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Abstract

The size of the People’s Republic of China’s (henceforth ‘China’) economy has increased
by 75-fold since economic reforms began in the late 1970s. Environmental policies were
initially lax, especially during the 1980s and 1990s, which led to a substantial deterioration
in China’s air quality. Megacity regions frequently experience episodes of smog, partic-
ularly during stagnant weather conditions. During these episodes, high concentrations
of aerosols have been recorded. High concentrations of ambient fine aerosol (with an
aerodynamic diameter of <2.5 µgm−3), known as PM2.5, has been identified as one of
the most significant environmental risk factors that causes premature deaths by epidemi-
ological research. Over 1 million deaths each year have been attributed to high ambient
PM2.5 exposure in China.

Since the 2000s, air pollution control measures in China have become increasingly strin-
gent. This has resulted in improvements in air quality, which have been observed by satel-
lites, estimated in emission inventories, and since 2011 have been observed by a new na-
tional monitoring network consisting of over 1600 ground-based stations. The network
records hourly concentrations of PM2.5, as well as nitrogen dioxide (NO2), ozone (O3)
and sulphur dioxide (SO2). My analysis of the trends in this network found that during
2015-2017, the national median PM2.5 trend was −3.4 µgm−3 yr−1, SO2 −1.9 µgm−3 yr−1,
NO2 had no overall trend, and the trend in ‘maximum daily 8-hour mean’ O3 was 4.7
µgm−3 yr−1. Negative PM2.5 and SO2 trends were significant at 53% and 59% of stations
respectively. Positive O3 trends were significant at 50% of stations. There were negative
trends in NO2 at 22% of stations, and positive at 26%.

Atmospheric air pollutant concentrations are determined not only by emissions, but by
meteorological conditions, which influence their dispersion, chemical reaction rates and
sinks. Therefore, inter-annual variability in meteorological conditions can be a confound-
ing factor when evaluating the impact of China’s recent air quality control policies us-
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ing observed trends. To untangle the competing drivers of meteorology and emissions,
I used a regional atmospheric chemistry model, the ‘Weather Research and Forecasting
model coupled with Chemistry (WRF-Chem), to simulate air quality over China dur-
ing 2015-2017. I simulated a scenario where emission changes were investigated, and
compared this to a counterfactual where emissions were fixed. The model was able to
reproduce the magnitude of observed PM2.5 trends in the variable emissions scenario
(−3.5 µgm−3 yr−1), but not in the fixed emissions scenario−0.6 µgm−3 yr−1, demonstrat-
ing that changes were primarily driven by the emissions changes. Using an exposure-
response function from recent a disease burden study, we estimated that during this
period PM2.5-associated deaths reduced by 150 000 yr-1. The observed positive trend in
ozone was not reproduced by either scenario, suggesting that emissions change estimates
were inaccurate or important processes are missing fromWRF-Chem.

The COVID-19 outbreak and associated control measures gave a unique opportunity to
analyse the effects of a sudden and irregular sectoral activity reduction, where emissions
rates dropped in the industry and transport sectors, but were largely unchanged in elec-
tricity generation and residential sectors. I used measurement data from China’s moni-
toring network to estimate the impact on air quality of the ‘lockdown’ measures. I con-
structed an estimate from 2020 air quality based on 2015-2019 trends and seasonal cycles,
along with the air quality impact of the Lunar New Year holiday. By comparing this with
observed concentrations, I found that during the first ~2 months following the lockdown
in Wuhan, NO2 concentrations were 27.0% lower on average across China. PM2.5 and
PM10 concentrations were 10.5 and 21.4% lower respectively. O3 concentrations were in-
creased during the first ~2 weeks of lockdown, but overall remained around expected
concentrations during the entire period. After lockdown measures were relaxed in April,
pollutant concentrations returned to expected levels.
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Chapter 1

Introduction

1.1 Background

Air pollution is defined as ‘the presence of substances in the atmosphere that can cause
adverse effects to man and the environment’ (Abhishek Tiwary, 2010). The term ‘air pol-
lutants’ can refer to a range of species in the atmosphere, which can include greenhouse
gases, particulate matter, toxic gases, dust, metals, ash, soot, microbes and organic com-
pounds, which have a range of effects, e.g. reducing visibility, causing acute and chronic
disease, infection, positive or negative radiative forcing and acid rain. In this text, ‘air
pollutants’ will chiefly refer to the ‘criteria pollutants,’ particulate matter (PM), nitro-
gen oxides (NOx), sulphur dioxide (SO2), ozone (O3) and Volatile Organic Compounds
(VOCs), which are those most commonly emitted from anthropogenic activities and as-
sociated with negative health impacts.

The People’s Republic of China (henceforth ‘China’) has developed its economy rapidly
since economic reforms starting in the late 1970s, but this has come with the cost of major
environmental degradation, including serious water, soil, and air pollution (The World
Bank and State Enviromental Protection Administration, 2007). The increase in fossil fuel
consumption, as well as industrial production, vehicle use and fertiliser application has
driven an increase in air pollutant emissions, of which China now emits 18-35% of the
world’s total (Hoesly et al., 2018; Zheng et al., 2018a). This has resulted in a deterioration
of air quality in China, with visibility decreasing as particulate haze envelops industri-
alised regions of the country, particularly in winter (Ding and Liu, 2014; Fu et al., 2014).

Over the past fewdecades, evidence of the severity of the negative impacts of China’s poor
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1.1. Background Chapter 1

Figure 1.1: Megacity regions plotted over NASA VIIRS City Lights in 2012. Megacities,
which are defined as cities with populations greater than 10 million, emerged in China
during the 1990s (Chan and Yao, 2008). Regions such as Beijing-Tianjin-Hebei, the Pearl
River Delta and the Yangtze River Delta can be described as megalopolises, where several
megacities have merged into continuous urban regions. Night light locations are indica-
tive of the population distribution of China, which is denser in eastern areas.
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Chapter 1 1.1. Background

air quality has mounted. Mean winter particulate matter with a diameter of < 2.5 µm
(PM2.5) concentrations in the most heavily polluted cities in the northeast of China have
remained over 10 times higher than the World Health Organisation’s (WHO) guideline
annual mean concentration of 10 µgm−3 (Ma et al., 2014; Zhang and Cao, 2015). Outdoor
exposure to PM2.5 and O3 pollution is estimated to cause in excess of 1 million premature
deaths every year in China (Apte et al., 2015; Lelieveld et al., 2015; Gu and Yim, 2016;
Cohen et al., 2017; Silver et al., 2020), with its health impacts costing around 1%of national
Gross Domestic Product (GDP) (Xia et al., 2016).

TheGlobal Burden of Disease study uses a combination ofmeasured andmodelled values
of PM2.5 concentrations to calculate the health effects of air pollution for each country. As
part of this they estimate the mean annual exposure to PM2.5, which weights concentra-
tions by population distribution. In 2013, China had the 2nd highest population-weighted
mean PM2.5 concentrations, behind Mauritania (Brauer et al., 2016).

1.1.1 Constituents of air pollution

Gaseous Pollutants

NOx refers to the sum of NO and NO2. They are often measured together since they
are involved in rapid photochemical cycling between each-other. NOx is emitted from
the combustion of fossil fuels primarily as NO, which is then rapidly oxidised by O3 or
radicals to form NO2 (Kampa and Castanas, 2008). NO also has natural sources in the
troposphere, such as lightning and soil microbes, although these sources are relatively
small compared to anthropogenic emissions (Guenther et al., 2000).

Shortly after emission in the daytime, NO is oxidised to NO2 by O3, which is then pho-
tolysed back to NO, producing an oxygen atom (O(3P)), which reforms O3 (Figure 1.2a).
No net O3 formation results.

NO+O3 −−→ NO2 +O2 (R 1.1)

NO2 + hv −−→ O(3P) + NO (R 1.2)

O(3P) + O2 −−→ O3 (R 1.3)

However, hydroxyl (HO2) and peroxy (RO2) radicals, from the degradation of VOCs, NO

3



1.1. Background Chapter 1

(a) Without VOCs present (b) With VOCs present

Figure 1.2: Schematic of O3 formation reactions reproduced from Sillman (1999)

can be oxidised to NO2 without the consumption of O3. Upon photolysis of the NO2, net
formation of O3 occurs (Figure 1.2b). For example, with methane:

CH4 +OH −−→ CH3 +H2O (R 1.4)

CH3 +O2 −−→ CH3O2 (R 1.5)

CH3O2 +NO −−→ CH3O+NO2 (R 1.6)

HO2 can also regenerate NO2 by oxidising NO. HO2 can be produced by the reaction of
CO with OH, or as a by-product the degradation of VOCs.

CO+OH −−→ CO2 +H (R 1.7)

H+O2 −−→ HO2 (R 1.8)

CH3O+O2 −−→ CH2O+HO2 (R 1.9)

HO2 +NO −−→ OH+NO2 (R 1.10)

Otherwise, if concentrations of NO are low, O3 will be lost when it is photolysed, and
the excited oxygen formed reacts with water vapour to form OH instead of reforming O3.

4



Chapter 1 1.1. Background

Furthermore, O3 loss results from the reaction with OH (as well as HO2).

Figure 1.3: Peak O3 isopleths generated from
box model from initial mixtures of NOx and
VOCs in air. Adapted from Finlayson-Pitts
and Pitts (1993)

Daytime O3 concentrations are therefore
controlled by the concentration of NOx

(NOx-limited regime), unless there is in-
sufficient VOC concentration for net O3

formation (VOC-limited regime). The rate
ofO3 formation can be estimated if concen-
trations of NOx and VOCs are known (Fig-
ure 1.3), however, formation rate is also
effected by meteorological factors such as
sunlight and humidity (Sillman, 1999).
This has implications for pollution control,
as the rate of O3 formation is highly non-
linear in response to its precursors. For ex-
ample, reducing VOC emissions in a NOx- limited regime will not initially result in re-
duced O3 formation (Cohan et al., 2005). VOC-limited regimes are generally found in
heavily polluted urban areas that are saturated with NOx, whereas NOx-limited regimes
are found in suburban or rural areas (Finlayson-Pitts and Pitts, 1993). In NOx-limited
regimes, reducing VOC concentration will have no effect on the rate of O3 formation (ar-
row A in Figure 1.3). In VOC-limited regimes, reducing NOx increases O3 formation (ar-
row B in Figure 1.3), due reductions in to ‘NOx titration’ and loss of HOx. NOx titration
occurs because NOx emissions are primarily NO, which reacts with O3 as shown in 1.2a.
In the presence of high NOx emissions, or at night, the rate of O3 reformation by NO2

photolysis is less than O3 loss by reacting with NO (Sillman, 1999).

At night, the chemistry of O3 and nitrogen oxides differs, due to the absence of sunlight
and consequent absence of OH radicals. NO is still oxidised by O3 to NO2, but cannot be
photolysed back to NO. NO2 can also be oxidised by O3 to form the nitrate radical, NO3.
In the daytime, this is rapidly photolysed back to NO2 or NO depending on light wave-
length. At night, NO2 can react with NO3 to form N2O5, which can react heterogenously
on aerosol surfaces with H2O to form HNO3. This is an important loss process at night-
time, when OH levels are low, and during winter, when nights are longer (Stavrakou et
al., 2013). NO3 and N2O5 act as reservoirs for NO2 at night (Wayne et al., 1991; Brown et
al., 2006). NOx can also react with the peroxylacetyl radical, a product of VOC oxidation,
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to form peroxyacetyl nitrate (PAN) (Singh and Hanst, 1981). PAN is relatively stable at
low temperatures, so it can be transported over long distances at night, during winter or
in the free troposphere, so acts as a reservoir for photochemically polluted air as it can
decompose to reform NO2 (Nielsen et al., 1981).

As well as its human health impact, O3 is known to damage plants, causing an additional
economic impact through decreased crop yields. Van Dingenen et al. (2009) estimated
that in 2000, O3 crop damage caused $14-26 billion of losses globally, around 20% ofwhich
occurred in China. Since 2000, East Asia has been the region with the strongest increases
in measured tropospheric O3 concentration (Fleming et al., 2018).

SO2 is a toxic gas with natural and anthropogenic sources and is an air pollutant due
to its toxicity and being the primary contributor to acid rain, while also being a major
constituent of secondary aerosol, the sulphate fraction of which has a negative radiative
forcing (Smith et al., 2001). The largest natural sources of SO2 are volcanic and biogenic
(Bates et al., 1992), whereas most of the anthropogenic SO2 is released by coal burning,
followed by oil burning, industrial processes and biomass burning (Smith et al., 2001).
SO2 acts as an irritant in the respiratory system, causing restriction of the airways which
effects the lungs and heart rate (Tunnicliffe et al., 2001). Separating the health effect of
SO2 is difficult as concentrations usually co-vary with other pollutants such as PM and
NO2. Furthermore, there is no evidence that a threshold exists belowwhich health effects
are negligible (WHO, 2006).

Organic semivolatile compounds are emitted as gases, a volatile organic compound (VOC),
and are aged by oxidisation by OH, O3 and NO2, forming less volatile compounds that
condense onto aerosol particles (Seinfeld and Pandis, 2006). These compounds can con-
tribute to the rapid growth of haze as they condense into aerosol particles (Peng et al.,
2021).

Aerosols

Particulate matter, or aerosol, refers to a mixture of solid particles and/or liquid droplets
that are suspended in air, and is constituted of a variety of natural and anthropogenic com-
pounds. Aerosol can be primary, when it is emitted into the atmosphere directly as par-
ticles, or secondary, when particles condense from precursor gases (nucleation) or when
gaseous compounds condense onto existing aerosol particles (condensation) (Boucher,
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Chapter 1 1.1. Background

Table 1.1: Emission estimates by sectors in China, 2010 (derived from MEIC v1.2, www.
meicmodel.org). Sector emission proportion expressed as percent, total column in Tg
Adapted from Li et al. (2017b)

Species Power Industry Residential Transportation Solvent use Agriculture
SO2 27 57 15 1 0 0
NOx 34 34 6 26 0 0
CO 2 44 42 12 0 0
NMVOCs 0 35 22 10 32 0
NH3 0 3 4 0 0 93
PM10 6 39 52 3 0 0
PM2.5 7 50 38 4 0 0
BC 0 34 50 16 0 0
OC 0 18 79 3 0 0

2015).

Aerosol particle diameters range froma fewnanometres (nm), to around 100micrometres
(µm). The smallest particles are referred to as the nucleation and aitken modes (<100
nm), which represent particles that have condensed from the gas-phase and begin to grow
by condensation. Particles with diameters of 0.1-2.5 µm are referred to as accumulation
mode, which continue to grow by condensation as well as coagulation. Larger particles
are referred to as coarse mode, and are emitted by mechanical processes such as dust
suspension (Seinfeld and Pandis, 2006).

Zhang et al. (2012b) present the results of two years of speciated aerosol measurements
from 16 sites across China, of the coarse fraction PM101. They find on average that 35% of
PM10 is of mineral origin, which includes desert dust, fugitive dust and coal ash, which
increases to 60% in Northwestern China, which contains large area of desert (Figure 1.4).
Sulphate (SO 2–

4 ) and organic carbon (OC) each account for around 15% of total PM10, ni-
trate (NO –

3 ) 7% and ammonium (NH +
4 ) 5%. In the finer aerosol fraction, PM2.52, typically

contains a higher proportion of the secondary species SO 2–
4 , NO –

3 and NH +
4 , which can

constitute 22-54% of PM2.5 mass inmegacity regions, while carbonaceousmatter accounts
for 27-42% (Chan and Yao, 2008).

1.1.2 Major sources of air pollution in China

China has the largest industrial output of any country in the world, having almost double
that of the EU and triple of the US (CIA, 2016). As such, most industrial sectors are well

1this includes particles up to a diameter of 10 µm, which includes the fine fraction
2this includes particles up to a diameter of 2.5 µm
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Figure 1.4: NASA satellite image of China. Shows location mountainous regions (the
Tibetan Plateau), deserts and plains. Image is public domain and reproduced fromWiki-
media Commons https://commons.wikimedia.org/wiki/File:China_100.78713E_35.
63718N.jpg

represented, including cement, iron and steel manufacturing, which are heavily pollut-
ing. Industrial emissions are partly generated by fossil fuel burning in industrial boilers,
which produces similar emissions to power generation (NOx and SO2), as well as by the
industrial processes themselves, which can emit PM, CO, heavy metals and incomplete
combustion products (Wang et al., 2016). Additionally, the petroleum industry is a sig-
nificant emitter of VOCs, which occurs during their production, storage, transport and
use as raw materials (Li et al., 2017b). The industrial sector is estimated to be the largest
single contributor of emissions of SO2 (57%), NOx (34%), CO (44%), non-methane VOCs
(NMVOCs) (35%) and PM2.5 (50%) in 2010 (Table 1.1). Processes in the cement indus-
try are particularly large emitters of primary PM, with Lei et al. (2011) estimating that it
is responsible for 27% and 29% of PM2.5 and PM10 all sector emissions respectively (Liu
et al., 2021).

China is also the world’s largest consumer of electricity, although in per capita terms it
ranks 64th (Wikipedia Contributors, 2021). China’s electricity demand is growing, but at
an increasingly slower rate (1.1% in 2019) (BP, 2019). Themajority of China’s electricity is
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generated by burning coal, the proportion of which has remained around 60% since 1990
(IEA, 2020). Coal typically contains 0.5-5% sulphur by weight, resulting in SO2 emissions
(Chou, 2012). NO2 is also produced due to high combustion temperatures, as well as
some PM (Liu et al., 2015) (Table 1.1).

The residential sector, i.e. domestic fuel burning for cooking and heating, produces CO,
VOC, PM and black carbon (BC) emissions on a similar scale to the industrial sector, and
is the major emitter of organic carbon (OC) (Table 1.1). Residential emissions comprise
a high proportion of total emissions, despite a relatively low total energy consumption
(<10%), as relatively low grades of fuel such as raw coal and crop residues are burned
in a relatively inefficient manner (Li et al., 2017b). The health effects caused by emissions
from the residential sector are greater, as they contribute to both indoor and ambient
deterioration in air quality.

The transport sector is responsible for a high proportion of NOx emissions, BC, CO and
NMVOCs (Table 1.1). Its emissions are relatively low compared with the power, indus-
try and residential sectors, but it contributes significantly to exposure due to emissions
occurring in densely populated urban areas.

The agricultural sector emits the majority of ammonia, due to fertiliser use. The estimate
shown in Table 1.1 does not include emissions from crop burning or agricultural vehicles
and machinery (Li et al., 2017b).

1.1.3 Health effects

The harmful health impacts of air pollutionwasmade clear by nownotorious 20th Century
air pollution events in the US and Europe, such as the Donora Pennsylvania Smog in 1948
and the Great Smog of London in 1956, during which the healthy and vulnerable alike
collapsed and died in the streets (Stanek et al., 2011). These events led to the first national
air pollution control laws being passed (Jacobs et al., 2018), and also precipitated a host of
toxicological and epidemiological studies aiming to understand and quantify the effects
of air pollution on human health.

The World Health Organisation’s Air quality guidelines

TheWHO reviews the available literature on the health effects of air pollution to produce
‘Air Quality Guidelines’ (AQGs) for use by policy-makers worldwide. The pollutants
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included areNO2, SO2, O3, PM andCO. The AQGs are pollutant concentration thresholds
above which evidence shows mortality increases. However for PM and O3, there is no
known threshold below which there is no safe concentration (Krzyzanowski and Cohen,
2008). For each pollutant species (except O3), there are two different averaging times,
which reflects the potential for acute and chronic health effects. TheWHOalso gives three
interim targets that are less ambitious than the AQGs, i.e. they are higher concentration
thresholds, ‘to promote steady progress towards meeting [the AQGs]’ (WHO, 2006).

Epidemiological evidence

Epidemiological studies estimate the health impacts of air pollution analysing longitu-
dinal cohort datasets to isolate statistical relationships between air pollutant exposure
levels and disease (Pope et al., 1995). Cohort studies track large groups (usually tens of
thousands of people) over long stretches of time (decades), recording their incidences
of morbidity and mortality. Across the cohort, pollutant exposure for each individual is
estimated. Then, a statistical analysis is performed to adjust for confounding factors, such
as age, sex, smoking and socioeconomic status, which isolates the change in risk resulting
from air pollutant exposure (Dominici et al., 2003).

In epidemiology, exposure refers to ‘a factor that may be associated with an outcome of
interest’ (Lee and Pickard, 2013). Epidemiological studies have often used air pollutant
concentration time series from point monitoring networks to estimate exposure (Özkay-
nak et al., 2013). However, due to the high spatial and temporal heterogeneity of pollutant
concentrations (see Figure 1.2), point measurements can only capture a limited portion
of their variability, causing inaccuracies in exposure estimates. Using data from chemical
transport models can give improved estimates of exposure (Conti et al., 2017), as they
can estimate pollutant levels more generally over an area (i.e. a grid box of a Eulerian
model), or more accurately over complex topographies (i.e. dispersion models). In real-
ity, exposure levels may vary greatly according to the path individuals take through space
and time among high levels of heterogeneity in pollutant concentrations. More accurate
pollutant exposure estimates can be obtained using real-time exposure assessment meth-
ods, by tracking individuals with technologies such as mobile positioning data (e.g. GPS
on mobile phones), and measuring their local ambient pollution levels using wearable
pollution sensors (Fang and Lu, 2012).
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Figure 1.5: An illustration of an integrated exposure response curve for risk of cardiovas-
cular disease and exposure to PM2.5. Reproduced from Pope et al. (2018)

By combiningmultiple cohort studies of ambient pollutant exposurewith first and second-
hand smoking studies, relative risk for several diseases resulting from long-term PM2.5

exposure can be estimated over the entire commonly-found range of annual mean con-
centrations (Burnett et al., 2014). This is referred to as an integrated exposure response
(IER) curve (Figure 1.5), which was developed as part of the WHO as part of its Global
Burden of Disease study. More recently, Burnett et al. (2018) have combined data from 41
cohorts to model the risk attributable to outdoor PM2.5. Their model, the ’Global Expo-
sure Mortality Model (GEMM),’ can estimate risk over 97% of the global PM2.5 exposure
range, without the need for smoking studies. They could extend the estimate up to 84
µgm−3 due to the inclusion of Yin et al. (2017), a study of a cohort of men in China.

There is sufficient epidemiological evidence to link ambient air pollution exposure to an
increased risk of ischaemic heart disease, stroke, lung cancer, chronic obstructive pul-
monary disease (COPD), and acute lower respiratory tract infections (Lim et al., 2012).
The GEMM can be used to predict the individual burden of each disease type, as well
as for non-communicable diseases along with lower respiratory infections. Burnett et al.
(2018) estimates that in 2015, globally there were 8.9million avoidable deaths attributable
to ambient PM2.5, with 2.47 million of these in China. From the minimum exposure of 2.4
µgm−3, they find a supralinear association with risk up to ~15 µgm−3, then a near linear
exposure up to 84 µgm−3.

Though the statistical epidemiology approaches described above represent the current
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best available method of estimating air pollution-caused health effects from empirical ev-
idence, there are several assumptions implicit in current studies. As the majority of am-
bient PM2.5 measurements are total mass concentration, most epidemiological studies are
unable to isolate the risk of individual components of aerosol (Kushta et al., 2018). This is
referred to as the assumption of equal toxicity. Some studies that are able to estimate risk
from separate components of aerosol, find significant differences in toxicity, e.g. Thurston
et al. (2016) who find that PM2.5 emitted by coal combustion has a ~5 times greater risk
than PM2.5 in general.

There is also epidemiological evidence to support a relationship between long-term am-
bient O3 exposure and elevated mortality, with the GBD 2015 study attributing it 254 000
deaths (Cohen et al., 2017). Jerrett et al. (2009) used data from aUS cohort study tomodel
the effects of PM2.5 and O3 on mortality, finding that O3 was associated with an increased
risk of COPD independent of PM2.5 exposure. However, they note the results from other
studies were inconclusive. Subsequently, a larger cohort study, Turner et al. (2016), has
also found significant associations with circulatory mortality.

As well as the epidemiological evidence, toxicological studies can elucidate the mecha-
nisms by which air pollutants cause disease. Fine particulate matter is deposited in the
lungs and can enter the circulatory system, triggering inflammatory responses that injure
lung and heart tissues (Simkhovich et al., 2008). While O3 in the stratosphere protects life
from harmful UV radiation, in the inhalation of tropospheric O3 damages the lungs as it
is a strong oxidant (Mehlman and Borek, 1987).

1.2 Physicochemical processing of pollutants in the atmosphere

The determining factor influencing surface air quality is most often meteorological condi-
tions rather that emissions alone (Jacob and Winner, 2009). This is demonstrated by the
high explanatory power of statistical models that use meteorological variables to forecast
air quality (Sousa et al., 2007; Tai et al., 2010; Grange et al., 2018).

The concentration of air pollutants is determined by the emission flux combined with
atmospheric processes including transport, loss and/or production via chemical reactions
and loss by deposition (Figure 1.6). While pollutant emissions directly impact surface air
quality, they also peturb atmospheric chemistry, and have radiative forcing effects, either
directly, or through the formation of secondary aerosols andO3. Perturbations can further
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affect emissions, atmospheric concentrations and sinks via feedback effects.

Figure 1.6: Schematic showing pollutant emissions sectors, transport, chemical trans-
formation and loss processes in the atmosphere. Public domain image repro-
duced from https://commons.wikimedia.org/wiki/File:Atmosphere_composition_

diagram-en.svg

1.2.1 Dispersion and transport

Pollutants are mainly emitted at or close to the Earth’s surface. Atmospheric stability
dictates whether polluted air is well mixed through the troposphere or trapped closer to
ground level. In the daytime, convection driven by solar heating causes the lower portion
of the atmosphere to be unstable, mixing pollutants away from the surface (the ’mixed’
layer). Solar heating is reduced under cloudy conditions, and not present at night, and
radiative cooling of the surface leads to more stable conditions that trap pollutants in
a shallower mixed layer, under a temperature inversion. The pollutant species of NOx,
SO2, tropospheric O3 and aerosols can have atmospheric lifetimes in the order of hours
to weeks, meaning that they can be advected through the atmosphere at local and re-
gional scales (Seinfeld and Pandis, 2006), which can enhance pollutant levels downwind
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of sources (Nevers, 1999).

The degree of dispersion of air pollutants varies regionally within China. Areas of greater
solar radiation, such as the northwestern desert regions (see Figure 1.4), have deeper
boundary layer heights than eastern regions in the summer, but experience subsidence in
the winter (Su et al., 2018; Guo et al., 2019). Shallow boundary layers, capped by strong
temperature inversions and stagnant conditions are implicated in causing winter haze
episodes in eastern China, which are also amplified by terrains that limit dispersion (Zhao
et al., 2013; Guo et al., 2014; Zhang et al., 2015).

Certain synoptic meteorological situations have been associated with both reducing lo-
cal dispersion of pollutants and increasing long-range transport. During December to
February, the winter monsoon causes widespread cold fronts to move south. The winter
monsoon is often implicated in advecting heavier air pollution from northern regions to
central and southern regions, where it can transport pollutants such as PM2.5 over 2000 km
in 2 days (Wang et al., 2017; Qin et al., 2016). Radiosonde measurements and model sim-
ulations show that pollutants from northern regions can be advected into the free tropo-
sphere, transported southwards, then subside back to the surface, where they contribute
significantly to local pollution (Shi et al., 2020; Kang et al., 2019). The passage of a cold
front also creates a strong capping inversion and reduces the mixed layer height, which
increases humidity, creating ideal conditions for secondary aerosol formation (Peng et al.,
2021).

Another synoptic driver of air pollutant dispersion in China are large-scale circulation
features such as the summer monsoon and typhoons. The northwards procession of the
summer monsoon through east China brings heavy rainfall and clean oceanic air masses,
enhancing ventilation, which reduces PM2.5, CO andO3 during June to August, with high
concentrations returning in its wake (Zhang et al., 2010; Zhao et al., 2010). The distant
passage of a typhoon near Taiwan or Japan can induce subsiding air masses over southern
China, causing heatwaves, low wind speeds and rainfall, which leads to poor air quality
events during late summer to early autumn (Jiang et al., 2015; Chow et al., 2018).

1.2.2 Aerosol growth and formation

The formation and loss rates of aerosols in the atmosphere are dependent on the physical
and chemical state of the atmosphere, i.e. temperature, humidity and the vapour pres-
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sure of gases (Boucher, 2015). The formation of secondary aerosols accounts for a large
proportion of PM2.5, estimated as 30-77% in Chinesemegacities (Huang et al., 2015; Wang
et al., 2019).

Nucleation is the process by which new aerosol particles are formed in the atmosphere
from precursor gas-phase species. Under the right conditions, nucleation can produce
sudden bursts of tiny (1-3 nanometre) new particle formation (NPF), that grow further
by condensation and coagulation (Lee et al., 2019). The nucleation of sulphuric acid is
central to NPF (Kulmala and Kerminen, 2008), where H2SO4 forms from the reaction of
SO2 and OH, with nucleation rate depending on temperature, humidity, and the concen-
tration of other species such as NH3 and O3 (Li et al., 2017a). There is also evidence that
nucleation of semi-volatile organic species can produce NPF (Metzger et al., 2010; Tröstl
et al., 2016). NPF tends to occur in relatively clean conditions, as the resulting aerosol
particles subsequently grow by scavenging NPF precursors (Yao et al., 2018). However,
measurement campaigns in Chinese megacity regions also observe frequent NPF events
(Xiao et al., 2015; Wu et al., 2007; Guo et al., 2014).

The dominant process for transfer of mass from gas-phase species into aerosol particles is
by condensation of semivolatile compounds such as H2SO4 and organic compounds onto
existing aerosol particles (Boucher, 2015). Although sulphate is key to forming newparti-
cles, large fractions of PM2.5 in China are found to be organic (Huang et al., 2015). The rate
of condensation of semivolatile organics into aerosol particles is influenced by tempera-
ture, which controls their volatility and the rate at which they are oxidised (Stolzenburg et
al., 2018). Hygroscopic growth of aerosols, which is partly dependent on atmospheric rel-
ative humidity, can influence the rates of chemical reactionswithin particles, condensation
rates and physical properties (Duplissy et al., 2011; Wang et al., 2019). The contribution of
secondary aerosol formation from organic compounds, nitrates, sulphate and ammonia
is greater than the contribution from primary emissions during stagnation-induced haze
events (Sun et al., 2019; Peng et al., 2021).

1.2.3 Sinks

Trace gases and particles in the atmosphere are removed ultimately by either dry or wet
deposition. Dry deposition is the ‘transport of gaseous and particulate species from the at-
mosphere onto surfaces in the absence of precipitation’ (Seinfeld and Pandis, 2006). Rates
of dry deposition onto different surfaces (e.g. urban, cropland, forests) are determined
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experimentally and quantified as roughness lengths.

Another importantmeteorological process for air quality is precipitation (or lack thereof).
Particles with diameters >0.1 µg can be captured by drops in clouds or by falling drops
(Nevers, 1999). Wet deposition is the main atmospheric sink for PM (Jacob and Winner,
2009). Over 80% of BC particles are lost by wet deposition (Koch et al., 2009).

1.2.4 Feedbacks

Aerosol emissions and formation result in a direct radiative forcing effect, which can be
positive, as some aerosols (e.g. black carbon) absorb solar radiation, or negativewhen the
aerosol scatters light (e.g. sulphate, nitrate, organic carbon). Estimates tend to agree that
the net direct radiative forcing from primary anthropogenic aerosols is negative (Myhre,
2009). Aswell as the direct effect due to forcing fromaerosol emissions generated, aerosols
also effect climate by changing cloud reflectivity and patterns of cloud formation, which
are termed aerosol-radiation and aerosol-cloud interactions (Boucher et al., 2013). These
occur due to radiative forcing from aerosols which effects atmospheric stability, and their
ability to change the properties of clouds (Johnson et al., 2004; Lohmann and Feichter,
2004).

High aerosol loadings in the boundary layer can scatter and reflect incoming radiation,
reducing heat flux into the boundary layer, which makes it more stable, and consequently
can amplify pollutant build-up and formation (Li et al., 2017d). Black carbon is an absorb-
ing aerosol, and when concentrations are enhanced in the upper boundary layer, heating
can favour formation of a temperature inversion, which depresses the boundary layer and
traps pollution (Ding et al., 2016).

Increased aerosol loading over China and East Asia may also be weakening the summer
monsoon, which results in lower rainfalls in the more polluted northern China regions,
and lower ventilation duringmonsoon season throughout the east coast (Zhao et al., 2010;
Zhu et al., 2012). There has been a shift in precipitation across China with the south
becomingwetter and the north drying, which has beenpartly attributed to positive forcing
effect of black carbon aerosols (Ramanathan and Carmichael, 2008). A 35 year record of
surface wind speed measurements in China shows there is a declining trend (Guo et al.,
2011).
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1.2.5 Seasonal variability

With the exception of O3, air quality is worse in the winter in China, mainly due to the
combination of increased fuel (particularly coal) consumption for heating, together with
more stagnant meteorological conditions, and reduced precipitation (Lou et al., 2019).
Emissions also vary seasonally, with emissions resulting from heating and residential sec-
tors being elevated in the winter (Zhang and Smith, 2007). There is also seasonal variabil-
ity in biomass burning, which peaks at various times of year during spring to summer in
different regions of China (Streets et al., 2003). Agricultural fertiliser application peaks
in the summer, which induces seasonal variability in ammonia emissions (Huang et al.,
2012). Biogenic emissions of VOCs such as isoprene tend to peak in the summer, when
temperatures are highest (Palmer et al., 2006).

Seasonal variability in pollutant concentrations is also driven by seasonal meteorological
variability. For example, the rate of O3 formation increases under warmer temperatures
and greater UV radiation, partly explaining its summer peak (Steiner et al., 2010; Xu et al.,
2011). In the case of NOx, its summer minimum is partly explained by a shorter chemical
lifetime due to higher OH concentrations (Uno et al., 2007).

1.3 Numerical air quality modelling

As explained in the previous section, atmospheric pollutant concentrations depend on
the complex interactions of physical and chemical processes. Numerical models of atmo-
spheric chemistry are an attempt to represent these processes mathematically. They allow
us to test theories of atmospheric physics and chemistry, simulate past and future scenar-
ios, and provide estimates of air pollutant concentrations with high spatial and temporal
coverage. However, as the saying goes: ‘all models are wrong, but some are useful (Box,
1979)’, so it is essential to validate models by comparing their predictions with observa-
tions.

Numerical models draw upon a wide scope of scientific knowledge to construct a set of
equations that serve to approximate concentrations of gases and aerosols in the atmo-
sphere. These range from the fundamental, physical laws, such as conservation of mass,
the ideal gas law, and Newton’s laws of motion; to the empirically derived such as chem-
ical reaction rates, parametrisations of turbulent processes and interactions with the land
surface. Additional input data required are estimates of pollutant emission volumes, land
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surface maps and and an estimate of initial and boundary conditions for the model to
evolve from (Brasseur and Jacob, 2017).

1.3.1 The WRF-Chem model

TheWeather Research and ForecastingModel with Chemistry (WRF-Chem) is a regional
numerical air pollution model. Simulating a region allows for a higher model resolution
and more complex chemistry to be used than in a global model, due to computing re-
straints. ‘Fully-coupled’ refers to the simultaneous simulation of the model physics (i.e.
meteorology) and chemistry (i.e. emissions, transport, deposition, chemical transforma-
tion, aerosol interactions, photolysis and radiation), which allows physiochemical inter-
actions and feedbacks to be captured (Grell et al., 2005).

Separate modules within WRF-Chem are used to provide emissions within the domain
for anthropogenic, biogenic, dust and fire sources.

A gridded inventory file is used to provide the anthropogenic emissions input within the
domain, of species including primary aerosols (including inorganic and organic species),
NOx, SO2, CO, NH3 and VOCs. These emissions are estimated using a bottom-up emis-
sion inventory technique, that involves mapping sources, estimating their activity and
accounting for the effect of any control equipment. For China, the Multi-resolution Emis-
sion Inventory for China (MEIC) inventory provides recent estimates of anthropogenic
emissions using a database of point sources such as power and cement plants, county-
level vehicle emission estimates, estimates of residential emissions using national survey
data, and shipping emissions using dynamic shipping data (Li et al., 2017b).

Biogenic emissions are calculated online (i.e. they depend on modelled meteorology)
using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther
et al., 2006). MEGAN combines a mapping of plant functional types and their emission
activities of species such as isoprene, with the meteorological input variables of tempera-
ture, sunlight 3, humidity, wind speed and soil moisture.

Dust emissions are also calculated online by combining a map of vegetation cover and
soil types, with empirically based parametrisations that estimate dust emissions based on
meteorological and land-surface parameters such as friction velocity, roughness length
and soil moisture (Kang et al., 2011; LeGrand et al., 2019).

3specifically photosynthetic photon flux density
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Biomass burning emissions are estimated from satellite observations of fires. The loca-
tions of fire hotspots are referenced with a map of land-use classifications, and empiri-
cally derived emission factors to estimate the emissions of air pollutants (Wiedinmyer et
al., 2011).

At each timestep, the model must solve equations that calculate the production and loss
of chemical species in each grid box that result from chemical reactions and advection
(Brasseur and Jacob, 2017). Due to computational limits, chemical solvers must represent
only a subset of all the known atmospheric chemical reactions and their rates. As comput-
ers growmore powerful, a greater number of species can be represented. For example, in
the first version of the Model of Ozone and Related chemical Tracers (MOZART), 46 gas-
phase species, 28 photolysis reactions, and 112 kinetic reactions were represented, but in
the newest version this has increased to 151, 65, 287 (Emmons et al., 2020). Processes that
occur at scales smaller than a model grid cell are parametrised rather than explicitly sim-
ulated. Such processes include deep convection, wet scavenging and lightning (Brasseur
and Jacob, 2017).

1.4 Air Quality Monitoring

1.4.1 In-situ measurements

Direct measurements of air pollutant properties using an instrument samples the air in its
vicinity are known as ‘in-situ measurements.’ The majority of in-situ measurements are
taken from ground level monitoring stations, but measurements can also be taken above
the surface, using balloons, sondes and aircraft. The non-profit organisation ‘OpenAQ’
(openaq.org) collects, visualises and disseminates air quality data from monitoring sta-
tions across the world. Measurement of air quality has become increasingly widespread,
and OpenAQ now have data from over 130 countries, which now includes over 12 000
locations where reference grade measurements are taken at surface monitoring stations.

In China, a network of over 1600 urban air quality monitoring stations has been estab-
lished by the China National Environmental Monitoring Centre (‘the CNEMC network’).
The CNEMC’s monitoring stations measure ambient concentrations of PM2.5, PM10, NO2,
SO2, O3 and CO. In this section air qualitymonitoring techniques will be introduced, with
reference to the equipment used in the CNEMC network. The history of air quality mon-
itoring in China will be discussed in Section 1.5.3.
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Aerosol measurements

Early mass measurements of atmospheric aerosols were performed by the gravimetric
technique, which remains in use today. Aerosol collected on the filter of known mass,
is left to equilibrate for a standard length of time (e.g. 24 hours), in a temperature and
humidity-controlled environment, and then the filter is weighed (Watson et al., 2017).
Gravitational measurement methods cannot measure aerosol in real-time, often taking
weeks-months to process filters, andmay need longer (several hours-days) measurement
periods to collect enough aerosol for an accurate measurement (Chung et al., 2001).

More recently, newer methods allow measurement of aerosol mass continuously in real-
time. In the CNEMC network PM2.5 and PM10 are measured using ‘beta attenuation’
(BA) or ’tapered element oscillating microbalance’ (TEOM) monitors (Guo et al., 2017).
In BA monitors, aerosol is collected on filter tape, and the amount of β radiation that is
attenuated as it passes through the aerosol is measured, and the aerosol mass is derived
by calibration of the BA rate with gravimetrically measured aerosol (Macias and Husar,
1976). The TEOM measures the mass of aerosol by detecting the frequency of an oscil-
lating tapered tube, with a filter on which aerosol is collected at its end. The TEOM is
calibrated by placing a known mass on the filter (Patashnick and Rupprecht, 1991).

Comparison of the threemeasurement techniques shows some discrepancies that depend
on the aerosol composition andmeteorological conditions, particularly the humidity (Tri-
antafyllou et al., 2016). In BA and TEOM monitors, aerosol samples are heated to evap-
orate liquid water, but this process may also evaporate the semi-volatile organics content
of the aerosol (Hauck et al., 2004).

As well as measuring the mass concentration of a size fraction of aerosol, aerosol mass
spectrometry (AMS) can be used to identify the concentrations of individual aerosol
species. Such speciated concentration measurements are less frequent, due to the rela-
tively high cost of the equipment used (Nash et al., 2006). AMS measurements differ-
entiate the major non-refractory fractions of aerosol, e.g. organic (OA), sulphate, nitrate
and ammonium. The organic fraction can be further characterised by elemental analy-
sis, which yields the ratios of C, O, N and H atoms in the OA (Aiken et al., 2007). By
analysing elemental ratios, inferences can be made about organic aerosol sources and
ageing Huang et al. (2011). Further analysis of AMS results using the Positive Matrix
Factorisation (PMF) technique (Reff et al., 2007; Ulbrich et al., 2009), can group the spec-
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tra into factors that are associated with particular sources. For example, Song et al. (2006)
use PMF analysis of filter measurements to apportion PM2.5 into eight sources: biomass
burning, secondary sulfates, secondary nitrates, coal combustion, industry, motor vehi-
cles, road dust and desert dust. See Li et al. (2017c) for a review of speciated aerosol
measurements in China.

Gaseous pollutants

Variousmonitors are used tomeasure the concentrations ofNO2, SO2, O3 andCO through-
out the CNEMC network. The ambient air quality standard detailing air quality measure-
ment protocols (GB3095-2012), issued by theMinistry for Environment Protection in 2012
(now Ministry for Ecology and Environment) is only available in Chinese. Zhao et al.
(2016b) report that SO2 is measured using the ultraviolet fluorescence method, NO2 us-
ing the chemiluminescence method, O3 using ultraviolet spectrophotometry, and CO is
measured using infrared absorption.

Measurement error in the CNEMC network

Several sources of measurement error exist in pollutant concentration time series. Wu et
al. (2018) analysed data from the CNEMC network and found several types of measure-
ment error. These are:

• Periods of low variance caused by instrument malfunction, such as when the instru-
ment pump is stuck or filter tape depleted.

• Periodic outliers that occur every 24 hours and are caused by erroneous measure-
ments taken during calibration.

• Occasions when PM2.5 values are greater than PM10, which is caused by the lower
accuracy of PM10 monitors, which are often 10 years older than the PM2.5 monitors.

They develop an automatic outlier detectionmethod, and during 2014-2016, they estimate
0.92% of PM2.5, 5.68% of PM10, 0.73% of SO2, 0.65% of NO2, 1.03% of CO, and 0.86% of O3

hourly measurements are outliers caused by measurement error.

21



1.4. Air Quality Monitoring Chapter 1

1.4.2 Remote sensing of surface pollutants

Aerosol pollutants

Remote sensing of aerosols relies on their ability to absorb and scatter light, which can be
measured from the ground or space. The light extinction can be ‘inverted’ using phys-
ical equations to provide an estimate of aerosol concentrations (Boucher, 2015). The
amount of light blocked by aerosols (light extinction) is known as the aerosol optical
depth (AOD), and ground-based measures of AOD give some of the earliest estimates of
trends in aerosol concentrations inChina (and theworld). TheAErosol ROboticNETwork
(AERONET) provides global coverage of ground-based AOD measurements, which can
be used to validate the satellite retrievals of AOD, together providing high spatial cover-
age (Sinyuk et al., 2020).

The validated satellite AOD products can be used to estimate surface PM concentrations,
using statistical modelling. Statistical models are built to relate AOD, and other predictors
such as land use data and meteorology, to surface measured and simulated PM values.
Van Donkelaar et al. (2016) used this technique to generate a global gridded estimate of
PM2.5 concentrations. Ma et al. (2016) applied a similar technique in China, to generate
a record of PM2.5 concentrations, extending back to 2004, before widespread air quality
measurements were available.

Gaseous pollutants

Spectrometers such as the Ozone Monitoring Instrument (OMI), aboard NASA’s Aura
Satellite can provide high global coverage of trace gases including NO2, SO2 and O3 (Lev-
elt et al., 2006). Aura is in a sun-synchronous orbit, meaning that it passes over the same
location on the Earth’s surface at the same time each day. OMI operates at nadir, mean-
ing it peers downwards through the atmosphere, so generating spectra that represent the
combined tropospheric and stratospheric absorptions.

The vertical column density (VCD) of tropospheric NO2 is separated by an algorithm
which combines data from a global chemical transport model (TM4), surface elevation
and albedo data, and meteorological analysis data (Boersma et al., 2011; Geffen, 2016).
Satellite derived VCDs of NO2 have been used to validate emission estimates from power
stations (Wang et al., 2012) and validate emission inventory trends (Zhang et al., 2012a;
De Foy et al., 2016). VCDs can be used as an independent variable in a statisticalmodelling
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ofNO2 surface concentrations, which can be validated using surfacemeasurements (Zhan
et al., 2018).

SO2 columns can be retrieved from OMI measurements by a similar process (Krotkov et
al., 2006). They have been used to observe regions of heavy pollution in China (Krotkov et
al., 2008), estimate emissions via inverse modelling (Qu et al., 2019) and estimate trends
in ground level SO2 concentrations (Zhang et al., 2021).

1.5 Air quality Trends in China

1.5.1 Evolution of air quality control policy in China

China’s rapid economic development began in earnest after the death of Mao Zedong in
1976, which ended the Cultural Revolution period. During Mao’s rule, attempts to in-
crease agricultural and industrial productivity through radical, utopian reforms led to
widespread environmental destruction, while the chaos and famine caused by the Cul-
tural revolution restricted economic growth (Field, 1986; Shapiro, 2001). Though environ-
mental damage by deforestation and soil degradation during this period was immense,
it is likely that ambient air quality was better relative to the subsequent decades, as elec-
tricity generation, industrial production and vehicle ownership were a small fraction of
current levels (Levine et al., 1992). Of China’s cumulative CO2 emissions, 92% have oc-
curred since 1976 (Ritchie and Roser, 2017). However, individual exposure to harmful air
pollution would have been high during the industrial efforts of the ‘Great Leap Forward’
(1958-1962) where as many as 90 million people took part in ’backyard steel smelting’
(Shapiro, 2001), and conditions in factories were poor (Orleans and Suttmeier, 1970).

Mao’s successor, Deng Xiaoping ushered in a period of economic reforms and relative
stability. During the next 40 years, China’s gross domestic product increased by over 75
times (The World Bank, 2021). As with most countries (Churchill et al., 2018), China’s
environmental degradation has subsequently followed a typical ‘Environmental Kuznets
Curve’ inverted U-shaped trajectory (Wu et al., 2014; Li et al., 2016). China’s economic
growth has been tightly coupled with a rise in energy consumption (Azomahou et al.,
2001; Shiu and Lam, 2004; Næss and Høyer, 2009), the demand for which has been met
mostly by fossil fuel combustion, driving an increase in CO2 emissions, of which it is now
the world leader (Gregg et al., 2008).
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China began its modern environmental protection efforts after sending a delegation to the
1972 United Nations Stockholm Conference on the Human Environment (Feng and Liao,
2016). In 1979, China introduced the Environmental Protection Law, which gave the Envi-
ronmental Protection Bureau powers to supervise industrial air pollutant emissions and
levy fines for non-compliance with limits (Feng and Liao, 2016), but during reforms in
1982-1983 it wasmade subservient to theMinistry of Construction, which set back any en-
forcement of environmental policies well into the 1990s (Muldavin, 2000). In 1982, China
first established its National Ambient Air Quality Standards (NAAQS), which have been
continuously tightened since (Zhao et al., 2016a). In 1987, the ‘Air Pollution Prevention
and Control Law’ was adopted, which fines for exceedance of emission limits, but en-
forcement of its ‘broad but vague’ articles was generally lax (Alford and Liebman, 2001).

During this period of transition to a market-based economy, China prioritised economic
growth,with environmental controls lagging behind, pursuing ‘pollute now, control later,’
policies (Pang et al., 2019), with government campaigns running with slogans such as
‘Development is the fundamental principle’ and ‘Gold mines override clean water and
green mountains’ (Zhang et al., 2016).

Despite having developed a comprehensive environmental legal framework to control
pollution during the 1980s and 1990s, most control methods were not widely enforced
until the 2000s (Florig et al., 2002; Beyer, 2006). In 1998, sweeping reforms promoted the
environmental protection administration to ministerial level (Jahiel, 1998). Early efforts
focussed on reducing SO2 emissions that were causing severe acid rain, by establishing
the ‘Two Control Zones,’ in which measures such as installing flue gas desuphurisation
(FGD) control equipment and limiting the production of high-sulphur coal were stipu-
lated (Hao et al., 2001). However, enforcement was weak, and there was a surge in coal
production during 2002-2006, during which acid rain worsened (Schreifels et al., 2012).
The 11th Five Year Plan (FYP) in 2006 finallymade emissions reduction targetsmandatory
for local governments, and emissions began to decline (Lu et al., 2020a). By 2010, there
were FGD facilities installed at 86% of coal-fired power plants.

Other enforcement measures were gradually strengthened, included the banning of vehi-
cle imports and use that did not meet emissions standards, and the increase of fines and
punishment for non-compliant industrial polluters (Feng and Liao, 2016).

Economic growth, measured by GDP, remained the most important factor in the perfor-
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mance appraisals that control promotion of local government officials within the Commu-
nist Party (Li and Zhou, 2005). But since the 11th FYP (2006-2010), quantitative environ-
mental targets, including meeting the NAAQS, have become amandatory ‘veto factor’ for
promotion (Jin et al., 2016), though they remain unimportant compared with economic
targets (Feng et al., 2018).

During the winter of 2012-13, particularly widespread and severe air pollution events
caused public outcry (The Guardian, 2013), with the government responding by issu-
ing an air quality action plan to further strengthen air quality improvement legislation.
Controlling air pollution and wider environmental reform is one method by which the
Chinese Communist Party maintains legitimacy (Flatø, 2021). Key measures during the
2010s have been implementing more stringent emissions standards for power and indus-
trial plants, phasing out of smaller inefficient industrial plants, replacing residential coal
burning with electricity and natural gas, and further strengthening of vehicle emission
standards (Zheng et al., 2018a).

Another driver of environmental damage in China is the export of dirty industrial pro-
cesses downstream to less developed countries. As highly developed countries improved
their own environmental standards, they increased their imports from China, thus relo-
cating their emissions (Guan et al., 2014; Zhang et al., 2017b). Some of this is transported
back to the receiving country via transnational or transcontinental transport (Wild and
Akimoto, 2001; Lin et al., 2014). In turn, investment by China abroad, as its environmen-
tal and labour regulations improve, could result in the transfer of polluting industries to
less developed countries.

Since around 1990, China’s energy efficiency has been improving (Guan et al., 2008), and
it now looks set to deliver early on its Paris Agreement commitment to peak CO2 emis-
sions by 2030 (Green and Stern, 2017). In 2020, China committed to be carbon neutral by
2060 (McGrath, 2020). China’s carbon emission mitigation efforts are predicted to have
substantial co-benefits to its air pollutant emissions (Dong et al., 2015; Li et al., 2019; Peng
et al., 2017)

1.5.2 Emissions trends

Attempts to estimate air pollution emissions in China began in the early 1990s, prompted
mainly by concerns of acidifying pollutants and CO2 emissions. The first emission inven-
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tory of Asian SOx and NOx emissions was carried out in 1991 (Kato, 1996), and contains
provincial level estimates of China’s SOx and NOx emissions during 1975-1987. They es-
timated that in 1975, China was already the largest emitter of SOx (10.1 Tg yr-1) and NOx

(3.7 Tg yr-1) in Asia. By 1987, they estimate that China’s emissions of both species had
doubled. This inventory was made available in 1x1 degree gridded format (Akimoto and
Narita, 1994). Despite early regulation attempts in China, SO2 emissions continued to
grow, with Streets et al. (2000) estimating that emissions reached 27.0 Tg yr-1 by 1997,
while NOx had reached 12.0 Tg yr-1 in 1995 (Streets and Waldhoff, 2000). NOx emissions
continued to grow, with the MEIC inventory estimating that in 2010 they had reached 34
Tg yr-1 (1.1), before peaking around 2012 and decreasing to 22 Tg yr-1 by 2017 (Zheng
et al., 2018a). Zheng et al. (2018b) also report a decline in SO2 emissions by over half in
under a decade, decreasing from 27.8 in 2010, to 10.5 Tg yr-1 in 2017.

1.5.3 Measured air quality trends

Figure 1.7: Provinces and provincial capital cities of China.

Official government reports of China’s air quality date back to at least 1981, and give an-
nual mean estimates of air quality up to the present day. However, during these four
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decades, China’s air quality monitoring network has gone through substantial changes.
Spatial coverage and frequency of monitoring stations has increased (Zhang et al., 2020),
aswell as the temporal frequency. Monitoring protocols and equipment has been updated
several times.

Until 2012, air quality monitoring equipment was under the control of provincial and
municipal environmental protection bureaus (EPB). EPBs were under the control of local
party officials, who relied on good environmental performance for promotion in theCadre
Evaluation System. This created an incentive for EPBs to misreport air quality data to
achieve targets, such as the 85% blue sky days target, the effects of which are detectable
in data from this period (Andrews, 2008; Ghanem and Zhang, 2014)

Reliability of post-2012 measurements has improved (Liang et al., 2016; Stoerk, 2016),
as the monitoring network was ‘federalised’ i.e. taken out of the control of local EPBs,
with the data being directly relayed to the Ministry of Ecology and Environment (MEE).
Anomalies detected in the data (as a result of monitoring error) have decreased during
2014-2016 (Wu et al., 2018). Data availability has improved, as air quality measurements
went from being only available in statistical yearbooks, to being displayed in real-time
on an official website. However, access to historical data is still restricted, as reported by
OpenAQ as of July 2020, key criterea for the CNEMC data to be considered ‘open’ are not
met (OpenAQ, 2020).

Despite the improvements, an incentive remains for local officials to tamper with mon-
itoring stations, and fraud attempts are regularly detected and punished with fines and
imprisonment. The central government is attempting to crack down on fraud, and be-
gan to conduct surprise inspections in 2017, resulting in the disciplining of 12 000 local
officials and more than $130 million in fines (Turiel and Kaufmann, 2021). Turiel and
Kaufmann (2021) analysed CNEMC data between 2015-2017 and found statistical evi-
dence of under-reporting of PM2.5 concentrations during air pollution events by compar-
ing CNEMC monitors to those operated by US consulates.

Aerosol trends

In the 1980s and 1990s, most of the aerosol measurements taken in China were of total
suspended PM, (TSP), followed by PM10 measurements being introduced during 2000-
2005, and PM2.5 during 2008-2012 (Zhang et al., 2020). He et al. (2002) report a 3% yr-1
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decline in TSP during 1990-1999. Zhang et al. (2020) report a summary of official reports,
indicating that annualmeanTSP concentrations fell from702µgm−3 in 1981 to 258µgm−3

in 2000, after whichmonitoring was switched to PM10, which fell from 113 µgm−3 in 2000
to 71 µgm−3 in 2017.

Prior to the establishment of the CNEMC network in 2012, there were few measurements
of PM2.5 trends, but satellite and modelling studies suggest its concentrations generally
increased until around 2011. Using satellite data Van Donkelaar et al. (2016) estimate
the trend in PM2.5 in Beijing was 2.4 µgm−3 yr−1 during 1998-2012, and a trend of 1.63
µgm−3 yr−1 in the East Asia region 4. Peng et al. (2016) used satellite data and found
trends of 2.21 µgm−3 yr−1 in the polluted megacity regions (see Figure 1.1) of China dur-
ing 1999 to 2011. 1998-2012 trends were estimated byHan et al. (2015) as 1.83 µgm−3 yr−1

in urban areas and 1.71 µgm−3 yr−1 in cropland.

Then, satellite studies observe the peaking of PM2.5 concentrations, with Ma et al. (2016)
finding a trend of 1.97 µgm−3 yr−1 during 2004-2007, follow by−0.46 µgm−3 yr−1 during
2008-2013. Lin et al. (2018) estimated PM2.5 mean concentrations of 0.04 µgm−3 yr−1 dur-
ing 2001-2005, −0.65 µgm−3 yr−1 during 2006-2010, and −2.33 µgm−3 yr−1 during 2011-
2015. Xue et al. (2019) estimated the national peak to have occurred during 2008-2013,
with 2000-2007 having a trend of 2.01 µgm−3 yr−1 and 2013-2016 of −4.5 µgm−3 yr−1.

The steep negative trend in PM2.5 across China continued to be observed by the CNEMC
network during 2013-2018, with Kong et al. (2021) estimating a nationwide trend of −5.8
µgm−3 yr−1.

Ozone

The earliest estimates of an ozone trend in China originate from long term monitoring
conducted at background sites. This includes the positive trend of 0.58% yr-1 during 1994-
2007 at a coastal background site in Hong Kong (Wang et al., 2009), and the positive trend
of 0.24-0.28 ppbv yr-1 recorded at Mount Waliguan, which is located at 3.8 km above sea
level on the Tibetan plateau.

The Tropospheric Ozone Assessment Report (TOAR) used data from 557 monitoring sta-
tions in East Asia to calculate the summer trend in daily mean O3 as 0.22 and 0.52 ppbv
yr-1 in rural and urban areas, respectively (Chang et al., 2017). Though the vast majority

4Their East Asia region also includes parts of North and South Korea, part of Japan and Taiwan, but is
dominated by eastern China.
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of stations used in the TOAR analysis were outside China, in Taiwan, South Korea and
Japan, due to their downwind location, modelling studies demonstrate that China’s emis-
sions account for a large component of their local trends (Yamaji et al., 2012; Nagashima
et al., 2017).

Satellite data is valuable in filling the temporal gap in China’s surface O3 trends due to
the relative lack of available monitoring station data in China prior to 2012. However,
satellite sensors are limited to detecting the O3 present in the entire atmospheric column,
which can introduce large uncertainties in tropospheric O3 trend estimates. Aircraft and
sonde measurements of O3 vertical profiles can be used to estimate boundary layer O3

concentrations. Shen et al. (2019) compare Ozone Monitoring Instrument (OMI) data
from 2005-2009 with 2013-2017, finding an increase in the mean afternoon O3 concentra-
tions across much of southern China. Verstraeten et al. (2015) find a positive trend of
1.08% yr-1 over eastern China during 2005-2010 using retrievals for NASA’s Aura satellite.

Since 2012, data from the CNEMCnetwork has been available, which can be used to calcu-
late the average urban O3 trend. Lu et al. (2020b) found that median O3 levels measured
at 243 sites across 69 cities increased by 1.7 ppbv yr-1 or 2.2 ppbv yr-1 for maximum daily
8-hour mean ozone.

VOCs

Jin and Holloway (2015) used OMI data, finding that in most of China, trends in HCHO
are weak and insignificant during 2005-2013. They found a positive trend in the North
China Plain region, and negative in the Yangtze River Delta and Pearl River Delta (see
1.1 for locations). They suggest that the positive trend in anthropogenic VOC emissions
is being offset or negated by decreases in biogenic emissions due to land use and climate
change. A recent modelling study estimates the HCHO trend using GEOS-Chem, finding
a positive trend of 1.43% yr-1 during 2015-2019 (Sun et al., 2020).

Rainwater pH

Rainwater pH measurements are a useful proxy for atmospheric SO2 and NO2 concen-
trations before direct measurements were widespread. In the early 1980s, rainwater pH
in the southern Chinese cities of Chongqing and Guiyang was recorded to be 4.14 and
4.02 respectively (Zhao and Sun, 1986), low enough to cause forest damage (Zhao et al.,
1988). During 1982 to 1990, Wang andWang (1995) report that the pH of rain water from
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five Chinese cities became more acidic. Acid rain (defined as pH < 5.6) became more
widespread and severe in China during 1990 up until 2006, since when it has trended to-
wards reduced acidity (Qu and Han, 2021). However, the trend in rainwater is not only
determined by the NO –

3 and SO 2–
4 , as they can be neutralised by Ca2+ and NH +

4 , which
are found in higher concentrations in northern China due to its alkaline soils (Zhao and
Sun, 1986). Therefore, proposed reductions in NH3 emissions to alleviate PM2.5 pollu-
tion could cause rainwater pH to drop again, which could outweigh the benefits of the air
quality improvement (Liu et al., 2019).

NO2

Official government air quality reports switched from reporting NOx to NO2 concentra-
tions in 2000. During both the 1982-2000 and 2001-2018, government data shows annual
meanNOx/NO2 concentrations remaining relatively constant, at 45µgm−3 and 30µgm−3

respectively (Zhang et al., 2020).

Satellite monitoring of NO2 columns across China during 1996-2005 found positive trends
over highly populated megacity regions (see Figure 1.1), with the strongest found in the
North China Plain, Yangtze River Delta, and Pear River Delta (A et al., 2006). Satellite
monitoring of NO2 column values in the North China Plain region found a slight increase
of 4.79% during 2006-2015 (Si et al., 2019). It appears that NO2 concentrations began to
decrease in the Pearl River Delta during 2006-2011, at 1.2 ppbv as recorded by monitoring
stations in the regions network (Li et al., 2014). An increase of 55% in column NO2 was
observed by satellite in Henan province during 2005-2011, followed by a decrease of 28%
during 2011-2014 after the installation of selective catalytic reduction systems to remove
NOx from flue gas of plants (Zhang et al., 2017a).

Multiple satellite and modelling studies find that NO2 concentrations peak in 2011-2012
(A et al., 2017; Krotkov et al., 2016; Irie et al., 2016). Shah et al. (2020) use satellite data
combined with model analysis and find that NO2 decreased over central eastern China
during 2012-2018, by around 25%. Kong et al. (2021) use CNEMC data to estimate a
negative trend of −2.6 µgm−3 yr−1 across China during 2013-2018, with negative trends
also found in each region.
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SO2

Studies estimating SO2 trends in mainland China begin in the late 1990s. Some earlier
measurements exist that indicate SO2 levels were high in the 1980s. In 1982, annual mean
concentrations of SO2 were as high as 393 µgm−3 in Guiyang, 260 µgm−3 in Chongqing,
158 µgm−3 in Beijing and 132 µgm−3 in Shenyang (Zhao et al., 1988). By 1995, this had
reduced to 230, 160, 100 and 110 in the same cities respectively (Hao et al., 2000). He
et al. (2002) report that during 1990-1999, annual mean SO2 concentrations across China
decreased from around 80-110 µgm−3 to 50-60 µgm−3. The declining SO2 concentrations
before the emissions had decreased (see section 1.5.2) is likely due the start of implemen-
tation of control technologies such as flue-gas desulphurisation (FGD) and coal washing
(Hao et al., 2000), which were not accounted for in emissions estimates such as Streets
and Waldhoff (2000).

Ambient SO2 concentrations continued a general decline in the 2000s. At a regional back-
ground site inNorth China, Shangdianzi, an SO2 trend of−0.3 ppb yr-1 was recorded dur-
ing 2004-2009 (Lin et al., 2012b). During 2005-2009, steep declines in SO2 were recorded in
Beijing (−6.5µgm−3 yr−1), Shanghai (−8.7µgm−3 yr−1), Guangzhou (−3.5µgm−3 yr−1)
and Chengdu (−6.9 µgm−3 yr−1) (see Figure 1.7 for locations of cities; Lin et al., 2012).

SO2 total column densities were observed to decrease above new coal fired power plants
built between 2005-2007 as FGD was subsequently installed during 2007-2008 (Li et al.,
2010). Satellite measurements show a negative trend inHenan province, which consumes
8%of coal inChina, during 2008-2014 (Zhang et al., 2017a), with another analysis showing
a negative trend in thewhole of East China during the same period (Fu et al., 2017). In the
Inner Mongolia province, a trend of −1.6% yr-1 was observed during 2007-2016 (Zheng
et al., 2018b).

Recent estimates using data from the CNEMC network indicate that SO2 has decreased
on average by −6.2 µgm−3 yr−1 during 2013-2018 (Kong et al., 2021).

1.6 Aims and Objectives

At the start of this PhD project (in 2017), there were very few published studies that used
the CNEMC air quality monitoring network due to the lack of data availability. Assess-
ments of air quality trends had reliedmostly upon bottom-up emission estimates, satellite
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measurements and the summaries included in official government reports. Due to the
lack of temporal and spatial coverage of in-situ measurement data, many numerical mod-
elling or satellite estimates of air pollutant concentrations were relatively uncertain. This
uncertainty reduced the confidence in health impact assessments and air quality control
policy assessments.

The aims of this thesis will be to collect and use the CNEMC data to produce the most
comprehensive analysis of recent air quality trends in China. Then, establish whether a
numericalmodel driven by recent emissions estimates can reproduce the observed trends,
and impact of emission perturbations.

Quantify recent air quality trends in China

• Collect a dataset of the latest Chinese air quality monitoring data including Hong
Kong and Taiwanese data.

• Establish the statistical significance of trends in PM2.5, NO2, SO2, and O3 across
China

• Examine spatial differences in the trends between Chinese megacity regions and
provinces.

• Conduct a literature review so that current trends can be compared with those esti-
mated with remote sensing and emission inventory estimates.

Use the WRF-Chem model to establish the drivers of observed trends

• Assess the capability of theWRF-Chemmodel to capture recent trends in air quality.

• Establish to what extent variation of meteorology or emissions have driven changes
in air quality.

• Estimate the change in the magnitude air quality health impacts driven by recent
trends.

Examine impacts of short-term emission perturbation during the COVID-19 lockdown

on air quality in China

• Quantify the effects of short-term emission changes on air quality that occurred dur-
ing early 2020 using the CNEMC network

• Use time series decomposition analysis to account for trends and seasonality when
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assessing the COVID-19 impact

Chapters 2, 3 and 4 consist of three published papers, with their supporting information
found in Appendices A, B and C respectively. A summary of the key findings synthesised
from the published papers is presented in Chapter 5, along with discussion of uncertain-
ties and proposals for future research topics that follow from the results in this thesis.
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Abstract

China’s rapid industrialisation and urbanisation has led to poor air quality. The Chinese
government have responded by introducing policies to reduce emissions and setting am-
bitious targets for ambient PM2.5, SO2, NO2 and O3 concentrations. Previous satellite and
modelling studies indicate that concentrations of these pollutants have begun to decline
within the last decade. However, prior to 2012, air quality data from ground-based mon-
itoring stations were difficult to obtain, limited to a few locations in major cities, and of-
ten unreliable. Since then, a comprehensive monitoring network, with over 1000 stations
across China has been established by the Ministry of Ecology and Environment (MEE).
We use a three-year (2015–2017) dataset consisting of hourly PM2.5, O3, NO2 and SO2 con-
centrations obtained from the MEE, combined with similar data from Taiwan and Hong
Kong. We find that at 53% and 59% of stations, PM2.5 and SO2 concentrations have de-
creased significantly, withmedian rates across all stations of−3.4 and−1.9µgm−3 yr−1 re-
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spectively. At 50% of stations, O3 maximum daily 8 h mean (MDA8) concentrations have
increased significantly, with median rates across all stations of 4.6 µgm−3 yr−1. It will be
important to understand the relative contribution of changing anthropogenic emissions
and meteorology to the changes in air pollution reported here.

Introduction

Rapid economic growth and large increase in emissions has led to serious air quality is-
sues across China. Annual PM2.5 (mass of particulate matter with a diameter less than 2.5
µm) exceeds 100 µgm−3 in polluted regions of northeast China (Ma et al., 2014; Zhang
and Cao, 2015). Exposure to ambient (outdoor) PM2.5 is estimated to cause 0.87–1.36 mil-
lion deaths each year across China (Apte et al., 2015; Lelieveld et al., 2015; Gu and Yim,
2016; Cohen et al., 2017). Health impacts from exposure to ambient PM2.5 cause losses
equal to 1.1% of gross domestic product at the national level (Xia et al., 2016) with losses
of 1.3% in the Pearl River Delta (PRD) and 1.0% in Shanghai (Kan and Chen, 2004; Huang
et al., 2012).

To address issues of poor air quality, the Chinese government has introduced policies to
reduce pollutant emissions and has established ambient concentration targets for provin-
cial and municipal authorities (Jin et al., 2016). Despite having developed a comprehen-
sive environmental legal framework to control pollution during the 1980s and 1990s, most
control methods were not widely enforced until the 2000s (Florig et al., 2002; Beyer, 2006;
Feng and Liao, 2016). Desulfurization of coal-fired power plants, introduction of elec-
trostatic precipitators (Liu et al., 2015), closure of polluting power plants and increased
efficiency (Guan et al., 2014), have resulted in decreases in emissions of sulphur diox-
ide (SO2) and PM2.5 (Lu et al., 2010; Klimont et al., 2013; A et al., 2017). Shifts towards
cleaner fuels and electricity for cooking and heating in rural areas has contributed to re-
duced residential PM2.5 emissions (Tao et al., 2018). Regulation of nitrogen oxides (NOx)
has resulted in installation of NOx filtering systems on power plants, phasing out heavily
polluting factories and new emission standards for vehicles (Liu et al., 2017; Wu et al.,
2017). NOx emissions over 48 Chinese cities increased by 52% from 2005 to 2011 before
decreasing by 21% between 2011–2015 (Liu et al., 2017). In response to the 2012–13 air
pollution ’crisis,’ where very poor air quality triggered a public outcry, the state council
issued the ’Action Plan on Prevention and Control of Air Pollution’ that prioritised PM2.5
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reduction in megacity regions (Sheehan et al., 2014; Wang et al., 2018). According to the
estimates made in the Multi-resolution Emission Inventory for China, emissions of SO2,
NO2, PM2.5, PM10 (mass of particulate matter with a diameter less than 10 µm) and car-
bon monoxide (CO) have decreased during 2013–2017 (Zheng et al., 2018).

Understanding the impacts of changing emissions on pollutant concentrations is neces-
sary to assess past management policies and identify future policy challenges. Longer
term records of surface air pollutants are available across the PRD, showing that PM2.5

concentrations increased between 2000–2005 before decreasing from 2005–2010 (Wang et
al., 2016). Elsewhere across China a lack of widespread surface measurement data prior
to 2012 means most previous analyses have relied on satellite data, visibility observations
or emission estimates combined with modelling to establish air quality trends.

A number of studies have used satellite retrievals of aerosol optical depth to estimate
trends in PM2.5 concentrations. Peng et al. (2016) reported increased PM2.5 concentra-
tions across China between 1999–2011. Ma et al. (2016b) reported a positive trend in
PM2.5 across China between 2004–2007, followed by a negative trend between 2007–2013.
Lin et al. (2018) found Chinese PM2.5 concentrations increased between 2001–2005, before
decreasing from 2006–2015. Fu et al. (2014) used visibility data across the North China
Plain (NCP) to show a positive trend in low visibility days between 1980–1995, little trend
between 1995–2003 followed by a reduction in low visibility days between 2003–2010, par-
ticularly in winter. Visibility data has also been used to estimate that annual mean PM2.5

in Beijing increased between 1973–2013 by an average of 0.6µgm−3 yr−1 (Han et al., 2016).
A modelling study suggests that population-weighted PM2.5 concentrations across China
increased by 53% between 1960–2010 and by 10%–35% between 1990–2010 (Butt et al.,
2017). Li et al. (2017a) use satellite and in situ observations to downscale a global model
and estimate that in East Asia, annual population-weighted mean PM2.5 increased sig-
nificantly by 0.86 µgm−3 yr−1 during 1998–2013, with an insignificantly decreasing trend
during 2006–2013.

Satellite observations show that SO2 concentrations over the NCP region peaked in 2007,
decreasing by 50%between 2005–2015 (Krotkov et al., 2016). Declines in SO2 across China
are also more widespread, with a 50% decline in SO2 concentrations reported across the
most polluted provinces in China between 2005–2015 (Ling et al., 2017; A et al., 2017). Li
et al. (2017b) estimate that SO2 loading over China decreased by a factor of five between
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2007–2016, by which time 350 million fewer people were exposed to dangerous concen-
trations.

Satellite observations have shown that similarly to SO2 and PM2.5, nitrogen dioxide (NO2)
has begun to decrease across China (Zhang et al., 2012; Zhang et al., 2018; Irie et al., 2016;
Krotkov et al., 2016). Across the NCP, NO2 concentrations increased by 50% between
2005–2011, before returning to 2005 levels by 2015 (Krotkov et al., 2016). The same trend
with a maximum in 2011 was observed when averaging across the whole of China (Irie
et al., 2016). Gu et al. (2013) found that while the trend in NOx emissions was positive
across the whole of China during 2005–2010, the more economically developed regions
such as the PRD and municipalities of Beijing and Shanghai had comparatively lower
concentrations or negative trends.

Satellite observations suggest ozone (O3) concentrations have been steadily increasing
across China at a rate of 7% yr-1 between 2005–2010 (Verstraeten et al., 2015). Although
there are no long term records of surface O3 measurements in urban areas of China, there
is evidence of positive trends at background sites. During 2003–2015, maximum daily
average 8 h mean (MDA8) O3 concentrations increased at a rate of 1.13 ppb yr-1 at a mon-
itoring station 100 km northeast of Beijing (Ma et al., 2016a). An increase of 0.25 ppb yr-1

was recorded at a remote background site in western China between 1994–2013 (Xu et al.,
2016), and in southern China, and at a background site in Hong Kong an increase of 0.58
ppb yr-1 between 1994–2007 was recorded (Wang et al., 2009).

Most of our understanding of recent trends in air pollution across China comes from satel-
lite studies or from relatively few in situ observations. There have been very few attempts
to use data from surface monitoring stations to assess recent trends. Here we use data
from>1600 surfacemonitoring stations across China andTaiwan for the period 2015–2017
to explore recent trends in the concentrations of air pollutants.
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Methods

Figure 2.1: Location of air quality stations in Mainland China (red), Taiwan (blue) and
Hong Kong (magenta) used in this analysis. The 60 largest cities by population are
marked with white crosses, of which the 10 largest are labelled.

Three year time series (January 2015–December 2017) of hourly concentrations of PM2.5,
PM10, CO, O3, SO2 andNO2 were downloaded for stations operated by the environmental
protection departments for Mainland China (MC), Hong Kong (HK) and Taiwan (TW).
Data for MC was downloaded from http://beijingair.sinaapp.com/ which had ob-
tained the data from http://pm25.in, a mirror of data from the official Ministry of Ecol-
ogy and Environment download platform (http://106.37.208.233:20035/). Similar
data has been used in other studies (e.g. Rohde and Muller (2015), Liang et al. (2016),
and Leung et al. (2018)). HK data was downloaded from the HK Environmental Pro-
tection department (https://cd.epic.epd.gov.hk/EPICDI/air/station/) andTWdata
was downloaded from the TW Environmental Protection Agency (https://taqm.epa.
gov.tw/taqm/en/YearlyDataDownload.aspx). MC data has been described in detail by
Zhang and Cao (2015). TW data (excluding aerosol measurements) was reported as a
mole fraction, so these were converted into mass concentration to matchMC andHK data
by using meteorological data (73 stations), and assuming standard pressure and a tem-
perature of 23 °Cwhere thiswas unavailable (4 stations). Together these sources provided
data from 1689monitoring stations, with 13 fromHK (the roadside stations are not used),
75 from TW and 1601 from MC. Locations of the stations are shown in Figure 2.1.
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Table 2.1: The number of monitoring stations (# stations) available for each pollutant and
the number of stations that were removed during data checking.

Pollutant
NO2 PM2.5 O3 SO2

# stations 1689 1689 1687 1689
# stations with >5% consecutive repeats 148 100 1 N/A
# stations removed due to <90% of data being present 520 505 339 296
# stations removed due to ’day-to-day’ repeats 10 37 11 25
# stations remaining in the analysis 1159 1147 1337 1368

Previously there have been doubts about the reliability of air qualitymonitoring data from
China, due to manipulation of data by local environmental protection bureaus which re-
sulted in discontinuities around air quality targets (Andrews, 2008; Ghanem and Zhang,
2014). However, by comparing Chinese data with data from United States Embassy and
Consulate monitoring stations, it has been shown that data is more reliable since 2013
(Liang et al., 2016; Stoerk, 2016). Other quality issues with the MC data have been pre-
viously noted including a high proportion of repeating values at some sites (Rohde and
Muller, 2015), and periods when reported PM2.5 concentrations exceed PM10 concentra-
tions (Liu et al., 2016b).

To address potential quality issues we applied the following procedure to all the data
used in the study. First, we removed consecutive repeats from the data. Values were re-
moved from NO2 and PM2.5 time series when there were >4 consecutive repeats, and for
O3 where there were >24 consecutive repeats. 148 and 100 stations contained >5% con-
secutive repeats for NO2 and PM2.5 respectively and 1 station contained >5% repeats for
O3. The data contain a small fraction (<0.04%) of zero values, which are unlikely to be ac-
curate and could be caused by lower precision around the detection limit. We remove zero
values from the time series. After consecutive repeats and zeroes have been removed, if
<90% of hourly data is available for thewhole time series, it is removed. Finally, to remove
day-to-day repeats, data were flagged if the daily mean had a low coefficient of variation
in a certain period (see Table A.1). If >60 days were flagged, the station is removed. The
number of stations identified at each stage of data quality checking are shown in table 2.1.
The thresholds used were chosen by applying the procedure with a range of thresholds,
and manually examining the datasets to verify whether suspect data were removed. The
thresholds applied for the different pollutants are given in supplementary table A.1. We
test the sensitivity of our analysis to these thresholds and find themagnitude of the trends
we calculate are not sensitive to the values of the thresholds we choose (supplementary
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table A.1).

The hourly data is used to calculate monthly averages. We then deseasonalised the data
(the results using non-deseasonalised data are shown in supplementary figure A.2). To
analyse the three-year time series for monotonic, linear trends, theMann-Kendall test was
used to assess the significance of trends (using a threshold of p< 0.05), and the Theil–Sen
estimator was used to calculate the magnitude of the trend. Both tests are resistant to
outliers, and do not require any assumptions about the data used (Carslaw, 2015; Fleming
et al., 2018). Absolute trends were converted to relative trends by dividing by the 2015 to
2017mean. For O3, the trend tests were also applied to theMDA8metric, which is used in
the World Health Organisation’s (WHO) air quality guidelines (AQGs). The R package
’openair,’ which contains a set of tools developed specifically for analysing air quality data,
was used to perform this stage of the analysis (Carslaw and Ropkins, 2012).

We specifically analyse trends for large urban clusters: Pearl River Delta (PRD), Yangtze
River Delta (YRD), North China Plain (NCP), and Sichuan Basin (SCB). Additionally, we
analyse trends for the Hong Kong Special Administrative Region (HK) (which is within
the PRD domain) and Taiwan (TW).

Air pollution concentrations and trends

Annual mean concentrations of air pollutants during 2015–2017 are shown in Figure 2.2
and supplementary figures A.3 and A.4. Highest annual mean PM2.5 concentrations are
found in the provinces of Hebei, Henan and Shandong, which all have a median concen-
tration of >60 µgm−3. Stations in Shanghai and Guangdong have lower PM2.5 concen-
trations, while the lowest PM2.5 concentrations (20–25 µgm−3) are found in Hong Kong,
Taiwan and Xizang. The highest concentrations of SO2 are found in Shanxi, which has
a median concentration of >60 µgm−3, and in Hebei which has a median concentration
of 37 µgm−3. High NO2 concentrations are found across the Tianjin, Hebei and Beijing
region, as well as Shanghai, Hong Kong and Chongqing. The provinces with the highest
median O3 concentrations are the high elevation provinces of Xizang and Qinghai. Hong
Kong and Chongqing have some of the lowest O3 concentrations.

Figure 2.2 also shows trends in air pollutants during 2015–2017. The median trend in an-
nualmeanPM2.5 concentration across all stations is−3.4µgm−3 yr−1 or−7.2%yr-1. This is
comparable to Zheng et al. (2017), who find that the annualmean PM2.5 across 74 Chinese
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Figure 2.2: Trends in concentrations of (a), (b) PM2.5, (c), (d)O3 MDA8, (e), (f)NO2, (g),
(h) SO2 across Mainland China, Hong Kong and Taiwan during 2015–2017. Left-hand
panels (a), (c), (e), (g) show the sign of trend (blue: significant negative, red: significant
positive, grey: insignificant) and mean concentration (size of circle). Right hand panels
(b), (d), (f), (h) show the frequency of stations against the relative trends. The median
relative and absolute trend as well as the percentage of stations with significant trends
is shown on each panel. The percentage of significant trends that are negative (blue) or
positive (red) are also shown. The black dotted line shows the median trend across all
sites. Triangles show the median trend for the regional domains shown in the left-hand
panels: Pearl River Delta (PRD), Yangtze River Delta (YRD), North China Plain (NCP),
Sichuan Basin (SCB), Hong Kong Special Administrative Region (HK) and Taiwan (TW).
The left panels are zoomed to show the trends over the more populous regions of China,
while median trends and % of significant sites on the right panels refer to all Mainland
China, Hong Kong and Taiwan.
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cities decreased by 23.6% between 2013–2015 (−7.9% yr-1). Lin et al. (2018) used satel-
lite data to suggest the Chinese PM2.5 trend steepened from −0.65 µgm−3 yr−1 between
2006–2010 to −2.3 µgm−3 yr−1 between 2011–2015. Our work suggests that the rate of
PM2.5 decline has been sustained, or possibly even become faster, between 2015–2017. We
find 58.4% of stations have significant PM2.5 concentration trends, and of these, 90% are
negative. PM10 concentrations exhibit similar trends (supplementary figure A.5). The
fraction of stations meeting the WHO’s first Interim Target for annual average PM2.5 con-
centration of 35 µgm−3 rose from 15% in 2015 to 20% in 2017.

Figure 2.3 shows the relative trends in air pollutants at the province level (supplementary
figureA.6 shows absolute trends). Negative trends in PM2.5 concentrations arewidespread,
with all provinces experiencing negative median trends except Shanxi and Jiangxi. Most
provinces had trends of around−10% yr-1, with faster reductions in some areas including
Beijing municipality (−14.4% yr-1). Widespread reductions in PM2.5 concentrations are
consistent with trends estimated from satellite data for the period 2011–2015 (Lin et al.,
2018).

Themedian trend in annualmean SO2 concentration across all stations is−1.9µgm−3 yr−1

or −10.3% yr-1. 66% of stations have significant trends, and of these, 90% are negative.
The mean exceedance rate of the WHO 24 h AQG fell from 10.8% in 2015 to 7.6% in 2017.
Similarly to PM2.5, negative trends in SO2 concentrations are widespread across provinces
(figure 2.3), with all having median negative trends apart from Hainan and Fujian, both
of which have low absolute concentrations (supplementary figure A.3).

There is no median trend in annual mean NO2 concentration (0.0 µgm−3 yr−1 or 0.1%
yr-1). 48% of stations have significant trends, and of these, 54% are positive. The per-
centage of the stations that comply with the WHO’s annual mean AQG of 40 µgm−3 has
declined, from 71% in 2015 to 66% in 2017. There is more heterogeneity in the spatial
distribution of trends, with median positive trends in the SCB, YRD and PRD domains,
but median negative trends in HK, NCP and TW (figure 2.2). The greater spatial hetero-
geneity of NO2 trends could be partly due to its comparatively shorter lifetime, so that
neighbouring regions can have opposing trends (e.g. HK and the PRD). The NO2 con-
centration trends we report for 2015–2017 are more variable that the consistent declines
in NOx emissions (Liu et al., 2016a; A et al., 2017) and NO2 concentrations Krotkov et al.
(2016) reported for the period 2011–2015.
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Figure 2.3: Relative trends in (a) PM2.5, (b) O3 MDA8, (c) NO2 and (d) SO2 by province
or region (bolded). The median (red line), interquartile range (IQR) (box) and IQR ±
IQR∗1.5 (whiskers) of the trend across the stations in each province/region is shown. The
number of stations in each province/region is indicated at the top of the plot.
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In contrast to PM2.5 and SO2, annual mean O3 MDA8 has a positive median trend of 4.6
µgm−3 yr−1 or 5.2% yr-1. 55% of stations have significant trends, and of these, 92% are
positive. Averaging across all stations, the percentage of days where the WHOAQG (100
µgm−3) was exceeded for MDA8 rose from 9.8% in 2015 to 12.4% in 2017. Annual mean
O3 concentrations show similar relative and absolute trends (supplementary figures A.7
and A.8). The Tropospheric Ozone Assessment Report, which did not aggregate trends
specifically for China due to lack of stations with long records, also reports significant
positive trends over East Asia (Chang et al., 2017; Fleming et al., 2018). All the megacity
regions highlighted in figure 2.2 have medians greater than the overall median, and there
are only 4 regions in figure 2.3 with median negative trends. During 2005–2013, Chinese
megacity clusters shifted from a VOC-limited (NOx saturated) O3 production regime to-
wards a mixed regime, due to reductions in NOx emissions, which has lessened the NOx

titration effect resulting in increases in O3 concentration (Jin and Holloway, 2015). Mean-
while, increasing NOx emissions in less developed cities has led to a shift from NOx lim-
ited regimes towards mixed regimes, which have high O3 production efficiency (Jin and
Holloway, 2015).

Discussion and conclusion

Wefind substantial changes in the concentrations of air pollutants across China during the
period of 2015–2017. We report negative trends in annual mean PM2.5 (3.4 µgm−3 yr−1)
and SO2 (−1.9 µgm−3 yr−1) concentrations and positive trends in annual mean O3 MDA8
(4.7 µgm−3 yr−1) concentrations. The observed trends are widespread across China and
occur consistently acrossmost of the country. In contrastwefind spatially variable changes
in NO2, with no overall trend across China. Trends in PM2.5 and SO2 concentrations are
consistent with previous studies, that report negative trends in both PM2.5 (Ma et al.,
2016b; Lin et al., 2018) and SO2 (Krotkov et al., 2016; A et al., 2017) between 2007 and
2015. Our study therefore suggests that declines in PM2.5 and SO2 concentrations that
have been reported for 2007–2015 continued between 2015 and 2017.

The trends we report are calculated over a relatively short period and could be caused
by a variety of different factors. Air pollution is strongly dependent on weather. Inter-
annual variability in meteorology and synoptic weather conditions (Leung et al., 2018)
may therefore play a role in the trends we observe here. Air pollution over China is in-
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fluenced by variability in atmospheric circulation such as El Niño Southern Oscillation
(ENSO) (Cao et al., 2015; Zhao et al., 2017) and the Asian monsoon (Li et al., 2016; Cai
et al., 2017). El Niño years are associated with greater surface PM2.5 in southern China
and lesser PM2.5 in northern China compared to La Niña years (Zhao et al., 2017). ENSO
variability is therefore unlikely to cause the spatially extensive trends in air pollutants
across all of China that we report. It is possible that ENSO may have retarded the reduc-
tion in surface PM2.5 over northern China during 2015–2017. Changes in land cover and
local meteorological conditions also alter the emissions of natural aerosol and trace gases
(Fu et al., 2016), including dust and biogenic volatile organic compounds that can form
secondary organic aerosol and alter concentrations of O3. Leung et al. (2018) suggest that
PM2.5 across the NCPwill decrease by 0.5 µgm−3 by the 2050s due to climate change, sub-
stantially less than the changes we report over the past 3 years. Since the trends over the
period 2015–2017 are consistent with trends over the period 2007–2015, occur consistently
across the country and coincide with declining Chinese anthropogenic emissions (Zheng
et al., 2018), we suggest that the trends are likely dominated by these emission changes.
Future work needs to use air quality models to fully assess the contribution of different
drivers of the trends reported here. It will be particularly important to establish what is
causing the widespread increase in O3 concentrations, so that emissions control policies
can be most effectively targeted.
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Abstract

Air pollution is a serious environmental issue and leading contributor to disease bur-
den in China. Rapid reductions in fine particulate matter concentrations and increased
ozone concentrations occurred across China during 2015 to 2017. We used measure-
ments of particulate matter with a diameter <2.5µm (PM2.5) and ozone (O3) from more
than 1000 stations across China along withWeather Research and Forecasting model cou-
pledwith Chemistry (WRF-Chem) regional air quality simulations, to explore the drivers
and impacts of observed trends. The measured nationwide median PM2.5 trend of −3.4
µgm−3 yr−1 was well simulated by the model (−3.5 µgm−3 yr−1). With anthropogenic
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emissions fixed at 2015 levels, the simulated trend was much weaker (−0.6 µgm−3 yr−1),
demonstrating that interannual variability in meteorology played a minor role in the ob-
served PM2.5 trend. The model simulated increased ozone concentrations in line with
the measurements but underestimated the magnitude of the observed absolute trend
by a factor of 2. We combined simulated trends in PM2.5 concentrations with an expo-
sure–response function to estimate that reductions in PM2.5 concentrations over this pe-
riod have reduced PM2.5 attributable premature mortality across China by 150 000 deaths
yr-1.

Introduction

Concentrations of particulate matter and ozone across China largely exceed international
air quality standards (Reddington et al., 2019; Silver et al., 2018). This poor air quality
is estimated to hasten the deaths of 870 000 - 2 470 000 people across China each year
(Apte et al., 2015; Burnett et al., 2018; Cohen et al., 2017; Gu and Yim, 2016; Lelieveld
et al., 2015). The Chinese government’s efforts to improve air quality began in the 1990s,
but emissions of pollutants continued to increase into the 21st century and air pollution
worsened (Krotkov et al., 2016; Streets et al., 2008; Zhang et al., 2012). In 2013, China expe-
rienced episodes of severe particulate matter pollution (Zhang et al., 2016). In response,
the Chinese government announced the Action Plan on the Prevention and Control of
Air Pollution which focused on the reduction of fine particulate matter (PM2.5) through
stringent emission controls during 2012-2017 (Zheng et al., 2017).

Previous studies of trends in China’s air quality

Satellite remote sensing studies have been used to show large changes in air pollution
across China in recent decades, with positive trends in nitrogen dioxide (NO2) (A et al.,
2006), sulfur dioxide (SO2) (Zhang et al., 2017) and PM2.5 (Ma et al., 2016) during the
1990s and early 2000s. Trends in aerosol optical depth have been used to estimate changes
in PM2.5, which peaked around 2011 (Ma et al., 2016). NO2 across China peaked around
2011 (De Foy et al., 2016; Irie et al., 2016), although concentrations in the Pearl River Delta
(PRD) peaked earlier and western regions may have peaked later (Cui et al., 2015). Sev-
eral remote sensing studies show that SO2 concentrations in China peaked around 2006
(A et al., 2017; Krotkov et al., 2016; Zhang et al., 2017), matching the period of maximum
emissions (Duan et al., 2016; Li et al., 2017a; Zheng et al., 2018). Analysis ofmeasurements
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from the Acid Deposition Monitoring Network in East Asia (EANET) shows a negative
pH trend (i.e., becoming more acidic) from 1999 until a reversal occurs in 2006, matching
peak SO2 emissions and concentrations (Duan et al., 2016). Measurements of O3 concen-
trations at background monitoring sites indicate positive trends in western China during
1994-2013 (Xu et al., 2016), and Taiwan during 1994-2003 (Chang and Lee, 2007), suggest-
ing that O3 has been increasing across China during the past two decades. More recently,
measurements at urban sites, also showpositive O3 trends during 2005-2011 (Zhang et al.,
2014).

The establishment of China’s air pollutionmonitoring network, operated by the ChinaNa-
tional Environmental Monitoring Centre (CNEMC) (Wang et al., 2015), which includes
measurements from over 1600 locations, has enabled more detailed analysis of recent air
pollution changes (Silver et al., 2018; Zhai et al., 2019). Between 2015 and 2017, PM2.5

concentrations across China decreased by 28% (Silver et al., 2018). Zhai et al. (2019) re-
ported a 30-40% decrease in PM2.5 concentrations during 2013-2017. In contrast O3 con-
centrations have increased,withmedian concentration ofO3 across 74 key cities increasing
from 141 µgm−3 in 2013 to 164 µgm−3 in 2017 (Huang et al., 2018). Silver et al. (2018)
found that O3 maximum 8 h mean concentrations (O3MDA8) increased by 4.6% yr-1 over
2015-2017. Lu et al. (2020) reported positive trends in April-September O3MDA8 at 90%
of sites during 2013 to 2019. Positive regional O3 trends remain even after meteorological
variability has been removed (Li et al., 2019b). Trends in NO2 are more variable, with a
negative trend reported in eastern China and positive trends in western areas (Li and Bai,
2019). Silver et al. (2018) found that NO2 had negative trends in Hong Kong and North
China Plain regions, but positive trends in the Yangtze River Delta (YRD), Sichuan Basin
(SCB) and PRD, and no overall trend at the national scale.

Identifying drivers of recent trends

Changes in the concentrations of air pollutants may be caused by changing emissions or
by interannual variability of meteorology. Stringent emission controls have started to re-
duce emissions of various pollutants across China. Between 2013 and 2017, emissions of
PM2.5, SO2 and NOx (NO2 + Nitrogen Oxide) declined whereas emissions of ammonia
(NH3) and non-methane volatile organic compounds (NMVOCs) remained fairly con-
stant (Zheng et al., 2018). Zheng et al. (2018) also demonstrate that emission reductions
were primarily driven by pollution controls, rather than decreasing activity rates. Meteo-
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rological variability alters atmospheric mixing, deposition and transport, all of which can
influence the concentration of pollutants. Separating the influence of meteorology and
emissions on air pollutant concentrations is difficult, due to the interlinked nature of the
chemistry-climate system (Jacob and Winner, 2009). However, to assess the efficacy of
China’s emissions reductions, it is necessary to separate these two factors.

There are two commonly used approaches to separate the influences of meteorology and
emissions on variability in atmospheric pollutant abundances. The first approach uses
statistical models, such as multi-linear regression, to control for the influence of mete-
orology and allowing the proportion of air pollutant concentration variability that can
be explained by meteorological variables to be calculated (Tai et al., 2010). The second
approach is to use an atmospheric chemistry transport model to simulate pollutant con-
centrations (Xing et al., 2011; Ansari et al., 2019).

There are a limited number of modelling studies that attempt to separate the influence
of meteorology and emissions changes on recent air quality trends in China. Chen et al.
(2019) use WRF-Chem with 2010 emissions to examine the drivers of trends in winter-
time PM. Ding et al. (2019) use WRF-CMAQ to evaluate importance of emissions, me-
teorology and demographic changes on PM2.5 related mortality during 2013-2017. Our
paper adds to these previous studies by evaluating the ability of a online-coupled model
(WRF-Chem) to capture trends in NO2, O3 and SO2 as well as PM, using the most re-
cent emissions and evaluated against a comprehensive measurement dataset. Through a
comparison of multiple simulations, where either annual variability in emissions ormete-
orology are held constant, the relative influence of the two factors can be estimated. Here
we analysemeasurements and a regional air qualitymodel to explore the role of changing
anthropogenic emissions on air pollutant concentrations and human health across China
during 2015 to 2017.

Materials and methods

Measurement dataset

We used hourly measurements from the CNEMCmonitoring network (Wang et al., 2015)
of PM2.5, O3, NO2 and SO2 for the period 2015–2017, which include data from over 1600
monitoring stations across mainland China and are available to download from https:

//quotsoft.net/ (last access: 6 October 2020). These were combined with data from
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Table 3.1: China’s pollutant emissions (Tg yr-1) during 2015 to 2017 from MEIC.

SO2 NOx NMVOC NH3 CO TSP PM10 PM2.5 BC OC CO2

2015 16.9 23.7 28.6 10.5 153.6 21.9 12.3 9.1 1.4 2.5 10347.2
2016 13.4 22.5 28.4 10.2 142 17.9 10.8 8.1 1.3 2.3 10290.7
2017 10.5 21.9 28.6 10.2 136.2 16.7 10.2 7.6 1.2 2.1 10434.3

the Hong Kong Environmental Protection Department (https://cd.epic.epd.gov.hk/
EPICDI/air/station/) (last access: 6 October 2020) and Taiwan’s Environmental Protec-
tion Administration (https://airtw.epa.gov.tw/CHT/Query/His_Data.aspx) (last ac-
cess: 6 October 2020). We conducted quality control on the measured data following
the methods outlined in Silver et al. (2018), which include excluding data with a high
proportion of repeated measurements and periods of low variability, which represent pe-
riods of missing or invalid data. The cleaned dataset included measurements from 1155
sites.

WRF-Chem model setup

We used the Weather Research and Forecasting model coupled with Chemistry (WRF-
Chem) version 3.7.1 (Grell et al., 2005) to simulate trace gas and particulate pollution
over China for 2015 to 2017. The model domain uses a Lambert conformal grid (11–48°N,
93–128°E) centred on eastern China with a horizontal resolution of 30 km. The model has
33 vertical layers, with the lowest layer ~29 m above the surface and the highest at 50 hPa
(~19.6 km).

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim fields
were used to provide meteorological boundary and initial conditions, as well as to nudge
the model temperature, winds and humidity above the boundary layer every 6 h. Re-
stricting nudging to above the boundary layer allowed a more realistic representation of
vertical mixing (Otte et al., 2012). Chemical boundary and initial conditions were pro-
vided by global fields from the Model for Ozone and Related Chemical Tracers version 4
(MOZART-4) chemical transport model (Emmons et al., 2010).

Anthropogenic emissions were from the Multi-resolution Emission Inventory for China
(MEIC; http://www.meicmodel.org). (last access: 6 October 2020.) MEIC estimates
emissions using a database of activity rates across residential, industrial, electricity gen-
eration, transportation and agricultural emission sectors combined with China-specific
emission factors (Hong et al., 2017). We used the 2015 MEIC dataset, then used sector-
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specific and species-specific scaling for 2016 and 2017 based on the emission totals esti-
mated in Zheng et al. (2018). Table 3.1 shows emission totals for 2015, 2016 and 2017.
Over the 2015 to 2017 period, Chinese emissions decreased by 38% for SO2, 16% for PM2.5

and 8% for NOx. For regions outside theMEIC dataset, we used anthropogenic emissions
from the EDGAR-HTAP_v2.2 emission inventory for 2010.

Biogenic emissionswere generated online by theModel of Emissions ofGases andAerosol
from Nature (MEGAN) (Guenther et al., 2000). Biomass burning emissions were pro-
vided by the Fire Inventory from NCAR (FINN) version 1.5 (Wiedinmyer et al., 2011),
which uses satellite fire observations of fires and land cover to estimate daily 1 km2 emis-
sions. Dust emissionswere generated online using theGeorgia Institute of Technology–Goddard
Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model with Air
Force Weather Agency (AFWA) modifications (LeGrand et al., 2019).

Gas-phase chemistry is simulated using the MOZART-4 scheme, and aerosol is treated
by the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC; Zaveri et
al., 2008) scheme, including grid-scale aqueous chemistry and an extended treatment of
organic aerosol (Hodzic and Jimenez, 2011; Hodzic and Knote, 2014). Four discrete size
bins were used within MOSAIC (0.039–0.156, 0.156–0.625, 0.625–2.5, 2.5–10 µm) to repre-
sent the aerosol size distribution.

Model and measurement trend estimation

To separate the influence of changing anthropogenic emissions from interannual vari-
ability in meteorology, we conducted two 3-year simulations, both for 2015–2017. The
first simulation (control) included interannual variability in both anthropogenic emis-
sions and meteorology. The second simulation (fixed emissions) included interannual
variability in meteorology but with anthropogenic emissions fixed at 2015 levels. Both
simulations include interannual variability in biogenic and biomass burning emissions,
allowing us to isolate the impacts of changing anthropogenic emissions.

Trends in the model data were calculated using the same method as the measurement
data (Silver et al., 2018). The hourly data are averaged to monthly means, which are
then deseasonalised using locally weighted scatterplot smoothing. The magnitude and
direction of linear trends were calculated using the Theil–Sen estimator, a non-parametric
method that is resistant to outliers (Carslaw, 2015). The Mann–Kendall test was used to
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assess the significance of trends, using a threshold of p<0.05. This stage of the analysis
was performed using the R package openair (Carslaw and Ropkins, 2012).

Health impact estimation

Health impacts are estimated for ambient PM2.5 using the Global Exposure Mortality
Model (GEMM; (Burnett et al., 2018)), which uses cohort studies to estimate health risks
integrated over a range ofPM2.5 concentrations. GEMM applies a supralinear associa-
tion between exposure and risk at lower concentrations and then a near-linear associa-
tion at higher concentrations. We used the GEMM for non-accidental mortality (non-
communicable disease, NCD, plus lower respiratory infection, LRI), using parameters in-
cluding the China cohort (Burnett et al., 2018). For ambient O3, we used themethodology
of the Global Burden of Disease (GBD) study for 2017 (GBD 2017 Risk Factor Collabora-
tors, 2018) to estimate the mortality caused by chronic obstructive pulmonary disease,
which is based on exposure and risk information from five epidemiological cohorts. It
estimates a near-linear relationship between exposure and risk at lower concentrations
of O3 and a sub-linear association at higher concentrations. The United Nations-adjusted
population count dataset for 2015 at 0.05°×0.05°resolutionwas obtained from theGridded
Population of theWorld, Version 4, alongwith population age distribution fromGBD2017.
Health impacts depend on population count, population age and baselinemortality rates,
which have changed over the period studied (Butt et al., 2017). To isolate the impacts of
changing air pollution, other variables were kept constant for 2015–2017.

Measured and modelled trend comparison

Model evaluation

For comparison with the measurements, we sampled the model at the station locations
using linear interpolation. Over 2015–2017, themodel simulated PM2.5 (normalisedmean
bias (NMB) =0.49), O3 (NMB=−0.13) and SO2 (NMB=0.07) well, while it overestimated
NO2 concentrations by a factor of around 2 (NMB=1.17). Model biases were similar to
previous model studies in China (Supplement Table B.1). We also evaluated the model
against speciated aerosol measurements from the Surface PARTiculate mAtter Network
(SPARTAN; (Snider et al., 2015; Snider et al., 2016)) site in Beijing (https://www.spartan-network.
org/beijing-china, last access: 2 July 2020) (Fig. B.4), as well as from Zhou et al. (2019)
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Table 3.2: Model evaluation shown as a normalised mean bias (NMB). Evaluation is
shown separately for the control and fixed emission simulations. The NMB for 2015-2017
is compared to individual years.

PM2.5 O3 NO2 SO2

Control
2015-2017 0.49 -0.15 1.20 0.09
2015 0.50 -0.12 1.32 0.17
2016 0.47 -0.14 1.20 0.05
2017 0.50 -0.21 1.10 0.04
Fixed emissions
2015-2017 0.57 -0.18 1.26 0.35
2015 0.50 -0.12 1.32 0.17
2016 0.56 -0.16 1.28 0.31
2017 0.66 -0.24 1.20 0.65

(Fig. B.5) and from across China (Li et al., 2017b) (Fig. SB.6). Measurements reported by
Li et al. (2017b) were made from various years spanning 2006 to 2013 and do not match
the years simulated by the model. Comparison against these data shows that the model
underestimates the sulfate fraction in PM2.5, while it overestimates the nitrate fraction.
Underestimation of sulfate in comparison to Li et al. (2017b) will partly be caused by the
large decline in SO2 emissions that has occurred in the last decade (Zheng et al., 2018).
Underestimate of sulfate, particularly in winter, and overestimation of nitrate are con-
sistent with previous modelling studies (Shao et al., 2019), including those using WRF-
Chem (Zhou et al., 2019). Newly proposed mechanisms to explain the rapid sulfate for-
mation in China’s winter haze (Gen et al., 2019; Shao et al., 2019; Xue et al., 2014; Zhang
et al., 2019) need to be included and evaluated in models.

Varying emissions scenario

Figures 3.1 and 3.2 comparemeasured and simulated air quality trends over China during
2015 to 2017. The measurements show widespread decline in PM2.5 and SO2 concentra-
tions, widespread increase in O3MDA8 and spatially variable trends in NO2 concentra-
tions, as reported previously (Silver et al., 2018). The model (control simulation) simu-
lates the widespread decline in PM2.5 concentrations, with the median measured trend
across China (−3.4 µgm−3 yr−1) well simulated by the model (−3.5 µgm−3 yr−1). How-
ever, as the above comparisons with speciated aerosol measurements show, the underly-
ing trends in individual aerosol species may contain inaccuracies that affect the overall
PM2.5 trend. In the measurements, 90% of significant trends are negative, and 10% of sig-
nificant trends are positive, with positive trends mostly being in the Fenwei Plain region,
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Figure 3.1: Histograms showing the frequency distribution of trends in concentrations of
(a, b) PM2.5, (c, d) O3MDA8, (e, f) NO2 and (g, h) SO2 across China and Taiwan during
2015–2017. Measured trends (left-hand panels) are compared to simulated trends (right-
hand panels). Themedian relative and absolute trend aswell as the percentage of stations
with significant trends are shown in each panel. The percentage of significant trends that
are negative (blue) or positive (red) are also shown. The dotted black line shows the
median trend across all sites, while the dotted white line shows zero. Arrows show the
median trend for the regional domains: Pearl River Delta (PRD), Yangtze River Delta
(YRD), North China Plain (NCP), Sichuan Basin (SCB), Hong Kong (HK), Taiwan (TW)
and the Fenwei Plain (FWP).
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Jiangxi and Anhui. No significant positive trends are simulated by the model, possibly
due to the coarse resolution of themodel and the simplified scaling we apply to emissions
for 2016 and 2017.

WRF-Chem captures the widespread increase in O3MDA8 but underestimates the mag-
nitude of the trend by a factor of 2 (2.7 µgm−3 yr−1) in the measurements, versus 1.3
µgm−3 yr−1 simulated by WRF-Chem. WRF-Chem simulates negative O3MDA8 trends
in the Sichuan Basin and Taiwan, whereas in the measured data, all regions have positive
median trends.

The measurements show zero overall median trend in NO2 concentrations, with 46% of
sites with significant trends being negative and 54% positive. In contrast, WRF-Chem
simulates widespread reductions in NO2 concentrations, with 100% of significant sites
exhibiting negative trends and a negative nationwide median trend of −2.2 µgm−3 yr−1.
The 7.0% nationwide median decline in simulated NO2 concentrations over 2015–2017
matches the 7.6% decline in Chinese NOx emissions in the MEIC. The measurements
show a widespread decline in SO2 concentrations, with a median nationwide trend of
−1.9 µgm−3 yr−1. WRF-Chem captures the direction of the trend, but the magnitude of
the trend is overestimated by a factor of 2. The 32.5% decline in simulated nationwide
median SO2 concentrations over 2015–2017 matches the 37.8% decline in SO2 emissions
in the MEIC.

Fixed emissions scenario

The model simulation where anthropogenic emissions in China were fixed at 2015 lev-
els has a weak negativePM2.5 trend (−0.6 µgm−3 yr−1), a factor of 6 smaller than either
the control simulation or the measurements (Fig. 3.3). This suggests that the measured
negativePM2.5 trend has largely been driven by decreased anthropogenic emissions, with
limited impact from interannual variability in meteorology. Chen et al. (2019) also con-
cluded that emission reductions were the primary cause of reduced wintertimePM2.5

across China during 2015–2017. Cheng et al. (2019) found that local and regional reduc-
tions in anthropogenic emissions were the dominant cause of reduced PM2.5 concentra-
tions in Beijing between 2013 and 2017. The median O3MDA8 trend in the fixed emission
simulation is 0.0 µgm−3 yr−1. This suggests that interannualmeteorological variation had
little influence onO3 trends at the China-wide scale during 2015–2017, whichwere largely
driven by changing emissions. However, meteorological variability did drive regional
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Figure 3.2: Map showing the spatial distribution of trends in concentrations of (a, b)
PM2.5, (c, d) O3MDA8, (e, f) NO2 and (g, h) SO2 across China and Taiwan during
2015–2017. Measured trends (left-hand panels) are compared to simulated trends (right-
hand panels). Red indicates a significant positive trend, whereas blue indicates a sig-
nificant negative trend. Light coloured circles indicated a statistically insignificant trend.
Coloured boxes show the regional domains: Pearl River Delta (blue), Yangtze River Delta
(orange), North China Plain (green), Sichuan Basin (red), Hong Kong (purple), Taiwan
(brown) and the Fenwei Plain (pink).
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changes in O3. For example, in Guizhou province, a trend of −2.5 µgm−3 yr−1 was calcu-
lated in the fixed emissions simulation. Li et al. (2019a) also report that the positive ozone
trend over 2013 to 2017 is due to changes in anthropogenic emissions, and the magnitude
of their estimated trend of 1-3 ppbv yr-1 (approximately 2-6 µgm−3 yr−1) is comparable
to the 2.6 µgm−3 yr−1 trend found in this study. Lu et al. (2019) analysed changes in O3

between 2016 and 2017 and concluded that hotter and drier conditions in 2017 contributed
to higher O3 concentrations in that year. Liu andWang (2020a) reported a complex O3 re-
sponse during 2013 to 2017, with changing anthropogenic emission increasing O3MDA8
in urban areas and decreasing it in rural areas, whereas meteorological changes drove
regionally contrasting changes in O3MDA8 through changes in cloud cover, wind and
temperature and through driving changes in biogenic emissions.

The fixed emission simulation also has a smaller NO2 trend (−0.5 µgm−3 yr−1) compared
to the control simulation (−2.2µgm−3 yr−1), demonstrating that emission reductions that
are estimated in the MEIC are also the main reason for the negative simulated NO2 trend.
However, unlike PM2.5 and O3, the NO2 trend calculated from the fixed emission simula-
tion more closely matches the measured trend. This may suggest that the MEIC has over-
estimated the NO2 emission reductions during 2015–2017. This suggestion is supported
by recent satellite studies which found a slowing down or even reversal of NO2 reductions
during 2016–2019 (Li et al., 2019c), no significant trend in NO2 during 2013–2017 (Huang
et al., 2018) and increases in NO2 concentration in the YRD, PRD and Fenwei Plain (FWP)
regions during 2015–2017 (Feng et al., 2019). If NOx emissions decline too strongly in
the MEIC, this may contribute to the simulated underestimate of the positive observed
O3MDA8 trend in areas of China with NOx-limited or mixed ozone regimes that cover
the majority of China (Jin and Holloway, 2015). Other work has suggested that increased
O3 concentrations are possibly linked to the rapid decline in aerosol (Li et al., 2019b).
Liu and Wang (2020b) found that the reasons for increased O3 concentrations during
2013–2017 were regionally dependent and that anthropogenic volatile organic compound
(VOC) emission reductions of 16%–24%would have been needed to avoid increased con-
centrations. Table 3.2 compares the PM2.5, O3, SO2 andNO2 measurements for the control
and fixed emission simulations in 2015, 2016 and 2017. In the control simulation, model
biases remain similar during 2015–2017. In the fixed emission simulation, model biases
for PM2.5, O3 and SO2 increase between 2015 and 2017. This further suggests that chang-
ing anthropogenic emissions during 2015–2017 have been the dominant cause of changing
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concentrations.

Figure 3.3: Comparison of measured and simulated concentration trends during 2015 to
2017. The left violin plot shows the measured trend, the centre shows the simulated trend
with varying emissions and meteorology (control) and the right shows the simulated
trends for the fixed emissions simulation. (a) PM2.5, (b) O3MDA8, (c) NO2 and (d) SO2.
The solid line shows the median absolute trend, and the shaded area shows a smoothed
relative frequency distribution.

An important future step is to understand how changing anthropogenic emissions, in
terms of emission species or emission sectors, have contributed to observed trends in pol-
lutant concentrations. Residential and industrial emissions are dominant causes of PM2.5

concentrations across much of China (Reddington et al., 2019), but it is not clear which
emission sectors have contributed most to observed PM2.5 trends. Cheng et al. (2019)
suggest that emission controls in the residential and industrial sectors were the dominant
causes for reduced PM2.5 in Beijing between 2014 and 2017. Measurements of aerosol com-
position (Li et al., 2017b; Weagle et al., 2018) add confidence to model simulations and
can inform our understanding of how aerosol chemistry responds to emission changes.
However, except for Beijing, there are insufficient measurement data of how aerosol com-
position has changed across China in recent years. Li et al. (2019a) found large declines in
wintertime organics and sulfate and smaller declines in nitrate and ammonium in Beijing
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between 2014 and 2017. Zhou et al. (2019) also analysed aerosol composition data from
Beijing and found large declines in all aerosol components except nitrate between the pe-
riods 2011–2012 and 2017–2018. Continuousmeasurements of aerosol composition across
China are required to determine howdifferent aerosol components are contributing to the
observed PM2.5 trend and to evaluate simulated responses to emission changes.

Health impacts of changes to PM2.5 and O3 concentrations

PM2.5 health impacts

The control run simulated nationwide population-weighted mean PM2.5 concentration
decreased by 12.8% (10.1µgm−3), from79.2µgm−3 in 2015 to 69.1µgm−3 in 2017. Greater
decreases were simulated in more polluted and highly populated regions such as Bei-
jing (−15.3 µgm−3), Tianjin (−19.4 µgm−3), Chongqing (province) (−14.2 µgm−3) and
Henan (−22.3 µgm−3). Using the methodology of Burnett et al. (2018), we estimate
that mortality due to exposure toPM2.5 decreased from 2 800 000 (confidence interval, CI:
2 299 000-3 302 000) premature mortalities in 2015 to 2 650 000 premature mortalities in
2017. The simulated reduction in PM2.5 concentrations therefore reduced the number of
premature mortalities attributable to PM2.5 exposure by 150 000 (CI: 129 000-170 000) an-
nual premature mortalities across China. The 12.8% reduction inPM2.5 exposure only led
to a 5% reduction in attributablemortality due to the non-linearity of the exposure–response
function, which is less sensitive at higher exposure ranges (Conibear et al., 2018). The
largest absolute reductions in premature mortality occur in Henan (15 000 deaths yr-1),
Sichuan, Hebei and Tianjin (11 000 deaths yr-1) (Fig. 3.4). The decline in PM2.5 expo-
sure also led to reduced morbidity, with the rate of disability-adjusted life years (DALYs)
per 100 000 population reduced from 5517 to 5227, with the largest changes occurring in
central provinces such as Hubei (Supplement Fig. B.3). Our results are comparable to
Zheng et al. (2017), who found that population-weighted annual mean PM2.5 concentra-
tions decreased 21.5% during 2013–2015, resulting in a premature mortality decrease of
120 000 deaths yr-1. Ding et al. (2019) estimated that during 2013–2017, a nationwidePM2.5

decrease of 9 µgm−3 yr−1 caused premature mortalities per year to decrease by 287 000,
using the methodology from the GBD 2015 study, which estimates health impacts as hav-
ing a weaker and less linear relationship to PM2.5 concentrations. Yue et al. (2020) esti-
mated that the annual number of mortalities in China attributable toPM2.5 decreased by
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64 000 (7%) from 2013 to 2017. Zhang et al. (2019) reported a 32% decline in population-
weightedPM2.5 concentration during 2013 to 2017, largely due to strengthened industrial
emission standards and cleaner residential fuels.

Figure 3.4: Simulated change during 2015–2017 in annual premature mortality per year
due to changes in exposure to ambient PM2.5. Results are shown at the province scale.

O3 health impacts

Increasing O3 concentrations will result in an increase in health impacts that will act to
offset some of the health benefits from declining PM2.5 concentrations. WRF-Chem sim-
ulated O3 concentrations across China during 2015-2017 to within 15% (NM = −0.13),
which is consistent with previous studies, but underestimated the magnitude of the ob-
served O3 trend. To provide an estimate of the health impacts due to exposure to O3 we
used simulated concentrations to estimate average exposure to O3 over the 2015–2017 pe-
riod. We estimate that exposure to O3 caused an average of 143 000 (CI: 106 000-193 000)
premature mortalities each year over 2015-2017. Applying the simulated change in O3

concentrations would underestimate the change in exposure that has occurred. Instead,
we estimated the impacts of increased O3 by multiplying the average health impacts over
2015-2017 by the measured relative change in O3MDA8. Assuming linear behaviour, the
15%measured increase in O3MDA8 would result in an increase of 21 000 premature mor-
talities per year. The exposure-outcome function is in reality sub-linear, so this is likely to
be an overestimate. Regardless, this is substantially smaller than the 150 000 reduction in
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annual premature mortality due to reduced PM2.5. We therefore suggest that changes in
Chinese air pollution over 2015-2017 have likely had an overall beneficial impact on hu-
man health. The dominance of the PM2.5 reduction over the O3 increase on health impacts
is also found in Dang and Liao (2019), who reported that a 21% reduction in PM2.5 and a
12% increase in O3 concentration between 2012 and 2017 resulted in 268 000 fewer annual
mortalities overall.

Conclusions

We used the WRF-Chem model to explore the drivers and impacts of changing air pol-
lution across China during 2015–2017. A simulation with annually updated emissions
was able to reproduce the measured negative trends in PM2.5 concentrations over China
during 2015–2017 while overestimating the negative trend in SO2 and NO2 and underes-
timating the positive trend in O3. By comparing this with a simulation where emissions
are held constant at 2015 levels, but meteorological forcing was updated, we show that
interannual meteorological variation was not the main driver of the substantial trends
in air pollutants that were observed across China during 2015–2017. Our work shows
that reduced anthropogenic emissions are the main cause of reduced PM2.5 concentra-
tions across China, suggesting that the Chinese government’s “Air Pollution Prevention
and Control Action Plan” has been effective at starting to control particulate pollution.
We estimate that the 12.8% reduction in population-weighted PM2.5 concentrations that
occurred during 2015–2017 has reduced premature mortality due to exposure to PM2.5

by 5.3%, preventing 150 000 premature mortalities across China annually. Despite these
substantial reductions, PM2.5 concentrations still exceed air quality guidelines and cause
negative impacts on human health. We estimate that exposure to O3 during 2015–2017
causes on average 143 000 premature mortalities across China each year. Increases in O3

concentration over 2015–2017 may have increased this annual mortality by about 20 000
premature mortalities per year, substantially less than the reduction in premature mortal-
ity due to declining particulate pollution. Changes in air pollution across China during
2015–2017 are therefore likely to have led to overall positive benefits to human health,
amounting to a ~5% reduction of the ambient air pollution disease burden. However,
to achieve larger reductions in disease burden, further reductions in PM2.5 concentrations
are required, and pollution controls need to be designed that simultaneously reduce PM2.5

and O3 concentrations.
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Abstract

The outbreak ofCoronavirusDisease 2019 (COVID-19) inChina in January 2020 prompted
substantial control measures including social distancing measures, suspension of public
transport and industry, and widespread cordon sanitaires (’lockdowns’), that have led to
a decrease in industrial activity and air pollution emissions over a prolonged period. We
use a 5-year dataset from China’s air quality monitoring network to assess the impact of
control measures on air pollution. Pollutant concentration time series are decomposed to
account for the inter-annual trend, seasonal cycles and the effect of LunarNewYear, which
coincided with the COVID-19 outbreak. Over 2015–2019, there were significant negative
trends in particulate matter (PM2.5, −6% yr-1) and sulphur dioxide (SO2, −12% yr-1) and
nitrogen dioxide (NO2, −2.2% yr-1) whereas there were positive trends in ozone (O3, +
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2.8% yr-1). We quantify the change in air quality during the LNY holiday week, during
which pollutant concentrations increase on LNY’s day, followed by reduced concentra-
tions in the rest of theweek. After accounting for interannual trends andLNYwefindNO2

and PM concentrations were significantly lower during the lockdown period than would
be expected, but there were no significant impacts on O3. Largest reductions occurred
in NO2, with concentrations 27.0% lower on average across China, during the lockdown.
Average concentrations of PM2.5 and PM10 across China were, respectively, 10.5% and
21.4% lower during the lockdown period. The largest reductions were in Hubei province,
where NO2 concentrations were 50.5% lower than expected during the lockdown. Con-
centrations of affected pollutants returned to expected levels during April, after control
measures were relaxed.

Introduction

The outbreak of Coronavirus Disease 2019 (COVID-19) began in the megacity of Wuhan
(population 11 million) in central China, with cases first being reported on December 27,
2019. Media reports of an unknown pneumonia outbreak began to appear on December
31, with the outbreak officially being reported to the World Health Organisation (WHO)
on the same day (World Health Organization (WHO), 2020). The cause of the disease
was confirmed as a novel coronavirus on January 7 2020 (Wu andMcGoogan, 2020). The
Chinese government quickly implemented control measures, such as isolation, quaran-
tine and social distancing. Dramatic actions to control the disease were taken, as entire
cities were quarantined across China. This began with Wuhan being ’locked-down’ on
January 23, followed by another 14 cities in Hubei province the next day (Kraemer et al.,
2020). Cases of the disease were soon reported in China’s other provinces, with every
other province reporting their first case between January 18 to 25 (Liu et al., 2020). Pub-
lic transport networks, schools and entertainment venues were suspended (Tian et al.,
2020), and the Lunar New Year (LNY) national holiday was extended, to delay the return
of hundreds of millions to their cities of work, and citizens were encouraged to work from
home.

The control measures are likely to have resulted in a substantial decrease in air pollutant
emissions across China. In the industrial sector, widespread suspensions of production
resulted in the largest ever decrease in the Purchasing Managers Index, which tracks in-
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dustrial output in China (National Bureau of Statistics of China, 2020c; Prescott, 2020).
The monthly growth rate in industrial production, which in 2019 had averaged + 0.5%,
fell to −2.78% in January 2020 and −26.63% in February 2020 (National Bureau of Statis-
tics of China, 2020b). In the power generation sector, electricity generation in January and
February dropped by 8.2%, compared with 2019. As restrictions began to be eased dur-
ing March, the economy started to recover, with March power generation lower by 4.6%
compared with the previous year (National Bureau of Statistics of China, 2020a). CO2

emissions may have decreased by 25% during the first few weeks of lockdowns (Carbon-
Brief, 2020).

The control measures and resultant emission reductions are likely to have influenced
China’s air quality, and impacts have been widely reported in the media. According to
measurements made by NASA’s TROPOMI satellite, there was a 20% larger than previ-
ous year’s drop in Nitrogen Dioxide (NO2), between the period before LNY to the period
after (Liu et al., 2020). However, understanding the impacts of control measures on air
quality is complicated by several compounding factors. The control measures coincided
with the LNY, the largest holiday in China. The LNY is typically a week long and re-
sults in well-documented impacts on air pollution (Tan et al., 2009; Gong et al., 2014; Lai
and Brimblecombe, 2017). China’s air quality has been changing rapidly in recent years,
with large reductions in SO2 and PM concentrations and increased O3 (A et al., 2017; Lu
et al., 2018; Silver et al., 2018). These trends in pollutants are due to declining emissions
(Zheng et al., 2017; Ding et al., 2019; Silver et al., 2020), and need to be accounted for
when analysing any impact of the lockdown on pollutant concentrations.

Although China’s air quality has improved in recent years, it continues to suffer a se-
vere health burden caused by indoor and outdoor air pollution, with 12% of deaths in
China in 2017 attributable to this risk factor (James et al., 2018). Understanding trends in
air quality is essential to assess the effectiveness of recent air quality measures and help
inform future air pollution mitigation (Zhao et al., 2017). The application of control mea-
sures during the COVID-19 outbreak provides an opportunity to analyse the potential
air quality improvements resulting from a reduction in emissions, as well as a ’natural
experiment’ from which theories of chemistry-climate interactions can be tested.

To understand the impact of the control measures instigated during the COVID-19 out-
break, it is necessary to compare pollutant concentrations in 2020 with expected concen-
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trations had the COVID-19 outbreak not occurred. Here, we use time series of China-
wide measurements of key pollutant concentrations between January 2015 an April 2020
to isolate changes that occurred during the COVID-19 lockdown period compared with
concentrations that would otherwise be expected based on recent trends, seasonality, and
the effects of LNY. We do not assess the relative contribution of emissions and meteorol-
ogy to observed changes during the lockdown.

Methodology

Data

We obtained data fromChina’s national network of air quality monitoring stations, which
is operated by the China National Environmental Monitoring Center (CNEMC). The net-
work consists of 1640 automaticmeasurement stations located throughoutmainlandChina,
which report measurements of particulate matter (PM2.5 and PM10), nitrogen dioxide
(NO2), ozone (O3), sulphur dioxide (SO2) and carbon monoxide (CO). The data was
downloaded fromhttps://quotsoft.net/ (formerly http://beijingair.sinaapp.com/), which
aggregates the real-time data reported on the official website of the CNEMC. The dataset
covers the period from January 2015 to April 2020. For this study, stations with a time-
series of >58 months and >90% data availability were used. We used the same data qual-
ity methods as in Silver et al. (2018), excluding data with high proportion of repeat mea-
surements and periods of very low variability. The number of excluded stations is pro-
vided in the supplementary table 1 (available online at stacks.iop.org/ERL/15/084021/
mmedia).

Time series decomposition

When comparing the air quality in China during the lockdown in 2020, to the same pe-
riod of previous years, it is necessary to account for several interacting factors, including
interannual trends, seasonal cycle and the effects of Chinese LNY. LNY is based on the
lunar calendar, so in the Gregorian calendar, the holiday falls on a different date between
late January and late February each year.
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Figure 4.1: Average of the NO2 (µgm−3) time series (blue), decomposed into its the trend
(yellow), seasonal cycle (green), Lunar New Year (LNY) effect (red) and residual (pur-
ple) components. The time series show the average concentration across all stations in-
cluded in the study from the China National Environmental Monitoring Centre network.
A 30-day rolling mean has been applied to smooth the data.

The time series are decomposed separately for each pollutant at each station, using daily
data. The 2015–2019 time series are used to calculate the trend, seasonal cycle and effect of
LNY, for each pollutant at each station, and these patterns are applied to 2020. The 2020
residuals are then analysed to assess the extent to which pollutant concentrations were
affected during the lockdown period.

Figure 4.1 shows this method for NO2, and the remaining pollutants are shown in Sup-
plementary Figure C.1. The data is analysed and visualised using the Python libraries
pandas and matplotlib (Hunter, 2007; McKinney, 2010). The trend is calculated using the
method in Silver et al. (2018), using the Theil–Sen estimator to calculate the monotonic,
linear trends (Sen, 1968; Carslaw and Ropkins, 2012). The trend is subtracted from the
daily mean data, and the resulting detrended data is smoothed using locally weighted
scatterplot smoothing (LOWESS) using the statsmodels Python library (Cleveland, 1979;
Seabold and Perktold, 2010). A 30-day window for the LOWESS filter is used to approx-
imate the background seasonal concentration. The period between 14 d prior and 21 d
after LNY is removed and replaced with interpolated data. Both the seasonal smoothing
and LNY data are averaged across years, to give separate seasonal cycle and LNY effect
timeseries. These time series are subtracted from the detrended data, to give the residual
time series, which represents departures from the expected concentration based on the
trend, seasonal cycle, and LNY effect.
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The residual concentrations are used to assess how much the concentration of pollutants
deviated from their expected concentration, based on long-term trends, seasonality and
LNY impacts. At each station, we apply a 7-day centered rolling mean to the residual
time series, giving a time series of 7 d mean residuals (7DMR). We express this in rela-
tive terms (%) by dividing the residual timeseries by the sum of the trend, seasonal and
LNY components. Taking the median during the lockdown period (defined below) al-
lows for comparison between different pollutants and regions. The 7DMR represents a
longer-term deviation from the expected concentration, averaging out day-to-day vari-
ability. Supplementary Figure C.3 the effects of using different averaging periods.

To analyze the influence of the COVID-19 control measures, we define the ’lockdown pe-
riod’ as January 23 to March 31, 2020. The lockdown was officially lifted in Wuhan on
April 8th, though restrictions were eased in other parts of China earlier than this, and
some social distancing measures have remained in place. Generally, restrictions were
lifted gradually, so it is likely that emissions will gradually return to normal. We analyse
data at the national level and for the following regions: the Mid-Yangtze Basin (MYB) in
central China (which includes Hubei province); the North China Plain (NCP) which in-
cludes the capital Beijing, as well as Tianjin municipality andHebei province; the Yangtze
River Delta (YRD) which includes Shanghai; the Sichuan Basin (SCB) which includes
Chengdu and Chongqing; the Fenwei Plain (FWP) which includes Xi’an; and the Pearl
River Delta (PRD), which includes Guangzhou and Shenzhen.

Results

Inter-annual trends

There are significant inter-annual trends in air pollutant concentrations. Our previous
work, Silver et al. (2018) found that during 2015–2017 across much of China, there were
significant negative trends in PM2.5 and SO2, whereas for O3, there were widespread sig-
nificant positive trends. Herewe show that significant trends have continued acrossmuch
of China.

Figure 4.2 shows the 2015–2019 trends in air pollutants across China. SO2 has the strongest
negative trend, with 89% of stations reporting significant reductions and a median trend
of −12.0% yr-1 or −2.6 µgm−3 yr−1. For PM2.5, 81% of stations report a significant reduc-
tion, with a median trend of −6.0% yr-1 or −3.0 µgm−3 yr−1. For NO2, 44% of stations
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Figure 4.2: Trends in concentrations of (a), (b) PM2.5, (c), (d) O3, (e), (f) NO2, (g), (h)
SO2 across China during 2015–2019. Left-hand panels (a), (c), (e), (g) show the spatial
distribution of the trend and mean concentration (size of circle). Right hand panels (b),
(d), (f), (h) show the frequency of stations against the relative trends. The points on the
map are coloured by the same scale as the histogram. The median relative and absolute
trend as well as the percentage of stations with significant trends is shown beside the
histograms. The percentage of trends that are negative (blue) or positive (red) are also
shown. The black dotted line shows the median trend across all sites. Triangles show the
median trend for the regional domains shown in the left-hand panels: Pearl River Delta
(PRD), Yangtze River Delta (YRD), North China Plain (NCP), Sichuan Basin (SCB), and
Fenwei Plain (FWP).
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report a significant reduction, with a median trend of −2.2% yr-1 or −0.7 µgm−3 yr−1.
Unlike the other pollutants, O3 concentrations have increased, with 47% of stations re-
porting a significant positive trend, and a median trend of 2.8% yr-1 or 1.6 µgm−3 yr−1.
Changes in air pollutant concentrations are pervasive, with all analysed regions showing
increased O3 and decreased PM2.5 and SO2.

The variability of the magnitude and direction of trends highlights the importance of ac-
counting for the inter-annual trend at each station individually, as we do here. For exam-
ple, at a station with a positive trend, we might expect a decrease in concentration during
the outbreak to be moderated, while at one with a negative trend, we account for the fact
that the concentration likely would have been reduced under normal circumstances.

Seasonal cycle

Figure 4.3: Comparison of the detrended concentrations for (a) NO2, (b) PM2.5, (c) PM10,
(d) O3, (e) SO2 and (f) CO. The data is smoothed using a LOWESS filter. The 2015–2019
average is shown as a solid red line, the dotted line shows data after the Lunar New Year
effect has been removed and replaced with interpolated data. Individual years are shown
as shades of red and 2020 is shown as a black line.

Figure 4.3 shows the mean seasonal cycle of pollutant concentrations during 2015 to 2019.
In general, the pollutants concentrations peak in the winter, except for O3, which peaks in
early summer. The effect of LNY is visible for some pollutants, especially NO2. However,
since this is not caused by seasonal changes and does not occur on the same date each
year, we extract this signal from the seasonal cycle (shown as the red dotted line) and
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analyse separately.

Lunar New Year

Figure 4.4: Average 2015–2019 detrended concentrations of (a) NO2, (b) PM2.5, (c) PM10,
(d) O3, (e) SO2 and (f) CO during Lunar New Year (LNY). Concentrations are presented
relative to the start date of LNY, from14dbefore the first day of LNY till 21 d after. Average
detrended concentrations (blue line) and 25th and 75th percentiles (blue shading) are
shown.

Figure 4.4 shows the impact of LNY on pollutant concentrations. PM, CO, and SO2 con-
centrations all increase on the first day of LNY, likely caused by emissions from fireworks
(Jiang et al., 2015; Feng et al., 2016; Lai and Brimblecombe, 2017). On this day, PM2.5 and
PM10 concentrations are on average 46 and 53 µgm−3 yr−1 higher, respectively. During
the remainder of LNY, concentrations of all pollutants except O3 are lower than usual.
PM2.5 and PM10 concentrations are 6.7 and 15.2 µgm−3 yr−1 lower respectively. NO2 is
on average 14.5 µgm−3 yr−1 lower during the LNY holiday. O3 concentrations are higher
during LNY, and are negatively correlated with NO2. This likely demonstrates a reduc-
tion in the NOx (NO2 +NO) titration effect, where O3 is removed in the presence of high
concentrations of NO.

The effects of LNYmean that simply comparingmonthly averages between different years
during this period could be misleading. In some years LNY occurs in January whereas in
other years it occurs in February. Controlling for the LNY effect is important, as it allows
comparison across years.
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Table 4.1: The proportion of stations that record their minimum and maximum 7 day
mean residual during the lockdown period.

minimum (% of stations) maximum (% of stations)
NO2 46.0 0.4
PM2.5 26.8 1.2
PM10 40.2 0.1
SO2 18.5 0.2
O3 1.5 1.5
CO 14.8 1.4

Residual analysis

Figure 4.5 shows the anomaly in pollutant concentrations after the inter-annual trend,
seasonal cycle and LNY effect have been removed. Results before, during and after the
lockdown period, are displayed as the 7DMR concentration. Full results for each province
and city are attached as csv files in the supplement.

NO2

For NO2, 46.0% stations across China record their lowest 7DMR during the lockdown
period (table 4.1). During the lockdown period, the median 7DMR concentration was
−27.0% (−8.0 µgm−3 yr−1) (table 4.2), with a maximum difference of −56.2% occurring
on February 16. The median z-score of the 7DMR during lockdown is −2.3, and falls
below−5 (Figure 4.7). Theminimumz-score during the lockdownwas lower than for any
previous time over the period analysed (Supplementary Figure C.2), indicating that the
lockdown resulted in an unusually extreme negative anomaly. A decrease in NO2 during
lockdown was observed across China, ranging from −25.9% in the YRD to −30.5% in the
SCB. The most negative residuals occurred in Hubei (−50.5%, Figure 4.6). Here, the end
of LNYwas changed to March 10, extending it for 5 weeks (Chen et al., 2020), whereas in
the rest of China it was extended for 1 week.

Particulate matter

A median negative residual in PM concentration across China occurred during the lock-
down, although it is not as extreme as that for NO2. For PM2.5, 26.8% of stations recorded
their minimum 7DMR concentration. During the lockdown period, the median 7DMR
concentration was −10.5% (−3.7 µgm−3 yr−1) (table 4.2)), with a maximum difference
of −39.4% occurring on February 18. Across different regions, the decrease in PM2.5 dur-
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Figure 4.5: Time series of the relative anomaly (%) during 2020 in the 7 d residual mean
concentration of (a) NO2, (b) PM2.5, (c) PM10 and (d) O3. This is calculated by dividing
the 7 d mean of the residual component of by the sum of the seasonal, trend and Lunar
New Year components. The black line shows the median across all stations, with the
coloured lines showing the medians across regions. The ’lockdown period,’ defined as 23
January to 31 March, is shaded.
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Table 4.2: Median 7 day mean residual (7DMR) concentrations during the lockdown pe-
riod. For each pollutant, the residual is expressed in absolute (µgm−3 3) and relative (%)
terms, and a z-score. Results shown for all China and individual regions.

China Pearl river delta Yangtze river delta North China plain Sichuan basin Fenwei plain Mid-Yangtze basin

NO2
residual (µgm−3) -8.0 -10.1 -9.4 -11.3 -8.6 -11.8 -9.5
relative residual (%) -27.0 -30.1 -25.9 -28.5 -30.5 -26.6 -28.1
z-score -2.3 -2.0 -2.0 -1.9 -2.0 -1.8 -2.0

PM2.5
residual (µgm−3) -3.7 -7.5 -4.4 -0.8 -1.4 -4.7 -4.5
relative residual (%) -10.5 -17.2 -12.1 -2.0 -3.9 -10.5 -11.1
z-score -0.7 -0.9 -0.7 -0.3 -0.2 -0.4 -0.5

PM10
residual (µgm−3) -14.7 -16.8 -15.0 -18.0 -8.4 -20.3 -16.5
relative residual (%) -21.4 -20.8 -20.3 -17.5 -9.9 -18.6 -18.4
z-score -1.3 -1.0 -1.1 -0.8 -0.5 -0.9 -0.9

O3
residual (µgm−3) 0.1 -1.3 2.1 -1.6 2.8 1.6 -0.6
relative residual (%) 0.2 -2.4 3.3 -2.8 5.1 2.7 -1.0
z-score -0.1 -0.2 0.2 -0.3 0.4 0.1 -0.1

CO
residual (mgm−3) -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1
relative residual (%) -12.1 -13.5 -11.2 -7.8 -12.8 -16.5 -14.3
z-score -1.3 -1.2 -1.0 -0.4 -1.2 -0.8 -1.0

ing the lockdown is quite variable, ranging from−17.2% in the PRD, to−2.0% in the NCP.

Themedian z-score of the 7DMR during lockdown is−0.7 (table 4.2), with a minimum of
−2.7. This indicates that during most of the lockdown period, PM2.5 concentrations were
low, but not to the same extent as NO2. However, when comparing the lockdown period
to other periods of the same length (69 d), the lockdown period experienced the most
negative average residual recorded in the last 5 years (Supplementary Figure C.2). The
PM10 residual timeseries shows a similar temporal pattern to that of PM2.5, but its relative
residual concentration is around twice as extreme as PM2.5.

PM concentrations recover to normal levels earlier than NO2 (Figure 4.5), though the
initial reduction in concentrations is of similar magnitude to NO2 in some regions, with
the PM in the YRD, PRD and MYB being ˜60% lower in mid-February.

Prior to lockdown, during in mid-January, PM2.5 residual concentrations are unusually
high in some regions of China, with the FWP, YRD and NCP all reaching a z-score of over
+ 2 during January, and concentrations ˜50%–100% above the trend-adjusted seasonal
mean. Figure 4.6 shows that some stations, mostly in north-Eastern China, experienced
high positive anomalies during lockdown of >40%.
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O3

For O3, 1.5% of stations recorded their minimum 7DMR concentration during the lock-
down period, while 1.5% recorded their maximum. These proportions are much lower
than for NO2 or PM, indicating that that O3 residual concentrations were less extreme.
Across China the median O3 7DMR during the lockdown was + 0.2%, with a range of
−2.4 to 5.1% between the six regions.

It should be noted that unlike the other pollutants, winter is the seasonal minimum for
O3 concentrations across much of China (Figure 4.3) (Gao et al., 2020). During winter, O3

production across much of China may be primarily volatile organic compound (VOC)-
limited, while during spring and summer, more regions become NOx limited (Jin and
Holloway, 2015). Formation regimes of O3 also vary across the country based on both
emissions of precursors and climate (Wang et al., 2020). The spatial and temporal hetero-
geneity of O3 production regimes, and the array of precursors involved in O3 formation,
results in a complex response of O3 to the change in emissions during lockdown.

CO

Amedian negative residual in CO is also recorded during the lockdown period, although
it is not as extreme as that for NO2. For CO, 14.8% of stations recorded their minimum
7DMR concentration. During the lockdown period, the median 7DMR concentration
was −12.1% (table 4.2), with a maximum difference of −28.5% occurring on February
20. Across different regions, the decrease in CO during the lockdown is quite variable,
ranging from −16.5% in the FWP to −7.8% in the NCP. The CO time series are shown in
supplementary figures C.5 and C.6.

SO2

Rapid reductions in SO2 during 2015–2019 (Figure 4.2, −12% yr-1) result in reduced am-
plitude of seasonal cycle (Figure 4.3). This rapid change in seasonal cycle means that
extracting the average 2015–2019 seasonal cycle impacts the residuals calculated in 2020.
Therefore, although the residual concentration remains negative throughout the lock-
down period, it cannot be shown that this was an unusual departure from the expected
concentration based the interannual-trend and seasonal cycle. The SO2 time series are
shown in Supplementary Figures C.5 and C.6.
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Figure 4.7: Time series of z-score during 2020 for (a) NO2, (b) PM2.5, (c) PM10 and (d)
O3. The black line shows the median across all stations, with the coloured lines showing
the medians across regions. The ‘lockdown period,’ which is defined as 23 January to 31
March, is shaded.
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Figure 4.6: Spatial distribution of the median residual anomaly (%) during the lockdown
period (23 January 2020–31 March 2020) in (a) NO2 (b) PM2.5, (c) PM10 and (d) O3.
Hubei province is shaded.

Discussion and conclusions

We analysed air pollutant concentrations from China’s air quality network to examine the
impact of the COVID-19 control measures on air quality. We show that quantifying the
impact of the lockdown requires careful consideration of interacting factors, including
interannual trends, seasonal cycle and the LNY.

Large changes in air pollutant concentrations have occurred in China in recent years. We
show strong reductions in PM2.5, PM10, SO2 and NO2 and increased in O3 concentrations
during 2015–2019. These long-term changes in air pollutants continue previously identi-
fied trends during 2015–2017 (Silver et al., 2018). These long-term changes in pollutant
concentrations are largely driven by changes in emissions (Zheng et al., 2017; Ding et al.,
2019; Silver et al., 2020).

We show that LNYholiday results in consistent changes in pollutant concentrations across
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China during 2015–2019, with all pollutant concentrations except O3 are lower than nor-
mal. Similar effects have been reported for Nanjing (Kong et al., 2015) and Taiwan (Tan
et al., 2009). Gong et al. (2014) reported a 9% reduction in PM10 concentrations during
LNY across 323 stations in eastern China. Reductions in PM, SO2 andNO2 concentrations
are attributed to lower emissions from traffic and coal combustion, and increased O3 due
to NOx titration. The coincidence of LNY and COVID-19 control measures means it is
important to account for LNY impacts when assessing the impacts of control measures.

We estimated that COVID-19 control measures resulted in reductions in NO2, PM and
CO concentrations during the lockdown period, defined here as January 23 to March 31,
2020. After accounting for the long-term trend, seasonal cycle and LNY, we estimated
that China-wide concentrations in major air pollutants were reduced, with NO2 reduced
by 27.0%, PM2.5 by 10.5%, PM10 by 21.4% and CO by 12.1%. We found little change in O3

concentrations.

By comparing the residual concentrations during the lockdown period in 2020 to those
during the previous five years, we show that unusual air pollution concentrations oc-
curred during the lockdown. It is likely that these unusual concentrations, most notably
for NO2, were caused by emissions changes rather than unusual meteorological events,
due to the extended duration (NO2 stays below −2 z-score for a month), the consistency
of the result across most of China, reports of substantially decreased activity in emissions
sectors, and the co-occurrence of unusual concentrations with the enforcement and lifting
of the lockdown. A full assessment of the role of meteorology is now needed to clarify
the relative contributions of emissions and meteorology to observed concentrations dur-
ing the lockdown.

Chinese NOx emissions are dominated by transport (35%), industry (35%), and power
generation (19%) (Zheng et al., 2018), all of which are likely to have been affected by the
lockdown. Reduction in emission from these dominant sectors and short lifetime together
explain the larger reduction in NO2 compared to other pollutants. PM2.5 concentrations
in China are heavily influenced by residential emissions (Reddington et al., 2019), which
are likely to have been less influenced by the control measures. The larger relative reduc-
tions in PM10 and CO compared to PM2.5, may be due to a greater reduction in primary
emission sources and the greater contribution of secondary aerosol to PM2.5. Reductions
in emissions of VOC andNOx combinedwith changes in PM concentrations result in little
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overall change in O3 concentrations.

Despite decreases in pollutant concentrations during the last 10 years, China continues
to suffer from poor air quality and a large disease burden resulting from air pollution
(Zhao et al., 2018). The control measures and associated emissions reductions during the
COVID-19 outbreak provide a useful natural experiment. Analysing the change in pol-
lutant concentrations during this period can help us understand the impacts of emission
reductions on air quality. Future work quantifying emission reductions and simulating
atmospheric chemistry during this period, will help elucidate how emissions reductions
change PM composition and radical chemistry, as well examining the influence of meteo-
rology.
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Chapter 5

Conclusions

5.1 Synthesis of results

The overall aim for this thesis was to understand the drivers of recent trends in China’s
air quality, and identify pathways for pollution mitigation. The first publication included
(Chapter 2), was, at the time of publication, the first study to quantify the trends in air
quality across China measured by the newly-released CNEMC network. This research
indicated that concentrations of the pollutant which is most harmful to human health,
PM2.5, were falling rapidly across China during 2015-2017. This informed the research
direction of the second included piece of published research (Chapter 3), which used the
WRF-Chemmodel to separate the contribution of interannnual variability inmeteorology
with the estimated decrease in emissions to the trends observed in Chapter 2. This also
included an estimate of the likely effects on excess mortality and morbidity that would
result from the modelled changes in air quality, and evaluated the ability of the WRF-
Chem model and MEIC emission estimated to capture observed trends. The third piece
of included published work (Chapter 4) quantified the changes in air quality that oc-
curred during the implementation of COVID-19 control measures in China. This COVID-
19 lockdown provided an opportunity for a natural experiment of a similar nature to the
modelled experiments conducted in Reddington et al. (2019) and Chapter 3, as emissions
from particular sectors in China, were greatly reduced. It also extended the trends cal-
culated in Chapter 2 to the period of 2015-2019, and quantified the typical effects of the
Lunar New Year holiday on air pollution in China.
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5.1.1 Key findings

PM2.5 exposure is decreasing rapidly across China

My analysis of the CNEMC data shows that PM2.5 has been decreasing rapidly in China
during 2015-2019, at a rate of on average 6.0% yr-1 (see Figure 4.2). The trend is also
widespread, with a significant negative trend was found at over two thirds of measure-
ment stations, with each of the China’s megacity regions having a median negative trend.
Less than 1% of stations had a significant increasing trend over this time. The widespread
decrease in PM2.5 has been confirmedby recent satellite observations (Wei et al., 2021) and
inferred from modelling studies that use the latest emission inventory estimates (Zhang
et al., 2019).

The GBD estimated that air pollution as the third greatest risk factor causing death and
disability in China in 2009, but by 2019 its relative burden had reduced but 3.4%, falling
to the fourth greatest risk (Abbafati et al., 2020). In Chapter 3, my analysis showed that
the expected premature mortality attributed to PM2.5 fell by 150 000 deaths yr-1 during
2015-2017, decreasing by around 5.4%. However, we did not consider the effect of chang-
ing population size and age distributions. Although PM2.5 is decreasing rapidly, future
population changes (i.e. larger and older populations) could counteract a decrease in the
absolute number of avoided premature mortalities (Wang et al., 2019b).

O3 exposure is increasing

My analysis of the CNEMC data shows that O3 levels have been steadily rising across
much of China during 2015-2019, at an average rate of 2.8% yr-1 (see Figure 4.2). A statisti-
cally significant positive trend is found at a quarter of stations, while a significant negative
trend is found at less than 5%. Few long-term observational records of O3 concentrations
exist in China, but measurements at background sites and satellite studies indicate that
positive trends in O3 have in China occurred since at least 2000 (Verstraeten et al., 2015).

Premature mortality that can be attributed to O3 in 2015 was found to be 143 000, and
we estimated that it could be rising by rates of up to 21 000 yr-1. The CNEMC trends
reported in Chapter 4 indicate O3 has continued to rise, at a rate of 2.8% yr-1 during 2015-
2019. Madaniyazi et al. (2016) found that O3 concentrations would continue to increase
in China up to 2030 under current legislation, and mortalities could continue to increase
even under maximum feasible abatement depending on population growth. However,
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even under their most pessimistic scenario, when ozone-attributed premature mortalities
increase by 450 000 during 2005-2030, this remains within the same order of magnitude
as PM2.5 mortalities, indicating that controlling both pollutants should be prioritised.

Observed trends are emissions driven rather than meteorologically driven

Although the trends identified in Chapter 2 were statistically robust and widespread in
China, due to lack of long data records, their relatively short length (three years) meant
that the contribution of interannual meteorological variability to these trends was highly
uncertain. Furthermore, in 2015 therewas a strong ElNiño event, thatmay have increased
PM2.5 concentrations across, particularly in the North China Plain region (Chang et al.,
2016).

Therefore, in Chapter 3 I used twoWRF-Chem simulations to compare the the air quality
using MEIC emissions estimates for 2015-2017, with a counterfactual scenario had emis-
sions remained at 2015 levels, but driven by real 2016 and 2017 meteorology. The model
was able to reproduce the negative trends in PM2.5 at a similar magnitude to the observed
trends. When emissionswere held at 2015 levels, the overall PM2.5 trendwas close to zero,
indicating that meteorological variability could not explain the large negative trends in
PM2.5. This indicates that the El Niño in 2015 did not sufficiently perturb PM2.5 concen-
trations to induce the observed trends (see Figure B.2a).

However, themodel underestimated themagnitude of the observedO3 trend by a factor of
2 (2.7 µgm−3 yr−1 was observed, 1.3 µgm−3 yr−1 was simulated). This could be because
the resolution of the model was too low to capture the high NOx environments present
in urban centres, and therefore underestimated the effect of NOx titration of O3. Addi-
tionally, due to unavailability of updated emission inventories, the emissions changes re-
ported by Zheng et al. (2018) were applied uniformly across the domain, while observed
NO2 trends were more spatially heterogenous during 2015-2017 (see Chapter 2). A more
accurate representation of NO2 emissions trends and well as other species may have im-
proved the models ability to capture the O3 trend.

The implications of the modest improvements in air quality during COVID-19 lock-

down

In the early days of the coronavirus outbreak in China during 2020, headlines claimed
a large improvement in air quality had resulted (e.g. Weizhen Tan (2020)). However, I
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conducted amore careful analysis of theCNEMCdata that accounted for 2015-2019 trends
and the effect of the Lunar New Year holiday, and quantified its typical impact. I found
that NO2 decreases had been substantial, dropping to less than half of their expected
weekly mean concentrations by mid-February, and an average of 27.0% lower during the
entire lockdown period. However there was an increase in weekly mean O3 levels, which
were 10-40% higher than expected across different regions of China three weeks after
the initial lockdown. After this, they returned to expected levels for the remainder of
lockdown.

The effect on PM2.5 concentrations was overall modest, on average 10.5% lower during
the lockdown period. However in northern China, PM2.5 levels were unexpectedly high
in the weeks preceding the lockdown. This could have been due to the meteorological
situation prevailing at that time in northern China, which my analysis did not account
for. Leung et al. (2020) find that the reduction in NO2 emissions during the lockdown
may have increased the atmospheric oxidising capacity, leading to greater secondary PM
formation.

Positive health impacts of theCOVID-19 lockdowndue to improvement in air qualitywere
likely modest, due to the PM2.5 concentrations being on average 90% of their usual levels.
Furthermore, air quality changes were relatively short-term, with pollutant concentra-
tions returning to expected levels less that 3 months after the initial lockdown (Figure
4.3). For this reason, the avoided mortality attributed to the improvement in air qual-
ity during lockdown measures is relatively small, with Chen et al. (2020) estimating that
across China 8911 NO2-related and 3214 PM2.5-related deaths were avoided.

A subsequent analysis by Zheng et al. (2020) used satellite data and bottom up emissions
analyses to confirm that emissions from transport and industry sectorsweremost reduced
by the COVID-19 lockdown, while residential and power sector weremuch less impacted.
This result aligns with PM2.5 source attribution work such as Reddington et al. (2019)
and Liu et al. (2016) who find that, especially in winter, the residential sector is a large
contributor to PM2.5 concentrations. Therefore, only minor reductions in PM2.5 would be
expected as a result of substantially reducing transport emissions.
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Table 5.1: Comparison of the three-year trends estimated in Chapter 2 and five-year trends
estimated in Chapter 4

Median trend (µgm−3 yr−1)
Chapter 2 (2015-2017) Chapter 4 (2015-2019)

PM2.5 −3.4 −3.0
O3MDA8 4.6 1.6
NO2 0.0 −0.7
SO2 −1.9 −2.6

5.2 Discussion of uncertainties

5.2.1 Uncertainties in trend estimates

The three-year trends first estimated in Chapter 2 are calculated using only three years
of monitoring data. This is due to monitoring data prior to 2015 being unavailable from
(http://beijingair.sinaapp.com/), despite the CNEMC network being established in
2012. Measured air pollutant trends can never completely reflect the underlying trends
in emissions due to the meteorological dependencies of air pollutant concentrations in
the atmosphere, meaning that measured trends are sensitive to inter-annual variability in
meteorological conditions. For this reason, measurement trends are typically reported for
longer periods (a decade or more), so that inter-annual variability can be ‘averaged out.’

In Chapter 4, the trends are re-calculated using an additional two years of data. A com-
parison of the trend estimates are shown in Table 5.1. Except for NO2, which had no
median trend in Chapter 2, the direction of the trends estimated between the two periods
is consistent. However, the large difference between the trends (e.g. O3 changes from 4.6
to 1.6 µgm−3 yr−1) highlights how changing the sample period can affect the trend. The
NO2 trend becomes overall negative up to 2019, with the proportion of stations recording
a significant positive trend decreasing from 54 to 13%. This could indicate that while the
widespread decrease in NOx that has been observed since 2012 slowed during 2015-2017,
as shown in (Hou et al., 2019), and that the decrease has continued in subsequent years.

5.2.2 Model uncertainties and limitations

While the WRF-Chem simulations performed in Chapter 3 were an attempt to resolve
some of the questions raised by Chapter 2, the modelling came with its own set of uncer-
tainties. One key source of uncertainty in chemical transport models is the anthropogenic
emission inventory. Uncertainties in China’s emissions, expressed as 95% confidence in-
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tervals are estimated to range from as low as ±12% for SO2 to ±271% for organic carbon
(Li et al., 2017). These large uncertainty ranges are due to high uncertainties in the un-
derlying emission factor and activity rate data.

As well as the inherent uncertainty in MEIC, additional uncertainty is added by the uni-
form scaling factors that were applied for each pollutant and each sector across the do-
main. This was due to lack of access to updated versions of MEIC. Therefore, any spatial
heterogeneity in emission change estimates have been lost. This will contribute to the
model’s inability to accurately capture the spatial pattern in trends, particularly the O3

trend. For example, the O3 production regime varies across China from NOx-limited to
VOC limited. The NO2 trend results from Chapter 2 suggest that trends in NOx vary
across China during 2015-2017. However, due to the uniform scaling applied to the in-
ventory, all regions were simulated with a modest decrease in NOx emissions. Therefore,
any increase in O3 that is driven by a reduction in NOx in a VOC-limited regime could be
underestimated.

Furthermore, necessary simplifications within the WRF-Chem model such as lumped
VOC chemistry and physical parametrisations induce further uncertainty. An example of
this is boundary layer schemes, which are parametrisations of turbulent processes such as
vertical heat andmoisture that occurwithin the planetary boundary layer (PBL) (Nielsen-
Gammon et al., 2010). There are several different PBL parametrisations available inWRF-
Chem, and they have each been shown to have varying accuracy under various conditions
(e.g. topography, wind speeds), with a recent evaluation finding wind speed and direc-
tion biases of up to 50-300% (Zhang et al., 2021). However, due to limitations of time and
computing resources, a thorough evaluation of the effect PBL-scheme choice on the accu-
racy of the physical simulation was not possible. Therefore, we used a previous model
setupwhich had been shown to simulate important chemical species such as PM2.5 well in
previous work (Conibear et al., 2018; Reddington et al., 2019), which was nudged above
the boundary layer to prevent drift. Given more resources, it would be useful to evaluate
the different PBL-schemes against a network of ground-level meteorological data.

5.3 Future research directions

Figure 3.4 indicates that although trends are primarily emissions driven, inter-annual vari-
ability in meteorology can still have large regional impact on year-to-year air quality vari-
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ability. 5-years of model simulations by Wang et al. (2020b) with fixed emissions during
2013-2017 found anomalies of up to 20% in provincial mean yearly PM2.5 concentrations.
This suggests that air quality in China is likely to be substantially affected by changing cli-
mate patterns, which should be further investigated. Themodelled effects ofmeteorology
on secondary PM2.5 formation remain highly uncertain and relatively lesswell understood
(Tai et al., 2010; Wang et al., 2019a). Additionally, the large decrease in aerosol loading
over China will change the magnitude and nature of aerosol-climate interactions (Liu et
al., 2019). Recent studies suggest that reducing PM2.5 concentrations could be reponsible
for increased O3 concentrations. However, the cause of any such effect could have various
mechanisms, including a decrease in mixing layer depth suppression by aerosol, decrease
in heterogeneous uptake of HO2, or increase in photolysis.

Modelling the meteorological dependencies of air pollution using CNEMC data

Accounting for the effects of meteorology on air pollutant trends using a model such as
WRF-Chem (i.e. Chapter 3) proved a computationally complex and uncertain process.
Recent studies, e.g. Grange et al. (2018) have shown the use of machine learning models
for assessing the impact of air pollution control interventions while accounting for meteo-
rological conditions. Using this technique with CNEMC data, along with meteorological
reanalysis data could be a useful alternative method for assessing the impact of meteo-
rology on air pollutant trends in China. Additionally, this could be useful for extracting
statistical relationships between air pollutant concentrations and parameters such aswind
speed, and temperature, which could prove useful for forecasting how China’s changing
climate will impact air quality.

Understanding the drivers of the O3 trend

Multiple recent studies, including Wang et al. (2020a), Zhao et al. (2020), and Zhao et al.
(2021) as well as my work has highlighted the contrasting trends of PM2.5 and O3. How-
ever, it remains unclear as to what extent decreases in aerosol loading might be contribut-
ing to the rise inO3 formation, through either chemical or physical effects, versus the effect
of changing emissions. As discussed in Chapter 1.2.4, atmospheric aerosols can increase
boundary layer stability, humidity and light extinction. Therefore, a reduction in aerosol
loading could create more favourable conditions for O3 formation, the rate of which in-
creases under higher radiation and lower humidity conditions (Kavassalis and Murphy,
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2017). However, the contrasting trends could also be explained by changes in emissions
on the concentrations of O3. For example, a decrease in NOx emissions might lead to a
decrease in PM2.5 concentrations as less nitrate precursors are available for secondary PM
formation. However, the same NOx emissions decrease could cause O3 concentrations to
increase in NOx-saturated urban areas, through a reduction of O3 titration by NOx.

Aerosols also interact with the photochemical reactions involved in O3 formation via het-
erogeneous chemical reactions. Aerosols can irreversibly absorb NO3, NO2 and HO2,
and hydrolyse N2O5 (Liao and Seinfeld, 2005). Lou et al. (2014) show that these inter-
actions have mixed effects on O3 formation rates, but their simulation showed that overall
in China, they led to a decrease in O3. Li et al. (2019) used the GEOS-Chem model to
apportion the rising O3 trend during 2013-2017 between changes in emissions, photoly-
sis and heterogeneous reactions, and found that the reduction in HO2 uptake due to re-
duced aerosol concentration was the main driver of the positive O3 trend. Liu and Wang
(2020) using WRF-CMAQ paint a more complex picture, showing that decreases in NOx

emissions increase O3 in urban areas but decrease it in rural, decrease in SO2 emissions
enhance O3 formation via increase in photolysis and decrease in heterogeneous uptake.
However they find that the importance of these effects vary between different regions in
China. They conclude that large reductions inVOCemissions, 16-24%would be necessary
to avoid the O3 increase that results from other emissions changes.

However, both studies will be sensitive to the assumptions made in the gaseous and
aerosol chemical schemes used in theirmodels. For example, GEOS-Chem assumes a con-
stant HO2 uptake rate for all aerosol types, that is based on a limited number of laboratory
studies. The results of these studies should be repeated using fully-coupled models that
have more detailed aerosol heterogeneous chemistry so that the sensitivity of their con-
clusions to assumptions made about aerosol uptake rates can be more comprehensively
evaluated.
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Table A.1: Coefficient of variation threshold and rolling window span for each pollutant.
Flagging anomalous data used a simple method that looked for low variation in daily
means within a rolling window. First, data was resampled to give daily means. Then,
within each window, the coefficient of variation (standard deviation/mean) is calculated.
If the coefficient of variation is less than a threshold value, the period is flagged. The
threshold and rolling window span were adjusted for each pollutant by manually check-
ing the data verify that the correct periods were flagged.

Pollutant Coefficient of variation threshold Rolling window span (days)
NO2 0.04 10
SO2 0.04 14
O3 0.05 12
PM2.5 0.03 4

Table A.2: Sensitivity of calculated mean trends to the threshold value used for removal
of flagged plots. Absolute trends are shown for different thresholds of flagged days.

Flagged days removal
threshold

60 (as used in paper) 1000 (no
sites re-
moved)

30 (stricter) 10 (very
strict)

Total stations removed
(sum of all species)

74 0 308 926

PM2.5 absolute trend
(µgm−3 yr−1)

−3.4 −3.4 −3.5 −4.1

O3 MD8A absolute
trend (µgm−3 yr−1)

4.6 4.6 4.5 4.5

NO2 absolute trend
(µgm−3 yr−1)

0 0 0 0

SO2 absolute trend
(µgm−3 yr−1)

−1.9 −1.9 −1.9 −2.0
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Figure A.1: Example of the anomalies foundwhen cleaning data, and output of algorithm
used to identify anomalies. The algorithm identifies anomalous periods of data where
there is low variation in the coefficient of variation across a period of days (details in
Supplementary Table 1). The periods with anomalous data are highlighted in red, and
labelled with a number, which corresponds to the zoomed-in view of that period below.
The left hand group of plots (a) shows an example for O3, and the right hand plots (b)
show an example for NO2 data. The y axes of all plots show the concentration in µgm−3,
and the x axes show the date.
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Figure A.2: The same as Figure 2.2 but trends are calculate using data that has not been
deseasonalised
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Figure A.3: Three year (2015-2017) mean concentrations of (a) PM2.5, (b) O3 MDA8, (c)
NO2 and (d) SO2 by province or region. The median (red line), interquartile range (IQR)
(box) and IQR ±IQR*1.5 (whiskers) of the trend across the stations in each province/re-
gion are shown. The number of stations in each province/region are indicated at the top
of the plot.
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Figure A.4: Mean concentration of PM2.5, PM10, O3, O3 MDA8, NO2 and SO2 over the
period 2015 to 2017.

Figure A.5: The same as Figure 2.2 but showing trends in PM10
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Figure A.6: The same as Figure 2.3 but showing absolute trends in µgm−3
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Figure A.7: Trends in (a,b) deseasonalised and (c,d) non-deseasonalised O3 concentra-
tions across Mainland China, Hong Kong and Taiwan during 2015 to 2017. Left hand
panel shows the sign of trend (blue: significant negative, red: significant positive, grey:
insignificant) and mean concentration during 2015 to 2017 (size of circle). Right hand
panel shows the frequency of stations against the relative trends per year. The median
relative and absolute trend as well as the percentage of stations with significant trends is
shown on each panel. The percentage of significant trends that are negative (blue) or pos-
itive (red) are also shown. The black dotted line shows the median trend across all sites.
Triangles show the median trend for the regional domains shown in the left-hand panels:
Pearl River Delta (PRD), Yangtze River Delta (YRD), North China Plain (NCP), Sichuan
Basin (SCB), Hong Kong Special Administrative Region (HK) and Taiwan (TW). The left
panel is zoomed to show the trends over the more populous regions of China, while me-
dian trends and % of significant sites on the right panel refers to Mainland China, Hong
Kong and Taiwan.
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Figure A.8: Annual mean O3 by province or region. (a) Relative trends (b) absolute
trends (c) three year (2015-2017) mean concentrations. The median (red line), interquar-
tile range (IQR) (box) and IQR ± IQR*1.5 (whiskers) of the trend across the stations in
each province/region is shown. The number of stations in each province/region is indi-
cated at the top of the panels

148



Appendix B

Supplementary material for Chapter

3

Table B.1: Comparison of normalised mean bias (NMB) evaluation statistics from studies
simulating the air quality in China using the WRF-Chem model (excludes studies that
assimilate chemical data).

Source PM2.5 PM10 O3 NO2 SO2 CO
Zhang et al. (2016)
(Hong Kong) -0.47 to -0.07 0.88 to 1.6 -0.88 to -0.83 -0.84 to -0.59 -0.72 to -0.55
Zhang et al. (2016)
(China) -0.38 to -0.03 -0.8 to -0.72
(Wang et al., 2016)
(N China, January) 0.28 to 0.47 0.00 to 0.08 0.09 to 0.27 0.33 to 0.91 0.01 to 0.12
Zhou et al. (2017)
(forecast) -0.36 -0.05 -0.18 -0.4
This paper 0.49 -0.09 -0.15 1.2 0.09 -0.35
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Figure B.1: Maps and histograms showing the frequency distribution of trends in con-
centrations of (a,b) PM2.5, (c,d) O3 MDA8, (e,f) NO2, (g,h) SO2 across China and Tai-
wan during 2015–2017 using the model data from the fixed emissions run, sampled at
the locations of stations in the measurement dataset. The median relative and absolute
trend as well as the percentage of stations with significant trends is shown on each panel.
The percentage of significant trends that are negative (blue) or positive (red) are also
shown. The black dotted line shows the median trend across all sites, while the white
dotted line shows zero. Arrows show the median trend for the regional domain: Pearl
River Delta (PRD), Yangtze River Delta (YRD), North China Plain (NCP), Sichuan Basin
(SCB), Hong Kong (HK), Taiwan (TW) and the Fenwei Plain (FWP)
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(a) PM2.5

(b) O3

(c) NO2

(d) SO2

Figure B.2: Maps comparing the calculated trends in the control model run (left) the fixed
emissions model run (centre), and the measurement data (right) for (a) PM2.5, (b) O3,
(c) NO2, (d) SO2 across China and Taiwan during 2015–2017 . The trend was calculated
at each grid cell in the model runs, and at each station in the measurements dataset. Only
statistically significant trends are shown.
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Figure B.3: Simulated change during 2015-2017 in disability adjusted life years rate (per
100000 population, per year) due to changes in exposure to ambient PM2.5. Results are
shown at the province scale.

Figure B.4: Comparison between measured (left violin) and simulated (right violin)
aerosol species concentrations during 2015-2017. Measurements are from the SPARTAN
site in Beijing (available at https://www.spartan-network.org/beijing-china)
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Figure B.5: Comparisons between measured (triangles) and modelled (circles) aerosol
species concentrations. The bars show the standard deviation of the seasonal means.
Measurements are taken using an Aerodyne Aerosol Chemical Speciation Monitor and
are taken from Zhou et al. (2019). The measurements had a time resolution of around 15
minutes and averaged by season
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Figure B.6: Comparison between measured (upper bars) and simulated (lower bars)
aerosol species concentrations reported as a fraction. Measurements are from Li et al.
(2017) and span 2006 to 2013. Simulated concentrations are from 2015
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(a) PM10 (b) PM2.5

(c) O3 (d) SO2

(e) CO

Figure C.1: Figure 4.1 reproduced but using the other five pollutants
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FigureC.2: Minimum(blue),median (black) andmaximum(red) z-scores of the residual
concentration in a)NO2, b) PM2.5, c) PM10, d) SO2, e) O3 and f) CO, with the median in
the portion of the time series before the start of lockdown (January 23rd, dotting line) and
after (solid line).

Table C.1: Table detailing the frequency of stations removed in each stage of the data
cleaning process.

NO2 CO PM2.5 PM10 SO2 O3

Number of stations 1633 1633 1633 1633 1633 1633
<90% data available 330 332 340 739 330 331
Flagged as anomalous 23 2 259 2 64 25
Remaining stations 1280 1299 1034 892 1239 1277
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Figure C.3: Time series since 2015 of the relative anomaly (%) in the 7-day residual mean
concentration of a) NO2, b) PM2.5, c) PM10 and d) O3. This is calculated by dividing the
7-day mean of the residual component of the time series by the sum of the 7 day rolling
means of the seasonal, trend and Lunar New Year effect components.

157



Chapter 3

Figure C.4: Time series of z-score since 2015 for a) NO2, b) PM2.5, c) PM10 and d) O3.
The black line shows the median across all stations, with the coloured lines showing the
medians across regions.
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Figure C.5: Time series of the relative anomaly (%) during 2020 in the 7-day residual
mean concentration of a) SO2 and b) CO. This is calculated by dividing the 7-day mean
of the residual component of the time series by the sum of the 7 day rolling means of
the seasonal, trend and Lunar New Year effect components. The black line shows the
median across all stations, with the coloured lines showing the medians across regions.
The ‘lockdown period,’ which is defined as 23rd January to 31st March, is shaded.

Figure C.6: Time series of z-score during 2020 for a) SO2 and b) CO. The black line shows
the median across all stations, with the coloured lines showing the medians across re-
gions. The ‘lockdown period,’ which is defined as 23rd January to 31st March, is shaded.
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