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Abstract

Understanding the factors shaping the trait distribution of a biological population is

essential for a predictive theory of evolution. Mathematical modelling provides a parsi-

monious and rigorous means to interpret empirical data, and to investigate plausible

scenarios. In this context, the Replicator-Mutator Equation is a general tool to model

mutation-selection dynamics of trait-structured populations. In such populations, in-

dividuals differ in the expression of one (or more) phenotypic traits. When trade-offs

occur between different traits, then the corresponding trait distributions may reveal

interesting, non-trivial behaviours. In this thesis, I will focus on the modelling of two

such trade-offs. First, I will introduce the degeneracy-selection trade-off, according

to which fitter phenotypes are expected to be less degenerate (thus more prone to

mutation disruption). In the context of trait-structured populations, this trade-off is

generally treated by means of effective formulations, rather than explicitly considering

degenerate fitness landscapes. Here, I compare the two approaches and discuss the lim-

its of effective formulations in the (inevitable) presence of asymmetries between traits.

In the second part, I will show an application of the Replicator-Mutator Equation in

the context of evolutionary epidemiology, where pathogen display heterogeneous levels

of virulence and transmission. I will frame the problem in the context of agricultural

practice, where the aim is to understand how to calibrate control strategies, in order

to optimise pesticide use, and show how a proper trait-dependent control strategy can

harness heterogeneity in pathogen populations to our advantage. Finally, I will discuss

future lines of research based on the merging of the two parts, and on the potential for

a general mathematical theory of trait-dependent control strategies of heterogeneous

pathogens.
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1. Introduction

‘Hardly a phenomenon in metazoan biology is more ubiquitous, yet as neglected as

the inevitable heterogeneity of cell phenotypes within a population of cells of the same

type.’ Such is the sharp incipit of the review that the cell biologist Prof. Shi Huang

dedicated to the issue of non-genetic heterogeneity of cells (Huang, 2009). Phenotypic

heterogeneity refers to the diversity with which genetically identical cells living in the

same environment, accomplish biological functions, such as gene expression or protein

levels of activity. Despite its ubiquity, the role played by phenotype heterogeneity in

biological evolution has been long overlooked, mainly for two reasons (Bonduriansky

and Day, 2009, 2019): on the one hand, the modern theory of evolution has its found-

ation on the central dogma of molecular biology, which elected the gene as undisputed

protagonist of evolutionary processes; on the other hand, the discovery (and measure-

ment) of phenotype heterogeneity has been possible only recently, thanks to important

innovations in the instruments and methods employed in laboratory single-cell ana-

lysis. The absence of tools such as flow-cytometers during the first days of evolutionary

biology (from Darwin’s theory of natural selection in 1895 on) inevitably biased the

scientific community towards the importance of genetic (with respect to phenotypic)

variations. This bias affected also the most theoretical branch of this novel, excit-

ing discipline, inaugurated in the 1930s by Wright, Haldane and Fisher, under the

(not coincidentally) name of population genetics. From the historical viewpoint, the

genetic vs phenotypic battle for attention also reflected the ideological clash that cap-

italism and socialism were playing on the economic and political ground during the
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20th century, and had important repercussions on the visions of society that followed

(DeJong-Lambert, 2012). Fortunately for humankind, the ever-increasing amount of

experimental evidence collected in the last decades (Avery, 2006; Raj and Van Oude-

naarden, 2008; Balázsi et al., 2011), and the discovery of new evolutionary phenomena

such as phenotypic plasticity (Callahan et al., 1997), epigenetics (Jablonka and Lamb,

2014) and non-Darwinian effects (Pisco et al., 2013; Osmanovic et al., 2018) have

forced the whole scientific community into a mise en cause of the central dogma, with

a consequent rehabilitation of phenotypic heterogeneity, whose role in the contempor-

ary theory of biological evolution is today pivotal.

Besides experimental evidence, phenotype heterogeneity has also been validated by

theoretical works, demonstrating its potential sources (McAdams and Arkin, 1997;

Kaern et al., 2005), and the advantages it provides at the population level (Kaneko,

2007; Stockholm et al., 2007; Carja and Plotkin, 2017). The concept of trait-structured

(also known as phenotype-structured) population has been widely employed to model

mathematically cell heterogeneity. Defining a trait-structured population requires two

ingredients:

i) The identification of one (or more) quantitative trait(s), which is related with some

phenotypic function of the individual carrying it, and whose value varies across

individuals due to phenotypic heterogeneity.

ii) A mechanism providing a source of heterogeneity, so that heterogeneity is an

inherent feature of the entire population that is maintained over time.

Requirement i) is related with the selective nature of the trait(s), and is mathem-

atically described by functions mapping the trait(s) into a quantitative measure of

reproductive success, typically defined as fitness. Requirement ii) is related with the

mutative nature of the trait(s), and is mathematically described by operators defining

how the quantitative trait(s) mutates. Importantly, for a population to be described

as trait-structured, these two requirements have to be fulfilled concomitantly: in
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absence of i), there would not be any trait(s) discriminating the structure of the

population, hence the hierarchy of the trait(s) determined by the ladder of natural

selection; in absence of ii), only the trait(s) at the top of the ladder would survive,

and heterogeneity would be eventually lost. Of course, the ways to implement

mathematically selection and mutation are multiple, and in this thesis I have focused

on a specific, though popular, set of choices.

Requirement i) will be described by means of fitness landscapes; particularly, I will

consider smooth landscapes, since I will describe continuous quantitative traits.

The concept of fitness landscape was first introduced in 1932 by the population

genetist Sewall Wright, as a way to visually represent the trajectory performed by an

evolving population in the space of possible phenotypic (or genotypic) configurations,

which is pushed by natural selection towards the fitness peaks (Wright, 1932). The

theory of fitness landscapes comprises a variety of models (Orr, 2005; Gavrilets,

2010; De Visser and Krug, 2014), whose overview goes beyond the purpose of this

introductory chapter. For my purposes, fitness landscapes will represent simple

mathematical functions mapping individuals’ phenotype traits to their corresponding

measure of reproductive success, that is fitness. In theoretical works, the properties

of such functions are generally assumed by the modeller (though they are inspired

from experimental evidence), depending on the evolutionary phenomenon of interest.

This approach is deliberately descriptive and simplistic, and is needed in order to

reduce the complexity of evolutionary problems to a level allowing some kind of

mathematical tractability. In other, less abstract contexts, fitness landscapes may

emerge as a result of the mechanistic interactions occurring between the evolving

trait-structured population and the environment (Doebeli et al., 2017). In this thesis,

I will investigate a problem belonging to the first (more abstract) class of models, and

a problem belonging to the second (more mechanistic) class.

In both cases, requirement ii) will be fulfilled by employing a specific mathematical

operator, the Laplacian, which is suited to describe mutations leading to smooth

variations on the quantitative traits. This modelling choice encompasses the extreme
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complexity of the mechanisms occurring at the genomic level, and aims at providing

a simplified, coarse-grained description of the effects of mutations on the phenotypic

trait, sometimes referred as non-genetic instability, or epimutations, e.g. (Chisholm

et al., 2015). These two modelling choices will merge into the Replicator-Mutator

Equation (RME). The RME has been widely employed to model mutation-selection

dynamics of trait-structured populations in many biological (and other) research

areas: population genetics (Wakano et al., 2017), pathogenic evolution (Day and

Proulx, 2004; Korobeinikov and Dempsey, 2014; Bolzoni and De Leo, 2013), RNA

evolution (Tsimring et al., 1996), game theory (Ruijgrok and Ruijgrok, 2015; Bomze

and Burger, 1995), language evolution (Page and Nowak, 2002). Examples of biolo-

gical traits to which the RME formalism has been applied include: drug tolerance

to cancer treatments (Lorz et al., 2013; Lorenzi et al., 2016), pathogenic virulence

(Day and Proulx, 2004; Bolzoni and De Leo, 2013) and transmission (Korobeinikov

and Dempsey, 2014), antigenic types (Sasaki, 1994; Sasaki and Haraguchi, 2000),

hosts’ resistance to infection (Lorenzi et al., 2020). In this thesis, I will investigate

the mutation-selection evolution of trait-structured populations, characterised by

trade-offs entwining their phenotypic traits. In the presence of a trade-off, the

quantitative value assumed by a trait has the potential to influence multiple aspects

of a phenotype. Whenever such effects display contrasting effects on the individual,

then the trait-structured population will evolve towards non-trivial configurations.

The RME formalism provides an established mathematical tool for the qualitative

investigation of such complex outcomes.

The thesis is structured as follows. In Chapter 2, I will present some basic notions of

evolutionary modelling with the help of a pedagogical model. This example will allow

me to introduce the distinction between monomorphic and polymorphic populations,

and to frame the study of trait-structured populations within the context of the

latter. Moreover, I will derive the RME employed to study the models analysed in

the following chapters, and present the methodology employed to find stationary

solutions of the RME. In Chapter 3, I will study trait-structured populations
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evolving on abstract fitness landscapes, featuring a minimal but universal trade-off

between degeneracy and selection. The consequences of such trade-off have been well

documented within the field of molecular evolution. The aim of my study is to extend

our understanding to trait-structured populations, and to understand the extent to

which effective formulations so far employed are correct. In Chapter 4, I will study an

epidemiological application, where trade-offs will occur between the phenotypic traits

involved in pathogens’ life cycles. The model will be framed in the context of crop

pest management, with the aim of understanding how to optimise pesticide use in

agricultural practices. Finally in Chapter 5, I will sum up the results, and conclude

with possible future lines of research.
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2. From a pedagogical example to

the RME

In this Chapter, I shall introduce some fundamental concepts of evolutionary modelling

by starting from a basic mutation-selection model involving two types of individuals.

Starting from the microscopic description of the evolutionary interactions, I will derive

both deterministic and stochastic dynamics. I will demonstrate the existence of two

fundamentally different behaviours of an evolving population, that are monomorphic

and polymorphic regimes. Finally, I will present the RME formalism that I will use

to investigate the behaviour of trait-structured populations.

2.1. A pedagogical two-types model

2.1.1. Microscopic description of mutation-selection: the

Moran process

The two most used methods to describe selection at the microscopic level are the

Wright-Fisher and the Moran process. The former was introduced during the ‘1930s’

in the context of population genetics (Wright, 1931; Fisher, 1958), to investigate gene

frequency undergoing random sampling in finite populations, and is considered one

of the milestones of population genetics. It is based on discrete, non-overlapping
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generations, and it can be complexified in order to account for selective, mutative,

migrating effects and so on (Blythe and McKane, 2007). The Moran process was

introduced a few decades later (Moran, 1958), and it is based on a more ‘statistical

physics’ description of the stochastic evolutionary events: rather than sampling the

entire pool from generation after generation, individuals are chosen to mutate, die or

reproduce one at a time, with a probability that depends on their features, and on the

details of the dynamics. Hence, unlike the Wright-Fisher process, the Moran process

has overlapping generations, and it can naturally lead to a continuous time description

in terms of master equations and transition rates. For this reason, the Moran process

is generally preferred when one aims at studying the evolving biological population by

means of statistical physics tools (Blythe and McKane, 2007).

The Moran process describes competition for reproduction at the individual level, and

it consists of three steps: i) selection of an individual; ii) reproduction of the selected

individual; iii) replacement by the newborn at the expenses of another individual which

is removed from the population. This process is a Birth-Death process preserving the

total number of individuals, because it always replaces an individual with another

one. Typically, either the selection or the replacement steps depend on fitness, so as

to model Darwinian competition by natural selection in terms of fitness-dependent

birth, or fitness-dependent death. Throughout the thesis, I will employ a formulation

of the Moran process known as local update rule that does not make distinction between

the two options, but still leads to the same general form of the RME (Traulsen et al.,

2005, 2006).

2.1.2. Chemical reactions

The events of competition and of mutation occurring at the microscopic level of the

individuals is schematised by means of the chemical reactions formalism (Gardiner

et al., 1985; Van Kampen, 1992): individuals are considered as particles belonging

to a chemical species; whenever particles interact, a chemical reaction may occur
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leading to formation/degradation of particles, or to changes in their chemical species.

For example, let X and Y be two possible chemical species, and let us consider the

following chemical reaction:

X
r−−−−→ Y, (2.1)

On the left-hand side we have the reactants, in this case a single particle of species X.

On the right-hand side we have the products of the reaction, that is a single particle

of species Y . The constant r is called reaction constant, and indicates the likelihood

of the chemical reaction: the larger r, the more frequently the reaction will occur.

This simple chemical reaction schematises the interaction for which one particle of

the species X transforms into a particle of species Y . For a general chemical reaction

involving X1, . . . Xu reactants and Y1, . . . Yv products, the chemical reaction will read:

α1X1 + α2X2 + · · ·+ αuXu
r−−−−→ β1Y1 + β2Y2 + · · ·+ βvYv, (2.2)

where α, β are the stoichiometric coefficients of the species in play.

The above schematism is applied to illustrate a simple microscopic evolutionary dy-

namics, where individuals of a population of fixed size N can be either of type A,

or of type B. Individuals of type A (B) possess fitness fA (fB). The state of the

system at a certain time is described by the numbers (NA, NB) of individuals of each

type. The number of individuals being fixed, the system is fully described by just NA,

since NB = N − NA. The dynamics involves mutation and competition events, both

modelled by the following Moran processes.

Competition. Let an individual A and an individual B compete for reproduction

at a rate γ per unit of time. Then, individual A will reproduce and its newborn will

replace individual B:

A+B
γ pγ−−−−−−→ 2A, (2.3)
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with a probability pγ given by:

pγ =
1

2
+
ω

2
(fA − fB) , (2.4)

where ω is the selection pressure parameter. Alternatively, individual B will reproduce

and its newborn replace individual A:

A+B
γ qγ−−−−−→ 2B, (2.5)

with probability qγ:

qγ = 1− pγ =
1

2
+
ω

2
(fB − fA) . (2.6)

I call these two reactions complementary, because their probability of occurrence al-

ways sums up to one (or in other words, their rate of occurrence always sums up to

γ). Each probability is composed of a baseline value of 1
2
, and of a fitness-dependent

term, proportional on the difference between the fitness value of the two types. By

construction, the individual with larger fitness will be more likely to reproduce than

to perish. If A is fitter than B (that is fA > fB), then the first reaction is more likely

to occur than the second, and A is more likely to replace B. Contrarily, if A is less

fit than B (that is fA < fB), then the second reaction is more likely to occur, and B

is more likely to replace A. The larger the difference between the fitness value of the

two individuals, the more skewed the pair of complementary reactions will be towards

the more probable. The magnitude of the fitness-dependent contribution with respect

to the baseline probability 1
2

is mediated by the selection pressure parameter ω: the

larger (smaller) is ω, the more (less) relevant will be fitness in determining the fate of

the individuals. In the case ω = 0, the dependence on fitness disappears and the two

reactions occur with same probability: this scenario is known as neutral dynamics.

Mutation. Let mutations occur at a constant rate µ per unit of time. An individual
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of type A mutates into type B:

A
µmAB−−−−−−−→ B, (2.7)

with probability mAB, while and individual of type B mutates into type A:

B
µmBA−−−−−−−→ A, (2.8)

with probability mBA.

The above reactions describe the evolutionary dynamics of mutation and selection as

microscopic interactions between individuals. A first, simplified approach to describe

the system’s behaviour can be achieved by invoking the law of mass action, that allows

to derive the temporal dynamics of the macroscopic quantities NA and NB .

2.1.3. The law of mass action

The law of mass action associates a set of differential equations for the concentrations

of the types involved, starting from the chemical reactions at play. Introduced by

Waage and Guldberg in 1864 in (Waage and Gulberg, 1986), the law can be stated as

follows (quoted from Biancalani, 2014):

Given a chemical equation, the time derivative of a concentration of a

certain chemical species, being a reactant or a product, is proportional to

the product of the concentrations of the reactants of the reaction. This is

multiplied by the reaction constant, which has a plus sign if the species is

created or a minus sign if the species is destroyed.

Originally introduced in the context of chemical kinetics, the argument of the law

is independent of the phenomenological context, and since then, the law has been

employed in a wide variety of applications (Van Kampen, 1992). In the context of
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mathematical biology, its most iconic application is provided by the Lotka-Volterra

equations, describing the dynamics of prey-predator systems (Murray, 2007). Let

nA = NA
N

and nB = NB
N

be the concentrations of individuals of the two types, and

apply the law of mass action to the above four reactions: the first (second) reaction

Eq. (2.3) (Eq. (2.5)) leads to an increment (diminution) term of the number of A type

individuals, which is proportional to the competition rate γ, the densities of the two

species involved nA nB, and to the probability pγ (qγ) of occurrence of the reaction,

that is: +γ pγ nANB (−γ qγ nANB). Likewise, the third reaction Eq. (2.7) (fourth

reaction Eq. (2.8)) leads to a diminution (increment) term of the number of A (B)

type individuals mutating into B (A), which is proportional to the mutation rate µ, to

the density of A individuals nA, and to the probability of occurrence of the mutation

mAB (mBA), that is: −µmAB nA (+µmBA nB).

The differential equation governing the temporal dynamics of the density nA(t) with

initial condition nA(t = 0) = n0, is then obtained by collecting all contributions.

Substituting Eqs. (2.4)-(2.6), recalling that nB = 1 − nA, and rearranging terms, we

obtain:

dnA(t)

dt
= 2γω (fA − fB)nA(t) (1− nA(t)) + µ

[
mBA − (mAB +mBA)nA(t)

]
. (2.9)

Eq. (2.9) describes the mutation-selection dynamics for the macroscopic concentration

of individuals of A type, derived from invoking the law of mass action on the micro-

scopic interactions of competition and mutation (the corresponding equation for nB

is simply the opposite of Eq. (2.9), since dnA
dt

= −dnB
dt

). In the following, I introduce

some simplifying assumptions on the parameters of the model.

Let us consider the simple case where mutations occur with the same rate in both

directions, and let A denote the fit type and B denote the unfit type, i.e.:

mAB = mBA = 1, fA = 1, fB = 0. (2.10)
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Inserting Eqs. (2.10) into Eq. (2.9), the dynamics simplifies to:

dnA(t)

dt
= 2γωnA(t) (1− nA(t)) + µ (1− 2nA(t)) . (2.11)

In Fig. 2.1, I show some temporal trajectories of nA(t), obtained by means of numerical

integration of Eq. (2.11), for two sets of parameters (specified in the figure’s caption

and legend). For both sets, the system is initialised with two different initial conditions

(nA(0) = 0.1 and nA(0) = 0.9). In all cases, the temporal trajectories (smooth solid

lines) approach monotonically the asymptotic equilibrium value nA (indicated with

dashed lines), which is obtained by setting Eq. (2.9) to zero:

nA =
1

2
+

√
1 + δ2

4
− 1

δ
, δ =

2γω

µ
. (2.12)

In absence of competition (γ = 0), or in absence of selection pressure (ω = 0), the

population is equally distributed between the two types, that is nA = 1
2
. In the

presence of competition (γ ≥ 0), selection pressure will bias the equilibrium density

towards the fittest type A, as expected. Fig. 2.1 also displays the temporal trajectories

of the stochastic dynamics corresponding to Eq. (2.11), which will be introduced and

discussed in the following subsection.

2.1.4. The master equation formalism

The microscopic rules of competition and mutations presented in Subsection 2.1.2 have

a probabilistic nature, that the law of mass action is unable to capture, due to its de-

terministic nature: at a certain time t, the population is composed of NA individuals of

type A; reactions have a certain rate of occurrence; upon their occurrence, the number

NA will either increase or decrease by 1. Therefore, the system transits stochastically

between different states, characterised by different values of NA. The master equation

describes the temporal dynamics of the probability P (NA, t) of observing the system
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in state NA at time t. Defining the transition rate per unit of time T (NA|N ′A) from

state N ′A to state NA, the master equation generally reads:

dP (NA, t)

dt
=

∑
N ′A 6=NA

T (NA|N ′A)P (N ′A, t)−
∑

N ′A 6=NA

T (N ′A|NA)P (NA, t). (2.13)

In Eq. (2.13), the first sum represents all the gain contributions due to transitions

from other states N ′A towards the state NA; the second sum represents all the loss

contributions due to transitions from the state NA towards other states N ′A. In this

sense, the master equation can be intended as a balance equation for the probability

of each state, specified by the transition rates T (NA|N ′A).

The chemical reactions Eqs. (2.3), (2.5), (2.7) and (2.8) admit transitions only between

states with consecutive numbers, since any event will either increase or decrease NA by

one. Therefore, we have T (NA|N ′A) = 0 if |NA−N ′A| > 1. The only nonzero transition

rates are then:

T+(NA) = T (NA|NA − 1) =γ (1 + ω)
NA

N

(
N −NA

N

)
+ µ

(
N −NA

N

)
(2.14)

T−(NA) = T (NA|NA + 1) =γ (1− ω)
NA

N

(
N −NA

N

)
+ µ

NA

N
, (2.15)

where I have introduced the symbols T±(NA) to lighten the notation. The master

equation then simplifies to:

dP (NA, t)

dt
= T+(NA−1)P (NA−1, t)+T−(NA+1)P (NA+1, t)−

[
T+(NA) + T−(NA)

]
P (NA, t).

(2.16)

The Gillespie algorithm provides samples of the probability distribution described

by the master equation (Gillespie, 1976, 1977), and corresponding instantiations of

the value of the density nA over time. In Fig. 2.1, I show the example trajectories

resulting from Gillespie simulation of the master equation, corresponding to the set of

parameters and two initial conditions analysed in the deterministic case. The Gillespie

trajectories appear as noisy versions of their deterministic counterparts. Contrary to
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Figure 2.1: Temporal trajectories of the two-type model. Temporal trajector-
ies of the two-type mutation-selection dynamics are shown for two values of selection
pressure ω. For each ω, two trajectories corresponding to two different initial condi-
tions are shown. Smooth lines correspond to numerical integration of the determin-
istic Eq. (2.11), while noisy curves correspond to Gillespie simulations of the master
Eq. (2.16), with N = 1000. Dashed lines correspond to the deterministic equilibrium
value of nA. The mutation rate µ is set to 1.

the deterministic trajectories, after the transient such trajectories fluctuate perpetually

around the equilibrium value nA, due to the stochastic nature of the master equation.

Fig. 2.1 seems to suggest that, overall, deterministic and stochastic descriptions de-

liver the same information on the state and on the dynamics of the evolving system.

However, this is not the case, and even for such a simple model, the stochastic dynam-

ics display some behaviours that the deterministic description is not able to capture.

In the next subsection, I will present the Fokker-Plank equation, that will serve to

illustrate the dual behaviour of the mutation-selection dynamics.

2.1.5. The Fokker-Plank equation

The Fokker-Plank equation is a typical method to obtain approximations of the master

equation, and it describes the temporal evolution of the probability density function
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P (nA) to observe the system in the state nA. By applying the method of the generating

function (detailed in the Appendix A.2), one obtains:

∂P (nA, τ)

∂τ
= −∇J(nA, τ), (2.17)

where τ = t
N

is the time rescaled with respect to system size, and J(nA, τ) is the

probability current:

J(nA, τ) = a(nA)P (nA, τ)− 1

2

∂

∂nA
b(nA)P (nA, τ), (2.18)

with:  a(nA) = 2γωnA (1− nA) + µ (1− 2nA)

b(nA) = 1
N

[2γnA (1− nA) + µ] .

(2.19)

The coefficient a(nA) is called drift, and corresponds to that composing the determ-

inistic Eq. (2.9). The coefficient b(nA) is called diffusion, and describes the purely

stochastic contributions to the dynamics: its magnitude is mediated by system size N ,

in agreement with the fact that stochastic effects tend to disappear for large systems.

In the following, I will limit the calculations of the stationary probability distribution

to the simple case of neutral dynamics (i.e. setting ω = 0), as it is sufficient to show

the dual behaviour of the mutation-selection dynamics, and to introduce the difference

between monomorphic and polymorphic regimes.

2.1.6. Monomorphic and Polymorphic regimes

In a one-dimensional case such as that I am analysing, the stationary solution of the

Fokker-Plank equation is obtained by demanding a vanishing probability current, i.e.

J(nA) = 0 ∀nA (Gardiner et al., 1985). In the case of neutral dynamics (ω = 0), the
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probability current reduces to:

Jneutral(nA) = µ(1− 2nA)P (nA)− 1

2N

∂

∂nA
[2γnA(1− nA) + µ]P (nA) = 0, (2.20)

where the time dependence of P has been dropped, because the system is at station-

arity. Performing the derivative and rearranging the terms, one obtains:

P ′(nA)

P (nA)
= Γ(nA), Γ(nA) =

1− 2nA
2γnA(1− nA) + µ

(2Nµ− 2γ) (2.21)

Integrating both sides of Eq.(2.21) between 0 and nA, one obtains:

P (nA) = Ze
∫ nA
0 Γ(y)dy, (2.22)

with Z being the normalisation constant. Finally, integrating the function Γ(y), I

obtain the stationary distribution for the neutral dynamics:

P (nA) = Z [2γnA(1− nA) + µ]
Nµ
γ
−1 . (2.23)

This probability distribution has two distinct behaviours, depending on the value of

the compound parameter Nµ
γ

. In the following, I will consider both population size

N and competition rate γ fixed, and focus on variations on the order of magnitude of

mutation rate µ, because in the biological literature this is considered the parameter

discriminating different evolutionary regimes. However, analogous conclusions are ob-

tained if one fixes the latter and varies the order of magnitude of the former.

In Fig. 2.2 I plot some analytical solutions of Eq. (2.23) (red lines), and compare with

results from numerical simulations with Gillespie algorithm. The numerical histogram

(blue bars) is obtained by running the algorithm 105 times, and recording the value

of nA every 104 time units. The values of the parameters used in the simulations are

specified in the figure’s caption. The two distinct behaviours of the stationary prob-

ability distribution are separated by a critical mutation rate value µc = γ
N

, for which
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Figure 2.2: Monomorphic and polymorphic regimes. Stationary probability
distribution of observing nA individuals. Red lines: analytical solution of the Fokker-
Plank equation; blue bars: averages from numerical simulations (number of realisa-
tions: 105. Time interval between realisations: 104 time units). Left panel: the
mutation rate is below the threshold value and the population is in the monomorphic
regime; inset: temporal trajectory of the simulated master equation. Parameters:
µ = 0.0005 < µc, γ = 1, ω = 0, N = 1000. Right panel: the mutation rate is above
the threshold value and the population is in the polymorphic regime; parameters:
µ = 1 > µc, γ = 1, ω = 0, N = 1000.

P (nA) becomes uniform.

Monomorphic regime. Below the critical mutation rate (i.e. µ < µc), the probab-

ility distribution displays two sharp peaks at x = 0 and x = 1, as illustrated in the left

panel. The fraction of individuals of type A is almost always either 0 or 1: therefore,

the population is almost always entirely composed of either only type A or only type

B individuals, switching from one to another under the effect of demographic noise.

In absence of selection pressure (ω = 0), there is no preference between the two types,

so that the distribution is not biased towards the fittest one and the two peaks are

equivalent. Were selection pressure present (ω > 0), the corresponding probability

distribution would preserve the same U shape, but it would be skewed towards x = 1,

because the dominance of the fitter A type would be favoured by natural selection.

This scenario represents an example of monomorphic population, because at every

time individuals tend to share the same type: at t = t0, all N individuals are of, e.g.,

A type; at t = t1 a mutation occurs, leading to the emergence of 1 type B individual

among N − 1 of type A; however, this unique individual will very likely perish during

a competition event, before new B types individuals emerge due to mutations; only
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occasionally, individuals of type B will be lucky enough to win all competition events

against type A ones, increase in number, and eventually dominate the population, thus

reversing the system’s composition. If this unlikely event happens, the population will

have reached the opposite monomorphic state, and one will have to wait another long

time before seeing the re-emergence of A type individuals.

Polymorphic regime. On the other hand (right panel), above the critical mutation

rate (i.e. µ > µc), the distribution displays a single peak located at nA = 1
2
, that is

the equilibrium point Eq. (2.12), predicted by the deterministic equations: most of the

time, the population is equally split between A and B types, because of the absence of

selection pressure, but random effects due to demographic noise will make the compos-

ition fluctuate around the expected deterministic proportion. Were selection pressure

present (ω > 0), the peak of the distribution would be displaced towards nA = 1

(but still coinciding with Eq. (2.12)), because at equilibrium the presence of fitter A

type individuals would be favoured by natural selection. This scenario represents an

example of polymorphic population (note, in this case, bimorphic) because, contrary

to the monomorphic case, here mutations are so rapid that individuals of both types

are continuously present at every time, and the system is described by specifying how

individuals are distributed over the possible types.

This simple example illustrates how the magnitude of mutation rates can discriminate

between the two different scenarios, and the transition from one to the other can be

appreciated at the variation of µ. However, in more complex situations (e.g. involving

more than two types and/or more complex microscopic interactions) the calculation

of the stationary probability distribution becomes unfeasible, so that being able to

describe both regimes and detecting such transition can be difficult. Therefore, a

modeller typically has to decide whether to operate below or above the critical muta-

tion rate µc. Of course, this choice affects the kind of adaptive phenomena they can

describe, and the kind of mathematical tools they will most likely employ. Indeed, the

behaviour of a monomorphic population cannot be properly captured by a determ-

inistic approach, as the inset in the left panel of Fig. 2.2 clearly shows: if we track
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the state of the system nA over time during a simulation of the master equation (blue

line, inset) we note that very rarely the system is found at the equilibrium state pre-

dicted by the deterministic equations (dashed grey line), which has little to do with

the bistability typical of a monomorphic population. For this reason, monomorphic

populations are generally studied in the context of stochastic processes (Iwasa, 1988;

Sella and Hirsh, 2005; Barton and Coe, 2009), where the dynamics is simplified in order

to focus on the phenomenon of transition between different monomorphic states over

time. In the graphical schematisation of fitness landscapes, the state of a monomorphic

population at a certain time can be represented as a point on the fitness landscape,

and its evolution as the trajectory performed over time by such point, under the effect

of evolutionary processes (see panel a of Fig. 2.3).

Instead, the behaviour of a polymorphic population can be studied deterministically,

as demonstrated by the agreement between stochastic and deterministic trajectories

shown in Fig. 2.1. Models of polymorphic populations usually operate under the as-

sumption of infinite population (Eigen and Schuster, 1977; Eigen et al., 1988), so that

stochastic finite size effects can be neglected (although some degree of extension to

finite size population is possible Alves and Fontanari, 1998; Saakian and Hu, 2006;

Saakian et al., 2009; Park et al., 2010; Saakian et al., 2012.). The state of the system

is described by the distribution (be it continuous or discrete) of the various types coex-

isting in the populations, resulting from the balance between mutation and selection.

In the graphical schematisation of fitness landscapes, the state of a polymorphic popu-

lation at a certain time can be represented as a cloud of points on the fitness landscape,

whose distribution varies over time due to evolutionary forces (see panel b of Fig. 2.3,

adapted from Wilke, 2005). Regardless of the biological details of the system and

of the interactions in play, the corresponding deterministic equations have provided

insight into universal features of evolutionary dynamics (Page and Nowak, 2002), and

are known in the literature as Replicator-Mutator Equations (RME henceforth).
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Figure 2.3: Monomorphic and Polymorphic populations evolving on fitness
landscapes. Panel a: a monomorphic population can be visualised as a single point
on the fitness landscape (identifying the dominant phenotype), whose position varies
over time, under the effect of evolutionary processes (adapted from Poelwijk et al.,
2007). Panel b: a polymorphic population can be visualised as a cloud of points (one
for each individual) distributed over the fitness landscape, and evolution as the process
shaping such distribution over time (adapted from Wilke, 2005).
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2.2. The Replicator-Mutator Equation (RME)

Starting from the simple two-types model analysed in the previous section, I will

present a different, more rigorous derivation of the RME, based on mean-field ap-

proximation of the stochastic dynamics. Then, I will derive the discrete Replicator-

Mutator Equation from the generalisation of the dynamics given by the chemical

reactions Eqs. (2.3), (2.5), (2.7) and (2.8), to the case of M finite types. Finally the

continuous Replicator-Mutator Equation describing the mutation-selection dynamics

of trait-structured populations will be obtained by performing a continuum approxim-

ation on the discrete version.

2.2.1. The mean field approximation

The master equation also contains the information related to the average behaviour of

the stochastic system. Starting from Eq. (2.16), it is possible to derive the equation

describing the temporal evolution for the mean number 〈NA〉 of individuals of type A,

defined as:

〈NA〉 =
∑
NA

NAP (NA, t). (2.24)

I multiply Eq. (2.16) by NA and sum over the possible states NA = 0, . . . , N . On the

left-hand side, we obtain:

∑
NA

NA
dP (NA, t)

dt
=

d

dt

∑
NA

NAP (NA, t) =
d

dt
〈NA〉 =

d

dτ

〈NA〉
N

, (2.25)

where I have rescaled time τ = t
N

, with respect to the system size. On the right-hand

side, we obtain:

∑
NA

NAT
+(NA−1)P (NA−1, t)+NAT

−(NA+1)P (NA+1, t)−NA

[
T+(NA) + T−(NA)

]
P (NA, t).

(2.26)
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In the first term of Eq. (2.26), manipulating the sum by rescaling the index NA →

NA + 1, yields: ∑
NA

(NA + 1)T+(NA)P (NA, t). (2.27)

Likewise in the second term of Eq. (2.26), manipulating the sum by rescaling the index

NA → NA − 1, yields: ∑
NA

(NA − 1)T−(NA)P (NA, t). (2.28)

Substituting Eqs. (2.27) and (2.28) into Eq. (2.26) some terms cancel out, and we are

left with:

d

dτ

〈NA〉
N

=
∑
NA

[
T+(NA)− T−(NA)

]
P (NA) = 〈T+(NA)− T−(NA)〉. (2.29)

Substituting the transition rates Eqs. (2.14) into Eq. (2.29), we obtain:

d

dτ

〈NA〉
N

= 2γω
〈NA (N −NA)〉

N2
+ µ

(N − 〈NA〉)
N

. (2.30)

The deterministic equations are finally obtained by defining the deterministic density

nA of A type individuals as:

nA := lim
N→∞

〈NA〉
N

, (2.31)

and by invoking the mean-field approximation. The mean-field approximation consists

in substituting all many-body with one-body averages, that is:

〈N2
A〉 ≈ 〈NA〉2. (2.32)

Substituting Eqs. (2.31) and (2.32) into Eq. (2.29), we obtain:

dnA(t)

dt
= 2γωnA(t) (1− nA(t)) + µ (1− 2nA(t)) , (2.33)
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in analogy with the derivation based on the law of mass action (Eq. (2.9)). Inspecting

the mean-field derivation, one recognises that the mean-field equation can be cast in

the following form:
dnA(t)

dt
= 〈T+(nA)− T−(nA)〉, (2.34)

that is the balance between the average transition rate leading to increase of nA and

that leading to a decrease of nA. Starting from Eq. (2.34), it is straightforward to

generalise the mean-field equation to an arbitrary number of types.

2.2.2. Discrete RME

Let us now generalise the microscopic interactions of mutation and selection introduced

in Subsection 2.1.2 to an arbitrary number of types. Let Xi be an individual of type

i = 1, . . . ,M , fi the fitness value related to type i, and mi,j the probability for an

individual of type i to mutate into type j. Then, the chemical reactions describing

competition between two individuals of types i and j are:

Xi +Xj

γ[ 1
2

+ω
2

(fi−fj)]
−−−−−−−−−−−−→ 2Xi (2.35.a)

Xi +Xj

γ[ 1
2

+ω
2

(fj−fi)]
−−−−−−−−−−−−→ 2Xj, (2.35.b)

while the chemical reaction describing an individual of type i mutating into type j is:

Xi
µmi,j−−−−−−−→ Xj. (2.36)

For a population of size N , the state of the system at a certain time is described by the

vector (N1, . . . , NM) collecting the number of individuals of each type. The stochastic

dynamics undergone by the system is obtained by writing the master equation for

each type. Then, defining the deterministic density ni := limN→∞
〈Ni〉
N
, i = 1, . . . ,M

and performing calculations equivalent to those presented in Subsection 2.2.1, the

deterministic equations for the temporal evolution of the densities ni are given by
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(Traulsen et al., 2006):

dni(t)

dt
=

M∑
j

(mj,inj −mi,jni) + 2γωni

M∑
j

nj (fi − fj) . (2.37)

The first term in Eq. (2.37) represents the balance between in and out contributions

due to spontaneous mutations. The second term represents the fitness-dependent con-

tribution due to competition, which is positive when the focal type i is competing with

a less fit type, and negative otherwise. In the case where fi = fj, the deterministic

contribution to competition is zero, as on average wins and losses will compensate.

Both terms are summed over all types M , in order to account for all possible in-

teractions. Equation (2.37) describes a general mutation-selection dynamics between

discrete types, with general mutation scheme (fixed by parameters mi,j) and fitness

landscape (fixed by fi); it is sometimes referred as the parallel scheme (Baake and

Wagner, 2001; Saakian and Hu, 2004), to stress that spontaneous mutations occur as

events separated from reproduction due to competition (in opposition to the original

model formulated by Eigen, where mutations are coupled to competition). Before

moving on, I am going to recast Eq. (2.37) in the form in which it usually appears in

the literature (Hofbauer et al., 1998). I first define the average fitness f as:

f =
M∑
j

fjnj, (2.38)

and recall that the following normalisation condition holds:

M∑
j

nj = 1. (2.39)

By using Eqs. (2.38)-(2.39), the equation takes the form:

dni(t)

dt
=

M∑
j

(mj,inj −mi,jni) + 2γωni
(
fi − f

)
, (2.40)
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that is the typical form of the Replicator-Mutator Equation (RME).

2.2.3. From the discrete to the continuous RME

So far, I have employed the generic term type, to refer to the different possible biolo-

gical configurations that individuals may be found in. From a modelling perspective,

different types may refer to differences at the genetic or phenotypic level, and are

ultimately captured by their different fitness values. The assumption underpinning

the RME formalism is that individuals are able to spontaneously mutate from one

type to the other, on a timescale that is comparable with the selective timescale. A

typical framework where the discrete RME is employed is represented by viral evolu-

tion (Domingo et al., 2012): here, types refer to, e.g., particular RNA sequences, each

having their own AUGT string of bases; fitness is intended as the rate at which each

particular RNA sequence self-replicates; punctual mutations occur at the aminoacids

level and change the RNA sequence, hence the type, of the virus.

The continuous formulation aims at describing a different biological context, for which

the notion of type may be less appropriate. Instead, I will introduce the notion of

trait : a trait is a heritable phenotypic feature of the individual, that is possible to

quantify by means of a continuous variable x, and which is exposed to variation due

to spontaneous mutations.

Consider two bacterial cells that are identical from the genetic perspective, but their

capability to adhere to host cells differs, due to a different level of activity of a certain

protein involved in the adhesion process. It would be improper to refer to them as

belonging to two different types of bacteria; rather, if the level of protein activity is a

feature prone to mutations, then it is more appropriate to consider them as two cells

of the same type, but differing in the magnitude of a common quantitative trait. Such

a polymorphic population is also known in literature as trait-structured (or phenotype-

structured), to stress the fact that its composition depends on how the phenotypic

trait of interest is structured within the population. In the following, I will present
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how to describe the mutation-selection dynamics of trait-structured populations with

continuous quantitative traits, by means of a continuous RME.

2.2.4. Continuous RME

The continuous version of the RME was first introduced by Kimura in (Kimura, 1965),

based on the assumption that: i) mutations can produce an infinite sequence of trait

values; every mutation may produce a new trait value different from the pre-existing

ones. ii) the effect of new trait value on the quantitative character is only slightly dif-

ferent from the parent trait value from which it was derived from a single mutational

step. The above assumptions are almost exact quotes of the original sentences written

by Kimura in (Kimura, 1965), adapted in order to avoid the introduction of additional

biological terms (namely that of allele), which do not serve a useful purpose to this

thesis. In his original work, the continuous RME is derived starting from law of mass

action-like arguments. Here, I will derive it by performing a continuum approximation

on the discrete Eq. (2.40), although other more general routes are possible (Wakano

et al., 2017). The derivation is performed on a simple one-dimensional case, general-

isations to multiple dimensions following straightforwardly.

First, I assume that all types are discretised in a one-dimensional lattice space, with

lattice spacing ∆x. I denote with i ∈ [0, . . . ,M ] the lattice site with discrete trait

value xi = i∆x ∈ [0, 1]. Therefore, ni is the density of individuals with trait value

xi. As a result of a single mutation event, an individual of type i moves in the lattice

space towards one of the nearest neighbour sites: that is, either i − 1 or i + 1, for

i ∈ (0,M). An individual placed at the extreme i = 0 (i = M) of the lattice space will

then move only rightwards (leftwards) towards the site 1 (M − 1). The set of M + 1

RME describing the density of individuals at each lattice site is then given by:

dn0

dt
= µ (n1 − n0) + 2γωn0

(
f0 − f

)
(2.41)

dni
dt

= µ (ni+1 + ni−1 − 2ni) + 2γωni
(
fi − f

)
(2.42)
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dnM
dt

= µ (nM−1 − nM) + 2γωnM
(
fM − f

)
, (2.43)

where fi is the fitness of type i depending on trait value xi. Let us now introduce the

trait variable x ∈ T = [0, 1], where T is the trait space. In the limit of small lattice

spacing, I can introduce the following approximations relating the discrete and the

continuous descriptions:

xi ≈ x, ni ≈ n(x)dx, fi := F (xi) ≈ F (x). (2.44)

The first approximation states that x is the continuous counterpart of the discrete trait

value xi; the second approximation states that to each trait value is now associated a

density of individuals n(x) per unit of x; the third approximation states that fitness

values are now functions of the continuous trait variable x, according to the fitness

function F . With the above approximations, the normalisation condition Eq. (2.39)

and the average fitness Eq. (2.38) become, respectively:

1 =

∫
T
n(x; t)dx (2.45.a)

F [n(x; t)] =

∫
T
xn(x; t)dx, (2.45.b)

where the average fitness F is functional of the density n(x; t). In the following, I

will refer to the density n(x; t) as the trait distribution of the population at time t.

Inserting the above continuum approximations in the discrete RME for the generic i

type, I obtain the equation for the temporal evolution of the trait distribution:

dn(x; t)

dt
= µ (n(x+ ∆x; t) + n(x−∆x; t)− 2n(x; t))+2γωn(x; t)

(
F (x)− F [n(x; t)]

)
.

(2.46)

Assuming that the trait distribution n(x; t) ∈ C2 (that is differentiable functions with

continuous first and second derivatives) in both the trait space T and in the time

domain R≥0, we can Taylor expand up to second order the terms n(x + ∆x; t) and
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n(x−∆x; t) around the point (x, t):

n(x±∆x; t) ≈ n(x; t)±∆x
∂n(x; t)

∂x
+

∆x2

2

∂2n(x; t)

∂x2
. (2.47)

Inserting the Taylor expansion Eq. (2.47) into Eq. (2.46) and performing basic algebraic

calculations, we finally obtain:

dn(x)

dt
= µ

∆x2

2
∇2n(x; t) + 2γωn(x; t)

(
F (x)− F [n(x; t)]

)
, (2.48)

that is the continuous RME of interest (note that the Laplacian notation ∇2 indicates

the partial second derivative with respect to x). The continuous RME (2.48) is a

nonlinear integro-differential equation, describing the mutation-selection dynamics of

the trait distribution. Changes due to selection preserve the same form of the discrete

RME, and I will not discuss it further. Changes due to mutations are modelled by

the Laplacian ∇2, that is the local diffusion operator acting on the trait space T ,

with corresponding diffusion coefficient given by µ∆x2

2
. This term is appropriate when

mutations induce small perturbations on the trait, consistently with assumption ii)

of Kimura’s formulation. This modelling choice is also known in the literature as

continuum-of-alleles formulation (Bu et al., 1988). An antipodal formulation of local

mutations is provided by the so-called house-of-cards model (Kingman, 1977, 1978),

which describes the case when mutations induce major disruptions on the parent trait.

Possible interpolating models between continuum-of-alleles and house-of-cards have

also been proposed (Zeng and Cockerham, 1993).

The continuous RME is closed by the no-flux boundary conditions:

∂n(x; t)

∂x
|x=0=

∂n(x; t)

∂x
|x=1= 0 (2.49)

describing the behaviour of the system at the boundaries of the trait space: muta-

tions cannot lead outside the trait space, the boundaries x = 0 and x = 1 act as

reflecting barriers. Mutation and selection operate oppositely on the population’s
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trait composition: the former provides a continuous source of phenotypic variation;

the latter instead removes variation by pushing towards fitness increase and deleting

less fit traits. At stationarity, these two effects balance, and the system is described

by a stationary distribution. The conditions for the existence and uniqueness of the

stationary solution have been studied by Bürger in (Bürger, 1986). The proofs are

based on methods from the theory of unbounded, self-adjoint operators, an overview

of which goes beyond the purpose of this thesis. I just recall that for a continuous,

positive and bounded fitness landscape F (x), a positive distribution with initial con-

dition n(x; t0) ≥ 0 will always converge to n(x) as t → ∞, where n(x) is solution of

the stationary RME (sRME henceforth):

µ
∆x2

2
∇2n(x) + 2γωn(x)

(
F (x)− F [n(x)]

)
= 0. (2.50)

All fitness landscapes considered throughout this thesis satisfy the above conditions

on F . In Chapter 3, the existence and stability of the solutions employed will not

be discussed, as all conditions in (Bürger, 1986) are met. However, such conditions

will not be sufficient for the solutions presented in Chapter 4, because the RME will

involve a population of non constant size, and agent-based numerical simulations will

be used to check the consistency of the analytical results.

The deterministic RME describing the mutation-selection dynamics of a polymorphic

population has been derived from mean-field arguments, in the case where pheno-

typic differences between individuals were captured by a single quantitative trait x.

However, the generalisation to multidimensional trait spaces is straightforward.

2.2.5. d-dimensional RME

Let x ∈ Td be a d-dimensional vector belonging to the trait space Td. Each component

xi of the vector is the quantitative representation of the phenotypic feature i. The

collection of the d phenotypic features represents a phenotype. Let F : Td → [0, 1] be
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the fitness function mapping the phenotype x into its fitness value F (x). The evolving

system is described by the trait (or phenotype) distribution n(x; t). The normalisation

condition reads: ∫
Td
n(x; t)dx = 1, (2.51)

and the average fitness is obtained by averaging the fitness function F over all the

trait space:

F [n(x; t)] =

∫
Td
F (x)n(x; t) dx, (2.52)

where dx is the trait space’s volume element dx = dx1 dx2 . . . dxd. Assuming that

each trait mutates independently from each other and at the same rate µ (note that

the scales of the traits can be defined to make it so, without loss of generality), then

mutations over the trait space are modelled by the generalised Laplacian operator ∇2
d

acting on Td. The d-dimensional RME is then given by:

dn(x; t)

dt
= µ

∆x2

2
∇2n(x; t) + 2γωn(x; t)

(
F (x)− F [n(x; t)]

)
, (2.53)

subject to the boundary conditions:

n̂ · ∇n(x; t) |x∈∂Td= 0, (2.54)

where n̂ is the unit vector normal to the boundary ∂Td of the trait space. The condition

Eq. (2.54) generalises the one-dimensional no-flux boundary conditions describing the

reflecting nature of mutations close to the boundaries of the trait space. Differently

from physical systems, where a variety of possible boundary conditions describe differ-

ent, plausible behaviours, here we are interested only in reflecting boundary conditions:

indeed, periodic boundary conditions would connect very phenotypically distant points

of the trait space, in contrast with assumption of ‘slight mutations’; absorbing bound-

ary conditions would imply that phenotypes at the boundaries of the trait space are

lethal, thus behaving as sinks, and in the models that I will study there is no reason

to consider lethal phenotypes. Finally, non-zero boundary conditions would imply



34 2. From a pedagogical example to the RME

the existence of in and out fluxes of individuals, which are not possible (because the

microscopic interactions in play preserve the total number of individuals). Explicit

analytical solutions of the sRME are rare because they are hard to obtain (see e.g.

Alfaro and Carles, 2017; Alfaro and Veruete, 2019; Ruijgrok and Ruijgrok, 2015), and

they rely either on further approximations, or on specific choices of the fitness land-

scape. Instead, I will employ a method allowing to obtain self-consistent solutions,

which in principle is applicable to any choice of trait space T and fitness function F .

2.2.6. Self-consistent solutions of the sRME

At stationarity, the system is described by the time-independent trait distribution

n(x). Therefore, the correspondent average fitness F [n(x)] does not change in time

any more, and it reaches a constant value F [n(x)] = φ. With a fixed average fitness,

the sRME loses both the nonlinear and the integro-differential natures, and one can

then write the linear sRME:

µ
∆x2

2
∇2nφ(x) + 2γωnφ(x) (F (x)− φ) = 0, (2.55)

where nφ(x) is the solution depending on the unknown average fitness φ, subject to

the conditions: 
∫
T nφ(x)dx = 1

n̂ · ∇nφ(x) |x∈∂T= 0.

(2.56)

Once the linear sRME (2.55) is solved, the right solution n(x) is obtained by solving

the self-consistent condition on the average fitness:

φ =

∫
T
F (x)nφ(x)dx. (2.57)

Solving the linear sRME (2.55) is, in principle, an easier task than the nonlinear

integro-differential version. However, the choice of the method depends on the prop-



2.2. The Replicator-Mutator Equation (RME) 35

erties of both the fitness landscape F and the trait space T . On the other hand,

the self-consistent condition will generally have to be solved numerically by means of

standard nonlinear system solvers. This semi-analytical procedure represents a parsi-

monious way to explore the parameter space of the model (which can become large as

the complexity of the problem is increased), and it will be applied to solve the RME

in all models presented in both Chapter 3 and Chapter 4.
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3. Degeneracy-selection trade-off

3.1. Introduction

Most of the mutation-selection models involving trait-structured populations employ

one-dimensional trait spaces, where all the biological information of interest is con-

densed into a single quantitative trait. Therefore the dynamics is typically investigated

by means of one-dimensional fitness landscapes. This picture purposely focuses the

attention on the traits providing selective advantage to the evolving individual, thus

neglecting contributions provided by neutral traits. Despite not providing selective

advantage to the carrier, neutral traits (that will be properly defined in the following)

contribute to shape the fitness landscape upon which the population evolves, and be-

come particularly relevant when they are related to selective traits through a trade-off.

Understanding the interplay between neutrality and selection is considered one of the

major challenges in the contemporary theory of biological evolution (Wagner, 1999;

Ciliberti et al., 2007a; Wagner, 2008; Barghi et al., 2020; Manrubia et al., 2020), aiming

to bridge the gap between two historically antipodal theories (Nei, 2013): selectionism

and neutralism. Such interplay has been well documented in the case of monomorphic

populations, leading to a complete formal theory known as free-fitness. In the comple-

mentary, polymorphic case (to which trait-structured populations belong), theoretical

investigations have been limited to special cases, or to effective formulations inspired

by free-fitness. In this Chapter, I shall explore the interplay between neutrality and

selection in trait-structured populations, by means of degenerate fitness landscapes
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featuring both neutral and selective traits, related by a minimal but universal trade-

off. I will calculate the trait distributions on symmetric and asymmetric degenerate

landscapes, and compare their behaviour with non degenerate cases. Then, I will cal-

culate the marginal fitness distributions and show the emergence of a dual behaviour,

due to the presence of a trade-off between neutral and selective traits. I will show that

asymmetries of the fitness landscape lead to a characterisation of neutral contributions

that drastically differ from the free-fitness approach.

3.1.1. Neutralism

The concept of neutrality was introduced by the population genetist Mooto Kimura

to explain the patterns of aminoacid substitution, experimentally observed in animal

haemoglobin molecules (Kimura et al., 1968). Since then, neutralism developed as

an approach complementary to selectionism, in the study of biological evolution. The

neutralist viewpoint reverses the role played by mutations during evolution (Nei, 2013):

in the selectionist viewpoint, mutations provide the source of variation, while fitness

differences drive competition by natural selection; in the neutralist viewpoint, fitness

differences between possible configurations are neglectable, when compared to the rate

at which such configurations mutate: despite two aminoacid sequences presenting dif-

ferent rate of replications, which in principle would eventually lead to the domination

of the faster replicating, in practice they will be disrupted by mutation before this

occurs.

In his first works, Kimura acknowledged that degeneracy in the genetic code (Kimura,

1968) is manifested mainly in two ways: first, several aminoacid sequences code for the

same protein; second, many (if not most) of the possible mutations in a polypeptide

chain have little effect on the biological activity of the protein. These two consider-

ations highlight the two possible sources of neutrality in a living organism: on the

one side, there exist way more possible genotypes (e.g. aminoacid sequences) than

observed phenotypes (e.g. the coded proteins), hence the mapping between the two
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levels of description is inevitably degenerate. On the other side, not all phenotypic

changes are relevant. The extent to which these two phenomena distinguish or overlap

depends on the modelling context and on the system under consideration. In the fol-

lowing, I will first briefly discuss the first of such sources of neutrality, in the context

of genotype-phenotype (GP) maps. Then I will focus on the second source, and on its

applications to trait-structured populations.

3.1.2. Degeneracy of GP maps

In molecular evolution, the concept of degeneracy is well described by the general no-

tion of genotype network, introduced by Maynard Smith in (Smith, 1970): genotypes

are defined as the nodes of a network, representing the entire genotype space; two

genotypes are then linked by an edge if they are separated by a single mutational step.

A mutation connecting genotypes with identical phenotype is then called neutral. The

degeneracy of GP mappings stems from the basic fact that the number of possible gen-

otypes is much larger than that of phenotypes, so that such maps must be degenerate

(Wagner, 2011; Greenbury et al., 2016; Ahnert, 2017). This schematic representation is

widely used in molecular evolution to model gene regulation, metabolism and protein

folding, and is at the foundation of the concept of mutational robustness (Wagner,

2011): under the effect of mutations and random sampling, the evolving system is

perpetually exploring the genotype space, with the potential of discovering novel, in-

novative, phenotypes (Wagner, 2005). However, besides providing fitness advantage,

the successful phenotype must also display some degree of robustness with respect to

mutations, which continuously attempt to disrupt its corresponding genotype. In this

framework, mutational robustness emerges as a macroscopic property depending on

the topology of the underlying genotype network (Van Nimwegen et al., 1999; Fontana,

2006; Ciliberti et al., 2007b; Aguirre et al., 2009).
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3.1.3. Degeneracy of phenotypic traits

Molecular evolution has provided an exceptional field to investigate the role of

degeneracy in GP maps and test theoretical results, thanks to the increasing empirical

evidence unveiled by technological advance (Manrubia et al., 2021). However, such a

domain is less suitable to investigate the role played by the relevance of phenotypic

changes, that is the second source of neutrality formalised by Kimura. While it is (in

principle) fairly simple to connect a mutation on a RNA sequence to the increase (or

decrease) of its self-replication rate (thus to its fitness), connecting a mutation leading

to the increase in a pathogen’s level of activity of a protein related to drug transporter

production, with a potential selective advantage for the pathogen, may be less

straightforward. Indeed, such mutation may be beneficial, if the pathogen is exposed

to a pesticide whose chemicals are more easily cleared by such drug transporters;

on the other hand, in absence of a pesticide the mutation may be detrimental, if

it just represents additional metabolic cost with respect to pathogens not carrying

this mutation; alternatively, the mutation may also be neutral, if it simply does

not provide any relevant phenotypic change. This example demonstrates how the

potential neutral nature of a phenotypic trait is strictly related to the environmental

conditions and to the interactions between environment and individuals, thus to the

fitness landscape on which the population is evolving. If ones identifies a phenotype

as the collection of distinct traits endowing the individual with some phenotypic

features, then it is natural to expect that some of such traits will provide selective

advantage and some of them will not; that is, such collection is expected to include

both selective and neutral traits.

The aim of this Chapter is to investigate mutation-selection dynamics of individu-

als whose phenotypes feature both selective and neutral traits. As explained in

Chapter 2, the rate at which mutations occur delineates a major distinction between

monomorphic and polymorphic regimes. In the monomorphic regime, a complete

theory accounting also for neutral effects due to degeneracy has been developed in
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(Khatri and Goldstein, 2015). Providing an exhaustive overview of this topic goes

beyond the scope of this Section. Rather, the aim of the following Subsection is

to provide an insight into some well established concepts regarding degeneracy in

the monomorphic regime, with respect to which the results regarding polymorphic,

trait-structured populations will be compared and discussed.

3.1.4. Monomorphic regime: the free-fitness approach

The role of neutrality in fitness landscapes has been extensively studied in the mono-

morphic regime, where the evolutionary dynamics is described by a stochastic process

determining the probability to jump from a resident phenotype to a mutant one, which

may take over the resident and become dominant (as explained in Subsection 2.1.6).

For this event to occur, the mutant phenotype has to: i) be mutationally adjacent to

the resident one; ii) fixate in the population. Point i) will depend on the topology

of the mutations, as well as on the degeneracy of the mutant phenotype: the larger

it is, the more likely such mutation will naturally occur. Point ii) will depend on

the fitness difference between resident and mutant: the larger is the mutant fitness

with respect to the resident one, the more likely it will invade and eventually fixate

in the population. Consider a population of size N , which can express any phenotype

ξ of a phenotype space Ξ. Each phenotype is characterised by a fitness F (ξ) and a

degeneracy S(ξ). The equilibrium probability P (ξ) that the population is found with

phenotype ξ is given by:

p(ξ) ∝ eN Φ(ξ), (3.1)

where:

Φ(ξ) = F (ξ) +
S(ξ)

N
(3.2)

is the free fitness of phenotype ξ (Khatri and Goldstein, 2015). Drawing a connection

with equilibrium statistical mechanics, Φ(ξ) is interpreted as the potential that is
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maximised at equilibrium by the evolving system, akin to the free energy of a thermal

system. Hence, rather than just fitness, phenotypes shall maximise a combination of

fitness and degeneracy. The degeneracy term S(ξ) is also called sequence entropy, to

stress the analogy with thermal systems: under the same selective conditions (same

fitness), the population will drift into states that can be realised through a larger

portion of the phenotype space; that is, phenotypes with larger degeneracy (i.e. larger

sequence entropy) have larger probability to be explored by the system. The magnitude

of this entropic contribution is mediated by population size N (which acts as an inverse

temperature), so that its effect will be larger in smaller populations. The phenotypic

free-fitness extends a concept introduced by Iwasa in (Iwasa, 1988), and subsequently

rediscovered in (Sella and Hirsh, 2005). This expression highlights a crucial property of

degenerate mappings: indeed, for Eq. (3.2) to be a relevant tool, fitness F and sequence

entropy S must behave oppositely with respect to phenotypes: that is, phenotypes with

large fitness must have small degeneracy, and vice-versa. In other words, a trade-off

between degeneracy and fitness is expected to hold.

3.1.5. The degeneracy-selection trade-off

In presence of a trade-off, fitness and degeneracy act as opposing tendencies which are

eventually balanced at equilibrium. Conversely, if a phenotype were able to maximise

both fitness and degeneracy, then it would trivially dominate the evolutionary

trajectory. It has been argued that this trade-off should be regarded as a universal

feature of any kind of fitness landscapes (Khatri and Goldstein, 2019): ultimately,

highly fit individuals are so because they have a phenotype better suited than others

to their environment, but such higher functionality will stem from a specific feature

that most of the other phenotypes do not provide; however, the specificity of such

highly functional configuration is paid in terms of degeneracy. Hence, the concept of

neutrality of genotypes with respect to phenotypes can be extended to phenotypes

with respect to fitness, and the same kind of degeneracy is expected to hold, so that
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very fit phenotypes would typically not be also highly degenerate.

In models of molecular evolution, degeneracy is generally assigned ad hoc to each

phenotype, thus treated as set of parameters of the model. Instead, here I will consider

it as a structured feature of fitness landscapes, which was explicitly encapsulated

since the very first attempts to visualise them. Indeed, in their iconic two-dimensional

representation introduced by Wright (Wright, 1932), fitness landscapes exhibit a

hill-shaped topography: every phenotype is assigned a height proportional to its

fitness, hence the optimum is represented by the top of the hill (see panel a of Fig. 2.3,

adapted from Poelwijk et al., 2007). Neutrally related phenotypes, i.e. those sharing

the same fitness value, are located at the same height, so that a height contour

represents a neutral subset. Since the length of a contour (i.e. the size of the neutral

subset) grows with distance from the summit, very fit phenotypes are rare, whereas

less fit ones tend to be more abundant. Hence a degeneracy-fitness trade-off occurs,

akin to that of genotype-phenotype maps. Simple two-dimensional fitness landscapes

therefore represent a minimal tool for the modelling of polymorphic population

featuring both selective and neutral degrees of freedoms. Unsurprisingly, character-

ising the role of neutral contributions in the case of polymorphic populations is far

more difficult than in the monomorphic regime, as I will discuss in the next Subsection.

3.1.6. Polymorphic regime

In the polymorphic regime, the modeller would ideally be able to derive a coarse-

grained description accounting for both selective and neutral degrees of freedom, such

as free-fitness. However, despite some attempts to bridge the gap with the mono-

morphic regime (Khatri, 2018b), in the polymorphic regime it is not possible to rely

on such a complete formalism. Indeed, when the population is polymorphic, the pos-

sibility to derive an exact coarse-grained dynamics passing from phenotypes to fitness

demands special assumptions on the topology of mutations (Sato and Kaneko, 2007),
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that is that their rates have to depend only on the resulting (mutant) fitness value,

regardless of the starting (parent) phenotype. Although this demanding condition

holds for many models of molecular phenotypes (Tsimring et al., 1996; Gerland and

Hwa, 2002; Marchi et al., 2021), the implications of its violation are much less clear

(Khatri, 2018a). Alternatively, one needs to rely on a phenomenological description

of phenotypic robustness. For instance, in (Draghi et al., 2010) the authors consider

a simplified version of GP networks, which drastically (and purposely) bypasses their

complexity: phenotype neighborhoods are composed of both neutral and fitter config-

urations, and reshuffle randomly over time. The aim is to investigate the relationship

between times of adaptation and the phenomenological parameters describing phen-

otypic robustness (namely the probability for a mutation to be neutral and the size

of the neighborhood). In (Rigato and Fusco, 2020), the authors consider a discrete

RME-like equation such as Eq. (2.40), where mutation rates mi,j are multiplied by a

probability ρ (that they define as phenotypic robustness) that the mutation preserves

fitness (that is neutral).

In this work, I shall preserve the form of the RME dynamics, without the addition

of phenomenological terms capturing phenotypic robustness. Rather, I will consider

explicit degenerate fitness landscapes. When a trait-structured population evolves on

degenerate fitness landscapes, if the phenotype and fitness levels of descriptions can-

not be disentangled, then they are likely to convey different information about the

evolutionary state of the system.

3.2. Methods

In this Section, I present the minimal degenerate fitness landscapes employed to in-

vestigate the interplay between neutrality and selection, as well as the analytical and

numerical methods used to calculate the trait distributions of the evolving system.



3.2. Methods 45

3.2.1. Degenerate fitness landscapes

I consider phenotypes to be composed of both selective traits (on which fitness de-

pends) and neutral traits (on which it does not), so that the dynamics will be captured

by simple fitness landscapes featuring degeneracy. Degeneracy will be minimally mod-

elled by considering two-dimensional landscapes, where a selective and a neutral trait

interact by virtue of a universal degeneracy-selection trade-off. Let T2 be the trait

space, and its elements x = (x, y) ∈ T2 be the possible phenotypes; the components

x, y represent respectively the value of the two quantitative traits defining the pheno-

type. Each phenotype x maps into its corresponding fitness value f = F (x) according

to the smooth fitness function F (x); the particular choice of F (x) determines the fit-

ness landscape of the system. Two phenotypes xA and xB are defined to be neutrally

related if they share the same fitness, that is if F (xA) = F (xB). Then, a neutral subset

with fitness value f is the collection of all neutrally related phenotypes xA with fitness

F (xA) = fA. For the sake of simplicity we will consider only single-peak landscapes,

which have been employed in a variety of biological contexts (Gil et al., 2019), the

study of more complex topographies going beyond the scope of this work.

Degeneracy of the landscape is ultimately due to the degeneracy of the fitness function

F . Here, I shall compare two possible versions of such degeneracy, symmetric (panel

a Fig. 3.1) and asymmetric (panel b Fig. 3.1). In panel a of Fig. 3.1, phenotypes are

identified by the trait coordinates x = (x, y). However, their fitness F (x) depends

only on the distance r(x, y) from the centre. Phenotypes lying on the circle of radius

r will share the same fitness value regardless of their angular position θ, thus forming

neutral subsets. Hence, from the pair of trait variables x and y, we can construct a

pair of (respectively) selective and neutral variables (r, θ), with which both the phen-

otype and the fitness dynamics can be described. The phenotype distribution of a

population evolving on the symmetric landscape is described by the function n(x, y)

in the original traits coordinates, or equivalently by n(r, θ) in the corresponding polar

coordinates. Given the circular symmetry, the marginal fitness distribution N s(r) is
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obtained by integrating the phenotype distribution over the angular coordinate θ:

N s(r) =

∫ 2π

0

n(r, θ) r dθ, (3.3)

that is the radial distribution. I remark that the landscape exhibits the aforemen-

tioned degeneracy-fitness trade-off, as the size of neutral subsets varies (linearly in

this minimal model) in opposition to fitness. In the asymmetric case, I assume that

the traits x and y directly express, respectively, selective and neutral effects. So the x

axis will represent the selective direction, and the y axis the neutral direction (panel b

of Fig. 3.1), with the fitness function F depending on x only. The trait space is then

closed by the boundary curve B(x). Neutral subsets are given by vertical lines, that are

the collections of points with equal value of the selective trait x. From the phenotype

distribution n(x, y) in the original trait coordinates, the marginal fitness distribution

N a(x) in the asymmetric landscape is given by integration over the neutral variable

y:

N a(x) =

∫ B(x)

0

n(x, y) dy. (3.4)

The size of neutral subsets depends on the choice of B(x): taking a monotonically

decreasing function of x leads to the desired degeneracy-fitness trade-off, equivalent to

the symmetric landscape. Symmetric and asymmetric degenerate fitness landscapes

display the same degeneracy-selection trade-off of interest. Nonetheless, the nature

of such trade-offs is mechanistically different: in the symmetric case, neutrality stems

from the property that fitness is given by a combination of the traits composing the

phenotype, such combination being degenerate; instead, in the asymmetric case neut-

rality stems from explicitly considering a completely neutral trait concomitantly with

a completely selective trait. Then, degeneracy is due to the inherent geometry of the

resulting phenotype space, rather than to the degeneracy of the fitness function. For

these reasons, I consider the two cases to be suited to qualitatively distinct biological
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contexts: for instance, the symmetric landscape dates back to the Fisher Geometric

Model and has been widely employed in the field of molecular evolution, where the

existence of a target optimal configuration of traits is assumed, and any mutation away

from it is deleterious (Tsimring et al., 1996; Orr, 2006; Gerland and Hwa, 2002).

Figure 3.1: Minimal degenerate fitness landscapes. Panels a - b: respectively,
symmetric and asymmetric degenerate fitness landscapes, and projections of the cor-
respondent phenotype spaces, in the trait coordinates (x, y). For the symmetric case,
fitness depends on the radial distance r from the optimum, regardless of the angular
position θ. For the asymmetric case, fitness is proportional to the trait x determining
the direction, while the trait y is neutral. Dashed black lines represents examples of
neutral subsets. Red dots identify the optimum of the respective landscapes. In both
cases, the size of the neutral subsets decreases in the selective direction, by virtue of
the degeneracy-fitness trade-off.
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3.2.2. Analytical solutions of the sRME

The deterministic mutation-selection dynamics of the trait distribution distribution

n(x; t), evolving on a fitness landscape F (x), is given by the RME (2.53). In this

work, I shall focus on the stationary trait distribution, which is the solution of the

following sRME:

∇2n(x) + δ n(x) (F (x)− φ) = 0, (3.5)

where φ is the population average trait, and δ = 4γω
µ∆x2 is the relevant compound para-

meter determining the relative importance of selection and mutation at stationarity.

In the following, I shall present the analytical solutions to the sRME in the case of

non-degenerate one-dimensional fitness landscape, and of degenerate two-dimensional

ones, introduced in Subsection 3.2.1. In both cases, I shall employ the self-consistent

resolution method presented in Subsection 2.2.6.

3.2.2.1 Non-degenerate landscape

I will consider a very simple instance of non-degenerate fitness landscape, and use

it to provide baseline results for comparison with degenerate landscapes, in order

to elucidate the effects of the degeneracy-selection trade-off. Let the one-dimensional

variable x ∈ T1 = [0, 1] be the mathematical description of the single quantitative trait

of interest. Let F (x) be a non-degenerate monotonically increasing function, such that

x = 1 (x = 0) is the fittest (least fit) trait value. For the sake of simplicity, I shall

consider the linear fitness function F (x) = x, for which analytical stationary solutions

can be found. However, any monotonic fitness function will produce qualitatively

equivalent distributions. Clearly, since F (x) is not degenerate, the corresponding

fitness landscape is not degenerate; each phenotype is composed of a single trait,



3.2. Methods 49

whose value uniquely determines the corresponding phenotype’s fitness. Therefore, x

simultaneously determines the trait, the phenotype and the fitness of the individual.

The RME is given by Eq.(2.48), subject to boundary conditions Eq. (2.49). Performing

the transformation of variable z = 3
√
δ (φ− x), the equation for the stationary solution

n(x) becomes:
∂2 n(z)

∂ z2
− z n(z) = 0, (3.6)

that is the well known Airy differential equation (Abramowitz and Stegun, 1964). The

solution is a linear combination of the Airy functions of first and second kind which,

back in the original variable, reads:

n(x) = Z
{

Ai
[

3
√
δ (φ− x)

]
+ C Bi

[
3
√
δ (φ− x)

]}
, (3.7)

with Z and C constants of integration given by (prime notation indicates the x deriv-

ative): 
C = −Ai′( 3√

δφ)
Bi′( 3√

δφ)

Z−1 =
∫ 1

0
Ai
[

3
√
δ (φ− x)

]
+ C Bi

[
3
√
δ (φ− x)

]
dx.

(3.8)

Equation (3.8) represents the self-consistent trait distribution of the one-dimensional

sRME. In order to plot the closed form the solution, the proper average fitness value

φ is computed numerically by using the definition of the average fitness φ Eq. (2.57).

In order to perform this last numerical step, I have used a simple MATLAB code

employing the fsolve() function. The function fsolve(fun,x0) is a standard routine to

solve the nonlinear equation fun(x) = 0, starting from the point x0. Similarly to other

of such functions, it is sensitive to the choice of the initial guess x0. However, I have

found that the starting point x0 = 1 always provides the correct result, for any value

of the parameters explored.
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3.2.2.2 Asymmetric degenerate landscape

In this case, the dynamics takes place in the trait space T a
2 =

{0 ≤ x ≤ 1, 0 ≤ y ≤ B(x)}, with fitness function F (x, y) = F (x) = x. A phen-

otype is specified by the values of the two quantitative traits x and y. The x axis

represents the selective direction, because it determines the phenotype’s fitness value.

The y axis represents the neutral direction, because the fitness function is degenerate

with respect to y. The degeneracy-selection trade-off is encapsulated in the boundary

profile B(x), which I choose linear for sake of simplicity, that is:

B(x) = 1− x. (3.9)

The resulting trait space is then a right triangle, where the optimal phenotype is unique

(hence not degenerate) and it occupies the right edge of coordinates (1, 0). The two-

dimensional stationary trait distribution n(x, y) is the solution of the following sRME:

∇2 n(x, y) + δ n(x, y)
(
F (x)− φ

)
= 0, (3.10)

with average fitness given by:

φ =

∫ 1

0

∫ 1−x

0

F (x)n(x, y) dxdy, (3.11)

and boundary conditions given by:
∫ 1

0

∫ 1−x
0

n(x, y) dxdy = 1 population conservation

∂n(x,y)
∂x
|x=0= ∂n(x,y)

∂y
|y=0= ∂n(x,y)

∂x
+ ∂n(x,y)

∂y
|y=1−x= 0 no-flux

(3.12)

Despite the apparent simple form of Eq. (3.10), the separation of variables method

fails due to the non trivial no-flux condition at the boundary y = B(x). Thus, I have

employed a spectral method to solve the equation (detailed in the Appendix A.3). The
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spectral solution takes the form of a linear combination of the eigenfunctions ei,j of

the Laplacian on the trait space T a
2 :

n(x, y) =
∑
i,j

ai,jei,j(x, y), (3.13)

where ai,j are the corresponding coefficients of the expansion. Writing the solution

in this form allows to convert the problem of solving the partial differential equation

into the problem of solving a linear system of equations, giving the coefficients of the

expansion. This system being in principle infinite, in practice one needs to truncate

the solution to a finite number M of eigenfunctions. Throughout this work, I have

found that using the first M = 8 eigenfunctions leads to solutions in good agreement

with numerical simulations. Therefore, all results related to this Subsection will refer

to the choice M = 8.

3.2.2.3 Symmetric degenerate landscape

In the symmetric case, the dynamics takes place in the trait space T s
2 =

{x, y | x2 + y2 ≤ 1}. The optimal phenotype occupies the centre (0, 0), has maximum

fitness value f = 1, and again is not degenerate. Fitness decreases proportionally to

the distance from the optimum. Hence, it is useful to describe the dynamics in the

polar coordinates (r, θ), obtained from the trait variables via the usual coordinates

transformation: x = r cos θ

y = r sin θ,

(3.14)

with which fitness becomes function of the sole radial variable r, that is F = F (r).

Describing the problem in polar coordinates (r, θ), we recognise r as the selective

variable, and θ as the neutral one: phenotypes lying on the same circle (i.e. with same

r) will share the same fitness value, regardless of their value of θ, as shown in Fig. 3.1,

panel a. It is then useful to write the two-dimensional sRME for the trait distribution
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n(r, θ) in polar coordinates. Transforming the Replicator term of the sRME from

cartesian (x, y) to polar (r, θ) is straightforward due to the symmetry of the fitness

function:

n(x, y) (F (x, y)− φ) =⇒ n(r, θ) (F (r)− φ) . (3.15)

The Mutator term of the sRME is transformed by replacing the Laplacian in cartesian

coordinates with its corresponding in polar coordinates:

(
∂2

∂x2
+

∂2

∂y2

)
n(x, y) =⇒

(
1

r2

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂θ2

)
n(r, θ). (3.16)

Finally, the sRME in polar coordinates describing the dynamics in the symmetric

degenerate landscape reads:

{ ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

}
n(r, θ) + + δ (F (r)− φ)n (r, θ) = 0, (3.17)

with average fitness:

φ =

∫ 1

0

∫ 2π

0

F (r)n(r, θ) r drdθ, (3.18)

and boundary conditions:
∫ 1

0

∫ 2π

0
n(r, θ) r drdθ = 1 population normalisation

∂ n(r,θ)
∂ r
|r=1= 0 no-flux

(3.19)

Differently from the asymmetric case, separation of variables can be applied since

the no-flux boundary condition only depends on the selective variable r. Hence, the

solution can be found in the form n(r, θ) = R(r)Y (θ), where radial R(r) and angular

Y (θ) contribution are factorised and describe, respectively, selective and neutral con-

tributions to the trait distribution. The angular contribution can be eliminated by

integrating Eq. (3.17) over the angular variable θ:

∫ 2π

0

{ ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

}
n(r, θ) dθ + + δ

∫ 2π

0

(F (r)− φ)n (r, θ) dθ =
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∂2

∂r2
R(r)

∫ 2π

0

Y (θ)dθ +
1

r

∂

∂r
R(r)

∫ 2π

0

Y (θ)dθ+

+
1

r2
R(r)

∫ 2π

0

∂2

∂θ2
Y (θ)dθ + δ (F (r)− φ)R(r)

∫ 2π

0

Y (θ)dθ =

∂2

∂r2
R(r)Y +

1

r

∂

∂r
R(r)Y +

1

r2
R(r)[

∂

∂θ
Y (θ)]2π0 + δ (F (r)− φ)R(r)Y = 0, (3.20)

with Y =
∫ 2π

0
Y (θ)dθ being the normalisation constant of the angular contribution.

The third term appearing in Eq. (3.20) is zero because ∂Y (2π)
∂θ

= ∂Y (0)
∂θ

, by symmetry.

Finally, the constant Y can be eliminated from the equation, and I am left with:

∂2R(r)

∂r2
+

1

r

∂R(r)

∂r
+ δ R(r) (F (r)− φ) = 0, (3.21)

that is the radial equation for the selective variable, with average fitness:

φ =

∫ 1

0

F (r)R(r)rdr, (3.22)

and simplified boundary conditions:
∫ 1

0
R(r) r dr = 1

∂R(r)
∂r
|r=1= 0.

(3.23)

Unsurprisingly, the trait distribution will be constant along the neutral variable θ, due

to the circular symmetry of the landscape, and it will vary along the selective variable

r, according to the radial equation (3.21). Similarly to the asymmetric case, I solve

the radial equation by means of spectral method (detailed in the Appendix A.3).
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3.2.3. Agent-based numerical simulations

In this Section, I present the algorithm employed to simulate the agent-based dynamics

on both degenerate and non degenerate landscapes. The algorithm used to simulate

the microscopic mutation-selection interactions is based on a rejection-free Gillespie

algorithm, adjusted to account for continuity of the trait variables. It can be applied

to simulate any mutation-selection dynamics with continuous variables, regardless of

the choice of the fitness function, of the dimension and shape of the adaptive space.

3.2.3.1 The algorithm

Let Td be the d-dimensional trait space. The population is composed of N individuals.

This size is preserved over timesteps, because the simulation employs only Birth-Death

processes. The system is represented by an array of dimension N . Each element i of

the array represents an individual, and contains the array of trait values xi ∈ Td,

identifying the individual’s phenotype. Each trait has value xji ∈ [0, 1], where the

subscript i = 1, . . . , N identifies the individual, and the superscript j = 1, . . . , d the

trait. The system is initialised assigning to each trait value a random number sampled

from a uniform distribution ∈ [0, 1], although any other kind of initialisation can be

employed (as long as the inputs are positive). This will only affect the transient dy-

namics, but not the asymptotic behaviour which in all cases studied coincides with the

deterministic predictions. The agent-based dynamics is composed of Mutation events,

occurring at rate µ per individual, and Competition events, occurring at rate γ per

pair of individuals. The total reaction rate rtot is given by rtot = µ+γ (demonstration

in the Appendix A.4). All rates are constant over time because the population size is

fixed. A single timestep is composed of N iteration steps. During an iteration step,

two pseudorandom numbers r1,2 ∈ [0, 1] are sampled: r1 is used to determine the time
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to the next reaction τ , given by:

τ =
1

rtot
log

(
1

r1

)
, (3.24)

and update the time of the next reaction to t+τ (rescaled with respect to system size).

The second pseudorandom number r2 is used to determine which of the two events

occur. If r2 ≤ µ
rtot

, a Mutation event occurs, otherwise a Competition event occurs.

Mutation event. I define ζ ∈ Rd a vector of random variables. The components ζj,

with j = 1, . . . , d, are independently extracted from the same probability distribution

U , and represent the potential random modification to trait j, due to mutation. Upon

occurrence of a mutation event, an integer pseudorandom number i ∈ [1, N ] is sampled

to determine which individual undergoes mutation. Then, its phenotype x is modified

according to the following reaction:

xi
µ

−−−−→ xi + ζ, (3.25)

If the new mutant phenotype would cross the border of the adaptive space, the muta-

tion is rejected and the individual retains its original phenotype, that is reflecting

boundary conditions are considered. For the analysis provided in this thesis I have

employed a uniform probability distribution U(ζ), defined as follows:

U(ζ) =


1
2ε

if −ε ≤ ζ ≤ +ε

0 otherwise.

(3.26)

The moments of the probability distribution read:mean E[ξ] = 0

variance σ2 = E[(ξ − E[ξ])2] = ε2

3
,

(3.27)
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and they determine important properties of the process. The zero mean implies that

mutations are unbiased, that is the trait space is explored with same probability in

any direction (with the exception of the reflecting behaviour close to the boundaries),

and no distinction between deleterious, beneficial or neutral mutations is made. The

variance σ2 corresponds to the small increment ∆x2 appearing in the RME (Kimura,

1965).

Competition event. Upon occurrence of a competition event, two integer pseu-

dorandom numbers i, j ∈ [1, N ] are sampled to determine the couple of competing

individuals. In the (unlikely) case that i = j, another index is sampled again. Com-

petition is modelled by a fitness-dependent Birth-Death process, where one individual

perishes and the other reproduces. The two possible outcomes are schematised by the

chemical reactions Eqs. (2.35).

The codes produce the numerical results appearing in this Chapter have all popula-

tion size 105. The algorithm is run for 12000 timesteps, and the scatter profiles of the

trait distributions are obtained by averaging over the last 10000 timesteps (the first

2000 are discarded due to transient dynamics). The Processing code employed for the

agent-based dynamics of the asymmetric degenerate fitness landscape is reported in

the Appendix A.1.1.

3.3. Behaviour of the trait distributions

In this Section, I present the analytical trait distributions obtained by solving the

sRME with the methods presented in Subsection 3.2.2, for both non-degenerate and

degenerate fitness landscapes. The non-degenerate case will provide the baseline res-

ults for comparison with results on degenerate landscapes, to elucidate the effects of

the degeneracy-fitness trade-off.
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3.3.1. Equilibrium trait distribution on non-degenerate land-

scape

In Fig. 3.2, I plot the analytical trait distribution n(x) solution of the sRME (3.7)

for different values of δ (solid lines), and compare it with results from numerical

simulations of the agent-based dynamics (circles and squares). For δ = 0, that is in

the purely neutral scenario, the distribution is trivially uniform (dashed line): since

every phenotype is equally likely to survive competition regardless of their fitness

value, no particular trait value will be preferred by natural selection. For δ > 0,

the distribution is monotonically increasing, always showing an absolute maximum at

x = 1 (the optimal phenotype), as well as an absolute minimum at x = 0 (the least fit

one). These profiles represent qualitatively the prediction of the standard survival-of-

the-fittest paradigm: the distribution is biased towards the phenotype endowed with

the fittest trait (x = 1); most of the population lies on top of the fitness landscape,

and progressively fewer individuals are found as one moves away from the peak. The

least successful individuals are those carrying the least fit trait (x = 0). On increasing

δ (that is, increasing selection strength or decreasing mutation diffusion coefficient),

the distribution gets narrower around the maximum.

3.3.2. Equilibrium trait distribution on degenerate landscapes

In Fig. 3.3, I show the analytical two-dimensional trait distributions n(x, y) in the

case of degenerate landscapes, for different values of δ. The asymmetric case is shown

in panels a and c, where I plot the iso-density contour lines on the trait plane (x, y);

the symmetric case is shown in panels b and d, where I plot the color-map projection

on the trait plane (x, y). The color code quantifies the magnitude of the density of

n(x, y), according to the respective color-bars. With the exception of the purely neutral

scenario δ = 0, for which the distribution would be trivially uniform (not shown), in all
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Figure 3.2: Trait distribution on non-degenerate landscape. Solid lines: ana-
lytical solution; circles and squares: agent-based numerical simulations with N = 105

individuals. With the exception of the neutral case δ = 0 (dashed line), the distri-
bution is always monotonically increasing towards the optimal trait x = 1, indicating
the standard survival-of-the-fittest scenario. Inset: linear fitness landscape F (x) = x.

other cases the trait distributions increase monotonically along the selective direction:

that is, along the x axis for the asymmetric case; along the radial axis for the symmetric

one. In both cases, and for all values of δ > 0, the distributions display an absolute

maximum located at the optimal trait combination (the right edge of the triangle

for the asymmetric, and the center of the circle for the symmetric case). Similarly to

the non-degenerate case, these results again indicate a survival-of-the-fittest paradigm,

where fitter individuals are more abundant in the population, and the other types are

distributed around the optimal with density that decreases as the distance from the

optimum increases. The difference in the geometry of the two landscapes affects the

behaviour of the trait distributions on the neutral subsets: on the one hand, n(x, y) is
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Figure 3.3: Stationary phenotype distributions and marginal fitness distri-
butions for degenerate landscapes. Phenotype distributions: contour lines of
iso-density are shown for the asymmetric case (a and c), while colormaps are shown
for the symmetric case (b and d). In both cases and for every value of δ > 0, the dis-
tribution has maximum density in correspondence of the optimal trait (that with max
fitness), exhibiting a survival-of-the-fittest behaviour. However, the corresponding
marginal fitness distributions (e-f) display rather different behaviours depending on
the value of δ. Particularly, we distinguish the degeneracy-dominated profile (squares
δ = 10), where the most degenerate fitness values are favoured; and the sub-optimal
profile (circles δ = 30), where the fitness distributions exhibit maximum at a value,
smaller than the optimal one. Solid lines refer to analytical solutions of the RME,
while scatter plots to agent-based simulations with N = 105 individuals.

constant along each of the neutral subsets of the symmetric landscape (circles of radius

0 ≤ r ≤ 1); on the other hand, n(x, y) is not constant along the neutral subsets of

the asymmetric case (vertical lines of fixed x): rather, I remark a non-trivial variation

along the y−axis, which results from the asymmetric behaviour of mutations close to

the boundaries of the trait space.

The distributions displayed in Fig 3.3 provide full information on all traits composing

the phenotypes. However, if one is solely interested in selective traits, then they have
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to focus on the marginal fitness distribution, which is obtained upon integration of the

full distribution over the neutral subsets of the fitness landscapes. In the next Section,

I will show the marginal fitness distributions and compare their behaviour with that

of the full trait distributions.

3.4. Behaviour of the marginal fitness distributions

In this Section, I focus on the behaviour of the marginal fitness distributions, describing

how selective traits are distributed in the population. First, I will show that the

presence of a degeneracy-fitness trade-off leads to non-monotonic fitness distributions,

drastically different from the non-degenerate case. Second, I will derive the exact

equations governing the temporal dynamics of the marginal fitness distribution, and

show that effects of asymmetries in degenerate landscapes.

3.4.1. Equilibrium marginal fitness distributions

I now consider the behaviour of the marginal fitness distribution N s(f) and N a(f) for,

respectively, symmetric and asymmetric landscapes, defined in Eq. (3.3) and Eq. (3.4).

In panels e-f of Fig. 3.3, I compare analytical (solid lines) and numerical (circles and

squares) profiles, corresponding to the trait distributions presented in panels a-d.

For δ = 0, the purely neutral scenario, the solution is straightforward: I recall that in

this case, the full trait distribution is uniform over the trait space, i.e. n(x, y) = C.

In the asymmetric landscape, the marginal fitness distribution is then given by:

N a(f) =

∫ 1−f

0

C dy = C (1− f) . (3.28)

The constant C is fixed by imposing normalisation:

1 =

∫ 1

0

N a(f) =

∫ 1

0

C (1− f) df = C
f (1− f)

2
=
C

2
=⇒ C = 2. (3.29)
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Hence, N a(f) = 2 (1− f), and likewise for the symmetric landscape. Therefore the

marginal fitness distribution is a monotonically decreasing function of fitness, the lin-

ear dependence reflecting the linearity of the degeneracy-fitness trade-off. For values

of δ > 0, the marginal fitness distributions are obtained by firstly calculating the

full trait distribution, and then by performing the integration over the corresponding

neutral subsets (Eqs. (3.3)-(3.4)). For small values of δ, the profiles are still mono-

tonically decreasing yet considerably different from the purely neutral case, displaying

an increase in the density for intermediate fitness values (see δ = 10 case). For larger

values of δ, the fitness profiles become non-monotonic: a new pair of local minimum

and maximum emerge, at intermediate fitness values (see δ = 30 case).

In Fig. 3.4, the positions of the extrema of the fitness profile are shown for a wide

Figure 3.4: Marginal fitness behaviour. The different regimes of the marginal
fitness distribution N a(f) are identified by tracking the extrema of its spectral solution
at the variation of selective pressure δ. Diamonds (circles) refer to maxima (minima).
Filled (empty) symbols refer to absolute (local) extrema. A threshold value δth ' 14,
estimated with the perturbative solution, separates the two qualitative behaviours.
Below δth, the fitness distribution is dominated by the most degenerate fitness value
(degeneracy-dominated regime). Above δth, the distributions exhibit sub-optimality,
as they are dominated by intermediate fitness values. Then, the survival-of-the-fittest
scenario is recovered in the limit of very large selection (δ →∞).
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range of effective selection pressure values, for asymmetric landscape (the symmetric

case is not shown, as it provides the same qualitative result). For δ . 14, the profiles

are all monotonically decreasing and have an absolute maximum at f = 0; I call this

phase degeneracy-dominated, because the most degenerate fitness value is the most

abundant in the population. When δ crosses a threshold value δth, monotonicity is

broken, with the emergence of a new peak in the fitness profile. Initially, the new

maximum is local (the absolute one still being located at f = 0), and it eventually

becomes absolute as δ is increased; I call this the sub-optimal phase, since the new

maximum is located at an intermediate fitness value, which does not correspond to the

optimal one (f = 1). Increasing selection pressure, the maximum shifts progressively

towards the value f = 1.

For small values of δ (known as the weak selection limit), in the asymmetric case

with linear fitness and triangular shape, a closed analytical approximation of the mar-

ginal fitness distribution N a(f) can be obtained. In the Appendix A.5, I show that

performing a linear perturbation expansion on δ, one gets:

N a(f) = 2(1− f) + δN a
I(f) +O

(
δ2
)
, (3.30)

with

N a
I(f) =

4

3
(1− f)B4

(
f

2

)
− 8

15
B5

(
f

2

)
+

4

15
B5 (f) , (3.31)

where Bk(z) is the kth Bernoulli polynomial of the variable z. This approximation then

predicts that the average fitness of the population φ at stationarity increases linearly

with selection pressure, according to:

φ =
1

3
+

1

189
δ +O

(
δ2
)
. (3.32)

This approximation also predicts the emergence of intermediate local maxima and

minima in the marginal fitness distribution for δth ' 14 (see Fig. A.1 in the Appendix),



3.4. Behaviour of the marginal fitness distributions 63

which is consistent with the results obtained with the spectral solution.

The two phases displayed in Fig. 3.4 highlight a behaviour that cannot be captured

by observing the full trait composition: in the presence (or absence) of low selection

pressure, the absolute maximum of the marginal distribution is found at f = 0, which

is the most degenerate fitness value. Thus, fitness values belonging to the largest

neutral subset outperform the others, even if they posses less fitness. This scenario is

consistent with the so-called survival-of-the-flattest effect (Wilke, 2005; Codoner et al.,

2006; Beardmore et al., 2011), a term coined in iconic antithesis to the survival-of-the-

fittest paradigm: flatter (that is less fit) regions of the fitness landscape are favoured,

because the advantage provided by degeneracy overcomes the disadvantage provided

by being far from the landscape’s peak. In my setting, such advantage is inherent in

the degeneracy-selection trade-off, rather than in a phenomenological representation of

phenotypic robustness. For this reason, the degeneracy-dominated behaviour emerges

only at the marginal level. Upon increasing selection pressure, the trade-off leads to

the emergence of a sub-optimal phase, where the most successful fitness value possesses

both non-zero degeneracy and some degree of selective advantage. Eventually, for very

large values of effective selection pressure (δ → ∞), the distribution’s sub-optimum

reaches the optimal fitness value f = 1, and the survival-of-the-fittest scenario is

recovered. The location of the new maximum is non trivial, and in general will depend

both on the geometry of the trait space T and on the fitness function F .

Contrary to their non degenerate counterpart (always displaying fittest-like patterns,

Fig. 3.2), I have shown that degenerate landscapes display a dual behaviour, depending

on the dynamics’ level of description: full phenotype distributions exhibit fittest-like

patterns (Fig. 3.3, panels a-d), where most of the population lies in proximity of the

landscape peak; on the other hand, their correspondent marginal fitness distributions

may exhibit sub-optimal patterns (Fig. 3.3, panels e-f), where most of the population

displays less fit but more degenerate traits (Fig. 3.4). A proper characterisation of

neutral contributions is crucial to understand the dual behaviour between full and

marginal trait distributions. One may be tempted to interpret the different phases
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of the marginal fitness distribution as the result of a balance between fitness and

degeneracy, akin to the free-fitness potential presented in Subsection 3.1.4, allowing

to predict when one or the other contributions are favoured. For this purpose, in the

next Section, I will derive the exact equations governing the dynamics of the marginal

dynamics in both symmetric and asymmetric landscapes.

3.5. Deriving the marginal dynamics

We have seen that neutral information featuring degenerate landscapes is often mod-

elled by introducing effective contributions mimicking phenotypic robustness (see Sub-

section 3.1.6), e.g. by biasing mutations (Beardmore et al., 2011; Draghi et al., 2010;

De Martino et al., 2016, 2019; Rigato and Fusco, 2020). In these effective formu-

lations, the marginal fitness distribution N (f) would be governed by some effective

RME dynamics depending only on the selective variable f , such as:

dN (f ; t)

dt
= M̂eff [N (f ; t)] N (f ; t) + N (f ; t)

(
Feff(f)− F eff[N (f ; t)]

)
(3.33)

where the interplay between neutrality and selection would be described by either/both

a modified ‘mutational operator’ M̂eff [N (f ; t)], and/or a modified ‘effective fitness’

function Feff(f) (similarly to the case of monomorphic populations). However, I shall

show that the above effective formulation is not general, and is not appropriate unless

the landscape is symmetric. Note that in the following, I operate a slight change of

notation in order to lighten the equations, and the symbol µ will directly represent

the full mutation coefficient related to mutational diffusion.

3.5.1. Marginal dynamics on symmetric landscape

In the symmetric landscape, the marginal fitness distribution is straightforwardly

found from the radial contribution R(r; t), as integrating over the neutral variable
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θ one obtains:

N s(r; t) =

∫ 2π

0

n(r, θ) r dθ =

∫ 2π

0

R(r; t)Y (θ; t) r dθ = r R(r; t). (3.34)

Taking the first and second derivatives with respect to r of Eq. (3.34), I obtain the

following relationships: 
∂N s(r;t)

∂r
= R(r; t) + r ∂R(r;t)

∂r

∂2N s(r;t)
∂r2 = 2∂R(r;t)

∂r
+ r ∂

2R(r;t)
∂r2 .

(3.35)

Multiplying by r the temporal equation for the radial contribution I get:

r
dR(r; t)

dt
= µ

{
r
∂2R(r; t)

∂r2
+
∂R(r; t)

∂r

}
+ γrR(r; t)

[
F (r)− F

]
(3.36)

Replacing the expressions Eqs. (3.34)-(3.35) into the above equation, I obtain:

dN s(r; t)

dt
= µ

{
∂2N s(r; t)

∂r2
− 1

r

∂N s(r; t)

∂r
+
N s(r; t)

r2

}
+ γN s(r; t)

[
F (r)− F

]
,

(3.37)

which can be rewritten in the following more compact form:

dN s(r; t)

dt
= µ

{
∂2N s(r; t)

∂r2
+

∂

∂r
[v(r)N s(r; t)]

}
+γN s(r; t) (F (r)−F ), with v(r) = −1

r
.

(3.38)

Finally, recalling that for the symmetric landscape the fitness variable is f = 1−r, the

temporal equation governing the dynamics of the marginal fitness distribution reads:

dN s(f ; t)

dt
= µ

{
∂2N s(f ; t)

∂f 2
+

∂

∂f
[v(f)N s(f ; t)]

}
+γN s(f ; t) (F (f)−F [N s(f ; t)]) = 0,

(3.39)

with

v(f) =
1

1− f
. (3.40)
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In the symmetric landscape, marginalisation leads to a new drift term ∂
∂f
v(f), where

v(f) plays the role of a velocity field whose magnitude increases with fitness, thus

pushing individuals away from the optimum f = 1. The marginal dynamics Eq. (3.39)

is consistent with the effective RME formulation Eq. (3.33), with:

M̂eff [N (f ; t)] = µ

{
∂2

∂f 2
+

∂

∂f
v(f)

}
(3.41)

being the new effective mutational operator biasing mutations in favour of smaller

fitness values, due to their higher degeneracy. This mutational operator is referred as

‘mutational entropy’ in (Tsimring et al., 1996; Gerland and Hwa, 2002), in analogy

with the free fitness fitness potential presented in Subsection 3.1.4. However, contrary

to the free-fitness potential, this entropic contribution relies on the symmetry of the

landscape and is far from being general, as the following calculations on asymmetric

landscapes will show.

3.5.2. Marginal dynamics on asymmetric landscape

For an asymmetric landscape of general boundary B(x), I obtain the marginal fitness

distribution N a(f ; t) by integrating the RME (2.53) over the neutral variable y:

dN a(x; t)

dt
=

∫ B(x)

0

d n(x, y; t)

dt
dy = µ

∫ B(x)

0

∂2 n(x, y; t)

∂ x2
dy

(3.42)

+ µ

∫ B(x)

0

∂2 n(x, y; t)

∂ y2
dy + γN a(x; t)

(
F (x)− F [N a(x; t)]

)
.

The second integral term on the right hand side of Eq. (3.42) is straightforward to

handle. Applying the Fundamental Theorem of Integral Calculus to the second integral

term, I obtain:

∫ B(x)

0

∂2 n(x, y; t)

∂ y2
dy =

∂ n(x, y; t)

∂ y

∣∣y=B(x)

y=0
=
∂ n(x, y; t)

∂ y

∣∣
y=B(x)

, (3.43)
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where I have used the no-flux boundary condition Eq. (3.12) in the last passage.

Performing a similar calculation on the first integral term of the right hand side of

Eq. (3.42) and using the no-flux boundary condition Eq. (3.12), I obtain the following

equality:

∫ B(x)

0

∂2 n(x, y; t)

∂ y2
dx =

(3.44)

d2N a(x; t)

dx2
− 2B′(x)∂ n(x, y; t)

∂x
|y=B(x) + B′2(x)

∂n(x, y; t)

∂y
|y=B(x) − B′′(x)n(x, y; t)y=B(x)

Finally, substituting Eqs. (3.43)-(3.44) into Eq. (3.42), and recalling that the fitness

value is f = x, I obtain:

dN a(f ; t)

dt
= µ

{
d2N a(f ; t)

df2
+ F1(f ; t) + F2(f ; t)

}
+ γN a(f ; t) (F (f)− F [N a(f ; t)]) = 0,

(3.45)

with:

F1(f ; t) =
[
B′2(f)− 1− 2B′(f)

] ∂n(f, y; t)

∂f
|y=B(f) (3.46.a)

F2(f ; t) = −B′′(f)n(f, y; t)|y=B(f), (3.46.b)

where the prime notation indicates the derivative with respect to the selective variable

f . In the asymmetric landscape, marginalisation generates contributions of crucially

different nature with respect to the symmetric landscape. In Eq. (3.45), mutations and

competition are still captured by, respectively, a local diffusion term and a replicator

term, acting on the marginal distribution N a(f). However, marginalisation also gen-

erates the new contributions F1(f ; t) and F2(f ; t), which depends on the landscape’s

geometry, that is, respectively, on the slope B′(f) and on the curvature B′′(f) of the

boundary profile. Moreover, from Eq. (3.46) we observe that these contributions de-

pend on the full two-dimensional trait distribution n(f, y; t), thus making the marginal
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dynamics Eq. (3.45) an inhomogeneous differential equation. Therefore, neutral con-

tributions deriving from asymmetric landscapes do not lead to an equation in N (f)

alone, with effective operators acting on the fitness level of description. This im-

poses severe limitations on the exactness of effective formulations, for trait-structured

populations. Indeed, my calculations have shown that solving the high-level fitness

dynamics still requires the knowledge of the underlying low-level trait details, and that

this issue will occur whenever asymmetries in the trait-space are present.

The new terms due to asymmetry, F1(x; t) and F2(x; t), have the appearance of ef-

fective source contributions to the dynamics, analogous to a spontaneous generation

of individuals, if interpreted in the context of a lower-dimensional (non-degenerate)

fitness landscape. Note that the marginal one-dimensional profiles, shown in Fig. 3.3

panels e-f, display a non-zero gradient at the boundaries of the fitness domain, which

would require a flux to be present in a truly one-dimensional system. This feature

cannot be present in profiles generated by one-dimensional RME models, due to the

physical constraints (as, we recall, the total population size is conserved and the sys-

tem has no flux boundary conditions), unless they are introduced ad hoc. I call these

emerging sources effective because they are generated by the asymmetry in the neut-

ral degrees of freedom, that are unobserved at the marginalised fitness level. These

sources are also doubly local: indeed, they depend locally on the full trait distribution

n(f, y; t), and locally on the landscape’s geometry of the boundary B(x), through its

slope and curvature.

Describing the marginal dynamics of multidimensional trait-structured populations

hence requires perfect knowledge of the landscape and of the full trait distribution.

The ability to capture neutral contributions by means of effective entropic terms is

coincidental and demands special symmetries to hold. In all other cases, the introduc-

tion of effective operators should be made carefully, and fundamentally it should be

motivated by stronger arguments than a simple (and comfortable) analogy with the

monomorphic case. When studying trait-structured populations involving multiple

quantitative traits, there is no reason to expect perfect symmetry along all neutral
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variables. Rather, asymmetric landscapes are expected to be encountered in a variety

of biological applications, as I will discuss in the next Subsection.

3.5.3. Biological pertinence of asymmetric landscapes

While the neutral or selective neutral of traits will depend on the environment and on

the interactions at play (see Subsection 3.1.3), in general, asymmetric landscapes are

expected to be found whenever a trade-off of some nature holds between the various

traits composing the phenotype. For instance, the MacArthur’s consumer-resource

model (MacArthur, 1970), is employed to investigate the coexistence of communities

competing for a common pool of resources (Pacciani-Mori et al., 2020; Gupta et al.,

2021). When multiple resource types are present, the different rates of consumption

can be modelled as mutating quantitative traits. If an energetic constraint limits

cells’ ability of consumption due to metabolic trade-offs, then the population will

evolve on an asymmetric trait space (Amicone and Gordo, 2020).

Similar mechanisms are expected to lead to asymmetric landscapes, in presence of

life-history trade-offs. An ideal pathogen would be characterised by high infection

transmission, and low induced mortality. In practice, such super-pathogens are

rarely observed, whereas milder strains are more frequent. This observation is

generally explained by acknowledging the existence of a life-history trade-off between

transmission and virulence (Bull, 1994; Alizon et al., 2009), that, in fitness terms,

might relate to trade-offs akin to degeneracy-selection, leading to asymmetric shapes.

Asymmetric landscapes also emerge whenever the trait space effectively available is

bounded by Pareto-like fronts, outside of which lie all those phenotypic configurations

that long-term evolution has excluded, due to their systematic inefficiency (Shoval

et al., 2012; Xue et al., 2019). Such trait spaces have been proposed to explain

observed patterns in gene regulation (Weiße et al., 2015), and bacterial growth

(Klumpp and Hwa, 2014). Triangular-shaped landscapes, that herein have been

used to facilitate calculations, have actually been observed in animal morphology
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(McGhee, 2006; Wilson, 1980; Norberg and Rayner, 1987). In game theory, triangular

geometries also characterise three-strategies games (Boccabella et al., 2011), and have

been recently observed to emerge in a numerical study of a rapidly mutant version of

the Ultimatum Game (Evans, 2018).

3.6. Conclusions

To conclude, I consider the results herein presented to be general and to be relevant

whenever trait-structured populations evolve on asymmetric degenerate fitness land-

scape. They do not depend on the specifics of the model (which here have been chosen

in order to facilitate the mathematical analysis). My results convey an important mes-

sage: in general, neutral effects will not be properly captured by effective formulations

of phenotypic robustness; rather, they will generate effective sources at the marginal-

ised fitness-level description. In general, these new contributions will depend on the

geometry of the landscape, and on the trait composition of the population, so that

all the microscopic trait information (even for the neutral traits) must be retained in

order to properly derive the observable fitness dynamics.

The mathematical procedure herein employed allows the explicit calculation of equi-

librium trait distributions and could be employed to straightforwardly implemented

in previous one-dimensional models, so as to include neutral effects in the mutation-

selection dynamics. Ultimately, my study suggests that the experimental quantifica-

tion of the landscape’s asymmetries in the neutral directions is as important as that of

selective traits. To interpret experimental patterns in the trait distributions and char-

acterise them theoretically, it will be important to consider the relationship between

the relevant selective components of traits, as well as their the degree of degeneracy

in all of the other, neutral, components.



4. Control strategies for heterogen-

eous plant pathogens

4.1. Introduction

The study of mutation-selection models of pathogen populations is at the foundation

of the domain of evolutionary epidemiology. Models of evolutionary epidemiology are

composed of the epidemiological interactions occurring between pathogens and hosts,

and of the evolutionary processes affecting (either or both) the two populations. In

general, the epidemiological dynamics of a disease may influence the way natural selec-

tion manifests, by shaping the rules according to which competition occurs; concom-

itantly, changes in the evolutionary composition of the evolving population will affect

the epidemiological interactions at play. Therefore, complex feedbacks are expected

to occur between the two dynamical levels, and understanding the outcome of such

complex interactions is the main purpose of evolutionary epidemiology. Analogously

to the problem analysed in Chapter 2, the rate at which pathogens mutate determ-

ines the mathematical tool employed in the analysis. In the case of monomorphic

populations, the aim is to determine which mutant of the pathogen will be able to

invade and replace the resident one (Dieckmann et al., 2005; Day, 2005). In the case

of polymorphic populations, multiple pathogen strains coexist in the population, and

compose a trait-structured population (Day and Proulx, 2004). In this Chapter, I will

again focus on the polymorphic case. Particularly, I will study the problem in the
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context of agricultural pest management, with the aim of understanding how to op-

timise the production of healthy yield, when the crop is infected by a rapidly mutating,

heterogeneous population.

4.1.1. The use of pesticides

‘Crop pathogens and pests are responsible for reduction in the yield and quality of

agricultural production. They cause important economic losses and reduce food security

at household, national and global level (Savary et al., 2019). Nowadays, although

alternative practices to protect crops are gaining scientific support (Lechenet et al.,

2017; Begg et al., 2017), the use of chemical pesticides is still the primary means

of pest control and faces an increasing food demand worldwide (Lamichhane et al.,

2016). Although the use of pesticides, among other practices, has led to a greater

than twofold increase in food production during the last century (Pretty et al., 2018),

worldwide surveys have documented the contamination and impact of pesticide residues

in soils, terrestrial and aquatic ecosystems, and their toxic effects on humans and

nonhuman biota (Pretty et al., 2018; Carvalho, 2017), as well as on biodiversity of

crop fields(Dudley and Alexander, 2017). A reduction in the use of pesticide is sought

worldwide and demanded by the EU pesticide Regulation N 1107/2009. A report on

pesticide residues in food is due every year by the European Food Security Agency

(Medina-Pastor and Triacchini, 2020)’(quoted from Miele et al., 2021b). Recent works

suggest that pesticide use could be reduced, without impacting crop productivity and

profitability, through the adoption of new production strategies and optimisation; this

is particularly true in those cases with high pesticide use (Lechenet et al., 2017; Pretty

et al., 2018). Mathematical modelling provides an excellent tool to explore different

control strategies and assess their efficacy, whilst avoiding the inevitable expenses of

field experiments (Gilligan and van den Bosch, 2008; Gilligan, 2008; Ristaino et al.,

2021).
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4.1.2. Mathematical modelling of pest management

The success of modelling depends upon the availability of biologically plausible mod-

els together with adequate consideration of social and economical constraints. Only

recently have epidemiological models started to incorporate economic aspects of con-

trol strategies (Forster and Gilligan, 2007a; Laxminarayan, 2010; Mbah et al., 2010).

Crop models have provided insights into optimal control under constraints imposed

by environmental regulation, e.g. imposing a maximum level of chemical treatments

(Jørgensen et al., 2017). Significant attention has been devoted to design and explore

different strategies to overcome the problem of pesticide resistance (Russell, 2005).

In this case, models are often framed in terms of sensitive versus resistant pathogen

strains (van den Bosch and Gilligan, 2008; Elderfield et al., 2018; Hall et al., 2007),

and aim at understanding optimal spatial (Parnell et al., 2006; Débarre et al., 2009),

and temporal (Van den Berg et al., 2016; Shi et al., 2009) patterns of pesticide release.

However, such two-strains models fail at describing the effects of a broader kind of

heterogeneity affecting pathogen’s traits involved in their life cycle.

4.1.3. The problem of heterogeneous pathogens

Foreseeing the consequences of a prolonged use of pesticide is particularly tricky when

the pathogen displays a more general heterogeneity, i.e. when the composition of the

pathogen population is more complex than simply resistant versus sensitive. In these

populations, individuals characterised by genetically related variants, may differ from

each other by phenotype traits possibly involved in the pathogen’s virulence, transmis-

sion, viability etc. This phenomenon is ubiquitous in plant pathogens, including viruses

(González et al., 2019), bacteria (Perrier et al., 2019; Schröter and Dersch, 2019) and

fungi (Dutta et al., 2020; Jain and Fries, 2009; Hewitt et al., 2016). Such heterogeneity

is often maintained through time (rather than being a transient property eventually

cleared by stabilising selection), suggesting the existence of a mechanism continuously
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fuelling it. In this case, the pathogen can be described as a trait-structured popula-

tion. In such populations, the overall effect of a control strategy will depend on the

trait distribution of the heterogeneous pathogen, which in turn will be affected by

the control’s selective pressure (Galvani, 2003; Day and Gandon, 2006). Ultimately,

the performance of any management scenario will result from the complex interplay

between the epidemiological plant-pathogen interactions, and the pathogen’s evolu-

tionary dynamics. However, despite few exceptions (e.g. see Shaw, 2000), in the

context of pest management, heterogeneous pathogen populations are modelled only

rarely.

Heterogeneity in plant pathogens is always perceived as a threat for the control

strategy, limiting its efficacy. In this Chapter, I shall move away from the sensitive/res-

istant duality, to investigate the role of continuous heterogeneity in pest control, and

show that the implementation of trait-dependent control can harness heterogeneity in

pathogen populations to our advantage. In the framework of a classical epidemiolo-

gical model, I will consider a trait-structured pathogen population, and investigate

the evolutionary dynamics of its trait distribution (Day and Proulx, 2004). The trait

variable will determine the pathogen levels of virulence, transmission and the pesti-

cide sensitivity. This framework will account for the transmission-virulence trade-off,

as well as to possible heterogeneous pesticide effects.

4.1.4. Trait-dependent trade-offs

The transmission-virulence trade-off hypothesis, introduced to explain the evolution

of intermediate levels of virulence (Bull, 1994; Lipsitch et al., 1995), assumes a posit-

ive correlation between the two traits, so that an increase in the former comes at the

expenses of an increase in the latter. In fact, pathogen spread is generally favoured

by high levels of transmission and low levels of virulence (Bull, 1994). Despite its

validity still being the subject of lively debate (Alizon et al., 2009), this hypothesis

has found popularity in epidemiological models, and some evidence has been collec-
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ted in the context of plant pathology (Froissart et al., 2010; Laine and Barrès, 2013).

Whenever such a trade-off holds, then control strategies (e.g. vaccination Gandon

et al., 2001 or antibiotic treatment Porco et al., 2005) may lead to possible different

outcomes, with consequent selection for high or low virulent strains. Such models

however, typically investigate the long-term evolution of virulence, within the context

of adaptive dynamics (Dieckmann et al., 2005). In the termilogy of this thesis, these

works would then provide the analysis of the evolution of a monomorphic population

(see Subsection 2.1.6). Here, I shall extend the study of control strategies to the case

of polymorphic, trait-structured populations.

On the other hand, the introduction of a trait-dependent sensitivity of the pesticide is,

to the best of my knowledge, a novelty in agricultural disease management literature.

The rationale is that, if a pesticide differentially affects pathogens with heterogeneous

traits (e.g. virulence or transmission), complex population effects resulting from the

balance of control and selection are expected (Patyka et al., 2016). Modelling pesti-

cide treatment, a distinction is typically made between protectant and eradicant (or

curative) effects (Castle and Gilligan, 2012). The former is described by reducing the

infection’s transmission, while the latter by increasing hosts’ recovery. Here, I shall

focus solely on the eradicant effect, and discuss future extensions accounting for pro-

tection as well, at the end of the Chapter. Particularly, I will allow pesticide-induced

eradication to depend on the pathogen trait. That is, I will model a spectrum of

possible pesticide types with different degrees of specialisation – e.g. more effect-

ive on highly virulent (or transmitting) pathogens, or more effective on less virulent

(or transmitting) ones, or generically effective – and investigate the performance, in

terms of both economic and environmental objectives, of different control strategies

characterised by the type (i.e. specialist or generalist) and the quantity (i.e. rate of

application) of the pesticide used.

The minimal model here developed allows for mathematical tractability, analytical

investigation of the pathogen’s trait distribution and of the endemic crop yield at

equilibrium, and is potentially extendable to different management, ecological and
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epidemiological scenarios. Particularly, it allows to disentangle the role of the differ-

ent ecological interactions in shaping the optimal pesticide, and can therefore provide

qualitatively guidelines for pesticide choice, starting from basic ecological information

on the system.

4.2. Methods

In this Section, I will first present the classical formulation of the epidemiological model

employed. Then, I will present the equivalent heterogeneous formulation, describing

infections of trait-structured pathogens, and I will show how to relate the problem with

the RME. I will introduce minimal recipes to describe the trait-dependent trade-offs

of interest, and the modelling of control strategies. I will also present the agent-based

numerical simulations employed to check the validity of my analytical results.

4.2.1. Classical SIS epidemiological formulation

The starting epidemiological model is an SIS model (Kermack and McKendrick, 1927),

adapted to account for characteristics typical of plant-pathogen systems (Hethcote,

2000). The host population is divided into (S)usceptible and (I)nfected individuals.

The pathogen’s dynamics is implicit in the description of infected hosts, and it is not

explicitly accounted for, as it is commonly done when dealing with microparasites

(Anderson and May, 1981). The dynamics is summarised as follows: (i) susceptible

hosts are replanted at a constant rate, and (ii) they become infected at a rate pro-

portional to the amount of infected hosts; transmission events are modelled with a

density-dependent term, since we assume the area of the crop to remain constant (Be-

gon et al., 2002); (iii) hosts share an equal harvesting rate that removes them from

the system, regardless of their epidemiological class; (iv) infected hosts experience

additional mortality due to the virulent charge of the pathogen; (v) the host recovers
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from the infection proportionally to the rate of pesticide application, with the effect

of reallocating the host in the susceptible class (Forster and Gilligan, 2007b).

The deterministic equations governing the dynamics of S and I hosts is typically ob-

tained by applying the law of mass action (see Subsection 2.1.3), to points (i)-(v).

The following system of ordinary differential equations is so obtained:

dS

dt
= θ − δS − βSI + cφI (4.1.a)

dI

dt
= βSI − [δ + ν + cφ] I, (4.1.b)

where θ is the replanting rate; δ is the harvesting rate; β and ν are, respectively,

the pathogen’s rate of infection transmission and virulence. The term cφ is the

rate of eradication, where parameter c is the application rate of the pesticide, and

φ pesticide sensitivity to the pathogen. Theoretical and experimental pesticide

literature typically employ saturating, non-linear functions relating pesticide effects

with its dose, known as dose-response curves (Elderfield et al., 2018). My choice

implies a linear dose-response curve, so as to maintain the model as simple as possible,

and to emphasise the role of pathogen heterogeneity in the dynamics.

4.2.1.1 Equilibrium points

The equilibrium points of the system Eq. (4.1) are obtained by setting the temporal

derivatives to zero. There is a trivial equilibrium point (Ŝ0; Î0) of coordinates:

(
Ŝ0 =

θ

δ
; Î0 = 0

)
, (4.2)

corresponding to the extinction of the infection, where consequently the host popu-

lation is entirely susceptible. I will refer to this equilibrium point as the disease-free
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equilibrium. In addition, there is a non trivial equilibrium point (Ŝ; Î) of coordinates:

(
Ŝ =

δ + ν + cφ

β
; Î =

βθ − δ (δ + ν + cφ)

β (δ + ν)

)
, (4.3)

corresponding to the co-existence of susceptible and infected hosts. I will refer to this

equilibrium point as the endemic equilibrium. The existence and stability of the two

equilibria are determined by value of the basic reproduction number R0, defined as:

R0 =
θ

δ

δ + ν + cφ

β
. (4.4)

The disease-free equilibrium is always biologically feasible, and is asymptotically stable

when R0 < 1. On the other hand, the endemic equilibrium has biological meaning

only when R0 > 1; in this case, it is also asymptotically stable (Korobeinikov and

Wake, 2002). Therefore, the system is always characterised by a sole asymptotic

stable equilibrium point, depending on the value of R0. In Fig. 4.1, I show the tem-

poral trajectories of the number of S and I hosts, obtained by means of numerical

integration of Eq. (4.1), for two sets of parameters corresponding to R0 ≷ 1 (specified

in the figure’s caption). In both cases, after a transient depending on the initial condi-

tions, the temporal trajectories (solid lines) approach their corresponding equilibrium

points (dashed lines), that is the endemic equilibrium
(
Ŝ; Î

)
in the left panel (where

R0 > 1), and the disease-free equilibrium
(
Ŝ0; Î0

)
in the right panel (where R0 < 1).

Starting from the classical one-strain formulation of the dynamics, I shall now derive

the equivalent heterogeneous formulation.

4.2.2. Heterogeneous SISx formulation

4.2.2.1 From SIS to SISx formulation

Following (Day and Proulx, 2004; Gudelj et al., 2006; Bolzoni and De Leo, 2013;

Korobeinikov, 2018; Day et al., 2020) I elaborate the formulation equivalent to the
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Figure 4.1: Temporal trajectories classical SIS model. Left panel: the temporal
trajectories for the number of S and I hosts (solid lines) approach the endemic equi-
librium (dashed lines), since R0 > 1; parameters: θ = 100, δ = 0.04, β = 0.001, ν =
0.1, c = 0.01, φ = 1. Right panel: the temporal trajectories for the number of S and I
hosts (solid lines) approach the disease-free equilibrium (dashed lines), since R0 < 1;
parameters: θ = 50, δ = 0.1, β = 0.001, ν = 0.5, c = 0.01, φ = 1.
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Table 4.1: List of the variables and parameters used in the model.
Name Description
S Number Susceptible hosts
I Number Infected hosts
x Trait variable
i(x) Trait distribution
x average trait value
µ Mutations diffusion coefficient
θ Replanting rate of S hosts
δ Harvesting rate
c Pesticide application rate

ν(x) Trait-dependent virulence (additional mortality)
ν0 Baseline virulence rate
ν1 Trait-dependent virulence coefficient
β(x) Trait-dependent transmission
β0 Baseline transmission rate
β1 Trait-dependent transmission coefficient
φ(x) Pesticide sensitivity to trait
φ1 Type of pesticide

one-strain model Eq. (4.1), in the case of a trait-structured pathogen. The paramet-

ers of the model and their description are summarised in Table 4.1. The following

assumptions are introduced: (i) The pathogen has a continuum-of-strains, mathem-

atically described by a continuous trait variable x ∈ T = [xmin, xmax], where T is

the trait space. I denote with I(x) the number of hosts infected by a pathogen with

trait value x. Heterogeneity is described by the trait distribution i(x), that is the

density of hosts infected with trait x. (ii) The trait determines the pathogen’s levels

of virulence, transmission, and pesticide sensitivity, which are now represented by

the functions ν(x), β(x), φ(x). (iii) Pathogens undergo rapid within-host mutations

which induce small changes in their traits, and maintain heterogeneity among the

infected population; mutation rates are unbiased and no preferential direction is as-

sumed; mutations are modelled by allowing the trait distribution to diffuse over the

trait space, with mutational diffusion coefficient µ (in analogy with Kimura’s model,

see Subsection 2.2.4).



4.2. Methods 81

The dynamics of the heterogeneous system is given by the following equations:

d S

dt
= θ − δS − S

∫
T
β(x)I(x)dx+ c

∫
T
φ(x)I(x)dx (4.5.a)

d I(x)

dt
= µ∇2I(x) + β(x)I(x)S − [δ + ν(x) + cφ(x)] I(x), (4.5.b)

where in Eq. (4.5.a), the transmission and eradication terms are integrated over the

trait space in order to account for contribution from all strains. In contrast to the

one-strain model, this heterogeneous system is composed of an ordinary differential

equation and of a partial differential equation. The Eq. (4.5.b) is subject to no-flux

boundary conditions:
∂I(x)

∂x
|x=xmin

=
∂I(x)

∂x
|x=xmax= 0, (4.6)

corresponding to the reflecting nature of mutations at the boundaries of the trait

space (likewise the model presented in Chapter 3). In the following, I will recast

the dynamics in a form that will highlight the ecological and evolutionary levels of

description of the dynamics, and that will allow me to solve the problem within the

context of the RME formalism.

4.2.2.2 The RME

First, I define the total number of infected hosts I as:

I :=

∫
T
I(x)dx, (4.7)

that is obtained integrating I(x) over the trait space. Then, I define the trait distri-

bution i(x) as:

i(x) :=
I(x)

I
. (4.8)
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The trait distribution is the density of individuals infected by trait x, and is a dynam-

ical quantity varying over time. As such it is normalised to one upon integration over

the trait space: ∫
T
i(x) dx =

∫
T

I(x)

I
dx =

I

I
= 1. (4.9)

The trait distribution allows me to define average quantities over the infected popu-

lation. Given a function f(x) of the trait variable, I will refer to its average with the

bar notation, that is:

f [i(x); t] :=

∫
T
f(x)i(x)dx. (4.10)

In general, such average quantities will be function of the trait distribution, and of time,

since both total number of I hosts and trait composition vary during the dynamics. In

the following however, I will drop the functional dependence of the average quantities

of i(x), and retain just the temporal one, so as to lighten the notation. The temporal

dynamics for I is obtained by integrating Eq. (4.5.b) over the trait space:

dI

dt
=

∫
T
β(x)SI(x)dx−

∫
T
δI(x)dx−

∫
T
ν(x)I(x)−

∫
T
cφ(x)I(x)

(4.11)

= β(t)IS −
[
δ + ν(t) + cφ(t)

]
I,

where in the second line I have used the definition Eq. (4.10) for transmission, vir-

ulence and pesticide sensitivity. According to the above equation, the total number of

infected hosts variate proportionally to the average quantities of the trait-dependent

epidemiological functions. Note that, upon integration, the Laplacian term disappears

due to the boundary conditions Eq. (4.6), since mutations do not increase nor decrease

the total number of infections. In order to highlight the evolutionary nature of the

dynamics, I shall derive the equation for the temporal evolution of the trait distribu-

tion i(x). By taking the temporal derivative of its definition Eq. (4.8), and applying
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the chain rule I obtain:

d i(x)

dt
=

d

dt

I(x)

I
=

1

I

dI(x)

dt
− I(x)

I2

dI

dt
= (4.12)

µ∇2 I(x)

I
+ β(x)S

I(x)

I
− [δ + ν(x) + cφ(x)]

I(x)

I
− I(x)

I

(
β(t)S −

[
δ + ν(t) + cφ(t)

])
,

where in the second line I have replaced Eq. (4.5.b) and Eq. (4.11). Finally, recalling

the definition Eq. (4.8), I obtain:

d i(x)

dt
= µ∇2i(x) + i(x)

[
β(x)S − ν(x)− cφ(x)−

(
β(t)S − ν(t)− cφ(t)

)]
, (4.13)

subject to the boundary conditions Eq. (4.6) (upon replacing I(x) with i(x)) and

to normalisation Eq. (4.9). The heterogeneous dynamics is fully described by the

equations for the total number of S and I hosts, as well as by that for the trait

distribution i(x), which I recollect in the following system of equations:

d S

dt
= θ − δS − β(t)SI + cφ(t)I (4.14.a)

d I

dt
= β(t)SI −

[
δ + ν(t) + cφ(t)

]
I (4.14.b)

d i(x)

dt
= µ∇2i(x) + i(x)

[
β(x)S − ν(x)− cφ(x)−

(
β(t)S − ν(t)− cφ(t)

)]
. (4.14.c)

In the above system, Eqs. (4.14.a)-(4.14.b) describe the epidemiological SIS dynamics

at the demographic level, and are determined by the ecological interactions between

plant and pathogen. They are equivalent to the classical formulation Eqs. (4.1), upon

replacing the single-strain parameters ν, β, φ with their population average counter-

parts ν(t), β(t), φ(t).

The last Eq. (4.14.c) describes the mutation-selection dynamics of the trait distribu-



84 4. Control strategies for heterogeneous plant pathogens

tion, and takes the form of a RME. Phenotypic mutations are captured by diffusion

over the trait space, with corresponding coefficient diffusion µ; concomitantly, patho-

gens compete between each other for the infection of a limited number of hosts, accord-

ing to the trait-dependent function F (x) = β(x)S − ν(x)− cφ(x). The overall success

of pathogens with trait x depends on the difference between their value of F (x) and

the population average, as in a replicator dynamics (see Subsection 2.2.4). Contrary

to the problem studied in Chapter 3, the function F (x) driving such competition is

not assumed, rather it behaves as a fitness landscape emerging from the ecological

interactions (Doebeli et al., 2017; Day et al., 2020): the transmission term β(x)S con-

tributes to the increase of trait x density, whereas virulence ν(x) and sensitivity φ(x)

contribute to its decrease. This equation is evolutionary, as it governs the changes

in the pathogen composition within the infected population, due to mutations and

competition for infection.

The system Eqs. (4.14) shows neatly the intertwining of ecological and evolutionary

levels of descriptions: on the one hand, the demography of the population (given by S

and I) depends on the trait composition i(x) via the average quantities ν(t), β(t), φ(t);

on the other hand, the trait composition depends on the population state via the eco-

logical interactions (as transmission depends on S). The solution (and the methods

needed to obtain it) of the heterogeneous problem depends on the choices of the trait-

dependent epidemiological rates, which are detailed in the following subsection.

4.2.3. Modelling the trait dependence of epidemiological rates

In my model, the pathogen’s virulence, transmission and sensitivity to pesticide are

considered functions of the trait value x. The mathematical choices presented in the

following aim at capturing the basic biological features regarding the trade-offs of

interest, whilst preserving mathematical tractability.

Virulence. I assume that the pathogen virulence ν may vary linearly with the trait
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x:

ν(x) = ν0 + ν1x, (4.15)

with the parameters ν0 being the baseline virulence, and ν1 the trait-dependent con-

tribution (Day and Proulx, 2004; Bolzoni and De Leo, 2013; Porco et al., 2005). For

sake of simplicity, I shall also consider the unit segment T = [0, 1] as trait space.

The generalisation to any positive interval [xmin, xmax] is straightforward, and can be

mapped to the unit interval upon rescaling of the parameters.

Transmission. Similarly, I assume that transmission rate β may be linearly affected

by the trait variable x, that is:

β(x) = β0 + β1x, (4.16)

where β0 is the baseline transmission rate, and β1 the trait-dependent contribution. For

values of both ν1 and β1 > 0, pathogens with higher transmission will also have higher

virulence, consistent with the Transmission-Virulence trade-off hypothesis. Although

nonlinear, concave-down functions are typically considered (Galvani, 2003; Bolzoni

and De Leo, 2013; Porco et al., 2005; Pugliese, 2002), a simpler linear choice has the

following advantages: first, it is sufficient to capture the essential biological features

we are interested in, that is the cost paid in virulence terms for the pathogen to

increase transmission; second, it allows to fully exploit mathematical analysis; finally,

it provides the baseline results against which one can in future compare nonlinear

functions, so as to disentangle the role of nonlinearities from the role of the trade-

off alone. Possible extensions to other functions will be discussed at the end of the

chapter.

Pesticide sensitivity. Finally, the pesticide sensitivity φ(x) is considered to depend

on the heterogeneous trait, and is maximal of the extreme values of the trait space

(0, 1). Consistently with (Porco et al., 2005), I choose a linear dependence:

φ(x) = Cφ1 + φ1x, (4.17)
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where the parameter φ1 represents the pesticide’s degree of correlation with the trait,

and Cφ1 is a normalisation factor. A graphical summary of the pesticides spectrum is

shown in Fig. 4.2 panel B (note that the bound |φ1| < 2 ensures a positive φ(x)).

Equations (4.15)-(4.17) allow to account for all the possible trade-offs occurring

between the considered epidemiological traits: if β1 = 0, sensitivity of the eradication

correlates only with virulence, and transmission is trait independent: this is the

Virulence-Eradication (VE) case. If ν1 = 0, sensitivity correlates only with transmis-

sion, and virulence is trait independent: this is the Transmission-Eradication (TE)

case. Finally, the case β1, ν1 6= 0 corresponds to the scenario with full complexity;

I call this the Transmission-Virulence-Eradication (TVE) case. Note that φ1 = 0

describes the case when sensitivity of eradication is trait independent, i.e. the

pesticide has a purely generalist effect over the trait space, and can be considered as

a sub-case of TVE.

4.2.4. Modelling control strategies

I assume that the environmental and economic cost of pesticide use is inherent and

proportional to its application rate c, regardless of the type. The degree of correlation

φ1 with the heterogeneous trait determines the type of pesticide: a positive φ1 models

a pesticide with maximal eradicant effect on pathogens that may also be the most

virulent (and/or most transmitting), and minimal effect on the least virulent (and/or

least transmitting) one; instead, a negative φ1 models the opposite scenario.

The normalisation factor Cφ1 = 1− φ1/2 ensures that
∫
T φ(x)dx is always normalised

to 1, for any type φ1. Besides removing one arbitrary degree of freedom, this condition

also imposes a plausible constraint on the pesticide design, and allows the comparison

between different choices. In fact, while the ideal pesticide has maximum effect on all

pathogens, in practice a specialist-generalist trade-off is expected to hold. By virtue

of this trade-off, a high maximal eradication effect on a particular trait value should
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Figure 4.2: Spectrum of pesticides with trait-dependent sensitivities. The
type of pesticide is determined by the sign and the magnitude of the parameter
φ1 ∈ [0, 2]: positive φ1 models types with maximal effect on pathogens with higher
virulence and/or transmission (x = 1); negative φ1 models types with maximal effect
on pathogens with lower virulence and/or transmission (x = 0). Large |φ1| are spe-
cialised in targeting extreme values of the trait; small |φ1| are generalist types with
more uniform action.



88 4. Control strategies for heterogeneous plant pathogens

come at the expenses of a general reduction of the effect on the others; concomitantly,

generalist pesticides will affect more uniformly over the trait space, with a reduction of

the maximal eradicant effect. The parameter φ1 is then a control parameter modelling

the pesticide choice, out of a spectrum of possible degrees of correlation with the

heterogeneous trait.

Henceforth, with the term ‘specialist’ will refer to pesticides with large degree of

correlation (large |φ1|), and the term ‘generalist’ will refer to pesticides with small

degree of correlation (small |φ1|). Particularly, the choices φ1 = ±2 represent the

most specialised types; the choice φ1 = 0 represents the most generalist type, with a

homogeneous effect over the trait space. A control strategy is specified by choosing

both application rate c and pesticide type φ1. For my purposes, the aim of the pest

management is then to assess which type of pesticide maximises the amount healthy

yield at equilibrium.

4.2.5. Numerical simulations

The agent-based dynamics is based on a Montecarlo algorithm simulating the eco-

logical interactions between susceptible and infected hosts, each occurring at a rate

consistent with the deterministic Eqs. (4.14). The purpose is to provide a numerical

validation of the existence and stability of the endemic equilibrium solution predicted

by the theory.

At each timestep, the system is composed of a certain number of susceptible and in-

fected hosts. The former is represented by the scalar number S of total susceptible

hosts in the population. The latter is represented by an array of dimension I, where

I is the total number of infected hosts. Each element i of the array represents an

infected host, and contains the strain value xi determining its trait-dependent func-

tions. The system is initialised assigning a starting total number of S and I, as well

as the value of each element I[i]. In my code, the elements I[i] are initialised using

a uniform distribution ∈ [0, 1]. Any other distribution can be used to initialise the
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infected population. Alternatively, they can also be all initialised with the same value.

This will only affect the transient dynamics, but not the asymptotic behaviour.

The agent-based dynamics is composed of the following events: Mutation, Infection,

Harvesting, Disease induced death, Eradication, Replanting. Each event is represented

by a stochastic process e occurring at a rate re. During a time-step, each event is

simulated once. For each event, a uniformly distributed random number r1 is sampled

and compared to ri∆τ , where ∆τ is the time-step of the numerical simulation. If

r1 < re∆τ , then the event i occurs, and the state of the population is updated.

Provided a small enough ∆τ (I choose ∆τ = 10−4), the discrete-time dynamics is

expected to converge to the deterministic continuous-time one. In the following, the

rates of all the events are presented.

Mutation. All infected hosts have the same probability to mutate. A mutation oc-

curs if r1 < µ0 I ∆τ , where µ0 is the per capita rate of mutation per unit of time.

Upon occurrence, an infected host is randomly extracted, and its trait value is up-

dated analogously to the procedure employed in Subsection 3.2.3

Infection. Each infected host i has a probability of infection that depends on their

own trait value xi. In order to simulate this event, I first sample at random an infec-

ted host. Then, the infection occurs if r1 < β(xi) I S∆τ , where the trait-dependent

transmission rate β(xi) is computed according to Eq. (4.16). Upon occurrence of the

event, a susceptible host becomes infected. Hence, the total number S is decreased by

one, and a new element is appended to the array I, with trait value equal to xi.

Harvesting. All hosts have the same harvesting rate δ. Hence, if r1 < δ I ∆τ , a ran-

dom element of the array I is deleted. If r1 < δ S∆τ , the total number S is decreased

by one.

Disease induced death. Similarly to infection, each infected host has its own prob-

ability to die due to the disease, that depends on its own trait value. This process is

simulated likewise for infection events. First, an infected host i is chosen at random

from the array I. Then, the element I[i] is deleted if r1 < ν(xi) I ∆τ , where the level

of virulence ν(xi) is computed according to Eq. (4.15).
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Eradication. This event is analogous to the previous event, upon replacing ν(xi) with

c φ(xi), where c is the pesticide application rate, and φ(xi) is the pesticide sensitivity

to trait xi, computed according to Eq. (4.17).

Replanting. Susceptible hosts are replanted at constant rate. Hence, if r1 < θ∆τ ,

then the total number S is increased by one.

The Python code employed to simulate the above process is reported in the Ap-

pendix A.1.2. An example of the simulated temporal trajectories (and their agreement

with the deterministic theory) is shown in Fig. 4.5.

4.3. Results

4.3.1. Ecological equilibrium

The equilibrium solution of the heterogeneous system is obtained by setting to zero

the temporal derivatives of Eqs. (4.14). The ecological states at equilibrium are found

by solving the algebraic conditions for S and I. In the following, I will refer to S as

the yield : assuming that the infected quantity goes wasted, S is the amount of harvest

with economic value, therefore the quantity that the producer would want to maximise

at equilibrium. Since the functional form of the equations is analogous to the classical

formulation Eqs. (4.1), the form of the equilibrium points is analogous as well. The

system has a trivial equilibrium point trivial equilibrium point (Ŝ0; Î0) of coordinates:

(
Ŝ0 =

θ

δ
; Î0 = 0

)
, (4.18)

corresponding to the disease-free equilibrium. Moreover, the system has a non trivial

equilibrium point (Ŝ; Î) of coordinates:

(
Ŝ =

δ + ν + cφ

β
; Î =

βθ − δ
(
δ + ν + cφ

)
β (δ + ν)

)
, (4.19)
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corresponding to the endemic equilibrium. Analogally to the classical formulation, the

endemic equilibrium is biologically meaningful when:

R0 =
θ

δ

δ + ν + cφ

β
, (4.20)

that is the trait-structured version of the basic reproduction number. Contrary to

the classical formulation, however, such equilibrium depends on the average quantities

ν, β, φ which are not known a priori. Rather, they depend on the equilibrium trait

distribution î(x), which is the solution of the sRME:

µ∇2î(x) + î(x)
[
β(x)Ŝ − ν(x)− cφ(x)−

(
βŜ − ν − cφ

)]
= 0. (4.21)

Note that in Eq. (4.20) and Eq. (4.21), the temporal dependence of the average quant-

ities has been dropped, because at equilibrium they have reached a constant value.

Again, the sRME has a trivial solution î0(x), which obviously corresponds to the

disease-free equilibrium. Moreover, there is a non-trivial solution î(x), determining

the trait composition of the endemic equilibrium. Like the classical formulation, the

basic reproduction number R0 determines the existence and stability of the two equi-

libria. If R0 ≤ 1, then the system evolves towards disease extinction; otherwise for

R0 > 1, the system evolves towards the endemic equilibrium. Contrary to the classical

formulation though, the above condition cannot be directly computed in terms of the

epidemiological SIS model alone. Hence, a way to determine the fate of the system

given a set of parameters, is to solve the trait distribution î(x), compute the corres-

ponding equilibrium average quantities ν, β, φ, and finally check whether R0 ≶ 1. As

pointed out in papers employing RME-like equations (Beardmore et al., 2011; Lorenzi

et al., 2020), when the total population size is not fixed (which is instead the case in the

models studied in Chapter 3), a rigorous proof of the stability of the endemic equilib-

rium is not known (for the moment). Therefore (and likewise those papers), existence

and stability are checked by means of numerical simulations of the agent-based dy-
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namics. For all set of parameters explored, I find that the system approaches towards

either the disease-free or the endemic equilibrium, according to condition Eq. (4.20)

on R0. In the following, I will focus on the characterisation of the endemic equilibrium

of both the ecological and evolutionary levels.

4.3.2. Trait distribution equilibrium

Assuming that the system has reached endemic equilibrium, then I can replace the

endemic value Ŝ Eq. (4.19) into the sRME (4.21) for î(x):

µ∇2î(x) +
î(x)

β

[
β(x)

(
δ + ν + cφ

)
− β

(
δ + ν(x) + cφ(x)

)]
= 0. (4.22)

Inserting the trait-dependent functions Eqs. (4.15)-(4.17), the above equation becomes:

µ∇2 î(x) +
Ω

β0 + β1x
î(x) [x− x] = 0, (4.23)

with

Ω = β1 (δ + ν0)− β0ν1 + c [β1 − β1φ1/2− β0φ1] . (4.24)

where x is the average trait value. The above equation can be recast in the form

of an Airy differential equation, likewise the one analysed in Subsection 3.2.2. The

procedure to solve it follows the same line of the non-degenerate model, therefore I

will omit to report all calculations here, and refer to the Appendix A.6 for details.

The behaviour of the solution is entirely determined by the compound parameter Ω.

In Fig. 4.3, I plot some examples of the endemic trait distribution for three differ-

ent values of Ω, obtained by varying ν1 and fixing the other parameters (specified in

the figure’s caption). Particularly, if Ω < 0, the solution is monotonically decreas-

ing and the trait distribution is mostly distributed close to the trait x = 0, that is

the trait value providing lowest virulence and/or lowest transmission. I refer to this

kind of distribution as belonging to the low-virulence and/or low-transmission state,
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Figure 4.3: Possible behaviours of the trait distributions. The value of Ω
determines the behaviour of the trait distribution. Here, I plot three solutions for the
set of parameters (β0 = β1 = 0.0001, µ = 0.00007, δ = 0.06, ν0 = 0.1, c = 0), and
different values of ν1. For ν1 = 0.1, Ω is positive and the profile is monotonically
increasing, that is a high state. For ν1 = 0.16, Ω is zero and the profile is degenerately
uniform. For ν1 = 0.2, Ω is negative and the profile is monotonically decreasing, that
is a low state.
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because it represents an endemic equilibrium where most of the population is infec-

ted by pathogens with low values of virulence and/or transmission. On the other

hand, if Ω > 0, the solution is monotonically increasing and the trait distribution is

mostly distributed close to the trait x = 1, that is the trait value providing highest

virulence and/or highest transmission. I refer to this kind of distribution as belonging

to the high-virulence and/or high-transmission state, because it represents an endemic

equilibrium where most of the population is infected by pathogens with high values

of virulence and/or transmission. These two antipodal behaviours are separated by

a degenerate case, corresponding to Ω = 0, for which the trait-dependent replicator

term of the sRME (4.23) disappears, and the trait distribution becomes uniform. In

the following, I characterise the phase diagrams of all the possible trade-offs that the

model can account for, both in the presence and absence of pesticide treatment.

Virulence-Eradication VE case. In this case, the pesticide sensitivity φ(x) and

virulence ν(x) both depend on the trait x. The transmission of infection is then ho-

mogeneous, that is β1 = 0. The relevant compound parameter of Eq. (4.24) reduces

to ΩVE = −β0 (ν1 + cφ1). In absence of pesticide (i.e. c = 0, corresponding to the

x-axis in panel A of Fig. 4.4), ΩVE is always negative, meaning that the distribution

is in the low-virulence state for any combination of the parameters. When pesticide

is employed, if its application rate c exceeds the threshold cth = − ν1

φ1
, the sign of ΩVE

reverses, and a distribution in the high-virulence state is obtained. For this to occur,

one needs to employ a pesticide type with negative φ1, since for positive φ1 the change

would occur for negative c. The larger the degree of correlation |φ1|, the lower the

threshold cth will be (panel B of Fig. 4.4, parameters).

The adaptation towards the two possible states is shown in Fig. 4.5, where I plot the

trajectories of the simulated agent-based dynamics (solid lines), differing for the pesti-

cide type employed. The other parameters (specified in the figure’s caption) and initial

conditions are identical. For φ1 = 1, the system adapts towards the low virulence state,

and towards the high virulence state for φ1 = −1. Consequently, the quantity of yield

reached at equilibrium differs in the two cases (the relationship between yield and
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Figure 4.4: Trait distribution states - VE & TE cases. Color code: white
(grey) region refers to low (high) states. Panel A: VE case for a fixed pesticide (i.e.
φ1 = −2). In absence of pesticide (c = 0), the infected population is always in the low
state, regardless of the trait-dependent virulence contribution ν1. In the presence of
pesticide (c > 0), the system can adapt towards the high state, for sufficiently high c.
Panel B: state diagram for control strategy parameters c and φ1 (with fixed ν1 = 0.1).
Panel C: TE case for a fixed pesticide (i.e. φ1 = 2). In absence of pesticide (c = 0), the
infected population is always in the high state. In the presence of pesticide (c > 0),
the system can adapt towards the low state, for sufficiently high c. Panel D: state
diagram for control strategy parameters (with fixed β0 = β1 = 0.0001, δ + ν0 = 0.1).
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Figure 4.5: Simulated temporal trajectories. Solid lines: Temporal trajectories
of the yield (Ŝ, rescaled with respect to Ŝ0) and of the average trait (x), obtained
from agent-based numerical simulations of the dynamics. Dashed lines: analytical
equilibrium values. The system is initialised with identical initial conditions and same
application rate (c = 0.15), but different pesticide type. For φ1 = −1 (φ1 = 1), the
system adapts towards the high (low) state. Other parameters: θ = 300, d = 0.04, β0 =
0.0001, β1 = 0, ν1 = 0.1, ν1 = 0.1, µ = 0.00007.

pesticide type will be analysed extensively later). The figure also shows the agreement

between the analytical predictions for the equilibrium values, and the agent-based SISx

dynamics, which holds for all sets of parameters considered in the study.

Transmission-Eradication TE case. In this case, pesticide sensitivity φ(x)

and transmission β(x) both depend on the trait x. Virulence is then homogen-

eous, that is ν1 = 0. The relevant compound parameter of Eq. (4.24) reduces to

ΩTE = β1 (δ + ν0) + c[β1 (1− φ1/2)− β0φ1]. In absence of pesticide (i.e. c = 0, corres-

ponding to the x-axis in panel C of Fig. 4.4), ΩTE is always positive, meaning that the

distribution is in the high-transmission state for any combination of the parameters.

Upon employment of a pesticide positively correlated with the trait (φ1 > 0, thus fo-

cusing the effect on the most transmitting pathogens), the system may adapt towards

the low-transmission state: panel C of Fig. 4.4 shows that for this to occur, the ap-
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Figure 4.6: Trait distribution states - TVE case. Panel A: state diagram of
the trait distribution in absence of pesticide. The infected population can adapt
towards either the high-virulence and high-transmission state, or the low-virulence
and low-transmission state. Large β1, harvesting rate δ and baseline virulence ν0

push the system towards the high state; instead, large baseline transmission β0 and
trait-dependent virulence contribution ν1 push it towards the low state. Panel B:
a system initially in the high state (red point panel A) can switch towards the low
state under a range of control strategies. The red curve separates the two regions of
the control parameters. Panel C: likewise, a system initially in the low state (blue
point panel A) can switch towards the high state under a range of control strategies.
The blue curve separates the two regions of the control parameters. Parameters:
δ = 0.06, ν0 = 0.1, β0 = β1 = 0.0001.
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plication rate c must exceed a threshold value that increases with the trait-dependent

transmission β1, and with δ+ ν0, (here we have fixed the pesticide type φ1 = 2), while

it decreases with baseline transmission β0. In general, for fixed values of β1, ν0, δ, such

threshold value decreases as correlation φ1 increases (panel D of Fig. 4.4).

Transmission-Virulence-Eradication TVE case. In the TVE case, the hetero-

geneous trait simultaneously determines all three epidemiological interactions. The

relevant compound parameter is then given by the Ω of Eq. (4.24). Contrary to the

cases previously shown, in absence of pesticide (i.e. c = 0), the pathogen population

can already be found in both high or low states. With reference to panel A of Fig. 4.6,

low states will be favoured for large baseline transmission β0 and trait-dependent vir-

ulence contribution ν1; instead, high transmission-high virulence states will be favoured

for large trait-dependent transmission β1, harvesting rate δ and baseline virulence ν0.

The presence of pesticide may lead to a change of state, depending on both the rate of

application c and the degree of correlation φ1 with the heterogeneous trait. In panel

B of Fig. 4.6, I show how a system initially in the high state adapts after pesticide

application, as a function of the management control parameters c and φ1. For low

use of pesticide (i.e. low c), the infected population remains in the high state, regard-

less of the type of pesticide employed. However, increasing pesticide application will

eventually bring the system into the low state, if positive φ1 or generalist types are

employed. If the system is initially in the low state in absence of pesticide (panel C of

Fig. 4.6, same parameters as panel A but ν1 doubled), the complementary behaviour

is observed.

Besides affecting the evolutionary state (that is the average trait value x) of the system

at the endemic equilibrium, numerical simulations of the dynamics have shown that

the type of pesticide employed also affects the quantity of healthy yield produced. The

aim of the next Section is to characterise mathematically the relationship between con-

trol strategy and yield production, with the aim of understanding the optimal control

strategy.



4.3. Results 99

4.3.3. Optimising pesticide use

At endemic equilibrium, the average virulence, transmission and pesticide sensitivity,

respectively, are: 
ν = ν0 + ν1x

β = β0 + β1x

φ = φ1x+ 1− φ1/2.

(4.25)

Inserting the above equations into the endemic equilibrium yield Ŝ Eq. (4.19), I get:

Ŝ =
δ + ν0 + ν1x+ cφ1x+ c (1− φ1/2)

β0 + β1x
. (4.26)

Note that the equilibrium average trait x is function of the control strategy (φ1, c),

as the equilibrium trait distribution î(x) depends on such parameters. Therefore,

Eq. (4.26) provides all information about the complex relationship between yield pro-

duction and pest management, and it allows systematic exploration of the whole para-

meter space. In the following, I will focus on a particular set of parameters exemplar

of the possible non trivial behaviours of the system. In Fig. 4.7, I plot the equilibrium

yield Ŝ (rescaled with respect to the disease-free yield Ŝ0), as a function of application

rate c, and compare the effect of five different types of pesticides: φ1 = −2,−1, 0, 1

and 2. The set of parameters correspond to the TVE case, with the system in the low

state in absence of pesticide (white region in panel A of Fig. 4.6, other parameters

specified in the figure’s caption); the complementary case starting in the high state is

not shown, but it preserves the same qualitative behaviour.

Employing a pesticide type inconsistent with the state of the trait distribution in ab-

sence of control (e.g. φ1 = 2 in this example), leads to a small increase of yield as the

dose is increased (green curve). Instead, employing a pesticide extremely specialised

on low trait values (φ1 = −2), initially leads to a more significant increase in yield, for
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Figure 4.7: Equilibrium yield as function of pesticide application rate - TVE
case. The yield at equilibrium Ŝ obtained using five different pesticide types, as
function of application rate c (the y-axis is normalised with respect to the disease

free yield Ŝ0). In absence of pesticide, the system is in the low-virulence state. Very
specialised pesticides (e.g. φ1 = −2) are optimal for low c, but their correspondent
gain in yield quickly saturates as application rate is increased. For higher values of
c, switching to more generalist types grants a higher return. The Pareto-efficient
solutions of the control strategy as function of application rate are highlighted with
solid curves. Parameters: µ = 0.00007, θ = 150, δ = 0.04, β0 = β1 = 1e − 4, ν0 =
0.08, ν1 = 4ν1.
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low application rates (blue curve). However, as increasing application rate leads the

system towards the opposite high state, this extremely specialist pesticide becomes

less effective, and the gain in yield eventually saturates. At this point, switching to

a more moderate (φ1 = −1) or to a generalist (φ1 = 0) type provides more gain in

yield, rather than increasing further the rate of application c (red and yellow curves).

Depending on the value of the replanting rate θ, the system may eventually reach the

disease-free equilibrium (where Ŝ ≡ Ŝ0), as the dose is further increased. Overall, I

remark that, regardless of the choice, increasing c always corresponds to an increase

of the yield. Hence, it is evident that maximising yield and minimising pesticide ap-

plication are contrasting objectives. Nonetheless, this picture shows that, for a given

application rate c, it is possible to optimise its use by choosing the right type φ1. In

the next subsection, I will exploit the linear form of the trait-dependent functions, so

as to obtain analytical formula for the optimal pesticide type.

4.3.3.1 Optimal pesticide choice

I have shown that in general, for a given value of pesticide application rate c, there will

exist an optimal pesticide type φopt
1 maximising the yield Ŝ at the endemic equilibrium.

Under the linear assumptions Eqs. (4.15)-(4.17), the optimal pesticide can be computed

analytically. For a given set of the parameters θ, δ, ν0, β0, β1 and c, the pesticide type

φ1 that maximises the equilibrium yield satisfies:

∂ Ŝ

∂φ1

= 0 ,
∂2 Ŝ

∂φ2
1

< 0. (4.27)

Performing the first derivative with respect to φ1 of Ŝ (Eq. (4.26)), I get:

∂ Ŝ

∂φ1

=
[ν1xφ1 + cx+ cφ1xφ1 − c/2] [β0 + β1x]− [δ + ν0 + ν1x+ cφ1x+ c− cφ1/2] β1xφ1

(β0 + β1x)2 ,

(4.28)
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where the subscript notation indicates the derivative with respect to φ1. Arranging

terms (and neglecting the denominator which is always positive), I get:

∂ Ŝ

∂φ1

= 0⇐⇒ [x− 1/2] [c+ β1 c x]− Ωxφ1 = 0. (4.29)

The above condition is readily solved by observing that Ω = 0 for x = 1/2. Hence,

the candidate for the optimal type is:

φopt
1 such that x =

1

2
. (4.30)

The second derivative with respect to φ1 of Ŝ gives:

∂2 Ŝ

∂φ2
1

=
(β0 + β1x)2

[
xφ1

(cβ0 + cβ1x)
(
x− 1

2

)
cβ1xφ1

− Ωφ1
xφ1
− Ωxφ1φ1

]
− 2β1xφ1

(
x− 1

2

)
(cβ0 + cβ1x)− Ωxφ1

(β0 + β1x)

(β0 + β1x)4

(4.31)

Recalling that for our candidate point holds Ω = 0 and x = 1
2
, many terms of the

above equation simplify, and we are left with:

∂2 Ŝ

∂φ2
1

=
xφ1

[
2cβ0 + cβ1

(
x+ 1

2

)]
(β0 + β1x)2 , (4.32)

to be evaluated in x = 1
2
. In Eq. (4.32), all terms in bracket are always positive, so

that sign
(
∂2 Ŝ
∂φ2

1

)
= sign (xφ1). However, increasing the value of φ1 means increasing

selection pressure on pathogens with higher trait value x, thus decreasing its average

quantity. Therefore, it follows that xφ1 < 0, and the desired condition on the second

derivative of Ŝ (Eq. (4.27)) is satisfied.

By setting the definition of Ω Eq. (4.24) to zero, I finally obtain the value of the

optimal type φopt
1 as function of the pesticide application rate (as well as of the other

parameters):

φopt
1 =

2

2β0 + β1

[
β1 (δ + ν0)− β0ν1

c
− β1

]
(4.33)

With respect to Figs. 4.4 and 4.6, the above equation corresponds to the curves sep-

arating the low and high states in the (φ1, c) phase diagrams, for which Ω = 0. The
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effect of each parameter on φopt
1 is summarised in Table 4.2. For instance, the impact

of harvesting rate δ and of baseline virulence ν0 are mediated by the trait-dependent

transmission coefficient β1. Therefore, one should expect such parameters to be unin-

fluential, in absence of transmission heterogeneity. Overall, Eq. (4.33) shows that the

optimal pesticide’s degree of specialisation φopt is a decreasing function of application

rate c, so that extremely specialised pesticide types will perform better for low c.

Table 4.2: Effect of the parameters on the optimal pesticide choice φopt
1 .

The symbol ↑ (↓) indicates that an increase in the parameter in question leads to an
increase (decrease) of φopt

1 .

Parameter Effect on φopt
1

β0 ↑ if (δ + ν0 + ν1/2− c) > 0 and ↓ otherwise

β1 ↑ if (δ + ν0 + ν1/2− c) < 0 and ↓ otherwise

c ↑ if (β0ν1 − β1δ − β1ν0) > 0 and ↓ otherwise

ν0 ↑ always

ν1 ↓ always

δ ↓ always

4.4. Discussion and conclusions

Theoretical works treating trait-structured populations typically aim at deriving equa-

tions that characterise the evolutionary state of the system, namely the population’s

average virulence (Day and Gandon, 2006; Day and Proulx, 2004; Day et al., 2020).

Instead, my approach highlights the environmental and economic implications of evol-

utionary adaptation by framing the problem in the context of pest management: that

is, understanding how the pesticide’s dependence on the heterogeneous trait relates to

its application rate, with the aim of maximising the amount of yield at equilibrium

for a given quantity of pesticide deployment.

I have considered a pathogen expressing continuous levels of disease-induced mortality
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and infection transmission (Eqs. (4.15)-(4.16)), and a pesticide exerting an eradicant

action that can be either positively or negatively correlated with such traits (Eq. (4.17)

and Fig. 4.2), depending on the chosen type. I have shown that, in absence of pesticide

treatment, the infected population may adapt towards either a high virulence-high

transmission or a low virulence-low transmission state, depending on the ecological

parameters, and on the trait-dependent contributions to the epidemiological traits. I

have shown that, due to its heterogeneous selection pressure, the use of pesticides with

trait-dependent sensitivity may induce a transition in the pathogen trait distribution,

depending on pesticide type φ1 and application rate c (panels B and D of Fig. 4.4,

panels B and C of Fig. 4.6). Pesticide sensitivity has been treated as a potentially

continuous control parameter; however, focusing on only few classes (as I have done

in Fig. 4.7) is enough to provide significant guidance, since in practice there will only

be a limited number of choices on the market.

Despite increasing pesticide application rate always leading to an absolute gain in

yield, such gain will eventually saturate as a consequence of this transition, if im-

proper pesticide types are used (Fig. 4.7). Finally, I have shown that the optimal

choice of pesticide has a non trivial relation with the application rate (Eq. (4.33)): as

a general rule, my results suggest that very specialised pesticides, exhibiting a strong

(positive or negative) degree of correlation, should be employed at low application

rates; instead, generalist pesticides, with a more uniform action over the trait space,

are likely to perform better at high application rates.

In terms of multi-criteria optimisation analysis (Kennedy et al., 2008), Fig. 4.7 shows

that maximising yield (Ŝ/Ŝ0) and minimising pesticide application (c) are conflicting

objectives. As a consequence, one can identify the Pareto-efficient solutions to our

control strategy, highlighted by the solid curves. Choosing a different combination of

the control parameters (c, φ1) will necessarily worsen the outcome (dashed curves),

by either decreasing the amount of yield, or increasing the costs related to pesticide

application.

Validating the results herein presented will require the measurement of the trait-
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dependent epidemiological functions, for specific pathogen-pesticide systems. This

achievement depends on the identification of heterogeneous phenotypic traits, and of

their chemical interaction with the pesticide. Examples of potential candidate traits

in fungi are the level of expression of the virulence-associated adhesin Epa1 (Halliwell

et al., 2012; Steels et al., 2000), or drug transporters responsible for fungicide resist-

ance (De Waard et al., 2006). Furthermore, many other genes controlling virulence

may reveal heterogeneous levels of expressions, such as CPS1 in the corn fungus Coch-

liobolus heterostrophus (Lu et al., 2003) or necrotrophic effectors in the wheat fungus

Parastagonospora nodorum (Lin et al., 2017), and hence become potential targets for

heterogeneous pesticide action. Targeting virulence is considered a promising strategy

for the development of antifungal drugs (Gauwerky et al., 2009), and this work may

help to identify the optimal type of pesticide according to the biological and envir-

onmental conditions of the considered system. Several plant bacteria are united by

the use of phytotoxins as virulence factors (Pontes et al., 2020): for instance, Can-

didatus Liberibacter spp. (affecting different species of citrus), Erwinia amylovora

(the Fire Blight infesting apple and pear orchards), Xanthomonas spp. (Black Rot

disease affecting Brassica crops) are among the most destructive pathogens, in terms

of agricultural loss (Mansfield et al., 2012). Potential chemical strategies based on

the inhibition of phytotoxin production (Garland et al., 2017), or acting on virulence-

related gene regulators (Yang et al., 2011), may be implemented in pesticide design

in order to develop a spectrum of trait-dependent chemical treatments. Combining

such experimental development with such theoretical methods of investigation, may

allow us to harness heterogeneity in pathogen populations - which is almost always

considered to be a key difficulty in management, by allowing evolution of resistance

to chemical controls - to our advantage.
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5. Conclusions and Research Per-

spectives

I conclude with outlining two main future research perspectives: a first line of re-

search would spontaneously arise by merging the problems tackled independently in

Chapters 3 and 4; a second line consists in proposing further applications of the RME

in the field of evolutionary epidemiology, and a potential general framework of trait-

dependent control strategies.

5.1. Accounting for Fittest/Flattest duality in evol-

utionary epidemiology models

In Chapter 3, I have shown that degenerate fitness landscapes trigger a dual fittest/-

flattest behaviour between full trait and marginal fitness distributions. Acknowledging

this duality can help improve the accuracy of models in the field of evolutionary

epidemiology, such as the one analysed in Chapter 4, where the information on the

state of the distributions can be used to design treatment policies. As a result, the

most effective interventions might not be those that focus on the extremes of the sole

fitness-related traits.

For example, in a pathogen population, suppose that x quantifies the resistance to a

drug or antibiotic, so that larger x confers higher fitness to its carriers. Then, one



108 5. Conclusions and Research Perspectives

might expect the population to be dominated by individuals with highest resistance

(i.e. optimal fitness), and a therapy would be developed to counter fittest-like

distributions, hence maximising the intervention on the traits carrying the maximal

resistance value. However, if such a selective trait is entwined with another, neutral

one (i.e. not affecting the resistance) via a degeneracy-fitness trade-off, then the

distribution will very likely be dominated by individuals with sub-optimal resistance,

and the therapy would erroneously target non-redundant traits, with the possibility

of unwittingly helping sub-optimal strains to mutate and become fitter.

On the other hand, suppose that an experimentalist measures the growth rates

in a rapidly mutant population as a function of x, and obtains a profile similar

to panels e-f of Fig. 3.3, with a peak in the distribution at an intermediate value

x = x̃ with 0 < x̃ < 1. Then they might erroneously conclude that x̃ confers the

optimal fitness value, whereas, in fact, the trait x̃ dominates the population due to its

degeneracy, rather than due to a selective advantage. In the ‘worst case’, by confusing

a degeneracy-dominated fitness profile with a one-dimensional survival-of-the-fittest

distribution, one would infer a direction of selection opposite to the true one, and

conclude that trait x = 0 has optimal fitness.

5.2. Generalising the study of trait-dependent con-

trol strategies

Despite the analytical derivations presented in Chapter 4 relying on many simplifying

assumptions, it highlights the qualitative role of the various ecological interactions, and

it provides a starting point for the introduction of further elements of complexity. For

example, the effects of nonlinearities in the Transmission-Virulence trade-off (Bolzoni

and De Leo, 2013; Pugliese, 2002) can be straightforwardly analysed numerically. The

analysis has been carried out using and underpinning model with an SIS-type dynam-
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ics, although it can be straightforwardly extended to other epidemiological models,

potentially including explicit vital dynamics of the pathogen (Gilligan, 2002; Madden

et al., 2000). For instance, in SIR-type models, one may want to calculate optimal

curves based on different quantities (e.g. S+R). Particularly, we note that an SI-type

model, typically used for those diseases that do not allow for recovery, would preserve

the above results, as far as the quantity of interest is the number of susceptible indi-

viduals. However, as the functional form of host demography may have a significant

impact on the population composition at equilibrium (Cunniffe and Gilligan, 2010),

the optimal pesticide curves may depend on the host growth function as well.

Modelling pesticide application, I have deliberately focused on the eradicant effect and

neglected protectant contributions (Hall et al., 2007). The latter might be introduced

by relaxing the form of the TV trade-off (Fig. 4.2, panel B): a trait-dependent protect-

ant effect may modify or break the monotonicity of the transmission function, thus

opening the possibility of choices significantly different from the linear one. Different

transmission functions may also emerge as a consequence of physiological alterations

of hosts’ level of activity, in the case of animal (and human) systems, and of interven-

tion policies in the context of human disease modelling (quarantine, contact tracing,

etc. . . ).

The framework herein presented might also be relevant to study the optimisation of in-

evitably imperfect treatments (Walter and Lion, 2021), such as a potential eradication-

protection trade-off: indeed, due to its inhibitory action on transmission events, an

investment in the protectant contribution is expected to be efficient whenever the in-

fected population is in a high-transmission state. However, if such investment is paid

for by a reduced eradicant effect, it is not obvious how the pathogen would adapt to

such intervention; hence, the importance of a tool able to predict the trait distribu-

tion. Performing a similar analysis, one might be able to compute the optimal balance

between the two actions, and to relate this choice to the ecological interactions at play.

Ultimately, the potential of evolutionary epidemiology goes beyond agricultural prac-

tice, which here has been chosen in order to move within a well established frame. The
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combination of analytical and numerical investigation of RME equations has a certain

degree of flexibility that should be exploited as much as possible to address control

strategy problems. The hope is that in the future, the models herein presented will

be considered as instantiations of a general, mathematical theory of trait-dependent

intervention.
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A.1. Numerical codes

A.1.1. Agent-based selection-mutation dynamics on redund-

ant fitness landscapes

In the following, I report the Processing code employed for the agent-based dynamics

of the asymmetric degenerate fitness landscape, as detailed in Subsection 3.2.3. The

codes employed for the non-degenerate and the symmetric landscapes are analogous,

upon replacement of the corresponding trait space.

// Agent based simulation of the selection-mutation dynamics on two

dimensional asymmetric redundant fitness landscape

// Individuals have two traits: x is the selective trait; y is the neutral

trait

// Fitness is linearly proportional to x

// The phenotype space T(x,y) is bounded by the profile beta(x)=1-x

mimicking the degeneracy-selection trade-off

// T = { (x,y) | 0 <= x <= 1 ; 0 <= y <= 1-x }

// Parameters

int RandomNumberSeed=2; // set random number seed
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float mu=1; // mutation event rate

float gamma=1; // competition event rate

float tot_rate=mu+gamma; // total events rate

float Mutation=0.04; // width mutation step

int L=100000; // population size

float w=0.004; // selection pressure

int bin=50; // number of bins population histogram

int time_idx=0; // initialise time

int time_max=10000; // number of time steps

int pre_itr_max=2000; // number of transient iterations

// Auxiliary arrays and variables

int[] pop_hist=new int[bin]; // not normalised histogram of

fitness-related phenotype trait x

float[] fitness_hist=new float[bin]; // normalised histogram of

fitness-related phenotype trait x

float[] avg_x=new float[bin]; // temporal vector of average

phenotype trait x

Table table,mean_x,hist_x;

String lbl_r,lbl_c;

float avg;

// Define directory and name of the data files

// here put the address of the output data files (optional)

String address="";

// temporal trajectory of average trait x

String filename_avgx= address + day() + "-" + month() + "-" + year() + "-"
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+ hour() + "-" + minute() + "_avgx.csv";

// temporal average of trait x distribution

String filename_hist= address + day() + "-" + month() + "-" + year() + "-"

+ hour() + "-" + minute() + "_hist.csv";

// txt file printing parameters used

PrintWriter parameters;

// Define new class Player

class Player{

float x; // selective trait

float y; // neutral trait

Player (float x_, float y_){

x=x_;

x=x_;

}

// Define Mutation Event

void InheritFromMut(Player parent){

float xtemp=parent.x;

float ytemp=parent.y;

p=parent.x+random(-Mutation,+Mutation); // mutate trait x of random

quantity

y=parent.y+random(-Mutation,+Mutation); // mutate trait y of random

quantity

if((x<0) || (x>1) || (y<0) || (y>1-x)) {x=xtemp; y=ytemp;} // if

mutation leads outside boundary then reject
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}

// Define Asexual reproduction without mutation

void InheritFrom(Player parent){

xparent.x;

y=parent.y;

}

}

// Define population of players

Player[] player;

// Initialisation of the system

void setup(){

int i,l,index;

float x0,y0;

randomSeed(RandomNumberSeed);

for(l=0;l<bin; l++){pop_hist[l]=0; fitness_hist[l]=float(0);} //

Initialise histograms

parameters = createWriter(address + day() + "-" + month() + "-" + year()

+ "-" + hour() + "-" + minute() + "_parameters.txt");

table = new Table();

hist_p = new Table();

for(i=0;i<bin;i++){

String lbl=str(i);

table.addColumn(lbl, Table.FLOAT);
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hist_x.addColumn(lbl, Table.FLOAT);

}

mean_x = new Table();

mean_x.addColumn("<x>", Table.FLOAT);

// Initialise population with randomly uniform distributed phenotypes in

the Adaptive Space and update histogram

player =new Player[L];

for (i=0;i<L;i++){

player[i]= new Player (x0=random(1.0), y0=random(1-x0));

index=get_index(player[i].x);

pop_hist[index]++;

}

}

// Runs the algorithm

void draw(){

for (int pre_itr=0;pre_itr<pre_itr_max;pre_itr++) dynamics(); //

transient window

while(time_idx<time_max){

dynamics();

update_histogram();

update_statistics();

time_idx++;

println(time_idx);

}
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// Finally, the averages over time are computed and the data are saved

compute_temporal_average();

// Save tables data and parameters.txt file

saveTable(mean_p,filename_avgx);

saveTable(hist_x,filename_hist);

parameters.println("RandomNumberSeed = " + str(RandomNumberSeed));

parameters.println("mu = " + str(mu));

parameters.println("gamma = " + str(gamma));

parameters.println("Mutation = " + str(Mutation));

parameters.println("w = " + str(w));

parameters.println("bin = " + str(bin));

parameters.println("n_iterations = " + str(n_iterations));

parameters.println("time_max = " + str(L));

parameters.println("pre_itr_max = " + str(pre_itr_max));

parameters.close();

exit();

}

// Define dynamics

void dynamics(){

int i,i1,index;

float r1;

for (int repeat=1; repeat<=L; repeat++){ // events are repeated L times

r1=random(1.0);
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i=int(random(float(L))); // a focal player i is sampled

index=get_index(player[i].x);

if(r1<=mu/tot_rate){ // i mutates with probability

mu/tot_rate

pop_hist[index]--;

player[i].InheritFromMut(player[i]);

index=get_index(player[i].p);

pop_hist[index]++;

}

else{ // otherwise i competes with another

random player i1

i1=int(random(float(L)));

while(i1==i) {i1=int(random(float(L)));}

// Player i1 wins the competition and reproduces with probability

proportional to the difference

// between their fitness and i’s

if(random(1.0)<=(1+w*(player[i1].x-player[i].x))/2){ // probability

i1 wins

pop_hist[index]--;

player[i].InheritFrom(player[i1]); // traits player i become those

of player i1

index=get_index(player[i1].x);

pop_hist[index]++;

}

// Otherwise player i wins the competition and i1 becomes i

else{
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pop_hist[index]++;

index=get_index(player[i1].x);

pop_hist[index]--;

player[i1].InheritFrom(player[i]);

}

}

}

}

// updates histogram at the end of each timestep

void update_histogram(){

int i;

for(i=0;i<bin;i++){

fitness_hist[i]=(float(pop_hist[i])/float(L))*bin;

}

TableRow row = table.addRow();

for(i=0;i<bin;i++){

String lbl=str(i);

row.setFloat(lbl, fitness_hist[i]);

}

}

// Updates average trait at the end of each timestep

void update_statistics() {

int i;

float average_x=0;

for(i=0; i<L; i++) {average_x+= (player[i].x)/L;}

TableRow row = mean_x.addRow();
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row.setFloat("<x>", average_x);

}

// Auxiliary function getting index of histogram

int get_index(float x){

int idx;

idx=int(x*bin);

if(idx==bin) idx--;

return idx;

}

// Finally, computes average over time of histogram

void compute_temporal_average() {

int i,j;

int lines=table.getRowCount();

for(j=0; j<bin; j++){

avg=float(0);

for(i=0;i<lines;i++){

avg+=table.getFloat(i,str(j));

}

avg_x[j]=avg/float(lines);

}

TableRow row = hist_x.addRow();

for(i=0;i<bin;i++){

row.setFloat(str(i), avg_x[i]);

}

}
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A.1.2. Agent-based simulation of the SISx dynamics

In the following, I report the Python code employed to simulate the agent-based SISx

dynamics, as detailed in Subsection 4.2.5. The code is also provided with the semi-

analytical part giving the deterministic prediction for the trait distribution, based on

the self-consistent method (see Subsection 2.2.6).

import numpy as np

import random

from scipy import stats

import matplotlib.pyplot as plt

# Parameters

I_init=1000 # initialise total I hosts

S_init=1000 # initalise total S hosts

n_iterations=3000 # number of iterations

tau=0.0001 # timestep

b0=0.0001 # baseline infection rate

b1=0.0001 # strain-dependent transmission contribution

theta=300 # replanting rate

d=0.06 # harvesting rate

mu_step=0.02 # random mutation step

mu=1 # mutation rate

c=0.1 # pesticide application rate

nu0=0.1 # baseline virulence rate

nu1=0.1 # strain-dependent virulence contribution

phi1=-1 # pesticide type, must be -2 <= phi1 <= 2

name_dataset = "name_dataset"
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# compound constants

mu_diff=mu/6*mu_step**2 # mutation diffusion coefficient

phi11=1-phi1/2 # normalisation factor for pesticide type

# Predictions of the deterministic theory

from scipy.optimize import fsolve

import math

from scipy.special import airy, jv, iv

from numpy import sqrt, where

import scipy.integrate as integrate

def Ai(x):

(ai, ai_prime, bi, bi_prime) = airy(x)

return ai

def Bi(x):

(ai, ai_prime, bi, bi_prime) = airy(x)

return bi

def Aip(x):

(ai, ai_prime, bi, bi_prime) = airy(x)

return ai_prime

def Bip(x):

(ai, ai_prime, bi, bi_prime) = airy(x)

return bi_prime

def find_avg_vir_positive_Omega(p):
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e=1/3;

delta0=(b1*(d+nu0)-b0*nu1-b0*c*phi1+b1*c*phi11)/(mu_diff*(b1*p+b0))

delta=abs(delta0)

C=-(Aip(p*delta**e)/Bip(p*delta**e))

C1, C1err =(integrate.quad(lambda z:

(Ai((p-z)*delta**(1/3))+C*Bi((p-z)*delta**(1/3))),0,1))

avg, avgerr = integrate.quad(lambda z:

C1**(-1)*(z*(Ai((p-z)*delta**(1/3))+C*Bi((p-z)*delta**(1/3)))),0,1)

return avg-p

def find_avg_vir_negative_Omega(p):

e=1/3;

delta0=(b1*(d+nu0)-b0*nu1-b0*c*phi1+b1*c*phi11)/(mu_diff*(b1*(1-p)+b0))

delta=abs(delta0)

C=-(Aip(p*delta**e)/Bip(p*delta**e))

C1, C1err =(integrate.quad(lambda z:

(Ai((p-z)*delta**(1/3))+C*Bi((p-z)*delta**(1/3))),0,1))

avg, avgerr = integrate.quad(lambda z:

C1**(-1)*(z*(Ai((p-z)*delta**(1/3))+C*Bi((p-z)*delta**(1/3)))),0,1)

return avg-p

Omega = (b1*(d+nu0)-b0*nu1-b0*c*phi1+b1*c*phi11)

# Average strain value at endemic equilibrium

if Omega >=0:

avg_x = fsolve(find_avg_vir_positive_Omega,1)

else:

avg_x = 1 - fsolve(find_avg_vir_negative_Omega,1)
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# Average virulence, transmission and sensitivity at endemic equilibrium

avg_vir=nu0+nu1*avg_x

avg_tra=b0+b1*avg_x

avg_sen=phi11+phi1*avg_x

# Total number of susceptible and infected hosts at equilibrium

Seq= min(theta/d, (d+avg_vir+c*avg_sen)/avg_tra)

Ieq = max(0, (theta - d*Seq)/(d+avg_vir))

# Print equilibrium state

if Ieq == 0:

avg_x=0

print("Disease extinction - Seq = {}".format(theta/d))

else:

print("S_eq = {}, I_eq = {}, average_trait = {}, Omega = {},

".format(Seq,Ieq,avg_x,Omega))

name_parameters_file = name_dataset + "_parameters" + ".txt"

parameters = open(name_parameters_file, "w")

parameters.write("I_init = " + str(I_init) + "\n")

parameters.write("S_init = " + str(S_init) + "\n")

parameters.write("n_iterations = " + str(n_iterations) + "\n")

parameters.write("tau = " + str(tau) + "\n")

parameters.write("b0 = " + str(b0) + "\n")

parameters.write("b1 = " + str(b1) + "\n")

parameters.write("d = " + str(d) + "\n")

parameters.write("mu_step = " + str(mu_step) + "\n")
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parameters.write("mu = " + str(mu) + "\n")

parameters.write("theta = " + str(theta) + "\n")

parameters.write("c = " + str(c) + "\n")

parameters.write("nu0 = " + str(nu0) + "\n")

parameters.write("nu1 = " + str(nu1) + "\n")

parameters.write("phi1 = " + str(phi1))

parameters.close()

# Stochastic processes

def Mutation_event(x,y): # Mutation event

r1=random.uniform(0,1);

rate=tau*mu*x.shape[0]

if r1 <= rate:

idx=random.randint(0,x.shape[0]-1)

old_v=x[idx]

x[idx]+=random.uniform(-mu_step,+mu_step)

if x[idx] > 1 or x[idx] < 0:

x[idx]=old_v

return x, y

def Infection_event(x,y): # Infection event

r1=random.uniform(0,1)

idx=random.randint(0,x.shape[0]-1)

rate=tau*(b0+b1*x[idx])*x.shape[0]*y

if r1 <= rate:

y-=1

x=np.append(x,x[idx])

return x, y



A.1. Numerical codes 125

def Death_I_event(x,y): # Spontaneous death of I event

rate=tau*d*x.shape[0]

r1=random.uniform(0,1)

if r1 <= rate:

idx=random.randint(0,x.shape[0]-1)

x = np.delete(x, idx)

return x, y

def Virulence_event(x,y): # Death of I by virulence event

r1=random.uniform(0,1)

idx=random.randint(0,x.shape[0]-1)

rate=tau*(nu0+nu1*x[idx])*x.shape[0]

if r1 <= rate:

x = np.delete(x, idx)

return x, y

def Birth_S_event(x,y): # Replanting of S event

rate=tau*theta

r1=random.uniform(0,1)

if r1 <= rate:

y+=1

return x, y

def Death_S_event(x,y): # Spontaneous death of S event

rate=tau*d*y

r1=random.uniform(0,1)

if r1 <= rate:

y-=1

return x, y
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def Eradication_event(x,y): # Eradication of I event

r1=random.uniform(0,1)

idx=random.randint(0,x.shape[0]-1)

rate=tau*c*(1-phi1/2+phi1*x[idx])*x.shape[0]

if r1 <= rate:

x = np.delete(x, idx)

y+=1

return x, y

# Initialise system

I=np.zeros(I_init,dtype=float)

S=S_init

data=np.zeros([n_iterations,3])

datahist=np.zeros([n_iterations,10])

for i in range(I_init):

I[i]=random.uniform(0,1)

# Agent-based simulation

for i in range(0,n_iterations):

N_tot=I.shape[0]+S

print(i)

for j in range(0,N_tot):

I, S = Birth_S_event(I,S)

I, S = Death_I_event(I,S)

I, S = Mutation_event(I,S)

I, S = Infection_event(I,S)

I, S = Virulence_event(I,S)

I, S = Death_S_event(I,S)
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I, S = Eradication_event(I,S)

data[i,0]=I.shape[0] # Total number of I hosts at time-step i

data[i,1]=S # Total number of S hosts at time-step i

data[i,2]=np.mean(I) # Average strain value v at time-step

# Plot temporal trajectories

plt.figure(1)

plt.plot(data[:,0],’r’) # Temporal trajectory I hosts

plt.plot(data[:,1],’b’) # Temporal trajectory S hosts

plt.hlines(Ieq,0,n_iterations,’r’,’--’) # Equilibrium I deterministic

theory

plt.hlines(Seq,0,n_iterations,’b’,’--’) # Equilibrium S deterministic

theory

plt.xlabel("timestep")

plt.ylabel("number hosts")

plt.legend([’Infected hosts’, ’Susceptible hosts’,])

plt.figure(2)

plt.plot(data[:,2],’k’) # Temporal trajectory average

strain value v

plt.hlines(avg_x,0,n_iterations,’k’,’--’) # Equilibrium average trait x

determistic theory

plt.xlabel("timestep")

plt.ylabel("average trait")

# Save data
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np.savetxt(name_dataset + ".csv", data, delimiter=",")

data_eq=np.array([Ieq,Seq,avg_x])

np.savetxt(name_dataset + "_eq" + ".csv",data_eq,delimiter=",")

A.2. The method of the generating function

Here I apply the method of the generating function to derive the Fokker-Plank equation

from the master equation. I define the generating function ζ(hA, t) associated to the

master equation as:

ζ(hA, t) =
∑
NA

eNAhAP (NA, t), (A.1)

where hA < 0 is the variable conjugate toNA. By construction, the following important

relation holds:
∂ζ(hA, t)

∂hA
= ζ ′ =

∑
NA

NAe
NAhAP (NA, t), (A.2)

where the prime notation refers to the derivative with respect to hA. In order to

derive the equation describing the temporal evolution of ζ(hA, t), I multiply both sides

of Eq. (2.16) by the term eNAhA , and sum over NA:

∑
NA

eNAhA
∂P (NA, t)

∂t
=
∂ζ(hA, t)

∂t
=

∑
NA

eNAhAT+(NA − 1)P (NA − 1)−
∑
NA

eNAhAT+(NA)P (NA)r (A.3)

+
∑
NA

eNAhAT−(NA + 1)P (NA + 1)−
∑
NA

eNAhAT−(NA)P (NA).

By rearranging the sums of the right-hand side, I obtain:

∂ζ(hA, t)

∂t
=
∑
NA

(
ehA − 1

)
T+(NA)eNAhAP (NA) +

∑
NA

(
e−hA − 1

)
T−(NA)eNAhAP (NA).

(A.4)
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Recalling the property Eq. (A.2), I obtain the equation for temporal evolution of ζ in

hA and t:

∂ζ(hA, t)

∂t
=
(
ehA − 1

) [
γ (1 + ω)

(
ζ ′

N
− ζ ′′

N2

)
+ µ

(
ζ − ζ ′

N

)]
(A.5)

+
(
e−hA − 1

) [
γ (1− ω)

(
ζ ′

N
− ζ ′′

N2

)
+ µ

ζ ′

N

]
.

Next, I assume the existence of a small parameter ε → 0, and introduce the rescaled

conjugated variable εsA = hA. Performing a Taylor expansion with respect to ε on the

exponential functions, I obtain:

∂ζ(sA, t)

∂t
=

(
1 + εsA +

1

2!
s2
A + · · · − 1

)[
γ (1 + ω)

(
ζ ′

εN
− ζ ′′

ε2N2

)
+ µ

(
ζ − ζ ′

εN

)]
(A.6)

+

(
1− εsA +

1

2!
S2 + · · · − 1

)[
γ (1− ω)

(
ζ ′

εN
− ζ ′′

ε2N2

)
+ µ

ζ ′

εN

]
,

where now the prime notation denotes the derivative with respect to the rescaled

variable sA. Truncating the expansion at second order and collecting the terms of

same order in sA, I obtain:

∂ζ(sA, t)

∂t
=sA

[
2γω

N

(
ζ ′ − ζ ′′

εN

)
+ µ

(
εζ − 2

N
ζ ′
)]

(A.7)

+
1

2
s2
A

[
2γ

N

(
εζ ′ − ζ ′

N

)
+ ε2µζ

]
.

Equation (A.7) allows to derive the diffusion approximation for various regimes, cor-

responding to different interpretations of the scaling parameter ε. The usual system

size expansion (equivalent to the Kramers-Moyal approach) is recovered by setting
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ε = 1
N

. In this case, Eq. (A.7) becomes:

∂ζ(sA, t)

∂t
=

1

N
sA [2γω (ζ ′ − ζ ′′) + µ (ζ − 2ζ ′)]

(A.8)

+
1

2N2
s2
A [2γ (ζ ′ − ζ ′) + µζ] .

Introducing the rescaled time Nτ = t, the rescaled continuous variable nA = NA
N

, and

performing the backward transformation on ζ(sA, t), I finally get the Fokker-Planck

equation for the density probability P (nA, τ):

∂P (nA, τ)

∂τ
=− ∂

∂nA
{[2γωnA (1− nA) + µ (1− 2nA)]P (nA, τ)}

(A.9)

+
1

2N

∂2

∂n2
A

{[2γnA (1− nA) + µ]P (nA, τ)} .

It is customary to recast the above Fokker-Plank equation in the form of a continuity

equation:
∂P (nA, τ)

∂τ
= −∇J(nA, τ), (A.10)

where J(nA, τ) is the probability current:

J(nA, τ) = a(nA)P (nA, τ)− 1

2

∂

∂nA
b(nA)P (nA, τ), (A.11)

with:  a(nA) = 2γωnA (1− nA) + µ (1− 2nA)

b(nA) = 1
N

[2γnA (1− nA) + µ] ,

(A.12)

as shown in Subsection 2.1.5.
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A.3. Spectral method

Given a two-dimensional trait space T2 and the trait distribution n(x, y) solution of

the sRME Eq. (3.10), the rationale of the spectral method is to look for a solution of

the form:

n(x, y) =
∑
i,j

ai,jei,j(x, y), (A.13)

where the ei,j(x, y) are the eigenfunctions of the Helmholtz problem with Neu-

man boundary conditions, on trait space considered. However, the number of two-

dimensional domains for which such eigenfunctions are known is limited. Therefore,

in order to proceed with analytical calculations, one has to choose particular shapes

of the trait space.

Asymmetric landscape

For the asymmetric landscape T a
2 = {0 ≤ x ≤ 1, 0 ≤ y ≤ B(x)}, with linear boundary

profile B(x) = 1−x, the trait space becomes a right triangle. The Helmoholtz problem

with Neumann boundary conditions reads:∇
2 ei,j(x, y) = λi,j ei,j(x, y)

∂ei,j(x,y)

∂x
|x=0=

∂ei,j(x,y)

∂y
|y=0=

∂ei,j(x,y)

∂x
+

∂ei,j(x,y)

∂y
|y=1−x= 0.

(A.14)

The above problem is solved by Prager’s method (Damle and Peterson, 2010): first,

the eigenfunctions corresponding to the same problem on the square domain are found;

then these functions are ”folded” around the diagonal with a linear transformation.
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The resulting normalised eigenfunctions and relative eigenvalues are:
e0,0 = 2

ei,j(x, y) = Zi,j
[

cos(iπx) cos(jπy) + (−1)i+j cos(iπy) cos(jπx)
]
∀i, j 6= 0

λi,j = −π2 (i2 + j2) ,

(A.15)

with Zi,j =
√

2 +
(
2−
√

2
)
δi,j +

(
2−
√

2
)
δj,0 constant of normalisation. The above

eigenfunctions have the same properties:

∫ 1

0

∫ 1−x
0

ei,j ek,l dxdy = δi,k δj,l orthonormality

ei,j(x, y) = (−1)i+j ej,i(x, y) symmetry∫ 1

0

∫ 1−x
0

ei,j(x, y) dxdy = 0 ∀ i, j 6= 0.

(A.16)

Due to the symmetry property, only half of the {ei,j} are needed to create a complete

orthonormal basis for L2. Hence, the expansion reads:

n(x, y) =
+∞∑
i=1

i∑
j=0

ai,jei,j(x, y). (A.17)

Combining the normalisation constraint on the solution with the last property in

Eq. (A.16), we get:

∫ 1

0

∫ 1−x

0

n(x, y) dxdy = a0,0 + 0 + · · ·+ 0 = 1. (A.18)

Hence, the zero coefficient of the expansion is a0,0 = 1. In order to find the remain-

ing coefficients, I insert the expansion Eq. (A.17) into Eq. (3.10), then I multiply

by ek,l(x, y), and integrate over the triangle domain. Using the orthonormalisation
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condition and rearranging the terms, we get:

(
λk,l − δφ+ δ〈F (x) 〉k,l;k,l

)
ak,l + δ

+∞∑
i 6=k

i∑
j 6=l

ai,j 〈F (x) 〉i,j;k,l = −δ 〈F (x) 〉0,0;k,l,

(A.19)

where the notation 〈 · 〉i,j;k,l indicates the average over ei,j(x, y) ek,l(x, y), e.g.:

〈x 〉i,j;k,l =

∫ 1

0

∫ B(x)

0

x ei,j(x, y) ek,l(x, y) dxdy. (A.20)

The Eq. (A.19) represents an infinite system of linear equations for the unknown

coefficients {ai,j} (I remind that at this stage the coefficients still depend on the

average fitness φ). In order to solve the problem, I truncate the system to the first M

eigenfunctions, then solve the linear problem with MATLAB’s function linsolve(). At

this point, I have found the M φ−dependent coefficients aφi,j of the spectral expansion.

Finally, the solution is closed by solving numerically the self-consistent condition on

the average fitness Eq. (3.11).

Symmetric landscape

In the symmetric case, the dynamics takes place in the trait space T s
2 =

{x, y | x2 + y2 ≤ 1}, that is a disk of radius 1. The eigenfunctions of the Helmholtz

eigenfunctions on the disk with Neumann boundary conditions are given by:

ek(r) = J0 (β0,k r) , (A.21)

where J0 is the Bessel function of first kind for order zero, and β0,k is the positive

kth root of the first derivative J ′0 (Grebenkov and Nguyen, 2013). The radial function
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R(r) is then written as:

R(r) =
∑
k

ck J0 (β0,k r) , (A.22)

where ck is the k-th coefficient of the expansion- Again, it is straightforward to show

that the first coefficient c0 = 2 is fixed by the normalisation constraint. Substituting

Eq. (A.22) into Eq. (3.21) and exploiting the orthonormalisation properties of the

eigenfunctions (Bowman, 2012), I obtain the linear system of equations for the other

coefficients {ck} of the expansion:

cl
(
−δ φ− β2

l

) J0(βl)
2

2
+ δ

+∞∑
k=1

ck 〈F (r) 〉k,l = 0, (A.23)

with:

〈F (r) 〉k,l =

∫ 1

0

F (r) J0 (βkr) J0 (βlr) r dr. (A.24)

Similarly to the asymmetric case, Eq. (A.23) represents an infinite system of linear

equations for the unknown coefficients ai,j of the spectral solution Eq. (A.22). truncat-

ing the system of equations to a finite number of terms, one first solves the above lin-

ear problem with standard numerical routines, then finds φ solving the self-consistent

condition on the average fitness. The system is solved likewise the asymmetric case:

I truncate the system to the first M eigenfunctions, and find the M φ−dependent

coefficients aφi,j with MATLAB’s function linsolve(). Finally, I close the solution by

numerically solving the self-consistent condition on the average fitness Eq. (3.22).

A.4. Total rate of reaction for trait-structured

Gillespie algorithm

Recall that the microscopic dynamics is given by mutation events occurring at rate µ

per individual, and by competition events occurring at rate γ per pair of individuals.

Consider a focal phenotype x. Following the formalism of transition rates presented in
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Subsection 2.1.4, the rate at which individuals with phenotype x mutate is proportional

to µn(x), and the total rate of mutation events is then obtained integrating over all

possible focal phenotypes, that is:

∫ 1

0

µn(x)dx = µ (A.25)

(remember that
∫
T n(x)dx = 1 due to normalisation). Concomitantly, the rate at

which individuals with the focal phenotype x compete with another phenotype x′ is

proportional to γn(x)n(x′); the total rate at which individuals with focal phenotype

compete is obtained integrating over all other competing phenotypes x′, that is:

∫ 1

0

γn(x)n(x′)dx′ = γn(x). (A.26)

Finally, the total rate of competition events is again obtained integrating over all

possible focal phenotypes, that is:

∫ 1

0

γn(x)dx = γ. (A.27)

Therefore, the total reaction rate rtot of events is fixed and equal to rtot = µ+ γ.

A.5. Marginal fitness distribution in the weak selec-

tion limit for asymmetric landscape

For the asymmetric landscape with triangular shape and linear fitness function, it is

possible to obtain a closed analytical approximation of the marginal fitness distribution

N a(f), based on a linear perturbation expansion on δ. For small values of δ (known as

the weak selection limit), I assume that the trait distribution is given by a perturbation

of the neutral solution. Starting from the spectral form Eq. (A.13), I assume the
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coefficients ai,j of the expansion to be of first order in δ:

ai,j = O (δ) , ∀i, j 6= 0. (A.28)

Inserting this assumption into the system Eq. (A.19) and retaining only the terms of

first order in δ, I get:

ai,j = −δ 〈x 〉0,0;i,j

λi,j
, (A.29)

with λi,j being the eigenvalues Eq. (A.15) and 〈x 〉0,0;i,j the averages according to nota-

tion Eq. (A.20). Computing the values of the averages for the linear fitness function

F (x) = x, and of the eigenvalues one obtains:

n(x, y) = 2 + δ
{
− 4

+∞∑
k=1

1

k4π4
ek,0(x, y) + 4

+∞∑
k=1

(−1)k

k4π4
ek,k(x, y)

}
+O(δ2) =

(A.30)

2 + δ
{
− 4

+∞∑
k=1

1

k4π4

[
cos(kπx) + (−1)k cos(kπy)

]
+ 4

+∞∑
k=1

(−1)k

k4π4
cos(kπx) cos(kπy)

}
+O(δ2).

Integrating Eq. (A.30) over the neutral variable y and replacing the selective variable

x with its fitness value f (recall that f = x), I obtain the marginal fitness distribution

N a(f):

N a(f) =2(1− f) + δ
{
− 4(1− f)

+∞∑
k=1

1

k4π4
cos(kπf)+

(A.31)

+ 4
+∞∑
k=1

1

k5π5
sin(kπf)− 4

+∞∑
k=1

1

k5π5
cos(kπf) sin(kπf)

}
+O(δ2).

Using the properties of the trigonometric functions, the sums appearing in Eq. (A.31)

can be evaluated in terms of Bernoulli polynomials (Gradshteyn and Ryzhik, 2014).

Finally, I obtain:

N a(f) = N 0(f) + δN I(f) +O
(
δ2
)
, (A.32)
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with:  N 0(f) = 2(1− f)

N I(f) =
{

4
3
(1− f)B4(f

2
)− 8

15
B5(f

2
) + 4

15
B5(f)

}
,

(A.33)

where Bk(z) is the kth-order Bernoulli polynomial of the variable z. Equation (A.32)

is composed of two terms: the first term N a
0 (f) is the purely neutral contribution,

corresponding to the monotonically decreasing linear profile; the second term N a
I(f)

is the first order correction to the neutral profile, with respect to δ. The average fitness

φpert predicted by the perturbative solution is given by:

φpert =

∫ 1

0

x
{
N 0(f) + δN I(f)

}
+O

(
δ2
)

=
1

3
+

1

189
δ +O

(
δ2
)
. (A.34)

Equation (A.32) can be used to estimate the threshold value δ at which the interme-

diate maximum appears in the marginal fitness distribution. The first derivative of

Eq. (A.32) reads:

∂N a(f)

∂f
= −2 +

1

90
δ
{

75f 4 − 60f 3 − 90f 2 + 60f + 4
}
. (A.35)

A local maximum exists whenever ∂Na(f)
∂f

= 0, that is whenever the following condition

is satisfied:

75f 4 − 60f 3 − 90f 2 + 60f + 4 =
180

δ
, (A.36)

which is treated by graphical comparison in Fig. A.1. The minimum value of δ for

which the lines y = 180
δ

and y = 75f 4− 60f 3− 90f 2 + 60f intersect, correspond to the

local maximum of the latter. The local maximum is located at x =
√

6−1
5

and has value

of ' 12.9. Hence, the threshold value δth predicted by the perturbative approximation

is:

δth =
180

12.9
' 13.95. (A.37)
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Below δth, there is no solution to Eq. (A.36), and the marginal fitness distribution

N a(f) is monotonically decreasing (corresponding to the redundancy-dominated re-

gime). Above δth, the condition Eq. (A.36) has two solutions, indicating the presence

of a new pair of local maximum and minimum. This estimation is consistent with

the diagram of extrema positions obtained using the exact spectral solution (Fig. 4

of main text). The perturbative solution also gives a good estimation of the average

fitness φ, up to δ ' 30 (left panel Fig. A.2), that is when the linear prediction given

by Eq. (A.34) is accurate. For large values of δ, second order contributions due to

selection become important and the perturbative solution fails. Indeed, in the right

panel of Fig. A.2 we can see that spectral (solid lines) and perturbative (dashed lines)

profiles of the marginal fitness distributions agree almost perfectly for small δ (black

line δ = 10 case), and are qualitative consistent for intermediate values (black line

δ = 30 case). However, for higher values the approximation breaks down and also

stops having biological value, as the distribution attains forbidden negative values

(blue line δ = 50 case).

A.6. Analytical solution of SISx trait distribution

Recall that under the choice of linear trait-dependent epidemiological trait functions

(Eqs. (4.15)-(4.17)), the sRME for the stationary trait distribution is:

µ∇2 î(x) +
Ω

β0 + β1x
î(x) [x− x] = 0, (A.38)

with

Ω = β1 (δ + ν0)− β0ν1 + c [β1 − β1φ1/2− β0φ1] . (A.39)

If Ω > 0, performing the transformation of variable z = 3

√
Ω

µ[β0+β1x]
(x− x), the sRME

becomes:
d 2 i(z)

d z 2
− z n(z) = 0, (A.40)
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Figure A.1: Perturbative estimation of the threshold value δth. The intersection
between the left-hand side (black line) of Eq. (A.36) and horizontal lines gives the
position of the local maxima and minima of the marginal fitness profiles, under the
perturbative approach. The value of δ for which they intersect for the first time
corresponds to the threshold value δth (red dashed line) predicted by the perturbative
approach. Below δth, there is no intersection, hence no local extrema are present in
the interior of the genomic space. Above δth, horizontal lines intersect twice the black
line, identifying a pair of local maxima and minima, in agreement with the behaviour
of the spectral solutions.
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Figure A.2: Perturbative versus spectral predictions. Left panel: Comparison
between perturbative (black line) and spectral (circles) estimation of the average fitness
φ, at the varying of δ, in the case of asymmetric landscape. The perturbative solution
gives a good estimate up to δ ' 30. Right panel: Comparison between perturbative
(dashed lines) and spectral (solid lines) profiles of the marginal fitness distribution.
As we can see, the perturbative solution works very well for small δ (black lines),
that is in the degeneracy-dominated regime. For intermediate values of δ (red lines),
the two profiles start diverging, yet the perturbative one still captures the qualitative
behaviour. For large values of δ (blue lines), the perturbative approximation breaks
down, giving negative non-biological profiles.
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which is an Airy differential equation such as that analysed in Chapter 2. The solution

is then a linear combination of the Airy functions of first and second kind which, back

in the original variable, reads:

îx(x) = Z
{

Ai [γ (x− x)] + C Bi [γ (x− x)]
}
, γ = 3

√
|Ω|

µ (β0 + β1x)
, (A.41)

with Z and C constants of integration given by (prime notation indicates the x deriv-

ative):

C = −Ai′ (γx)

Bi′ (γx)
(A.42.a)

Z−1 =

∫
T

Ai [γ (x− x)] + C Bi [γ (x− x)] dx (A.42.b)

Equation (A.41) represents the x-family of solutions to Eq. (A.38). The correct solu-

tion can be identified self-consistently by solving the constraint related to the average

quantity:

x =

∫
T
x îx(x) dx. (A.43)

This last step can be performed numerically by means of standard routines such as

MATLAB or Python’s fsolve() function. If Ω < 0, equivalent solutions to Eq. (A.38)

can be found upon replacing x with (1− x).



142 A. Appendix



Bibliography

Abramowitz, M. and Stegun, I. (1964). Handbook of mathematical functions: with

formulas, graphs, and mathematical tables, volume 55. Courier Corporation.
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Schröter, L. and Dersch, P. (2019). Phenotypic diversification of microbial patho-

gens—cooperating and preparing for the future. Journal of molecular biology,

431(23):4645–4655.

Sella, G. and Hirsh, A. E. (2005). The application of statistical physics to evolutionary

biology. Proceedings of the National Academy of Sciences, 102(27):9541–9546.

Shaw, M. (2000). Models of the effects of dose heterogeneity and escape on selection

pressure for pesticide resistance. Phytopathology, 90(4):333–339.

Shi, R., Jiang, X., and Chen, L. (2009). A predator–prey model with disease in the prey

and two impulses for integrated pest management. Applied Mathematical Modelling,

33(5):2248–2256.

Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., Dekel, E.,

Kavanagh, K., and Alon, U. (2012). Evolutionary trade-offs, pareto optimality,

and the geometry of phenotype space. Science, 336(6085):1157–1160.

Smith, J. M. (1970). Natural selection and the concept of a protein space. Nature,

225(5232):563–564.

Steels, H., James, S., Roberts, I., and Stratford, M. (2000). Sorbic acid resistance: the

inoculum effect. Yeast, 16(13):1173–1183.

Stockholm, D., Benchaouir, R., Picot, J., Rameau, P., Neildez, T. M. A., Landini, G.,
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