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Abstract

Brain-computer interfaces (BCI) provide severely disabled people with the means to control

assistive devices. However, there is a high mental workload for many BCI users. In many

systems, users must actively control each of the machine’s low-level actions. Recent studies

postulate an alternative approach, using spontaneously-generated brain signals, while users

merely observe machine actions.

It is possible to differentiate the brain’s responses to correct and incorrect machine

actions, using single-trial electroencephalography (EEG). Furthermore, having classified

actions as correct or erroneous, robots can use machine learning to find quasi-optimal routes

to a target. A few studies have differentiated the brain’s responses to errors of different

direction or severity. However, errors cannot always be categorised in these ways.

This thesis firstly shows that it is possible to differentiate, using single-trial EEG, subtly

different errors that could not be distinguished by existing metrics: stepping off a target,

or moving further from the target when starting from an off-target location. An additional

data set is used to further validate the feasibility of distinguishing different error types.

This thesis then shows for the first time that it is possible to distinguish EEG responses to

different correct navigational actions, gaining specific information indicating when a target

has been reached. Finally, a system is presented which responds to the detailed classification

of these navigational actions in real-time. Four-way classification of EEG responses to robot

movements is implemented, with additional binary classification of target selections. A

dynamic probabilistic model of likely target loci is built via Bayesian learning, based on

these classifications. This novel strategy facilitates more efficient virtual robot navigation

and target identification than current state-of-the-art approaches.

In bringing these advances together, this thesis presents the foundation of a new frame-

work for detailed implicit brain-machine communication. This facilitates semi-autonomous

robot control, reducing the mental burden for BCI users.
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Chapter 1

Introduction to the Research

Project

1.1 Background

Brain-Computer Interfaces (BCI) provide a mechanism through which brain signals can

be observed, usually through electroencephalography (EEG), and interpreted [10,166,167].

These signals can then be used for communication [16], or to control a device. Early

applications for BCI generally focused on providing a means of control or communication

to people who are completely paralyzed, for whom standard methods are not available.

However, more recently, the scope of applications has expanded to include healthy users

[18,21].

A common approach for existing BCI is to attempt to control a device, such as a cursor,

prosthesis, or wheelchair, via the classification of EEG signals produced when a person

imagines movement of specific parts of the body, also known as motor imagery [56,106,174].

Similarly, some systems present stimuli to a user and use techniques such as steady-state

visual evoked potentials (SSVEP) [116] or P300 signals [119] to select options for device

control.

However, the aforementioned approaches place a heavy mental workload on the user,

because the user is required to control all of the device’s actions. For example, to pick up

a bottle with a prosthesis, using a motor-imagery-based BCI, users would have to control

every detail of the action, such as, imagine right hand movement to move the prosthesis to

the right, imagine right hand movement again to move the prosthesis further to the right,

imagine foot movement to move the prosthesis forward... and so on, gradually moving the

prosthesis into position, before performing a particular grasp - which in itself may require

further fine control - and moving the arm to a new position using the same laborious method.
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Rather than using a step-by-step method such as this, it could be favourable to create

novel systems wherein the human simply has to select a high-level action, such as “pick

up the bottle”, or “move my wheelchair to the window”, and the computer selects and

performs the appropriate action(s). In recent years, a small number of studies have proposed

approaches to this challenge. For example, studies have presented methods by which users

can select high-level actions using P300 signals [55, 133] or motor imagery [98]. Another

potential approach to this challenge is to make use of brain signals that are produced

spontaneously as we observe actions, and to couple the information from these signals

with machine learning. Error-related potentials (ErrP) are an example of spontaneously-

generated signals. ErrP are produced in our brains when we notice an error. These signals

can be detected in EEG, making it possible to identify when a human considers an action to

be an error, and when they consider an action to be correct [48,121,142]. This information

can be utilised in machine learning, in order to teach the machine to choose the correct

actions, and avoid erroneous ones, thus allowing the machine to develop optimal, or quasi-

optimal, control strategies [63]. By allowing the machine to learn how to control a device

in a manner that the user deems to be “correct”, the burden of this low-level control can

be removed from the human user.

A very small number of recent studies have shown that it is possible not only to distin-

guish between errors and correct actions, but to distinguish between different errors if, for

example, they have different directions or severities [64], or to distinguish between errors

committed by a human and those committed by the machine [151].

This is still a young field and there are still many avenues to be explored. It could be

extremely useful to progress beyond merely combining error vs correct information with ma-

chine learning, by incorporating various kinds of information from spontaneously-generated

brain signals. The more information that can be made available to a learning system such

as this, the more power it would have to efficiently learn optimal strategies.

1.2 Motivation

Great advances have been made in BCI over recent years. However, one issue that affects

many systems is the need for the user to perform step-by-step, low-level control. This

can lead to mental fatigue, and also results in a low information transfer rate, due to the

number of commands that must be made in order to achieve an overall task. However,

humans already automatically produce various brain signals in response to things that

they observe. By using the signals generated when a human merely observes a machine

in action, and employing machine learning, we can allow the machine to learn the optimal

actions and control strategies. Therefore, my motivation for this project was to advance BCI

2



such that interaction can be performed without any explicit signals having to be generated

- instead utilising a variety of spontaneously produced brain signals for implicit brain-

machine communication. By combining this implicit communication with machine learning,

the burden of step-by-step, low-level control could be transferred from the human to the

machine.

1.3 Aims and Objectives

The aim of this project is to investigate the feasibility of creating a more autonomous BCI,

where much of the workload is removed from the human, with the burden being moved to

the machine. To do this, I propose to create a new framework for implicit human-robot

interaction, using various spontaneously generated brain signals.

To achieve this overall aim, the following objectives are addressed in this thesis:

1. Investigate whether it is possible to process and decode human EEG signals produced

in response to different errors, even if the errors conditions are similar to one another

in terms of severity, direction etc. In the first instance, this is performed “offline”

using previously collected EEG data. To achieve this objective, neurophysiological

differences between the different errors are investigated. Thereafter, appropriate sig-

nal processing and machine learning algorithms, capable of accurately classifying the

different errors, are developed. This is carried out in two stages:

(a) Classification of various response errors, committed by humans. As an exemplar

case-study, data are used from time-critical reaction tasks, where users were

presented with stimuli and asked to respond under time pressure, thus inducing

the users to commit some errors. Errors induced by different types of stimuli are

considered as different error conditions.

(b) Classification of various navigational errors made by a machine. As an exemplar

case-study, users observe a computer cursor as it navigates towards, and then

reaches, a target. The errors that can occur during the navigation are:

• The cursor, not yet at the target location, moves further away from the

target.

• The cursor, having already reached the target location, steps off the target.

2. Investigate whether it is possible to process and decode human EEG signals related

to various non-erroneous actions, using data from a navigational task. Specifically,

users observe a computer cursor as it navigates toward, and then reaches, a target.

EEG data are collected from users during observation. These data are used to train
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a classifier that can distinguish, on a single-trial basis, whether a correct action is

merely towards a target, or one that actually reached the target. Thus, the output of

the classifier can control a robot for reaching and selecting a relevant target among

several locations. As with objective 1, the classifier is initially trained and tested

offline, after EEG data collection has been completed.

3. Develop a novel system in which the classification strategies described in objectives

1 and 2, (decoding EEG signals related to different errors and correct actions) are

applied in real time. As a human user observes a real or virtual navigating robot

aiming to reach and select a target, the human’s EEG signals are classified in a timely

manner. The system should then react accordingly, e.g. if an error was detected, the

system should immediately correct it if possible. The performance of the proposed

system is compared with conventional BCI systems where only errors can be detected

using EEG signals.

4. Apply intelligent control to the system described in objective 3, in the form of rein-

forcement learning. This should enable the robot to use all of the available information

- not only whether actions are correct or erroneous, and which specific category of

correct or erroneous action was performed, but also what the next possible action

would be, based on the previously performed actions. Thus, using previous actions,

the robot efficiently “learns” optimal, or quasi-optimal, control strategies such that

the likelihood of committing errors is minimised.

These objectives come together as indicated in Figure 1.1. All of these objectives re-

quire appropriate artifact rejection, signal processing, feature generation, and classification

to be carried out in order to decode EEG signals into the appropriate categories. There

are also significant challenges inherent in the tasks set out here. Some common challenges

of working single-trial EEG classification are described in section 2.2. Furthermore, while

there are established features that distinguish the EEG responses to errors from those of

correct actions, the signals in response to different types of errors are more similar to each

other. As such, subclassifying different types of errors, or indeed different types of correct

actions, presents a greater challenge than distinguishing errors from correct actions. This

is exacerbated by the poor signal-to-noise ratio of EEG, making it harder to differentiate

reliably between the relatively similar signals. In addition to this, the nature of the tasks

from which my data are derived resulted in more correct actions occurring than errors, and

imbalanced numbers between the different types of errors and correct actions [29, 59]. As

such, an additional challenge is to train classifiers using small, and imbalanced, training

data sets.
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By achieving these objectives, we can theorise that the resulting framework would shift

much of the burden in human-machine interactions from the user to the machine. By

utilising various spontaneously-generated brain signals for implicit communication between

human and machine, this could lead the way toward a more convenient, user-friendly BCI

experience.

Figure 1.1: Four objectives are set out in order to achieve the overall aim of this PhD project:
a new framework for implicit human-robot interaction, and thus a more autonomous BCI.
Objectives 1 and 2 can be completed independently. Objectives 3 and 4 are dependent upon
completion of the objectives shown above them in the figure.

1.4 Thesis Overview

This thesis describes the work carried out in order to fulfil the aforementioned objectives.

The content of each chapter is as follows.

Chapter 2 provides a review of relevant literature in the research area. This begins with

a background on BCI in general, and the details and challenges of the EEG modality. The

chapter then discusses different types of brain signals: active, passive, and reactive, and
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explores some reactive brain signals that are of key interest to this work — error related

potentials (ErrP) and the P300 — in greater depth. The chapter concludes with a discussion

regarding existing progress in semi-autonomous BCI, and the gaps and shortcomings that

can be addressed in this field.

In chapter 3, the first objective of this project is addressed. EEG data are analysed from

two tasks in which multiple error conditions occurred. Firstly, the Claw Task is introduced,

in which users observe a virtual robot as it attempts to navigate towards and select a target.

Two types of error are present, which differ based on the contexts in which they occur.

Secondly, the Error Awareness Dot Task (EADT) is described. In this task, two different

error types are committed by participants. These error types require differing cognitive

processes in order to recognise that they have been committed. Neurophysiological analysis

is presented, comparing the brain’s responses to the various error conditions. Single trial

classification analysis is then carried out. The chapter concludes with a discussion of the

findings, and their implications within the broader context of BCI.

Chapter 4 addresses the second objective. EEG data are analysed from two virtual

robot navigation tasks. The Cursor Task is introduced, in which a virtual robot aims to

navigate towards, and identify when it has reached, a target location. Two different types

of correct action are considered: actions that move towards the target but do not reach

it, and actions that do reach the target. A publicly available data set based on a similar

task is used to further validate the findings. Again, both neurophysiological analysis and

single trial classification analysis are presented. The chapter closes with a discussion of the

findings, and the new opportunities afforded in BCI by this novel investigation.

The third and fourth objectives are addressed in chapter 5. A paradigm is presented

which combines the aforementioned decoding of multiple error types, and multiple types of

correct action, to provide 4-way classification of robotic movements, based on the reactive

brain signals produced as users merely observe the robot’s actions. Additionally, error-

vs-correct classification is performed on actions in which the robot identifies a location as

the target. A novel application of Bayesian inference is proposed, using this detailed EEG

classification as feedback. The proposed system uses the sequence of observed action clas-

sifications, combined with the confidence in the classification models, in order to iteratively

update a probabilistic model to infer the most likely target location. The performance of

the proposed system is rigorously compared to that of a system that uses EEG feedback

to select appropriate actions in immediate response to the various classified action types,

without utilising any probabilistic modelling of target likelihoods. Further, the proposed

multi-way classification system is compared to one using the current state-of-the-art binary

error-vs-correct movement classification. The chapter concludes with a discussion of the

findings, and contextualises what this novel framework for implicit brain-machine interac-

6



tion could mean for future BCI users.

In chapter 6, the future outlook is explored, based on the contribution that this research

has made to the field. Detailed suggestions are made regarding a protocol for carrying out

real-time, in-person experiments. Challenges inherent in a human-in-the-loop scenario are

discussed, as well as strategies to mitigate these challenges. Lastly, the chapter discusses

future developments that could enhance and expand upon the research carried out in this

project. These include: potential improvements to the BCI model; an expansion to long-

term probabilistic modelling of user preferences; adaptive classification with inputs from

passive brain signals such as fatigue, attention, and emotions; and extending the approach

to other applications — theoretically, the framework is applicable to any task in which users

select multiple preferences with varying frequency.

Finally, chapter 7 discusses the overall conclusions of the thesis. The fulfilment of the

objectives is discussed, as well as the progress that this represents in the field.

1.5 Key Contributions

This thesis presents a number of advances in the field of BCI and EEG analysis. In partic-

ular:

• Classifying the EEG responses to different errors against each other, using newly-

explored metrics. The differences between error types investigated in this thesis were

more subtle than previously-explored differences. This contribution is examined in

detail in Chapter 3.

• Showing, for the first time, that it is possible to classify the EEG responses to different

correct actions against each other. This thesis presents the novel discovery that, in

a navigational context, it is possible to classify responses to movements that reach a

target, against other correct movements that do not reach the target, using single-trial

EEG. This contribution is examined in detail in Chapter 4.

• A novel, Bayesian control system, utilising detailed feedback from reactive EEG. This

thesis presents a new approach to utilising reactive EEG signals for semi-autonomous

navigation. The novel system is shown to achieve faster and more accurate target

identifications than existing state of the art methods. This contribution is examined

in detail in Chapter 5.
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1.6 Publications Based on this Thesis

1. A conference paper was published based on initial exploration of single-trial classifi-

cation of different error types against each other, using data from the EADT:

C. Wirth, E. Lacey, P. Dockree, and M. Arvaneh. Single-trial eeg classification of sim-

ilar errors. InProc. 40th Engineering in Medicine and Biology Conference, Honolulu,

HI, USA, July 2018.

2. A journal article was published based on neurophysiological analysis and single-trial

classification analysis comparing the brain’s responses to different error types against

each other, as discussed in chapter 3:

C. Wirth, P. M. Dockree, S. Harty, E. Lacey, and M. Arvaneh. Towards error cat-

egorisation in BCI: single-trial EEG classification between different errors. J Neural

Eng., 2019.

3. A journal article was published based on neurophysiological analysis, and single-trial

classification analysis comparing the brain’s responses to different types of correct

actions against each other, as discussed in chapter 4:

C. Wirth, J. Toth, and M. Arvaneh. You have reached your destination: A single trial

EEG classification study. Front. Neurosci., 2020.

4. A conference paper was published based on the investigation of four-way single-trial

classification of different navigational actions — two different types of error and two

different types of correct actions:

C. Wirth, J. Toth, and M. Arvaneh. Four-way classification of eeg responses tovir-

tual robot navigation. In Proc. 42nd Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC’20), July 2020.

5. At the time of writing, a journal article is under review exploring the application

of multi-way classification of navigational actions, combined with probabilistic mod-

elling, to navigate towards and identify target loci using reactive brain signals, in

simulated real-time experiments:

C. Wirth, J. Toth, and M. Arvaneh. Bayesian Learning from Multi-Way EEG Feed-

back for Robot Navigation and Target Identification, under review for publication in

IEEE Transactions on Systems, Man, and Cybernetics: Systems
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Chapter 2

Review of the Research Area

2.1 A Background on Brain-Computer Interfaces

2.1.1 Why BCI Exist

The original intention of BCI research and development was to provide a means of com-

munication or control to users who have severe motor disabilities, such as people with

amyotrophic lateral sclerosis (ALS) [16,17,167].

However, more recently, the scope of uses for BCI has expanded, as researchers have

realised that they could potentially be advantageous to healthy users [18, 21, 176]. For

example, some studies have explored ways in which mental state monitoring could be used

to assist in driving, such as by detecting mental workload and automatically removing

distractions [78], or by predicting a driver’s intention to brake [74] or turn in a specific

direction [180].

2.1.2 Electroencephalography (EEG)

Electroencephalography (EEG), in which electrical brain activity is recorded via electrodes

placed on the scalp, is the most commonly used imaging method utilised in BCI [112].

However, a number of other options have been explored. Electrocorticography (ECoG)

is an invasive technology, using electrodes placed directly on the surface of the brain. It

can generate signals of higher resolution, both spatially and temporally, than EEG [112].

Impressive results have been achieved in BCI using ECoG, with both human and animal

users [141, 157]. However, due to its invasive nature, ECoG requires surgery, which carries

risks. Some other non-invasive technologies, such as Magnetoencephalography (MEG),

and Functional Magnetic Resonance Imaging (fMRI), can also generate signals with higher

spatial resolution than EEG, but are not portable [112]. EEG does generate signals of high

temporal resolution, and is both non-invasive and portable, as well as being available at a
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relatively low cost [112]. These factors give an insight into the popularity of EEG amongst

BCI researchers.

EEG electrodes are usually placed according to a standard system, known as the in-

ternational 10-20 system [77]. An example of the names of electrode sites can be seen in

Figure 2.1.

Figure 2.1: The international 10-20 system of electrode placement (Source: Klem et al.,
1999 [77])

2.1.3 Signal Processing

Once raw EEG signals have been amplified, they must be processed in order to obtain

meaningful information. The signal processing section of a BCI has been described as the

“BCI transducer”, which can be considered in three sections [44], as shown in Figure 2.2:

1. Artifact processing

2. Feature generation

3. Feature translation
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Figure 2.2: Model of a BCI system (Source: Fatourechi et al., 2007 [44], adapted from
Mason and Birch, 2003 [103])

2.1.3.1 Arifact processing

Firstly, it is desirable to remove artifacts from the data. Artifacts can come from sources

such as electrooculography (EOG, i.e. eye movement and blinks) and electromyography

(EMG, i.e. muscle movements), and can make it more difficult to identify genuine and

relevant neurological activity [44]. If data are segmented into trials, for example a given

time window relative to stimuli, then one option for dealing with artifacts is to reject trials

that are found to be contaminated. This can be achieved by removing any trials wherein

the amplitude of the EEG signal rises above a certain threshold. If EOG or EMG signals are

available, thresholds can be applied to them directly [44]. Alternatively, one can attempt

to remove the artifact without rejecting the trial as a whole, using techniques such as blind

source separation, or principal component analysis (PCA) [44]. Artifacts can also originate

from external sources, such as power-line noise at 50 or 60Hz. This is often dealt with by

applying a notch filter at the appropriate frequency [59,115,151].

2.1.3.2 Feature generation

After artifacts have been processed, features are extracted from the data. Many feature

extraction methods have been implemented in BCI literature [10]. Features can be garnered

from the time domain, frequency domain, spatial domain, or a combination of these.

In raw EEG, each measurement (i.e. each sampled time point in each channel) could

be considered as a feature. In the time domain, one option to select informative features

is to pre-select a specific time window, or windows, in which the signals are expected to

be differentiable between classes [65,74]. An alternative approach is to process the data in

order to select such a time window [158].

Similarly, in the spatial domain, one can pre-select electrode sites in regions of the

brain that are expected to be the most informative [63, 65]. More complex spatial filtering
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techniques can also be applied. One such technique is the application of common spatial

patterns (CSP). CSP filters aim to apply weights to each channel, such that the variance

of the weighted signal is maximised for one class, whilst being minimised for another [22].

In the frequency domain, EEG signals can be broken down into different frequency

bands. Some specific bands are well-established: delta (δ, <4Hz), theta (θ, 4-7Hz), alpha

(α, 8-12Hz), beta (β, 12-30Hz), and gamma (γ, 30-100Hz) [112].

In a recent review of the field, Lotte et al. discuss the state-of-the-art in feature ex-

traction methodologies for a number of different EEG-based BCI tasks [96]. They report

that, for steady state visual evoked potential (SSVEP)-based BCIs, band power (i.e. fre-

quecy domain) features are favoured. Meanwhile, they state that for event-related potential

(ERP)-based studies, such as those utilising the P300 signal, time domain features are pre-

ferred. The P300 is discussed in further detail in section 2.5. The review also points out

that both methods can benefit from being preceded by spatial filtering methods such as

PCA or CSP (or variants thereof, such as filter-bank CSP). However, for some tasks such

as those that utilise the brain’s response to errors, the regions of the brain most likely to

contain useful signals are widely known. As such, many studies based on these signals forego

automatic spatial filtering, preferring to pre-select a small subset of electrodes [30].

Once features have been extracted, it can also be beneficial to select a subset of them,

with the aim of increasing the ratio of meaningful signal to noise. As with feature extraction,

a number of feature selection methods, such as genetic algorithms and PCA, have been

employed in BCI [10].

The recent review from Lotte et al. also discussed the state-of-the-art in feature selec-

tion for various BCI tasks [96]. They broadly identify three subtypes of feature selection

methods. Firstly, filter methods attempt to select a subset features which best discriminate

between the classes, in a way that is independent from the classifier. For example, one

can calculate the correlation coefficients between features and numerical representations of

the classes, and then select the most highly correlated features. Secondly, wrapper meth-

ods generate a subset of features and then actively train the classifier. More feature sets

are iteratively generated until a stopping criterion is met, such as high enough training

accuracy, at which point the features are finalised. The third subtype of feature selection

methodology discussed in the review is embedded methods. These are related to wrapper

methods in that they actively evaluate the performance of features using the classification

method. However, embedded methods also use feedback from the classifier to inform spe-

cific changes to the feature set. Stepwise linear discriminant analysis is identified as an

embedded method that has provided “important improvements in BCI”, specifically in the

context of P300-based studies [38,83,84,96,148].

The most commonly used feature generation techniques used for EEG signals related to
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error processing — a key aspect of this research project — are discussed in section 2.4.2.

2.1.3.3 Feature translation

The next stage is to translate the features into meaningful information that can, for example,

be used to control a device, or to correct errors. The main task here is to classify the signals

according to the user’s intention or brain state, e.g. as imagined left hand movement vs

imagined right hand movement [20, 87], or as an observed error vs non-error condition

[63,74].

A large variety of classification techniques have been applied to BCI, with some of the

most commonly-used classifiers being neural networks, support vector machines (SVM),

and linear discriminant analysis (LDA) [10,97].

2.2 Challenges in Single-Trial EEG Classification

EEG classification entails a number of challenges. EEG signals tend to have a poor signal-

to-noise ratio, so noise presents one challenge [97]. Another challenge is nonstationarity;

EEG signals vary from session to session, and even within sessions [7]. Further to this, BCI

data sets are often small, as they are usually generated in sessions with human participants,

and these sessions can be fatiguing and time-consuming. As such, another challenge is often

that of relatively small training sets. [97]. In many cases, many features are extracted for

each trial - for example, if one were to use data from 64 electrode sites, sampled at 64Hz,

and use all time points from a window of 1 second, one would have a vector of 4096 features.

It is clear, then, that BCI can involve high dimensionality [97]. This leads to a challenge

known as the curse of dimensionality [72]; a search space grows exponentially in relation to

the growth in dimensionality. This can make classification very difficult, especially when few

training data are available [72]. A review published in 2007 suggested that SVM and LDA

were often appropriate classification techniques, when faced with the inherent challenges of

EEG data [97]. An update to this review, published in 2018, suggested that some further

techniques had been shown to handle the data well, such as Riemannian minimum distance

to the mean (RMDM) classifiers and random forests, but reiterated that deep learning

techniques do not appear to be effective, given these challenges [96].

2.3 Active, Reactive, and Passive BCI

Most early BCI systems were “active”. In other words, users had to make a conscious

effort to produce the required signals [80]. Active BCI include those which aim to classify
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sensorimotor activity in order to control a device [56, 106, 174], and those which use slow

cortical potentials for applications such as communication [17].

The term “passive BCI” was coined by Zander et al. in 2008 [178], and refers to BCI

which use signals that are generated “spontaneously” [80]. One example of a passive BCI is

a system that monitors mental workload, in order to automatically reduce distractions when

necessary [78]. Systems that make use of error-related potentials (ErrP) - brain signals that

are generated when a human recognises an error - have also been categorised as “passive”

in some cases [80,176]. ErrP will be discussed in further detail in section 2.4.

In 2011, Zander and Kothe expanded their definitions, and included a definition of

“reactive” BCI. These are systems wherein brain signals are generated in response to ex-

ternal stimuli. “Reactive” BCI include those based on steady-state visual-evoked potentials

- signals of a given frequency that are produced in response to a stimulus flashing at the

same frequency [93], and those that utilise P300 - an aspect of the event-related potential

generated when a human recognises a target stimulus [125] - for spelling applications [83,84].

The full definitions given by Zander and Kothe are as follows:

“Active BCI. An active BCI is one that derives its outputs from brain activity

which is directly and consciously controlled by the user, independent of external

events, for controlling an application.

“Reactive BCI. A reactive BCI is one that derives its outputs from brain activity

arising in reaction to external stimulation, which is indirectly modulated by the

user for controlling an application.

“Passive BCI. A passive BCI is one that derives its outputs from arbitrary brain

activity arising without the purpose of voluntary control, for enriching a human-

machine interaction with implicit information on the actual user state.” [176]

There is a caveat to add to this definition of passive BCI, which is pointed out in

the Brain-Computer Interfaces Handbook: “A user who is aware of a passive BCI system

might be influenced by the expectations they have of that system and voluntarily commit

attentional resources to make sure that the ‘spontaneous’ activity takes place” [80]. In other

words, a user’s knowledge that a passive BCI is in place may, in itself, have an affect on

brain state.

The role of passive BCI is considered to be somewhat different to that of active and

reactive BCI. Both active and reactive BCI have been largely focused on direct control of

devices, or communication [80, 167, 176]. Passive BCI, on the other hand, are commonly

intended to be used alongside other activities, including other human-computer interactions,

and to provide methods of improving the interactions or improving the performance of the

activity [80]. However, recent uses of ErrP in conjunction with reinforcement learning have
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shown that they can be used as an implicit form of device control [63,74]. Arguably, as these

systems involve the user watching the device and deciding, at each movement (i.e. each

stimulus), whether or not it was an error, these particular uses of ErrP could be considered

as “reactive”.

As the signals for passive BCI are produced spontaneously, without the need for con-

scious effort from the user, they can be implemented alongside other BCI, and numerous

passive BCI can be implemented alongside each other [176].

2.4 Error-Related Potentials (ErrP)

2.4.1 Neurophysiology of ErrP

Error-related potentials (ErrP) are brain signals that are generated automatically when a

human recognises an error [13, 51, 142]. ErrP waveforms are characterised mostly by two

main features: the error-related negativity (ERN, also known as Ne), and a later error

positivity (Pe) [42], as shown in Figure 2.3.

Figure 2.3: An example of an ErrP waveform at electrode site Cz. Error commission occurs
at time = 0ms. This shows the mean (central green line) ± 1 standard error (green shaded
area) grand average of 1002 error trials, gathered from 43 subjects.
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The ERN usually occurs fronto-centrally [42, 48, 155]. The Pe has been shown to oc-

cur both fronto-centrally with a relatively sharp peak, and centro-parietally with a more

sustained positivity [155].

There have been varying reports concerning the number of trials required to produce

stable ErrP waveforms. In 2009, Olvet et al. found that ERN and Pe amplitudes were “fairly

stable”, and similar to those shown by grand averages, once 6 to 8 trials were considered.

In 2010, however, Larson et al. considered the number of trials required to achieve stability

between sessions. They investigated using up to a maximum of 14 trials, compared to grand

averages, but found the stability “modest at best”. This may be due to the nonstationarity

of EEG discussed in section 2.1.3, despite reports that error-related signals are relatively

stable over time [29]. Thus, they suggested that more than 14 trials may be necessary

in cases where multiple sessions are to be considered. In their 2017 study, Harty et al.

considered the findings of both of these studies, and elected to use a minimum cutoff of 12

trials per class, per participant [59].

2.4.2 Single-Trial Classification

A number of studies have shown that it is possible to classify errors against correct actions,

using EEG, on a single-trial basis [29, 46–48, 63, 65, 75, 120, 144]. Classification accuracies

have varied across these studies. For example, in a study in which users observed a robot

arm making correct and erroneous movements, Kim et al. achieved classification rates of

95% in the error class and 86% in the correct class [75]. Meanwhile, a study by Charavviaga

and Millán, in which users observed correct and erroneous actions of a computer-controlled

cursor, showed mean classification rates of 75.8% for the error class and 63.2% for the correct

class [29]. Despite the classification accuracy in this study being lower than that achieved by

others such as Kim et al., it proved sufficient for its proposed purpose: facilitating machine

learning. The use of ErrP as a feedback function for machine learning is discussed in greater

detail in section 2.4.4. In a typing task, the best performing subject-specific ErrP classifier

reported by Wang et al. had a sensitivity of 62.20% and a specificity of 51.68% [160]. It has

been postulated that the relatively low performance in the latter study may have been due

to a small number of errors in the training set, as only 2.28% of keystrokes were erroneous,

for the average participant [30,160]. This highlights the challenge of dealing with small and

imbalanced training sets.

Amongst a number of studies, a common strategy has emerged for feature extraction,

prior to single-trial classification of ErrP. This current state-of-the-art strategy is to extract

time domain features from a pre-selected time window (generally beginning around 100-

200ms relative to error commission, and ending around 600-900ms), using data from a few

pre-selected electrodes (usually fronto-central ones). These signals are usually low-pass
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filtered at 10 or 20Hz [19, 29, 30, 46, 152]. The most popular classifiers used for ErrP have

been LDA and SVM [30].

A few studies have compared the signals generated when users register their awareness of

an error with those generated when users are unaware of an error [39,59,61,110,113]. Some

of these studies showed that, while aware and unaware errors produced similar ERNs, the

Pe was diminished in response to unaware errors [39,113]. Similarly to the aforementioned

studies, Harty et al. found “no evidence” of Pe in unaware error responses in either young

or older age groups. Further to this, Harty et al. found the Pe to be somewhat diminished

in older adults’ responses to aware errors, compared to the Pe of young adults - a sign that

the brain’s error responses change with age [59].

The timing of a user’s awareness that an error has occurred has also been shown to affect

the brain’s responses. Yazmir et al. found that the highest peaks in the ERP in response

to success occurred significantly earlier than those for failure, in a throwing task. It was

postulated that this was due to the users’ ability to predict, at an earlier point, that success

would occur [170]. Timing has also been shown to affect single-trial classification. Omedes et

al. reported much greater success in classifying sudden errors than the gradually unfolding

ones, with the expected reason being that the moment of error awareness varied more

greatly for the gradually unfolding errors. Classification accuracy for gradually unfolding

errors was improved by using a sliding window, trained on the sudden errors [114]. In a

later study, Omedes et al. achieved higher classification accuracy on errors made during

fast grasp attempts than those during slow grasps. This may, similarly, be due to awareness

occurring over a broader range of time during slower grasps [115].

2.4.3 Using ErrP to Improve Existing BCI Performance

Since the revelation that ErrP could be classified on a single-trial basis, a number of studies

have utilised them to improve the performance of existing BCI [30]. Some studies have

applied error recognition, and immediate error correction, and have reported improved

spelling speed [144] and bit rate [152]. Others have employed error correction in motor-

imagery-based BCI for the control of a device, again reporting increased bit rates [47].

It should be noted, however, that the use of ErrP detection for immediate error correc-

tion may not be appropriate in all scenarios. A study presented at the International BCI

Workshop in 2008 shows an example of this, in a system where ErrP feedback was used to

correct errors in a P300-based spelling device [158]. The authors conclude that most of the

subjects “can benefit from [error correction] when the accuracy of the P300 speller is no

more than 75%.” In other words, however, this means that if the intial P300 classification

rates were particularly high, then applying error correction (including, of course, “correct-

ing” in the case of some false-positive error detections) could have a detrimental affect
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on the system as a whole. Similarly, while Parra et al. reported an average performance

improvement of 21% across their seven subjects, a small degredation in performance was

reported for two of these individuals [121]. It is important, therefore, to consider the overall

system, including the classification rates of its constituent parts, when deciding whether

error correction is an appropriate tool.

2.4.4 Using ErrP as a Feedback Function for Reinforcement Learning

In recent years, some studies have utilised the detected ErrP as a feedback function for

reinforcement learning (RL), allowing the machine to “learn” optimal, or quasi-optimal,

strategies in response to the user judging which actions are errors, and which are correct [30].

RL strategies should, theoretically, be capable of converging on (quasi) optimal strategies,

using ErrP detection as a feedback function, as long as the classification rate exceeds chance

level [30,63]. In 2006, Buttfield et al., in José Millán’s research group, discussed ErrP, online

learning, and the potential integration of the two to allow continuous adaptation in future

BCI applications [25]. In 2010, Chavarriaga and Millán showed that their system could

learn the optimal policy in a 1-dimensional cursor navigation task “in just a few interaction

trials” [29]. Iturrate et al. applied Q-learning to a virtual basket selection task, converging

on the correct basket in the vast majority of cases. Again, this showed the possibility of

applying ErrP as a feedback function for RL [64].

In 2015, Iturrate et al. presented a larger study, comprising three experiments: a cursor

moving 1-dimensionally, a virtual robot arm moving 2-dimensionally, and a real robot arm

moving 2-dimensionally. In each task, one of several potential targets was selected at the

start of each run. The user had knowledge of the target’s location, but the machine did

not. The machine’s goal was to navigate toward the selected target. ErrPs were detected

based on calibration data from a session 25 minutes long on average. In all experiments,

the devices were able to converge on quasi-optimal policies after just 4 runs, and thus, most

users reached significantly more targets than would be expected by chance. The strategy

was also able to generalise successfully when new targets were introduced [63].

In a study in 2017, Kim et al. allowed users to control a simulated robotic arm, and a

real robotic arm, using physical gestures. Since the user was observing the robot’s actions,

the machine learned to map each gesture to the appropriate action using ErrP as a feedback

function. The authors reported a significant correlation between the true positive rate (i.e.

the proportion of errors recognised) and robot performance, based on results from the

real robot task. However, this claim was not substantiated by data from the simulated

robot task, as the publication’s supplementary materials revealed that the correlation in

this case was not significant. Nevertheless, the authors were able to show a statistically

significant improvement in robot performance over time, as the robot learned the relevant
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mappings [75]. This provides further evidence that ErrP can be successfully used as a

feedback function, allowing machines to learn appropriate actions.

2.4.5 Error Categorisation

A few studies have shown that, beyond classifying errors against correct actions, it is possible

to distinguish different errors against each other based on the ErrP that they evoke. For

example, in a study by Iturrate et al., a virtual robotic arm had the task of selecting a

specific basket. However, there were four other baskets that the arm could erroneously

select. These baskets were:

• 1 step away, left of the target basket

• 2 steps away, left of the target basket

• 1 step away, right of the target basket

• 2 steps away, right of the target basket

The study showed that there were significant differences between the ErrP for errors to

the left vs those to the right, and also between those of small vs large errors. Furthermore,

even with 5 classes (correct, plus both large and small errors to left and right), single-

trial classification accuracies of around 60-80% were achieved for each category, for each

participant [64].

In addition to comparing errors based on direction and severity, a small number of

studies have considered neurophysiological differences arising from varying sources of errors.

Furthermore, a study by Spüler and Niethammer showed that it is possible to classify errors

committed by a human against errors committed by a machine [151]. Different ErrP and

error types that have been discussed include:

• “response ErrP”, caused when a human recognises that they have responded incor-

rectly to a task [42,46,75].

• “feedback ErrP”, caused when a human is informed that they have made an error, of

which they were previously unaware [46,75].

• “observation ErrP”, occurring when a human observes an error committed by a ma-

chine or another human [46,75].

• “execution errors”, when a machine fails to execute a command as instructed by the

human (this could arguably be considered as a term for a type of error eliciting an

“observation ErrP”) [75,151].
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• “outcome errors”, when a human experiences a task failure [75,151].

In Spüler and Niethammer’s 2015 study, users played a game in which they controlled a

computer cursor, using a handheld controller, to avoid virtual falling blocks. They compared

execution errors - wherein the direction of the cursor would suddenly diverge from the

direction specified by the user’s controller - with outcome errors - when the cursor collided

with a block. One confusing element of the study is that one might expect that outcome

errors would often occur shortly after execution errors, as the hindrance of the user’s contol

may cause the cursor to collide with a block. This potential issue, and how it might affect

the brain’s responses, is not addressed in the publication. Even so, the authors were able to

show that they could classify execution errors against outcome errors (i.e. machine errors

vs human errors), using single-trial EEG, with mean accuracy of over 70%, significantly

above chance level [151].

2.5 P300

Another brain signal that is produced automatically in response to certain stimuli is the

P300: a positive peak in an ERP at approximately 300ms relative to a given stimulus

[125,149]. This peak is known to be elicited in the brain when a subject recognises a target

stimulus in a sequence containing both target and non-target stimuli [125, 128, 129]. The

P300 has been successfully utilised in BCI, notably in spelling devices [43, 45, 55, 84, 148].

In these cases, the “target” stimulus is the specific character the user wishes to type. Each

potentially desired character is typically highlighted a number of times, with each time being

referred to as a “subtrial”. These subtrials are then averaged to increase the robustness of

classification [43,45,55,84,97,148]. Similar systems have also been developed for the control

of robots [12,15,69,100], cursors [70,91,130], and wheelchairs [62,132].

Single-trial P300 classification — classifying the presence of a P300 against its absence

— is challenging, due in part to the low signal-to-noise ratio of EEG data [68, 97], hence

many systems presenting a number of subtrials. One study investigated the effects of

different numbers of subtrials, and, while high accuracy was achieved with many subtrials,

classification accuracy of less than 50% was reported based on a single subtrial, and 3

subtrials were required to achieve over 60% accuracy [89]. More recently, studies focusing

on single-trial P300 classification have shown success, with some reporting accuracies over

80% [49,79,94].

In one previous study, one version of a task presented 80% standard stimuli and 20%

target stimuli with all targets being identical to each other, while another version presented

80% standard stimuli and 20% target stimuli, with a pool of 25 different target stimuli; the

latter case was found to elicit a broader P300 [24]. While the responses to the different
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target stimuli were not compared to one another, this finding suggests that the P300 is

affected by how often a specific stimulus appears in a task. Indeed, other literature has

reported that P300 amplitude increases for larger target-to-target intervals [52]. As well

as this, the P300 has been shown to be associated with positive outcomes [58], and its

amplitude has been shown to be affected by reward magnitude [140,169,171].

2.6 BCI Control and Optimisation

Many real-time BCIs can be considered as control problems [1]. Often, the aim is to capture

and interpret brain signals in order to control a cursor [168] or other neuroprosthetic device

[28]. Thus, a good deal of research in BCI is related to facilitating this control, or improving

some aspect of it. As one might expect, the aspect that recieves the most attention in BCI-

specific research is how to improve the interpretation of brain signals [96,97]. However, other

valuable contributions have been made by studies focusing on other aspects of the control

problem. Shared-control systems have shown admirable performance when augmenting

brain-actuated commands with reflexes from robotic sensors [73], visual feedback [12], or

other environmental context [50, 156]. For example, brain signals have been combined

with sensor fusion in a Bayesian system [126]. This allows prior knowledge - in this case,

knowledge of the surroundings - to alleviate difficulties of EEG processing such as noisy

data, in order to choose the direction that is deemed to have the highest probability of being

the most agreeable. Such systems show the potential to expand BCI into complex tasks.

One study showed that reliable 3D control could be achieved in a virtual environment, by

imposing intelligent constraints on the commands inferred from the users’ brain signals [137].

Let us consider the specific case of BCIs that utilise reactive EEG signals. These can

be considered as closed-loop control systems: a machine performs a control action, receives

feedback in the form of an EEG response, and updates its future actions accordingly. As

discussed in section 2.4.3, one common use of reactive EEG is to classify ErrPs and use

them to facilitate error correction. However, as discussed in section 2.4.4, another approach

is to use EEG signals as feedback for machine learning. These systems can be considered

as approaches to an optimisation problem, as they use the feedback to search for optimal

or quasi-optimal solutions to a control problem. A number of these systems have employed

reinforcement learning methods such as Q-learning to optimise the route from one location

to another (see section 2.4.4). Also within the realm of navigation optimisation, a handful

of studies have begun to investigate using EEG feedback to infer a user’s preferred target

destination [54,143].
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2.7 Semi-Autonomous BCI

The concept of a semi-autonomous system in general is to allow the user to make high-level

decisions, but to make the machine responsible for the execution of low-level actions [30].

This has the potential to reduce the workload of the user, as discussed in section 1.1.

A small number of studies have begun to explore the possibility of developing semi-

autonomous BCI. For example, Perrin et al. have presented a system in which the machine

selects available navigation options for the user’s wheelchair and presents them to the user,

one at a time, beginning with the option deemed to be most likely. The user’s task is to use

motor imagery to give yes or no answers, either selecting the presented option or moving

on to the next. The machine then controls the wheelchair’s movements [122]. A related

study from Lotte et al. allowed users to choose high-level options using motor imagery to

make selections via a binary tree [98]. The low level navigational actions around a virtual

environment were then controlled by the machine, although the system also offered a manual

control mode. A few studies have proposed an adaptation of the P300-speller paradigm (as

described in the previous section) to select high-level options. Rebsamen et al. presented

what they describe as a “slow but safe and accurate” P300-based destination selection

system [133]. Guger et al. used a similar P300-based approach to control various aspects of

a smart home [55]. Accuracy rates in this study varied greatly between the most and least

successful tasks, suggesting that such a system may be very sensitive to the specific design

of the action selection screen.

Another example was presented by Lampe et al. in 2014. Here, image processing was

used to identify a number of objects in view of a camera. Users were asked to imagine

finger tapping to scroll through the available options, and imagine toe clenching to select

the highlighted option. Reinforcement learning was then used to train the machine to

perform a grasp on the object. Here, the feedback function is not based on ErrP, and is

merely described as “learning from success and error” [87].

As discussed in section 2.4.4, systems using ErrP show a good deal of potential for semi-

autonomous BCI, by allowing the machine to learn the user’s preferences, while the user

must simply have a high level goal in mind and observe the machine’s actions.

The term “hybrid BCI” was coined by Pfurtscheller et al. in 2010, and defined as an

overall system that is “composed of two BCIs, or at least one BCI and another system” [124].

As such, the semi-autonomous systems described above could be classed as “hybrid BCI”.

One way that semi-autonomous BCI could be developed would be to couple two BCIs

together into a hybrid BCI, for example by using motor imagery to select an action, and ErrP

detection to allow the machine to learn how to perform the action optimally. Alternatively,

any other type of control system - if available to the user - could be employed to allow
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the user to make high-level decisions, with error-driven learning again taking responsibility

for the development of optimal low-level control solutions. In either case, the use of ErrP

processing could provide the next step in hybrid, semi-autonomous BCI.

2.8 Gaps and Shortcomings in Existing Research

Despite a number of interesting recent studies, there are still many new avenues to be

explored to advance BCI towards an autonomous system.

2.8.1 Classification of Similar Error Conditions

As discussed in section 2.4.5, recently a few studies have started to explore the single-

trial classification of different errors against each other. However, in existing literature,

the error conditions being compared have had clear-cut differences, such as direction [64],

severity [64], or whether the error was committed by a human or by the machine [151].

However, in real-world scenarios, errors cannot always be delineated by these metrics. As

such, it is important to consider whether errors that are similar in all of the aforementioned

aspects, with only more subtle differences between them, can be classified against each other

on a single-trial basis. The ability to do so would increase the scope of possible applications

for EEG error detection, and would thus have the potential to improve brain-machine

interaction.

2.8.2 Progressing Beyond Errors

Previous studies discussed in section 2.4.4, such as that of Ituratte et al. in 2015, have

made interesting advances in using ErrP classification to learn how to navigate towards a

target [63]. However, in these studies, classification has only been between correct actions

(toward the target) and erroneous actions (away from the target). Each run automatically

finished when the target was reached. The intelligent systems had no awareness that they

had reached the target - only that they were moving in the correct direction. As such, in

many real scenarios, a robot would have had to pass the target, at which point ErrP should

inform it that this move was an error, and then return. It may then have to attempt a

number of alternative directions, only to be told that all are errors, before settling on the

correct location of the target. Situations such as this could be improved by considering

more spontaneously generated brain signals than just ErrP. For example, instead of these

systems merely considering all non-erroneous actions as one “correct” condition, it would

be beneficial to be able to classify multiple different correct actions, such as moving toward

a target vs actually reaching a target.
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2.8.3 A Novel Framework for Implicit Human-Robot Interaction

In the existing literature, early steps have been taken in using implicit human-robot com-

munication to allow machine-learning-based robot control [63, 75]. However, these studies

have been restricted to the binary information, simply regarding each action as correct

or erroneous. I believe that, building on the studies discussed in this section, addressing

the research gaps outlined above, and applying learning strategies with the power of the

broader and more detailed information that would be gathered, a new BCI framework could

be developed. This would be manifested as a more autonomous system, achieved through

implicit communication between human and machine.
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Chapter 3

Classifying Different Error

Conditions Against Each Other

The findings presented in this chapter have been previously published in the Journal of

Neural Engineering [161], with preliminary results published in the proceedings of the 40th

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC

’18) [162].

3.1 Chapter Introduction

When a human recognises that an error has been committed, either by themselves or in

actions that they are observing, ErrP signals are generated in the brain [51]. As discussed

in section 2.4, a number of studies have shown that it is possible to differentiate between

errors and correct actions, by detecting ErrP using EEG, on a single-trial basis [30, 63,

75, 179]. Interestingly, previous studies have confirmed the possibility of using single-trial

error vs non-error classification as a feedback function for a reinforcement learning-based

BCI [30, 63, 75, 179]. This opens up the possibility of moving toward autonomous BCI

systems, allowing the machine to learn appropriate low-level actions based on the human’s

perceptions of which actions are correct, and which are errors. Such systems are able to

learn quasi-optimal solutions in scenarios such as simple navigation tasks [63,179], and thus

may reduce human mental workload. However, when tasks increase in complexity, learning

will become slower if the only available information is whether a given action was correct

or erroneous. Hence, if a system can be given more detailed information about the type of

error that occurred, it can correct its actions more appropriately, and learn more quickly.

More recently, a handful of studies have shown that, beyond classifying errors against

correct actions, it is possible to distinguish different errors against each other based on their
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ErrP. For example, ErrPs have been distinguished based on the direction or severity of an

erroneous action [64], and outcome errors (committed by a human) have successfully been

classified against execution errors (committed by a machine) on a single-trial basis [151].

Despite these recent advances, the vast majority of literature in the field concerns the

classification of errors against correct actions, rather than the classification of different er-

ror types against each other. Furthermore, different errors cannot always be categorised by

previously explored metrics such as direction, severity, and whether the error was commit-

ted by the human or the machine. For example, if we are trying to navigate to a target

location we could either take a wrong turn on the way, or we could reach the target but

then pass it. These two errors could be of the same direction and magnitude, and there-

fore indistinguishable by currently explored metrics, but knowing which one had occurred

would provide useful information. Therefore, it is important to consider whether there are

significant neurophysiological distinctions in EEG signals between the brain’s responses to

very similar error conditions, even in cases where metrics explored in existing literature are

not available.

To address this question, we evaluated data from two tasks. In the first task, users

were presented with “go” and “no-go” stimuli and asked to respond to “go” stimuli, but

withhold responses to “no-go” stimuli. All of the errors considered by this experiment were

response errors committed by humans who failed to withhold responses to “no-go” stimuli,

and then recognised their own errors. None of the errors had any direction associated with

them, and participants were not instructed to consider any errors as more or less severe than

any others. The key difference between the error conditions lay in the cognitive processes

required to recognise them, with the recognition of one error condition being more memory-

dependent than the other. In the second task, users observed a virtual robot attempting to

navigate to, and grab, a target object. Here, we investigated users’ EEG responses to two

navigational errors: moving away from the target when in position and ready to grab it, and

moving further away from the target object if not already in position. Errors were equally

likely to be made to the left or the right. In this case, all errors were being committed by

the machine. As with the first task, direction could not be used to distinguish the error

conditions, and users were not told to consider either error to be more or less severe than

the other. As such, the error conditions considered here could not be differentiated by

metrics used in existing literature. However, the contexts in which the errors arose differed

slightly: In one condition, the expected correct action would be a lateral movement towards

the target. In the other condition, the expected correct action would be to grab the target.

We aimed to use distinctions in the EEG signals, arising from these subtle differences of

cognitive load and context, to classify the error conditions against each other.

To explore the neurophysiological distinctions between the responses to these error con-
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ditions, we used time domain data to compare the latency and amplitude of key ErrP

features: the error-related negativity (ERN), and the error positivity (Pe). As discussed in

section 2.4, the ERN is a negative deflection, usually peaking fronto-centrally around 100ms

after an error [30, 41, 51]. The Pe is a slower positive wave, often peaking centro-parietally

between 200-400ms after the error [30, 41, 59, 117]. In contrast with the ERN, the Pe has

been shown to depend on participants’ awareness and confidence that an error has been

committed [39, 110, 113, 118], suggesting that the Pe is linked to conscious processing of

errors. In addition to amplitude, the “build-up rate” of the Pe (i.e. the steepness of the

slope as amplitude increases to the peak) has also been identified as a marker of evidence

accumulation for error detection [111]. Further to this, secondary Pe peaks have been iden-

tified, again being linked to conscious, evaluative processes [5, 40]. The ERN and Pe have

been displayed in a variety of previous single-trial error classification studies [30,46,63,151].

We also investigated the spatial distribution of the brain’s response to each error con-

dition, using topographical maps. In order to distinguish between error conditions on a

single-trial basis, we employed a stepwise linear discriminant analysis classification strat-

egy, using a small, highly discriminative set of time domain features from 20 electrode

sites. We tested the efficacy of this strategy using data from 20 young and 5 older adults

performing one task, and 14 young adults performing the other task.

3.2 Methods

3.2.1 Participants

This study used data collected during two tasks, which we refer to as the “Error Awareness

Dot Task” (EADT) and the “Claw Task”. Fifty-four healthy adults were recruited for the

EADT. 28 of these were young (aged 18-34) and 26 were older (aged 65-80). Seventeen

healthy adults were recruited for the Claw Task.

All of these participants were included in neurophysiological analyses, but some were

excluded from the single-trial classification phase of this study. 23 were excluded from the

EADT (4 young, 19 older) due to not producing enough artefact-free trials for all conditions.

A further 6 from the EADT (4 young, 2 older) were excluded as it may have been possible

to classify their data based on motor signals, rather than ErrPs. The rationale for these

exclusions is explained in further detail in section 3.2.4.1. This left 25 participants from

the EADT (20 young, 5 older) to be included in the single-trial classification phase. 3

participants were excluded from the Claw Task due to not producing enough artefact-free

trials for all conditions. All Claw Task participants used for single-trial classification were

young (aged 18-35).

All participants for both tasks had normal or corrected-to-normal vision. They reported
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no history of psychiatric illness, head injury, or photosensitive epilepsy. Written informed

consent was provided before testing began. All participants of the EADT also reported that

they had no history of colour-blindness. All procedures for both tasks were in accordance

with the Declaration of Helsinki. Procedures for the EADT were approved by the Trinity

College Dublin Ethics Committee, and procedures for the Claw Task were approved by the

University of Sheffield Ethics Committee in the Automatic Control and Systems Engineering

Department.

3.2.2 Experimental Setup

3.2.2.1 EEG Setup

For the EADT, 64 channels of EEG were recorded at 512Hz, using the BioSemi ActiveTwo

system. Electrodes were placed using the 10-20 system. Electrooculogram (EOG) electrodes

were also placed at the outer cantus of each eye, and above and below the left eye. Reference

electrodes were placed on the left and right mastoid.

For the Claw Task, 20 channels of EEG were recorded at 500Hz, using an Enobio 20

5G headset. The electrode positions used were: F7, F3, Fz, F4, F8, FC1, FC2, T7, C3, Cz,

C4, T8, CP1, CP2, P3, Pz, P4, PO7, PO8, and Oz. Reference electrodes were placed on

the earlobe.

3.2.2.2 The Error Awareness Dot Task

The EADT was a time-critical reaction task, requiring sustained attention. The task em-

ployed a “go/no-go” paradigm, requiring participants to react to “go” stimuli with a mouse

click, but withhold their reaction in the case of “no-go” stimuli.

Participants were shown a succession of randomised, differently-coloured dots on a com-

puter screen, with a blank grey screen shown between dots, as shown in Figure 3.1.

Participants were asked to perform a left mouse click, in a timely manner, in response to

the presentation of each new dot. However, in two “no-go” scenarios, they were asked to

withhold their response. These scenarios were the presentation of a blue dot, or of a dot

that was the same colour as the previous dot. These are known as the “colour condition”

and “repeat condition”, respectively. If participants did click in either of these scenarios,

they were asked to perform a second click with the right mouse button, in order to indicate

their awareness of the error.

Before testing began, a practice block took place, in which participants had to respond

successfully to three consecutive no-go trials, either by withholding their initial response or,

if they did click erroneously, by following up with an awareness click.
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Figure 3.1: The Error Awareness Dot Task (EADT). Participants were asked to respond to
“go” stimuli with a left mouse button click (L). They were asked to withold this response in
the event of either a “colour no-go” stimulus (the stimulus is blue) or “repeat no-go” stimulus
(the stimulus is the same colour as the previous stimulus). If participants performed a left
mouse click following a no-go stimulus, they were asked to follow this with a right mouse
button click (R), to register their awareness of their error.

8 blocks of trials were collected from each participant, with the exception of five, for

whom 4-6 blocks of trials were collected. Each block lasted approximately 6 minutes, and

contained 176 “go” trials, 16 “repeat condition” trials, and 8 “colour condition” trials.

The duration for which each stimulus was shown varied throughout the task, depending

on the accuracy of the participant in performing correct responses to go and no-go trials.

Initially, stimuli were displayed for 750ms. However, if the participant’s accuracy were

below 50%, stimulus duration would increase to 1000ms. Conversely, if the participant’s

accuracy were above 60%, stimulus duration would decrease to 500ms. Accuracy between 50

and 60% would result in stimulus duration remaining at, or reverting to, 750ms. Stimulus

duration was updated every 40 trials. An inter-stimulus gap, in which the screen was a

blank grey, remained constant at 750ms. This meant that the time period between the

onset of stimulus n and the onset of stimulus n+1 could vary between 1250ms and 1750ms.

The EADT paradigm was previously described in the PhD thesis of Eric Anthony Lacey,

entitled “Behavioural and Electrophysiological Aspects of Error Processing in Alzheimer’s

Disease and Healthy Ageing” [86].
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Arm location Action Type Probability

Not above target

Move towards target Correct 0.7

Move further from target
Error

0.2
(FA condition)

Grab Error 0.1

Above target

Grab Correct 0.65

Step off target
Error

0.35
(SO condition)

Table 3.1: Action probabilities for the Claw Task. Note that correct actions and grabbing
errors were not considered as a part of this study, as the robot would always have information
about whether it had performed a lateral movement or a grab action.

3.2.2.3 The Claw Task

In the Claw Task, the errors in question were committed by the machine and observed by

the participants, as opposed to errors being committed by the participants themselves in

the EADT. Thus, the Claw Task is similar to error-driven BCI scenarios in which users

observe actions made by a machine [63,64].

Here, participants were asked to observe a computer-controlled simulation of an arcade

‘claw crane’ game. Participants were shown a screen with 8 coloured circles arranged in a

row and, above the circles, a virtual robotic arm, as shown in Figure 3.2. A single circle,

selected at random at the start of each run, was designated as the target. This circle was

coloured blue and marked with a score of +25 points. Every other circle was coloured red.

The red circles immediately adjacent to the target were marked with a score of -10 points,

and the scores marked on each circle decreased by a further 5 points with each step further

from the target. The robotic arm began each run directly above a circle either 2 or 3 steps

away from the target. Every 1.5s, the robotic arm would either move 1 step to the left,

move 1 step to the right, or extend downward to grab the circle beneath it. Movements

occurred instantaneously. The probability of each type of action occurring depended on

whether or not the arm was positioned directly above the target circle. A table of action

probabilities is shown in Table 3.1.

A score was also displayed in the top left corner of the screen. When a “grab” action

was performed, the score would be updated according to the score marked on the circle

that had been grabbed. After each “grab” action the run would finish and the screen

would become completely black. Nine of the Claw Task participants were asked to silently

count the number of times each movement error was made in each run, in an attempt
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Figure 3.2: The Claw Task. Participants were asked to observe as a virtual robotic claw
attempted to navigate towards, and grab, a blue target ball. If the claw was aligned over
the target ball, possible actions were either to grab the ball or take 1 step away from the
target. If the claw was not aligned over the target ball, possible actions were either to move
1 step towards the target, move 1 step further away from the target, or grab the red ball
beneath the claw’s current position.

to help them stay focused on the task. These participants were asked to write down the

number of errors on a sheet provided at the end of each run. As such, the gap between the

end of one run and the start of the next run was 10 seconds. The remaining eight Claw

Task participants were not asked to perform the counting. For these participants, the gap

between runs was 5 seconds. In either case, a beep would sound 1 second before the next

run began. Participants were asked to refrain from movement and blinking during each run,

but told that they could move and blink freely between runs, while the screen was blank.
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This process repeated until the end of the block, with each block lasting approximately 4

minutes. The score was reset to 0 at the beginning of each new block.

The actions considered for this study were movement errors. Movements in which the

virtual robot was aligned over one of the red non-target balls, and moved further away

from the target, are hereafter referred to as “FA condition” errors. Movements in which

the virtual robot was aligned over blue target ball, but stepped off it, are hereafter referred

to as “SO condition” errors. A third error type was present in the task: a “grab error”,

when the robot grabbed a non-target ball. These errors occurred from a different type

of movement than FA and SO condition errors, which both occurred as a result of lateral

movements. The robot would always have information about whether it had made a lateral

movement or a grab action. As such, in a BCI application, there would be no need to

differentiate grab errors against other error types using EEG. Standard error detection

applied following a grab action would be enough to identify them. For this reason, grab

errors were not considered as a part of this study. The score was only updated after a “grab”

action, and not after lateral movements (including either “FA condition” or “SO condition”

errors), therefore no points were directly gained or lost as a result of either error condition.

Considering this, together with the fact that each error was of the same magnitude (1 step),

we considered them to be of similar severity.

Participants were asked to observe blocks, with breaks of as long as they wished between

blocks, until they reported their concentration levels beginning to decrease. Most partici-

pants observed 6 blocks of trials. However, four participants observed 3-5 blocks, and three

participants observed 7-8 blocks.

3.2.3 Data Analysis

For both tasks, EEG data were first resampled to 64Hz. In order to do this trials were first

upsampled, then filtered using a least squares linear phase anti-aliasing FIR filter with a

lowpass cutoff of 32Hz. The filtered data were then downsampled by averaging across data

points, and initial data points from the output of filtering were removed to compensate

for the delay introduced by the linear phase filter. This process was carried out using

the resample function, from the MATLAB Signal Processing Toolbox, release 2018b [104].

After resampling, data were band-pass filtered from 1Hz to 10Hz, as ErrP components have

been shown to occur at low frequencies [30, 51]. Event related spectral perturbation plots

confirmed that activity for these tasks occurred predominantly in low frequencies, as shown

in Figure 3.3. Zero-phase band-pass filters were created using the filtfilthd function from

the MATLAB Central file exchange [92]. For the EADT, trials were included in cases where

the error was followed by a secondary mouse click to indicate the participant’s awareness of

their error. Trials were extracted from a time window of -300ms to 700ms, relative to the
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commission of each error (i.e. the initial, erroneous mouse click). Previous literature has

shown evidence that participants’ EEG may show signs of an error response before they

commit the error [59]. As such, the EADT time window began before error commission.

Errors of which the participants were unaware were not considered as part of the main

investigations of this study. As the Claw Task involved errors committed by the machine,

rather than the human, it would not have been pertinent to consider signals prior to error

commission. Therefore, for the Claw Task, trials were extracted from a time window of

0ms to 1000ms, relative to the movement of the virtual robot. Each extracted error trial

was baseline corrected relative to a period of 200ms immediately before the presentation

of its related stimulus. Artefact rejection was performed by discarding any trials in which

the range between the highest and lowest amplitudes, in any channel, was greater than

100µV. In EADT data, a mean of 1.9 colour condition trials and a mean of 3.0 repeat

condition trials were rejected per participant, from overall means of 22.2 and 32.5 trials

per participant for the two conditions respectively. In Claw Task data, a mean of 2.0

trials from the FA condition and a mean of 0.7 trials from SO condition were rejected per

participant, from overall means of 48.8 and 23.4 trials per participant for the two conditions

respectively. Further to this, independent component analysis (ICA) was performed on the

pooled trials from all participants combined, for each task. Components resembling EOG

artefacts, as identified by visual inspection of topographic maps, were filtered out of the

data. Thus, one component was removed from the data related to each task, from a total

of 64 components for the EADT and 20 components for the Claw Task. The remaining

components for each task were then recombined. This process was carried out by running the

pop runica, pop selectcomps, and pop subcomp functions from EEGLAB in MATLAB release

2018b [34,104]. A general visualisation of the full preprocessing methodology, applicable to

both data analysis and classification, is shown in Figure 3.4.

Grand average time domain ErrP data were plotted using the extracted trials, showing

the mean voltage ± 1 standard error of the following comparisons: EADT colour condition

vs repeat condition in young adults, EADT colour condition vs repeat condition in older

adults, and Claw Task FA condition vs SO condition in all participants. A small number

of trials were excluded from the grand average time domain plots for the EADT, where the

initial click had occurred at least 550ms after the presentation of the stimulus. This was

due to the fact that longer reaction times could result in the presentation of stimulus n+1,

which could occur 1250ms after stimulus n in the EADT, occurring within the time window

(-300ms to 700ms, relative to the click) of stimulus n, and so the inclusion of these trials

could have contaminated the late part of the grand average data with responses to these

following stimuli. In total, 14 out of 717 colour condition trials and 12 out of 1181 repeat

condition trials were excluded from these plots for this reason.
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Figure 3.3: Grand average event related spectral perturbation plots, showing Cz data from
(a) young EADT participants, colour condition, (b) young EADT participant, repeat con-
dition, (c) older EADT participants, colour condition, (d) older EADT participants, repeat
condition, (e) all Claw Task participants, FA condition, and (f) all Claw Task participants,
SO condition.
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Resample to 64Hz
using resample function

Raw EEG data

Band-pass filter
using filtfilthd function

Extract trials in a 
specific time 

window

Baseline correct
by subtracting the average 
amplitude recorded in each 
channel in a period 200ms 

prior to the stimulus

Reject artefacts
by removing any trials in 
which the range between 

highest and lowest 
amplitudes was > 100μV

Filter EOG
(where necessary)

via ICA, using pop_runica, 
pop_selectcomps, and 

pop_subcomps functions

Select channels
by keeping data only from 
the appropriate electrodes 
for analysis/classification

Preprocessed
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Figure 3.4: EEG data preprocessing. Band pass filter high and low frequencies, start and
end time points of the time windows, and specific channels used, are all variable depending
on the requirements of the analysis. For neurophysiological data analysis, artefact rejection
occurred if the threshold were surpassed in any channel. For classification, artefact rejection
occurred only if the threshold were surpassed in a channel that was intended to be used
for classification. EOG filtering was only carried out if ICA indicated the presence of EOG
artefacts.
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Peak analysis was performed in order to identify the latencies at which ERN and Pe

occurred in the ErrP data. This was carried out using the findpeaks function from the

MATLAB Signal Processing Toolbox, release 2018b [104]. ErrP signals are known to be

associated with midline electrodes [42]. Visual inspection of time domain ErrP and topo-

graphical plots showed high positive Pe activity around the central midline across all tasks

and age groups, with the most notable amplitude difference between the classes being vis-

ible in Cz time domain data. As such, electrode site Cz was chosen as the most suitable

channel for peak analysis for this study. In each task, this peak analysis was carried out on

the grand average ErrP waveform related to each error condition, and also for the grand

average ErrP of all trials of the two error conditions pooled together. In the EADT, the

analysis was carried out seperately for each age group. For each group, the data were first

averaged, and then peaks were identified in the resultant waveform. The ERN was iden-

tified as most prominent negative peak, and Pe as the highest positive peak, occurring in

specific time windows. Time windows for ERN were -100ms to 200ms in the EADT, and

0ms to 300ms in the Claw Task. Time windows for Pe were 0ms to 400ms in the EADT,

and 100ms to 600ms in the Claw Task. These time windows were selected based on a vi-

sual inspection of the time-domain data; ERN windows started slightly before the start of

the negative deflection in grand average plots and centred on the negative peaks, and Pe

windows began just before the start of the positive deflection and ended once amplitudes

had returned approximately to baseline levels. As discussed earlier in this section, evidence

has shown that some participants may show signs of an error response before they com-

mit the error [59], hence the ERN time window in the EADT beginning 100ms prior to

error commission. To check for statistically significant differences in peak latencies across

error conditions, the same peaks were identified in the average time domain data for each

individual participant with at least 12 trials per condition and at least 40 trials in total,

as previous literature has suggested that a minimum of 12 trials are required to achieve a

reasonable level of temporal stability of ERN and Pe, and that temporal stability increases

with the number of trials [88]. Wilcoxon signed-rank tests were then carried out on these

data, comparing the latencies identified in each of these participants’ average time domain

waveforms for the two conditions. To check for statistically significant differences in peak

amplitude, the amplitude was calculated in each of these participants’ average waveforms

for each condition, in a 50ms window surrounding the ERN and Pe peaks identified in grand

average data (from peak -25ms to peak + 25ms). Wilcoxon signed-rank tests were carried

out to compare these amplitudes. Furthermore, the build-up rate of the Pe was calculated

for the average waveform of each participant, in each error condition, for both tasks. This

was achieved by performing a linear regression on a time window, 100ms in duration, ending

at the identified Pe peak. This gives an indication of the rate at which the amplitude is
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increasing up to the peak. Wilcoxon signed-rank tests were carried out to check whether

the build-up rates of the different error conditions varied in a statistically significant way.

Topographical maps were then plotted for each error condition, using the same time

windows. All topographical maps for a given task used the same scale, from the minimum

value to the maximum values across all grand averages.

While the main focus of this study was on errors of which the participants were aware,

a brief analysis was carried out to compare the number of “aware errors” (errors followed

by an awareness click) vs “unaware errors” (errors not followed by an awareness click) in

the EADT. The percentage of errors of which each participant was aware was calculated for

each error condition in each task. Wilcoxon signed-rank tests were carried out in order to

check whether there was any significant difference between awareness rates for the various

conditions.

3.2.4 Classification

Broadly, the same classification protocol was followed for all participants of both tasks.

However, different time windows were used to extract features for the two tasks. The

protocol is described in this section.

3.2.4.1 Preprocessing

20 electrode channels were available in the Claw Task data (F7, F3, Fz, F4, F8, FC1, FC2,

T7, C3, Cz, C4, T8, CP1, CP2, P3, Pz, P4, PO7, PO8, and Oz). As such, these 20 channels

were used for single-trial classification of the both tasks. As with the neurophysiological

analysis, data for classification were resampled to 64Hz and band-pass filtered between

1Hz and 10Hz. In the EADT, trials were extracted from -100ms to 400ms, relative to

the commision of errors (i.e. the erroneous click), in cases where the participants showed

awareness of the error. In the Claw Task, trials were extracted from 100ms to 700ms,

relative to the virtual robot’s movement. These time windows were selected based on visual

inspection of grand average time domain data for each task, aiming to encapsulate the

areas which indicated differences between the amplitudes of responses to the two conditions.

Trials were baseline corrected to a period of 200ms immediately before presentation of the

stimulus, and artefact rejection was performed to remove any trials with a range of greater

than 100µV between the highest and lowest amplitude in any of the channels being used for

classification. After this, remaining EOG artefacts were cleaned using ICA, as previously

described in section 3.2.3.

As discussed in section 3.2.3, temporal stability of the ERN and Pe have been shown

to increase with the number of trials, with a minimum of 12 trials being recommended to

37



achieve a reasonable level of stability [88]. As such, for the purpose of single-trial classifica-

tion, we only included participants who had generated at least 12 trials per error condition,

and a minimum of 40 trials overall.

Due to the experimental setup of the EADT, which involved participants clicking a

mouse to confirm error awareness, motor movements would sometimes occur less than

400ms after error commission, i.e. within the classification time window. As such, it was

important to ensure that the classification was based on error responses rather than senso-

rimotor rhythms. To this end, two analyses were carried out on the latency between error

commission and awareness confirmation in the various error conditions. Firstly, for each

participant, a Fisher’s exact test was carried out on the number of trials that did contain

awareness confirmation within the time window used for classification vs the number that

did not, in each of the two error conditions. This test was to check, for each participant,

whether significant classification could feasibly be achieved based on the presense or absence

of sensorimotor rhythms. Secondly, for each participant in each task, Welch’s t-test was

carried out, comparing the latencies at which participants confirmed their error awareness,

between the two error conditions. The latencies of mouse clicks, confirming error awareness,

were included in the t-test if they occurred within the classification time window (-100ms

to 400ms). Clicks outside this window were ignored as they were not deemed to have a

potential effect on classification. The t-test was automatically marked as not significant if

there were no awareness confirmations within the classification epoch. The purpose of this

test was to act as a guide, for each participant, as to whether significant classification could

feasibly have been achieved based on differences in the time at which awareness-based sen-

sorimotor rhythms occurred. We were mindful that the classification results of this study

could have been unfairly biased if we had included any participants for whom classification

may have been possible due to differences between motor signals across the two conditions.

Therefore, participants for whom a significant result (p < 0.05) was recorded, in either the

Fisher’s exact test or the t-test, were discarded from the classification phase.

After preprocessing, 25 participants remained to be used in the classification phase from

the EADT (20 young, 5 older), and 14 remained from the Claw Task (8 asked to count errors,

6 not asked to count errors).

3.2.4.2 Feature Extraction

Our EEG data, having been resampled at 64Hz, contained 33 time points per trial in the

EADT and 40 time points per trial in the Claw Task. If we were to consider all available time

domain data, there would have been a total of 660 features (20 channels × 33 time points) or

800 features (20 channels × 40 time points) to describe each trial. Although we employed a

minimum cutoffs of 12 trials per condition and 40 overall trials, many participants still had
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relatively few trials per class. With the number of features given by the full time domain

data greatly outweighing the number of trials per condition, it was clear that the curse of

dimensionality could cause problems if we attempted to classify based on all available time

domain data [72].

Our classification was performed using stepwise linear discriminant analysis (SWLDA),

as described in section 3.2.4.3. However, the feature selection inherent in SWLDA is rela-

tively sophisticated, and less complex methods are known to be less susceptible to overfit-

ting [90]. Therefore, we opted to reduce the dimensionality by using a simpler first step for

preliminary feature extraction. This allowed the SWLDA to be applied to a small number

of highly discriminative selected features.

For each participant, the preliminary step was carried out as follows: For each time-

domain feature (i.e. each time point in each channel), there were a set of training data

points. Each point had an amplitude and an associated class label. A linear correlation

coefficient was calculated between these amplitudes and class labels, resulting in each feature

having an associated correlation coefficient. The correlation coefficients acted as a simple

indication of how strongly related the amplitude was to the class labels in a given feature,

and thus how separable the classes may be based on the amplitude. In each channel, the

feature with the largest absolute correlation coefficient was selected. This meant that each

trial was represented by 20 features.

3.2.4.3 Stepwise Linear Discriminant Analysis Implementation

In order to classify the data based on the most pertinent subset of the extracted features,

SWLDA was chosen as our classification approach, since it has previously been shown to

perform well in feature selection and classification of EEG data [38, 84, 148]. Stepwise

regression was performed to select which features would be included in the model. Initially,

an empty model was created. At each step, a regression analysis was performed on models

with and without each feature, producing an F-statistic with a p-value for each feature.

If the p-value of any feature was < 0.025, the feature with the smallest p-value would be

added. Otherwise, if the p-value of any features already in the model had risen to > 0.075

at the current step, the feature with the largest p-value would be removed from the model.

This process continued until no feature’s p-value reached the thresholds for being added to,

or removed from, the model. If no features were added to the model at all, a single feature

with the smallest p-value would be selected. This feature selection process was performed

using the stepwisefit function from the MATLAB Statistics and Machine Learning Toolbox,

release 2018b [104]. Training and test trials were then reduced to the selected features. The

class with the fewest training trials was oversampled in order to ensure that training occurred

with an equal number of trials per class. A linear classification model was then trained and
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tested. The model was trained using the fitcdiscr function, and each trial tested using the

predict function, both from the MATLAB Statistics and Machine Learning Toolbox, release

2018b [104]. The SWLDA algorithm is visualised as a flowchart in Figure 3.5.

All classifiers were trained and tested using leave-one-out cross validation. For each

iteration, one trial was selected as the test sample, and all the other trials were used as

the training samples. Feature extraction and training of the stepwise linear model were

then performed on the training samples. The model was then tested on the test sample.

This process was repeated until each trial had been selected as the test sample. To test

statistical significance of the classification, a right-tailed Fisher’s exact test was performed

on the confusion matrix of each participant’s results. As the individual participants were

independent, no p-value adjustments were necessary [136]. Therefore, classification for an

individual was deemed to be significant if the p-value was less than 0.05. In order to test

the significance at a group level, individual p-values were combined into a group p-value

using Fisher’s method [60, 99]. To test whether there was any difference in the efficacy of

the classification strategy across age groups, Welch’s t-test was carried out comparing the

overall accuracies of all young adults with those of older adults in the EADT.

3.3 Results

3.3.1 Neurophysiological Analysis of Error-Related Potentials

Peak analysis was used to identify ERN and Pe latencies based on the grand average Cz time

domain waveform for each combination of task, condition, and age group. The identified

latencies are shown in Table 3.2.

Wilcoxon signed-rank tests were carried out to check for statistically significant differ-

ences in the ERN and Pe amplitudes and latencies generated in response to the different

error conditions, as discussed in section 3.2.3. The results of these tests are shown in Table

3.3.

3.3.1.1 Error Awareness Dot Task

In the grand average ErrP of young adults in the EADT, responses to both conditions

showed ERN with latencies of 44ms, as can be seen in Figure 3.6 (blue and red lines).

Wilcoxon signed-rank test showed no significant difference between the amplitudes of these

ERNs (see Table 3.3), and showed no significant difference between the ERN latencies

related to the two conditions, based on peaks identified in Cz data of each participant’s

average waveform (p = 0.42). However, there was a clear difference between the error con-

ditions in the Pe. While the latencies of the Pe in response to the two conditions showed no
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Figure 3.5: Stepwise Linear Discriminant Analysis flowchart.
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Grand Average Peak Latency Identification

ERN

Colour Condition Repeat Condition Pooled Trials

EADT, young 44ms 44ms 44ms

EADT, older 59ms 59ms 59ms

FA condition SO condition Pooled Trials

Claw Task 78ms 141ms 78ms

Pe

Colour Condition Repeat Condition Pooled Trials

EADT, young 216ms 247ms 231ms

EADT, older 200ms 247ms 215ms

FA condition SO condition Pooled Trials

Claw Task 281ms 344ms 328ms

Table 3.2: ERN and Pe latencies, relative to error commission, as identified by peak analysis
on the grand average channel Cz time domain waveform. The most prominent negative peak,
between -100ms and 200ms in the EADT, or between 0ms and 300ms in the Claw Task,
relative to error commission, was selected as the ERN. The highest positive peak, between
0ms and 400ms in the EADT, or between 100ms and 500ms in the Claw Task, relative to
error commission, was selected as the Pe.
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Condition Comparisons

ERN Amplitude ERN Latency

p-value Significant p-value Significant

EADT, young 0.42 No 0.91 No

EADT, older 0.94 No 0.69 No

Claw Task 0.22 No 0.72 No

Pe Amplitude Pe Latency

p-value Significant p-value Significant

EADT, young 0.003 Yes 0.47 No

EADT, older 0.016 Yes 0.15 No

Claw Task 0.19 No 0.032 Yes

Table 3.3: Wilcoxon signed-rank test results from comparisions of peak amplitudes and
latencies of colour condition vs repeat condition (EADT) and FA condition vs SO condition
(Claw Task). Comparisons were performed at ERN and Pe sites, in young adults and older
adults, using electrode site Cz. Amplitude comparisons were based on the mean amplitude
recorded, for each subject, in ERN and Pe time windows 50ms in duration, from -25ms
to 25ms relative to the peak latencies identified by grand average peak analysis. Latency
comparisons were based on the peak latencies identified from each participant’s average
time domain data for each condition.
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significant difference (p = 0.47), the amplitudes of the Pe were increased in the colour con-

dition, compared to the repeat condition (p = 0.003). The build-up rate of the Pe was also

greater in the colour condition than the repeat condition, and a Wilcoxon signed-rank test

showed that this distinction was statistically significant (p = 0.001). Topographical maps

confirmed negative fronto-central activity during the ERN, and positive centro-parietal ac-

tivity during the Pe, in response to both error conditions, as shown in Figure 3.7 a, b, e,

and f.

Participants of all ages indicated awareness of a higher proportion of colour condition

errors (mean 89.3%, SD 17.7%) than repeat errors (mean 76.4%, SD 23.5%). A Wilcoxon

signed-rank test showed that this difference was significant (p = 8.7× 10−8).

In the older adults’ EADT data, early positivity stalls the ERN, and some differences

between the error conditions can be seen in the time domain data prior to error commission,

as shown in Figure 3.6 (green and brown lines). However, the difference between responses

to the conditions was not found to be significant in older adults at the ERN. As with

younger adults, the latencies of the ERN and Pe showed no significant difference (p = 0.69

and p = 0.15, respectively). While the build-up rate of the Pe was appeared to be steeper

in response to the colour condition than the repeat condition, a Wilcoxon signed-rank test

did not find this to be significant in older EADT participants (p = 0.25). Again, the most

notable difference between the two error conditions was the greater amplitude of the Pe in

the colour condition, as compared to the repeat condition (p = 0.016).

Both ERN and Pe peaks were observed to be more positive in older adults than young

adults, in response to both error conditions. Welch’s t-tests confirmed that that these

age-related amplitude differences were statistically significant (p = 2.1 × 10−15 for colour

condition related ERN amplitudes, p = 5.4×10−8 for colour condition related Pe amplitudes,

p = 3.1×10−20 for repeat condition related ERN amplitudes, and p = 5.4×10−13 for repeat

condition related Pe amplitudes).

The typical fronto-central negativity cannot be identified by visual inspection of the

topographical maps of the ERN in response to either error condition for older adults’ EADT

data (Figure 3.7 c-d). A posterior-anterior shift in aging (PASA) has been reported in

previous literature [33, 53] and is evident here in the Pe related to both conditions of the

EADT. As discussed previously, the most positively active areas during the Pe are centro-

parietal in young adults, as shown in Figure 3.7 e-f. In older adults, this shifts toward

more fronto-central activity, in both the colour condition and the repeat condition, as can

be seen in Figure 3.7 g-h. Indeed, the electrode sites with the highest grand average Pe

amplitudes in young adults were CPz & Cz for the colour condition, and CPz & Pz in the

repeat condition. In older adults, the highest grand average Pe amplitudes were found at

electrode sites FCz and FC1, for both error conditions.
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Figure 3.6: Grand average time domain EADT data at electrode site Cz. Time shown is
relative to error commission. Central lines represent mean signals. Shaded areas cover 1
standard error. Blue lines show colour condition data from young adults. Red lines show
repeat condition data from young adults. Green lines show colour condition data from older
adults. Brown lines show repeat condition data from older adults.

Across all EADT participants, mean amplitudes for individual channels in the selected

time windows ranged from −11.1µV to 8.1µV , and their associated standard deviations

ranged from 0.04µV to 1.3µV . Further topographical maps showing the standard deviation

from the mean at each channel in the EADT are shown in Figure 3.8a-h.

3.3.1.2 Claw Task

Time domain data related to responses to the Claw Task can be seen in Figure 3.9. Here,

no statistically significant difference was found between either the latency or amplitude

of the ERN (p = 0.72 and p = 0.22, respectively). In contrast to the EADT, neither

the amplitude of the main Pe peak, nor the build-up rate of the Pe showed signifigant

differences (p = 0.19 and p = 0.60, respectively). However, the latencies of the Pe peaks,

at their highest points, were found to be significantly different (p = 0.032), with the Pe in

responses to the SO condition peaking later than that related to the FA condition.

A secondary component of the Pe also appeared to be present in the grand average

Claw Task data, and appeared to be more prominent in response to the SO condition than

the FA condition, followed by a difference in grand average amplitudes. We identified that
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Figure 3.7: Grand average topographical maps of EADT data. Maps were plotted based on
a 50ms window surrounding the peaks identified as ERN and Pe from grand average data
across all participants. Plots shown represent (a) ERN in the colour condition in young
adults, (b) ERN in the repeat condition in young adults, (c) ERN in the colour condition in
older adults, (d) ERN in the repeat condition in older adults, (e) Pe in the colour condition
in young adults, (f) Pe in the repeat condition in young adults, (g) Pe in the colour condition
in older adults, and (h) Pe in the repeat condition in older adults.

the maximum difference here occurred at 538ms (see Figure 3.9 for illustration), and

performed a further Wilcoxon signed-rank test on the amplitudes of the two conditions in

the 50ms window surrounding this latency. The difference in amplitudes at this point was

found to be statistically significant (p = 6.1× 10−4).

Topographical maps showed broad, slightly negative amplitudes across the brain during

the ERN of the Claw Task, in response to both error conditions, as shown in Figure 3.10 a

and c. Slightly more positive amplitudes can be seen in fronto-central regions in response

to the FA condition. During the Pe, strong positive activity can be seen in central and

centro-parietal regions, as shown in Figure 3.10 b and d.

Mean amplitudes for individual channels in the time window ranged from −1.1µV to

5.4µV , and their associated standard deviations ranged from 0.01µV to 0.8µV . Further

topographical maps showing the standard deviation from the mean at each channel in the

Claw Task are shown in Figure 3.8i-l.
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Figure 3.8: Topographical maps showing the standard deviation from the mean amplitude
at each channel, during a 50ms window surrounding the latencies identified as the ERN and
Pe. Subfigures represent the following: (a) Young EADT participants at the ERN for the
colour condition, (b) young EADT participants at the ERN for the repeat condition, (c)
older EADT participants at the ERN for the colour condition, (d) older EADT participants
at the ERN for the repeat condition, (e) young EADT participants at the Pe for the colour
condition, (f) young EADT participants at the Pe for the repeat condition, (g) older EADT
participants at the Pe for the colour condition, (h) older EADT participants at the Pe for
the repeat condition, (i) all Claw Task participants at the ERN for the FA condition, (j) all
Claw Task participants at the Pe for the FA condition, (k) all Claw Task participants at the
ERN for the SO condition, (l) all Claw Task participants at the Pe for the SO condition.
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Figure 3.9: Grand average time domain Claw Task data at electrode site Cz. Time shown
is relative to the erroneous movement of the robot. Central lines represent mean signals.
Shaded areas cover 1 standard error. Red line shows FA condition data from all partici-
pants. Blue line shows SO condition data from all participants. Black lines represent data
from both conditions pooled together. Translucent grey vertical bands represent the time
windows identified as ERN and Pe by peak analysis on pooled data. Windows show 50ms,
from -25ms to 25ms relative to the identified peaks. Dashed purple line at 538ms represents
latency of largest difference between conditions following the secondary component of the
Pe.
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Figure 3.10: Grand average topographical maps of Claw Task data. Maps were plotted
based on a 50ms window surrounding the peaks identified as ERN and Pe from grand
average data across all participants. Plots shown represent (a) ERN in the FA condition,
(b) ERN in the SO condition, (c) Pe in the FA condition, and (d) Pe in the SO condition.

3.3.2 Reporting of Classification Accuracy

There are two common ways in which system-wide classification accuracy is reported in

studies such as this. One option is to report the overall accuracy, i.e. the percentage of

trials, of any class, that were classified correctly. This provides a good overview of how the

system performs in the true context of the trials with which it is presented. However, one

drawback is that it can be misleading if performance is very strong in one class but weak in

others. For example, a system faced with 80% of trials from class 1 and 20% of trials from

class 2 could achieve high overall accuracy simply by classifying every trial as class 1, but

this would not be a useful classifier. An alternative is to report the balanced accuracy, i.e.

the accuracy is recorded for each class, and the mean of these is reported. Conversely, this

approach does take into account the performance on all classes, but loses some information

regarding the true context in which the classifier operates.

Here, for a full picture of the classifier’s performance, we present the overall accuracy,

but also report the accuracy in each class separately. Furthermore, statistical significance of

the classification for each subject is tested via a Fisher’s exact test on the confusion matrix

of true and classified labels for each subject. Therefore, this is not unduly influenced by

the majority class.
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3.3.3 Classification of EADT Errors

The classification accuracies achieved for each individual participant in the EADT are shown

in Table 3.4. The mean overall accuracy for all EADT participants was 65.2%. Amongst

young adults, mean overall accuracy was 63.7%, and for older adults it was 71.3%. Mean

colour condition accuracy was 60.4% for all participants, 59.4% for young adults, and 60.4%

for older adults. The mean accuracy of the repeat condition was 67.6% for all participants,

66.0% for young adults, and 74.0% for older adults. Trained classification models for the

EADT included a mean of 3.7 ± 1.3 features. Generally, more features were selected from

posterior regions of the brain than anterior regions, echoing the heightened activity, varying

in amplitude across the two classes, that was shown in these regions. A Wilcoxon signed-

rank test was used to compare the average number of features selected per channel, for

each participant, in more anterior channels (fronto-central channels and further anterior)

against those in more posterior channels (centro-parietal channels and further posterior).

The results showed the average number of selected features per channel was significantly

higher in the posterior region compared to those in the anterior region (p = 4.9 × 10−4).

At an individual level, features were often selected where the subject-average amplitude

displayed a relatively large differences between the two classes. Figure 3.11 contains a

further breakdown of feature selection rates, including an example for an individual EADT

participant.

Statistically significant separation of the error conditions (p < 0.05) was found, using

Fisher’s exact tests, for 17 of the 25 participants overall (68.0%). Statistical significance

was achieved for 13 of the 20 young adults (65.0%), and 4 of the 5 older adults (80.0%). At

a group level, the classification results were found to be statistically significant in each age

group (p = 1.6 × 10−16 for young adults and p = 3.2 × 10−11 for older adults) and overall

(p = 2.7× 10−25).

The overall accuracies of young adults were compared with those of older adults using

Welch’s t-test. The result did not show any significant difference (p = 0.16). While Welch’s

t-test is considered to be reliable in dealing with unequal sample sizes [35,138], it should be

noted that only 5 older adults remained in the single-trial classification, which may mean

that this finding should be treated with a measure of caution.

3.3.4 Classification of Claw Task Errors

The classification accuracies achieved for each individual participant in the Claw Task are

shown in Table 3.5. The mean overall accuracy for all Claw Task participants was 65.6%.

Mean accuracy for the FA condition was 69.5%, and the mean accuracy for the SO condition

was 57.4%. Welch’s t-test compared the overall accuracy achieved for participants who were
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Age
Subject

# Colour # Repeat Colour Repeat Overall
Significant p-value

Group Trials Trials Accuracy Accuracy Accuracy

Young

1 27 27 55.6% 48.1% 51.9% No 0.5

2 34 42 58.8% 69.0% 64.5% Yes 0.014

3 15 35 60.0% 74.3% 70.0% Yes 0.024

4 29 55 65.5% 70.9% 69.0% Yes 0.0014

5 21 26 57.1% 61.5% 59.6% No 0.16

6 30 38 50.0% 60.5% 55.9% No 0.27

7 14 31 42.9% 58.1% 53.3% No 0.60

8 17 57 58.8% 74.6% 71.1% Yes 0.012

9 41 53 64.3% 63.0% 63.5% Yes 0.0071

10 33 43 57.6% 65.1% 61.8% Yes 0.041

11 22 34 72.2% 70.6% 71.4% Yes 0.0017

12 26 42 50.0% 64.3% 58.8% No 0.16

13 32 51 75.0% 76.5% 75.9% Yes 4.5× 10−6

14 25 46 52.0% 76.1% 67.6% Yes 0.017

15 25 51 68.0% 72.5% 71.1% Yes 8.7× 10−4

16 20 29 55.0% 75.9% 67.3% Yes 0.029

17 30 30 46.7% 56.7% 51.7% No 0.50

18 42 45 61.9% 51.1% 56.3% No 0.16

19 33 58 66.7% 67.2% 67.0% Yes 0.0017

20 28 45 69.0% 64.4% 66.2% Yes 0.0049

Older

21 17 47 41.2% 61.7% 56.3% No 0.52

22 45 33 80.0% 81.8% 80.8% Yes 4.8 × 10−8

23 21 47 76.2% 63.8% 67.6% Yes 0.0024

24 19 35 63.2% 80.0% 74.1% Yes 0.0021

25 13 46 61.5% 82.6% 78.0% Yes 0.0034

Young
Mean 27.2 41.9 59.4% 66.0% 63.7% 65.0% Group p-value

SD 7.7 10.3 8.6% 8.3% 7.2% 1.6 × 10−16

Older
Mean 23.0 41.6 64.4% 74.0% 71.3% 80.0% Group p-value

SD 12.6 7.0 15.3% 10.3% 9.8% 3.2 × 10−11

All
Mean 26.4 41.8 60.0% 67.6% 65.2% 68.0% Group p-value

SD 8.7 9.6 10.1% 9.1% 8.2% 2.7 × 10−25

Table 3.4: Single-trial classification results of EADT data. Overall accuracy calculated as
the percentage of trials, of either class, correctly classified. SD refers to standard deviation.
The participant for whom the highest overall accuracy was achieved is highlighted in italics.
Group p-values were calculated by combining p-values using Fisher’s method.
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Figure 3.11: Heatmaps showing the percentage of trials in which each feature (i.e. combi-
nation of time point and channel) was selected in classification models, and time domain
data related to commonly-selected features. Heatmap x-axes show time points, y-axis show
channels, and colour represents the percentage of classification models for which each feature
was selected during the leave-one-out cross validation procedure. (a) shows feature selection
data from all EADT participants pooled together. (b) shows feature selection data from all
Claw Task participants pooled together. (c) shows individual feature selection data from
participant 4 of the EADT. (d) shows time domain data from EADT participant 4, channel
C4, with green highlighting showing the link between a commonly selected feature in the
heatmap, and the corresponding time-domain data. (e) shows individual data from partici-
pant 7 of the Claw Task. (f) shows time domain data from Claw Task participant 7, channel
CP1, with green highlighting showing the link between a commonly selected feature in the
heatmap, and the corresponding time-domain data.
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Subject
# FA condition # SO condition FA condition SO condition Overall

Significant p-value
Trials Trials Accuracy Accuracy Accuracy

1 42 27 66.7% 63.0% 65.2% Yes 0.015

2 92 30 72.8% 53.3% 68.0% Yes 0.0088

3 69 22 58.0% 40.9% 53.8% No 0.63

4 43 23 65.1% 52.2% 60.6% No 0.13

5 46 29 73.9% 65.5% 70.7% Yes 8.2× 10−4

6 30 14 86.7% 64.3% 79.5% Yes 0.0011

7 48 18 79.2% 72.2% 77.3% Yes 1.8× 10−4

8 46 29 69.6% 62.1% 66.7% Yes 0.0069

9 49 21 77.6% 47.6% 68.6% Yes 0.036

10 33 19 63.6% 52.6% 59.5% No 0.20

11 34 21 58.8% 42.9% 52.7% No 0.56

12 39 26 64.1% 61.5% 63.1% Yes 0.038

13 44 13 70.5% 61.5% 68.4% Yes 0.040

14 32 22 65.6% 63.6% 64.8% Yes 0.032

Mean 46.2 22.4 69.4% 57.4% 65.6% 71.4% Group p-value

SD 16.4 5.4 8.0% 9.2% 7.6% 1.9 × 10−11

Table 3.5: Single-trial classification results of Claw Task data. Overall accuracy calculated
as the percentage of trials, of either class, correctly classified. SD refers to standard devia-
tion. The participant for whom the highest overall accuracy was achieved is highlighted in
italics. The group p-values was calculated by combining p-values using Fisher’s method.

asked to keep count of the errors (subject IDs 7-14) against those who were not (subject IDs

1-6). No significant difference was identified (p = 0.80). Trained classification models for

the Claw Task included a mean of 2.9± 1.5 features. At a population level, it was difficult

to discern clear patterns of which features were selected. However, as in the EADT, an

individual level features were often selected where there was a relatively large difference

between the subject-average amplitudes of the classes. Figure 3.11 contains a further

breakdown of feature selection rates, including an example for an individual Claw Task

participant.

Statistically significant separation of the error conditions (p < 0.05) was found, using

Fisher’s exact tests, for 10 of the 14 participants (71.4%) in the Claw Task. At a group

level, the classification results were found to be statistically significant (p = 1.9× 10−11).

3.4 Discussion

3.4.1 Distinctions in Responses by Condition and Age

Previous literature has shown that different tasks can elicit differing ErrP waveforms [173].

In some cases, distinctions have been shown in ErrPs even when the errors are committed

during variants of the same task [66,115]. Indeed, our findings are aligned with those of the

previous literature on this point. Interestingly, when comparing the error conditions within
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each task, the key neurophysiological distinctions that we were able to identify were found

in different components of the ErrP for the two tasks in this study.

In the EADT, the clearest distinction shown between the error conditions was in the

amplitude of the Pe. We witnessed greater amplitudes of Pe in the colour condition than

the repeat condition for both young and older adults. Previous studies, including some

which were based on error awareness tasks, have shown a diminished Pe in errors of which

participants are unaware, compared to errors of which they are aware [39, 110, 113, 118].

Here, in the case of the colour condition, all necessary information for the participant to

know whether they have committed an error is present, on-screen, in the current stimulus.

With the repeat condition, however, participants are relying on their memory of the previous

stimulus to determine whether or not they have committed the error. Indeed, Wilcoxon

signed-rank tests found that participants were significantly more likely to be aware that

they had committed a colour condition error than a repeat condition error. While this

study was focused on trials in which participants signified awareness of their errors, it is

possible that participants could be more confident in their assertion of the error for some

trials than others. It is possible, therefore, that the higher amplitude of the Pe in the colour

conditions, compared to the repeat conditions, is due to greater certainty and confidence

that an error was committed. Previous studies have also identified the build-up rate of the

Pe as a marker of evidence accumulation for error detection [111]. In young adults, the

build-up rate to the Pe was found to be significantly greater in the colour condition than

the repeat condition. This is a further indication that a greater degree of awareness may

be present in the case of colour condition errors than repeat condition errors.

Some distinctions were also noted between the different age groups in the EADT. Older

participants’ responses were found to generate more positive amplitudes at both the ERN

and Pe latencies, for both error conditions. A posterior-anterior shift in aging was also

identified in the spatial distribution of the Pe.

In the Claw Task, the most notable difference in time domain data appeared to result

from a secondary component of the Pe. This occurred at around 500ms, causing an increase

in the amplitude of responses to the SO condition compared to those of the FA condition in

the grand average signals. This gap remained until beyond 600ms. A Wilcoxon signed-rank

test found the amplitude difference, at its widest point (538ms) to be statistically significant

(p = 6.1 × 10−4). As discussed in section 3.1, secondary Pe components have previously

been identified, and have been linked to conscious, evaluative processes [5,40]. This suggests

that the SO condition, in which the virtual robot steps off the target, having been aligned

above it, elicits stronger responses in the aware aspect of the error response.
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3.4.2 Single-Trial Classification

Across all participants who were included in the classification stage, we achieved a mean

overall accuracy of 65.2% for the EADT data, and 65.6% for the Claw Task data. The

associated standard deviations were relatively high (8.2% and 7.6% respectively) as, al-

though statistically significant classification was not possible for some participants, high

classification rates were achieved for others. Indeed, in the best cases, for both tasks, the

error conditions were classified against each other with around 80% overall accuracy. Group

p-values calculated using Fisher’s method showed that, at a population level, statistically

significant separation of the error conditions was achieved (p = 2.7 × 10−25 for the EADT

and p = 1.9×10−11 for the Claw Task). As a proof of concept, these classification accuracies

show that it is possible to classify these subtly different error conditions, which could not

be differentiated by previously explored metrics such as direction or severity, against each

other using single-trial EEG.

A Welch’s t-test, comparing the results of young adults with those of older adults,

returned non-significant results. Though this finding should be taken tentatively, due to

the small number of older participants included in the classification phase, it suggests that

our chosen classification strategy is robust across different age groups, despite some age-

related neurophysiological differences.

In previous literature regarding error decoding, a wide variety of classification accuracies

have been reported. When classifying errors against non-errors, some studies have been able

to achieve very high single-trial classification rates. For example, SVM-based classification

models have been used to achieve average accuracies of 80% [6] or even above 90% [75],

deep learning approach achieved average accuracy of 84% [159], and Gaussian models have

been reported to achieve a high of around 90% [121].

Classification of different error conditions against each other can be considered more

challenging than error vs non-error classification as the EEG signals in response to errors

are expected to be more similar to each other than to the signals of non-errors. Nonethe-

less, some errors have been classified against each other on a single trial basis with a high

level of success. In a virtual robot reaching task, performed by 2 participants, Iturrate

et al. reported correct classification of left vs right sided errors with an impressive 90%

accuracy [64]. Furthermore, in the same study, they were able to distinguish small vs larger

errors with around 75% accuracy. Spüler and Niethammer reported an overall accuracy of

75.5% for the classification of execution errors against outcome errors (i.e. errors commit-

ted by a machine vs errors committed by a human) during a computer game task [151].

However, they did not find significant differences between movement errors occurring at

different angles, highlighting the potential difficulty of differentiating errors based on subtle

differences.
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One of the challenges in error decoding is that data sets for error trials may be small,

as errors often occur more rarely than correct actions, both in real-world scenarios [75] and

experimental paradigms [123]. Small sample sizes are known to be challenging in classifica-

tion problems [67, 131]. This is exacerbated when attempting error vs error classification,

as the error trials are divided into still smaller groups. Indeed, for both tasks of the present

study, we were able to achieve higher classification accuracy for the class with more training

samples, on average.

Given the challenges of comparing such similar error conditions as the ones in this

study, we believe that the results are encouraging. Separation of the error conditions was

above chance level for most participants across both tasks. While mean overall classification

rates did not reach the accuracy of the most successful studies discussed above, this study

has shown that it is indeed feasible to classify ErrPs of different error conditions against

each other based on differences in cognitive process, or in the context of differing expected

actions. The fact that overall accuracy of around 80% was achieved for some participants

is particularly encouraging. In future, it may be interesting to investigate the use of other

classification techniques such as those discussed above, especially if larger training sets are

available, with the aim of increasing classification accuracy further.

3.4.3 Implications for BCI

Error detection is becoming an increasingly useful aspect of BCI [30]. It has proven to

be utilisable in increasing the accuracy of existing BCI control techniques, such as motor

imagery [47] and P300 [144], by performing immediate error correction [177]. Furthermore,

error detection has been successfully integrated into various BCI systems as feedback for

reinforcement learning (RL) strategies, allowing the systems to gradually improve over

time [25,63,75,179]. As discussed in section 3.1, this creates the possibility of BCI becoming

more autonomous [63,179]. RL-based systems such as these can work effectively as long as

the classification accuracy exceeds chance level [30,63].

It has been shown, in previous literature, that different errors can elicit different ErrP

waveforms [13, 150]. Recently, a few studies have begun to classify different errors using

single-trial EEG, based on aspects such as the direction of the error [64], the severity

of the error [64], or whether the error was committed by the human themselves or by a

machine [151].

In the Claw Task, we presented a scenario in which a virtual robot was attempting to

navigate towards, and grab, a target object among several non-target objects. This scenario

could be used in an error-driven BCI. Each robot action would be followed by single-trial

EEG classification, to tell the robot what kind of action the human had observed. If we

employed simple error detection, we would be able to tell the robot when it had made an
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incorrect move. However, with the error categorisation displayed in this study, an extra

layer of detail could be switched on for participants with statistically significant separation.

In the case of FA condition errors, we could tell the robot that the target is in the other

direction, but is not in the adjacent location. In the case of the SO condition errors, we

could tell the robot precisely that the target is in the location it just stepped away from.

These principles could be applied to a number of BCI-based navigation or target selection

scenarios.

Investigating the EADT allowed us to provide further evidence that errors can be cate-

gorised in the absence of previously used metrics, with only subtle difference between error

conditions.

Statistically significant classification accuracy was achieved for the vast majority of the

participants included in the classification phase in our study. Thus, the error categorisation

displayed here is accurate enough to be utilised in a BCI, for immediate and specific error

correction, or as an integral part of a learning system. This opens up the potential for

more detailed information to be garnered about the category of error that has occurred,

thus allowing for a BCI with more effective error correction and more efficient error-driven

learning.

3.5 Conclusion

The error conditions considered in this study were very similar to one another. Nevertheless,

due to the different cognitive processes required to recognise the errors in the EADT, and

the different contexts in which the errors occurred in the Claw Task, we were able to identify

differences between the grand average ErrP waveforms of the different error conditions. In

the EADT, the clearest distinction between the error conditions was found in the amplitude

of the Pe. The colour conditions generally elicited greater amplitudes than the repeat

conditions, leading us to speculate that the increased Pe in these conditions could be due to

greater certainty that an error had been committed. In the Claw Task we found distinctions

in a secondary component of the Pe. These distinctions led us to speculate that participants

may have had a heightened anticipation of a correct action when the virtual robot was

aligned above the target, ready to grab it.

Interestingly, we were able to classify the error conditions of both the EADT and the

Claw Task, the latter of which could be directly applied in a BCI, with over 65% mean

overall accuracy, and around 80% in the best cases. Classification rates were above chance

level (p < 0.05) for most participants, of those included in the classification phase of the

study, for both tasks, and group-level analysis showed the single-trial separation of the

different error conditions to be highly significant overall (p = 2.7 × 10−25 for the EADT
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and p = 1.9 × 10−11 for the Claw Task). The ability to classify such similar errors using

single-trial EEG, as we have shown here, is very promising for the future prospect of making

error-driven BCI more efficient through the acquisition of more detailed information.

I believe that the findings of this chapter uncover new opportunities in brain-machine

interaction, pushing towards a more autonomous BCI.
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Chapter 4

Classifying Different Correct

Actions Against Each Other

The findings presented in this chapter have been previously published in Frontiers in Neu-

roscience [163]

4.1 Chapter Introduction

In the previous chapter, I concluded that it is possible to classify different error conditions

against each other, even when the different conditions have only subtle differences such as

the context in which they occur, and the cognitive load required to recognise them. As such,

the first objective of this project has been achieved. The next objective is to move beyond

errors, and to investigate the possibility of distinguishing the brain signals generated in

response to different correct actions. This objective is explored in the current chapter.

As discussed in previous chapters, studies concerning robotic movement and navigation

tasks have previously used EEG to investigate the brain’s responses to observing correct

and erroneous movements. These studies have shown that it is possible to classify the

responses to correct movements against erroneous ones on a single-trial basis [30,63,75,179],

and to subclassify different types of erroneous conditions [64, 151, 161], as well as showing

that correct-vs-error classification can be used as feedback for reinforcement-learning-based

BCI [63,75,179]. These interesting advances have created the possibility of systems in which

machines can control the low-level action decisions in order to navigate semi-autonomously

towards a target, with feedback provided via implicit communication with a user through

brain signals spontaneously generated while observing the task [63,179].

However, none of these previous studies have investigated whether it is possible to

classify EEG responses to different types of correct actions against each other. In most
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navigation tasks, it is crucial not only to know that you are moving in the correct direc-

tion, but also to recognise when you have reached your destination. As such, it is highly

important to consider whether there are significant neurophysiological differences between

the brain’s responses to observing different correct movements: those that get closer to a

target, compared to those that actually reach it.

To address this question, we evaluated data from a virtual robotic navigation task.

Participants were asked to observe a virtual robot, represented by a cursor, navigating in

a 1-dimensional space and attempting to reach a target. We then investigated the EEG

responses to movements that reached the target (hereafter referred to as the “TR condition”,

short for “target reached”), in contrast to the responses to movements towards the target,

but not reaching it (hereafter referred to as the “TT condition”, short for “towards target”).

To explore neurophysiologicial distinctions between the TT condition and the TR con-

dition, we used time domain features to compare the latency and amplitude of key features

of the event related potentials (ERPs). We also examined the spatial distribution of EEG

responses to each condition, using topographical maps.

Our main focus was on the P300. As discussed in section 2.5, P300 peaks are known

to be generated when an observer notices a target stimulus in a sequence containing both

target and non-target stimuli.

Unlike many previous studies utilising the P300 for robotic control, and similar appli-

cations, in our study each stimulus (i.e. each movement) was only presented once, and so

our classification phase required single-trial classification. Single trial classification of the

presence of a P300 signal, versus its absence, is challenging in itself. Our goal was to differ-

entiate the P300s elicited in response to two slightly different desired actions. This presents

an extra challenge, as we can expect the signals of the conditions to be more similar to each

other.

In this study, the desired stimulus is either a movement towards the target or, in cases

when the virtual robot is adjacent to the target location, a movement that reaches the

target. We hoped to identify and exploit differences between responses to these stimuli,

arising from both the experimental differences and the participants’ cognitive response to

the two conditions. With regard to experimental differences, actions reaching the target

occur less frequently than other correct moves, and target-to-target interval is known to

affect P300 amplitude [52]. With regard to cognitive responses, reaching the target may be

considered more important than other correct moves — the P300 may therefore be affected

as it has been shown to be associated with positive outcomes [58], and its amplitude has

been shown to be affected by reward magnitude [140, 169, 171]. We then aimed to use the

identified neurophysiological differences in order to classify the EEG responses to the two

conditions against each other on a single-trial basis.
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In order to classify responses to the conditions against each other, we implemented a

stepwise linear discriminant analysis strategy, using time domain features from 6 electrode

sites to generate subject-specific classification models. A second publicly available data set

[29], gathered from participants observing a similar 1-dimensional navigation paradigm, was

used to further validate the efficacy of the classification strategy. We tested our approach

using data from 10 healthy young adults from the first task, and a further 5 healthy young

adults from the second task.

4.2 Methods

This study uses data from two tasks. Neurophysiological analysis and single-trial classifi-

cation were performed on data from a task we refer to as the Cursor Task. These data

were recorded at the University of Sheffield, UK. Data from a a similar task, referred to

as the Publicly Avaliable Cursor Task (PACT), were used in order to further validate the

single-trial classification section of the study. This was an open access data set, obtained un-

der a Creative Commons Attribution - Non Commercial - No Derivatives 4.0 International

licence, based on a study by Chavarriaga and Millán [29].

4.2.1 Participants

10 healthy adults (4 female, 6 male, mean age 27.30 ± 8.31) were recruited to participate

in the Cursor Task. All of these participants were included in all aspects of the study.

All participants had normal or corrected-to-normal vision. They reported no history of

psychiatric illness, head injury, or photosensitive epilepsy. Written informed consent was

provided by all participants before testing began. All procedures were in accordance with the

Declaration of Helsinki, and were approved by the University of Sheffield Ethics Committee

in the Automatic Control and Systems Engineering Department.

6 healthy adults (1 female, 5 male, mean age 27.83 ± 2.23) performed the PACT. 1

participant was excluded from this study as too few trials were available after artefact

rejection.

4.2.2 Experimental Setup

4.2.2.1 EEG Setup

For the Cursor Task, 8 channels of EEG were recorded at 500Hz using an Enobio 8 headset.

The electrode sites recorded were Fz, Cz, Pz, Oz, C3, C4, P07, and PO8. A further reference

electrode was placed on the earlobe.
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For the PACT, 64 channels of EEG were recorded at 512Hz using a BioSemi ActiveTwo

system, and were referenced to the common average. Electrodes were placed using the 10-20

system.

4.2.2.2 The Cursor Task

In the Cursor Task, participants were seated in front of a screen and asked to observe

a computer controlled cursor. Participants were presented with 9 squares, arranged in a

horizontal line, on a black background, as seen in Figure 4.1. The cursor’s current square

was coloured blue. The target square was identified by a red bullseye symbol on a white

background. All other squares were plain white.

At the beginning of each run, the cursor appeared 2 or 3 squares away from the target

location, either to the left or the right. Every 2 seconds, either the cursor would move to

an adjacent square, or a yellow box would be drawn around the cursor’s current position

in order to identify that the computer believed that it had reached the target. Such target

identification could occur correctly or erroneously. Actions occurred with preset probabil-

ities, which depended on whether or not the cursor was on the target. These probabilities

are shown in Table 4.1.

After the target was identified, either correctly or erroneously, the run finished and the

screen was cleared. After 5 seconds, the next run began. A beep sounded 1 second before

the start of each run. Participants were asked to refrain from movement and blinking

during each run, but told that they could move and blink freely between runs, while the

screen was blank. This process repeated until the end of the block, with each block lasting

approximately 4 minutes.

Each participant performed a single session of observations. Participants were asked to

observe blocks, with breaks of as long as they wished between blocks, until they reported

their concentration levels beginning to decrease. Most participants observed 6 blocks of

trials. However, two participants observed only 2 blocks. On average, Cursor Task partic-

ipants observed a total of 149.2 ± 40.0 (mean ± standard deviation) TT condition trials,

and 82.3 ± 20.0 TR condition trials.

4.2.2.3 The Publicly Avaliable Cursor Task

In the Publicly Avaliable Cursor Task (PACT), participants were similarly asked to observe

the 1-dimensional movement of a computer-controlled cursor. 20 locations were arranged

in a horizontal line across a screen. The cursor was displayed as a green square. The target

was displayed as a blue square when it appeared to the left of the cursor, or a red square

when it appeared to the right of the cursor.
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Figure 4.1: The Cursor Task paradigm. Participants were asked to observe as a blue cursor
attempted to navigate towards, and select, a marked target square. If the cursor was on the
target, possible actions were either to select it by drawing a yellow box around the square,
or take 1 step away from the target. If the cursor was not on the target, possible actions
were either to move 1 step towards the target, move 1 step further away from the target,
or erroneously select the current square as the target by drawing a yellow box around it.
“TT” condition refers to “towards target” i.e. movements towards, but not reaching, the
target. “TR” condition refers to “target reached” i.e. movements that did reach the target.

At the beginning of a run, the target was drawn no more than 3 positions away from the

cursor. Every 2 seconds, the cursor would move either towards or away from the target with

preset probabilities, shown in Table 4.1. Unlike the Cursor Task, no target identification

was required by the computer. Instead, each run ended when the cursor reached the target.

After this, the cursor stayed in its existing location, and a new target was drawn, again

no more than 3 positions away from the cursor. This process repeated until the end of the

block, with each block lasting 3 minutes.

Participants each performed two sessions of observations. Each session consisted of 10

blocks. The number of days between sessions varied between participants, from a minimum

of 50 days to a maximum of more than 600 days. On average, PACT participants observed

a total of 620.2 ± 10.6 TT condition trials, and 277.7 ± 14.1 TR condition trials.
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Task Cursor location Action Probability

Cursor Task

Not on target

Move towards target 0.7

Move further from target 0.2

Identify location as target 0.1

On target
Identify location as target 0.67

Step off target 0.33

Publicly Avaliable Cursor Task Not on target
Move towards target 0.8

Move further from target 0.2

Table 4.1: Action probabilities for Tasks 1 and 2. Note that each run in the PACT ended
once the cursor reached the target. As such there were no moves from an on-target position
in the PACT. In both tasks, both TT and TR conditions occurred as a result of “move
towards target” actions. If these actions occurred when the cursor was adjacent to the
target, the result would be reaching the target (i.e. TR condition). If the cursor was not
adjacent to the target prior to the action, the result would be moving closer to the target,
but not reaching it (i.e. TT condition).

4.2.3 Neurophysiological Analysis

Data from the Cursor Task were used for neurophysiological analysis. As we did not have

control over the experimental paradigm for the PACT, and so did not have a precisely de-

tailed picture of how the stimuli were presented, we opted not to perform neurophysiological

analysis on PACT data, instead using these only to further validate the classification phase

of this study.

Raw data from the Cursor Task were resampled to 64Hz, using the resample function,

from the MATLAB Signal Processing Toolbox, release 2018b [104]. Data were then band-

pass filtered from 1Hz to 10Hz, using a zero-phase Butterworth filter, created using the

filtfilthd function from the MATLAB Central file exchange [92]. TT and TR Trials were

extracted from a time window of 0ms to 1000ms, relative to the movement of the cursor.

All extracted trials were baseline corrected relative to a period of 200ms immediately before

the movement of the cursor. Artefact rejection was performed by discarding any trials in

which the range between the highest and lowest amplitudes, in any channel, was greater

than 100µV. A general visualisation of the full preprocessing methodology, applicable to

both data analysis and classification, can be seen in the previous chapter, in Figure 3.4.

Note that the EOG filtering phase was not performed for this data set, as ICA did not

reveal any clear EOG artefacts that would be necessary to filter out. This is most likely

due to the lack of anterior electrodes used for this experiment.

Grand average time domain event related potential (ERP) data were plotted using the

extracted trials, showing the mean voltage ± 1 standard error, comparing responses to the
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TT condition with those to the TR condition.

Peak analysis was performed in order to identify the latencies at which the P300 occurred

in the ERP data. This was carried out using the findpeaks function from the MATLAB

Signal Processing Toolbox, release 2018b [104]. Visual inspection of time domain ERP and

topographical plots indicated that the highest P300 amplitude in this study occurred at

electrode site Cz, and that there was a difference in P300 amplitudes in response to the

two conditions at this site. As such, Cz was chosen as the most suitable channel for peak

analysis. This peak analysis was carried out on the grand average ERP for responses to

each condition. Subsequently, the P300 was identified as the highest positive peak, occurring

between 200ms and 500ms. This time window was selected based on a visual inspection of

the grand average time-domain data. To check for statistically significant differences in peak

latencies, the same analysis was carried out to find the P300 peak in the average responses

of each individual participant, for both conditions. According to one-sample Kolmogorov-

Smirnov tests, we could not assume the data to be normally distributed. Therefore, a

Wilcoxon signed-rank test was performed to compare the peak latencies identified for the

two conditions.

To check whether there was a statistically significant difference in peak amplitude be-

tween responses to the two conditions, the mean amplitude was calculated in the responses

the average responses of each individual participant, in a time window from 200ms to 500ms

in order to encapsulate the full breadth of the P300. According to one-sample Kolmogorov-

Smirnov tests, we could not assume the data to be normally distributed. Therefore, a

Wilcoxon signed-rank test was performed to compare the amplitudes identified for the two

conditions.

Topographical maps were then plotted for responses to each condition, using a 50ms

window surrounding the P300 latency (from peak - 25ms to peak + 25ms) as identified in

the pooled data from all trials of both conditions combined. All topographical maps used

the same scale, from the minimum value to the maximum values across all grand averages.

4.2.4 Single-Trial Classification

Single-trial classification was performed on data from both tasks. The same classification

protocol was followed for both data sets, and is described in this section.

4.2.4.1 Preprocessing and Feature Extraction

Data from 6 electrode sites were used for single-trial classification: Fz, Cz, Pz, Oz, PO7,

and PO8. These channels were selected based on visual inspection of grand average time

domain ERPs, and considering prior knowledge related to these sites. The P300 has shown
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to peak in midline electrodes [127], and posterior sites such as PO7 and PO8 are associated

with visual processing [37, 145, 165]. As with the neurophysiological analysis, data were

resampled at 64Hz, trials were baseline corrected to a period of 200ms immediately before

presentation of the stimulus, and artefact rejection was performed to remove any trials with

a range of greater than 100µV between the highest and lowest amplitude in any channel.

For the classification phase, data were band-pass filtered between 1Hz and 32Hz. This

band was selected after visual inspection of event-related spectral perturbation (ERSP)

data which showed that, while most activity occurred at low frequencies, some potentially

useful activity was also present in higher frequencies. Trials were extracted from 200ms-

700ms relative to the movement of the cursor. This window was selected based on visual

inspection of grand average time domain ERPs. Selecting this window results in 33 samples

per channel. Thus, in total, each trial was represented by 198 (6 × 33) features.

Previous literature has suggested that a minimum of 20 trials are required to provide

stability in the P300 [31]. As such, we implemented a minimum cut-off of 20 artefact-free

trials per class, in order to ensure we had enough data to produce a reliable training set. 1

participant was excluded from the single-trial classification phase of this study due to this

cutoff.

4.2.4.2 Classification with Stepwise Linear Discriminant Analysis

In order to classify the data based on the most relevant subset of features, stepwise linear

discriminant analysis was chosen as our classification approach, as previous literature has

shown this strategy to be effective at both feature selection and classification of both P300

[38, 83, 84, 96, 148] and motion-onset visual evoked potential (mVEP) EEG data [57]. An

individual classification model was generated for each participant, using only the data from

that individual participant’s responses to the task. Firstly, for a given participant, an initial

subset of features was selected. The amplitudes of the training trials for each condition

were compared in each feature (i.e. each combination of channel and time point) using an

unequal variances t-test. Features whose p-value was less than 0.05 were included in the

initial feature set. The stepwise procedure was then performed to select which features

would be included in the final model. At each step, a regression analysis was performed

on models with and without each feature, producing an F-statistic with a p-value for each

feature. If the p-value of any feature was less than 0.05, the feature with the smallest p-

value would be added. Otherwise, if the p-value of any features already in the model had

risen to > 0.10 at the current step, the feature with the largest p-value would be removed

from the model. This process continued until no feature’s p-value reached the thresholds for

being added to, or removed from, the model. This feature selection process was performed

using the stepwisefit function from the MATLAB Statistics and Machine Learning Toolbox,
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release 2018b [104] If no features were added to the model at all, a single feature with the

smallest p-value would be selected. Training and test trials were then reduced to the selected

features. A flowchart visualising the SWLDA algorithm can be seen in the previous chapter,

in Figure 3.5.

The training set for the condition with the fewest training trials was oversampled in

order to ensure that training occurred with an equal number of trials per condition. A linear

classification model was then trained and tested. The model was trained using the fitcdiscr

function, and each trial tested using the predict function, both from the MATLAB Statistics

and Machine Learning Toolbox, release 2018b [104]. All classifiers were trained and tested

using leave-one-out cross validation. To test statistical significance of the classification, a

right-tailed Fisher’s exact test was performed on the confusion matrix of each participant’s

results. In order to test whether the classification was significant at a group level, individual

p-values were combined into a group p-value using Fisher’s method [60,99].

4.3 Results

4.3.1 Neurophysiological Distinctions

In the responses to both conditions, grand average time domain ERPs showed a broad P300

peak, as can be seen in Fig. 4.2 a. Fig. 4.2 b and c show examples of time domain ERPs

from individual participants (1 and 10, respectively). In both conditions, the shape of the

broad P300 featured a peak shortly prior to 300ms, followed by a slight drop in amplitude,

and then a secondary peak, shortly after 400ms. In responses to the TR condition, the

earlier peak was found to have the highest amplitude, at a latency of 265ms. The secondary

peak marked the highest amplitude in grand average responses to the TT condition, with

a latency of 420ms. However, the Wilcoxon signed-rank test did not find a significant

difference between the P300 peak latencies of responses to the two conditions (p = 0.81).

A distinction was seen between the P300 amplitudes of responses to the two conditions.

The TR condition was observed to elicit a P300 with a greater amplitude than that generated

in response to the TT condition. The Wilcoxon signed-rank test comparing the amplitudes

of the two conditions, based on a time window from 200-500ms in order to encapsulate

the breadth of the P300, found this difference in amplitude to be statistically significant

(p = 0.004).

Topographical maps plotted at the P300 peak latency showed the main activation to

occur in the central midline, in response to both conditions, as can be seen in Fig. 4.3.

We observed some features in the ERP responses to both conditions which may be

related to motion-onset visual evoked potentials (mVEP). Such mVEPs occur when users

percieve the beginning of movement of an object or symbol on a screen [14,57,85,102]. Three
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Figure 4.2: Time domain ERPs at electrode site Cz, from the Cursor Task. Time shown
is relative to movement of the cursor. Central lines represent mean signals. Shaded areas
cover 1 standard error. Blue lines show TT condition data. Green lines show TR condition
data. (a) shows grand average data from all Cursor Task participants, (b) shows data from
participant 1, and (c) shows data from participant 10.
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Figure 4.3: Grand average topographical maps of Cursor Task data. Maps were plotted
based on a 50ms window surrounding the peaks identified as P300 from grand average data
across all participants, and both conditions. Plots shown represent (a) responses to the TT
condition, and (b) responses to the TR condition.

main peaks have been identified in mVEP: a positive peak (P1), followed by a negative

deflection (N2), then another positive peak with a latency of 240-500ms [14, 57, 85, 102],

which has been described as a P2 [57, 85, 102] or P300 [14]. The movements considered in

this study were instantaneous steps from one location to the next. However, along with the

P300, small P1 and N2 peaks were visible, with latencies of 78ms and 125ms respectively,

relative to the movement of the cursor. These peaks did not appear to differ between

responses to the two conditions.

4.3.2 Classification

4.3.2.1 Classification of Cursor Task data

The classification accuracies of each individual participant of the Cursor Task are shown in

Table 4.2. As previously discussed in section 3.3.2, here we present the overall accuracy,

as well as the accuracy obtained for each class. The mean overall accuracy for all Cursor

Task participants was 66.5%. The mean accuracy for the TT condition was 68.8%, and

the mean accuracy for the TR condition was 62.4%. Statistically significant separation of

the conditions (p < 0.05) was found for all Cursor Task participants. At a group level,

the classification results for the Cursor Task were found to be statistically significant (p =

2.8× 10−54).
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Subject
# TT # TR Mean # Features TT TR Overall

p-value
Trials Trials Selected Accuracy Accuracy Accuracy

1 162 86 35.0 64.8% 55.8% 61.7% 1.4× 10−3

2 73 40 44.8 68.5% 60.0% 65.5% 3.1× 10−3

3 157 93 10.3 60.5% 51.6% 57.2% 4.2× 10−2

4 163 89 50.9 76.1% 70.8% 74.2% 4.1× 10−13

5 63 39 30.4 65.1% 53.8% 60.8% 4.7× 10−2

6 155 88 6.3 67.7% 63.6% 66.3% 1.9× 10−6

7 154 85 16.6 59.7% 52.9% 57.3% 4.0× 10−2

8 156 81 15.9 67.3% 61.7% 65.4% 1.7× 10−5

9 145 76 40.0 73.1% 72.4% 72.9% 7.5× 10−11

10 169 89 37.7 85.2% 80.9% 83.7% 5.0× 10−26

All < 0.05,

Mean 139.7 76.6 28.8 68.8% 62.4% 66.5% group p-value:

p = 2.8× 10−54

Table 4.2: Single-trial classification results of Cursor Task data. Overall accuracy calculated
as the percentage of trials, of either class, correctly classified. Number of features selected
calculated as the mean of all iterations of leave-one-out cross-validation.

4.3.2.2 Classification of Publicly Avaliable Cursor Task data

The classification accuracies of each individual participant of the PACT are shown in Table

4.3. The mean overall accuracy for all PACT participants was 68.0%. The mean accuracy

for the TT condition was 70.5%, and the mean accuracy for the TR condition was 61.0%.

As with the Cursor Task, statistically significant separation of the conditions (p < 0.05) was

found for all PACT participants. At a group level, the classification results for the PACT

were found to be statistically significant (p = 9.6× 10−62).

4.4 Discussion and Conclusion

4.4.1 Neurophysiological Distinctions Between The Conditions

In this study, the key neurophysiological difference that we identified between the two

conditions was in the amplitude of the P300. The amplitude of the P300 was found to

be greater in response to the TR condition (i.e. movements that reached the target) than

the TT condition (i.e. movements that were correct, but did not reach the target). This

distinction was found to be statistically significant (p = 0.004).

As discussed in section 4.1, a number of studies have reported that P300 amplitude
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Subject
# TT # TR Mean # Features TT TR Overall

p-value
Trials Trials Selected Accuracy Accuracy Accuracy

1 448 105 44.3 75.0% 60.0% 72.2% 1.9× 10−11

2 585 180 89.2 74.2% 66.7% 72.4% 7.3× 10−23

3 259 128 64.7 67.6% 60.9% 65.4% 8.4× 10−8

4 201 93 31.5 61.7% 51.6% 58.5% 2.2× 10−2

5 603 250 71.8 74.0% 66.0% 71.6% 1.4× 10−27

All < 0.05,

Mean 419.2 151.2 60.3 70.5% 61.0% 68.0% group p-value:

p = 9.6× 10−62

Table 4.3: Single-trial classification results of PACT data. Overall accuracy calculated as
the percentage of trials, of either class, correctly classified. Number of features selected
calculated as the mean of all iterations of leave-one-out cross-validation.

is affected by reward magnitude [140, 169, 171]. It should be noted that, in this study,

participants were not directly rewarded based on the virtual robot’s performance. However,

it is certainly feasible that they regarded moves that reached the target as being more

important than moves that did not reach it, which could be considered analogous to the TR

condition having a higher reward magnitude. Reports have been mixed regarding the effects

of valence on the P300. Some studies have reported amplitude being affected by positive

valence [26, 169], while others have reported valence either having no effect [27, 171], or an

effect only in the case of negative valence [32]. P300 amplitude has also been shown to be

dependent on whether feedback was expected or unexpected [58], and on target-to-target

interval, with amplitude increasing when targets appeared less frequently [52].

Taking into consideration previous findings on the P300, and the experimental setup of

our task, there are a number of potential causes of this increase in amplitude for responses

to the TR condition, compared to the TT condition. It may represent a cognitive response

recognising that a move that reaches the target is a more important step than other correct

moves. Alternatively, while this study was designed as a navigation observation task, it

could also conceptually be considered as an oddball paradigm. That is to say, the TR

condition occurs less frequently than the TT condition. Therefore, it is possible that the

increased P300 amplitude is due to the relative rarity of the TR condition. It is quite possible

that the difference in amplitude may be the result of a combination of these factors.

We also briefly investigated frontal theta power, and asymmetry in alpha power, as

these have been reported to vary with regard to valence [134]. However, no significant

differences in these markers were identified between the conditions. It is certainly feasible

that participants would not have had a strong emotional reaction to reaching the target.
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In the Cursor Task, the goal was not fully achieved until the target was not only reached

but also identified. Furthermore, users knew they were not controlling the virtual robot,

and were not rewarded if it performed well. It may be interesting to investigate whether

these valence markers indicate different reactions in future on-line experiments, in which

participants’ responses affect the actions of the virtual robot.

4.4.2 Single-Trial Classification

Previous studies have successfully classified the brain’s responses to correct movements

against responses to erroneous movements in navigation tasks such as the ones explored in

this study. The original study for which the data of the PACT were generated reported

classification accuracy of 75.8% and 63.2% for the correct and erroneous movement classes

respectively [29]. Another study reported correct vs erroneous movement classification

accuracy, in three similar navigation tasks, of 73.8%, 72.5%, and 74.3% [63]. It is reasonable

to expect that the classification of two different correct movements against each other would

be more challenging than the classification of correct movements against erroneous ones; we

would expect to see more pronounced differences in the brain’s responses in the latter case.

In this study, classifying EEG responses to correct movements towards the target (but

not reaching it) against responses to movements that reached the target, we achieved mean

overall classification accuracy of 66.5% and 68.0% for the two tasks. Indeed, these were

only slightly below the levels previously reported for erroneous versus correct movements

in similar tasks. Interestingly, overall accuracy reached a high of 83.7% in the best case.

Crucially, statistically significant separation of the two conditions (p < 0.05) was achieved

for all participants from both tasks, and highly significant separation of the classes was

shown at the group level (p = 2.8× 10−54 and p = 9.6× 10−62 for the Cursor Task and the

PACT, respectively).

As a proof of concept, we have shown that it is possible to classify responses to these

two classes of correct movement against each other using single-trial EEG. As discussed in

section 4.2.4.2, we chose to apply stepwise linear discriminant analysis in this study, as it has

previously been shown to be successful in classifying similar data types [38,57,83,84,96,148].

However, it is possible that other methodologies, which could be explored in future, may

be able to provide further increases in classification accuracy. In potential future systems,

classifications of the human observer’s EEG responses could be used to guide the movement

of a real or virtual robot, with the user being explicitly rewarded for good performance of

the robot. In such systems, adding information from more frontal electrodes may be able

to provide an increase in classification accuracy, as the frontal cortex has been shown to

code prediction and reward [105,146,147].
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4.4.3 Implications for BCI

The P300 has a history of successful use in BCI, as discussed in section 4.1. In particular,

there have been many studies, dating back over 30 years, regarding the use of P300 signals

in BCI spelling devices [43, 45, 55, 84, 148]. These systems have often been able to improve

the robustness and accuracy of their classifications by using paradigms that allowed each

stimulus to be presented multiple times, and the responses to be averaged. P300-based

BCIs have also been created for other applications such as video games [49, 71], virtual

reality [11], and control of robots [12, 15, 69, 100], cursors [70, 91, 130] and wheelchairs [62,

132]. Furthermore, the P300 has been utilised alongside other modalities such as motor

imagery [154] and steady-state visual evoked potentials (SSVEP) [172] to create hybrid BCIs

[3, 109, 124]. The navigation scenarios presented in this study provided a further challenge

compared to many previous P300-related systems, as each stimulus (i.e. movement) was

only presented once. This was an important aspect of the paradigm, as we wished to

simulate the observation of real navigation, with a view to future applications in which

classifications could be made solely based on users’ responses to the actions they observe.

In such real navigation, each action occurs only once. While accurate single-trial P300

classification is challenging due to the low signal-to-noise ratio of EEG [68,97], some recent

studies have shown that it can be achieved. One study using a video game context reported

mean offline classification accuracy of 85%, and online accuracy of 66% [49]. Another study

reported single trial P300 classification accuracy of 70% [68]. In other cases, the area under

the receiver operating characteristic curve (AUC) was reported for various possible classifier

parameters, rather than the classification accuracy for a specific trained and optimised

model. An AUC of over 0.8 has been reported for many participants [79,94]. In this study,

rather than classifying a condition eliciting a P300 against a condition that did not elicit a

P300, we were classifying two P300-generating conditions against each other. As such the

fact that statistically significant separation of two different correct conditions was achieved

for all participants is encouraging for the use of the P300 in single-trial BCI scenarios.

In recent years, there have been interesting advances in BCIs based on signals that are

generated spontaneously in the brain, without the need of a conscious effort to generate

them on the part of the user. These systems, making use of implicit communication,

have been described in two groups, referred to as “reactive BCI”, in which a spontaneous

response is triggered by a stimulus, and “passive BCI”, whereby arbitrary mental states are

measured [175–177]. Some particularly interesting recent studies have been those exploring

reactive BCI in robotic movement and navigation tasks. Classification of error-related

potentials (ErrP) in order to differentiate correct movements from erroneous ones has been

combined with reinforcement learning in order to allow machines to perform a desired

action [75] or navigate towards a desired target [29, 63, 179]. By obtaining more detailed
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information from spontaneously generated signals, we can provide these systems with more

context, and allow them to learn more efficiently and act more appropriately. The ability

to classify when a target has been reached specifically and separately from other correct

movements, as has been demonstrated in this study, would be an important aspect of a

navigation system, and thus could enhance the usability and effectiveness of navigation-

based BCI.

4.4.4 Conclusion

In this chapter, we compared the ERPs generated in EEG data, in response to observing

two types of correct movements by a virtual robot: those that moved the robot closer to

the target without reaching it, and those in which the robot reached the target. We were

able to show that both correct movement conditions elicited a P300, and we identified a

significantly higher P300 amplitude in cases in which the target was reached.

Interestingly, we were able to classify the responses to these two types of correct actions

against each other with mean overall accuracies of 66.5% and 68.0% for two tasks, achieving

statistically significant separation of the conditions for all participants. This single-trial

classification could be used as part of a learning-based BCI, and opens a new door toward

a more autonomous BCI navigation system.
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Chapter 5

Simulated Learning in

Semi-Autonomous Robot

Navigation

At the time of writing, the findings presented in this chapter are under review for publication

in IEEE Transactions on Systems, Man, and Cybernetics: Systems, with preliminary results

published in the proceedings of the 42nd International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC ’20) [164]

5.1 Chapter Introduction

In the previous chapter, I showed that it is possible to use single trial EEG to classify

the brain’s responses to different correct navigational actions against each other. This

fulfilled the second objective of this project. When combined with the findings of chapter

3, it has now been established that detailed subclasses of action can be identified from

brain signals generated spontaneously while users merely observe the actions of a machine.

This paves the way for a more efficient semi-autonomous system, in which the machine

can use these detailed classifications as feedback to improve its performance, via machine

learning. This chapter explores a system in which multiple types of navigational actions

are classified in real time, and the classifications are used to inform the machine’s future

actions, thus addressing the third objective of the project. Finally, in order to address the

fourth objective, a straightforward approach, simply using the classifications for immediate

error correction, is compared to an approach that uses the classifications for a machine

learning-based approach.

There is a performance bottleneck in many BCIs, as users are required to control each
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low-level action in order to achieve a high-level goal. For example, users may need to

consciously generate brain signals to move a cursor, prosthesis, or assistive robot, step-by-

step to a desired location. This places a high mental workload on the user.

Machine learning provides the potential to alleviate this mental burden. Recent studies

have shown the possibility of using “cognitive probing” — monitoring reactive brain signals

in response to certain machine actions [81], and using these signals as feedback for rein-

forcement learning (RL), thus allowing robots to learn to perform tasks [64, 75]. In these

systems, users must still focus on the task. However, we can postulate that mental workload

may be reduced, as users are merely observing the task rather than consciously generating

signals to control it. These studies have mostly been based on distinguishing correct actions

from erroneous ones, by detecting error-related potentials (ErrP) — characteristic signals

that are spontaneously produced in the brain in response to an error recognised by the hu-

man [30, 51]. Indeed, previous studies achieved encouraging results for robot path planing

using ErrP detection combined with RL [2,63,66,143,179]. However, there are other options

for route planning without the need for human intervention. In outdoor scenarios, satellite

navigation is available. For smaller scale or indoor scenarios, there are myriad methods for

robot path planning without the need for EEG feedback [23, 36, 101, 107, 139]. One thing

that cannot be inferred without feedback from the human, is which target they wish the

robot to travel towards. Arguably, therefore, “target identification” is the more important

piece of information to learn from the EEG.

A few studies have begun to tackle this problem. Chavarriaga and Millán used EEG-

based RL to choose between whether a target was on the left or the right of the machine’s

current location [29]. Some have indicated the possibility of using EEG rewards to infer

which specific location, from a subset on a grid, was the target. In a recent study, Schiatti

et al. had the machine converge upon optimal routes to each potential target via Q-

learning, and then implemented a second layer of Q-learning to choose between possible

targets [143]. However, in this paradigm, the robot received an environmental reward and

stopped automatically when the target was reached, assuming that there was an external

way to know the target was correct, rather than inferring this information purely from EEG

feedback. Iturrate et al. showed that it is possible to converge on targets without the need

for such external validation — their approach similarly used Q-learning to find optimal

routes, and then compared feedback rewards with expected Q-values [66]. However, it has

been stated that Q-learning suffers from poor scalability [63] and, indeed, these studies

each had only a small subset of potential target loci in relatively small areas. Iturrate et

al. recently stated, “It is then an open question how the proposed [brain-machine interface]

paradigm may generalize across tasks or scale to more complex scenarios” [63]. Furthermore,

all of these studies used binary classification of robotic actions, classifying each movement
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simply as correct or erroneous.

Grizou et al. presented an unsupervised method to use reactive EEG for semi-autonomous

navigation [54]. Their method did not use a calibration phase to learn the classification

model. Instead, the machine considered all possible intended targets, and calculated which

of the observed actions would be correct - and which would be erroneous - for each potential

target. The system then inferred the most likely intended target based on the best separa-

tion of these classes. When a new target was chosen by the user, the system retained its

inferred model of the user’s previous EEG responses, but attempted to identify the most

likely new target by using a Gaussian Bayes classifier to evaluate new EEG signals. As with

the above methods, this study focused on binary, error-vs-correct classification

In the previous chapters, we showed that it is possible to subclassify different naviga-

tional errors, and different correct navigational actions, against each other. In this chapter,

we utilise this, and propose a system 4-way EEG-based feedback for learning in robot navi-

gation and target identification, rather than binary EEG feedback used in previous studies.

The 4 classes of movements are: towards the target but not reaching it (TT condition),

reaching the target (TR condition), moving from an off-target location to a location even

further away from the target (FA condition), and stepping directly off the target location

(SO condition). In this study, the user’s intended target will be inferred from reactive brain

signals, generated spontaneously as the user merely observes the robot’s actions. Impor-

tantly, the target could be any location in the space. In order to overcome the scalability

issues of RL, our approach reframes the challenge of how to utilise reactive EEG to achieve

semi-autonomous navigation. Instead of attempting to learn the route from A to B, we

assume that the route is known. Rather, the key information that we need to infer from the

user is the intended target. We propose a learning system featuring a novel implementation

of Bayesian inference, utilising prior knowledge of classification contingency tables to con-

textualise EEG feedback, and build a probabilistic model in order to learn the most likely

target location. In order to test both efficiency and scalability, we investigate our strategy’s

effectiveness in both small (9 × 1, i.e. 9 spaces) and large (20 × 20, i.e. 400 spaces) grids

using EEG data recorded from 10 participants. Furthermore, we investigate the trade-off

between speed and accuracy, using an adjustable parameter to control the level of evidence

that must be accumulated before converging on a particular target.

5.2 Experimental Design

5.2.1 Datasets

In the present study, we used real EEG data from the Cursor task, as described in detail

in the previous chapter, and shown in Fig. 4.1. As previously discussed, ten healthy adults
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(4 female, 6 male, mean age 27.30 ± 8.31) had merely observed a virtual robot navigation

paradigm. The brain signals were recorded at 500Hz, at electrode positions Fz, Cz, Oz, Pz,

C3, C4, PO7, and PO8, using an Enobio 8 headset. The paradigm consisted of a cursor,

representing the virtual robot, moving left and right in a 1-dimensional space on a screen.

The robot’s goal was to reach, and correctly identify, a target location. However, erroneous

movements and erroneous target identifications occurred with preset probabilities.

5.2.2 Simulations Using Real EEG Feedback

The goal of this study was to simulate a real-time implicit human-machine interaction. In

order to achieve this, while being able to explore a variety of scenarios, running through

each a large number of times, we used previously-recorded real EEG data as feedback. This

approach has recently proven useful in exploratory studies [108].

Of the ten participants who observed the Cursor Task, two did not produce enough

artefact-free trials in each class, and were excluded. Therefore, simulations were performed

using feedback generated by the remaining eight participants. For this purpose, for each

participant, 85% of the EEG trials from each class were randomly selected as training

samples, with the remaining 15% being reserved as test samples.

In the simulation phase, two different grids were used. Firstly, the virtual robot navi-

gated in a 1-dimensional space made up of 9 squares. Secondly, the virtual robot navigated

in a 2-dimensional space made up of 400 squares, arranged in a 20×20 square. The target

could be randomly positioned in any location (i.e. any square in the grid) at the start of

each run. The robot began the run at a randomly selected location a minimum of 2 moves

away from the target, with no maximum distance imposed other than the boundaries of

the space. Each action consisted of either (a) a discrete movement from the robot’s current

square to an adjacent square, or (b) identifying the robot’s current square as the target

location.

Three navigation strategies were tested, namely our proposed “Bayesian Inference”,

“Random” and “React”. The precise details of these navigation strategies are described

in section 5.3.2. Generally, an initial action was selected. Then, after each action was

performed by the robot, a test EEG trial from a participant who had previously observed

the experiment (as described in section 5.3.1) was retrieved. The trial was classified as if it

were being processed in real time. The classification outputs provided by the trained model

was used to inform future actions of the robot. This continued, using trials from the same

participant as feedback, until the navigation strategy determined that the target had been

reached. Each navigation strategy was run 1000 times per participant on each grid size.

78



5.3 Methods

5.3.1 Multi-Way Classification of Robotic Actions

For each participant, a four-way classification model was trained to distinguish four classes

of observed movement:

• “TT condition”: Towards target (but not reaching it)

• “TR condition”: Target reached

• “FA condition”: Further away (when moving from an already off-target location, to

a location further away from the target)

• “SO condition”: Stepped off target

Classification of movement actions, — hereafter specified as “movement classification”

— was achieved via a 2-stage binary tree. Firstly, EEG trials were classified as responses

to either correct (TT and TR condition) or erroneous (FA or SO condition) movements.

They were then subclassified as one of the specific conditions. Classification inputs were

time domain EEG samples from 200ms to 700ms relative to the robot’s action, from the 8

electrodes. Data were bandpass filtered, and downsampled to 64Hz. For the first stage of

classification (error vs correct), a passband of 1 to 10Hz was used, as low frequencies have

generally proven fruitful in error detection studies [30]. For the second stage (subclassifica-

tion), a passband of 1 to 32Hz was used, as the inclusion of information at higher frequencies

has previously proven successful in subclassifying similar navigation observations [164].

Stepwise Linear Discriminant Analysis (SWLDA) was selected as the classification strat-

egy for each stage of the class, as this has previously been shown to be effective in selecting

features and classifying event related potentials [83], including in our previous work with

observed robot navigation [161,164]. Features were selected iteratively. Beginning with an

empty feature set, regression analysis was performed on models created with and without

each feature, providing a p-value for each one. If the p-value of any features not already

in the model were below 0.025, the feature with the lowest p-value would be added to the

model. If no p-values were below this threshold, then the feature in the model with the

highest p-value, if above 0.075, would be removed from the model. Iterations continued un-

til no features reached the thresholds to be added to, or removed from, the model. Linear

classification models were then trained and tested, using the selected features.

A minimum of 12 trials are recommended to achieve a reasonable level of stability in

the ERN and Pe [88], and literature suggests that a minimum of 20 trials are required for

a stable P300 [31]. Therefore, in line with our previous studies [161,164], participants were

only included in the classification phase if they had produced at least 12 trials in each of
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the FA and SO error conditions, at least 40 trials from error conditions combined, and at

least 20 trials in each of the TT and TR correct conditions. This meant that classification

analysis was performed using data from 8 participants.

Additionally, binary classification of target identification actions — hereafter referred to

as “TI classification” — was carried out for each participant, in attempt to gather further

information about whether the identified location was the correct target. For all EEG trials

in which the robot identified its current location as the target, a classification model was

built to classify correct target identifications — hereafter referred to as the “CTI” condition,

against false ones — the “FTI” condition. EEG trials were processed in a similar manner to

observed movement trials, and were extracted from 200ms to 700ms relative to the yellow

box appearing around the robot’s location. Trials for this model were filtered between 1

and 10Hz. Similarly to the movement classification, an SWLDA classifier was used. This

TI classification was used as an extra layer of feedback in the simulated experiments, giving

the robot a chance to undo a target identification, if the TI classification output indicated

that it was false.

5.3.2 Navigation Strategies

In this study, we assumed that the robot knew the map perfectly — it knew the shortest

path between any two locations. We could imagine that the robot had a satellite navigation

system for any route it might need to take. However, the robot did not know which location

was the target - this is what the robot needed to learn from the EEG feedback. Given this

assumption, three navigation strategies were used.

5.3.2.1 Proposed Bayesian Inference

Kruschke and Liddell describe Bayesian analysis as “reallocation of credibility across pos-

sibilities” [82]. In this case, each location on the grid represented a possible target. At the

start of each run, each location could be considered to have an equal probability of being the

target, but as we gathered more information in the form of EEG feedback, we could infer

that some locations are more credible targets than others. As such, we deemed Bayesian

inference to be an appropriate strategy for this scenario of learning to navigate and identify

targets.

Let us present the action performed by the robot at time step t as Ut, where t ∈ [1, 2, .., l]

and l denotes the last time step in a given run. Ut can be considered as the control

state of the model representing that the robot either moved to a neighbouring location, or

identified its current location as the target. Subsequently, St represents the participant’s

interpretation, at time step t, of what has occurred as a result action Ut. In this study, for
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movement actions St ∈ S=[TT, TR, FA, SO], and for target identification actions S=[CTI,

FTI]. This interpretation was not seen directly by the robot, and so can be considered as

the hidden state of the model. However, the participant’s interpretation of Ut could be

reflected in the recorded EEG signals. Thus, EEG signals resulting from interpretation

St were classified, providing observation Ot ∈ O as the classification output at time step

t. In this study, each observation was represented as a binary vector with length equal

to the number of possible classification outputs. For movement actions, Ot = O(1) =[1

0 0 0] represented a classification output of TT, Ot = O(2) =[0 1 0 0] represented TR,

Ot =O(3) =[0 0 1 0] represented FA, and Ot =O(4) =[0 0 0 1] represented SO. For target

identification actions, Ot =O(1) =[1 0] represented CTI, and Ot =O(2) =[0 1] represented

FTI. Theoretically, our proposed approach could be extended, such that Ot could represent

the likelihood of each class, rather than being binary.

Fig. 5.1(a) shows a representation of the way that each action Ut influenced the partic-

ipant’s interpretation St, which lead to a classifier output Ot. The probability of each grid

location being target was updated as explained below, thus influencing the following action.

Depending on the classification output and the updated probabilities, the following action

would be either identifying the current location as the target or making the next movement

action.

Defining the Next Movement Action: Let’s define P (T t
i,j) as the probability of a given

grid location (i, j) being the target at time step t. Similarly, P (T t
c ) is defined as the

probability that the robot’s current location is the target. At the start of each run, these

probabilities were equal to P (T 1
i,j) = 1/(n×m) for every location of a grid with n rows and m

columns. When a new classification output Ot was observed following a robot action Ut,

P (T t+1
i,j ) at time step t+ 1 were updated according to Bayes theorem [153], using (5.1) and

(5.2);

P (T t+1
i,j ) =

P (T t
i,j |Ot)∑m

j=1

∑n
i=1 P (T t

i,j |Ot)
, (5.1)

P (T t
i,j |Ot) =

PA(Ot|Ti,j)P (T t
i,j)

P (Ot)
. (5.2)

In (5.2), PA(Ot|Ti,j) was calculated using the likelihood matrix A, representing the like-

lihood of observations given the hidden states. In this study, for the movement actions

A ⊂ R4×4, whereas for the target identification actions, A ⊂ R2×2. The elements of A were

calculated as

A(i, j) = P (O(i)|S(j)). (5.3)

In fact, using A the robot could estimate the reliability of each classification output. A

was subject-specific, and calculated using leave-one-out cross validation on the classification
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Figure 5.1: Formulation of the proposed Bayesian inference strategy. (a) shows the general
case. Robot actions lead to interpretations by the user. These resulted in EEG signals which
were given classification outputs. These observations, along with existing target location
probabilities and the likelihood matrix A, determined updated target location probabilities.
Probabilities informed the next robot actions. (b) shows an example of how the Bayesian
inference strategy updated the target location probabilities after one movement action,
thus influencing future actions. The action Ut was that the robot moved from location
(1, 5) to (1, 6). The user saw that this resulted in the robot moving towards the target. The
classifier correctly produced the observation representing the TT condition. Values from
the appropriate column were extracted from A and used to update probabilities. If any
of locations 1-4 were the target, the action would have represented the FA condition. For
location 5, the action would have represented the SO condition. For location 6, the action
represented the TR condition. For locations 7 (the actual target), 8, and 9, the action would
have represented the TT condition. All probabilities were updated accordingly. The robot
would then go on to select the next action, Ut+1. Depending on the latest classifier output
Ot and the updated target location probabilities, action Ut+1 would either be to select the
current location as the target, or to perform another movement action.

training EEG data. Subsequently, PA(Ot|Ti,j) was extracted from A, by retrieving the value

in the column corresponding to Ot, and the row corresponding to what the participant’s

perception St would have been, if (i, j) were the target. P (Ot) could be also calculated

using A, as the sum of the elements in the column corresponding to Ot, divided by the

sum of all the elements of A. In other words, Ot could be calculated using the following
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equation:

P (Ot) =

∑k
j=1 P (Ot|S(j))∑k

i=1

∑k
j=1 P (O(i)|S(j))

, (5.4)

where k was the total size of S which is 4 for the movement actions and 2 for the target

identifications.

Fig. 5.1(b) shows an example of how the probabilistic model was updated using the

proposed Bayesian inference strategy, after an individual movement action.

After calculating P (T t+1
i,j ) for all the grid locations, the robot identified the location with

the highest probability of being the target, and then calculated the shortest path to reach

it. The virtual robot then took the first step on this path as Ut+1. If multiple locations

were tied for the highest probability, one was selected at random.

Identifying the Current Location as Target : In order to determine whether the robot’s

current location c was the target, after the target location probabilities had been updated

following each movement action, algorithm 1 was run. stringency is a predefined variable

to determine the level of certainty the system required before identifying the robot’s current

location as the target. In this study, values between 0.1 and 0.9 were used.

Algorithm 1 Method to determine when to identify the current location as the target

if (Ot = [0100](i.e.TR) and P (T t
c ) > stringency)

or P (T t
c ) > stringency+0.1

stringency+0.2 then
Identify c as the target

end if

According to algorithm 1, there were two scenarios in which the robot could select a

target:

(a) The current movement classification output Ot represented TR and a lower probability

threshold was met.

(b) The current movement classification output Ot did not represent TR but a higher

probability threshold was met.

At the lowest stringency value of 0.1, this meant a movement classification output of TR

resulted in the target being identified as long as the probabilistic model believed there to be

more than a 10% chance of the current location c being the target. Alternatively, without

a movement classification output of TR, the current location c would still be identified if

it was considered more than twice as likely to be the target as all other loci combined.

As stringency increased, the required probabilities — and thus the strength of evidence

that had to be accumulated in support of a given location being the target, either with or

without a classification output of TR — increased.
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The proposed Bayesian inference strategy allowed the possibility of deselecting targets.

Following a target identification action, if the TI classification output was FTI, the target

was deselected. Thereafter, all probabilities P (T t
i,j) were updated using (5.1) and (5.2),

with the likelihood matrix of target identification actions, A ⊂ R2×2. The run continued

until a target identification action was followed by a TI classification output of CTI.

5.3.2.2 React

The next strategy, React, used EEG feedback to inform immediate moves, but did not

involve any broader learning. This strategy effectively put 100% trust in the most recent

EEG classification output.

If the classifier had not identified the robot’s current location c as the target, the robot

would move to a neighbouring location, selected at random from a list of eligible neighbours

of the robot’s current location. For the first action of each run, all neighbours were eligible.

After action Ut, a pre-recorded EEG trial from the appropriate class was processed, and

classification output Ot was produced by the trained model. If Ot suggested that the

action was the TT condition (moving towards the target but not reaching it), then the

robot’s previous position would be ruled out from the list of eligible neighbours. Locations

were only ruled out for a single action, as the most recent classification output superseded

previous ones. If Ot suggested that the action was an erroneous movement (FA or SO

condition), the list of eligible neighbours would be reduced to only the previous position,

and therefore action Ut+1 would be to move back to the robot’s previous location, undoing

the error. Finally, if Ot suggested the target had been reached (TR condition), then the

robot’s position c would be identified as the target location.

When the yellow box was drawn to identify the target, TI classification was performed in

order to classify the identification as either correct (CTI) or false (FTI). If the classification

output was FTI, the identification would be undone, and the run would continue. The run

would end when a movement action received a TR movement classification output, then

the yellow box was drawn around the robot’s location, and the TI classification output was

CTI.

5.3.2.3 Random

As a performance baseline, a random strategy was implemented. For each action, with

probability of 1/(n×m) (i.e. 1/9 on the 9×1 grid, 1/400 on the 20×20 grid), the robot’s current

position c would be identified as the target location. Otherwise, a neighbouring position

would be selected at random, and the robot would move there. The process would repeat

until the target was identified, at which point the run would end. While this strategy did
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not require EEG feedback, 1000 runs were still simulated for each participant.

5.3.3 Assessing the Effect of Detailed EEG Feedback

In this study, our proposed Bayesian inference strategy made use of detailed EEG feedback.

We implemented 4-way classification of movement actions, as opposed to the state-of-the-art

approach using binary classification. Furthermore, we included the classification of target

identification actions.

In order to investigate the effect of TI classification, we compared our proposed Bayesian

inference strategy to an equivalent system which had the TI classification feature switched

off. In this case, each run ended as soon as the first target identification action was per-

formed.

We also compared proposed system to one using state-of-the-art, binary error vs correct

movement classification. The binary system was equivalent to the Bayesian inference strat-

egy, with two key changes. Firstly, the likelihood matrix A for movement classifications was

reduced from a 4×4 matrix (TT, TR, FA, and SO) to a 2×2 matrix (correct and erroneous

movements). Secondly, as specific TR classification outputs were no longer available, the

target would simply be identified if P (T t
c ) > stringency+0.1

stringency+0.2 . For both of these alternative

systems, 1000 simulations were run for each participant, and for each of the small and large

grids, with stringency values ranging from 0.1 to 0.9.

5.4 Results

5.4.1 Classification of Movement and Target Identification Actions

Four-way movement classification accuracies of the test samples for each individual partic-

ipant are shown in Table 5.1. As previously discussed in section 3.3.2, here we present the

overall accuracy, as well as the accuracy obtained for each class. The mean overall accuracy

was 48.7%, well in excess of the 25% baseline for four classes. The overall movement clas-

sification accuracy for each participant was over 40%. Average classification accuracies of

each condition were also all well over 40%, with the exception of the FA condition, at 39.9%.

Results for the first stage of movement classification: error vs correct, are also shown. The

mean error vs correct accuracy was 71.3%.

Classification accuracies of target identification (TI) action, based on the test samples

for each individual participant, are shown in Table 5.2. The mean overall accuracy of TI

classification was 73.5%. The accuracy for each individual participant was well in excess

of 60%. Mean accuracy was strong in both the classification of both correct and erroneous

target identifications, with the two conditions being correctly classified in 73.4% and 74.4%
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Subject
Condition Error

Overall
TT TR FA SO vs Correct

1 41.7% 53.9% 50.0% 20.0% 71.2% 44.2%

2 70.8% 50.0% 16.7% 50.0% 77.1% 56.3%

3 58.3% 61.5% 28.6% 33.3% 76.6% 53.2%

4 43.5% 46.2% 80.0% 66.7% 77.3% 50.0%

5 52.2% 30.8% 50.0% 100.0% 64.4% 48.9%

6 47.8% 33.3% 42.9% 33.3% 68.9% 42.2%

7 45.5% 45.5% 22.2% 40.0% 59.6% 40.4%

8 52.0% 61.5% 28.6% 100.0% 75.0% 54.2%

Mean 51.5% 47.8% 39.9% 55.4% 71.3% 48.7%

Table 5.1: Four-way movement classification results.

of cases, respectively.

Subject Correct Error Overall

1 85.7% 60.0% 75.0%

2 66.7% 80.0% 71.4%

3 80.0% 80.0% 80.0%

4 70.0% 80.0% 73.3%

5 80.0% 80.0% 80.0%

6 87.5% 60.0% 76.9%

7 57.1% 80.0% 66.7%

8 60.0% 75.0% 64.3%

Mean 73.4% 74.4% 73.5%

Table 5.2: Target identification (TI) classification results.

5.4.2 Evaluation of Navigation Strategies in Small and Large Grids

Navigation strategies were compared using two metrics, namely PTCI and MNS. To assess

accuracy, we calculate the percentage of targets correctly identified (PTCI). Higher PTCI

represents greater accuracy. To assess speed, we calculate the mean normalised number
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Figure 5.2: PTCI (percentage of targets correctly identified) performance of each navigation
strategy on the small (9×1) grid, across the 8 participants. Higher PTCI represents greater
accuracy.

of steps (MNS) taken to achieve correct target identifications. Steps are normalised to

represent the efficiency of the path taken, accounting for the fact that the virtual robot

starts each run a variable number of steps away from the target.

5.4.2.1 Percentage of Targets Correctly Identified (PTCI)

A comparison of the strategies’ PTCI on the small, 9×1 grid across the 8 participants is

shown in Fig. 5.2. The Random strategy achieved a mean PTCI of only 6.2% (s.d. 0.7%).

The PTCI increased to a mean of 54.9% (s.d. 21.2%) for the React strategy, and increased

further to a mean of 61.5% (s.d. 21.7%) for the proposed Bayesian inference strategy with

a stringency value of 0.1. At the highest stringency level of 0.9, a mean PTCI of 98.4%

(s.d. 1.7%) was achieved.

In the large, 20×20 grid, the PTCI for the Random and React strategies were effectively

negligible, at just 0.2% (s.d. 0.1%) and 6.4% (s.d. 4.7%), respectively. Conversely, our

proposed Bayesian inference strategy retained strikingly high PTCI when scaling to the

large grid. At a stringency level of 0.1, a mean PTCI of 62.0% (s.d. 19.0%) was achieved in

the large grid. At a stringency level of 0.9, very nearly all targets were correctly identified:

the mean PTCI was 98.03% (s.d. 1.8%). Indeed, for one participant at this highest

stringency setting, 100% of the 1000 targets in the large grid were identified correctly.

A 2 (grids: small and large) × 3 (navigation strategies: Random, React, and Bayesian

inference with a stringency level of 0.1) repeated measures ANOVA was performed on the
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PTCI results. The statistical results revealed significant main effects of grid size (p = 0.001)

and navigation strategy (p < 0.001) on the PTCI. Moreover, a significant interaction

between the grids and the navigation strategies were observed, regarding PTCI (p < 0.001).

Post hoc analysis revealed that, after Bonferroni correction, the proposed Bayesian

inference strategy significantly outperformed both Random (p < 0.001) and React (p <

0.001) strategies in terms of PTCI. The React strategy also significantly outperformed

the random strategy (p = 0.001). Interestingly, when comparing the proposed Bayesian

inference strategy with the React strategy, a significant interaction was revealed between

grid size and navigation strategy (p < 0.001). This shows that the React strategy’s PTCI

is much more negatively affected by the change from small to large grid than the proposed

Bayesian inference strategy. In fact, the proposed Bayesian inference strategy was quite

robust to the increase in grid size. Therefore, the proposed Bayesian inference strategy not

only provided the best target recognition accuracy of all the tested strategies, but was also

shown to be a scalable approach.

5.4.2.2 Mean Normalised Steps (MNS)

Violin plots comparing the strategies’ MNS on the 9×1 grid are shown in Fig. 5.3. The

distributions for these plots are based on all runs in which the target was correctly identified,

from all participants, combined. Using the Random strategy, the MNS was 4.4 (s.d. 0.4).

With the React strategy, the MNS, calculated across the averages for each participant,

was reduced to 3.9 (s.d. 1.5). This reduced further for the Bayesian inference strategy with

stringency level of 0.1, to 3.3 (s.d. 0.9).

An increase in MNS (i.e. decrease in speed) was observed when expanding to the large

grid, which is to be expected as there is a change from 1 dimension to 2. With the Random

strategy, the increase in MNS was very large, to a mean of 72.4 (s.d. 76.4). With both the

React and Bayesian inference (stringency = 0.1) strategies, the change in MNS was much

smaller, increasing to 6.4 (s.d. 3.6) and 7.8 (s.d. 3.7), respectively.

A 2 (grids: small and large) × 3 (navigation strategies: Random, React, and Bayesian

inference with a stringency level of 0.1) repeated measures ANOVA was performed on the

MNS results. Again, significant main effects of both grid size (p = 0.031) and navigation

strategy (p = 0.040) were reported, as well as a significant interaction between grid size

and navigation strategy (p = 0.045). This further substantiates the point that, while the

Random strategy’s MNS was severely affected by an increase in grid size, this change had a

significantly smaller effect on both the React strategy and the proposed Bayesian inference

strategy.

Post hoc analysis, after Bonferroni correction, did not show any significant pairwise

differences between navigation strategies in terms of MNS.
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Figure 5.3: MNS (mean normalised steps) performance of navigation strategies on a small
(9×1) grid. Violin plots show the smoothed distribution of normalised number of steps to
correctly identify targets. React and Bayesian strategy distributions are based on data from
all participants, combined. Lower MNS represents greater speed. The y-axis is plotted on
a logarithmic scale.

5.4.3 The Speed-Accuracy Trade-Off

By changing the stringency setting, we can choose to put more focus on either the speed

(MNS) or the accuracy (PTCI) of the system. There is a trade-off — generally, increasing

performance in one of these metrics means decreasing performance in the other.

Using the Bayesian inference strategy, we calculated PTCI and MNS, in both small and

large grids, with stringency values in increments of 0.1 between 0.1 and 0.9. The results

of these calculations are shown in Table 5.3. The trade-off is demonstrated by the high

correlation coefficients between PTCI and MNS: r = 0.94 in the 9×1 grid and r = 0.95

in the 20×20 grid (p = 1.6× 10−4 and p = 6.2× 10−5, respectively). A visualisation of this

trade-off is shown, for both the small and large grids, in Fig. 5.4 (solid lines).

On average, it was possible to achieve a PTCI of over 90% with a stringency setting of

0.6 in the small grid, and 0.5 in the large grid. These settings afforded a mid-range MNS,

at an average of 6.9 and 10.9 in the small and large grids, respectively. For applications

where the very highest PTCI (i.e. the highest accuracy) is required, we can achieve this in

either the small or large grid by setting the stringency to 0.9. Of course, this does require

more steps in order to attain the higher threshold of confidence that the target has been

reached. With this very high stringency value, the MNS increased to an average of 9.6

and 12.6 in the small and large grids, respectively. The reward is near-perfect accuracy: In

both grids, an average PTCI of over 98% was achieved, with PTCI of over 95% for every

single participant.
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Table 5.3: Percentage of targets correctly identified (PTCI), and the mean normalised num-
ber of steps taken in order to identify them (MNS), using the Bayesian inference strategy,
with various values of the stringency variable, on both the small and large grids. Results
shown represent mean ± standard deviation across all participants

S
tr
in
g
en

cy 9 × 1 Grid 20 × 20 Grid

PTCI MNS PTCI MNS

0.1 61.5% ± 21.7% 3.3 ± 0.9 62.0% ± 19.1% 7.8 ± 3.7

0.2 68.6% ± 17.5% 3.8 ± 0.9 77.9% ± 13.8% 9.0 ± 4.9

0.3 77.2% ± 13.2% 4.4 ± 0.9 85.4% ± 10.3% 9.6 ± 5.1

0.4 84.6% ± 10.1% 5.3 ± 1.1 88.4% ± 8.4% 10.3 ± 6.1

0.5 88.8% ± 8.0% 6.2 ± 1.3 91.6% ± 6.3% 10.9 ± 6.1

0.6 92.7% ± 5.2% 6.9 ± 1.7 93.6% ± 5.1% 11.2 ± 6.2

0.7 94.9% ± 3.8% 7.5 ± 1.8 95.5% ± 3.9% 11.3 ± 5.3

0.8 96.4% ± 3.1% 8.5 ± 2.2 96.8% ± 2.8% 12.1 ± 6.2

0.9 98.4% ± 1.7% 9.6 ± 2.8 98.0% ± 1.8% 12.6 ± 6.4

There was also a high negative correlation between stringency and the standard devi-

ation from the mean PTCI (r = −0.97, p = 1.4 × 10−5 in the small grid; r = −0.95,

p = 6.2× 10−5 in the large grid). Conversely, there was a very high positive correlation be-

tween stringency and the standard deviation from the mean MNS (r = 0.95, p = 1.1×10−4

in the small grid; r = 0.78, p = 0.01 in the large grid). In other words, as we require more

evidence in order to identify each target, PTCI gets more consistent across participants.

Meanwhile, MNS is more consistent across participants when the stringency is lower, and

becomes more varied as stringency increases. Therefore, if an application were to require

consistency across users in either speed or accuracy, these features can also be controlled

by tuning the stringency parameter.

5.4.4 The Effect of Classifying the Target Identification Action

As discussed in section 5.3.3, simulations were also run with the TI classification feature

switched off. The results of these simulations are shown as the dashed lines in Fig. 5.4.

Paired samples t-tests found the PTCI achieved with TI classification to be significantly

higher (p < 0.05) than that achieved without TI classification at every stringency level in

the small grid, and all but the highest stringency level in the large grid. As we might

expect, targets are generally identified slightly faster on average without TI classification,

as no extra steps can be taken after an initial target identification action. This difference
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Figure 5.4: Speed and accuracy trade-off. MNS and PTCI results at various stringency
values, from 0.1 (lowest point of each line on both axes) to 0.9 (highest point of each
line on both axes). Lower MNS represents greater speed. Higher PTCI represents greater
accuracy. Bold, solid lines represent data generated using the proposed Bayesian infer-
ence system (with 4-way movement classification, and TI classification, here abbreviated to
“TIC”). Dashed lines represent data generated using a system without target identification
classification. Dotted lines represent data generated using a system with binary movement
classification (i.e. correct versus error). Blue lines represent data from the small, 9×1 grid.
Red lines represent data from the large, 20×20 grid. All lines show average results across
all participants.

in MNS was found to be significant (p < 0.05) at all but the highest stringency level in

the small grid. However, in the large grid, the difference in MNS was only found to be

significant at 3 of the 9 stringency levels.

The most notable effect of TI classification occurs at the lowest stringency levels. In

these cases, we can reasonably expect more false target identifications to occur, as less

evidence needs to be accumulated in order to perform a target identification action. In the

9 × 1 grid, PTCI of 61.5% was achieved with TI classification, as opposed to just 30.2%

without TI classification (p = 0.0006). In the 20 × 20 grid, 62.0% PTCI was achieved

with TI classification, compared to 39.3% without (p = 0.005). This indicates that TI

classification strongly improves the robustness of the system.

5.4.5 Comparison of 4-Way vs Binary Classification

We compared the efficiency of the system using the proposed 4-way movement classification

against one using the existing state-of-the-art, binary error vs correct movement classifica-

tion. The results of the simulations using binary movement classification (as discussed in
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section 5.3.3) are shown as the dotted lines in Fig. 5.4.

Paired t-tests on each stringency level of each grid revealed that only in the small

grid with stringency of 0.1 were the PTCIs significantly different. In this case, 4-way

classification achieved a higher PTCI.

The more striking effect of 4-way classification is on the speed of the system. As can

be seen in Fig. 5.4, 4-way movement classification allows convergence on correct targets

in fewer steps, on average, than binary movement classification. This difference in MNS

was statistically significant (p < 0.05) in the small grid at 5 out of 9 stringency levels, and

tending to be statistically significant (0.05 < p < 0.07) in a further 3 cases. In the large grid,

the increases in speed using 4-way movement classification were not found to be statistically

significant (0.08 < p < 0.18). This may be due to the high standard deviation of MNS

between participants, when using binary movement classification. At a stringency of 0.9,

the standard deviation was 36.3 when using binary movement classification, compared to

6.4 when using 4-way movement classification.

Therefore, when using 4-way movement classification, we have seen some significant

improvements in speed, as well as increased consistency of speed between participants.

5.5 Discussion & Conclusion

This study has presented a scalable approach that makes it possible to use reactive EEG

feedback not only to navigate towards target locations, but also to accurately identify the

correct targets once they have been reached. All strategies using EEG feedback correctly

identified several times more targets than the Random approach. The EEG feedback strate-

gies were also capable of identifying these targets in fewer steps than the Random approach.

Our proposed Bayesian inference strategy, which iteratively updated a probabilistic model

to learn the most likely target location, proved to be the most efficient of the navigation

strategies tested in this study. The Bayesian strategy also maintained very high accuracy

— here defined as the percentage of targets correctly identified (PTCI) — when expanded

to a large grid, in which any of 400 spaces could be the target.

For the first time, we have shown that it is possible to perform 4-way single-trial clas-

sification of different types of navigational actions, based on automatically generated EEG

signals as participants only had to observe the virtual robot tasks. Furthermore, we have

shown a system that uses this 4-way classification of EEG responses to robotic movements

as feedback for learning-based navigation. This provided contextualised feedback to the

robot, including specific information regarding when the target location had been reached.

Our results demonstrate that such detailed classification can lead to a more efficient semi-

autonomous robot navigation than can be achieved with binary, error vs correct EEG
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classification alone. We therefore recommend the use of detailed EEG classification where

possible in reinforcement learning-based BCIs.

Additionally, binary classification was performed on target identification actions, classi-

fying them as either correct or false. Reliable classification of target identification actions

provides the system with an increased level of robustness, due to ability to undo false

identifications.

Our proposed Bayesian inference strategy includes an adjustable parameter: stringency.

By tuning this parameter, we can make the system require a higher or lower threshold of

certainty to be met before identifying a target. As such, we can amend the strategy to focus

on reaching targets more quickly, or identifying them with greater accuracy, making this

approach applicable in a wide range of scenarios. In the fastest case, targets were correctly

identified after a mean of 3.3 normalised steps, indicating that a small number of errors can

be enough to teach the robot. Interestingly, in the most accurate case, an average of more

than 98% of targets were identified correctly.

We have shown the capability for a robot to learn user intentions from reactive EEG

signals in a more efficient and scalable manner than ever before. These signals are obtained

while users simply observe the robot’s actions, providing a form of implicit communication.

We therefore believe that the mental workload of the user would be reduced. Such capability

could be extremely useful for assistive robotics. Therefore, this study represents important

steps forwards for semi-autonomous BCIs, and for efficient, user-friendly human-machine

interaction.
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Chapter 6

Future Outlook: Towards

Real-Time Semi-Autonomous

Navigation

6.1 Chapter Introduction

In the previous chapter, I showed that it is possible to use detailed EEG feedback, combined

with a machine learning model, to navigate towards targets and identify when they have

been reached in an efficient manner. In order for a system such as this to be fully usable, the

next required development would be to implement the system with a human-in-the-loop in

real time. As such, the proposed approach for including the human-in-the-loop is discussed

in this chapter.

In the field of BCI, considerably more attention has been paid to the training and

adaptation of classifiers and machine learning systems than the training and adaptation of

users [95,135]. Nonetheless, the effects of different training and feedback approaches on the

human-in-the-loop have been investigated in some depth in active BCI [135]. For example,

a variety of different feedback modalities have been shown to improve user performance in

BCI for stroke rehabilitation [4]. Meanwhile, biased feedback has been shown to reduce

classification accuracy for users who already proficiently control a BCI, but can improve

accuracy for users who were previously performing at or near chance level [9]. In BCI

based on mental tasks, adaptive feedback methods have been recommended to enhance

performance [95].

Comparatively little is known about the effects of feedback, or user adaptation, in passive

or reactive BCI systems. However, it has been shown that appropriate and timely feedback

can modulate ERP responses in a P300-based BCI, and thus improve performance [8].
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Therefore, these factors are important considerations with a human-in-the-loop reactive

BCI.

6.2 A Real-Time Paradigm

Preliminary real-time piloting began prior to being curtailed due to COVID-19 related

restrictions.

Initial piloting was carried out using a 1-dimensional implementation of the Cursor Task.

This was selected as strong results were previously reported in the 1-dimensional Cursor

Task, and the task would allow straightforward expansion to more complex scenarios such

as a 2-dimensional space, and the inclusion of obstacles.

The proposed EEG setup was the same as had been implemented in offline sessions of

the Cursor Task, as previously described in section 4.2.2.1. 8 channels of EEG were to be

recorded at 500Hz using an Enobio 8 headset. The electrode sites recorded were Fz, Cz, Pz,

Oz, C3, C4, P07, and PO8. A further reference electrode was to be placed on the earlobe.

This setup was selected due to this relatively small number of electrodes providing key data

and proving fruitful in our simulated outcomes, as discussed in the previous chapter.

At the beginning of each session, a number of calibration blocks would be carried out,

each lasting approximately 4 minutes. These blocks would follow a similar protocol to that

of the offline Cursor Task sessions, descried in section 4.2.2.2. Participants would then be

given a brief break in order for the subject-specific classification models to be trained. These

would consist of:

1. A four-way classification model of movement actions

2. A binary classification model of target selection actions

All classifiers would be implemented using stepwise linear discriminant analysis (SWLDA)

as previously described in section 5.3.1.

Online blocks of trials, again lasting approximately four minutes per block, would then

be carried out. These would follow a similar protocol to the simulated real-time experiments

discussed in the previous chapter: after each action performed by the virtual robot, an EEG

trial would be extracted from 200ms to 700ms relative to the movement. This trial would

immediately be preprocessed and classified according to the appropriate model, depending

on the type of action that had been performed. The virtual robot would navigate and

identify target loci according to the Bayesian inference navigation strategy described in

section 5.3.2.1.
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6.3 Overcoming Challenges of a Human-in-the-Loop Scenario

A number of potential challenges are involved in performing real-time experiments with

immediate EEG feedback from participants.

One such challenge is to achieve the correct balance in selecting the number of calibra-

tion blocks. Of course, the first priority is to obtain enough trials of each class, in order to

properly train the models and achieve accurate classification. However, long calibration ses-

sions are undesirable in practice, as users generally will not wish to be required to calibrate

a system for a long time each time they need to use it.

In the offline Cursor Task experiments, most participants recorded 6 blocks of trials (ap-

proximately 24 minutes in total), and this proved enough to provide accurate and usable

4-way classification. For a system employing binary, error-vs-correct movement classifica-

tion, Chavarriaga and Millán used 10 blocks of approximately 3 minutes each (approximately

30 minutes in total) to collect training data [29]. In a study by Iturrate et al., also using

binary error-vs-correct movement classification, blocks of 100 actions were observed, and a

classifier was trained after each block [63]. Training continued until classification accuracy

reached 80%, or until four training blocks had been completed, resulting in a mean training

time of 25 minutes. A similar approach may be advisable here, with the model being trained

after each 4 minute run. Training blocks could then continue until 4-way movement clas-

sification accuracy and binary target identification classification, assessed via leave-one-out

cross validation, reached 45% and 70% respectively (mean accuracies by these metrics in the

data used for simulated experiments were 48.7% and 73.5% respectively, and the minimum

for individual participants were 40.4% and 64.3% respectively — see tables 5.1 and 5.2), or

until a maximum of six blocks of trials had been recorded.

Another consideration is whether the reactive EEG signals will remain consistent be-

tween calibration blocks and online blocks. There are some factors that could affect this.

Firstly, it has been shown that differing rates at which erroneous actions occur can affect

the ErrP response and, in turn, classification accuracy [29]. Similarly, P300 amplitude has

been shown to be affected by target-to-target interval [52]. Therefore, it may be desirable

— at least in early experiments — that the rate at which each action type occurs aligns

as closely as possible between the calibration and online sessions. A suggested strategy to

mitigate this challenge would be similar to that discussed above. Error rates in calibration

sessions could be set according to known data regarding average classification accuracy.

Training could then be curtailed when the trained models reached the equivalent accuracy

levels.

It has been shown that factors that are intrinsic to the user, such as motivation, can

modulate the brain’s response to stimuli in a BCI [76]. It is feasible that signals may
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also be affected by participants’ perceived difference in valence between calibration sessions

(where their observation has no effect on the system) and online sessions (where their

observation does affect the performance). For example, one piloting participant appeared

to display a larger P300 peak in response to the TR condition — albeit based on a relatively

small number of calibration samples — resulting in this becoming conflated with the error

conditions. Related studies that have included both training and online sessions have not

reported notable differences between responses across the sessions [29, 63]. However, it

should be noted that these studies dealt only with binary movement classification, and each

run automatically ended when targets were reached, and so trials equivalent to the TR

condition were not considered. In order to mitigate this challenge, it would be advisable to

duplicate scenarios as closely as possible between the calibration and online sessions. One

way to achieve this would be to tell participants that their responses were influencing the

performance from the beginning of the calibration session.

6.4 Further Proposed Developments

In the approach explored in this thesis, users merely have to observe the actions of a machine,

which is then controlled semi-autonomously, using implicit human-machine communication

as feedback to guide it. This approach has the potential to make BCI more user-friendly

by reducing the mental workload required by users. In order to make such a system as

efficient and effective as possible, there are a number of further developments that we

would recommend.

6.4.1 Improvements to the BCI Model

New or updated machine learning strategies could be researched and implemented in order

to improve the generalisability from small and imbalanced training data. Transfer learn-

ing algorithms could be explored in order to further improve both calibration time and

classification accuracy.

6.4.2 Expansion upon the User Behaviour Model

The current system treats each run as a standalone navigational task, and as such each run

begins with every available location having an equal probability of being the user’s desired

target. However, whether we are navigating about a room or a city, there are some locations

we are likely to visit more often than others. For example, we are more likely to need to

navigate to our own workplace than another office building. Therefore, a natural extension

to this research would be to develop long-term, adaptive probabilistic modelling. As well as
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updating target probabilities in the short term for each run — that is, for each journey —

such a system would also update long-term probabilities of a user’s preferences and target

locations after each successful target identification. This would inform the initial prior

probabilities at the beginning of future journeys, making it more likely that the machine

would immediately set out on the correct path, but still allowing the user to choose a less

common target, or even one that had not previously been visited.

6.4.3 An Intelligent Interaction between the BCI Model and User Model

With the BCI model and user model both in place and working efficiently, the overall system

could be further improved via the research and development of an intelligent interaction

between the two models. Confidence in the accuracy of both models could be continually

assessed, and used to inform the machine’s predictions and actions. Factors such as fatigue,

workload, emotions and alertness, could be considered, by using passive brain signals as

further inputs to monitor the user model. To maintain a high level of performance over

time, the system must consider changes in brain signals as the human adapts to using the

BCI. The system should itself be adaptive, promoting long-term, mutual learning.

6.4.4 Extending to Other Tasks and Applications

Virtual robot navigation has been the primary exemplar for the concepts shown in this

thesis, and we would propose that they would also make an appropriate exemplar for the

extensions and developments discussed above. A natural next step would then be to apply

these techniques with a real robot navigating in a physical space. However, these techniques

could be applicable to any scenario in which users select a number of preferences at varying

rates.
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Chapter 7

Conclusions

7.1 Key Achievements

This thesis presented several research achievements, which have contributed new and im-

portant knowledge to the fields of EEG analysis and BCI.

• The thesis successfully showed that it was possible to classify new and more subtle

subclasses of errors against each other, using single-trial EEG.

• The thesis successfully showed, for the first time, that it is possible to classify different

types of correct actions against each other, using single-trial EEG.

• The thesis successfully showed that the above information could be combined as inputs

for a novel Bayesian learning system, for efficient semi-autonomous navigation.

These contributions are detailed further in the following sections.

7.2 Decoding EEG Responses to Different Errors

The first objective of this research project was to investigate the possibility of decoding

EEG responses to different types of errors. As discussed in chapter 3, this project has

successfully shown that it is possible to decode these signals, classifying them against each

other on a single-trial basis. This was shown to be possible even when the differences

between conditions were relatively subtle, in metrics that had not previously been explored.

In a navigational context, we explored the Claw Task - a virtual robotic claw crane game

in which the robot’s aim was to move towards, and select, a target object. As a proof of

concept, we showed that it is possible to use single trial EEG to distinguish between the

brain’s responses to two different types of erroneous movement:
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1. The FA condition: Moving further away from the target when starting from an off-

target location

2. The SO condition: Stepping directly off the target location

Further to this, we investigated data from the Error Awareness Dot Task (EADT). In

this task, users had to perform a mouse click in response to each stimulus presented, with

the exception of two conditions. Our study showed that it is possible to use single trial

EEG to distinguish between the brain’s responses to these two error conditions:

1. The colour condition: Failing to withhold the mouse click if the current stimulus is a

blue dot

2. The repeat condition: Failing to withhold the mouse click if the current stimulus is

the same colour as the previous stimulus

The differences between error types within each task were subtle, varying only accord-

ing to the context in which they occurred, and the cognitive processes required to recognise

them. Nevertheless, classification accuracy was greater than chance level for most partici-

pants of both tasks. Furthermore, group p-values for both tasks highly significant.

This project has therefore successfully shown, in various previously unexplored scenarios,

that it is possible to decode EEG responses to different errors.

7.3 Decoding EEG Responses to Different Non-Erroneous

Actions

The second objective of this research project was to investigate the possibility of decoding

EEG responses to different types of non-erroneous actions. As discussed in chapter 4, this

project has successfully shown that it is possible to decode these signals, classifying them

against each other on a single-trial basis.

This objective was explored using the Cursor Task — another navigational task in which

a virtual robot, denoted by a cursor, aimed to move towards a target location and correctly

identify when it had reached the target. Existing state-of-the-art systems using reactive

EEG signals had not previously explored the possibility of using a reactive EEG signal

specifically to identify when the target had been reached. In our study, we investigated the

brain signals produced in response to the following types of correct actions:

1. The TT condition: The virtual robot moves towards the target, but does not reach it

2. The TR condition: The virtual robot reaches the target
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For the first time, the findings of this project have successfully shown that it is possible to

distinguish between these two conditions, using single-trial EEG responses to these actions.

In addition to our own practical experiment, a further publicly available data set from

a related virtual robot navigation task [29] was used to further verify our approach. The

classification accuracy levels that we achieved were greater than chance level for all partic-

ipants included in the testing phase from both tasks. Group p-values for both data sets

were also highly significant.

This project has therefore successfully shown, for the first time, that it is possible to

decode EEG responses to different non-erroneous actions.

7.4 A Real-Time Navigation Application Driven by Implicit

Human-Robot Interaction and Machine Learning

The third objective of this research project was to implement a real-time system of implicit

human-robot interaction, and the fourth and final objective was to improve this interaction

via machine learning strategies.

A real-time paradigm was implemented and tested via simulated experiments. After

each of the virtual robot’s actions, the system retrieved a real, previously-recorded EEG

trial to use as feedback. These trials were classified, and the classifier outputs were used

to inform the future actions of the virtual robot. While state-of-the-art reactive EEG

systems have focused on binary, error-vs-correct feedback, this thesis has presented a novel,

detailed system of feedback: 4-way classification of movements — the TT, TR, FA, and SO

conditions as detailed above — and additional binary classification of target identification

actions.

A machine learning strategy was implemented to utilise these detailed classifications for

semi-autonomous navigation. The majority of approaches to similar challenges have used

reinforcement learning to learn the route from A to B. In this thesis, the challenge was

reframed, with the assumption that the route between any two locations is already known.

This allowed for the implementation of a novel approach, in which the information that was

to be learned was the user’s intended target. The system used Bayesian inference to build

a probabilistic model of the likelihood of each location being the target. This model was

used to inform the virtual robot’s future movements, and determine when an appropriate

level of confidence had been achieved to identify a location as the target. The use of

Bayesian inference allowed not only the classifier outputs, but also the level of confidence

in classification accuracy, to be factored into the probabilistic updates.

As discussed in chapter 5, our novel application of this machine learning strategy was

compared to a system that used EEG feedback without the aid of any machine learning.
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Comparisons were also carried out between a system using detailed EEG feedback, and a

system using the existing state-of-the-art error-vs-correct feedback.

The findings of this thesis have shown that a system of detailed implicit brain-machine

communication is possible, and that this novel system facilitates more efficient robot navi-

gation than systems using state-of-the-art, binary error-vs-correct feedback. Furthermore,

our findings also showed that our machine learning system provided more accurate target

identification than a purely reactive system.

Real-time experiments with in-person participants have not been carried out due to

current guidelines. However, chapter 6 of this thesis has discussed strategies for carrying

out such experiments. In chapter 6, we have also discussed a number of future directions,

extensions and expansions upon this research project, which could build upon the advances

shown in this thesis and continue to take this avenue of research further. These possibilities

include utilising transfer learning to further improve the accuracy and calibration time of

the system, and the expansion of the system to implement long-term, adaptive learning.

7.5 Summary

In summary, the novel findings of this research project have been combined to create a

novel framework of detailed implicit brain-machine communication. This allows precise

information to be gathered while users merely need to observe the actions of a machine.

Thus we can postulate that the mental burden upon the user will be reduced, compared to

conventional BCI systems. When combined with a new application of Bayesian inference,

the resulting system has been shown to facilitate more efficient machine navigation, and

more accurate target identification, than existing state-of-the-art systems. Therefore, the

research presented in this thesis opens new doors for a more efficient and user friendly BCI.
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J. Perelmouter, E. Taub, and H. Flor. A spelling device for the disabled. Nature, 398,

Mar. 1999.

[17] N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser,

I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor. The thought translation de-

vice (ttd) for completely paralyzed patients. IEEE Transactions on Rehabilitation

Engineering, 8(2):190–193, June 2000.

[18] B. Blankertz, L. Acqualagna, S. Dähne, S. Haufe, M. Schultze-Kraft, I. Sturm,
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