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Abstract

This thesis presents motion planning and control algorithms to tackle the problem of
Reaching Through Clutter (RTC). I consider problems where a robot needs to reach
in cluttered environments, like a fridge or a shelf, to retrieve a goal object. The robot
considers non-prehensile manipulation and is, therefore, required to interact with
objects and push them out of the way to create space. Reaching Through Clutter is
in the NP-Hard class [1] and is, therefore, a computationally challenging problem.
This is due to several problems; the state space is of high dimensionality, the system
is under-actuated and such manipulation requires physics-reasoning through a physics
simulator, which is computationally expensive to run. All of these are motion planning
challenges, but beyond motion planning, physics-uncertainty poses challenges when
executing a valid solution in the real-world. That is, a valid trajectory in simulation
could be invalid during execution due to physics prediction errors.

I focus on all of these challenges and propose algorithms with a human-in-the-loop.
The systems I propose in this thesis focus on minimal human input that results in
significantly higher success rates and faster planning times. Initially, I employed
kinodynamic sampling-based planners, like kinodynamic RRT and KPIECE, and
propose a framework with a human-in-the-loop. The results suggest that human input
is effective and the framework outperforms the baselines both in success rate and plan-
ning times. However, the solutions suffer from lengthy and noisy trajectories, which
causes trajectories to fail in the real-world due to the physics uncertainty problem.
To address these shortcomings, I proposed a stochastic trajectory optimization-based
planner with online-replanning that significantly improves the quality of the trajecto-
ries, the success rate in the real-world, and the planning times. Finally, throughout
this thesis, I argue that human time is valuable, and propose approaches that allow a
single human operator to guide up to twenty robots simultaneously using a predictive
approach. This approach predicts future optimization costs and employs human help
earlier for robots that deal with hard instances of the problem.
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Chapter 1

Introduction
Robots succeeded in environments the average human has never been, yet fail

miserably in environments every human has been, our houses.

Figure 1.1: Robot assisting a motor-impaired person with daily tasks.

Consider Figure 1.1 where a robot is assisting a motor-impaired person with daily
tasks. The robot needs to retrieve the orange juice bottle from the fridge. The robot
autonomously navigates to the kitchen, opens the fridge, identifies the desired object
(which is at the back of the fridge) and other obstacles blocking it. It finds a plan to
manipulate the environment and safely grasps and retrieves the object. It closes the
fridge and returns to the living room.

If in the above description the actor was a human, one will say that the task
is trivial; humans solve such tasks every day, sometimes “without” even thinking.
However, this is not the case for robots. We do not have fully autonomous robots,
today, that can accomplish such complex manipulation actions (like retrieving a
bottle from a cluttered fridge) in dynamic, cluttered and unstructured environments
like humans do [4, 5]. This is because robotic manipulation is a hard problem due
to numerous challenges that need to be addressed at the same time; perception,
motion planning and control, modelling and uncertainty, and in some cases even

1



2 CHAPTER 1. INTRODUCTION

hardware/mechanical limitations [5, 6]. For realistic instances of these problems,
robots’ success rate is low [7]. Additionally, even when the robot finds a solution,
executing it successfully in the real-world poses challenges due to the problem of
physics-uncertainty [8, 9].

Figure 1.2: Human assisting the
robot through a graphical user
interface. Points an object and a
region to be pushed (red arrow

and region).

Now picture the same robot assisting the
same person with the same task. The robot au-
tonomously navigates to the kitchen, opens the
fridge, identifies the desired object and other ob-
stacles. While the robot is planning for a solution
to reach and grasp the orange juice, it fails and
queries the human for help. The human, through
a user interface (like the one in Figure 1.2), re-
motely inspects the scene and provides an effective
high-level input to the robot within seconds. The
robot leverages the input, finds and executes a
plan successfully and returns to the living room
with the orange juice bottle.

Such semi-autonomous robots can overcome
many challenges that autonomous robots expe-
rience, with minimal input [10, 11]. This could
permit deploying robots to the real-world faster
[12]. I am interested in such semi-autonomous
robots, and my thesis focuses on the motion plan-
ning and control aspect of the problem.

The research community in robotic manipulation has mainly focused on pick-
and-place manipulation, or more formally prehensile manipulation [13, 14]. They
developed effective algorithms and systems to solve pick-and-place problems. These
systems, however, require structured environments and objects to be directly accessible
by a collision-free robot configuration. In other words, robots avoid any interaction
with surrounding obstacles. In a way, they treat the manipulation problem as a
geometric one where the robot needs to move from an initial configuration to a
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goal-configuration without any collisions. This can be effective in certain cases but
very limited or inappropriate in other cases.

In problems like the one I described earlier, it rarely happens that there is a
collision-free trajectory to grasp a desired object; interaction with other objects is,
therefore, inevitable [15]. Humans manipulate objects in very cluttered environments
with great dexterity. In many cases, they move objects as a preparation to grasping
[16]. Effective manipulation, therefore, especially in cluttered environments, can
be achieved through contact-based manipulation or more formally, non-prehensile
manipulation [17, 18]. In a world “governed” by physics, robots can use this kind of
manipulation to interact with objects beyond just grasping; through physics-based
manipulation [7, 19, 20]. In the earlier scenario, for example, the robot might choose
to push the butter to create space before reaching for the orange juice bottle. In this
thesis I am particularly interested in such manipulation actions.

1.1 Thesis Scope and Terminology

The example I introduced in Figure 1.1 requires a number of challenges to be solved,
but some of these challenges are beyond the scope of this thesis:

1. Navigation: Navigation is a research area by itself, and in this thesis I assume
that the robot does not need to navigate in space.

2. Perception: A great challenge of this problem is perception. In this thesis, I
do not address this challenge and instead I use a Motion Capture System with
markers to capture the state of the objects to be manipulated.

3. Partial-observability/incomplete knowledge: Another challenge, related
to the perception problem, is partial observability and the fact that objects are
occluded. In this thesis, I assume a fully observable environment and that the
robot has complete knowledge of the task.

4. Grasping: Grasping objects is also an area of research by itself, my contribu-
tions are not in robotic grasping and I assume that objects are easily graspable



4 CHAPTER 1. INTRODUCTION

when the robot closes its fingers.

5. Natural Language Processing: Finally, since there is interaction with a
novice human, I do not consider the problem of language understanding, but
instead I use straight-forward user interfaces where the human communicates
their input directly.

My PhD focuses on the problem of motion planning and control for manipulation
tasks. In the example in Figure 1.1, my research focuses with the motion planning
and control problem of reaching and grasping the orange juice (i.e., the robot working
in the fridge).

I use the terms “fully autonomous” and “semi-autonomous” (or “shared autonomy”).
These terms mean different things to different people. The use of “fully autonomous”
robot or planner in this thesis means a robot that plans for a solution without human
intervention at a motion planning level1. On the contrary, “semi-autonomous” robot
or planner means a robot that plans for a solution while considering human input at
some point during the motion planning process.

1.2 Main Themes and Challenges

So far, I introduced some main terms, (1) motion planning, (2) motion control, (3)
physics-based non-prehensile manipulation and (4) shared-autonomy. These are the
main themes of this thesis and I motivate them as a way to tackle the challenging
problem of Reaching Through Clutter (RTC). That is, the problem where a robot
needs to reach and grasp a goal object in cluttered and dynamic environments, like a
fridge or a shelf. Problems like the Reaching Through Clutter are in the NP-Hard
class [1].

Challenges

Figure 1.3 depicts a real example of the tasks I am tackling in this thesis. The
robot needs to reach and grasp the green object, while it is allowed to interact and

1Although it requires a human to provide a goal and run the robot.
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Figure 1.3: An example of a Reaching Through Clutter problem. Robot initially
fully autonomously tries to reach the green can but fails to find a solution. It then
queries a human, the human suggests a high level input (arrow), robot continues and

succeeds.

push other objects. In this specific example, the robot tries initially to plan fully
autonomously, but fails during planning. It then queries a human for help, which
helps the robot to find a solution. Some reasons why the reaching through clutter
problem is challenging for robots today:

1. High-dimensional space: First, the number of objects makes the state space
of high-dimensionality because the planner needs to reason about the robot
state and all the movable objects.

2. Under-actuated system: This is an under-actuated problem, since the objects
cannot be controlled by the robot directly, but only indirectly through contact.

3. Physics-reasoning is computationally expensive: Predicting the evolu-
tion of the system state requires running computationally expensive physics
simulators, to predict how objects would move as a result of a robot pushing.

4. Physics-uncertainty: Even with the use of the best physics simulator, the
world cannot be modelled perfectly. As a result, the trajectory is only an
approximate solution to what the dynamics will unfold in the real-world, and
executing it blindly without tracking might yield to an unsuccessful state or
even damage the robot or the environment.
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5. Human-input integration: Integrating human-input in such setting is chal-
lenging. It is not clear what the input of the human should be, when the robot
should ask for help and how the input will be integrated in a motion planning
problem to improve it significantly. More importantly, the human-input should
be captured quickly and within a reasonable amount of time that will not
downgrade the performance of the system.

I focus on these challenges and propose algorithms to tackle them.

1.3 Aim

I aim to investigate how human-input can be integrated in motion planning to
effectively solve the problem of reaching through clutter and tackle the challenges
introduced in Section 1.2. I ask whether human-operators can be used to provide
a minimal amount of input that results in a significantly higher success rate and
faster planning times for non-prehensile physics-based manipulation in clutter. The
approaches developed consider minimal interaction between a robot and a human
and, therefore, I look into ways to enable a single human operator to guide multiple
robots simultaneously.

Further study of the reaching through clutter problem is important to develop
approaches to solve the problem more successfully and faster. It is a problem that has
a potential for major near-term impact in warehouse robotics (reaching for objects on
shelves) and personal home robots (reaching for object in a fridge). The algorithms
that we currently have, however, cannot solve reaching through clutter problems
in the real world in a fast and consistent way. The Amazon Picking Challenge, a
competition that encouraged fully autonomous solutions for the reaching through
clutter problem, demonstrated that even with relaxed assumptions the task is very
challenging [21, 22]. To the best of my knowledge, semi-autonomous systems for
non-prehensile physics-based manipulation has never been studied before.
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1.4 Contributions

The contributions of this thesis are thus as follows:

1. The integration of human-input in sampling-based kinodynamic planning for
non-prehensile manipulation (Chapter 3).

2. The integration of human-input in a trajectory optimisation-based planning for
non-prehensile manipulation (Chapter 4).

3. An online-replanning strategy for motion control that integrates with the human
input and the trajectory optimiser to tackle the problem of physics-uncertainty
(Chapter 4).

4. A predictive system that allows a fleet of robots to learn when to ask for help,
thereby allowing a single human operator to more effectively guide multiple
robots (Chapter 5).

The findings of this thesis suggest that humans are capable to effectively and
rapidly identify good high-level inputs (like which obstacles need to be manipulated
and where) and as a result, they can be used to guide a fleet of robots simultaneously.

1.5 Structure

In this chapter, I motivated the work, introduced the main themes this PhD builds
on and noted the contributions of the thesis. Next, in Chapter 2, I introduce the
main ideas in more detail and review related-work. The technical work starts from
Chapter 3 to Chapter 5. Finally, in Chapter 6, I conclude and suggest possible future
work.

1.6 Publication Note

This thesis expands on the findings of published work, including published source
code:
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1. Chapter 3 content appears in:

(a) Published conference paper: International Conference on Robotics
and Automation (ICRA) 2020 [23].

(b) Published workshop paper: IROS2019 [24].

(c) Source code: https://github.com/rpapallas/hitl-clutter under
the GPL-3.0 license.

(d) Demonstration video: https://youtube.com/watch?v=nfr1Fdketrc.

(e) Website: https://pubs.rpapallas.com/icra2020.

2. Chapter 4 content appears in:

(a) Published journal paper: Robotics and Automation Letters (RA-L)
2020 [25] (and presented at IROS 2020).

(b) Published workshop paper: ICRA2020 [26].

(c) Source code: https://github.com/rpapallas/hitl-trajopt under
the GPL-3.0 license.

(d) Demonstration video: https://youtu.be/t3yrx-J8IRw.

(e) Website: https://pubs.rpapallas.com/ral2020.

3. Chapter 5 content appears in:

(a) Source code: https://github.com/rpapallas/predictive-guided-

framework under the GPL-3.0 license.

https://github.com/rpapallas/hitl-clutter
https://youtube.com/watch?v=nfr1Fdketrc
https://pubs.rpapallas.com/icra2020
https://github.com/rpapallas/hitl-trajopt
https://youtu.be/t3yrx-J8IRw
https://pubs.rpapallas.com/ral2020
https://github.com/rpapallas/predictive-guided-framework
https://github.com/rpapallas/predictive-guided-framework


Chapter 2

Background & Literature Review
This chapter serves two purposes. First, as a background research introducing core
ideas and concepts this thesis builds on and second as a literature review.

The structure of this chapter is as follows. First, in Section 2.1, I introduce the
area of “Motion Planning and Control”. I introduce some important concepts and
I discuss important and related work. In Section 2.2, I discuss important work in
“Manipulation Planning”. Finally, in Section 2.3, I discuss important work in the
shared-autonomy literature.

2.1 Motion Planning and Control

The traditional goal of motion planning is to find collision-free motions for a robotic
system, whether this is an autonomous vehicle or a robot manipulator [27]. The term
“collision-free” motions, however, can be misleading in the context of this work, since
I am looking at physics-based motion planning where the robot in fact can generate
non-collision-free motions. Therefore, in the context of this work, the motion planning
goal is to generate safe motions for the robot to reach its goal while respecting
some hard constraints. In the example task in Figure 1.1, where the robot assists
a motor-impaired user with retrieving the orange juice, the robot needs to come in
contact with other movable obstacles in the fridge to push them out of the way to
reach for the orange juice, but without violating hard constraints like damaging the
movable obstacles, the environment or itself.

Another distinction is between path planning and motion planning. Although
some people use the two interchangeably, here when I say path planning I refer to
algorithms that generate a path without consideration of the controls that move
the robot from one state to another. I use the term motion planning to refer to
algorithms that generate a full trajectory (consisting of states and controls): the

9



10 CHAPTER 2. BACKGROUND & LITERATURE REVIEW

robot can directly execute the solution.
Motion planning is considered a computationally hard problem and has seen

success in various complex problems beyond robotics [27]. Next, in Section 2.1.1,
I introduce important motion planning and control concepts. In Section 2.1.2, I
introduce sampling-based planning, two important algorithms (RRT and PRMs), and
discuss related work in this area. In Section 2.1.3, I introduce and discuss related
work in the trajectory optimisation planning literature. In Section 2.1.4, I discuss
learning-based motion planning approaches and in Section 2.1.5, I discuss task and
motion planning approaches. Finally, in Section 2.1.6, I discuss Model Predictive
Control approaches.

2.1.1 Concepts

Configuration and state space

An important concept in motion planning is the configuration space. It is usually
denoted with C-space. C-space represents all the possible configurations of the system
in the environment given its kinematic description. This abstract representation
allows a complex configuration of the system to be mapped to a single point in
C-space. The dimensionality of this space is the minimum number of parameters
needed to specify a configuration, or in other words is equal to the number of degrees
of freedom of the robot [27].

We also have the notion of a state and a state space. In this thesis, I define the
state space as the space that captures all possible cases that the system can represent.
This includes the configuration and velocity of the robot, and the pose and velocities
of the movable objects. Given a state, we can describe the entire system at any point
exactly. We therefore have an initial state denoted with x0, and a goal state denoted
with xn.



2.1. MOTION PLANNING AND CONTROL 11

Free space

Another important concept is the C-space obstacle region, denoted with Cobs. This
is the set of configurations that the robot collides with obstacles. C free = C \ Cobs

defines the set of configuration that are collision-free. Usually, the aim of many
motion planners is to traverse a path in C free from x0 to xn [27].

Control space

Beyond the configuration and the state space, we also have the notion of the control
space. This is the space of all possible actions that the system can take to move from
one state to another. Given a state, say x0, and a control, say u0, the result is a new
state, say x1, after applying the control for some duration from x0. Motion planning
algorithms try to find the right controls to move the robot from an initial state to a
goal state.

Task space

Task space is usually defined by the position and orientation of the robot’s end-
effector and represents all possible poses of the robot’s end-effector. The task space
is also known as the operation space. The space dimensionality of a robot with one
end-effector is traditionally R3 × SO(3), that is, R3 is the Cartesian coordinates for
the position of the end-effector and SO(3) is its orientation [28]. However, as the
name implies, the task space depends on the task. In the case of this thesis where I
am interested in reaching in clutter for objects, I assume that the robot’s end-effector
operates on the plane and hence the dimensionality of the task space in this thesis is
SE(2).

Kinematics

An important concept in motion planning is the robot kinematics. Kinematics
describe the pose and all higher-order derivatives of the pose of the robot [29].
Forward kinematics is the problem of determining the pose of the end-effector given
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the configuration of the robot (joint values). Inverse kinematics is the problem of
determining the configuration of the robot (joint values) given an end-effector pose.
Inverse kinematics could be useful in the context where planning happens in the
task space (i.e., planning in the end-effector space) and the robot needs to map the
solution from the task space to the configuration space.

Planners

A planner usually refers to an algorithm that generates a solution to the motion
planning problem. The traditional input to a planner is a description of the config-
uration, state and control space, an initial state and a set of goal states as well as
some constraints that the robot needs to respect. The planner simply needs to find a
solution to move the system from the initial state to a goal state [30–33].

Geometric and physics-based motion planning

The motion planning problems can generally be divided into two categories: geometric
[30, 31, 34] and physics-based [14, 20, 35, 36] motion planning. The former focuses
on the problem of finding a collision-free motion to move a robot from an initial
configuration to a goal configuration while considering the geometry of the robot and
of the obstacles (finding a solution in C free). It is the most widely studied approach
to motion planning. The latter considers physical interaction of the robot with the
environment and the objects. It usually requires a physics model to evaluate the
robot’s actions in the environment while planning. The attention of this thesis is on
physics-based motion planning.

These are some important concepts of motion planning and control. Sampling-
based planning is a major category of motion planning algorithms which are known
to work well in high-dimensional spaces like the ones I am interested in this thesis.
In the next section, I introduce sampling-based planning and discuss important and
related-work.
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2.1.2 Sampling-based planning

Sampling-based planners rose in popularity in the recent years due to their effectiveness
in planning in high-dimensional spaces [37]. They have been applied successfully in
a variety of complex systems, including robotics. The general idea is to exploit fast
collision-detection and state validity algorithms to decide if a sampled configuration
is valid. These are usually treated by the motion planning algorithm as “black box”
functions. This simple idea allows these planners to not explicitly require definition
of the Cobs during planning, since states passing through the Cobs will be discarded
by the collision-detection algorithm [2]. They provide probabilistically complete
guarantees: given enough time, and if a solution exists, they will eventually find it.
This guarantee is weaker than complete algorithms, but this property allows them to
effectively plan in high-dimensional spaces (greater than three degrees of freedom)
unlike complete algorithms [27]. The solutions of sampling-based planners are usually
global; they search for a solution in the whole space.

Sampling-based planners can be divided into two major categories, single-query
and multi-query planners [27]. Single-query planners are conceptually easier and
more popular and hence more widely studied. Therefore, here I will describe briefly
about multi-query planners and expand further on single-query planners since I am
also using single-query sampling-based planners in Chapter 3.

Multi-query sampling-based planners

Multi-query sampling-based planners build a graph (usually called a roadmap) of the
C free initially, and subsequent queries to the planner extend the graph to cover more
parts of C free [27]. We define an undirected graph G(V,E) where V are the vertices
of the graph representing collision-free configurations and E edges to collision-free
paths connecting the vertices [27]. Multi-query sampling-based planners construct
and maintain such a graph and then uses graph search algorithms like A* to find a
solution.

A well known multi-query planner is PRM by Kavraki et al. [30]. It is illustrated
in Figure 2.1(b). It consists of two phases. First, in the learning-phase, the planner
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(a) Rapidly-exploring Random Tree
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connected to nearby vertices, blue is a

solution path.

Figure 2.1: Two popular sampling-based planners. Parts adapted from [2].

constructs a graph-based roadmap by generating free configurations of the system and
attempts to connect them using a local planner. The output of the first phase is an
undirected graph with nodes representing configurations and edges paths connecting
the configurations. In the second phase (the query phase), given an initial state, x0,
and a goal state xn, the planner will try to connect these nodes with the nearest nodes
in the graph x′0 and x′n respectively. If successful, the problem becomes a path finding
one. Assuming that the environment (obstacles and robot) are kept fixed, multiple
such queries can be made to the same roadmap, without the need of re-generating it
from scratch.

Single-query sampling-based planners

Single-query sampling-based planners construct a tree on-the-fly for every query. We
also have a graph G(V,E) where vertices V represent collision-free configurations and
edges E represent paths between those configurations. Unlike multi-query sampling-
based planners, single-query sampling-based planners choose a vertex xexplore ∈ V for
expansion and attempts to sample a new collision-free configuration that connects
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them. This way, the graph grows with new configurations and the algorithm checks if
a solution path exists between the start and the goal configuration [27].

The most well-known single-query sampling-based algorithm is RRT by LaValle
[31] illustrated in Figure 2.1(a). RRT builds a tree from the initial state, x0, and then
samples a random state and tries to extend the tree from the nearest neighbour to
that state. It uses a distance metric to find the nearest neighbour, and the nodes in
the tree represent configurations of the system. Usually, the planner, to bias the tree
towards the goal, samples, in frequent intervals, a goal state and attempts to connect
it to the tree. Once the planner samples a goal state and successfully connects it to
the nearest node in the tree, the algorithm returns a path from the initial state to
that goal state.

Both RRT and PRM have been used in the same context. For example, Denny
et al. [38] propose a general framework for collaborative planning that allows a human
to guide a sampling-based planner to solve path planning problems. The human
provides regions to either attract or repel the planner. The framework works with
RRT-based, PRM-based or combination of the two.

RRT has seen a great success in numerous tasks and several variants of the RRT
algorithm were proposed as a result improving on several aspects of the original
algorithm [32, 33, 39–44]. Kuffner and LaValle [32], for example, propose RRT-
Connect which builds two trees (instead of the traditional one) from both ends (start
and goal configuration). At each iteration, in an alternating fashion, the planner
grows one tree and attempts to connect, using a greedy heuristic called “Connect”,
with the nearest node in the other tree (then the roles alternate; the second tree grows
and tries to connect to the first one). RRTs, traditionally, consider the geometric
problem.

A notable variant of the original RRT algorithm is Kinodynamic RRT [45] which
is especially important to this thesis as it can be used for physics-based manipulation.
Kinodynamic RRT considers kinematic, velocity, and acceleration constraints. It
samples controls to bring the nearest neighbour near to the random state. It was
employed successfully by several people to solve kinodynamic problems [9, 46–50],
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for several tasks including manipulation. For example, Haustein et al. [46, 50] and
King et al. [47], employ kinodynamic planning for rearrangement planning, while
[9] use kinodynamic planning for reaching through clutter problems. Kinodynamic
planning is relevant to my work and I review in more detail some of these works in
the manipulation section of this chapter.

Despite the great success of RRT-based algorithms, the planner suffers from un-
guided search in a large space which could cause the planner to generate unnecessarily
lengthy solutions. Several methods were proposed to tackle this challenge including
a post-processing technique [51] (where the algorithm smooths out long RRT tra-
jectories) and RRT variants with guided methods [52, 53]. Additionally, Şucan and
Kavraki [54], propose a new sampling-based single-query kinodynamic planner called
Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE). KPIECE
builds a tree from the state and control space until a goal is reached. KPIECE
uses the notion of space coverage to guide its exploration in the state space by
constructing and updating a discretization of the state space. KPIECE has been
used in challenging motion planning problems. For example, Rusu et al. [55] use
KPIECE along with a 3D scene perception system for reaching and grasping objects
while avoiding collisions using replanning with a Dynamic Obstacle Map for collision
avoidance. Muhayy ud din et al. [9] propose a variant of KPIECE called p-KPIECE
to handle physics-uncertainty for grasping tasks.

The Open Motion Planning Library (OMPL) [56] is an open-source and free library
that implements many state-of-the-art sampling-based motion planning algorithms
including PRMs, RRT, KPIECE and other well-known motion planning algorithms.
In Chapter 3, I use OMPL to build on Kinodynamic RRT and KPIECE for the
problem of manipulation in clutter but considering human input.

This review of related-work highlights that sampling-based planning is effective
in solving challenging problems like the ones I am looking in this thesis. What
I propose instead is the use of sampling-based kinodynamic planning for physics-
based manipulation with a human-in-the-loop. To the best of my knowledge, this
intersection was not studied before and I believe that human input can be beneficial
to this motion planning problem.
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Going back to the probabilistically-complete guarantee of sampling-based planners,
although this guarantee makes them effective in finding a global solution in high-
dimensional spaces, if a solution does not exist, they will never be able to report it.
They, therefore, rely on a time limit to decide when to stop. This time-out can be
challenging to adjust from problem to problem and can slow down the system searching
unnecessarily for a solution for an unsolvable problem. Trajectory optimisation-based
planning searches for local solutions, and they can help to address this problem more
elegantly, in most cases.

2.1.3 Trajectory optimisation-based planning

In the literature, “trajectory planning” usually refers to the problem of “translating” a
motion planning solution to a valid trajectory (which respects the robot’s mechanical
limitations which might not be considered originally by the motion planner) [2]. Here,
when I use the term trajectory optimisation planning, I refer to motion planning
formulated as an optimisation problem, where a cost function is defined over the
trajectory and the planning is framed as the optimisation of its cost.

More formally, we define a trajectory τ ∈ T that maps time to C-space configura-
tions and controls. The controls tells the robot how to move over time to reach certain
C-space configurations. We also define a cost function (also known as the objective
function), C, that maps a trajectory to a positive real value, C : T → R+. The cost
function encodes factors that define the optimality of the trajectory including but
not limited to the length or efficiency of the trajectory, obstacle avoidance, motion
smoothness, and/or for reaching a specific goal etc. We are looking to find an optimal
trajectory τ ∗ ∈ T :

τ ∗ = argmin
τ∈T
C[τ ]

s.t. τ[0] = x0

τ[n] = xgoal
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Where τ[0] = x0 is the initial state of the system at the first waypoint of the
trajectory, and τ[n] = xgoal is the goal state at the last waypoint of the trajectory.

As noted already, traditionally, motion planning focuses on the problem of collision-
free motions. Certain motion planning problems might require constraints beyond
just collision-free motions. For example, imagine a robot moving a glass of water
from an initial configuration to a final configuration. The glass should stay upside-up
throughout the trajectory execution otherwise the trajectory, even if mechanically
feasible, will be considered invalid [57]. Trajectory optimisation lends itself better
to such problems because it tries to minimise a cost with any number of such
objectives, and hard constraints, like the one mentioned, can also be considered
during optimisation.

Cobs

Cobs

x0

xn

Goal Region

u1

u2
u3 u4

Figure 2.2: Trajectory Optimisation: solid blue line initial trajectory, dotted green
best candidate trajectories of their iteration, solid green final optimised trajectory.

Triangles are the controls applied at each step of the trajectory.

A simple trajectory optimisation planner is illustrated in Figure 2.2 concerned
with collision-free trajectory to move from an initial state to a goal state. It starts
with an initial trajectory (for example a straight-line trajectory) and using a cost
function at each iteration it tries to optimise around it.
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An algorithm similar to what I described above is proposed by Kalakrishnan et al.
[57] who describe a stochastic trajectory optimisation approach called Stochastic
Trajectory Optimisation for Motion Planning (STOMP). The algorithm starts with
an initial trajectory which is assumed to be the best trajectory so far. It then
generates noisy trajectories around the best trajectory to explore the surrounding
space, and updates it to combine the best parts from every other noisy trajectory at a
step-level. STOMP assumes that the start and goal states of the trajectory are given,
and that they are kept fixed during the optimisation. STOMP uses derivative-free
stochastic optimisation method which allows it to optimise arbitrary costs for which
their derivatives might not be available, non-differentiable or non-smooth.

Ratliff et al. [58] introduce CHOMP (Covariant Hamiltonian Optimisation for
Motion Planning). CHOMP uses functional gradient techniques to optimise an initial
trajectory. CHOMP is designed to generate smooth and collision-free trajectories for
robots with large number of degrees of freedom. It can generate trajectories that
satisfy hard constraints and minimize soft costs. STOMP and CHOMP are trying
to solve similar problems, however, STOMP requires minimal parameter tuning,
and it does not require cost function gradients. Inspired by these approaches, I
propose a similar approach in Chapter 4 but my work differs in that I focus on the
problem of manipulation in clutter, and I consider human input in my optimisation
formulation. This essentially allows a human operator to inject high-level hints into
the optimisation.

Other notable optimisation-based motion planners include ITOMP [59] that
considers online replanning in dynamic environments and a Trajopt [60] which is
closely related to CHOMP. Ichnowski et al. [61] propose Grasp-Optimised Motion
Planning (GOMP), a trajectory optimisation motion planning approach for bin-picking
tasks. The approach is concerned with motion execution optimality to improve the
Pick Per Hour (PPH) rate of the robot.

Trajectory optimisation was employed to solve various manipulation problems
including manipulation of deformable objects [62], grasping [63], pushing [64, 65] and
reaching for objects [7, 66]. Agboh and Dogar [64] formulate the problem of pushing an
object as an MDP with action-dependent stochasticity and use a trajectory optimiser
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to solve it. The proposed algorithm considers different tasks and adapt its actions
based on the accuracy requirement of the given task; pushing the object slowly for
tasks requiring high-precision and pushing faster for tasks that high-precision is not
required. In [66], Agboh and Dogar use trajectory optimisation to solve the problem
of reaching through clutter similar to what I implement in Chapter 4. However,
I consider a human-in-the-loop and I consider static obstacles (boundaries) which
makes the problem more challenging since objects can be jammed.

2.1.4 Learning-based motion planning

Another approach to motion planning is to leverage advances in Machine Learning.
These approaches usually try to address shortcomings of the existing motion planning
algorithms by learning an aspect of the problem to guide the planners [35, 67–75].
These learning approaches require a vast amount of training data during the learning
or training phase, where the system tries to extract useful patterns from the data and
generalize. In this thesis, I am not using learning-based methods for motion planning,
but I employ machine learning in Chapter 5 to learn when to ask for human help.
Here I review briefly important and related work because they rose in popularity in
the last years.

Learning-based methods have been used to learn approximate physics models
[76–79]. Agrawal et al. [76], for example, present an approach where a robot learns
the effect of poking objects by executing hundred of thousands pokes on objects.
The paper presents a novel approach based on DNN (Deep Neural Networks) that
learns the “intuitive” physics model directly from image observations. Similarly,
Zeng et al. [19], propose a model-free unsupervised deep reinforcement learning
method that learns to combine both prehensile and non-prehensile actions to achieve
a manipulation task. They argue that certain problems require first the robot to
“declutter” the scene using non-prehensile manipulation to enable the robot fingers to
pick up a desired object.

Laskey et al. [80] propose a learning-from-demonstration approach to solve RTC
problems with a 2-DOF robot. The demonstrations are provided by a hierarchy of



2.1. MOTION PLANNING AND CONTROL 21

supervisors. At the bottom of the hierarchy is a simplified motion planner, followed
by crowd-sourced demonstrators from Amazon Mechanical Turk, and finally, at the
top of the hierarchy expert human demonstrators. This hierarchy aims to expedite
the learning process and reduce the burden from the expert human demonstrators.

The work of Bejjani et al. addresses problems similar to the ones I consider in
this thesis. In [71], Bejjani et al. tries to solve the problem of pushing an object
from an initial configuration to a goal configuration while considering minimum
interactions with other objects. They try to learn a model to predict future cost-to-go
from the horizon to the goal through a Receding Horizon Planner by exploiting
previous experiences with a kinodynamic planner. They use Reinforcement Learning
to improve the learned function for optimality. The learned model is limited to certain
objects with predefined features, and the work considers a discrete action space. They
address the former issue in [35] by using image-based state representation and the
latter in [72] by learning manipulation actions in a continuous action space. In [73],
Bejjani et al. address the problem of occlusion in partially-observable environments
for the problem of reaching through clutter. They propose a data-driven approach
that learns a distribution over the pose of the target object, which is hidden behind
the clutter. The distribution is updated in a closed loop manner to permit the planner
to generate occlusion-aware actions.

Learning-based planning has also been used to address the problem of non-
prehensile rearrangement [81]. This approach trains policies end-to-end using deep
Q-learning with CNN in simulation, and then uses a transfer approach to transfer
the policy to the real-world using few real-world supervised examples. The work
considers rearrangement of a single object each time.

More related to my work is the work by Hasan et al. [69] who propose an approach
that learns high-level human-like actions for reaching through clutter by observing
humans manipulating objects in a virtual environment (using a VR headset). This
approach, however, is restricted to structured (objects aligned in predefined rows)
environments without static boundaries.

Although learning-based approaches demonstrate good results for manipulation
problems, they usually require a large amount of training data and, in the context
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of non-prehensile manipulation, most approaches consider simplified versions of the
problem. The approaches we discussed so far focused purely on motion planning
generation. Another approach is to plan both in task and motion space. Next, I
discuss this line of work known as Task and Motion Planning since is relevant to this
thesis.

2.1.5 Task and motion planning

A final approach to motion planning is Task and Motion Planning (TAMP). TAMP
combines two planning methods, task high-level planning (or symbolic planning) and
motion planning [82–85]. Traditionally, task planning and motion planning were
studied independently. Recent works, however, combine the two with the observation
that such planners, where a planner first plans in the task space, could help guide
the motion planning part to relevant spaces constrained by the task [86]. In some
problems, TAMP makes sense. A robot that navigates to the kitchen to open the
fridge and retrieve the orange juice bottle is basically tackling four problems at once.
Each task requires a different motion planning approach (navigate to the kitchen,
open the fridge, grasp orange juice bottle, return to living room). Akbari et al. [87]
present a TAMP framework for physics-based manipulation for tasks where the robot
needs to navigate in the environment while it is allowed to push movable obstacles.
The framework consists of an ontology representing a knowledge base about the world,
a task planner that uses physics-based reasoning, a cost function to identify a task
plan with the least task-feasibility cost, and a sampling-based motion planner to plan
motions.

In a high-dimensional task space, TAMP can be suboptimal since the task planner
could propose a task plan that might be infeasible to plan for the motion planner
dropping the performance of the system by interleaving task and motion planning
unnecessarily. Wells et al. [70], use SVM (Support Vector Machine) in a Task-and-
Motion-Planning setting to learn feasibility of actions to solve this problem. This
allows a task planner to find actions that are more likely to be feasible, thereby
reducing the total number of calls to a motion planner. In [88], the authors consider
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a mobile manipulator, and propose an approach to minimize the number of obstacles
to be relocated. The robot tries to find the right base position to reach for a desired
object in clutter such that the number of obstacles that need to be relocated (at a
task-level) is minimized.

TAMP can also be useful in the problem where the robot is trying to reach for a
goal object in clutter alone. A TAMP approach could identify first which blocking
obstacles to manipulate and where to place them before it plans to reach for the
goal object. These sub-tasks (obstacles and where to place them) can then become
motion planning queries. For example, Stilman et al. [89] formulates the problem of
Manipulation/Navigation Among Movable Obstacles (NAMO) as a high-level search
over the orderings of objects to be moved, combined with a low-level motion planner
that pick objects up and move in that order. Lee et al. [90] and Nam et al. [91] propose
similar polynomial algorithms for task and motion planning by aiming to minimize
the number of object relocations. The algorithms find a sequence of obstacles to
rearrange (using prehensile manipulation) until a collision-free path exists to grasp
the desired object. I use a similar high-level plan structure, i.e., an ordering of objects,
but I focus on non-prehensile manipulation of objects, rather than pick-and-place
actions.

Finally, other works tackle the problem of partial observability. Zhang et al. [92],
for example, present a mixed logical inference and probabilistic planning for target
object localization tasks in indoor domains using primarily visual data. The authors
use a declarative language to represent and perform the inference assuming incomplete
domain knowledge. It is formulated as a Partially Observable Markov Decision
Process (POMDP). The proposed architecture allows a robot with incomplete domain
knowledge to infer and localise target objects that appear in different rooms. The
architecture allows for incremental knowledge revision as the robot moves and senses
the environment. Similarly, in [93], Zhang et al., propose a hierarchical decomposition
of POMDP for vision-based sensing, information processing and collaboration for a
group of robots. This hierarchical decomposition aims to deal with the problem of
high dimensionality in complex and large state spaces of POMDPs. Such systems
and formulations are relevant in the general problem of manipulation in clutter where
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a robot might not have complete knowledge of the task or full observability of the
environment. Although this is a challenging and open problem in manipulation
planning, in this thesis my focus is mainly on the challenges of motion planning and
control and, therefore, I assume a fully observable environment and that the robot
has complete knowledge about the task.

So far, we discussed motion planning; sampling-based planning, trajectory-
optimisation-based planning, learning-based motion planning, and task and motion
planning. Next, we review related work in the control literature and specifically
focussing on model predictive control.

2.1.6 Model predictive control

The problem of physics-based manipulation is challenging in many ways, but one
particular challenge is the physics uncertainty when executing a trajectory in the
real-world [94]. With physics uncertainty, in this thesis, I refer to the problem when
a feasible trajectory in simulation can be infeasible when executed in the real-world.
There are multiple reasons why uncertainty arises. Uncertainty can occur from model
inaccuracies, control errors during execution, and from sensor errors [95]. This is an
inevitable problem, and this thesis proposes ways to reduce uncertainty (for example
in Chapter 3 where human input forces the robot to push obstacles away from the goal
object and, therefore, the uncertainty around the goal object is reduced) or plan with
uncertainty (for example in Chapter 4 where human input, planning, and execution
are tied together in an online replanning framework that handles uncertainty by
correcting the trajectory in real-time).

When it comes to execute a trajectory in the real-world, open-loop execution refers
to execution with no feedback from the environment and assumes that execution
of commands will unfold without unexpected consequences. It is not particularly
effective against physics uncertainty, but it is faster than closed-loop controllers and
effective in scenes where dynamic interactions are non-existent or at a minimum (for
example pick-and-place tasks or pushing an object in free space).

Several works tackle the physics-uncertainty problem at a motion planning level
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but the motion is executed in an open-loop manner [9, 96–99]. For example, Melchior
and Simmons [96] propose Particle RRT that uses a stochastic process to simulate
multiple times an extension node using different variations which are then grouped in
similar clusters forming a single node in the tree. This way, the planner can find more
robust paths for a given problem. Muhayy ud din et al. [9] propose p-KPIECE that
extends KPIECE to handle physics uncertainty. It uses a custom motion sampler that
samples multiple candidate motions and computes the belief about their robustness
and returns the one with the highest belief to be robust, at every propagation step.
Furthermore, they enhance the planner’s exploration strategy to bias the tree towards
robust regions based on the computed motion beliefs. Dogar and Srinivasa [97]
propose an approach to grasping that allows a robot to plan a trajectory to grasp
an object in clutter. It reduces the uncertainty about an object’s pose and tackle
physics-uncertainty by “decluttering” the target object by pushing it away from
obstacles before it is grasped. In Chapter 3, I look at how the human input can
achieve the same; the high-level input of the human could help declutter the space
around the goal object, thereby reducing the physics uncertainty (at a planning level)
when reaching for an object in subsequent planning, however, the solution is executed
open-loop.

On the other hand, closed-loop execution considers feedback from the environ-
ment while executing the motion through a controlled variable. In this thesis, I
focus specifically on Model Predictive Control (MPC) or Online Replanning (OR)
approaches. In MPC we have a model of the system that we try to control and the
model is used to predict the effects of robot’s actions (as opposed to “feedback-control”
methods such as PID control [100, 101], which do not require a model of the system).
MPC approaches are especially appealing to the problem of physics uncertainty.
Trajectory optimisation-based planning approaches like the ones I already described
in Section 2.1.3, are particularly effective for online replanning because a new optimi-
sation cycle can be warm-started with the previous solution, and convergence can be
achieved in few optimisation iterations. I leverage this observation later in Chapter 4
and propose a novel online-replanning strategy with a human-in-the-loop.

A Model Predictive Path Integral (MPPI) approach is proposed by Williams et al.
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[102] to follow an already optimised trajectory. They run one iteration of optimisation
after each step execution in the real-world. A similar approach is proposed by Arruda
et al. [103], Hogan and Rodriguez [104] for a pusher-slider system, and by Agboh and
Dogar [66] for manipulation in clutter. In Chapter 4, I propose a similar approach
to [102] and [66] but in a framework for non-prehensile manipulation with a human-
in-the-loop. Moreover, each of the optimisation steps have the constraint to reach
a goal state (e.g., having the goal object in the robot’s hand), instead of simply
optimising a soft cost like [102] and [66], and the problem I consider impose static
boundaries and jamming unlike [66] which makes the problem more challenging due
to the extra constraints. Recently, Agboh and Dogar [8] proposed an approach to
segment a trajectory into robust and non-robust segments using a robustness metric.
The system then executes robust segments in an open-loop manner, while non-robust
segments are executed using a closed-loop controller.

In this section, we discussed in detail about motion planning and control. I
introduced important concepts, algorithms and related-work. Next, I introduce
manipulation planning.

2.2 Manipulation Planning

Robotic manipulation is a broad topic in robotics, and Mason defines manipulation
as “an agent’s control of its environment through selective contact” [5]. In this work,
I look at the robotic manipulation problem from a motion planning and control
perspective and specifically robotic manipulation in cluttered environments. The
problem that considers object-object interaction but the objects’ final configurations
are not part of the goal state, is an NP-Hard problem [1]. The problem of Reaching
Through Clutter (RTC) is, therefore, in this time complexity class.

In the robotic manipulation literature, the term “clutter” is used to describe scenes
where multiple objects are in a close proximity to each other and usually blocking
the robot’s reach. As a result, the robot poses motion planning challenges as it is
required to come in contact with multiple movable obstacles while solving another
problem. The term “clutter” is not defined in the literature and people might use the
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term to describe scenes with 5 or 10 objects [71, 105] while others might consider
15 or more objects [9, 66, 91]. Even the number of objects alone is not defining the
difficulty of the task. Some problems consider large open space and as a result, a
robot can more easily push objects out of the way [9, 66], while others consider more
dense spaces with little free space to manoeuvre [106, 107].

(a) (b)

Figure 2.3: (a) prehensile manipulation; the object to be manipulated (wine glass) is
firmly grasped by the hand (b) non-prehensile manipulation; wine glass is placed on

a tray.

Manipulation planning can generally be divided in two categories: prehensile
and non-prehensile manipulation. First, in the next section, I discuss prehensile
manipulation and important work in this space. In Section 2.2.2, I discuss non-
prehensile manipulation and review related work.

2.2.1 Prehensile manipulation

Prehensile manipulation refers to the manipulation that requires the robot to firmly
grasp an object (see an example in Figure 2.3(a)). That is, the grasp is force-closed
and compensates external wrenches, thereby allowing the robot to control the motion
of the object to follow the motion of its end-effector [18]. A traditional task of
prehensile manipulation is Pick & Place. The robot needs to find a grasp pose, a
motion to go and grasp the object and a motion to place it elsewhere. This works well
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in structured and non-cluttered scenes and with objects that can be grasped by the
robot’s end-effector. Kimmel et al. [13] proposes the Jacobian Informed Search Tree
(JIST) method for manipulation planning in cluttered scenes. It is a heuristic-guided
sampling-based search algorithm that first plans in the task space and then in the
robot’s configuration space to generate collision-free motions for object retrieval.
JIST, using Jacobian-based steering, biases the tree’s expansion towards promising
end-effector poses guided by the heuristic.

Prehensile manipulation can be effective in assembly operations. For example,
Dogar et al. [108] propose a planner for collaborative assembly operations involving
sequential grasps of parts between three robots to assemble complex structures like a
chair. They formulate the problem as a Constraint Satisfaction Problem (CSP) and
they propose an any-time planner to solve it. Initially, the planner tries to quickly
find a solution without regrasp constraints. The planner then improves on the initial
solution by gradually imposing more transfer constraints to find a solution with
minimal number of re-grasps, if possible. The system assumes perfect observability,
however. In [109] the planner is extended by Rosman et al. to also solve this problem
by allowing the robots to choose poses that will also increase the observability of the
system, thereby reducing uncertainty in the objects’ poses.

For the problem of reaching through clutter, Nam et al. [91] propose an approach
for object retrieval from cluttered environments. The algorithm generates a plan to
relocate objects blocking the goal object to grasp the goal object with a collision-free
trajectory. They generate a graph representing movable paths of objects. Using this
graph, the algorithm finds a path to relocate objects to free up the space to the goal
object. The approach does not consider non-prehensile actions like pushing, however,
but only pick-and-place actions.

For prehensile manipulation is not always necessary that the robot is only pro-
ducing collision-free motion, and people realize that even for pick-and-place tasks
the robot might still need to come in contact with other objects, and they consider
physics-based motion planning for pick-and-place tasks [14]. This increases the success
rate of the planner since the robot is not any more strictly constraint from contacting
other objects. In this specific work, Saleem and Likhachev [14], realize that motion
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planning can be speeded up if the planner evaluates with physics simulation actions
which involve interactions only with relevant objects (instead of avoiding interaction at
all) and the rest actions are evaluated with a simple collision-checker. They propose a
recursive approach to identify these relevant objects but they only consider prehensile
manipulation.

Although such prehensile manipulation approaches are effective in solving various
problems, for problems like reaching through clutter, it requires that the robot picks
and places numerous blocking obstacles, slowing down the overall planning time
of the system. As we will see in the next section, people turned to non-prehensile
manipulation to manipulate very cluttered environments and use actions like pushing
to deal with blocking obstacles.

2.2.2 Non-prehensile manipulation

Non-Prehensile manipulation refers to manipulation without grasping [5]. Consider
a waiter who is carrying a tray with a wine glass on top like the one illustrated in
Figure 2.3(b). The object is controlled, indirectly, by the waiter while moving the
tray, however, it is not possible to compensate all external wrenches directly [18].
In non-prehensile manipulation, the robot use other manipulation primitives like
pushing, pulling or sweeping objects. Such manipulation primitives can be useful
in cluttered scenes where free-space is limited, and, therefore, a robot cannot find a
collision-free motion to pick an object. They can also be more effective since the robot
will be able to manipulate multiple objects simultaneously, as opposed to picking and
placing multiple obstacles. It is also effective for manipulating objects that are too
large or too heavy to manipulate [94] and as a preparation step to grasp an object
[20].

The RTC problem is the main problem I address in this thesis. RTC is concerned
with the problem where a robot needs to reach in clutter to grasp a goal object. The
robot might need to push objects out of the way to create space for reaching the goal
object and we, therefore, consider RTC to be a problem that requires non-prehensile
manipulation.
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Non-prehensile manipulation was effectively used for different challenging manipu-
lation tasks [19, 110–114]. Lee et al. [110] describe a hierarchical planning approach
for planning a sequence of prehensile and non-prehensile actions to accomplish a
certain manipulation task. They propose the decomposition of the problem into
three search problems, each represented as a graph, to more efficiently search for a
solution. This will yield to a sequence of contact states, object poses and end-effector
finger positions to solve the given problem. Their approach, however, is limited to a
2-dimensional space, with two robot contacts only. Moreover, they do not consider
the robot kinematics during planning which simplifies the problem significantly.

Muhayy ud din and Rosell [15] present a knowledge-oriented physics-based motion
planning for grasping in clutter. The approach uses ontology classes to capture
semantic knowledge about the problem. Using this semantic knowledge, a reasoning
process is used to obtain target regions, where the motion planning should be
focused, and manipulation regions around obstacles. These regions are then used by
kinodynamic RRT to bias the state sampling and guide the motion planner.

Numerous works focus on the problem of rearrangement planning [34, 47, 115].
This class of problems considers the problem where several objects need to be
rearranged to specific locations. Although the problem I tackle in this thesis is not
rearrangement planning, there are similarities and common challenges. For example,
King et al. [47] focus on rearrangement planning with non-prehensile manipulation
(using pushing primitives). They propose an approach that combines both object-
centric and robot-centric actions. Object-centric actions refer to actions where the
purpose is to manipulate a single object, whereas robot-centric actions refer to actions
that consider directly the robot motion and indirectly the interaction with other
obstacles. Robot-centric actions allow the robot to manipulate multiple objects
simultaneously. They employ a kinodynamic RRT algorithm to solve this problem
and show that a combination of the two action types improves the success rate and
planning times. In this thesis, when a robot plans fully autonomously, we consider
robot-centric actions. When the human provides high-level inputs (in terms of an
object and where to be pushed) we use object-centric actions. In a way, my work
also combines object-centric and robot-centric actions, but I use a human to provide
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object-centric planning goals.
Dogar et al. [20] present an approach to grasping through clutter, where the robot

is allowed to contact obstacles during a grasp attempt to clear away obstacles in the
desired path. The planner pre-computes and caches robot-object (involving a single
object and the robot) interactions. According to the findings, such an approach,
that permits object interactions, increases the number of possible grasps and the
success rate in most scenes compared to baselines which do not permit interaction
with surrounding obstacles.

Effective algorithms have also been developed for Reaching Through Clutter
problems [9, 20, 46, 66, 88]. However, the problem remains a challenging one, where
the planning times are still in the order of tens of seconds or minutes, and the
success rates are low for difficult problems. Some of these works employ the power
of randomized kinodynamic planning as already discussed in Section 2.1.2. For
example, Haustein et al. [46] use a kinodynamic RRT planner to sample and generate
a sequence of robot pushes on objects to reach a goal state. Muhayy ud din et al. [9]
use the KPIECE algorithm to solve this problem while others employed trajectory
optimisation [7, 66]. These planners report some of the best performance (in terms of
planning times and success rates) in this domain so far. I build on these kinodynamic
planning approaches, but I investigate using them with human input.

Similar to the trajectory-optimisation approach I propose in Chapter 4, is the
work by Kitaev et al. [7]. They are looking at the problem of reaching through clutter
and physics-based manipulation. Their approach works by using the algorithm in
[20] to sample initial straight-line trajectories at different approach angles, which are
then pre-processed to minimize the number of obstacle contacts the robot makes.
It then uses an optimisation method to optimise around it. However, the average
running time of the proposed approach, especially for 20 or more objects in a shelf
setting, like the ones I consider in this work, is in the order of minutes. The authors
attribute this to the computational bottleneck of the gradient computation of the
objective and the dynamics. My approach is based on STOMP [57] which does not
require cost function gradients, and I consider human input in the optimisation which
demonstrates significant improvement in the overall running time and success rate.
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Moreover, my approach, unlike [7], considers the problem of physics-uncertainty as
well.

Beyond prehensile and non-prehensile manipulation, another factor that could
distinguish related-work in this thesis is shared-autonomous approaches. Unlike most
approaches I discussed so far, semi-autonomous approaches consider human input to
improve the system’s performance. In the next section, I introduce important and
related-work in the shared-autonomy literature.

2.3 Shared-Autonomy

Robotic teleoperation is concerned with operation of robotic systems from distance.
There is usually no “intelligence” (or at least artificial) in these systems, and instead
a human operator controls the robot directly. Such systems are dated back in the
1940s and 1950s to nuclear research [5, 116].

Teleoperation is still a preferred way to accomplish certain manipulation tasks
(for example, robot-assisted surgery [116]). Over the years, with the advancements of
Artificial Intelligence and Machine Learning, for certain tasks, the community turned
to “fully-autonomous” systems1 Section 1.1. This paradigm motivates that robots are
capable to sense, reason and act on the environment autonomously, without a human
controlling them directly. Certain tasks have been extremely successful with fully
autonomous systems, like Simultaneous Localization and Mapping (SLAM) for static
and structured environments [117]. There are tasks, however, that are extremely
challenging for autonomous robots today.

People started to realize that teleoperation and full autonomy are not mutually
exclusive. Shared-Autonomy, Human-In-The-Loop (HITL) Systems, Supervisory
Control or Semi-Autonomy are all terms to describe systems that use autonomy for
certain parts of the system, yet allow a human to control and help the robot. Without
loss of generality, these systems, usually, delegate high-level reasoning to a human
(since searching for one autonomously in a high-dimensional space is time-consuming

1The system requires no human intervention in its decision making but a human might still be
needed to run the robot or provide it with a goal. Please see a detailed discussion in
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and challenging) and they thrive with low-level tasks (like motion planning). In this
thesis, I focus exactly on this aspect of shared-autonomy, where the human supports
high-level reasoning and the robot supports the low-level work to accomplish the task.

Shared-autonomy has seen success for many robotic tasks, including path planning
[38, 118–120], perception [121, 122], navigation [123], and grasping [11, 124].

Human input has been used to provide contextual information for a given task.
In specific, Witzig et al. [124], highlight the importance of context information when
performing a grasp. For example, if the task is to pour the contents of a bottle
into a bowl, grasping the bottle from the top will be a poor choice. The human
provides high-level contextual information that are then encoded in a probability
density function using a Bayesian Network. This contextual knowledge is used to sort
grasp hypotheses. The user might also add training data to the network by selecting
one or more grasps hypotheses visualized to them through a Graphical User Interface.

Studies of human-in-the-loop systems suggest that systems that involve more
robot autonomy and less human-control yield in general to better overall performance.
In specific, Leeper et al. [11], present a “point-and-click” interface for grasping objects
in clutter with different levels of autonomy. The results suggest that more robot
autonomy leads to better performance, with fewer collisions and more successful
grasps. The system, however, requires human input at all times and human input is
either a low-level input (where the human controls almost directly the robot) or it is a
filtering task (select a grasp from the set). In addition, Bringes et al. [125] looked into
different ways human input can be integrated in motion planning for pick-and-place
tasks and concluded to the same finding. That is, human-input increases success
rate and improves planning times in general, however, the system benefits the most
when human input is restricted to non-precise work and the robot autonomously
helps on the precise work. The input of human in this work was captured using
a haptic device and the human was mainly teleoperating the robot to some new
configuration followed by autonomous planning. My work also builds on this belief
that human input should be focused on the high-level reasoning of the task and the
robot should work on the low-level part of the work. However, I focus on physics-based
non-prehensile manipulation, and I am interested in integrating high-level input in
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the motion planning framework directly, instead of using a human to teleoperate the
robot to a new initial position before autonomous planning.

A challenge when it comes to communicate the course of motion planning to
the user is how to represent a high-dimensional space to the user. Bayazit et al.
[126] use haptic and visual interfaces to communicate with the human for solving
path finding problems. One of the contributions of the work is the projection of
the configuration space into the workspace that allows the planner to visualize its
progress to a human more intuitively. The task of the human is to capture useful
configurations, ideally in narrows passages, for the planner. They show that the
system can even benefit from approximate paths (that are not collision-free) provided
by the human by transforming them into collision-free paths with some processing.

Other works look into failure recovery systems. Sankaran et al. [127] present a
state machine-based failure recovery system with shared autonomy that can query a
user when other autonomous solutions are exhausted. Every state in the state machine
is bidirectionally linked to a meta state called the oracle. The oracle is simply there to
transmit from a failed state to any other state and to act as the communication link
between the system and the user. The oracle classifies the failure into different classes,
low, moderate and high failure. The user is queried according to these classifications
and based on a pre-defined logic. Islam et al. [128] take a similar approach where
a Multi-Heuristic A* motion-planning algorithm is used to autonomously solve a
motion planning problem and they propose the use of a heuristic-based approach
to estimate when a robot is in a “stagnation” region so they can query a human for
guidance.

This line of work, where a system can incorporate human intervention when
needed and adjust its level of autonomy, is called sliding-autonomy and other people
have proposed similar systems [129–132]. The recent work by Swamy et al. [129], for
example, propose a shared-autonomy approach that tries to learn to automatically
assign to the human the robot that he would have chosen to operate. The approach
works by observing the human operating a small number of robots. Then, it tries
to fit a model to explain the user’s choices based on an internal scoring function
that allows the system to map a state to a real value. Using this learned model the
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system is capable, in a larger group of robots, to predict which robot the human
would choose to operate and assign it to him automatically. This approach addresses
simple toy tasks. Learning a scoring model for real-world problems like RTC might be
challenging. I take a similar approach in Chapter 5 but trying to learn to predict the
optimisation cost of the problem in the future before and after human intervention to
allow the system to calculate a predicted gain that can then be used to decide which
robot the human should supervise.

The idea that a system starts fully autonomous and falls-back to a human when
necessary is of interest to this thesis. In Chapter 4, I investigate how this can be
achieved in a motion planning problem for non-prehensile manipulation, but I leverage
trajectory optimisation techniques to detect when an autonomous motion planner is
expected to fail (i.e., local minima) before falling-back to a human operator, and I
extend it to a predictive system in Chapter 5.

Other approaches to shared-autonomy are used to allow a human operator to
teleoperate a robot [10, 12] or to command the robot to do some task, essentially
making the human input acting as a transition from one task to another [133]. These
systems employ autonomous functionalities, but the human input is usually used to
teleoperate or command the robot to do certain tasks. As an example, Ciocarlie et al.
[12] developed a mobile manipulation platform with a human-in-the-loop to assist a
disabled user. They present a “point-and-click” user interface that allows a user to
control the robot to perform complex manipulation tasks in complex and dynamic
environments. Certain functionalities permit the robot to act autonomously (like
navigation), while for other tasks (manipulation), the user can directly teleoperate
the robot or provide a high-level input. The work demonstrates non-prehensile
manipulation through direct teleoperation, not as a result of a semi-autonomous
motion planner. Muszynski et al. [10] propose a similar approach, but focusing on
the user interfaces for mobile devices while considering adjustable autonomy. The
user might choose to adjust the level of autonomy of the robot depending on the
task or if the robot fails to act autonomously. Both of these systems use the human
input to move the system from one state to another or to replace an autonomous
subsystem entirely. I am interested in a similar setting, but focusing especially on
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non-prehensile manipulation semi-autonomous planning and how human input can
be integrated in the motion planner.

2.4 Remarks

This chapter introduced in more depth the four main pillars this thesis builds on; (1)
motion planning, (2) motion control, (3) physics-based non-prehensile manipulation,
and (4) shared-autonomy. Through in-depth review of related-work, I introduced
important works in the field and how they differ from this work. I also emphasized
on the difficulties of robotic manipulation, especially in dynamic, unstructured and
cluttered environments.

Up to this date, physics-based non-prehensile manipulation in clutter is still
an open problem, and it takes several seconds or minutes for existing solutions
to solve hard instances of the problem consistently. The study of physics-based
non-prehensile manipulation in clutter with a human-in-the-loop, however, to the
best of my knowledge, was not studied in detail before. This thesis focuses on this
specific intersection with the aim to understand how a human-in-the-loop system
can be used in such problems and to develop approaches for effective, fast and
robust motion planning and control for non-prehensile manipulation in clutter. In
specific, I propose a framework for sampling-based planning that extends existing
sampling-based approaches (like kinodynamic RRT and KPIECE) in Chapter 3, and
in Chapter 4, I introduce a trajectory-optimization-based framework with human-in-
the-loop. Finally, in Chapter 5, I present a predictive guided framework that learns
when to ask for human help. My findings are encouraging and show that human-input
in such problems is effective and can accelerate the robots’ performance significantly.

In the next chapter, I start exploring how human input can be integrated in
sampling-based motion planners.



Chapter 3

Integrating Human Input in Sampling-
based Kinodynamic Planning

Chapter Deliverables
Demonstration video: https://youtube.com/watch?v=nfr1Fdketrc
Source code: https://github.com/rpapallas/hitl-clutter

3.1 Introduction

In this chapter, I begin by proposing a framework for non-prehensile manipulation
and a human-in-the-loop by employing sampling-based kinodynamic planning (Sec-
tion 2.1.2). In my framework, the human operator supplies a high-level plan to make
the underlying planners solve the problem faster and with higher success rates.

Example problems are depicted in Figures 3.1 and 3.2. The target of the robot is
to reach and grasp the green object. To do this, however, the robot first has to push
other objects out of the way (Figure 3.1(b) to Figure 3.1(e)). This requires the robot
to plan which objects to contact and where to push those objects so that it can reach
the goal object. I present an approach to this problem where a human-in-the-loop
provides a high-level plan, which is used by a low-level planner to solve the problem.

For example, in Figure 3.1(a), the human operator supplies the high-level action
of first pushing the object o2 to the blue region. A key point here is that pushing o2
in Figure 3.1(a) to its target region is itself a problem which requires kinodynamic
planning through clutter, since the object and the robot may need to contact and
push other objects during the motion.

Therefore, the action in Figure 3.1(a) requires the use of a planner that can
potentially solve the original larger problem of reaching the green object through
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o2
og

(a) (b) (c)

(d) (e) (f)

Figure 3.1: A human-operator guiding a robot to reach for the green goal object, og.
Arrows indicate human interaction with the robot. In (a) the operator indicates o2
to be pushed to the blue target region. From (a) to (c) the robot plans to perform
this push. In (d) the operator indicates to the robot to reach for the goal object.

From (d) to (f) the robot plans to reach the goal object.

(a) (b) (c) (d)

Figure 3.2: Human-operator guiding a robot in the real-world.
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clutter. However, solving the original problem in highly cluttered settings can take a
long and infeasible amount of time. The human can suggest high-level actions that
decompose the original problem into a sequence of easier problems of the same type.
The robot uses a kinodynamic planner to approach o2 in Figure 3.1(b) and to push it
to the target region in Figure 3.1(c). The human operator’s input here is limited to
selection of the object and an approximate goal location for that object. The actual
pushing actions are planned by the autonomous low-level planner. In Figure 3.1(d)
the operator points directly the actual goal object (green). The kinodynamic planner
in Figure 3.1(e) finds a way to push other objects out of the way and in Figure 3.1(f)
successfully reaches the goal object. The human-operator’s role in the system is not
to guide the robot all the way to the goal, but to provide key high-level actions to
help the robot. At any point during the interaction, even at the very beginning, the
operator can decide not to provide any further high-level actions (either because the
scene is easy enough for the low-level planner or because the operator is busy) and
she can command the system to plan directly for the actual goal object. The system
degrades nicely to state-of-the-art kinodynamic planning if no high-level actions are
provided.

I compare this framework to using kinodynamic methods without any high-level
plans, e.g. KPIECE and RRT and to hierarchical methods which generate high-level
plans autonomously. For the latter, I implemented a non-prehensile variation of the
NAMO planner [89] as well as an approach which uses a straight-line motion heuristic
to generate candidate objects for the high-level plan. I performed experiments in
simulation and on a real robot, which show that the human-in-the-loop approach
produces more successful plans and faster planning times. This gain, of course, comes
at the expense of a human operator’s time. The results show that this time is minimal
and to evaluate this further, I experiment with a single human operator providing
high-level plans in-parallel to multiple robots, and present an analysis. I discuss
whether such an approach may be feasible in a warehouse automation setting.

While a good high-level plan can make the low-level planning problem easier to
solve, the autonomous generation of a good high-level plan is itself a computationally
expensive problem. For example, for the problem of reaching through clutter, a
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high-level planner would need to search in a space of all possible permutations of
objects, combined with all possible goal locations for these objects. Furthermore,
the high-level planner must be able to choose high-level actions that are feasible for
the low-level planner. This feasibility would mean checking or predicting whether
the robot would be able to push a certain object to a certain location, which either
requires the use of computationally expensive physics simulations, or a heuristic to
estimate the probability of successful push. While these decisions are computationally
expensive for an autonomous planner, they can be easy for a human.

The structure of this chapter is as follows. In the next section, Section 3.2, I
outline some assumptions, the objectives of this chapter and the contributions. In
Section 3.3, I formulate the problem and introduce important notations for this
chapter. I then introduce the proposed approach, the Guided-RTC Framework, as
a general framework for solving RTC problems in Section 3.4.1. Then, I provide
concrete implementations of the general framework in Sections 3.4.2 to 3.4.4. Finally,
I evaluate the proposed algorithms in simulation, on a real robot and in a parallel
setting in Section 3.5 and provide an analysis.

3.2 Assumptions, Objectives and Contributions

Assumptions

In this chapter, I make the following assumptions:

• The robot is constrained on the plane and that the objects cannot be grasped
from the top. Therefore, the robot motion is constrained in SE(2).

• The goal object is easily graspable by closing the robot fingers.

• There is a perception system that detects object poses with good accuracy.

Objectives

The objective of this chapter is to explore and extend sampling-based planners
(e.g., RRT and KPIECE) to consider human-input for the problem of physics-based
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non-prehensile manipulation in clutter. This is a challenging problem for existing
sampling-based kinodynamic methods, and employing human input in this problem
might be beneficial. The aim of this chapter is to propose such approaches and to
evaluate and compare them against existing state-of-the-art methods.

Contribution

The contribution of this chapter is therefore a sampling-based framework for non-
prehensile physics-based manipulation in clutter with a human-in-the-loop.

3.3 Problem Formulation

The environment comprises a robot r, a set of movable obstacles O, and other static
obstacles. The robot is allowed to interact with the movable obstacles, but not with
the static ones. There is also a goal object og ∈ O to reach.

I am interested in problems where the robot needs to reach for an object in a
cluttered shelf that is constrained from the top, and therefore the robot motion is
constraint to the plane and its configuration space, X r, to SE(2). The configuration
of a movable object i ∈ {1, . . . , |O|}, xi, is its pose on the plane (x, y, θ). I denote
its configuration space as X i. The configuration space of the complete system is the
Cartesian product X = X r ×X g ×X 1 × · · · × X |O|−1.

Let x0 ∈ X be the initial configuration of the system, and Xgoals ⊂ X a set
of possible goal configurations. A goal configuration, xn ∈ Xgoals, is defined as a
configuration where og is within the robot’s end-effector (see Figure 3.1(f)).

Let U be the control space comprised of the robot velocities. Let the system
dynamics be defined as f : X × U → X that propagates the system from xt ∈ X with
a control ut ∈ U .

I define the RTC problem as the tuple (X , U, x0,Xgoals, f). The solution to the
problem is a sequence of controls from U that move the robot from x0 to a xn ∈ Xgoals.
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3.4 Guided-RTC Framework

In this section, I describe a guided system to solve RTC problems. A Guided-RTC
system accepts high-level actions. A high-level action can suggest to push a particular
obstacle object into a certain region, or it may suggest to reach for the goal object.
The high-level action is formally defined with the triple (oi, xi, yi), where oi ∈ O is
an object, and (xi, yi) is the centroid of a target region that oi needs to be pushed
into. The target region has a constant diameter d. When oi = og, this is interpreted
as the high-level action to reach for the goal object, and the centroid can be ignored.
The high-level actions may be suggested by an automated high-level planner or by a
human-operator.

Consider Figure 3.1 as an example. A human-operator suggests a high-level
action (o2, 1.15, 0.4) (Figure 3.1(a)), where (1.15, 0.4) is the centroid of the blue target
region. The Guided-RTC system finds the controls to push o2 into the target region
(Figure 3.1(c)). When the human-operator suggests reaching for the goal object og
(Figures 3.1(d) to 3.1(f)), the system finds the controls to perform this action.

I investigate how a Guided-RTC system with a human-in-the-loop performs when
compared with (a) solving the original RTC problem directly using kinodynamic
approaches, and (b) using Guided-RTC systems with automated ways of generating
the high-level actions. In this chapter, when we plan with a kinodynamic planner
(either RRT or KPIECE) we will use the notation kinodynamicPlanning(xstart,
goal) with a start configuration of the system, xstart, and some goal input.

In Section 3.4.1, I present a generic algorithm to implement the Guided-RTC
framework which is agnostic to how the high-level actions are generated. Then I
present different approaches to generate the high-level actions, including a human-
in-the-loop approach in Section 3.4.2, as well as two other automated approaches in
Sections 3.4.3 and 3.4.4.
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Algorithm 1 Guided Reaching Through Clutter (GRTC)
Input: x0: The initial state of the system

Xgoals: A set of goal states
1: procedure GRTC
2: xcurrent ← x0
3: do
4: oi, xi, yi ← getNextHighLevelAction(xcurrent)
5: if oi 6= og then
6: xa1, xa2 ← compute approaching states to oi
7: kinodynamicPlanning(xcurrent, {xa1, xa2})
8: if planning in line 7 fails then go to line 4
9: kinodynamicPlanning(xa1 or xa2, (oi, xi, yi))
10: if planning in line 9 fails then go to line 4
11: xcurrent ← execute solutions from lines 7 and 9
12: while oi 6= og
13: kinodynamicPlanning(xcurrent,Xgoals)
14: if planning succeeds then
15: xcurrent ← execute solution from line 13

3.4.1 A generic approach for Guided-RTC planning

The generic algorithm, Guided-RTC, is presented in Algorithm 1. The initial con-
figuration of the problem is assumed to be the current configuration, xcurrent, of the
system (line 2). The next high-level action is decided based on the current config-
uration (line 4). In the concrete implementation of this framework, the high-level
action can be provided either by a human operator or an automatic process. Here we
are not concerned with where the high-level input comes from, but that is informed
somehow based on the current state of the system. If the object in the high-level
action is not the goal object (line 5), then it is pushed to the target region between
line 6 and line 11, and a new high-level action is requested. If it is the goal object,
the robot tries to reach it between line 13 and line 15 and the system terminates.
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d (xi, yi)

xa1
d (xi, yi)

xa2

Figure 3.3: Approaching states: The blue circle is the target region, the red rectangle
the object to manipulate. We compute two approaching states, xa1 and xa2. The two
approaching states encourage side-ways and forward pushing actions respectively,

and they increase the chance of a successful pushing.

Pushing an object

The plan to push an object to its target region is done in two steps. In line 7 we plan
to an intermediate approaching state near the object, and then in line 9 we plan from
this approaching state to push the object to its target region. Specifically, given an
object to push, oi, we compute two approaching states xa1 and xa2 (line 6). Figure
3.3 shows how these approaching states are computed, based on the object’s current
position, the centroid (xi, yi) and the minimum enclosing circle of the object. The
approaching state xa1 encourages side-ways pushing, where xa2 encourages forward
pushing. I also experimented planning without first approaching the object but I
found that approaching the object from a good pose yields to faster pushing solutions.
Using both approaching states as the goal we plan to move to one of them (multi-goal
planning) in line 7. Then, from the approaching state reached (either xa1 or xa2) we
push oi to its target region (line 9). If any of the two planning calls in lines 7 and 9
fails, then the algorithm proceeds to the next high-level action (line 4). It is assumed
that the next high-level action will be different since if the initial high-level action
fails, this is communicated to the human and is assumed that they will choose a
different high-level action, and in the case of automatic approaches, they will provide
a new random centroid which will result to a new high-level action as well. Otherwise,
we execute the solutions sequentially in line 11, which changes the current system
configuration xcurrent.
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Reaching for the goal object

Finally, in line 13, we plan to reach and grasp the goal object and in line 15 we execute
the solution if it is successful. We use kinodynamic planners (e.g. kinodynamic RRT
or KPIECE) to support the planning in lines 7, 9 and 13.

Algorithm 1, runs up to an overall time limit, Toverall, or until a goal is reached.
The pushing planning calls in lines 7 and 9 have their own shorter time limit, Tpushing
and they should find a valid solution within that time limit. The planning call in
line 13 is allowed to run until the overall time limit is over.

Now that the Guided-RTC is defined, in the next section I define an implementation
of the framework with a human-in-the-loop.

3.4.2 Guided-RTC with Human-In-The-Loop (GRTC-HITL)

Algorithm 2 GRTC-HITL
Input: xcurrent: The current state of the system
Output: A high-level action

1: function getNextHighLevelAction
2: oi ← get object selection from human operator
3: if oi 6= og then
4: xi, yi ← get region centroid from human operator
5: return oi, xi, yi

6: return og

Guided-RTC with Human-In-The-Loop (GRTC-HITL) is an instantiation of the
GRTC Framework. A human-operator, through a graphical user interface, provides
the high-level actions. In Algorithm 2, I present GRTC-HITL getNextHighLevelAction
function (referenced in Algorithm 1, line 4).

The human provides high-level actions, until she selects the goal object, og. The
GRTC framework (Algorithm 1) plans and executes them. The state of the system
changes after each high-level action and the human operator is presented with the
resulting state each time (xcurrent). Note here that the operator can decide not to
provide any guidance (by selecting the goal object straightaway), which would be
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equivalent to running a state-of-the-art kinodynamic planning on the original RTC
problem.

I developed a simple user interface to communicate with the human-operator.
The operator at every step is presented with a window showing the environment and
the robot. The operator, using a mouse pointer, provides the input (an object and a
point on the plane) by first clicking on the desired object and then a point on the
plane (Figure 3.1(a)) that becomes the centroid of the target region.

When planning fails (for example in Algorithm 1, in lines 8 and 10) a message is
shown on the window to the user to indicate that the planning failed and to inform
the user that a new input is required (i.e., line 4).

The approach I propose here uses a human-operator to decide on the high-level
plan. One question is whether one can use automatic approaches, and how they would
perform compared to the human suggested actions. To make such a comparison, I
implemented two automated approaches.

3.4.3 Guided-RTC with NAMO

NAMO by Stilman et al. [89] is a well established algorithm for the problem of Naviga-
tion Among Movable Obstacles and can, therefore, be used as an automated approach
to finding a high-level rearrangement plan, similarly to what a human suggests in
GRTC-HITL. NAMO has originally been used for pick-and-place manipulation. Here
I adapted NAMO to work for non-prehensile tasks by using a kinodynamic planner as
the low-level planner, instead of collision-free motion planners as in the original work.

To determine the ordering of objects to manipulate and where to place them, i.e.
the high-level plan, NAMO uses backward planning. Considering the initial problem
of reaching in the fridge to grasp the orange juice (Figure 1.1), NAMO starts by
running the low-level planner to reach for the orange juice, assuming the robot can
travel through other movable objects. The resulting volume of space swept by the
robot to reach the orange juice is then checked to see which movable objects intersect
with it (for example identifies the butter and the yogurt). These objects are then
added to a queue to be moved out of this swept volume. The algorithm then pops
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out an object from this queue, and makes a recursive call to reach and move that
object. This process continues until the queue is empty, meaning that (1) there is
a plan to reach and move every object out of the way, and (2) there is a position
to place every object out of the accumulated robot swept volume. The last object
planned for is the first one to be moved during execution.

Since NAMO plans backwards, to decide on the first object to be moved, it needs
to determine all the objects to be moved and their target positions. While this means
NAMO can offer theoretical guarantees when a plan exists, it also means that in
highly cluttered environments like ours (consisting of multiple obstacles and little free
space), NAMO can quickly run out of space to place objects, before it resolves all the
constraints. In my experimental setting, which includes ten objects in a restricted
shelf space, NAMO failed in all cases by filling up the space with the robot swept
volume before a plan for all objects in the queue have been found.

This motivated me to design a heuristic approach similar to NAMO, but one that
plans forward, by directly identifying the first object to move out of the way.

3.4.4 Guided-RTC with straight line heuristic

Algorithm 3 GRTC-Heuristic Planner
Input: xcurrent: The current state of the system
Output: A high-level action

1: function getNextHighLevelAction
2: ob ← find the first blocking obstacle to og
3: if there exists a blocking obstacle ob then
4: xb, yb ← find collision-free placement of ob
5: return ob, xb, yb

6: return og . No blocking obstacle, reach the goal

I present this approach (GRTC-Heuristic) in Algorithm 3 and illustrate it in
Figure 3.4. This heuristic assumes the robot moves on a straight line from its current
position towards the goal object (Figure 3.4(b)). The first blocking object, ob in
line 2, is identified as the next object to be moved. During the straight line motion we
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capture robot’s swept volume, Vswept (Figure 3.4(b)). We randomly sample a collision-
free target region centroid outside Vswept (Algorithm 3 line 4 and Figure 3.4(c)). The
object and the centroid are then returned as the next high-level action (Algorithm 3
line 5). When the heuristic finds the centroid of the high-level action (i.e., the new
location of where the blocking obstacle should be pushed), it initially tries to find a
valid pushing centroid 30cm around the obstacle’s initial position to maximize the
chance of a successful pushing. That is, pushing the object anywhere on the shelf
might be a difficult or infeasible motion planning problem, while pushing the object
near its initial position will more likely be a feasible motion planning problem. If
there is no collision-free space around ob, then we sample from the entire space.

(a)

o7

(b)

Vswept

(c)

Figure 3.4: GRTC-Heuristic: (a) Initial state. (b) The robot moves on a straight line
to the goal object, og, to obtain the first blocking obstacle (o7) and the swept volume
(yellow area). (c) The heuristic produces a high-level action for o7 indicated by the
arrow and the target region (blue). This process is repeated until Vswept contains no

blocking obstacle.

After every high-level action suggested by the heuristic, the Guided-RTC frame-
work (Algorithm 1) plans and executes it and the state of the system is updated
(xcurrent). The heuristic then suggests a new high-level action from xcurrent until there
is no blocking obstacle (Algorithm 3 line 6).

This heuristic, although simple and effective, is a greedy algorithm and assumes
that one object lookahead (i.e., finding the next object to manipulate at a time) will
suffice to find a solution to the problem. This might not always be the case and it
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could even get into a case where there is no feasible high-level action. In this case,
the planner will keep searching for one until a time limit is reached. For the purposes
of these experiments, and as a baseline, one object lookahead was in general sufficient
and found solutions to problems where the unguided planners (i.e., KPIECE and
RRT) failed.

3.5 Experiments & Results

(a) S1 (b) S2 (c) S3 (d) S4

(e) R1 (f) R2 (g) R3 (h) R4

Figure 3.5: Initial states of different problems in simulation (S1-S4) and real world
(R1-R4). Goal object is in green.

The algorithms I evaluate are: (1) GRTC-HITL which is the main algorithm I
propose and uses a human operator to obtain the high-level actions (Section 3.4.2),
(2) GRTC-Heuristic which uses a straight line heuristic to automatically determine
the high-level actions (Section 3.4.4) and (3) Kinodynamic RRT and KPIECE (Sec-
tion 2.1.2) which plan to reach for the goal object without a high-level plan. As
explained in Section 3.4.3, NAMO failed to find solutions in our problems and therefore
I did not include results for it here.
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3.5.1 Hypotheses

The hypotheses I am evaluating in this section are:

1. Human-input is effective in the problem of physics-based non-prehensile manip-
ulation.

2. The time the human operator spends on supervising the robot is minimal.

3. A single human operator could effectively guide more than one robot simultane-
ously.

4. Human-input is effective in the real-world as well and should minimize the
problem of physics-uncertainty.

These are the working hypotheses of this chapter. The first hypothesis states
that the proposed approach should be effective for solving RTC problems. It can
be measured based on the success rate of solving various RTC problems and the
planning time (how fast is the proposed approach). This is evaluated in Section 3.5.3.

The second hypothesis suggests that human time with the system is minimal.
This can be measured with experiments in simulation and by recording the actual
time spent for the human to suggest high-level actions. This is also evaluated in
Section 3.5.3.

The third hypothesis states that a human operator can supervise a number
of robots at the same time. This can be evaluated by running experiments with
more than one robot under human supervision and comparing the performance of
the average robot when guided in parallel to one when guided individually. This
hypothesis is evaluated in Section 3.5.4.

Finally, the fourth hypothesis states that human input should minimize the
problem of physics-uncertainty. The intuition here is that the high-level action(s) of
the human should result in a simpler reaching through clutter problem with fewer
interactions with other obstacles. This can be evaluated by conducting experiments
in the real-world and measured by the success rate of the proposed system compared
to state-of-the-art baselines. This hypothesis is evaluated in Section 3.5.5.
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3.5.2 Experimental setup

For all experiments, I use the Open Motion Planning Library (OMPL) [56] implemen-
tation of RRT and KPIECE. I use MuJoCo1 [134] to implement the system dynamics,
f . For all planners, the overall planning time limit, Toverall, is 300 seconds, after
which it was considered a failure. For GRTC-HITL and GRTC-Heuristic, Tpushing is
10 seconds. For GRTC-HITL, the human-interaction time was included in the overall
time limit. All the experiments between methods had the same initial conditions,
with the only exception of the real-world experiments, where the initial conditions
(positions of objects and of the robot) were approximately the same between trials. I
conducted all the experiments in this chapter. Since I am interested in an industri-
al/warehouse scenario where human-operators would be trained to use the system, I
am mainly interested in the performance of trained operators, rather than novices.
For real-world experiments, I performed experiments using a UR5 manipulator on
a Ridgeback omnidirectional base. I used the OptiTrack motion capture system to
detect initial object/robot poses and to update the state in the human interface after
every high-level action.

3.5.3 Simulation results

I evaluated each approach 100 times by running them 10 times in 10 different,
randomly-generated, scenes. I use the names S1-S10 to refer to these ten randomly-
generated scenes and each approach was evaluated in the same 10 scenes. I use a
randomizer that places the goal object at the back of the shelf and then incrementally
places the remaining (nine) objects in the shelf such that no object collides with each
other. Some scenes are presented in Figures 3.5(a) to 3.5(d).

For GRTC-HITL, the human-operator interacted with each scene once and from
the last state left by the human-operator I ran the planner (Algorithm 1 line 13) to
reach for the goal object 10 times. For GRTC-Heuristic I ran all 100 experiments with
both RRT and KPIECE as the low-level planners and I present the better performing

1On a computer with Intel Core i7-4790 CPU @ 3.60GHz, 16GB RAM.
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Figure 3.6: Simulation results, for each scene (S1-S10): (Top) Success rate. (Bottom)
Mean planning time. The error bars indicate the 95% CI. For GRTC-HITL and

GRTC-Heuristic, the dark shade indicates the planning time where the light shade
indicates the time it took to produce the high-level actions (for GRTC-HITL this is a
fraction of the time). The results suggest that the proposed approach (GRTC-HITL)
performs better than the baselines both in success rate and planning times, and that

in some scenes human input is especially effective (e.g., S2, S3, S5, S9).

one. For GRTC-HITL and GRTC-Heuristic the low-level planner is RRT.
Figure 3.6 summarizes the results of the experiments for each of the random

scenes (S1-S10). Figure 3.6-Top shows that GRTC-HITL is more successful per
scene than any other approach except scene S6 in which it was as successful as
KPIECE. The overall success rate for each approach is 72% for GRTC-HITL, 11% for
RRT, 28% for KPIECE and 14% for GRTC-Heuristic. Figure 3.6-Bottom shows that
GRTC-HITL improved the planning time in all scenes. This suggests that the first
working hypothesis holds true, the proposed approach with the human-in-the-loop is
effective for the problem of physics-based non-prehensile manipulation.

Table 3.1 summarizes the guidance performance for GRTC-HITL and GRTC-
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Table 3.1: Guidance comparison between GRTC-HITL (human guidance) and
GRTC-Heuristic (automatic guidance). The results show that the proposed actions
of human are in general successful and hence the guidance time (time spent guiding)
is low compared to the automatic approach where it spends more time proposing

high-level actions unsuccessfully.

GRTC-HITL GRTC-Heuristic
µ σ µ σ

Proposed Actions 4.9 3.3 88.4 58.2
Successful Actions 3.1 1.0 3.0 1.4
Guidance Time (s) 13.6 10.0 124.3 81.7

Heuristic for all ten scenes. Proposed Actions indicates the total number of high-level
actions proposed. This number includes the successful actions (actions that the
planner managed to satisfy) and failed actions (actions that the planner could not
find a solution for). Guidance Time indicates the time spent on generating the high-
level actions in seconds (in case of GRTC-HITL the time the human-operator was
interacting with the system and for GRTC-Heuristic the time took for the heuristic to
generate the high-level actions). On average, the human proposed around 5 actions,
of which around 3 were successful. On the other side, GRTC-Heuristic proposed on
average around 88 actions, of which only 3 were successful. The human operator
spent on average 14 seconds interacting with the system while GRTC-Heuristic spent
on average 124 seconds proposing high-level actions. These results suggest that the
second working hypothesis holds true, the time the human spends supervising the
robot is a fraction of the planning time.

3.5.4 Parallel guidance

Since the human spends only a small amount of time guiding the robot using GRTC-
HITL, a single human-operator can be used to guide multiple robots simultaneously,
e.g. in a warehouse where a small number of operators remotely guide a large number
of robots. I present an example in Figure 3.7. This experiment aims to investigate
if guiding multiple robots simultaneously affects the quality of the guidance and if,
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Reaching Goal Object Executing Solution Success Operator: Select Position

Robot 1 Robot 2 Robot 3 Robot 4

Figure 3.7: Parallel Guidance: Robots guided in parallel in group of fours. The first
robot is planning to reach for the goal object, the second one executes a solution, the

third robot successfully reached the goal object, the fourth robot is waiting for
human input (operator’s main focus).

therefore, a single human can guide multiple robots at the same time. I compare
a single human operator guiding a single robot at a time compared to guiding four
robots in parallel. I generated twenty randomly-generated scenes and compared
twenty robots in groups of four (Parallel) with twenty robots guided individually
(Individual).

Table 3.2: Guidance performance when a robot is guided individually (no
distractions) compared to when it is guided in a group of other robots (human

distracted guiding other robots simultaneously). The results show that planner waits
for some time and that overall planning time is slightly higher.

Parallel Individual
µ σ µ σ

Guidance Time (s) 21.1 28.0 13.0 14.4
Overall Planning Time (s) 139.7 117.9 122.8 120.0
Planner Idle Time (s) 14.8 9.4 0.0 0.0

Table 3.2 summarizes these results. The success rate of parallel guidance is 60%
and for individual guidance 70%. This efficient use of the human-operator’s time
comes with the cost of slightly increased planning time and lower success rate. I also
measured the time the system was waiting for human input which was on average 15
seconds. This suggests that, although there is a decrease in success rate and slight
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increase in planning times, the benefits of the proposed system is still effective when
guiding multiple robots.

3.5.5 Real-robot results

Simulation is an approximation of the real-world and is not an exact representation
of the real-world. I am particularly interested in solutions that are robust in the
real-world, not in simulation. In these experiments, I, therefore, evaluate the proposed
approach in a realistic environment in presence of physics uncertainty and compare it
against state-of-the-art baselines. With physics uncertainty, I describe the problem
when the robot’s actions in the real-world brings the robot in different states than
the ones predicted by the simulator and therefore the solution, although valid in
simulation, is invalid in the real-world. A more elaborated discussion on the problem
of physics uncertainty is discussed in Section 2.1.6.

I evaluated RRT, KPIECE and GRTC-HITL performance in ten different problems
in the real world. I show some of the scenes in Figures 3.5(e) to 3.5(h). The video in
the deliverables, at the beginning of the chapter, shows an example of these results.

Table 3.3: Results when solutions are executed in the real world. GRTC-HITL is in
general more successful than the baselines and baselines suffer from planning and

execution failures.

GRTC-HITL KPIECE RRT
Successes 7 1 2
Planning Failures 2 4 8
Execution Failures 1 5 0

Table 3.3 summarizes the success rate of each approach in the real world. When I
say that the robot failed during execution, I mean that although the planner found
a solution, when the robot executed the solution in the real-world, it either failed
to reach the goal object, or it violated some constraint (hit the shelf or dropped an
object to the floor). These execution failures were due to the physics uncertainty in
the real world.
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The success rate for GRTC-HITL, RRT and KPIECE is 70%, 20%, and 10%
respectively. GRTC-HITL failed 20% during planning and 10% during execution.
KPIECE was more successful during planning than RRT but failed most of the time
during execution. RRT on the other hand accounts for more failures during planning
than any other approach. This suggests that the last hypothesis also holds true and
human-input is effective in the real-world compared to state-of-the-art baselines.

(a) (b) (c) (d)

Figure 3.8: A guided planning demonstration in the real world. The robot tries to
reach and grasp the green object. The human input is indicated by the black arrow
which points an object (orange) and a location to be pushed (blue region). The
robot executes the high-level action provided by the human and then reaches

successfully for the goal object.

In Figures 3.2 and 3.8 I show two examples. In the first example, the human
operator provides the first high-level action in Figure 3.2(a) and then indicates
the goal object in Figure 3.2(c) which is reached in Figure 3.2(d). In the second
example, the human-operator provides initially two high-level actions (Figure 3.8(a)
and Figure 3.8(b)). The operator in Figure 3.8(c) indicates the goal object and the
robot reached the goal object in Figure 3.8(d).

3.6 Conclusions

In this chapter, I introduced a new human-in-the-loop framework for physics-based non-
prehensile manipulation in clutter (GRTC-HITL). The proposed approach leverages
high-level human inputs in a kinodynamic motion planning framework. The input of
the user is an object and an approximate location of where it should be pushed and is



3.6. CONCLUSIONS 57

captured quickly through a mouse-based graphical user interface. The planner then
uses this input to find a kinodynamic plan to push the object before it reaches for
the goal object. In this chapter, I consider sampling-based kinodynamic planners like
KPIECE and kinodynamic RRT as the low-level planning algorithms. I compare the
proposed approach against three baselines and showed through simulation and real-
world experiments that GRTC-HITL is more successful and faster in finding solutions
than these baselines. One of the baselines uses a heuristic to automatically find a
high-level plan (similar to the one provided by the human) and the results suggest
that human intuition is still useful in hard instances of the problem. Additionally,
the human engagement with the system is minimal (less than 14 seconds) yet it
significantly improves the performance of the robot.

A noteworthy question is whether a single human operator can guide effectively a
number of robots in parallel. I presented experiments where a single human-operator
guides four robots in parallel, to make best use of the operator’s time. The results
suggest that a single human operator can guide a number of robots in parallel to
the cost of slightly increased planning times and lower success rates. This is the first
step towards the goal of this thesis to investigate how human input can be used in
physics-based non-prehensile manipulation algorithms.

Although this approach shows increase in success rate and improvements to the
planning times, there are certain shortcomings:

1. Since sampling-based planners search for a global solution and they are sampling-
based, the resulting trajectories tend to be long and noisy. That is, the robot
moves unnecessarily in space and interacts with non-relevant objects. This
introduces unnecessary interactions with movable obstacles that can increase
the real-world failure rate of the robot due to the physics-uncertainty problem.

2. The current implementation of the system requires human input before planning.
Although this can be beneficial in hard instances of the problem, there were
many cases where the problem is easy enough to be solved by the robot without
human guidance.

3. As a result of the previous point, guiding multiple robots in parallel results
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in slightly increased planning times and lower success rates as the robots are
waiting for the human more than when they are guided individually.

4. The real-world experiments demonstrated that the robot can generate a suc-
cessful trajectory yet fail when executed in the real-world due to the physics-
uncertainty problem. The current implementation of the system with single-
query sampling-based planners requires that the robot replans from scratch,
which could increase their planning times.

I address these shortcomings in the next chapter, where I look into integrating
human input in a trajectory optimisation-based planning framework.



Chapter 4

Integrating Human Input in Trajectory
Optimisation-based Planning
with Online-Replanning

Chapter Deliverables
Demonstration video: https://youtu.be/t3yrx-J8IRw
Source code: https://github.com/rpapallas/hitl-trajopt

4.1 Introduction

In the previous chapter I proposed a framework for non-prehensile manipulation
with a human-in-the-loop with sampling-based kinodynamic planning. Although this
approach was effective for planning solutions in clutter there are certain drawbacks:

1. The solutions generated by the planner are sometimes long and noisy (the robot
unnecessarily moves in space and interacts with non-relevant obstacles). This
yields to unnecessary interactions with surrounding obstacles which could cause
the trajectories to fail due to physics uncertainty.

2. Human input is required before planning. This requires the human to provide
input for all robots, regardless if the problem is trivial or not.

3. Replanning for a new solution after execution failure requires replanning from
scratch.

In this chapter, I alleviate all the above limitations by implementing a trajectory
optimisation-based motion planner (like the ones I described in Section 2.1.3). I
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Figure 4.1: Proposed System. Each row shows a different robot working in parallel.
Human input is requested only when needed (blue colour). Human high-level input is
shown with a white arrow. Planning is shown with green and execution with red

colour.

propose a trajectory optimisation-based planner with human-in-the-loop that queries
the human for help only when the robot fails to plan a solution autonomously.
The local search nature of trajectory optimisation is more appealing to generate
smooth trajectories. Finally, trajectory optimisation lends itself more easily to online
replanning, by warm-starting the optimisation with the trajectory from the previous
iteration.

To illustrate the enhancements introduced by this new approach based on tra-
jectory optimisation, consider the example in Figure 4.1, where different robots are
illustrated in each row. The horizontal axis illustrates time. Each robot has the task
of reaching onto a shelf to grasp an object (in green), by moving obstacles out of the
way. There is one human available for guidance. Initially, in frame 1 of each row, all
robots try to generate a plan, using trajectory optimisation fully autonomously. The
robots create autonomously a straight-line trajectory towards the goal object and
try to optimise over it. Unlike GRTC-HITL in Chapter 3, human engagement is not
needed at this point. Some of the robots, e.g. robots r1 and rn, quickly generate
a feasible trajectory and start autonomous execution without requiring any human
help. Since there is uncertainty in how objects move, the robots perform online
replanning (similar to model predictive control), where they re-optimise and execute
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the trajectory at each time step. Robot r2, however, decides to ask for human help
in frame 1, and prompts the user. In frame 2, the human engages with robot r2,
quickly inspects the scene, uses an interface to provide high-level input (white arrow
in the figure), and disengages. In frame 4, robot r2 tries to generate a trajectory
again, this time making use of the human provided input, and then proceeds with
autonomous execution using online replanning. Meanwhile, after a duration of au-
tonomous execution, the objects in rn’s environment move very differently from the
planner’s expectations, resulting in rn requiring human help. The human is prompted
for input, and execution proceeds.

This new approach, attempts to minimise the human effort required while the
planner receives high-level inputs that help it significantly. Another advantage of
the system described above is the use of online replanning. When a robot executes
a non-prehensile plan, objects in the real-world move differently to the model’s
predictions, which makes it necessary to update the plan. Trajectory optimisation
based planning approaches are particularly effective in such settings, because a new
optimisation cycle can be warm-started with the previous solution, and convergence
can be achieved in few optimisation iterations.

Therefore, a key novel feature of the proposed system is the use of trajectory
optimisation and performing trajectory optimisation with human input. To achieve
this, I propose to make the human input part of the objective/cost function, minimized
by the optimiser. This enables the human input to be easily integrated into the
optimisation performed at each step of the online-replanning process.

A final novel feature of the proposed system is the efficient use of human time.
The previous system, in Chapter 3, requires human help irrespective of whether an
autonomous planner can solve the problem efficiently or not. I propose that the
human should be recruited for help only if and when an autonomous planner is
expected to fail or when human help is expected to speed up planning significantly.
Such a system should be at least as good as the state-of-the-art fully autonomous
system with the addition that, when needed, a human is in the loop to help. I propose
two different approaches to realise this. The first approach will ask for human help
if the planning fails to generate a plan within a fixed amount of time. The second
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approach, better integrated with trajectory optimisation, will ask for human help if
the optimisation gets stuck at a local minimum.

To evaluate the proposed system, I ran a number of different experiments. First,
in Section 4.5.3, I evaluated two approaches of asking for human help and how they
compare with two autonomous approaches. I conducted experiments with both an
experienced and a novice user. In Section 4.5.4, I conducted experiments in simulation
with artificial uncertainty, and on a real-robot (Figure 4.2) to check the robustness
of the online replanning execution mechanism. Finally, in Section 4.5.5, I test the
entire system, in simulation, with a fleet of six robots trying to solve a number of
planning problems simultaneously with a single human-operator and I compare this
with parallel fully autonomous planners.

The organisation of this chapter is as follows. First, in Section 4.2, I outline the
assumptions, objectives and the contributions of this chapter. Then, in Section 4.3,
I define the problem formulation and important notations for this chapter. In
Section 4.4, I provide the implementation details of the proposed approach and
in Section 4.5, I evaluate and compare this approach with a number of baselines
including experiments in simulation with a novice user, experiments on a real robot
and experiments in a virtual warehouse with a fleet of robots.

Figure 4.2: Robot tries to reach for the goal object (green). Arrow indicates human
input (2nd picture). The robot executes the human provided high-level action
successfully (3rd picture) and successfully reaches the goal object (4th picture).
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4.2 Assumptions, Objectives and Contributions

Assumptions

In this chapter, I assume the following:

1. The robot is constrained on the plane and that the objects cannot be grasped
from the top. Therefore, the robot motion is constrained in SE(2).

2. The goal object is easily graspable by closing the robot fingers.

3. There is a perception system that detects object poses with good accuracy.

Objectives

The objectives of this chapter are: (1) to explore how human input can be integrated
in a trajectory-optimization-based planner, (2) how human input can be better utilised
to allow a human operator to guide more robots simultaneously, and (3) how the
robot can handle the problem of physics uncertainty.

Contributions

The novel contributions of this chapter are thus as follows:

1. Integration of human input into an online-replanning trajectory optimisation-
based motion planning for non-prehensile manipulation. This enables the system
to use human help at any point in time during execution, not only as an initial
input to the planning problem.

2. The use of an adaptive approach to decide when to ask for human input based
on the problem difficulty. This allows a human operator to manage a fleet
of robots at the same time for non-prehensile manipulation more effectively,
offloading the human from guiding robots tackling trivial problems.

3. A robust execution method to address real-world physics uncertainty.
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4.3 Problem Formulation

The environment comprises a robot r, O movable obstacles that the robot can interact
with and other static obstacles that the robot should not interact with. We also have
the goal object to reach, og ∈ O.

The state of the robot is denoted by xr = (qr, q̇r) ∈ X r. qr ⊂ SE(2) is the robot’s
configuration and q̇r is the robot’s velocities. Similarly, I denote the state of a
movable obstacle i ∈ {1, . . . , |O|} with xi = (qi, q̇i, q̈i) ∈ X i where qi ⊂ SE(2) is the
object’s configuration and q̇i and q̈i the object’s velocities and accelerations respec-
tively. The state space of the entire system, XE, is given by the Cartesian product:
XE = X r ×X 1 ×X 2 × · · · × X |O|.

The robot’s control space is denoted by U and is comprised of the linear and
angular robot velocities denoted by ut ∈ U applied at time t for a fixed duration ∆t.
We also have a trajectory τ = 〈u0, u1, . . . , un−1〉 of n steps. I use τ[0,n−1] to denote
a subsequence of controls where [0, n− 1] is a closed interval indicating the start
and end of the subsequence. For example, for the trajectory τ = 〈u0, u1, u2, u3〉, τ[0]
refers to the first element of the trajectory (u0), while τ[1,3] refers to the subsequence
〈u1, u2, u3〉.

The state of the environment at time t is given by xt = {xr, x1, . . . , x|O|} ∈ XE.
The discrete time dynamics of the system are given by xt+1 = f(xt, ut) + ζ where
ζ is the system stochasticity. I do not explicitly represent the system stochasticity
ζ. Instead, I take an online-replanning approach, which replans a new trajectory at
every step during execution using the deterministic model f .

We say that we rollout a trajectory τ using f from an initial state x0 ∈ XE using
a rollout function R(x0, τ) to obtain a sequence of states S = 〈x0, . . . , xn〉. We also
have a cost function C(S) to compute the cost of the state sequence.

Given an initial state x0 ∈ XE and a goal object og, the goal is for the robot
to execute a sequence of controls to move the robot from x0 to a state in which is
grasping og while handling real-world physics uncertainty.
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4.4 Online Replanning with Human-In-The-Loop

I use an optimisation-based approach that integrates human input to solve the
problem of reaching through clutter. The system starts tackling the problems fully
autonomously and decides to ask for human help only when needed. In this way,
the system is capable of solving trivial problems fully autonomously without any
human intervention, where possible. The proposed system integrates optimisation
and execution in a unified online-replanning framework that constantly optimises and
executes the solution in the real-world robustly.

In Section 4.4.1, I describe the proposed framework, OR-HITL. In Section 4.4.2, I
describe a stochastic optimiser that supports the optimisation part of the OR-HITL
framework. In Section 4.4.3, I define the user-input and how I capture this input.
In Sections 4.4.4 and 4.4.5, I define the cost function and how I compute the initial
trajectories used in the optimisation. Finally, in Sections 4.4.6 and 4.4.7, I describe
two approaches to decide when to ask for human help.

4.4.1 Framework overview

Algorithm 4 describes OR-HITL that unifies optimisation and execution in one
framework and alternates between the two to increase real-world execution robustness.

The algorithm starts with an initial trajectory τ for reaching the goal object (see
Figure 4.3(a)) and a cost function C with the optimisation objectives (Section 4.4.4).
In line 2 we observe the real-world state and if this state is a goal state, we stop and
declare success (line 3). If not, then we proceed with the optimisation part of the
framework.

Optimisation: In line 5 using the solve function (Section 4.4.2) we pass to the
solver the initial state xworld, the current trajectory τ and the current cost function,
C. The solver will optimise for some duration and then return a result. The result can
either be “human input required” or “success”. If the solver returns “success”, it also
updates τ with the new trajectory. Note here that the trajectory returned is a feasible
trajectory and not necessarily the optimal one. If the solver decides that human
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Algorithm 4 OR-HITL Framework
Input: τ : A trajectory

C: The cost function
1: function OR-HITL
2: xworld ← observe current real-world state
3: if xworld reached the goal then stop
4: do
5: result ← SOLVE(xworld, τ , C)
6: if result is “human input required” then
7: input ← obtain input from human
8: update cost function C based on input
9: update τ based on input
10: while result is not “success”
11: execute τ[0] in real-world
12: τ ← τ[1,n−1] and expanded with utogoal
13: return OR-HITL (τ , C)

input is required (I describe how this decision is taken in Sections 4.4.6 and 4.4.7),
then in line 7 we obtain a high-level input from a human operator (Section 4.4.3).
This high-level input includes information to update the cost function (line 8) and to
instantiate a new initial trajectory τ (line 9). We repeat these steps until result is
“success” (line 10). Success here means that the trajectory is a feasible one, (i.e., its
cost is below a threshold). Once the optimisation is successful, we proceed with the
execution part of the framework.

Execution: To cope with physics uncertainty when executing a trajectory in the
real-world, I propose an Online-Replanning approach. In line 11 we execute the first
control of the trajectory in the real-world. We then update our trajectory τ in line 12
to be the remaining τ trajectory, expanded with a control towards the goal (utogoal).
This padded control at the end of the trajectory provides freedom to the trajectory
to be further optimised in the future. Once we update the trajectory, we recurse
in line 13 and we get the real-world state in line 2 that might be different to the
one predicted by the simulator (physics uncertainty). The optimisation in line 5
warm-starts with the trajectory from the previous iteration, and therefore is likely to
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be successful in the current iteration, requiring little or no additional work from the
solver. This closed-loop execution and alternation from optimisation to execution
allows the system to cope with execution uncertainty and correct the trajectory early
on.

4.4.2 Stochastic optimisation

Algorithm 5 Trajectory Optimisation-based Solver
Input: x0: The initial state of the system

τ : A trajectory
C: The cost function

Output: “Success” with the feasible trajectory otherwise “human input required”
1: function solve
2: S ← rollout τ from x0 using R(x0, τ)
3: obtain the cost of rollout using C(S)
4: while not successful do
5: if humanHelpRequired() then
6: return “human input required”
7: sample k noisy trajectories from τ
8: rollout each of the k trajectories from x0 using R
9: obtain cost for each rollout using C
10: τ ← trajectory with the lowest cost
11: return “success”

In Algorithm 4, in line 5, we make a call to a solver. Algorithm 5 describes this
solver. The solver accepts an initial state, x0, an initial trajectory to optimise, τ , and
a cost function C for computing the cost of the trajectories.

We begin by rolling out the trajectory τ from the initial state x0 (line 2) and then
using the provided cost function, C, we compute the cost of the trajectory (line 3).
If the solver is successful (line 4), then we return “success” straight away (line 11).
To decide if the solver is successful, we check if the robot has reached the goal and
that the cost is minimized below some threshold. If the solver is not successful, we
continue with the optimisation.
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First we check if human help is required in line 5. We describe ways to make this
decision in Sections 4.4.6 and 4.4.7. If human help is required, we return a signal that
human help is required (line 6).

If human help is not required, we proceed with the optimisation. The optimisation
of the initial trajectory happens between lines 7 and 10 and iterates until either
a feasible trajectory is found (line 11) or if human help is required (line 5). The
optimisation happens in four steps. First, we sample k noisy trajectories from τ

(line 7). To create these k trajectories, we add Gaussian noise to the controls of
τ using N (0, v) where N is the Gaussian distribution and v is the variance for a
degree-of-freedom of the robot. We then rollout each of the k trajectories from x0

using the rollout function R (line 8) and then obtain a cost for each of the trajectories
(line 9). In line 10, we update τ to be the trajectory with the lowest cost. Therefore,
in each iteration τ is updated from the k sampled trajectories. It is possible that all
k trajectories have higher cost than the current τ , in this case τ does not change. We
repeat these steps until the solver is successful (line 4).

4.4.3 User input

A user’s high-level action suggests a particular object oi to be pushed to particular
point on the plane. I formalize this high-level action with the triple (oi, xi, yi), where
oi ∈ O is an object, and (xi, yi) is a point of on the plane that oi needs to be pushed
to.

To capture the user’s high-level action, I developed a simple user interface. The
operator is presented with a window showing the environment and the robot. The
operator, using a mouse pointer, provides the input by first clicking on the desired
object and then a point on the plane (Algorithm 4 line 7).

Using the human input we can now define the cost function and the initial
trajectory that makes use of the human input in the next sections.
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4.4.4 Cost function

The cost function, C, is used in Algorithm 5 (lines 3 and 9) but is also updated in
Algorithm 4 (line 8) to integrate the human input.

No human-input provided: If no human-input is provided, then the cost function
for a state sequence S is defined as C(S) = C1 + C2. Where C1 is the cost for reaching
the goal object:

C1 = wg · d(qee,qg) (4.1)

C1 is the weighted Euclidean distance from the robot’s end-effector to the goal object,
og. C2 defines three cost terms with their corresponding weights:

C2 =
n∑
i=1

ce(xi) + cf (xi) + cs(xi) (4.2)

• cf(xi) =
∑|O|

j=1wf · F (xji ): For a state xi I penalize any movable object that
applies high forces to any other movable or static obstacle. F is a function that
given a state of an object xji returns the contact forces of that object.

• ce(xi) =
∑|O|

j=1we · 1e(q
j
i ): For a state xi I penalize any movable object oj ∈ O

that is geometrically outside the configuration space. 1e is an indicator function
that returns 0 if the objects is geometrically inside the configuration space, 1
otherwise.

• cs(xi) = ws ·1s(xr): For a state xi I penalize the robot for colliding with a static
obstacle. 1s is an indicator function that returns 1 if the robot, r, collides with
any of the static obstacles or 0 otherwise.

Human-input provided: If human-input is provided (Algorithm 4, line 7) the cost
function is updated (Algorithm 4, line 8). This update is two-fold, we first push that
object to the human indicated position using C(S) = C3 + C2, and then we reach for
the goal object using C(S) = C1 + C2.
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C3 = wp · d(qi
n,q

i
desired) (4.3)

For a high-level input (oi, xi, yi), C3 is the weighted Euclidean distance of oi position
at the final state, qin, with the user’s provided position, qidesired, of that object. This
cost term in the optimisation will encourage the solver to explore solutions where the
object indicated by the human is pushed towards the desired position.
C1 essentially encourages trajectories to reach the desired object while C2 encour-

ages trajectories to avoid pushing forcefully objects, throwing objects on the floor,
and the robot from colliding with static obstacles. When it comes to pushing objects,
C3 ensures that the high-level action is respected (object is pushed to the desired
location). These are some of the problems that could occur when a robot is moving
in such environments and the cost functions ensure that a feasible trajectory respects
these constraints. The weights require tuning and I present their exact values I used
in the experiments in the results section.

4.4.5 Initial trajectories

When we start the optimisation, we need to provide the solver with an initial
trajectory. I use straight-line trajectories because they are cheap to compute (no
physics simulation).

Two such initial trajectories are depicted in Figure 4.3. The first trajectory,
Figure 4.3(a), is the initial trajectory for reaching the goal object and is a straight
line trajectory from the robot’s current position, qr, to the position of the goal object,
qg. The second trajectory, Figure 4.3(b), is the initial trajectory for pushing an object
to its desired position. This trajectory is following a straight line passing from the
object’s current position and ending at the object’s desired position.

Next, in Sections 4.4.6 and 4.4.7 I describe two ways to decide when to ask for
human input. This decision is taken in Algorithm 5 line 5 and I describe two different
approaches to take this decision.
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(a) Reaching goal object (b) Pushing an object

Figure 4.3: Initial trajectories. The arrow illustrates the trajectory. In (b) the object
to be pushed is the box the arrow penetrates.

4.4.6 Asking for human help with a fixed timeout

A straightforward way to decide if human input is required, is based on a fixed timeout
limit. The solver tries to find a solution for some fixed time limit and if a solution is
not found it will time-out and request human input.

I denote this time-limit with “Fixed z” where z ∈ Z+. Therefore, in Algorithm 5 in
line 5 when using Fixed OR-HITL, humanHelpRequired will return true if z seconds
are reached. For example, for Fixed 20, humanHelpRequired will return true every
20 seconds if the solver cannot find a solution.

Although this is a simple and straightforward approach, it can be problematic, in
some cases. For example, if the solver is able to solve a problem in 25 seconds but
the Fixed Time limit is set to 20 seconds, then the solver will ask for human help.
Similarly, for a hard problem, giving more time to time-out could make the system
waste time unnecessarily before asking for human help.

This shortcoming of the Fixed Timeout inspired an adaptive approach that decides
when to ask for human help depending on the problem at hand.
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4.4.7 Adaptively asking for human-help

One property of trajectory optimisation is that the convergence rate of the cost of a
problem from iteration to iteration can indicate whether the solver can explore new
solutions (i.e., more time is needed) or if the solver is stuck at a local minimum (i.e.,
immediate human input could be beneficial). I leverage this property to adaptively
decide when to ask for human help based on the problem at hand. If at some point
during the optimisation we find that the solver hits a local minimum, then we send a
signal that human input is required.

To decide if the solver is stuck at a local minimum, we look at the absolute
difference between the previous iteration’s cost, cprevious, and at the current iteration’s
cost, ccurrent. If this difference is lower than a threshold for a number of consecutive
iterations, then we say that we are stuck at a local minimum1. Since this is a stochastic
optimisation, we need to check this for some consecutive iterations to conclude that
we are stuck at a local minimum because it is likely that in an iteration the cost does
not improve, but this is not an indication that we are stuck at a local minimum.

Therefore, in Algorithm 5 in line 5 when using Adaptive OR-HITL, humanHelpRequired
will return true if we hit a local minimum for some consecutive iterations. After ex-
perimentation with different values, in my implementation, we stop if local minimum
is found for two consecutive iterations.

4.5 Experiments & Results

In this section I evaluate the proposed algorithm against several baselines both in
simulation and in the real-world. Some of these experiments are shown in the accom-
panying video2. I employed two operators in these experiments. First, I conducted all
the human experiments throughout this section (indicated with “Experienced User”)
except the experiments marked with “Novice” where a novice operator was employed
instead. The novice had no prior experience with robotic systems or robotics research.

1This threshold is related to the cost function definition and was experimentally chosen. Changing
the cost function definition might require adjustment of this threshold as well.

2Also available at https://youtu.be/t3yrx-J8IRw.

https://youtu.be/t3yrx-J8IRw
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Next, I highlight the working hypotheses.

4.5.1 Hypotheses

The hypotheses I am evaluating in this section are:

1. The proposed approach is effective for the problem of physics-based non-
prehensile manipulation compared to state-of-the-art fully autonomous trajectory-
optimization-based motion planners.

2. The adaptiveness of the proposed algorithm is effective compared to a fixed
timeout approach.

3. The online-replanning strategy is robust to physics-uncertainty compared to an
open-loop execution strategy.

4. The adaptiveness allows more effectively a human to guide a number of robots
simultaneously.

The first hypothesis states that the proposed system based on trajectory-optimization
is more effective than the baselines. The measurement here is the success rate and
planning times of the proposed approach and the baselines in various random RTC
problems. The second hypothesis focuses on the adaptiveness of OR-HITL. This
adaptiveness allows the robot to query human input when it is stuck in local minima.
The working hypothesis is that this will be, in general, better than having a fixed
timeout parameter to decide when to ask for human help. This hypothesis can be
evaluated by running experiments with the proposed approach and with various
fixed-timeout variants. The measurement is the success rate, planning times and
human time in various RTC problems. Both hypotheses are evaluated in Section 4.5.3.

The third hypothesis focuses on the problem of physics-uncertainty. The proposed
algorithm employs a novel Model Predictive Control strategy to tackle this problem,
and the hypothesis is that this control strategy will be more successful when executing
the solution in the real-world. This can be evaluated by running the algorithm against
an open-loop variant in the presence of physics-uncertainty (running experiments in
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the real-world or in an uncertain physics simulator). The measurement is the success
rate in various RTC problems. This hypothesis is evaluated in Section 4.5.4.

Finally, the fourth hypothesis suggests that the adaptiveness of the OR-HITL,
since it will allow the robot to solve trivial problems autonomously, will allow a single
human operator to guide multiple robots simultaneously. The evaluation can be
done by running a number of robots in parallel solving random RTC problems while
a single-human is supervising them, compared to running those robots alone fully
autonomously. The measurement will be the success rate and planning times. The
experiments for this hypothesis are shown in Section 4.5.5.

4.5.2 Experimental setup

For all the experiments I used MuJoCo3 [134] to implement the system dynamics. I
used a randomizer to generate random simulation scenes. The randomizer placed the
goal object first at the back of the shelf and then the remaining objects in collision-free
positions within a radius of 30cm around the goal object. The total time limit for
every experiment was 180 seconds, after which the robot was stopped and the run
was marked a failure. This time-limit includes combined optimisation times as well
as human interaction time.

Optimisation Parameters: The optimisation parameters were: k = 15 noisy
trajectories at each iteration, variance of 0.04 m/s for the robot’s linear velocities and
0.04rad/s for the robot’s angular velocity. The trajectories are 3-seconds long with
8 steps each. Note that each action will result to a new trajectory; therefore each
trajectory is 3-seconds long, but solving a problem with 3 high-level actions will result
to 3 consecutive trajectories. To rollout a 3-second trajectory with an integration step
size of 0.00154 it took on average 1 second on my computer. To execute a 3-second
trajectory in simulation took around 3 seconds. The cost function’s parameters are:
wg = 2000, wf = 50, we = 300 and ws = 300. Finally, the success threshold is 70.0

3On a computer with Intel Core i7-4790 CPU @ 3.60GHz, 16GB RAM.
4The integration step size was chosen experimentally and is the largest step size that does not

cause unstable simulations.



4.5. EXPERIMENTS & RESULTS 75

(Algorithm 5, line 4)5.

Robot: I use a 2-finger Robotiq gripper on a UR5 robot mounted on a Clearpath
Ridgeback. We controlled the hand in simulation (3 Degrees of Freedom (DOF):
2 linear and 1 angular). The gripper has 1 DOF but we do not consider it in the
optimisation, instead we close the gripper at the beginning of the optimisation and
we open it before the last action of the trajectory. When executing the solutions in
the real-world we mapped the gripper velocities to Ridgeback velocities.

4.5.3 Framework evaluation

(a)

Swept
Volume

(b)

Figure 4.4: Heuristic: automatic approach to obtain high-level action. The robot
first moves straight to the goal to find the first blocking obstacle. It captures the

swept volume of the robot (yellow area). It then finds a collision-free position for the
blocking obstacle outside the swept volume. White arrow is the suggested high-level

plan obtained.

I compare Fixed 5, Fixed 20 (introduced inSection 4.4.6) and Adaptive (introduced
in Section 4.4.7) with an experienced and a novice user with two autonomous planners.
The novice user had no prior knowledge of the system or the problem. The novice
user was trained for around 45 minutes.

5The weights and the threshold were chosen experimentally.
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I generated 30 scenes for each planner. I generated a different set of problems for
each planner where a human was involved to avoid the chance where a pattern of the
problem is memorized by the users. For the Autonomous and the Heuristic planners,
since there is no learning, I evaluate them over all the scenes.

Table 4.1: Framework evaluation. Comparing the performance of the proposed
approach against two fully autonomous baselines (“Autonomous” and “Adaptive
Heuristic”) and two variants of the proposed approach (“Fixed 5” and “Fixed 20”).

The results present performance of an experience user (the author of this thesis) and
of a novice user (no prior experience). The results show that the proposed approach
is, in general, better both in success rate and total time (planning, guidance and

execution time). Error indicates the 95% CI.

Success
(%)

Planning Time
(s)

Human
Time (s)

Total
Time (s)

Experienced User
Fixed 5 90.0 38.1± 15.6 9.6± 4.1 68.8
Fixed 20 93.3 44.2± 13.8 7.0± 1.8 63.2
Adaptive 96.6 31.0± 12.8 2.5± 0.9 42.5
Novice User
Fixed 5 86.6 27.8± 11.7 19.8± 8.8 62.6
Adaptive 90.0 33.6± 16.5 5.5± 1.0 45.1
No Human
Autonomous 74.6 79.8± 11.2 – 82.8
Adaptive Heuristic 82.5 86.4± 13.5 – 98.4

I compare two autonomous planners here. First, “Autonomous” is a planner that
uses the solver highlighted in Algorithm 5 but aims to reach for the goal object
without considering any high-level plan. I also implemented a straight-line heuristic
to replace the human from the OR-HITL framework. The robot moves on a straight
line to the goal object to find the first blocking obstacle and to capture the robot’s
swept volume. It then finds a collision-free position outside the swept volume for
this obstacle. The object and the new position is then returned to the framework
(i.e., substituting the human input entirely) to plan and push the object to the new
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position. I illustrate this straight-line heuristic in Figure 4.4. I call this planner
“Adaptive Heuristic”.

Table 4.1 presents the simulation results. Planning time is the average planning
time per problem. Human time is the average time spent by a user providing guidance.
Total time includes the planning time, human time (if applicable) and execution
time, providing an overall average time to solve a problem. The results show that the
planners with a human-in-the-loop were more successful than the autonomous planners
and they had dramatically improved the planning times. Adaptive requested less
human intervention with an average of 2.5 seconds of human time per problem. Fixed
5 requested human intervention more frequently and shows that human engagement
with this approach is considerably high. The novice user confirmed that the interaction
with the Fixed 5 was more tedious as he was prompted too often and he found it
challenging to provide high-level input using the Fixed 5 because the 5 seconds
timeout forced him to provide high-level actions that are easy optimisation problems.
The novice participant found Adaptive more intriguing and comfortable to use and
he enjoyed the fact that the robot managed to solve more problems on its own.

4.5.4 Handling uncertainty

The framework is designed to handle physics uncertainty during execution. To
evaluate OR-HITL and its Online-Replanning control strategy, I run two experiments
in two uncertain environments. First, I evaluated the system in simulation with
artificial uncertainty added to the objects’ motion, during execution. This creates
an uncertain environment, similar to the real-world where execution of trajectories
could fail due to physics-uncertainty. Second, to test the system in a realistically
uncertain environment, I also evaluated the system with a real robot manipulating
objects on a real shelf. The physics uncertainty in these two environments is handled
by OR-HITL using Online-Replanning and I compare against an open-loop planner.

Simulation: I configured the simulation environment in the following way. At each
simulation step (during execution, not during optimisation) we observe the velocities
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Table 4.2: Simulation results with physics uncertainty. Experiments conducted with
artificial noise added to the position of objects to simulate uncertainty and test the
robustness of the online-replanning strategy proposed. “Adaptive” is the proposed
approach with a human-in-the-loop and online-replanning, “Autonomous” is a

baseline with online-replanning but without human input, “OL Autonomous” is a
baseline without online-replanning and without human input. The results suggest
that the online-replanning strategy is robust to physics-uncertainty. Errors indicate

95% CI.

Adaptive Autonomous OL Autonomous
Success 58 / 60 35 / 60 23 / 60
Optimisation Failures 1 / 60 16 / 60 23 / 60
Execution Failures 1 / 60 9 / 60 14 / 60
Optimisation Time (s) 62.2± 10.5 118.2± 17.2 121.0± 18.1
Replanning Iterations 2.8± 1.2 4.2± 3.0 11.9± 3.1
Human Time (s) 5.4± 0.8 - -
Total Time (s) 79.6 124.2 124.0

of all the movable objects and if they are beyond some threshold6 we add a small
Gaussian noise to their velocities (N (0, 0.02) where 0.02 is m/s). I compare Adaptive,
Autonomous and I also implemented an Open-Loop Autonomous (Open-Loop (OL)
Autonomous) planner as a baseline. OL Autonomous replans only at the end of
the trajectory execution instead of the end of each action. Table 4.2 presents the
results. Execution Failures indicate the number of times the planner found an initial
solution but failed to execute and replan. Replanning Iterations indicate the number
of optimisation iterations required to successfully replan a trajectory that failed
during execution. Total time is the average time to complete the task (planning
time, human time and execution time). It is clear that Adaptive performed better
than Autonomous and OL Autonomous in success rate and planning time. Success
rate for Adaptive was 97%, 58% for Autonomous and 38% for OL Autonomous.
During replanning, Adaptive and Autonomous required on average 3 and 4 iterations
respectively to correct the trajectory while the OL Autonomous required on average

6To avoid adding uncertainty to objects that have not moved since the previous step.
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12 iterations.

Real-world: In a real-world setting I evaluated Adaptive and Open-Loop Adaptive
(OL Adaptive). OL Adaptive replans at the end of the trajectory instead of the end of
each action. I performed 30 real-world experiments, 15 for each planner in 15 different
scenes. The robot was asked to reach for the green object in a small shelf among
other 9 obstacles. Some of the scenes are depicted in Figure 4.5. To avoid damage
of the physical robot or of the objects in the environment, I stopped the robot if
it collided with any static obstacle or forcefully pushed an object against the shelf
and I declared the attempt as an Execution Failure due to violation of these safety
rules. There are some demonstrations of these experiments in the accompanying
video.7 I present the results in Table 4.3. The success rate for Adaptive is 86% while
for the OL Adaptive is 53%. Adaptive failed once during planning and once during
execution (due to safety rule violation). OL Adaptive failed once during planning
and six times during execution. The main cause of failures for the OL Adaptive
planner was that physics uncertainty caused the robot to violate some of the safety
rules. The OL Adaptive, since there was no replanning at each step, was in general
faster at executing trajectories, but when it failed it required more replanning time.
Adaptive on the other hand, replanned for some easy instances of the problem, but
the replanning was always very short because of the warm-starting.

Figure 4.5: Real-world scenes

7“Adaptive” execution is slower than “OL Adaptive” due to delays with the perception system
called after each action execution.
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Table 4.3: Real-world results: success rate of proposed approach (Adaptive)
compared to open-loop baseline (OL Adaptive). Adaptive uses online-replanning

while OL Adaptive does not use online-replanning. “Optimisation Failures” indicate
the planning failures, while “Execution Failures” indicate failures during execution.
The results suggest that Adaptive is robust to real-world physics uncertainty, with
one execution failure compared to six execution failures of the open loop planner.

Adaptive OL Adaptive
Success 13 / 15 8 / 15
Optimisation Failures 1 / 15 1 / 15
Execution Failures 1 / 15 6 / 15

4.5.5 Warehouse problem

I consider a scenario where there are 50 orders to pick objects from cluttered shelves
in a simulated warehouse. The warehouse operates six robots at the same time. The
objective is to increase the success rate of these robots and fulfil the 50 orders as
quickly as possible.

In simulation, I compare six autonomous robots (Autonomous) working in parallel
trying to fulfil these 50 orders, with the proposed system with a single human-operator
(Adaptive) guiding these six robots simultaneously. Some of these scenes are shown
in Figure 4.1. Each robot attempts to solve the assigned problem within 180 seconds.
Once a robot finishes with a problem it is assigned with the next available one. I
conducted this experiment on a more powerful computer8 as 6 simultaneous instances
of the physics simulator requires extensive CPU power and memory usage.

The results (Table 4.4) show that the proposed approach was more successful (74%
success rate compared to 32% for the Autonomous) and faster in planning solutions
per problem, almost a minute faster (95 seconds on average compared to 150 seconds
for the baseline). Human time (the time the human spent on each robot) was on
average under six seconds. Finally, an important metric for performance is the total
time. The total time includes optimisation time, human time if applicable (i.e., only

8Intel Xeon E5-2650 v2 CPU @ 2.60GHz, 64GB RAM.



4.6. CONCLUSIONS 81

Table 4.4: Warehouse problem: Results for the warehouse problem. Six robots
operating in parallel in a virtual warehouse picking objects with a single human
operator. The proposed approach (Adaptive) performs better than the baseline
(Autonomous) both in success rate and total time. Errors indicate 95% CI.

Adaptive Autonomous
Success 37 / 50 16 / 50
Failures 13 / 50 34 / 50
Optimisation Time (s) 94.7± 15.1 149.7± 15.9
Human Time (s) 5.5± 1.0 -
Total Time (s) 112.2 152.7

for the proposed approach), and execution time. It includes the planning time for
both the successes and the failures (which is bounded to 180 seconds). This number
gives the actual time it takes for the robot to complete a task on average. On average,
Adaptive considered four actions per problem (for example, three pushing actions and
one reaching action). Since each action is executed individually, there are 3 seconds
of execution time per action, which adds in total 12 seconds of execution time per
problem on average. On the other side, since Autonomous is planning straight to the
goal, there is only one trajectory and hence there are only 3 seconds of execution
time per problem added to the total time.

4.6 Conclusions

In this chaper, I proposed OR-HITL, an online-replanning framework with Human-
In-The-Loop based on trajectory optimisation. My approach starts solving the
problem fully autonomously and decides to ask for human input only when the
problem is estimated to be too difficult to be solved autonomously. My system
uses an adaptive approach (Adaptive) to take this decision based on the problem
difficulty. I demonstrated that this adaptiveness is useful in a simulated warehouse
setting where a single human operator manages a fleet of robots at the same time.
Finally, my framework showed increased robustness in real-world execution due to
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the online-replanning strategy I implemented in the framework.
In the next chapter, I motivate an extension of OR-HITL that permits robots to

predict the human contribution and bid for human time. This way, human time can
be distributed to robots that seek urgent guidance more effectively.



Chapter 5

Learning When to Ask for Human Help

Chapter Deliverables
Source code: https://github.com/rpapallas/predictive-guided-

framework

5.1 Introduction

In the previous chapter, I introduced OR-HITL, a trajectory optimisation-based
motion planning framework with an adaptive approach to decide when to ask for
human help. The adaptive approach allows the system to solve trivial problems
without human intervention. This was an improvement over the previous framework
(the sampling-based approach in Chapter 3), that required human help before planning.
OR-HITL also demonstrated fast planning times and robust execution due to the
online-replanning strategy employed. Despite the good performance of OR-HITL, the
framework revealed the following weaknesses:

• Human is queried relatively late: Currently, OR-HITL, will query the
human for help only when the robot hits local minima. It can take several
iterations for the robot to realise this (our experiments show 25 iterations on
average), and therefore waste planning time unnecessarily. This chapter looks
into ways to identify such scenes and query the human earlier.

• Human is overburden with robot requests: The current implementation
of OR-HITL displays multiple robots that require human help. This can be
disturbing for a human, especially when the number of robots scales from six to
twenty. This chapter looks into a way to prioritise robots’ requests for human

83
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help and display only one robot at a time to the human; the one which needs
the help the most.

My observation while using OR-HITL to solve several RTC problems is that
looking at certain RTC instances, you can tell if the robot will request human help.
For instance, consider Figure 5.1. For a human who knows how the robot will
approach the problem (optimizing on a straight line as shown in the figure) and with
few minutes operating the system, can tell that the robot will be challenged with the
problem on the left, while the problem on the right can most likely be solved fully
autonomously. This is due to our intuition of how the objects on the easy problem
will move while the robot is approaching the goal object (they will more likely not
block the robot’s way and they will be pushed out of the way indirectly). In this
chapter I am asking the question of whether a system can learn to realise the same
and query the human for help earlier, before it actually hits local minima.

Figure 5.1: Two different instances of an RTC problem. The problem on the left is
challenging, and the robot is very likely to ask for help, while the problem on the
right is less challenging and the robot might be able to solve it fully autonomously.

This chapter, introduces a predictive framework (an extension to OR-HITL) that,
given the state of the problem at a certain point in time, predicts how the optimisation
will evolve in the future, thereby allowing the system to query the human before
the robot hits local minima. Figure 5.2 depicts the high-level idea of this predictive
framework. There are n robots each solving a reaching through clutter task. They
all use a variant of OR-HITL (more details in Section 5.4) to plan and execute a
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Figure 5.2: The proposed framework. There is a human operator available to guide n
robots. Each of the robots, using trajectory optimisation, tries to optimise and find a

feasible trajectory fully autonomously. At each iteration, each robot predicts a
human gain (cgain) for some l iterations in the future. This human gain indicates how
impactful human input will be in the current scene. High gain means that the robot
will be able to solve the problem only if human intervenes, while low gain means that

the robot might benefit from human input but might also be able to solve the
problem autonomously. The “Allocator”, observes the predicted human gains from all

the robots and assigns the human to the robot with the highest expected gain.

solution and, therefore, they optimise over an initial trajectory. Each robot, at each
optimisation iteration, using the “predictor”, predicts their cost with and without
human input and calculates a predicted human gain. This human gain essentially tells
how impactful the human input can be in the current context as opposed to planning
fully autonomously. If the predictor anticipates that autonomously the robot will be
in local minima but human input is likely to help the robot to solve the problem, the
predicted human gain will be high. Robots which anticipate a positive human gain,
submit their predicted human gain to the “Allocator”. The allocator then considers
all the requests and assigns the robot with the highest predicted human gain to the
human. As a result, robots which anticipate greater human gain have higher priority
over other robots while robots which anticipate that the human will not be able to
help or are not of high urgency, continue fully autonomously.

The system I propose here, learns the human gain from past experiences when a
human interacted with the system, providing high-level inputs. The system essentially
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learns to predict (1) how the optimisation will evolve in the future without human
input and (2) how the optimisation will evolve in the future with human input.
Knowing these two values, a robot can predict, with a certain error, the human
gain at each iteration and allows the robot to request the human early on, before
unnecessary time passes. Having a value representing the human gain is appealing in
the setting where multiple robots will be bidding for human time as well.

Next in, Section 5.2, I outline the assumptions, objectives and contributions of the
chapter. In Section 5.3, I define the problem formulation. In Section 5.4, I describe
the proposed framework, PGF. Finally, in Section 5.6, I present an evaluation of
the system both in terms of the prediction performance and with the overall system
working in a virtual warehouse with a number of robots and a single human operator
guiding them at the same time.

5.2 Assumptions, Objectives and Contributions

In this chapter, I assume the following:

1. The robot is constrained on the plane and that the objects cannot be grasped
from the top. Therefore, the robot motion is constrained in SE(2).

2. The goal object is easily graspable by closing the robot fingers.

3. There is a perception system that detects object poses with good accuracy.

4. Scenes with similar object arrangements will have similar cost.

The objective of this chapter is to explore the idea of learning when to ask for
human help. In a setting where a human supervisor is required to supervise a large
number of robots, choosing the right robot to guide at the right time might be
beneficial. The aim of this chapter is to present a possible implementation of such
predictive system.

The contribution of this chapter is, therefore, a predictive approach that allows a
robot to predict the cost of a future iteration and the integration of this predictive
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approach in a motion planning algorithm for the problem of Reaching Through
Clutter with a human-in-the-loop for physics-based non-prehensile manipulation.

5.3 Problem Formulation

We consider the kinodynamic problem of Reaching Through Clutter (RTC) introduced
in Section 3.3 and the trajectory optimisation formulation and notations introduced
in Section 4.3.

We define a prediction model φhuman that, given the state of the environment of
a robot, returns a predicted trajectory optimisation cost l iterations in the future
assuming that human intervened. Similarly, we define a prediction model φautonomous,
that given the state of the environment of a robot, returns a predicted trajectory
optimisation cost l iterations in the future assuming that human did not intervened.
We define, therefore, cgain as the predicted human gain l iterations in the future.

The problem we are trying to solve is, given the environment, a human operator
and n parallel robots, to select the robot that is more likely to require human guidance
in the future and is the one that will benefit the most.

5.4 Predictive Guided Framework (PGF)

In this section, I introduce the Predictive Guided Framework (PGF). The overall
framework is described in Algorithm 6. PGF is an extension to OR-HITL framework
introduced in Section 4.4.1 (Algorithm 4). Here, I outline the changes and key
differences between the two. The remaining details (for example how the initial
trajectories are created, how human input is integrated in the optimisation etc) can
be found in Section 4.4. The only difference in OR-HITL and PGF is the call to the
pgf-solve in line 5 instead of solve. This new solver integrates a predictive model
to decide when to ask for human help (so the human is not queried in each cycle) and
assigns the human to the robot with the highest anticipated gain. The pgf-solve is
the one that integrates the predictions and will be discussed next.
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Algorithm 6 Predictive Guided Framework
Input: τ : A trajectory

C: The cost function
1: function PGF
2: xworld ← observe current real-world state
3: if xworld reached the goal then stop
4: do
5: result ← PGF-SOLVE(xworld, τ , C)
6: if result is “human input required” then
7: input ← obtain input from human
8: update cost function C based on input
9: update τ based on input
10: while result is not “success”
11: execute τ[0] in real-world
12: τ ← τ[1,n−1] and expanded with utogoal
13: return PGF(τ , C)

5.4.1 Predictive solver

The pgf-solve solver is described in Algorithm 7. It is also an extension to OR-
HITL’s solver (first introduced in Algorithm 5). The main difference is between the
lines 5 and 7. Initially, the planner rolls out the initial trajectory to obtain a sequence
of states (line 2). It then obtains the cost of the rollout (line 3). The solver then
proceeds until it is successful with the following process. In line 5 we use the current
state of the system, x0, to predict the human gain cgain. The predicted gain is then
given to the human-allocator function (line 6) which decides if the robot will get
human help. If the allocator decides that the current robot should be assigned the
human (line 7) then the solver stops and returns “human input required”. Human is
prompted for input (Algorithm 6, line 7) and the input is integrated in the optimiser
(Algorithm 6, lines 8 and 9). If human input is not required, then we sample k noisy
trajectories from τ (line 9) we rollout each of the k trajectories (line 10) and we obtain
the cost for each (line 11) and keep the trajectory with the lowest cost (line 12).

The solver also uses a cost function, C. The cost function is similar to the one
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Algorithm 7 Predictive Solver
Input: x0: The initial state of the system

τ : A trajectory
C: The cost function

Output: “Success” with a feasible trajectory otherwise “human input required”
1: function PGF-SOLVE
2: S ← rollout τ from x0 using R(x0, τ)
3: obtain the cost of rollout using C(S)
4: while not successful do
5: cgain ← predict(x0)
6: humanAssigned ← human-allocator(r, cgain)
7: if humanAssigned then
8: return “human input required”
9: sample k noisy trajectories from τ
10: rollout each of the k trajectories from x0 using R
11: obtain cost for each rollout using C
12: τ ← trajectory with the lowest cost
13: return “success”

introduced in the previous chapter with slight modifications (the inclusion of cb
instead of the cost for the static boundaries). The cost terms of the cost function are
listed below:

• cd = wd · d(qee,qg): The Euclidean distance from the robot’s end-effector to
the goal object

• cf(xi) =
∑|O|

j=1wf · F (xji ): For a state xi we penalize any movable object that
applies high forces to any other movable or static obstacle. F is a function that
given a state of an object xji returns the contact forces of that object.

• cb(xi) =
∑|O|−1

j=1 wb · 1b(xn,q
ee,qi): For each obstacle we check if there is a

blocking obstacle in the robot’s end-effector in the last state of the trajectory
(xn). 1b is an indicator function that returns 1 if the robot, has an obstacle
(other than the goal) in the hand, 0 otherwise.

The first cost term is defining how close the robot is to grasp the desired object and
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is therefore indicating if the robot is grasping the object at the end of the trajectory.
To avoid trajectories that forcefully pushes objects against static obstacles, we use
the second term. The third term of the cost function encourages the planner to find
trajectories that do not get blocking obstacles in the robot’s hand. This cost function
was experimentally chosen and provided a good cost function for the problem of
Reaching Through Clutter.

When human input is provided, the cost function and initial trajectories change
accordingly (as already discussed in Section 4.4.4).

5.4.2 Allocator

Algorithm 8 Allocator
Input: ri: ith robot

cgain: Anticipated human gain for robot i
Output: True if robot should be supervised, false otherwise

1: function human-allocator
2: if window not created then
3: create window for twindow seconds
4: Rpool ← Rpool ∪ {ri, cgain}
5: wait twindow seconds for other robots to join
6: return true if ri is the robot with highest cgain in Rpool, false otherwise

In Algorithm 7 in line 6, we make a call to human-allocator. This function is
described in Algorithm 8. The allocator creates timed windows where robots join
a pool of robots and place a bid, their expected human gain. If a window is not
currently active, the system creates a window for twindow seconds (line 3). Robots
join the active window and they are added in the robot pool Rpool which consists
of the robots and their predicted human gain (line 4). The robot waits for twindow
seconds (line 5) for other robots to join the bidding. After the time elapses, the robot
with the highest predicted gain gets the human while all other robots in the pool are
refused access to the human (line 6).

So far, I introduced the PGF framework, the modified solver that employees a
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predictive approach to decide when to ask for human help and the allocator that
uses the predicted values to allocate the appropriate robot to the human. The only
missing component of PGF is the predictors. In the next section, I discussed the
predictors and how I have implemented them for the problem of RTC.

5.5 Predictions

In this section, I describe how the predictions are made. First, in the next section
I describe the predict algorithm that makes the predictions in Algorithm 7 (Sec-
tion 5.4.1). In Section 5.5.2, I describe the structure of the dataset that I collected to
train the models. Finally, in Section 5.5.3, I describe the network architecture.

5.5.1 The prediction algorithm

Algorithm 9 Predictor
Input: xcurrent: Current state of the system
Output: The anticipated human gain

1: function predict
2: chuman ← φhuman(xcurrent)
3: cautonomous ← φautonomous(xcurrent)
4: cgain ← cautonomous − chuman
5: return cgain

In Algorithm 7 in line 5, we make a call to a predict function. This function is
described in Algorithm 9. Using two prediction models φhuman and φautonomous, we
predict two future costs. The first cost (line 2) is the prediction of the cost terms
of the optimisation l iterations in the future, assuming human input. The second
cost (line 3) is the prediction of the cost terms of the optimisation l iterations in the
future, assuming no human input. The algorithm then calculates cgain (line 4) as the
anticipated gain the robot will get in the future if human input is given. In line 5 the
predicted gain is returned to Algorithm 7 and line 5.
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The predictors use the current state to inform their decision. However, in the
problem of RTC that I consider here, the state of the environment is of high dimen-
sionality (configuration of movable objects) which is challenging to learn. Instead,
I use a projection of the state space as an input to the predictors which does not
include the configuration of the movable objects. The projection is the number of
movable objects in the scene, nobj and the cost terms (cd, cf , cb) in the last p iterations.
I found that using the cost term from the last iteration was not enough to represent
the complexity of a problem and instead I found more successful to look at a history
of the cost breakdown.

5.5.2 Structure of the datasets

I generated two different set of data. One dataset for training φautonomous (the
autonomous dataset) and another dataset for training φhuman (the human dataset).

The dataset for φautonomous consists of the optimisation cost breakdown per scene. I
generated a number of distinct scenes (different rearrangements of object positions on
the shelf) and ran the autonomous optimiser to solve them and collect data. For each of
these scenes we have the following: 〈nobj, 〈0, cd, cf , cb〉, 〈1, cd, cf , cb〉, . . . , 〈m, cd, cf , cb〉〉.
That is, 〈0, cd, cf , cb〉 is the cost breakdown cd, cf and cb at iteration 0 for one scene.
nobj is the number of objects in that scene andm is the last iteration of the optimisation.
We have a tuple for each distinct scene (each of which has a number of tuples for
each iteration of the optimisation).

Similarly, the dataset for φhuman consists of the optimisation cost breakdown per
scene before and after human input. Again, I generated a number of distinct scenes
and ran OR-HITL this time to solve them and collect data. For each scene we have
the following: 〈nobj, 〈0, cad, caf , cab〉, 〈1, cad, caf , cab〉, . . . , 〈m − 1, chd , c

h
f , c

h
b 〉, 〈m, chd , chf , chb 〉〉.

That is, 〈0, cad, caf , cab〉 is the cost breakdown cd, cf and cb at iteration 0 before human
input. 〈m− 1, chd , c

h
f , c

h
b 〉 is the cost breakdown at iteration m− 1 after human input.

Again, nobj is the number of objects in the scene and m is the last iteration of the
optimisation. The only difference here is that we have a key iteration when human
input was provided and we treat the cost breakdown differently before and after that
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point (i.e., the change in the cost after the human input). Essentially, we want to
learn what 〈chd , chf , chb 〉 will be given a sequence of 〈i, cad, caf , cab〉.

5.5.3 Network architecture

The two sets are used to train φhuman and φautonomous. I used Tensorflow for im-
plementing both models [135]. φautonomous and φhuman are two feed-forward deep
neural networks with the same architecture. After experimentation with different
architectures, the current architecture consists of an input layer, three hidden layers
and the output layer (the cost l iterations in the future). The hidden layers contain
64, 32 and 8 neurons with reLU activation function respectively.

The input and output layers for the two models are thus:

• φautonomous: 〈nobj, 〈i − p, cd, cf , cb〉, . . . , 〈i − 1, cd, cf , cb〉, 〈i, cd, cf , cb〉〉. That is,
some p consecutive iterations and the cost breakdown for each. The output layer
is the total cost at the l = i+ 10 iteration. That is, cautonomous = cd + cf + cb

on the lth iteration.

• φhuman: 〈nobj, 〈i−p, cad, caf , cab〉, . . . , 〈i−1, cad, c
a
f , c

a
b〉, 〈i, cad, caf , cab〉〉. That is, some

p consecutive iterations and the cost breakdown for each before human input.
The output layer is the total cost at the l = i+ 10 iteration after human input.
That is, chuman = chd + chf + chb on the lth iteration.

5.6 Experiments & Results

In this section, I evaluate the performance of the models and of the framework in
a virtual warehouse with a sliding number of robots for the problem of Reaching
Through Clutter. I used a randomiser to generate random problems. Each problem
consists of a scene with 20 movable objects on a shelf and the robot. The randomiser
shuffles the movable obstacles in collision-free places including the goal object but
ensures that the goal object is always at the back row of the shelf to create more
challenging problems.
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5.6.1 Hypotheses

The hypotheses I am evaluating in this section are:

1. It is possible to learn to predict future optimisation cost values.

2. Choosing the right robot (from a group of robots) now that will need human
guidance in the future, will yield to better overall performance in a setting
where a single human operator guides multiple robots.

5.6.2 Experimental setup

Optimiser parameters: For the problem of Reaching Through Clutter, I use
MuJoCo [134] and its C++ API to implement the system dynamics. I use k = 8 noisy
trajectories at each iteration, variance of 0.04 m/s for the robot’s linear velocities
and 0.04 rad/s for the robot’s angular velocity. The cost function’s parameters are:
wd = 4000, wf = 30, wb = 450 and ws = 300. The success threshold is 20.0.

Predictors: The prediction is l = 10 iterations in the future. The input layer
of the neural network uses p = 3, that is, we look at the last three iterations:
〈nobj, 〈i − 2, cd, cf , cb〉, 〈i − 1, cd, cf , cb〉, 〈i, cd, cf , cb〉〉. I trained the networks on a
computer with Intel c○ Core™ i7-4790 CPU @ 3.60GHz, 16GB RAM. I used TensorFlow
2.0 [135] with Keras. The training batch size is 50 and used Keras’ EarlyStopping
callback for adaptive number of epochs. I used the “Adam” optimiser with Root Mean
Squared Error (RMSE) as the loss function. twindows for human-allocator is 2
seconds.

The evaluation proceeds as follows. First, in the next section I evaluate the per-
formance of the models and in Section 5.6.4, I evaluate the proposed PGF framework
in a virtual warehouse with a sliding number of robots.

5.6.3 Model performance

For the human dataset, I collected data from 3 participants and myself from 1,500
distinct scenes. OR-HITL was used in these scenes and the data collected were used
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to train φhuman. For the autonomous dataset, I collected data from 4,000 distinct
scenes to train φautonomous. In these 4,000 problems the robot tried to solve RTC
problems fully autonomously, without any human intervention. These datasets were
split 80-20% for training and validation respectively.
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Figure 5.3: φautonomous (left) and φhuman (right). Blue line is the loss function (Root
Mean Squared Error) on the training set and orange line is the loss function on the

validation set.

Figure 5.3 shows the performance of these models. The error for the autonomous
predictor is much lower due to the availability of more data points. The RMSE of the
autonomous predictor is 58.56 and for the human predictor is 157.49. To put these
numbers into a perspective, for the two scenes in Figure 5.1 the cost of the initial
trajectory for the left and right problems is 749.56 and 0 (initial trajectory was a
valid solution; no optimisation iteration was required) respectively.

In the next section, using these predictors I evaluate the complete system in a
virtual warehouse with a number of robots.
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(a) Robot 1, cgain = 3.84 (b) Robot 2, cgain = 31.36 (c) Robot 3, cgain = 66.19

(d) Robot 4, cgain = 66.64 (e) Robot 5, cgain = 49.52 (f) Robot 6, cgain = 51.06

Figure 5.4: Example scenes from the experiments in a bidding window. There are
twenty potential robots. Six of them join the bidding window (a-f) at the same time.

cgain is their predicted gain.

5.6.4 Coping with a fleet of demanding robots

Next, I set-up a virtual warehouse1 of 1-30 robots picking objects from shelves. I
generated 1,500 new random scenes equally distributed among the thirty robots2.
PGF is the proposed algorithm of this chapter and OR-HITL is the algorithm from
the previous chapter. The main difference between the two is that PGF uses the
predictive approach to predict future cost and queries human help earlier, while
OR-HITL queries the human when stuck in local minima and there is no precedence;
the human is allocated to the first robot to enter the pool.

Some demonstration scenes are presented in Figure 5.4. The figure presents six
robots, out of the twenty parallel robots in the virtual warehouse, that joined the

1Using a powerful EC2 instance on Amazon Web Services c○: c5.24xlarge with 96 vCPUs and
192GiB of RAM

2With the exception of one robot experiments that the number was increased to 100 instead of
50.
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same window with different predicted gains. Among the six robots, robot 4 was the
one with the highest predicted gain and the one assigned to the human. I compare
their predicted values with the final costs at the final iteration when the same problem
was solved using OR-HITL. For robot 1, OR-HITL solved the problem autonomously
in 4 iterations, robot 2 solved it autonomously in 8 iterations, robot 3 hit a local
minimum and queried the human on the 7th iteration, robot 4 failed to solve the
problem altogether, robot 5 solved it autonomously in 20 iterations, and robot 6 hit
a local minimum early on (on the 4th iteration) and queried the human.
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Figure 5.5: Planning times (left) and success rate (right) for PGF (blue) and
OR-HITL (orange) as the number of robots under the supervision of a single

human-operator increases. Error shadow indicates the 95% Confidence Interval. The
results suggest that a single human operator can guide efficiently up to 20 robots
using the proposed approach (PGF). As the number of robots under the human

supervision increases from 20 to 30, the performance starts to become equal to the
baseline (OR-HITL).

Next, I measure the performance of these systems and present results in Figure 5.5.
The data in Figure 5.5-Left suggest that the planning time of the robots increases
as the number of robots under the human supervision increases as well, however
there is a statistically significant improvement in planning times when a human
supervises from one to twenty robots when using the PGF system. In these cases the
system correctly queried the human earlier and therefore allowed the robots to receive
high-level human input earlier on. The data suggest that once the number of robots
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increases from twenty to thirty this significance shrinks. A possible explanation is
that as the number of robots increases, there are more robots waiting for help that are
not able to take human time and therefore these robots perform similar to OR-HITL
(where help comes much later or not at all). The success rate in Figure 5.5-Right
shows a similar trend but in general the success rate of both approaches is relatively
high compared to the task difficulty. Considering the total experiments, OR-HITL
queried the human on the 25th iteration on average, while PGF queried the human
on the 6th iteration on average.

5.7 Conclusions

In this chapter, I proposed an extension to OR-HITL, the PGF. By incorporating
predictions of future costs, this system is able to adaptively query the human for
help earlier, before unnecessary planning time is wasted. The predictions act also
as a metric to sort robot requests based on expected gain, allowing the system to
allocate the most urgent robot to the human. The results suggest that the system
improves OR-HITL significantly while the human is not overburdened by multiple
robot requests. However, the results show that the number of robots a single human
can effectively guide at the same time has a cap of 20 robots. In settings with more
than 20 robots, the data shows that PGF has no significant difference than OR-HITL,
suggesting that a single human-operator can effectively guide up to 20 robots at a
time.



Chapter 6

Conclusions & Future Work
In this chapter, I conclude and summarise the content of the thesis and suggest
directions for future work.

Figure 6.1: Which are some of the remaining challenges with respect to this task?

6.1 Conclusions

The focus of this thesis is on physics-based non-prehensile manipulation in clutter.
Such problems occur frequently in different cases. For example, as shown in Figure 6.1,
a home care robot that assists a motor-impaired person or in warehouse management
where robots pick objects from shelves. In these cases, the robots need to reach and
work in cluttered environments and reason about which objects to push and where to
make space to reach for a desired object. The problem is challenging for the following
reasons:

1. The problem is a high-dimensional one, where the system needs to consider the
state of all the movable objects and itself.

2. The problem is an under-actuated system; the robot needs to control the state
of movable objects through contact.

99
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3. Physics-based motion planning requires the use of physics simulator which is a
computationally expensive process.

4. Physics-uncertainty causes valid solutions obtain in simulation to fail during
execution in the real world.

All these challenges make this problem a challenging one, and existing methods
suffer from long planning times or low success rate for realistic instances of the
problem.

In this thesis, I investigate how human input can be integrated in motion planning
algorithms to address these challenges. My focus was mainly on sampling-based
kinodynamic planning and trajectory optimisation-based planning.

Initially, my contribution to sampling-based kinodynamic planning in Chapter 3,
presents a framework that considers high-level inputs from a human-operator. The
human operator input is a triple of an object to be manipulated and an approximate
position of where to be pushed. With these inputs, the robot can plan for sub-goals
to more effectively reach and grasp the goal object. The approach builds on existing
motion planning sampling-based planners (kinodynamic RRT and KPIECE) and
proposes a framework for non-prehensile manipulation with human-in-the-loop. I
compare the proposed system with autonomous planners (that consider no guidance)
and with a baseline that automatically tries to generate high-level actions (similar
to the ones that are suggested by a human). The results suggest that human
input improves the performance of the proposed system compared to state-of-the-art
baselines, and show that human intuition is effective and easy to obtain. This initial
framework demonstrated that human-input is effective in these problems, but shown
to be pruned to long and noisy solutions.

Next, in Chapter 4, I proposed a trajectory-optimisation-based planner to alleviate
shortcomings of sampling-based planning. Specifically, the new approach, OR-HITL,
allows robots to start tackling problems fully-autonomously and only query a human
when needed. This is achieved by using an “Adaptive” approach to decide when
to ask for human help. In specific, the system tries to detect when the planner is
stuck in local minima and queries the human at that point. This permits the robots
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to solve trivial problems fully autonomously, yet fallback to a human when they
are stuck at a local minimum. The use of trajectory-optimisation also permits to
more easily integrate the human-input in the optimisation by injecting the high-level
input in the cost function. Finally, trajectory optimisation lends itself more easily
to online-replanning, and I proposed a novel online-replanning strategy to tackle
the problem of physics-uncertainty. This online-replanning strategy takes advantage
of trajectory optimisation and optimises the trajectory at the end of each action
execution in the real world. As a result, if physics-uncertainty causes the trajectory
to be invalid after a number of step execution in the real-world, the planner will
re-optimise and improve the trajectory. The planner interleaves optimisation and
execution and warm-starts the optimisation with the trajectory from the previous
iteration to achieve convergence faster. This new system, due to the effective use of
human-input (human only supervises robots dealing with hard problems as opposed
to supervise all robots as with the system in Chapter 3), allows a single human to
easily guide six robots simultaneously and provides significant improvements in terms
of the planning times and success rates than the baselines. The results demonstrated
that this new system is solving RTC problems faster, saves human time by solving
problems autonomously and also that is robust to physics-uncertainty.

Finally, the last contribution is PGF in Chapter 5, a novel predictive system,
extension of OR-HITL, that permits robots to learn the human contribution and
predict the course of the optimisation to identify early on when to ask for help, before
time is lost unnecessarily waiting to hit the local minima. The system trains a model
from past experiences when a human supervised robots and when the robot solved
problems fully autonomously. The model learns to predict the future optimisation
cost of a given problem with and without human help to derive a predicted human
gain (what is the effect of human input in the future if I were to request help now?).
This predicted gain is then used to decide when to ask for help, and also to order the
requests of multiple robots. This predictive system considers multiple robots (up to
thirty) all of which “bid” for human time, allowing the system to assign the human
to the robot with the highest anticipated gain. PGF was effective in guiding 1-20
robots, but shown to perform equally with OR-HITL when the number of robots was
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increased to thirty.
The work, however, has a number of limitations. In specific, I consider a planar

problem where the robot motion is constraint in the plane. This simplifies the
problem, but might not be ideal for certain instances of the problem that require
motion planning in a 3D space. Additionally, a challenge of the problem is related
to perception. In this thesis, I do not focus on the problem of perception and I
used a Motion Capture System to track the position of objects. Furthermore, in
this thesis I assume a fully-observable environment and that the robot is aware of
the position of all the objects in the environment. In realistic problems, however,
this is not always the case, as objects might be occluded from the robot’s view.
Finally, I consider pushing-based actions only, which again can be limited for solving
challenging instances of the problem. In the next section, I consider all the above
limitations and propose possible future directions of the work.

6.2 Future Work

In the next sections, I consider several future directions and how this work can be
improved within the scope of non-prehensile manipulation in clutter.

6.2.1 Computer vision and partially-observable environment

In the introduction of this thesis, I noted that manipulation is challenging for several
reasons, one of which is computer vision. Throughout this thesis I excluded this
challenge to focus on the computational problem of robotic manipulation planning
and control. I, therefore, assumed a fully-observable environment. That is, the robot
is aware of the pose of all the objects.

In a realistic problem like the one in Figure 6.1, however, there are two challenges
that we need to consider:

1. Detecting objects and their pose with respect to the robot.
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2. Assume partial observability of the environment and that the robot vision is
also constrained depending on the robot’s position.

There were great advancements recently with respect to the first problem using
machine learning and depth-sensors [136–139], however it still remains challenging
to accurately detect a variety of different or novel objects. Moreover, a system that
detects objects and their poses through a depth-sensor is subject to pose errors
that could create further planning challenges due to the problem of pose/physics-
uncertainty. For the second problem, there was a recent work tackling this specific
problem for manipulation in clutter, but limited to 2D planar actions [73].

6.2.2 Handling deformable objects and non-standard geometry

objects

The objects I consider in this thesis are standard rigid bodies (cylinders or boxes) and
assume they are easily graspable by the robot. In a real-environment, however, there
are objects of non-standard geometry or deformable objects, especially in industrial
shelves. Such objects pose challenges for computer vision, pose estimation and for
physics simulation. Grasping, is also a research area by itself [140–142], and I did not
consider the problem of grasping in this thesis. The objects that the robot had to
mainly grasp where small and graspable objects. I assumed that once the object is
within the robot’s end-effector the robot can close its fingers and grasp the object. It
is an interesting direction, especially from an industrial point of view, to investigate
how this work can be extended to handle such objects.

6.2.3 Handling more complex non-prehensile interactions

Throughout this thesis, I consider pushing-based actions and I refer to non-prehensile
manipulation just for pushing-based actions. Certain clutter configurations might
require more complex non-prehensile interaction or a sequence of such non-prehensile
actions. Consider Figure 6.2 as an example problem. Retrieving the book from
the shelf requires first to tilt it, to create a graspable surface, and second to grasp
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Figure 6.2: Grasping the goal book requires different non-prehensile actions. A
similar example and figure was first introduced in [3] which inspired the illustration

of this figure.

and pull the object. Such problems could occur frequently in cluttered scenes and
robots should have the required skills to tackle such problems where a sequence of
non-prehensile actions need to be performed in the right order.

Although throughout this thesis I motivated non-prehensile over prehensile ma-
nipulation to manipulate cluttered scenes, the two are and should not be mutually
exclusive. In certain environments, prehensile manipulation is actually an optimal
choice. Consider the case when a fridge is highly cluttered and objects are stacked
over others. There are cases when we need to pick and place a key obstacle out of the
fridge, on a temporary surface, to free up space or to ensure the stability and safety
of that obstacle before we can reach for the desired object at the back of the fridge.
Not doing so, could result in damaging the obstacle while pushing other objects. Such
problems require synergies between prehensile and non-prehensile manipulation. Such
systems have been studied before [19] but not for the problem of reaching through
clutter.

The challenges of such hybrid approaches is the high-dimensionality of both the
task and state space. A recent approach used a hierarchical planning approach
for planning a sequence of non-prehensile actions [110]. The work is limited to 2D
problems with two robot contacts only. In the context of human-in-the-loop planning,
it will be interesting to see how human input can more effectively used to guide the
task planner and/or the motion planner.
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6.2.4 Moving from a 2-dimensional space to a 3-dimensional

To simplify the problem and focus on the pushing-based actions of reaching through
clutter I assumed that the robot is moving on the plane. Although a great number
of problems can be solved in this space, certain problems, like the one in Figure 6.2
for example, require planning and acting in the 3-dimensional space. Moving to a
3-dimensional space will increase the dimensionality of the state and control space.
It will also require the use of an inverse-kinematics (IK) solver to calculate the
required robot configurations and to plan in the robot configuration space instead of
the end-effector space. The frameworks I proposed in this thesis, however, are not
particularly limited to a 2D space. It will require changes to the control sampling,
state space representation and to the roll-out function.

6.2.5 Different types of human input

This thesis mainly focused on pushing-based actions and the human input was
constrained to this specific type of action while trying to capture information from a
high-level. There is space for experimentation with different types of human input. A
possibility is to implement a system with different Levels of Robot Autonomy (LORA)
[143], that will allow the system to ask different types of inputs from a human. For
example, a higher-level of autonomy might require minimal input from the human,
like the one I studied in this thesis, yet a lower-level of autonomy might allow the
human to specify a complete configuration of the robot. The latter requires more
work from the human, but might be more effective in very challenging instances of
the problem. A challenge with such a system is to know when to query the human
with higher level of autonomy or lower level of autonomy. One idea is to extend the
work in Chapter 5 to handle not only when to ask for human help but also what
control level to give to the human.

Finally, in this work I considered conventional interfaces and input devices like a
computer monitor with a graphical user interface, a mouse and a keyboard. Although
such devices are highly available, cheap and effective in most cases, there is possibility
for improvement and innovation considering more sophisticated user interfaces with
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more tailored or higher-dimensional input devices.

6.2.6 Learning from human input

An argument one can make when it comes to shared-autonomy and a system that
receives input from a human is whether the robot can learn from the human input.
This is an interesting and active research question. There are recent works in
imitation learning that consider similar problems [69, 80, 144, 145]. Given a number
of demonstrations from a human, a system can learn to imitate this behaviour. The
challenges for such system are mainly the number of demonstrations needed for a
system to generalise and how easy will be for the robot to learn from different sources
in unstructured and diverse environments. In our setting, the system can be used by
different human-operators. The high-level input, most of the time, is a user preference.
There are multiple good high-level inputs that a human can suggest. Learning in such
diverse space could be challenging for existing methods, especially in a continuous
space (position where the object should be pushed).

6.3 Final Remarks

In this chapter, I summarised the work and the results. It is clear that human-
in-the-loop systems for non-prehensile manipulation in clutter are advantageous,
and this advantage comes with small overhead to a human operator who can guide
multiple robots simultaneously. The work considers multiple relaxations of the original
problem and focuses on the motion planning and control aspect of pushing-based
non-prehensile manipulation. I identified several limitations of the work and possible
future directions to improve it.
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