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Abstract

Understanding the factors shaping the trait distribution of a biological population is
essential for a predictive theory of evolution. Mathematical modelling provides a parsi-
monious and rigorous means to interpret empirical data, and to investigate plausible
scenarios. In this context, the Replicator-Mutator Equation is a general tool to model
mutation-selection dynamics of trait-structured populations. In such populations, in-
dividuals differ in the expression of one (or more) phenotypic traits. When trade-offs
occur between different traits, then the corresponding trait distributions may reveal
interesting, non-trivial behaviours. In this thesis, I will focus on the modelling of two
such trade-offs. First, I will introduce the degeneracy-selection trade-off, according
to which fitter phenotypes are expected to be less degenerate (thus more prone to
mutation disruption). In the context of trait-structured populations, this trade-off is
generally treated by means of effective formulations, rather than explicitly considering
degenerate fitness landscapes. Here, I compare the two approaches and discuss the lim-
its of effective formulations in the (inevitable) presence of asymmetries between traits.
In the second part, I will show an application of the Replicator-Mutator Equation in
the context of evolutionary epidemiology, where pathogen display heterogeneous levels
of virulence and transmission. I will frame the problem in the context of agricultural
practice, where the aim is to understand how to calibrate control strategies, in order
to optimise pesticide use, and show how a proper trait-dependent control strategy can
harness heterogeneity in pathogen populations to our advantage. Finally, I will discuss
future lines of research based on the merging of the two parts, and on the potential for
a general mathematical theory of trait-dependent control strategies of heterogeneous

pathogens.
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1. Introduction

‘Hardly a phenomenon in metazoan biology is more ubiquitous, yet as neglected as
the inevitable heterogeneity of cell phenotypes within a population of cells of the same
type.” Such is the sharp incipit of the review that the cell biologist Prof. Shi Huang
dedicated to the issue of non-genetic heterogeneity of cells (Huang, 2009). Phenotypic
heterogeneity refers to the diversity with which genetically identical cells living in the
same environment, accomplish biological functions, such as gene expression or protein
levels of activity. Despite its ubiquity, the role played by phenotype heterogeneity in
biological evolution has been long overlooked, mainly for two reasons (Bonduriansky
and Day, 2009, 2019): on the one hand, the modern theory of evolution has its found-
ation on the central dogma of molecular biology, which elected the gene as undisputed
protagonist of evolutionary processes; on the other hand, the discovery (and measure-
ment) of phenotype heterogeneity has been possible only recently, thanks to important
innovations in the instruments and methods employed in laboratory single-cell ana-
lysis. The absence of tools such as flow-cytometers during the first days of evolutionary
biology (from Darwin’s theory of natural selection in 1895 on) inevitably biased the
scientific community towards the importance of genetic (with respect to phenotypic)
variations. This bias affected also the most theoretical branch of this novel, excit-
ing discipline, inaugurated in the 1930s by Wright, Haldane and Fisher, under the
(not coincidentally) name of population genetics. From the historical viewpoint, the
genetic vs phenotypic battle for attention also reflected the ideological clash that cap-

italism and socialism were playing on the economic and political ground during the
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20th century, and had important repercussions on the visions of society that followed
(DeJong-Lambert, 2012). Fortunately for humankind, the ever-increasing amount of
experimental evidence collected in the last decades (Avery, 2006; Raj and Van Oude-
naarden, 2008; Balazsi et al., 2011), and the discovery of new evolutionary phenomena
such as phenotypic plasticity (Callahan et al., 1997), epigenetics (Jablonka and Lamb,
2014) and non-Darwinian effects (Pisco et al., 2013; Osmanovic et al., 2018) have
forced the whole scientific community into a mise en cause of the central dogma, with
a consequent rehabilitation of phenotypic heterogeneity, whose role in the contempor-
ary theory of biological evolution is today pivotal.

Besides experimental evidence, phenotype heterogeneity has also been validated by
theoretical works, demonstrating its potential sources (McAdams and Arkin, 1997;
Kaern et al., 2005), and the advantages it provides at the population level (Kaneko,
2007; Stockholm et al., 2007; Carja and Plotkin, 2017). The concept of trait-structured
(also known as phenotype-structured) population has been widely employed to model
mathematically cell heterogeneity. Defining a trait-structured population requires two

ingredients:

i) The identification of one (or more) quantitative trait(s), which is related with some
phenotypic function of the individual carrying it, and whose value varies across

individuals due to phenotypic heterogeneity.

i1) A mechanism providing a source of heterogeneity, so that heterogeneity is an

inherent feature of the entire population that is maintained over time.

Requirement 7) is related with the selective nature of the trait(s), and is mathem-
atically described by functions mapping the trait(s) into a quantitative measure of
reproductive success, typically defined as fitness. Requirement i) is related with the
mutative nature of the trait(s), and is mathematically described by operators defining
how the quantitative trait(s) mutates. Importantly, for a population to be described

as trait-structured, these two requirements have to be fulfilled concomitantly: in



absence of i), there would not be any trait(s) discriminating the structure of the
population, hence the hierarchy of the trait(s) determined by the ladder of natural
selection; in absence of i7), only the trait(s) at the top of the ladder would survive,
and heterogeneity would be eventually lost. Of course, the ways to implement
mathematically selection and mutation are multiple, and in this thesis I have focused
on a specific, though popular, set of choices.

Requirement i) will be described by means of fitness landscapes; particularly, T will
consider smooth landscapes, since I will describe continuous quantitative traits.
The concept of fitness landscape was first introduced in 1932 by the population
genetist Sewall Wright, as a way to visually represent the trajectory performed by an
evolving population in the space of possible phenotypic (or genotypic) configurations,
which is pushed by natural selection towards the fitness peaks (Wright, 1932). The
theory of fitness landscapes comprises a variety of models (Orr, 2005; Gavrilets,
2010; De Visser and Krug, 2014), whose overview goes beyond the purpose of this
introductory chapter. For my purposes, fitness landscapes will represent simple
mathematical functions mapping individuals’ phenotype traits to their corresponding
measure of reproductive success, that is fitness. In theoretical works, the properties
of such functions are generally assumed by the modeller (though they are inspired
from experimental evidence), depending on the evolutionary phenomenon of interest.
This approach is deliberately descriptive and simplistic, and is needed in order to
reduce the complexity of evolutionary problems to a level allowing some kind of
mathematical tractability. In other, less abstract contexts, fitness landscapes may
emerge as a result of the mechanistic interactions occurring between the evolving
trait-structured population and the environment (Doebeli et al., 2017). In this thesis,
I will investigate a problem belonging to the first (more abstract) class of models, and
a problem belonging to the second (more mechanistic) class.

In both cases, requirement iz) will be fulfilled by employing a specific mathematical
operator, the Laplacian, which is suited to describe mutations leading to smooth

variations on the quantitative traits. This modelling choice encompasses the extreme
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complexity of the mechanisms occurring at the genomic level, and aims at providing
a simplified, coarse-grained description of the effects of mutations on the phenotypic
trait, sometimes referred as non-genetic instability, or epimutations, e.g. (Chisholm
et al., 2015). These two modelling choices will merge into the Replicator-Mutator
Equation (RME). The RME has been widely employed to model mutation-selection
dynamics of trait-structured populations in many biological (and other) research
areas: population genetics (Wakano et al., 2017), pathogenic evolution (Day and
Proulx, 2004; Korobeinikov and Dempsey, 2014; Bolzoni and De Leo, 2013), RNA
evolution (Tsimring et al., 1996), game theory (Ruijgrok and Ruijgrok, 2015; Bomze
and Burger, 1995), language evolution (Page and Nowak, 2002). Examples of biolo-
gical traits to which the RME formalism has been applied include: drug tolerance
to cancer treatments (Lorz et al., 2013; Lorenzi et al., 2016), pathogenic virulence
(Day and Proulx, 2004; Bolzoni and De Leo, 2013) and transmission (Korobeinikov
and Dempsey, 2014), antigenic types (Sasaki, 1994; Sasaki and Haraguchi, 2000),
hosts’ resistance to infection (Lorenzi et al., 2020). In this thesis, I will investigate
the mutation-selection evolution of trait-structured populations, characterised by
trade-offs entwining their phenotypic traits. In the presence of a trade-off, the
quantitative value assumed by a trait has the potential to influence multiple aspects
of a phenotype. Whenever such effects display contrasting effects on the individual,
then the trait-structured population will evolve towards non-trivial configurations.
The RME formalism provides an established mathematical tool for the qualitative
investigation of such complex outcomes.

The thesis is structured as follows. In Chapter 2, I will present some basic notions of
evolutionary modelling with the help of a pedagogical model. This example will allow
me to introduce the distinction between monomorphic and polymorphic populations,
and to frame the study of trait-structured populations within the context of the
latter. Moreover, I will derive the RME employed to study the models analysed in
the following chapters, and present the methodology employed to find stationary
solutions of the RME. In Chapter 3, I will study trait-structured populations



evolving on abstract fitness landscapes, featuring a minimal but universal trade-off
between degeneracy and selection. The consequences of such trade-off have been well
documented within the field of molecular evolution. The aim of my study is to extend
our understanding to trait-structured populations, and to understand the extent to
which effective formulations so far employed are correct. In Chapter 4, I will study an
epidemiological application, where trade-offs will occur between the phenotypic traits
involved in pathogens’ life cycles. The model will be framed in the context of crop
pest management, with the aim of understanding how to optimise pesticide use in
agricultural practices. Finally in Chapter 5, I will sum up the results, and conclude

with possible future lines of research.



1. INTRODUCTION




2. From a pedagogical example to

the RME

In this Chapter, I shall introduce some fundamental concepts of evolutionary modelling
by starting from a basic mutation-selection model involving two types of individuals.
Starting from the microscopic description of the evolutionary interactions, I will derive
both deterministic and stochastic dynamics. 1 will demonstrate the existence of two
fundamentally different behaviours of an evolving population, that are monomorphic
and polymorphic regimes. Finally, I will present the RME formalism that I will use

to investigate the behaviour of trait-structured populations.

2.1. A pedagogical two-types model

2.1.1. Microscopic description of mutation-selection: the

Moran process

The two most used methods to describe selection at the microscopic level are the
Wright-Fisher and the Moran process. The former was introduced during the ‘1930s’
in the context of population genetics (Wright, 1931; Fisher, 1958), to investigate gene
frequency undergoing random sampling in finite populations, and is considered one

of the milestones of population genetics. It is based on discrete, non-overlapping
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generations, and it can be complexified in order to account for selective, mutative,
migrating effects and so on (Blythe and McKane, 2007). The Moran process was
introduced a few decades later (Moran, 1958), and it is based on a more ‘statistical
physics’ description of the stochastic evolutionary events: rather than sampling the
entire pool from generation after generation, individuals are chosen to mutate, die or
reproduce one at a time, with a probability that depends on their features, and on the
details of the dynamics. Hence, unlike the Wright-Fisher process, the Moran process
has overlapping generations, and it can naturally lead to a continuous time description
in terms of master equations and transition rates. For this reason, the Moran process
is generally preferred when one aims at studying the evolving biological population by
means of statistical physics tools (Blythe and McKane, 2007).

The Moran process describes competition for reproduction at the individual level, and
it consists of three steps: i) selection of an individual; i7) reproduction of the selected
individual; iiz) replacement by the newborn at the expenses of another individual which
is removed from the population. This process is a Birth-Death process preserving the
total number of individuals, because it always replaces an individual with another
one. Typically, either the selection or the replacement steps depend on fitness, so as
to model Darwinian competition by natural selection in terms of fitness-dependent
birth, or fitness-dependent death. Throughout the thesis, I will employ a formulation
of the Moran process known as local update rule that does not make distinction between
the two options, but still leads to the same general form of the RME (Traulsen et al.,
2005, 2006).

2.1.2. Chemical reactions

The events of competition and of mutation occurring at the microscopic level of the
individuals is schematised by means of the chemical reactions formalism (Gardiner
et al., 1985; Van Kampen, 1992): individuals are considered as particles belonging

to a chemical species; whenever particles interact, a chemical reaction may occur
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leading to formation/degradation of particles, or to changes in their chemical species.
For example, let X and Y be two possible chemical species, and let us consider the
following chemical reaction:

X LY, (2.1)

On the left-hand side we have the reactants, in this case a single particle of species X.
On the right-hand side we have the products of the reaction, that is a single particle
of species Y. The constant r is called reaction constant, and indicates the likelihood
of the chemical reaction: the larger r, the more frequently the reaction will occur.
This simple chemical reaction schematises the interaction for which one particle of
the species X transforms into a particle of species Y. For a general chemical reaction

involving X4, ... X, reactants and Y7, ...Y, products, the chemical reaction will read:
Xy 4+ aXo+ -+ o, Xy —— Y1+ BeYo + -+ + BY,, (2.2)

where «, 8 are the stoichiometric coefficients of the species in play.

The above schematism is applied to illustrate a simple microscopic evolutionary dy-
namics, where individuals of a population of fixed size N can be either of type A,
or of type B. Individuals of type A (B) possess fitness fa (fg). The state of the
system at a certain time is described by the numbers (N4, Np) of individuals of each
type. The number of individuals being fixed, the system is fully described by just Ny,
since Ng = N — N4. The dynamics involves mutation and competition events, both
modelled by the following Moran processes.

Competition. Let an individual A and an individual B compete for reproduction
at a rate v per unit of time. Then, individual A will reproduce and its newborn will
replace individual B:

A+B— 94 (2.3)
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with a probability p, given by:

pr=5+ 5 (fa = fi), (2.4

where w is the selection pressure parameter. Alternatively, individual B will reproduce

and its newborn replace individual A:

A+B—2 9B, (2.5)
with probability g,:
1w
qul_pv:§+§(f3—fA)- (2.6)

I call these two reactions complementary, because their probability of occurrence al-
ways sums up to one (or in other words, their rate of occurrence always sums up to
7). Each probability is composed of a baseline value of %, and of a fitness-dependent
term, proportional on the difference between the fitness value of the two types. By
construction, the individual with larger fitness will be more likely to reproduce than
to perish. If A is fitter than B (that is f4 > fp), then the first reaction is more likely
to occur than the second, and A is more likely to replace B. Contrarily, if A is less
fit than B (that is f4 < fg), then the second reaction is more likely to occur, and B
is more likely to replace A. The larger the difference between the fitness value of the
two individuals, the more skewed the pair of complementary reactions will be towards
the more probable. The magnitude of the fitness-dependent contribution with respect
to the baseline probability % is mediated by the selection pressure parameter w: the
larger (smaller) is w, the more (less) relevant will be fitness in determining the fate of
the individuals. In the case w = 0, the dependence on fitness disappears and the two
reactions occur with same probability: this scenario is known as neutral dynamics.

Mutation. Let mutations occur at a constant rate u per unit of time. An individual
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of type A mutates into type B:

B —TEA 4, (2.8)

with probability mp4.

The above reactions describe the evolutionary dynamics of mutation and selection as
microscopic interactions between individuals. A first, simplified approach to describe
the system’s behaviour can be achieved by invoking the law of mass action, that allows

to derive the temporal dynamics of the macroscopic quantities N4 and Np .

2.1.3. The law of mass action

The law of mass action associates a set of differential equations for the concentrations
of the types involved, starting from the chemical reactions at play. Introduced by
Waage and Guldberg in 1864 in (Waage and Gulberg, 1986), the law can be stated as

follows (quoted from Biancalani, 2014):

Given a chemical equation, the time derivative of a concentration of a
certain chemical species, being a reactant or a product, is proportional to
the product of the concentrations of the reactants of the reaction. This is
multiplied by the reaction constant, which has a plus sign if the species is

created or a minus sign if the species is destroyed.

Originally introduced in the context of chemical kinetics, the argument of the law
is independent of the phenomenological context, and since then, the law has been

employed in a wide variety of applications (Van Kampen, 1992). In the context of
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mathematical biology, its most iconic application is provided by the Lotka-Volterra
equations, describing the dynamics of prey-predator systems (Murray, 2007). Let
ng = % and ng = % be the concentrations of individuals of the two types, and
apply the law of mass action to the above four reactions: the first (second) reaction
Eq. (2.3) (Eq. (2.5)) leads to an increment (diminution) term of the number of A type
individuals, which is proportional to the competition rate ~, the densities of the two
species involved nynp, and to the probability p, (g,) of occurrence of the reaction,
that is: +yp,na Ng (—ygyna Np). Likewise, the third reaction Eq. (2.7) (fourth
reaction Eq. (2.8)) leads to a diminution (increment) term of the number of A (B)
type individuals mutating into B (A), which is proportional to the mutation rate p, to
the density of A individuals n 4, and to the probability of occurrence of the mutation
map (Mmpa), that is: —pumapna (+umpang).

The differential equation governing the temporal dynamics of the density n(t) with
initial condition n4(t = 0) = ng, is then obtained by collecting all contributions.
Substituting Eqgs. (2.4)-(2.6), recalling that ng = 1 — ny4, and rearranging terms, we

obtain:

d’)”LA (t)
dt

=2yw (fa— fB)na(t) (1 — na(t)) + p[mpa — (map + mpa) na(t)].  (2.9)

Eq. (2.9) describes the mutation-selection dynamics for the macroscopic concentration
of individuals of A type, derived from invoking the law of mass action on the micro-
scopic interactions of competition and mutation (the corresponding equation for np

dng _ _dnp

is simply the opposite of Eq. (2.9), since <A

4 = —= ). In the following, I introduce

some simplifying assumptions on the parameters of the model.
Let us consider the simple case where mutations occur with the same rate in both

directions, and let A denote the fit type and B denote the unfit type, i.e.:

map = mpa = 1, fAZlv fBZO- (2~10)
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Inserting Eqs. (2.10) into Eq. (2.9), the dynamics simplifies to:

dnA (t)
dt

= 27wna(t) (1 —na(t)) + p (1 —2n4(t)) . (2.11)

In Fig. 2.1, T show some temporal trajectories of n4(t), obtained by means of numerical
integration of Eq. (2.11), for two sets of parameters (specified in the figure’s caption
and legend). For both sets, the system is initialised with two different initial conditions
(na(0) = 0.1 and n4(0) = 0.9). In all cases, the temporal trajectories (smooth solid
lines) approach monotonically the asymptotic equilibrium value n,4 (indicated with

dashed lines), which is obtained by setting Eq. (2.9) to zero:

52
1 1+ T - 2
Y s==F (2.12)

nA:§+ ) ’ U

In absence of competition (y = 0), or in absence of selection pressure (w = 0), the
population is equally distributed between the two types, that is ny = % In the
presence of competition (v > 0), selection pressure will bias the equilibrium density
towards the fittest type A, as expected. Fig. 2.1 also displays the temporal trajectories
of the stochastic dynamics corresponding to Eq. (2.11), which will be introduced and

discussed in the following subsection.

2.1.4. The master equation formalism

The microscopic rules of competition and mutations presented in Subsection 2.1.2 have
a probabilistic nature, that the law of mass action is unable to capture, due to its de-
terministic nature: at a certain time ¢, the population is composed of N, individuals of
type A; reactions have a certain rate of occurrence; upon their occurrence, the number
N4 will either increase or decrease by 1. Therefore, the system transits stochastically
between different states, characterised by different values of N4. The master equation

describes the temporal dynamics of the probability P(Na,t) of observing the system
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in state N4 at time t. Defining the transition rate per unit of time T(N4|N/) from

state Ny to state Ny, the master equation generally reads:

dP(Ny,t)

a Y T(NaINDP(Ny,t) = > T(N4Na)P(Na,t). (2.13)

N/, #Na N/, #Na

In Eq. (2.13), the first sum represents all the gain contributions due to transitions
from other states N’y towards the state N,; the second sum represents all the loss
contributions due to transitions from the state N4 towards other states N. In this
sense, the master equation can be intended as a balance equation for the probability
of each state, specified by the transition rates T'(N4|N'y).

The chemical reactions Eqs. (2.3), (2.5), (2.7) and (2.8) admit transitions only between
states with consecutive numbers, since any event will either increase or decrease N4 by
one. Therefore, we have T(N4|N/) = 0 if N4 — N/;| > 1. The only nonzero transition

rates are then:

T = TN - 1) = (k) 3 (T8 ) e () 2w
TV = TN+ 1) = (1 =) 3 (S5 ) (2.15)

where I have introduced the symbols T*(N4) to lighten the notation. The master

equation then simplifies to:

dP(N4,t)

S = T (Na= ) P(NA=L, )+ T~ (Na+ 1) P(Na+1,t) = [T*(Na) + T~ (Na)] P(Na, 1).

(2.16)
The Gillespie algorithm provides samples of the probability distribution described
by the master equation (Gillespie, 1976, 1977), and corresponding instantiations of
the value of the density ny over time. In Fig. 2.1, I show the example trajectories
resulting from Gillespie simulation of the master equation, corresponding to the set of
parameters and two initial conditions analysed in the deterministic case. The Gillespie

trajectories appear as noisy versions of their deterministic counterparts. Contrary to
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0 1 2 3 4 5 6 7 8 9 10

time

Figure 2.1: Temporal trajectories of the two-type model. Temporal trajector-
ies of the two-type mutation-selection dynamics are shown for two values of selection
pressure w. For each w, two trajectories corresponding to two different initial condi-
tions are shown. Smooth lines correspond to numerical integration of the determin-
istic Eq. (2.11), while noisy curves correspond to Gillespie simulations of the master
Eq. (2.16), with NV = 1000. Dashed lines correspond to the deterministic equilibrium
value of ny. The mutation rate p is set to 1.

the deterministic trajectories, after the transient such trajectories fluctuate perpetually
around the equilibrium value n 4, due to the stochastic nature of the master equation.
Fig. 2.1 seems to suggest that, overall, deterministic and stochastic descriptions de-
liver the same information on the state and on the dynamics of the evolving system.
However, this is not the case, and even for such a simple model, the stochastic dynam-
ics display some behaviours that the deterministic description is not able to capture.
In the next subsection, I will present the Fokker-Plank equation, that will serve to

illustrate the dual behaviour of the mutation-selection dynamics.

2.1.5. The Fokker-Plank equation

The Fokker-Plank equation is a typical method to obtain approximations of the master

equation, and it describes the temporal evolution of the probability density function
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P(n4) to observe the system in the state n4. By applying the method of the generating
function (detailed in the Appendix A.2), one obtains:

aP(TLA,T)

= _VJ(nAa 7—)7 (217)
or
where 7 = & is the time rescaled with respect to system size, and J(na,7) is the
probability current:
1 0
J(na,7) =a(na)P(na,7) — ==——b(na)P(na,7), (2.18)
2 8nA

with:

a(na) = 2ywna (1 —na) + p (1 —2n4) (2.19)

b(na) = 5 [2yna (1 —na) + 4]
The coefficient a(ny) is called drift, and corresponds to that composing the determ-
inistic Eq. (2.9). The coefficient b(ny) is called diffusion, and describes the purely
stochastic contributions to the dynamics: its magnitude is mediated by system size N,
in agreement with the fact that stochastic effects tend to disappear for large systems.
In the following, I will limit the calculations of the stationary probability distribution
to the simple case of neutral dynamics (i.e. setting w = 0), as it is sufficient to show
the dual behaviour of the mutation-selection dynamics, and to introduce the difference

between monomorphic and polymorphic regimes.

2.1.6. Monomorphic and Polymorphic regimes

In a one-dimensional case such as that I am analysing, the stationary solution of the
Fokker-Plank equation is obtained by demanding a vanishing probability current, i.e.

J(na) =0 Vna (Gardiner et al., 1985). In the case of neutral dynamics (w = 0), the
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probability current reduces to:

1 0
Jneutral(na) = p(1 = 2n4)P(na) — N ns [2yn4(1 = na) + p] P(na) =0, (2.20)

where the time dependence of P has been dropped, because the system is at station-

arity. Performing the derivative and rearranging the terms, one obtains:

—T(na), T(na) = mil_—% —CNu-2) (221

Integrating both sides of Eq.(2.21) between 0 and n 4, one obtains:

with Z being the normalisation constant. Finally, integrating the function I'(y), I

obtain the stationary distribution for the neutral dynamics:

N,u,_l

P(na) = Z [2yna(l —na) +p] > . (2.23)

This probability distribution has two distinct behaviours, depending on the value of
the compound parameter % In the following, I will consider both population size
N and competition rate v fixed, and focus on variations on the order of magnitude of
mutation rate p, because in the biological literature this is considered the parameter
discriminating different evolutionary regimes. However, analogous conclusions are ob-
tained if one fixes the latter and varies the order of magnitude of the former.

In Fig. 2.2 I plot some analytical solutions of Eq. (2.23) (red lines), and compare with
results from numerical simulations with Gillespie algorithm. The numerical histogram
(blue bars) is obtained by running the algorithm 10° times, and recording the value
of ny every 10* time units. The values of the parameters used in the simulations are
specified in the figure’s caption. The two distinct behaviours of the stationary prob-

ability distribution are separated by a critical mutation rate value p. = for which

2
N
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Figure 2.2: Monomorphic and polymorphic regimes. Stationary probability
distribution of observing n 4 individuals. Red lines: analytical solution of the Fokker-
Plank equation; blue bars: averages from numerical simulations (number of realisa-
tions: 10°. Time interval between realisations: 10% time units). Left panel: the
mutation rate is below the threshold value and the population is in the monomorphic
regime; inset: temporal trajectory of the simulated master equation. Parameters:
@ = 0.0005 < pe,y = 1,w = 0, N = 1000. Right panel: the mutation rate is above
the threshold value and the population is in the polymorphic regime; parameters:
pw=1>p.,v=1w=0,N=1000.

P(n4) becomes uniform.

Monomorphic regime. Below the critical mutation rate (i.e. u < p.), the probab-
ility distribution displays two sharp peaks at x = 0 and x = 1, as illustrated in the left
panel. The fraction of individuals of type A is almost always either 0 or 1: therefore,
the population is almost always entirely composed of either only type A or only type
B individuals, switching from one to another under the effect of demographic noise.
In absence of selection pressure (w = 0), there is no preference between the two types,
so that the distribution is not biased towards the fittest one and the two peaks are
equivalent. Were selection pressure present (w > 0), the corresponding probability
distribution would preserve the same U shape, but it would be skewed towards x = 1,
because the dominance of the fitter A type would be favoured by natural selection.
This scenario represents an example of monomorphic population, because at every
time individuals tend to share the same type: at t = ¢y, all N individuals are of, e.g.,
A type; at t = t; a mutation occurs, leading to the emergence of 1 type B individual
among N — 1 of type A; however, this unique individual will very likely perish during

a competition event, before new B types individuals emerge due to mutations; only
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occasionally, individuals of type B will be lucky enough to win all competition events
against type A ones, increase in number, and eventually dominate the population, thus
reversing the system’s composition. If this unlikely event happens, the population will
have reached the opposite monomorphic state, and one will have to wait another long
time before seeing the re-emergence of A type individuals.

Polymorphic regime. On the other hand (right panel), above the critical mutation
rate (i.e. 1 > ), the distribution displays a single peak located at ny = %, that is
the equilibrium point Eq. (2.12), predicted by the deterministic equations: most of the
time, the population is equally split between A and B types, because of the absence of
selection pressure, but random effects due to demographic noise will make the compos-
ition fluctuate around the expected deterministic proportion. Were selection pressure
present (w > 0), the peak of the distribution would be displaced towards ny = 1
(but still coinciding with Eq. (2.12)), because at equilibrium the presence of fitter A
type individuals would be favoured by natural selection. This scenario represents an
example of polymorphic population (note, in this case, bimorphic) because, contrary
to the monomorphic case, here mutations are so rapid that individuals of both types
are continuously present at every time, and the system is described by specifying how
individuals are distributed over the possible types.

This simple example illustrates how the magnitude of mutation rates can discriminate
between the two different scenarios, and the transition from one to the other can be
appreciated at the variation of p. However, in more complex situations (e.g. involving
more than two types and/or more complex microscopic interactions) the calculation
of the stationary probability distribution becomes unfeasible, so that being able to
describe both regimes and detecting such transition can be difficult. Therefore, a
modeller typically has to decide whether to operate below or above the critical muta-
tion rate p.. Of course, this choice affects the kind of adaptive phenomena they can
describe, and the kind of mathematical tools they will most likely employ. Indeed, the
behaviour of a monomorphic population cannot be properly captured by a determ-

inistic approach, as the inset in the left panel of Fig. 2.2 clearly shows: if we track
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the state of the system n,4 over time during a simulation of the master equation (blue
line, inset) we note that very rarely the system is found at the equilibrium state pre-
dicted by the deterministic equations (dashed grey line), which has little to do with
the bistability typical of a monomorphic population. For this reason, monomorphic
populations are generally studied in the context of stochastic processes (Iwasa, 1988;
Sella and Hirsh, 2005; Barton and Coe, 2009), where the dynamics is simplified in order
to focus on the phenomenon of transition between different monomorphic states over
time. In the graphical schematisation of fitness landscapes, the state of a monomorphic
population at a certain time can be represented as a point on the fitness landscape,
and its evolution as the trajectory performed over time by such point, under the effect
of evolutionary processes (see panel a of Fig. 2.3).

Instead, the behaviour of a polymorphic population can be studied deterministically,
as demonstrated by the agreement between stochastic and deterministic trajectories
shown in Fig. 2.1. Models of polymorphic populations usually operate under the as-
sumption of infinite population (Eigen and Schuster, 1977; Eigen et al., 1988), so that
stochastic finite size effects can be neglected (although some degree of extension to
finite size population is possible Alves and Fontanari, 1998; Saakian and Hu, 2006;
Saakian et al., 2009; Park et al., 2010; Saakian et al., 2012.). The state of the system
is described by the distribution (be it continuous or discrete) of the various types coex-
isting in the populations, resulting from the balance between mutation and selection.
In the graphical schematisation of fitness landscapes, the state of a polymorphic popu-
lation at a certain time can be represented as a cloud of points on the fitness landscape,
whose distribution varies over time due to evolutionary forces (see panel b of Fig. 2.3,
adapted from Wilke, 2005). Regardless of the biological details of the system and
of the interactions in play, the corresponding deterministic equations have provided
insight into universal features of evolutionary dynamics (Page and Nowak, 2002), and

are known in the literature as Replicator-Mutator Equations (RME henceforth).



2.1. A PEDAGOGICAL TWO-TYPES MODEL 23

Figure 2.3: Monomorphic and Polymorphic populations evolving on fitness
landscapes. Panel a: a monomorphic population can be visualised as a single point
on the fitness landscape (identifying the dominant phenotype), whose position varies
over time, under the effect of evolutionary processes (adapted from Poelwijk et al.,
2007). Panel b: a polymorphic population can be visualised as a cloud of points (one
for each individual) distributed over the fitness landscape, and evolution as the process
shaping such distribution over time (adapted from Wilke, 2005).
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2.2. The Replicator-Mutator Equation (RME)

Starting from the simple two-types model analysed in the previous section, I will
present a different, more rigorous derivation of the RME, based on mean-field ap-
proximation of the stochastic dynamics. Then, I will derive the discrete Replicator-
Mutator Equation from the generalisation of the dynamics given by the chemical
reactions Egs. (2.3), (2.5), (2.7) and (2.8), to the case of M finite types. Finally the
continuous Replicator-Mutator Equation describing the mutation-selection dynamics
of trait-structured populations will be obtained by performing a continuum approzim-

ation on the discrete version.

2.2.1. The mean field approximation

The master equation also contains the information related to the average behaviour of
the stochastic system. Starting from Eq. (2.16), it is possible to derive the equation
describing the temporal evolution for the mean number (N4) of individuals of type A,

defined as:
(Na) =) NaP(Na,t). (2.24)

Na
[ multiply Eq. (2.16) by N4 and sum over the possible states Ny = 0,..., N. On the

left-hand side, we obtain:

dP(Na,t)  d d d (Ny)
Ny 2D DNT N PN L) = —(N,) = — 2.95
%A:A dt dt%;/*(f” dt<A> dr N’ (2.25)

where I have rescaled time 7 = +, with respect to the system size. On the right-hand

1
N
side, we obtain:

D NATT(Na=1)P(Na—1,t)+NaT ™ (No+1)P(Na+1,t)=Ny [TT(Na) + T~ (Na)] P(Na,t).
Na
(2.26)
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In the first term of Eq. (2.26), manipulating the sum by rescaling the index Ny —
Ny + 1, yields:

D (Na+1)TH(Na)P(Na,t). (2.27)

Likewise in the second term of Eq. (2.26), manipulating the sum by rescaling the index
NA — NA — 1, yields:

> (Na—1)T"(Na)P(Na,t). (2.28)

Substituting Eqs. (2.27) and (2.28) into Eq. (2.26) some terms cancel out, and we are

left with:
N = SO T W] POV = () TN @29)

Substituting the transition rates Eqgs. (2.14) into Eq. (2.29), we obtain:

d (Na) (Na(N — Na)) (N = (Na))
N = 2w N2 + .

(2.30)

The deterministic equations are finally obtained by defining the deterministic density

n4 of A type individuals as:
5 (Na)
im

Noco N ’

ny = (2.31)

and by invoking the mean-field approximation. The mean-field approximation consists

in substituting all many-body with one-body averages, that is:
(N3) ~ (N4)2. (2.32)

Substituting Eqgs. (2.31) and (2.32) into Eq. (2.29), we obtain:

dnA (t)
dt

= 27wna(t) (1 —na(t)) + p (1 —2n4(t)), (2.33)
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in analogy with the derivation based on the law of mass action (Eq. (2.9)). Inspecting
the mean-field derivation, one recognises that the mean-field equation can be cast in

the following form:
dn A (t)
dt

= (T (na) = T~ (na)), (2.34)

that is the balance between the average transition rate leading to increase of ny and
that leading to a decrease of na. Starting from Eq. (2.34), it is straightforward to

generalise the mean-field equation to an arbitrary number of types.

2.2.2. Discrete RME

Let us now generalise the microscopic interactions of mutation and selection introduced
in Subsection 2.1.2 to an arbitrary number of types. Let X; be an individual of type
it =1,...,M, f; the fitness value related to type ¢, and m;; the probability for an
individual of type ¢ to mutate into type j. Then, the chemical reactions describing

competition between two individuals of types ¢ and j are:
34 (fim 1)
X+ X, iR BN (2.35.a)

s+4(fi—fi
X+ X bR » 2X, (2.35.b)

while the chemical reaction describing an individual of type ¢ mutating into type j is:
X, 4 X (2.36)

For a population of size N, the state of the system at a certain time is described by the
vector (Ny, ..., Nys) collecting the number of individuals of each type. The stochastic

dynamics undergone by the system is obtained by writing the master equation for

each type. Then, defining the deterministic density n; = limy_.oo <JX;> a=1,....M

and performing calculations equivalent to those presented in Subsection 2.2.1, the

deterministic equations for the temporal evolution of the densities n; are given by
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(Traulsen et al., 2006):

dny(t) -
ét = zj: (mjang — mi ni) + 2ywn; z]: n; (fi = f)- (2.37)

The first term in Eq. (2.37) represents the balance between in and out contributions
due to spontaneous mutations. The second term represents the fitness-dependent con-
tribution due to competition, which is positive when the focal type i is competing with
a less fit type, and negative otherwise. In the case where f; = f;, the deterministic
contribution to competition is zero, as on average wins and losses will compensate.
Both terms are summed over all types M, in order to account for all possible in-
teractions. Equation (2.37) describes a general mutation-selection dynamics between
discrete types, with general mutation scheme (fixed by parameters m; ;) and fitness
landscape (fixed by f;); it is sometimes referred as the parallel scheme (Baake and
Wagner, 2001; Saakian and Hu, 2004), to stress that spontaneous mutations occur as
events separated from reproduction due to competition (in opposition to the original
model formulated by Eigen, where mutations are coupled to competition). Before
moving on, I am going to recast Eq. (2.37) in the form in which it usually appears in

the literature (Hofbauer et al., 1998). I first define the average fitness f as:

_ M
f = Z fjnj, (238)
J

and recall that the following normalisation condition holds:

D ny=1. (2.39)

By using Eqs. (2.38)-(2.39), the equation takes the form:

dt

M
= Z (mmnj — mi,jni) + 2’)/(4}’/% (fz — 7) s (240)

J
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that is the typical form of the Replicator-Mutator Equation (RME).

2.2.3. From the discrete to the continuous RME

So far, I have employed the generic term type, to refer to the different possible biolo-
gical configurations that individuals may be found in. From a modelling perspective,
different types may refer to differences at the genetic or phenotypic level, and are
ultimately captured by their different fitness values. The assumption underpinning
the RME formalism is that individuals are able to spontaneously mutate from one
type to the other, on a timescale that is comparable with the selective timescale. A
typical framework where the discrete RME is employed is represented by viral evolu-
tion (Domingo et al., 2012): here, types refer to, e.g., particular RNA sequences, each
having their own AUGT string of bases; fitness is intended as the rate at which each
particular RNA sequence self-replicates; punctual mutations occur at the aminoacids
level and change the RNA sequence, hence the type, of the virus.

The continuous formulation aims at describing a different biological context, for which
the notion of type may be less appropriate. Instead, I will introduce the notion of
trait: a trait is a heritable phenotypic feature of the individual, that is possible to
quantify by means of a continuous variable z, and which is exposed to variation due
to spontaneous mutations.

Consider two bacterial cells that are identical from the genetic perspective, but their
capability to adhere to host cells differs, due to a different level of activity of a certain
protein involved in the adhesion process. It would be improper to refer to them as
belonging to two different types of bacteria; rather, if the level of protein activity is a
feature prone to mutations, then it is more appropriate to consider them as two cells
of the same type, but differing in the magnitude of a common quantitative trait. Such
a polymorphic population is also known in literature as trait-structured (or phenotype-
structured), to stress the fact that its composition depends on how the phenotypic

trait of interest is structured within the population. In the following, I will present
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how to describe the mutation-selection dynamics of trait-structured populations with

continuous quantitative traits, by means of a continuous RME.

2.2.4. Continuous RME

The continuous version of the RME was first introduced by Kimura in (Kimura, 1965),
based on the assumption that: i) mutations can produce an infinite sequence of trait
values; every mutation may produce a new trait value different from the pre-existing
ones. ii) the effect of new trait value on the quantitative character is only slightly dif-
ferent from the parent trait value from which it was derived from a single mutational
step. The above assumptions are almost exact quotes of the original sentences written
by Kimura in (Kimura, 1965), adapted in order to avoid the introduction of additional
biological terms (namely that of allele), which do not serve a useful purpose to this
thesis. In his original work, the continuous RME is derived starting from law of mass
action-like arguments. Here, I will derive it by performing a continuum approximation
on the discrete Eq. (2.40), although other more general routes are possible (Wakano
et al., 2017). The derivation is performed on a simple one-dimensional case, general-
isations to multiple dimensions following straightforwardly.

First, I assume that all types are discretised in a one-dimensional lattice space, with
lattice spacing Az. I denote with i € [0,..., M] the lattice site with discrete trait
value z; = iAz € [0,1]. Therefore, n; is the density of individuals with trait value
x;. As a result of a single mutation event, an individual of type ¢ moves in the lattice
space towards one of the nearest neighbour sites: that is, either ¢ — 1 or ¢ + 1, for
i € (0, M). An individual placed at the extreme i = 0 (i = M) of the lattice space will
then move only rightwards (leftwards) towards the site 1 (M — 1). The set of M + 1

RME describing the density of individuals at each lattice site is then given by:

% = (n1 — o) + 2ywn (fo — f) (2.41)
dn; = 1t (Nig1 + Ny — 2n;) + 2ywn; (f% - 7) (2.42)

dt
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dTLM

e w(np—1 —nar) + 2ywnyy (fM — ?) , (2.43)

where f; is the fitness of type ¢ depending on trait value x;. Let us now introduce the
trait variable x € 7 = [0, 1], where T is the trait space. In the limit of small lattice
spacing, I can introduce the following approximations relating the discrete and the

continuous descriptions:
rxx, n~n(x)de, fi=Fx)~F(x). (2.44)

The first approximation states that z is the continuous counterpart of the discrete trait
value x;; the second approximation states that to each trait value is now associated a
density of individuals n(z) per unit of z; the third approximation states that fitness
values are now functions of the continuous trait variable x, according to the fitness
function F. With the above approximations, the normalisation condition Eq. (2.39)

and the average fitness Eq. (2.38) become, respectively:

1=Ln(w;t)dm (2.45.a)

Fln(z: 1)) = /T . (2.45.b)

where the average fitness F is functional of the density n(x;t). In the following, I
will refer to the density n(x;t) as the trait distribution of the population at time ¢.
Inserting the above continuum approximations in the discrete RME for the generic ¢
type, I obtain the equation for the temporal evolution of the trait distribution:

dn(x;t)
dt

= p(n(z + Az;t) + n(z — Az;t) — 2n(z;t))+2ywn(z; t) (F(z) — Fln(z;t)]) .

(2.46)
Assuming that the trait distribution n(z;t) € C? (that is differentiable functions with
continuous first and second derivatives) in both the trait space 7 and in the time

domain R, we can Taylor expand up to second order the terms n(x + Ax;t) and
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n(x — Ax;t) around the point (z,t):

. 2 92 (.
x@n(:v,t) N Az* 0 n(xﬂf).

n(x £ Az;t) = n(x;t) £ A pe 5 97

(2.47)

Inserting the Taylor expansion Eq. (2.47) into Eq. (2.46) and performing basic algebraic

calculations, we finally obtain:

dn(z)  Ax?
i M

Vn(z;t) + 2ywn(z;t) (F(z) — Fln(x;t)]), (2.48)

that is the continuous RME of interest (note that the Laplacian notation V? indicates
the partial second derivative with respect to x). The continuous RME (2.48) is a
nonlinear integro-differential equation, describing the mutation-selection dynamics of
the trait distribution. Changes due to selection preserve the same form of the discrete
RME, and I will not discuss it further. Changes due to mutations are modelled by
the Laplacian V2, that is the local diffusion operator acting on the trait space T,
with corresponding diffusion coefficient given by ,uAT”R. This term is appropriate when
mutations induce small perturbations on the trait, consistently with assumption i)
of Kimura’s formulation. This modelling choice is also known in the literature as
continuum-of-alleles formulation (Bu et al., 1988). An antipodal formulation of local
mutations is provided by the so-called house-of-cards model (Kingman, 1977, 1978),
which describes the case when mutations induce major disruptions on the parent trait.
Possible interpolating models between continuum-of-alleles and house-of-cards have
also been proposed (Zeng and Cockerham, 1993).

The continuous RME is closed by the no-flux boundary conditions:

on(xz;t) on(xz;t)

o= = 2.4
ox [e=0 ox 1= 0 (2.49)

describing the behaviour of the system at the boundaries of the trait space: muta-
tions cannot lead outside the trait space, the boundaries x = 0 and z = 1 act as

reflecting barriers. Mutation and selection operate oppositely on the population’s
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trait composition: the former provides a continuous source of phenotypic variation;
the latter instead removes variation by pushing towards fitness increase and deleting
less fit traits. At stationarity, these two effects balance, and the system is described
by a stationary distribution. The conditions for the existence and uniqueness of the
stationary solution have been studied by Biirger in (Biirger, 1986). The proofs are
based on methods from the theory of unbounded, self-adjoint operators, an overview
of which goes beyond the purpose of this thesis. I just recall that for a continuous,
positive and bounded fitness landscape F'(x), a positive distribution with initial con-

dition n(x;te) > 0 will always converge to n(x) as t — oo, where n(x) is solution of

the stationary RME (sRME henceforth):

MATxv%(x) + 2ywn(z) (F(z) — Fln(z)]) = 0. (2.50)

All fitness landscapes considered throughout this thesis satisfy the above conditions
on F. In Chapter 3, the existence and stability of the solutions employed will not
be discussed, as all conditions in (Biirger, 1986) are met. However, such conditions
will not be sufficient for the solutions presented in Chapter 4, because the RME will
involve a population of non constant size, and agent-based numerical simulations will
be used to check the consistency of the analytical results.

The deterministic RME describing the mutation-selection dynamics of a polymorphic
population has been derived from mean-field arguments, in the case where pheno-
typic differences between individuals were captured by a single quantitative trait x.

However, the generalisation to multidimensional trait spaces is straightforward.

2.2.5. d-dimensional RME

Let x € T, be a d-dimensional vector belonging to the trait space 7;. Each component
x; of the vector is the quantitative representation of the phenotypic feature i. The

collection of the d phenotypic features represents a phenotype. Let F': T; — [0, 1] be
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the fitness function mapping the phenotype x into its fitness value F'(x). The evolving
system is described by the trait (or phenotype) distribution n(x;t). The normalisation

condition reads:

/ n(x: t)dx — 1, (2.51)
Ta

and the average fitness is obtained by averaging the fitness function F' over all the

trait space:

Fln(x;t)] :/rF(X)n(X;t) dx, (2.52)

where dx is the trait space’s volume element dx = dx;dzy ... dry. Assuming that
each trait mutates independently from each other and at the same rate p (note that
the scales of the traits can be defined to make it so, without loss of generality), then
mutations over the trait space are modelled by the generalised Laplacian operator V2

acting on 7;. The d-dimensional RME is then given by:

dn(x;t)  Aaz?
a "

Vin(x;t) + 2ywn(x; t) (F(x) - Fln(x;1)]) (2.53)
subject to the boundary conditions:
n - Vn(x;1) [xeor,= 0, (2.54)

where 1 is the unit vector normal to the boundary 97 of the trait space. The condition
Eq. (2.54) generalises the one-dimensional no-flux boundary conditions describing the
reflecting nature of mutations close to the boundaries of the trait space. Differently
from physical systems, where a variety of possible boundary conditions describe differ-
ent, plausible behaviours, here we are interested only in reflecting boundary conditions:
indeed, periodic boundary conditions would connect very phenotypically distant points
of the trait space, in contrast with assumption of ‘slight mutations’; absorbing bound-
ary conditions would imply that phenotypes at the boundaries of the trait space are
lethal, thus behaving as sinks, and in the models that I will study there is no reason

to consider lethal phenotypes. Finally, non-zero boundary conditions would imply
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the existence of in and out fluxes of individuals, which are not possible (because the
microscopic interactions in play preserve the total number of individuals). Explicit
analytical solutions of the SRME are rare because they are hard to obtain (see e.g.
Alfaro and Carles, 2017; Alfaro and Veruete, 2019; Ruijgrok and Ruijgrok, 2015), and
they rely either on further approximations, or on specific choices of the fitness land-
scape. Instead, I will employ a method allowing to obtain self-consistent solutions,

which in principle is applicable to any choice of trait space 7 and fitness function F.

2.2.6. Self-consistent solutions of the sRME

At stationarity, the system is described by the time-independent trait distribution
n(x). Therefore, the correspondent average fitness F [n(x)] does not change in time
any more, and it reaches a constant value F [n(x)] = ¢. With a fixed average fitness,
the sSRME loses both the nonlinear and the integro-differential natures, and one can
then write the linear sSRME:

BT, (x) + 2y0me(0) (F(x) — 6) = 0 (2.55)

where ny(x) is the solution depending on the unknown average fitness ¢, subject to
the conditions:

fT n¢>(§)d§ =1

fl . Vn¢(§) |$€37’: O

(2.56)

Once the linear sSRME (2.55) is solved, the right solution n(x) is obtained by solving

the self-consistent condition on the average fitness:

¢ = /r F(x)ng(x)dx. (2.57)

Solving the linear SRME (2.55) is, in principle, an easier task than the nonlinear

integro-differential version. However, the choice of the method depends on the prop-
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erties of both the fitness landscape F' and the trait space 7. On the other hand,
the self-consistent condition will generally have to be solved numerically by means of
standard nonlinear system solvers. This semi-analytical procedure represents a parsi-
monious way to explore the parameter space of the model (which can become large as
the complexity of the problem is increased), and it will be applied to solve the RME
in all models presented in both Chapter 3 and Chapter 4.
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3. Degeneracy-selection trade-off

3.1. Introduction

Most of the mutation-selection models involving trait-structured populations employ
one-dimensional trait spaces, where all the biological information of interest is con-
densed into a single quantitative trait. Therefore the dynamics is typically investigated
by means of one-dimensional fitness landscapes. This picture purposely focuses the
attention on the traits providing selective advantage to the evolving individual, thus
neglecting contributions provided by neutral traits. Despite not providing selective
advantage to the carrier, neutral traits (that will be properly defined in the following)
contribute to shape the fitness landscape upon which the population evolves, and be-
come particularly relevant when they are related to selective traits through a trade-off.
Understanding the interplay between neutrality and selection is considered one of the
major challenges in the contemporary theory of biological evolution (Wagner, 1999;
Ciliberti et al., 2007a; Wagner, 2008; Barghi et al., 2020; Manrubia et al., 2020), aiming
to bridge the gap between two historically antipodal theories (Nei, 2013): selectionism
and neutralism. Such interplay has been well documented in the case of monomorphic
populations, leading to a complete formal theory known as free-fitness. In the comple-
mentary, polymorphic case (to which trait-structured populations belong), theoretical
investigations have been limited to special cases, or to effective formulations inspired
by free-fitness. In this Chapter, I shall explore the interplay between neutrality and

selection in trait-structured populations, by means of degenerate fitness landscapes
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featuring both neutral and selective traits, related by a minimal but universal trade-
off. T will calculate the trait distributions on symmetric and asymmetric degenerate
landscapes, and compare their behaviour with non degenerate cases. Then, I will cal-
culate the marginal fitness distributions and show the emergence of a dual behaviour,
due to the presence of a trade-off between neutral and selective traits. I will show that
asymmetries of the fitness landscape lead to a characterisation of neutral contributions

that drastically differ from the free-fitness approach.

3.1.1. Neutralism

The concept of neutrality was introduced by the population genetist Mooto Kimura
to explain the patterns of aminoacid substitution, experimentally observed in animal
haemoglobin molecules (Kimura et al., 1968). Since then, neutralism developed as
an approach complementary to selectionism, in the study of biological evolution. The
neutralist viewpoint reverses the role played by mutations during evolution (Nei, 2013):
in the selectionist viewpoint, mutations provide the source of variation, while fitness
differences drive competition by natural selection; in the neutralist viewpoint, fitness
differences between possible configurations are neglectable, when compared to the rate
at which such configurations mutate: despite two aminoacid sequences presenting dif-
ferent rate of replications, which in principle would eventually lead to the domination
of the faster replicating, in practice they will be disrupted by mutation before this
occurs.

In his first works, Kimura acknowledged that degeneracy in the genetic code (Kimura,
1968) is manifested mainly in two ways: first, several aminoacid sequences code for the
same protein; second, many (if not most) of the possible mutations in a polypeptide
chain have little effect on the biological activity of the protein. These two consider-
ations highlight the two possible sources of neutrality in a living organism: on the
one side, there exist way more possible genotypes (e.g. aminoacid sequences) than

observed phenotypes (e.g. the coded proteins), hence the mapping between the two
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levels of description is inevitably degenerate. On the other side, not all phenotypic
changes are relevant. The extent to which these two phenomena distinguish or overlap
depends on the modelling context and on the system under consideration. In the fol-
lowing, I will first briefly discuss the first of such sources of neutrality, in the context
of genotype-phenotype (GP) maps. Then I will focus on the second source, and on its

applications to trait-structured populations.

3.1.2. Degeneracy of GP maps

In molecular evolution, the concept of degeneracy is well described by the general no-
tion of genotype network, introduced by Maynard Smith in (Smith, 1970): genotypes
are defined as the nodes of a network, representing the entire genotype space; two
genotypes are then linked by an edge if they are separated by a single mutational step.
A mutation connecting genotypes with identical phenotype is then called neutral. The
degeneracy of GP mappings stems from the basic fact that the number of possible gen-
otypes is much larger than that of phenotypes, so that such maps must be degenerate
(Wagner, 2011; Greenbury et al., 2016; Ahnert, 2017). This schematic representation is
widely used in molecular evolution to model gene regulation, metabolism and protein
folding, and is at the foundation of the concept of mutational robustness (Wagner,
2011): under the effect of mutations and random sampling, the evolving system is
perpetually exploring the genotype space, with the potential of discovering novel, in-
novative, phenotypes (Wagner, 2005). However, besides providing fitness advantage,
the successful phenotype must also display some degree of robustness with respect to
mutations, which continuously attempt to disrupt its corresponding genotype. In this
framework, mutational robustness emerges as a macroscopic property depending on
the topology of the underlying genotype network (Van Nimwegen et al., 1999; Fontana,
2006; Ciliberti et al., 2007b; Aguirre et al., 2009).
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3.1.3. Degeneracy of phenotypic traits

Molecular evolution has provided an exceptional field to investigate the role of
degeneracy in GP maps and test theoretical results, thanks to the increasing empirical
evidence unveiled by technological advance (Manrubia et al., 2021). However, such a
domain is less suitable to investigate the role played by the relevance of phenotypic
changes, that is the second source of neutrality formalised by Kimura. While it is (in
principle) fairly simple to connect a mutation on a RNA sequence to the increase (or
decrease) of its self-replication rate (thus to its fitness), connecting a mutation leading
to the increase in a pathogen’s level of activity of a protein related to drug transporter
production, with a potential selective advantage for the pathogen, may be less
straightforward. Indeed, such mutation may be beneficial, if the pathogen is exposed
to a pesticide whose chemicals are more easily cleared by such drug transporters;
on the other hand, in absence of a pesticide the mutation may be detrimental, if
it just represents additional metabolic cost with respect to pathogens not carrying
this mutation; alternatively, the mutation may also be neutral, if it simply does
not provide any relevant phenotypic change. This example demonstrates how the
potential neutral nature of a phenotypic trait is strictly related to the environmental
conditions and to the interactions between environment and individuals, thus to the
fitness landscape on which the population is evolving. If ones identifies a phenotype
as the collection of distinct traits endowing the individual with some phenotypic
features, then it is natural to expect that some of such traits will provide selective
advantage and some of them will not; that is, such collection is expected to include
both selective and neutral traits.

The aim of this Chapter is to investigate mutation-selection dynamics of individu-
als whose phenotypes feature both selective and neutral traits. As explained in
Chapter 2, the rate at which mutations occur delineates a major distinction between
monomorphic and polymorphic regimes. In the monomorphic regime, a complete

theory accounting also for neutral effects due to degeneracy has been developed in
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(Khatri and Goldstein, 2015). Providing an exhaustive overview of this topic goes
beyond the scope of this Section. Rather, the aim of the following Subsection is
to provide an insight into some well established concepts regarding degeneracy in
the monomorphic regime, with respect to which the results regarding polymorphic,

trait-structured populations will be compared and discussed.

3.1.4. Monomorphic regime: the free-fitness approach

The role of neutrality in fitness landscapes has been extensively studied in the mono-
morphic regime, where the evolutionary dynamics is described by a stochastic process
determining the probability to jump from a resident phenotype to a mutant one, which
may take over the resident and become dominant (as explained in Subsection 2.1.6).
For this event to occur, the mutant phenotype has to: i) be mutationally adjacent to
the resident one; 7i) fixate in the population. Point ¢) will depend on the topology
of the mutations, as well as on the degeneracy of the mutant phenotype: the larger
it is, the more likely such mutation will naturally occur. Point ii) will depend on
the fitness difference between resident and mutant: the larger is the mutant fitness
with respect to the resident one, the more likely it will invade and eventually fixate
in the population. Consider a population of size N, which can express any phenotype
¢ of a phenotype space =. Each phenotype is characterised by a fitness F'(§) and a
degeneracy S(£). The equilibrium probability P(&) that the population is found with
phenotype £ is given by:

p(E) ox eV O, (3.1)

where:

(3.2)

is the free fitness of phenotype & (Khatri and Goldstein, 2015). Drawing a connection

with equilibrium statistical mechanics, ®(¢) is interpreted as the potential that is



42 3. DEGENERACY-SELECTION TRADE-OFF

maximised at equilibrium by the evolving system, akin to the free energy of a thermal
system. Hence, rather than just fitness, phenotypes shall maximise a combination of
fitness and degeneracy. The degeneracy term S(§) is also called sequence entropy, to
stress the analogy with thermal systems: under the same selective conditions (same
fitness), the population will drift into states that can be realised through a larger
portion of the phenotype space; that is, phenotypes with larger degeneracy (i.e. larger
sequence entropy) have larger probability to be explored by the system. The magnitude
of this entropic contribution is mediated by population size N (which acts as an inverse
temperature), so that its effect will be larger in smaller populations. The phenotypic
free-fitness extends a concept introduced by Iwasa in (Iwasa, 1988), and subsequently
rediscovered in (Sella and Hirsh, 2005). This expression highlights a crucial property of
degenerate mappings: indeed, for Eq. (3.2) to be a relevant tool, fitness F' and sequence
entropy S must behave oppositely with respect to phenotypes: that is, phenotypes with
large fitness must have small degeneracy, and vice-versa. In other words, a trade-off

between degeneracy and fitness is expected to hold.

3.1.5. The degeneracy-s