 

Besides the space issues identified between South America and Africa for a 

rigid reconstruction of the former (Bullard  et al., 1965), the need for a tighter fit 

between Patagonia and Africa arose from the rotational model of the Falkland 

Islands, which positioned the islands near Port Elizabeth in South Africa (Figure 

7.11a; Adie, 1952a; Mitchell et al., 1986; Marshall, 1994; Trewin et al., 2002). 

As pointed out by Marshall (1994), this reconstruction of the islands generated 

space between them and Patagonia, which could only be solved by deforming 

the South American plate during reconstruction. More recent studies arguing 

for a FPB fully underlain by oceanic crust have pointed out a similar space 

issue when closing the FPB (Schimschal and Jokat, 2019b). The interpretation 

shown in this thesis argues for a less extensive oceanic domain but 

nonetheless formed during a rotation of the islands (Chapter 6).  

Here, three positions for the rotated FIM are discussed, along with their 

implications on the deformation of South America. The first model (Figure 

7.11a) is derived from literature and based on the original reconstruction of 

Adie (1952a) in which the islands are located between 42±6°S and 47±5°S 

(Mitchell et al., 1986), adjacent to south-eastern South Africa, and rotated by 

~120° relative to their Cretaceous position (Adie, 1952a; Mitchell et al., 1986; 

Taylor and Shaw, 1989; Trewin et al., 2002). This position requires ~500 km 

dextral displacement to have occurred between Patagonia and the rest of 
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South America (Marshall, 1994; Torsvik et al., 2009). The second model is the 

one presented in this thesis (Chapter 6; Section 7.2) and shown in Figure 

7.11b. In this model the FIM fits in the space available between a deformed 

South America (after Muller et al., 2019) and Africa and is rotated by ~80° 

compared to its Cretaceous position. This reconstruction of the FIM does not 

require more deformation of the South American plate than already 

documented by Heine et al. (2013) and included in the plate model of Müller et 

al. (2019). The third model (the alternative reconstruction presented in Chapter 

6; Figure 7.11c) positions the FIM between the first two models, and requires 

further deformation of the South American plate, here accounted for by rotation 

of the San Jorge Plate.  

Model 1 

Stratigraphic correlations between the Permian sedimentary sequence 

cropping out onshore the Falkland Islands and South Africa suggested an 

adjacent palaeoposition (~200 km apart; Figure 7.11a) of the two during 

deposition (Trewin et al., 2002), with sediments sourced from the fold and 

thrust belt forming to the south and south-west, as supported by palaeocurrent 

data (Veevers et al., 1994; Macdonald et al., 2003). This is supported by the 

preliminary range of palaeolatitudes derived from palaeomagnetic data 

(Mitchell et al., 1986). 

As pointed out by Marshall (1994), this position of the FIM requires Patagonia 

to have been in a more northern position compared to the rest of South 

America prior to the fragmentation of Gondwana. This relative movement has 

been achieved by invoking ~500 km of dextral movement along the Gastre 

Fault System of Rapela and Pankhurst (1992) during the Jurassic (Figure 7.11 

a; Marshall, 1994; Macdonald et al., 2003; Torsvik et al., 2009). However, more 

recent studies carried in the North Patagonian Massif do not support the 

presence of a Mesozoic dextral Gastre (Franzese and Martino,1998 in Ramos 

et al., 2017; von Gosen and Loske, 2004). An alternative fragmentation and 

deformation of the South American plate (Figure 7.11b) provides a closer fit 

between Patagonia and Africa (Heine et al., 2013; Müller et al., 2019) than 

when no deformation is invoked, but still leaves a gap of ~400 km between the 

FIM and Patagonia. Furthermore, almost the entirety of the FPB is overlapping 

either South Africa or the FIM in this scenario whereas a big part of the MEB 

underlies the FIM as well (Figure 7.11a), suggesting much more extension then 

estimated in this thesis (Chapter 6) and/or previously published for both the 

MEB and the FPB. 
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Model 2 

Following the South American plate fragmentation of Muller et al. (2019), the 

closest fit that can be obtained between the FIM and South Africa without 

generating space between the Falkland Islands and Patagonia is shown in 

Figure 7.11b. The D1 fold and thrust belt onshore the Falkland Islands is 

considered a continuation of the Cape Fold Belt in South Africa (Du Toit, 1927; 

Adie, 1952a; Curtis and Hyam, 1998), and the offshore SNFB was originally 

part of this fold and thrust belt as well (Chapter 4; Richards and Fannin, 1997). 

The comparison carried between the SNFB and the Algoa and Gamtoos basins 

in Chapter 4 suggests that these are along-strike equivalents, and that their 

orientation supports an oroclinal bend in the Gondwanide Orogen at Port 

Elizabeth. This bend was first suggested by Johnston (2000) and the ~90° 

change in strike of the Cape Fold Belt was confirmed by later studies on the 

origin of the change in structural trend in the Gamtoos Basin (Paton and 

Underhill, 2004). Several oroclinal bends (Colorado, Garies, Cape; Figure 

7.11b) have been identified along the entirety of the Gondwanide Fold and 

Thrust Belt (De Beer, 1992; Paton et al., 2016). These are believed to have 

been controlled by the extent of the Kalahari Craton in Africa and the Rio de la 

Plata Craton in South America (De Beer, 1995; Pángaro and Ramos, 2012). 

Alternatively, an oblique component to the collisional event leading to the 

Gondwanide orogeny has been invoked as a control for the Cape and Port 

Elizabeth antitaxial bends (Johnston, 2000; Tankard et al., 2009). Regardless 

of their origin, the existence of the Port Elizabeth antitaxis, while supporting 

less rotation of the FIM (Chapter 4; Stanca et al., 2019), also implies a second 

bend of the Gonwanide orogen east of the reconstructed FIM (Figure 7.11b) so 

that the trend joins the Ellsworth and Pensacola Mountains in Antarctica. 

Although this is a reasonable assumption considering the variation in structural 

and rheological inheritance across south-western Gondwana (De Beer, 1995; 

Tankard et al., 2009; Pángaro and Ramos, 2012), the FIM reconstruction 

presented in this thesis, as constrained by the South American intra-plate 

deformation after Muller at al. (2019), introduces a dramatic bend in the orogen 

(Figure 7.11b) that might require further considerations. 
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Figure 7.11 a) Model 1; reconstruction of the Falkland Islands after Trewin 
et al. (2002); fragmentation of northern Patagonia after Seton et al. 
(2012); Gastre Fault position after König and Jokat (2006) and 
displacement after Torsvik et al. (2009); b) Model 2; reconstruction of 
the FIM from Chapter 6 showing the position of the oroclinal bends 
along the GFTB; hatched area – area estimated to be added through 
extension; stippled lines – trend of the GFTB from reconstructions in 
(a) and (c); c) Model 3; tight fit reconstruction of the FIM and the 
position needed for southern Patagonia (San Jorge Plate) to 
minimize gaps between it and the islands; FIM – Falkland Islands 
Microplate; GFTB – Gondwana Fold and Thrust Belt; MEB – Maurice 
Ewing Bank 

Besides the extensive oroclinal bend, the space between the Falkland Islands 

and the South African coastline varies significantly between models 1 and 2 

(Figure 7.11a, b). Crustal thickness estimates from gravity inversion, along with 

the range of calculated thinning factors (Chapter 6) suggest that the eastern 

un-stretched extent of the FIM was bigger than previously thought (see un-

hatched area between the Falkland Islands and South Africa in Figure 7.11b 

compared to Figure 7.11a; Richards et al., 1996b; Storey et al., 1999). This, 

combined with the correlation between SNFB and Gamtoos and Algoa basins 

point to a larger initial distance between the Falkland Islands and the South 

African coast than previously thought (Model 1; Figure 7.11a), but smaller than 

the one used in the plate model based on Muller et al. (2019; Model 2; Figure 

7.11b). This would generate a gap between the un-stretched FIM and the 
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South African coastline (the size of the hatched area in Figure 7.11b) or would 

require an explanation for the loss of that crustal segment (i.e. shearing and 

fragmentation during rotation and movement along the AFFZ, and accretion of 

the crustal blocks to the Falkland Escarpment or the Diaz Marginal Ridge, 

south of the Outeniqua Basin).  

The overestimated distance between the Falkland Islands and the South 

African coastline in Model 2 also translates into the sections compared and 

correlated by Trewin et al. (2002) onshore South Africa and the Falklands to be 

situated further apart. However, this reconstruction does not hinder a 

correlation between the Karoo Basin infill and the Lafonia Supergroup, which 

would still be part of the same sedimentary basin fed from the rising 

Gondwanide Fold and Thrust Belt. Palaeocurrent directions from Trewin et al. 

(2002) would still support a sediment sourced from the south and south-west 

but diverging away from the rising Port Elizabeth oroclinal bend (Figure 7.11b). 

Model 3 

The tightest fit between FIM and Africa that accounts for the estimated space 

between the FIM and the South African coast (Chapter 6), and the along-strike 

continuation of the SNFB and Algoa-Gamtoos (Chapter 4) was also built in 

Chapter 6 and shown in Figure 7.11c. Similar to Model 2, the southern part of 

East Falkland would still have been a segment of the Karoo Basin with 

sedimentation direction controlled by the sinuous trend of the Gondwanide Fold 

and Thrust Belt (Figure 7.11c). This position would be more consistent with ice 

flow from East Antarctica (orange arrows in Figure 7.11; Stone and Thompson, 

2005) than for Model 2 where a more complicated trend whould be invoked. 

The range of palaeolatitudes for the FIM estimated from the onshore dykes and 

approximated from South Africa dolerites based on a reconstructed FIM is 

relatively wide (42±6°S-47±5°S; Mitchell et al., 1986). All three models are 

located within the error, although the values obtained directly from the dykes 

onshore the Falkland Islands argue for a position of the FIM as given by Model 

1. However, as mentioned by Mitchell et al. (1986), their analysis was carried 

out on a small number of samples and further palaeomagnetic data would be 

required to constrain the range of palaeolatitudes for the FIM. 

Similar to Model 1, the fit in Model 3 requires a more extensive deformation of 

the South American plate. This was achieved by rotating the San Jorge Plate 

counter-clockwise until the gap been it and FIM was minimized (Figure 7.11c). 

In Model 2, the rotation of Patagonia as South America rifts away from Africa 

has been accomodated by deformation in the Colorado and Salado basins 
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while little movement occurred between the San Jorge and Colorado sub-plates 

(Figure 7.11b; Heine et al., 2013; Muller et al., 2019). Palaeomagnetic data 

from the Deseado (on San Jorge Plate) and North Patagonian (on Colorado 

Sub-plate) massifs showed that sample localities from the former yielded 

Jurassic - Early Cretaceous clockwise rotations of up to 20° more than the 

latter (Geuna et al., 2000; Somoza et al., 2008), which could support a more 

northern position of the San Jorge Plate. The San Jorge Basin, situated 

between the two massifs (Figure 7.11c), shows evidence of Triassic - Early 

Jurassic and Late Jurassic - Early Cretaceous extension, which resulted in ~3 

km thick deposits (Fitzgerald et al., 1990; Homovc and Constantini, 2001), 

which could have accommodated this rotation of the San Jorge Plate. 

Compression on a ~N-S (present-day) direction has been documented in 

Central Patagonia throughout the Jurassic (Navarrete et al., 2016) and 

correlated to similar evidence in Northern and Southern Patagonia (Naipauer et 

al., 2012; Navarrete et al., 2019). This has been interpeted as related to far-

field stresses, such as the early opening of the Weddell Sea and the North 

Atlantic (Navarrete et al., 2016, 2019), but would align with the expected 

contraction for clockwise rotations of the Patagonian sub-plates, including the 

San Jorge Plate. However, more detailed analysis on the amount of extension 

in the on- and offshore sedimentary basins collated with amount of 

compression is needed to confirm the validity of this hypothesis. 

Furthermore, Section 6.5.1.2 argues that the deforming plate model for this 

reconstruction of the FIM underestimated the crustal thickness under the MEB 

(Figure 6.36). However, it is unclear if the present-day morphology of the MEB 

has been controlled by structural inheritance and thus would not undergo 

significant extension for a more northern positon of the FIM under normal 

geological conditions. 

In summary, all three models for the reconstruction of the FIM presented here 

have drawbacks, which require further analysis in order to constrain the 

configuration of the South American sub-plates prior to the break-up of 

Gondwana. Model 1 requires a significant deformation of the South American 

plate that needs to be explained by not invoking movement along the disproved 

Gastre Fault. Furthermore, this reconstruction requires far more extension 

along the Falkland Plateau than documented and does not account for the 

correlation between the SNFB and Algoa-Gamtoos region and the segment of 

the FPB interpreted to have lain between the FIM and South Africa (Chapter 6). 

A fit of the FIM in current plate models for the South Atlantic (Model 2; Figure 
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7.11b), although complying to the already interpreted deformation of the major 

plates in south-western Gondwana, requires further clarification of the sinuous 

trend of the Gondwanide Fold and Thrust Belt between Africa and Antarctica 

and of the region between the un-stretched FIM and South Africa. A more 

northern position of the FIM (Model 3; Figure 7.11c) would fit the observations 

previously published for the Falkland Plateau along with the ones presented 

throughout this thesis (Chapters 4-6). However, the deformation of the South 

American plate required to achieve this fit (Figure 7.11c) remains to be 

validated.  

7.5.2 Pre-break-up configuration of the West Antarctic  

Beside the space between South America and Africa controlling the 

reconstruction of the Falkland Plateau, of significant importance is the 

configuration of the West Antarctic blocks (Weddell Sea region). Due to the 

formation of the North Scotia Ridge and opening of the Scotia Sea starting in 

the Late Cretaceous (Barker and Griffiths, 1972; Dalziel et al., 2013), the 

southern margin of the Falkland Plateau was obscured. There are, therefore, 

different models for the way in which the fragmentation of West and East 

Gondwana was recorded along the Falkland Plateau. Several models argue for 

only the southern margin of the plateau being affected by wrenching related to 

movement between East and West Gondwana, which switched to extension 

and break-up during the Jurassic (König and Jokat, 2006; Lovecchio et al., 

2020). Other studies support an evolution of the FPB more shaped by the 

extension between East and West Gondwana (Eagles and Vaughan, 2009; 

Reeves et al., 2016; Eagles and Eisermann, 2020), with break-up occurring 

between the northern Falkland Plateau – Maurice Ewing Bank and the West 

Antarctic region (Eagles and Eisermann, 2020; Figure 6.2f in Chapter 6). 

In the reconstruction presented in Chapter 6 (Figures 6.24) and Section 7.2, the 

wrenching between East and West Gondwana is responsible for the initiation of 

FIM rotation, and the overall crustal architecture of the FPB. This interpretation, 

and that of Eagles and Eisermann (2020), both support a significant 

contribution of the relative motion between East and West Gondwana on the 

formation of the FPB. However, there are disparities between the 

reconstructions presented in this thesis and the model for the Weddell Sea 

proposed by Eagles and Eisermann (2020). 

The crustal and structural architectures presented in Chapters 4-6 indicate that 

the plateau underwent a more complex evolution than pure extension related to 

the opening of the South Atlantic. Dextral and sinistral shearing interpreted 
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along the FPB (Chapter 5), rapid changes in the stress state (Chapter 4 and 5), 

and the presence of sheared, high velocity crust truncating a thick oceanic 

domain (Chapter 6) suggest a strong control by wrench tectonics on the 

formation of the plateau. Compared to more simplistic models for the evolution 

of the plateau incorporated in reconstructions of the South Atlantic (König and 

Jokat, 2006; Schimschal and Jokat, 2019b; Lovecchio et al., 2020), the 

interpretation of Eagles and Eisermann (2020) does account for a higher 

degree of shearing along the FPB. However, the same study of Eagles and 

Eisermann (2020) argues for no rotation of the FIM. The plate configuration 

proposed by Eagles and Eisermann (2020) cannot be incorporated into a 

rotational model either as Palmer Land and Alexander Island occupy the 

position of a rotated FIM (Figure 6.2). Furthermore, this model, similar to the 

interpretation of Schimschal and Jokat (2017, 2019b), argues for oceanic crust 

underlying the entirety of the FPB. Seismic reflection data (Chapters 5 and 6) 

show that the western margin of the FPB is still underlain by continental crust. 

Thick Jurassic depocentres are seen further east in the basin (Figures 6.9, 

6.10), which are more supportive of deposition above a faulted continental crust 

with the high P-wave velocities of Schimschal and Jokat (2017, 2019b) pointing 

towards magmatic enrichment and/or underplating and oceanic crust restricted 

to the south-eastern corner of the FPB. Moreover, the break-up between the 

Skytrain of Eagles and Eisermann (2020) and the Falkland Plateau requires a 

right-lateral transform fault along the western margin of the FPB. Although, as 

mentioned by the authors, evidence of dextral strike-slip has been documented 

onshore the islands and was related to movement along the Falkland Sound 

Fault (parallel to the western margin of the FPB). However, seismic reflection, 

gravity, and magnetic data interpretation show evidence of sinistral wrenching 

occurring along the NE-SW trending western margin of the FPB. 

Inconsistencies of the model of Eagles and Eisermann (2020) with current 

interpretations of the evolution of the southern margin of the Falkland Plateau 

(i. e. South Georgia origin and evolution) were also pointed out by a recent 

review of Dalziel et al. (2021). 

Similar to the reconstruction of the South American plate discussed in the 

previous sub-section, it is of high importance that microplate and 

microcontinents are considered when building a plate model as they can 

provide valuable information on the validity of existing reconstructions. 

Information on the evolution of the continental blocks sheared along the 

northern margin of the Scotia Sea (e.g. South Georgia; Dalziel et al., 1975, 

2013, 2021; Macdonald et al., 1987), and of the Falkland Plateau can provide 
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more constraints on the reconstruction of West Antarctic region in a Gondwana 

pre-break-up configuration. 

7.6 Suggested future research 

7.6.1 Falkland Plateau – Outeniqua basins comparative study 

A strong argument for the rotation of the Falkland Islands stems from the 

extensive correlative work carried out between the structures and stratigraphy 

onshore the islands and South Africa (Adie, 1952a; Thomas et al., 1997; Curtis 

and Hyam, 1998; Jacobs et al., 1999; Trewin et al., 2002; Vorster et al., 2016). 

Similarly, a comparison and correlation between the Southern North Falkland 

Basin and published sections from the Algoa and Gamtoos basins was carried 

out in Chapter 4 (Stanca et al., 2019). However, a more thorough analysis of 

seismic reflection data from both sides of the AFFZ could provide additional 

constraints for the pre-break-up position of the Falkland Islands. The two 

seismic cubes analysed in Chapter 5 show complex fault networks developed 

during Jurassic - Early Cretaceous as fragmentation occurred across south-

western Gondwana (Chapter 5). The FINA cube covering the Berkeley Arch 

and part of the Volunteer sub-basin, in particular, shows upper crust reflectivity 

and several superimposed fault networks (Figure 7.12) which would require 

more detailed mapping. Furthermore, a comparison with the Outeniqua sub-

basins could provide more constraints on the evolution of the FIM relative to 

Africa.  

 

Figure 7.12 Section through the FINA cube showing faulting style and 
crust reflectivity (left); reconstructed position of the cube relative to 
the Outeniqua sub-basins offshore South Africa (right); dashed grey 
lines – rough trend of the Gondwanide orogen 

The FISA cube in the Fitzroy sub-basin shows channel incisions and canyon 

formation occurring during the Early Cretaceous (Chapter 5). Uplift and 

extensive canyon formation has been documented in the Algoa and Gamtoos 

basins during this time (McMillan, 2003; Baby et al., 2018) and related to 
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movement along the AFFZ (Baby et al., 2018). A correlative study between the 

Lower Cretaceous sections of the two areas can provide more insights into the 

post-rotation syn-transform evolution of the two margins. 

7.6.2 Berkeley Arch – Volunteer sub-basin structural analysis 

 

Figure 7.13 Variety of structural styles interpreted in the FINA cube, along 
the Berkeley Arch and Volunteer sub-basin 
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As mentioned above, the seismic cube along the Berkeley Arch and the 

Volunteer sub-basin displays a complex interplay of several fault trends with 

evidence of localized inversion and dextral and sinistral wrenching 

superimposed on the interpreted normal faults (Figures 7.12 and 7.13). A more 

detailed interpretation of the fault network in this area would facilitate a 

thorough palaeostress analysis of this region of the Falkland Plateau Basin. 

This would provide more information and fine-scale adjustments on the local 

stress variation discussed in Chapter 5. 

7.6.3 Source-to-sink analysis 

The source of the sediment infill of the sedimentary basins along the Falkland 

Plateau in correlation with sediment transport routes are crucial factors to know 

in order to understand the palaeogeography of an area and, for instance, the 

distribution and quality of petroleum system elements. Richardson et al. (2017) 

analysis of eroded versus deposited material for southern South Africa 

supports the deposition of significant sediments derived from onshore South 

Africa in the Falkland Plateau basins in the Late Jurassic and Early Cretaceous 

(Figure 7.14b). However, due to uncertainties in the reconstruction of the 

Falkland Plateau, it remains unclear which areas acted like sediment sources 

prior to this and along which pathways the sediment transport occurred. 

Thomson et al. (2002) documented a phase of cooling onshore the Falkland 

Islands during the Early to Middle Jurassic based on apatite fission track and 

vitrinite reflectance data. The same study correlated this cooling episode with 

uplift preceding the break-up of Gondwana which would result in the Falkland 

Islands being high ground during this time (i.e. source for sedimentation in the 

opening Falkland Plateau Basin; Figure 7.14a). Evidence of prograding 

Jurassic sediments in the north-eastern part of the Falkland Plateau Basin 

(Figure 7.10c) supports sediment input from the north as suggested by 

Richardson et al. (2017). However, more geochronological constraints and 

provenance studies would be required to understand the source and transport 

routes for the sedimentary infill of the Falkland Plateau basins in the context of 

the revised reconstruction presented in this thesis. 
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Figure 7.14 a) Middle Jurassic and b) Late Jurassic reconstruction of the 
Falkland Plateau showing potential sediment sources for the 
opening Falkland Plateau basins; black arrows in (b) from South 
Africa to the Falkland Plateau basins from Richardson et al. (2017); 
FI – Falkland Islands; MEB – Maurice Ewing Bank 

7.6.4 Falkland Escarpment – Diaz Marginal Ridge study 

The Falkland Escarpment has been only briefly discussed in this thesis, due to 

limited data along it, particularly chronological constraints. However, the 

development of transform marginal highs or ridges remains uncertain (Basile 

and Allemand, 2002; Basile, 2015 and references therein). The Falkland 

Escarpment and its counterpart on the conjugate Agulhas margin, the Diaz 

Marginal Ridge, formed at the Early Cretaceous gateway into the South Atlantic 

(Pérez-Díaz and Eagles, 2017). Therefore, understanding their development 

can offer us significant insight into how the deep oceanic connectivity was 

established and evolved as Gondwana dispersed. Furthermore, the 

sedimentary cover of the two ridges shows a strong control of the oceanic 

currents present in these two areas: the Agulhas Current and secondary 

branches of the Antarctic Circumpolar Current (Figure 7.15; Schlüter and 

Uenzelmann-Neben, 2007; Nicholson and Stow, 2019). A study of stratigraphic 

geometries above the Falkland Escarpment and the Diaz Marginal Ridge would 

give an indication of how these two important oceanic currents have 

established and evolved. The findings would build on the work of Schlüter and 

Uenzelmann-Neben (2007), Hall et al. (2017), Nicholson and Stow (2019), and 

Nicholson et al. (2020) carried out in the Agulhas Plateau, Transkei Basin, 

western Falkland Plateau Basin, South Falkland Basin, and Burdwood Bank. A 

comparative approach for the study of the two marginal ridges would be 

favoured in order to understand the impact the movement along the AFFZ had 

on palaeobathymetry. This, in turn, would provide more insight into the 

evolution of oceanic connectivity and the palaeoclimate, and would feed into 

current climate models and climate monitoring endeavours. However, as 
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detailed in Section 7.4.4, more chronological constraints would be needed, 

primarily on the Falkland side, to constrain the sedimentary section covering 

the Falkland Escarpment. 

 

Figure 7.15 Position of the Falkland Escarpment and Diaz Marginal Ridge 
and the paths of the Antarctic Circumpolar Current (ACC) and 
Agulhas Current (AC); oceanic currents from Arhan et al. (2002), Hall 
et al. (2017), and Dalziel et al. (2021); BB – Burdwood Bank; FPB – 
Falkland Plateau Basin; SFB – South Falkland Basin 

7.7 Conclusions 

7.7.1 What are the implications of the reconstruction of the FIM on 

the fragmentation of SW Gondwana and how do microplates 

control regional reconstructions?  

Correlations between structures on- and offshore the Falkland Islands, and on- 

and offshore Africa, South America, and Antarctica along with evidence for 

wrenching in the Falkland Plateau Basin and the deforming plates modelling 
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results, point towards an ~80° clockwise rotation of the Falkland Islands 

Microplate during the break-up of Gondwana. This, in combination with 

estimates on the extent of the Falkland Islands Microplate prior to break-up, 

suggest a more southerly reconstructed position of the islands than previously 

suggested, but more northward than the position allowed by current plate 

reconstructions of the South Atlantic (Figure 7.11). This results in more 

deformation of the South American plate than most recent studies argue for, 

which remains to be validated. Furthermore, the rotated reconstruction along 

with the sense of shear identified along the western margin of the Falkland 

Plateau Basin argues against the Skytrain evolution recently postulated for the 

West Antarctic region. This study highlights the importance of smaller tectonic 

plates in constraining the pre-break-up configuration of major plates like South 

America and Antarctica.  

Regarding the processes related to the break-up of Gondwana, the analysis of 

the Falkland Plateau revealed that the fragmentation of East and West 

Gondwana was preceded by rapid changes in the stress configuration with 

alternating episodes of extension on roughly orthogonal directions resulting in 

complex fault and dyke networks. These extensional stages were coeval with 

rifting in the southern Weddell Sea, which continued in the Falkland Plateau 

Basin. The southern Weddell Sea rifting culminated with dextral wrenching 

between East and West Gondwana that initiated a clockwise rotation of the 

Falkland Islands Microplate. The vertical-axis rotation resulted in continental 

break-up and oceanic crust generation in the south-eastern corner of the 

Falkland Plateau Basin that underwent significant magmatic additions due to its 

closeness to the Weddell Sea rift axis. The Falkland Islands Microplate docked 

against the South American plate at the end of the Jurassic when its rotation 

ceased. 

7.7.2 How do blocks/microplates form, rotate and deform in 

wrenching settings? 

The delimitation of the Falkland Islands Microplate might have been controlled 

by inherited structures to some degree. The now western boundary could have 

been generated along a Paleozoic suture between the Falkland Islands and 

Gondwana on one side and Patagonia on the other side. The position of the 

remainder of the boundaries could have been facilitated by the alternating 

stages of extension that preceded the rotation of the islands. These generated 

areas of thinned crust along which strike-slip faults antithetic to the main dextral 

zone between East and West Gondwana nucleated.  
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The early stages of rotation of the Falkland Islands Microplate were controlled 

by the drag exerted by the southward drift of East Antarctica (edge-driven 

mechanism). However, as the wrenching between East and West Gondwana 

switched to rifting in the Jurassic, a secondary driving force is proposed to have 

maintained the rotation of the islands (i.e. basal mantle drag). This, in 

correlation with the opposite-sense of rotation but of comparable amount of the 

Ellsworth Whitmore Terrane in West Antarctica, points towards differential 

mantle flow related to differential rollback along the Panthalassan margin as the 

driving force maintaining the rotation of the Falkland Islands Microplate. 

During the rotation, the Falkland Islands Microplate underwent intra-plate 

deformation at multiple scales similar to previously published models for 

rotating blocks. Sinistral and dextral wrenching along roughly orthogonal 

directions was identified across the microplate along with evidence of extension 

and localized compression consistent with a clockwise rotation. 

7.7.3 What crustal, structural, and stratigraphical architectures can 

be seen along transform margins?  

The architecture of the Falkland Plateau shows some similarities with other 

examples of transform margins documented around the globe, but its tectonic 

history prior to motion along the AFFZ has highly impacted its structure. Fault 

networks with elements indicative of wrenching (i.e. en-échelon geometries) 

commonly found along transform margins have been identified along the 

Falkland Plateau as well. However, these were initiated during the rotation of 

the Falkland Islands Microplate during the wrenching between East and West 

Gondwana and potentially later reactivated during the wrenching stage of the 

AFFZ. The crustal architecture of transform margins and marginal plateaus is 

highly varied as well and the Falkland Plateau is a clear example of this as it 

displays a mosaic of continental and thick oceanic crust. Volcanic additions, 

emplaced both before and during the wrenching and active transform phases of 

the AFFZ, were identified, which is a common occurrence along transform 

marginal plateaus. Another typical feature of transform margins is the presence 

of marginal ridges like the Falkland Escarpment. Uplift along these ridges can 

occur through different processes and in different stages of transform margin 

development. The stratal geometries and style of faulting point more towards 

flexural and thermal processes. However, few seismic lines and limited age 

constraints were available above the Falkland Plateau ridge to understand the 

nature of the vertical movements along the AFFZ with more certainty. 
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7.7.4 Concluding statement 

The study of the Falkland Plateau has provided more evidence into its tectonic 

evolution and the motion of the Falkland Islands Microplate during the early 

fragmentation of Gondwana. Correlations between the interpreted and 

published structural networks offshore and onshore the Falkland Islands with 

the ones from South America, Africa, and Antarctica support a ~80° clockwise 

rotation of the islands occurring during the Middle-Late Jurassic. The rotation 

was facilitated by wrenching between the south-western Gondwanian tectonic 

plates, which led to a complex mosaic of intruded and underplated continental 

and thick oceanic crust underlying the Falkland Plateau Basin. The overall 

architecture of the Falkland Plateau shares similarities with other transform 

margins around the globe and supports the variability documented along 

marginal plateaus. The analysis of the structural network along the Falkland 

Islands Microplate also sheds more light onto the rapid changes in the stress 

state that preceded the break-up of Gondwana. The resulting fault networks 

correlated with the syn-rotation deformation demonstrates an applicability of 

current mechanisms for rotation to the case of the Falkland Islands Microplate. 

In addition, the processes documented along the southern margin of south-

western Gondwana (e.g. subduction along the Panthalassan margin, rollback of 

the subducting plate, counter-clockwise rotation of the Ellsworth Whitmore 

Terrane) supports a geodynamic control for the Falkland Islands Microplate 

rotation. Lastly, discussion of how variations in the pre-break-up position of the 

Falkland Islands impacts the fragmentation and configuration of South America 

and West Antarctica highlighted the importance of understanding the evolution 

of microplates for building reliable regional plate models. The outcomes of this 

thesis build upon current knowledge on transform margins and the complex 

processes associated with continental break-up and pave the way for future 

(palaeo)climatology-related research. 
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Appendix 

 

Figure A.1 Free-air gravity anomaly offshore South Africa (Sandwell et al., 
2014) 

 

Figure A.2 First vertical derivative of the free-air gravity anomaly along 
the Falkland Plateau (Sandwell et al., 2014) 



 
 

294 

 

 

Figure A.3 Total horizontal derivative of the reduced to pole total field 
magnetic anomaly (Eagles, 2019) 

 

Figure A.4 Analytic signal of the total field magnetic anomaly (Eagles, 
2019) 
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Figure A.5 Time-depth relationships available for the used wells 
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Figure A.5 (continuation) Time-depth relationships available for the used 
wells  
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Figure A.6 Example of well logs where interpolation was required for 
specific intervals (shaded in grey) along which erroneous 
measurements were acquired; DTCO – original sonic log; 
DTCO_edited – sonic log after interpolation; RHOZ – density log; 
RHOZ_edited – density log after interpolation 
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Figure A.7 Sections through the Fitzroy sub-basin showing progradation 
of Upper Cretaceous deposits (between the green horizons) from the 
SW, sills and lava flows distribution, and associated forced-folding 
of the Albian-Aptian marker 

 

 

Figure A.8 Section through the north-western part of the Volunteer sub-
basin showing Jurassic half-grabens and along-faults deformation 
potentially related to wrenching 
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Figure A.9 Example of weight distribution based on the used weighting 
algorithm; larger values correspond to cells more likely to undergo 
changes in density in order to minimize the misfit between the 
observed and calculated gravity anomaly (i.e. depth weighting 
results in the shallower part of the model undergoing increases and 
decreases in density during the inversion process and can result in a 
concentration of big densities close to the surface) 
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Figure A.10 2D forward gravity model along a profile cross-cutting the 
oceanic domain in the Falkland Plateau Basin; the sediment infill is 
considered to have an average density of 2.5 g/cc (the equivalent of 
the density distribution modelled for profiles 139); the crust under 
the FPB is also considered a homogenous block for simplicity; the 
calculated anomaly and error (misfit between the observed and 
calculated gravity anomaly) are for a crust of 2.9 g/cc; the fit for 
oceanic crust (3 g/cc) is shown in green, with the required thickness 
for the oceanic domain to minimize the misfit shown as the black 
dashed line in the section 
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Figure A.11 Example of inversion results along profile 139 showing 

undifferentiated crust and mantle (top) and relatively lower densities 
for the Falkland Plateau Basin compared to the Maurice Ewing Bank 
and the Falkland Platform; layered crust (split at mid-point similar to 
the methodology described for the 2D forward modelling in Chapter 
6) and heterogeneous upper mantle (bottom; first 10 km) showing 
that densities for the Falkland Plateau Basin more comparable to the 
Falkland platform and the Maurice Ewing Bank are obtained if lower 
densities are modelled for the upper mantle (underplating or 
serpentinization?); for the bottom model the range of densities for 
the upper crust was 2.58-2.96 g/cc, for the lower crust 2.7-3.05 g/cc, 
and for the upper mantle 2.9-3.33 g/cc 

 

 

Figure A.12 Plate boundaries for South Africa and offshore basins from 
Müller et al. (2019) (blue); re-drawn plate boundaries (black dashed 
lines); gravity data from Sandwell et al. (2014) 
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Figure A.13 Deforming plate model for a non-rotational scenario with 
break-up and generation of oceanic crust; FB – Fitzroy sub-basin; 
FPB – Falkland Plateau Basin; MB – Malvinas Basin; MEB – Maurice 
Ewing Bank; oc. c. – oceanic crust; VB – Volunteer sub-basin 
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Figure A.14 Time steps of the deforming plate model built on rigid model 
ROT-2 (northern position of the FIM) 

 

 


